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ABSTRACT

Radar backscatter from a chaff cloud is axamined for the case in
which the radar appioaches the cloud from above and moves into and
through the cloud. The chaff cloud is modelled as a collection of randormly
distributod and randomly oriented dipcles having a mean volumez density
that is 2 function of altitude but invariant in a horizontal plane. ‘The
gtatistics of the chaff echo power when the number of dipoler in the
resolution volume is Lirge are reviewed. The impulse response, which
approximaies the short--pulge radar response, and the radar return signal
for a specific range resolution cell as a function of the position of the radar
relative to the cloud ar: derived for several chaff cloud corfigurations and
antenna patierns. Pover spectral Gansity functions for range-gated chaff-
return signals and correlation functions for the signalg following square-
law detection are also derived.
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1. INTRODUCTION

Racar systermrs are frequently required to operate in the presence of echoes from chaff,
ground and sea surfaces, clouds, and the various forms of precipitation. To operate effec-
tively in such environments, the radar must be designed to minimize the effects of these
clutter signals which may lead to spurious detections, that is, faise alarms, or to desaensitiza-
tion of the radar so that the actual target is shielded. A prerequisite for radar design oztimi-
zation is a model for the clutter environment that is sufficiently general to cover the range of
conditions likely to be encountered while retaining the simplicity essential to its utility as a
design instrument.

This report examines a model for a chaxf cloud consisting of a collection of randomly
oriented and randomly distributed dipoles. Specifically considered is the response of an air-
borne radar transmitting a short pulse and moving rapidly relative to the chaff cloud. The
impulse response function for chaff backscatter is derived, and the return from & fixed range
is examined for a radar moving through the chaff. The results obtained are valid for narrow
transmitted pulse widths and may be extended to cases Involving wide pulses by convolving
the transmitted pulse envelope with the impulse response functon.

The first- and second-order probability density functions for chaff echo powers are re~

viewed, and the correlation and spectral density functions associated with thir chaff model are
derived.

2. ENCOUNTER REFERENCE FRAME

For the following discussion, it is assumed that the chaff cloud is confineé to 2 specified
region of space. In all cases the chaff cloud will be assumed bounded ahove by a plane surface
paraliel to the tangent plane to the mean surface of the earth. A Cartesian reference frame is
constructed with the rada at the origin as shown in figure 1.

It is further assumed that tie radar velocity is constant throughout the encounter which
implies that the flight angle » between the z-axis and the radar velocity vector is also constant.

The radar receives returns from chaff elements located in that portion of the spherical
shell lying within the cloud and with boundaries at radial distances d and d + Ad from the ra-
dar. The distance, h, from the radar to the upper edge of the cloud is p¢ itive when the cadar
is above the -loud top and negative when below. For a radar speed ¥, thig distance varies
during the encounter as

h=d-Vt cos 7. @)

with the time origin taken as the time when the radar range gate first pencirates the cloud to
a depih equal to the runge gate width, Ad.

3. CHAFF CLOUD MODEL

The chaff cloud is assumed to consist of a coliection of resonant dipoles, randomly crien~
ted and randomly distributed within a volume, large relative jo the radar resolution cell. It
is further assumed! that the dipole locations are statistically independent, so that the oumber
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Figure 1. Encounter reference frome. (The distonce h from the rodor to the
top of the chaff cloud is taken as positive when the rador is obave the cfoud
top ond negative when below).

of dipoles found in any subvolume is a Poisson distributed random variable. It should be noted
that such a distribution does not account for the effect of chaff clum;j ing, or *birdnesting."

Since we assume that the hesic scutterer of the chaff cloud is a dipole, it is appropriate
to look first at the scattering behavior of a single dipole. The radar backscatter from a di-
pele isusually maximum when the dipoie is viewad at broadside with the electric vector of ths
incident wave parallel to the axis of the dipole. The magnitude of this return as a function of
the length £ of the dipole is shown in figure 2. At £/A = 0.45, the curve shows a definite peak;
Because of this resonant cross section enhancement, half-wave dipoles give the maximum re~
turn per unit length of the wire. Dipole thicknegs has a relatively smali effect op the refurn;
the general tendency being that the amount of resonant peaking is diminisheq for thicker dipoles.

As a dipole is rotated in the plane formed by the direction of incidence and the electric
vector of the incident wave, the amplitude of the backscattered field changes. In figures 3
and 4, the radar cross sections are shown as functions of rotation for a half-wave resonant
dipole (£ /A < 0.452) and for a dipole whose length is 2.46 A , respactively. It may be ob~
served that in the first case the cross section exhibits a single iobe; but for the longer dipole,

‘Cl'wng, S. ond Liepg, V., "Measured Back Scottering Cross Section of Thin Wires,” The Uniwzrsity of Mizhigon
Radiction Loboratory, Report No. 8077-4-T, 1967.
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Figure 2. Backscattering cross section of a wire poraliel to electric veetor; a/A=6.27 x 1073, (o = rodius
of wire, £ = length of wire, A =wavelength.)

wultiple lobes appear. For certain lengths, the ampiitude of the sidelobes may be greater
than that of the hroadside lobe. It may also be noted that in the case of the half-wa /e dipole
the |sin5¢'| curve provides a clus. emyivical approximarion to the experimental curve
(fig. 3).

If the dipole is rotated in a plane perpendicular to the direction of inciderce, a similar
variation in radar cross section occurs. In this case the cross section has been found to vary
as sin* 6', where the angle &' is defined in figure 5. Hence, we have the half-wave dipole
raday cross section as a function of the polarization of the incident field (horizontal as
depicted in picture fig. 5) and the dipole orientstion along the two principal plane: of
rotation,

Accordingly, we can write

o (8'. &) = 0.86 lsin® ¢'l. @

CH .
s | = 0.89 sin* &'

N2 , (&)

in/2

2deBeﬂuncoun, J. T., “Bistetic Cross Sections of Cylindrical Wires,” Pickord & Bums, Inc., Scientific Report No. },

P&B Pub. No. 735A, Walthom, Mass., 1961.
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Figure 5. Geometry for computction of the cross section
of a dipole.

Assuming that o(67,¢') = 0.89 )% o (¢') o, (¢') where o, (9')=sin* 8’ ando, (¢') =
| sin® ¢' | which seems to be a valid approximation in the case of the half-wave dipole,
we may combine equations (2) and (3) to obtain an empirical angular exgression for a
half-wave resonant dipole as

ted :?.. &' - Ay 1 .
_(_T"_) = 0.89 sin* 2 |sinS o] )
A

Since half-wave dipoles are most efficient in that they provide the maximum return per
unit weight, we shall be concerned hereafter with such dipole lengths only.

In 2 chaff cloud ceonsisting of a large nunhes of dipoles, it is impogsible to specify the
orientation f =2 -h of the individual dipoles. We are therefore confronted with the problem of
determuming an average dipole cross section based on the prcbability density of dipole orien-
tations. We consider two possible cistributions: {(a) uniformly distributed over 4n steradians,
and (b) confined to a horizontal piane but uniformly distributed over 27 radians.

In case (a), the prooubility censity of dipole orientations becomes

0sd'<2nm
P (&, & =_1;sin 8 )
08 <xn

The mean cross section per dipole is independent of incident polarization and direction of in-
cidence and is obtained simply



_0.89
4n

zr
J. isin’ ¢’ sin* 8’ sin &' d¢' do"
o ‘o

=0.162.

In case (b), the probability density of dipole orientation becomes
_ 1
(¥)=—— O0s¥<2m,
2

where ¥ =¥ (5%, ¢ ,6,¢) is a random functioz of the direction of incidence (&, ¢) =nd the
dipola crientation angles (¢', ¢') with respect to a spherical reference frame centered on the
dipole {figs. 6 and 7). The rotaticn angle ¥ is measured ia a horizontal plane.

Considering first a horizontally polarized incident field, we obtain from fig:re 6 the
following relations

ziiz
4

2

DIPOLE —
N ]

Figure §. Geometry for norizontal polarization calculations.
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sin% 2’ = (1 - cos? ¥ cos? €)2, (8)

-
N e <5 KT LS Lo sy

$ 572

s ! ten? ¥

)

sin? 8 + tan? ¥|

Hence, we have

A

572
dy, (10)

IRt bt S b A N D52 R L

tan? ¢

sin? 6 + tan? ¥

el
O

2n
© :92'_8_ I (1 - cos? ¥ cos? 6)2
A2 i 0

which can be evaluated numerically (see fig. 8 for plot) or by direct intogration at € = 0,7/2
to obtain

G, (0) =0.334 A%, @y

(12)

3, (n/2) = 0.302 A2
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Figure B. Meon backscotter cross section as a function of elevation (5 of
incident wave-horizonta} polarization.

When the incident field is vertically polarized, the random variable ¥ may be seen to co-
incide with the dipole elevation angle 6’. Thus, we obtain

b KA . - s
B¥ Cy \L 3 3
e v . U.89 [cos?® ¢ sin® ¢ d¢
z2 27 o

E as)

= 0.334 jcos’ 4|

As to the actual distribution of dipole orientations, the available evidence appears to sup~
port the horizontal distribution at least for X-band dipoles? However, exoatmospheric dis-
persal, the selective weighting of dipoles to assunie other attitudes, the recent seeding of
dipoles, and the buffeting effect of tiriulent air currents may give rise to chaff clouds better

= 3Pclmno, C. J. and Boyer, L. H., "Bistatic Scottering Cross Secticn of Chaff Dipoles with Application 1o Com-
e municotions,” Proceedings |EEE, Aug. 1965.
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described by the uniform distribution of dipole orientations. In any event the mean radar
cross sections per dipole for both the horizontal and uniform orientations are employed in
subsequent calculations involving impuise and range-gated radar responses to various chaff
clouds.

To consider the radar return from each of the dipoles contained within an arbitrary
volume, we must first define a chaff dipole volume density. As noted previously we
assuiae that the number of dipoles falling within any ziven region v is a Poisson dis-
tributed random variable, N . We shall parameterize N, with respect to space coor-
dinates — that is, define a random process iu space by identifying N with each point
P(xy, ¥y» 2,) a8 follows, Letv, be the region defined with rispect to a Cartsian frame

Ax ‘Ax Ay Ay g 4 Az
v, = {(x.y z): Xy —2_.<.xsx 5 Yy - = sySy°+_2,zo \_z_gzsz +T}

E|
e
=
?;g’
%
-
=
3

and the volume encompassed by this region is

Avz=AxAydz %
%
Now, let N(v, ) be the number of dipo)=s contained within v_ . We assume that the mean value 3
of N(v, ), EIN(v, )}, and the limit «i the ratio of the mean value of N(v ) to the volume Av a8 :Z
thevolumeshrinkstothepom"Pe:nstandareoonﬁmmsﬁmcﬂonsofthespaoeooordimtee 4
We define g
m (vp} ":lS E{N (vp)}, (14) E%é_
and
v )
5@y 8 1im 200 as
Ax-0 =V
Ay =0
Az—~0

where & (P) is ‘he desired chaff dipole volume density. It should be noted that cur defiition of
chaff volume density avoids the usual difficuities of attempting to take ttae limit of a discrete
process {see, for example, Moore?). Although N(Vp ) is discrete so tlnt lim N(v }/Av cannot
exist, this is not the case for }im E{N(, )}/3v). 3

The choice for the chaff dipole density function presents a problem. A realistic model
for this function is not available; it depends on such parameters as the type of chaff used,
method of dispersing, and prevailing winds. Our analysis is confined to two basic models: an
exponentially increasing, semi-infinite distribution; and a unimodal distrilution which iritially
increases to a maximum value and then gradually decreases. Constant-density surfaces i{n
both cases are horizontal plares with the zero density plane at a distance h from the
radar.
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4Mom'e, R. K. ond Willioms, C. S., "Rador Retum ot Neor-Vertical Incidence,” Procsedings IRE, Vol. 45,
1957.
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The first model, hereafter referred to as the exponential model, is defined by

5(h') 23, [1-e ™ D] hghe — e
=0 h>h'
where

h = distance from the radar to the chaff cloud top,
§ (h*) = the chaff dipole volume density at the distance h' from the radar,
5= maximem volume density,

o = a parameter related to the magnitude of the density gradient, that is

[V 5 (h')rey | =08,

it should be observed that in the limit as a—~>, the normalized exponential density function,
§ (0')/s_, becomes the Heavigide unit step function. Hencc, this model also serves to describe
the uniform-density chaff cloud with an infinite density gradient ath'=h.

The other model, hereafter referred to as the Rayleigh model because of its similarity to
the Rayleigh probability density function, is defined as follows:

5 (h') = n a (h’ - h) exp [-%(h'-h)z] hsh an

=0 h>h'

n is the total number of chaff dipoles contained in the vertical cclumn with a unit
ores~ sectomal aren.

ais a parameter related to the density gradient and maximum volume density 5, by
the relationships

lvs (h')y ) =0 (18)

5,28 ) hrapay vz = nﬁ' as)

An important limiting case for this model is obtained again by allowing a—~*. The result

in this case is the Dirac delta function with intensity n. Hence, this model in the limit de~
scribes a surface layer of dipoles.
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Although both models as detatled above are assumed to have infinite extent along the
horizontal, such an assumption is uct critical to the analysis to follow. In reality, no chaff
cloud possesses either the uniformity or the infinite extent of the models postulated. It is a
simple matter to eliminate the infinite extent criterion by merely cutting off the cloud &t some .
digtance from the radar greater than the maximum range cell incorporated in the radar under
consideration. Whenever the chaff cloud has dimensions that are large relative to that ravge,
the cloud's effect on the radar will be essentially as modelled. Regarding the criterion of
borizontal uniformity, here again we are concerned from a practical standpoint with unifosmity
over that region seen by the radar. If the extent of the cloud is large relative to the observed
region, then the nonuniformity due to tailing off along the periphery can be discounted.

From a computational stanapoint, the use of the Rayleigh model is particalarly convenient.
The parame: r n alone determines the mumber of dipoles contained in the chaff cloud. Thus, «
could be allo\ed to change as the cloud evolves, but 2o long as n is constani the total number
of dipoles remains constant. No such conservation rule is applicable to the exponential model
with the possible excption of the infinite depth cloud, in which case an unlimited number of
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SR S G i AR

X
I

dipoles is involved. ;
As noted, arelates to the density gradient and the dispersion of the chaff cloud. It there- ;-{
fore constitutes an inverse age description for the cloud. Thus, o will be large immediately 3
after dispersal (high maximum density gradient) and will decrease as the cloud seitles (lower %
maximum density gradient). Since < is also rolated to the location of peak density in the Ray- =
leigh model, the value at any given time 7 after dispersal may be uetermined from the approxi- =
maticn E
a = (Vy 7y 32, (20} :;%
g

where V5, is the mean fall rate for the chaff dipoles.

E: The fact that a may be a function of time introduces nonstationarity end consequently non~

‘3 . ergodicity. We shall, however, be concerned with the properties of the chaff cloud during
measurement intervals that are very short when compared with the reciprocal of the time

: derivative of £n a. On this basis, we shall assume that the process is quagi-stationary in the

i sense that its statistical properties are essentially invariant during the measurement intervals.

This paper disregards two effects common to volume-distributed scatterers: multiple
scattering and shadowing. Since both effects become important in dense distributions, we shall
establish a simple criterion for the degree of rarity of scatterers such that both effects are
negligible. Multiple scattering arises as a consequence of the fact that the reradiated field
from each dipole is a linear superposition of reradiation of the primary incideat field as weli
as reradiation of the fields scattered by surrounding dipoles. Shadowing occurs when the pri-
mary field is attenuated in pagsing through intervening layers of scatterecrs before illuminat-
ing the deeper layers of dipoles. Both of these effects become prominent if the totality of the
scattered ficlds is of the same order of magpitude as the primary field. If such is not the
case that is, if the primary field predominates throughout the scattering region then quite ob-
viously multiple scattering can be disregarded. Further, if little energy is removed from the
primary field and reradiated as a scattered field (and little energy is dissipated thermally
within the scatterers), then the atienuation due to the presence of the scatterers of the primary
fleld as it traverses the scattering region may be neglected.
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L Since the fraction of the energy removad from the primary field and backscattered toward
E the radar is a good indication for randomly oriented scatterers of the relative magnitude of the
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: primary and scattered fields, we can obtain an upper limit on this ratio by considering the
sum of scatterer effective cross sections. That is, we can formulate our criterior by requir-

! ing that the sum of the solid angles subtended by the scatterer cross sections be small over

; any angular region considered. Hence, we cbtain the requirement

YL ot 0P
J j gé(r. 6 ¢)rzsln9drd¢>d8
47 12

DR

TR T,

<<, {21)
so+1.\.9 ,-r.oo‘Aqs
f sinf dg de¢
Y% %o
where
R, is the maximum distance range cell;
R, is the minimum distance from the radar to the scatterers; angular intervals (6,, &,

49) and {¢,, ¢, + 4¢) are arbitrary.

By considering angular intervals sufficiently small and applying the mean value theorem, we
obtain the requirement

R,
i 5(r.., ) dr << {22)

¥ 5(r, 8, ¢} is monotonic increasing and equation (22) holds along the direction of steep~
est ascent — that is, the direc .on determined by V 5 — then the inequality holds everywhere.
Therefore, if multiple scattering and shadowing may be disregarded along the gradient, they
may be disrega~ded everywhere.

For a nonmonotonic density such as the Rayleigh cloud, this criterion can be used tc ex-
amine the relevance of multiple scattering and shadowing in the vertical direction for R_==.
Inserting equation (17) into equation (22) and integrating, we ohtain the resuilts

Tn/4n<<1 h2R, (23a)

- |
Fne Y1RTM <t R, >h 20, (23b)

car w2
E ne "*M/42<<1 h<o. (23¢)

i
s e

Taking G = 0.33 A? and using criterion (23a), we bave

n < < 37.74/A\% 24)
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Considering X~band dipoies (A ~ .05 m), we find the result

n << 15,000/m? (25)

as a sufficient condition for disregarding multiple scattering and shadowing effects along the
vertical. Recognizing that n is the number of dipoles over a square meter, we cee that such
effects usually are totally negligible.

4. MEAN IMPUISE RESPONSE

4.1 Signal Return from a Single Scatterer

We consider first a radar transmitting a pulse P (t) toward a target with radar cross
section o and located at a distance d from the radar. The backscattered received power is
then given by

oG, G_ A"
P, (t) =P, (t-2_")___‘ N a2d
[ (417)3d‘ [«
=0 t<zg (26)

C

wher~. G, and G, are the gains in the target direction of the transmitting and receiving anten-
nas, respectively; d is the distance from the radar to the scatterer; and c is the speed of light.
For simglicity we shall assume that G, = G_= G; bence, G, G, = G%

Strictly speaking, equation (26) is correct only for contimous wave transmission, since
the width of the frequency spectrum is nonzerc in every other cas. and therefore the wave-
length A\ is not a constant. In addition the radar cross section and antenna gains are also
functions of the wavelength. Nonetheless, whenever the spectrum of the transmitted pulse is
narrow band, this equation provides a valid approximation to the backscattered power if we
insert for A the wavelength corresponding to the center frequency.

i{ the target considered is randomly oriented, the received power is also random. We
find its mean value by taking the expectation of equation (26) to obtain

_ F0232
P (t)=P, ( -?_d) GGN | 29
[ (47,)3‘3( c
@7
=0, t<2£.

4.2 Signal Return from Volume Distributed Scatterers

We assume, as stated previously, that the individuai scafterer locations are statistically
independent. Furthber, we shall agsume that the volume to be considered has a depth in range

that is large relative to the wavelength, and that the scatterer volume density is nearly

"'W
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constant over a distaace large relative to the wavelength. Under these constraints, the co-
herent return from the volume will be entirely negligible when compared with the incoherent
return’ We shall therefore concentrate on the incoherent return only.

e
o

g

Employing the dipole volume deusity function dz=fined previously, we now define a chaff
volume cross section, cg ,

R

o (. 6. $) =T, 5(r. I, ¢). (28)

where the subsgcript » refers to the common fransmit and receive polarization state. (Ai-
though no major modification is required, we shall not treat crogs-polarized transmission-
reception states in this report.)

A AT ST

I

We shall consider the signal return from a volume AV, containing, by hypothesis, N(AV)
individual dipoles. As before, N(AV) is a Poisson distributed random process. The incoherent
radar backscatter from such a volume is obtained by summing the contribution of each scat~
terer contained in the incremental volume. If the incremental volume subter.ls a small angu-
lar sector so that the antenna gain may be considered constant across the sector, the back-
scattered power is

Iy

Ll

fi i I ym u!
;'l,l‘u ) u“‘-‘*‘v‘-j'gljl

N(Av)
sp, (1) = FCE AN P, (t-d_i) I, @9)
(4 7,.)3 [ d:

iyl

I

1=1

T
R BRI

where di is the distance from the radar to the i'" scatterer. We assume that the dimensions
of the incremental volume are small relative to the mean distance to the radar; that is
d, >> VAV, then

b “;‘«‘y u.. ( |n|(, v‘ ISR o

G2 AZp, ( __2_d) N(&v)
AP_(t) = < € 30)
(im)3 gt
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where explicit dependence on the angles ¢ and? has been suppressed. Assuming the o, to be
distributed with mean a, and with m(AV) as the mean value of N(4V), we obtain for the ex~
pected value of AP, (t)

e

o AT ‘j‘}*fb“w

2 )2 _2d
G p,( 4

4P, (t) =

|
Y

o m(AWVa (31)
(4m3 dt K

) b i
i

SSiegm, A. ond Goldstein, H., “Coherent ond Ircoherent Scartering from Assemblies of Scotterers,” in Propago-
tion of Short Rodio Woves, Kerr, D. E., ed., McGraw-Hill, New York, 1951.
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Dividing both sides by AV, taking the limit as AV shrinks to the point (4, &, ¢) and using equa~
tion (15), we obtain

2d
o, e

'd_f;(t) - c

5(d 9, 9T 32)
dv (473 a* k %

Substituting equation (28), we have

o 2d
T, _owr (-2

dv (4m3

ag (d. 6, ¢) 33)

The mean received power scattered from an arbitrary volume V is then giver by

0 2
P(ty=2_ | b, ( -_"’_dy"c dv (34)
@3 Jy ¢l o

where o) and G are functions of location and aspect, respectively. Equation (34) is a general
expression for the mean backscatter from chaff but is not especially useful in its present
form. To carry the analysis further, we shall reduce this expression to a more tractable
form, but let us first clarify the use of equation {34) by considering several specific examgples.

4.2.1 Scattering from a Semi-Infinite Cloud

Consider the geometry shown in figure 9. An isotropic antanna of gain G is located at a
height h above the chaff cloud which has uniform .nsity and unbounded depth. A spherical
coordinate system with its origin at tha radar is used. In such a case, equation (34) becomes

A E:

_ G2 o9 A2 = p2n P, (t -_2_1) g
P, () = i f f f N €/ sinféd¢dfdr, (35) i
4=y 8 Jo r 3

where 8 = cos™! (-h/r) and we have asgumed a constunt cg so that it has been removed from
the integral. Integrating equation (35) in ¢ and 2, we have

_ G2 A2 [° r
B, (t) =2 J‘ P, (:_if)i S0 ar (S6)
2(am? Y, Vo€ 2 g3

Introducing a change of variables 2r/c = 7, and using the fact that P, (t ~ 2r/c) = 0 for
t 5 2r/c, we obtain

- G2 o0 A2
P (ty="' f P (t-7) -1_—33.1 dar. @7
Am2 ¢ Jmse 2 ¢ 3
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Figure 9. Cross section of a semi-infinite chaff cloud.

Equation (37) can now be recognized as a superpnsition integral with P, (t) as the driving func-
tion and

G A2 g0
PE(y=c ~ o f1 2h 1] 2h
@m2c |2 € g c
(38)
=0 ts2h

as tha response to an impulse function. We should note that equation (38) is not formally cor-
rect, since by postulating an impulsive transmitted waveform we have violated our premise
on the extent of the illuminated region. However, the impulse response function does provide
& valuable tool, since 2 solution may be obtained by couvolviug the bagalie response with any
transmitted waveform that has sufficient spatial extent so that this premise is not violated.
Further, convolution with a transmitted waveform with a spatial extent of several wavelengths
will not, in genseral, provide a resnlt significantly different from the impulse response func-
tion. Hence, we may coasider the impulse response function as an approximate solutiou to the
chaff backscatter problem whenever the transmitted pulse has a duration very short as com-
pared with the impulse response but a spatial extent of at least several wavelengths.

If we introduce another variable d = c¢t/2, which may be interpreted as the distance from
which the signal is arriving at time t, we have
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Pe(t) = G? A7 _o_g_ ('%)
i (4m2 | [ct?

39)

h
= 0, =21
dZ

Note that the first part of this equation is a function of physical parameters, and the
second part is a function of time and specifies the shape of the returned pulse.

4.2.2 Finite Thickness Chaff Layers

The returr for a finite thickness uniform density chaff cloud follows directly from equa~
tion (39). If the upper edge of tbe chaff layer is at b, and the lower edge at hz, then

- hl
Pi(t)=0. —>1 (402)
G2 A2 o0 h h
Pl(y=—__ 12 _1__( __‘), e (40b)
(4m? ct? d
Gt A2 00 h h\!
Pl (t) = i [_1_ (1 -_1)- (1 __3)J
4m? Let? d d
) o (40c)
=02>\ 9% 4 [E_hx h2<1
(4m? ct2ld d a7

There is the regular range delay until the pulse hits the cloud. Then before the pulse
reaches the trailing edge at h,, the return is the same as that from a semi~infinite cloud; and
after tho leading edge of the pulse has passed through the chaff layer, the return is given by
equation (40c).

4.2.3 Varying Density Chaff

We can find the differential power return from a chaff layer of infinitisimal thickness by
allowing (h, - h,), equation (40c), to shrink to dh giving

2432 oY .
dP3 (1) - GA T 1 gy (43)
(4m? ct? d

The volume cross section cg » which up to now has been treated as a conctant, can ncw
be treated as a variable when we integrate both sides of equation (41). The returned power
from a varying density chaff cloud is then
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Having examined some simple examples and introduced the concept of the chaff impulse
respcnse, let us return to the more general form of equatiop (34). We note that for those
dipole orientation distributions considered in section 3, o, has the form A2 C, jcos 6] k(M
(In the borizontally polarized, horizontally distributed case we may use the approximation
7. =0.32A2,) We shall consider hypothetical antenna gain functions of the form G(6) =
é:) jcos 9l£. Equation (34) becomes

2 4 2n P, (t —2 r)

- G2C A (% [T t \" 7 f

P (t)= °4 a > j' f J. __z_i._ lcos 4| e sinf 8 (r, ) dpdb dr, (43)
(47) h, “8 o T

where

5(r.0)=8 {1-exp[-ar(cosf-cosB))}, 6280

(44)
=0, é<@
for the exponential chaff model, and
f ar?
E(r. @) =nar (cos & - cos B) exp l_— (cos@—cose)]. 629
(45)
= 0. 8<o
for the Rayleigh chaff model, with
0 Ih/e) > 1
8=
cos ! (-h/r) Ih/r] <1, and
h_ =max (0, h).
Integrating with respect to ¢ and using an impulse driving function, we have
cG2IA'C 2 7
Pf (y=_2__7 (_g.) |cos 8]2{’"‘ sin2§ (2. 9) da86. (46)
4(4m2 \ct 2
Returning to our previous notation, that is, h* = ~ct/2 cosé, we obtain
c G2 24 4x+3 ct/2
P! (1) =__°_E’ (_2) J lh'l’l’"‘ § (h, 'y dh', (47)
4(am? ¢t a

where d_, = max (h, -ct/2). Substituting d = ct/2 and defining R(\,n) = G2 Mcn/'i“”)’ we
obtain
26
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3 (d) =R | ozt o, hey dh - (sgn d )k hex* 2 5 (h, by dhe
g2l+x+s b A
where {48)
1 for d,>0
sgnd, =
-1 for d <0

Upon substituting for the exponentially varying chaff density, we obtain an integral that can
be reduced by successive iutegration by parts with the following result:

d . +1 h < i
J‘ h's (1 - e-a.(h -h)) dh’ = d* s ste? + e—“(d'h) i_! i— (49)
o s+1 s = il gt

A similar application of successive integration by parts results in an iterative solution
when the Rayleigh chaff density is substituted. If we define

d
I(s) = f h's (h' - hy e=a/2 (' = 2 ghe. (50)
(+]

we obtain the iterative formula

=2
1<s>=L,+sh="¢+iZh* I(s-i-2), (61)
G

1=0
where

L = eeh’/2 _ g-as2(d-ny? = 1 (0), s=0

= — d% e~9/2 (d—h)"

d
L e~a/2(h*-m)? g

Vel o] o)

We shall exemplify the use of these formulas by considering four hypothetical antenna
natterns: an igsotropic pattern, two teardrop lobe structures, and a hollow cone pattern which
may be represented, respectively, as

©
"

G} = G’;'o isotropic pattern; {52)
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G2=Glycos* (f) 036 <7, double-lobe; (53)

Gl =G2, cos* g %s @ <m single-lobe;

(54)
08 <X
2

G2=4GE, (1 -cos?b)cos??@ .72159511 holl :w cone,
(55)
=0 0s9<Z
2

where G,,, G,o0 Gaps and G,, are the peak power gains of the assumed antennas.

We obtain the chaff impulse response for a radar system employing these antenna when
both exponential and Rayleigh cloud models are considered and the chaff dipoles are uniformly
oriented for both polarization states, or the dipoles are horizontally distributed and the trans-
mission-reception polarization is horizontal. We alsc consider the combination of an isotropic
antenna, horizontally distributed chaff orientations ard a vertically polarized wave. The spe-
cific impulse responss functions obtained in each case are emumerated in sppendix A. The
results are also plotted as figures 10 through 17.

1t should be observed that the impulse response functions for chaff return differ signifi-
cantly from those obtained from ground return.® While the impulsive response from surface-
distributed scatterers obtains its maximur~ value initially, the impulsive response from chaff
rises to its peak value only after the inciaent wave has penetrated some non-zero depth into
the scatter volume. The amount of retardation of peak return relative to initial return depends
upon the distance from the radax to the chaff cloud and the specific model considered. In
ganaral, the impulse response for chaff peaks most rapidly when the radar antenna ie narrow-
beam and the magnitude of the chaff cloud density gradient ig larga, It may further .: ob-
served that when the chaff dipoles assume a horizontal orientation and the polarization is
vertical, the net effect on the impulse response is equivalent to ihe effect obtained by using a
narrower beam antenna; that is, backscatter from the vertical direction is accentuated where-
as returns from lateral directions are strongly attemueted. Thus, a horizontal orientation of
dipoles with vertical polarization increases the rapidity with which the impulse response peaks,
with the consequence that the chaff cloud response more closely resembles the surface scat-
tering of rough terrain.

Of perhaps even greater importance than the chaff impulse response is the chaff range-
gated response that is, the return to the radar from a specific range resclution cell extending
from d to d + Ad ag the radsr altitude h is allowed to vary.

The mean power return from chaff at time, t, is given by the convolution of the trans-
mitted pulse, P,, with the mean impulse response

6Edison, A. R., Moors, R. K., and Womer, B. D., “Radar Return ot Near-Verticol Incidence, Summory Report,” Univ.
of New M.xico Engineering Experiment Station, Tech. Rep. EE-24, Sept. 1959.
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Figure 10. Impulse response functions at h=100m
for an isotropic antenna pattern ond uniformly distrib-
uted dipole orientations (exponential clouvd model)
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B.(y-= j P, ( - -C_) P (r)dr. (56)

h

If the transmitted wave amplitude is constant with P, (¢) = P, , and we are concerned only

with the return contributed by dipoles lying at ranges between d and d + Ad from the radar, we
obtain ford 2 h

L P P, T R

AL A

_ d+Ad
BP, (d) = J P,Pi(rydr, (57)
4

which becomes, for Ad, sufficiently short

AP, (d) = Ad P, P? (d). (58)

When rewritten as the ratio
&P, (dy/P, = Ad P! (d), (59)

we obtain the chaff backscatter loop attemuation for the range cell (d, d +A d).

Considering the hypothetical antenna patterns and dipole orientations previously intro-
duced, we have plotted representative chaff backscatter loop attenuation functions versus
radar altitude as figures 18 through 27,

5. PROBABILITY DENSITY FUNCTIONS FOR CHAFF BACKSCATTER

: Since, by hypothesis, th~ chaff dipoles are randomly and independently distributed and
randomly oriented, the static.tics of the scattered field are identical with those for the sum of
sine waves with random identically distributed amplitudes and phases. It is well lmown that
such a process is asymptotically Gaussian when the mumber of constituent waves of the sum is
la.rge.7 The envelope of a Guassian process will be Rayleigh distributed when it is defined for
: narrow-band processes in the manner of Rice’ and when the brcader definition of envelope as
the gbsolute value of the complex-valued function obtained by adding to the given function i
times its Hilbert transform is used. Tbus, we should expect that the envelope of the chaff re—
’ turn procegs will be Rayleigh distributed and that the amplitude of the squared and low-pass
filtered reiturn will be exponentially distributed for a sufficiently large number of chaff dipoles
contributing to the return.® Hence, the radar cross section for chaff which is proportional to
the backscattered nower should have a probability distribution which is asymptotically expo-
nential as the pumber of contributing dipoles becomes large.

7Rice, S., “Mothematical Anclysis of Rondom Noise,” Bell Systems Technical Joumal, vol. 23, 1944 ond vol. 24,
1945.

8Borison, S. L., "Statistics of the Rodor Cross Section of o Volume of Chaff,” MIT, Lincoln Laboratory, Group Rep
1965-10, 1965.
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The fact that the instantaneous voltage variate of the return signal is Gaussian in the
limit is a consequence of the central~-limit theorem of probability thecry and is not dependent
upon the distribution of the component amplitudes of the individual dipole returns. The rate
»¢ which this limiting form is approached, however, does depend on this distribution.
Goudsmit and Schiff have examined the finite number of scatterers case and have found the
Gaussian distribution to be a good approximation wher: ranges to the contributing dipoles are
all equal, even when the pumber of dipoles equals 4 or 5. When the number is 10 or more,
they found the differences are completely negligible’ Borrison has also examined the use of
the exponential law for describing the chaff radar cross section and concluded that the ap-
proximation is good when the average number of dipoles in the radar resolution volume is
greater than two or three.?

Since the exponential probability law is a single parameter distribution, it is completely
determined by its mean value. Thus, we may represent the first order distribution for chaff
radar cross section as

- [+]
P(o,) = ‘16 e 7, (60)
n

SSiegert, A. ond Goldstein, H., “Coierent and Incoherent Scottering from Assemblies of Scotterers,” in Prepoga-
tion of Short Rodio Waves, Ker, D. E., ed., McGraw-Hill, New York, 1951

8Borison, S. L., “Stotistics of the Rodor Cross Section of @ Volume of Choff,” MIT, Lincoln Loboratory, Group Rep

1965-10, 1965.
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For such a distribution, we note that the variance equals the square of the mean, and that in-
cluding more dipoles in the radar resolution cell by increasing the resolution cell size does
not narrow the relative distribution width, since the mean to rms ratio is constant. It should
be observed that the most probable value of backscattered power is zero. The returr power
will be less than haif the average value 29 percent of the time and greater than twice the aver-
age 14 percent of the time.

0, A R, YU, o g

As the radar moves relative to the chaff cloud, the path lengths to the individual dipoles
will vary. The doppler shifts thus introduced will, in general, be different for each dipole
scatterer; hence, frequency dispersion, rather than mere frequency shift, will result in a re-
turn signal that is noise-like and narrow-band when the transmitted signal frequency is greater
than the maximum doppler shift. Successive samples obtained by a pulsed radar will generally
be correlated, the degree of correlation for a fixed sampling period depending on the width of
the doppler dispersion spectrum.

N e g < g

The second order probability density for sample powers P, and 13'2 with sampling interval
7 becomes

: =(Py *P,) Ppr(1-p) 2vp P, P
E, e o( 1%2 (61)

P, P, = .
P, (B, P 7) P2 (1-5) P, (1-0)

where P, is the average returned power, and the correlation coefficient o(7) is defined by

T

F(7T) =EP_2-_§, 62)
R

e
fild ity

and I, is the zeroth order modified Bessel function of the first kind. For 7 sufiiciently large
so that

gl |

Ll

P,P,~P, -P, =P3. (63)

n
o i

e
e "‘IHI W

we observe that p (7) ~0; and, as expected, we have

il Nt

Py (Pp P2; P (Pl) P (Pz) 64)

That is, when tbe sampling interval is sufficiently long so that the correlation coefficient is
zero, the sampled refurn powers are not only uncorrelated but also independent.

R IR i b

m
T T T A LA T

b

6. POWER SPECTRAL DENSITY

Gk Sl

TN B

A

Of paramount importance in determining whether the return powers from successive re- =
turn pulses are uncorrelated is the width of the power spectral density. The correlation of '
detected pulse amplitude from pulse-to-pulse afiects the required integration time to achieve
a given detection probability; for high detection probabilities, the greater the correlation, the
longer the required integration time.
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The successive range-gated pulse returns from chaff may be considered analogous to the
sequence of sampled values obtained by periodically sampling a random process. As we have
previously noted, each of the dipoles may be thought of as a simple harmonic generator, trans-
mitting with random phase and amplitude and with a frequency determined by the radar trans-
mission frequency and the doppler shift induced by its motion relative to the radar. The
ensemble of returns as seen at the radar comprises a narrow-band, noise-like process, the
decnrrelation time of which is inversely proportional to its bandwidth. If this decorrelation
timv is short compared with the radar pulse repetition period, successive pulses will provide
independent samples.

Although the chaff cloud drift velocity and dipole rotations are major contributors to the
doppler shift for a stationary radar,’ these factors are not significant when compared with
the frequency shift induced by the rapid movement of the airborne radar altimeter. There-
fore, in calculating the power spectral density, we shall consider only the radar movement.

In calculating the chaff return power spectral density we note that the doppler frequency
ghift is the same for signal returns from dipoles whose position vectors® intersections with
the radar velocity vector form equal angles (see fig. 1). The amount of power returned at any
doppler-shifted frequency depends therefore on the antenna gain in the specified direction, and
the chaff radar cross section in that direction and at the range-gate distance from the radar.
The locus of points contributing to the power spectral density at any specified frequency within
the doppler band describes a circle or an arc of a circle, the locus being the projection of a
cone on that portion of the range gate sphere lying within the chaff cloud.

In determining the doppler power spectral density function we cncern ourselves with the
frequency band referenced to the transmitter frequency f,. Ii the maximum doppler shift is
less than f;, the return signal is narrow band and two distinct bands of frequencies, one posi-
tive f,, the otber negative f_, are digcernible. Thus, with respect to the doppler frequency
variable f, we may write f, = x(f  + f)).

The incremental power density due to return from an elerment of arc lying along the pre-
scribed locus of points may be written

dP (fy) ~ a2 (8) G (6. ¢) ds, (65)

where, in spherical coordinates,

ds=/sin‘8d¢? +d8?

The power density from the entire locus of equal doppler shifted points becomes

P (f) ~ f 0% (6) G2 (9, ¢) VsinT 8 d ¢? + d 62, (66)

where C defines the path of integration.

9\'Ic:mg, J. L., Reed, 1. S., ond Koprielion, Z. A., "A Model for Rodor Echoes from a Rondom Collection of Rotating
Dipole Scotterers,” USCEE Report 159, Jan. 1966.
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Defining 6, as the angle between position vectors to the contributing dipoles and the radar

velocity vector, we observe
of ¢t
90 = cos 5V fo X (R7)

f, is the doppler ... aency shift,

where

R

f, is the transmitted frequency (center frequency for a narrow baad signal), ard

V is the magnitude of the radar velocity.

The iocus of points C, defining the integration path, may be found by setting the normulized
inner product of the contributing dipole position vectors and the radar velocity vector equal to
cos 80. Hence, we obtain

= cos ¢ = (cos 6 + cos & cos y)/sin b siny, (68)

cos ¥y +cos 8 cos 8 -
b= 4 8 g [sin? 8 sin? ¥ - (cos §, + cos 8 cos A"V d6.  (69)
sin

Ingerting equation (69) in equation (65), we have

” o (&) G (9, ) sin8sinf d &
P (fy) ~ L , (70)

Vsin? 8 - 2 cos g, cos y - cos? y - cos? A

4

where 8 = cos™ (-h/d).

g
LM

For ¥ =n/2, horizontal flight, this becomes

LUREL

{1 )

i 0'?1 (8) G (6, ¢) sin 8 sinf, db
p(fn)«-f .

(71)
8 v/sin¢ @ - cos? 6,
For vy = 0, vertical flight, we observe that 7 ~ 6 = 6, and obtain
=
4 27
P(fD)'vaf’7 (7 -6,)sin 8, J‘ G2 (7 =-6y ¢)de (72)
()

A ot Stk e B s o b st o ot e gt

where < 0, < cos™! (b/d).
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For G independent of ¢, as in the cases previously introduced, we have
P (fy)~ ol (m-6,)sin§, G? (7 - 6,)- (13)

This becomes, for a uniform density chaff cloud with uniformly distributed dipole orienta-
tions, with the range gate completely submerged, and with an isotropic antennu,

o f
P (fp) ~ sin EOS—I (i-v—%..)]

c2 §2
~ 1= °=~1-fn/fm.

2 £2
4V- £

(14)

where £ is the maximum doppler shift.

It should be observed that the calculated chaff return power spectral deusity is au even
function ith identical doppler spectra appearing as mirror images at both +f  and -f_ on the
frequency axis. Considering the case of vertical flight, we have plotted the doppler spectrum
for an isotropic radar antenna, Rayleigh chaff cloud, and uniform dipole orientation distribu~
tirn in figure 28. Figure 29 is a similar plot for a cos? € antenna pattern, Rayleigh chaff
cloud, and uniform dipole orientation distribution.

o

.00

0,50

POWER DEHSITY P(15)}/Pyax (fo)
—

19,00
3

-0.7S  -0.50  -0.25  0.00 0.25 0.50 0.7 TS
NORMALIZED DOPPLER FREQUENCY {p/fog

Figure 28. Doppler spectral density function for range-gated response at d = 100 m with on iso-
tropic cntenna pott- n (Royleigh cloud medel, a = 0.001) uniformly distributeddipole orienations.

1t is relevant to the problem of chaff detection to observe that the return signal to the
radar will have the maximum doppler frequency shift and minimum frequency dispersion when
the radar first encounters the chaff cloud. At this time, the envelope coefficient of correla-
tion from pulse to pulse will be nearly unity. After the radar range gate is compietely sub-
merged in the chaff cloud, the frequency dispersion will reach 2 maximum and the pulse to
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pulse envelope correlation will reach a miniraum. ¥or a radar with a high loop sensitivity
= relative to the chaff return loop attemation, the initial detection probability will be lowar
4 than that obtainable from irndependent pulse returns. Convergely, for a radar with low loop
2 sensitivity relative to the chaff return loop attenuation, the initial detection probability will be
3 higher than that obtainable from independent pulsas.
3 7. CORRELATION YUNCTION
i To calculate second-order probabilities for chaff return powers, we must firat obtain the
5 coefficient of correlation at the sampling interval. Since the correlation function for predetec-
E: tion powers is the same, except for a scale factor, as the correlation function for voltages after
f é‘i square-law detection, we cotain both results simulteneously. lecail that the correlation func-

tion of the output of a full-wave, square-law device with a gaussian input becomes!°

oy

__ R () ~oh+ 2R (7). (75)
) "'i where R_ (7} is th2 input correlation function ando2 =R, (0). The output coefficient oi
- : correlation becomes
g R () -R (x) RI(7n
' g py(‘r):y &' =_*" (76)
- ] R, (0) - R, =) ot

. wDavenpon, W. B. and Fsot, W. L., An Introduction to the Theery of Rando n Jignals cnd Moise, MzGraw-Hill, New

= H York, 1558.
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which may be rewritten by using thc Weiner-Khintchine relations as

py('r)'vf Jpx(f')px(f-f')ezﬂi*fdf'df. (77)

That is, the cozfficient of correlationfor the output of a square-law device is the normal-
ized Fourier transform of the self-convolved power spectral density for the backscattered
signal. The coefficient of correlation for the output of a square~-law device followed by an ideal
low~pass filter is the coefficient of correlation for sampled refurn powers and becomes

on 7 .
p(r>~_{ [ P, ()P, (f-f') e?" 71 df" df. (8)

Thus, from a knowledge of the deppler dispersion spectral density developed in the previous
section, the use of equation (78) allows us to readily calculate the return-power coefficient of
correlation.

In the case of the uniform density chaff cloud with uniformly distributed dipole orientations,
with the range gate completely submerged, and with an isotropic antenna we may apply equation
(78) directly to obtein
2@y

W fm 1')2

p(T)= (79)

where J , 18 the bessel function of the first kind of order one, and p (7) is the coefficient of
correlation for return-power samplas separated by the time interval 7.

For the more general cases invoiving nommiform cloud densities and/or anisntropic an-
tenne patterns, the direct application of equation (78) will not usually be possible. In such
cases, the usge of fast Fourier fransform (FFT) numerical computing technique as described
by Ceoley et al!* may be appropriate. The computational procedure involves the self-
convolution of the return-signal power spectral deasity, the separation of the resulting spec-
trum into low-frequency and high-frequercy parts, and application of the FFT to the low-
frequency part.

Considering the examples used in the previous section, we have emplcyed the FFT tech-
nique and plotted the power correlation functions for the radar height ranging from initial
entry of the range cell into the chaff cloud to the total submersion of the range cell in the
cloud. ‘The correlation function ior a vertical flight path, uniform dipole orieuntation distribu-
tion, Rayleigh chaff cloud, and isotropic antenna is plotted as figure 30. Figure 31 is a similar
plot for a cog?s antenna pattern. Both plots are mean adiusted to zero and the variance at
each height normalized as in figures 23 and 24, respectively.

13Cooley, J. W, Lewis, P. A, ond Welch, P. D., “Application of the Fost Fourier Tronsform to Computation of
Fourier Intequals, Fourier Series, and Convosution Integrals,” IEEE Trons, Audio ond Electrogcoustics, vol.
AU-15, No. 2, June 1967.
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From figure 30, we may observe that approximately 5(c/2V) rf periods must elapse be—
tween essentially uncorrelated samples when the radar is 75 m above the chaff cloud. After
the radar has penetrated into the cloud a depth of 100 m, however, approximately four essen-
tially uncorrelated samples may be obtained in the same time interval. Hence, if the detection
process involves the incoherent integration of a number of successive pulses and the pulse
repetition period is shorter than 5{c/2V) rf periods, the fluctuations abcut the mean of the
integrated process will be considerably greater at a height of 75 m than at ~100 m.

8. SUMMARY

In this report, we have provided a model for chaff sufficiently general to characterize a
diverse set of distribution geometries. Simultaneously, we have retained the requisite sim-
plicity of description so that the methodology of specific calculations is not unnecessarily en-
cumbered. We have introduced and developed the concept of the chaff impulse response, noting
that such a function ig theoretically fictitious, but recognizing it as a practical approximation
for chaff backscatter to a short-pulse radar. A significant differencc hatween the delay time
to peak for the chaff impulse response as compared with the rough suvface scatter impulse
response has been noted.

We have also examined the response to a chaff cioud as viewed from a fixed range cell as
the radar moves relative to the cloud. The probability density functions of such a signal have
been reviewed, and the spectral density function for this signal in consonance with our chaff
cloud model has becn derived. Considering square-law detection of this signal, we have ob-
tained the correlation function of the detector output and exa:nines its fluctuation rate as the
positicn of the radar above and within the chaff cloud is vavied.
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GLOSSARY OF TERMS

a = radius of the circular cross section of a thin wire chaff dipole.
C, = proportionality factor for maximum value of the ratio 5, N2,
¢ = speed of light in vacuo.

d =range gate nominal distance, distance from the radar to chaff dipoles con-
tributing to the return at a specified time.

Ad = incremental distance, depth of the range resolution cell.
E {-} = statis...al expection operator, -
FFT = fast Fourier transform numerical computing technique.

= frequency.
fp, = doppler frequency shift.

fou = maximum doppler frequency shift.
f, = frequency of transmitted wave {center frequency for a narrow band signal).
G = aatenna power gain.
G, = peak value of antenna power gain.
G, = receiving antenna power gain.
G, = transmitting antenna power gain.

i = distance from the raodar to the chaff clowd top (positiva when the radar is
gbove the cloud).
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h’ = a vertical distance measured from the radar.
4 = length of chaff dipole.
m (-} = mean value functinp of a stochastic process.

n = ‘otal number of chaff dipoles contained in the vertical column over each hori-
zontal unit area.

N, =8 Poisson distributed random variable, the number of chaff dipoles contained
in region v.

N(v,) =2 Poisson process specifying number of chaff dipoles contained in a region
centered on point P.

P_ = backscattered received power, square of envelope of the return signal.

P? = chaff impulse response function.

P, = transmitted power, the square of envelope of the transmitted signal.
P_(f) = power spectral density function of the random process, X(t).

p (x) = first-order probability density function of the random variable, X [stationary
random process X(t)]

P, (X;. X,) = second-order probability density function of the random variables X, and X,
[random process X(t, ) and X(¢,).

R (A, 7) = a function of the waveiength\ and the polarization state 7

cGZ At C,

RA %) 5 .
@ 4 (4 7)?

R, (7) = correlation function for the stationary random process X(t).
t = time variable.
Vv = magnitude of radar velocity.
. Vey = mean chaff 3 speed.
i a = a configuration parameter related to the chaff cloud density gradient.
v = flight angle between the vertical and the radar velocity vector.
$ = chaff dipole volume density.

ém = maximum chaff dipole volume density.

& = elevation angle of a radar-centered spherical reference frame.
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8' = elevation angle of a dipole-centered spherical reference frame.

A = nominal wavelength (wavelength associated with the center frequency of a
narrow band signal).

p (1) = coefficient of correlation of a stationary random process.
o = monostatic radar cross section.
T = mean value of the monostatic radar cross section.

3, = mean value of the monostatic radar cross section for a horizontally polarized
incident wave,

G, = mean value of the monostatic radar cross section for a vertically polarized
incident wave.

c'g = the chaff volume radar cross section for a n polarized incident wave.

v, = standard deviation of random variable X [stationary random process X(f),
ol =R,(0)]
X

7 = time interval between successive samples, the pulse repetition period, the
elapsed time simce chaff dispersal.

¢ = azimuth angle of a radar-centered spherical reference frame,
¢' = azimuth angle of a dipole-centered spherical reference frame.

¥ = a uniformly distributed (0, 2n) random variable, a random angle of rotation
measured in a horizontal plane.
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UPLIMRIAE

APPENDIX A. IMPULSE RESPONSE FUNCTIONS

Following are integrated expressions for the impulse response functions developed in
section 4 and plotted as figures 10 through 17 (body of report).

A-1. Exponential Cloud Model 5 = 3_ (1 - e=®(h' -))

Following are mathematica! derivations for uniform distribution of dipole orientations or
horizontal distribution of dipole orientations with horizontally polarized wave
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A-1.5 Horizontal Disiribution of Dipole Orientations with Vertically Polarized Wave —

Isotropic Antenna
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‘ Following are mathematical deviations for uniform distribution of dipole orientations or
3 . horizontal distribution of dipole orientations with horizontally polarized wave
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A-3. Conclusion

B

Although the exponential chaff cloud model leads to an inverse square range attenuation
law in the limit h~-, the Rayleigh chaff cloud model is bounded shove by an inverse cube

range attenuation law. In this respect, the Rayleigh model more closely resembles surface
distributed scatterers.
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