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1. Introduction,

In the present s:udy we investigate the problem of determining
the optimal inspecti.r epochs of a reliability system which is comprised
of N components, c¢pavating independently (in parallel) and having the
same life time dis vibutions. The 1life time distribution is known,

An inspector visit. the system at a predetermined inspection epoch and
finds a certain r- sber of components which have failed., The exact times
of failure are » ‘vaown. All the components which have failed during
the interval be seen inspections are replaced by new components, Com-
ponents which . .2 not failed are left in the system, We consider two
types of cost Ta:tors: (i) The cost of inspection, which depends on

the number of :omponents in the system; and (ii) The cost nf failure
per unit tim:, This cost component measures the loss due to a failure
of components. The objective is to determine an inspection policy that
would be optimal with respect to the criterion of minimi;ing the total
expected (discounted) cost for the entire future. However, since we

are «ealwup with cases of general life time distributions ‘not neces-
sarily exponential) the dynamic programming solution is es-~essively
complicated, even in the truncated case (when the number of iuspections
should not exceed a prescribed bound). Therefore, we are considering

in the present paper a sequential myopic procedure, Accordingly, after
each inspection the epoch of the next inspection is determined, as a
function of the whole past failure history of the system, The aim is

to minimize the conditional expected cost per time unit from the pre-
sent time until the next inspection epoch, In the case of exponen-

tial life time di:..vibutions (constant failure rates) the optimal




inspection interval (time interval between inspections) does not depend

on the past history of the system, As shown in the present study if

the life time distribution is not exponential this dependence might be
very strong, especially if N is not large and the life time distribution
is of a decreasing failure rate (DFR). The dependence of the optimal
inspection intervals on the observed number of failures, and on the num-
ber of components that were replaced at previous inspections and are still
operating, will be explicitly characterized, We start in Section 2 by
formulating the model and the associated distributions. In Section 3

we develop a general formula for the sequential determination of the
optimal length of the inspection intervals. In Section 4 we derive the
corresponding formulas for life time distributions of the Weibull family;
and illustrate the process with a numerical example, In Section 5 we

try to explain the complex process illustrated in the example of Section
I by further theoretical development.

There are numerous papers in the reliability literature on inspec-
tions epochs and optimal maintenance, For the general theory see Chapter
L of Barlow and Proschan [1]., Articles which are close to the present
study are those of Kamins [4], Kander [5], Kander and Naor [6] and Kander
and Rabinovitch [7]. The present study provides further elaboration of
a chapter in the thesis of Fenske [3]. The main difference between the
present stugy and the articles mentioned above is in the basic model,

The present study is concerned -*i . h mul ~icomponent systems while che
other studies treat the whole .vs*.w 3 one component., The study of

Ehrenfeld [2] was based on a wodel gimilar to ours, but Ehrenfeld considered
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the problem of determining the inspection interval for the estimation

the mean time between failures in the exponential case,

2. The model and associated distributions,

Consider a reliability system which consists of N, N> 1, com-
ponents, These components operate independently (in parallel), Let T
designate the life time of a component. This is a random variable having
a known distrilution function (c.d.f) F (t). We assume that F(t) is
absolutely continuous, with a positive demsity function £(t), 0 < £(t) <O,
and F(0) = 0, We further assume that the expected value of T, according
to F(t) 1is finite, Let S0 =0 and let So < §1 < S S ees < Sp < oo
designate a sequence of inspection epochs. Let Jm (m = 1,2,,.,) designate
the number ¢f components that failed during the time interval (Sm-l’ Sm).
All the Jﬁ components are replaced at the inspection epoch Sm' The

N - Jm components which have not failed during (S > Sm) are classi-

m-1
fied into m disjoint subsets (m) (TZ ceey A;Ti. The subset Aj
(j =0, ..., m=1) contains all the components that were replaced at epoch

sj and did not fail throughout the time interval [Sj, Sm). Let n(?)

designate the number of elements of A(?). Obviously, A(m;l) c A(w)

and n(m;l) < n(?) for each j=0,1, ... and m=j, j +1, ... Let
m m 1

n(m) = Jﬁ, and n( m) (n( ) n(T), cery n(z)) for each m =0, 1, ...;
0)_

n 0 = No

If a component belongs to the subset A(m) then its conditional

J
life time distribution at time t is:

2.1 F() t) = P{T < t"S,T?S'S,
@.1) J () { JI m J}
0 , if ts<S
m

F(E-S)-F(8,-8) iy £ > g
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In particular, F(m)(t) = F(t-Sm), if t> Sm and zero otherwise.
m * . »
The conditional densities of U =T - (Sm-Sj), corresponding to the life

time 1 of a component which belongs to A(?) play an important role
in our procedure, We can call U the remaining life time, If a com-
ponent is chosen at random st time ¢t = Sm + 0 its remaining life time

U has a2 conditional density function

f(u+S_=-S.)
1 5 ) m
(2.2) hm(u|§(m),2(m)) =5 2 n(f;l —————J—I_F(Sm_sj) ,uz0

where §fm) = (Sl’ ceey Sm).
We notice that if T has ¢ negative exponential distribution i.e.,

m
M ¢ >0, forany 0<A<w, then hm<u[§<m), a™) = £(u)

£(t) = Ne”
for all m=1, 2, ,,. and all (§Fm), Efm)). This is a well known

i i i Let H (u|s(m) NON
property of the negative exponential distributions, MO A

designate the c,d.f, correspending to (2,2),

3.__Sequential determination of inspection epochs,

We will consider in the present section the problem of deriving an
inspection policy which attains a certain economic objective, We assume
therefore that the cost of inspecting the system is §$ Co per inspection
and on the other hand, if an element fails, then the cost associated with;
its failure is .$ Cf per time unit, The inspection policy adopted here
is the following. Given the history connected with the past m inspection
intervals, 1i,e., (§fm), Efm)) determine the (m+l) st inspection epoch
8o that the average expected cost per time unit of inspection and of fajil-
Jure, over the (m+l) st inspection interval will be minimjized., We re-

mark in this connection that this policy is in essence a myopic policy,
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,;5: ) which minimizes the expected time average costs for each inspection
interval individually., A Dynamic Programming determination of the in-
spection epochs could attain a more global optimization., However, attempts

at Dynamic Programming solutions lead to complicated sets of recursive

functional equations. The solution of these equations is generally very
4 i tedious.
Let A designate the lengih of the (m+l) st inspection interval,

3 That is, A= S§

¢
b & nel ~ Sy Given (S‘m), n(m)) the conditional expected

average cost per time unit, under J, is

: . (m) (m) Co C. m (m) A f(u+Sm'S.)
, (3.1) R, (85 8, n™) =22+ 3 Eo n, j‘o (B-u) —————J—l_F(Sm_Sj) du

Or in terms of the conditional distribution of the remaining life time

U we can express (3.1) in the form

& c c A
3 m m 0 m m £ m m

§ (3.2) Rm(a;g( ),n®) - = chnm(A|§( ), nl )y - = uhm(uli( ),2( )y du.
i 0
ﬁv The optimal (m+l) st inspection epoch is defined as § =85 + a°

g m+1 m ’

‘W

. where A° is a positive real value, A, for which the infimum of (3.2)

N i is attained,

! Let
T 4 ©
E { (m) _(m), ..
! (3.3)  uy = f uh (u[s™, 0™ dy,
z 0
g % . : (m) _(m)
74 be the expected remaining life, given (S ’, n' “). According to the
' o . . oM (m)
assumption of the r* vious sectiomn, T < o, Differentiating Rm(A,S u )

with respect to .. obtain that if by < Co/NCf then &° = o,




This is a case in which no more inspections are warranted. On the other

hand, 1if b > Co/ch’ there exists a unique solution, Ao, to the

equation:
& @ _(m)

(3.4) [ ub (us™, a*) du = C/NC.
0

m ()

We realize from (3.4) that Sm+1 is a function of the statistic (§
of the system.

As we have already mentioned in cases of exponential life time
distributions the optimal length of the inspection intervals is the same

1

for all m=1,2, ... . If 8 =A " is the mean time between failures
(MIBF) in the exponential case then W, = O for all m, and the condi-
tion for a finite AP is thatCo < che; i.e.,, the cost of inspecting
an element is smaller than the expected cost of failure of an element,

If this condition is satisfied then, letting ¥ = colche, it is easy

to show that

2
3.5 =2y 4],
Y

2
where Xy [4] designate the +-fractile of a chi~square distribution

with 4 degrees of freedom.

L4, Optimal inspection epochs for Weibull distributions.

Suppose that the life time of an element, T, follows a Weibull

distribution, with a density function

0 , if t< 0
(+.1) £(t;0,a) = .
a £ 1exp{~€a/9] , 1Lt 0
9




where o and 0 are positive real parameters. We notice that if 0<a<1
then the distribution has a decreasing failure rate {DFRy, and if 1 <a < o
its failure rate is increasing (IFR). When « =1 tie distribution is
exponential., Given (Efm), E}m)) the density function of the remaining

life U assumes the special form

m
(0,0) , 1 m) (@, 1 (m) (e e W a @ e oo ya-1
(+.2) h m (u|§, L ) N jZ% " exPiFSm Sj) /?;. 0 (w5, Sj) ’

r a,’
.exp t(L+Sm~Sj) /9[:

for 0su<o, When m=0 (4.2) reduces to (4.1). Following the

procedure given in the previous section we realize that S, <« if and

1
only if,
1/a .1
(4.3) c/N<Cc 87 TG+ .

l/a .1 _ o . o
® FQE'P 1) is the expected life time, If (4.3) is satisfied then
the optimal value of S1 is

AT DS U BN V7"
(h.4) 31“{_2G (M5 5+ 1) ,

where G—XC/!p,v), is the Yy-fractile of the Gamma distribution G(p,\),

with scale parameter p, and where y = CO/QK%BI/GF(l

S + 1)). We notice

that if 2/a is a positive integer j then

(%.5) 5, = [;g-x_‘ [2+j]}i/2

-




We determine now a general expression for the left hand side of

(3.4). According to (4.2),

A
(4.6) [ u,hée’a) (ulg(m), Efm)) du =
0

m
(m) e V2 Q
j?o n, exp{Sm Sj) /g. 5

==

u(u+Sm-Sj )a-lexp {- (U+Sm--Sj )Q% g} du,

O >

By a proper change of variable we obtain

.7 u(u + Sm~SJ.)a-lexp {-(urSm-Sj}a/ o} du =

oI
o “—b

Q
(s, 5 5+0) /9
v -"1/a 1/~ ) ot ~
.j lg_ w - \“’m-“’ji} exp{~w} dw =

(0
(Sm"sj)
- N
1/a1 ’—GmSM) X ( l \
rG+ 1 RE i L a ¥ {) e Lige Eﬁ
O (s, 5" s -5+ |
- (58-S, ) exp {- —-—-é—-l— } - exp{~ —-——é-———]

Substituting (4.7) into (%.6) we cbtain that S =§ +0, where 4

m+1
is the root of the equation:
o
1 B : ' +4) \
(+.8) N n(® exp{(S_-S. ) /e} |b<"“(}.—" ;i 1, é + 1) -
=0 j L /
(s _~s )" !
(PSR S - =
G N HEN ot 1 =Y +

i
1/o1 1. % 2 n (m) (5,°5. ) 1 - cxpé-*-ré -8, +\) - (8-S, ):}
TG — j=0




Y 1is as before,
We notice that for m = 0 the solution of (4.8) is reduced to
the one yiven by (4.4). 1In Figure 1 we illustrate the solution of (4.8)
for three Weibull distributions, where the ngm) sequences were generated
by Monte Carlo simulation., The cases under consideration have the following

parameters: C. = $10. , C, = $200'N , © = [hr] 100 and @ = 3/4, 1

and 5/k., The case of a =1 corresponds to the exponential distribution
with mean 8 = 100, According to (3.5) the optimal inspection interval
for o =1 is of length [hr.] 50 xi [4] where vy = CO/N'Cfe = 0,2 . One
can find in any statistical tables that xfe (4] = 1.65. Hence, the
optimal interval between inspections is in the exponential case is length
82.5 hours. The case of ¢ = 5/ represents an IFR distribution. We
see in Figure 1 that the optimal inspection intervals are of length which
vary very little around 59 hours. It is interesting to notice that in
the present case of an IR distribution the optimal inspection intervals
do not depend strongly on the number of components, N, in the system,
This is not the case when the Weibull distiibution is a DFR (@=3/1).

As illustrated in Figure 1 the optimal intervals for DFR distributions,
as obtained from (%.8), are sensitive to N, When N = 10 there are

considerable fluctuations of the sclution of (4,8). When N = 100 these

fluctuations diminish, The general trend of arowth in the length of the
inspection intervals is however the same. An explanation of this phenom-
enon will be provided in the next section, Finally we remark that the
numerical solution of equation (4,8) in the case discussed here has been
attained followin: the Newton-Raphson iterative corrections to an initial

solution, For fu:...» derails see Fenske [3].
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The variance of wm is
[ m ‘m)(D(“‘))2 S ONC
{(5.7) Var{wm] —-I]‘-;\ 2 [1 w — 2 J 3 2\ .

\\j=0 l-F(Sm-Sj?// j

We have shown that fo. any sequence of inspection r ochs Var ﬂﬂn] = O(N-l)
as N = »o, This expiains why the f{luctuations o. the roots of (4.8) are

relatively larger when N=10 and small when N=100. We consider now a

particular sequence of inspection epochs which consists of values of Sm

obtained by the repeated ¢ lution (for each m) of the equation w, = Y, i.e.,
A ] Iu j-1 A
(5.8) [ufudu+ T Ji- T 9<J)~]i Jutues -5 )du =y

; 5 =L a0 B

E 4
S, 1is the root A of g uf(u)du = vy, . and for each m =1, 2, ..., the

(m+l)st inspection epoch is given by Sm+1 = Sm + A, The sequence of
fixed inspection epochs determined by this procedure corresponds to the
(m)

'% expected values of n and we therefore label this procedure as the

Procedure Of Averages. In Table 1 we provide the inspection intervals

g determined by the Procedure of Averages, and the corresponding multinomial
fgf probabilities e§m) (j=» +.., m,), for the two cases represented in

Figure 1, The graph of the corresponding inspection intervals for the
case of « = 3/4 (DFR) is also plotted in Figure 1. As is demonstrated
in Table 1, in the IFR case (Q=5/h) the significant contribution to the

(m) o (m)

solution is expected to be that of n ane n 1, Or of their corre-
sponding cxpected values. Furthermore, the optimal length of the inspec-

tion intervals varies very lit.le with the number of inspections, m, and

P AT L AT AR AT
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(m)
90 =1 - F(Sm)

(5.2) and

j-1
m) _ IS (1) . .
8 = (1 "i%b 6,7 ) [1-1-‘(5m sj)], j=1, ees, m

It follows that for any fixed sequence of inspection epochs and for each

m = 0, 1) e
(m)y _ y ol®
E{nj } =N Bj

(5.3

o) l, oo',m

(3%
n

(m)y _ (m) . . (m)
Val{nj } =N ej (1 9j )

and

(5.1) cov(ngm), ™) - - Negm) o™, a1l 0<j<ksm.

From (5.2) and (5.3) we conclude that if the length of each inspection
interval is not smaller than Ab then for any distribution T, %3@ n§m)= 0
for each j.

The variable wm is a linear combination of multinomial random
variables, 1Its expectation is

mo -1 T ()
5.5 o =tW}=0™4+ T [1- 2 efJ’J D, ’
m m s} . ,
J:l I 1=0

(m) _

(5.¢) Dj g u f(u+Sm«Sj) du.
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its expectation reaches in the present example a stable situation after

two inspections. This is not the case, however, in the DFR distribution
(0=3/4). The puobabilities 9§m) approach zero, as m grows, very slowly.
This is reflected in a steady increase in the length of the inspection
intervals as m grows, and a stable situation ;s reached in the present
example only after 10 inspections,

To insure that the inspection intervals discussed in Sections 3
and 4 will have similar properties to those determined by procedures of
fixed inspection epochs we could consider the following adjustment.
First, determine for each m =1, 2, ... two fixed sequences of inspec-
tion epochs which will constitute upper and lower (confidence) limits
for the solution of (3.4) (or (4.8)). This can be done by utilizing
formulae (5.5) and (5.7). The lower confidence limits could be obtained

by repeated solution (for the root A) of the equatiun

1/2 _

5.9) o+ 3.[Varﬂﬁn}] Y 3 m=12, ...

The upper limit can be obtained by solving the equation

1/2 -

(5.10) w - 3.[Var{wm}] Y, m=1,2, ...

In the second phase of computation solve equation (3.4)., If the
solution lies between the roots of (5.9) and (5.10) proceed; otherwise
truncate the sclution to eithe- the loser limit or to the upper limit,
whichever is closer to the actual solution, Such an adjuscment will
guarantee that every inspection interval will be bounded by lower and
upper values which are determined by fixed sequences of ingpection cpochs,

and will therefore have general characteristics as established here,

Caliestin riir s cral




Table 1:

Values of optimal

e TR LA R P RO A A I N TR T o B N BN

inspection intervals A [hrs] and multimonial

probabilities under the Procedure Of Averages for Weibull distributions

with § = 100 [hrs] and cost :omponents C, = $200N, C; = $10.

Case

I: o =5/% (IFR)

opt. A

]
o

3

j=1

i=3

j=b

i=5

3=6

j=

58.0

0.2017

0.7983

29.3

0.0211

0.1543

0.8246

59.1

0.0016

0.01561

0,1600

0.8223

59.1

0,000

0.0013

0.0167

0.1595

0.8225

59.1

0.0001

0,0013

0.0166

0.1595

0.8225

59.1

0

0.0001

0.0013

0.0166

0.1595

0,8225

Case

I1:

a = 3/4 (DFR)

147.6

0.6548

0.3452

156.8

0.4825

0.2215

0.2959

161.8

0, 35666

0.162k

0.1880

0.2830

i

e

164.8

0.2839

0.1231

0,1372

0.1787

0.2771

p)

166.6

0.2229

0.0953

0.1039

0.1302

0,1742

0.2735

5

167.9

0.1769

0,0748

0.0803

0.0984

0.1257

0.17156

0.2713

Y

71

1463.8

0.1416

0.0%9k4

0.0530

0.0751

0.0957

0. 1245

0.1598

0.2698

8

169.4

0.1142

0. 0475

0.0500

0. 0500

0,0739

0.0941

0,1233

0.1484

5l

159.9

0,0927

0,0333

0. 0401

0.0473

0. 0580

0.0725

0.0930

0,122

:
p: i
g- 10

a Ll

170.3

0.075%

0,0311

0,0723

0.0379

0.0i-C

0.0519

0.(718

0. 0924

N rre
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