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The problem of deterwining the optimal inspection epoch is studied for relia-
bility systems in whic,, N components operate in parallel. Life time dis-
tribution is arbitrary but known. The optimization is carried with respect
to two cost factors: the cost of inspecting a component and the cost of failure.
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depends in the general case on the whole failure history of the system. This
dependence is characterized. The cases of Weibull life time distributions
are elaborated and illustraLed numerically. The characteristics of the optimal
inspection intervals are studied theoretically.
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1. Introduction.

In the present sudy we investigate the problem of dietermining

the optimal inspectiorn epochs of a reliability system which is comprised

of N components, cp:zating independently (in parallel) and having the

same life time dis jeibutions. The life time distribution is known.

An inspector visi-, the system at a predetermined inspection epoch and

finds a certain r.- ibe, of components which have failed. The exact times

of failure are ," ,iown. All the components which hnve failed during

the interval be ieen inspections are replaced by new components. Com-

ponents which ..e not failed are left in the system. We consider two

types of cost -a'tors: (i) The cost of inspection, which depends on

the number of zomponents in the system; and (ii) The cost nf failure

per unit tim.. This cost component measures the loss due to a failure

of components. The objective is to determine an inspection policy that

would be optimal with respect to the criterion of minimi.ing the total

expected (discounted) cost for the entire future. However, since we

are 'ealn.g with cases of general life time distributions (not neces-

sarily exponential) the dynamic progranming solution is eA-'essively

complicated, even in the truncated case (when the number of inspections

should not exceed a prescribed bound). Therefore, we are considering

in the present paper a sequential myopic procedure. Accordingly, after

each inspection the epoch of the next inspection is determined, as a

function of the whole past failure history of the system. The aim is

to minimize the conditional expected cost per time unit from the pre-

sent time until the next inspection epoch. In the case of exponen-

tial life time diet, ibutions (constant failure rates) the optimal
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inspection interval <time interval between inspections) does not depend

on the past history of the system. As shown in the present study if

the life time distribution is not exponential this dependence might be

very strong, especially if N is not large and the life time distribution

is of a decreasing failure rate (DFR). The dependence of the optimal

inspection intervals on the observed number of failures, and on the num-

ber of components that were replaced at previous inspections and are still

operating, will be explicitly characterized. We start in Section 2 by

formulating the model and the associated distributions. In Section 3

we develop a general formula for the sequential determination of the

optimal length of the inspection intervals. In Section 4 we derive the

corresponding formulas for life time distributions of the Weibull family;

and illustrate the process with a numerical example. In Section 5 we

try to explain the complex process illustrated in the example of Section

4 by further theoretical development.

There are numerous papers in the reliability literature on inspec-

tions epochs and optimal maintenance. For the general theory see Chapter

4 of Barlow and Proschan (1]. Articles which are close to the present

study are those of Kamins [4], Kander [5], Kander and Naor [6] and Kander

and Rabinovitch [7]. The present study provid-s further elaboration of

a chapter in the thesis of Fenske [3]. The main difference between the

present study and the articles mentioned above is in the basic model.

The present study is concerned A •h itxu;-icomponent systems while che

other studies treat the whole vs--t as one component. The study of

Ehrenfeld [2] was based on a %iLod-l siimiilar to ours, but Ehrenfald considered



-3-

the problem of determining the inspection interval for the estimation

the mean time between failures in the exponential case.

"2. The model and associated distributions.

Consider a reliability system which consists of N, N > 1, com-

ponents. These components operate independently (in parallel). Let T

designate the life time of a component. This is a random variable having

a known distribution function (c.d.f) F (t). We assume that F(t) is

absolutely continuous, with a positive density function f(t), 0 < f(t) < 0,

and F(O) = 0. We further assume that the expected value of T. according

to F(t) is finite. Let So = 0 and let So < Sl < S < ... < Sm< ...

designate a sequence of inspection epochs. Let J (m = 1,2)...) designate

mm Sthe number of components that failed during the time interval (S m-l, Sm).

All the Jm components are replaced at the inspection epoch Sm. The

N - J components which have not failed during (Sm.1 > S m) are classi-

fied into m disjoint subsets A0 A1 Am1. The subset A.

(j = 0, .... m-l) contains all the components that were replaced at epoch

S and did not fail throughout the time interval [Sj) S ). Let n(m)

designate the number of elements of A im. Obviously, A A)C

and n(i+l) < n for each j = 0, 1, ... and m = j, j +, ... Let

Snn M) = J and n(m) = (n (M) n (M ) n (i)) for each m 0=) 1, ... ;
m in0 1

n(0)= N.

If a component belongs to the subset A(M) then its conditional

life time distribution at time t is:

(2.1) F(i)M (t) = P(T I t-SjST Ž Sm -S.

S0 ,if t - Sm

F(t-S.)-F(Sm-S if t > S
m



In particular, F(m)(t) = F(t-Sm), if t > S and zero otherwise.
m m m

The conditional densities of U T - (S -SS), corresponding to the life

time T of a component which belongs to A (m play an important role

in our procedure. We can call U the remaining life time. If a com-

ponent is chosen at random Pt time t = Sm + 0 its remaining life time

U has a conditional density function

(uIS(m) (m) m f(u+S i)-S )j(2.2) hm 'US nm) ; n• (m)m
j= I.1F(S m.S) U u • 0

where Sm)= ,SI ... , ) .

We notice that if T has i negative exponential distribution i.e.,

f(t) = Xe",t, )t 0, for any 0 < % < -, then h(uls(m), n(m)) f(u)
for ll = , 2, . ad al ((m) (m))

for all m = 1, 2, ... and all n . This is a well known

property of the negative exponential distributions. Let Hm(uIS(m) ,(m))

designate the c.d.f. corresponding to (2.2).

•. Sequential determination of inspection epochs.

We will consider in the present section the problem of deriving an

inspection policy which attains a certain economic objective. We assume

Stherefore that the cost of inspecting the system is $ C0  per inspection

and on the other hand, if an element fails, then the cost associated with;

its failure is $ Cf per time unit. The inspection policy adopted here

is the following. Given the history connected with the past m inspection

intervals, i.e., ((m) n (m)) determine the (m+l) st inspection epoch

so that the average expected cost per time unit of inspection and of fail-

lure, over the (m+l) st inspection interval will be minimized. We re-

mark in this connection that this policy is in essence a myopic policy,
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which minimizes the expected time average costs for each inspection

interval individually. A Dynamic Programming determination of the in-

spection epochs could attain a more global optimization. However, attempts

at Dynamic Programming solutions lead to complicated sets of recursive

functional equations. The solution of these equations is generally very

tedious.

Let A designate the length of the (m+l) st inspection interval.

That is, A = S. S Given (S(m), n(m)) the conditional expected

average cost per time unit, under A, is

(3.1) Rm (A; S n+f , (M) (Mi) o+ - (M) A (A-u) f(u+-Sm-Sj du

m A= A I= -F(S mS-S

Or in terms of the conditional distribution of the remaining life time

U we can express (3.1) in the form
CC

(3.2)fR(j M( (M)) n ( m) ) Cf A du.
(3.2)n ) - + N H S N "uh (uls m n du.

0

The optimal (m+l) st inspection epoch is defined as Sm+1 = S + A0

where A is a positive real value, A, for which the infimum of (3.2)

is attained.

Let

(3.3) tim h m u (uIsm, nm) du,

0

be the expected remaining life, given (S(m) , n(m)). According to the

assumption of the t- :ious section, jm < c. Differentiating RM(A;smn

with respect to . obtain that if pm C then A°0 -No.



This is a case in which no more inspections are warranted. On the other

hand, if p M > Co0 /NCf., there exists a unique solution, A0 J to the

equation:

(3.4) uh(j~ ) n~m ) du =C 0INCf
Mo

0

We realize from (3.41) that Sm+i is a function of the statistic (S m)nm)

of the system.

As we have already mentioned in cases of exponential life time

distributions the optimal length of the inspection intervals is the same

for all m = 1, 2, . If 8 0 is the mean time between failures

(MTBF) in the exponential case then p e for all m, and the condi-

tion for a finite A0  is thatC 0< NC~ fe; i.e., the cost of inspecting

arn element is smaller than the expec ted cost of failure of an element.

If this condition is satisfied then, letting y C C0/NC f 0 it is easy

t to show that

(3.5) 20  X 4

2
where (y 4) designate the y-fractile of a chi-square distribution

with 4 degrees of freedom.

4. Optimal inspection epochs for Weibull distributions.

Suppose that the life time of an element, T, follows a Weibull

distribution, with a density function

0O ,if t !.O
f~t;O)Q Ot tt Iexp[-t?/O3 if t > 0;
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where a and e are positive real parameters. We notice that if 0 < a < 1

then the distribution has a decreasing failure rate (DFR), and if 1 < C < o

its failure rate is increasing (IFR). When a = 1 the distribution is

exponential. Given (S(m), n (m)) the density function of the remaining

life U assumes the special form

I m)m Ux •S-j CZ/
(4.2) h (m')uIs mr.)) n ex=O( n- S . 0 (u+S 1-S)• .

in N J=0 1 Mn3 J.1

.exp •(ktSm -Sj) l,
M j

for 0 : u < o. When m = 0 (4.2) reduces to (4.1.). Following the

procedure given in the previous section we realize that SI < c if and

only if.,

(4.3) CIN < Cf ela r( + 1)

aa
0 1/a• 1( + 1) is the expected life time. If (4.3) is stsidte

the optimal value of SI is

(4.4) S f ' + /0

where G'(Vlp,v), is the y-fractile of the Gamma distribution G(p•v),

1/C1 I
with scale parameter p, and where y - C /(NC 9 f(- + 1)). We noticL'

that if 2/ae is a positive integer j then

(45 f Qe2 [2+j) j/2

S(4.5) S1 = ' (2 + 2 ý,•
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We determine now a general expression for the left hand side of

(3.4). According to (4.2),

(4.6 Ma ) hes(m) n(m)
f(4.6) u.h (UIS , ) du =

0

n. p[ X m -S e (+ m expf-(U+S M-S) Ic3) du.

By a proper change of variable we obtain

A a-i
(.7) 2 u(u + S-S exp[-(UcS ]S'/ 0) du =

0

(S m-Sj+A)a/e
, I0 /a W" (mS.)] exp[-w3 dw =

(S -S.)aI
a ccI' la (S -) +6 M-I/F- •/S "S'+A)Oa \. .(Sm i5 )a

8 + 1)F

L (S a) S

- (S m-S.) Fxp[- S 3 --exp[ . +

L -I

Substituting (4.7) into (4.6) wCI obtain that Sn+1= Sr + 6, where

is the root of the equation:

(m) S "+A)

1, + 1 ~=¥y+

1 1i n(1) -S_) expl -S / GSm .,. + )

"Illr _I N (Sm-Sj) " F(s "S.+A)a (S -Sj
r( ) j=0 j 3 iii m j
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Y is as before.I We notice that for m = 0 the solution of (4.8) is reduced to

the one given by (4.4). In Figure I we illustrate the solution of (4.8)

for three Weibull distributions, where the n sequences were generated

by Monte Carlo simulation. The cases under consideration have the following

parameters: Cf $10., C = $200"N , = [hr] 100 and cQ = 3/4, 1

and 5/4. The case of 1 1 corresponds to the exponential distribution

with mean 0 = 100, According to (3.5) the optimal inspection interval

for (Y = 1 is of length [hr.] 50 X 2 [4] where y = Co/N'Cf0 0.2 . One
2.

can find in any statistical tables that X, 2 [4] = 1.65. Hence, the

optimal interval between inspections is in the exponential case is length

82.5 hours. The case of a = 5/4 represents an IFR distribution. We

see in Figure I that the optimal inspection intervals are of length which

vary very little around 59 hours. It is interesting to notice that in

the present case of an IUR distribution the optimal inspection intervals

do not depend strongly on the number of components, N, in the system.

This is not the case when the Weibull distiibution is a DFR (a=3/4).

As illustrated in Figure 1 the optimal intervals for DFR distributions,

as obtained from (4.8), are sensitive to N. When N = 10 there are

considerable fluctuations of the sclution of (h.8). When N = 100 these

fluctuations diminish. The general trend of growth in the length of the

inspection intervals is however the same. An explanation of thib phenom-

enon will be provided in the next section. Finally we remark that the

numerical solutioi of equation (4.8) in the case discussed here has been

attained followin the Ne•,ton-Raphson iterative corrections to an initial

solution, For fu , details see Fenske (3].
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The variance of W is
Wn

i m m) (D (m)) 2  O m)m)
(5.7) Vat3- 2i- N -F(Sj=0 1 F(-Sms

We have shown that fo, any sequence of inspection ochs Var [WI = O(N"I)

as N -4 c. This explains why the fluctuations o.k the roots of (4-.8) are

relatively larger when N=1O and small when N=100. We consider now a

particular sequence of inspection epochs which consists of values of S

obtained by the repeated r lution (for each m) of the equation wm = Y. i.e.,

A I- i-l F j )1 A
(5.8) f uf(u)du + F I i - Z 8uf(u+Sm-S)du =y

0 L_ L 0 u

A
S1 is the root A of iuf(u)du = y, and for each m =1, 2, ... , the

(m+l)st inspection epoch is given by Sm1 = S + A. The sequence of
=m

fixed inspection epochs determined by this procedure corresponds to the

expected values of n(m) and we therefore label this procedure as the

Procedure Of Averages. In Table 1 we provide the inspection intervals

determined by the Procedure of Averages, and the corresponding multinomial

probabilities e^m) (j=, m, in), for the two cases represented in

Figure 1. The graph of the corresponding inspection intervals for the

case of a = 3/4 (DFR) is also plotted in Figure 1. As is demonstrated

in Table i, in the IFR case (0=5/4) the significant contribution to the

solution is expected to be that of n(m) ane n(m)
mor of their corre-

sponding cxpected values. Furthermore, the optimal length of the inspec-

tion intervals varies very little with the number of ins.,pections, m, and
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e(m) = 1 - F(S)
0

(5.2) and ji= 0)
(in) ( - ) (1- F(S -S.)], j 1, m.

It follows that for any fixed sequence of inspection epochs and for each

_M = O, 1, ...

E(nlm)) = N Oým)

(5.3) j = 0, 1, ... , M

SVain~m)) = N e~m)(l-0 m))

and

-• cv~(m) k(m) (@m) O(m)(5.4) (nj , n k NO j ke all 0 < j < k • m.

From (5.2) and ().j) we conclude that if the length of each inspection

interval is not smaller than A then for any distribution F, 14 n, 0

for each j.

The variable W is a linear combination of multinomial random

variables. Its expectation is

( mi n j-1 0 -1 (M)
(5.5) W = EWm] =D D.

• where

S(5.6) D. f(u+S -S.) du.



its expectation reaches in the present example a stable situation after

two inspections. This is not the case, however, in the DFR distribution

(a=3/4). The pobabilities 8!m) approach zero, as m grows, yery slowly.J

This is reflected in a steady increase in the length of the inspection

intervals as in grows, and a stable situation is reached in the present

example only after 10 inspections.

To insurE that the inspection intervals discussed in Sections 3

and 4 will have similar properties to those determined by procedures of

fixed inspection epochs we could consider the following adjustment.

First., determine for each M = 1, 2ý ... two fixed sequences of inspec-

tion epochs which will constitute upper and lower (confidence) limits

for the solution of (3.4) (or (4.8)). This can be done by utilizing

formulae (5.5) and (5.7). The lower confidence limits could be obtained

by repeated solution (for the root L) of the equatiun

1/2
(5.9) wM + 3.[VarfWm]]I = y ; m = 1, 2, ...

The upper limit can be obtained by solving the equation

,1/2
(5.10) wM - 3.[Var(WM3]I/- = y , m = 1, 2, ...

In the second phase of computation solve equation (3.-). If the

solution lies between the roots of (5.9) and (5.10) proceed; otherwise

truncate the svlution to eithe" the lo.,er limit or to the upper limit,

whichever is closer to the actual solution. Such an adjustment will

guarantee that every inspection interval will be bounded by lower and

upper values which are determined by fixed sequences of inspcction epochs,

and will therefore have general characteristics as established here.



Table 1: Values of optimal inspection intervals A [hrs] and multimonial

probabilities under the Procedure Of Averages for Weibull distributions

with e 100 [hrs] and cost :omponents CO $200N, Cf = $10.

Case I: a = 5/4 (IFR)
mopt.-A j=O j=l i =2 j=3 i --4 j=5 j=6 j=7 j=3 j=91 j=1

1 58.0 0.2017 0.7983

'3 59.1 00016 .011 0.10600 0.8223

4 59.1 0.0010 0.0013 0.0167 0.1595 0.8225

"5 59.1 0 0.0001 0.0013 0.0166 0.1595 0.8225

6 59.1 0 0 0.0001 0.0013 0.o166 0.1595 0.8225 1

Case II: a = 3/4 (DFR)

1 147.6 0.6548 0.3452 -,

2 156.8 0.4825 0.2216 0.2959

-3 161.8 0.3666 0.1624 0.1880 10.2830 ___ ______ ______

4 164.8 0.2839 0.1231 0.1372 0.1787 0.2771

166.6 0.2229 0.0953 0.1039 0.1302 0.1742 0.2735 I _

167.9 0.1769 0.0748 0.0803 0.0984 0.1267 0.1716 0.2713

S 7 168.8 0.1416 0. 0594 0.0S30 0.0761 0. 0957 0. 124.3 o.1069s8 0.2698

1,-,9.9 0.0927 0.0383 0.0401 0.0473 0.0580 0.0726 0.0930 0.1223 0.1,_71 0.2,63___

1- I 30 -075 0 Wl 0.01 0-023 0.03R79 10.0 01,j 0K9 c 0C12 0.-09,)) 0.-1,-1 0171 OP
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