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: needed for relating the psychological spaces obtained from scaling analyses to other behavioral

A data. One method, which involves embedding novel stimuli in previously defined psychological
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TWO CONTEMPORARY PROBLEMS IN MULTIDIMENSIONAL SCALING

INTRODUCTION
REDUCING THE NUMBER OF JUDGMENTS REQUIRED IN PAIRED COMPARISON TASKS

A major difficulty associated with the application of multidimensional scaling (MDS)
techniques is that current methods of collecting proximity data severely limit the feasible sample
sizes. The number of comparisons required for judgments on all possible pairs or triplets of
stimuli {or any large fracticn of this number) varies as the square or cube of the sample size. A
sampling constraint of this type is particularly deleterious in the case of MDS since the
interpretability and utility of the scaling solutions depends to a large extent on the
representativeness or exhaustiveness of the stimulus sample. Unlike most other multivariate
models, which assume that the relevant psychophysics is under experimental control, in MDS
analyses the orderings of the sample stimuli along the psychological dimensions are used to
identify the corresponding physical properties. The smaller the sample size the more difficult it is

to obtain an unambiguous interpretation ordering especially when the orientation of the axes can
be arbitrary.

There have been several methods discussed in the literature for circumventing the
restrictions on sampie size. The most straightforward of these involves obtaining some fraction of
all possible comparisens, then generating a solution based on the incomplst: data matrix. A
seconc alternative would require that each subject judge all possible piirs by extending the
experimental period to the necessary number of sessions or; differenc subjects might judge
portions of the total comparison matrix. 1t would be important to use marker stimuli in the latter
twn cases so that estimates of consistency or reliability could be obtained.

¢

None of these alternatives has been systematically evaluated, and it is readily apparent that
there are difficulties with each. In the first approach there is the problem of determining which
pairs to sample. Also, many of the available MDS procedures cannot be applied to an incomplete
comparisons matrix. The question of the number of pairs to be sampled is also important but as
that is a problem common to all selection procedures it will be discussed later. In the repeated
session approach, there are of course no problems with missing data; however, these difficulties
may in many cases be eliminated at the expense of experimental practicality. Also, it may be
unreasonable to expect subjects to be consistent in their use of a numerical scale over several
experimental sessions. Although the use of marker pzirs would at least indicate whether or not

there was intergroup or intersession consistency, it is not at all clear what procedure should be
followed when inconsistency is discovered.

One purpose of the present paper is to suggest a third procedure for effectively enlarging the
sample size in paired comparison tasks, a procedure which does not irvclve multiple experimental
sessions, and which attempts to circumvent some of the difficulties associated with other partial
sampling approaches.
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Briefly, the procedure requires that proximity estimates be obtained between each of N
“experimental stimuli"’ and each of M “standards,” as well as between all possibie combinations
of standards. While the M by M standard matrix can be scaled directly, in order to scale the N
experimental stimuli it is necessary either to obtain estimates of the distances or scaler products
for all pairs of the stimuli iising only the given data. Several analytical procedures which can be
used to generate these estimates are presented later.

ENHANCING THE UTILITY OF MDS ANALYSIS IN APPLIED RESEARCH SETTINGS

A second major purpose of the paper is to discuss procedures for embedding a novel
stimulus in a previously defined muliidimensional space. The author feels that the development
of efficient techniques for determining the location of novel stimuli in known spaces is of vital
importance to researchers who are interested in applying scaling techniques to practical problems.
It has been demonstrated time and time again that regardless of the stimulus domaiin, MDS
techniques yield interpretable, predictive psychological spaces. Questions concerning the utility
of these spaces, however, have been virtually ignored with the exception of a few recent articles
(1,2,3,6,9, 11).

One problem has concerned the fact that often the psychological dimensions have no clear
cut physical interpretation and many researchers have balked at the suggestion of using
psychopsychics {for example, using psychological variables to predict responses). It is ironic that
the sevelopment of a predictive psychophysics should be of major corwarn in this particular area
since one of the major conuributions of the MDS techniques was to free the psychologist from
the need for determining the relevant physics prior to collecting behavioral data. MDS procedures
made it possible for researchers tu ask “what dimensions do you normally use in perceiving this
stimulus domain” rather than “how do you order this domain along dimension x." It is time that
the concept of a psychologicai space be accepted as a useful behavioral construct independent of
whether or nct the dimensions have clear cut physical interpretations. In this case, the validity of
the construct should be evaluated on the basis of whether the psychological spaces have
predictive potential in the behavioral rather than physical dornain. In line with this reasoning, the
current paper, in proposing methods for embedding stimuli in predetermined psychological
spac.s, is suggesting that the location of a stimulus in such a space can potentially predict some
forms of behavior related to the stimulus.

Several examples should clarify this point. Humans typically are more efficient feature
extractors than machines when complex patterns are involved (8). In order to classify complex
patterns it is therefore advantageous to make use of of “behavioral” feature spaces. Such spaces
are analogous to the psychological spaces derived with MDS techniques. Classes of objects can be
represented as regions in the feature space; hence, a decision as to the classification of a new
stimulus can be based on its proximity to the various class regions. If the new stimulus could
somehow be embedded in the feature space, then ¢ decision concerning its class membership
would be a straightforward statistical problem. This procedure bypasses the question of finding
physical definitions for the relevant features and instead simply requires that subjects use the
features in a ordinary, intuitive manner. For a more detailed explanation of this approach to
pattern classification see Fenker & Evans (5).
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In a more practical setting, there are many cases in which it would be useful to know where
one type of item would be located in a space defined by another typé of items. Wher) the two
sets of items are individuals and stimuli, this problem is essentially the individual differences
problem discussed by Carroil & Chang {2) and others. In the individual differences case, _the ,
sclution space contains not only the stimuli ordered along the underlying psychological
dimensions, but the orientation of subject vectors as well. The subjects’ locations in the space not
only reflect their relative weighting of the dimensions, but in some cases the distance between a
subject point and the stimulus items can be used to predict such things as preference for or
concern about the stimulii. : '

In a final example, the space might contain relevant political issues. Here the psychological
dimensions would represent dimensions of political concern. Various political or social groups
would also have a location in the space based on their interest and concern for the different
issues. Politicians could similarly be projected into the space. This three-way space would be
useful for predicting which candidate a particular political groun will suppert or what location
(issue profile) a politician should represent i order to influence a particuiar group.

.

SELECTING A SET OF STANDARDS

it was mentioned above that in order to reduce the number of paired comparisons
judgments required for MDS, a set of “standard” stimuli must be selected. Before outlining the
procedures to be considered, it will be useful to detine what we mean by ‘‘standards.”’

The standards represent a collection of M stimuli selected so as to cornprehensively exhaust
the dimensionality of the multidimensional psychological space. In other' words, if the
underlying psychological space (for the given sample of N stimuli) is R-dimensional, the space
necessary to explain the distance relationships between the standards should also be
R-dimensional. If the M standards can be embedded in an R-1 dimensional hyperplane of the
psychological space, then a poor collection of standards was picked. Although the issue sounds
circular at this point since to know the dimensions on which to select the standards is to have
solved the scaling problem, in practice it should be possible to select “enough’ widely varying
types of stimuli from the population to designate as standards in order to sample all relevant
types of variation. The minimum number of standards which can be selected is given by the
number of degrees of freedom in psychological space. Thus, if the underlying space has R
dimensions, then for N stimuli a solution would have N x R degrees of freedom. Hence, the
number of standards M, should be somewhat larger than the expected number of dimensions, R,
sothat Nx M > N x R, ' :

A second important issue concerns the determination of the appropriate distahce function,
which is assumed to map coordinate differences into interstimulus distances. in the current paper
we will not consider this problem in any depth. When metric scaling solutions are discussed, it
will be assumed that the psyctological space is Euclidean. When npon-metric scaling procedures
are being considered, then the distance function is arbitrary to the extent permitted by the
procedures {this usually is the class of functions known as Minkowski R-metrics).

3
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" ‘The remainder of the paper is organized as follows. Section 1 presents a brief description of
). the data which must be obtained in order to apply’ the distance estimation or scaling procedures.
. . : Sections 11 and |V describe, respectively, metric and non-metric versions of the procedures. Each
of these sections is subdivided into two parts. Part A considers the case where a joint scaling
3 \ solution for the M+N stimuli is required. Techniqu+s developed in Part A are initnded to be
’ ! apphed when a well defined standard space is not available a..d the N experimental stimuli are to
2 . be used in defining the underlylng space. Part B describes techniques which are usefu! when the
b underlymg psychologncal space is assumed to be known and adequately defined by the standards.
- ' The problem in this latcer: case consists of embedding tHe experimeital stimuli in a well defined
k. space rather than making use of ‘then: to determine the space.
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THE EXPERIMENTAL DATA

The basic data required for the present approach are proximity estimates between the
members of a selected sample of stimulus pairs. The specific sampling required is represented
schematically in Figure 1. Out of a set of L = M+N stimuli, M stimuli are designated as standards
while the remaining N stirmuli comprise the experimental sample. Since we require that proximity
estimates be obtained for all possibie pairings of the standards as well as for all combinations of
the standards and the experimental stimuli, the total number of required paired comparisons, T,
will be

(M) (M=1) + MN,
T = ——— (1]
2

This can be compared to, G, the total number of comparisons required when all possible
pairs are sampled, where
(M + N (M+ N -1)
G = : [2)
2

The differ .nce, G—T, represents the savings in the number of comparisons required using the
current procedure, where
N{N-1)
G-T = —. (3]
2

The reader will notice that the savings is equivalent to the number of unordered
comparisons required for a set of N stimuli. Hence, the savings will increase as the square of N. A
useful statistic for estimating the efficiency of this sampling is the ratio of the number of paired
comparisons required using the procedure to the total number of possible comparisons or some
fraction of the total number based on another sampling procedure. This ratio is given by

(M) (M-1) + 2M:N

E = [4]
(M#N)  (M+N=1) P

where P is the fraction of the total number of possible comparisons actually obtained. Table 1
contains the values of E for the following sampling conditions.

a. M+N = 15,20,25,30,40,50,60,80,100
b.M=6,12
c.P=1,.38.,.4,.2

Table 1 permitsa comparison of the savings using the current sampling procedure with the savings
obtained by random or stratified sampling of the M+N by M+N proximity matrix. The values of
E may be interpreted as the precentage of judgments required using the current procedure
relative to other sampling procedure is more efficient.
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in the next section it will be assumed that the proximity judgments either correspond
directly to distances defined on an interval scale or can be tranc ‘ormed into distances. In Section
IV this restriction will be relaxed and we will assume only that the proxirity measures are
monotonically related to the interstimulus distances.

STANDARDS

Standards

[35]

M4

Sample . X
Stimuli

N

Fig. 1. SCHEMATIC REPRESENTATION OF THE BAS'C DATA MATRICES
REQUIRED USING THE SAMPLING PROCEDURE
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Fig. 2. DISTANCE RELATIONSHIPS BETWEEN STIMULUS Yq AND THE TWO
STANDARD AXES DEFINED BY S1, Sop AND THE ARBITRARY ORIGIN Sg
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THE METR!C CASE '

. 1

The experimental data for the metric case are estimatés of the absolute distances (or
proximity data which can be transformed ‘into distances with the appropriate scaling model) in
psycliological space between all possible pairs of standards or experimental stimuli and standerds.
It is assumed that both the M stanqards and N stimuli can be rgpre;ented as points in a
K-dimensional psychological space such that Euclidean distances between points in the space
correspond to the perceived distances between stimuli. Since each experimental stimulus is paired
only with the standards, no interpoint distance estimates are available' for pairs of experimental
stimuli. Our problem is to take the information which' relates these stimuli to the standards and
use it either to help define the underlying space containing the standards or to locate the.stimuli
in the space already well defined by the‘standards. '

i

JOINT SOLUTION FOR M STANDARDS AND N STIMULI
1]

In this case it is assumed that the number'of standards is insufficient to permit an
expeririental determination of the u~derlying psychological space. This is not an unusual
situation, for the robustness of solutions generated by current MDS scaling procedures depends
largely on the estimation of the correct dimer.ionality and the number of stimuli in the sample.
Also, with a small standard sample it may be difficult to identify the dimensions of a MDS
solution. This issue becomes especially important when the Euclidean metric is used since the

axis orientation is somewhat arbitrary. '

For the first case we are interested in only the relative location of tne stimuli and standards,
and while both are assumed to be embedded in the urderlying K-dimeisional space, the space has
not been determined at this point. Each stimulus has projections on the axes connecting an
arbitrary origin with the standards. In the technique to be described, estimates of interstimulus
distances can be obtained from these projections. ‘When the projections are consideted in
conjunction with interstandard distances and standard-stimulus distances, one obtains an M+N by
M#N distance matrix which can be scaled using current MDS techniques. The joint
stimulus-standard space can then be used to define the underlying psychological dimensions.

Since all the techniques to be presented have several aspects in Lwommon, the notation
conventions we adopt in this section will be used throughout the paper.
i ' R
The M standards and N stimuli can be represented as points in the K-dimensional
psychological space. The arbitrary origin of the space i$ represented either by the centroid of the
M standards or a desigriated standard. Although it is perhaps better to use the centroid as the
origin since it avoids any bias associated with a particular standard, it will simplify the discussion
below if we assume that one of the M zspdards is selected as the origin. The vectors conpecting
each of the M-1 standards with the Mth standard {which corresponds to an arbitrary origin in the
space) define an oblique set of reference axes which span the space. In order to make use of these
reference axes, it is necessary to transform the distance judgments between the standards and
stimuli into projections on the axes gefined by the standards. Figure 2 illustrates the problem
geometrically.
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Figure 2 presents the distance relationships for one experimental stimulus and two arbitrary

* reference axes. Note that estimates of the distances outlined by the thic" lines will e available
for each stimulus for each pair of reference axes. Also, notice that whil :he standards S1and Sy
uniquely define the reference vectors | and 1], respectively, an iﬁdefingw number of othe|r pairs of
standards could also define the same reference vectors. ) :

H | i

1 The terms in Figure 2 ¢an be defined as follows:
’ .

N
] ]

So : standard stimulus arbitr'r.“ly assumed to represent the origin pf the spéce. :
'l N
2 ) !

, ' . ., i
S1, S2: standards'whic! * .nen taken in conjunction with S define reference.axes | and Il.

i ' !
!

g . Y1: experimental stimulus 1. o : ‘

-2 ‘

i’m, Zg2, 212: distance estimates bétwgen standards.

| X11,'Xo1, X21" distance estimates between S, §1,S2.and Y1, respectively.

. [ l
Y11, Yo4: projections of Y1 on the oblique reference axes.

73 H

! : ! ) ,
- ) W11, W21: coordinates of Y1 on the oblique axes. '

)

The projections of Y4 on axes 1 and 2 are given by, !
i

\ . W11 = Xp1 los 11
A R . “ ] 5
, ' Woq = Xo1 cos 999 [5]

»
0

The values for cos - 11 and cos ' $51 can be found using the cosine law for
! .

i i 2 2. 2
201 *t Xo1 — X§ |
' cos ¢17 = (6]
) 1 1 . .
* , \ | 2 Zog1 Xo1,
: and . ' '
' 2 2 2 ;
‘ Z + X - X !
' cos ¢~ = 02 ol 21 . (7}
. . ‘ 2Z02 Xo1
1 Thus,
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2 2 2
_Z; t Xpp — Xy

Wi = , {8]
2Z01
and
2 2 2
2 + X - X
& 01 21
R - : (9]
2202

or, in general, the projection of stimulus k on reference axis i is given by

2 2 2
25 + X - X
Wy = Oi ok ik [16]
22¢;

The matrix containing the projections of the N stimuli on the M-1 reference axes can be
deterr~ined using Equation 10.

Once the projections of the N experimental stimuli on the M-1 standard axes have been
obtained, the next problem is to somehow use this information in order to obtain the distances
or scalar products for pairs of experimental stimuli. There are several possible approaches to this
problem, but for the sake of brevity | will consider only the two which appedr most promising.

a. In this approach we assume that it is possible to convert stimulus projections on the
reference axes into coordinates. in order to do this, it is necessary to find the transformation
matrix V which contains the cosines of the angles between the reference axes. Once V is
determined, the coordinate matrix Y can be computed for Y = Wv-1,

Estimates of V can be obtained directly from the interpoint distances between staiidards

since
cos Qjj = [11)
2Z0; Zm

and Zgj, Zgj, Z;j are available for any pair of reference zxes. Unfortunately, unless this matrix is
of rank M-1, it will be singular and hence, V-1 is undefined. Thus this approach would be useful
only when the number of standards is less than or equal to the number of dimensions in the
underlying psychological space. It would be possible to circumvent this problem by choosing a
sufficiently small number of standards, however, with so few standards defining the underlying
space the positions of the new stimuli would be very sensitive to judgment errors or errors due to
the selection of a nonrepresentative set of standards.

In the cas: where the rank of V is R and R < M-1, then a solution based on a principle
components analysis of V is possible. This procedure could be used to define an R-dimensional
orthogonal basis of V since a factor analysis of V would give us X where

\% = X X'

M—1,M~1 M-1,R  R,M-1 (2]

11
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and the elements of X represent cosines of the angles between the M standard and R orthogonal
axes. Projections of an experimental stimulus on the M standard axes would in a sense (see
below) define the location of the stimulus on the R orthogonal axes.

We see that the problem at this point has been reduced to one of embedding the stimuli in
the R dimensional space defined by the standards. The analytical solution to this problem is
presented in part B; however, adopting this approach eliminates the need for computing
interpoint distances between experimental stimuli, since their Iocation on the underlying axes
completely determines their location in the R-dimensional space. In fact, the underlying space is
at worst defined by a rigid rotation of the R axes to orientations which are more interpretable.
Any redundancy in the estimates of distances between the standards and the experimental stimuli
will be “‘eliminated’’ (for example, because the standard space is already defined, the positions of
the standards in this space are in no way influenced by the experimental stimuli which are
projected into the space on the basis of a least squares criterion) in the process of projecting the
experimental stimuli on the orthogonal axes. While this redundancy may be of use in determining
the ““true” location of the stimuli on the underlying reference axes, it cannot help determine
what these reference axes will be since they are already completely determined by the principle
components analysis of V.

Since we would expect that, in general, R < M-1, this first approach does not seem
particularly useful or practical except as a method for deriving a standard space into which novel
stimuli can be projected.

b. The second approach to scaling the experimental stimuli should be familiar to factor
analyst. |f we assume that the M axes connecting the standards v.iti, ~~ arbitrary origin represent
orthogonal reference axes (just as each stimulus can be assumed to de ‘ne a reference axis in N
space for factor analysis), then the correlation between two stimuli computed across the loadings
on the M reference axes is equivalent to the cosine of the angle between the stimuli in the
underlying R-space. (! an assuming that all stimuli are completely defined, except for error, by
the common factor space. No consideration of unique stimulus variance is given.)

Now, the ' zalar product of stimulus vector i and stimulus vector j is given by

bij = Xoi - Xoj - ] (13]

where Xg; and Xoj represent the lengths of the vectors connecting the origin i and j, respectively,
and a;; represents the angle between the vectc-s. Since Xgj and Xj are assumed known, and cos
o jj can be computed as the correlation discussed above, estimates of the scalar products between
the vectors representing experimental stimuli can be obtained. Thus the N x N matrix of scalar
products between stimuli can be estimated from the data. The M x M matrix of scalar products
between standards, and the N x M matrix of scalar products between standards and experimental
stimuli can both be computed applying the law of cosines to the distance estimates given by
subjects, The scalar product between standard= ; and j is given by

bjj = ZogZojcos ¢ij : [14)
and the scalar product between standard i and stimulus j is given by

bjj = ZpiXgjcos ¥ [15]

12
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where the terms are defined as in Figure 2. Once the (N + M) x (N + M) matrix of scalar products
has been obtained, standard factor analytic procedures can be used to find the underlying
R-dimensional psychological space. This approach assumes that an absolute scale of distance can
be estimated from the data. Also, as mentioned above, it would be convenient to select the

origin as the centroid of the standards rather than a particular standard. Both of these latter
points are discussed in detaii by Torgerson (12).

SOLUTION FOR EMBEDDING THE EXPERIMENTAL STIMULI IN THE STANDARD SPACE (2)

In this case we assume that the M-1 x M-1 matrix of distances between standards has been
reduced to an M-1 x R matrix, T, containing coordinates of the M-1 standards on the
R-psychological dimensions. The coordinates of the jth standard are defined by tj = {ti1,

ti2tR} . We are also given estimates of the distances between N experimental stimuli and the
M standards. For stimulus i, these distances are given as (Xj1, Xj2 . . . Xjpm). The unknown
coordinates of i on the psychological axes are given by Y;j= 1 V:1, Yjo, . . .Y;R} where R <
M-1. The Euclidean distances between stimulus i and the jth standaro can be written as

™~ 0

X5 = (ik - Yikl? [16]
K=1

If we introduce a vector of constants, W, which weight the R axes according to their
psychological utility@ and rewrite Equation 16 in matrix notation, we have

2

IWT, - 2W T + YWY , [17]

where W is a diagonal matrix containing the weights in W.

Since for a given standard the term Y;W Y; is constant, as is Y;W, we can write

2 _ ’ ,
Xjj = ij Ij - 2.B_in + G [18])

Equation 18 is a quadratic function of T which can be solved for estimates of W and B; using
multiple regression analysis. To illustrate this, consider the case where R = 2. Expanding
Equation 18 for each of the M standards gives the following finear system.

@ This permits us to deal with psychological spaces in which the dimentions have been scaled in
an arbitrary manner. A still more general procedure which utilizes a different set of weights and a
specific orthogonal transformation of the R axes for each 5i was developed by Carroll and Chang

(2).
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Xig = tgiW1q + t9Wao + bjytyg + biotyy
[19]

2 2
xm = tqWig + toWag + biptyg * biotmo

As Carroll {(2) mentions, the t?r represent “‘dummy’’ independent variables because of their
obvious relation to the tjj, Estimates of W and B can be obtained from the beta coefficients of
the multipla regression analysis. Having estimates W and B;, we can solve for the coordinates of

Y; using the equation

1
Yi = — -Bw-T [20]
3

The problem of embedding the N stimuli in the metric space defined by the standards can be
solved by using this procedure. The coordinates of 2ach stimulus can be defined by solving the
system of equations given above with the appropriate value of i.

Although both of the above approaches utilize the same data and hence the same potential
information, the former approach avoids a pitfall which is present in the iatter but may be
ignored either out of expediency or because of supporting research. The likelihood of obtaining a
degencrate MDS solution in the latter case is high relative to the former approach because the
sample being scaled is comparatively small. When only the standards are scaled it is possible that
the “correct’”’ two-dimensional space could become unidimensional in the scaling output (or in
general that the solution might represent a hyperplane of the true space). This could occur if the
stimuli were arranged in non-random manner {for example, if the standards fell approximately on
a line or a semicircle in the space). Hopefully this type of problem would be overcome by carefu:
sampling of standards, but often it is unreasonable to expect a priori knowledge of the location
of the standards in the psychological space,

By placing additional stimuli into the space before scaling, bias is reduced since if there are

M standards a new stimulus imposes M — 1 additional constraints on the location of the
standards. —

14
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THE NONMETRIC CASE

The term nonmetric as used in this section refers to the properties assumed to hold for the
experimental data, not the scaling technique employed in generating the final configuration.
Thus, we do not include the case where distances, generated on the basis of the metric
assumptions in the previous section, are analyzed with a nonmetric scaling procedure. This would
represent a trivial extension of the metric case discussed above.

The data for this section are assumed to be the rank order of the distances between an
experimental stimulus and each of the standards. Such data might be obtained by having subjects
select the standard most similar to the stimulus, then the next most similar standard and so forth.

Wtihout the metric distance infromation available in the previous section, it is not possible
to obtain estimates of the distanuas between experimentai stimuli without first embedding these
stimuli in a metric space defined by the standards and then using the axes of the standard space
as reference axes.

It is, however, possible to use current nonmetric MDS procedures to jointly scale both
stimuli and standards.

JOINT SOLUTION FOR M STANDARDS AND N STIMULI

The data required for this section are the rank order of the N x M psychological distances
(usually obtained as similarity or dissimilarity judgments) between experimental stimuli and
standards as well as the M x M (M- 1)/2 distances between standards. All rankings must be on the
same ordinal scale. This implies that the distance between a stimulus and a standard is not only
compared to the distances between that stimulus and other standards, but alsc to all other
distances between stimuli and standards or standards and standards as in typical MDS tasks. The
ordinal scale of distances described above represents one possible sample of proximities which
could be obtained from the (M + N} x (M + N) proximity matrix. This incomplete set of
proximities can be analyzed with most of the available nonmetric MDS procedures, thus giving a
joint solution for the M + N points.2

Although we wou!.! not expect these programs to have difficulty in scaling this incomplete
set of distances, solutions may be unsatisfactory in certain important respects.

3 It is interesting to note that the even more restrictive case {which is likely to occur in practice)
where onl\_/ the stimulus by standard proximity data is availab.e can still be analyzed with a
recent version of the Kruskal program {10). The analysis in this instance essentially represents a
multidimensional unfolding analysis as described by Coombs (4),

15




Since there are not data directly relating pairs of experimental stimuli, the relationship
between two experimental stimuli (which is unknown) can obviously have no influence on the
final solution. Thus points will be “moved” in the space solely on the basis of constraints existing
between two standards or a stimulus and a standard. In a sense then, we are embedding one
stimulus at a time since the location of a second stimulus is largely independent of the location of
the first. If this were literally the case there would be little reason not to compare each stimulus
to the standards individually since the judgments required of subjects would be much less
demanding.

There is, however, one potentially useful characteristic of joint solutions in which all
experimental stimuli are considered simultaneously. If the sample of standards is small or the
rank astimates likely to be in error, the distances between experimental stimuli and standards can
be used to refine the relative positions of the standards. This is possible because these latter
distance estimates represent redundant but useful constraints on the locations of the standards.
For example, if i and j represent standards, and k is an experimental stimulus then according to
the triangle inequality

dij < dik * dyj

By similar iogic we can establish a lower bound for dij since
dgj < djj + dik

and,
dij 2 dij - dik

Heice, if our solution is based on a metric distance function we have djj bounded by the
distances between stimulus k and standards i and j for

dqij — dik < dij < dig + dgj [21]

Similar constraints are imposed on every pair of standards by each experimental stimulus.

Since the nonmetric scaling algorithms ‘“force” the stimuli and standards into the same
metric space, minimizing the deviation; between the distances computed from the space and the
ranking of the distance estimates, the contraints on dyj implied by Equation 21, will have
considerable influence on the final solution.

Because this first nonmetric approach utilizes current MDS programs in a straightforward
manner, we will not discuss it further. Questions concerning the efficiency and effectiveness of
this approach will be discussed in a companion paper which deals in some detail with the
computational aspects of the scaling procedures presented in the current work.

16
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SOLUTION FOR EMBEDDING THE EXPERIMENTAL STIMULI IN THE STANDARD SPACE

in the former procedure, the distances between the experimental stimuli and the standards
were used to help define the locations of the standards. In the current procedure it is assumed
that the nature of the standard space is known and fixed and the problem is one of locating the
expenmental stimuli in this predetermined space. This means that in determining the location of
a stimulus in the standard space, adjustments will be made only in_the location of the stimulus:

the relative positions of the standards will remain fixed. No constraints based on the,

inter-relationships between standards will be used. The criterion to be maximized will be the
monotonicity between the estimated and computed (in the standard space) distance between the
stimulus and standards.

The following experimental data is assumed to be available.

%
1

a. The M x R matrix containing coordinates of the M stimuli on the R psychological

dimensions. This can be used to compute the distances between all possible pairs of standard
stimuli. The distance between standards i and j in this space is denoted by Zj;. Since the Zjj are
computed on the basis of the projections of the standards on the axes of the psychological space,
they in essence define the psychological space. it does not matter what type of procedure (metric
or nonmetric) or data were used to generate the psychological space since all current procedures
produce metric representations which are based on a particular distance function.

b. The rank order of the distances between each of the experimental stim.uli and the M
standards. Since it is assumed that the rank order relationships would be reflectec in any typa of
proximity judgments, the actual form of the data is not too important. . '

One solution to the problem of embedding an unknown stimulus i into the R-dimensional
standard space would be to apply the nonmetric version of the regression procedure discussed for
the metric case. Instead of the distances between stimulus i and the M standards, we are givenithe
rank order of the distances. Let H represent the monotonic function relating,the ordinal
proximity data to distances in the underlying metric space; then, Equation 16 can be rewrjtten as'

] ’
i

R
Xij = Hix = KE-1 (i ~ Yikl2

where"i;i represents the proximity hetween stimulus i and standard j. ! i

Carroll’s (2) approach to this problem is based on Kruskal’s (7} nonmetric scaling algorlthm
and involves the following steps.

. . ‘ (1)
a. The metric regression approach described above is used to obtain estimates of Xij

U)b Kruskal's algorithm is used to estimate the monotonic function i relatmg the X Xij
t~ the x
]

c. New estimates of’fii are computed according to the formula

17
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' d. The regression procedure is applied to the“‘ N to obtain estimates of x(?) and these
in turn are used to estlmate H

e. The |teratsve process is contmueo until no change occurs in the parameters of the
regression equation.

7he goal of this process is to obtain estimates of y;, the coordinates of stimulus i on the
syf*hologlcal axes. For more detail on. the iteration procedure the reader is referred to the article
by Carroll and Chang (2).

While in,theory the above procedure may represent the optimal approach to the problem of
nonr_netric embedding, in practice it is possible ‘to accomplish this goal using a modified version of
Kruskat’s (7) popular MDS, program. The Kruskal program constructs an arbitrary metric
representation of a‘given set of data points in R-dimensional space {where R is specnf:ed by the
user) and then uses a nonmetric scaling algorithm to move these points in the space in such a
manner as to maximize the monotonic correspondence between the interpoint distances and the
ordinal proximity data. For the current problem, we have assumed that the locations of the
standards in the space are fixed; hence, we would like to adjust the positions of the experimental
stimili (without affecting the positions of the standards) in such a way as to maximize the
monotonic relationship between thé given proximity data and the estimated distances, To
accomplish this goal one would use the Kruskal procedure in the following manner.

a; The "configuration” start option would be utilized. The input configuration would
contain coordinates of the M standards on the R psychological axes as well as estimates of the
location of the N stimuli on these axes. The latter estimates might be obtained either by applying
another scaling analysis or by’ simply using the coordinates of the standard to which each
stimulus is closest. Additional input, data would, of course, include the rank order of the
proximities between each of the experimental stimuli and the M standards.

b. The monotonicity requirements in this case depend only on the proximity
relationships between the N stimuli and the M standards. No interstimulus or interstandard
constraints are present since these latter proximity data are not fed into the procedure. The stress
criterion which is to be minimized is computed solely on the basis of the stimufus by standard
prox\imity matrix.

H

¢. Although the Kruskal procedure will comoute increments in the position of the M

" standards on the R axes which are intended to lower stress, these increments will be ignored. This

alteration, so that the program does not adjust the positions of stimuli designated as standards, is
the only change:irequired in the current versions of the Kruskal procedure.

d. The positions of the N stimuli will be incremented along the R axes in such a way as
to lower stress {improve fit) at each step of the iteration. These increments represent useful
adjustments in that, the stimuli are moved closer to their “true’ position in the space relative to
the. standards. P

18
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e. The output configuration will consist of an R-dimensional space wit_h the standards
represented in their original locations and the stimuli located in their “true” position relative to
the standards.?

2 In theory, the location of a given stimulus in the multidimensional space is .10t unique, but

5 rather is defined by an isotonic region (4), where any point within the regior satisfies the ordinal
E constraints imposed by the distance relations between the stimulus and the standards. If the
E: location of stimulus is defined by a closed region (a region bounded on all sides by decision
ki hyperplanes characterizing different proximity orderings), then the solution for the location of a
stimulus within the region will be approximately unique (e.g., the region is small relative to tie
dimensions of the space). On the other hand, if the stimulus lies in an open region, then its
position could be changed considerably without affecting the proximity ordering. If the number
of standards is several times as large as R, and the range of variation in the standards spans the
R-dimensional space, there should be no experimental stimuli located in open isotonic regions,
however, when these conditions are not met some problems may arise.
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