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ABSTRACT

Two contemporary problems related to the application of multidimensional scaling
techniques are discussed and possible solutions presented. The first of these problems concerns
the prohibitive number of judgments required in paired comparison tasks when the number of
stimuli is large. Several procedures are proposed for reducing the necessary number of
comparisons by using standard or reference stimuli. The second problem is that methods are
needed for relating the psychological spaces obtained from scaling analyses to other behavioral
data. One method, which involves embedding novel stimuli in previously defined psychological
spaces, is described. Both problems are considered from a metric as well as nonmetric

* standpoint.
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TWO CONTEMPORARY PROBLEMS IN MULTIDIMENSIONAL SCALING

INTRODUCTION

REDUCING THE NUMBER OF JUDGMENTS REQUIRED IN PAIRED COMPARISON TASKS

A major difficulty associated with the application of multidimensional scaling (MDS)
techniques is that current methods of collecting proximity data severely limit the feasible sample
sizes. The number of comparisons required for judgments on all possible pairs or triplets of
stimuli (or any large fracticn of this number) varies as the square or cube of the sample size. A
sampling constraint of this type is particularly deleterious in the case of MDS since the
interpretability and utility of the scaling solutions depends to a large extent on the
representativeness or exhaustiveness of the stimulus sample. Unlike most other multivariate
models, which assume that the relevant psychophysics is under experimental control, in MDS
analyses the orderings of the sample stimuli along the psychological dimensions are used to
identify the corresponding physical properties. The smaller the sample size the more difficult it is
to obtain an unambiguous interpretation ordering especially when the orientation of the axes can
be arbitrary.

There have been several methods discussed in the literature for circumventing the
restrictions on sample size. The most straightforward of these involves obtaining some fraction of
all possible comparisons, then generating a solution based on the incomp!ctN data matrix. A
second alternative would require that each subject judge all possible p.irs by extending the
experimental period to the necessary number of sessions or; differenc subjects might judge
portions of the total comparison matrix. It would be important to use marker stimuli in the latter
two cases so that estimates of consistency or reliability could be obtained.

None of these alternatives has been systematically evaluated, and it is readily apparent that
there are difficulties with each. In the first approach there is the problem of determining which
pairs to sample. Also, many of the available MDS procedures cannot be applied to an incomplete
comparisons matrix. The question of the number of pairs to be sampled is also important but as
that is a problem common to all selection procedures it will be discussed later. In the repeated
session approach, there are of course no problems with missing data; however, these difficulties
may in many cases be eliminated at the expense of experimental practicality. Also, it may be
unreasonable to expect subjects to be consistent in their use of a numerical scale over several
experimental sessions. Although the use of marker pairs would at least indicate whether or not
there was intergroup or intersession consistency, it is not at all clear what procedure should be
followed when inconsistency is discovered.

One purpose of the present paper is to suggezt a third procedure for effectively enlarging the
sample size in paired comparison tasks, a procedure which does not involve multiple experimental
sessions, and which attempts to circumvent some of the difficulties associated with other partial
sampling approaches.



Briefly, the procedure requires that proximity estimates be obtained between each of N
"experimental stimuli" and each of M "standards," as well as between all possible combinations
of standards. While the M by M standard matrix can be scaled directly, in order to scale the N
experimental stimuli it is necessary either to obtain estimates of the distances or scaler products
for all pairs of the stimuli tsing only the given data. Several analytical procedures which can be
used to generate these estimates are presented later.

ENHANCING THE UTILITY OF MDS ANALYSIS IN APPLIED RESEARCH SETTINGS

A second major purpose of the paper is to discuss procedures for embedding a novel
stimulus in a previously defined multidimensional space. The author feels that the development
of efficient techniques for determining the location of novel stimuli in known spaces is of vital
importance to researchers who are interested in applying scaling techniques to practical problems.
It has been demonstrated time and time again that regardless of the stimulus domaihiV MDS
techniques yield interpretable, predictive psychological spaces. Questions concerning the utility
of these spaces, however, have been virtually ignored with the exception of a few recent articles
(1,2,3,6,9, 11).

One problem ihas concerned the fact that often the psychological dimensions have no clear
cut physical interpretation and many researchers have balked at the suggestion of using
psychopsychics (for example, using psychological variables to predict responses). It is ironic that
the development of a predictive psychophysics should be of major concern in this particular area
since one of the major con ribution3 of the MDS techniques was to free the psychologist from
the need for determining the relevant physics prior to collecting behavioral data. MDS procedures
made it possible for researchers to ask "what dimensions do you normally use in perceiving this
stimulus domain" rather than "how do you order this domain along dimension x." It is time that
the concept of a psychological space be accepted as a useful behavioral construct independent of
whether or not the dimensions have clear cut physical interpretations. In this case, the validity of
the construct should be evaluated on the basis of whether the psychological spaces have
predictive potential in the behavioral rather than physical domain. In line with this reasoning, the
current paper, in proposing methods for embedding stimuli in predetermined psychological
spac;s, is suggesting that the location of a stimulus in such a space can potentially predict some
forms of behavior related to the stimulus.

Several examples should clarify this point. Humans typically are more efficient feature
extractors than machines when complex patterns are involved (8). In order to classify complex
patterns it is therefore advantageous to make use of of "behavioral" feature spaces. Such spaces
are analogous to the psychological spaces derived with MDS techniques. Classes of objects can be
represented as regions in the feature space; hence, a decision as to the classification of a new
stimulus can be based on its proximity to the various class regions. If the new stimulus could
somehow be embedded in the fe.ature space, then e decision concerning its class membership
would be a straightforward statistical problem. This procedure bypasses the question of finding
physical definitions for the relevant features and instead simply requires that subjects use the
features in a ordinary, intuitive manner. For a more detailed explanation of this approach to
pattern classification see Fenker & Evans (5).
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In a more practical setting, there are many cases in which it would be usefal to know where
one type of item would be located in a space defined by another type of items. When the two
sets of items are individuals and stimuli, this. problem is essentially the individual differences
problem discussed by Carroll & Chang (2) and others. In the individual differences case, the
solution space contains not only the stimuli ordered along the underlying psychological
dimensions, but the orientation of subject vectors as well. The subjects' location's in the space not
only reflect their relative weighting of the dimensions, but in some cases the distance between a
subject point and the stimulus items can be used to predict such things as prtference for or
concern about the stimuli.

In a final example, the space might contain relevant political issues. Here the psychological
dimensions would represent dimensions of political concern. Various political or social groups
would also have a location in the space based on their interest and concern for the different
issues. Politicians could similarly be projected into the space. This three-way space would be
useful for predicting which candidate a particular political grou , will suppcvt or what location
(issue profile) a politician should represent in order to influence a particuiar group.

SELECTING A SET OF STANDARDS

It was mentioned above that in order to reduce the number of paired comparisons
judgments required for MDS, a set of "standard" stimuli must be selected. Before outlining the
procedures to be considered, it will be useful to define what we mean by "standards."

The standards represent a collection of M stimuli selected so as to comprehensively exhaust
the dimensionality of the multidimensional psychological space. In other' wordq, if the
underlying psychological space (for the given sample of N stimuli) is R-dimensional, the space
necessary to explain the distance relationships between the standards should also be
R-dimensional. If the M standards can be embedded in an R-1 dimensional hyperplane of the
psychological space, then a poor collection of standards was picked. Although the issue sounds
circular at this point since to know the dimensions on which to select the standards is to have
solved the scaling problem, in practice it should be possible to select "enough" widely varying
types of stimuli from the population to designate as standards in order to sample all relevant
types of variation. The minimum number of standards which can be selected is given by the
number of degrees of freedom in psychological space. Thus, if the underlying space has R
dimensions, then for N stimuli a solution would have N x R degrees of freedom. Hence, the
number of standards M, should be somewhat larger than the expected number of dimensions, R,
so thatNxM> NxR.

A second important issue concerns the determination of the appropriate distance function,
which is assumed to map coordinate differences into interstimulus distances. In the current paper
we will not consider this problem in any depth. When metric scaling solutions are discussed, it
will be assumed that the psychvlogical space is Euclidean. When pon-metric scaling procedures
are being considered, then the distance function is arbitrary to the extent permitted b, the
procedures (this usually is the class of functions known as Minkowski R-metrics).

3



'The remainder of the paper is organized as follows. Section II presents a brief descr;ption of
the data which must be obtained in order to apply' the distance estimation or scaling proccdures.
Sections III and IV describe, respectively, metric and non-metric versions of the procedures. Each
of these sections is subdivided into two parts. Part A considers the case whp-Pe a joint scaling
solution for the M+N stimuli is required. Techniqu,;s developed in Pairt A are inicnded to be
applied wher a well defined standard space is not available a.,d the N experimental stimuli are to
be used in defining the underlying space. Part B describes techniques which are useful when the
underlyin6 psychological space is assumed to be known and adequate!y defined by the standards.
The problem i n this latcer: case consists of embedding tie experimetdl stimuli in a well defined
space, rather than making use of them to determine the space.
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THE EXPERIMENTAL DATA

The basic data required for the present approach are proximity estimates between the
members of a selected sample of stimulus pairs. The specific sampling required is represented
schematically in Figure 1. Out of a set of L = M+N stimuli, M stimuli are designated as standards
while the remaining N stimuli comprise the experimental sample. Since we require that proximity
estimates be obtained for a!l possible pairings of the standards as well as for all combinations of
the standards and the experimental stimuli, the total number of required paired comparisons, T,
will be

(M) (M-l) + M.N.
T = [1]

2

This can be compared to, G, the total number of comparisons required when all possible
pairs are sampled, where

(M + N) (M + N - 1)
G = [2]

2

The differ ;nce, G-T, represents the savings in the number of comparisons required using the
current procedure, where

N(N-1)
G-T = [3]

2

The reader will notice that the savings is equivalent to the number of unordered
comparisons required for a set of N stimuli. Hence, the savings will increase as the square of N. A
useful statistic for estimating the efficiency of this sampling is the ratio of the number of paired
comparisons required using the procedure to the total number of possible comparisons or some
fraction of the total number based on another sampling procedure. This ratio is given by

(M) (M-1) + 2M.N
E = [41

(M+N) (M+N-1) P

where P is the fraction of the total number of possible comparisons actually obtained. Table 1

contains the values of E for the following sampling conditions.

a. M+N = 15,20,25,30,40,50,60,80,100

b. M =6,12

c. P = 1, .8, .6, .4, .2

Table 1 permits a comparison of the savings using the current sampling procedure with the savings
obtained by random or stratified sampling of the M+N by M+N proximity matrix. The values of
E may be interpreted as the precentage of judgments required using the current procedure
relative to other sampling procedure is more efficient.
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In the next section it will be assumed that the proximity judgments either correspond

directly to distances defined on an interval scale or can be trans.ormed into distances. In Section

IV this restriction will be relaxed and we will assume only that the proximity measures are

monotonically related to the interstimulus distances.

STANDARDS

2

Standards

17

1 2 ...........

1

2

Sample
Stimuli

Fig. 1. SCHEMATIC REPRESENTATION OF THE BAS'C DATA MATRICES
REQUIRED USING THE SAMPLING PROCEDURE
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Fig. 2. DISTANCE RELATIONSHIPS BETWEEN STIMULUS Y1 AND THE TWO
STANDARD AXES DEFINED BY S1, S2 AND THE ARBITRARY ORIGIN So
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THE METRIC CASE

The experimental data for the metric case are estimates of the absdlute distances (or
proximity data which can be transformed 'into distances with the appropriate scaling model) in
psychjological space between all possible pairs of standards or experimental stimuli and standerds.
It is assumed that both the M standards and N stimuli can be represented as points in a
K-dimensional psychological space such that Euclidean distances between points in the space
correspond to the perceived distances between stimuli. Since each experimental stimulus is paired
only with the standards, no interpoint distance estimates are available' for pairs of experimental
stimuli. Our problem is to take the information which' relates these stimuli to the standards and
use it either to help define the underlying space containing the stan'dards or to locate the.stimuli
in the space already well defined by the standards.

JOINT SOLUTION FOR M STANDARDS AND N STIMULI

In this case it is assumed that the number'of standards is insufficient to permit an
experin.,ental determination of the u-iderlying psychological space. This is not an unusual
situation, for the robustness of solutions generated by current MDS scaling procedures depends
largely on the estimation of the correct dimer.oionality and the number of stimuli in the sample.
Also, with a small standard sample it may be difficult to identify the dimensions' of. a MDS
solution. This issue becomes especially important when the Euclidean metric is used since theaxis orientation is somewhat arbitrarY/.

For the first case we are interested in only.the relative location of the stimuli and standards,
and while both are assumed to be embedded in the Underlying K-dimerinional space, the space has
not been determined at this point. Each stimulus has 1rojections on the axes connecting an
arbitrary origin with the standards. In the technique to be described, estimates of interstinlulus
distances can be obtained from these projections. When the projections are considered in
conjunction with interstandard distances and standard-stimulus distances, one obtains an M+N by
M+N distance matrix which can be scaled using current MDS techhiques. The joint
stimulus-standard space can then be used to define the underlying psychological dimensions.

Since all the techniques to be presented haVe several aspects in .ormmon, the notation
conventions we adopt in this section will be used thkoughout the paper.

The M standards and N stimuli can be represented as points in the K-dimensional
psychological space. The arbitrary origin of the space iN represented either by the centroid of the
M standards or a desigriated standard. Although it is perhaps better to use the centroid as the
origin since it avoids any bias associated with a particular standard, it will simplify the discussion
below if we assume that one of the M ,jdQdards is selected as the origin. The vectors connecting
each of thL M-1 standards With the Mth standard (which corresponds to an arbitrary origin in the
space) define an oblique set of reference axes which span the space. In order to make use of these
reference axes, it is necessary to tran-form the distance judgments between the standards and
stimuli into projections on the axes taefined by the standards. Figure 2 illustrates the problem
geometrically.

9



Figure 2 presents the distance relationships for one experimental stimulus and two arbitrary
reference axes. Notethat estimates of the distances oUtlined by the thir" lines will be availablefor each stimulus for each pair of reference axes. Also, notice that wh;l he standards S1 'and S2uniquely define the reference vectors I and I, respectively, an i hdefiniwt number of other pairs of
standards could also define the same reference vectors.

., .The terms in Figure 2 can be defined as follows:

So : standard. stimulus arbitrr. 'ly assumed to represent the origin of the space.

S1j, S2: ftandards'whicl ,nen taken in conjunction with So define referenceaxes I and I1.J 4

YI: experimental stimulus 1.

Z distance estimates between standards.
SZ0~~1, 202, Z12: ditneesiae

X117,:X0 1, X2 1
1: distance estimates between S6, SI, S2 and Y1, respectively.

Y1 1, Y2 1 : projections of Y1 on the oblique reference axes.

YW1 1, W2 1 : coordinates of Y1 on the oblique axes.

The projections of Y1 on axes 1 and 2 are given by,

Wll = ,X01 'Cos 411

W21 = X0 1 cos '21 [5]

The values for cos 411 and cos '21 can be found using the cosine law for

:2 + X21  2
Cos 01 01

'2Z 0 1  X01 , (61

and
Z22  + X2- X21

cos 0 -0 (7]2Z 02  X01

Thus,

10



2Z0 1

and 72 +

Wll 02 01 21, [91
2; 2Z0 2

or, in general, the projection of stimulus k on reference axis i is given by

i+ Ok - X
Wik = [10]

2Zoi

The matrix containing the projections of the N stimuli on the M-1 reference axes can be
deterr,ined using Equation 10.

Once the projections of the N experimental stimuli on the M-1 standard axes have been
obtained, the next problem is to somehow use this information in order to obtain the distances
or scalar products for pairs of experimental stimuli. There are several possibla approaches to this
problem, but for the sake of brevity I will consider only the two which appear most promising.

a. In this approach we assume that it is possible to convert stimulus projections on the
reference axes into coordinates. In order to do this, it is necessary to find the transformation
matrix V which contains the cosines of the angles between the reference axes. Once V is
determined, the coordinate matrix Y can be computed for Y = WV"1.

Estimates of V can be obtained directly from the interpoint distances between staidardsS~since sinc Z2i + X2 - Z?

cos iij = + [11]

2Zoi Z0 j

and Zoi, Zoi, ZJi are available for any pair of reference Fxes. Unfortunately, unless this matrix is
of rank M-1, it will be singular and hence, V- 1 is undefined. Thus this approach would be useful
only when the number of standards is less than or equal to the number of dimensions in the
underlying psychological space. It would be possible to circumvent this problem by choosing a
sufficiently small number of standards, however, with so few standards defining the underlying
space the positions of the new stimuli would be very sensitive to judgment errors or errors due to
the selection of a nonrepresentative set of standards.

"In the ca.'F where the rank of V is R and R < M-1, then a solution based on a principle
components analysis of V is possible. This procedure could be used to define an R-dimensional
orthogonal basis of V since a factor analysis of V would give us X where

V . X.

"M-lM-1 M-1,R R,M-1

S~11



and the elements of X represent cosines of the angles between the M standard and R orthogonal
axes. Projections of an experimental stimulus on the M standard axes would in a sense (see
below) define the location of the stimulus on the R orthogonal axes.

We see that the problem at this point has been reduced to one of embedding the stimuli in
the R dimensional space defined by the standards. The analytical solution to this problem is
presented in part B; however, adopting this approach eliminates the need for computing
interpoint distances between experimental stimuli, since their location on the underlying axes
completely determines their location in the R-dimensional space. In fact, the underlying space is
at worst defined by a rigid rotation of the R axes to orientations which are more interpretable.
Any redundancy in the estimates of distances between the standards and the experimental stimuli
will be "eliminated" (for example, because the standard space is already defined, the positions of
the standards in this space are in no way influenced by the experimental stimuli which are
projected into the space on the basis of a least squares criterion) in the process of projecting the
experimental stimuli on the orthogonal axes. While this redundancy may be of use in determining
the "true" location of the stimuli on the underlying reference axes, it cannot help determine
what these reference axes will be since they are already completely determined by the principle
components analysis of V.

Since we would expect that, in general, R < M-1, this first approach does not seem
particularly useful or practical except as a method foi deriving a standard space into which novel
stimuli can be projected.

b. The second approach to scaling the experimental st;muli should be familiar to factor
analyst. If we assume that the M axes connecting the standards M.it 1, -'- arbitrary origin represent
orthogonal reference axes (just as each stimulus can be assumed to dt 'ne a reference axis in N
space for factor analysis), then the correlation between two stimuli computed across the loadings
on the M reference axes is equivalent to the cosine of the angle between the stimuli in the
underlying R-space. (I an assuming that all stimuli are completely defined, except for error, by
the common factor space. No consideration of unique stimulus variance is given.)

Now, the 'calar product of stimulus vector i and stimulus vector j is given by

bij = XOi - XOj c, ii [131

where X~i and XOj represent the lengths of the vectors connecting th,; origin i and j, respectively,
and ci ij represents the angle between the vectcs. Since X0 i and X~j are assumed known, and cos
Sii can be computed as the correlation discussed above, estimates of the scalar products between
the vectors representing experimental stimuli can be obtained. Thus the N x N matrix of scalar
products between stimuli can be estimated from the data. The M x M matrix of scalar products
between standards, and the N x M matrix of scalar products between standards and experimental
stimuli can both be computed applying the law of cosines to the distance estimates given by
subjects. The scalar product between standard, and j is given by

bij = ZOiZOjcos ýOij ; [14]

and the scalar product between standard i and stimulus j is given by

bij = ZOiXOjcos *ij [15]

12



where the terms are defined as in Figure 2. Once the (N + M) x (N + M) matrix of scalar products
has been obtained, standard factor analytic procedures can be used to find the underlying
R-dimensional psychological space. This approach assumes that an absolute scale of distance can
be estimated from the data. Also, as mentioned above, it would be convenient to select the
origin as the centroid of the standards rather than a particular standard. Both of these latter
points are discussed in detai by Torgerson (12).

SOLUTION FOR EMBEDDING THE EXPERIMENTAL STIMULI IN THE STANDARD SPACE (2)

In this case we assume that the M-1 x M-1 matrix of distances between standards has been
reduced to an M-1 x R matrix, T, containing coordinates of the M-1 standards on the
R-psychological dimensions. The coordinates of the jth standard are defined by tj = I till
tj2"...tjR I . We are also given estimates of the distances between N experimental stimuli and the
M standards. For stimulus i, these distances are given as (Xil, Xi2 . . . XiM). The unknown
coordinates of i on the psychological axes are given by Yi = I ';: 1, Yi2, ... .YiRI where R _<
M-1. The Euclidean distances between stimulus i and the ith standartu can be written as

R
X? = I; (tik - Yik) 2  [16]K=1

If we introduce a vector of constants, W, which weight the R axes according to their
psychological utilitya and rewrite Equation 16 in matrix notation, we have

X? TjW Ti - 2YiW Ti + YiW -Y [17]

where W is a diagonal matrix containing the weights in W.

Since for a given standard the term YiW Yi is constant, as is Yiw, we can write

x? = T.W Tj - 2BiTj + Gi [18]

Equation 18 is a quadratic function of T which can be solved for estimates of W and Bi using
multiple regression analysis. To illustrate this, consider the case where R = 2. Expanding
"Equation 18 for each of the M standards gives the following linear system.

a This permits us to deal with psychological spaces in which the dimentions have been scaled in

an arbitrary manner. A still more general procedure which utilizes a different set of weights and a
specific orthogonal transformation of the R axes for each Xi was developed by Carroll and Chang
(2).

13



= t21W11 + t12W22 + bilt11 + b

t2 1W + t22W2 2 + bilt 2 1 + bi2t22

[191

2I = + t + +it~ bt
X tM = tM1W11 M2W2 2 +biltM 1i2tM2

As Carroll (2) mentions, the t? represent "dummy" independent variables because of their
obvious relation to the tij. Estimates of W and Bi can be obtained from the beta coefficients of
the multiple regression analysis. Having estimates W and Bi, we can solve for the coordinates of
Yi using the equation

Yi --- BiW-1 [201S~2

The problem of embedding the N stimuli in the metric space defined by the standards can be
solved by using this procedure. The coordinates of each stimulus can be defined by solving the
system of equations given above with the aippropriate value of i.

"Although both of the above approaches utilize the same data and hence the same potential
information, the former approach avoids a pitfall which is present in the latter but may be
ignored either out of expediency or because of supporting research. The likelihood of obtaining a
degenerate MDS solution in the latter case is high relative to the former approach because the
sample being scaled is comparatively small. When only the standards are scaled it is possible that
the "correct" two-dimensional space could become unidimensional in the scaling output (or in
general that the solution might represent a hyperplane of the true space). This could occur if the
stimuli were arranged in non-random manner 'for example, if the standards fell approximately on
a line or a semicircle in the space). Hopefully this type of problem would be overcome by carefu;
sampling of standards, but often it is unreasonable to expect a priori knowledge of the location
of the standards in the psychological space.

By placing additional stimuli into the space before scaling, bias is reduced since if there are
M standards a new stimulus imposes M - 1 additional constraints on the location of the
standards.
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THE NONMETRIC CASE

The term nonmetric as used in this section refers to the properties assumed to hold for the
experimental data, not the scaling technique employed in generating the final configuration.
Thus, we do not include the case where distances, generated on the basis of the metric
assumptions in the previous section, are analyzed with a nonmetric scaling procedure. This would
represent a trivial extension of the metric case discussed above.

The data for this section are assumed to be the rank order of the distances between an
experimental stimulus and each of the standards. Such data might be obtained by having subjects
select the standard most similar to the stimulus, then the next most similar standard and so forth.

Wtihout the metric distance infromation available in the previous section, it is not possible
to obtain estimates of the distanas between experimental stimuli without first embedding these
stimuli in a metric space defined by the standards and then using the axes of the standard space
as reference axes.

It is, however, possible to use current nonmetric MDS procedures to jointly scale both
stimuli and -tandards.

JOINT SOLUTION FOR M STANDARDS AND N STIMULI

The data required for this section are the rank order of the N x M psychological distances
(usually obtained as similarity or dissimilarity judgments) between experimental stimuli and
standards as well as the M x M (M- 1)/2 distances between standards. All rankings must be on the
same ordinal scale. This implies that the distance between a stimulus and a standard is not only
compared to the distances between that stimulus and other standards, but also to all other
distances between stimuli and standards-or standards and standards as in typical MDS tasks. The
ordinal scale of distances described above represents one possible sample of proximities which
could be obtained from the (M + N) x (M + N) proximity matrix. This incomplete set of
proximities can be analyzed with most of the available nonmetric MDS procedures, thus giving a
joint solution for the M + N points.a

Although we wou!Y not expect these programs to have difficulty in scaling this incomplete
set of distances, solutions may be unsatisfactory in certain important respects.

a It is interesting to note that the even more restrictive case (which is likely to occur in practice)
where only the stimulus by standard proximity data is availab,e can still be analyzed with a
recent version of the Ki-uskal program (10). The analysis in this instance essentially represents a
multidimensional unfolding analysis as described by Coornbs (4).
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Since there are not data directly relating pairs of experimental stimuli, the relationship
between two experimental stimuli (which is unknown) can obviously have no influence on the
final solution. Thus points will be "moved" in the space solely on the basis of constraints existing
between two standards or a stimulus and a standard. In a sense then, we are embedding one
stimulus at a time since the location of a second stimulus is largely independent of the location of
the first. If this were literally the case there would be little reason not to compare each stimulus
to the standards ;ndividually since the judgments required of subjects would be much less
demanding.

There is, however, one potentially useful characteristic of joint solutions in which all
experimental stimuli are considered simultareously. If the sample of standards is small or the
rank estimates likely to be in error, the distances between experimental stimuli and standards can
be used to refine the relative positions of the standards. This is possible because these latter
distance est;mates represent redundant but useful constraints on the locations of the standards.
For example, if i and j represent standards, and k is an experimental stimulus then according to
the triangle inequality

dij< dik + dkj

By similar logic we can establish a lower bound for dij since

dkj -< dij + dik

and,

dij > dkj - dik

Hence, if our solution is based on a metric distance function we have dij bounded by the
distances between stimulus k and standards i and j for

dkj - dik < dii < dik + dkj [21]

Similar constraints are imposed on every pair of standards by each experimental stimulus.

Since the nonmetric scaling algorithms "force" the stimuli and standards into the same
metric space, minimizing the deviations between the distances computed from the space and the
ranking of the distance estimates, the contraints on dN1 implied by Equation 21, will have
considerable influence on the final solution.

Because this first nonmetric approach utilizes current MDS programs in a straightforward
manner, we will not discuss it further. Questions concerning the efficiency and effectiveness of
this, approach will be discussed in a companion paper which deals in some detail with the
computational aspects of the scaling procedures presented in the current work.
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SOLUTION FOR EMBEDDING THE EXPERIMENTAL STIMULI IN THE STANDARD SPACE

In the former procedure, the distances between the experimental stimuli and the standards
were used to help define the locations of the standards. In the current procedure it is assumed
that the nature of the standard space is known and fixed and the problem is one of locating the
experimental stimuli in this predetermined space. ThW means that in determining the location of
a stimulus in the standard space, adjustments will be made only in the location of the stimulus:
the relative positions of the standards will remain fixed. No' constraints based on •the,
inter-relationships between standards will be used. The criterion to be maximized will be the
monotonicity between the estimated and computed (in the standard space) distance between the
stimulus and standards.

The following experimental data is assumed to be available,

a. The M x R matrix containing coordinates of the M stimuli og the R psychological
dimensions. This can be used to compute the distances between all possible pairs of standard
stimuli. The dist-•nce between standards i and j in this space is denoted by Zii. Since the Zii are
computed on (he basis of the projections of the standards on the axes of the psychological space,
they in essence define the psychological space. It does not matter what type of procedure (metric
or nonmetric) or data were used to generate the psychological space since all current procedures
produce metric representations which are based on a particular distance function.

b. The rank order of the distances between each of the experimental stirr.uli and the M
standards. Since it is assumed that the rank order relationships would be reflectec in any typa of
proximity judgments, the actual form of the data is not too important.

One solution to the problem of embedding an unknown stimulus i intd the R-dimensional
standard space would be to apply the nonmetric version of the regression procedure discussed for
the metric case. Instead of the distances between stimulus i and the M staridards, we are given'the
rank order of the distances. Let H represent the monotonic function relAtingthe ordinal
proximity data to distances in the underlying metric space; then, Equation 16 can be rewritten as'

R
S'ii = H(xi) = N (tk - Yik) 2  [22]

K=1

where 1 ij represents the proximity between stimulus i and standard j.

Carroll's (2) approach to this problem is based on Kruskal's (7) nonmetric scaling algorithm
and involves the following steps.

S (1)
a. The metric regression approach described above is used to obtain estimates of xij

bxl). Kruskal's algorithm is used to estimate the monoton.ic function H(1 ) relating the•'7t0 the,

c. New estimates of•xii are computed according to the formula

. H(1  (x!l))
'I I1
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d. The'regressioi procedure is applied to the-.l1 to obtain estimates of and these
in turn :ree used to estimate HM. Ii

e. The iterative process is continued until no change occurs in the parameters of the
regression equation.

"The goal of this process is to obtain estimates of yi, the coordinates of stimulus i on the
psychological axes. For more detail on. the iteration procedure the reader is referred to the article
bý Carroll and Chang (2).

While in •theory the above procedure may represent the optimal approach to the problem of
nonmetric embedding, in practice it is possible to accomplish this goal using a modified version of
Kruskal's (7) popular MDS. program. The Kruskal program constructs an arbitrary metric
representation of a given set of data points in R-dimensional space (where R is specified by the
user) and' then uses a nonmetric scaling aigorithm to mnove these points in the space in such a
manner as to maximige the monotonic correspor'dence between the interpoint distances and the
ordinal proximity data. For the current problem, we have assumed that the locations of the
standards in th'e space are fixed; hence, we would like to adjust the positions of the experimental
stimoli (without affecting the positions of the standards) in such a way as to maximize the
monotonic relationship between the given proximity data and the estimated distances. To
accomplish this §6 al one would use the Kruskal procedure in the following manner.

It a; The "configuration" start option would be utilized. The input configuration would
contain coordinates of the M standards on the R psychological axes as well as estimates of the

location of the N stimuli on these axes. The latter estimates might be obtained either by applying
another scaling analysis or by' simply using the coordinates of the standard to which each
stimulus is closest. Additional input, data would, of course, include the rank order of the
proximities between each of ýhe experimental stimuli and the M standards.

b. The monotonicity requirements in this case depend only on the proximity
relationships between the N stimuli and the M standards. No interstimulus or interstandard
constraints are present since these latter proximity data are not fed into the procedure. The stress
criterion which is to be minimized is computed solely on the basis of the stim:•.aus by standard
proximity matrix.

c. Although the Kruskal procedure will compute increments in the position of the M
standards on the R axes which are intended to lower stress, these increments will be ignored. This
alteration, so that the program does not adjust the positions of stimuli designated as standards, is
the only changeý requ ied in the current versions of the Kruskal procedure.

tled. The positions of the N stimuli will be incremented along the R axes in such a way as
to lower 'stress (improve fit) at each step of the iteration. These increments represent useful
adjustments in that the stimuli are moved closer to their "true" position in the space relative to
the. standards.
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e. The output configuration will consist of an R.dimensional space with the standards
represented in their original locations and the stimuli located in their "true" position relative to
the standards.a

a In theory, the location of a given stimulus in the multidimensional space is .-ot unique, but
rather is defined by an isotonic region (4), where any point within the regior satisfies the ordinal
constraints imposed by the distance relations betwaen the stimulus and the standards. If the
location of stimulus is defined by a closed region (a region bounded on all sides by decision
hyperplanes characterizing different proximity orderings), then the solution for the location of a
stimulus within the region will be approximately unique (e.g., the region is small relative to the
dimensions of the space). On the other hand, if the stimulus lies in an open region, then its
position could be changed considerably without affecting the proximity ordering. If the number
of standards is several times as large as R, and the range of variation in the standards spans the
R-dimensional space, there should be no experimentat stimuli located in open isotonic regions,
however, when these conditions are not met some problems may arise.
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