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ABSTRACT

Radar backscatter from a chaff cloud is examined for the case in
which the radar approaches the cloud from above and moves into and
through the cloud. The chaff cloud is modelled as a collection of randomly
distrilbted and randomly oriented dipoles having a mean voluma density
that is a function of altitude bit Invariant in a horizontal pVane. The
statistics of the chaff echo power when the number of dipoles in the
resolution volume is Large are reviewed. The impulse response, which
approximates the short--pulse radar response, and the radar return signal
for a specific range resolution cell as a function of the position of the radar
relative to the cloud ar,' derived for several chaff cloud configurations and
antenna patterns. Pover spectral density functions for range-gated chaff- ...

return signals and correlation functions for the signals following square- a
law detection are also derived.
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1. INTRODUCTION

Padar systems are frequently required to operate in the presence of echoes from chaff,

ground and sea surfaces, clouds, and the various forms of precipitation. To operate effec-
tively in such environments, the radar must be designed to minimize the effects of these
clutter signals which may lead to spurious detections, that is, false alarms, or to desensitiza-

tion of the radar so that the actual target is shielded. A prerequisite for radar design otimi-
zation is a model for the clutter environment that is sufficiently general to cover the range of
conditions likely to be en'ountered while retaining the simplicity esscntial to its utility as aI •design instrument.

This report examines a model for a chaff cloud consisting of a collectlon of randomly
oriemted and randomly distributed dipoles. Specifically considered is the response of an air-
borne radar transmitting a short pulse and moving rapidly relative to the chaff cloud. The
impulse response function for chaff backscatter is derived, and the return from a fixed range
is examined for a radar moving thrcngh the chaff. The results obtained are valid for narrow
transmitted pulse widths and may be extended to cases involving wide pulses by convolving
the transmitted pulse envelope with the impulse response function.

The first- and second-order probability density functions for chaff echo powers are re-
viewed, and the correlation and spectral density functions associated with thib chaff model are

derived. M

2. ENCOUNTER REFERENCE FRAME

For the following discussion, it is assumed that the chaff cloud is confined to a spec4fled
region of space. In all cases the chaff cloud will be assumed bounded above by a plane surface
parallel to the tangent plane to the mean surface of the earth. A Cartesian reference frame is
constructed with the radar at the origin as shown in figure 1.

It is further assumed that tVe radar velocity is constant throughout the encounter which
implies that the flight angle y between the z-axis and the radar velocity vector is also constant.

The radar receives returns from chaff elements located in that portion of the spherical
shell lying within the cloud and with boundaries at radial distances d and d + Ad from the ra-
dar. Te distance, h, from the radar to the upper edge of the cloud is po itive when the radar
is above the 21oud top and negative when below. For a radar speed ', this diatance varies
during the encounter as

h d - Vt cos •. (1)

with the time origin taken as the time when the radar range gate first penetrates the cloud to
a depth equal to the range gate width, Ad.

3. CHAFF CLOUD MOK)DEL

The chaff cloud is assumed to consist of a collecticn of resonant dipoles, randomly orien-
ted and randomly distributed within a volume, large relative to the radar resolution cell. It
is further assumed that the dipole lo4=tions are statistically independent, so that the number

9
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Figure 1. Encounter reference frame. (The distance h from the radar to the
top of the chaff cloud is taken as positive when the radar is obove the cloud
top and negative when below).

of dipoles found in any subvolume is a Poisson distrUibtd random vtiable. It should be noted
that such a distrihuton does not account for the effect of chaff cbunn ing, or t'hrdesting.t"

Since we assume that the basic scatterer of the chaff cloud is a dipole, it is appropriate
to look first at the scattering behavio-v of a single dipole. The radar backscatter from a di-
pole is usually maximum when the dipoit is viewed at broadside with the electric vector of the
incident wave parallel to the axis of the dipole. The magnitude of this return as a function of
the length t of the dipole is -hown in figure 2. At t/A - 0.45, the curve shows a definite peak;
Becusqe of this resonant cross section enhancement, half-wave dipoles give the maýmum re-
turn per unit length of the wire. Dipole thickness has a relatively small effect on the return;
the general tendency being that the amount of resonant peaking is diminished foe thicker dipoles.

As a dipole is rotated in the plane formed by the direction of incidence and the electric
vector of the incident wave, the amplitude of the backscattered field chawnes. In figures 3
and 4, the radar cross sections are shown as functions of rotation for a half-wave resonant
dipole (,/•-: 0.452) and for a dipole whose length is 2.46k, respectively. Itmaybeob-
served that in the first case the cros section exhibits a single lobe; but for the loger dipole,

1Chung, S. and Liepo, V., 'Measured Back Scattering Cross Section of Thin Wires," The Uni-:rsity of Mithigan

Radiation Laboratory, Report No. 8077-4-T, 1967.
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Figure 2. Backscattering cross section of a wire parallel to electric vector; a/,\= 6.27 x 10-3. (a radius

o$ wire, t = length of wire, .k =wavelength.)

multiple lobes appear. For certain lengths, the amplitude of the sidelobes may be greater
than that of ft brordside lobe. It may also be noted that in the case of the half-wa;e dipole
the Isins O'l curve provides a close empirical approximation to the experimental curve
(fig. 3).

If the dipole is rotated in a plane perpendicular to the direction of incidence, a similar
variation in radar cross sec.ion occurs. In this case the cross section has been found to vary
as sin4 6', where the angle 9' is defined in figure 5. Hence, we have the half-wave dipole
radar cross section as a function of the polarization ol the incident field (horizontal as
depicted in picture fig. 5) aria the dipole orientation slong the two principal planeiý of
rotation.

Accordingly, we can write

X (o' ,' 0.89 Isins 0'!. (2)

(__, •') ! 0.89 sin4 (3)
X2 

L•(3)

2 deBettancourt, J. T., "Bisuteic Cross Sections of Cylindrical Wires,* PkArd & Bums, Inc., Scientific Report No. 1.

P&B Pub. No. 735A, Waltham, Mass., 1961.
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Figure 3. Measured backcscattering cross sect;on of a wire as a function of azimuth, 4,
Vk =0 452, a/\= 6.27 x 10-2 (Chang and Liepo, 1967). The doted curve shows how

well 'sin5 -A curve fits the measured data. i !=90* o. (o = radius of wire, '= !ength of
wire, X = wavelenqth.)
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12 = len.th of wire, X= wavelength).
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Figure 5. Geometry for computotion of the cross section
of a dipole.

Assuming thata(6',0') = 0.89X2 a, (o') a (4') where a 1 (9")= sin4 e' and a2 (0)
I sins 0' I which seems to be a valid approximation in the case of the hall-wave dipole,
we may combino equations (2) and (3) to obtain an empirical angular expression for a
half-waire resonant dipole as

( ) 0.89 sin 4 4 sinS,'- (4)
X2

Since half-wave dipoles are most efficient in that they provide the maximum return per
unit weight, we shall be concerned hereafter with such dipole lengths only.

In P. chbff cloud cnsisting of a large nuwLbe_ of dipoles, it is imixesible to specify the
orientation Gf •-•-h of the individual dipoles. We are therefore confronted with the problem of
determining an average dipole cross section based on the prcbability density of dipole orien-
tations. We consider two possible distributions: (a) uniformly distributed over 47 steradians,
and (b) comflned to a horizontal plane but tiaformly distributed over 27T radians.

In case (a), the probability density ol dipole orientations becomes

0 •' < 2

- s in 8'

I he mean cross section per dipole Is independent of incident poolarization and direction of in-
cidence and is obtained simply

13



S0.89 J ->'I s - sin&' d4' d09'X 2 4 77 f f is in s • i4 + i ' • •

(6)

0.162.

In case (b), the probability density of dipole orientation becomes

P((T) -T;- 0:5T< 2. (7)

where T =Y (T', P",9,P) is a random functlon of the direction of incidence (6, 0) nd the
dipolq orientation angles (0', 0') with respect to a spherical reference f.-ame centered on the
dipole (figs. 6 and 7). The rotation angle %P is measured in a horizontal plane.

Considering first a horizontally polarized incident field, we obtain from figure 6 the

following relations

zliZ

x

pig 54

144

Z x' E-H

RADAR Y

Figure 6. Geometry for horizontal polarization calculations.
14



It
y IIEV

-: IID O

RADAR

Figure 7. Geometry for vertical polarization colculations.

:sin
4 0' (1 (-cosy cos2 0)2. (8)

I , = . _-/ (9)
Isin2 0+ tarn2 Y

Hence, we 
Lave

(0)2 0. 9 ( 1 - cos 2 •F cos
2  0-? .. . . 5/2(I0

217 Isin2 G + tan2  j Y (0

Swhich can be evaluated niuneFically (seet f for plot) or by direct intgraon at = 0, ir]2

s a' (I0-) = 0.302 C2 (12.) j
Is. n +2#

2 12 "1

___~ ~~~ ___ + t -n -w, (10)Z-~----- --
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Figure 8. Mean bockscotter cross section as a function of elevation (- of
incident wave-horizontal polarization.

When the incident field is vertically polarized, the random variable T may be seen to co-
ineide with the dipole elevation angle e'. Thus, we obtain

IV 0.89 ICOS i
-J sin4 I dTX 2 2 7 - J o

(13)

= 0.334 coss eM

As to the actual distribution of dipole orientations, the available evidence appears to sup-
port the horizontal distribution at least for X-band dipolesO However, e.toatmospheric dis-
persal, the selective weighting of dipoles to assume other attitudes, the recent seeding of
dipoles, and the buffeting effect of turbulent air currents may give rise to chaff clouds better

3 palermo, C. J. and Bauer, L. H., 'Bistatic Sctmering (Toss Sectinm of Chaff Dipoles with Application to Com-
munications.' Proceedings IEEE, Aug. 1965.
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described by the uniform distribution of dipole orientations. In any event the mean radar
cross sections per dipole for both the horizontal and uniform orientations are employed In
subsequent calculations involving impuise and range-gated radar responses to various chaff
clouds.

To consider the radar return from each of the dipoles contained within an arbitrary
volume, we must first define a chaff dipole volume density. As noted previously we
assume that the number of dipoles falling within any given region v is a Poisson dis-

tributed random variable, Nv. We shall parameterize NK with respect to space coor-
dinates - that is, define a random process in space by identifying Nv with each point
P(xo, y., z0 ) as follows. Let vp be the region defined with r-spect to a Carbtsianframe

v = (x, y, Z): x0---- .x 0 ÷ " Y0 SY ZY0 2C 0 -- z z,3 +M

and the volume encompassed by this region is

Av =xZAyA16z

Now, let N(vp) be the number of dipo--s contained within v. We assume that the mean value
of N(v ), E [N(v )), and the limit r! the ratio of the mean value of N(v ) to the volume Av as
the volume shrinks to the point P exist and are continuous functons of the space coordinates.

We define

m (v•) E (N (v)}, (14)

and

Av
5 (P)~ I i

A-O0Az -0

where S (P) is the desired chaff dipole ý*,&hune density. It should be noted that our defli-tion of
chaff volume aensity avoids the usal difficulties of attempting to take tue limit of a dls.rete
process (see, for example, Noore4 ). Altough N(V ) is discrete so that Urn N(v )/Av cannot
exist, this is not the case for Ulr E{N(v,)}/Av).

AV-0

The choice for the chaff dipole density function presents a problem. A realistic model
for this function is not available; it depends on such parameters as the type of chaff used,
method of dispersing, and prevailing winds. Our analysis is confined to two basic models: an
exponewtially increasing, semi-infinite distrihbtion; and a unimodal distribuition which initially
increases to a maximum value and then gradually decreases. Constant-density surfaces in
both cases are horizontal pla-.s with the zero density plane at a distance h from the
radar.

4Moore, R. K. and Williams, C. S., 'Radar Return at Near-Vertical Incidence.' Proceedings IRE, Vol. 45,

1957.
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The first model, hereafter referred to as the exponential model, is defined by

I •~~~~ (Ii') E-S. t1 - e-•'-h) h • hi'-- °--

=0 h>h'

where

h = distance from the radar to the chaff cloud top,

8 (h) = the chaff dipole volume density at the distance ht from the radar,

= maximum volume density,

a = a parameter related to the magnitude of the density gradient, that is

It should be observed that in the limit as a-, the normalized exponential density function,
S(h ')/S,, becomes the Heaviside unit step function. Henc, this model also serves to describe

the uniform-density chaff cloud with an infinite density gradient at h' = h.

The other model, hereafter referred to as the Rayleigh model because of its similarity to
the Rayleigh probability density function, is defined as follows:

o(h')=na(h'-h)exp [-2(h'-h)2] hhl (17)

=0 h>h°
where

n is the total number of chaff dipoles coutained in the vertical column with a unit
-zc~- ;?C2Oh1 area.

ais a parameter related to the density gradient and maximum volume density S* by
the relationships

IV 5 (h*)h,.hI = n a (18)

S (n) '-h.z/,/ . (19)

An important limiting case for this model is obtained again by allowing a--. The result
in this case is the Dirac delta function with intensity n. Hence, this model in the limit do-
scribes a surface layer of dipoles.

18



Although both models as detailed above are assumed to have infinite extent along the
horizontal, such an assumption is not critical to the analysis to follow. In reality, no chaff
cloud possesses either the uniformity or the infinite extent of the models postulated. It is a

Ysimple matter ,- elimina the infinite extent criterion by merely ng-offLhec]sld-a some

distance from the radar greater than the maximum range cell incorporated in the radar under
consideration. Whenever the chaff cloud has dimensions that are large relative to that range,

S~the cloud's effect on the radar will be essentially as modelled. Regarding the criterion of

horizontal uniformity, bore again we are concerned from a practical standpoint with unifozmity
over that region seen by the radar. If the extent of the cloud is large relative to the observed
region, then the nonuniformity due to tailing off along the periphery can be discounted.

From a computational stanapoint, the use of the Rayleigh model is particdlarly convenient.
The parame: 3r n alone determines the number of dipoles contained in the chaff cloud. Thus, a
could be allov'ed to change as the cloud evolves, but so long as n is constant the total number
of dipoles remains constant. No such conservation rule is applicable to the exponential model
with the possible exc'otion of the infinite depth cloud, in which case an unlimited number of
dipoles is involved.

As noted, a relates to the density gradient and the dispersion of the chaff cloud. It there- A

fore constitutes an inverse age description for the cloud. Thus, a will be large immediately
after dispersal (high maximum density gradient) and will decrease as the cloud settles (lower

maximam density gradient). Since a is also related to the location of peak density in the Ray-
leigh model, the value at any given time T after dispersal may be uetermined from the approxi-
mation

a (VCH T)-2 (20)

where vcH is the mean fall rate for the chaff dipoles.

The fact that a may be a function of time introduces nonstationarity 2nd consequently non-
ergodicity. We shall, however, be concerned with the properties of the chaff cloud during
measurement intervals that are very short wben compared with the reciprocal of the time
derivative oftn a. On this basis, we shall assume that the process is quasi-stationary in the
sense that its statistical properties are essentially invariant during the measurement intervals.

This paper disregards two effects common to volume-distributed scatterers: multiple
scattering and shadowing. Since both effects become important in dense distributions, we shall

establish a simple criterion for the degree of rarity of scatterers such that both effects are
negligible. Multiple scattering arises az a consequence of the fact that the reradlated field
from each dipole is a linear superposition of reradiation of the primary incident field as well
as reradiation of the fields scattered by surrounding dipoles. Shadowing occurs when the pri-
mary field is attenuated in passing through intervening layers of scatterers before Illuminat-
ing the deeper layers of dipoles. Both of these effects become prominent if the totality of the
scattered fields is of the same order of magnitude as the primary field. If such is not the Q
case that is, if the primary field predominates throughout the scattering region then quite ob- 4

viously multiple scattering can be disregarded. Further, Uf little energy is removed from the
primary field and reradiated as a scattered field (and little energy is dissipated thermally
within the scatterers), then the attenuation due to the presence of the scatterers of the primary I
field as it traverses the scattering region may be neglected.

ISince the fraction of the energy removed from the primary field and bacscattered toward

the radar is a good indication for randomly oriented scatterers of the relative magnitude of the

19



primary and scattered fields, we can obtain an upper limit on 'hls ratio by considering the
sum of scatterer effective cross sections. That is, we can formulate our criterior by requir-
ing that the sum of the solid angles subtended by the scatterer cross sections be small over
any angular region considered. Hence, we obtain the requirement

:,-•? --°°÷•0r2 sin 0 d r d4) dO :•

0 <o I, ."18 0+-t J - A (21)

sin 0 dO dO

where

R is the maximum distance range cell;

Ro is the minimum-distance from the radar to the s erers; angular intervals (0., G+-A ) and 1%~, q5o + 60) are arbitrary.

By considering angular intervals sufficiently small and applying the mean vpJue theorem, we
obtmi the requirement

5(r. 45o) dr < < I(22)

If 8 (r, 8, k) is monotomic increasing and equation (22) holds along the direction of steep-
est ascent - that is, the direc on determined by V 8 - then the inequality holds everywhere.
Therefore, if multiple scattering and shadowing may be disregarded along the gradient, they
may be disregarded everywhere.

For a nonmonotonic density such as the Rayleigh cloud, this criterion can be used tc ex-
amine the relevance of multiple scattering and shadowing in the vertical direction for R =
Inserting equation (17/) into equation (22) and Intgating, we obtain the results

&n/4n'<C< hŽRo, (23a)

Fe4 <1 Rn >hko. (23b)

ahn e 4 /4 77< < l h' O . (23c)

Taking , 0.33 X2 and using criterion (23a), we have

n < < 37.74/h. (24)
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Considering X-band dipoles (X 2 .05 m), we find the result

n < < 15,000/m 2  (25)

as a sufficient condition for disregarding multiple scattering and shadowing effects along the
vertical. Recognizing that n is the number of dipoles over a square meter, we see that such
effects usually are totally negligible.

4. MEAN IMPULSE RESPONSE

4.1 Signal Return from a Single Scatterer

We consider first a radar transmitting a pulse Pt (t) toward a target with radar cross
section a and located at a distance d from the radar. The backscattered received power is
then given by

2 d) OGt G, X' 2dP,(t)=P, - t
C (4 ;)

3 d 4  c

=0 t<2d (26)

C

wher'. G and G are the gains in the target direction of the transmitting and receiving anten-
nas, respectively; d is the distance from the radar to the scatterer; and c is the speed of light.
For simplicity we shall assume that Gt = G, = G; hence, Gt GG 2 .

Strictly speaking, equation (26) is correct only for continuous wave transmission, since
the width of the irequency spectrum is nonzero in every other ca?. mnd therefore the wave-
length X is not a constant. In addition the radar cross section and antenna gains are also

functions of the wavelength. Nonetheless, whenever the spectrum of the transmitted pulse is
narrow band, this equation provides a valid approximation to the backscattered power if we

insert for X the wavelength corresponding to the center frequency.

iU the target considered is randomly oriented, the received power is also random. We
find its mean value by taking the expectation of equation (26) to obtain

P()P, ~c(t 2 d 4 -aG2kC
(4,) d

(27)I
:0. t<2-d.

C

4.2 Signal Return from Volume Dlstributad Scatterers

We assume, as stated previously, that the individual scatterer locations are statistically
independent. Further, we shall assume that the volume to be considered has a depth in range

that is large relative to the wavelength, and that the scatterer volume density is nearly
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constant over a distance large relative to the wavelength. Under these constraints, the co-
herent return from the volume will be entirely negligible when compared with the incoherent
Sreturný We shall therefore concentrate on the incoherent return only.

Employing the dipole volume density function defined previously, we now define a chaff
volume cross section, a 7

CTO (r. 0, 6k 8 0 r.., q~(28)

where the zabscript 7) refers to the common transmit and receive polarization state. (Al-
though no major modification is required, we shall not treat cross-polarized transmission-
reception states in this report.)

We shall consider the signal return from a volume AV, containing, by hypothesis, N(AV)
indlvidwal dipoles. As before, N(AV) is a Poisson distributed random process. The incoherent
radar backscatter from such a volume is obtained by summTng the contribution of each scat-
terer contained in the incremental volume. If the incremental volume subterds a small angu-
lar sector so that the antenna gain may be conside-red constant across the sector, the back-
scattered power is

SA P, (t) G2- 6 \ P(t - (29)

th
where d is the distance from the radar to the i h scatterer. We assume that the dimensions
of the incremental volume are small relative to the mean distance to the radar; that is
d. > >'VAV, then

A (t) - - (30)

70n3 d4  jc.

where explicit dependence on the angles 0 andP has been suppressed. Assuming the a to be
distribted with mean mad with m(AV) as the mean value of N(AV), we obtain for the ex-
pected value of LP, (t)

2 X2 pt

G '7-PrM (A V) 6, (31)
(4 17)3 d 4

"Sieg", A. and Goldstein, H., Coherent ond Incoherent •ca:tering from Assemblies of Scatterers,* in Prpogo
tion of Short Radio Waves, Keo, D. E., ed., McGraw-Hill, New York, 1951.
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Dividing both sides by AV, taking the limit as AV shrinks to the point (d, 0,€) and using equa-
tion (15), we obtain

d P (t) _ t . , )

____ =q5d (32)I
(4 V )3 d,4 -

Substituting equation (28), we have

2) G 2  p ( d2

.t _ o(d. o, 9) 133-
d v (47)3 d4

The mean received power scattered from an arbitrary volune V is then given by

P, f p, _t 2\ jG
2 d v (34)(4 c) ) d4-

where a• and G are functions of location and aspect, respectively. Equation (34) is a general
expression for the mean backscatter from chaff bit is not especially useful in its present

form. To carry the analysis further, we shall reduce this expression to a mnore tractable
form, but let us first clarify the use of equation (34) by considering several specific examples.

4.2.1 Scattering from a Semi-Infinite Cloud

Consider the geometry shown in figure 9. An isotropic antanna of gain G is located at a A
height h above the chaff cloud which has uniform .-mslty and unbounded depth. A spherical
coordinate system with its origin at the radar is uaed. In such a case, equation (34) becomes

(- X2 f f2
"G CS(••; r2 sin 6 dode dr,35

(4,)3 8 0 r

where 8 cos-' (-h/r) and we have assumed a constant a° so that it has been removed from
the integral. Integrating equation (35) in k and 9, we have

Pr f P, (t (36)2 (4 _)2 h N C r

Introducing a change of variables 2r/c = r, and using the fact that P, (t - 2r/c) = 0 for
t 2 2r/c, we obtain

G2 0 X2  '1 r1 2h 1 3, (• - (37)
(4 7)2 C fh/c L?2 C -,J
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Figure 9. Cross section of a semi-infinite cff cloud.

Equation (37) can now be recognized as a superposition integral with Pt (t) as the driving func-

tion and

P8 (t) ( ) c 2 I t >2 1
(4 7)2 C Lt2  C ;3

(38)

0.2h
C

as the re,-ponse to an impulse function. We should note that equatIon (38) is not formally cor-
rect, since by postulating an impulsive transmitted waveform we have violated our premise
on the extent of the illuminated region. Howevez, the impulse response function does provide
a valiable tool, since a solution may oe obtained by couvoldig tha ii1mko rcsponsr. wet• a!:
transmitted waveform that has sm'flcient spatial extent so that this premise is not violated.
Further, convolution with a transmitted waveform with a spatial extent of several ,wavelengths
will not, in general, provide a residt significantly different from the impulse response func-
tion. Hence, we may consider the impulse response function as an approximate solutioi to the
chaff backscatter problem whenever the transmitted pulse has a duration very short as com-
pared with the impulse response but a spatial extent of at least several wavelengths.

If vm introduce another variable d = ct/2, which may be interpreted as the distance from
which the signal is arriving at time t, we have
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P ~r (t) h G 2 ] [ ( h 1 3 <II
(39)

S=o. -Ž1.
d

Note that the first part of this equation is a function of physical parameters, and the
second part is a function of time and specifies the shape of the returned pulse.

4.2.2 Finite Thickness Chaff Layers

The return for a finite thickness uniform density chaff cloud follows directly from equa-
tion (39). If the upper edge of the chaff layer is at h1 and the lower edge at h2, then

h2P

er (t. ,0 . > h (40a)
d

G2 2  ° (X21 h) hpr M =t - < I (40b)
(4,-)2 C t2 - d<1

P,(t• (477)2 C t 2

(40c)

(4 71)2 C t2d

There is the regular range delay until the pulse hits the cloud. Then before the pulse
reaches the trailing edge at h12, the return is the same as that from a semi-infinite cloud; aid
after the leading edge of the pulse has passed through the chaff layer, the return is given by
equation (40c).

4.2.3 Varying Density Chaff

We can find the differential power return from a chaff layer of infinitisimal thickness by
allowing (h2 - h,), equation (40c), to shrink to dh giving

G,? X2 ao 1(1

d P' Mt- - Idh. (41)

(477)2 C t
2 4i

The volume cross section aO , which up to now has been treated as a conztant, can ncw
be treated as a variable when we integrate both sides of equation (41). The returned power
from a varying densitv chaff cloud is then
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p, 0t-1kR 1 !f 0 (h) dh. (42)

r (4 7)2 C t2 •

Having examined some simple examples and introduced the concept of the chaff impulse
respcnse, let us return to the more general form of equation (34). We note that for those
dipole orientation distributions considered in section 3, a77 has the form X2 C') Icos 61 k(•1 )

(In the horizontally polarized, horizontally distributed case we may use the approximation
0.32X 2.) We shall consider hypothetical antenna gain functions of the form G(8) =

doiCos 08j. Equation (34) becomes

~2cC cosI2+ksin!9 8 (r, 0) dq>dOdr. (43)

where 4

S(r, 8)= S (Il-exp c- a r(cos6 -c os8 )]}. e8z

(44)

=0, 6<e

for the exponential chaff model, and

S(r. )=n a r (cos -cosE) exp j- r (C0s-Cos EŽ

(45)
=0. 8<8

for the 71ayleigh chaff model, with

8 To lh/ri > 1

cos-1 (-h/r) !h/rI < 1. and

h =max (0, h).

Integrating with respect to 4 and using an impulse driving function, we have

rP8 c0 (2) 2 i ( 2 ) dO. (46)

4 (4-n) 2 csI~ksn 5.8

Returning to our previous notation, that is, h = -ct/2 cos0, we obtain

c G2 X 2 \2+k+3 2k
pSJ(t) = f h'12  9 (h. h) dh', (47)4(4 n)2 d••/ "

where d =max (h, -ct/2). Substituting d =ct/2 and defining(x,7) CGo2 \,/4(4-,), we
obtain0
26
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R X i ~d fd 1
-P' (d) R d2(h hk+2ý b (h. h') dh - (sgr, d )k h#k+2t 8 (h, h') dh

where (48)
r l for d.>0

Vsgnd 4

Sfor d 0<

Upon sabstitating for the exponentially varying chaff density, we obtain an integral that can

be reduced by successive Integration by parts with the following result:

h" (1 - ea(h'h dh' = s e" e(d-h) s d
S+ e (49)

s + as"l
i=Oi0 a =0

A similar application of successive integration by parts results in an iterative solution
when the Rayleigh chaff density is substituted. If we define

Jd

I (s) ht" (h - h) e-1/2 (h -h) dh', (60)

we obtain the iterative formula

I ( +(s L h+sh-1+ h I (s- i -2). 2,(51

where z-

L e-/_2 (d-h) 2  I (0). s AM

=-ds e-a!2 (d-h)2 s= 1, 2,

Id e---/2 (h*-h)2 dh'

,-{ er f [ ( d - h ) h

2 IF

We shall exemplify the use of these formulas by considering four hypothetical antenna
patterns: an Isotropic pattern, two teardrop lobe structures, and a hollow cone pattern which
may be represented, respectively, as

G21 G2o isotropic pattern; (52)
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G20 cos 4 (9) 0 0 6 < 77, double-lobe; (53)

G 2 G230 cos4 9 -< <017 single-lobe;

(54)

0 <<_
2

G42=4 G42 0( Cos 22) cos 2 n 7<_-r holl -.w cone,

2

(55)
=00 0s a"<

2

where G10, G2o, Go, and G4o are the peak power gains of the assumed antennas.

We obtain the chaff impulse response for a radar system employing these antenna when
both exponential and Rayleigh cloud models are considered and the chaff dipoles are uniformly
oriented for both polarization states, or the dipoles are horizontally distributed and the trans-

missIon-reception polarization is horizontal. We also consider the combination of an isotropic
antenna, horizontally distributed chaff orientations ar.d a vertically polarized wave. The spe-
cific impulse response functions obtained in each case are enumerated in appendix A. The
results are also plotted as figures 10 through 17.

It should be observed that the impulse response functions for chaff return differ signifi-
cantly from those obtained from ground return.6 While the impulsive response from surface-
distributed scatterers obtains Its maximur- value initially, the impulsive response from chaff
rises to its peak value only after the incinent wave has penetrated some non-zero depth into
the scatter volume. The amount of retardation of peak return relative to initial return depends
upon the distance from the radar to the chaff cloud and the specific model considered. In
genleral, the impulse response for chaff peaks most rapidly when the radar antenna P0 uarrow-
beam and the magnitude of the chaff cloud density gradient is large. It may further _:. ob-
served that when the chaff dipoles assume a horizontal orientatioD and the polarization is
vertical, the net effect on the impulse response is equivalent to the effect obtained by using a
narrower beam antenna; that is, backscatter from the vertical direction is accentuated where-
as returns from lateral directions are strongly attenuated. Thus, a horizontal orientation of
dipoles with vertical polarization increases the rapidity with which the impulse response peaks,
with the consequence that the chaff cloud response more closely resembles the surface scat-
tering of rough terrain.

Of perhaps even greater importance than the chaff impulse response is the chaff range-
gated response that is, the return to the radar from a specific range resolution cell extending
from d to d + a d as the radar altitude h is allowed to vary.

The mean power return from chaff at time, t, is given by the convolution of the trans-
mitted pulse, P, with the mean impulse response

6 Edison, A. R., Moore, R. K., and Warner, B. D., "Radar Return at Near-Vertical Incidence, Summary Report,' Univ.
of New Mtxico Engineering Experiment Station, Tech. Rep. EE-24, Sept. 1959.

28



IM

]A

-0

02

... O0

0 -4.

I b

0.00 1.00 2.0 3.0D0 .0 80 0.00 1.00 2.00 .3.00 0.00 S*.00 1.00
TIME IN MICROSECONDS TIME M MICROSECONDS

Figure 10. Impulse response functions at h 100 m Figure 11. Impulse response functions at h --100 in
for an isotropic antenna pattern and uniformly distrib- for a cos2O antenna pattern and uniformly distributed
uted dipole orientations (exponential clou.d model) dipole orientations (exponential cloud model)

-0

2 2

or 00

.001 
2

00 .0 2.00 11 .00 1 .9 .00 07.00 1'.00 2.00 3j.00 0.00 S.00 1.00
TIMdE 1N U-CROSECONDS TIME 'If MICROSECOPMS

Figure 12. Impulse response functions at h =100 in Figure 13. impulse response functions at h =100 mn
for a sin~cosO antenna pattern and uniformly distrib- for an isotropic antrnno patterr, vertically polarized
uted dipole orientations (exponential cloud model) wave, and horizontally distributed dipole orientations

(exponential cloud model)

29



'6 L '6

S*-.00

5-,oo 5 {

2:

b. b. ..OI,

o 0

Inb

Figure 14. Impulse response functions at h = 100 m Figure 15. Impulse response functions of h = 100 m

for an isotropic antenna pattern and uniformly distrib- for a cos20 antenna pattern and uniformly distributed
uted dipole orientations (Rayleigh cloud model) dipole orientations (Rayleigh cloud model)2Ij

".00 3

&A,

o i

w N6

0

0.00 1.00 2.00 3.00 4'.00 5.00 G'.00 0.00 2.00 .03 3.00 %'.00 5.00 6.00

TIME IN MICROSECONDS TIME IN MICROSECONDS

Figure 16. Impulse response functions at h = 100 m Figure 17. Impulse response functions at h = 100 m
for a sin~coso antenna pattern and uniformly distrib- for an isotropic antenna pattern, vertically poldribzed

uted dipole orientations (Rayleigh cloud model) wave, and horizontal]y distributed dipole orientations
(Rayleigh cloud model)

30 0

V

C. F

-.... .~ *•OO r -.•_ =__•



NI r

P (t) = PJ ) (r) d r. (56)

If the transmitted wave amplitude is constant with Pt (t) = P0 , and we are concerned only
with the return contributed by dipoles lying at ranges between d and d + Ad from the radar, we
obtain for d Z h

d+[%d
6-Pr (d)= f P 8P (r)rr (57)

which becomes, for Ad, sufficiently short

A"P_ (d) =ý dP Po (d). (58)

When rewritten as the ratio

LP, (d)/Po 6 d PI (d). (59)

we obtain the chaff backscatter loop attemnation for the range cell (d, d +A d).

Considering the hypothetical antenna patterns and dipole orientations previously intro-
duced, we have plotted representative chaff backscatter loop attenuation functions versus
radar altitude as figures 18 through 27.

5. PROBABILITY DENSITY FUNCTIONS FOR CHAFF BACKSCATTER

Since, by hypothesis, tl'. chaff dipoles are randomly and independently distributed and
randomly oriented, the statl..tics of the scattered field are identical with those for the sum of
sine waves with random identically distributed amplitudes and phases. It is well lmown that
such a process is asymptotically Gaussian when the number of constituent waves of the sum is
large. The envelope of a Oaassian process will be Rayleigh distributed when it is defined for
narrow-band processes in the manner of Rice7 and when the broader definition of envelope as
the Ebsolute value of the complex-valued function obtained by adding to the given function i
times its Hilbert transform is used. Thus, we should expect that the envelope of the chaff re-
turn process will be Rayleigh distributed and that the amplitude of the squared and low-pass
filtered rewrn will be exponentially distributed for a sufficiently large number of chaff dipoles
contributing to the return.8 Hence, the radar cross iection for chaff which is proportional to
tho backscattered nc'wer should have a probability distribution which is asymptotically expo-
nenrial as the number of contrfibuting dipoles becomes large.

7Rice, S., 'Mathematical Analysis of Random Noise,* Bell Systems Technical Journal, vol. 23, 1944 and vol. 24,
1945.88orison, S. L., *Statistics of the Radar Cross Section of a Volume of Chaff,' MIT, Lincoln Laboratory, Group Rep

1965-10, 1965.
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The fact that the instantaneous voltage variate of the return signal is Gaussian In the

limit is a consequence of the central-limit theorem of probability the'.ry and is not dependentI
upon the distribution of the component amplitudes of the individual dipole returns. The rate
i+t which this limiting form is approached, however, do~es depend on this distribution.
Goudsmit and Schiff have examined the finite number of scatterers case and have found the

2±

Gaussian distribution to be a good approximation when ranges to the contributing dipoles are
all equal, even when the numher of dipoles equals 4or 5. Whethe number isl10or more,
they found the differences are completely negligible.5 Borrison has also examined the use of
the exponential law for describing the chaff radar cross section and concluded that the ap-
proximation is good when the average number of dipoles in the radar resolution volume is
greater than two or three.8

, ' Since the exponential probability law is a single parameter distribution, it is completely
sdetermined by its mean value. This, we may represent the first order distribution for chaff]

radar croass section as

Sp(C) 1 ,7,• (60)

07 -

CTo
1)

5Siegert, A. and Goldstein, H., "Coierent arid Incoherent Scattering from Assemblies of Scotterers,' in P._.yp__
- tan of Short Radio Waves, Kerr, 0. E., ed., McGraw-Hill, New York, 1951.

8 Borison, S. L., 'Statistics of the Radar Cross Section of a Volume of Chaff," MIT, Lincoln Laboratory, Group Rep

1965-10, 1965.I
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"For such a distribution, we note that the variance equals the square of the mean, and that in-
cluding more dipoles in the radar resolution cell by Increasing the resolution cell size does
not narrow the relative distribution width, since the mean to rms ratio is constant. It should
be observed that the most probable value of backscattered power is zero. The return powerI will be less than half the average value 29 percent of the time and greater than twice the aver-
age 14 percent of the time.

As the radar moves relative to the chaff cloud, the path lengths to the individual dipoles
will vary. The doppler shifts thus introduced will, in general, be different for each dipole
scatterer; hence, frequency dispersion, rather than mere frequency shift, will result in a re-
turn signal that is noise-like and narrow-band when the transmitted signal frequency is greater
than the maximum doppler shift. Successive samples obtained by a pulsed radar will generally
be correlated, the degree of correlation for a fixed sampling period depending on the width of
the doppler dispersion spectrum.

The second order probability density for sample powers P1 and P with sampling interval
-r becomes2

P2 (PI = Io2--1, 2.(II P (61)A• p•-) AP • _

where PA is the average returned power, and the correlation coefficient p(r) is defined by

S-" (62)

AP 2

and Io is the zeroth order modified Bessel function of the first kind. For T sufficiently large
so that

I P 2 1P P2 =Ap (63)

we observe that p (T-) -0; and, as expected, we have

P2 (PI, P2 ; T) - p (PI) P (P2). (64)

That is, when the sampling int-rval is sufficiently long so that the correlation coefficient is
zero, the sampled return powers are not only uncorrelated but also independent.

6. POWER SPECTRAL DENSITY

Of paramount importance in dotermining whether the return powers from successive re-
turn pulses are uncorrelated is the width of the power spectral density. The correlation of
detected pulse amplitude from pulse-to-pulse affects the required integration time to achieve
a given detection probability; for high detection probabilities, the greater the correlation, the
longer the required integration time.
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The successive range-gated pulse returns from chaff may be considered analogous to the

sequence of sampled values obtained by periodically sampling a random process. As we have
previously noted, each of the dipoles may be thought of as a simple harmonic generator, trans-
mitting with random phase and amplitude and with a frequency determined by the radar trans-
mission frequency and the doppler shift induced by its motion relative to the radar. The
ensemble of returns as seen at the radar comprises a narrow-band, noise-like process, the

decorrelation time of which is inversely proportional to its bandwidth. If this decorrelation
timu is short compared with the radar pulse repetition period, successive pulses will provide
independent samples.

Although the chaff cloud drift velocity and dipole rotations are major contributors to the
doppler shift for a stationary radar, 9 these factors are not significant when compared with
the frequency shift induced by the rapid movement of the airborne radar altimeter. There-
fore, in calculating the power spectral density, we shall consider only the radar movement.

In calculating the chaff return power spectral density we note that the doppler frequency
shift is the same for signal returns from dipoles whose position vectors' intersections with
the radar velocity vector form equal angles (see fig. 1). The amount of power returned at any
doppler-shifted frequency depends therefore on the antenna gain in the specified direction, and
the chaff radar cross section in that direction and at the range-gate distance from the radar.
The locus of points contributing to the power spectral density at any specified frequency within
the doppler band describes a circle or an arc of a circle, the locus being the projection of a
cone on that portion of the range gate sphere lying within the chaff cloud.

In determining the doppler power spectral density function we c.ncern ourselves with the
frequency band referenced to the transmitter frequency f 0. It the maximum doppler shift is
less than f 0, the return signal is narrow band and two distinct bands of frequencies, one posi-
tive f., the other negative f-, are discernible. Thus, with respect to the doppler frequency
variable fD, we may write f, = E(fo + fn)"

The incremental power density due to return from an element. of arc lying along the pre-

scribed locus of points may be written

d P (f) 0o (9) G6- (9, 4)ds, (65)

where, in spherical coordinates,

ds =sin20 d O9 + d 02

The power density from the entire locus of equal doppler shifted points becomes

P_0(_(_, _2 0 d_ d (66)

O~D) =jO?(0) G2 0) Vs in (2dT2d e2.

where C defines the path of integration.

9Wong, J. L., Reed, I. S., and Koprielian, Z. A., "A Model for Rodor Echoes from a Random Collection of Rotating
Dipole Scatterers,* USCEE Report 159, Jan. 1966.
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Defining 0. as the angle between position vectors to the contributing dipoles and the radar
velocity vector, we observe

0 (Cos, fD•

(i -1 -0)

where

fD is the doppler -,,tency shift,

f o is the transmitted frequency (center frequency for a narrow band signal), and

V is the magnitude of the radar velocity.

The locus of points C, defining the integration path, may be found by setting the normalized
inner product of the contributing dipole position vectors and the radar velocity vector equal to
cos 00. Hence, we obtain

cos= (cos 0 + cos 0 cos ,)/sin 0 sin (68)

dob= + s0 [sin2 0 sin2 -y - (cos 0o + cos 0 cos y)]-1/ 2 d9. (69)
sin 9

Inserting equation (69) in equation (65), we have

77 cc, (0) G2 (9, o) s in 0 s in 6;o d 0
P (fD) 2 (70)

i/sin2 0 - 2 cos 0 cos -Y cos -CoS9

where E) cos 1 (-h/d).

For Y = 77/2, horizontal flight, this becomes

71 a° (0) G2 (0, q)sin 0 sin 0o d8
d7 71P 01D) " si2 -os o(71)

For y = 0, vertical flight, we observe that 7T - 0 = o, and obtain

p(fl)) .o (w - 0o) sin 0, G2 (n - 00, 4)d . (72)

where0: 00 :5 cos-a (h/d).
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For G independent of 0, as in the cases previously introduced, we have

P (fl)) ý o (17 _ 00) s in 00 G2 ( e- o) (73)

This becomes, for a uniform density chaff cloud with uniformly distributed dipole orienta-

tions, with the range gate completely submerged, and with an isotropic antenna,

P (fD) sin Fos-, iC fDD) S V fo/]
(74)

4 V2 f 2 fD/ f0V

where f M is the maximum doppler shift.

It should be observed that the calculated chaff return power spectral density is an even I
function with identical doppler spectra appearing as mirror images at both +f0 and -f 0 on the
frequency axis. Considering the case of vertical flight, we have plotted the doppler spectrum
for an isotropic radar antenna, Rayleigh chaff cloud, and uniform dipole orientation dlstribt-
tirm in figure 28. Figure 29 is a similar plot for a cos 2 0 antenna pattern, Rayleigh chaff
cloud, and uniform dipole orientation distribution.

XIoI

`:-.0 -b. o-.sc -o.2S o'.00 o.2s o1SO o.7S 1oý
NORMALIZED DOPPLER F'REQUENC•Y fD/fOM

Figure 28. Doppler spectral densit'y function for range-gated response at d =100 m with an iso-
tropic antenna patt- n (Rayleigh cloud model, a = 0.001) uniformly distributedldipole orienation s. •

It is relevant to the problem of chaff detec~on to observe ftht the return signal t!3 the
radar will bare the maxinaum doppler frequency shift and minimum frequency dispersion when

r: the radar first encounters the chaff cloud. At this time, the envelope -coefficient of correla-

tion from pulse to pulse will be nearly unit-y. After the radar range gate is complietely sub-S~Merged in the chaff cloud, the frequency dispersion will reach a maximum and the pulse to
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Figure 29. Doppler spectral density functiorn for rc.. e-gated response at d = 100 m with a cos 2O
antenna pattern (Rayleigh cloud model, a = 0.001) uniformly distributed dipole orientations

pulse envelope correlation win reach a minimum. For a radar wlth a high loop sensitivity
relative to the chaff return loop attenuation, the initial detection probability will be lower
than that obtainable from independent pulse returns. Conversely, for a radar with low loop
sensitivity relative to the chaff return loop attenuation, the initial detection probability will be
higher than thar obtainable from independent puls._s.

7. CORRELATION YUNCTION

To calculate second-order probabilities for chaff return powers, we must first obtain the
coefficient of correlation at the sampling interval. Since the correlation function for predetec-
tion powers is the same, except for a scale factor, as the correlation function for voltages after
square-law detection, we obtain both results simultPneously. Recall that the correlation fumc-
tion of the output of a fall-wave, square-law device with a gaussian input becomes10

S0,-4-- + 2 -. (75)

where R. (r) is the !Wut correlation function and a = Rx (0). The output coefficient oi
correlation becomes

*0Davenport, W. B. and Fot, W. L., Art Introduction to the Theory of Rondo n -lignols cnd Noise, M:Graw-Hill, NetA
York, 1958.
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which may be rewritten by using the Weiner-Khintchine relations as

P, (, " J P. (f') p (f - f') e27i'f d Pd f. (77)

That is, the coafficient of correlation for the output of a square-law device is the normal-
ized Fourier transform of the self-convolved power spectral density for the backscattered
signal. The coefficient of correlation for the output of a square-law device followed by an ideal
low-pass filMtr is the coefficient of correlation for sampled return powers and becomes

P(T) P. (f) Px (f- f') e 27Yif df ddf. (78)

Thus, from a knowledge of the doppler dispersion spectral density developed in the previous
section, the use of equation (78) allows us to readily calculate the return-power coefficient of
correlation.

In the case of the uniform density chaff cloud with uniformly distributed dipole orientations,
with the range gate completely submerged, and with an isotropic antenna we may apply equation
(78) directly to obtain

j2 (27Y f 10-)
(79)

(77 f DM.)2

where J, is the bessel function of the first kind of order one, and p (T) is the coefficient of
correlation for return-power samplas separated by the time interval T.

For the more general cases involving nonuniform cloud densities and/or anisotropic an-
tenna patterns, the direct application of equation (78) will not usually be possible. In such
cases, the use of fast Fourier transform (FFT) numerical computing technique as described
by Cooley et al.13 may be appropriate. The computational procedure involves the self-
convolution of the return-signal power spectral deasity, the separation of the resulting spec-
trum into low-frequency and high-frequency parts, and application of the FFT to the low-

frequency part.

Considering the examples used in the previous section, we have employed the FFT tech-
nique and plotted the power correlation functions for the radar height ranging from initial
entry of the range cell into the chaff cloud to the total submersion of the range cell in the
cloud. The correlation function for a vertical flight path, uniform dipole orientation distribu-
tion, Rayleigh chaff cloud, and isotropic antenna is plotted as figure 30. Figure 31 is a similar

plot for a coS 2e antenna pattera. Both plots are mean adjusted to zero and the variance at
each height normalized Rs in figures 23 and 24, respectively.

13 Cooley, J. W., Lewis, P. A., and Welch, P. D., "Application of the Fast Fourier Transform to Computation of
Fourier Integals, Fourier Series, and Convosation Integrals,' IEEE Trans, Audio and Electroccoustics, vol.
AU-15, No. 2, June 196?.
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Figure 30 Correlaticn function for ronge-goted response at d = 10 m with on isotropic antenna
pattern (Rayleigh cloud model, a =0.001) uniformly distributed dipole orientations
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From figure 30, we may observe that approximately 5(c/2V) rf p.riods must elapse be-
tween essentially uncorrelated samples when the radar is 75 m above the chaff cloud. After
the radar has penetrated into the cloud a depth of 100 m, however, approximately four essen-tially uncorrelated samples may be obtained in the same time interval. Hence, if the detection

process involves the incoherent integration of a number of successive pulses and the pulse
repetition period is shorter than 5(c/2V) rf periods, the fluctuations abLut the mean of the
integrated process will be considerably grealfr at a height of 75 m than at -100 m.

8. SUMIMA~RY

In tids report, we have provided a model for chaff sufficiently general to characterize a

dtverst set of distribution geometries. Simultaneously, we have retained the requisite sim-
plicity of description so that the methodology of specific calculations is not unnecessarily en-
cumbered. We have introduced and developed the concept of the chaff impulse response, noting
that such a function is theoretically fictitious, but recognizing it as a practical approximation
for chaff backscatter to a short-pulse radar. A significant differencc b'utween the delay time
to peak for the chaff impulse response as compared with the rough surface scatter impulse
response has been noted.

We have also examined the response to a chaff cloud as viewed from a fixed range cell as

the radar moves relative to the cloud. The probability density functions of such a signal have

been reviewed, and the spectral density function for this signal in consonance with our chaff
cloud model has becn derived. Considering square-law detection of this signal, we have ob-
tained the correlation function of the detector output and exa-minei its fluctuation rate as the
position of the radar above and within the chaff cloud is 'aeled.
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S~GLOSSARY OF TERNS

a = radius of the circular cross section of a thin wire chaff dipole.

C = proportionality factor for maximum value of the ratio a A 2 .

c = speed of light in vacuo.

d = range gate nominal distance, distance from the radar to chaff dipoles con-
tributing to the return at a specified time.

A d = incremental ditance, depth of the range resolution cell.

E {-) = stati6.,.-al expection operator.

FFr = fast Fourier transform numerical computing technique.

f = frequency.

f = doppler frequency shift.

= maximum doppler frequency shift.

= frequency of transmitted wave (center frLequency for a narrow band signal).

a =atenna power gain.

G peak value of antenna power gain.

G -receiving antenna power gain.

transwitting antenna power gain.

h = distanee from the r-.dar to the chaff clowl top (positive when the radar is
above the cloud).
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h' = a vertical distance measured from the radar. /

= length of chaff dipole.

m (') = mean value function of a stochastic process.

n = taotal number of chaff dipoles contained in the vertical column over each hori-zontal unit area.

N. = a Poisson distributed random variable, the number of chaff dipoles contained
in region v.

N (v) = a Poisson process specifying number of chaff dipoles contained in a region
centered on point P.

P= backscattered received power, square of envelope of the return signal.

PP = chaff impulse response function.

Pt = transmitted power, the square of envelope of the transmitted signal.

P (f) = power spectral density function of the random process, X(t).

p (x) first-order probability density function of the random variable, X [stationary
random process X(t)]

P2 (X. X2) = second-order probability density function of the random variables X and

[random process X(tI) and X(t 2 )].

R (h.) = a function of the wavelength k and the polarization state ri

c G2 \4 C'7R (X, 7;) =44)

4 (477)2

; (r) = correlation function for the stationary random process X(t).

t = time variable.

V magnitude of radar velocity.

VcH = mean chaff -7 speed.

a = a configuration parameter related to the chaff cloud density gradient.

y flight angle between the vertical and the radar velocity vector.

Schaff dipole volume density.

e. = maximum chaff dipole volume density.

0= elevation angle of a radar-centered spherical reference frame.
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0' = elevation angle of a dipole-centered spherical reference frame.

= nominal wavelength (wavelength associated with the center frequency of a
narrow band signal).

p (T) = coefficient of correlation of a stationary random process.

= monostatic radar cross section.

S= mean value of the monostatic radar cross section.

5H = mean value of the monostatic radar cross section for a horizontally polarized
incident wave.

5V = mean value of the monostatic radar cross section for a vertically polarized
incident wave.

o = the chaff volume radar cross section for a 71 polarized incident wave.

x= standard deviation of random variable X [stationary random process X(t),OIxI = Rx(o)1

time interval between successive samples, the pulse repetition period, the
elapsed time since chaff dispersal.

= azimuth angle of a radar-centered spherical reference frame.

= azimuth angle of a dipole-centered spherical reference frame.

S= a uniformly distributed (0, 21) random variable, a random angle of rotation
measured in a horizontal plane.
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APPENDIX A. IMPULSE RESPONSE FUNCTIONS

Following are integrated expressions for the impulse response functions developed in
section 4 and plotted as figures 10 through 17 (body of report).

A-I. Exponential Cloud Model S =m (1- e-a(h' -h))

Following are mathematical derivations for uniform distribution of dipole orientations or

horizontal distribution of dipole orientations with horizontally polarized wave

A-1.1 Isotropic Antenna G, G10

P1 (d)-(' 77) [d- h+lI (e-.(d-h)-) -d h d
"r d3

-R (X,'• 12 (e-a(d-h)-edh) <d

R 2X~ d + - h < - dI

0, h >d

A-1.2 Double-lobe Antenna G2 G2o cos 2 0

P I(d)- R (X.,7) (ds - hs)+ 24 24d + d+ 
3 + eadh)

r d7  o.. [as 4  a 3  a 2  a]

224 24h 12h 2 + 4 h3 + -d]h Z+ + d -dý h -d

Las a 4  a a
2  

aJJ

R(k. n) ' 2 ds+ 24÷24d 12d 4d 3
-d + - - + + 4-d eadh

dLa a4  a3  a 2  a

[24 24d 12d 2  4d 3 +1 d4
- ÷ + ea'(d~h ,h < d

'as a4  a3  a a J j

:-0. h>d

Preceding page blank
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A-1.3 Single-L•obe Antenna G., Go cos
2 (. : 

V,7

2

77
=0. 02 -. 6 < 2NI

I (d) R( -)(d5 - hS)+ I- + 12d 4d+ e_• (dh)
d7  La a4  a a2

[24 24h 12h 2 4h 3 +•s O dh0d

R (k, 1)-5dS 24 24d 12d 2  4d 3  ---- <•hd - ds+- + -- + - + e-cL<d-h

7 5 5~ a4 3 a2 aj

24 _ hj , h < 0

asf

0. h>d

A-1.4 Hollow Ccne Antenna G4 2 G4 0 sin 0 cos 9, 0_ e9.772

z0. 0<<77
2

P (d) (d3h3) + __

a3 A2

[2 121 ] l_) 4 R (X .hlj • h 24 24d 12d2-,-+ -+-(s hs) + + - +

La3 a,2 'a a4  a2

4d 3  1 -dhE24 24 h 121 2 4hMhC+3+ Ie-a d-h) -1 4•- h3 +L4]1h
a2 ai [as a4  a3  a2  i

44 d3 :2e'

ds • _"7 + __ + e-'( d--
3 3 a2

a a

+RX~)rd 4~ [24 +248d 12d.2 4 d34 R (k,\ 71) 24 eah 4+

d7~j-as La a4  a3  ad7 as +a.. .

+ ] e--(d-h)• . h < 0

0, h>d
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A-1.5 Horizontal Distribution of Dipole Orientations with Vertically Polarized Wave -
t Isotropic Antenna

PI (d RrXI(6- 6 )20 +120°d +60d2 +20 d3 +5d4 + sI e7-a( d-h

"7) 1 6L)a as a4  a3  a2  -j

_20 120h 60h 2  20h
3  5h

4  hSI
-_ + ÷+ + -- + 0 Oh d

La6 as a4  (13  q2

R(X, ) (d6+ h6)-+ 120+120d 60d+ 20d + 5d4 +] e-a(d-h)

aL4  a3  a2  a(19) fi LT a6<s <, 3

120 120h 60h 2  20h 3  5h 4  .] 240e ah}---- + + + + h 24 e-d h<0A

aL6  as a4  a3  a2  a 6

- +, + 120d - + 2d e-a (d-h)

d9 L a (s a + a3  a2  aj

+ [120 + 120d60.220d354 a(d .) 240 e'
L6  a5  , 4  a3  . 2  a 0

0. h>d

A-2 Rayleigh Cloud Model 8 na (h - h)e-a/ 2 (h'-h)

Following are mathematical deviations for uniform distribution of dipole orientations or

horizontal distribution of dipole orientations with horizontally polarized wave

A-2.1 Isotropic Antenna G 1 = Go10

TPS (d)-R (X" 7) [1l-e-/2 (d-h)2]. -d h <h

•- ds

R (X. 7) (e 12 (d+h )
2 

+ ~ 2(~).hSR (A, •) ea2 (d- ) + e-*/2 (d-h)2] h < -d

0. h >d

A-2.2 Double-Lobe Antenna G2  G cos 2 0.

Ps (d)-R(, 77) f(h4 +[d4 2

da a2 IL a
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R (X, 4+(d2 -hd+h 2
) + e-/2(d") - [d4

(d + h d + 144 + r haIaa2 J' a /2 a U2

+ erf (d + h h<-d

=0. h>d

A-2.3 Singie-lobe Antenna G3 = G30 cos 2 0, 7• L _
2

=0, 0<0 77

) R(X. 77)(h+ 12h2 + [d4 4_(d+hd

P -+d(d2 +hd + h2)
d7 a 2  a

(4-h-0(,h3+ h) -jh) 0 h dR (X, 77) h2  8 2 2 - 42

2h +• - +(d f 2h erf (d-
+ _RA ''{h . 12h 2 .h) [d4 +4¢1 (d2 + hd +h2,, + -e-a/2( a'8`

1 h _d

A-2.4 Hollow-Cone Antenna G42 G40 s in,9 cos 0, < 0 17
2-

=0. 0 <7
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-=--- ---- - a/ (d-h)2~ - -~

Ps (d) R (X, 2 ) e-/2h2 (d2 -a/2(h)2 + 2h rf (d-h

r f R (X. f/4 2 8 -a/2 h2_[ + d d

d h]}A~7 I4a2 ) a
+ h 2)+ 1 e-a/2 (d-h )2 + (4 h 3+ 12 h--l"2 erf -(d - h

+ erf h,~ <a2hd+402

: er ,h<Oj

0. h>d

A-2.5 Horizontal Distribution of Dipole Orientations with Vertically Polarized Wave -
Isotropic AntennaC

GI CIO

s () R hs0h.+4.) 1 d +-d d 3 +hd 2 +h 2 d h3)r d9 C a2 I L

+~~~~ 5 3d+5he5/ d h 2+h4 + -30- h 0<h1d
IT(I0- hS + +Y erf0- (d - h 0 h d

a2  ( C21 + + 2)hF2 1

R(X. 71 [ý-2h
d9 a .

2 
, 72)

+_.(d3 + h d2+ h2d + h3) k (3 d t 5 h e-a/2 (d-h)
2  6 h2

R(2) [42{!(-[+5--2ha h2[ d 2

-- h s _ _ (h3 h2 d + h - d3 )

d9 h a3 a d -5 (5h-5h 3d ea/2 (d+h)2dS +, h h\d1 h.
a2  JE

+5 (3 d + 5 h 2-cL/2 (d-h)2 + 5 h4 +

(rfj/(d -h)]erf (d+ h] + 2erf i/h])} h< -d

0. h>d
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Al

A-3. Conclusion

Although the exponential chaff cloud model leads to an inverse square range attenuationlaw in the limit h--, the Rayleigh chaff cloud model is bounded above by an inverse cuberange attenuation law. In this respect, the Rayleigh model more closely resembles surface
distributed scatterers.
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