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? ) ™ An inverse formulation is developed for solving three-dimensional potential £
L3 fluid flows which considers the magnitudes of the cartesian coordinates x, y, and 2 H

i Jas the dependent variables in the space defined by (i.e. the independent variables)

- Jthe potential functior and two mutually orthogonal stream surface functions whose
intersection defines the physical space streamlines. This formulation reversds the
usual role of the variables. In this inverse space irregular boundaries, witf unknown
position in the physical space, such as free surfaces become plane boundaries, and

the space of most potential flow problems is a parallelepiped.
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" 3 The basic partial differential equations resulting from this formulation
E are nonlinear and three in number. Finite difference methods are developed for
5 solving the space boundary value problems simultanecusly, which are associated
with these three equations. The applicability of the inverse formulation and the
3 ¢ jnumerical solution is demonsttﬂte& by obtaining a solution to the three-dimensional, k

! |free surface flow past a vertical strut which extends through the fluid surface
and is placed between channel walls.
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ABSTRACT

An inverse formulation is developed for solving three-dimensional potential fluid flows
which considers the magnitudes of the cartesian coordinates x, y, and z as the dependent variables
in the space defined by the potential function and two mutually orthogonal stream surface
functions whose intersection defines the physical space streamlines. This formulation reverses the
usual role of the variables. In this inverse space irregular’ boundaries, with unknown position in the
physical space, suck as free surfaces become plane boundaries, and the space of most potential
flow problems is a parallelepiped.

The basic partial differential equations resulting from this formulation are nonlinear and
three in number. Finite difference methods are developed for solving the space boundary value
problems simultaneously, which are associated with these three equations. The applicability of the
inverse formulation and the numerical solution is demonstrated by obtaining a solution to the
three-dimensional, free surface flow past a vertical strut which extends through the fluid surface
and is placed between channel walls.
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NOTATION

any vector quantity

ax/3¢

acceleration of gravity
any vector quantity
dy/ 3¢

2/3¢

D/M,

depth of upstream flow
derivatave determinant
oyl 3y

azfay*

denotes function of
denotes function of
ayloy*

vector array of values
denotes function of
denotes function of
zzfoy

depth of flow plus velocity head
denotes function of
denotes function of
axfow*

subscript denoting increment in ¢ direction

unit vector in x-direction

=4

=}

-‘l.ot.n O =

“|

u

Jacobian determinant

inverse Jacobian determinant
subscript denoting increment in { direction
unit vector in y-direction

subscript denotirg increment in ¥* direction
unit vector in z-direction

number of ¢ grid planes

L-1

number of ¥ grid planes

M-

number of ¥* grid planes

N-1

Y * plane coincident with strut
superscript denoting iteration number
flow rate

superscript denoting iteration number
vector array of values

vector array of values

vector array of values

velocity component in X-direction
velocity component in y-direction
velocity component in z-direction

over-relaxation factor
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W = width of channel 8 =  angle

X = cartesian coordinate and also magnitude thereof T = 3.1417

E y =  cartesian coordinate and also magnitude thereof ¢ =  potential function

: z = cartesion coordinace and slso magnitude thereof ¢ =  dimensionless notential function

& = direct % cosine ¥ = stream surface function

3 B8 = direction cosine v = dimensionless stream surface function
' v = 3 '53; +7 % + 1.% V& = stream surface function

& : Y = direction cosine y* = dimensiorless stream surface function
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INTRODUCTION

For many practical fluid flow problems in which
viscous foices are of minor importance, because they are
confined to relatively small regions of the flow, inviscid
fluid flow theory yields results which are adequate for
most applications. Consequently a vast amount of litera-
ture deals with. inviscid fluid flow theory. Despite all of
the effort represented by this licerature, many relatively
common prcblems with free surfaces and/for cavities have
not been solved in closed form without introducing a
number of simplifying assumptions which are not in
accord with real situations. Available analytic methods
generally require that the fluid be assumed weightiess (i.e.
the acceleration of gravity is zero). Furthermore, since
such methods are based on complex variables, they are
restricted to plane two-dimensional flows. Consequently.
in order to solve problems with free surfaces under the
influence of gravity, or three-dimensional problems even
if axially symmetric, researchers have been forced to
obtain solutions based on numerical approximations
rather than solving the problems in closed form.

The application of finite differences constitutes one
of the most powerful and universally applicaole methods
for obtaining such approximate sofutions. The use of
finite differences for solving fiee streamline problems in
the physical plane is extremely difficult since the position
of the free streamlines is unknown a priori. The solution
can be obtained only through a process of repeatedly
adjusting the assumed position of the free streamlines.
through considerable insight and judgment. until all
conditions of the problem are satisfied. Since the means
for determining whether all conditions are satisiied is
often quite insensitive to the position of the free
streamlines, it is difficult to determine the reliability of
the resulting approximate solution, and consequently the
literature contains a number of examples where sub-
sequent analyses have demonstrated that considerable
error resulted because of an incorrect position of the free
streamline.

An approach for solvin? two-dimensional fluid flow
problems which is supe.ior in many regards to a formula-
tion in the physical plane. particularly if free surfaces are
present, is to interchange the usuzl role of vanables in the
problem. Such inverse formulations have used the poten-
tial function, ¢, and the stream function, . as the
independent variables, and as dependent variables such
quantities as: (1) the magnitude of the cartesian coor-
dinates x and y, (2) the angle of the direction of ffow, 3.
and the logarithm of the magnitude of the velocity. log
IVI, or (3) the magnitudes of the horizontal and vertical

components of the velocity, u and v. A major advuntage
to such an inverse formulation is that frc. surfaces, being
streamlines along which { is constant, become straight
boundaries in the ¢y plane, and many problems are
consequently confined within rectangular regions. Also
the results from a solution are in aun ideal form for
plotting a flownet and are well adapted for computing
other quantities of interest concerning the flow.

This type of inverse formulation, accompanied by a
subsequent finite difference solution, has been used to
study a variety of two-dimensional {ree streamline prob-
1. ms (Thom and Apelt, 1961; Cassidy, 1965; Markland,
1965; Jeppson, 1966 and 1969a). The same approach has
been used to solve problems dealing with plane saturated
porous media flow with phreatic or free surfaces (Jepp-
son, 1968a, b, and c), and unsaturated moisture move-
ment in soils (Jeppson and Nelson, 1970, and Jepp:on et
al., 1972). The same approach of using a tormuiation
which interchanges the usual role of the variables with an
accompanying numerical solution has been used to solve
three-dimensional problems with axial symmetry. In these
problems the magnitude of the radial and axial coor-
dinates r and z are made dependent in the plane of the
potential function and Stokes’ stream function (or
logarithm thereof). (See Jeppson, [966; Mackenroth and
Fisher, 1968; Jeppsun, 1968d, 1969b and 1970.)

The work reported herein extends the inverse
formulation techmique which has been used in solving
plane and axisymmetric potentiai fluid flow problems to
general three-dimensional potential fluid flow prablems
and demonstrates the applicability of the methods by
obtaining a numerical solution to the three-dimensional
flow in an open channel past a strut. While this problem is
a very simple three-dimens,,nal problem for which a
two-dimensional analysis (or for some features a one-
dimensional analysis) may be adequate, it does include the
common boundary conditions found in most problems.
Furthermore, because of the simplicity of the problem,
the adequacy or inadequucies of the numerical solution
can more readily be ascertained and where necessary.
modifications made. Conseauently the results from the
problem solution have the primary purpose of illustrating
the method of aversely formulating and  solving a
three-dimensional free surface flow problem. With a better
understanding of the performance of various numerical
schemes in solving inversely tormulated three-dimensionat
problems, the next step would be to apply the methods to
more complen three dimensionaf flows.

IR IS T onPs

Frea s




e

T

TPTPTE

i g

PR T N T AT

Alee

A

e

INVERSE FORMULATION

Selection of variables

The first step in developing an inverse formulation
to three-dimensional potential flows is the selection of
three appropriate dependent and three appropriate
independent variables. Since the best inverse approaches
in the literature to plane and axisymmetric flow problems
have considered the magnitudes of the coordinates x and
y or r and z as dependent variables, the magnitudes of the
cartesian coordinates x, y, and z should constitute
appropriate dependent variables in an inverse formulation
to a three-dimensional problem. This same literature
suggests that the potential function as well as some
functions to define the flow paths would constitute
appropriate independent variables, or define the space
within which the problem is defined. The functions
selected for defining the flow paths consist of two stream
surfaces which are tangent to the velocity vector. Yih
(1957) has given equations for defining two such stream
functions which will be denoted by ¥ and ¢ * in this
report. Nelson (1963) has given equivalent definitions for
use in three-dimensional porous media flow applications.

The basic equations in these definitions are:

SRR LA A RS m
R TR TAERS @

in which y. v, and w are the components of the velocity
vector V in the x. ¥, and z coordinate directions
respactively. i.e. V=ui+ v + wl. and the suhsmpls
denote partial derivatives in the usual manner. ie. ¥,
o% [az. etc. It can easily be shown that Egs. 1. 2. and
reduce to the well known equations Y. = 3 and v
- ¢, for the special case of plane potential flows. n
vector notation Eqs. 1. 2. and 3 become

‘v N

V= (grad §) = (grad ¢') = grad ® - - - (4)

Preceding page biank

Transformation from physical
space to  gyy* space

To obtain the basic inverse equations note that since
the potential function and the two stream functions are
functions of x, v, and z,ie. ¢ =F(x)y.z), ¥=G(xy,2)
and ¥* = H(x,y,z), it follows that x, y, and z must also be
functions of ¢, ¥, and ¥*, ie. x = f( ¥, ¥), y =
g( oY, ¥*), and z = h(d, Y, ¥*). Using the chain rule to
differentiate x = f( 9. ¥,Y*) with respect to x. y, and z
respectively gives

1 = OF +x§G +X*Hx
0= F+xG + xy.H

o Py ¥y
0 =

QF +x§G_:+x *Hz

Solving these three equations for the unknowns Xg « Xyo
and X, gives

< = L3GH 1 JEH
27T 3y, ) " Y T 3y, 2)
and 1 3F.G)
- T (6)

in which J is the Jacobian given by the determinant
F F F
x y =z
J= |G G G
x y =z
H H H
X y z

and the derivatives of the quantities enclosed in paren-
theses denote minor determinants in the usual way. i.e.

MG H o

G H
(y. 2) Yy 2 zy

Ditferentiating v = g( 4.%.% *) with respect to x. v,
and 2 respectively and solving the three equations gives.
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...... )
Likewise differentiation of z= h( $, ¥, ¥*) leads to,
e = LAGH) 1 3(F.H
® " JAxy " ¥ "Iy
£, = L1 (F.G)
¢ Ty ... .. .. ®)

Following the same procedure as that above but
solving for &,, &y, .., ¥y, ¥ gives

_1 3¢ty.2) _ . 13(x,2) . 19(xy)
% = IR RN °y T 9. 9%’ °,= i 0@, $%)

1 - 1306y}
O(d,4*)" “z~ " j 3(®,¢%)

*_19(y.z) *  13(x,2z}) ,*_ 1 9(x,y)
Le730a' Y 70 %" 50n. )

in which j is the inverse Jacobian determinant
f@ f@ fi’
i-= 7Y 8* 8? =
h° h{‘ h'?
By substituting from Eqs. 6, 7,8,and 9 into Eqgs. 1,
2, and 3, the following three inverse equations are
obtained:

G e

o T VT TVpty L. L. (10)
[ o e X IR an
2T eV ... .. (12)

These three equations are the basic inverse equations
which dufine the dependent variables x, y, and z in the
dyy* space, just as Eqs. 1, 2, and 3 are the basic
equatiors for ¢, ¥, and ¥* in the physical space.
Consequently, when associated with appropriate bound-
ary conditions for a particular problem, the simultaneous
solution of Egs. 10, 11, and 12 would constitute the
solution to that particular problem. Before discussing
methods for solving these equations some properties of
the stream surfaces v and ¥* will be presented.

Properties of stream surfaces

The definitions for stream functions y and y* as
given by Egs. 1, 2, and 3 (or Eq. 4) satisfy the
incompressible, steady state continuity equation V-V =
0. Thi_s.am be verified from the vector identity Ve @ x
BY=B"(V x A)-A+(V x B). Thus from Eq. 4,

TV = 0PtV V) - (v, V) (13)

but the curl of the gradient of any scalar function is zero
and therefore Vx V¥ = Qand V x V¥* = 0, with the
resuit that

OV =9-@®x0P*") =0 . . ... .. .. (149)

The stream surfaces defined by holding both ¥ and
¥* constant are orthogonal to the equipotential surfaces
defined by holding & constant. Orthogonality exists
provided the dot products of the gradients are identically
equal to zero. Using Eqgs. 1, 2, and 3 it can readily be
shown that VoeV¥ = O and Vo.VY¥y* = O and
therefore the equipotential surfaces are everywhere at
right angles to the surfaces defined by holding the two
stream funciions constant.

In general, the definitions for ¥ and ¥* do not
require that the surfaces defined by holding ¥ and y*
constant are orthogonal to each other. However, in the
previously given inverse equations it is necessary that of
the many ¥ and ¥* equal constant surfaces which exist,
only those are selected which constitute an orthogonal
pair so that the inverse coordinates ¢, ¥, and “* are
independent. The use of the inverse formulation assumes
that using §, ¥,and ¥ as orthogonal coordinates insures
that appropriate orihogonal ¥ and y¥* stream surfaces are
selected. Perhaps 2 more fundamental approach would
impose the condition V Y+VY* = 0 directly. Methods
for imposing this condition directly are not apparent,
however.
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METHODS FOR SOLVING INVERSF EQUATIONS

Alternatives avaiiable

Considerable guidance in the selection of the in-
dependent and dependent variables for the three-
dimensional problem was provided by past inverse solu-
tions to plane flow problems. Less guidance is available
from these past solutions regarding the best methods for
solving the three-dimensional inverse equations. Since the
basic equations (Eqs. 10, 11, and 12) arc nonlinear, and
each equation contains all three dependent variables x, y,
and z, it is clear that numerical methods offer the best
presently available approach to a solution. In solving the
comparable equatious,

x5 Yq‘ ........ (15)

x'k-

fron: plane potential flows, the equations are first
combined by differentiation to obtain equations involving
only one dependent variable. These equations for plane
flows are the inverse Laplacian equations Vgyx =0 and
v, uf y = 0. Because of the products present in the terms
03 the right side of the equal sign in Eqgs. 10, 11, and 12,
reasonably simple equations with only one dependent
variabie canuoi 5¢ obtained by differentiation and com-
bination as can be done for the equivalent plane flow
equations. Consequently an alternative approach for
solving the inverse three-dimensional equations must be
sought.

An alternate which may appear feasible at first
would utilize finite difference methods to obtain a
simultaneous solution to the boundary value problems
associated with the three first order partial differential
Equations 10, 11, and 12. An examination of the finite
difference equations obtained from these three equaticns
by approximating the derivatives with second or higher
order differences indicates that point by point iterative
methods, such as Gauss-Seidel or SOR method would not
be convergent. Such iterative methods would diverge
simply because the coefficient associated with the value of
the variable at the grid point in question is iess in
magnitude than the sum of the coetficients of the other
terms. In a linear system the equivalent would be a
nondiagonally dominant coefficient matrix. But since
diagonzl dominance is a necessary condition for point by

puint methods to converge, it may be concluded that only
if first order forward or backward differences are used to
replace the derivative in Egs. 10, 11, and 12 would it be
possible to solve the boundary value problems associated
with the first order equations simultaneously. Because of
the low order approximation of first order differences this
possibility for solution was not considered initially. (Using
a weighting all possible first differences which depend
upon the distance from the boundary, a workable method
results. This approach is under investigation in the same
project.) Rather three alternatives were investigated.

The first alternative is to use block iterative meth-
ods to solve the finite difference equations obtained from
third order difference approximatinns of the derivatives in
the first order partial differential equations. The merits of
this approach were actually investigated by implementing
its use in computer programs which solved the finite
differesice equations across an entire line of grid points,
and across two adjacent hrmes simultaneously for the
two-dimensional problems of corner flow. The conclusion
was that these block (i.e. line) iterative methods were also
nonconvergent. Later study has, however, shown that
what was considercd nonconvergence may have actually
been due to the poor approximation of the finite
difference solution to the actual corner flow. Regardless
of the incorrectness of the above conclusion, the use of
olock iterative methods for solving the simultaneous
boundary value problems was not pursued further. Rather
the method of approach which is described in this report
was developed and implemented in a computer program
for solving three-dimensional flow around a strut.

The third alternative which has been studied for
solving the simultaneous boundary value problems will be
described more fully in a subsequent report containing the
results of a Ph.D. thesis by Allen Davis. Basically this later
alternative also uses Eqs. 10, 11, and 12 in their present
forms. and obtains a simultaneous solution for x. y. and 2
from the difference equations obtained by third order
approxin. itions at all grid points on an entire plane within
the tlow space. The resulting finite difference equations
become linear under the assumption that values on
adjacent planes are known. Consequently the solution on
cach plane can be obtained efficiently by utilizing
techniques tor grouping the nonzero elements of the
coefficient  matrix  inte  bands. and  implementing

4 »\w\;. it

X

s,

ety

N Va5

e Lt 2 0 Rt AL

A LSl

24 B

Mkt oh A AL 2 A S

auts N

x
;

L
b L 0t o T A AL A A Y o BN A A Yo A Lo L o a5 W Do Wt e CTEL MU RITIRT NI AT IR IR

o R




LAt i onsh

T

algorithms waich take advantage of the zero elements of
the matrix. By repeatedly obtaining such solutions, plane
by plane and subsequently repeating the entire process
until the absolute sum of changes in all three variables at
all grid points became less than some error parameter, the
final solution should result. In essence this alternative is
an extension of bluck iterative methods to a space
boundary value problem in which the block becomes an
entire plane and direct methods are used to solve the
finite difference equations in that plane. For some yet
unknown reason this procedure neither converges to, nor
diverges from, the final solution. A more detailed descrip-
tion of the implementation of this method and its
inadequacy will be given in a subsequent report.

The method of solution described in this report
does not use Egs. 10, 11, and 12 directly in their present
form. Rather these three equations are combined by
differentiation, under the assumption that certain of the
derivatives are known, in such a way that quasi-separate
equations are developed for each variable x, y, and z in
different planes within the ¢yy* space. The magnitude
of the assumed known quantities in these separate
equations can only be determined approximately until the
final solution is obtained. Consequently these assumed
known quantities are vepeatedly adjusted in a cycle of
solutions until their coirect values are obtained.

Nondimensionalizing independent variables

Before demonstrating how such quasi-separate equa-

E tions can be obtained, Eqs. 10, 11, and 12 will be

transformed so the new independent variables ¢, y, and
y* are dimensionless as given by the following three

equations
= NlD°
¢ = Qo (17)
: M
3 . & (18)
3 Q
N .
R & (%)
NQ
in which D is the undisturbed depth of flow in the

E channel, Q is the total volumetric flow rate in the channel,
N, is the number of grid increments in the ¥* direction
and M, is the number of grid increments in the
direction. Transforming Eqs. 10, 11, and 12 by means of
Egs. 17, 18, and 19 leads to

a d e { g
/ Vavd VA

1Ty T Ve T Vet (20)
b h g ie
Y AV N
Yo T xq;*z.p' x.,pzq,# ..... (2‘)
c i/f h d
/ / VA 4
124 X Yye m XYy - ... 22)

in which ¢, = D/M,, and the single letter over the
individual derivatives will be used subsequently whenever
that derivative is assumed to be known.

Development of quasi-separate
equations for x,y,and z

To demonstrate how separate quasi-separate equa-
tivns for x, y, and z, which apply on an individual plane
within the ¢y * space, might be developed, Eqs. 20 and
21 are written below assuming that derivatives with
respect to * are known and that the variable z is known.

€\ Xp = eyq’~ fe . ... ... (203)
¥y = hE-ex, L. ... .. (2la)

Upon differentiating Eq. 20a with respect to ¢ and
Eq. 21a with respect to ¢ and eliminaungy, =y
o o Vv

e
e RPN
«.lxw+ cl lexW+ x+c¢ - (gh)q'] (c!..cbi fg)
+(fg)0 =0 (23)

Likewise differentiating Eq. 20a with respect to
and Eq. 2la with respect to ¢ and combining the
resulting equations gives the following equation for y in
¢ planes,

e
e 3 -
+ S {ey ty,e, - 6, ] + 2 gh-cy,)

1
- (gh)é = 0
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If y had been considered known along with deriva-
tives with respect to * in Eqs. 20 and 22 the same
procedure as that given above would have resulted in
equations for x and z in the ¢y planes. Equations for y
and z would result if x were considered known. In fact for
each pair of equations which can be formed from Egs. 20,
21, and 22, two quasi-separate equations would result
under each assumption of known variables. Table 1 lists
the 18 equations that can be obtained in this manner, and
indicates in which plane cach of these equations applies as
well as from which two of the three basic equations it was
obtained.

The motivation for combining Eqs. 20, 21, and 22
by differentiation into the second order partial differen-
tial equations in Table 1 is to obtain second derivatives in
the equation, for which second order central difference
approximations lead to diagonally dominant coefficient
matrices. The equations in Table 1 also have some
resemblance to Laplacian type equations for which the
common finite difference methods have been developed.
Perhaps the greatest motivation for developing the equa-
tions in Table 1, however, was to have separate equations
from which to solve each of the dependent variables x, y,
and z.

Criteria for selecting
best suited equations

Generally in solving any particular problem, only
one equation for each of the unknowns x, y, and z would
be used. Should considerable differences exist in the flow
patterns in different regions of a particular problem it
may be desirable to use different equations in different
regions. The success and efficiency of obtaining a solution
by use of the equations in Table 1 depends upon the
selection of the equation which will be used to solve for
each of the unknowns. While there are additional criteria
which might help in making this selection it appears that
the following three items are important: (1) The assump-
tions of known derivatives should be made as valid as
pussible; that i thic values, dennted by single letters in the
equation that is ured. should be maintained as constant as
possible during the solution process which would start
with an initialization and proceed until all conditions of
the problem are satisfied. (2) That the coefficients of the
two second derivative terms in the equation be as nearly
equal as possible. For the last three equations in Table 1.
obviously at least one of the single lettered values must be
negative so that the PDE is elliptic. (3) That the
magnitudes of the terms involving first derivatives be
maintain2d as small as possible.

Several reasons exist for citing these criteria. First if
the single lettered values, which are assumed to be known
during the process of obtaining a solulion on any plane.
have their values altered greatly between successive
solutions in that plane, they will obviously affect the
results from these conszcutive solutionc. These solution
results, in turn, could affect the magnitudes of the
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coefficients. If, however, the lettered coefficients are
nearly correct at initialization, or if their magnitudes have
a minor influence on the solution, the final solution will
be obtained in fewer total avithmetic operations.

The basis for the second criteria is to make the
solution in each of the planes of the space equally
dependent upon all four of its boundary values (or
boundary conditions), and not more dependent on two
opposite boundaries thar on ihe other two opposite
boundaries. This latter condition would occur if the
coefficient of one of the second derivatives was very small
in comparison to the other. The second criteria also helps
insure that the equation has some resemblance to Laplaces
equation for which many numerical, as well as other,
solutions have been obtained. Should this criteria be
strongly violated, a solution in each individual plane may
be obtained with fewer numericai calculations by simul-
taneously solving the systesn of finite difference equations
ajong the grid lines in the direction of the independent
variable whose derivative has the larger coefficient. Since
the problem is of the elliptic type, this would mean that a
high dependency must exist between the values on this
plane and those on adjace t planes. Consequently, any
reduction in arithmetic calculations in obtaining individ-
ual solutions would be more than offsct by more cycles of
such solutions. Furthermore, the solution process may be
less likely to be convergent. Consequently satisfying the
second criteria simultaneously helps assume that the first
criteria is satisfied.

An illustration of how these criteria aid in the
selection of the equation which wil} be used to solve each
of the dependent variables x, y, and z is giver: later in the
discussion of the problem of flow around a strut in a
channel.

To obtain a better understanding of how rapidly, or
whether, iterative finite difference methods would con-
verge for the equations in Table 1, individual computer
programs were written to solve each of the equations in
Table 1. For each such problem Dirichlet boundary
conditions were specified, and algorithms implementing
both the successive over-relaxation (SCR) method and the
line successive over-relaxation (LSOR) method (see
Forsythe and Wasow, 1960. or Varga, 1962) were tested.
in gart the criteria giver for selecting the best equations
for solving a particular prohlem were arrived at from
noting and comparing the performance of these separate
programs in obtaining a solution. The performance of
those programs implementing solutions to Eqgs. 35
through 40 in . * planes was gererally considerably
poorer than those implementing solutions in either 3% or
$+* planes. If a poor jnitializztion of all unknowns was
used when solving the equations in Yi* planes. solutions
did not result. but rather rapid divergence occurred. When
such lack of convergence occurred it appeared to be
associated with initializations which at some grid points
caused the coefficients of the second derivative terms to
have oppusite signs. or which caused the magnitudes of
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Table 1. Quasi-separate equations obtained from Egs. 20, 21, and 22 by assuming some variables were known.

Eq Derived Plane
No. from of Quasi-Separate Partial Diff. Eq.
: Eqs. Equation .
‘s
23 20 & 21 &b clx [ex + eq‘x*-(gh)*] e (c x +1g)+ (fg)¢ =0
. e
24 20 & 21 (.1 clywi'c—l [eyw ¢ ¢- (fg) ]+ (lh - cl7¢) (sh)oz 1]
f
25 20 & 22 [ l [& +f x - (dh) ] (de-clxé)-(de%: 0
£ ¢ _
26 20 & 22 (-1 c‘z“-l' {f W+‘¢'\|’- (de)q']o 7 (cl:¢+dh)+(dh)¢- 0
be
27 21 & 22 o <y, M [hyw - (if) ] ‘% (cly‘i' te) + (ie)6 =0
b
28 21 & 22 (7 [h: *hz-(ie)“‘]i-h {if - °1¢"‘m¢'°
* £ . 5
29 20 & 21 L < %s0t ) !‘x#‘\l"+ q“_‘x*t-(xe) ‘]+ (de X ) - (de)o =0
30 20 & 21 o cly“-i--fx- (87, age  KyoTye - (4€) ,]- (cly°+ ie) + (ie)y = 0
* d d‘ 0
31 20 & 22 [ 11“4- [ax *'*. ‘F'b‘ - (i!’)*’] + re (elx°+ fg) + (!’g)o =
d
d
32 20 & 22 Nt clz“'tc—l (92, 0y 0t datye - U)ol * T $ f-c B} +0, = 0
i
33 21 & 22 N Veet o [iy*,*, o Ve - (dR) 1t T (lh-cﬂ) (sh)y = ©
i
K]
34 21 & 22 N “+-— (50 + i e%ye - (O0) 0= T (c: o+ )+ (dh),= 0
35 20 & 21 w e -din o o¥ (dh o+ Bl je - (@i +hd Ju o -c)(db o+ baL) =0
36 20 & 21 w* “-dixw‘+ (lh +if .): - (1 ﬁ.p) etc (u*,-fb*) =0
* - givw - - =
37 20 & 22 w ehy - BT age b et ghdy, - (Bl o+ BELIY, o+ €)(8C o~ Bay) 0
138 20 & 22 w* ehyw - giyw‘+ (ie*.+ ah+)y* - (ig*‘f ci*)y*. + cl(ee* - xa".) =0
39 21 & 22 " ofx -dgx,‘*‘i» (¢t¢.+ fe )x (gd*.'l» fg‘)x‘. + cl(!b -gc ,)* 0
40 21 & 22 " ok - AB% o0 (du g+ ol hx, - (Ag ot od dx ot €)(db o+ ec )= 0
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these coefficients to take on small values. From this
experience, the additional criteria may be added to the
above three to avoid in general, one of the equations
which apply on yy* planes.

The performance of the two algorithms (SOR and
LSOR methods) which were implemented in the programs
mentioned above indicated that generally less computer
execution time was required by the LSOR method than
the SOR ssthod. No experimentation was done to
examine the effect of the over-relaxation factor. All
solutiuns under both methods used an over-relaxation
factor equal to 1.4. Since the comparison was close,
showing that the LSOR method required in the neighbor-
hood of 20 to 40 percent less execution time than the
SOR method, changes in over-relaxation factors might
favor the SOR method. Furthermore, the outcome of
such a comparison is computer system dependent, as well
as being influenced by the particular statements in the
source language written for each method. In the LSOR
method more computations are involved per iteration but
fewer iterations are required for a solution than with the
SOR method. Since the additional computations per
iteration are primarily with nonsubscripted variables or
single arrayed variables, the LSOR method requires fewer
operations with triple subscripted arrays. These compari-
sons were made on the UNIVAC 1108 system, under
EXEC 8, at the University of Utah.

Finite differences

The finite difference operators have been obtained
by replacing the derivatives in the equations in Table }
with second order central difference approximations. The
finite difference space network has been selected such
that AYy* =AYy = A¢ = 1. The grid spacing increments
A¥* OY,and A¢ can each be 2quated to unity because
the number of grid increments, M, and N, in the ¥ and
W* directions, respectively, are included in Egs. 17, 18,
and 19 for defining the dimensionless coordinates ¢ . ¥,
and *. The motivation for introducing M, and N, in
Eqgs. 17, 18, and 19 was to allow these increments to be
unity and thus eliminate a number of multiplications
which would result from nonunity A’s in the finite
difference operators.

The finite difference operators for interior space
grid points are given in Table 2 for the first 12 equations
in Table I. To make for easy reference the equation
numbers given for each firite difference operator in Table
2 is the same as that for the PDE from which it was
derived in Table 1. The forms of these finite ditference
operators, as given in Table 2, conform to that needed to
apply the LSOR method along those lines defined by the
incremented subscripts on the left side of the equal sign
{i.c. in the direction of increasing 3) and which lie in the
piane on which the particular equation applies. The triple
subscripts to x, y, and z in the finite dificrence operators
are arranged in order so that the first corresponds to 3.
the second to 3 and the third to .* as defined by

S s A e e o

iz 14 3/A0 . . v i e e @n
)= lelae L. L. 42)
k= 1+¢2/8¢% | .. ... ... @3)

The o’s in each finite difference operator are unique to
that operator as defined in the right portion of the table.
They are used to simplify the writing of the operators and
consist of the combination, and/or derivatives, of the
assumed temporarily known quantities given by a single
letter in the PDE’s in Table 1.

The operators in Table 2 can be rewritten readily to
conform to that needed t. apply them in the LSOR
method in the other coordinate direction by interchanging
the terms across the equal signs or for the SOR method by
placing only the term with an ijk subscript on the left of
the equal sign.

Numerical operations involved
in obtainirg a solution

As pointed out earlier, the solution or solutions on
any given plane within the space of the problem must be
obtained repeatedly; each subsequent solution hopefully
will have more nearly correct coefficients which are
assumied known, but which actually are dependent upon
knowing the correct solutions to the other variables.
Consequently, a single group of solutions on individual
planes for x, y. and z will not be sufficient. Rather such
groups of solutions must be obtained repeatedly until all
coefficients are correct. To help describe the procedure
used in obtaining the final complete finite difference
solution to a three-dimensional problem, the following
terminology will be used.

(a) Tentative solution—refers to a solution based on
any of the finite difference operators in Table 2 (or any of
the finite difference operators for a boundary condition as
given later) on a specified plane within the ¢y * space.
These tentative solutions are based on the best values for
the o's which can be computed at that stage in the
solution process. and consequently they are only tenta-
tive. but the results of these solutions are needed to
obtain better estimates of the s in the operators for the
other two dependent variables.

(b) licration number - refers to the number of times
the LSOR-n'ethod (or whatever other method is being
used) adjusis al! the values of X, y. or z on the particular
plane for which a given tentative solution is being
obtained. A sufficient number ot iterations are required
for each tentative solution until the sum across all grid
points of that plane of absolute changes in value of that
dependent variable is less than the prescribed error
parameter.

(<) Cyele number  tefers to the number of times all
tentative solutions are obtained. Thus during the first
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Table 2. Finite difference operators which are based on the partist differential equations in Tabie 1.

Eq. Definition of @
No. Finite Difference Operator Coefficients in Operator
: 2 ee e
3 =2 I )
: 2 Tk et 20400k - (-0 R T S T Sl P
cl ch
3 gy c,lf8) 3
3 =0 et O Ot % R % - e :
; 1
': ;3
4 e2 ee ey f
24 -“+a3)yi-)jk+ Z(l+al)yijk-(l -03)yi+ljk a, =-:E' Gzz——*—zc 3 03=Zo 3
1 1
4 ey (gh) (ghy,
E = O -Gt Oyt Talrenct % Tee Tz ;
3 1 :
2 £ t
- -Q- =L . -2
25 (tagke o +2040) (-0, o a, =L, 0, 500, = 320
c 2¢c
1 1 E
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=8 - et O Ot Oy = "o - Tz b -7
3 1 9 1
: 2 £ £
e S -2
26 -(l+03)zi_ljk+ Z(l+al)z -(1- (13 1415k e ==3.,0,= 7 0 %33 ¢ :
<:l ch 1
3
@), £,(dh) :
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1 3
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3 . o Definition of & £
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3 1 1 3
3 3
3 8, (de) (de) ;
- = - = - £ - ¢ %
3 -= (al “z”‘:jk-x* (al+ “2)‘ijk+l+ a, o, o - 3 (xe)q,. < 3
: 1 :
3 :
; ' 2 88« 8 :
3 H - a2 -(1- - K = = 2
: : 30 (+ay, (o s Mtady L (-0l a =4, qa 3+ 937 3g”
5 c 2¢c
: 1 1 Z
(ie) g.(ie) B
X _ -—9° % _ __&
; = =%t 1 %t % %= T Tem Lzl
H ’ E
i 1
; £
| 1 1+a +2(1+a 1-a S S By % 3
3 Seagx, o 20140k, - (1o ik 1572 %= "3 %=23"
. < Zc‘ E
: (), dylfE) F
: = @y -0t O POt 0= e " Ted - 2 Ufue 3
! 1 1 < i
; 2 da d
! - R PR
‘ 2z m(degir, gt 20430 - 002 M=T20 %% 2 M7 3
4 N ch 3
5 i
i d 6f)  Gf :
= (Gl -nZ’zijk-l+ ((1l + OZ):ijk+l+ u4 a‘ = -c,d- - ——cl - ;_é (fg)*, “
1 H
ij
2 ii i
. - 4 -2
3 sS40y, gt 20Oy (-G ik LT I S i Sl i
1 ! 2¢ i
iglgh)  (gh), ildh) , 3
=@y -Gt Ot %t O %% Teqd T e T 2
1 1 cl ,_3
b
3 i
] iZ i . i ® i
; -a- i a- =2
u -(itage, o+ Ar+aie -z 0 @ ==3.9, S Oy= 3 :
9 ch 3
| @y g
LSBT AL Ry LT WO %S T T Ted T2 (gh),e :
1
3

wibe wuw

+
§
| 4
r i
-
m
bt fue ot 0 wae1eh

=i o




RANNE I il S

24

——— -

PP TR JO

'
]
1
H
H
H

RS —

cycle all tentative soluticns for x, y, and z will be
obtained as well as possibly tentative solutions for these
variables on the boundary planes which are not of the
Dirichlet type. The same process is repeated for the
second cycle, etc. In the actual computer program as it
has been written for the problem of flow around a strut,
the additional capability has been provided to repeat all
the tentative solutions for x, y, or z on interior planes
more than one time before proceeding to the tentative
solutions of the next variable.

The LSOR method has been used for the reasons
given earlier to obtain all tentative solutions except for
certain boundary planes as will be described later for the
example problem which is given herein. While a descrip-
tion of the LSOR method can be found in a number of
text books dealing with finiie difference methods for PDE
(see for exampie . mes, 1965), a brief explanation is given
here for the sake of completeness as well as to point out
certain unique features of the LSOR method as applied to
the equations of Table 2.

The LSOR method can be understood by noting
that the application of any of the operators in Table 2
across all interior grid points of a line leads to a system of
linear algebraic equations provided that the d's and values
on adjacent lines are known. In matrix notation this
system has the form

in which Yrcprcsents the unknown vector, Bis the vector
of known quantities and A is a tridiagonal matrix. The
fact that A is ridiagenal is an important feature of the
method from a computational viewpoint, since such
tridiagonal systems of equations can be solved by a single
pass through the rows with a Guassian elimination which
leaves a matrix with only two elements on each row; the
diagonal element and the nexi element. The solution to
the system is subsequently obtained by back substitution.
Sor.e writers have referred to the method for accomplish-
ing this solution as the Thomas algorithm. This method
defines the sequence of elements of A immediately to the
left of, on, and 1mmedutely to the right of the diagonal
by vectors q, T, tively. Then additional
elements of other vectors f and g are defined by
S b

= — - —

1 rl'gl_tl

s
m

f =~ o %y =f (b
m l.m-fm-lqrn

g)/

m- m-m-1

2<ms<n . .(45)

in which n is the number of fows and columns in A, and
the b's are the elements of B. The solution vector X is
obtained from

12

.(46)

In implementing the algorithm given by Eqs. 45 and 46 it
is not necessary to set aside storage for a new array f.
Rather, since the values of r need not be retained, the
values of f may be stored in the former array positions for
I.

Upon obtaining the solution vector X which repre-
sents the unkriown values across an entire grid line, the
individual elements are immediately adjusted by the
over-relaxation formula

+1 P
rk = twbeexg) L a7

in which the x;’s (with the single subscript) are the
clements of X, and Xy (with the triple subscript) are the
values of the depend' nt variable x, y, or z at the grid
points along the line in question. The superscript p
represents the number of the iteration and w, is the
over-relaxation factor with a value between zero and
unity. Eq. 47 is not the usual form of the over-relaxation
equation which utilizes an over-relaxation factorw=w, +
1. The use of Eq. 47 in place of the more usuai form has
the advantage that the computer core positions for the
triple subscripted array Xk needs to be located once
instead of twice to carry out the arithmetic on the right of
the equal sign.

The LSOR method proceeds from line to line until
the value of the variables across all iines within the plane
have been adjusted. Upon completing the last line the
entire process is repeated as the next iteration, etc. In
implementing the LSOR method for the equations in
Table 2, the o's have been computed only during the first
iteration and stored for subsequent iterations. The reason
for doing this becomes obvious upon noting that some of
the o's are independent of the solution on that plane, and
those that are have minor effect on the resulting solution.
Consequently, the majority of the arithmetic involved in
solving the tridiagonal system repeatedly is with single real
variables or single subscripted arrays. Since the d's will
take on different values during the next cycle, particularly
during the first few cycles of the solution process, there is
n0 need to iteratc iuil the tcntative solution during first
cycles satisfy a small error parameter. By permitting a
limited number of iterations to occur in obtaining any
tentative solution, the tentative solutions will progessively
satisfy 2 smaller error parameter, until eventually during
later cycles the specified error parameter will be satisfied
with fewer than the maximum specified number of
iterations.
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FREE SURF..CE FLOW AROUND A STRUT

In the initial application of the previously described
inverse solution to three-dimensional potential flows, a
simple problem was selected to test the workability of the
methods. The first such problem consisted of uniform
flow in an open channel. After it was demonstrated that
the methods did converge to the solution, providing a
reasonable initialization was supplied to begin the process,
the program used for a solution to this first test problem
was modified to solve the problem of flow in a channel
with vertical side walls past a vertical strut which extends
through the free surface. This problem is described in
detail herein. It demonstrates possible methods for in-
corporating boundary conditions into the solution of
three-dimensional inversely formulated problems. While
the problem represents what one might refer to as a
“mildly three-dimensional problem,” it does contain
examples of the commonly encountered boundary condi-
tions. Besides having the advantage that much of the flow
behavior might be predicted from more elementary
analyses, and therefore an Indication of the adequacy of
the methods may be evaluated, a “mildly three-
dimensional problem™ of this nature provides a base upon
which a number of techniques for handling different
boundary conditions can be experimented with and the
best of the alternatives selected. It soon became apparent
even while experimenting with the first problem of
uniform channel flow, that completely satisfactory meth-
ods for handling free surfaces or cavity surfaces under the
influence of gravity would be hard to come by. Hopefully,
future research will improve upon some of the techniques
described herein.

Formulation and boundary conditions

A sketch of the problem of channel flow past a strut
in the physical space is given in the upper portion of Fig.
1 and the same region in the $YY* space is given in the
lower portion of this figure. The ¢Yy * space has been
selected such that the bottom of the channel defines the
Y = O stream surface and the top free surface of flow is
defined by the ¢y* plane obtained by holding y =M, =
M-]1 where M, is the numbe: of giid increments used in
the finite difference solution in the § direction. (Remem-
ber Ay = 1.) The plane ¢y defined by ¢* =0
corresponds to the left wall of the channel (when facing
downstream) and the right wall by y* =N, = N-1. The
beginning of the space boundary value problem through
which the flow enters is assumed to be far enough
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upstream to be influenced insignificantly by the presence
of the strut. This Yy* plane is given by ¢ = 0, and the
last Yy* plane of the $yYy* boundary value problem is
defined by ¢=L,=L-1.

After placing the problem in the ¢V # space, the
next step in the formulation consists of selecting the
equations, from those in Table 1, to be used to solve for
each of the three dependent variables x, y, and z. This
selection should be based on consideration of the criteria
given earlier. For the problem being considered here, the
major component of velocity throughout all except small
regions near the front and rear of the strut, is in the
x-direction in the physical space. Furthermore because of
the placing of the problem in the ¢y Y* space, \he
channel bottom with { = 0 is normal to the y-direction
and the sides of the channel with {* held coustant are
normal to the z-direction. Consequently, greater variation
of x occurs in ¢3p or ¢y * planes, than in Y * planes.
The major change in y is in the Y-direction. Therefore, a
plane definad by { as one coordinate should be selected
for obtaining the solutions for y. Likewise, the major
variation of z is in the direction of y*,and consequently
2 would be fairly constant on separate ¢ planes.

Therefore, the first criteria stated earlier, namely
that the assumptior. of knowns be as valid as possible,
would suggest that x could be solved for on separate ¥
or ¢y* phnes, but not yy* planes. Clearly the
magnitude of x ¢ is larger than xy, of xy% in general and
consequently an easily generated initialization of the
problem would have larger errors in the magnitudes of
X g than Xy Of Xyk.

The second criteria, namely that the coefficients of
the two second derivatives have nearly equal magnitudes,
will be used to narrow the choice down further. For x on
¢y or ¢Y* planes the avaiiable equations are 23, 25,29,
and 31. In comparing the magnitudes of coefficients of
second derivatives ¢, may be compared to the square of
the single letters representing the derivative, i.e. with ¢2,
f2 g2 and d2. Should the problem be specified so that
the magnitude of c, is close to unity, as will be the case,
then either Eq. 23 or 31 could be selected. Equations 25
and 29 are eliminateu because the coefficients f = yy
and g = 2y aremuchsmallerwhetme=z¢*.andd=
yy are close to unity in magnitude. The final selecticn
between Eq. 23 or 31 is arbitrary. In solving the problem,
Eq. 23 has been used.
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The equation to use in solving for y is between 24 e.

and 27 in ¢V planes. Since the magnitude of h=xyx is

much smaller in general for this problem than c,, Eq. 24

will be used to obtain the tentative solutions for y.

For obtaining solutions ior z only the two equations
30 and 34 on ¢Y* planes will be considered further. Of
these two equations, 34 is eliminated since the coefficient
in Eq. 30 is

i = xy is small and the coefficient d =y,
close to unity. In summary the tentative solutions for x
and y will be obtained from separate 4V planes. Equation

23 will be used for x and Eq. 24 for y. The tentative

solutions for z will be by means of Eq. 32 on ¢y* planes.

Using the above description ~f the s * space and
the selected equations, the bou.darv conditions given
below can be developed. Some of these conditions are also
shown in the lower portion of Fig. 1 to help identify that
boundary and its condition in the $ Qy* space. A
description of how these boundary condition equations
are obtained follows the listing of the equations.

a. Bottom@, @.@@ @,

Y(¢. ooq‘*) = 0

x(6,0,4%) = CLS‘ 3‘%) (%’;) a . . . .(49)

1 V4"
dZ ddq,t
oot 2 et PO RO 0. . .(50)
“
! L5 DRO®
26, $,0) = 0 . . . . . .. ... .. (1)
2 ee e
- .. .
xw+ o xw+ CIZ xq‘ Py x0 = 0 (52)
z ee (]
v, t—yvy +Jy -—vy, =0 -(53)
RER A N
c. RightsieQ@DEE
z(®.4,N)) = comstant . . . . . ... Gy

for x the same'as Eq. 52
for y the same as Eq. 53

d.  Upstream Entmw:e@@ @.@@@

x(0,4.4%) =0 . ... ... ... (55)

YO 4.4 = -;f; H ... ... .. (56)
x

z(0, Q’.\b#) ._*_ H « ¢« ¢ o o o ¢ o (57)
l

constant

"‘Lr‘“"“*’ =

for y the same as Eq. 56
for z the same as Eq. 57

f.  Free Sud'ace@,@ @@@@

2 2
9 2 .2 (9
&2+ 12 (%4)"_5) R 2%\% (eg+ih)&§ +(e“+n )(gf)

(%) ‘;2 — =0 .(59)

22N, D (H-y)

x(®, M, %) =
@)@ - @
N 2D (2a )H- NZp%a NH-y) 00
Ox dy Oz

€130 * 54»1"‘ oY

z = S Sy 75 a* . . . -(61)

1¢

8. 1@: side of st @), @, @. @. @.

z(9,$,NS) = f£(#) specified by input . -(67)
&2 ee e
Xpot T2 Xt TN % T 0 .(63)
c
1 1
2 ee e 69
Yoot T Ve’ T2V Ve T 0

1

h. Réht side of Srut @, @. @. . ©)

for z,x, and y the same as Eqgs. 62, 63, and 64

A number of the boundary conditions just given are
immediately obvious. The equations for other boundary
conditions result only after some algebraic manipulation.
For these latter conditions an explanation and the
derivation of the given equation are contained below.

The condition for x along the channe} bottom has
been obtained from Eq. 20 by noting that since y = 0
(constant) along this boundary yy% = 0. Therefore.,

Clx b = y’}iz\lﬁ* -----------

Integrating Eq. 49a with ¢ and y* both held
constant gives Eq. 49 in which the subscripts to the
integral sign denotes that ¢ and y* are to be held
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constant. Since y is constant along the bottom, the
integration of Eq. 49 becomes a numerical line integration
along the bottom y* = constant grid lines with ¢ being
incremented. The implementation of this lie integration
involves the two step procedure of first evaluating the two
partial derivatives with the integral, and secondly carrying
out the numerical integration. The evaluation of y, has
been based on up through third order forward diffefences
and is given by

d 1 1 3 1
Sﬂj_: 29 [3Vi2k "6 Vit "2V T 3 Vi4k] (65)

The evaluation of zyx has been based on third order
forward, fourth order central, or third order backward
differences respectively depending upon whether Y* =0,
y* = Ay* whether Y* lies within the central portion of
the bottom, or whether Y*=N,,or y*=M, - AY*. For
¥* =0 (i.e. k = 1) the equation is

3 1 u, 3 1
¥ " aw [”n,z‘ 6 zil,l-zzil,3+3zil,]

The eqration for Y*= Oy*=1] s

~
Jz

oy*

2 —1 z -lz --l-z --l'z
k=2 av® | 51,373 %51, 7 251,27 6 Til4

For the central portion (i.e. k= 3,4, ..., N.2)

Cx . [3 (z z ) L {2 -
W!k A% {3 i1 Tk T 12 Pilke 2 Bk

Equations similar to Egs. 67 and 68 but based on
backward differences apply along the lines ¥* =N, (k=
N)and $*=N, - AY* (k=N-1).

The numerical integration, for other than the first
interval ¢ =0 to ¢ = Ad =1 or the final interval ¢=1L,
-b¢ to ¢= L, has been based on Bessel's interpolation
formula for a third degree polynomial passing through the
values of four consecutive values of the arguments given
by the product of the two derivatives %y and zyx . This
integration formula is

16

= 13
1
- (y. Z +tvyz )]
24 Yy "‘*L-l M "‘*Inz . .(69)
Across the -first and final intervals this integration has
heen based on the trapezoidal formula,

A¢[ ]
AxX = “5T1vY,2 + Y.Z oo fe o o o o . PPN
2 LTWeR) T TRy

inwhichi=1lori=L-1.

The other boundary conditions, Eqs. 60 and 61.
which contain integrals as in Eq. 49 have been handled in
the same general manner. Individual details differ in each
case, but the desivatives involved in the particular equa-
tion have beer. approximated by third order forward or
backward difference and fourth order central difference in
the interior wherever possible. The integration has been
based on a polynomial passing through values equal to
four derivatives or products, etc., thereof, except over the
first and last intervals of the line integration which has
been based on tiie trapezoidal rule. If the final value of
the integrated variable is known upon reaching the
opposite boundary (as with z from Eq. 61 on the free
surface) any error in not closing on this correct value is
proportioned according to the distance from the begin-
ning point. In the case of x on the bottom and the free
surface (Eqgs. 49 and 60) the average of all fina] values is
obtained and then the individual differences from this
average are distributed according to the magnitude of x.

The boundary condition for z along the bottom, Eq.
50, has been obtained from Eq. 32 by noting that f = yy %
=0 and consequently Eq. 32 reduces to Eq. 50.

The finite difference operator for Eq. 50 is:
S(4ogz, ) gt 200 g - (-0

= (@ -l+(al+a2)zilk+l . .(7”

17 %%
in which

2 2
&y = b ey = Wi Yind /9
a, =1 le, =3¢ ) -
2= 2 Y Y 17 1 Viak Vi Viake 1 Vilk+1
“Yiokat Yik-1€1
a xdy iy =1 .
3% 2 %Y= % Uiy, 2 Yien 2k Yi-1,2k
Y20 Wik Vind
v boundary condition Eqs. 52 and 53 which
apply for x and y respectively on the two sides of the

channel are obtained irom Eqs. 23 and 24 by noting that
z is constant in the $y planes of the channel sides and
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consequently g = zy =0 and ¢ = z¢ = 0. The finite
difference operators for Eqs. 52 and 53 are respectively

{1+ a3)xi~ljkl+ 2(1+ al)xijkl -(1 -a3)xi+ljkl
=(a, - )x, . +(@ +a_)x. .
S R TR T N ()
and
1+a (1=
(0 g * 204 O =30
= -Q
@ Z)yij-lk,+(al+a2)yij+lkl . .(73)
in which
e2 2, 2
a, = —=— = z,.. )Y /c
> -
1 cl.. !]ki ukz 1
a, = = e -l(z -z Wz -2
2 Zc‘Z ¢ 8 ljkl x)kz xJ+lkl 1J-lkl
2
+ zij~lk2)/cl
e
(v 1
Q =5-=<(z ... -2 ... -z .. +z .. )
3 2e 4 x+ljkl l‘l'ljkz l-ljkl 1-leZ
ik, ™ Ziicy)

and the subscripts k, = 1,k, =2 on the left side and k, =
N, k, =N-1 on the right side of the channel.

At the upstream entrance the boundary conditions
have been obtained under the assumption that the flow is
uniform. The valu: of x is therefore constant and assigned
the value of zero, and the difference in z's between
consecutive '* constant grid lines on the face equals the
difference in y’s between consecutive ¥ constant grid
lines. The width of channel is therefore specified in
relationship to the depth of flow by the equation

The assumption of uniform flow is also made at the
downstream final face. Therefore the conditions are the
same as at the upstream face except that x becomes the
constant equal to the average of the x's obtained from the
numerical integrations of Eqs. 49 and 60 on the bottom
and free surface respectively.

The shape of the strut has been specified by giving
the z ooordinates of both sides along a specified Y*
constant line. In the example solution given later this y*
constant line has been selected midway between the two
channel sides, and the z’s have been specified for each
potential surface intersecting with both sides of the strux
to result in symmetry about the center plane of the
channel. This simplified problem could actually have been
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solved using only 1/2 of the ¢YP* space. The full
problem was used primarily to examine the performance
of the solution technique in duplicating the symmetry
which must exist. For a nonsymmetry problem, the
specification of the shape of the strut could be given by
changes of z from that at the stagnation ¥* equal
constant line at the front of the strut.

The boundary conditions, Eqs. 63 and 64, for x and
y on the sides of the strut are obtained by noting that z is
only a function of ¢ but constant with variation of V.
Consequently g =z, =0, and Egs. 25 and 24 reduce to
Eqs. 63 and 64, just as they reduced to Eqs. 52 and 53 for
the boundary conditions on the channel sides. Since Eqgs.
63 and 64 are identical to Eqs. 52 and 53, the finite
difference operators for x and y along the strut are
identical to Eqs. 72 and 73 with k, and k, equal to NS
and NS-1 respectively along the left side of the strut and
k, =NS,k, =NS+1 on the right side of the strut.

Free surface boundary cond:itions

The implementation of the previously discussed
boundary conditions has been relatively straight forward.
This has not been the case with the conditions on the free
surface, and consequentiy the free surface conditions and
the difficulties encountered in implementing them will be
discussed in this section.

The free surface is at atmospheric pressure and
consequently the sum of the velocity head and the
magnitude of y at any point on the surface must equal a
constant Hy , i.e.

in which a is the acceleration of gravity. The magnitude
of the velccity squared can be expressed in terms of the
inverse variables by substituting each of the first equations
in Egs. 6, 7, and 8 into the middle portions of Egs. 1.2,
and 3 respectively to give,

2

v =uz4l~\.r2-i>\nrz=.1Z [xoz-l- y°z+ ZOZ] - .- (75)

But from the definition of J below Eq. 6 it can be shown
that J = V2 therefore Eq. 75 reduces to,

Upon combiring Eqs. 76 and 74 and transforming the
resulting equation by E3. 17 to introduce the dimen-
sionless dependent variablc ¢ leads to the following basic
free surface houndary condition.
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A number of alternative schemes for use of Eq. 77
in the finite difference solution for establishing the values
of x. y and z on the free surface have been investigated
by implementing them in computer algorithm and then
examining their performance. All of the schemes which
have been investigated are associated with a number of
numerical difriculties and it appears that successful
solutions can be obtained only if the computational
procedures anticipate and avoid these potential difficul-
ties.

The first scheme implemented developed the finite
difference operato. for y on the free surface by replacing
the first term in Eq. 77 by its equivalent from Eq. 20 and
assumed the third term might be considered the known c
= z,. The derivatives in the resulting equation were then
approximated by second order central differences. The
value y;. 4, at the nonexistent grid point in this
difference equation was eliminated by combining the
equation with the operator Eq. 24 for y at interior grid
points to give the operator,

mk = %3 imic

[21“

' 20° o - P 2
1Y N iy g K ik = ik Vi bk
17 %5 Yimk

f = -(l+03)yi-lmk

t2(1+a)y,

(Gl + Gz)

im-1k ~ e

- Zu!y

in which the o’s are as defined in Table 2 for Eq. 24.

Note that, Eq. 78 cannot be solved explicitly for
Yi.ax €ven under the assumption that the derivatives given
by the single letters are known as is the case with the
other operator in Table 2. Consequently in applying Eq.
78 at consecutive grid points along the line defined by
incrementing i in the LSOR method a system of nonlinear
algebraic equations results. This nonlinear system has been
solved by the generalized Newton iterative method,

.y.(qi»]) - -y'(q) .p 7@

in which }‘15 the vector of unknowns y, ... i=1,2,.. L
the superscript q dcnotes iteration number, the vector f

has as its elements the values obtained by applying Eq. 78

at the individual grid points, and D is the commonly

defined Jacobian derivative determinant.
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Since the determinant D is tridiagonal for the system of
equations obtained from Eq,78, and since D!f represents
the solution to a system Dx = f, the same algorithm used
for solving the other operators in the LSOR method can
be utilized. The difference is that the algorithm must be
repeated for each iteration in obtaining the solution
across any line.

In studying the performance or this approach it
soon became evident that it required a very good
initialization of values if it were to give correct values for
y on the free surface. Not only did it require a close
initialization of surface values, but the interior values had
to be well settled by their operators before the free
surface values were adjuste 3. Much could be written about
why this is necessary, but perhaps the best means for
illustrating why good initialization is critical to prevent
the free surface values from straying too far from their
comrect values during the process of obtaining a finite
difference solutic 1 is by graphs. Figures 2A through 2S
show the variation of the function f defined by Eq. 78
over a relatively small range of y; ., In each case H was
equal to 10.5 and the remaining values in Eq. 78 (with the
exception of perhaps one) were assigned the correct values
for uniform flow with a depth y = 19. Figure 2A shows {
V. ¥;mi With all other values correct, and as expected f is
zero when ;. = 10. However, an additional zero of f
exists for a slightly larger value of y, . also. Obvious
numerical difficulties would result if the incorrect second
zero for f were selected during the iterative solution
process.

More critical, however, is the behavior of the
function with small changes of the other variables in the
equation. The remaining curves in Figs. 2 show ihe
variation of f with y; . with one of the other dependent
variables x, y, or z at an adjacent grid point set to a value
% (.15 from its correct values. As the value ¥, my
dscreases slightly from its correct value (see Fig. 2B), it
causes the first zero of f to correspond to a vaiue of Y;ny
tess than 10 as one would expect and the second zero to
becoms further removed from the first. With an increase
in ¥,y k- hoWever, the two zeros became closer together.
and for the increase of 0.15 used in Fig. 2C to almost
co:ncide. Clearly a larger error would cause no real zero to
exist for the function at least in the vicinitv of the value
¥imx Needed for a correct solution. When this situation
occurs, the Newton method would project off far from
the value being sought. This grossly erroneous value in
turn affects adjacent functions with the result that the
N:awton method never returns during subsequent iter-
ations with reasonabls values ~f Yimk'
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Fig. 2. Continued.

Decreasing or increasing the other values of x. y, or
z at surrounding grid points, or x and z at that free surface
grid point, cause similar behavior in f as can be noted by
the remaining curves in Figs. 2. For the small errors of
0.15 used in plotting Figs. 2 the function f has lost its real
zeros in 12 of the 19 cases shown.

An operator for x developed in much the same
manner as Eq. 78, except that the second term in Eq. 77
was replaced by its equivalent from Eq. 21, and the result
combined with Eq. 24, was also studied. It w - hoped that
since the y, ., which appears in Eq. 78 and also appears in
the finite difference operator for x, but in the x operator
it is considered known, that the implementation of the
operator for x would be associated with fewer problems.
However, as with the y operator convergence was ob-
tained by the Newton-LSOR methods combined, only if
the initialization was very good.

Similar problems exist for an operator for z ob-
tained by combining the finite difference expression from
forms of Eqs. 77 with the regular z operator. It has
therefore been concluded that the difficuities discussed
above are an inherent part of the free surface boundary
condition Eq. 77 which cannot be eliminated by some
manipulation of the available equations. At least no such
manipulation is obvious. It was decided, therefore, that
programming techniques would have to be adopted that
would prevent the difficulties from occurring as far as this
was practical, and that means would have to be included
in the program to handle the difficulties when they did
occur.

The approach for handling the free surface
boundary conditions for x and z was, therefore, based on
the integral Egs. 60 and 61, and Eq. 59 was used for y on
the free surface to incorporate the basic condition Eq. 77

= EEECTE - 43 e . -
LIEEE ST =g e A W ESR. . il e DV e

which must be satisfied. In implementing Eq. 59 for y it
was decided that its finite difference equivalent should be
satisfied on a point by point basis, rather than over an
entire line at a time, because of the difficulties associated
with coping with vanishing zeros of the function.

The boundary condition Eq. 59 for y on the free
surface is obtained by substituting for and z¢ from
Eqs. 20 and 22 into Eq. 77. The finite difterence operator
for y on the free surface has been obtained by replacing
the derivatives in Eq. 59 by second order or higher order
differences. For those grid points withk=2,k=N,ori=
2, the operator will be different than at the interior point
on this boundary because of the need to use non-
symmetric differences to approximate yy . For interior
free surface boundary grid points the operator is

2
_W2en L 1,1
f=+i) [6 Yimk-2~ Yimk-1* 2¥imk* 3’imk“]
2 .2
[“ Yimk” Yim-nuc* °5yim-2k] e+ k)
.5y m_Zk)][z(eu ih) |

(TARARIS S M|
Yimk-2 " Yimk-17 2 Yimk ¥ 3 Yimk+1

[(l Sy. . -2y.

imk ~ Vim-t

2 1 1 1 2
e (Zyi-zmk"'i-lmk*E"imk*'i"iwnk)

2

- Q =0

z.2
2gN) D H-y, )

For grid points along the grid line with k = 2, the quantity
within the first square brackets has been replaced by the
following third order difference approximation

.(81)

1 1 1
%Wl " Yim3~ 3Yiml " 2 Yim2 " 6 Yim4 - -
k=2

and for the grid line i = 2. Similar changes are necessary in
the second from the final term in Eq. 80.

Before describing how Eq. 80 has been solved to
overcome the difficulties associated with the vanishing of
the real zeros and dual zeros of the previous operator f of
Eq. 78, it is well to point out some characteristics of Eq.
80. First note that Eq. 80 is also implicit in y;,, and
therefore the solution to Eq. 80 must be obtained by an
iterative method. Plots showing the variation of f of Eq.
80 with y,,,, for small errors in some of the surrounding
points are given in Fig. 3. These graphs indicate the

following:
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1. The zero being sought is always associated with
the smaller of the two possible values of y,... which lie
within the vicinity of the solution being sought. (While
the smaller y, ., is sought for the formulation given earlier
in this report, it does not indicate this will always be so. It
was discovered that if both the dependent and indepen-
dent variables are made dimensionless, then the larger of
these two possible roots is the correct one.)

2. The function has a positive derivative with
respect 1o y;,,, at the point of the correct zero if this zero
exists.

3. The function has a negative derivative with
respect 10 y;,,, at the point of the incorrect zero.

4. If real zeros of the function vanish, then y,,
associated with the minimum absolute value of the
function (or the minimum of the function squared) is not
too different from the value of y,, which is being
sought, and which will again come into existence when
the errors in the variables at the surrounding grid points
are eliminated.

Based on these observations, the solution to Eq. 80
at each grid point on the free surface proceeds at first by
computing both f and its derivative based on the current
value of y, ., and also for avalue y,, + 8y, inwhichAy
is small, ie. Ay = .005. The derivative of f is given by:

% _ sel+ndys 2
3y, (o5 Ymk ™ 2Yim-1c*%im. 21!
- Q? +c2 (ly v
2 2 I \67i-2mk ™ Yi-lmk
ZagNlMl (H-y)

1 1 2 2
2 Yimk t 3"i+1mk) t e +ih)

. 1 1
- 3{eg + ih - - 2
(eg+ih)] (6 Yimk-2 " Yimk-1* 2 Vimk

1

3 Vimk+ ‘) -(eg+ih) (L. 5y, . - 2y 1k

+. 5yim-2k

(It is necessary to modify Eq. 82 slightly for grid points
adjacent to the boundaries, i.e. for k=2, k=N-2,and i=
2)

Should the derivative associated with y, . be
negative (obviously the other derivative associated with
Yimk ¥ Ay will also be negative), then y, ., is decreased by
a small amount (in the order of .005) and the procedure is
begun again. If upon repeating this process of decreasing
Yimk the first derivative becomes positive and the second
remains negative and both of the functions are still

SR s e

e e

=

negative then no real root exists (or if it did exist two
zeros would lie between y, ., and y .. + .005) and the
solution proceeds by calling on an algorithm which uses
the Fibonacci search tcchnique (Wilde and Beighter,
1967) to find the y, ., associated the minimum value of
f2within the interval y,, to y,, + .005.

Should, on the other hand, the first computation
for f be positive and the derivative 3f/ 3y also be positive
then y, ., is decreased in value until f associated with y;,,
becomes negative and f associated with y,,, +.005 is still
positive. As soon as this occurs the Newton niethod

(p)
(ptl) _ _(p) f
Vimk = Yimk~ Tdf v - - - - - (83)

or the False-Position method is used to find the zero of f.

The remaining possibility is that the value of f
associated with y,, is negative (its derivative positive),
but f associated with y,,, + .005 is also negative. Should
this be the case then y, , is increased in value by a small
amount and the computation repeated until one of the
cases above has occurred, and the smaller y, . giving a
zero f has been obtained or the y, . associated with the
minimum value of £2 has been found by the Fibonacci
search. The procedure is followed through for each point
in the interior of the free surface boundary. Should the
procedure fail to find the correct zero for f within a
specified number of repetitions in increasing or decrsasing
Yimk @ message is printed to this effect and the average of
the surrounding four y’s in the plane of the free surface is
used. Also each time it becomes necessary to resort to the
Fibonacci search to minimize the absolute value of f2
because a real zero has become nonexistent a message to
this effect is printed. It has been observed that after the
interior values are well settled and the value x, y,and zon
the free surface are also nearly settled that the minimiza-
tion procedure is called upon only rarely and then only
near the stagnation points at the front and rear of the
strut.

The boundary condition operator Eq. 60 for x on
the free surface is also based on the basic condition, Eq.
T7. This equation is obtained by solving Eq. 77 for x
and then integrating the resulting equation by holding
and * constant.

The boundary condition, Eq. 61, for z, however,
comes froni solving Eq. 20 for zy« and subsequently
integrating with ¢ and  held constant.
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Computer logic in obtaining solution

The general logic followed in writing the computer
program used in obtaining the solution is illustrated in the
gross flow chart contained as Fig. 4. While it is not
necessaty to follow the exact pattern of obtaining
tentative solutions given in Fig. 4, it is desirable to provide
control, through data input, so that tentative solutions on
boundary planes are not necessarily obtained during each
cycle. From the above discussion of difficulties associated
with obtaining the tentative solution for y on the free
surface boundary it is clear that it would not be expedient
to call on the subroutine which obtains this tentative
solution during the first few cycles, particularly if a rough
initialization is used. Also not adjusting those boundary
values which are obtained by integration (see Eqgs. 49, 60,
and 61) until after the interior values have been initially
settled contributes to more rapid convergence to the final
solution. Consequently specifications are included as part
of the input data, which determine during which cycles
each of the subroutines will be clled to obtain the
tentative solution from the boundary condition operators.
The present program first obtains all tentative solutions
for x, which are called for during that cycle; then it
obtains the tentative solution for y before obtaining the
tentative solutions for z. Tentative solutions on interior
plares are obtained prior to obtaining the tentative
solutions for that variable on boundary planes.

The logic followed in obtaining each of the tentative
solutions varies slightly dependent upon which variable is

27

involved and whether the plane is interior or a boundary
plane. For tentative solutions on interior planes and those
boundary planes in which the LSOR method is used to
obtain a solution to the boundary condition equation, the
flow chart given as Fig. 5 shows the essential logic. On
those boundary planes on which the tentative solutions
are’ obtained by numerical line integrations, the logic is
such that the required integration is completed a line at a
time beginning with a line on or adjacent to an edge, and
proceeds until it has been completed for the last line on
the opposite edge of the plane.

For use, particularly during earlier cycles, the
program provides that the free surface values of y may be
smoothed if desired. This smoothing is accomplished by
fitting the values of y along i = constant lines (i.e. withk =
1, 2, ... N) on the free surface by least squared regression
analysis to an equation of the general form,

2 1
yimk'bo+ blk+ bzk +b3 cos (k - NS-1) Nl . (84)

in which the b’s are the coefficients obtained from the
regression analysis. After fitting the y’s along each such
line to an equation of the form of Eq. 84, they are
adjusted to satisfy the equation exactly. The adjustment
also includes the y on the two channel walls and the two
sides of the strut.

R I P R R T R TR T A e e T Ty sy 3 i i S5 et win ¥ agfng mbrgs oS si*;'w;s‘;ﬂ._g

v oton

hoa Lo B b A

T, e

Ry

3
3
£
2
2
3
E
k4
H
i
3
i
k|
&
E
S
3



READ tspe, disk or drum
o Yoo to initialise problem and
— perform otesr possible
tape atieas
v —
DO

Mm'“""”"‘dﬂdor
\ﬂlmrmruw“/

temtative solutions for x om
all iaterior planes

I SUBROUTINE which qitains :he

These two subroutines are generally
“““"‘1’“‘6. sams cycle,

— —— dt——d

SUBROUTINE which eaias the

Ty

SUBROUTINE which

ey

fory
on the free surface beuadary plane

L

Hot R

‘“Yﬂﬁlﬁ“mﬁg‘“

: SUBROUTINE which
E: obtaine teatative seluticns for

\_-Mz*_dﬂrie-___m




et ,,a,“tu;:w‘k.,xm@g!

¥

;:
ENTER SUBFOUTINE y
for obtaining finite ditference :
solution in plane y p
> $ - :

DO
for number of
lines within

Compute the coefficients (i.e.,

the a's) of the finite difference
operator and store them ina

L _two-dimensignal array
L

Compute the quantities needed to define the
Tridiagonal system of equations along the given
line in the given plane

|
|
|
|
i
l
l
)
|
I
|
Y |
|
!
|
|
|
I
J

Solve the Tridiagonal system of equations
resulting from applying the finite difference
operator across grid points of the given line

Y

Apply the overrelaxation factor and adjust
variable along the given line

y
. e ot o ot e et o B e e s S e s e e e e e e

Uit

f g
oA

b

absolute difference
less than error param-

eter or the maximumn
of iterations /
exceeded?

NO

Repeat for all

interior planes

one of the boundaries

of the problem? within region

YES

Fig. 5. Flow chert of logic used in computer m subroutines whichk obtain the tentati tutions by t
putes progra wl ive solutions by the

s of Kot b bl MLy e 8y b

Lo B e At

't ) 7
AR SN
2

TRRAT R AT




it

badiioud

R P R N A e T T o ST s TR o

IR oo T T - e e S T < 2o s i Tt e T T

SOLUTION RESULTS

The final solution consists of the magnitudes of x,
Y, and z at all grid points within the $y\y* space used to
solve the problem. Consequently the coordinates are given
for each intersection of the potential surfaces with all of
the orthogonal stream surfaces defined by holding ¢ and
¥ * equal to constants. In this form the solution is ideally
adapted for presentation as a space flownet. Such a space
flownet is constructed by simply connecting all consecu-
tive points defined by the X, y, and z values given at each
grid point throughout the ¢yy* space by lines in an
isometric drawing (or other graphical projections which
show depth into the paper as well as the shape within the
plcne of the paper). The small planes defined by these
lines represent the sides of each element of the flownet.
The intersection of the { and {* constant planes define
the streamlines of the flow. The velocity is inversely
related to the area of the square formed by the y and *
equal constant lines and the distances between consecu-
tive equipotential surfaces as given by combining Egs. 10,
11, and 12 with Eq. 76 in various ways. (Equations for
the velocity and its direction are given later.) That is the
velocity is greater in regions in which the volume enclosed
within individual cubes (or parallelepiped elementsif A¢
= Ay = Ay*), of the flownet is smaller than in those
regions in which this volume is greater.

While a complete isometric space flownet can
readily be obtained by use of a computer driven plotter,
the numerous lines resulting therefrom would make
visualization of the complete flow difficult. Alternatives
are to plot only a few of the flownet lines, or to plot only
the flownet lines in key planes. Fig. 6 has been prepared
by using this latter type of plot, in which the plane
flownets from the top, rear, and right side are given in an
isometric projection of the problem.

The more essential specifications used in obtaining
the solution, whose flownet is given in Fig. 6, are as
follows: (1) The depth of uniform flow upstream: from the
strut equals 10 feet (2) The number of ¢ ¢* grid planes
equals the number of ¢y grid planes and consequently
the width between channel sides is also 10 feet. (3) The
number of {y* planes (increments in the ¢ direction
plus one) was given as 20, resulting in 2 length from
beginning to end of the problem equal to 18.4 feet. (4)
The strut was specified 0.6 feet wide at its widest point
and it began on the 7th  y* plane and ended on the 14th
Y * plane resulting in a length equal to 6.4 {eet. (5) The
velocity head in the undistributed uniform flow equals 0.5

Preceding page blank

3

feet (H = 10.5 feet), resulting in an upstream velocity
equal to 5.675 fps. In solving this problem 2,420 finite
difference grid points were used. Since three unknowns
must be solved for simultaneously, three times this many
finite difference grid points or 7,260, were actually used.

The solution to this problem was obtained in a
piecemeal manner as the separate subroutines were de-
bugged, etc. Consequently it is not possible to give the
exact amount of computer execution time required for
the final solution. With an initialization which is easily
generated in a computer program, and using the number
of grid points used for this problem, a reasonable estimate
of the execution time on an UNIVAC 1108 system is 15
minutes, however.

While an isometric drawing of the space flownets
helps in visualizing the complete flow process, more
detailed information regarding special features of the flow
can be obtained by examining the flow in separate planes
within the space. The solution from an inverse formula-
tion is in an ideal form to examine the flow field in
separate equipotential planes, i.e. planes defined by { and
P* axes, or for examining the behavior of the flow in
separate planes defined by ¢V or ¢ * axes. A solution
to a three-dimensional problem in the physical space (i.e.
in the space defined by the x, y, z cartesian coordinates)
would be well adapted for examining details in separate
xy planes (i.e. defined by z equal a constant), xz planes or
yz planes but would require interpolfation to examine the
flow field in equipotential planes for instance. On the
other hand the results from the inverse solution in the
$ ¥ * space require interpolation to examine or display
the flow in separate planes of the physical space. Thus for
example, if one wishes to examine the flow field in an xy
plane with z equal to a given constant, it would be
necessary to obtain the magnitudes of x and y which
define the intersection of the plane flownet lines by
interpolation of the x’s and y’s on the two adjacent
inverse planes that contain z values which bracket the
specified constant z. Obviously accomplishing this is not
difficult; perhaps even less difficult than plotting a
flownet given a solution of the potential function in the
physical space. However, no flownets from such planes
within the physical space are given herein. For boundarics
on which either x, y, or z is constant such as the sides, or
beginning and end of the channel problem, no interpola-
tion is necessary. The flownets from such boundaries are
simultaneously on a plane in which ¢, % or Y*is
constant as well as x, y, or z is constant.
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In general, however, individual plane flownets ob-
tained by holding ¢, {, or Y* constant are more useful in
visualizing flow patterns than those obtained by holding
X, ¥, or z constant. In understanding plane flownets
obtained by holding ¢, ¥, or {* constant, one nzeds to
interpret the results as projections upon a specified plane.
Thus for example if one wished to examine the flow
pattern along the sides of the strut, a plane flownet
obtained by plotting x and y from the plane with y*
equal to the value coincident with the strut, would be a
projection of the strut’s flow pattern upon a vertical plane
parallel to the sides of the channel. Such a flownet is given
inFig. 7.

A plane flownet obtained by plotting the y and z
magnitudes of the solution from a $ equal constant
(equipotential plane) is given in Fig. 8. This flownet
represents a projection of the flow from the leading edge
of the strut unto a vertical plane at right angles to the
channel sides.

The plane flownet obtained from the free surface ¢
equal constant plane is shown in Fig. 9, in which the x
and z magnitudes have been plotted. This flownet can be
interpreted as a projection of the free surface flow pattern
into a horizontal plane (i.c. a plane parallel to the channel
bottom).

The magnitudes of X, y, and z at each intersection
of grid planes in the ¢Yy* space, which constitute the
basic solution can readily be used to obtain other
quantities of interest about the flow. The local velocity
magnitude can be computed from the following finite
difference equation derived from Eq. 76.

2A%c¢ lvo

Vi z 2 172
E"mm"‘i-m’ Vit ”’mjk"i.ljk’z]

in which ¢, = D/M, is as previously defined, V, is the
undistributed upstream velocity, and A¢ is unity for the
solution given herein and can be deleted from the
equation.

The direction angles of the veloci.y vector at any
point within the flow space can be obtained by first
noting that the first equation of Eqgs. 6, 7, and 8 can be
written respectively as:

"2"@ g e (86)
VZYQ S eV e h e e e e e e e 87
Vi = w e (88)

These equations are obtained by noting that the Jacobian
determinant J equals the magnitude of the velocity
squared. Since u=Vcos a,v=V cos g,andw=Vcos y
(in which o B, and Y are the angles of the direction
cosines for the velocity vector), Eqs. 86, 87, and 88 give

a = cos-l(Vx(b) ........ (89)
8 = cos l(Vy¢) ......... (90)
y =costvz) L ©1)

Thz pressure at any point can be computed from
Eq. 85 and the Bernoulli equation, i.e.

2
Vijk
Py = PBH-y ) -0 7))

Fig. 7. Plane flownet from the ¢¥ plane associated with k=6 which coincides with the stream surface ¥* of the strut
obtained by projecting the magnitudes of x and y onto a vertical plane paralle] to the channel sides.
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- which resuits from projecting the magnitudes of y
e and z onto a vertical plane at right angles to the
3 channes sides.
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i Fig. 9. Plane flownet from the ¢¥* plane associated with j=11 which coincides with the free surface obtained by
b projecting the magnitudes of x and z onto a horizontal plane paraliel to the channe! bottom.
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CONCLUSIONS AND RECOMMENDATIONS

The use of a mathematical formulation which
reverses the usual role of variables shows promise as a
valuable tool for numerically solving certain types of
three-dimensional potential fluid flow problems. Like
most new approaches, however, the merits of the methods
need to be further evaluated and improved. The methods
and techniques used in this report for solving the inversciy
formulated space boundary value problem represents an
initial approach which is workable, but which will no
doubt be streamlined and improved upon with time.

The interchange of the conventional dependent and
independent roles played by the variables in a three-
dimensional potential fluid flow problem results in ad-
vantages similar to those which occur in solving two-
dimensional plane and axisymmetric potential fluid flow
problems. Perhaps the major advantages are: (1) That the
region of the space boundary value problem is a paral-
lelepiped with planes for boundaries, which in the
physical plane may be irregular and of unknown position,
such as free surfaces or cavity surfaces, and (2) the form
of the solution is better adapted for graphical presentation
and for computing various items of interest about the
flow. These advantages occur at the expense of more
complex simultaneous partial differential equations.

In order for the inverse solution method to be
readily adaptable and used practically for solving a variety
of problems involving free surfaces and cavities, alternate

and better schemes or methods are needed for handling
boundary conditions resulting from a constant pressure
free surface under the influence of gravity. The approach
used herein is associated with a number of difficulties
which no doubt will become progressively harder to cope
with as the complexity of the problem increases. Con-
sequently, a problem with a three-dimensional cavity and
free surfaces would represent a difficult undertaking
without better methods for handling such free surface
boundary conditions. With such improved methods, the
inverse formulation should, in fact, provide a practical
numerical solution procedure for solving three-
dimensional, steady-state, free surface, and cavity poten-
tial fluid flow problems.

Even if more satisfactory methods for handling free
surface boundary conditions are not developed, the
methods still represent a valuable tool for solving three-
dimensional problems without free surfaces, particularly if
the problem is a design problem instead of an analysis
type problem. In a design problem shapes of confining
structures are sought which give some desired Jow
characteristics. The inverse iormulation is particularly well
adapted for such problems in which the shape of a
boundary, which is a stream surface, is part of the
solution, resuiting from a specification of fluid behavior.
but less well adapted if non-plane confining surfaces have
specified shapes as in analysis type problems.
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