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ABSTRACT

An inverse formulation is developed for solving three-dimensional potential fluid flows
which considers the magnitudes of the cartesian coordinates x, y, and z as the dependent variables
in the space defined by the potential function and two mutually orthogonal stream surface
functions whose intersection defines the physical space streamlines. This formulation reverses the
usual role of the variables. In this inverse space irregulw'boundaries, with unknown position in the
physical space, such as free surfaces become plane boundaries, and the space of most potential
flow problems is a parallelepiped.

The basic partial differential equations resulting from this formulation are nonlinear and
three in number. Finite difference methods are developed for solving the space boundary value
problems simultaneously, which are associated with these three equations. The applicability of the
inverse formulation and the numerical solution is demonstrated by obtaining a solution to the
three-dimensional, free surface flow Fast a vertical strut which extends through the fluid surface
and is placed between channel walls.
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NOTATION

I = any vector quantity J = Jacobian determinant

a = x/ j = inverse Jacobian determinant

a = acceleration of gravity j = subscript denoting increment in i direction

B = any vector quantity j = unit vector in y-direction

b = 3/ k = subscript denotirng increment in tb* direction

c = z/aý k = unit vector in z-direction

= DIM1  L = number of • grid planes

D = depth of upstream flow

D = derivative determinant
M = number of •P grid planes

d = Y/ ap
e M,= M-1

F = denotes function of N = number of • grid planes

f = denotes function of N, = N - I

f = ayIar NS = * plane coincident with strut

f = vector array of values p = superscript denoting iteration number

G denotes function of Q flow rate

g denotes function of q superscript denoting iteration number

g = azI• q = vector array of values

H depth of flow plus velocity head r = vector array of values

H = denotes function of s vector array of values

h = denotes function of u = velocity component in x-direction

h = v velocity component in y-direction

i = subscript denoting increment in direction w = velocity component in z-direction

i = unit vector in x-direction w = over-relaxation factor
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W width of channel 0 angle

x cartesian coordinate and also magnitude thereof f i 3.1417

y = cartesian coordinate and also magnitude thereof - potentilal function
z = cartesipit coordinate and als magnitude thereof = dimensionless ,,otential function

cc = dire:, -, cosine stream surface function

= direction cosine 4imensionless stream surface function

+ = + stream surface function

y = direction cosine = dimensiorless stream surface function

vi

I "U

V.- ..-



INTRODUCTION

For many practical fluid flow problems in which components of the velocity, u and v. A major advantage

viscous foices are of minor importance, because they are to such an inver.e formulation is that fr,. surfaces, being
; confined to relatively small regions of the flow, inviscid streamlines along which * is constant, become straight

fluid flow theory yields results which are adequate for boundaries in the 4 t plane, and many problems are

most applications. Consequently a vast amount of litera- consequently confined within rectangular regions. Also
ture deals with. inviscid fluid flow theory. Despite all of the results from a solution are in aa ideal form for
the effort represented by this literature, many relatively plotting a flownet and are well adapted for computing
common prcblems with free surfaces and/or cavities have other quantities of interest concerning the flow.
not been solved in closed form without introducing anumber of simplifying assumptions which are not in This type of inverse formulation, accompanied by a
accord with real situations. Available analytic methods subsequent. finite difference solution, has been used to
generally require that the fluid be assumed weightless (i.e. study a ,ariety of two-dimensional free streamline prob.
the acceleration of gravity is zero). Furthermore, since i. ms (Thom and Apelt, 1961; Cassidy, 1965; Markland,
such methods are based on complex variables, they are 1965; Jeppson, 1966 and 1969a). The same approach has
restricted to plane two-dimensional flows. Consequently. been used to solve problems dealing with plane saturated
in order to solve problems with free surfaces under the porous media flow with phreatic or free surfaces (Jepp-
influence of gravity, or three-dimensional problems even son, 1968a, b, and c), and unsaturated moisture move-if axially symmetric, researchers have been forced to ment in soils (Jeppson and Nelson, 1970, and Jepp.onet
obtain solutions based on numerical approximations al., 1972). The same approach of using a tormulation
rather than solving the problems in closed form. which interchanges the usual role of the variables with an

accompanying numerical solution has been used to solve
The application of finite differences constitutes one three-dimensional problems with axial symmetry. In these

of the most powerful and universally applicaole methods the magnitude of the radial and axial coor-
for obtaining such approximate solutions. The use of polm, fo obainng uch pprximte olutons Th us of dinates r and z are made dependent in the plane of the
finite differences for solving fiee streamline problems in
the physical plane is extremely difficult since the position potential function and Stokes' stream function (or
of the free streamlines is unknown a priori The solution logarithm thereof). (See Jeppson, 1966; Mackenroth and
can be obtained only through a process of repeatedly Fisher, 1968,Jeppsun, 1968d, 1969b and 1970.)
adjusting the assumed position of the free streamlines.
through considerable insight and judgment. until all The work reported herein extends the inverse
conditions of the problem are satisfied. Since the means formulation technique which has been used in solving
for determining whe'ther all conditions are satisfied is plane and axisymmetric potential fluid flow problems to
often quite insensitive to the position of thl free general three.dimensional potential fluid flow problems
streamlines, it is difficult to determine the reliability of and demonstrates the applicability of the methods by
the resulting approximate solution, and consequently the obtaining a numerical solution to the three-dimensional
literature contains a number of examples where sub- flow in an open channel past a strut. While this problem is
sequent analyses have demonstrated that considerable a very simple three-dimens,.,nal problem for which a
error resulted because of an incorrect position of the free two-dimensional analysis (or for some features a one.Sstreamline, dimensional analysis) may be adequate, it does include the

common boundary conditions found in most problems.
An approach for solviai, two-dimensional fluid flow Furthermore, because of the simplicity of the problem,

problems which is supe.ior in many regards to a formula- the adequacy or inadequacies of the numerical solution
tion in the physical plane, particularly if free surfaces are can more readily he ascertained and where necessary.
present, is to interchange the usual role of Naiables in the modifications made. Conseuuently the results from theproblem. Such inverse formulations have used the poten- problem solution have the primary purpose of illustrating

tial function, €, and the stream function. -, . as the the method of ;:ivcrsely formulating and solving a
independent variables, and as dependent variables such three-dimensional free surface flow problem. With a betterquantities as: (I) the magnitude of the cartesian coor- understanding of~ the perfo~rmance of various numerical
dinates x and y, (2) the angle of the direction of Pow. 5. schemes in solving inversely formulated three-dimensional
and the logarithm of the magnitude of the velocity, log problems, the next ste1 would be to apply the methods to
Ivi, or (3) the magnitudes of the horizontal and vertical more coinple, thlre dimensional ilowvs.

I!
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INVERSE FORMULATION

Selection of variables Transformation from physical
space to *fy* space

The first step in developing an inverse formulation
to three-dimensional potential flows is the selection of To obtain the basic inverse equations note that since
three appropriate dependent and three appropriate the potential function and the two stream functions are
independent variables. Since the best inverse approaches functions of x, v, and z, i.e. $ = F(x,y,z), T = G(x,y,z)
in the literature to plane and axisymmetric flow problems and T* = H(x,y,z), it follows that x, y, and z must also be
have considered the magnitudes of the coordinates x and functions of $, Y, and 1*, i.e. x = f( 4, T, 4*), y =
y or r and z as dependent variables, the magnitudes of the g( (,%', "), and z = h($, T, l*). Using the chain rule to
cartesian coordinates x, y, and z should constitute differentiate x = f( $. ', *) with respect to x. y, and z
appropriate dependent variables in an inverse formulation respectively gives
to a three-dimensional problem. This same literature
suggests that the potential function as well as some
functions to define the flow paths would constitute
appropriate independent variables, or define the space I = x Fx + 3ýGx + x eH
within which the problem is defined. The functions
selected for defining the flow paths consist of two stream 0 = x y + H
surfaces which are tangent to the velocity vector. YihS(1957) has given equations for defining two such stream X0 = F'. + X11q. + x1*.H .. . .. (5)

functions which will be denoted by ý and , * in this
report. Nelson (1963) has given equivalent definitions for
use in three-dimensional porous media flow applications. Solving these three equations for the unknowvns x c

and x, gives
The basic equations in these definitions are:

x 6(G.H) 1 = I (F.H)

U = (y +Xý= 4'x .(6).
n •Fg. G)

and x T (y-z.. . .. .. ...... (6)V =° . . .. (2)

- f (3).. in which J is tht Jacobian given by the determinant

F F F

in which_.2, v. and w are the components of the velociyv x y z
vector V in the x. v. and z coordinate directions H H
respectively. i.e. l = + vx+ w ntHsiV i+¢ wT'. and tihe subscripts

denote partial derivatives in the usual manner. i.e. ', =
M. / az. etc. It can easily be shown that Eqs. 1. 2. and S and th," derivatives of the quantities enclosed in paren-
reduce to the well known equations Yi = ýx and •. - theses denote minor determinants in the usual way. i.e.

- for the special cse of plane potential flows. In "(G. H)
vector notation Eqs. I. 2. and 3 become G Y I G - G y I

Ditf'trentiating y g( : .'.. *) with respect to x. y.
"7 (grad x (grad =) grad • -(4) and i respectively and solving the three equations gives.

Preceding page blank



0 "G. i _L, ýF • These three equations are the basic inverse equations
""O(xz) J"(x, z) ' which drfine the dependent variables x, y, and z in the

41 T T * space, just as Eqs. 1, 2, and 3 are the basic
= - • equations for 4b, T , and T* in the physical space.

e s" Z) .J , .) . .. (7) Consequently, when associated with appropriate bound-
ary conditions for a particular problem, the simultaneous
solution of Eqs. 10, 11, and 12 would constitute the
solution to that particular problem. Before discussing
methods for solving these equations some properties of
the stream surfaces '•. and '* will be presented.

Likewise differentiation of z h( 0, T, y*) leads to,
Ptoprfies of stream srefaces

I a (G.H) I ) " The definitions for stream functions T and 'J* as
3- (xY) -3 a(x.y V given by Eqs. 1, 2, and 3 (or Eq. 4) satisfy the

incompressible, steady state continuity equation V -V-
t1 0(F.G) 0. This can be verified from the vector identity V- ("Ax" _Y). . ....... (8) BJ= ..(Vx A-A) .(V x B).Thus from Eq.4,

Following the same procedure as that above but
solvingfor 4), o..... i/... I; gives 7.V v4,.-{ 2.-' v ( •J*)... (13)

0 =X * -= " J" ',•* j" ,) but the curl of the gradient of any scalar function is zero
and therefore Vx V'T 0and V x V T* E 0,withthe
result that

1 ~ ~ L.Nx- _ ) _Z -- Y~)

v-V = V-(výJ xv*) .o ........... ...(14)

* 1(y.z) * 1x~z) * (xy
j : ( 0 ,' % - ' d R. 1) (9)

The stream surfaces defined by holding both T and
T * constant are orthogonal to the equipotential surfaces
defined by holding 0 constant. Orthogonality exists

in whichj is the inverse Jacobian determinant provided the dot products of the gradients are identically
equal to zero. Using Eqs. 1, 2, and 3 it can readily be

f~ i . shown that V4O.V'If = 031and V0 -Vyi S 0 and
g1 therefore the equipotential surfaces are everywhere at

g+ gJ = right angles to the surfaces defined by holding the two
h0 h• hstream functions constant.

By substituting from Eqs. 6,7,8, and 9 into Eqs. 1, In general, the definitions for T1 g and j* do not
2, and 3, the follow three equations a require that the surfaces defined by holding andobtained: constant are orthogonal to each other. However, in thepreviously given inverse equations it is necessary that of

the many V and '* equal constant surfaces which exist,
S z. - yz . . .......... (10) only those are selected which constitute an orthogonal

pair so that the inverse coordinates 0, 1, and .Y* are
independent. The use of the inverse formulation assumes
that using 0, T, and V1 as orthogonal coordinates insures

=X Zi 9 . . . - . .z .r . . . . . .. . (11) that appropriate orthogonal T and Y* stream surfaces are
selected. Perhaps a more fundamental approach would
impose the condition V T.VT* =_ 0 directly. Methods
for imposing this condition directly are not apparent,

x•yi - x" YJ....... ... (12) however.
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METHODS FOR SOLVING INVERSF EQUATIONS

Alternatives available point methods to converge, it may be concluded that only
if first order forward or backward differences are used to

Considerable guidance in the selection of the in- replace the derivative in Eqs. 10, 11, and 12 would it be
dependent and dependent variables for the three- possible to solve the boundary value problems associated
dimensional problem was provided by past inverse solu- with the first order equations simultaneously. Because of
tions to plane flow problems. Less guidance is available the low order approximation of first order differences this
from these past solutions regarding the best methods for possibility for solution was not considered initially. (Using
solving the three-dimensional inverse equations. Since the a weighting all possible first differences which depend
basic equations (Eqs. 10, 11, and 12) are nonlinear, and upon the distance from the boundary, a workable method
each equation contains all three dependent variables x, y, results. This approach is under investigation in the same
and z, it is clear that numerical methods offer the best project.) Rather three alternatives were investigated.
presently available approach to a solution. In solving the
comparable equatiosis,

The first alternative is to use block iterative meth-
X =4 y ......... (15) ods to solve the finite difference equations obtained from

"third order difference approximati,'ns of the derivatives in
the first order partial differential equations. The merits of

.- . ....... (16) this approach were actually investigated by implementing
its use in computer programs which solved the finite
difference equations across an entire line of grid points,

front plane potential flows, the equations are first and across two adjacent lines simultaneously for the
combined by differentia'ion to obtain equations involving two-dimensional problems of corner flow. The conclusion
only one dependent variable. These equations for plane was that these block (i.e. line) iterative methods were also
flows are the inverse Laplacian equations VVx = 0 and nor, onvergent. Later study has, however, shown that
V 2y = 0. Because of the products present in the terms what was considertd nonconvergence may have actually
ol4the right side of the equal sign in Eqs. 10, 11, and 12, been due to the poor approximation of the finite
reasonably simple equations with only one dependent difference solution to the actual corner flow. Regardless
variable canioi be obtained by differentiation and corn- of the incorrectness of the above conclusion, the use of
bination as can be done for the equivalent plane flow olock iterative methods for solving the simultaneous
equations. Consequently an alternative approach for boundary value problems was not pursued further. Rather
solving the inverse three-dimensional equations must be the method of approach which is described in this report
sought. was developed and implemented in a computer program

for solving three-dimensional flow around a strut.
An alternate which may appear feasible at first

would utilize finite difference methods to obtain a
simultaneous solution to the boundary value problems The third alternative which has been studied for
associated with the three first order partial differential solving the simultaneous boundary value problems will be
Equations 10, i1, and 12. An examination of lte finite described more fully in a subsequent report coataining the
difference equations obtained from these three equations results of a Ph.D. thesis by Allen Davis. Basically this later
by approximating the derivatives with second or higher alternative also uses Eqs. 10, II. and 12 in their present
order differences indicates that point by point iterative forms, and obtains a simultaneous solution for x. y. and z
methods, such as Gauss-Seidel or SOR method would not front the difference equations obtained by third order
be convergent. Such iterative methods would diverge approxin. itions at all grid points on an entire plane within
simply because the coefficient associated with the value of the tlow space. The resulting finite difference equations
the variable at the grid point in question is less in become linear under the assumption that values on
magnitude than the sum of the coefficients of the other adjacent planes are known. Consequently the solution on
terms. In a linear system the equivalent would be a each plane can be obtained efficiently by utilizing
nondiagonally dominant coefficient matrix. But since techniques for grniping the nt nzero elements of the
diagonal dominance is a necessary condition for point by coefficient matrix into bands, and implemenlifrg



algorithms u,,uch take advantage of the zero elements of a d e f g
the matrix. By repeatedly obtaining such solutions, plane / / / / g
by plane and subsequently repeating the entire process c , = Yz,* yz, ..... ... (20)
until the absolute sum of changes in all three variables at
all grid points became less than some error parameter, the
final solution should result. In essence this alternative is
an extension of block iterative methods to a space / z . ../
boundary value problem in which the block becomes an €0 ly 4 z . .(21 )
entire plane and direct methods are used to solve the
finite difference equations in that plane. For some yet c i f h d
unknown reason this procedure neither converges to, nor / / / ..
diverges from, the final solution. A more detailed descrip- c z 0 .+y+* -Y4' ...... (22)
tion of the implementation of this method and its
inadequacy will be given in a subsequent report.

in which cl = DIM1 , and the single letter over the
The method of solution described in this report individual derivatives will be used subsequently whenever

does not use Eqs. 10, 11, and 12 directly in their present that derivative is assumed to be known.
form. Rather these three equations are combined by
differentiation, under the assumption that certain of the Development of quasi-separate
derivatives are known, in such a way that quasi-separate equations for x, y, and z
equations are developed for each variable x, y, and z in
different planes within the *'ypI' space. The magnitude To demonstrate how separate quasi-separate equa-
of the assumed known quantities in these separate tiu,- for x, y, and z, which apply on an individual plane
equations can only be determined approximately until the within the *' * space, might be developed, Eqs. 20 and
final solution is obtained. Consequently these assumed 21 are written below assuming that derivatives with
known quantities are -epeatedly adjusted in a cycle of respect to p are known and that the variable z is known.
solutions until their cot rect values are obtained.

"X= ey f9 ....... (20a)

Nondimensioualizing independent variables

Before demonstrating how such quasi-separate equa- INy -= hg.-.e...........(2 la)
tions can be obtained, Eqs. 10, I!, and 12 will be
transformed so the new independent variables •, •, and Upon differentiating Eq. 20a with respect to # and
a* are dimensionless as given by the following three Eq. 21a with respect to and eliminating y 4  = y
equations gives

.. . ... (17)

M.+ 1eg44+ o .(23 fg)

41.. . . .(18) + 0.. ..... . . . .. (23)

Likewise differentiating Eq. 20a with respect to 4'
and Eq. 21a with respect to # and combining the

- . ....... . relting equations gives the following equation for y in
,o" ý*4 planes,

in which D is the undisturbed depth of flow in the
channel, Q is the total volumetric flow rate in the channel, e
N, is the number of grid increments in the 4* direction Cly + e (Yg) 1 " cy)
and M ,is the number of grid increments in the * If C 1  yY+ - ft). e

direction. Transforming Eqs. 10, II, and 12 by meansof - otgh)o = 0Eqs. 17, 18, and 19 leads to ............ (24)
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If y had been considered known along with deriva- coefficients. If, however, the lettered coefficients are
tives with respect to i* in Eqs. 20 and 22 the same nearly correct at initialization, or if their magnitudes have
procedure as that given above would have resulted in a minor influence on the solution, the final solution will
equations for x and z in the #ip planes. Equations for y be obtained in fewer total arithmetic operations.
and z would result if x were considered known. In fact for
each pair of equations which can be formed from Eqs. 20, The basis for the second criteria is to make the
21, and 22, two quasi-separate equations would result solution in each of the planes of the space equally
under each assumption of known variables. Table I lists dependent upon all four of its boundary values (or
the 18 equations that can be obtained in this manner, and boundary conditions), and not more dependent on two
indicates in which plane each of these equations applies as opposite boundaries thla on the other two opposite
well as from which two of the three basic equations it was boundaries. This latter condition would occur if the
obtained. coefficient of one of the second derivatives was very small

in comparison to the other. The second criteria also helps
The motivation for combining Eqs. 20, 21, and 22 insure that for ion has some resemblance to Laplaces

by differentiation into the second order partial differen- equation for which many numerical, as well as other,
tial equations in Table I is to obtain second derivatives in solutions have been obtained. Should this criteria be

i the equation, for which second order central difference strongly violated, a solution in each individual plane may
approximations lead to diagonally dominant coefficient be obtained with fewer numerical calculations by simul-
matrices. The equations in Table I also have some taneously solving the system of finite difference equations
resemblance to Laplacian type equations for which the along the grid lines in the direction of the independent
common finite difference methods have been developed, variable whose derivative has the larger coefficient. Since
Perhaps the greatest motivation for developing the equa- the problem is of the elliptic type, this would mean that a
tions in Table 1, however, was to have separate equations high dependency must exist between the values on this
from which to solve each of the dependent variables x, y, plane and those on adjace t planes. Consequently, any
and z. reduction in arithmetic calculations in obtaining individ-

ual solutions would be more than offset by more cycles of
Critera for selecting such solutions. Furthermore, the solution process may be
best suited equations less likely to be convergent. Consequently satisfying the

second criteria simultaneously helps assume that the first
Generally in solving any particular problem, only criteria is satisfied.

one equation for each of the unknowns x, y, and z would
be used. Should considerable differences exist in the flow An illustration of how these criteria aid in the
patterns in different regions of a particular problem it selection of the equation which will be used to solve each
may be desirable to use different equations in different of the dependent variables x, y, and z is giver later in the
regions. The success and efficiency of obtaining a solution discussion of the problem of flow around a strut in a
by use of the equations in Table I depends upon the chtnnel.
selection of the equation which will be used to solve for
each of the unknowns. While there are additional criteria To obtain a better understanding of how rapidly, or
which might help in making this selection it appears that whether, iterative finite difference methods would con-
the following three items are important: (I) The assump- verge for the equations in Table 1. individual computer
tions of known derivatives should be made as valid as programs were written to solve each of !he equations in
pciislble; that ih the values, denomed by sing!e letters in the Table i. For each such problem Dirichlet boundary
equation that is u.wed. should be maintained as constant as conditions were specified, and algorithms implementing
possible during the solution process which would start both the successive over-relaxation (SOR) method and the
with an initialization and proceed until all conditions of line successive over-relaxation (LSOR) method (see
the problem are satisfied. (2) That the coefficients of the Forsythe and Wasow. 1960. or Varga, 1962) were tested.
two second derivative terms in the equation be as nearly in part the criteria giver, or selecting the best equations
equal as possible. For the last three equations in Table I. for solving a particular problem were arrived at from
obviously at least one of the single lettered values must be noting and comparing the performance of these separate
negative so that the PDE is elliptic. (3) That the programs in obtaining a solution. The performance of
magnitudes of the terms involving first derivatives be those programs implementing solutions to Eqs. 35
maintained as small as possible. through 40 in ,$* planes was generally considerably

poorer than those implementing solutions in either 14.i or
Several reasons exist for citing these criteria. First if . ,* planes. If a poor initializ~tion of all unknowns was

the single lettered values, which are assumed to be known used when solving the equations in p* planes. solutions
during the process of obtaining a solu~ion on any plane. did not result, but rather rapid divergence occurred. When
have their values altered greatly between successive such lack of convergence occurred it appeared to be
solutions in that plane. they will obviously affect the associated with initialirations which at some grid points
results from these consecutive solution:. These solution caused the coefficient- of the second derivative terms to
results, in turn, could affect the magnitudes of the have oppumite signs. or which caused the magnitudes f



Table 1. Qumi-separate equations obtained from Eqs. 20, 21, and 22 by assuming some variables were known.

Derived Plane

No. from Of Quasi-Separate Partial Diff. Eq.

23 ~ qs Equationecgh]±(x.fe(f) 0

24 20 & 21 + 0

4.00 cx + f4

f
26 0 &zz4 czoo+ L [x f4 a- (d) (cx + db)+ (db), 0

27 20 & 22 0*c(de)1 h4 +V*- 00aJ Y,+ c 0)

27 21 & 22 0 Yo y+- 114.+ 4.x*- e+!# (if~ -F czy4 ) - ONC) 0

c1

208 212 44." c 0~~4

+~ do
2: Z ~ ~ce:..: + [dze), +d]---* (cif, - es) + 00.)46

31 201 &22 c4 2 +- .. # +~ I+ + g)* -1 ]+±(cs, + g) + (dh)o 0

d 4 1

362 20122*.c + [dz , + lfz*)# - (fg)J*+- (i11 +(f

33 210122 .. 1 0 L + -(d)J+±(hcy)(b)=

"34 2112 4 Y4 ^!t5*4I + 1i4.*4* + (gb)Y*4 4,- + dh)**+ ', &* 0

35 201 &21 ujr4*+ c,(s - g+.) 0O

'44 - ig'+,+*+ (d.* + Nf)z NN",. +d)~ c(b:

20 z & 22 el+#174 - dgm*e_ +e#)*- i.+.,), + c,(dec, - ia.) z0

~~~~(o* '+*4z+- (d,*+ fu+)K,* + 1 f,-g,)

39 Z&U 4* .z -gx (Uf,+ f,)3
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these coefficients to take on small values. From this =. . .+ . /A ............. (41)
experience, the additional criteria may be added to the
above three to avoid in general, one of the equations j = + . .. . .......... .(42)
which apply on ý e planes.

k = I + ÷*/................. (43)

The performance of the two algorithms (SOR andk

LSOR methods) which were implemented in the programs The (I's in each finite difference operator are unique to
mentioned above indicated that generally less computer that operator as defined in the right portion of the table.
execution time was required by the LSOR method than They are used to simplify the writing of the operators and
the SOR method. No experimentation was done to consist of the combination, and/or derivatives, of the
examine the effect of the over-relaxation factor. All assumed temporarily known quantities given by a single
solutions under both methods used an over-relaxation letter in the PDE's in Table 1.
factor equal to 1.4. Since the comparison was close,
showing that the LSOR method required in the neighbor- The operators in Table 2 can be rewritten readily to
hood of 20 to 40 percent less execution time than the conform to that needed ti. apply them in the LSOR
SOR method, changes in over-relaxation factors might method in the other coordinate direction by interchanging
favor the SOR method. Furthermore, the outcome of the terms across the equal signs or for the SOR method by
such a comparison is computer system dependent, as well placing only the term with an ijk subscript on the left of
as being influenced by the particular statements in the the equal sign.
source language written for each method. In the LSOR
method more computations are inmolved per iteration but Numerical operations involved
fewer iterations are required for a solution than with the in obtaining a solution
SOR method. Since the additional computations per
iteration are primarily with nonsubscripted variables or As pointed out earlier, the solution or solutions on
single arrayed variables, the LSOR method requires fewer any given plane within the space of the problem must be
operations with triple subscripted arrays. These compari- obtained repeatedly; each subsequent solution hopefully
sons were made on the UNIVAC 1108 system, under will have more nearly correct coefficients which are
EXEC 8, at the University of Utah. assunied known, but which actually are dependent upon

knowing the correct solutions to the other variables.
Finite diffen-nnoes Consequently, a single group of solutions on individual

p'anes for x, y. and z will not be sufficient. Rather such
The finite difference operators have been obtained groups of solutions must be obtained repeatedly until all

by replacing the derivatives in the equations in Table I coefficients are correct. To help describe the procedure
with second order central difference approximations. The used in obtaining the final complete finite difference
finite difference space network has been selected such solution to a three-dimensional problem, the following
that Ai*J Ai = ,• = i. The grid spacing increments terminology will be used.
A*•,*, AM, and A4• can each be equated to unity because
the number of grid increments. M, and N, in the ý and (a) Tentative sohltion-refers to a solution based on
Sp'* directions, respectively, are included in Eqs. 17, 18, any of the finite difference operators in Table 2 (or any of
and 19 for defining the dimensionless coordinates 1, l, the finite difference operators for a boundary condition as
and 4,*. The motivation for introducing M , and N, in given later) on a specified plane within the *ylP* space.
Eqs. 17, 18, and 19 was to allow these increments to be These tentative solutions are based on the best values for
unity and thus eliminate a number of multiplications the css which can be computed at that stage in the
which would result from nonunity A's in the finite solution process. and consequently they are only tenta-
difference operators. tive. but the results of these solutions are needed to

obtain better estimates of the ds in the operators for the
The finite difference operators for interior space other two dependent variables.

grid points are given in Table 2 for the first 12 equations
in Table 1. To make for easy reference the equation (h) Itcratin, n umber- refers to the number of times
numbers given for each finite difference operator in Table the LSOI-n-ethom (or wh-tever other method is being
2 is the same as that for the PDE from which it was used) adjusts all the values of x. y. or z on the particular
derived in Table i. The forms of these finite difference plane for which a given tentative solution is being
operators, as given in Table 2, conform to that needed to obtained. A sufficient number of iterations are required
apply the LSOR method along those lines defined by the for each tentative solution until the sum across all grid
incremented subscripts on the left side of the equal sign points of that plane of absolute changes in value of that
(i.e. in the direction of increasing ý) and which lie in the dependent variable is less than the prescribed error
piane on which the particular equation applies. The triple parameter.
subscripts to x, y, and z in the finite difference operators
are arranged in order so that the first corresponds to •. (cl Cyicle number refers to the number of times all
the second to ip and the third to as defined by tentative solutions are obtained. Thus during the first

9
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cycle all tentative solutions for x, y, and z will be X n gn
obtained as well as possibly tentative solutions for these
variables on the boundary planes which are not of the x = " fMXrn+1 n- m -

Dirichlet type. The same process is repeated for the . . .(46)
second cycle, etc. In the actual computer program as it
has been written for the problem of flow around a strut,
the additional capability has been provided to repeat all
the tentative solutions for x, y, or z on interior planes In implementing the algorithm given by Eqs. 45 and 46 it
more than one time before proceeding to the tentative is not necessary to set aside storage for a new array f.
solutions of the next variable. Rather, since the values of r need not be retained, the

values of f may be stored in the former array positions for
The LSOR method has been used for the reasons r.

given earlier to obtain all tentative solutions except for
certain boundary planes as will be described later for the Upon obtaining the solution vector X which repre-
example problem which is given herein. While a descrip- sents the unknown values across an entire grid line, the
tion of the LSOR method can be found in a number of individual elements are immediately adjusted by the
text books dealing with finite difference methods for PDE over-relaxation formula
(see for exampie ,1 mes, 1965), a brA.f explanation is given
here for the sake of completeness as well as to point out p+
certain unique features of the LSOR method as applied to X. = X+WN ..... (47)
the equations of Table 2.

The LSOR method can be understood by noting in which the xi's (with the single subscript) are the
that the application of any of the operators in Table 2 elements of, and x ik (with the triple subscript) are the
across all interior grid points of a line leads to a system of values of the dependent variable x, y, or z at the grid
linear algebraic equations provided that the ds and values points along the line in question. The superscript p
on adjacent lines are known. In matrix notation this represents the number of the iteration and w, is the
system has the form over-relaxation factor with a value between zero and

unity. Eq. 47 is not the usual form of the over-relaxation
equation which utilizes an over-relaxation factor w = w, +

AX = B .. ......... (44) 1. The use of Eq. 47 in place of the more usual form has
the advantage that the computer core positions for the
triple subscripted array xik needs to be located once

in which X represents the unknown vector,ris the vector instead of twice to carry out the arithmetic on the right of
of known quantities and A is a tridiagonal matrix. The the equal sign.
fact that A is .ridiagcnal is an important feature of the
method from a computational viewpoint, since such The LSOR method proceeds from line to line until
tridiagonal systems of equations can be solved by a single the value of the variables across all uines within the plane
pass through the rows with a Guassian elimination which have been adjusted. Upon completing the last line the
leaves a matrix with only two elements on each row; the entire process is repeated as the next iteration, etc. In
diagonal element and the next element. The solution to implementing the LSOR method for the equations in
the system is subsequently obtained by back substitution. Table 2, the ces have been computed only during the first
Some writers have referred to the method for accomplish- iteration and stored for subsequent iterations. The reason
ing this solution as the Thomas algorithm. Thb method for doing this becomes obvious upon noting that some of
defines the sequence of elements of A immediately to the the cs are independent of the solution on that plane, and
left of, on, and immediately to the right of the diagonal those that are have minor effect on the resulting solution.
by vectors n T, and r respctively. Then additional Consequently, the majority of the arithmetic involved in
elements of other vectors f"and g are defined by solving the tridiagonal system repeatedly is with single real

31 bl variables or single subscripted arrays. Since the ds will
fl = "g = take on different values during the next cycle, particularly

1 during the first few cycles of the solution process, there is

s no need to iteratc ;..,:d the U.ntative solution during first
mr - q fm(bm_ cycles satisfy a small error parameter. By permitting afM - r -1mq "M = qg-~ ~ limited number of iterations to occur in obtaining any

z -n (45) tentative solution, the tentative solutions will progessively
satisfy a smaller error parameter, until eventually during

in which n is the number of rows and columns in A,.ad later cycles the specified error parameter will be satisfied
the b's are the elements of B. The solution vector X is with fewer than the maximum specified number of
obtained from iterations.

12



!I

FREE SURFACE FLOW AROUND A STRUT

In the initial application of the previously described upstream to be influenced insignificantly by the presence I
inverse solution to three-dimensional potential flows, a of the strut. This W plane is given by 4) = 0, and the

simple problem was selected to test the workability of the last ýP4* plane of the 0 * boundary value problem is
methods. The first such problem consisted of uniform defined by 4--LI = L-I.
flow in an open channel. After it was demonstrated that
the methods did converge to the solution, providing a After placing the problem in the 044 * space, the
reasonable initialization was supplied to begin the process, next step in the formulation consists of selecting the
the program used for a solution to this first test problem equations, from those in Table 1, to be used to solve for
was modified to solve the problem of flow in a channel each of the three dependent variables x, y, and z. This
with vertical side walls past a vertical strut which extends selection should be based on consideration of the criteria
through the free surface. This problem is described in given earlier. For the problem being considered here, the
detail herein. It demonstrates possible methods for in- major component of velocity throughout all except small
corporating boundary conditions into the solution of regions near the front and rear of the strut, is in the
three-dimensional inversely formulated problems. While x-direction in the physical space. Furthermore because of
the problem represents what one might refer to as a the placing of the problem in the 4 ' * space, the
"mildly three-dimensional problem:' it does contain channel bottom with gs = 0 is normal to the y-d~rection
examples of the commonly encountered boundary condi- and the sides of the channel with ý* held con.stant are

tions. Besides having the advantage that much of the flow normal to the z-direction. Consequently, greater variation
behavior might be predicted from more elementary of x occurs in 0*' or 4P * planes, than in ý P4 * planes.
analyses, and therefore an .ndication of the adequacy of The major change in y is in the '-direction. Therefore, a I
the methods may be evaluated, a "mildly three- plane defined by 'P as one coordinate should be selected

Sdimensional problem" of this nature provides a base upon for obtaining the solutions for y. Likewise, the major
which a number of techniques for handling different variation of z is in the direction of 'P*, and consequently
boundary conditions can be experimented with and the z would be fairly constant on separate 4) 'P planes.
best of the alternatives selected. It soon became apparent
even while experimenting with the first problem of Therefore, the first criteria stated earlier, namely
uniform channel flow, that completely satisfactory meth- that the assumption of knowns be as valid as possible,

* ods for handling free surfaces or cavity surfaces under the would suggest that x could be solved for on separate 0)4,
influence of gravity would be hard to come by. Hopefully, or '** planes, but not ip * planes. Clearly the

Sfuture research will improve upon some of the techniques magnitude of x 0 is larger than x or xO in general and
described herein, consequently an easily generated initialization of the

problem would have larger errors in the magnitudes of

Formulation and boundary conditions x ), than xv or x*.

The second criteria, namely that the coefficients of
A sketch of the prwblem of channel flow past a strut the two second derivatives have nearly equal magnitudes,

in the physical space ;s given in the upper portion of Fig. will be used to narrow the choice down further. For x on
I and the same regi.n in the ý0* space iL given in the 4), or 4)'* planes the available equations are 23, 25, 29,
lower pottion of this figure. The O'P' * space has been and 31. In comparing the magnitudes of coefficients of
selected such that the bottom of the channel defines the second derivatives ci may be compared to the square of
41 = 0 stream surface and the top free surface of flow is the single letters representing the derivative, i.e. with e 2

,
defined by the *,* plane obtained by holdingi=M, = f2 g2, and d2 . Should the problem be specified so that
M-1 where M, is the numbe, of grid increments used in the magnitude of c, is close to unity, as will be the case,
the finite difference solution in the 0 direction. (Remem- then either Eq. 23 or 31 could be selected. Equations 25
ber A* = 1.) The plane 4) defined by p* = 0 and 29 are eliminateti because the coefficients f=YV*
corresponds to the left wall of the channel (when facing and g = zp are much smaller whereas e = z*, and d =
downstream) and the tight wall by ** = N = N-I. The yp are dose to unity in magnitude. The final selectie-nbeginning of the space boundary value problem through between Eq. 23 or 31 is arbitrary. In solving the problem,

which the flow enters is assumed to be far enough Eq. 23 has been used.

13
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The equation to use in solving for y is between 24 e. DomwtrewnExitQ(o ) ,( @)
and 27 in 0 planes. Since the magnitude of h = xV* is
much smaller in general for this problem than c t Eq. 24 x(L,+, ÷) = constant ......... ... (58)
will be used to obtain the tentative solutions for y.

for y the same as Eq. 56
For obtaining solutions ior z only the two equatiions for z the same as Eq. 57

30 and 34 on Oý* planes will be considered further. Of
these two equations, 34 is eliminated since the coefficient f. Free Surfaceq. ,
i = xi is small and the coefficient d = yý in Eq. 30 is
dose to unity. In summary the tentative solutions for xand y will be obtained from separate #b planes. Equation (2_) z (a.•v

23 will be used for x and Eq. 24 for y. The tentative (g + (eg + ih) + (e + h
solutions for z will be by means of Eq. 32 on ý*V planes.

0)2 - 0 . . .(59)
Using the above descriptio- -f the space and 2aNID (H-y)

the selected equations, the boL.adary conditions given
below can be developed. Some of these conditions are also
shown in the lower portion of Fig. 1 to help identify that x(0. M1 , i+*) =

bobidary and its condition in the _ _* 4Pspae. A
description of howthese boundayconditionequations in e2,.

y(¢, o *) = o (~) (~)N ... . .(4) g S60) dj. .,

arband2 follo s -h itn fteeutons

+ + -+ . .(50) z(•.,÷NS) f($') specified by input .()

6l C) 6=
Y (C,÷O) = 0 . .. .. .. .. ... (48) lz d4*. .(1

V dO . . . .(694) L

2 
+c e

b . z cc e ye+-f-y,4 e-z= ° .

x 4 + -e X,+ :a x---x o . .(52) c1  c1c h. c @, x, e 0
+ z e. h. W h Side of Sryut 0. Q@), ©. .(a

. for z, x, and y the same as Eqs. 62, 63, and 64

A number of the boundary conditions just given are
z (0. 4,. NI) = constant ..... ........ (54) immediately obvious. The equations for other boundary

conditions result only after some algebraic manipulation.
for x the same as Eq. 52 For these latter conditions an explanation and the
for y the same as Eq. 53 derivation of the given equation are contained below.

The condition for x along the channel bottom has

'1. UptrwnEnfrunceO@ (q (® been obtained from Eq. 20 by noting that since y = 0
D(onstant) along this boundary y•,* = 0. Therefore,

x(O.+.• ) o0 .............. (55) cix 4  ÷.., ............ (49a)

y (0.,÷ + . • H .. .. .. . .. (56)
i M) Integrating Eq. 49a with * and i** both held

A(O,÷,÷. .-. ........ . (57) constant gives Eq. 49 in which the subscripts to the
. .M( integral sign denotes that i and iS are to bc held

Is



S constant. Since q is constant along the bottom, the 3[hiategration of Eq. 49 becomes a numerical line integration [T4 = • •/"-' (y+÷ vie-y•,i÷ 1

along the bottom 1p*constant grid lines with * being
incremented. The implementation of this line integration A
involves the two step procedure of first evaluating the two - 24 (Y,1-ii- + .(69)
partial derivatives with the integral, and secondly carrying
out the numerical integration. The. evaluation of y, has Across the -first and final intervals this integration has
been based on up through third order forward diffelrences been based on the trapezoidal formula,
and is given by

Ax -• -[ y ,~ + * ... . . . . . .(70)

1 [3Yiz "1 ""ik"" 3k 1 "ik] .(65) in which i= I or i= L-.A

The other boundary conditions, Eqs. 60 and 61.
which contain integrals as in Eq. 49 have been handled in

The ealuation of zop, has been based on third order the same general manner. Individual details differ in each
forward, fourth order central, or third order backward case, but the derivatives involved in the particular equa.
differences respectively depending upon whether * 0, tion have beer. approximated by third order forward or

S= A i•*, whether *J* lies within the central portion of backward difference and fourth order central difference in
the bottom, or whether Ip* = NJ, or M* IM. " *. For the interior wherever possible. The integration has been

0 (i.e. k = 1) the equation is based on a polynomial passing through values equal to
four derivatives or products, etc., thereof, except over the

6 1 U U 3 1 I first and last intervals of the line integration which has
SL , " k, I "z 6 i 1 33 + iJ been based on tme trapezoidal rule. If the final value of

the integrated variable is known upon reaching the
opposite boundary (as with z from Eq. 61 on the free

. .... .............. (66) surface) any error in not closing on this correct value is
proportioned according to the distance from the begin-
ning point. In the case of x on the bottom and the free

The eqoation for I* = Aip* = 1 is surface (Eqs. 49 and 60) the average of all final values is
obtained and then the individual differences from this

L 1I , ! - ! 1 2 average are distributed according to the magnitude of x.

k=, -iThe boundary condition for z along the bottom, Eq.
50, has been obtained from Eq. 32 by noting that f= yp*

. .... ........... (67) 0 and consequently Eq. 32 reduces to Eq. 50.

The finite difference operator for Eq. 50 is:
For the central portion (i.e. k =34,.,N- -(1+ a 3) Z i-llk + 2 (1+ I-a )z ilk - 01 -C t3) Z i+ 1. lk

C.Z fl Z [_L (Z = (CxL1 2 ")z)ilk-l + (aI + CL Z ZIlk+ I . . .. (71)

ilk+ [ I ik 1 12 ilk+u-f 2l 2ik•F'k L'. L3 ( {2(Hk+- lk-_ in which

c = (yI
2 cI=(i

. ........................ (68) Ii~k 1k/ I

1L 1t2 = Y÷ YWr•/l = 4 (YiZk "Yilk)(YiZk÷ l- Yilk4-1

Equations similar to Eqs. 67 and 68 but based on
backward differences apply along the lines 'P* = N1 (k= -YiZk-+ Yilk-1)/c1
N)and N•*=N Ai* (kN-l).

The numerical integration, for other than the first
interval* = 0 to ý = AO = I or the final interval * = Lt + 7-1.2k)I(Yi~k-Ylk)
.- 0 to *= L, has been based on Bessel's interpolation
formula for a third degree polynomial passing through ttie " boundary condition Fqs. 52 and 53 which
values of four consecutive values of the arguments given apply for x and y respectively on the two sides of the
by the product of the two derivatives and z,* . This channel are obtained Irom Eqs. 23 and 24 by noting that
integration formula is z is constant in the *'j planes of the channel sides and
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consequently g zý =0 and c = z= 0. The finite solved using only 1/2 of the O*W space. The full
difference operators for Eqs. 52 and 53 are respectively problem was used primarily to examine the performance

of the solution technique in duplicating the symmetry
Swhich must exist. For a nonsymmetry problem, the I

+ iljk 2 (1 + ijkl specification of the shape of the strut could be given by
changes of z from that at the stagnation 4'* equal

1constant line at the front of the strut.C I (at U-) kl + (aCl 2 ij+ IkI .(72)
The boundary conditions, Eqs. 63 and 64, for x and

and y on the sides of the strut are obtained by noting that z is
only a function of 0 but constant with variation of 4'.

( i-Ijkl+ I ijk 3 i+ljX Consequently g = z4 = 0, and Eqs. 20, and 24 reduce to
Eqs. 63 and 64,just as they reduced to Eqs. 52 and 53 for

L= - + (a +a )y the boundary conditions on the channel sides. Since Eqs.
1 63 and 64 are identical to Eqs. 52 and 53, the finiteSin which difference operators for x and y along the strut are

identical to Eqs. 72 and 73 with k1 and k equal to NS
il c 2 Iand NS-I respectively along the left side of the strut and

I k I = NS, k2 = NS+1 on the right side of the strut.

1 k- Z )(Z k zij.lkl Free surface boundary conditions

2 The implementation of the previously discussed
ij-1k2 boundary conditions has been relatively straight forward.

e This has not been the case with the conditions on the free
CL3 Te - i -i + surface, and consequently the free surface conditions and
S3 xe 4 1  xthe difficulties encountered in implementing them will be

discussed in this section.
1 (ijk " ijkz)

and the subscripts k, = 1, k2 = 2 on the left side and k, = The free surface is at atmospheric pressure and
N, k2 = N-1 on the right side of the channel. consequently the sum of the velocity head and the

magnitude of y at any point on the surface must equal a

At the upstream entrance the boundary conditions constant H., i.e.
I have been obtained under the assumption that the flow is

uniform. The valh: of x is therefore constant and assigned Vz .
the value of zero. and the difference in z's between y + .H ......................... (74)
consecutive P* constant grid lines on the face equals the g

difference in y's between consecutive 4' constant grid
lines. The width of channel is therefore specified in in which ag is the acceleration of gravity. The magnitude
relationship to the depth of flow by the equation of the velocity squared can be expressed in terms of the

inverse variables by substituting each of the first equations

N in Eqs. 6, 7, and 8 into the middle portions of Eqs. 1. 2,

W __1 H ...... .................. (74) and 3 respectively to give,

The assumption of uniform flow is also made at the
downstream final face. Therefore the conditions are the v 2+ 2+ 2 ,2• [ + 2 + z. 1 . . .(75)
same as at the upstream face except that x becomes the
constant equal to the average of the x's obtained from the
numerical integrations of Eqs. 49 and 60 on the bottom But from the definition of J below Eq. 6 it can be shown
and free surface respectively, that J V2 , therefore Eq. 75 reduces to,

The shape of the strut has been specified by giving 2
the z coordinates of both sides along a specified * v. . ... .. .. ..... (76)
constant tine. In the example solution given later this AO •z 4 y 2 + z 2

S constant line has been selected midway between the two

channel sides, and the es have been specified for each Upon combiring Eqs. 76 and 74 and transforming the
potential surface intersecting with both sides of the strut resulting equation by EF-. 17 to introduce the dimen.
to result in symmetry about the center plane of the sionless dependent variablc 0 leads to the following basic
channel. This simplified problem could actually have been free surface boundary condition.

17 "I%
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A number of alternative schemes for use of Eq. 77
in the finite difference solution for establishing the values 6f
of x. y and z on the free surface have been investigated n

by implementing them in computer algorithm and then 6Y ..... oy

examining their performance. All of the schemes which
havebee inestgate ar asocited itha nmbe of Since the determinant V is tridiagonal for the -system ofhave been investigated are associated with a number of equations obtained from Eq.ý78, and since D-1'f represents

numerical difficulties and it appears that successful the solution to a system Dx = f, the same algorithm used
solutions can be obtained only if the computationalprocedures anticipate and avoid these potential difficul- for solving the other operators in the LSOR method can
p ues. abe utilized. The difference is that the algorithm must be
ties. repeated for each iteration in obtaining the solution

The first scheme implemented developed the finite across any fine.

difference operato, for y on the free surface by replacing In studying the performance oi this approach it
the first term in Eq. 77 by its equivalent from Eq. 20 and soon became evident that it required a very good

assumed the third term might be considered the known c initialization of values if it were to give correct values for
= z . The derivatives in the resulting equation were then y on the free surface. Not only did it require a close

approximated by second order central differences. The initialization of surface values, but the interior values had

value yim*tk at the nonexistent grid point in this to be well settled by their operators before the free

difference equation was eliminated by combining the surface values were adjuste 1. Much could be written about

equation with the operator Eq. 24 for y at interior grid why this is necessary, but perhaps the best means for

points to give the operator, illustrating why good initialization is critical to prevent

the free surface values from straying too far from their

f - (1+a~ )y + 2(1+a ). (I -acorrect values during the process of obtaining a finite
Si-ilmk in -k 1 3)i+tlmk difference solutii i is by graphs. Figures 2A through 2S

+ CL ) show the variafion of the function f defined by Eq. 78

" 20l 1-lk 2 Zig+ over a relatively small range of yim,1 In each case H was
_________ eequal to 10.5 and the remaining values in Eq. 78 (with the

exception of perhaps one) were assigned the correct values

-s ( 2 Q (] for uniform flow with a depth y = 13. Figure 2A shows f
"" - ) u ib k with all other values correct, and as expected f is

D -)I k j zero when Yimk = 10. However, an additional zero of f

exists for a slightly larger value of Yimk also. Obvious

. .a4 = . .. ... ............... (78) numerical difficulties would result if the incorrect second

zero for f were selected during the iterative solution
Sprocess.

in which the a's are as defined in Table 2 for Eq. 24. More critical, however, is the behavior of the

function with small changes of the other variables in the

Note that, Eq. 78 cannot be solved explicitly for equation. The remaining curves in Figs. 2 show the

Yimk even under the assumption that the derivatives given variation of f with Yimk with one of the other dependent
by the single letters are known as is the case with the variables x, y, or z at an adjacent grid point set to a value

other operator in Table 2. Consequently in applying Eq. + 0.15 from its correct values. As the value yi+lmk

78 at consecutive grid points along the line defined by decreases slightly from its correct value (see Fig. 2B), it

incrementing i in the LSOR method a system of nonlinear causes the first zero of f to correspond to a vAlue of Yimk
algebraic equations results. This nonlinear system has been less than 10 as one would expect and the second zero to

solved by the generalized Newton iterative method, become further removed from the first. With an increase
in Yi, In, however, the two zeros became closer together.

and for the increase of 0.15 used in Fig. 2C to almost

(q+ 1) =-;(q) -D1 7 (q .. .. ........... (79) coincide. Clearly a larger error would cause no real zero to
= - D fexist for the function at least in the vicinity of the value

Yimk needed for a correct solution. Whent this sD'uation
in which Vyis the vector of unknowns Yik, i = 1,2 ... L.. occurs, the Newton method would project off far from

the superscript q denotes iteration number, the vector f the value being sought. This grossly erroneous value in

has its its elements the values obtained by applying Eq. 78 turn affects adjacent functions with the result that the

at the individual grid pointi, and I) is the commonly N.wton method never returns durin~g subsequent iterI

defined Jacobian derivative determinant. ations with reasonable values "-f Yimk.
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. ,which must be satisfied. In implementing Eq. 59 for y it
was decided that its finite difference equivalent should be
satisfied on a point by point basis, rather than over an

- entire line at a time, because of the difficulties associated
with coping with vanishing zeros of the function.

The boundary condition Eq. 59 for y on the freesurface is obtained by substituting for xO and zo from

Eqs. 20 and 22 into Eq. 77. The finite difference operator
for y on the free surface has been obtained by replacing
the derivatives in Eq. 59 by second order or higher order

differences. For those grid points with k = 2, k = N, or i
2, the operator will be different than at the interior point

, Z II.,I- I1:2.•2•22 *I~tS on this boundary because of the need to use non-
S 7 I fsymmetric differences to approximate y*. For interior

to! t.l.S free surface boundary grid points the operator is

Fig. 2. Continued. f 1(g +Z) y I If=6 ('i2,rnik.- Z7irmk- I÷'Yimk÷' 3Yink,]2

+ I1.5YimkZYim k 5 Yim2k(ez+ h
Decreasing or increasing the other values of x. y, or

z at surrounding grid points, or x and z at that free surface -[(1" Yimk- "•Yil+ 5Vm-Zk][2(e9'+ h}]

grid point, cause similar behavior in f as can be noted by Zvia 1l+
the remaining curves in Figs. 2. For the small errors of tt I +.I
0.15 used in plotting Figs. 2 the function f has lost its real -. Yimk-Z Yimk- 1 + Yimk+ 3• Yirk+ 1J
zeros in 12 of the 19 cases shown. + ('I y1 + l Y

An operator for x developed in much the same 6i-Zmkx-IrkZimk3x+1mk)

manner as Eq. 78, except that the second term in Eq. 77 QZ0
was replaced by its equivalent from Eq.2i, and the result - , 2DZ H.Hyirnk . . .(80)
combined with Eq. 24, was also studied. It w , hoped that Ig. .
since the Yik which appears in Eq. 78 and also appears in
the finite difference operator for x, but in the x operator
it is considered known, that the implementation of the
operator for x would be associated with fewer problems. For grid points along the grid line with k = 2, the quantity
However, as with the y operator convergence was ob- within the first square brackets has been replaced by the
tained by the Newton-LSOR methods combined, only if following third order difference approximation
the initialization was very good.

Similar problems exist for an operator for z ob-
tained by combining the finite difference expression from I 1 1
forms of Eqs. 77 with the regular z operator. It has Y÷* Yim3 • Yirg 3YirZ yim4 • • .(81)
therefore been concluded that the difficulties discussed k=Z

above are an inherent part of the free surface boundary
condition Eq. 77 which cannot be eliminated by some and for the grid line i = 2. Similar changes are necessary in
manipulation of the available equations. At least no such the second from the final term in Eq. 80.
manipulation is obvious. It was decided, therefore, that
programming techniques would have to be adoptel that Before describing how Eq. 80 hIs been solved to
would prevent the difficulties from occurring as far as this overcome the difficulties associated with the vanishing of
was practical, and that means would have to be included the real zeros and dual zeros of the previous operator f of
in the program to handle the difficulties when they did Eq. 78, it is well to point out some characteristics of Eq.
occur. 80. First note that Eq. 80 is also implicit in Yik and

therefore the solution to Eq. 80 must be obtained by an
The approach for handling the free surface iterative method. Plots showing the variation of f of Eq.

boundary conditions for x and z was, therefore, based on 80 with y,, for small errors in some of the surrounding
the integral Eqs. 60 and 61, and Eq. 59 was used for y on points are given in Fig. 3. These graphs indicate the
the free surface to incorporate the basic condition Eq. 77 following:
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77

* 1. The zero being sought is always associated with negative then no real root exists (or if it did exist two
the smallet of the two possible values of Yi1 k which lie zeros would lie between Yk and Yimk + .005) and the
within the vicinity of the solution being sought. (While solution proceeds by calling on an algorithm which uses
the smaller Yimk is sought for the formulation given earlier the Fibonacci search tfichnique (Wilde and Beighter,
in this report, it does not indicate this will always be so. It 1967) to find the Yimk associated the minimum value of
was discovered that if both the dependent and indepen- f 2 within the interval Yik to Yimk+ .005.
dent variables are made dimensionless, then the larger of
these two possible roots is the correct one.)

2. The function has a positive derivative with
respect to Yik at the point of the correct zero if this zero Should, on the other hand, the first computationexists. for f be positive and the derivative 3 f/ By also be positive

3. The function has a negative derivative with then Yik is decreased in value until f associated with Yimk
respect to Y, k at the point of the incorrect zero. becomes negative and f associated with y,,k + .005 is still

4. If real zeros of the function vanish, then Yik positive. As soon as this occurs the Newton method
t associated with !he minimum absolute value of the

function (or the minimum of the function squared) is not
too different from the value of Yimk which is being _(p- 1 -. (P .(83)
sought, and which will again come into existence when -(

the errors in the variables at the surround'ng grid points
"are eliminated, or the False-Position method is used to find the zero of f.

Based on these observations, the solution to Eq. 80 The remaining possibility is that the value of f
at each grid point on the free surface proceeds at first by associated with Yimk is negative (its derivative positive),
computing both f and its derivative based on the current but f associated with Yik + .005 is also negative. Should
value of Yikand also for a value yik+ Ay, in which A y this be the case then Yik is increased in value by asmall
is small, i.e. Ay = .005. The derivative of f is given by: amount and the computation repeated until one of the

o 2cases above has occurred, and the smaller Yimk giving a

3 (eZ +zh ( 1,5 imk" zero f has been obtained or the Yik associated with the
iYimk 2Yim -4 -k) minimum value of f 2 has been found by the Fibonacci

QZ 12 (1 search. The procedure is followed through for each point
-2aNIMI2(H 72+ 6 Yi-Zk-i-lm in the interior of the free surface boundary. Should theprocedure fail to find the correct zero for f within a

im . 1mk [ i7 specified number of repetitions in increasing or decreasing
3 i+lmk Yimk, a message is printed to this effect and the average of

the surrounding four y's in the plane of the free surface is
+ I( 1 used. Also each time it becomes necessary to resort to theS-3eg4ih) •,,Yimk_2 -Y I +k1 i Tin Fibonacci search to minimize the absolute value of f2

1because a real zero has become nonexistent a message to
S (eg+ ih) (1. 5y this effect is printed. It has been observed that after the

interior values are well settled and the value x, y, and z on
+.. ... the free surface are also nearly settled that the minimiza-

im.2k . . . . . . . ...... (82) tion procedure is called upon only rarely and then only

near the stagnation points at the front and rear of the
(It is necessary to modify Eq. 82 slightly for grid points strut.
adjacent to the boundaries, i.e. for k - 2, k = N-2, and i =2.) The boundary condition operator Eq. 60 for x on

the free surface is also based on the basic condition, Eq.
Should the derivative associated with yik be 77. This equation is obtained by solving Eq. 77 for x4

negative (obviously the other derivative associated with and then integrating the resulting equation by holding 'p

yimk+ Aylwll also be negative), then yimk is decreased by and V* constant.
a snall amount (in the order of .005) and the procedure is
begun again. If upon repeating this process of decreasing Tht boundary condition, Eq. 61, for z, however,
Yimk the first derivative becomes positive and the second comes from solving Eq. 20 for z4 * and subsequently
remains negative and both of the functions are still integrating with 0 and 4 held constant.

23



20

_ _ _ _ _ _ #
CS Me__ ____ __9_ ____ ___

I',S
h-ý ~e IS 9.

Fig.~ ~ ~ ~ ~ ~~~~~~~~~~~~~~1..4 3. 16.3m of t3.15 ifo fldmO YE- 0Ou2EUfV fYmwt o420 A r1

atsfe Iaft K FM .J.KI

24.



m, _______ '
2 5 fe .

I
7-

Ma~~moil £0.2222L6ZI#go :.2 .I

Id~s I1U.J 1K.

S. a..)

IO

Ul

I (fu-2zz9&I j.L-=22 nLII;:S e is18.0 ig.I
_____________________ __________________

Fig.a 3. I I I i

w2S



MA-2.N4.N7.f77774.S 1~."K2.m7.f77"r4 IS

4-4

IS. i S .

is 
IL*

rn ~ in~~a~mV :.::.K

U, 92J.J __.0_-_M S_________________C 
I

iK LSt.
-UJl

t 1fl.J.K)

Fag. 3. Contimasi.

26



Computer logic in obtaining solution involved and whether the plane is interior or a boundary
plane. For tentative solutions on interior planes and those

The general logic followed in writing the computer boundary planes in which the 1SOR method is used to
program used in obtaining the solution is illustrated in the obtain a solution to the boundary condition equation, the
gross flow chart contained as Fig. 4. While it is not flow chart given as Fig. 5 shows the essential logic. On
necessary to follow the exact pattern of obtaining those boundary planes on which the tentative solutions
tentative solutions given in Fig. 4, it is desirable to provide are obtained by numerical fine integrations, the logic is
control, through data input, so that tentative solutions on such that the required integration is completed a line at aboundary planes are not necessarily obtained during each time beginning with a line on or adjacent to an edge, and
cycle. From the above discussion of difficulties associated proceeds until it has been completed for the last fine on
with obtaining the tentative solution for y on the free the opposite edge of the plane.

f surface boundary it is clear that it would not be expedient
to call on the subroutine which obtains this tentative For use, particularly during earlier cycles, the
solution during the first few cycles, particularly if a rough program provides that the free surface values of y may be
initialization is used. Also not adjusting those boundary smoothed if desired. This smoothing is accomplished by
values which are obtained by integration (see Eqs. 49, 60, fitting the values of y along i = constant lines (i.e. with k =

_ and 61) until after the interior values have been initially 1, 2, ... N) on the free surface by least squared regression
settled contributes to more rapid convergence to the finril analysis to an equation of the general form,
solution. Consequently specifications are included as part
of the input data, which determine during which cycles
each of the subroutines will be called to obtain the
tentative solution from the boundary condition operators. 2S~~The present program first obtains all tentative solutions ik=b0+blk+bk2b3 cos -k-S1)• (94)

for x, which are called for during that cycle; then it
obtains the tentative solution for y before obtaining the
tentative solutions for z. Tentative solutions on interior in which the b's are the coefficients obtained from the
plares are obtained prior to obtaining the tentative regression analysis. After fitting the y's along each such
solutions for that variable on boundary planes. line to an equation of the form of Eq. 34, they are

adjusted to satisfy the equation exactly. The adjustment
The logic followed in obtaining each of the tentative also includes the y on the two channel walls and the two

solutions varies slightly dependent upon which variable is sides of the strut.
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SOLUTION RESULTS

The final solution consists of the magnitudes of x, feet (H = 10.5 feet), resulting in an upstream velocity
y, and z at all grid points within the 0"* space used to equal to 5.675 fps. In solving this problem 2,420 finite
solve the problem. Consequently the coordinates are given difference grid points were used. Since three unknowns
for each intersection of the potential surfaces with all of must be solved for simultaneously, three times this many
the orthogonal stream surfaces defined by holding p and finite difference grid points or 7,260, were actually used.

k t * * equal to constants. In this form the solution is ideally
adapted for presentation as a space flownet. Such a space The solution to this problem was obtained in a
flownet is constructed by simply connecting all consecu. piecemeal manner as the separate subroutines were de-
tive points defined by the x, y, and z values given at each bugged, etc. Consequently it is not possible to give the
grid point throughout the 0*ip space by lines in an exact amount of computer execution time required for
isometric drawing (or other graphical projections which the final solution. With an initialization which is easily
show depth into the paper as well as the shape within the generated in a computer program, and using the number
pk.ne of the paper). The small planes defined by these of grid points used for this problem, a reasonable estimate I
lines represent the sides of each element of the flownet. of the execution time on an UNIVAC 1108 system is 15
The intersection of the ib and ep* constant planes define minutes, however.
the streamlines of the flow. The velocity is inversely
related to the area of the square formed by the u and p* While an isometric drawing of the space flownets
equal constant lines and the distances between consecu, helps in visualizing the complete flow process, more

tive equipotential surfaces as given by combining Eqs. 10, detailed information regarding special features of the flow
11, and 12 with Eq. 76 in various ways. (Equations for can be obtained by examining the flow in separate planes
the velocity and its direction are given later.) That is the within the space. The solution from an inverse formula-
velocity is greater in regions in which the volume enclosed tion is in an ideal form to examine the flow field in
within individual cubes (or parallelepiped elements if AO separate equipotential planes, i.e. planes defined by 4' and
= = A4*), of the flownet is smaller than in those p* axes, or for examining the behavior of the flow in
regions in which this volume is greater. separate planes defined by 0iJ or 4' 4* axes. A solution

to a three-dimensional problem in the physical space (i.e.
While a complete isometric space flownet can in the space defined by the x, y, z cartesian coordinates)

readily be obtained by use of a computer driven plotter, would be well adapted for examining details in separate
the numerous lines resulting therefrom would make xy planes (i.e. defined by z equal a constant), xz planes or

visualization of the complete flow difficult. Alternatives yz planes but would require interpolation to examine the
to plot only a few of the flownet lines or to plot only flow field in equipotential planes for instance. On the

are t nother hand the results from the inverse solution in the
the flownet lines in key planes. Fig. 6 has been prepared * , * space require interpolation to examine or display
by using this latter type of plot, in which the plane the flow in separate planes of the physical space. Thus for
flownets from the top, rear, and right side are given in an mple, if one
isometricpoetolf wishes to examine the flow field in an xy

plane with z equal to a given constant, it would be
necessary to obtain the magnitudes of x and y whichThe more essential specifications used in obtaining define the intersection of .he plane flownet lines by

the solution, whose flownet is given in Fig. 6, are as interpolation of the x's and y's on the two adjacent
follows: (1) The depth of uniform flow upstream from the inverse planes that contain z values which bracket the
strut equals 10 feet (2) The number of 4' 4'* grid planes specified constant z. Obviously accomplishing this is not
equals the number of 0* grid planes and consequently difficult; perhaps even less difficult than plotting a
the width between channel sides is also 10 feet. (3) The flownet given a solution of the potential function in the
number of ýe planes (increments in the 0• direction physical space. However, no flownets from such planes

plus one) was given as 20, resulting in a length from within the physical space are given herein. For boundaries
beginning to end of the problem equal to 18.4 feet. (4) on which either x, y, or z is constant such as the sides, or
The strut was specified 0.6 feet wide at its widest point beginning and end of the channel problem, no interpola-
and it began on the 7th * 4P plane and ended on the 14th tion is necessary. The flownets from such boundaries are
Splane resulting in a length equal to 6.4 feet. (5) The simultaneously on a plane in which iA, i or iP* is
velocity head in the undistributed uniform flow equals 0.5 constant as well as x, y, or z is constant.

Preceding page blank 31
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In general. however, individual plane flownets ob- in which c, = D/M, is as previously defined, V, is the

tained by holding •, 4, or i* constant are more useful in undistributed upstream velocity, and AO is unity for the
visualizing flow patterns than those obtained by holding solution given herein and can be deleted from the
x, y, or z constant. In understanding plane flownets equation.
obtained by holding 0, 4*, or V' constant, one needs to
interpret the results as projections upon a specified plane. The direction angles of the velocihy vector at any
Thus for example if one wished to examine the flow point within the flow space can be obtained by first
pattern along the sides of the strut, a plane flownet noting that the first equation of Eqs. 6, 7, and 8 can be
obtained by plotting x and y from the plane with 4* written respectively as:
equal to the value coincident with the strut, would be a
projection of the strut's flow pattern upon a vertical plane
parallel to the sides of the channel. Such a flownet is given v = u. ..... ............ ... (86)
in Fig. 7.

2
A plane flownet obtained by plotting the y and z V - V ........ (87)

magnitudes of the solution from a 4b equal constant
(equipotential plane) is given in Fig. 8. This flownet
represents a projection of the flow from the leading edge (88)
of the strut unto a vertical plane at right angles to the These equations are obtained by noting that the Jatobian
channel sides. determinant J equals the magnitude of the velocity

aeflownet obtained from the free surface squared. Since u = V cos a, v = V cos 8, and w = V cos y
The plane shownetobtainedfigom thef e (in which C [S, and y are the angles of the direction

equal constant plane is shown in Fig. 9, in which the x cosines for the velocity vector), Eqs. 86, 87, and 88 give
and z magnitudes have been plotted. This flownet can be
interpreted as a projection of the free surface flow pattern
into a horizontal plane (i.e. a plane parallel to the channel a = cos- (v ... .......... ... (89)
bottom).

The magnitudes of x, y, and z at each intersection 1 = Cos- (V Y) ............ .. (90)
of grid planes in the *W* space, which constitute the
basic solution can readily be used to obtain other =.9
quantities of interest about the flow. The local velocity C' (V............
magnitude can be computed from the following finite
difference equation derived from Eq. 76. The pressure at any point can be computed from

260 CIV Eq. 85 and the Bernoulli equation, i.e.

k 114
ýXi+1iICXi..k) " (Yi 1+Ik-Yi..lik)+ (zi+Z1.. 1i -. 1HYJj .. (2

.. ............. (85) ijk Yijk 2 .... (92)

Fqg. 7. Plane flownet from the plane aociated with k=6 which coincides with the sream soface * of the strut
obtained by projecting the magnitudes of x and y onto a vertical plane purallel to the channel sides.
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Fan. 8. Plane flownet from ike W plane asoiated with
i=7 which touches the leading edge of the strut and
which results from projecting the magnitudes of y
and z onto a vertical plane at right angles to the
channei sides.

Fi.9. PhWn flowflet from the *?plane associated with j=1 I which coincides with the free surface obtained by
prnjecting the magnitudes of x and z onto a horizontal plane paralel to the channel bottom.
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CONCLUSIONS AND RECOMMENDATIONS

The use of a mathematical formulation which and better schemes or methods are needed for handling
reverses the usual role of variables shows promise as a boundary conditions resulting from a constant pressure
valuable tool for numerically solving certain types of free surface under the influence of gravity. The approach
three-dimensional potential fluid flow problems. Like used herein is associated with a number of difficulties
most new approaches, however, the merits of the methods which no doubt will become progressively harder to cope
need to be further evaluated and improved. The methods with as the complexity of the problem increases. Con-
and techniques used in this report for solving the inversgy sequently, a problem with a th,.ree-dimensional cavity and
formulated space boundary value problem represents an free surfaces would represent a difficult undertaking
initial approach which is workable, but which will no without better methods for handling such free surface
doubt be streamlined and improved upon with time. boundary conditions. With such improved methods, the

inverse formulation should, in fact, provide a practical
The interchange of the conventional dependent and numerical solution procedure for solving three-

independent roles played by the variables in a three- dimensional, steady-state, free surface, and cavity poten-
dimensional potential fluid flow problem results in ad- tial fluid flow problems.
vantages similar to those which occur in solving two-
dimensional plane and axisymcnetric potential fluid flow
problems. Perhaps the major advantages are: (1) That the Even if more satisfactory methods for handling free
region of the space boundary value problem is a paral- surface boundary conditions are not developed, the
lelepiped with planes for boundaries, which in the methods still represent a valuable tool for solving three-
physical plane may be irregular and of unknown position, dimensional problems without free surfaces, particularly if
such as free surfaces or cavity surfaces, and (2) the form the problem is a design problem instead of an analysis
of the solution is better adapted for graphical presentation type problem. In a design problem shapes of confining
and for computing various items of interest about the structures are sought which give some desired .low
flow. These advantages occur at the expense of more characteristics. The inverse formulation is particularly well
complex simultaneous partial differential equations. adapted for such problems in which the shape of a

boundary, which is a stream surface, is part of the
In order for the inverse solution method to be solution, resulting from a specification of fluid behavior.

readily adaptable and used practically for solving a variety but less well adapted if non-plane confining surfaces have
of problems involving free surfaces and caities, alternate specified shapes as in analysis type problems.
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