

HgCdTe HIGH RELIABILITY Final Technical Report • Contract DAAK02-72-C-0113

į

-1-

by

DISTRIPUTION STATEMENT A

red for public releases

Warren R. Sheese

OPTOELECTRONICS, Inc. 1309 Dynamic St. Petaluma, California 94952

May 1972

Prepared For:

US Army Mobility Equipment R & D Center R & D Procurement Office Fort Belvoir, Virginia 22060

Disclaimer Statement

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

• *	, o o . 111		
Security Classification	CONTROL DATA	010	
rSecurity classification of title, body of ebetract and in			the ov rati report is classified,
ORIGINATING ACTIVITY (Corporate author)			SECURITY CLASSIFICATION
OPTOELECTRONICS, Inc.		25, GROUP	NSIFIED
1309 Dynamic Street			
Petaluma, CA 94952		·····	
HgCdTe High Reliability			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	·····		
Final Technical Panert 2 Novem	ber 1971 th	rough_2 · _z	pril 1972
Warren R. Sheese			•
REPORT DATE	78. TOTAL P	NO. OF PACE.	7b. NO. OF REFS
Mav 1972 contract or grant no.	Se. CRICINA	52	
DAAK02-72-C-0113 b. PROJECT NO.		PPI 1308	
PAN 22595708 2191/E554/72			•
¢.	9b. OTHER P this repor	EPOR: HO(3) (An	y other numbers that may be easigned
d.			
10. CISTRIBUTION STATEMENT	L		
11. SUPPLEMENTARY NOTES	12. \$PON507	RING MULITARY AS	TIVITY
	Ni US	Tht Vision A Mobi Center	Laboratory lity Equipment
IJ. ABSTR T	<u> </u>	rr Belvolr	. Virginia 22960
:			
			-
•			
1			
			•

The Annual Street Print

Nerge season of the

•

100

• 4

Security Classification

HgCdTe HIGH RELIABILITY

Final Technical Report

by

OPTOELECTRONICS, Inc. 1309 Dynamic St. Petaluma, California 94952

May 1972

Prepared For:

US Army Mobility Equipment R & D Center R & D Procurement Office Fort Pelvoir, Virginia 22060

Contract DAAK02-72-C-0113 D A Project No. PAN 22595708 2191/E554/72

V

SUMMARY

Ten (10) photoconductive HgCdTe detectors encapsulated in glass evacuated dewars were designed, fabricated, tested, and delivered. Each detector dewar unit was prepared for optimum high temperature storage and vacuum integrity characteristics. The electrical and mechanical performance of each assembly met or exceeded the specifications of Attachment No. 1, Procurement Description entitled "HgCdTe High Reliability," dated 24 August 1971, as modified and attached herewith.

It is anticipated that long-term US Army Night Vision Laboratory evaluation of these units will provide the basis for demonstrating the desired objectives of high performance, high reliability, vacuum integrity, low heat load, and stable high temperature storage characteristics for photoconductive HgCdTe detectors.

Preliminary evaluation of one delivered unit indicates that evacuation bake-out temperatures much higher than the 50°C and 73°C used for this program are feasible. An OPTOELECTRONICS, Inc. recommendation for a smal³ program to optimize elevated temperature evacuation bake-out is included in the Conclusions and Recommendations section.

FOREWORD

 \mathcal{V}

This Final Technical Report was prepared by OPTOELECTRONICS, Inc., Petaluma, California, 94952. This report was submitted for Department of the Army approval on 5 May 1972, as called for under Army Contract DAAK02-72-C-0113, "HgCdTe High Reliability," Project No. PAN 22595708 2191/E554/72.

The work on this program was under the direction of the Night Vision Laboratory, US Army Mobility Equipment Research and Development Center, Fort Belvoir, Virginia, 22060. The Army Contracting Officer's Representative was Mr. James Gilpin, Code AMSEL-HL-NV-FIR.

This report covers work conducted between 2 November 1971 and 28 April 1972. The following personnel were principal contributors to this program: Mr. L. Roberts, Mr. R. Bell, Mr. W. Sheese, Mr. L. Wenger, and Mr. D. Williams.

d.

 \diamond

.....

TABLE OF CONTENTS

SECTION		PAGE
1.0	Introduction and Summary	1
2.0	HgCdTe Detector/Dewar Fabrication	3
2.1	Detector/Dewar Design	3
2.2	Fabrication and Evaluation	4
3.0	Conclusions and Recommendations	9
3.1	Conclusions	9
3.2	Recommended Evacuation Bake-Out Optimization Program	9
Appendix A	Procurement Description entitled "HgCdTe High Reliability"	13
Appendix B	Drawing	18
Appendix C	Evaluation Data on Delivered Units	20

1.0 INTRODUCTION AND SUMMARY

The objective of this program was to design, fabricate, test, and delivery ten (10) single element Mercury Cadmium Telluride (HgCdTe) detectors encapsulated in glass evacuated dewars. These units were to demonstrate high performance and high reliability operation at 77°K in the 8 to 14 micrometer spectral region, and have a low heat load dissipation. The detectors and dewars were also to have characteristics for high temperature storage and vacuum integrity.

Four (4) units were shipped in February 1972, four (4) units in March 1972, and the final two (2) units were shipped in April 1972. All delivered units met or exceeded the performance requirements of the Night Vision Laboratory "Purchase Description (for) HgCdTe High Reliability (Detectors)," Attachment No. 1 to Contract DAAK02-72-C-0113, as modified and attached herewith as Appendix A. The drawing for these ten (10) units and the Evaluation Data are included as Appendix A and Appendix B.

Detector/dewar design and the fabrication histo. J of the detector/dewar assemblies is discussed in Section 2.0 Long-term evaluation of the delivered units is expected to lead to

the development and demonstration of the optimum in vacuum integrity, elevated temperature storage stability, and high sensitivity, for single element HgCdTe detectors.

Beyond the work performed under this program, which involved 50°C and 73°C evacuation bake-out temperatures, developments have occurred which indicate that HgCdTe detector/dewar units of this type would withstand evacuation bake-out temperatures in the vicinity of 90 to 100°C. Evacuation bake-out at a temperature in this vicinity, or at a temperature slightly in excess of 100°C, would be extremely important in providing a more stable, reliable device capable of extended elevated temperature storage.

2.0 HqCdTe DETECTOR/DEWAR FABRICATION

2.1 Detector/Dewar Design

The objective of this program was to design, fabricate, test, and deliver ten (10) HgCdTe Detector/Dewar Assemblies meeting the requirements of the "Purchase Description for HgCdTe High Reliability" dated 24 August 1971 but with the following modification:

Rec. dewar has a 1/2-inch evacuated tip-off tube rather than the 2 to 3 inch tip-off originally specified.

2.1.1 Detector Element

Each detector element was supplied to OPTOELECTRONICS, Inc. by Mullard, Ltd., London, England. Each element was fabricated to the detector dimensions and substrate layout as required by the Purchase Description.

2.1.2 Window Material

The spectral transmission and other requirements imposed by the performance specifications result in Irtran II being the logical choice for window material. The window dimensions for the completed Irtran II window section are shown in Appendix B on OPTO Drawing SK 10829.

2.1.3 Cold Shield/Aperture Assembly

A cold shield/aperture assembly was designed to meet the field-of-view requirements. This assembly is shown on OPTO Drawing SK 10829.

2.1.4 Dewar

The final dewar design incorporating the elongated pumpout tube and a coolant hold time in compliance with the requirements of the referenced purchase description is shown in OPTO Drawing SK 10829, which is included in Appendix B.

2.1.5 Operating Temperature

The operating temperature for purposes of determining performance characteristics and compliance with performance specifications was 77°K; however, the flask assembly is $\dot{\alpha}$ esigned to be operational at other temperatures if liquid coolants other than liquid nitrogen are used in the well.

2.2 Fabrication and Evaluation

The original program schedule called for design, fabrication, test, and delivery of five (5) of the detector/ dewar assemblies within seventeen weeks after contract start, or by 29 February 1972. The remaining five (5) units were to be assembled, tested, and delivered within twenty-one weeks from the effective date of contract or by 28 March 1972.

Ł

The fabrication and evaluation history of each unit prepared under this program is summarized in the remainder of this section.

2.2.1 Unit 1328-1 through 1328-5

Upon receipt of the fir t five (5) HgCdTe elements from Mullard, Ltd. in early Februar: each element was given a preliminary test to check for compliance with the performance requirements of the Purchase Description for HgCdTe High Reliability Detectors. Preliminary tests consisted of measurements of resistance, signal and noise for each element together with mechanical and visual inspection.

The preliminary test indicated that all of the elements received exceeded minimum performance specifications.

Final assembly of the completed dewar was then initiated and final evacuation of the first five (5) units was started on 11 February 1972. During the final evacuation period these five (5) units were baked at 50°C for ten (10) days.

On 24 February 1972 the units were removed from the evacuation system and evaluated for performance and dewar hold time at 77°K. These tests indicated that four (4) of the five (5) units exceeded the D* (500,800Hz,1) specification and one (1) unit, S/N 1328-4, had no apparent signal. Further evaluation of unit 1328-4 showed that the element was shorting out when cooled to 77°K.

Evaluation Data on delivered units 1328-1, 1328-2, 1328-3, and 1328-5 appears in Appendix C. The failure of unit 1328-4 is further discussed in section 2.2.3.

2.2.2 Units 1328-6 through 1328-10

These five (5) detector elements were received from Mullard, Ltd. on 28 February 1972 and underwent preliminary testing on 2 March 1972. Preliminary tests indicated that all five (5) elements exceeded the minimum performance specifications.

Final evacuation of these five (5) units was started on 5 March 1972. During the final evaucation period these units were baked at 50°C for ten (10) days.

On 20 March 1972 these units were removed from the evacuation system and tested for performance and for dewar hold time at 77°K. All units exceeded specification; however, unit 1328-6 was not shipped because a loose piece of excess solder from the seal ring was observed inside the dewar.

Evaluation data on delivered units 1328-7, 1328-8, and 1328-9, and 1328-10 appears in Appendix C. Further discussion of the failure of uni², 1328-6 is continued in section 2.2.4.

2.2.3 Unit 1328-4

After opening this unit a Quality Assurance visual inspection revealed the cold shield/aperture had shifted during evacuation and was shorting the element leads. This failure was corrected. A longer setup time for the adhesive used to hold the cold shield/aperture will be used on future assemblies to avoid this type of failure.

A CONTRACT OF A CONTRACT OF

2.2.4 Unit 1328-6

Quality Assurance inspection revealed a loose piece of solder present inside the dewar. Although the unit met performance specifications, it would be unreliable for system use.

Unit 1328-6 was opened at the evacuation tip off and the loose solder removed. It is believed that any future problems with loose excess solder have been eliminated by more accurately controlling the amount of solder used in pre-tinning the package seal rings.

2.2.5 Units 1328-4 and 1328-6

Unit 1328-4 was reassembled on 6 April 1972. Repaired units 1328-4 and 1328-6 were placed on the evacuation system on 7 April 1972 and baked for ten (10) days at 50°C.

On 13 April 1972, Mr. James Gilpin, Project Engineer, Night Vision Laboratory, contacted OPTOELECTRONICS, Inc. by telephone and requested the bake-out temperatures be increased on one of the two units still under evacuat^j n. Since unit 1328-4 had been completely disassembled and reassembled, it was felt that the increased bake-out temperature would be most beneficial to this unit. Therefore, on 25 April 1972, before removing these two (2) units from the evacuation system, unit 1328-4 was baked at 73°C for an additional eight (8) hours.

On 21 April 1972 both units were removed from the evacuation pump and tested. Each unit exceeded the minimum performance requirements of the Purchase Description.

Evaluation data on delivered units 1328-4 and 1328-6 appears in Appendix C.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

Fabrication of the required ten (10) detector/dewar assemblies posed little difficulty. The minor assembly problems encountered in two units have led to improved fabrication procedures which should prevent the recurrence of these problems in any future units.

No (fficulty was encountered in meeting the performance requirements of this program.

3.2 Recommended Evacuation Bake-Out Optimization Program The work performed under this program involved an evacuation bake-out temperature of 50°C for 10 days, except one unit was baked-out for an additional 8 hours at 73°C. Such low evacuation bake-out temperatures in the range of 50°C are typical in the industry and are used because of concern that elevated temperatures might damage the HgCdTe element.

After delivery of these OPTOELECTRONICS, Inc. units to NVL, one detector was baked at 100°C, which resulted in vacuum degradation, but did not appear to adversely affect the sensitivity of the HgCdTe element. Under another program, several OPTOELECTRONICS, Inc. HgCdTe detector units have been evacuation-baked at temperatures of 90°C, with no apparent damage to the detector element.

An evacuation bake-out procedure using temperatures in the 90-100°C range would provide significantly improved vacuum integrity, and insure a much longer field hife for HgCdTe detector units. If the bake-out temperature could be raised to a temperature as high as 105 to 110°C, it would be even better as this would assure that all parts of the unit would reach a temperature higher than the boiling point of water and help eliminate any residual absorbed water vapor on interior surfaces.

In view of the successful performance of OPTOELECTRONICS, Inc. HgCdTe detectors after exposure 'to temperatures in the 75 to 100°C temperature range, and in view of the immediate need for improved reliability, vacuum integrity, and high temperature storage characteristics for HgCdTe detectors, OPTOELECTRONICS, Inc. recommends the following program to develop and demonstrate an optimum evac ation bake-out schedule for OPTOELECTRONICS, Inc. HgCdTe detectors.

PROPOSED PROGRAM

It is recommended that fifteen (15) HgCdTe detectors be fabricated to the same design employed for the present program. All fifteen units would be fabricated, assembled, and after passing preliminary evaluation, would be mounted on vacuum stations. All fifteen units would be evacuation baked for a period of about ten (10) days at 75°C. At the end of this period, each detector would be evaluated in situ

(on the vacuum pump) to determine performance characteristics. It is anticipated that all fifteen (15) units would meet all performance requirements of the present program.

After this first evaluation, three (3) units would be tippedoff, re-tested, and held as 75°C control units for the remainder of the program.

The remaining 12 units would be evacuation baked for an additional period of two (2) days at 80°C, after which each detector would again be evaluated in situ to determine if performance characteristics were being maintained. After this evaluation an additional two units would be tipped-off, re-tested, and held as 80°C control units for the remainder of the program.

The above procedure of repeating the evacuation bake-out for two (2) days at a temperature 50°C higher than the previous bake-out, testing all units and tipping off an additional two units would also be performed at 85°C, 90°C, 95°C, 100°C, and 105°C.

It is anticipated that this would result in establishing an optimum evacuation bake-out temperature somewhere between 80°C and 105°C. Any units which failed for any reason at any temperature would be thoroughly evaluated and the cause of failure determined.

OPTOELECTRONICS, Inc. recommends the above program as a straightforward and effective way of establishing an improved evacuation bake-out procedure for HgCdTe detectors. This procedure will assure a more reliable HgCdTe unit for field use, with improved vacuum integrity, and a longer life under either normal or elevated temperature storage conditions.

APPENDIX A

U.S. ARMY ELECTRONICS COMMAND Night Vision Laboratory Fort Belvoir, Virginia

24 August 71 Modified

A STATE AND A S

And the second second

PROCUREMENT DESCRIPTION For "HgCdTe High Reliability"

1.) <u>Scope</u>. This Procurement Description covers the fabrication and test of ten (10) single element Mercury Cadmium Telluride (HgCdTe) detectors encapsulated in glass evacuated dewars.

1.1 <u>Objective</u>. The objective of this contract is to obtain high performance and highly reliable single element HgCdTe detectors operating in the 8 to 14 micrometer spectral region and having a low heat load dissipation. The detectors and dewars shall have characteristics for high temperature storage and vacuum integrity.

1.2 <u>Description</u>. The detector elements shall be fabricated from Mercury Cadmium Telluride. Each detector element shall be mounted in an evacuated glass dewar suitable for open cycle cooling with liquid nitrogen. 2.0 <u>Applicable Documents.</u> "Standard Procedure for Testing Infrared Detectors and Describing their Performance" by R. C. Jones, D. Goodwin, and G. Pullan dated 12 September 1960, published by the Office of the Director of Defense Research and Engineering.

The second state and the second states

3.0 Requirements.

3.1 <u>Material and Workmanship</u>. All materials and components not definitely specified herein and required by this Procurement Description shall be of the best quality normally used for good commercial practice in equipment intended for rugged use. Materials and components shall be free from defects and imperfections that affect the serviceability of the finished product. Workmanship shall be of the highest quality throughout and in accordance with the best commercial practice for this type of equipment. See paragraph 4 for test and inspections to assure compliance.

3.2 Detector Parameters.

3.2.1 <u>Detector Material</u>. Each detector shall be fabricated of Mercury Cadmium Telluride (HgCdTe) to be operated at 77°K.

3.2.2 <u>Detector Size</u>. The detector shall be a 0.003X0.003 inch square element. The sensitive area is defined as the

50% voltage line response of the elements. This value shall be used as the sensitive area in computing detector performance.

3.2.3 <u>Performance</u>. Each detector shall have a peak D* $(\lambda, 800 \text{ Hz}, 1)$ greater than or equal to $2.0 \times 10^{10} \text{ cm Hz}^{1/2}$ watt⁻¹ when operating at 77°K.

3.2.4 <u>Spectral Response.</u> Each detector shall have its peak wavelength response between 10.5 micrometers and 12.5 micrometers and maximum response down to 8 micrometers.

3.2.5 <u>Power Dissipation</u>. The power dissipation of each detector when operating in conformance with paragraph 3.2.3 shall be 1.5mw or less.

3.3 Dewar Parameters.

3.3.1 <u>Dewar Type</u>. Dewars shall be made primarily from glass, permanently evacuated, and constructed so as to restrict the field of view to 60°. Each dewar shall have an evacuated tip-off tube suitable for fracture, repump and reseal.

3.3.2 <u>Vacuum Life.</u> The dew_1 will be so fabricated as to maintain a vacuum sufficient to prevent the IR window from

frosting when the detector is cooled to 77°K and the ambient is 30°C with 50% relative humidity. The minimum vacuum life shall be 12 months, with a design goal of 24 months.

4.0 Quality Assurance Provisions.

4.1 <u>Detector Test Conditions.</u> The general test provisions shall be in accordance with the "Standard Procedure for Testing Infrared Detectors and Describing their Performance".

4.2 <u>Measured Data</u>. The manufacturer shall make the following measurements on each detector and furnish the data as required on the DD Form 1423 and associated DD Forms 1664. In each case, the effective rms irradiance at the detector will be noted.

a. Spectral response

b. Measured rms signal voltage

c. Measured rms noise voltage and bandwidth

d. D* (500, 800 Hz, 1)

e. D* (λ peak, 800 Hz, 1)

f. Noise as a function of frequency from 50 Hz to 20 KHz

g. Detector resistance

h. Responsivity

i. Detector surface contour plot

4.3 Peak Temperature. The data shall include the highest

temperature to which the detector was exposed during manufacture and the length of time of exposure at this temperature.

4.4 <u>Failure Rate.</u> The Contractor shall report on failures during all stages of device preparation. This information shall include:

Ĭ

ņ

- a. Known and correctable sources of failure with possible solutions;
- b. Known and uncorrectable sources of failure; and
- c. Failure from unknown sources, with, where possible, hypotheses on causes.

The approximate percentage of failure due to each source shall be tabulated.

5.0 <u>Preparation for Delivery</u>. The detector package with data required shall be packaged in accordance with good commercial practice for shipping. This package shall be marked in accordance with MIL STD 120 at the direction of the Contracting Officer.

APPENDIX B

1

DRAWING

Only one drawing was required for fabrication of the HgCdTe detector/dewar assemblies described herein. This drawing is referenced in the body of this report, and is included in this Appendix.

> OPTO Drawing SK10829, HgCdTe End View Detector/Dewar Unit

APPENDIX C

Evaluation Data on Delivered Detector/Dewar Assemblies

Final acceptance test data on electrical performance parameters for the ten (10) units delivered under this program is contained in this Appendix. Acceptance tests were performed at a detector operating temperature of 77°K for all ten (10) units. The results of that evaluation are reported herein.

OPTOHLACTRONICS, INC. TOPTOHLACTRONICS, INC. TOPTOHLACTRONICS, INC. TOPTOHLACKBUUY 1EMP. 54019 K DEVICE NO. 1328 BLACKBUUY 1EMP. 54019 K DEVICE NO. 215-UNC F.O.V. 60° DATE 2/28/72 AREA 7010M K MATERIAL HCT OFERATING TEMP. 27°K TESTER W.R.R.G. 1X HC COAD RESISTOR 1K/O FLUX DENSITY 1 81064 x 10 ⁻⁵ w/cm ² BANDPASS 10 HC CHOPPING FREQ 1X HC SYSTEM GAIN 8.5 x 10 ⁵ SERIAL NUMBER 1328-1	TResponsivityRRDetectorVVVdet1-v/w20800 bitsSignalNoiseN00(mai)1-v/w1(mar)(mar)(mar)1N0N		$\frac{5}{1.05} \qquad 1006 \qquad 380 1.8 \qquad 211 5.27 \times 10^9 1.05 \times 10^{10}$	0 2.120 . 800 2.4 333 8.32 × 10 ⁹ 1.66 ×	5 · 2916 9.14 × 10 ⁹ 1.83 ×	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>4.2 464 1.16 × 10¹⁰ 2.32 × 10 10 2.32 × 10 10 2.32 × 10 10 10 10 10 10 10 10 10 10 10 10 10 </u>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 0 377 9 42 × 10 ⁹ 1 80 × 10			le @ 77°K 8.5 hrs.				
OPTOHL 1300 Dynamics	T. det (må)	C.	2	0.1	1.5.0	1		4.0	5.0	6.0		me @		 	•	 r
	ELE. E . No. (mv)	L									•	 ewar Dwell Ti				01 18.1

のないと見たい

	Km Hz [*] watt ⁻¹) δ D• BB D• A		1,02 × 2,11 ×	1.28×10^{10} 2.57 x	10 ¹⁰ 2.87 x	2.63 X	2.42 × 10	2.67 x	2.79 × 10	541 1.35 x 10 ¹⁰ 2.70 x 10 ¹⁰		-			-		•	
x 10 ⁻⁵ w/	V Noise (ma')		2.4 2	4	d	5.5	7.0 4	8.5 5		d							 	
1328 202-UNC 202-UNC 2/28/72 HCT W.R.S. 1.81064 3 1K HZ 1328-2	Signal N (ma)		490		· ·		3400	4550 8	5600 10	6500 12	 							
	Detector Bias (V)				, 	۲	m 	4	ى 	9	 			•				
PROJECT NO. DEVICE NO. DATE MATERIAL TESTER FLUX DENSIT FLUX DENSIT SERIAL NUM	R Codd	35Ω																
ÿ	R Amb	22Ω									 							
OPTOELECTRONICS, INC. 1309 Dynamic Street - Petaluma, Ca. 94952 DATA SHEET	Responsivity , vyw		1298	. 0167	6198	7690	8016	. 12066	14850	17238	•	•	K 8.5 hrs.					
DPTOEI 1300 Ovnamic	I det (ma:)	0	ۍ ک ر			•	• •	4.0	5 0	6 0			me 8 77 K	ł				
	E oc (mv)										•		רשון שיו					
Page 23	ELE. No.	-											Dettar D			•		<u>+</u> 1

. .

p

É

: **%** %

HLACKBODY TEMP.500°K F.O.V. 60° AREA 70µm x 70µm OPERATING TEMP. 72°K LOAD RESISTOR 1K0 BANDPASS 10 Hz SYSTEM GAIN 8.5 x 10 ⁵	(cm Hz [%] watt ¹ } D* BB D* A		$6 93 \times 10^9 1.39 \times 10^{10}$	48 x 10 ⁹ 1,80 x	x 10 ⁹ 1 92 x	04×10^{10} 2.08 x	2.16 x	2.50 x	3.12 %	2.45 x	2.35 2	 •	•					
w/cm ²	र्थ भूत		775				433	500	625		.471				•	 		
INC 72 5. 5. 5. -3	V Noise (ma.)	2.0	8 [.2 6	3.0	3.4	4.0	4.8	6.0	7.0					 		
1328 217-1 2/28, HCT W.R.S 1.810 1.810 1.328- 1.328-	K Signal (.ma)		500	760	1000	1250	1475	2000	2500	2950	3300				-	 •		
PROJECT NO. DEVICE NO. DATE NO. MATERIAL TESTER FLUX DENSITY CHOPPING FREQ. SERIAL NUMBER	Detector Bits (V)											 •		·				
PROJECT PROJECT DEVICE DATE MATERI, TESTER, FLUX DI FLUX DI SERIAL	R Cád	380								•		 						
	R Amb	220	-															
OPTOELECTRONICS, INC. 1309 Dynamic Street - Prieluma, Ca. 94952 DATA SHEET	Responsivity Å V/W	~ <u>_</u>	: 1326 .	2014	2652	3314	. 3910	5304	6630	7822	8750			8.5 hrs.			•	-
OPTOELECTRONICS 1309 Dynamic Strut - Parteluma, ca. 949 - DATA SHEET	I det (ma)	0	2 C		2 0		3.0	4.0	5.0	6.0	. 0.7	 •	•	ime @ 77°K			•	-
	E oc (mv)											•		Dwell Ti		 		
Page 25	ELE. No.	-												Dewar				

1

The second second second

N 19 1

SERIAL NUMBER 1328-3"

OPTOFILECTRONICS, INC. PROJECT NO. 1328 Teso DynameStinet: Pailuma, Ca. 94952 DEVICE NO. 224-0000 Teso DynameStinet: Pailuma, Ca. 9452 DEVICE NO. 224-0000 Teso DynameStinet: Pailuma, Ca. 9452 DEVICE NO. 224-0000 DATA SHET MATERIAL HECT 4/17/22 TESTER MATERIAL HCT HCT DATA SHET TESTER WATERIAL HCT Color (W) MATERIAL HCT HCT MATERIAL Responsitvity R R Allocid (wv) (motion 18 HZ 1328-4 Signal (motion 18 HZ (motion 18 HZ (v/m) Amb Cold (v) (motion 18 HZ (motion 18 HZ 1670 2630 310 630 2350 1 1 1 1 1 1 1 (motion 18 HZ 1 1 1 1 1 1 (motion 18 HZ 1 1 1 1 1 1 <	•			;							×
E I Responsivity R Bis Signal (mv) (ma) (v/w) Anb Coid (v) (wv) 0 0 530 310 630 (mv) (mv) 0 0.5 1670 260 310 630 630 1.0 4376 260 310 6300 2350 1650 1.0 6232 9282 7956 3000 33000 33000 2.0 7956 9282 7956 3300 3000 3500 2.5 9282 7956 7956 3000 3500 3500 2.0 1.0872 9282 7956 7996 5500 3600 2.0 1.12996 6.0 12996 5500 5500 5500 3.000 1.0872 8.5 hrs. 8.5 hrs. 5500 5500		DPTOEL 1309 Dynamics	ECTRONICS, 1N Street - Petaluma, ca. 94952 A SHEET	ల	PROJE DEVIC DATE. DATE. MATE MATE FLUX FLUX SERIZ	E NO. E NO. AIAL B DENSITY, ING FREO		4 x 10 ⁻⁵ w/cm ²	BL/ F.O AR AR OPI Com 2 BA SY		
0 1670 260 310 630 0.5 1670 260 1650 1650 1.0 4376 1570 2350 2350 1.5 6232 376 2350 2350 2.0 7956 7956 3500 3500 2.0 9282 10872 4100 4900 3.0 12996 12896 5500 5500 5.0 14586 8.5 hrs. 4900 5500	щ.	I (de f	Responsivity Å (V/W)	And	R Cold	Detector Bits (V)	Signal(mv)	v Noise (mv)	viz .	(cm Hz ³ w D* BB	watt') D* }
2.0 7956 3500 2.5 9282 3500 3.0 10872 4100 3.0 10872 4900 4.0 12996 500 5.0 14586 500 5.0 14586 500 5.0 14586 500 5.0 14586 500 5.0 14586 500 5.0 14586 500 5.0 14586 500		1 1 4 4	1670 4376 6232	260	310		630 1650 2350	1.8 2.0 3.0 4.0	315 550 588 588	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X X X X
4.0 12996 5.0 5.0 5500 5.0 14586 8.5 hrs. 8.5 hrs. 5500 Dwell Time 8.5 hrs. 8.5 hrs. 8.5 hrs. 8.5 hrs.		2.5	7956 9282 10872	·			3000 3500 4100 4900	5.5 6.0 8.0	636 636 683 613	-59 x 10 ¹⁰ 3.18 -70 x 10 ¹⁰ 3.40 -53 x 10 ¹⁰ 3.06	×
Т <u>іте '6</u> 7°5К 8.5		4.0 5.0	12996 14586				5500	0.01	550	1.37 × 10 2.74	
	Dwe 11	بع •			• • •						
										· .	

OPTO/MULLARD CMT NOISE SPECTRUM FINAL PACKAGE

BLACKBODY TEMP. 500°K F.O.V. 60° AREA ZOUM X 70UM OPERATING TEMP. 77°K LOAD RESISTOR 1KΩ LOAD RESISTOR 1KΩ BANDPASS 10. HZ SYSTEM GAIN 8.5 X 10 ⁵	(cm Hz ³ watt ⁻¹) D* BB D* A		$6.1 \times 10^9 1.22 \times 10^{10}$	2.05 x	2.30 x	2.65 x	x 10 ¹⁰ 2 9 1	3.18 x	2.85 x	3.l6 ×	.34 x 10 ¹⁰ 2.68 x				*			
cm ²	vtz		244	410	461	531	583	637	571	633	537	 •				 		
2 x 10 ⁻⁵ w	V Noise (ma)		1.8	2.0	2.6	.3.2	3.6	0	5.6	6.0	8,0							
1328 213 UNC 2/28/72 HCT W.R.S. 1.81064 7.1K Hz R 1328-5	Signal (ma)		440	820	1200	1 200	2100 -	2550	3200	3800	4300							•
PROJECT NO. 1328 DEVICE NO. 213 U DATE 2/28/ MATERIAL HCT TESTER W.R.S FLUX DENSITY 1 810 CHOPPING FREQ.IK HZ SERIAL NUMBER 1328	Detector Biæ (∛)											 						
PROJECT PROJECT DEVICE DATE DATE MATERI MATERI TESTER FLUX DR CHOPIN SERTAL	R Cold	4 8 <i>Ω</i>				·					•							
ÿ	در در در در در در در در در	23Ω	,									 						
OPTOELECTRONICS, INC. 1309 Dynamic Strat - Petaluma, Ca. 94952 DATA SHEET	Responsivity V/W		1166	21,74	3182	4508	5568	6762	8486	10076	11402			8.5 hrs.		 	•	
OELEC Dynamic Struet	a) t		5										•	17°K		 		
				с -		2.0	2.5	e M	4.0	5.0	6.0			time @	 	 		
	E oc mv)											•		. Dwell				
Page 31	ELE. No.	-												Dewar				- 1

and the second second

ii.

2.5

:

SERIAL NUMBER 132-5

					PROJ	PROJECT NO DEVICE NO	1328 224-UNC	Q		BLACKBODY TEMP.	500°K
		1309 Dynam	OF I OFLECT KONICS, INC. 1309 Dynamic Street - Petaluma, Ca. 94952	INC.	DATE.		4/26/7	/72		AREA 70um x 70um	
I IIIII		DATA	LA SHEFT		TESTER	MATERIAL	HCT W.R.S.			OPERATING TEMP <u>. 77°K</u> I OAD RESISTOR IK <u>N</u>	× ×
Page					FLUX	FLUX DENSITY	1 1	54×10^{-5}	«/cm ²	N	
e 33					CHOF SERJ	CHOPPING FREQ. SERIAL NUMBEI	CHOPPING FREQ. <u>1K Hz</u> SERIAL NUMBER 1328-6	-6		SYSTEM GAIN 8.5	c OI X
ELE. MA	ш 8	, н. б	Responsivity	œ ^ر	æ	Detector	>	>	U	(cm Hz ¹⁵	watt ¹)
	(лш)	(ma)	, (W/V)	Amb	Cŏłd	$\mathbf{\hat{z}}$	Signa! (mv)	Noise (mv)	dz	D* BB	D* À
Single		0		29Ω	38Ω			1.8			
		0 -	1882				710	2.2	323	8.05 x 10 ⁹ 1.61	×
,		1.5	2784				1050	2.4	438	x 10 ¹⁰ 2	×
		2.0	3712				1400	2.8	500	×	×
		3.0	5304				2000	3.2	625	x 1010	×
		4.0	6702	•			2550	4.0	638	x 10 ¹⁰	×
		5.0	7956			•	3000	5.0	600	50×10^{10}	X
		6.0	9016				3400	6.0	567		×
Dewar	Dwell T	ime @ 77	٥K	8.5 hrs							•
		•		•							
									• • • • •		
0110 116.1	116.1 2/71		•	• ·	• •	•	• •	•	Ŧ	•	-**
_	1	ł									

SERIAL NUMBER 1323-1

SPECTRUM OPTO/MULLARD CMT NOISE FINAL PACKAGE

FREQUENCY

(HERTZ)

Page 37		OPTOE 1300 DVIIII DAT	OPTOELECTRONICS, INC. 1309 Dynamic Street - Petaluma, Ca. 94952 DATA SHEET	INC.	PROJECT DEVICE DATE MATERIA MATERIA TESTER _ FLUX DE FLUX DE CHOPPING	PROJECT NO. DEVICE NO. DATE MATERIAL TESTER TESTER FLUX DENSITY CHOPPING FREQ. SERTAL NUMBER	1328 225-UNC 225-UNC 3/20/72 HCT EARM 6.22409 C. 1K Hz R 1328-7			BLACKBODY TEMP. 500 F.O.V. 60° AREA 70µm X 70µm OPERATING TEMP. 77°K LOAD RESISTOR 1KΩ BANDPASS 10 HZ SYSTEM GAIN 8.5 X	MP. 500°K r 70µm 1P. 77°K 1RΩ 1RΩ 8.5 x 10 ⁵
ELE. No.	E oc (mv)	r det (ma)	Responsivity Å V/W	Amb Amb	Codd Codd	Detector Biæ	 Signal mv) 	Noise	ଏଅ	D* BB	z ³⁶ watt ⁻¹) D* λ
<u>Single</u>		0		2 B.C	340			1.8			
		1	2346				330	2.4	138	9.98×10^9	×
		1.5	4784 6944				620 900	3.0 3.6	207 250	1.50×10^{-0} 1.81×10^{10}	3.63×10^{10}
		2.0	9066				1175	4.0	294	2.13×10^{10}	×
		2.5	10994	•		•	1425	5.0	285	2.07×10^{10}	4.14×10^{10}
		3.0	12730				1650	6.5	254	1.84×10^{10}	3.68×10^{10}
		4.0	16200				2100	8.0	263	1.91 x 10 ¹⁰	3.81×10^{10}
		5.0	18900				2450	0.6	272	1.98 x 10 ¹⁰	3.95×10^{10}
											•
Dewar	well Ti	me @77°K	K	8.5 hrs							
0140	6/ 6 - 1 311 1	וי				•		•••			

なないためであるとなるとなったないないためであるとのない

ž

|= |

Å.

SPECTRAL RESPONSE vs. WAVELENGTH

SERIAL NUMBER 1328-/

Page 41		OPTOE 1300 DVAIM	OPTOELECTRONICS, INC. 1309 Dynamic Street - Petaluma, Ca. 94952 DATA SHEET	INC.	PROJECT DEVICE I DATE MATERIA TESTER_ FLUX DE CHOPPING SERIAL	PROJECT NO. 1328 DEVICE NO. 226-UNC DATE 3/20/72 MATERIAL HCT TESTER EARM FLUX DENSITY 6.22409 CHOPPING FREO. IX HZ CHOPPING FREO. IX HZ SERIAL NUMBER 1328-8	1328 226-UNC 3/20/72 HCT EARM 6.22409 0.1K Hz SR 1328-8	UNC /72 RM 109 X 10 ⁻⁶ w/cm ² 3-8		BLACKBODY TEMP. <u>500°K</u> F.O.V. <u>60°</u> AREA 70µm x 70µm OPERATING TEMP. 77°K LOAD RESISTOR <u>1KΩ</u> LOAD RESISTOR <u>1KΩ</u> BANDPASS <u>10.Hz</u> SYSTEM GAIN 8.5 x 10 ⁵	K
ELE. No.	E oc mv)	r det (ma)	Responsivity \ V/W	R Anb	R Cółd	Detector Bias ()	K Signal (mv)	V Noise (mv)	<i>и</i> д	Cm Hz ³ watt ⁻¹ D* BB D*	1 ⁻¹) λ
Single		o		310	380			1.8			
		2	2160				280	2.2	127		1.85×10^{10}
		0.1	4088				530	3.0	771	0	1010
		1.5	5862				760	3.6	211	1.53 x 10 ¹⁰ 3.06 x	, 10 ¹⁰
		2.0	7716				1000	4.2	228		
		2.5	9258				1200	4.7	255		- 10 ¹⁰
		3.0	10608				1375	5.2	264	3.84	10 ¹⁰
		4.0	12150			·	1525	. 7.5	210	3 05	× 10 ¹⁰
		5.0	14658			·	.0061	0 6	112	53×10^{10} 3.06	10 ¹⁰
Dewar T	Dwell Ti	Time @	77°K	8.5 hrs						•	
					•						
0010 116 1	1610	-				•		· · ·		•	

SPECTRAL RESPONSE vs. WAVELENGTH

SERIAL NUMBER 1328-

OPTO/MULLARD CMT NOISE SPECTRUM FINAL PACKAGE

Z)

(HERTZ)

		OPTOEI 1309 Dynami	OPTOELEC'TRONICS, INC. 1309 Dynamic Street - Petaluma, Ca. 94952	NC.	PROJEC DEVICE	PROJECT NO DEVICE NO DATE	1328 227-UMC 3/20/72	2 0		BLACKBODY TEMP. 500°X F.O.V. 60° AREA 701m X 701m AREA 701m X 701m	P. 500°K 70µm 77°K
Page 45		DATA	A SHEET		MATERIAL TESTER FLUX DEN CHOPPING SERIAL N	MATERIAL HATERIAL I TESTER FEUX FLUX DENSITY C CHOPPING FREQ. J SERIAL NUMBER	HCT EARM 6.22409 D.1K Hz ER 1328-9	70 X	0 -6w/cm ² ^L 5	UPEHALING LEMP. 11 LOAD RESISTOR <u>1K</u> BANDPASS <u>10 Hz</u> SYSTEM GAIN 8.5	1KA .5 x 10 ⁵
ELE. No.	E oc mv)	I det (ma)	Responsivity \ V/W	ھ _م م ک	Cod Cod	Detector Bias	K Signa! (mv)	v Noise (mv)	ф <u>г</u>	Ccm Hz	³ watt ⁻¹) D* λ
Single		ο ι		280	350		070	1.5	171	1 02 × 10 ¹⁰ 5	2.04 × 10 ¹⁰
			3616				430	4 4	195	x 1010	×
			4784				620	2.8	221	1.61 × 10 ¹⁰ 3	22
		2.0	8100				1050		276	× 10 ¹⁰	02 X
			9258				1200	1 1	267	×	88 x
		4 0	13150				1575	5.6	281	$2.04 \times 10^{10} 4$	•08 x
		5.0	14466				1875	7.0	268	1.94×10^{13}	1.89×10^{10}
Dewar	Dwell T	ne @	77°K	8.5 hrs							
		•									
0710 116.1 -	161.5.171	17				•		un da	*	•	

47

OPTO/MULLARD CMT NOISE SPECTRUM FINAL PACKAGE

· • • • •

(HERTZ)

Page 49		OPTOEI Intervol 1308 Dynami	OPTOELECTRONICS, INC. 1309 Dynamic Street - Petaluma, Ca. 94952 DATA SHEET	Ċ N	PROJECT N DEVICE NC DATE MATERIAL TESTER FLUX DEN CHOPPING SERIAL N	PROJECT NO DEVICE NO DATE MATERIAL TESTER FLUX DENSITY_ CHOPPING FREC SERIAL NUMBE	PROJECT NO. 1328 DEVICE NO. 228-UNC DATE 3/20/72 MATERIAL HCT TESTER EARM FLUX DENSITY 6.22409 CHOPPING FREO <u>1K Hz</u> CHOPPING FREO <u>1K Hz</u> SERTAL NUMBER 1328-10		BI 10-6w/cm ² B.	BLACKBODY TEMP_5 F.O.V. 60° AREA 70µm x 70µm OPERATING TEMP.77 LOAD RESISTOR <u>1KΩ</u> BANDPASS <u>10 Hz</u> SYSTEM GAIN 8.5	
ELE. No.	E oc mv)	· I det (ma)	Responsivity ν/w	R Amb	R Cold	Detector Biæs (`)	Signal (Inv.)	V Noise (mv)	න්න	Cm Hz D* BB	r
Single		0 1		29Ω	370		090	1.8 . C	811	8 58 ~ 10 ⁹	1 72 4 10 10
			3856				500	2.8	179	900	2.60 X
		2.0	5710 7716				740 1000	3.6 4.0	205 250	1.49×10^{-10} 1.81×10^{10}	2.98 X 3.62 X
		2.5	9258				1200	5.0	240	$\frac{1.74 \times 10^{10}}{2.00 \times 10^{10}}$	3.48 x
		4.0	13116				1700	7.0	243	4 ×	3.52 X
		5.0	15420				2000	8.0	250	1.81 x 10 ¹⁰	3.62 x
											•
. Dewar	Dwell T	Time	77°K	8.5 hrs	•						
					•						
2	TL/7	ТĹ					·	• <i>,</i>	a d	•	

SPECTRAL RESPONSE vs. WAVELENGTH

SERIAL NUMBER 1328-10

KQUPPEL A LUBER CU

(HERTZ)

.

