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ABSTRACT

In fitting a transfer function model to input/output data, it is sometimes
possible to select a particular input with the purpose of minimizing estimation
error. In thie report, some aspects of this optimal input synthesis problem
are examined for a class of linear multistage systems. In particular, an
input is selected from a class of equal-energy inputs which maximizes the
trace of the Fisher information matrix with respect to the input sensitivity
parameters, where it is assumed that the transient response and prediction
accuracy of the unforced system is known. The optimal input is compared to
a purely random input which has the same average energy, and numerical
results for a second-order system are provided. Input synthesis with regard
to the other model parameters which determine its unforced behavior is
hampered by thé fact that the Fisher information matrix is a function of these

parameters.
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NOMENCLATTRE

The following is a list of symbols used in the report. Underlined letters

denote vectors,

Symbol Description

A Matrix of input coefficients

Aj Partial of A with respect to Yj

B Matrix of noise input coefficients

b Covariance of the steady-state measurement residuals

C Sample covariance of the unconstrained likelihood function
F

N by N symmetric matrix which is a sum of similarity

transforms of =

h Measurement matrix (a vectnr for scalar measurements)
In Identity matrix of dimension n by n
J Cost function
k Steady-state Kalman filter gain
L(8) Unconstrained likelihood function
L‘(8) Constrained likelihood function
The Fisher information matrix
N Total number of measurements
n Dimension of x(i)
Nn(m,Q) Muitivariant normal distribution of dimension n with

mean m and covariance Q

vi




“ . NOMENCLATURE (Continued) ‘
‘ Symbol Desc ri}gtion
A .
g Q Covariance of the random input r(i) !
’ r(i) Random input at index i
" u Composite vector of inputs '
u(i) Input at index i i
u¥(i) Optimal input at index i
z T (i) Random input at index i . . ;
: v Composite vector of measurement' residuals
' v(i) Measurement residual at index i
] w(i) Observation vector at index i
x(i) State vector at index i
3 %'(i) One -step-ahead predicted estimate of.thciz state vector
r at index i | |
2z Composite vector of measurements
z(i) Output at index i , ,
o Total energy of input
Y Input sensitivity vector
¢ Efficiency of the randora input compared to optimal input
] Unknown parameter vector |
A Lagrange multiplier o
Aive Average of eigenvalues of F |
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I. INTRODUCTION
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Measurements of the input and output of an isolated physical system

; are made at uniformly spaced instants of time. The sets of N measurements

S g of the input and output are denoted {u{i): i=1, - . ., N} and {z(i): i=1,

+ + +, N}, respectively. The measurements are assumed to be error-free.

e

3 Furthermore, {z(i): i=1, - - -, N} are assumed to be the output of a

3 multistage time-invariant linear system forced by the inputs {u(i); i = {,

-, N} and a postulated sequence of purely random inputs which are assumed

to arise due to modeling errors. The multistage model contains unknown

; . parameters which must be identified. The general problem of estimating the

oy unknown parameters of this linear stochastic model from the input/output
g

; A records is described in [1].

In some applications it is possible to apply a particular input sequence
{u(i): i=1, +, N} specifically for the purpose of enhancing the estimates

of the unknown model parameters1 . The basic conditions are:
1) The system to be identified is out of service; that is,

one has complete control over the input during the
identification phase.

2) The input resource (energy) is scarce.

If there is no penalty or constraint on the input, then optima' input

synthesis is unnecessary. This is because any input which excites all the

1This pcoblem is the dynamic analog to experimental design in statistics [2].
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modes of the sy'stem, if applied long enough, is generally sufficient to allow
convergence of the identification. There are several systems for which
there is a time, magnitude, or energy constraint on the input. One example
is a structure where the input is a thrust profile from a rocket engine which
has a finite supply of fuel. Another example is process control where the
amount of time spent in the parameter identification phase can be very costly.

The problem of selecting input signals to enhance the system identifi-
cation process has been examined by several authors. Aoki and Staley [ 3]
have obtained soine general results for a wide class of discrete-time systems
as well as justifying the use of the trace of the Fisher information matrix as
a performance index. This paper retains the use of this convenient per-
formance index, but formulates the problem differently by using the Kalman
filter representation of th system. Levadi [4] considers identifying non-
stationary, continuous systems with optimum energy-constrained and time-
constrained input signals. The only source of noise considered, however, is
output observation noise. Gagliardi [5] attacks the problem in a complaztely
different manner by using multiple hypothesis testing.

In this paper a Kalman filter representation results in a considerable
simplification of the problem. It is assumed that the input sequence is
selected from a class of possible input sequences with equal total energy or
equal total average energy if the input is random. This assumption attempts
to bound the output of the system to prevent forcing it into a region where it
is no longer linear. The optimal input is the sequence in this class which

minimizes the trace of the Fisher information matrix, Some 1nvestigators have
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suggested the use of a purely random input to drive the system during the
identification phase [6]. A comparative efficiency between a purely random
input and the optimal input for the class of inputs studied is defined, and some

numerical results for a second-order model are presented.

It should be emphasized at the outset that there is a fundamental limita-

tion on tre ,olution of the general optimal input synthesis problem: the Fisher

inforr.. cion matrix is generally a function of the unknown parameters. Hence,

one is faced with the impossible situation of requiring the true values of the

unknown parameters in order to find the optimal input. In the general case,

therefore, any physically realizable efficient input synthesis technique must
be adaptive -- as better estimates of the parameters are obtained, the input
is made to approach the appropriate optimal input. There is an exception in

linear systems which is examined in this report: the Fisher information

matrix is not a function of the input parameters,




e
j' 7:
1I. THE MODEL
g 3
i .
{ ! A linear multistage model which relates the input {u(i): i=1,..., N}
-
g to the output {z(i): i=1,...,N}is
i x(i 1) = @x(i) + ¥ u(i) + r(i) (1)
¢ 4
= 2(i) =T x(i) (2)
9 where {r(i): i=1,...,N}is a set of independent vector-valued random
3 "’ ‘~ariables each of which are distributed Nn(_Q_, Q), where Q is a diagonal
matrix with non-negative elements. The initial value x(i) is assumed to
; be 0. A canonical form of Eqs. (1) and (2) utilizes the matrix forms
;3 !
- & ) Thay [ |
.. ' Q: ""--71;'-' l_]-= - -
;3 . - 0
-
- The unmeasured states {xj(i): i=1,...,N;j=2,...,n}can be estimated by
: the corresponding steady-state Kalman one-step-ahcad predictor [7] given
! 4 by
E 3 R(i + 1) = @R/(i) + kv(i) + Yu(i) (3)
K »
r 2(i) = h' 20) + v(i) ()

Preceding page blank
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) k is the steady-state Kalman filter gai‘rlx. It is straightforward to estimate
? the unknown model parameters and k from th\e filter }resid‘uals [1]. 1If one
? assumes steadir-state Fond&éions, the measurement residuals {v(‘i):

7 i=1,...,N}are ix?,dependent random variables each of which is distributed.
:/‘ N(0, b) as a result of the innovations,property of the Kalman filter [8].

i . 1 . x
: Equations {(3) and (4) can also'be used to reptresent the relationship between
: the input {u(ij: i =1,...,N}'and the output fz(i) i=1,...} N}, since they ,
r are statistically ‘equivalent {7]. S A

PN
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III. DERIVATION OF AN UNCONSTRAINED LIKELIHOOD FUNCTION
The likelihood function'which is most convenient for computing the

maximum-likelihood estimates of the unknown model parameters is

1

N
] "L'é_) = -?— log. b -2%2 vz(i)' (5)

!

where {v(i): i=1,...; N} are constrained to satisfy Eq. (3), and where 6 is
the vector of,the unknown model parameters [1]. The constraint on the

| H . .
measurement residuals is curmbersome to work with analytically, so an

- ' . . » ‘- L] t‘ . 3 k3
equivalent likelihood fupction is derived in this section from the distribution

of the rheasurements {z(i): i=1,..., N}, which do not have auxiliary

constraints. !
First, Eq. (3) is solved in closed form:
I

' n-1 n-1. )
) = 2, 6™ yu+ 2y ot k(i) (6)
! J=1 j=1 '
Since the rﬁeafsuremeuts are assumed to be error-freé, it follows that

i

|
]

2(n) = b (R/(n) + k v(n)) (7)
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Substitute Eq. (6) into Eq. (7) to obtain a closed form expression for z(n):

n-1 n
: z(n) = Z bt ™Iy () + Z nT ™k v(j) (8)
: j=1 j=1
” Define the following composite N vectors:
! 2(1) u(1) v(1)
£ afl - a al -
f\: _z_. = . E_ = . l - .
y z(N) u(N) v(N)
It follows from Eq. (8) that
: z=Au+Byv (9)
9 - -

where A and B are lower triangular N by N matrices defined as

; 0 ; £<m
am = (10)
; D_T ‘P'e_l'm)/_ ;  4>m
:I 0 ;i A<m
w blm = i ;i 4 =m (11)
1 T o™k ; 2>m




Equation (9) shows that the measurements z are linear combinations of the

SRS TR L

inputs u and the measurement residuals v (which are assumed to result
] ) from modeling errors), assuming zero initial conditions.

To simplify the notation, define the n vector,

w(n) £ (@T)" n (12)

o iiataae ity S L

and substitute it into Eqs. (10) and (11):

ol aCE T
o

i 4=m
: m (13)
* X_TV_V(JZ—l-m) ;  f>m
£ 0 ;o A<m
Pam = ! ; 4=m (14)
Erﬂ(ﬂ-m) ;7 2>m

From the innovations property v is distributed NN(Q, bl) and so by Eq. (9)
z is distributed NN(A.‘l’ bB BT). The likelihood function L(6) for the

multivariate normal distribution is a standard result in statistics [2]:

L(e) = - 5 log|=] - & Tr [z7C)

where s8bB BT

up>

C=(z-Au)(z-Au (15)
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IV. AN INPUT SYNTHESIS PROBLEM

In the most general modeling problems the values of ¢, k, Y, and b

are uncertain. For the remainder of this section, however, it is assumed

that the transient response of the system (¢) and the one-step-ahead pre-
diction accuracy of the unforced model (k) are known or have been previously
identified, but that the input sensitivity (y) is unknown.

The true value

of b is not required in this case. It is also assum 1 that the input u is to be

selected from a class of inputs such that

_l_1_T_u:_=a (16)

where « is the total input energy. The question is: what form of the con-

strained input u will yield the most "information about Y"? The measure
of "information abou: Y" is defined as the trace of the Fisher information
matrix [3].

The Fisher information matrix is a measure of the dispersion of the
gradient of the likelihood function with respect to the unknown parameters.
At one extreme, if there is a one-to-one correspondence between the values

of the unknown parameters and the measurements, then the information is

a maximum. At the other extreme, if there is no correspondence, the

information matrix is zero. Sce [3] for additional discussion.

The Fisher information mat 'ix (denoted by M) for a multivariate normal

distribution is a standard result in statistics [9].

Preceding page blank

11




The elements of M are

4 aL(l) aL(l) T T _-1
F mij = E BY, . an =u” A, Z Aj u (17)
; The elements of Aj are
0 i 2 =sm
da
fm _
v, (18)
wj(n— i-m) ; £>m

M is not a function of ¥, and so it is possible to determine M prior to

estimating Y. For the more general case where ¢, k, and b are also unknown,

Ly s ey .5‘.5“,”7.\,

the Fisher information matrix is a function of ¢, k, and b, which reduces the

value of the Fisher information matrix as a prior information measure. The

expression for Tr[M]follows immediately from Eq. (17):

{7
Tr(M]= g4 Fu (19)
where
n
A T ,. T 1
F-;Ai 8 BT)"! A, (20)
i=

12




L G uA D ,m
" 4

ikt s al N

To proceed, define a scalar cost functional J which is proportional to Tr[M]

and adjoin Eq. (17) with a Lagrange multiplier:

J=ETFE+)\(E_TE._-Q) (21)
The gradient of J is
Vu‘T:F.‘l')\.‘l (22)

Setting the gradient to zero, the result is
Fu=2Au (23)

It follows from Eq. (23) that the input sequence which maximizes I is the
eigenvector of F (denoted _1_1_:':) which corresponds to the largest eigenvalue of

F (denoted X\ ). It also follows from Eq. (23) that
max

A L
max Tr[M] = —E]Ta)l‘—-— (24)

Note that neither J nor 3_1_ is a function of b.

13




V. COMPARISON OF THE OPTIMAL INPUT WITH AN
EQUIVALENT RANDOM INPUT

Some investigators have used random inputs to drive the system because
a random input is most likely to excite all the modes of the system and is
very easy to generate [6]. In this section, a purely random input is compared
(in a method defined below) with the optimal input derived in the last section,
First, let {i(i): i=1, . . . , N}denote an input sequence which is a set of

independent random numbers with mean zero, such that
E(v%(i)] = & (25)
N

Therefore % has an average energy equal to @, Furthermore, suppose that

{¥@E): i=1t, .+ .., N}are independent of the measurement residuvals
{v(i): i

the ratio

1, . . ., N}. The efficiency of the random input is defined as

¢ = Trll\ﬂ
" max Tr[M]
u

—

(26)

where the overbar denotes the expected value of Tr[M] using the random input,

Since U is assumed to be independent of v, it follows that

[e)

A
Tr[F] = =55 (27)

~T

[*%

E[Tr[M]] = Tr[E[M]] - bN

E[

—

Fu] =

[ o

Preceding page blank
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3 .

where )‘ave denotes the average of the eigenvalues of F', It follows from
Eq. (24) that the efficiency of the random input compared to the optimal
4

3 input is !

¢ = —2Ve (28)
v \ '

max . =

L

3

4

16




1

VI. EXAMPLE

) ’ |
' The purpose of this example is two-fold: first, to illustrate the theory

developed in this repf)rt and, second, to try to obtain some insight into the

form of the optimal input for a certajn class of identification problems. The
!

following Kalman f'ilte‘r representation of a second-order system is examined:

o 1 0 1| {1 Yy

' %7(1) + (29)

u(i)

-6 92| ko | Y,

L L
. 1

To repeat, the objective is to generate the input which most enhances the

estimates of Yy and Y, from the i*nput/ou’éput data.

!
i’I‘heI first step is to compute the elements of Aj and B, and then F.

U
} .
A recursive equation for w (i) which greatly simplifies the calculation

of the elements of A, and B is derived next. By the Cayley-Hamilton thcorem,

<I>T must satisfy its own gharacteristic e(iuation, so it follows that

. T,.2 T
(") = - ¢2(4> ) - ¢112 (30)
. 1 . T.,ni2 .
Postmultiply by h and premultiply by (¢ ") yields '
((D‘T)nh‘_: ) ¢2(¢T)n-lh } ¢1(¢)T)n-2}_] (31)
It follows from the definition of w(n) that
(32)

w(n) = < ¢_win-1) - ¢,win - 2)
. 2=" o1

for n > 2. ‘ .

17
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The second step is to compute the eigenvectors of F, the one
corresponding to the largest eigenvalue of F being the optimal input.

For the numerical examples, the model parameters were chosen
to simulate an underdamped and overdamped second-order system, The
optimal input sequences were computed for the model parameters listed in
Table I for N = 20 using a standard computer subroutine to find the eigen-
values and eigenvectors of . The optimal inputs along with the system's

unit response are graphed against the index i in Figs. 1 to 4.

TABLE I

PARAMETERS USED IN THE EXAMPLES

System ¢ o] k € .
Characterization t 2 2 Figure No.
-0.50 -0. 25 0.25 0.05 1
Overdamped
-0.50 -0. 25 0.50 0.07 2
0.50 -0. 25 0. 25 0.37 3
Underdamped
0.50 -0, 25 0.50 0.21 4

The following discussion describes the physical significance of the
optimal input. In all the cases where k, = - ¢, [no prediction error in xl(i)],
the majority of the input energy is spent in the first third of the interval
(Figs. 1 and 3), This is apparently an effort to get the system moving as
soon as possible., In cases where k2 > -0, [prediction error in xi(i) as
well as xz(i)] the input energy is more dispersed throughout the interval

(Figs. 2 and 4). This dispersion of the input energy appears to be a hedge
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against the poorer, prediction accuracy of the plant (reflected in the larger
) ' !
value of kZ)' The purely random input is better with faster systems than

with slower ones, but the effidiency was never observed to be over .50 in

any of the cases tried.

THe majority of the energy.of the input appears to be in frequencics

higher than,that contained in the unit re sponse of the system, but not so high

!

as to be greatly att'enu,ateg] by the system. At least this appears to be onc of
the factors taken into account by the optimal input. It also explains why the
random input ig bett,et: for Ifastler systems than for slower ones: niore of the
energy in the random inp;.lt is at‘tendated by the .s]ow.cr system,

The analysis and the numer;ical gresults described in this example are
useful for the situation where one has fairly" accurate prior knowledge of the
transient response and ‘o‘ne -‘ste}ﬁ-ahead prediction accuracy of the unforced
syste‘ms, bu; no prior knowledge of’ the input sclansitivity parameters. In this

'
case,; onc can determine an input test signal which enhances the estimates of

the input sensitivity parameters,
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VII. INPUT SYNTHESIS FOR THE GENERAL CASE

In general, the parameters ¢, k, and y must be identified. The
residual covariance b can be estimated from the measurement resijduals
after the identification of the other parameters is complete [1]. Define @

as the 3n X 1 vector of unknown model parameters:

@
>

¢
X
k

The elements of the Fisher information matrix in the general case are

T
i -1 93 -1 8= T 0A -1 %A
m..:-zTr[E A % '——jl-i-u '36;2 %-;E {33)

The expression for Tr[M] follows immediately:

3n
2
TrM] = 33 Tr (E-i %?—) rgpuFal - (34)
i=1

1

where

Preceding page biank
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From Eq. (10) it follows that

B4
K, -0

[

which shows that the input does not directly aifect the identification of k.
Since B is a function of k, the optimal input will depend on k, but it is
not possible to enhance the identification of k by manipulating the input.
This makes sense because it is well known that the Kalman gain is independent
of the input.
The problem one faces in maximizing Tr[M] with respect to u is that
8A/86i is a function of ¢ and B is a function of ¢ and k which are unknown,
One way to synthesize an input is to use the a priori values of ¢ and k in
the optimization, If there is time during the identification process, the

input can be reoptimized using the partially identified values of ¢ and k to

replace the a priori values.,
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VIiII. CONCLUSION

An approach to optimal input synthesis for linear system identification
has been presented. The significant result is: the optimal input is an
eigenvector of a matrix related to the Fisher information matrix and in

general it is a function of the unidentified system parameter..
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