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I: INTRODUCTION

F THE PRIMARY responsibility of the air traffic controller

is to insure the safety of the vehicles under his control.

He does this, usually, by providing adequate separation at

all times. What is adequate separation? The answer to this

question is coming under increased scrutiny as the number of

vehicles in the air increases and as efforts commence to

I: automate the controller's task. In terminal areas, partic-

ularly, techniques for increasing airport capacity, such as

closely-spaced parallel runways, curved approaches, speed

control, and V/STOL operation, are limited, ultimately, by

the closeness with which vehicles are allowed to approach

each other. Flight paths must be such as to make most

efficient use of the limited airspace available without

incurring an unacceptable risk of collision. Very often

the actual or proposed flight paths of two vehicles are

such that the relative separation vector follows a compli-

cated curvilinear path with no well-defined point of closest

approach. A systematic design of new procedures, then,

requires a quantitative relation between any prescribed set

of flight paths and the risk of collision.
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There are at least two ways to go about assessing collision

risk between aircraft in motion: worst case analysis and

statistical analysis.

A typical worst case analysis combines initial position

and velocity uncertainties, pilot control uncertainties, and

possible changes in flight path due to pilot or controller

intervention to determine the limits of the airspace within

which the vehicle may be located in the time interval of interest.

A conflict of volumes for two aircraft indicates that a collision

may occur; and a warning is issued. This type of analysis is

particularly well suited to a real-time collision warning system.

Since it makes no assumptions about pilot or controller inten-

tions, it can handle VFR as well as IFR traffic. But because

great latitude must be allowed for the intentions of VFR air-

craft, the volumes calculated expand rapidly in time. This

limits the period of applicability to the order of seconds of

time. Therefore it is usually impractical to use worst-case

analysis to design most terminal or enroute traffic patterns; its

major utility is in detecting and resolving potential conflicts

in real time.

The statistical analysis of collision risk assumes that the

pilot will proceed approximately along the path for which he has

obtained clearance from the controller, and that ýhe controller

will not direct sudden, unsafe maneuvers. For these reasons,

the method applies well to IFR traffic over a period of several

minutes or even hours. The method has two aspects: (a) the

collection and analysis of data to determine the statistics of

-2-



vehicle position and velocity deviations from the prescribed

path, and (b) analysis of the distributions thus obtained to

give the probability of collision. The first aspect requires

combining equipment performance estimates with the results of

3 2pilot-vehicle simulations2. Very often the only information

obtained about the distributions are their variances. As a

result, the second aspect, which this paper treats, usually

employs probability distributions based on analytical con-

venience rather than fact. Nevertheless, a series of analyses

3,4,5,6
, based on assumed distributions, have developed risk

estimates for parallel airways and, recently, for parallel

runways7. A large number of cases, however, cannot be handled
with present theory. Present theory deals directly with air-

craft flying parallel, straight-line paths, and cases reducible

to that. It cannot handle curved relative paths, ascending or

descending airways, or crossing airways, although such cases

are very common in the critical terminal areas in which most

of the present congestion occurs. It is the purpose of this

paper to provide the theoretical basis for calculating collision

probabilities from the statistics for any two given paths in

space. It is hoped that, as data are gathered for better

definition of the distributions, the formulas here presented

will assist in the development of improved terminal area traffic

procedures and rules.
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STATEMENT OF PROBLEM AND OF ASSUMPTIONS
Assume that two aircraft start on prescribed flight paths

at time t 0 . Due to navigation and control uncertainties the

actual paths deviate from the prescribed paths. The question

is: what is the probability of collision from time t0 to some

later time, t1?

The following assumptions are made:

(1) All possible flight paths are random samples from

ensembles of known statistics; the means of the

ensembles are the prescribed paths.

(2) Each vehicle may be represented as occupying a

bounded, closed region of space.

(3) Vehicle position is a differentiable function of time.

(4) The mean separation is always large compared to the

diameter of the regions occupied by the vehicles.

The first assumption is the basis of the statistical-

probabilistic analysis _f aircraft collision hazards; its

k advantages and disadvantages already have been discussed.

The second assumption is needed to define a collision

mathematically. But it is more than a mathematical nicety, for

by appropriate selection of the vehicle volumes one may take

account of wake turbulence, or calculate near-misses or air-

space conflicts instead of actual collisions.

The third assumption is justified by the finite accelera-

tion of aircraft.

-4-



The fourth assumption distinguishes collision'analysis from

interception analysis. It is well justified in practice since,'

by assumption (1), the mean separation is determined by the pre-

planned flight paths, and these, it may b6 assumed, allow a

separation that is large compared to vehicle dimensions.

Ii
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ANALYSIS
Probability of Collision

It is desired to find the probability of at least one

collision between the two vehicles in the interval t 1 - to.

(More thah one collision, although practically impossible, is

not explicitly 6xcluded by the assumptions. To do so would

make the use of probability distributions extremely complicated.)

Let .N be the number of collisions between the two vehicles in

time t - t The desired probability is P[N - 1]:

P[N 1] = P = 11 + P[N = 2] + P[N = 3] + ---

The terms P[(N = 1)0(N = 2)], etc., do not enter because N

cannot have twolvalues at once.I,

Instead of calculating.P[.N 11 directly, it is easier

to approximate it by N, the average of N taken over a large

number of trials' which are •.dentical except for statistical

fluctuations in the two paths. (The tilde (N) above a quaitity

indicates the ensemble average of the quantity; a vector is

indicated by a bar - above the corresponding scalar magnitude.
A

The terms mean, average,, expected are used interchangeably in

this paper to'refer to the expectation value of a random

variable.) By definition, N, is the mean of the probability

.. distribution P[N = i]. That Is, N = O.P[N = 0] + 1.P[N = 1]

+ 2-P[N = 2] + 3.PEN = 3] + *... The approximation to be

used is P[N 1 1] N. The error in the approximation is, with

P[i] written for P[N = i], i = 1,2,3,'---
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c0 0 00r N -P[N > 11= iPi- P~il (i-i) P [i]
i=1 i=1 i=!

00 00

= iP~ +1] < iP[i] a
1 1

where a _ P[i + 1]/P[i]

00

N- [ 1 E i Pij'a
1

I
< i P[N>_1la 1 , since P[11 = P[N=I]< P(N>_1].

The percent error in the approximation is
C0

- P[N > 1)/P(N > 11 ia =a /(l - a)
i=l$ Fassuming, a < 1.

The percent error is small provided only that a is small.

The ratio a is just an upper bound on the probability of N+l

collisions, divided by the probability of N collisions. The

condition on a is assured by qualifying assumption (1) as

follows: The ensemble statistics are such that the probability

of N collisions between the two vehicles in time t1 - t0 is

large compared to the probability of N+l collisions, for N>O.

The problem, then is to calculate N, the average number

of collisions. In order to do this, it is necessary to make

precise the notion of collision.

-7-



Description of "Coil ision Surface"

By assumption (2), each of the two vehicles may be repre-

sented as occupying a bounded, closed region of space, say

V1 and V2 . The center of volume of V1 is defined as usual to

be ( fv=FidV / fVjdV,) and so also for V2 and r 2 "

The position vectors p1 and P2 must have a common origin.

The collision surface, Sc, is now defined as the locus of

r 2 obtained by translating V2 such that V2 and V1 have one or

more common boundary points but no common points that are not

boundary points. In other words, the collision surface is

the center of the second vehicle when translated without rota-

tion to touch but not penetrate the first. A two dimensional

picture of a simple collision surface is given in Fig. 1.

Note that the orientations of V1 and V2 , and therefore the

shape of S., may vary in time. Also, Sc is the boundary of a

region Vc, which contains rl. Finally, it should be noted that

the collision surface obtained by translating V1 to touch V2

is the reflection of Sc about the point r2* The subsequent

analysis and the collision probabilities obtained from it are

insensitive to which collision surface is used.

A collision now may be said to occur whenevar the rela-

tive position vector r (=r 2 -r 1 ) enters Sc. However, this is

not completely satisfactory if Sc has concavities, as shown in

Fig. 2. For if the surface has concavities, the trajectory

may enter Sc more than once in what should be counted as a

single collision. There are at least three ways to avoid the

S~-8-



<Vz" ..... Sc

IF.Figure 1. Collision Surface In Vehicles V1 and V2 .

Figure 2. Collision Surface Typical of Trailing Vortices.
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problem: (a) use a convex surface in place of one with conca-

vities, (b) use a surface with concavities, but allow for the

over-estimate in collision probability that will thus result,

(c) use the collision cross section vector, to be defined

subsequently. The first of these alternatives is preferred,

since it greatly simplifies the computation. But only the

third is rigorously correct.

Average Number of Collisions int -to

It is now possible to calculate N, thu average number of

collisions in time t1 - t . The approach to be taken, follow-

ing Rice8, is to construct an expression for dN/dt, calculate

its statistical mean, dN/dt, and then integrate in time to get

N. The mathematical legitimacy of the approach need not be

discussed here.

An expression for dN/dt may be built upon the previous

description of collision: a collision occurs whenever the

relative position vector r enters the collision surface Sc.

At such time, N increases abruptly from zero to unity. Let

S•(r) be a step function in r space that is unity for r in Vc

and zero for r outside V .

Then N may be defined:

SN(t) E u(7v'n) df(r)/dt

where v is the relative velocity (=dr/dt), n is the inward

normal to Sc at point of entry and u(x) is zero for x < 0 and
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unity for x > 0. :Tepurpose of u(v-n-) in t~his expressio~n is

to exclude exits,, for which v-n- < 0, but to include entries
( i

To ob0)aind mere toenseml average =0). i eesaytocp

Th tmederintedafthsingle4(relhayibe wrietten asd/rt whsich is

af detrajfuction, Atimey dr/datpoiddthe prosaiitiodnsisty dff

erentibl func0.ti of time.ose oeuvthis n and elocssion is

(3)wn, it flsu t Th

2 I *II

N f un d merer (v) /dt) (v= W u) V(v*-

Toe tain dteiv aee ble erntas e writy as dece•sary toscoi
side. T he sing arelative trjcor; ah sese

oftajectrie. Atimany didntpntidte probabiityon ' e itys + dif

dsereiutisab scaraton of the reltive pos i o'n and velocityio

khw, ab assuthptn T

* ona I I

I.I

-d d u(vn V

Her doaind t e elsemlent of NFit- spaceVand positon

space., inthea in ertihn arnge udrsltood toajctovry, tesaenseml
S I

ompltraely.riey utilizingtnt the idenityability~V +ensity .

knwher byi asscamariand Theref~ore, say enemv average mab

then aovis 1wrtte- - -

.N= fd [d(r¢) V. d(4'),Wr* t fd(vn)Vr.x] .
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By' the divergence theorem the first integral in the brades,

which is over the volume of r space, is convertdd to a surface

integral over a sphere S of incrpasingly large radius R, cen-

tered t r=O:

fd(i) V. (.x) = lim; d (x).
1 R÷* R f

As R+od the surface SR eventually lies wholly outside of Sc.

Since • =0 outside c the limiting 'value is zero. ,
I c

The second volume integral in the brackets is zero in the

space outside Sc, bucause P is zero there. It has a non-zero

value only within the collision volume VC".where =1.

Therefore ' J•

N . d(r) (1) V"x

~$ I -

= ( Sds.v ')herel(d= (ds) ,

cc

, = fd(V) W(,v,ta)v. fd; u(v.n)].

S'• N =' dt .

a 0

STWo notes regarding the above' are in order. a

. i~
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First, r c the relative position vector drawn to the

collision surface Sc has been replaced by 0, the null vector

in r space. The reason is that the distribution W in i will

have a mean large compared to rc in all practical cases, as

stated in assumption (4). The difference in the density W for

= rc and r = 0, therefore, is small. As a result, W may be

taken outside the surface integral.

Second, the surface integral f/c ds u(v.n) may be inter-

preted as a a-sion cro88-ssectin vector with respect to v,

and written YS- c (V). If So has no concavities, the vector _S.

has the property that its component in the V direction is the

area of the orthogonal projection of S c onto a plane perpendi-

cular to v. If Sc does have concavities, then this property,

rather than the surface integral, serves to define AS. In

either case one has

N = f dt ) W(0,v,t) . (1)

The general formula thus derived is a three-dimensional

form of the well-known expression for the mean number of times

a random function y(t) crosses a given level y0 in a time

interval t 1 - t 0 . The one-dimensional formula, originally

derived by S.O. Rice 8 , is
t tI

ft 0 dt fW Wl(yo,Y,t) lyl dy

, ~-13-



where T1 is the joint probability density of y and y. The

three-dimensional formula gives the average number of times a

random vector i(t) enters a given closed surface S in time

1 1 - t0* The major difference between the two formulas is

that the one-dimensional case requires specification of a

level, y0, while the three-dimensional case requires specifi-

cation of an entire surface, Sc. The term yiY of the former

case becomes the more complicated integral V'c :

S= a'Iu(iýn) ý dsc J~cu

Special Case: Large Re lativw Velocity

The simplest case, mathematically, occurs when the mean

relative velocity is large compared to the spread in the dis-

t:ibution of velocity. Fortunately this case covers many

practical situations, such as curved landing approaches,

crossing airways, climbing and holding patterns and over-

flights of landings or takeoffs. The situation may be approx-

imated by assuming the density W(0,vr,t) to be a delta function

in velocity space at the mean velocity v. In that case,

fd(ý) 7' W(Ovt) = v (t) W r(0, t)

where Wr(i,t) is the density distribution in i. As a result,

N becomes

-14-



tI

t1

=t dt (dr/dt) • S--c Wr (O,t)
''0

r (tI)

d S - CW'(r,t),(2(to0)

where Wr is Wr with mean translated to 0.

In this formula, N may be visualized as the volume swept

out through the position distribution Wr by the collision sur-

face SC,, in going from r(t 0 ) to r(t-I Such a picture is use-

ful if the relative path is irregular or if the density distri-

bution is time-dependent. In such cases it is practical to

program the integration of (2) on a digital computer using

relatively large step sizes and simple integration algorithms.

An order of magnitude estimate of N is usually adequate.

If the relative path is a straight line and if the den-

sity distribution is time-independent and analytically conven-

ient, further analysis of equation (2) can be carried out.

The following analysis assumes straight line paths and time-

invariant Gaussian statistics, a case treated ad hoc in the

literatureI, 3 ,4 .

Let the vehicles be represented by two right circular

cylinders with parallel bases of diameters dI and d2 and

heights hI and h2 . Let the mean paths rl(t) and r2 (t) be

horizontal straight lines going to infinity in both directions;

-15-



finally, let the actual positions rl and r 2 be normally and

independently distributed with stationary statistics about the

mean positions:

Wr2 () = (2?r) -3/2 IK 2 1-/2 exp - 1 [(K2-2)T (r2- 2]

Here subscript T denotes transpose and -rl and Kr1 are the

inverses of the covariance matrices Krl and Kr2. These co-

variances are assumed to be known in the (x1yjzl) and (x2Y2 z2 )

coordinate systems illustrated in Fig. 3. In the figure,

the position errors (ri - ri) and (r 2 - T2) have components

x and x2 in the direction of travel, z1 and z2 along the

vertical and yl and Y2 normal to the other two components. In

these coordinates, assuming the position errors are statisti-

cally independent in the three directions, the covariances are

": 2 02
ix 0a2x 0 0

Krl= 0 al2 0 Kr2 = 0 a2y 0

2 2
S2 0 0z 2z

To calculate N in this case, it is necessary first to com-

pute the distribution of r2 - rl and then to compute the por-

tion of that distribution swept out by a right vertical circu-

lar cylinder, height hI + h2 and diameter d1 + d2 , moving on

the straight line r 2 - rI.

-16 •



VEHICLE 2

x2 2

W1 x ý VEHICLE I

Figure 3. Geometry of Straight-line Paths.
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The distribution of r2 - 1 is normal, being the sum of

normal random variables. If the position errors of the two

vehicles are independent, as assumed for this example, then

a 22x2 xy •xz

K= K +K a 2 a 2 a 2
r r2 rl yx y yz

a 2 a 2
Lzx zy z

The a 2 terms here are determined by writing Krl and Kr2 in the

same (x y z) coordinate system, which is yet to be selected,

and adding. The distribution Wr(0) is

r(0) = (2.)-3/2 1Kr -1/2 exp1- [(-z)Krl (r)T]

W' (r).
r

The portion of this distribution swept out by the collision

surface is given by formula (2). Choosing x to be along the

relative velocity vector, y horizontal and perpendicular to x,

and z upward, as shown in Fig. 4, formula (2) leads to:

N = (h +h) (d +d )/(2r a a ) exp - 1/2 ((2/Uy2) + (R2/la 2

1 2 1 2 zy \ y z/

where

a2_ iC 2Cs 2 + a 2cos2 + a 2sin2a + a2 2sin2 8

2 ix2 2x 2 222
a 2 C 2lyCOs2 + a 2yCOS2 +a •2sin2a + a2 2sin20

cosl +O 27 c i x 2xI 2 1 2 _ C1F2)sin 2a + 14(a2 2 _ a22)sin 20

-18-
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12 2 2 2

iz S a 2 z

a 2 a 2:= 0 2

Xz yz xy x y

For the special case of Vehicles passing on the same level in

opposite directions with me~n path separationS

a2 a2: 2
T, + y :'

~ 2 Cr 2 •;l .z=O, = 0, • = 2 2

(h + +d)/2a (a +ai

1 ,2, o12 2 7) z2 l y
exp ,- [(S2y/(c2+rly)

y2 2
'If, further., it is assumed that h1 = h2 , dl = d 2, a F = 2

and alz2= a2z'2 then the value of N coincides exactly with that

obtained by IAich3' and Taylor.4

Special Case: Nm-Zero Reilaive Veleclly

If the mean relative velocity is not large compared to

the higher moments, the delta-function approximation for the

,velocity distribution cannot be made. This situation occurs

when there is a small (but non-zero) relative velocity, as, for

example, when two aircraft are controlled to be in train pre-

'paratory to final approach2 , or to be following parallel en-

route airways but with slightly different speeds.

2t will be assumed for ithe present case only that the

mean relative velocity aid "the higher moments are all different

from zero and that` the position errors are independent of

velocity errors. Then the joint distribution for each vehicle

may be factored:

1 -20-



W 1(ilr'•l't) = Wir¢il't) Wiv (ýl It) I

W2Y'•2'_t) = W2r (r2,t) W2v0V2,t)

Since relative position i and relative velocity v are sums of

random variables, they are independent if (rl+r2) is independ-

ent of (;+ . If so, W(r,v,t) also may be factored so that
1 2

formula (1) is

- tiN L=f' at j(;) Wv(V't) ;-A-Sc wr(5ýt) "(3)

Jto vcj

If the collision cross-section and the velocity distribu-

tion are independent of time, the portion in square brackets

may be taken outside the time integral. Nevertheless, a com-

puter solution is usually necessary. One case that can be

handled analytically is that of one aircraft slowly overtaking

and passing another on a parallel airway, with normal statistics.

The analysis9 is tedious and hence only the result will be given

here.

If the statistics are normal and if the vehicles are repre-

sented by vertical circular cylinders of heights h1 and h2,

diameters dI and d2, (see Figure 3) moving on horizontal

straight paths, then the collision probability is approximately

2'(d +d2 ) ALz+(d +d2 ) x( y Ay +

1 2 2.-
xpA



where

f (p1,K) Ee- 1' 1 + 11 2*. (i0iil) + p 2 J2 ip)

14 K2 cos 2 ; [p (+.IJo (i + p (P 4)J 2 (ii)]]

1 ,2 ,2 ,2

K2 -X2 ( X2 ,2 + X,2

,y_ ) I(\ x y)

Jn Bessel Function, order n, first kind; i =

tan' ' /' ' ' / A ') tan 0
yx xy x y

vx' -v 2 cos ( + 0) - v1 cos (a + 0) = v cos 0

V - v2 sin (8 + ) -v sin (a + 0) = v sin 6
y 2

1,2 1 2 2 2 + x2x (ix +A2x +fly 2 )

1 i(2 X2)2 + (X2 - 2  2
7- 'y lx 2y" 2x
2(A2  2 2 2

Sly- lxx2y- x 2x ) cos 2(a-a)

X y •"(A X+ A2 X+iX 2y, 21y

+i ((X + X21+ (A2  2 X2

2 ly lx 2y 2x

+ 2X ( 2  x -A2 ) (XA2  2 )os2(a-0)) 1/2
ly "x 2y- 2x O

OxGy,oz,axyaxz,oyz: as in the case of large relative velocity

X12  X2  + 12
z lz 2z

i rX2 _A2 ,2 .2 0]in2/[(X2.

tan 28 [-E lyx- ) sin 2a + (A 2y-A2X) sin

--A 2 ) cos 2a + (Xy2 -A2) cos 28]

lx -2
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2 2
In the above, vehicle 1 has position variances a1Ix 2 ly'

2 
2 2 i2

a aJz and velocity variances X.x' Ily' z lz which are along its

track (x), across its track (y), and along the vertical (z); its

m vi makes an angle a with the mevn Aelative velocitymakes anaglelwtotcienreaivtelct

2 2 2 2
vector v (See Fig. 4) Analogous terms a a2 2 a 2  2•2x' 2y' 2z' A2x,'

•2 22y' 2z' 8 hold for vehicle 2. The mean vertical path

separation is z, the closest horizontal approach of the mean

paths is y. The six position and velocity errors of a vehicle

have been assumed uncorrelated with each other and with those

of the other vehicle.

Special Case: Zero Relative Velocity

When two aircraft using the same airway, or in train to

the same landing approach are controlled so that (on the average)

their separation is constant, then the mean relative volocity

is zero. This case must be handled separately, because if in

the preceding result, the mean relative velocity v is allowed

I to approach zero, the value of N increases without bound.

Physically, such a result is expected, since N is constant in

time, and dt N must be unbounded. The infinite limits of

time should be replaced by the more realistic limits to and tI.

If the statistics are stationary with velocity independent of

position, the formula for N ist
N ft dt f (v) W(0,vý).r-"-

(tI - t0) d (v,) WV( .S--c Wr (0) •(4)1 0
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To illustrate an analytic solution in the case of zero

relative velocity, the same geometry will be assumed as for

the two preceding cases, i.e., two right cylinders moving on

the mewn straight horizontal paths shown in Fig. 3. (The

statistics are assumed to be gaussian and stationary, with no

correlation between vehicles.) The result obtained 9 is:

1tl - to) • 1.3.5... (4n-3) l -Y z2
aL -a [2-4-6---2n] 2  exp k2 x ay2a z 2n=0 [246'21 2

,where

2 2 2

a2 a 2 + a 2

y ly 2y.

Special Case: Spherical CellIsion Surface

When the collision surface Sc is spherical the collision

cross section vector Ac is vira 2 where v is a unit vector in

the direction of v and a(t) is the radius of the sphere at

time t. Then the expression for N is

0

Stl 2

= ft dt Wr(ot) v(t) 7r a (t) (5)
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where v(t) is a scalar, ;equal'to the average magnitude of dF/dt.

This quantity, v(t), is just'the mean relative speed; it is

never negative and iszero only when the velocity distributibn
has zero Mean and.no spread (a delta function atlthe,origin).

Unlike (2), formula (5) is nof restricted to large relative

velocity. Its-only limitation is that it applies to spherical

collision surfaces."

In many' cases, aný actual collision surface Tnay be replaced

by a spherical one of equal area without seriously impairing

the usefulness of the result. This occurs,p for example, in

determining the probability of near i1isses, or in obtaining

an order-of-n•agnitude answer. If such an approximation mayI 3 1

be made then the collision probibility is given by (5) with

A(t), one fourth the area of the actual collision suxrfaceI2
at time t, in place of ac2(t).

-

II I ,

I
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I !APPLICATION TO PARALLEL, RUNWAYS:

.The use of closely spaced, independently operated,

parallel runways is one means to ihncrease airport capacity

that was recommended for further investigation by the Air

10Traffic Advisory Committee Report. The scheme involves

multiple curved precision approaches to two or more parallel

trunways spaced •at less than the present 500d-ft minimum. No

time synchronism is assumed between aircraft •on different

tracks. The safety of such approaches iepends on at least

four factors: the probability of missed approaches, 7

emergency (e.g!., engine out) procedures, accuracy of guidance

of each aircraft relative to its runway, accuracy of guidance

of each aircraft relative to the other. The last ofp these

factors was analyzed in detail by the method developed in

this paper, and that analygis will be described next.

A computer program was written'to'calculate the

collision probability for two aircraft making the simultaneous

curved'approaches to parallel rpnways shown in Fig. 5. On6

aircraft was assumed.to belrelatzi.vely fast (approa~h speed

2f20 knots), the other relatively slow (approach speed 80

knots). The details of the approaches are given in ¶abl 1

and Fig. 5. The aircraft volumeg were taken to be right

circulhr cylinders.
The statistics were assume• to be Gausian "and jhe

standard devittions of position in the y and z directions

were assumed to diminish as they approached the runway (see

Fig. 6). This improved accuracy occurs, in practice,' for
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TABLE 1.- DETAILS OF CURVED APPROACHES

Vehicle 1 Vehicle 2 Units

Path Segment 1

duration 315. 60. sec

ground speed 133. 200. ft/sec

descent rate 10. 13.3 ft/sec

initial altitude 6600. 9200. ft

Path Segment 2

duration 45. 180. sec

ground speed 133. 200. ft/sec

descent rate 10. 13.3 ft/sec

initial altitude 3450. 8400. ft

Path Segment 3

duration 450. 600. sec

ground speed 133. 200. ft/sec

descent rate 6.7 10. ft/sec

initial altitude 3000. 6000. ft

Path Segment 4

duration 90. 60. sec

deceleration 1.48 3.33 ft/sec/sec

descent rate 0. 0. ft/sec

initial altitude 0. 0. ft
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VEHICLE 2

L SEGMENT 4

S • SEGMENT 4 SEGMENT 3

RUNWAYS D, distance betwoin runwoy centerlines•;:z x -

SEGN 2 GEOMETRY OF VEHICLES

SEGMENT 4 SEGMENT 3 VEHICLE I: RIGHT CIRCULAR
CYLINDERHEIGHT 10 FT.,
DIASO FT.

SEGMENT I
VEHICLE 2: RIGHT CIRCULAR
CYLINDER,HEIGHT 30 FT.
DIA. 150 FT.

VEHICLE I 80 KTS

Figure 5. Geometry of Simultaneous Curved Approaches.
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NOTE (1) VEHICLE #1-Y POSITION-USE SCALE 1
VEHICLE #2-Y POSITION-USE SCALE 1S. ,. VEHICLE #1-Z POSITION-USE SCALE 2

"AW W W VEHICLE #2-Z POSITION-USE SCALE 3

z
2 - NOTE (2) THE STANDARD DEVIATIONS OF VELOCITY
Vi- ww w ERROR ARE CONSTANT AT 12FT/SEC INo . THE X AND Y DIRECTIONS AND 5.3 FT/SEC
ti. IN THE Z DIRECTION

Z 750 50-30

0

S450 •-30 -18

z300 -20-,12

150 10- 6

II I I

-10,000 0 10,000 20,000 30,000
DISTANCE FROM TOUCHDOWN (feet)

Figure 6. Standard Deviations of Position Vs.
Distance from Touchdown.
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several reasons: The ILS errors are approximately angular

errors, and diminish as the source is approached. In addition,

aircraft control errors diminish with length of time on the

beam and, finally, visual cues improve as touchdown is

approached. None of these circumstances, however, improves

positional guidance accuracy in the direction of the runway,

so the standard deviations of the errors in the x direction

were assumed constant at 6000 ft for each vehicle.

The formula for the large relative velocity case given

by (2) was found to be adequately accurate even though the

relative velocity passad through zero shortly after the

touchdowns. This accuracy was verified by comparing the

result of using (2) with that obtained from the exact

integration of (1), which does not contain any assumptions

on relative velocity. The two answers agreed to within 8

percent. Since the computation time for the large relative

velocity case (2) is about 1/20 that for the exact integra-

tion, formula (2) was used throughout the runs. It should

be noted that formula (2) does not assume independence of

position and velocity statistics and, in fact, requires no

velocity statistics at all. Further, although Gaussian

position statistics were assumed, any other statistics may

have been used in the computer runs with little change in

the program.
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RESULTS OF COMPUTER RUNS
The results of the computer runs are shown in Figs. 7

through 9. The data of Figs. 5 and 6, and of Table 1 apply

to all runs except as noted in the following discussions.

Fig. 7: (Variation of collision probability with time

between touchdown.) If the two aircraft come abreast at the

touchdown point (T=0) the collision probability is very small,

less than 10-38. As T increases, the slower aircraft (vehicle

1) touches down later than the faster aircraft (vehicle 2)

and the point of passing occurs farther up the glide slope.

Since the lateral position errors increase with distance from

touchdown, (Fig. 6), the collision probability increases as

the point of passage moves away from the touchdown po.nt.

The sharp drop in collision probability beyond T = 100 is due

to the geometry of the turn-on for vehicle 1.

In order to obtain conservative estimates, the runs of

Fig. 8 and Fig. 9 were made with T = 80, which maximizes the

collision probability. If the runways were truly independently

operated, the times between touchdowns would be distributed

uniformly between 0 and the tinte, T, between successive landings

on the same runway. Since T often is about 120 seconds, the

assumption is not overly pessimistic.

Fig. 8: (Variation of collision probability with runway

separation.) The Figure shows that cutting the runway separa-

tion from 5000 ft to 2500 ft increases the probability of a

collision by a factor of 6000, other things being equal.
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Figure 7. Probability of Collision Vs. Time
Between Touchdowns
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Figure 8. Probability of Collision Vsj. Runway Separation.
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Figure 9. -Probability of Collision Vs. Lateral
Position Error,

.- 34-



This result is reassuring or alarming, depending on one's

"view of the safety of the present 5000-ft separation and one's

belief in the applicability of Gaussian statistics to the

problem.

Fig. 9: (Probability of collision vs lateral navigation

error.) The lateral, or y, component of position accuracy

was assumed to be the same for both aircraft and was chosen

to be 750 ft for the runs of Figs. 7 and 8. In the present

case, however, it is allowed to vary. Fig. 9 shows that the

collision risk drops drastically when lateral placement errors

go below 750 or 500 ft. This suggests a trade-off between

the cost of lateral guidance equipment and the cost of expanded

airports.

-
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CONCLUSION
The formulas derived allow the calculation of collision

probability between two aircraft flying arbitrary curvilinear

paths. They represent a generalization of the statistical-

* probabilistic method of analysis, which heretofore has been

available only for constant altitude, rectilinear paths. The

analysis results in a general integral expression for the

collision probability; simpler integral formulas are derived

for the cases of large relative velocity, zero relative ve-

locity, and a spherical collision surface. In only the simplest

Gaussian cases is an explicit formula available. Because high

accuracy is not essential it is possible to compute by machine

the appropriate integral expression formula (2) for practical

cases such as curved landing and takeoff paths.

The computer calculation of formula (2) for curved

approaches to parallel runways shows how the collision proba-

bility varies with time between touchdowns, runway separation,

iand lateral position error.
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