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ABSTRACT

In fitting a transfer function model to input/output data, it is sometimes

possible to select a particular input with the purpose of minimizing estimation

error. In this report, some aspects of this optimal input synthesis problem

are examined for a class of linear multistage systems. In particular, an

input is selected from a class of equal-energy inputs which maximizes the

trace of the Fisher information matrix with respect to the input sensitivity

parameters, where it is assumed that the transient response and prediction

accuracy of the unforced system is known. The optimal input is compared to

a purely random input which has the same average energy, and numerical

results for a second-order system are provided. Input synthesis with regard

to the other model parameters which determine its unforced behavior is

hampered by the fact that the Fisher information matrix is a function of these

parameters.
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NOMENCLATURE

The following is a list of symbols used in the report. Underlined letters

denote vectors.

Symbol Description

A Matrix of input coefficients

A. Partial of A with respect to y..1

B Matrix of noise input coefficients

b Covariance of the steady-state measurement residuals

C Sample covariance of the unconstrained likelihood function

F N by N symmetric matrix which is a sum of similarity

transforms of f

h Measurement matrix (a vector for scalar measurements)

I Identity matrix of dimension n by nn

J Cost function

k Steady-state Kalman filter gain

L(e) Unconstrained likelihood function

L'(0) Constrained likelihood function

M The Fisher information matrix

N Total number of measurements

n Dimension of x(i)

N (m, Q) Multivariant normal distribution of dimension n with

mean m and covariance Q
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NOMENCLATURE (Continued)

Symbol Description

Q Covariance of the random input r(i)

r (i) Random input at index i

u Composite vector of inputs

u(i) Input at index i

u""(i) Optimal input at index i

:(i) Random input at index i

v Composite vector of measurement residuals

v(i) Measurement residual at index i

W_(i) Observation vector at index i

x(i) State vector at index i

x'(i) One-step-ahead predicted estimate of the state vector

at index i

z Composite vector of measurements

z(i) Output at index i

a Total energy of input

Input sensitivity vector

C Efficiency of the random input compared to optimal input

0 Unknown parameter vector

Lagrange multiplier

Xave Average of eigenvalues of F
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NOMENCLATURE (Continued)

Symbol Description

X max • Maxi~mum eigenvalue of F

Covariancelof unconstrained likelihood function

State transitioA matrix

Parameters in state transition matrix
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I'1



I. INTRODUCTION

"Measurements of the input and output of an isolated physical system

are made at uniformly spaced instants of time. The sets of N measurements

of the input and output are denoted {u(i): i - i, , N) and {z(i): i= 1,

NJ, respectively. The measurements are assumed to be error-free,

Furthermore, {z(i): i = 1, , NJ are assumed to be the output of a

multistage time-invariant linear system forced by the inputs {u(i): i I,

NJ and a postulated sequence of purely random inputs which are assumed

to arise due to modeling errors. The multistage model contains unknown

parameters which must be identified. The general problem of estimating the

unkiown parameters of this linear stochastic mnodel from the input/output

records is described in [ I].

In some applications it is possible to apply a particular input sequence

{u(i): i = i, , N) specifically for the purpose of enhancing the estimates

of the unknown model parameters The basic conditions are:

1) The system to be identified is out of service; that is,

one has complete control over the input during the

identification phase.

2) The input resource (energy) is scarce.

If there is no penalty or constraint on the input, then optima' input

synthesis is unnecessary. This is because any input which excites all the

1 This problem is the dynamic analog to experimental design in statistics (21.



modes of the system, if applied long enough, is generally sufficient to allow

convergence of the identification. There are several systems for which

there is a time, magnitude, or energy constraint on the input. One example

is a structure where the input is a thrust profile from a rocket engine which

has a finite supply of fuel. Another example is process control where the

amount of time spent in the parameter identification phase can be very costly.

The problem of selecting input signals to enhance the system identifi-

cation process has been examined by several authors. Aoki and Staley [3]

have obtained soihe general results for a wide class of discrete-time systems

as well as justifying the use of the trace of the Fisher information matrix as

a performance index. This paper retains the use of this convenient per-

formance index, but formulates the problem, differently by using the Kalman

filter representation of th system. Levadi [4] considers identifying non-

stationary, continuous systems with optimum energy-constrained and time-

constrained input signals. The only source of noise considered, however, is

output observation noise. Gagliardi [5] attacks the problem in a completely

different manner by using multiple hypothesis testing.

In this paper a Kalman filter representation results in a considerable

simplification of the problem. It is assumed that the input sequence is

selected from a class of possible input sequences with equal total energy or

equal total average energy if the input is random. This assumption attempts

to bound the output of the system to prevent forcing it into a region where it

is no longer linear. The optimal input is the sequence in this class which

mninimizes the trace of the Fisher information matrix. Some investigators ha% e
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suggested the use of a purely random input to drive the system during the

identification phase [6]. A comparative efficiency between a purely random

input and the optimal input for the class of inputs studied is defined, and some

numerical results for a second-order model are presented.

It shou!d be emphasized at the outset that there is a fundamental limita-

tion on ti:e ,olution of the general optimal input synthesis problem: the Fisher

inforrv, cion matrix is generally a function of the unknown parameters. Hence,

one is faced with the impossible situation of requiring the true values of the

unknown parameters in order to find the optimal input. In the general case,

therefore, any physically realizable efficient input synthesis technique must

be adaptive -- as better estimates of the parameters are obtained, the input

is made to approach the appropriate optimal input. There is an exception in

linear systems which is examined in this report: the Fisher information

matrix is not a function of the input parameters.
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II. THE MODEL

A linear multistage model which relates the input {u(i): i 1,..., N)

to the output {z(i): i = 1,...,N) is

x(i + 1) = 1x(i) + Y u(i) + r(i) (1)

z(i) = hT x(i) (2)

where {_(i): i 1,..., N} is a set of independent vector -valued random

'ariables each of which are distributed N (0, Q), where Q is a diagonal
n

matrix with non-negative elements. The initial value x(i) is assumed to

be 0. A canonical form of Eqs. (1) and (2) utilizes the matrix forms

The unmeasured states (x.(i): i 1, . . . ,N; j n)2,...n} can be estimated by

the corresponding steady-state Kalman one-step-ahead predictor [71 given

by

.'(i + 1) - cZ'(i) 4 Zkv(i) + Yu(i) (3)

z(i) hT •x'(i) + v(i) (.)

Preceding page blank
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is the steady-state Kalm-dn filter gain. It is straightforward to estimate

the unknown model parameterd and k from the 'filter residuals [1']. If one

assumes steady-state Fonditions, the measurement residuals {v(i):

i = 1, N•., are independent random variables each of whi'ch is distributed

N(O, b) as a result of the innovations property of the Kalman filter [8].

Equations (3) and (4) can also'be u'sed to repiesent the relationship betvween

the input {u(i): i = 1,..., N}'and the output {z(i)t i = 1,... NI, since they

are statistically equivalent [7].
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III. DERIVATION OF AN UNCONSTRAINED LIKELIHOOD FUNCTION

S I

The likelihood' function'which is most convenient for computing the

maximum-likelihood estimates of the unknown model 'parameters is

NN
V(0) l N ,v ( i), (5)' ,'L-e : - log.b -b~

where {v(i): i I !,... * N} are constrained to satisf~y Eq., (3), and where 0 is

the vector of~the unknown model parameters [l]. The constraint on the

measurement residuals is cumbersome to work with analytically, so an

equivalent likelihood fupction ,is derived in this secti'on from the distribution

of the nreasurements {z(i): i = 1,..., N A}, wtich do not have auxiliary
constraints.

'First, Eq. (3) is solved in closed form:

n-1 n-,
(n) = n-l-JVu(j), + E 4 n-j k v(j) (6)

. - j=1

Since the measurements are assumed to be error-free, it follows that

z(n) =_T (.'(n) + k v(n)) (7)

7



Substitute Eq. (6) into Eq. (7) to obtain a closed form expression for z(n):

n-i n

z (n) E h~ T P -j Y u(j) + 21 h' T 1 - k v(j) (8)

j=i j=i

Define the following composite N vectors:

Z(1) UM v !i)

(z (N)) u(N) v v (N))

It follows from Eq. (8) that

z Au+Bv (9)

where A and B are lower triangular N by N matrices defined as

h 0 ; 5 -m

a -= (10)

hT 4ý-1-t y_ I > m

b = (1 1)

81-m k I >m



Equation (9) shows that the measurements z are linear combinations of the

inputs u and the measurement residuals v (which are assumed to result

from modeling errors), assuming zero initial conditions.

To simplify the notation, define the n vector,

jv(n) = (0T)n h (12)

and substitute it into Eqs. (10) and (If):

1 0 5 m

aIm (13)

_Tw (-im) > m

bom I = m (14)

k Tw(-m) ;I > m

From the innovations property v is distributed N N(0, bI) and so by Eq. (9)

z is distributed N N(Au, bB BT ). The likelihood function L(0) for the

multivariate normal distribution is a standard result in statistics 12]:

1 1L~D="Ylg[B -•- Tr [Z'Ic]

A Twhere E ~bBB

C = (z - A u) (z - A u)T (15)

9



IV. AN INPUT SYNTHESIS PROBLEM

In the most general modeling problems the values of _k, Y, and b

are uncertain. For the remainder of this section, however, it is assumed

that the transient response of the system (p) and the one-step-ahead pre-

diction accuracy of the unforced model (k) are known or have been previously

identified, but that the input sensitivity (y) is unknown. The true value

of b is not required in this case. It is also assum 3 that the input u is to be

selected from a class of inputs such that

uT u = a (16)

where a is the total input energy. The question is: what form of the con-

strained input u will yield the most "information about Y"? The measure

of "information about Y" is defined as the trace of the Fisher information

matrix [3].

The Fisher information matrix is a measure of the dispersion of the

gradient of the likelihood function with respect to the unknown parameters.

At one extreme, if there is a one-to-one correspondence between the values

of the unknown parameters and the measurements, then the information is

a maximum. At the other extreme, if there is no correspondence, the

information matrix is zero. See 131 for additional discussion.

The Fisher information mat .'ix (denoted by M) for a multivariate normal

distribution is a standard result in statistics [91.

Preceding page blank
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The elements of M are

- EI T AT ZI A.u (u7)ij

The elements of A. are
3

0 ; m
-= (18)

ay.
w.(n-1-m) ; .e>m

M is not a function of Y, and so it is possible to determine M prior to

estimating X_. For the more general case where _, k, and b are also unknown,

the Fisher information matrix is a function of 0, k, and b, which reduces the

value of the Fisher information matrix as a prior information measure. The

expression for TrIM] follows immediately from Eq. (17):

Tr[M] uT F ru (19)

where

n
F T (B BT-)" (20)

12



To proceed, define a scalar cost functional J which is proportional to Tr[MJ

and adjoin Eq. (17) with a Lagrange multiplier:

T TJ u F u+X(u u-va) (21)

The gradient of J is

VuJ Fu- Xu (22)

Setting the gradient to zero, the result is

F u =X u (23)

It follows from Eq. (23) that the input sequence which maximizes J is the

eigenvector of F (denoted u ) which corresponds to the largest eigenvalue of

F (denoted max ). It also follows from Eq. (23) that

max

max Tr[M] -max (24)
b

Note that neither J nor u is a function of b.

13



V. COMPARISON OF THE OPTIMAL INPUT WITH AN

EQUIVALENT RANDOM INPUT

Some investigators have used random inputs to drive the system because

a random input is most likely to excite all the modes of the system and is

very easy to generate [6]. In this section, a purely random input is compared

(in a method defined below) with the optimal input derived in the last section.

First, let {(i(i): i = 1, . . . , N) denote an input sequence which is a set of

independent random numbers with mean zero, such that

-E[•2 (i) I = R" (25)

Therefore • has an average energy equal to a. Furthermore, suppose that

{T(i): i =1, . o . , N) are independent of the measurement residuals

(v(i): i 1, • . . , N). The efficiency of the random input is defined as

the ratio

S T rM (26)
max Tr[M]

u

where the overbar denotes the expected value of Tr[M] using thle random input.

Since u is assumed to be independent of v, it follows that

aveE eTrdiM] = Trl[E[M] [ Zi Tr[F] (27)

Preceding page blank
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where X denotes the average of the eigenvalues of F. It follows fromave

Eq. (24) that the efficiency of the random input compared to the optimal

input is
xi

aveC . (28)
max

I b



VI. EXAMPLE

The purpose of this example is two-fold: first, to illustrate the theory

developed in this report and, second, to try to obtain some insight into the

form of the ;optimal input for a certain class of identification problems. The

following Kalman filter representation of a second-order system is examined:

_ + -i) - _xM( i)[ + L v(i) + ]u(i) (29)
L u..-€_j ." J - L J L J

To repeat, the objective is to generate the input which most enhances the
estimates of y, and y from the input/output data.

u

The' first step is to compute the elements of A. and B, and then F.

recursive equation for w(i) which greatly simplifies the calculation

of the elements of A. and B is deriired next. By the Cayley-Hamilton theorem,
T J

iT must satisfy its own qharacterlistic equation, so it follows that

,(b ) = . 02(D ) . 1i2 (30)

Postmultiply by h and iremultiply by (DT) n2 yields

(T ) nh, - ) 1 h - o(1 ( ) n-2_1 (31)

It followNs from the'definition of w(n) that

w(n) = -• 2 w(n - I) - OLw(n -2) (32)

for n "2.

17



The second step is to compute the eigenvectors of F, the one

corresponding to the largest eigenvalue of F being the optimal input.

For the numerical examples, the model parameters were chosen

to simulate an underdamped and overdamped second-order system. The

optimal input sequences were computed for the model parameters listed in

Table I for N = 20 using a standard computer subroutine to find the eigen-

values and eigenvectors of F. The optimal inputs along with the system's

unit response are graphed against the index i in Figs. I to 4.

TABLE I

PARAMETERS USED IN THE EXAMPLES

System Ot 02 k2 Figure No.
Characterization

-0.50 -0.25 0.25 0.05 1
Overdamped

-0.50 -0.25 0.50 0.07 2

0.50 -0. 25 0. 25 0.37 3
Underdamped

0.50 -0.25 0.50 0.21 4

The following discussion describes the physical significance of the

optimal input. In all the cases where k 2 = - 02 [no prediction error in xl(i)J,

the majority of the input energy is spent in the first third of the interval

(Figs. I and 3). This is apparently an effort to get the system moving as

soon as possible. In cases where k2 > - 0, [prediction error in x1 (i) as

Swell as x 2(i)] the input energy is more dispersed throughout the interval

(Figs. 2 and 4). This dispersion of the input energy appears to be a hedge

18
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against the poorer, prediction accuracy of the plant (reflected in the larger

value of k 2 ). The purely random input is better with faster systems than

with slower ones, but the effidiency was ne'ver observed to be over . 50 in

any o~f the cases tried.

Ti4e majority of the energyof the input appears to be in frequencies

higher thanthat contained in the unit response of the system, but' not so high

as to be greatly attenuate~l by the system. At least this appears to be one of

the factors taken into account by the optimal inplA. It also explains -%hy the

random input iP better for faster systems than for slower ones: more of the
L!

energy in the random input is attenuated bythe slower system.

The analysis and the numerical results described in this example are

useful for the situation where one has fairly accurate prior knowledge of the

tr'ansient response and one-steo-ahead prqdicti6n accuracy of the, unforced

systems, but no prior knowledge of the input sensitivity parameters. In this

case,! one can determine an input test signal which enhances the estimates of

the input sensitivity parameters.

23
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VII. INPUT SYNTHESIS FOR THE GENERAL CASE

In general, the parameters ., k, and _y must be identified. The

residual covariance b can be estimated from the measurement residuals

after the identification of the other parameters is complete [1]. Define 0

as the 3n X f vector of unknown model parameters:

The elements of the Fisher information matrix in the general case are

miT. = -a TrI -, uT aAT Z- I (33)i 2- a7j0- Fe- 2AJ

The expression for Tr[M] follows immediately:

Tr[M= -Z Tr Z W + I uFuT (34)

where

3n T

a>~ ao do.
i= i

Preceding page blank
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From Eq. (MO) it follows that

aA
k. 0

1

which shows that the input does not directly affect the identification of k.

Since B is a function of k, the optimal input will depend on k, but it is

not possible to enhance the identification of k by manipulating the input.

This makes sense because it is well known that the Kalman gain is independent

of the input.

The problem one faces in maximizing Tr[M] with respect to u is that

MA/H i is a function of 0 and B is a function of . and k which are unknown.

One way to synthesize an input is to use the a priori values of 0 and k in

the optimization. If there is time during the identification process, the

input can be reoptimized using the partially identified values of o and k to

replace the a priori values.

26



VIII. CONCLUSION

An approach to optimal input synthesis for linear system identification

has been presented. The significant result is: the optimal input is an

eigenvector of a matrix related to the Fisher information matrix and in

general it is a function of the unidentified system parameter-.
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