などの上げるというとうであ

OFFICE OF NAVAL RESEARCH

. Contract No. N00014-69-A-0200-4019

Modification AA

Task No. NR 053-481

TECHNICAL REPORT NO. 39

New 10 and 11-Atom Polyhedral Metallocarboranes

Prepared by Polyhedral Contraction

by

Christopher J. Jones, James N. Francis and M. Frederick Hawthorne*

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22151

Department of Chemistry University of California Los Angeles, California 90024

June 19, 1972

Reproduction in whole or part is permitted for any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

Security Classification			
Security classification of title, body of abotract and inde	ONTROL DATA - R & D exing appointion must be entered when the overall report is classifi		
The University of California Department of Chemistry	26. REPORT SECURITY CLASSIFICATI UNCLASSIFIED 26. GROUP		
Los Angeles, California 90021	Not applicable		
NEW 10 AND 11-ATOM POL PREPARED BY POLYHEDRA	LYHEDRAL METALLOCARBORANES		
DESCRIPTIVE NOTES (Type of report and inclusive dates)	Technical		
- AUTHOR(3) (First name, middleitial, last name)			
Christopher J. Jones, James N. Franc	s and M. Frederick Hawthorne		
June 19, 1072	78. TOTAL NO. OF PAGES 70. NO. OF NETS 44 (incl. figs.) 29		
CONTRACT ON GRANT NO. ΝΟΟ(114-69-Α-0200-4019	Se. DRIGINATOR'S REPORT NUMBER(S)		
5. PROJECT NO.	Technical Report 39		
NR 053-481	30. UTHER REPORT NO(5) (Any other numbers that may be		
4	this report)		
0. DISTRIBUTION ATATEMENT			
Approved for public :	release; distribution unlimited.		
1. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTI /ITY		
	Chemistry Branch		
-	Arlington, Virginia 22217		
The base degradation of [L(dation has been found to effect a (1)-2,4- $B'_8C'_2H'_{10}$) ^Z ; where L=0 and z=-1. Further degradation gave [(π -C ₅ H ₅)Co(π -B ₇ C ₂ H ₁₁)] The former complex eliminates (π -(2)-1,10-B ₇ C ₂ H ₉)].	Co(π -(3)-1,2- $B_9C_2H_{11}$)] ^Z followed by oxid a polyhedral contraction to give [LCo(π - C_5H_5] and z=0 or L=(3)-1,2- $B_9C_2H_{11}$ i of these complexes using FeCl ₃ in ether and [(π -(3)-1,2- $B_9C_2H_{11}$)Co(π - $B_7C_2H_9$)] s hydrogen at 150° to give [(π - C_5H_5)Co-		

W.

"when i children is not into an check

14.			NK A	LINK		. []
	KEY WORDS	ROL	E WT	ROLE	WT ROL	E
	Metallocarborane					
	Polyhedral					
	Degradation					-
	Oxidation					
	Thermal-Rearrangement					
ļ						
		5				
					-	
DD	FORM 1473 (BACK)	T.	UN	ICLASSU	FIED	

**** , •_ ----

14 1 1

in Andre and an an and a second at the second

New 10 and 11-Atom Polyhedral Metallocarboranes

Prepared by Polyhedral Contraction

by

Christopher J. Jones, James N. Francis and M. Frederick Hawthorne*

Department of Chemistry University of California Los Angeles, California 90024

[Contribution No. 3011 from the Department of Chemistry, University of California, Los Angeles, California 90024]

Abstract

The base degradation of $[LCo(\pi-(3)-1,2-B_9C_2H_{11})]^Z$ followed by oxidation has been found to effect a polyhedral contraction to give $[LCo(\pi-(1)-2,4-B_8C_2H_{10})]^Z$; where $L = C_5H_5^-$ and z = 0 or $L = (3)-1,2-B_9C_2H_{11}^{-2-2-2}$ and z = -1. Further degradation of these complexes using FeCl₃ in ethanol gave $[(\pi-C_5H_5)Co(\pi-B_7C_2H_{11})]$ and $[(\pi-(3)-1,2-B_9C_2H_{11})Co(\pi-B_7C_2H_9)]^-$. The former complex eliminates hydrogen at 150^0 to give $[(\pi-C_5H_5)Co-(\pi-(2)-1,10-B_7C_2H_9)]$.

Previously, metallocarborane complexes have been prepared by two general methods. The first involves deprotonation of a <u>nido</u>-carborane which contains acidic hydrogen atoms followed by reaction of the resulting anion with a transition metal ion to give a metallocarborane.^{1,2} The second,

1. M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren and P. A. Wegner, J. Amer. Chem. Soc., 90, 879 (1968).

2. T. A. George and M. F. Hawthorne, <u>J. Amer. Chem. Soc.</u>, <u>91</u>, 5475 (1969).

more general approach involves the direct reduction of a <u>closo</u>-carborane to an anionic species using an alkali metal. Reaction of this anion with transition metal ions then gives the desired metallocarborane.³⁻⁵ This

3. G. B. Dunks, Ph.D. Dissertation, University of California, Riverside, California, 1970.

4. W. J. Evans and M. F. Hawthorne, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 3063 (1971).

5. G. B. Dunks, M. M. McKown and M. F. Hawthorne, <u>j. Amer. Chem.</u> Soc., <u>93</u>, 2541 (1971).

second method has been named "Polyhedral Expansion"⁴ since the product has a polyhedral structure containing one more vertex than the parent carborane. We now wish to report some reactions in which a metallocarborane is converted to its next lowest homolog by degradation and oxidation according to the equation:

$$[LCo(B_nC_2H_{n+2})]^{z} \xrightarrow{1.-BH^{2+}} [LCo(B_{n-1}C_2H_{n+1})]^{z}$$

where $L = C_5H_5^{-1}$, z = 0 and n = 8 or 9, or $L = (3)-1, 2-B_9C_2H_{11}^{-2}$, z = 1and n = 8 or 9. Since this reaction affords a polyhedral metallocarborane with one less vertex than its precursor we have named it "Polyhedral Contraction." In addition to providing a route to <u>commo</u>-metallocarboranes containing two different carborane ligands, this reaction demonstrates that the metallocarborane polyhedron has a chemistry in its own right,⁶ over and

6. C. J. Jones, J. N. Francis and M. F. Hawthorne, <u>Chem. Commun.</u>, in press.

above that of terminal B-H substitution.

Polyhedral Contraction of $[(\pi - C_5H_5)Co(\pi - (3)-1,2-B_9C_2H_{11})]$. Degradation of $[(\pi - C_5H_5)Co(\pi - (3)-1,2-B_9C_2H_{11})]$ by hydroxide ion in protic media at <u>ca</u>. 100^o gave a red solution. Treatment of this solution with hydrogen peroxide produced a blue suspension from which the reaction products were extracted with dichloromethane. Column chromatography of the dichloromethane extract afforded two major products, I and II, in 10% and 63% yield respectively; I was further separated into two components, IA and IB in the proportions 5:1, by preparative thick layer chromatography. The purple complex II showed a cutoff at m/e 246 in the mass spectrum and an ion distribution within the parent peak array consistent with that calculated⁷

7. Using an accelerating voltage of 10-12 eV we found that, for <u>closo-</u>metallocarboranes, the ion distribution in the parent peak array was usually within <u>ca</u>. 5% of that calculated assuming normal isotopic abundances. In cases where other data suggested that the metallocarborane did not have a <u>closo-geometry</u> this generalization was no longer true.

for $C_7H_{15}B_8C_0$. The 100 MHz ¹H nmr spectrum of II (Table 1) indicated

Mahada and Make The And Shake

Table 1

the presence of the cyclopentadienide ligand, the spectrum also contained two broad resonances assigned to nonequivalent carborane CH protons. No signals attributable to BHB bridge protons were observed to the high field side of TMS.^{6,8} The 80.5 MHz ¹¹B nmr spectrum (Figure 1) consisted of

8. D. A. T. Young, R. J. Wiersema and M. F. Hawthorne, J. Amer. Chem. Soc., 93, 5687 (1971); reference 12.

Figure 1

six doublets of area 1 and a signal of area 2, showing that the carbon and cobalt atoms are positioned in such a way as to destroy the symmetry of the metallocarborane moiety. On the basis of these data we propose an 11-atom closed polyhedral structure for II, analogous to that proposed for the previously reported⁴ isomer of $[(\pi-C_5H_5)Co(\pi-B_8C_2H_{10})]$. Further, on the basis of the known⁹ structure of $[(\pi-(3)^{-1}, 2-B_9C_2H_{11})Co(\pi-(11)^{-7}, 8^{-7})]$

9. M. R. Churchill and K. Gold, Chem. Commun., in press.

 $B_{5} [_{2}H_{.0} \cdot C_{5}H_{5}N)]$, derived⁶ from the related complex $[(\pi - (3) - 1, 2 - B_{9}C_{2}H_{11}) - (2, 5 - B_{8}C_{2}H_{.0})]$ (vide infra), we assign the carbon atoms to positions 2 and 4 or 2 and 5 (Figure 2).¹⁰ The complex II can exist in two enantiomeric

Figure 2

10. The compounds described herein are numbered according to the icosahedral system, <u>Inorg. Chem.</u>, 7, 1945 (1968), with metal atom vertices in parentheses. It should be noted that, owing to the inherent chirality of this numbering system, different enantiomers have different numbering. The formulae in this paper refer to the enantiomer with the lowest numbering for the carbon atoms.but are intended to represent a racemic mixture since no attempt was made to resolve the different enantiomers.

forms and, presumably, the reactions described herein produce a racemic mixture of both enantiomers. The pyridine adduct, $[(\pi-(3)-1,2-B_9C_2H_{11})-C_0(\pi-(11)-7,8-B_8C_2H_{10} \cdot C_5H_5N)]$, was shown to be a racemic mixture by the structural study.⁹

The yellow complexes IA and IB had similar mass spectra which showed a cutoff at m/e 235 and an ion distribution within the parent peak acray consistent with that calculated for $C_7H_{14}B_7C_0$. Both IA and IB exhibited resonances attributable to the cyclopentadienide ligand and carborane CH in their

-4-

100 MHz ¹H nmr spectra (Table 1). The 80.5 MHz ¹¹B nmr spectrum of IA (Figure 3) contained five doublets of relative area 1:1:2:1:2, and could arise

Figure 3

from an isomer of the previously reported² $[(\pi - C_5H_5)Co(\pi - B_7C_2H_9)]$ in which the carbon atoms occupy equivalent positions on opposite sides of a plane of symmetry in the molecule (Figure 4). In refluxing hexane IA was quantita-

Figure 4

tively converted to a red compound IC, and in refluxing xylene a yellow compound ID was also formed. IC and ID were readily separated using preparative thick layer chromatography and were identified as the previously reported² complexes $[(\pi - C_5H_5)Co(\pi - (2)-1, 6-B_7C_2H_9)]$ and $[(\pi - C_5H_5)Co(\pi - (2)-1, 10-B_7C_2H_9)]$ respectively, by ¹H nmr, ¹¹B nmr and mass spectral measurements. In view of the facile rearrangement of IA to $[(\pi - C_5H_5)Co(\pi - (2)-1, 6-B_7C_2H_9)]$ we feel that the most likely location for the carbon atoms is positions 6 and 7 (Figure 4), since $[(\pi - (2)-1, 6-B_7C_2H_9)_2Co]^{-1}$ is formed¹¹ from

11. D. St. Clair, A. Zalkin and D. H. Templeton, <u>Inorg. Chem.</u>, <u>11</u>, 377 (1972).

 $[(\pi - (2) - 6, 7 - B_7 C_2 H_9)_2 C_0]^{-1}$ under similar conditions² to those used to rearrange IA.

The kinetics of the rearrangements $IA \rightarrow IC \rightarrow ID$ are under investigation in the hope of obtaining more information regarding the nature of IA and the mechanism of its facile conversion to $[(\pi - C_5H_5)Co(\pi - (2)-1, 6-B_7C_2H_9)]$.

The 80.5 MHz ¹¹B nmr spectrum of IB (Figure 3) consisted of four doublets of area 1 and a resonance of area 3 resulting from overlapping signals. Assuming IB is structurally analogous to IA, it would seem that the carbon atoms occupy positions which destroy the symmetry of the $B_7C_2C_0$ polyhedron. We have no further information concerning the location of the carbon atoms in IB,but it is possible to exclude the following isomers on the grounds of symmetry and the known spectra of the 1,6 and 1,10 isomers: 3,5; 8,9; 6,7; 1,6; 1,10; 1,4; 4,10. Unlike IA, IB did not undergo facile thermal rearrangements and after 60 hours at reflux in cyclooctane the complex remained largely unchanged. Only 5-10% cenversion to $[(\pi-C_5H_5)Co(\pi-(2)-1,10-B_7C_2H_9)]$ was found to have occurred, as measured by the relative areas and positions of the cyclopentadienyl resonances in the ¹H nmr spectrum. Degradation of $[(\pi - C_5H_5)Co(\pi - (3) - 1, 7 - B_9C_2H_{11})]$ did not occur under conditions similar to those used to degrade $[(\pi - C_5H_5)Co(\pi - (3) - 1, 2 - B_9C_2H_{11})]$. More forcing conditions resulted in some decomposition of the complex to give cobalt hydroxide.

Polyhedral Contraction of $[(\pi-(3)-1,2-B_0C_2H_{11})_2C_0]$. Degradation of $[(\pi-(3)-1,2-B_9C_2H_{11})_2C_0]$ by hydroxide ion in aqueous media at <u>ca</u>. 95⁰ afforded a red solution which was oxidized by hydrogen peroxide. The

-6-

reaction products were extracted into ether and, after removal of the solvent, were treated with aqueous tetramethylammonium chloride to precipitate a blue complex III in 86% yield. The 100 MHz ¹H nmr spectrum of III (Table 1) indicated the presence of the tetramethylammonium cation and four nonequivalent carborane CH protons. The 80.5 MHz ¹¹B nmr spectrum (Figure 5) was complicated by the extensive overlap of resonances.

Figure 5

However, the spectrum did contain a doublet of area 1 at ca. -72 ppm as did that of II. Further, the spectrum of III could be qualitatively reconstructed by superimposing the spectra of II and $[(\pi - C_5H_5)Co(\pi - (3)-1,2-1)Co(\pi - (3)-1)Co(\pi - (3)-1)CO($ $B_{9}C_{2}H_{11}$)]. Thus we feel that II and III are structurally analogous except that II contains the $C_5H_5^{-1}$ ligand whereas III contains the (3)-1,2-B₉C₂H₁₁²⁻¹ ligand (Figure 2). Reaction of III with pyridine affords a red adduct⁶ whose structure has been unambiguously determined by X-ray methods.⁹ The conversion of III to an adduct having this structure is easily accomplished by substituting boron atom 9 (or boron 11 depending on the enantiomer under consideration) and moving the cobalt atom from a symmetric position with respect to the B_4C_2 bonding face, to a position where it is bonded to only one carbon and three boron atoms. The hydrogen from the boron atom substituted with pyridine presumably moves to a BHB bridging position⁶ during the reaction. Since this reaction scheme involves the minimum of atomic reorganization we feel that the proposed structure for III, and thus for II. is the most reasonable one consistent with the spectroscopic data.

Polyhedral Contraction of $[(\pi - C_5H_5)Co(\pi - (1) - 2, 4 - B_8C_2H_{10})]$. Degradation of $[(\pi - C_5H_5)Co(\pi - (1) - 2, 4 - B_8C_2H_{10})]$ was achieved using excess FeCl₃ in refluxing ethanol, the resulting solution was diluted with water and the products extracted into dichloromethane. Column chromatography of the extract afforded a yellow complex IV in <u>ca</u>. 2% yield and a red complex V in 40% yield; further bands from the column afforded small quantities of intractable materials¹² which were not characterized. The compound IV

12. Similar materials could be obtained by further elution after the isolation of II (vide supra). In both cases, mass spectral data indicated that these materials were mixtures of compounds derived from $[(\pi - C_5H_5) - Co(\pi - B_8C_2H_{10})]$ by substitution of alkoxy groups from the reaction medium. The compounds appeared to contain between one and five substituents but were not investigated further.

was identified as IA or $[(\pi-C_5H_5)Co(\pi-(2)-6,7-B_7C_2H_9)]$ by ¹H nmr, ¹¹B nmr and mass spectral measurements. The mass spectrum of V exhibited a cutoff at m/e 237 and an ion distribution within the parent peak array unlike that calculated for $C_7H_{14}B_7Co$ or $C_7H_{16}B_7Co$. However, the observed ion distribution could arise from a compound of formula $C_7H_{16}B_7Co$ which was undergoing loss of H₂ from the molecular ion. The 100 MHz ¹H nmr spectrum of V (Table 1) contained signals attributable to the cyclopentadienyl ligand and two inequivalent carborane CH protons. In addition two broad resonances were observed at +4.19 and +18.30 ppm which we assign to BHB bridge protons.^{6,8} The 80.5 MHz ¹¹B nmr spectrum of V (Figure 6)

consisted of seven doublets of area 1, consistent with the formulation $[(\pi-C_5H_5)Co(\pi-B_7C_2H_{11})]$. The spectrum also indicates that the carbon and cobalt atoms occupy positions which destroy the symmetry of the $\{B_7C_2Co\}$ framework. In view of the above data, we believe that V is a 10-atom <u>nido</u>-metallocarborane having a structure similar to that found for $B_{10}H_{14}$ and proposed for $B_8C_2H_{12}^{13-17}$ (Figure 7). By analogy with

13. J. S. Kasper, C. M. Lucht, D. Harker, <u>Acta. Crystallogr.</u>, <u>3</u>, 436 (1950).

14. C. M. Lucht, J. Amer. Chem. Soc., 73, 2373 (1951).

15. R. R. Rietz and R. Schaeffer, J. Amer. Chem. Soc., 93, 1263 (1971).

16. P. M. Garrett, G. S. Ditta and M. F. Hawthorne, <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>93</u>, 1265 (1971).

17. J. Plesek and S. Hermanek, private communication.

Figure 7

 $5,7-B_8C_2H_{12}$ and $5,6-B_8C_2H_{12}$ it seemed likely that V would eliminate hydrogen at elevated temperature.^{16,17} This was found to be the case and, in refluxing cyclo-octane (<u>ca</u>. 150^o), a yellow complex was formed which was identified as [(π -C₅H₅)Co(π -(2)-1,10-B₇C₂H₉)] by ¹H nmr and ¹¹B nmr spectral

日本において大学が大学

measurements. At lower temperatures, in refluxing hexane for example, this reaction did not proceed at a significant rate. However, in refluxing ethanol containing FeCl₃ traces of a yellow product were formed after 1 hour; thin layer chromatography indicated that this material was IV or $[(\pi-C_5H_5)-Co(\pi-(2)-6,7-B_7C_2H_9)]$. Thus it would appear that IV is formed from V under the reaction conditions used to prepare V. Further, since $[(\pi-C_5H_5)-Co(\pi-(2)-6,7-B_7C_2H_9)]$ rearranges to $[(\pi-C_5H_5)Co(\pi-(2)-1,10-B_7C_2H_9)]$ a. 150° it seems probable that V eliminates hydrogen to give, in the first instance, $[(\pi-C_5H_5)Co(\pi-(2)-6,7-B_7C_2H_9)]$ which is then converted to the 1,10 isomer under the reaction conditions.

In the absence of an X-ray diffraction study it is impossible to make a definitive assignment of the cobalt and carbon atom positions in V. However, it is possible to rationalize the observed products of the above reactions in terms of one particular isomer. In refluxing ethanol the purple color of II is rapidly discharged giving rise to a brown solution containing intractable materials. Since II reacts with pyridine to give a red adduct of a <u>nido</u>-metallocarborane^{6,9} it seems likely that a similar process may occur in ethanol. The $B_8C_2C_0$ polyhedron could open in one of two ways, the first pathway is that which occurs in the reaction with pyridine giving a complex in which cobalt is bonded to one carbon and three boron atoms.^{6,9} The second pathway involves a motion of the cobalt atom from the B_4C_2 bonding face in the opposite sense, to a position where it is bonded to two carbon and two boron atoms. Assuming that the FeCl₃ degradation of this proposed intermediate removes a boron atom from the open face, as is found in the

FeCl₃ degradation¹⁷ of (3)-1,2-B₉C₂H₁₂, only a limited number of possibilities for the structure of V exist. Of these possibilities only one isomer could close directly to a <u>closo</u>-metallocarborane with the symmetry required by the ¹¹B nmr spectrum of IV. Further, the expected product would be $[(\pi-C_5H_5)Co(\pi-(2)-6,7-B_7C_2H_9)]$ as is found to be the case. This reaction scheme is illustrated in Figure 8 and requires that the carbon

Figure 8

atoms occupy positions 2 and 6 in V, and that the cobalt atom occupy position 5 or 7 depending on the enantiomer under consideration. While this scheme is rather speculative it would appear to be consistent with the chemistry observed for these complexes. The location of the non-terminal hydrogens in V remains unknown; presumably they occupy B-H-E bridge positions in the open face of the $\{B_7C_2C_0\}$ polyhedron, as is thought to be the case in $B_8C_2H_{12}$.¹⁵⁻¹⁷ The observation of two BHB bridge resonances in the 1 H nmr spectrum suggests that these hydrogen atoms are not undergoing rapid tautomeric exchange.

Attempts to degrade the previously reported ${}^{4}[(\pi-C_{5}H_{5})Co(\pi-(1)-2,3-B_{8}C_{2}H_{10})]$ with FeCl₃ or hydroxide ion were unsuccessful. In strong base the formation of cobalt hydroxide was noted, as was observed for $[(\pi-C_{5}H_{5})-Co(\pi-(3)-1,7-B_{9}C_{2}H_{11})]$. Thus it would appear that the $\{(\pi-C_{5}H_{5})Co\}$ moiety is more susceptible to attack by hydroxide ion than are the $\{(\pi-(3)-1,7-B_{9}C_{2}H_{11})]$.

Polyhedral Contraction of $[(\pi-(3)-1,2-B_9C_2H_{11})Co(\pi-(1)-2,4-B_8C_2H_{10})]^{-1}$ The degradation of $[(\pi-(3)-1,2-B_9C_2H_{11})Co(\pi-(1)-2,4-B_8C_2H_{10})]^{-1}$ using FeCl₃ in refluxing ethanol afforded a mixture of compounds which were partially separated by column chromatography. The first major band to elute afforded the red complex VI in 10% yield. Further bands from the column did not afford pire compounds and were not investigated further. The 100 MHz ¹H nmr spectrum of VI (Table 1) exhibited resonances attributable to the tetramethylammonium cation and to four nonequivalent carborane CH groups. However, no signals were observed on the high field side of TMS which could be assigned to BHB bridge protons, thus it appeared that VI did not contain a <u>nido</u>-metallocarborane polyhedron. The only information regarding the structure of VI was provided by the 80.5 MHz ¹¹B nmr spectrum (Figure 9) which contained signals whose areas Figure 9

and positions corresponded well with those expected for a <u>commo</u>-metallocarborane containing the (3)-1,2- $B_9C_2H_{11}^{2-}$ and (2)-1,6- $B_7C_2H_9^{2-}$ ligands. On the basis of these data we formulate VI as $[(CH_3)_4N][(\pi-(3)-1,2-B_9C_2H_{11})-Co(\pi-(2)-1,6-B_7C_2H_9)]$ (Figure 10) in which 12 and 10 atom metallocarborane

Figure 10

ANALAH KANYUMUMUMUMUMUMUMU

polyhedra are fused at the cobalt atom. In view of our observations concerning the formation of V from II this formulation is not unreasonable. However, in the case of VI the reaction conditions are apparently sufficient to produce a <u>closo-metallocarborane</u> moiety directly. At the reaction temperature (<u>ca</u>. 80^o) the 1,6 isomer of the { $B_7C_2H_9C_0$ } fragment would be formed² as is thought to be the case.

Since the complexes $[(\pi - C_5H_5)Co(\pi - (2) - 1, 6 - B_7C_2H_9)]$ and $[(\pi - (2) - 1, 6 - B_7C_2H_9)_2Co]^-$ rearrange² to the corresponding 1,10 isomers at elevated temperature, the thermal rearrangement of VI to a complex whose ¹¹B nmr spectrum was consistent with the presence of the $\{(\pi - (2) - 1, 10 - B_7C_2H_9Co)\}$ moiety would lend further support to our formulation of VI. Accordingly. a sample of VI was heated in refluxing anisole (154^o) for 50 hr. to give a fawn complex VII in 90% yield. The positions and areas of signals in the 80.5 MHz ¹¹B nmr spectrum (Figure 11) of VII corresponded well with

Figure 11

those expected for a <u>commo</u>-metallocarborane containing the (3)-1,2-B₉C₂H₁₁²⁻ and (2)-1,10-B₇C₂H₉²⁻ ligands. The 100 MHz ¹H nmr spectrum (Table 1) contained signals attributable to the tetramethylammonium cation and to two nonequivalent carborane CHgroups in the B₇C₂H₉²⁻ ligand.² The signal at -3.73 ppm can be assigned to equivalent carborane CH groups in the (3)-1,2-B₉C₂H₁₁²⁻ ligand. This equivalence is consistent with a more symmetric structure for the $B_7C_2H_9^{2-}$ ligand than was the case in VI. Thus we formulate VII as $[(CH_3)_4N][(\pi-(3)-1,2-B_9C_2H_1)Co(\pi-(2)-1,10-B_7C_2H_9)]$ having a structure similar to that of VI (Figure 10) except that the carbon atoms in the $B_7C_2H_9^{2-}$ ligand occupy positions 1 and 10 as anticipated.

Infrared and Electronic Spectral Data. The infrared spectra (Table 2)

ed active and a concertion with the construction of the construction of

Table 2

of all the complexes described above exhibited bands in the region 2500-2600 cm⁻¹ due to terminal B-H stretching vibrations. The spectra of IA, IB, II and V contained a band of medium intensity in the region 810-840 cm⁻¹ assigned to the C_5H_5 ligand. The spectra of III, VI and VII contained a band at 950 cm⁻¹ due to the presence of the tetramethylammonium cation. We were unable to detect bands in the region 1600-1900 cm⁻¹ in the spectrum of V which might be assigned to BHB bridge groups. However, since bands of this type are usually very weak¹⁸ this is not remarkable.

18. D. V. Howe, C. J. Jones, R. J. Wiersema and M. F. Hawthorne, Inorg. Chem., 10, 2516 (1971).

The electronic spectral data (Table 3) did not provide information

Table 3

relating to the structures of the new complexes and, in the absence of a rigorous study of the electronic spectra of metallocarboranes, we have made no attempt to assign the bands in these spectra.

Electrochemical Data. The half-peak potentials for the new complexes and for $[(\pi - C_5H_5)Co(\pi - (2) - 1, 6 - B_7C_2H_9)]$, IC, and $[(\pi - C_5H_5)Co(\pi - (2) - 1, 10 - B_7C_2H_9)]$, ID, are given in Table 4, along with R_f values for the neutral

Table 4

complexes. All the complexes exhibited at least one reduction wave in the region 0 to -2 volts and in the case of III two waves were observed. A comparison of the reduction potentials for the two series of complexes II, IC, ID and III, VI, VII shows that the reduction potentials follow the same trend with variation of the non-icosahedral ligand. However, the reduction potentials of complexes containing the (3)-1,2-B₉C₂H₁₁²⁻ ligand were significantly more negative than those of the corresponding complexes containing the C₃H₅⁻ ligand. This is in accord with the previously reported¹ reduction potentials of -1.25 and -1.46 volts for $[(\pi-C_5H_5)Co(\pi-(3)-1,2-B_9C_2H_{11})]$ and Cs $[(\pi-(3)-1,2-B_9C_2H_{11})_2Co]$ respectively. A correlation between half-peak potential and the position of the long wave length electronic spectral absorption has been made^{19,20} for isomers of $[(\pi-C_5H_5)-$

19. M. K. Kaloustian, R. J. Wiersema and M. F. Hawthorne, J. Amer. Chem. Soc., 93, 4912 (1971).

20. M. K. Kaloustian, R. J. Wiersema and M. F. Hawthorne, <u>J. Amer.</u> Chem. Soc., in press. $Co(\pi-B_{5}C_{2}H_{11})]$. A similar situation exists for the four known isomers of $[(\pi-C_{5}H_{5})Co(\pi-B_{7}C_{2}H_{9})]$. Thus increasingly negative reduction potentials in the order IC < ID < IA < IB correspond with decreasing wave lengths for the longest wave length absorption in the electronic spectra² of these complexes (Tables 3 and 4).

Conclusion. The known chemistry of the metallocarboranes is almost entirely limited to terminal B-H subsitution^{1,21-25} and thermal polyhedral re-

21. M. F. Hawthorne, L. F. Warren, K. P. Collahan and N. F. Travers, J. Amer. Chem. Soc., 93, 2407 (1971).

22. M. R. Churchill, K. Gold, J. N. Francis and M. F. Hawthorne, J. Amer. Chem. Soc., 91, 1222 (1969).

23. J. N. Francis and M. F. Hawthorne, Inorg. Chem., 10, 594 (1971).

24. J. N. Francis, C. J. Jones and M. F. Hawthorne, <u>J. Amer. Chem.</u> Soc., in press.

25. B. M. Graybill and M. F. Hawthorne, Inorg. Chem., 8, 1799 (1969).

arrangement.^{2,19,20,26} In this paper the chemistry of the metallocarboranes has

26. L. F. Warren and M. F. Hawthorne, J. Amer. Chem. Soc., 92, 1157 (1970).

been extended to include the polyhedral framework itself. In particular the concept of "Polyhedral Contraction," though not as general in application as that of "Polyhedral Expansion,"⁴ has led to the synthesis of some new types of metallocarborane, namely <u>nido</u>-metallocarboranes⁶ and <u>commo</u>metallocarboranes containing two different polyhedra fused at the metal atom. Perhaps the most significant feature of this work is the demonstration that certain metallocarborane polyhedra exhibit a chemistry⁶ which, in some respects, parallels that of the carboranes themselves.^{15-17,27,28}

27. M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe and P. A. Wegner, <u>J. Amer. Chem. Soc.</u>, <u>90</u>, 862 (1968).

abor or a strand and a second strand and a second strand stran

28. D. C. Young, D. V. Howe and M. F. Hawthorne, <u>J. Amer. Chem.</u> Soc., <u>91</u>, 859 (1969).

Thus, in the systems studied so far,⁶ it seems that the replacement of a {B-H} unit by { $(\pi - C_5H_5)C_0$ } does not drastically change the chemistry of the polyhedral framework.

Experimental Section

Physical Measurements. 100 MHz ¹H nmr spectra were obtained using a Varian HA 100 spectrometer. 80.5 MHz ¹¹B nmr spectra were recorded using an instrument designed and constructed by Professor F. A. L. Anet and Dr. C. H. Bradley of this Department. Infrared spectral data were obtained using a Perkin Elmer Model 137 sodium chloride spectrophotometer and electronic spectra were recorded on a Beckman Model DB spectrometer. -18-

Electrochemical data were determined by previously described methods²⁹

29. T. E. Paxson, M. K. Kaloustian, G. M. Tom, R. J. Wiersema and M. F. Hawthorne, J. Amer. Chem. Soc., in press.

and mass spectra were recorded using an Associated Electrical Industries Model MS-9 spectrometer. Analyses were carried out by Schwarzkopf Microanalytical Laboratories, Woodside, N.Y. Materials. Unless otherwise stated, reactions were carried out in a nitrogen atmosphere using reagent grade solvents which had been saturated with nitrogen. Electronic spectral measurements were made in spectrograde solvents. K[(π -(3)-1,2-B₉C₂H₁₁)₂Co] and [(π -C₅H₅)Co(π -(3)-1,2-B₉C₂H₁₁)] were prepared using previously described methods.^{1,24} Common chromatography was carried out using 60-200 mesh silica gel supplied by the J. T. Baker Chemical Co. Quantities were estimated by the volume of the dry powder. Preparative thick layer chromatography was carried out using ChromAK Sheet 1000 chromatographic medium.

Polyhedral Contraction of $[(\pi - C_5H_5)Co(\pi - (3) - 1, 2 - B_9C_2H_{11})]$

a) Preparation of $[(\pi-C_5H_5)Co(\pi-(1)-2,4-B_8C_2H_{10})]$; II. $[(\pi-C_5H_5)-Co(\pi-(3)-1,2-B_9C_2H_{11})]$ (2.0 g; 7.8 mmol) was added to a mixture of ethylene glycol/ethanol/water (150 ml of a mixture in the proportions 100:40:10) containing potassium hydroxide (12.0 g; 210 mmol). The mixture was then heated to reflux for 25 hr. after which time the reaction mixture was quenched

with water (500 ml) to give a red solution. Careful addition of hydrogen peroxide (10 ml of a 30% aqueous solution) resulted in the formation of a blue precipitate; this was extracted into dichloromethane (4 x 200 ml) and the combined extracts dried over $MgSO_4$. After filtration the purple extract was stripped onto silica gel (<u>ca</u>. 60 ml) and mounted on a silica gel column (400 ml).

Elution with hexane-dichloromethane developed a yellow band containing IA and IB followed by a purple band containing II. The first band was collected and further purified as described in the next paragraph. The second, purple band containing the complex II was collected; evaporation of most of the solvent resulted in the precipitation of II (1.2 g, 63%) which was recrystallized from dichloromethane-hexane to give deep purple needles; Mp 168^o. <u>Anal.</u> Calcd for $C_7H_{15}B_8$ Co: C, 34.37; H, 6.14; B, 35.35; Co, 24.14. Found: C, 34.40; H, 6.25; B, 35.09; Co, 23.91. b) Isolation of $[(\pi-C_5H_5)C_0(\pi-B_7C_2H_9)]$; IA and IB. The yellow solution obtained by chromatography as described in the previous paragraph was evaporated to dryness under reduced pressure at 40°. (Owing to the facile thermal rearrangement of IA it is necessary to keep the compound at temperatures below40° throughout the purification.) The yellow residue contained IA and IB in the proportions 5:1 as measured by integration of the cyclopentadienyl resonances in the ¹H nmr spectrum of the mixture (total yield 170 mg, 10%). Separation of the components of this mixture was effected by preparative thick layer chromatography using hexane-dichloromethane eluent. R_f values for IA and IB are given in Table 4. The first

-19-

band containing IB was extracted into dichloromethane, stripped to dryness under reduced pressure and sublimed at 70^o onto a water cooled probe. The second band contained IA and was extracted into cold dichloromethane, evaporated to dryness under reduced pressure at room temperature, then sublimed at 40^o onto a water cooled probe. <u>Anal</u>. Calcd for C₇H₁₄B₇Co: C, 36.11; H, 6.02; B, 32.50; Co, 25.37. Found: IA; C, 36.22; H, 6.13; B, 32.83. IB, Mp 91^o; C, 35.70; H, 6.93; B, 32.03; Co, 25.09.

Polyhedral Contraction of $[(\pi-(3)-1,2-B_9C_2H_{11})_2C_9]$. Preparation of $[(CH_3)_4N][(\pi-(3)-1,2-B_9C_2H_{11})_2C_9]$ (2.0 g, 5.5 mmol) was added to a solution of potassium hydroxide (60 g; 1.05 mol) in water (200 ml) and the mixture heated to 95^o for 6 hr. with magnetic stirring. After this time the reaction mixture was quenched with water (600 ml) to give a red solution. Careful addition of hydrogen peroxide (12 ml of a 30% aqueous solution) produced a blue precipitate which was extracted nto ether (3 x 300 ml). The combined ether extracts were evaporated at 40^o under reduced pressure to give a blue oil; this was redissolved in water and the solution treated with aqueous tetra-methylammonium chloride to precipitate the blue product. After filtration the product was dried in vacuo over P₂O₅, then recrystallized from dichloromethane-chloroform as blue plates (1.8 g, 85%). <u>Anal</u>. Calcd for C₈H₃₃NB₁₇-Co; C, 24.90; H, 8.56; N, 3.63; B, 47.61; Co, 15.30. Found: C, 24.70; H, 8.58; N, 3.82; B, 47.61; Co, 15.09.

Polyhedral Contraction of $[(\pi - C_5H_5)Co(\pi - (1) - 2, 4 - B_8C_2H_{10})]$. Preparation of $[(\pi - C_5H_5)Co(\pi - B_7C_2H_{11})]$; V. $[(\pi - C_5H_5)Co(\pi - (1) - 2, 4 - B_8C_2H_{10})]$ (1.0 g, 4.0 mmol) was dissolved in absolute ethanol (200 ml), ferric chloride (5.0 g, 31 mmol) was then added and the mixture heated to reflux for 45 min. with stirring. After this time the reaction mixture was quenched with water (1000 ml) and the products extracted into dichloromethane (3 x 300 ml). The combined extracts were dried over MgSO₄, filtered and stripped onto silica gel (ca. 40 ml). This material was mounted on a silica gel column (400 ml) and the products eluted with hexane-dichloromethane. The first band to elute was yellow and was purified in the manner described for 1A above. This complex was identified as IA or $[(\pi-C_5H_5)Co(\pi-(2)-6,7-B_7C_2H_9)]$ by ¹H nmr, ¹¹B nmr and mass spectral measurements (20 mg; 2%). The _econd band to elute was red and, on evaporation of the solvent, afforded the red crystalline product (380 mg. 40%) which was recrystallized from dichloromethane-hexane, Mp 123^O. <u>Anal</u>. Calcd for C₁H₁₆B₇Co: C. 35.81: H, 6.82; B, 32.23; Co, 25.15. Found: C. 35.84: H, 7.06: B, 32.07: Co, 24.86.

Pyrolysis of $[(\pi-C_5H_5)Co(\pi-B_2C_2H_1)]$. Formation of $[(\pi-C_5H_5)Co(\pi-(2)-1,10-B_2C_2H_9)]$. A sample of $[(\pi-C_5H_5)Co(\pi-B_2C_2H_{11})]$. V. (100 mg: 0.43 mmol) was added to cyclo-octane (20 ml) and the mixture heated to reflux for 24 hr. After this time the bulk of the solvent was evaporated at reduced pressure and the residual reaction products separated using preparative thick layer chromatography with hexane-dichloromethane eluant. The first band to elute was yellow and contained $[(\pi-C_5H_5)Co(\pi-(2)-1,10-B_7C_2H_9)]$ (84 mg: 85%) which was identified by ¹H nmr, ¹¹B nmr and mass spectral measurements. Traces of a red material with an R_f value equal to that of $[(\pi-C_5H_5)Co(\pi-(2)-1,10-B_7C_2H_9)]$ were also observed.

のないないである。「ないない」である。

The above reaction was repeated using $[(\pi - C_5H_5)Co(\pi - B_7C_2H_{11})]$ (101 mg; 0.43 mmol) and cyclo-octane (5 ml) which were placed in a tube with κ break-seal. The tube was evacuated and sealed off on the vacuum line then heated to 150° for 24 hr. After this time the tube was vented into the vacuum line and the volume of non-condensible (-190°) gas formed was measured using a Sprengel Pump (0.42 mmol; 98%). The residual material in the tube was treated in the manner described in the previous paragraph and afforded $[(\pi - C_5H_5)Co(\pi - (2) - 1, 10 - B_7C_2H_9)]$ (80 mg; 80%) and $[(\pi - C_5H_5)Co(\pi - (2) - 1, 6 - B_7C_2H_9)]$ (6 mg; 6%).

Polyhedral Contraction of $[(\pi - (3) - 1.2 - B_9C_2H_{11})C_0(\pi - (1) - 2.4 - B_8C_2H_{10})]^{-1}$. Preparation of $[(CH_3)_4N][(\pi - (3) - 1.2 - B_9C_2H_{11})C_0(\pi - (2) - 1.6 - B_7C_2H_9)]VI.$

A solution of $[(CH_3)_4N][(\pi-(3)-1,2-B_9C_2H_{11})Co(\pi-(1)-2,4-B_8C_2H_{10})]$ (1.0 g; 2.6 mmol) and FeCl₃ (5.0 g; 31 mmol) in ethanol (100 ml) was heated to reflux for 3.5 hr. After this time the reaction mixture was poured into water (500 ml) and the resulting aqueous phase extracted with dichloromethane (2 x 200 ml). The dichloromethane was then evaporated under reduced pressure and the resulting oil was rediasolved in a little acetone/ethanol. A dilute aqueous solution of tetramethylammenium chloride was added and the mixture once again extracted with dichloromethane. The dichloromethane extract was stripped onto silica gel (ca. 40 ml) which was then mounted on a silica gel column (300 ml). Elution with dichloromethane developed a red band which was collected and stripped to dryness. The residue was redissolved in acetone and treated with a solution of tetrataethylammonium chloride in aqueous ethanol. Evaporation of the acetone under reduced pressure precipitated the red product (110 mg; 11%) which was recrystallized from dichloromethane-chloroform. <u>Anal.</u> Calcd for $C_8H_{32}NB_{16}C_0$: C, 25.68; H, 8.56; N, 3.75; B, 46.23; Co, 15.78. Found: C, 25.56; H, 8.41; N, 4.04; B, 46.52; Co, 15.58.

Thermal Rearrangement of $[(\pi^{-}(3)-1,2-B_9C_2H_{11})Co(\pi^{-}(2)-1,6-B_7C_2H_9)]^{-}$, VI. Preparation of $[(CH_3)_4N][(\pi^{-}(3)-1,2-B_9C_2H_{11})Co(\pi^{-}(2)-1,10-B_7C_2H_9)]$, VII. A solution of $[(CH_3)_4N][(\pi^{-}(3)-1,2-B_9C_2H_{11})Co(\pi^{-}(2)-1,6-B_7C_2H_9)]$ (100 mg; .29 mmol) in anisole (20 ml) was heated to reflux for 50 hr. After this time the bulk of the solvent was evaporated under reduced pressure and the residue purified using preparative thick layer chromatography with dichloromethane eluant. Only one major band separated and this was extracted into dichloromethane-acetonitrile which was then evaporated under reduced pressure. The residue was redissolved in acetone and treated with a solution of tetramethylammonium chloride in aqueous ethanol. Evaporation of the acetonc precipitated the fawn product (90 mg: 90%) which was rccrystallized from dichloromethane-chloroform. <u>Anal</u>. Calcd for C₈H₃₂NB₁₆Co: C, 25.68; H, 8.56; N, 3.75; B, 46.23; Co, 15.78. Found: C, 25.48; H, 8.55; N, 3.97; B, 45.93; Co, 15.49.

Acknowledgements

The authors are indebted to Dr. R. J. Wiersema for the ¹¹B nmr and electrochemical measurements and to Dr. G. B. Dunks for assistance with the hydrogen evolution experiment. We are grateful to Professor S. Hermánek for information received prior to publication. The award of a N.A.T.O. Fellowship (to C.J.J.) is gratefully acknowledged. This work was supported in part by the Office of Naval Research.

The section

Lindstoneski i Karana andari mirani makala

のないというないというないという

いたちないにつけたいたいとい

A TANK TAN

and a support of the support of the

ROM STAR

Table 1

NAME OF T

100 MHz ¹H nmr Spectral Data

Compound	Resonance ^a	Assignment
IA ^b [(π-C ₅ H ₅)Co(π-(2)-6,7-B ₇ C ₂ H ₉)]	-4.94 - · 64	cyclopentadienide
IB ^b [(п-С ₅ Н ₅)Со(п-В ₇ С ₂ Н ₉)]	-5.22 -5.20 -3.83	cyclopentadienide carborane CH
II ^с [(п-С ₅ Н ₅)Со(п-(1)-2,4-В ₈ С ₂ Н ₁₀)]	-5.37 -5.71 -4.16	cyclopentadienide carborane CH
III ^C [(CH ₃) ₄ N][(π-(3)-1,2-B ₉ C ₂ H ₁₁)- Co(π-(1)-2,4-B ₀ C ₂ H ₁₀)]	-3.11 -2.77	tetramethylammonium
	-3.17 -4.13	carborane CH
	-5.25 1	

23 21 **HANNE**

Table 1, continued

Contract Server

*

Compound	Resonance ^a	Assignment
ν ^b [(π-C ₅ H ₅)Co(π-B ₇ C ₂ H ₁₁)]	-5.36 -5.14 -6.20	cyclopentadienide carborane CH
7	+4.19 + +18.30 +	BHB bridge protons
VI ⁻ [(CH ₃) ₄ N][(π-(3)-1,2-B ₉ C ₂ H ₁₁)- Co(π-(2)-1,6-B ₇ C ₂ H ₉)]	- 3.41 - 2.91	tetramethylammonium
U	-3.64	carborane CH
$[(CH_3)_4N][(\pi^-(3)-1,2-B_9C_2H_{11})-C_2(-2,2,2,1,1,0,1,2,1,1)]$	- 3.05 - 3.73]	tetramethylammonium
10-02-02-14,10-02-19,1	-6.55 -8.28	carborane CH

26

Table 1, continued

- a. In ppm relative to tetramethylsilane (TMS).
- b. Measured in CDCl₃ solution.
- c. Measured in CD_3CN solution.
- d. Measured in $(\text{CD}_3)_2$ Co solution.

Table 2.

Infrared Spectral Data (Nujol Mull)

IA

 $[(\pi - C_5^{14}S)C_0(\pi - (2)-6, 7-B_7C_2^{H_9})]$

IB

 $[(\pi - C_{5}H_{5})Co(\pi - B_{7}C_{2}H_{9})]$

II

 $[(\pi - C_5H_5)Co(\pi - (1) - 2, 4 - B_8C_2H_{10})]$

111

 $[(CH_3)_4N][\pi - (3)-1, 2-B_9C_2H_{11})-C_9(\pi - (1)-2, 4-B_8C_2H_{10})]$

2580 (m), 2510 (s), 1410 (w), 1125 (w), 1070 (w), 1040 (w), 1005 (m), 950 (m), 915 (m), 835 (m), 805 (w). 2580 (m), 2520 (s), 1530 (m), 1410 (m), 1290 (w), 1240 (w), 1110 (w), 1100 (w), 1080 (w), 1070 (w), 1020 (m), 1010 (m), 980 (m), 965 (w), 940 (w), 890 (w), 855 (w), 835 (m), 810 (w), 800 (w), 765 (w).

2610 (m), 2560 (s), 2520 (s), 1260 (w), 1075 (m), 1040 (m), 1005 (m), 965 (m), 950 (m), 930 (w), 895 (m), 870 (w), 840 (m), 800 (w), 745 (w), 695 (w).

2560 (s), 2520 (s), 1470 (s), 1400 (w), 1260 (w), 1150 (w), 1100 (w), 1075 (m), 1020 (w), 1000 (w), 990 (w), 970 (w), 955 (w), 950 (m), 910 (w), 755 (w).

Table 2, continued.

and the state of t

and and the state of the state

ر [(π-C₅H₅)Co(π-B₇C₂H₁₁)] $[(CH_3)_4N][(\pi - (3)-1, 2-B_9C_2H_{11})-C_0(\pi - (2)-1, 6-B_7C_2H_9)]$

VII [(CH₃)₄N][(π -(3)-1,2-B₉C₂H₁₁)-Co(π -(2)-1,10-B₇C₂H₉)]

2560 (s), 2510 (s), 1400 (m), 1310 (w), 1300 (w), 1220 (w), 1090 (w), 1075 (w), 1055 (w), 1025 (w), 1010 (m), 995 (m), 985 (m), 960 (w), 940 (w), 925 (w), 900 (w), 890 (w), 860 (w), 840 (m), 830 (m), 805 (w), 750 (m). 2560 (s), 1470 (s), 1200 (w), 1140 (w), 1100 (m), 1090 (m), 1070 (w), 1055 (w), 1020 (w), 985 (m), 950 (m), 895 (w), 880 (w), 840 (w), 780 (w), 688 (w). 2560 (s), 1480 (s), 1200 (w), 1130 (m), 1100 (m), 1075 (w), 1065 (w), 1050 (w), 1020 (w), 990 (m), 950 (m), 920 (w), 915 (w), 890 (w), 845 (w).

Table	3
~~~~	~~~

San and the second s

ndeen addreaming a head a stitute back down by a

SALAHADAHANA SA

には、ことと

Electronic Spectral Data (Acetonitrile Solution).

Compound	λ max (mμ)	£
TA		
$[(\pi - C_{r_{1}}H_{r_{2}})C_{0}(\pi - (2) - 6, 7 - B_{7}C_{9}H_{0})]$	440	326
	315	4,360
	260	13,100
$[(\pi - C_5H_5)Co(\pi - B_7C_2H_9)]$	390 sh	499
	290 sh	10,580
	260	23,650
	23() sh	10,200
11		
$[(\pi - C_5H_5)Co(\pi - (1) - 2, 4 - B_8C_2H_{10})]$	565	635
	340	3,185
	280	13,080
	245	19,080
III		
$[(CH_3)_4N][(\pi - (3) - 1, 2 - B_9C_2H_{11})C_0 -$	590	878
$(\pi - (1) - 2, 4 - B_8 C_2 H_{10})$	345	4,760
	258	24,650
V	230 sh	14,200
$[(\pi - C_5H_5)C_0(\pi - B_7C_2H_1)]$	480	886
	360 sh	3,450
	270	26 500

#### Table 3, continued.

Q.

and a substant of the substant of the substant and the substant of the substant of the substant of substant of A substant of the substant of the

Construction of the second second second

Compound	λ _{max} (mμ)	e
V: [(CH_) N][(#-(3)-1.2-B_C_H_)-	505	208
$Co(\pi - (2) - 1.6 - B_{-}C_{-}H_{-})]$	375	2,980
	340	5,040
	285	21,000
VII		
$[(CH_3)_4N][(\pi - (3) - 1, 2 - B_9C_2H_{11}) -$	485	306
$C_0(\pi^-(2)-1, 10-B_1C_2H_2)]$	345	7,600
	260	16,800
	230 sh	10,800

31

2.966

03.3

Compound	E _{p/2} ^a	R _f b
IA	-1.17	.40
IB	-1.33	.46
IC	-1.03	.28
ID	-1.10	.62
II	-0.81	.16
III	-0.93; -1.70	
V	-0.87	.15
VI	-1.29	
VII	-1.33	

#### Electrochemical Data and $R_{f}$ Values

Table 4

- a. Measured in acetonitrile solution 0.1 M in  $(C_2H_5)_4N-C1O_4$  using a Pt button electrode. Values are quoted in volts versus the S.C.E.
- b. On ChromAR Sheet 1000 chromatographic medium with 9:1 hexane:dichloromethane eluent.









Figure 3.

80.5 MHz  11 B nmr spectra of IA and IB measured in CDCl₃ and CH₂Cl₂ solutions respectively.

air sa fuinean an san a statistic statistication and an anna anna anna anna airtean anna anna anna anna anna an



Figure 4. Proposed structure for IA and IV.

CALIFICATION AND A

and a second state of the second state of the second second second second second second second second second s

and the second second second second second

21.15

ž

and the second state of th



Figure 5.

80.5 MHz  11 B nmr spectrum of III in CH₃CN solution.

+34.8 (155) +22.2 (155) +i8.8 (155) വ +9.9 (155) +8.4 (155) [J] -0.1 (135) -2.7 (125) 4 -12.7 (135) -71.9 ACCORD. 42

 $\left[ \left( \pi - (3) - 1, 2 - B_9 C_2 H_{11} \right) C_0 \left( \pi - (1) - 2, 4 - B_8 C_2 H_{10} \right) \right]^{-1}$ 

Signature with the second of the

Figure 6.

CONTRACTOR OF

APPENDING THE PARTY OF THE PART

habertelfistratetainess"

80.5 MHz ¹¹B nmr spectrum of V in  $CH_2Cl_2$  solution.

A Contraction of the second

and the static static

たのに、「たい」となっていたいないというから

and he man concern and the second states of the second

### $[(\pi - C_5H_5)Co(\pi - B_7C_2H_1)]$





skirtiski interesta te tersering induktionen falsater itt ist kinder hut dationer statet.

and the second states of the second second





**达达的过去式**,近天这些中国运动

這是的自己



Contract of C

STATES STATES

Figure 9. 80.5 MHz ¹¹B nmr spectrum of VI in  $(CD_3)_2$ CO solution.

のなどのないであるというないであるというで

Tree berger

bibbles and shirt and



Figure 10.

12/02 (14)

Proposed structure for VI; only one enantiomer of the  $\{(\pi - (2)-1, 6-B_7C_2H_9)C_0\}$  fragment is illustrated.

adea is it air stration control the shared by the stration of the stration of the part of the stration of the strategy of

ALCONTRACTOR AND A





1. 1. . N. 1933

Sec. 1.

