
I b

I €
I w

I,

I UL 10 1912

I -'

-I APPLIED DATA RESEARCH, INC.
NATIONAL TECHNICAL
INFORMATION SERVICE

O S: - of C

L

| I- APPLIED DATA RESEARCH, INC.
LAKESIDE OFFICE PARK * WAKEFIELD, MASSACHUSETTS 01880 e (617) 245-9540

SEMI-ANNUAL TECHNICAL REPORT

(1 October 1971 - 31 March 1972)

FOR THE 7'OJECT

AMBIT/L DOCUMENTATION

I
" Principal Investigator: Anatol W. Holt

(617) 245-9540

Project Scientist: Anatol W. Holt
(617) 245-9540

ARPA Order Number - ARPA 1228
Program Code Number - 8D30

I Contractor: Mass. Computer Associates, Subsidiary of Applied Data Re-'.

Contract No.: DAHC04-68-C-0043

Effective Date: 21 June 1968
Expiration Date: 30 September 1972

Amount: $891,975.00

Sponsored by _ L172
Advanced Research Projects Agency

ARPA Order Number - ARPA 1228 B

I The views and conclusions contained in this document are those of the
author's and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

DISTRIBUTION S-TATE74MEN_____ _]
Approved for public release;

: ~Distribution Unlimited_

F2

* IAPPLIED DATA RESEARCH, INC.
LAKESIDE OFFICE PARK * WAKEFIELD. MASSACHUSETTS 01880 o (617) 245-9540

I
I

j AhMBIT/L Programming System

Users' Guide

| by
Michael S. Wolfberg

I

I CA-7201-1711

January 17, 1972

I

This research was supported in part by the Advanced
Research Projects Ageir' of the Department of Defense and was

monitored bý U. S. ,L , <esearch Office - Durham, Box CM,
Duke Station, Durham, North Carolina 27706, under Contract
DAHC04 68 C 0043.

SUMMARY
$ U

This User's Guide is a collection of separately-written sectionsi

which describe how to use the AMBIT/L Programming System as implemented

on the DEC PDP-10 under the DECsystem-10 time-shared operating system.

' !This document supplements the basic reference manual which is a paper by

Carlos Christensen, the creator of AMBIT/L, entitled "An Introduction to

: AMBIT/;L, A Diagrammatic Language for List Processing".*

* The sections in this collection are arranged in an order suggested

for initial reading. The title sheet for each section includes the date

T corresponding to its most recent revision. Each page is identified by its

section letter and page number within that section (e.g., C-4).

In the initial release of this document one section which is in

{ I preparation is not included - "Using DAMBIT/L: the AMBIT/L Debugging

System". Any questions concerning this part of the system should be directed

I to the author.
I .

r
Ii

fT!

*Afl.ilorpi eeec othspprI ie nScinA

I-

!I

I

CONTENTS

A An Introduction to AMBIT/L

B How to Write an AMBIT/L Program

C The Drawing of AMBIT/L Programs and Their Encodement

D The Syntax of the Encodement of AMBIT/L Programs

J E AMBIT/L Built-in Functions for the Frogrammer

F AMBIT/L Input/Output

G Using DIAGEN: the AMBIT/L Diagram Generator
I H Using COMPIL: the AMBITAL Compiler

I Using LINK: the AMBIT/L Link Editor

Ji J Using the AMBIT/L Cross-Referencer

K System PERM POINTERs for the AMBIT/L User

I L AMBIT/L Program Execution

J M Error Traps

N Using TAMBIT: the AMBIT/L Interpreter with Page Timing Instrumentation

O FILUT: File UtilityI
II

II
II

II

I
II

iI Section A

An Introduction to AMBIT/L

IT
I

January 14, 1972

J
I

1
!

This section should be read by users of the AMBIT/L
Programming System as a supplement to the paper
which serves as a reference manual, "An Introduction
to AMBIT/L, A Diagrammatic Language for List
Processing".

Introduction

The paper by Carlos Christensen entitled "An Introduction toIt• AMBIT/L, A Diagrammatic Language for List Processing" is the current

reference manual for the AMBIT/L Language.* It was written to be a

I self-contained tutorial introduction, however, and, therefore, the author

took the liberties of occassionally being imprecise and incomplete. Until

I the paper is rewritten, this memo should be used as a supplement to the

paper by those learning AMBIT/L so they can use it as a programming language

I within the PDP - 10 implementation of the AMBIT/L Programming System. The

slight discrepancies in detail between the paper and the characteristics of

the implemented language may be overlooked by the reader simply interested

in understanding the essence of AMBIT/L.

The following notes are ordered according to page numbers in the

t paper.

[Page 8: Concerning mark nodes, each one is declared in some program

block by the programmer. AMBIT/L programs have a block

structure which scopes mark nodes exactly as ALGOL 60 block

strur-ure scopes own variables.

Page 8: Concerning basic symbol nodes, the AMBIT/L Compiler and
~J DAMBIT/L Debugging System currently acknowledge the

following names for non-printing characters:

I
*Chrlstensen, Carlos. "An Introduction to AMBIT/L, A Diagrammatic

I Language for List Processing", Proceedings of SYMSAM/2, the Second

Symposium on Symbolic and Algebraic Manipulation, Los Angeles, March

i 1971, available as CA-7102-2211 (February 22, 1971) from Applied Data 2
Research, Inc., Wakefield, Massachusetts 01880.

A-1

Introduction

Subnazne Representing ASCII Octal Code

%CR CR 015

%LF LF 012

%VT VT 013

%FF FF 014

%TAB HT 011

%ESC ESC (or ALT) 033

%SUB SUB (or tZ) 032

Note that the character SPACE is represented by the basic symbol

node whose subname is the character %' followed by the character SPACE.

1 lPage 9: Concerning integer nodes, although there is a unique canonical

.r subname for each integer node, both the AMBIT/L Compiler and

DAMBIT/L Debugger accept +13 and +013 as allowable input

syntax. The programmer can consider that some macro converts

such non-canonical formni into the canonical one.

Page 9: Concerning real nodes, although there is a unique canonical

>i subname for each real node, both the AMBIT/L Compiler and

DAMBIT/L Debugger accept several non-canonical forms as

-T allowable input syntax. For example:

1 -34 34E5

.34 .34E -5
4

+ 34. 34.E56

3.4 3.4E+ 5

Page 9: Concerning pointer nodes, each one is declared in some program
block by the programmer in one of Lwo ways: as a temporary
pointer (as an ALGOL 60 local variable) or as a permanent pointer

(as an ALGOL 60 own variable).

A-2

IntroductionI[I

Page 10: Concerning tokei, ,±odes, the only nodes which cannot

I contribute, %o the subname of a token are pointers and cells

orotbh? than tUe null cell.

SPage 11: There has bee- no conscious attempt at showing the canonical

S.-ubnames of real nodes.

Pages I ,',: i'hp %.rrent implemeptation permits the programmer to suffix an

texcla' •ti.-n point (!) to a type-set. This has the meaning that

i. •, A,... match 'ails due to an incompatibility between a
node ,.e data and the specified type-set, then rather than

causing failure of the rule, a normal interpreter will produce an

error condition which either traps or aborts execution; if a

production" interpreter were ever used, it would ignore the

test ý.atirely.

Page 18: On the seventh line of text, the "P" should be eliminated from

the type-set, thus reading "type-set CST is implied."

Page 21: In the second step for adding a function link the word "if"

should hive been "is". However, the entire step should be

[l changed to be:

"112. Make the lower side of the node boundary into a

4 :i double line; the result is a ::all node."

Also, the third and fourth steps should be changed to be:

"3. From distinct points along the top and/or bottom

side, draw m ordinary links to appropriate

destinations. Consider these links ordered by

their origins (from left to right), and call their

destinations the origins [sic] of the function link.

A
SI A-38

Introduction

4. From distinct points along the left and/or

right side, draw n ordinary links to appropriate

destinations. Consider the links ordered by

their points of origin (from top to bottom) arid

call their destinations the destinations of the

If t l
Also note that pointer nodes may not be either origins or

destinations of a call node.

SPage 22: The example in RULE E8 includes a function link with theI subname "DIVIDE". Although the built-in function ADD may

be applied as shown in that rule, if the function to perform

the division is also meant to be the appropriate built-in one,

Sthen its name should be "DVQ", for "divide yielding quotient".

Page 23: Although the example in rule E9 may serve a tutorial purpose,

it is ill-formed according to the current implementation, since

an argument of a function call may not be a pointer node. There

I could be a more restricted definition of the function DOWN which

reads the down link of a string, token, or cell.

Page 24: Note that the comment that the rule E9 is ill-formed (on p• e 23)

also applies to rule E10. Although the paper avoids a

s discussion of flow links among ordinary nodes, this topic will

be covered I-ere. The programmer should understand that when

a rule is Interpreted nodes in the rule are matched with nodes

in the data essentially one at a time. When the interpreter

directs its attertion at a node, i.e., visits" that node, it

follows links originating from that node (if any) to their

destinations. If a node at the destination is either a fully-

named node or one with just a type-set, then these destinations

I are tested and if the match continues to succeed we say that

A 9
S, ~A-4 ;

I Introduction

!A
the original node has been visited. The notion of visiting

I also applies to a call node: when all of its origins have
been matched then a call node may be visited (also see

page 28). This process begins by performing the specifiedfunction call and then all destination links from that call

node are followed as described for an ordinary node. After• j all destinations of the call node have been matched we say

that the call node has been visited.

With these definitions made, it can be stated that

a flow link between any two nodes in a rule causes the node
at the tail of the flow link to be visited before the node at
the head of the flow link. Thus rule El0 can be correctly[i lredrawn as:

+R -

F Q

1!

" ~A-5

Introduction

There is an additional confusion when using flow links associated

with nodes whose names cause some macro to be invoKed such as the use

of the name set notation as shown in the upper diagram on page 38. If a

flow link had emanated from the pointer Q (see page 38) then it would not

I be ordering very much; since the expansion occurs as it does, such a flow

link would mean that only the type of the node pc.nted to by Q is tested

I when Q is visited. In such a construction it is more likely that such a flow

link should emanate from the node employing the name set notation; this

I would cause the membership function to be called before the node at the

head of that flow link is visited. The following rule shows such a use of a

flow link as an example:

IT

I Q
I I . F

IT

Note from the comments associated with page 38 that literal token

nodes and string nodes cause macro expansions.

Pages 30-34: Some built-in functions are briefly mentioned here. A much

more complete description of these and others is found in the

AMBIT/L User Memo entitled "AMBIT/L Built-in Functions for

the Programmer".

; A

-]Introduction

Page 30: The fourth line of the second paragraph under "Arithmetic"

should begin with "base 2

Page 3.1: The second and third paragraphs describe trap functions.

Input/output traps are handled this way, but traps for
arithmetic functions have not yet been implemented.

SI Thus the example presented using P/ZERO.DIV is at

present hypothetical.

Page 33: The function GET. CELL referenced in the section on "Cell

Management" is used as a tutorial means for describing these
concepts. There is no such function upon which the programmer

may call; instead, the programmer may employ the new celi

notation and the gather arguments notation described on pages

71 35 -37.

In the second paragraph under "C2ll Management"
the first word on the fifth line should be "rendered". In that
paragraph the description of the trap function being called

for a garbage collection choke is wrong; instead the system

LI pointer GCOL. CHOKE is expected to point a label node

corresponding to somewhere in the program where there is a

recovery routine, and thus the interpreter performs a transfer

of control via this pointer when a choke occurs. Such a recovery

Iroutine should be placed high enough in the block structure so

that a transfer to it will tend to release cells which are

S1 accessible only via local (TEMP) pointers.

Page 34: The structure input/output routines mentioned in the last, paragraph do exist and are being employed in the IAM program.

However, these functions have not been dc-umented ard are

thus considered unsurported. If any interest (or requirement)

develops, an attempt will be made to support them.

A-7

I Introduction
•

Pages 35-39: The description of the built-in macros is not complete; the

following supplements the paper by presenting additional

macros. Also, this section makes use of the GET.CELL

function as a tutorial aid. The reader should recall there

is no such function upon which the programmer may call.

I Page 36: Use of the "new cell" notation aiways yields a cell whose

right link and down link both point to the null cell. Thus the

It right modification link on the rightmost cell in both of the

diagrams on page 36 Is redundant. Incidentally, including

J them in the rule does not affect the amount of work to be

done by the interpreter when the rule is executed.

Page 37: In describing the Gather Arguments Notation the GATHER

function has been employed as a tutorial aid. There is no
such function upon which the programmer may call. The

example rule of this page includes a call node with a subname

IS.MEMBER. Note that this is not a built-in function of the

AMBIT/L Progranix.ing System; there is, however, a MEMBER

function which is essentially the same predicate, but it

accepts an arbitrary number of arguments (as illustrated in

following comments). If a cell in a rule is used to gather

argument (s) then it must be the destination of exactly one

solid link (including the one coming from a call node); such
a cell may be the destination of any number of modification

links.I
Page 38: The current implementation of Naaie Set Notation employs the

MEMBER function, rather than the IS. MEMP2_R function as

shown. MEMBER accepts all arguments directly and is the

only AMBIT/L function which accepts an arbitrary number of

arguments. Thus the lower diagram on page 38 should be

as follows:

IA - A--

Introduction

'I

P F

The formal way of expressing these macros referenced at the bottom of page 38

will be introduced here with minimal explanation since the intent should be
obvious. First the name set notation macro will be presented. Note that i,y32 using the number sign (#) rather than the equal sign (=), the programmer may

assert that a node is not contained in a specified set. A common use of

T this notation in AMBIT/L programs is the advancement of a pointer along a

list unless the end is reached; this is shown in the following rule:

IL

I

The diagram on the page after next represents the general transformationJ perfouned by the name set notation macro. The "ANY" labels of the upper

diagram are associated with those links where any number (including zero)

ii 1

_ _ _ - - -"

"Introduction

of such links may be present. The "OPT" labels, for optional, are associated
ii with those links which optionally may be present (i.e., either zero or one

occurrence). The pair of diagrams demonstrates how such links are transformed.

The curly braces in the upper diagram indicate that there may be either an

equal sign or number sign; the vertical bar separates these two characters.

In macro descriptions which follow such a choice is shown by vertical

positioning within braces. The curly braces in the lower diagram are used to

be in direct correspondence with the ones in the upper one. Namely, if a

"•"I Jnumber sign had been In the original node then the expansion would use

"-MEMBER".

[15

A I

I,

Introduction

LAN ANOPT___

II

I _ _

I ANY •. na.=,#lnbl/nb 2 /o../nb -- OPT

n. is a < nae ; n

ibi MEBE th <MEtype >nmlidbyb

A-1
I t•

J where, for m> 0,

na is a Cname> or is <null>;
j ts is a <type-set >;

nb. Is a < name >; and
i tb1 is the < type > implied by nbi..

I- •

"" - -7-

Introduction

The non-terminal names within angle brackets ('<' and '> ')are

defined in the complete syntax presented in the AMBIT/L User Memo "The

Syntax of the Eiscodement of AMBIT/L Programs". For example, one

production of the grammar indicates that a < name> is either a < dummy>,

or an < indirect>, or a < literal>.

I Indirection: There is a notation by which a node may be named by a path

via which it can be reached from a pointer. For example, the following two

rules are equivalent:

<I C

C C C•

CC

RRD@P] I

This notation is explained in several steps as follows:

a Default Link

For a data node or call node, if its subname is of the form

@id

where id is an < identifier>, then transform the subname to

D D@id

17
A-12

Introduction

I b. Indirect Down (data node)I

ANY ________ _ _ _ _

walk@id

IIidI It . • 1!

I (Dwalk@idj

ANY OP

OPT 6PT ANY

where
walk is an < indirect-walk >;

id is an < identifier >; and

ts is a < type-set >.

A-13

Introduction I
IH

c. Indirect Down (call node)

II'[A ~NY V

JC!

I (walk id)id
SI idJ

I jDwl@id AN

S ÷ ANY , •ANY
•i (D@id

~ ANYNY

ANYY

S "" where

f[wal__k is an < indirect-walk >; and

!" I id is an < identifier >.

I1

I-

ANY1

wher

Introduction

I d. Indirect Right

i&NYAN AY

T R walk id OT

0IT cPTOP

C! ts

I Iwalk id.

whereJ walk is an < indirect-walk >;
id is an < identifier >; andI ts is a < type-set >.4

1 20
A-15

Introduction

SValue Call: There is a notation by which the result of a function (which

has exactly one result) can be named by the name of the function itself.

For example, the following two rules are equivalent:

V '!
P P _

[Y V@ADF7

IFI
I I!•l ADD @

This notation is explained by the f llowing transformation diagram:

EZ
°Al1

II

A-16

: ,Introduction

ANY ANY ANY

V7 ts

walkV al @d id--

iiid

ANY s
ANY -

I I

F ts

JwhereI
walk is an < indirect-walk >

d ids an <identifier >;and
ts is a < type-set >.

22
"A-17

Introduction

NeaieVau5al If a node is accessible via some link from an
SI ~accessible node its name may have the same form as a value call node, but

with an additional number sign (#) prefixed. This notation is used to assert

the node in question is not the result of the function specified. This notation

SI is explained by the following transformation diagram:

ANY ANY ANY _____ _____

Vwalk@id

#V@id

"ANY .

ANY

_ "H

4s A
I~~~ walk___ @ V id

EQ

I where
waik is an < indirect-waik >;

id is an < identifier >; and

ts i.- a < type-set >.

23
A-l8

I Introduction

The EQ function employed above is a predicate which succeeds if and only

if its two arguments are the same; since its negation is called above (-EQ),
that call is testing whether its two arguments are not the same.

String and Token Names: Although the programmer is expected to consider

literal names of string nodes and token nodes as atomic, the implementation

actually expands such names into calls on the built-in functions TRS and

TRT. (These functions were mentioned on page 33.) Furthermore, gather

notation is used to collect the argument (s) to these functions. For example,

although the programmer writes the following rule:

S

'ABC'

I

l I S

1~ a macro transforms it to be executed as:

TRS

i Tiese macros are given by the following transformation diagrams:

A-19

I Introduction

I String Names

ANY ANY ANY

" I

'IS S2 "" " m '

ANY

OPT OPT

a-;

-RR

B B

where, for m > O.

-is a < symbol >; and

ts is a < type-set >.

A-20

I Introduction

KI Token Name.,

AANY ANY ANY

ts

(I • n 2 n.nm .

S",ANY

OPT OPT

1k•- t
_ _• mI\

C C C

2 I ! "*I .I .- ! " lL ,

n 2

I where, for m > 0,
is % <name>;

t is the < type > implies by ni; and

ts is a < type-set >.

22b -2

Introduction

Dummy Names: There is a notation by which a node in a rule without a

subname (including one employing name set notation) may be "split" foDr

I convenience into two or more instances in the rule. A dummy name begins

with an asterisk (*) and that must be followed by either an unsigned integer

or an identifier. For example, the following two rules are equivalent:

P C P

Tc

_f I M

AA

•.C C

"Wz The usual reason for employing dummies is for drawing rules in ways which

"r help demonstrate their operations more clearly. Also, any unnamed node which

is not "split" may be named with a dummy name as a documentation convenience.

There is, however, one use of dummies in a rule which can alter the interpretation

I of a rule: each instance of a dummy is separately visited during the pattern

match (see comments associated with page 24). Thus by using flow links among

I 'dummies and other nodes of a rule, the programmer may perform rather subtle

testing.I
I

27
A-22

414

Introduction

.J Pages 40-45: This section presents a good overview of most of the AMBIT/L

Programming System. Further details of each part of the system

are given in other memos. Other features available in the

AMBIT/L not indicated in the paper are mentioned here and

detailed elsewhere.

a. When the user initiates execution of an AMBIT/L program he may

choose to accept the default memory allocation for the interpreter

or he may exercise complete control over alternate allocations for

specialized purposes. For example, he may wish to allocate an

unusually large control stack for the execution of a highly recursive

1program.

b. There is an alternate interpreter which can be used to do instrumentation

studies of the insert-block activities of an AMBIT/L program in
execution. At any time the user may print complete statistics of the

1I total time spent in each particular insert-block, the total number of

times control transferred to that block, and the total number of times

that block had to be read into core memory from disk. This has been a

very useful tool for arriving at optimum memory allocations and for

I T discovering those portions of an AMBIT/L program which deserve re-

writing for the purpose of optimization.
1"

"i c. It is also possible to instrument the total number of calls on each

built-in function and the total number of calls on each basic operation

of the AMBIT/L interpreter. This kind of instrumentation is normally

of value to the AMBIT/L systems programmer, but may in some cases

also be of interest to one who is a user of the system.

d. The normal AMBIT/L interpreter performs consi&erable checks on

program validity at execution time and reports a variety of specific

diagnostic error messages to the user. For a program which is well

debugged and which must run as fast as possible, the user can employ

a "production" interpreter which avoids most of this checking.

28
- A

,I Introduction

e. For those working with large AMBIT/L programs there is a cross-

j referencer which produces five individual listings of references

which cross insert-block boundaries; these are separately

SI presented for TEMPs, PERMs, MARKs, LABELs, and FUNCTIONs.

The user has control over which insert-blocks of his program are

to be considered for any particular application of the cross-referencer.

Pages 48-51: Appendix A should be read only as a formal definition. The

syntax presented does not correspond to that encodement

j actually used to represent programs in the AMBIT/L Programming

System.

Page 49: Formula F12 should be changed to:

I F12. unsigned-real -unsigned-decimal (scale-factor) !

(digit]l scale-factor

Pages 52-56: Again, the program syntax should be read only as a formal

definition since what is presented is incomplete compared
with that of the encodement actually used to represent

S1 programs in the AMBIT/L Programming System.

Page 61: The fourth paragraph labeled "Modify memory" should he at

the same indentation as the first three paragraphs, and it

should also have an equal sign as the other paragraphs.

Page 64: As a comment on the first paragraph, it is useful to employ

resetting of the execution value only when control is about

to be transfeired to the exit point of either a function body

or a block. Otherwise, note (at the bottom of page 60) that

the EVR is initialized to success at the beginning of every

i rule.

• 2 9 (END)
A-24

I
I

I

Section B

How to Write an AMBIT/L Program

I

January 10, 1972

I

I

II

This section provides the AMBIT/L programmer with
supplementary information on block structure,
declarations, insertions, and transfer lists which
he needs to know to be able to write AMBIT/L programs.

Fa 0

I Program Writing

This section presents, rather informally, some techniques of writing

AMBIT/L programs. The Reference Manual (with its supplementary memo)

describes the AMBIT/L Progr'amming Language. Appendix B of the manual,

j which is admittedly difficult to read, describes how programs are interpreted.

The syntax presented in that appendix is not complete; the programmer

•I should refer to Section D, "The Syntax of the Encodement of AMBIT/L Programs"

for the complete syntax of the current implementation.

I An AMBIT/L program is structured by program blocks in the same

T method employed by ALGOL 60. Each block is bounded by a BEGIN statement

I• at the beginning and an END statement at the end. A user's AMBIT/L program

is organized overall as one block; often it is broken down internally into other

blocks. Any contiguous sequence of rules (and/or blocks) within one block

may be collected together as a sub-block by enclosing them within a BEGIN -

END pair of statements; this organization is, however, of minor utility. When

it is employed it appears as one giant rule to its surroundings, and as such

"-- the block may have a transfer-list associated with it. The success exit is

"taken if control ever falls through the end or is transferred to the end via an

-- attached label on the END statement. Note that the identifier 'EXIT' is

automatically declared as an attached label before the END statement of

every block in thrý program. Thus the block's success may be caused by the

execution of a 'S/EXIT' or 'F/EXIT' from some rule in that block. Failure of

the block may likewise be caused by the execution of a 'S/-EXIT' or 'F/-EXIT'.

Since label nodes (as well as function nodes) may include a minus sign

preceding the identifier used as subname, indirect transfer of control may be

I employed to exit from a block with an execution value of either success or

failure. (Indirect transfer of ccntrol means that a success or fail exit of a

transfer list is specified as a walk from a pointer.)

More common is the use of a block as a function body; i.e., the

executable part of a function definition. A function body may consist of just

one rule without a transfer list. During execution that rule's success .-auses

I

A Program Writing

the function's success, and the rule's failure causes the function's failure.F It is more efficient to write one-rule functions in this way when possible.
Usually, a function definition consists of several rules, in which case

I they must be enclosed within a block. It is also necessary to enclose a
single rule (which is a function b6dy) within a block if its transfer-list

K JImust be given explicitly. As one would expect, success or failure of the

function is directly affected by the success or failure of the block used as
I the function body. In addition to 'EXIT', the identifier 'RET is automatically

declared as an attached label before the END statement of every block in

the program which is a function body. Thus returning from a function is
usually specified by either S/RET or F/RET for suL.ess or S/-RET or F/-RET

for failure.

Each block begins with any number (including zero) of declarations
of identifiers as PERM (for a permanent pointer), TEMP (for a tempordry pointer),

and MARK (for a mark). Then there may appear any number (including zero) of

function declarations. The remainder of the block includes any number

(including zero) of rules or blocks, each optionally followed by a transfer

list. Thus the block structure is employed (as in ALGOL 60) to delimit those
parts of an AMBIT/L program where an identifier can be referenced; i.e., its.

T scope. In AMBIT/L scoping of identifiers is done for PERMs, TEMPs, MARKs,
FUNCTIONs, and LABELs. An identifier is declared as a label by following it
with a colon and attaching it to either an imperative (rule or block) or to an

SI END statement.

PERM pointers and TEMP pointers are both referenced in the same

manner within rules and transfer-lists (when indirect transfer of control is

I used) ; i.e., simply as pointer nodes. Both types of pointers have identical
scope; however, each PERM pointer is allocated exactly once for the

- duration of the execution of an AMBIT/L program. Initially, each PERM is
made to point to the null cell. When the block in which a particular PERM
is declared is entered or exited its value is not affected. A PERM acts like

132
B-2

::• • • " "•-• -=-• '- • •" " -' - ::•... | -- '•-* •-L . .. - - -- . .

Program Writing

S• list to the TRT (transfer to token) built-in function to locate such a token.

J1 Each function declaration includes a heading which specifies the
argument pointers and result pointers to be used within the function body.

An AMBIT/L function, therefore, has a fixed number of arguments and a

fixed number of results according to how it is declared. All built-in

I functions in the AMBIT/L Programming System also have this characteristic
except for one: MEMBER (alias ONEOF). Each argument pointer and result

pointer of an AMBIT/L function are automatically declared as TEMP pointers

within the body of the function definition, whether it is a one-rule body or

a block. Within a function body the down link of any argument pointer may

be modified and used as any other temporary pointer without any external

effects.

In review, a block is used within AMBIT/L programs as:

"1. the structure of each user program as a whole, or
2. a collection of a sequence of rules and/or blocks, or

3. a function body which cannot be a single rule.

In addition to the scoping of identifiers, there is one other important aspect of

- a block: in the AMBIT/L Programming System a program can be broken up

along the boundaries of its block structure. Suppose, for example, that it is

desirable to separate from a program a certain block, b. A copy of b can be

made (from 'BEGIN' to its corresponding 'END') and placed in a separate source

file. Then one declaration line must be inserted before the BEGIN statement

in that file, for example:

INSERTION FILE. NAME;

The entire block b in the original program is then replaced by the one corresponding

i command line:

INSERT FILE. NAME;I

I 33
B- 4

II
Program Writing

LI,

The transformation on the preceding page may be performed on any

or all of the blocks in a program, however deeply nested those blocks may

be. Although such transformations have no effects on the logic of a program,

they can have drastic effects on the economics of preparing and running

that program since:

1. each insertion is compiled separately and independently

of the compilation of every other insertion;

2. each insertion is link-edited depending only on the previousI' link-editing of all containing blocks; and

- 3. each insertion becomes a separate program segment or

4. "page" of the reentrant binary code whhJh is swapped in

from the disk, according to need, automatically, by the

- -interpreter during execution of the program.

Thus the AMBIT/L Programming System works in units of blocks (or insertions)

for compiling, linking, and actual run-time program storage.

Notice that the name a programmer chooses for a particular insertion

may have the syntax of an AMBIT/L identifier. Namely, it consists of

alphanumeric characters and perhaps individually embedded periods, and it

must begin with an alphabetic character; there is no practical restriction on

its length. There is a convention that users' insertion names should not begin

with the letter 'Z'; all built-in environmental insertion names start with 'Z'.

The name chosen must match exactly in the corresponding INSERT and INSERTION

commands, except the programmer is free to choose any name for the outermost

or main block.

*In the PDP - 10 implementation the name of each source file of an

AMBIT/L program must correspond with its insertion name as follows: ignoring

the periods of the insertion name, the primary name of the file must be the

first six characters (or less if there are fewer) of the insertion name. The

S" 34
B-S

Program Writing

!i

file name extension may be anything the user chooses (including null). For
example, for the insertion FILE. NAME, the source file may be FILENA.AL

The extension "AL" is for "AMBIT/L" and is the default extension name

I assumed by the AMBIT/L Compiler and Diagram Generator. As another example,
for the insertion A.B.Cl, the source file may be ABC1.SRC . To avoid

ambiguity, the primary names of the various insertions of one AMBIT/L program

must be distinct.*

Now a rough example is given of a simple program which is composed
of two insertions. First is presented the main or outermost block of the user

program as might be contained in the file MYPROG.AL:

I INSERTION MYPROG;
S THIS IS AN EXAMPLE OF A COMMENT
BEGIN
ATEMP A B C;

F(X) Y:
BEGIN SANOTHER COMMENT!
TEMP Z;
RULE

* several rules as body of F

"END;

G(A)
INSERT FUNC.G;

LOOP: RULE

"* 1 several rules as the main program* "

END

I *This rule of naming a source file need not be strictly followed at

compilation time or diagram generation time, but it is a requirement

-I that the primary name of the REL file conforms to this rule when the
insertion is linked by the AMBIT/L Link Editor.

B-6

3 Program Writing

Next is given the general format of the one inserted block as might be

contained in the file FUNCG.AL:

INSERTION FUNC.G;
BEG I WJ
HO:
RULE) one rule as body of H

RULE

several rules as body of G

END

The rea',:.r should notice above that pointers , and C are declared for

use throughout the entire program. Function F is declared for use throughout

t the program; pointer X is used to receive the argument and Y is used to return

its one result. Pointer Z is used locally within function F. Function G is

declared with one argument and no results for use throughout the program.

Notice that the argument pointer A overrides the other use of A within the

body of function G. Function H is declared with no arguments or results for

use only within the body of G.

T Notice that each insertion begins with an INSERTION declaration and

ends with an END statement which is not followed by a semicolon. All other

appearances of an END statement in AMBIT/L programs are followed by a

semicolon.

Earlier, it was stated that the identifier 'RET' is automatically declared

as an attached label (in addition to 'EXIT') before the END statement of every

block in the program which is a function body. Although this is logically true,

it is not done in exactly this way for insertions which are function bodies; the

compiler cannot make the distinction when it is compiling a particular insertion

whether that insertion is a function body or a collection of rules and/or blocks.

* Thus 'RET' is really declred in the enclosing block where the INSERT command

is specified for the block in question. (The confused reader should ignore

* I this distinction If it disturbs him; It is significant only in making full use of

B-73

I Program Writing

I
the DAMBIT/L debigging package.) Consistent with this, the identifier

'RET' is also declared for a one-rule function, although the programmer cannot

make use of it.

The novice AMBIT/L programmer will probably want to avoid the added
Scomplication of organizing his small tutorial programs into separate insertions.

However, for any "real" program this activity should usually not be avoided.

Beware, however, that probably not every block should be made into an
insertion. There are several factors which must be considered to arrive at

T the appropriate choice for this organization:

1. Since compilation is somewhat expensive, the programmer

should avoid an organization which leads to frequent

re-compilations of large insertions due to, for example, a
program which has potentially many bugs or which is

gradually being modified. At the present time the DAMBIT/L

debugging system cannot be used to patch programs or even
- -modify the AMBIT/L data structure; thus recompilation is

almost always required to correct a programming bug. A

"large" insertion has over 50 rules of average complexity.

2. Even if it doesn't have to be compiled often, very large

pages are a handicap because they are more difficult to fit

into the limited region of memory used for pages. The

automatic paging system of the interpreter makes room for a

page which cannot otherwise fit by "kicking out" the oldest
_ page and trying again; very large pages which are not used

constantly can cause a lot of overhead activity in the paging

I system. A special version of the AMIBIT/L interpreter is
*. available for instrumentation of page timing characteristics;

"it also reports on the number of times each page must be read

from the disk. Thus the user has the means to find out if

such a high overhead situation exists.

I 37
B-8

AA

Program WritingI

3. There is some overhead for each insertion in terms of the

number of files kept in the user's directory and the extra

effort (and perhaps documentation) there is in maintaining

a distinct program component. At execution time, there

is some overhead in transfering control from page to page;

note that when returning from a functi:n whose body is an

insertion, control must pass through RET which is on the

page which inserts the function body. Thus rather small

insertions should be avoided, and instead, small blocks

ought to remain as parts of their parent insertions.

4. Since a page is nc. ;apped in from the disk until needed,

rarely invoked blocks should be made into insertions.

Likewise, two insertions which are not very large might

be merged if one is inserted by the other and both are nearly

always executed together.

5. To help analyze the running characteristics of a program, a

user may organize insertions in such a way that timings

reported on the basis of duration on each page can yield

meaningful results. A special version of the AMBIT/L

interpreter is available for such instrumentation.

6. To help examine a program (perhaps written by somecne else),

a user may organize insertions in such a way that results of

applying the AMBIT/L Cross-Reference Mapper can be useful.

Such results are restricted to reporting only the existence of

references which cross insertion boundaries.

I 7. The ultimate form of an AMBIT/L user program as a collection

of pages of binary code is called a "DMP" (for "dump") file.

Each page is represented as an integral multiple of 128 36-bit

words. Therefore, if the length of a DMP file is to be minimal,

J a user may wish to organize insertions so that resulting pages

J 38
B-9

Program Writing

do not result in significant wastage, such as would result

I!' from several 257-word pages. The number of words on a
page is reported to the user by the compiler and again by
the link editor. A fanatic programmer may wish to try to

shorten certain pages for this purpose by rewriting some

k Trules or transfer lists.

Finally, it should be re-emphasized that all organizations of insertions of
± a program are logically equivalent, and that the choices available affect

only the efficiency of the programmer and of the programming system.vI
Next, a different topic is introduced concerned with the writing of

AMBIT/L programs. Following any rule or block which may have a transfer-
list specified can be one of the following forms:

Form Meaning

SAL S/AL F/?

, "F/ S/NEXT Flo

S !, -/a F/l

F/O S/ci SAL Fl
S F/a S/AL F/ca
(if not given) S/NEXT F/?

where a and p are label-references. Note there are several predefined

- labels, the last three of which are relative to the rule in which they are

used:

V.iLabel Use
EXIT This identifier is uutomatically

declared as an attached label before

the 'END' of every block in the

program.

B-10

- - f

I Program Writing

II
Label Use

F • RET This identifier is automatically
declared before the 'END' of every

-- I block in the program which is known
to be a function body.

S? This special label should be employed
in a rule exit which the programmerJ expects will never be taken. At

execution time flow of control to

"this label causes the interpreter to
Initiate an error trap and print a

diagnostic message on the terminal.*

SPREV This relative label refers to the

Sprevious imperative (i.e., rule or

block) if it exists; otherwise its

use is an error.

CUR This relative label refers to the

current imperative (i.e., rule or

block).

NEXT This relative label refers to the next
I imperative (i.e., rule or block) in

the current block, or to the end of

the block (the label EXIT) if the

current imperative is the last one of
the block.

-" t? errtrap 'TUL is caused by the Intermretation of a S/? exit. T1he
error trap 'F/?' is caused by the interpretation o1 a F/? exit.

B-1

- " '•.... a•i • • ::•"• "• -' " .. • '• ','-• " '• • ' •"•:• 1*0 : -•. • .,,,. .. - ... • ""

fr* Program WritingIF-
ii

Note that although the use of as a label is restricted to be within the

I• transfer list, the other five predefined labels may be used within rules (as

label nodes).

It One -special construction is allowed which permits a dummy name to

be used as the success exit of a rule, as shown in the following example:

RULE

÷---A

1@Q 1
I I

A

'1 1 GET.LAB I F--- >1*1 I

S/*II

Such a dummy name cannot be given as the fail exit since it might not be

bound when failure of the rule is detected during the rule's interpretation.

I

I
I 4

B-12

(END)

I Section C

The Drawing of AMBIT/L Programs

S~and their Encodement

January 11, 1972

This -ection presents, by example, the forms of

"• T diagrammatic listings wb,-ch the Dtag,-im. Generator of
the AMBIT/L Programming System can produce. Thus,

S~the program mer should first uize this as a g~fde to draw-
, I Ing rules of his programs. Al3so described is the method

| of translating the diagrams Into a linear encodement
language. Fina•lly, a recommended canonical encodement

-- * fis provided.

|I

Drawing & Encodement

It was indicated in the Reference Manual that a programmer sketchesI ' his program on paper and then inputs both the textual and diagrammatic

portions of his program via a typewriter.-like terminal (often a Model 33

Teletype). Thus an entire program is reduced to being a string of charactersI; I in the PDP - 10 implementation of the AMBIT/L Programming System. The
I! programmer, however, initially prepares textual specifications for overall

program structure and he draws diagrams for rules. It is important the

programmer understands how the Diagram Generator produces diagrammatic
listings from the character input so that he may organize the layout of each
rule to be easy to understand. Selection of a good rule layout is important

as a documentation aid, and the simpler structure there is to. rule the more

likely it will not have hard-to-find errors. To avoid over-entanglement of

links the user should not hesitate to employ explicit link routing and dummy

nodes.

The Diagram Generator (DIAGEN) is a translator in the AMBIT/L

Programming System which reads as Input an encodement of one insertion

(or block) of an AMBIT/L program and produces as output a listing of that

insertion. All textual material is passed right through DIAGEN without

5 •checking or formating, except for an attempt to introduce new pages (forms)

where appropriate. When it comes across a rule, however, it assimilates

the character string encode-nent and produces a listing of that rule as a

diagram. When rules are short enough DIAGEN inserts new pages to avoid

j_ any rule getting split across the end of a page of ýhe listing. DIAGEN ignores

new-page m.arks (form feeds) in i's input.

I1 DIAGEN bases its drawing cf rules on the medium it uses as output:

the typed page (either by terminal or line-printer). To force the programmer

to ke-ap his. diagrams within "copyable" size (e.g., by XEROX), the maximum

width of a diagram is limited to be less than 72 character positions; this also

corresponds to the printing width of the Model 33 Teletype. A ruie is considered

to be drawn on a rectangular grid of rows (named A, B, C, etc.) and columns

I (named 1, 2, 3, etc.). To fit on one 8 1/2" x 11"1 page a rule must use at most

-' C-1

43

IDrawing & Encodement A

V 6 rows and 7 columns. Although DIAGEN insists that all rules be no widera Ithan 7 columns, it can accommodate up to a double-page rule which can

have as many as 13 rows. The programmer may position a node at a
h1osparticular grid position, for example, A2, BI, or D5. Each position normally

takes up five character positions vertically and horizontally. Between each
t pair of adjacent 5-position boxes are five character positions available

mostly for routing of links. The rule on the next page demonstrates the

format just described. See how there are five character positions between
the node at B2 and each of its vertical and horizontal neighbors. The left

4 and right sides of each node boundary employ the digit '1' as a close

approximation to a vertical bar. The top and bottom sides use a minus sign
as an approximation to a horizontal bar. The corner of each boundary is
designated by a plus sign. Type-sets are right adjusted as part of the top

of a node boundary.

I4

±q

I
I
I
I
I

I -

Dra-.'ing & Encodement

RULE

Ii' +---A

1*AI1 1*A21 1*A31 1*A41 1*A51 1*A61 1*A71

+- -- A+-- --

I: I
~iI +---A

I
1'*Dl1 1 1 1 1 D 1 1 D 1 1* S 1 1 1 1 17

1*C1I 1*C21 1*C31 1*C41 1*C51 1*C61 1*C71

4+ +---A +---A +---A +---A +---A --.

1.*D1I 1*D21 1*D31 1*D41 1*D51 1*D61 1*D71

-. 1 1 1 1 11 1 1 1 1C13

Drawing & Encodement

When specifying that a node be placed at a particular grid point
the encodement is done as:

position / type-set / subname

The subname corresponds to the text enclosed within the node boundary; it
may be a subname of a data node or a form of macro call. The second slash

"and subname may be omitted for an unnamed node in the rule; however, if a

subname is included a type-set must also be included. The letter 'A' (for
"any") is an allowable type-set which means no type testing is done. A

node may also be specified with just a position; this is equivalent in meaning

to having 'A' as its type-set. The following sample input and associated

diagram demonstrate these possibilities. A comma separates each node
specification.

00020 RULE
0-.)030 AIIR/@Xo A3/P/Y* BI/ILFP B4/M!, C2/A/#**, C4;

I: •RULE

* +--IR

"loX 1 1 Y 11 1 1 1

*-kILF

.1 1C 1 1

I I

1 1 1 1
I+4---+- +----+

46c-4

Drawing & Encodement

The integer within parentheses under the word 'RULE' in the diagram

I indicates the line number or sequence number within the source file on which

the rule's encodement begins. DIAGEN treats unsequenced files as if they

were sequenced by one.

f Up to this point names have been chosen carefully in these examples

to not exceed three characters, for that is the limit that will fit inside a

T standard node which is 5 by 5 character positions. If a node name is given

which is longer DIAGEN attempts to stretch the node to the right as required

without "bumping into" another node or a link with some vertical component.

If it can do so, it stretches the box so the name just fits. Gtherwise, it

labels the node with a name of its grid position followed by a period; then at

the bottom of the rule each such label is repeated along with the full node

name (somewhat like a footnote). For example, here is some input and its

associated diagram:

I
II

I

I

- i

0-5

J Drawing & Encodement

RULE
At/LFBS/@ABCD. A2/P/X, A5/T/(A 12), A7/I/1234, BI/M/LISTING,
B2/A/=1/3/5/7, B3/R/3.14159265358979323846, B7/I/12345,
CI/S/'SUPERCALIFRAGILISTICEXPIALIDOCIOUS ENCYCLOPEDIA OF AMERICA'

RULE
(00002)

+--LFBS +---P +--------- T
! 1 1 1 1 1 11

"1@ABCD1 I X I I(A 12)1 112341
1 1 1 1 1 1 11

+------+ +-- 4-------------

-tr

+. M +---A + ----------------------- R
1 1 1 1 1 1 1

I.LISTINGI IB2,1 13.141592653589793238461 IB7.1
1 1 1 1 1 1 1 1
--------- ---- + + ------------------------ +

+--- S

I'SUPERCALIFRAGILISTICEXPIALIDOCIOUS ENCYCLOPEDIA OF AMERICA'I
1 I
--+

B2.=1/3/5/7
BT. 12345

Notice that a node may stretch to have a name of up to seven characters when

it has an immediate right neighbor and no links (vertical or horizontal) intervene.

A call node or value call node is specified by a type-set which begins

with an equal sign. DIAGEN draws such node with a bottom side of the node

jboundary as equal signs so that it looks like a double line. For these nodes
only, a larger node boundary may be specified by giving both an upper left and

a lower right grid position separated by a minus sign. When such a specification

is made DIAGEN does not attempt to stretch a box for a name which cannot fit.

For example, here is some input and its associated diagram:

C-0f

Drawing & Encodement

I 00002 RULE
00003 AI-C!/=F/OPEN, A2/=A/VDRRRD@A.LONG.FUNCTION°NAME,
00004 B2-C4/=F/ADD, B5-B6/=I/V@SUB* C5-C7/=F/OFUNC.PTR;

RULE

(00002)

+--------------------------------------AI
1. 1 1 1

1 1 1IVDRRRD@A.LONGoFUNCTION.NAMEI
1. 1 1 1

1 1 ------------------------ --------------
_1 1

1 1

"".1. 11

4 ~~ lWe 1 1 VSUB 1

1 I
11

I . .FUNC.PTR

AIIOPEN

Now that node specification has been fully described, links will be

discussed. Since a standard node is 5 by 5 character positions, the middle

three oositlons of each side are suitable for link origins and destinations.

± ~Recall that a solid link or a modification (ciouble-line) link which emanates

from either the upper or bottom side of a data node is considered to be a

"Tdown" link. Similarly, a solid or modification link emanating from either

ii' the left or right side of a data node is considered to be a "right" link.

Argument links may likewise emanate from the upper and/or bottom sides of

a call node or value node; and result links may emanate from the left and/or

right sides of a call node.

49
C-7

Drawing & Encodement

t '

The middle link origin of a side of a standard node is the "normal"

"one. When dealing with down links, a "plus" perturbation means towards

the right (towards increasing column numbers), and a "minus" perturbation

means towards the left. When dealing with right links a "plus" perturbation

means towards the bottom of the page (towards "increasing" row letters),

and a "minus" perturbation means towards the top of the page.

I Z
Links are routed in lanes on the page. Some normal lanes are those

which pass through the normal link origins of each standard node position

(both vertical and horizontal). The other normal lanes are those which are

half-way between standard node positions. The following diagram shows

all normal lanes in the vicinity of the first three rows (by N's) in a backgrou'

of name-less nodes.

RULE S~(OO2OO)

NNNL N N N N N N N N N N N N. N N
"N N N N N N N N N N N N N N
N +-N-+ N +-N-+ N +-N-+ N +-N-+ N +-N-+ N +-N-+ N +-N-+

1EN1 N I N I N INI N INI N IN! N I NIN I N I N I N I

NNN
N I N I N INI N INI N INI N INI N INI N I N I

N +-N-+ N +-N-+ N ÷-N-+ N +-N-+ N +-N-+ N +-N-+ N +-N-+
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N

NNN
N N N N N N N N N N N N N N
"N N N N N N N N N N N N N N1 . N +-N-+ N +-N-+ N -,--N-+ N +-N-+ N +-N-+ N +-N-+ N +-N-+
N I N I N I N IN 1 N I N I N I N I N I N I N I N I N I

NNN
N I N I N I N I N I N I N I N I N I N I N I N 1 N I N I

°" N ÷-N-÷ N +-N-÷ N +-N-+ N +-N-+ N ÷-N-÷ N ÷-N-+ N ÷-N-+

N N N N N N N N N N N N N N
N N N N N N N N N N N N N N

NNN
N N N N N N N N N N N N N Ni
"N N N N N N N N N N N N N NSN +-N-+ N +-N-+ N +-N-+ N +-N-+ N ÷-N-+ N ÷-V-÷ N ÷-N-÷

N I N I N I N I N I N I N I N I N I N I N I N I N I N I
NNN

N I N I N I N I N I N I N I N I N 8 N I N I N I N I N I
N ÷-N-+ N +-N-÷ N ÷-N-+ N ÷-N-÷ N ÷-N-÷ N ÷-N-+ N +-N-+
N N N N N N N N N N N N N N

IN N N N N N N N N N N N N N
NNNNNNNNNNNNNNNNNNNNNNNN1NNNNNNNNi4NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

S" 50
. C-8

Drawing & Encodement

Next is presented a similar diagram showing all plus perturbation

lanes of the first three rows (by P's). It does not seem necessary to present

a third diagram showing minus perturbation lanes.

RULE

-- p p p p p p p P p p p p p p
pppppppppppppppppppPpppp~p~pppppppPppppPppppPPppppppppppppppPPpppPpppppp

p p p ? p p p p p p p p p p
P- P+-P+ P +--P+ P +--P+- P +--P+ P +--P+ P +--P+ p +--P+
P1I P1 P1I P1 P1I P1. P1I P1 P1I P1 P1I P1 P1I P1
P1I P1 P1I P1 P1I P1 P1I P1 P1 P1 P1I P1 P1I P1

ppppppppPppppppppppppppPppppppPPpppPppp~pPpPpPppppppPpPPppppPPppPPpp~pPpp
P+P +--P+ P +--P+ P +--P+ P +--P+ P+P+ p~+

* PPPPPPPPPPPPPPPPPPPPPPPPPPppppPPPPPPPPPPPPpPPPPPPPPPPPPPPPPPPPF Iý 'P

P +--P+ P +--P+ P +--P+- P +--P+ P +--P+ P +--P+ P +--P+
p 1, P1 p 1 P1 p 1 P1 p 1 P1 p 1 Pi p 1 Pi p I P1
P1I P1 P1I P1 P1I P1 P1I P1 P1I P1 P1I P1 P1I P1

PPppPPPPP?PPPPPPPPPPPPPPPPPpppppp
P +--P+ p+-*-P+ P +--P+g P +--p+ p +--p+ p+-.-p+ p +--P+

p p P P p p p p p p p p p p

pPpPPppppp~pPpp~pPp~p~ppppppp~pp~ppPpppppppppppppp~pp~pPppppppppppPpppppp
P P P p p p p p P P p p p p

- p+-.-P+ P v--p+ P +--P+ P+--P+. P+--.P+ P +--P+ p +--P+
P1I P1 P1I P1 P1I P1 P1I P1 P1I P1 P1I P1 P1I P1
p I Pi p 1 P1 P I p1 p 1 P1 p I P1 p I P1 p I P1

pPPPPPPPPPPPPPPPP?PP
- p+--P+ p +--P+ p +--P+ P +--P+ P +--P+ P+--p+ P +--P+.

p p p P p p p p p p p p p p
p p p p P P p p p p P P p p
p p p p p p p p p p T; p p P

0-9

Drawing & Encodement

A With this introduction the specification of a link can be explained.

First, fully explicit link specification will be given. Then several default

cases will be introduced which allow for rather simplified encodement;

l J nearly all link specifications of most AMBIT/L programs take advantage of

the defaults, especially for routing.

Links emanating from a particular node are specified (in any order)

T along with that node's position and name specification. A SPACE or carriage

return separates the link specifications from the node specification and from

one another. For a data node a link specification begins with a route.

However, for a call node or value call node which has a large node boundary

encompassing more than one grid position, each link from such a node must

first have an origin grid position specified followed by a slash (/), and that

is followed by a route.

A route begins with a letter wh'.h designates the kind of link:

S for a SOLID (or normal) link

B for a BROKEN* (double-line or modi:fication) link

F for a FLOW link

-- The remainder of the route consists of a sequence of segments. Each segment

begins with a letter which designates its perturbation (i.e., the particular

lane along which it travels):

"N for NORMAL (or no) perturbation
- P for PLUS perturbation

-- M for MINUS perturbation

II
*Historically, modification links were drawn as broken lines rather than

double lines.

I C-1 52

Drawing & Encodement

The remainder of a segment consists of one or more occurrences of the same

letter which designates direction:

- U for the direction UP

D for the direction DOWN

L for the direction LEFT

R for the direction RIGHT

Each occurrence of a direction letter means that the route continues in that

direction to the vicinity of the next normal lane which crosses its path.

Although DIAGEN draws links which begin and end on node boundaries,

link routes must be thought of as beginning and ending at the crossing of

normal lanes inside of the source and destination node boundaries.

The route ends after one or more segment specifications. The complete

link specification then ends with a slash followed by the grid position of the

Snode at the destination of the link. If that node is a call node or value call

node with a large noee boundary, any grid positron around the edge of that

boundary may be the dj•tination grid position of the link specification.

Otherwise, the grid position of a data node as destination must be the

destination grid position of the link specification - EVEN IF THAT DATA NODE

HAD BEEN STRETCHED TO ACCOMMODATE A LARGE NAME!

Solid links emanating from call nodes and value call nodes indicate

arguments mnd results. Both arguments and results of a function have a

particular ordering according to the function's definition. Thus it is essential

that there is no ambiguity concerning the order of arguments or order of results.

Links used to locate arguments of a function may originate at either the top

or bottom side of a call node boundary. Similarly, result links may emanate

from either the left or right side of a call node boundary. Arguments are

ordered from left to right; results are ordered from top to bottom. There is no

v •restriction which forces all arguments or all results to originate on the same

side of a call node. The ordering or arguments and results can easily be

shown on large call nodes by using different grid positions as origins. Also,

53

7C-11

Drawing & Encodement

perturbations can be used to show ordering. To avoid any ambiguity, no two

* jargument links (or two result links) may emanate from the same origin point

or two points exactly on opposite sides of the node boundary.

"K - A few examples should clarify the above descriptions; here is some

S- input and its associated diagram:
"0 GCO20 RULE
rjrjrj30 AI/P/A SNDD/B!, A2/P/B SPDD/B2,
.00040 A3/C/@C SNLrJDDMR/B3.
S0005O A4/P/D FMDDDNLLPD/C3 BNDDDD/34 FNRR/A5,

S*•- 00060 A5/T/(E) SrJDDNRNDDNLLL/C/4o
S00670? A6/P/F SillDNLLLLLLP D/ C3,P

ro 0 0 8r B I/ I.- T -/CST.. B3.-

Cs00090 Cl-C2/=F/DDD@G CI/SNUU/BI C2/SMUU/B2
Sr1G 0 CI/SNDD/DI C2/SNDNLLPD/Dl,

r -- 0110 C3/S/'ABCD" FNLL/C2 BMIJNLLPU/B2 SNUU/B3,
S00120 C4/M/NEWiODE, DI/I/G;

RULE
(00020) S-- Css3~

+.- +---p +_+... _p +---T +___p

I A I 1 B I /--_IC 1 I D 1ZZZZ>I(E)1 I F I
1 1 1 1 i11 1 1 1 l 11 1

1 1 1 ZH 1
1 1 1 ZH 1

1 /-- ---------------------------
1 1 1 ZH I

V V 1 V ZH I
+-CST I +---+ ZHI I l\-> I I ZH

4------------- --+---+ +- --------------------- I

_.A A A A zH F

S1 1 H1Z

I I \=======\I/ZZZZZZZ/H I

I I HIZ H I
1I HI V I-- -- -- - --- -- - - S -- -- - M I

I I I I I I
I DDDOG l<ZZZZ! OAB%"D" l I NEWNODEI < --- /

1 I 1 1

_ 54

1 1-2

I Drawing & Encodement

Note how solid links are drawn with l's and minus signs, and "broken" links

are drawn with H's and equal signs as approximations to double lines. Flow

links employ the letter 'Z' in both vertical and horizontal directions. Slash

and back-slash are used where links turn corners. Angle brackets are

used for left and right heads of links, and letters 'A' and 'V' are used for

T upward and downward heads of links. A plus sign is used where links cross

one another.

There is one additional notation for specifying those solid or broken

links which employ the twisted link notation (shorthand for a Vnk whose

der- nation is the null cell). Such links have a route which consists of one

perturbation letter and one direction letter; then after the separating slash

the destination of such a link is specified as two asterisks (**). The next

example demonstrates this notation.

The previous example judiciously avoided stretched node boundaries

- bumping into links. The next example demonstrates such effects. Here is

some input and its associated diagram:

C-13

Drawing & Encodement

J ,020~ RULE
0 0 030r Al /P/ABCDE SND/** F4P.R/A'CI
0CsCo4 0 A2/P/ABCD2F SNDD/32 FNRR/A3#P 00050 A3/P/ABC 1MND/** SPDWRNUUNRRNDML/A4A
00060 A4/I/1234,
000jr70 81 /A/QAl £'345 SNLNDNRRNDNL/Cl,

G 0080G B2/=I/V@SQ SNDD]/C2.
00090 B3/A/I*1RDOP FNRNDWLLLPD/C2,
60100 C1/A/*lI'g*,

T 00110 C2/1/@BI G. INTEGER-FOR.AREA. OF. SPOT !iRRRRRRNDNI,LLL'-LLLNU/CI;

RULE
500020)

p --- --- +--p /I-----I-

IABDEZZIACDEIZIACI1 1131

IACE1Z11 ITZ>AC I I134

4.--------+ -------- ----+---

/-I@I24 1 1VSQ I " Z

I ------------ A+--=:;=--

1 --------------- + +ZZ+ '----+

1 Iz

it -- A I -------------------------------- I

3d .lol-/ I§B1G.INT4EGER.FOR.AREA.OF.SPOTI'Z\

A

Cl .*1 F**@

C-14

3 Drawing & Encodement

I Most of the complexity of cordposing link routings can be simplified

by using various default options. First, if the kind of link is omitted then

S (for solid) is assumed. Second, if the perturbation is omitted then N

(for normal) is assunmed. Thus it is customary never to see either of these

letters im link s pecificatLons.

When a link emanates from a large call node or value call node, its

STsource grid position and separating slash can be omitted in its specification

if that position is the upper left position of that node boundary.

The most important default option is the "default route" which permits

the user to use just one d.x(.ction letter to specify all segments of a route.

For example, here is 3ome input and Its associated diagram:

C-15

Ii

T

lA

II
'7

C-15 A

Drawing &Encodement

rJ i G 20 ATILE

r0 0 40 A2-A3/=F/FOO D/AI A3/D/B2 A3/D/D3 A3/D/C4 A3/FR/A7o
00C050 A7/P/P BD/C4 D/B7, I
rJric-C 60 B2/I/i,
000)70 B7/I/4p
06,080 C4/l/3p
000Q90 D3/I/2;

RULE
(00C020)

1 1

+---II --------------------- F

1 0i I 1 I FOO izzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz>1 pI

1 1 111HI

HI

vI I H

I. 1 H 1

1 1 1 4H 1
-- I H-. I IH --

I1H
1 IH
1 1H

I1H
I VV

I I Iii I.I
II

1 1 38

c-i

1 2 1~atJ.-..

Drawing & Encodement

This example demonstrates several default down links and a default right

link. The general idea is that DIAGEN will draw a straight link if possible;
when it does, it uses the normal lane (no perturbation). A default link

always terminates on its destination node on the side opposite the one from

"which it originated. A link which turns corners leaves its origin node with
a perturbation towards where it will first turn, and its final segment has a

perturbation towards from where the link just turned. Except for the first and

last segments of a link which turns, all other segments of links specified with

a default route travel on normal (no perturbation) lanes. Another heuristic

used is that for a link which turns, those turns are made as soon as possible.

Finally, if a link must make a complete 3600 turn it does so counter-clockwise.

For example, the link specified as:

B3 BR/B2,

will be drawn with the following explicit route:

B3 BMRULLLLDMR/B2,

this route is shown in the following.diagram:

RULE
(D00110)

[-=

H H
H H

SH +---+ ÷---+ H
\=>C 1 1 1==/

S•1 1 1 1i

| 59

SC0-17

Drawing & Encodement

Note that all default routes are always drawn independently of other

j parts of the rule which they may cross or overlay. Thus if a programmer

wishes to produce a rule without conflicts he must know what to expect

I Tfrom a default route. Consider the problem of interchanging the values of

two pointers. The following input and associated diagram demonstrate

I T three alterratives. Notice that DIAGEN permits the specification of overlay,

•• and indicates it with a '$' at each character position where there is a conflict.

r0 IIG RULE
00120 AI/P/A D/Bl BD/B2,
00130 A2/P/B BD/BI D/B2,

-. 00140 A3/P/C D/B3 BU/B4.
00150 A4/P/D BD/B3 D/B4,
00.60 A5/PIE D/B5 BPDM4RRMD/B6,
00170 A6/P/F DPLLPD/B5 BPDD/B6,
600180 BI, B2, B3, B4, B5. B6;

RULE

H H
H H

+---P +---P +---P H +---P +---P +---P
"1 1 1 I 1 1 H I 1 I 1 1 1
I A I I B I I C I H I D I I E I I F I
"1 1 I 1 1 1 H I 1 1 1 1 1

+ +---+ H+---+ +---+-
IH HI 1 H HI IH IH
IH HI I H HI 1\=... ... \IH
1SSSSSSSS\1 1/===+===/1 1 HIH
IH HI IH H 1 1/ -------- /H
VV VV VV H V VV V V

+---+ H +---+ +---+ +---+

1 I 1 1 1 1 H 1 1 1 1
1 1 1 1 1 1 HI 1 1 1 1 1
1 1 1 1 1 H 1 1 1 1 I

- H +---+ *---+ ÷---÷
H A

H H

I-18

•" C-18

Drawing & Encodement

The use of $' to show conflict may be caused also by links conflicting with

node boundaries or node names, and nodes conflicting with nodes, as

"-J- demonstrated in the next diagram. Also shown next is the effect of forgetting

to provide a proper link origin of a result link emanating from a large call

: J Tnode. Here is some input and its associated diagram:

0 0 G020 RULE
0 ri 0 03 0 AI/P/A D/CI*

00040 A2--B3/=F/DEF*
-i5. 0050 A2/P/BCD BDIBI,
06060 BI/M/XYZL
S 00070 B4/I,
00080 CL#
"00090 C2-C3/=F/F R/B4

RULE
(00020)

+---P SSSSP--------- F

I A I ,SBCDI I
1• 1 $ 1 1

SIH
1 IH
1/======-/ DEF I
IH I I

*2 IV I I
" +-S-M I I

- 1 1
II

-- IX~ I I>

-- 1 1
"•1 1

1 1

1 1 1 F 1
C1 1 1 1

-------------------I

S• C-19

Drawing & Encodement

All fundamentals of the diagrammatic parts of rule encodement have

ii been covered. The syntax of AMBIT/L progranm encodement, which is

provided in a separate memo, should be consulted as the authority on rule

encodement. A few comments on the textual portion of a program are given

here, however, to give some context for the encodement of a rule.

Although the syntax indicates it is optional, for DIAGEN to properly

T perform, each rule specification must begin with the word "RULE". That is

then followed (after a SPACE or carriage return as separator) by one or more

node specifications; ei i: of these is separated by a comma. Following the

last node specification of a rule may optionally be a transfer list (when one

is allowed - a transfer list is not allowed following a rule employed as a

function body). If there is none, a semicolon follows the last node

specification thus serving as the terminator of the rule. Otherwise, two

consecutive slashes follow the last node specification; then a transfer list

is specified in one of tne forms given below. The transfer list is finally

terminated by a semicolon which also serves as the terminator of the rule.

Allowable Forms

4 "-F/ct
S/L -F/0
FAR S/ct-S FinL:4 -~SF/ct*

Iwhere cL and 0 are label-references.

Finally, a suggested canonical form for rule encodement is presented

based on the experience of several AMBIT/L programmers. Although the

syntax allows for rather free form encodement, a stylized encodement leads

to source files which are easier to read (by a human) and to edit using the

conventional text editing programs available on tne PDP - 10. The encodement

language for AMBIT/ programs is meant to serve a one-way communication

bC62a

Drawing & Encodement

'• I from the programmer to the system. However, the realities of use usually

require the editing of the encodement. The syntax permits optional use

of any number of SPACEs, TABs and carriage returns nearly everywhere

except where they would break up an identifier or within string quotation

"marks. The canonical encodement, however, restricts the employment of

these separators.II
The following is a listing of the canonical encodement of two rules:

00020 RULE
00030 AI-A3/=F/OPEN A1/D/BI A2/D/B2
ri 00040 A3/D/B3,
00050 BI/M/OUTPUT,I 00060 B2/M/OUT,
00070 B3/M/TTY;
00080 LOOP: RULE

00090 AI/P/X D/B1 BD/B3,
00100 B! RIB2,
00110 B2/A/I#** R/B3,
00120 B3//
005130 S/CUR F/NEXT;

Note that the first line includes any attached label (s) of the rule and the word

'RULE'. If there are labels then 'RULE' is at the left margin. Then the canonical

encodement continues with one line per node speci.ication if that is possible.

"In the case where two or more lines are required, the split occurs between link

specifications. Otherwise, individual SPACEs are used as separators within a

node specification. Additional or continuation lines may be indented by a

couple of SPACEs for easier recognition. Each node specification of a rule

except the last ends with a comma.

IT If a transfer list of any kind is given, the last node specification is

terminated by two slashes, and the next line includes one or two exit specifications

ST terminated by a semicolon. If two exits are included they are separated by a
"SPACE or a TAB. If no transfer list is given, the last node specification ends in

a semicolon.

C-21

Drawing & Encodement

Although any ordering of node specifications is allowed, a canonical
s encodement calls for them to be ordered by rows and columns as has been

shown above. This convention usually makes it possible to locate a

particular node specification within a rule relative to the first line of its

encodement (i.e., where 'RULE' Is).

Each programmer may wish to decide for himself whether he wants to
establish his own conventions for the ordering of links within node specifications.

The canonical encodement does not specify any ordering, but the author has

"prefered to order links as "solid", "broken", and "flow" and then within each

"category "down" before "right". At least it is preferable to maintain the

relative ordering of argument links and result links of call nodes and value
.. call nodes.

(END)
C-22-

- . o - : -

I
I
I
I
1:

Section D

The Syntax of the E-.codement of

AMBIT/L Programs

"". December 14, 1971

Si This section employs a BNF-lIke grammar to present
the syntax for one insertion of an AMBIT/L Program
in its encoded form.

f-5

Syntax

An AMBIT/L program is composed of one or more separately-

compiled "insertions". This section presents a BNF-like grammar for the

syntax of the encodement of one insertion. The grammar may be consulted

as the authority on what is acceptable to the AMBIT/L Compiler.

The grammar is organized in four parts: insertion syntax, rule
syntax, name syntax, and symbol syntax. The productions of each part

are not self-contained, but all four parts together cover the grammar.

As in BNF, a vertical bar is used as a metasymbol to separate
various choices. Lower-case words which may be hyphenated are used as

non-terminals of the grammar. A pair of square brackets encloses an
optional constituent, i.e., one which may be included zero or one time.
A pair of curly braces encloses a constituent which may be included any
number (including zero) of times.

In general, a separator may be inserted anywhere in an insertion
between two constituents unless the grammar includes the special meta -
symbol cp , which means its left and right neighbors must be concatenated.

A non-null separator must be used between two constituents if both its left
and right immediate neighbors are then either alphanumeric or the character
period. The syntax of a separator is:

separator - [space tab carriage-return I comment)

comment - $ (true-symbol) carriage-return

The non-terminal "space" represents the character obtained by depressing
the space bar on the keyboard. The "tab" represents a horizontal tabulation
character (ASCII HT), which is obtained as CTRL I on the Model 33 Teletype.
The "carriage-return" represents a new line, i.e., both a carriage-return
and a line feed. The "true-symbol" is defined in the symbol syntax as any
printable character on the Model 33 Teletype including the space.

Syntax

[I 'A

Insertion Syntax

I1. insertion --- prolog block

12. prolog -- INSERTION insertion-name;

13. block --

Insert-command

BEGIN

f declarative;]
f function-defn;]
f attached-label • imperative;)

END

14. Insert-command - INSERT insertion-name

-- 15. declarative -- declarator identifier f identifier]

16. declarator -4 PERMI TEMP MARK

T7. function-defn -- function-heading: function-body

"18. function-heading - function-name (t argument]) [result]

"19. function-body - free-imperative

I10. imperative -4 free-imperative [/ / transfer-list]

I Ill. free-imperative -' block rule

I
I'

II.

I Syntax

I112. transfer-list -- S / exit-label r F / exit-label]
F / exit-label 1 S / exit-label 3

ISF / exit-label

1 113. exit-label - - pure-exit-label I dummy indirect

114. pure-exit-label - identifier relative -label

115. relative-label - RET j EXIT J PREV CUR NEXT

•_1I16. insertion-name"

117. attached-label

118. function-namre - Identifier

119. aigument

120. recult

D-3

Syntax

Rule Syntax

I RI. rule r RULE] nods f , node)

R2. node -- data-node I call-node

R3. data-node -. data-boundary [/ data-content] data-link)

R4. data-boundary - position

-- R5. data-content i type-part £/ name-part)

R6. data-link [link-type cp] route / destination

R7. link-type -- S I B I F

R8. call-node call-boundary . call-content f call-link)

R9. call-boundary - position [- position]

"RI0. call-content - F [/ name-part j j type-part / value-call

- Rll. call-link r Eorigin/] S p] route destination

R12. type-part -- type-set [!]

R13. type-set (#] type [q) type) JA

- - R14. type FI I IRIS I T IB I C IP L M

T RI5. name-part - namej r name] name-test

SD-I

S6b9

Syntax

RI16. narne-test =namre f/name I#name f/name

R 7. value-call - * 1 V c indirect

R18. origin - pcs ition

R19. destination -- position I **

R20. position - letter e digit

I
IR21. rout. -- segment cp segment)

R22. seqment - perturbation cPI direction

R23. perturbation -- N N P M

R24. direction U iD L R

D-5

€~

I Syntax

I Name Syntax

I Ni. name - dummy indirect I literal

N2. dummy --- * identifier * unsigned-integer

N3. indirect -- [indirect-walk] @ identifier

"N4. indirect-walk - [D qp Rcp] D

-- N5. literal -- token string I basic-symbol real integer

null-cell function-or-label I poir.,ýer-or-mark

"NS. token -- (f literal))

N?. string 'cp (quoted-symbol cp

- N8. basic-symbol -% p symbol

N9. real -r [sign] unsigned-real

N10. integer [sign unsigned-integer

"NlI. null-cell -* **

i -- N12. function-or-label -• [-) ide .fier

N13. pointer-or-mark -- , identifier

, 'N14. unsigned-real -- unsigned-decimal E cp scale-factor]

unsigned-integer cp scale-factorI

D-6,, 7.1

Syntax

N15. unsigned-decimal -- unsigned-integer p [cp unsigned-integer]j

ccp unsigned-integer

N16. scale-factor -4 E cp unsigned-integer j
E sign unsigned-integer

1$ N17. unsigned-integer -- digit (fq digit)

N18. identifier -- letter f ci alphnum f ci,. ci alphnum cpalphnuml II

I
I

D-7 72

- ~---- ~ -- _____72

I Syntax

J Symbol Syntax

Si. symbol - true-symbol j control-symbol

S2. quoted-symbol - free-symbol j % cp protected-symbol

J S3. true-symbol -- free-symbol I special-symbol

S4. protected-symbol -- control-symbol special-symbol

S5. control-s' nbol _4 CR j LF I VT FF I TAB ESC SUB

-- V5. special-symbol - % I

__ S7. free-symbol - (any printable character on the Model 33

-. Teletype including the space)

58. alphnum -- letter I digit

-- $9. letter (any upper-case alphabetic character:

A-IB j ... Z)

S10. digit --- 0 1 1 3 41 51 61 7 81 9

SI. sign - + +1-

I

I
SD-8 (END)

73

II

Section E

AMBIT/L Built-in Functions

for the Programmer

October 11, 1971

This section describes the functions predefined or
-[built-in to the AMBIT/L System upon which the AMBIT/L

programmer may call to perform standard operations.
The built-in functions for input/output are discussed in
Section F.

AA
|4

"- 9*•.

.LI-4

Built-in Functions

E

I There are well over 100 primitive built-in functions implemented
in machine language as part of the AMBIT/L interpreter. Some of these are

private to be used by system programs only. To an AMBIT/L programmer

most of the primitive functions can be called as built-in functions. In
addition, some built-in functions are written in AMBvIT/L and defined in

the environment. This distinction will not be made in the following

descriptions.

The built-in functions of AMBIT/L can be categorized into classes

as follows:

a) Arithmetic Computation

- ADD add two numbers

ADD1 add I to a number

_ -SUB subtract one number from another

SUB1 subtract 1 from a number

NEG negate a number (i.e., change its sign)

ABS yield absolute value of a number

MUL multiply two numbers

SQ square a number

DVQ divide yielding quotient

-- DVR divide yielding remainder

DVQR divide yielding quotient and remainder

_ -MAX yield maximum of two numbers

MIN yield minimum of two numbers

b) Arithmetic Predicates

EQO is a number equal to 0?

,- NEO is a nu;;jber not equal to 0?

LTO is a number less than 0?

LEO is a number less than or equal to 0?

E-1

75

Built-in Functions

T GTO is a number greater than 0

K • GEO is a number greater than or equal to 0?

EQ is one number equal to another?

NE is one number not equal to another?

LT is one number less than another?

LE is one number less than or equal to another?

GT is one number greater than another?

GE is one number greater than or equal to another?

-c Logical Computation

Ar"• yield logical AND

OR yield logical inclusive - OR

XOR yield logical exclusive - OR

NOT yield logical NOT

i'SHIPT logical shift

d) Membership Predicates

: EQ are the arguments equal?

NE are the arguments not equal?

EQNUL is the argument equal to the NULL CELL?

SGN is the argument either the BASIC SYMBOL %+ or

the BASIC SYMBOL %- (i.e., an arithmetic sign)?

"LETTER is the argument a BASIC SYMBOL which represents
one of the 26 upper case letters?

DIGIT is the argument a BASIC SYMBOL which represents one

of the ten decimal digits?

ALPHNUM is the argument a BASIC SYMBOL which represents

either an upper case letter or a decimal digit?

iA " PRINT.CHAR is the argument a BASIC SYMBOL which representsar

a printing character?

BEFORE is one character strictly earlier in the ASCII collatingII sequence than another?

E-2

76

J Built-in Furztions

AFTER is one character strictly later in the ASCII

collating sequence than another?

MEMBER is the first argument Lhe came as any other

argument?

e) List and Structure Processing

LAST yield the last CELL of a list

LENGTH yield the length of a list

CYCLE.LIST is the argument a CELL which heads a cyclic list?

CYCLE.STRUCT is the argument a structure which includes at

least one cycle?

COMPARE. CELL compare two arguments for equality or for
whether they are equivalent CELLs

COMPARE.LIST compare two arguments for equality or for
"whether they are CELLs which head equivalent

lists

COMPARE.STRUCT compare two arguments for whether they are
equivalent structures

CAT catenate (or concatenate) two lists

COPY.CELL copy a CELL or a terminal node

COPY.LIST copy a list or a terminal node

COPY.STRUCT copy a structure

"f) Free Storage Management

GCOL invoke garbage collection of free storage

FLTH update FREE. CT with the free storage length

FREE.CELL free a CELL

j FREE. LIST free the CELLs of a list

FREE.3TRUCT free the CELLs of a structure

!

E-3

77

Built-in Functions

I g) Type Transfers

TRI transfer to an INTEGER

TRR transfer to a REAL

TRS transfer to a STRING

TRT transfer to a TOKEN

TRD transfer to the display

h) Miscellaneous Functions

wr LENGTH yield an integer which indicates the length
of the argument

NEXTB yield the next BASIC SYMBOL

PREVB yield the previous BASIC SYMBOL

RANDOM yield a pseudo-random number

PJOB yield the job number

"RUNTIME yield the running time in KCS
"" USER.BREAK cause a user break into the DAMBIT/L debugger

-- AMBIT.EXIT exit and terminate execution

The various built-in functions will now be presented by classes.

Most functions detect error conditions which lead to error traps. At present,

an error trap causes the AMBIT/L System to type a message on the terminal

and then enter the DAMBIT/L debugging system (unless it is considered to

be "fatal"). In the future the "almost fatal" traps will be implemented as

"actual traps where a function call is performed so the programmer may

substitute his owr recovery procedures. Such a trap facility now exists only

-- for the input/outlut built-in functions.

E-4

Built-in Functions "

Arithmetic Computation

All of these functions may be called with either INTEGER or REAL

arguments, except for DVR and DVQR which are deflned only for INTEGERs.

"T If a function has two arguments their types must agree; otherwise, an

error trap occurs. An error trap also occurs if the type of an argument is

neither INTEGER nor REAL. Results of these functions are either of type

INTEGER or REAL, according to the given arguments.

"If a computation involving REALs produces an overflow condition,

+'- an error trap occurs. This problem does not arise with INTEGERs, since

(in AMBIT/L) an INTEGER has practically unlimited precision.

An attempt to divide by zero causcs an error trap to occur.

-None of these functions can FAIL.

ADD or ADD. I or ADD. R

Use: add two numbers

Arguments:

-#1: an INTEGER or REAL representing the first addend

-#2: an INTEGER or RET. (same type as the first argument)

representing the second addend

1Results: #1: the INTEGER or REAL (same type as the arguments)

- which represents the sum of the two addends

SNotes: Tht. ,,amc ADD.I is available as a i:.nemonic for adding

INTEGERs, and the name ADD.R is available as a mnemonic

for adding REALs; all three names invoke the same function.

EE-S 79

Built-in Functions

ADD1 or AD1

Use: add 1 to a num.er

ii' Arguments:

#1: an INTEGER or REAL

Results: #I: the INTEGER or REAL (same type as the argument) which

represents the number resulting from adding 1 or 1. 0 to

the number represented by the argument
j i

SUB or SUB.I or SUB.R

"Use: subtract one number from another

Arguments:

#1: an INTEGER or REAL representing the minuend

#2: an INTEGER or REAL (same type as the first argument)
representing the subtrahend

Results: #I: the INTEGER or REAL (same type as the arguments)

"which represents the difference of the minuend minus

the subtrahend

Notes: The name SUB.I is available as a mnemonic for subtracting

INTEGERs, and the narn:. SUB.R is available as a mnemonic
for subtracting REALs; all three names invoke the same function.

I

÷* ,-6E80

T
Built-in Functions

I '

SUBI or SB1

Use: subtract 1 from a number

* Arguments:

#1: an INTEGER or REAL ,

Results: #1: the INTEGER or REAL (same type as the argument)
which represents the number resulting from

subtracting I or 1. 0 from the number represented by

the argument

NEG or NEGATE or NEG.I or NEG.R

"Use: negate a number (i.e. change its sign)

Arguments:

#1: an INTEGER or RFAL

Results: #1: the INTEGER or REAL (same type as the argument)
which represents the negation of the number

represented by the argument

Notes: The name NEG.1 is available as a mnemonic for negating

"an INTEGER, and the name NEG.R is available as a mnemonic

Sfor negating a REAL; all four names invoke the same function.

ABS or ABSOLUTE

J Use: yield absolute value of a number

Arguments:
#1: an INTEGER or REA1.

E-7 j

Ii !Built-in Functions

Results: #1: the INTEGER or REAL (same type as the argument)

which represents the absolute value (or magnitude)
of the number represented by the argument

4 MUL or MUJL.I or MUL.R

iuse: multiply tw'c numbcrs

Arguments:

"#I- an INTEGER or REAL representing the multiplicand

#2: an INTEGER or REAL (same type as the first

argument) representing ihe multiplier

j "Results: #1: the INTEGER or REAL (same type as the arguments)
which represents the product of the multiplicand times

the multiplier

I " Notes: The name MUL.I is available as a mnemonic for multiplying

INTEGERs, and the name MTUL.R is available as a mnemonic
for multiplying REALs; ail *hree names invoke the same

function.

Use: Esuare a number

Arguments:
#1- an INTEGER or REAL

Results: #1: the INTEGER or REAL (same type as the argunernt)
which represent- the square of the number represented

by the argument

E-8

I •Built-in Functions

Use: divide yielding .quotient

Arguments:

S#1: an INTEGER or REAL representing the dividend

"#2: an INTEGER or REAL (same type as the first1• argument) representing the divisor

Results: #1: the INTEGER or REAL (same type as the arguments)

which represents the quotient resulting from the
division of the dividend divided by th.- divisor

DVR

"Use: divide yielding remainder

Arguments:

#1: an INTEGER representing the ,:.:ividend

#2: an INTEGER representing the divisor

Results: #1: the INTEGER which represents the remainder

resulting from the division of the Cdividend divided
"by the divisor

DVQR

Use: divide yielding quodeent and remainder
T

Argument s:

#1!: an INTEGER representing the dividend

* ~E-9 8

Built-in Functions

#2: an INTEGER representing the divisor

"Results: #1: the INTEGER which represents the quotient resulting

from the division of the dividend divided by the divisor

#2: the INTEGER which represents the remainder

resulting from the division

MAX

Use: yield maximum of two numbers

Arguments:
1#: an INTEGER or REAL

#2: an INTEGER or REAL (same type as the first argument)

Results: #1: the INTEGER or REAL (same type as the arguments)

which represents the maximum of the numbers

represented by the two arguments

MIN

Use: yield mi__ mum of two numbers

Arguments:

#1: an INTEGER or REAL

#2: an INTEGER or RDAL (same type as the first
"argument)

Results: 1: the INTEGER or REAL (same ;Pe as the argument--)

which represents the minimum of the numbers

represented b/ the two arguments

.AMl* E-I10

Built-in Functions

J Arithmetic Predicates

These functions may be called with either INTEGER or REAL

arguments. If a function has two arguments their types must agree;

otherwise an error trap occurs. An error trap also occurs if the type

"of an argument is neither INTEGER nor REAL.

If the arithmetic predicate is TRUE the function SUCCEEDS;

_ -if it is FALSE the f.,nction FAILS. These functions have no results.

First, the arithwietic predicates with one argument are

presented:

Function Name (s) Condition for SUCCESS

EQO argument qual to 0
:!NEO argument not etqual to 0

LTO or ISNEG or IS. NEG argument less thanN e 0

LEO argument less than or etqual to 0

GTO or IS POS or !S. POS argument greater .31n 0

GEO argument qreater than or equal

to 0

I

I

I
SI :

V

I Built-in Functions

] Next, the arithmetic predicates with two arguments are presented.

"Each one is a comparison of the first argument with the second one

(in that order).

Function Namnt Condition for SUCCESS

- EQ* equal

NE* not equal

LT less than

LE less than or equal

GT greaterthan

GE greater than or equal

*Although EQ and NE may be used to compare the equality of two

j if INTflGERs o% REALs, they are predicate3s which may accept any data nodes

~ as argumeri i- they are also classified as membors hip, predicates.

E-12

13f

Built-in Functions

LKgical Computation

These functions operate on INTEGERs which represent 36-bit
"words in the PDP-10 implementation of AMBIT/L. Thus these functions

"are machine-dependent and implementation-dependent. An AMBIT/L

-- INTEGER is represented in the standard two's complement form which the

PDP-10 machine structure expects. Thus those INTEGERs which can

represent 36-bit words have values between -2"5 and 2 -1. If an

INTEGER whose value is outside of this range and which is meant to
represent a 36-bit word is given as argument to any logical computation

235
funr'ion, the function treats that argument as -2

AND

Use: yield logical AND

Arguments:

#1: an INTEGER representing a 36-bit word

#2: an INTEGER representing a 36-bit word

Results: #1: the INTEGER representing the 36-bit word
which is the bit-by-bit logical AND of the 36-bit

words represented by the arguments

E-13

Built-in Functions

IOR
Use: yield logical inclusive - OR

Arguments:
#1: an INTEGER representing a 36-bit word

S#2: n INTEGER representing a 36-bit word

Results: #1: the INTEGER representing the 36-bit word

which is the bit-by-bit logical inclusive-OR

"of the 36-bit %,ords represented by the arguments

XOR

Use: yield logical exclusive - OR

Arguments:
#1: an INTEGER representing a 36-bit word

#2: an INTEGER representing a 36-bit word

Results: #1: the INTEGER representing the 36-bit word
which is the bit-by-bit logical exclusive - OR

of the 36-bit words represented by the arguments

NOT

"Use: yield logical NOT

t JArguments:

#1: an INTEGER representing a 36-bit word

E-14S...;• ''" ..•' " •-. •.... *... 1• :''•--I "t ._ _ _ _A-,'"..... "....... • i

Built-in Functions

L Results: #1: the INTEGER representing the 36-bit ,ord
which is the bit-by-bit logical NOT (or one's

complement) of the 36-bit word represenced

by the argument

LSHIFT

Use: logical shift

Arguments:

#1: an INTEGER representing a 36-bit word

#2: an INTEGER representing a shift count

- Results: 41: the iNTEGER representing the 36-bit word which
results from performing a logical shift of the 36-bit

S-- word represented by the first argument by the number

. of bit positions indicated by the value of the second
-- .argument; if the second argument is greater than 0
"~ !a left shift is done; if the second argument is less

than 0 a right shift is done; any bits "dropping out
of either end" are lost

Ii
E-1

Built-in Functions

I
Membership PredicatesiiI

These functions determine whether a first argument is a

member of . of data nodes. That set may be fixed or it may

depend uon other arguments; the set may have only one member.

If the predicate is TRUE the function SUCCEEDS; if it is FALSE the

function FAILS. These functions have no results.

"Use: are the arguments equal?

Arguments:

#1: any data node

#2: any data node

NE

Use: are the arguments not equal?

Arquments:

I rv.p data node

#2: any data node

EONUL

Use: is the argument equal to the NULL CELL?

Arguments:

#1: any data node

E-16 90

--7- - -.- ,

I Built-in Functions

SGN

Use: is the argument either the BASIC SYMBOL %+ or
i. •- the BASIC SYMBOL %-(i.e. , an arithmetic _sig._)?•

Arguments:

1#: any data node

LETTER

Use: is the argument a BASIC SYMBOL which represents

one of the 26 upper case letters?

Arguments:

#1: any data node

DIGIT

Use: is the argument a BASIC SYMBOL which represer ts

one of the ten decimal digits ?

.**Arguments:

#1: any data node

ALPHNUM or ALFNUM

Use: is the argument a BASIC SYMBOL which represents

either an upper case letter or a declimal digit (i.e., an

alphanumeric character)?

T Arguments:
#1: any data node

E-17 ,

Built-In Functions

PRINT. CHAR A<Al
Use: is the argument a BASIC SYMBOL which represents a

[print~ing c2h~aracter (i.e., one whose ASCII oc~tal code is
between 40 and 137 inclusive; note that the Tharacter

SPACE is included)?

S~Arguments:

#1: any data node

BEFORE
!I

Use: is the character represented by the first argument before

(strictly earlier) in the ASCII collat'ng sequence than the

character represented by the second argument?

Arguments:
"#1: a BASIC SYMBOL which represents an

"ASCII character

#2: a BASIC SYMBOL which represents an

ASCII character

AfTER

Use: is the character represented by the first argument after

"(strictly later) in the ASCII collating sequence than the

character represented by the second argument?

Arguments:
S*#1: a BASIC SYMBOL whi h ,epresents an ASCII

character

1

#2: a BASIC .YMBOL which represents an ASCIIJ• cb., 'r

E-18 S

V Built-in Functions

MEMBER or ONEOF

Use: is the first argument the same as any one of

the other arguments?

Arguments:

#1: any data node

Others: this function can accept any number of other

arguments as any data nodes

Notes: This function FAILS if only one argument is given.

E-19

'-

Built-in Functions

List and Structure Processiny

IWithin this category are various types of functions: those
which compute some result based on the given data, predicates fcrI cycle tes,.ing, predicates for determining equivalence of structures,

and functions used for transforming and copying structures. The
COMPARE.CELL and COPY.CELL functions are defined for logical
completeness, but they are of minor utility.

LAST

Use: yield the last CELL of a (non-cyclic) list

Arguments:

#1: a CELL

" Results: #1: the CELL which points RIGHT to the NULL

"CELL and which is accessible by following

RIGHT links from the argument

. -Notes: If the argument is the NULL CELL it is returned as

Sthe result. If the list is cyclic an error trap occurs.

II ~E-20

Sthe esul. If he lst i

Built-in Functions V

LENGTH*

Use: yield the lengt of a (non-cyclic) list

Sf - Arguments:

#1: a CELL*

Results: #I: the INTEGER which represents the number of

CELLs in the given list other than the NULL CELL;

this is 0 when the NULL CELL is given as argument

Notes: If the list is cyclic an error trap occurs.

CYCLE.LIST or CYCLST

Use: is the argument a CELL which heads a cyc-: !':.st?

Arguments:

#1: any data node

Results: none

Notes: This predicate PAILs when its argumený is not a CELL,

or if its argument is th,. "'TT TT Cr -, or if the NULL CELL

is accessible by following RIGHT links from the argument.

This function SUCCEEDS if .ts argument is a CELL which

heads a list which has a cycle. A list has a cycle if there

is a CELL Q) other than the NULL CELL accessible from

"the initial CELL by following RIGHT links such that there

is a (non-null) sequence of RIGHT links leaving X whiw:h

leads back to X.

"*The LENGTH function may also be called with an argument of an

INTEGER, a STRING, or a TOKEN. The complete description of

this function is given under "miscellaneous functions."

E-21

Built-in Functions

CYCLE.STRUCT or CYCSTR

SUse: is the argum ent a structure w hich includes at least
one cycle?

Arguments:liz #1: any data node

Results: none

I Notes: This predicate FAILs ii its argument is not a CELL, or if

its argument is the NULL CELL, or if all "walks" through

CELLs beginning at the argument and following RIGHT and/or

DOWN links lead to a terminal node. A terminal node is

either the NULL CELL or any data node other than a CELL.

This function SUCCEEDS if its argument is a CELL which
heads a structure which has a cycle. A structure has a

cycle if there is a CELL (_) other than the NULL CELL

accessible from the initial CELL by following RIGHT and/or

DOWN links through CELLs su-.h that there is a (non-null)
sequence of RIGHT and/or DOWN links leaving X which

leads back to X via CELLs.

COMPARE.CELL or CMPCEL

Use: compare two arguments for equality or for whether they

are equivalent CELLs

Arguments:

"#1: any data node

- #2: any data node

Results: none

E-22 Ii
_96

Built-in Functions

E l

Notes: This predicate SUCCEEDs if its two arguments are the

same or if they are equivalent CELLs; otherwise it FAILs.

"Two CELLs are equivalent if they both point DOWN to

the same node and if they both point RIGHT to the same

node.

COMPARE. LIST or CMPIST*

Use: compare two arguments for equality or for whether they

are CELLs which head equ dlent (non-cyclic) lists

Arguments:

#I: any data node

#2: any data node

Results: none

Notes: This predicate SUCCEEDs if its two arguments are the

same or if they are CELLs which head equivalent lists;

otherwise it FAILs. Two lists are equivalent if they are

the same, or if the first CELL (Q of one list and the first

CELL (Y) of the other list both point DOWN to the same node

and X points RIGHT to a list which is equivalent to the one

- to which Y points by its RIGHT link. If the arguments are

two different CELLs they must each head a list with no cycles;
otherwise an error trap occurs.

•*This fuaction has another synonym which is considered obsolete:

'COMPARELIST'.

E-23
S~97

Built-in Functions

I

COMPARE.STRUCT or CMPSTR*

Use: compare two arguments for whether they are equivalent

(non-cyclic) structures

- - Arguments:

#1: any data node

#2: any data node

Results: none

Notes: This predicate SUCCEEDs if its arguments are equivalent

structures; otherwise it FAILs. Two structures are

equivalent if they are the same, or if each is headed by

a CELL such that the header CELL W of one structure and

the header CELL (of the other structure point DOWN to

two equivalent structures and X points RIGHT to a structure
which is equivalent to the one to which Y points by its

RIGHT link. If the arguments are two different CELLs they

must each head a structure with no cycles; otherwise an

error trap occurs.

t --

[.

*This function has two other synonyms which are considered obsolete:

'COMPARESTRUCTURE' and 'COMPARE .STRUCTURE'.

E-24SE-24 -

Built-in Functions -1
CAT

Use: catenate (or concatenate) two lists

Arguments:

"#I: a CELL

-. #2: a CELL

.. Results: #I: the CELL which heads the list produced by

catenating the list headed by the first argument

to the list headed by the second argument; this

function properly handles empty lists

"Notes: If the list headed by the first argument is cyclic an

error trap occurs. This function may create a cyclic

list if its two arguments are already part of the same

list. The AMBIT/L function definition presented below and on
St i the next page is equivalent to the built-in CAT function.

A
CAT(A B) C:

BEI)) ULEi' (005030)
I ~ +___p +___p -p

I B I I A I I C I

I:: H
-. 1 1 1 11 1

.. ÷~~~*--.-:.-. ÷-.

IH
S1H

.+_..+ +___,

IS/fET F/NEXT;

99" ~~E-25S•

Built-in Functions
IIJLE

-- ÷_.4---p --1 1 1 1 1 1

I1A I I 3 C I

.IH11 1 H
1 1 1 H

1----4 l------

S/IRET F/N__X T; :

"1 H
I HV

+---p +'---C -- p
S1 1 1 11 1

1** 1 1 1 1
1 1 1 11 1

" " ~~~4------4 4---,-- ÷---

1 I

IH

+--C! +---+P-C

1 1 1 1 1 1

.. l l l --===>I

1 1 1 11

1 H1
_1 H1

-- 1/-----1

1HI I-

Vv V
4--C"----- 4--C

S/R.ET;

E-26

Built-in Functions

COPY. CELL or CPYCEL

Use: copy a CELL or a terminal node

Arguments:

S{ #1: any data node

Results: #1: the data node which was given as argument if

it is not a CELL or if it is the NULL CELL;

otherwise an unused CELL is obtained, its DOWN4 and RIGHT links are made to point to the destinations

of the DOWN and RIGHT links of the argument, and

it is returned as the result

COPY. LIST or C PYLST*

Use: copy a (non-cyclic) list or a terminal node

Arguments:

#1: any data node

Results: #1: the data node which was given as arqument if it is

not a CELL or if it is the NULL CELL; otherwise a

copy of the given list is returned after being constructed

"by linking together unused CELLs and making their

DOWN pointers point to the destinations of the DOWN

links of the corresponding CELLs of the argument

3Notes: If the argument is a cyclic list an error trap occurs.

I

*Th1is function has another synonym which is considered obsolete:

'COPYLIST'.
-2017.E- 2?

Built-in Functions

T COPY.STRUCT or CPYSTR

Use: copy a (non-cyclic) structure

Arguments:

#1: any data node

Results: #1: a copy of the argument constructed as follows:

"if the argument is not a CELL or if it is the NULL

CELL it is returned; otherwise an unused CELL is
obtained, its DOWN link is made to point to a copy

of the structure at the destination of the argument's

DOWN link, its RIGHT link is made to point to a
copy of the structure at the destination of the

argument's RIGHT link, and it is returned

Notes: If the argument is a structure which includes a cycle, an

error trap occurs. If the given structure contains any CELL
"which is pointed to by more than onc other CELL of that

structure some CELLs will be copied more than once.

UK`1

a.E-2

o21

FT

SE-28 *

Built-in Functions

For example, if the following structure is tCe argument to

COPY. STRUCT: A

I --- ---->1 1 - -- ->-I

Hv
1 3 1

-- - - - - - - - -- - - - - - - - >- I --- >1> I ---- I * I

++---

--- --- --- -- 1 1 - -> *• + -- 1 +---+ +-+-- + --

11 1 1

4--

1 1 1 131
E-29 ---

1 1- 11

a I 1 L1 T
'---C+..-+

1 11 11 1 :I 1 1..> 1 . . I * 1.

S1 1 1 1 1 1 1 1 1

+-C+--- 4 +---C 1 --

1 1 1 l1 1l l

1 1 1
1 1 1
1 1 1

V V V
-- +---C +---C +---I ÷---C +---C

1 1 1 1 1 1 1 1 1 1
"1 I1.... 1** 1 1 3 1 1 I1.... 1** I
1 1 1 1 1 1 1 1 1 1

4.-----4 4-----4- ----.--- 4.----4- .-'---4-

1 1
1 1
1 1

V :2

131 13--1
1 1 1 1

- 'F .- •- 4 4-----4-

Built-in Functions

Free Storage Management

The AMBIT/L prcgrammer normally does not have to be conce- ed

with the management of free storage. The system automatically invokes

the Garbage Collector when necesL-ry to reclaim space rescL'rces in the

implementation which are no longer in use. Tn the PDP-10 implementation

"of AMBIT/L fr;-. storige is managed as individual 36-bit storage words.

Such space f: ken utp :y 3?EI.Ls, TOKENs, 3TIUNGs, and those INTEGERs

whose values ' -'utidie v. tP. range 0 to +32767; INTEGERs whose values

are within that hinge tak, '.ý r.- iree storage space.

Each CEL:. and each separately created RFAL, LABEL, or FUNCTION

node o'cupies one f:,oe storage word. Each TOKEN occupies one word

for each constituent in its subname plus two words of overhead. Each

STRING occupies one wor,:; for each BASIC SYMBOL in its name plus two

words of overhead. Each separately created INTEGER whose value is

between -235 +1 and -1 or between 32768 and 2 -1 occupies one word.

Each INTEGER whose value is less than -2 +1 or greater than

2 -1 is called a "long inteaer" in the PDP-10 implementation. Although

the AMBIT/L programmer considers all INTEGERs as "atomic" nodes, each

long integer is internally represented as a list of INTEGERs interpreted as

a number with base 2 If any arithmetic involves a long integer, then

an undetermined amount of free storage may be used. An upper bound may

be defined, however, for each separately cleated long integer: for a given

"integer take its absolute value and compute the number N of "digits" base

2 required to represent it; the long integer occupies at most 2N +1 words.

A fine- upper bound may be determined by subtracting I word for each

"digit" (in the representation of the long integer) whIch is less than 32768.

Since some of the internal long integer routines attempt to conserve space,

1 no lower bound on the number of words occupied by a long integer can be

given.I
II

E-30

-- A 1

Built-in Functions

When the Garbage Collector is invoked it rings the BELL on the 4

4user's terminal and then proceeds to make up a free storage list out of

those words in the free storage area which are not accessible by a

sequence of links beginning at a POINTER, STRING, or TOKEN. Thus

the Garbage Collector frees all CELLs which are not accessible and all
words used to represent nodes of other types which are no longer referenced

"(e.g., a REAL). At present, the Garbage Collector makes no attempt to

* merge separately created equivalent copies of REALs, LABELs, FUNCTIONs,
or INTEGERs.

When garbage collection is complete the system PERM POINTER

'FREE.CT' is made to point DOWN to the INTEGER which represents the

number of words of free storage available. Then, if that number is 0

an attempt is made to transfer control indirectly via the system PERM

POINTER 'GCOL.CHOKE'; if that POINTER points DOWN to the NTULL CELL

an error trap occurs; otherwise an "indirect goto" is performed under the
assumption that the programmer has set the DOWN link of GCOL.CHOKE

to point to a LABEL node corresponding to an appropriate place in his

program. Since this is a "goto" rather than a function call it may pop

the interpreter control stack !n such a way that previously referenced structures

are made available for garbage collection.

Although the Garbage Collector is automatically invoked when

needed, the AMBIT/L programmer is permitted to invoke a garbage collection

at any time by calling the GCOL built-in function.

If a garbage collection was invoked automatically, then after

FREE.CT is updated an attempt is made to call a trap function via the system

PERM POINTER 'TRAP.GCOL'; if that POINTER points DOWN to the NULL

CELL no function call is made.

Note that the POINTER FREE.CT is not updated continuously. It

is updated after each garbage collection, and also the programmer is

permitted to cali at any time the FLTH (for Free LengTH) built-in function

which updates FREE.CT.

E-31

-M k

Built-in Functions

Garbage collection reclaims space taken up by several node types,

but most occupation of free storage is by CELLs. Since garbage collection

is costly, three built-in functions are available to the AMBIT/L programmer

for controlling the freeing of CELLs (only) either individually, in a list,
'INV

or in a structure. The use of these functions is optional; correct use can

produce significant savings. However, erroneous use can produce terribly

"obscure bugs since these functions "blindly" return to the free storage

list whatever is given them as arguments. Any of these functions may be

called during (or just after) a garbage collection choke since none attempt

to get a free word. Furthermore, since these functions will accept

partially-freed as well as cyclic structures, the careful programmer can

cause the freeing of rather entangled structures.

The descriptions of the built-in functions associated with free

storage management are now presented.

GCOL

Use: invoke qarbage collection of free storage

Arguments:

none

Results: none

Notes: The invocation of the Garbage Collector is normally automatic,

but this function provides the programmer with a method for

causing a garbage collection to occur. As usual, the system

- PERM 'FREE.CT' is updated to point DOWN to an INTEGER

representing the number of words of free storage after garbage

collection. If that number is 0 an attempt is made to transfer

E-32

Built-in Functions .!

I control indirectly via the system PERM POINTER
'GCOL.CHOKE'; if that POINTER points DOWN to the A

I NULL CELL an error trap occurs. If there is at least one

word of free storage after garbage collection, this function 5

SUCCEEDs. There is no way for it to FAIL. i

FLTH

Use: update FREE.CT with the free storage length

"Arguments:

"none

Results: none

Notes: The system PERM POINTER 'FREE. CT' is updated to point

DOWN to an INTEGER representing the number of words of
free storage. This function always SUCCEEDs. FREE.CT

is also updated after each garbage collection.

FREE. CELL or FRECEL*

Use: free a CELL

Arguments:

#1: any data node

, Results: none

"Notes: If the argument is a CELL other than the NULL CELL it is
rendered free; otherwise, no action takes place. This

function always SUCCEEDs.

*This function has another synonym which is considered obolete:

'FREECELL'.

E-33

- -- ---- 14

- I Built-in Functions

T/

FREE.LIST or FRELST*

Use: free the CELLs of a list

Arguments:

"#1: any data node

Results: none

Notes. If the argument is a CELL other than the NULL CELL,

it and all non-NULL non-free CELLs accessible by

RIGHT links are rendered free. If an already free

{ .CELL is encountered the freeing stops; thus a cyclic

list may be given as the argument. If the argument

"is the NULL CELL or not a CELL no action takes place.

This function always SUCCEEDs.

IThis function has another synonym which is considered obsolete:

'FREELIST'.

E-34

ýl~5 --. .,ýj mývr, - -- -- - -- -

II
U I Built-in Functions

ST FREE.STRUCT or FRESTR*

Use: free the CELLs of a structure

Arguments:

#1: any data node

Results: none

Notes: If the argument is a CELL other than the NULL CELL,

it and all non-NULL non-free CELLs accessible by
"- - RIGHT and DOWN links through CELLs are rendered

-- free. If an already free CELL is encountered it

- - stops that particular "walk" as if it were a terminal

node; thus a cyclic structure may be given as the
argument. If the argument is the NULL CELL or not

a CELL no action takes place. This function always

SUCCEEDs.

II

*This function has another synonym which is considered obsolete:

'FREESTRUCTURE'.

'I E-35 '

J Built-in Functions

Type Transfers

Type transfer or conversion functions permit the AMBIT/L

programmer to transform or convert an INTEGER, REAL, STRING, TOKEN,

or CELL (a "display") into either an INTEGER, REAL, STRING, TOKEN,

or CELL (display). Five functions are available which each accept one

of these five types of nodes and (potentially) yield a particular type

._ as follows:

-- Function Name Type of Result

"TRI INTEGER

- TRR REAL

-oTRS STRING

-- TRT TOKEN

.. TRD CELL (display)

*. Thus there are 25 tansformations which are individually described in

this section. For each of the five functions a description of five

transformations is presented according to the type of the given argument.

Several of these transformations have questionable utility, but all are

implemented for logical completeness. If a node of type BASIC SYMBOL,

MARK, LA.BEL, or FUNCTION is given as argument to a type transfer

"function an error trap occurs. None of these functions FAIL; if some

"* error condition is detected by a function it causes an error trap to occur.

S-. When a CELL is given as argument to these functions it is

interpreted as heading a list of terminal nodes. A terminal node is

either the NULL CELL or any data node other than a CELL. The TRD

function produces a list of terminal nodes as its result. These lists are

called "displays" since they represent zhe external form of subnames of

INTEGERs, REALs, STRINGs, and TOKENs disassembled into their

T constituent parts. For exa.-pin: if the-, TARD function is given the INTEGER
-62 as argument, it will produce as a result a "display" of that subname

I as a list of three BA-SIC SYMBOLs: %- , %6, and %2 .

! " E-36

SBuilt-in Functions

Recall that a STRING has a subname whose constituent parts

are BASIC SYMBOLs. Similarly, a TOKEN has a subname whose

constituent parts are any terminal nodes.

TRI

"Use: transfer to an INTEGER

Arguments:

#1: an INTEGER, REAL, STRING, TOKEN or CELL

Results: #1: five cases are described according to the type

of the argument:

a) INTEGER the argument is returned as the result

"b) REAL the result is the INTEGER which

represents the integer part (including

sign) of the real number represented

by the argument; thk s a truncation of

the fractional part of the real number is

"performed

c) STRING the display of the given STRING is

derived and used as if it had been the

argument (see the description of the

TRD built-in function)

-. d) TOKEN the display of the given TOKEN is

derived and used as if it had been the
Sargum ent (see the description of the TRD

built-in function)

E-37

Built-in Functions

e) CELL the argument is interpreted to be a list of BASIC

Fr- ISYMBOLs which represents a string of characters

which represents an integer according to the syntax

• I given below; although the syntax allows fcr a

fractional part and/or an exponent the result is the

INTEGER which represents the integer part (including- sign) of the number represented by the given string;

this same syntax of a number is allowed for an

argument to thc TRR built-in function
S-- ~ Syntax:* [

:! ~~number -•SP [Eg~n- LPI int [. A[igl [2eSp] SPII - Syntax:*SP [sgn SPI mtkg [.1 int [_p] LP

E SP [sgn SP] int

int -4 dig fid2]

sgn + -

.. dig 0 01112 34 5 6 7 8 9

.SP p [SPACE ITAB]

Examples: -34 34E56S+ .34 .34 E -5 l

S~ + 34. 34E56 I

- 3.4 3.4E+ 5

t *in the BNF-like grammar used here underlined words are non-terminals;

a pair of square brackets encloses an optional constituent; a pair of curly

1. braces encloses a constituent which may be repeited any number of times

(including zero). ! I

S" E-38

Built-in Functions

!)

TRR

Use: transfer to a REAL

If Arguments:

#1: an INTEGER, R-AL, STRING, TOKEN, or CELLT
Results: #1: five cases are described according to the type ofI the argument:

a) INTEGER if the argument represents an integer whose

magnitude is not larger than the largest
154 12possible real (2 2 212 which has about

38 decimal digits preceding the decimal point)

"then the result is the REAL which represents

that integer (possibly with roundi-ig if its

magnitude is greater than 2 27); otherwise an

error trap occurs

b) REAL the argument is returned as the result

c) STRING the display of the given STRING is derived

and used as if it had been the argument

(see the description of the TRD built-in
function)

d) TOKEN the display of the given TOKEN is derived

and used as if it had been the argument (see

the description of the TRD built- in function)

E 34

Built-in Functions

* r

"e) CELL the argument is interpreted to be a list

of BASIC SYMBOLs which represents a

string of characters which represents a

-- real according to the syntax given on the

following page; although the syntax allows

for highly precise numbers and/or just

integers the closest real is determined, and

the corresponding REAL is returned unless

its value is too large (i.e., its magnitudei• , 154 2127
is greater than 2) in which case

"an error trap* occurs

it--

I
*As a temporary measure this function FAILs if the value of the REAL

Is too ilarge; this "bump" in the design is to accommodate the simple

r implementation of 1AM. 113
E-40

Built-in Functions
S.

Syntax:*I

number SP [_n _P] nt [.1 dig [ex] SP I
L.P Ls] digL [.] int [exp] SP I

p EsP [sgnP sP] mtint

int dig [dig)

sgn +1]

d-0 o 11 21314 5 61 7 819
Ilk

SP [SPACE TAB]

Examples: -34 34E5

.34 .34 E -5

+34. 34.E56

3.4 3.4E+ 5

21.

*In the BNF-like grammar used here underlined words are non-terminals;

a pair of square brackets encloses an optional constituent; a pair of curly

braces encloses a constituent which may be repeated any number of times

(including zero). 1.
N E-41

Built-in Functions

S_ TRS

Use: transfer to a STRING

Argui ents:
#1: an INTEGER, REAL, STRING, TOKEN, or CELL

Results: #1: five cases are aescribed according to the type

of the argument:

"a) INTEGER the display of the given INTEGER is

derived and used as if it had been the

argument (see the description of the

TRD built-in function)

b) REAL the display of the given REAL is derived

and used as if it had been the argument

(see the description of the TRD built-in

"" fnfunction)

c) STRING the argument is returned as the result

" d) TOKEN the display of the given TOKEN is derived

and used as if it had been the argument

(see the description of the TRD built-in

function)

e) CELL the argument is interpreted to be a (possibly

"nul) list of BASIC SYMBOLs, and the

STRING node is returned whose subname is

d pair of single quotes surrounding the

catenation of the characters represented by

the BASIC SYMBOLs; if the argument is not
a (possibly null) list of BASIC SYMBOLs an

error trap occurs

E-42 I

Built-in Functions

TRT

Use: transfer to a TOKEN

Arguments:

"#1: an INTEGER, REAL, STRING, TOKEN, or CELL

Results: #1: five cases are described according to the type of

the argument:

a) INTEGER the display of the given INTEGER isI' derived and used as if it had been the

argument (see the description of the

TRD built-in function)

b) REAL the display of the given REAL is derived

and used s if it had been the argument

(see the description of the TRD built-in

function)

c) STRING the display of the given STRING is derived

and used as if it had been the argument

(see the description of the TRD built-in

function)

d) TOKEN the argument is returned as the result
2

.. e) CELL the argument is interpreted to be a (possibly

null) list of terminal nodes (i.e., data nodes

other than non-NTTLL CELLs), and the TOKEN

node is returned whose subname is a matching 3

pair of parentheses surrounding the sequence i

of subnames of the given terminals

it •E-43

Built-in Functions

TRD

Use: transfer to the display

Arguments:

#1: an INTEGER, REAL, STRiNC, TOKEN, or CELL
? ?

-- Results: #1: five cases are described according to the type of
"=2 the argument:

a) INTEGER the display of the given argument is returned

as i- list of BASIC SYMBOLs which constitutes

the canonicai subname of the INTEGER; the

canonical subname of an INTEGER is the

"decimal representation without leading zeros

and with ,, leading minus sign if the integer

being represented is negative i

b) REAL the display of the given argument is returned

as a list of BASIC SYMBOLs which constitutes

the canonicai subname of the REAL; ti.. canonical

subname of a REAL is of the following form,

where a "d_" is a decimal digit:

d.dddddddE[-] [did

S- the matching square brackets enclose an optional

.. constituent; the optional digit cannot be a '0'

') STRING the display of the given argument is returned

""L as a (possibly null) list of BASIC SYMBOLs

which represent the characters of the subname

"- of the STRING except for the surrounding single

ii quotes

E-44

Built-in Functions

d) TOKEN the display of the given argument is returned

as a (possibly null) list of terminal nodes

-- (i.e., data nodes other than non-NULL CELLs),

whose sequence of subnames constitute the

subname of the TOKEN when surrounded by a

"pair of matching parentheses

e) CELL the argument Is returned as the result

!I
!I

!5

E-43.

E --45-

Built-in Functions

Miscellaneous Functions

Presented here is a variety of functions which don't belong to

"any of the other classes of built-in functions.

LENGTH I - I
S.Use: yield an integer which indicates the length of the argument

Argument!
1#: an INTEGER, STRING, TOKEN, or CELL

Results: #1: an INTEGER; this function always SUCCEEDs; four

cases are described according to the type of the argument:

a) INTEGER the result is the INTEGER which represents

the number of significant bits of storage

required to represent the absolute value of

the integer representeC %y the argument; thus

leading bits of ZERO are not counted; the

length of the integer 0 is 0

b) STRING the result is the INTEGER which represents
the nu.iber of BASIC SYMBOLs in the dispJ),y

of that STRING or (equivalently) the number

of characters in the subname of the STRING

-*excluding the surrounding single quotes

c) TOKEN the result is the INTEGER which represents

the number of terminal nodes in the display
of that TOKEN or (equivalently) the number of

constituents in the sequence of subnames

which constitutes the subname of the TOKEN

EI-

Built-in Functions

14'

d) CELL* the argument is interpreted as a

S(possibly null) non-cyclic list, and

the result is the INTEGER which

represents the number of elements

of the list or (equivalently) the

number of CELLs in the given list

"" other than the NULL CELL; if the

list is cyclic, an error trap occurs

NEXTB

Use: yield the next BASIC SYMBOL

Argument:

#1: a BASIC SYMBOL which represents an

ASCII character

Results: #1: if the argument represents the ASCII character

"" DEL (whose octal code is 177) this function FAILs;

7 -otherwise it SUCCEEDs and returns the BASIC4;: SYMBOL which represents the next character in
A. --.. the ASCii collating sequence (i.e., whose numeric

code is 1 greater)

SI *This form of the LENGTH function was also described under "List

and Structure Processing".

IIE-47
90

r Built-in Functions 1

IT
PREVB

Use: yield the previous BASIC SYMBOL

_ Argument: SA #1: a BASIC SYM BO L w hich represents an ASCII

character

Results: #1: if the argument represents the ASCII character
NUL (whose octal code is 000) this function
FAILs; otherwise it SUCCEEDs and returns the

BASIC SYMBOL which represents the previous
character in the ASCII collating sequence (i.e.,fI whose numeric code is 1 less)

RANDOM

"Use: yield a pseudo-random number

Arguments:

none

Results: #1: a REAL which represents a positive real number
less than 1.0

Notes: This function uses two system PERM POINTERs which point

"DOWN to INTEGERs each corresponding to a 36-bit PDP-10

"word: 'P.SEED' and 'P.RAND'. Initially these two POINTERs
-- are initialized to point to the NULL CELL. If RANDOM Is

called and finds that P. RAND points to the NULL CELL it

supplies a base number or seed to P.SEED which is the decimal
number 1220703125; that number is also supplied to P.RZIND. -

E-48

S•- ! •• •• ". .. "'.. -.." -;'- - " " '• " : - 11-•' .' "- A

Built-in Functions

I The programmer may choose his own seed by initializing

both POINTERs, or he may change the seed at any time.

Using the default seed produces a cycle (the quantity of

random numbers produced before the same sequence re-

appears) of 8589934592. Each call on RANDOM causes
the DOWN link of P. RAND to be updated to point to an
INTEGER which represents the product of the previous

random number (P.RAND) and the cuirent seed (P.SEED).

Then the first 27 bits of the low-order 35 bits of the

new random number are used to form a real number
which is returned as the result. This function always

- - SUCCEEDs (unless it causes an error trap by finding that

"P.RAND points DOWN to neither an INTEGER less than
2 or the NULL CELL).

PiOB

Use: yield the job number

Arguments:
none

- Results: #1: the INTEGER which represents the user's job

number Ir- the PDP-10/50 Time-Sharing System on

which the AMBIT/L Programming System is operating;

this number may be used to create a unique temporary
file ne.iie

Notes: This function alway.: SUCCEEDs.

E-49

r Built-in Functions

SRUNTIMEAK :-
Use: yield the running time in KCS

- -- Arguments:

none

Results: #1: the INTEGER which represents the number of

Kilo-Core-Seconds (KCS) which the running
program has used since its execution began;
a KCS is the basic unit of cost in a PDP-10/50

Time-Sharing System which represents one
second of CPU usage per 1K (102410 words) of

core memory occupancy.

Notes: This function always SUCCEEDs.

USER. BREAK

"Use: cause a user break into the DAMBIT/L debugger

Arguments:

- - none

Results: none

Notes: This function puts the interpreter into a state such that at
the very next rule-entry in the user's program the DAMBIT/L

debugger will gain control. The same effect i obtained by

a user's temporarily exiting his AMBIT/L program by typing
one or two CTRL C characters and then typing the 'REENTER'

command to the PDP-10 Monitor.

3 E-50

I - Built-in iunctions-

AMBIT. EXIT

Use: exit and terminate execution of the AMBIT/L program

S - Arguments:

none

Results: none

Notes: This function terminates execution of the running AMBIT/L

program as if it performed an exit through the outermost

block. It is not appropriate to discuss this function's

SUCCESS or FAILure. Upon termination, the system

indicates on the terminal the number of Kilo-Core-Seconds

(KCS) used and the number of seconds of real time used since

the program execution began. A KCS is the basic unit of

cost in a PDP-10/50 Time-Shariig System which represents

one second of CPU usage per 1K (10 2 4 10 words) of core memory

occupancy.

j E1(END)

r124

f

Section F

AMBIT/L Input/Output

July 22, i371

This section describes to an AMBIT/L programmer the
available built-in functions for performing input/output
in the AMBIT/L Programming System.

II

Input/Output
CONTENTS

F-3 Definitions

F-4 Opening and Logical Names

¼ F-5 Word and Line Input/Output

F-6 Files on Disk
F-7 Teletype Input/Output

F-8 Input/Output of CR

F-8 Input/Output of ESC

F-9 VO Traps
F-12 List of Errors

F- 15 Descriptions of the VO Functions
F- 15 OPEN
F- 18 CLOSE
F- 19 DELETE
F-21 RENAME

F-23 INW

F- 25 INL

F-27 INLS

- f -F-29 OUTW
= i-.F- 30 OUTS

F- 31 OUTL

F-32 OUTLS

E F- 34 SELWI
F-35 SELWO

t F-36 RDSELI
F-37 RDSELO

"F-38 RDLNGTH

F-40 RDLNMS

F- 41 RDINFO

r-

E2

Input/Output

This section describes to an AMBIT/L proqrammer the available
frbuilt-in functions for performing input/output in the AMBIT/L programming

system. There are 19 functions which the programmer may call. At

present, each of these functions is written in AMBIT/L and defined in

the environment. Many of these functions call upon primitive built-in

"input/output functions which are written in MACRO-10 assembly lhnguage
"and are not available to the programmer. These primitive functions are
described in AMBIT/L Internal Memo 3.

Although the input/output functions are presently written in
:. AMB1TAL the programmer should consider them as purely built-in functions

since any substructure of these functions cannot be detected. In the future,

these functions may be rewritten entirely in MACRO-'() assembly language

completely transparently to the programmer. The only cdifference which

may arise is a change in the space-time characteristics of the AMBIT/L

interpreter and therefore, AMBIT/L programs.

All errors detected by the built-in input/output functions are re-

ported by an indirect function call using the TEMP POINTER 'TRAP. 10' declared

in the environment. Initially, as a default setting, TRAP.IO points to a

FUNCTION node 'FTRAP. 10'. The function FTRAP. 10 is a built-in function

which reports a trap by typing an indicative error message on the terminal.

The programmer is encouraged to provide his own trap function(s), which

can be enabled by altering the POINTER TRAP. 10

-- I

..
= "" "i

Input/Output

The following built-in input/output functions are available to the

AMBIT/L programmer:

Function Name Use1 _OPEN initiate input,output, or input-output using a logical

name on a physical device

CLOSE terminate input,output, or input-output for a lcqical name

DELETE delete a file on disk

RENAME change name of a file on disk

INW input one word

INL input a line of characters

INLS input a line of characters and a sequenci number

OUTW output one word

- OUTS output a string of characters

OUTL output a line of characters

OUTLS output a line of characters and a sequence number

SELWI select. word for input

SELWO select word for output

-- RDSELI read the input word selector

"RDSELO read the output word selector

RDLNGTH read the length

RDLNMS read all logical names

RDINFO read information associated with a logical name

FTRAP. 10 default VO trap function which reports an error message

I
F-2

Input/Output

I- The bulk of this document describes each input/output function in

a format appropriate for reference use. First, however, some of the jargon

is defined and an overview of the philosophy of AMBIT/L input/output is

presented. The major influence of the design was the existing specifications

of the DEC PDP-10/50 Monitor.

Definitions

"Channel: one of sixteen ports (named 0-15) available to a PDP-10 job

for either input, output, or input-output. In the AMBIT/L system,

channel 0 is initially assigned for Teletype input-output, and

channels 14 and 15 are permanently assigned for private use by

the AMBIT/L interpreter. A channel may support at most one physical

device at a time.

Physical Device: either a real device, such as the Teletype or Printer

or Card Reader; or an individual file on a multi-file device, such

as DECtape Unit 5 or the disk. In order for input and/or output to

take place on a physical device, it must be assigned to a channel

(by the function OPEN).

Logical Name: a MARK or INTEGER associated with a physical device (by

the function OPEN) in a particular mode of input/output (either input,

output, or input-output).

Mode: one of three ways in which a physical device may be opened with

an associated logical name; namely, input, output, or input-output.

- Degenerate-List Convention: when an argument of an input/output function

is a list of either zero or one argument, it may be given without the

CELL. Thus, for example, the third argument of an OPEN function

call could be the MARK 'TTY'.

F-3
*1r

S= Input/Output

Physical Device Name: a list of one or more MARKS and STRINGS. At

piesent, only two types of physical devices may be specified:

a) the MARK 'TTY' for the Teletype, or

b) one or two STRINGS for the name of a file on disk; if

only one STRING is given a null extension is assumed.

legitimate name for a file on disk consists of one to six
alphanumeric characters and an extension of zero to three
alphanumeric characters.

Mode Name: a node which names a mode:

a) the MARK 'IN' or INTEGER '1' names mode input,

b) the MARK 'OUT' or INTEGER '2' names output, and

c) the MARK 'INOUT' or INTEGER '3' names mode input-output.

Sequence Number: five decimal digits at the beginning of a text line

normally followed by a TAB. A disk file is said to be sequenced if

each line has a sequence number. Sequenced files are required by some
PDP-10 editing programs. A sequence number is implemented with

an indicator bit which is used to distinguish it from the text line.

Ope=i,'ng and Logqlcal Names
As previously explained, channel 0 is initially assigned for Teletype

input-output, and channels 14 and 15 are permanently assigned for private
use by the AMB-T/L interpreter. This implies at most 13 other different physical

devices may be simultaneously opened for input and/or output. However,

the DELETE and RENAME functions each require that there be at least one open channel

for proper execution; but the channel is available after the function returns.

The functions OPEN, DELETE, and RENAME always use the numerically lowest
channel available. The programr..er need not be aware of channels and channel

"numbers, except when approaching the limit of 13 available ones.

In AMBIT/L input/output, a physical device may be open on only one

channel at a time in at most one mode. The OPEN function takes three arguments:
a logical name, a mode name, and a physical device name. The first call upon

Z ISO
F-4

Input/Output

OPEN dictates the mode in which the physical device is opened on a channel.

A later call upon OPEN for the same physical device, and with a different

logical name does not cause a new channel to be opened; instead, the same

channel is used. Each call upon OPEN also includes a mode specification

which remains associated with the logical name also supplied in that function

call. The programmer must not violate the following two rules when performing

multiple openings of the same physical device:
A

a) The mode specified in a later OPEN may be the same as the mode

specified when the physical device was initially opened, or

b) Any mode may be specified in a later OPEN if the physical device

was initially opened in input-output mode

The zingle argument of the CLOSE function is a logical name. When CLOSE

is called the associated physical device is closed on its channel only if no

other logical names are associated with the physical device.

Word and Line Input/Output

Ultimately, the basic unit of data for input or output is the 36-bit

word. The programmer may call the INW function to input one word, and

the OUTW function may be called to output one word. More often, however,

the AM BIT/L programmer deals with ASCII characters, particularly for Tele-

type input and output. The INL function may be called to input a line of

characters, and the OUTL function may be called to output a line of

characters. A few other functions are also available for similar character

handling. Although a programmer will normally make use of a file uniformly

as either words or characters, the input/output functions operate so that

both types of data input/output may be intermixed. For this reason the

7" descriptions of the data input/output functions first present the simpler
"explanation 6f uniform input/output, and non-uniform input/output is

explained separately.

-. ~~F-5 .11

stv

Input/Output

Files on Disk

A file on disk is viewed as being composed of a one-way poten-

tially,infinite number of 36-bit words; numbered 1, 2, 3, etc. At any

time, an initial set of these words (possibly none) are considered to

exist with meaningful values, and the remaining are considered non-

existent. Each file has one input word selector and one output word

selector which each select a word (possibly non-existent) of the file.

Normally, the input word selector selects the next word to be inputted,
and the output word selector selects the next word to be outputted. The
programmer is given the power to interrogate and also set these selectors

as follows:

a) The input selector of a file may be interrogated and/or set through

a logical name which is opened for that file with an associated
mode of either input or input-output.

b) The output selector of a file may be interrogated through a log-

ical name which is opened for that file with an associated mode

of either outpu or input-output.

c) The output selector of a file may be set through a logical name

which is opened for that file with an associated mode of input-

output.

Therefore, note that a file on disk must have been opened initially

for input-output in order for "random-access" output to be performed to

that file.

An attempt to input a non-existent word will cause the input

function call to FAIL. Any output operation may be viewed as ove:-

writing any previously existing word, or extending the length of the

file by one or more existing words. A file may be extended by many

existing words when a word is outputted after the output word selector

"-6

Input/Output

has been advanced into the non-existont portion of the file. In this case, all

words before the word just outputted which were non-existent are all made to

exist with a value of zero.

The length of a file on disk is the number of existent words (possibly

zero).
F

Teletype Input/Output

Although the Teletype is a character device, the AMBIT/L input/

output functions treat the Teletype in the same way as the disk. Namely,
an input word selector and output wc :elector are maintained as well

as a length. This compatibility has been provided mainly for debugging

purposes so that a program which normally uses the disk in a 'Lrandom-access"

manner could alternatively perform such input/output on the Teletype.

The Teletype input functions are implemented using the ASCII LINE

mode of the DEC PDP-10/50 Monitor. Thus the normal typing conventions

apply, such as the use of RUBOUT to delete the previous character. The

following list indicates those characters which are interpreted as break

characters:

a) CR

b) FF (IL)

c) VT (K)
d) ESC (or ALT)

e) t Z (SUB)

SIn AMBIT/L Teletype character input the Z character is inter-

preted as an end-of-file as if it wefe a non-existent word of a file on
F disk. The I Z character itself (octal 032) is not passed to the AMBIT/L

program, nor is any partial line of characters which may have been typed

"in preceding the t Z. Instead the call upon the INL (or INLS)
function fails when the line being read ends inI Z. The next call upon

one of these functions, however, will perform independently of the

4
F

F- 3

S-

Input/Output
I:

condition, i.e. the Teletype input acts as if it were immediately re-

opened. For example, if the user wishes to cause two consecutive

calls upon INL to fail due to an end-of-file condition, he must

type* Z twice.
Note t Z acts as any other character (i.e. dces not terminate a

line) when read from a file on disk. In the rare case that Teletype word input

is used, t Z acts as a break character, it does get passed to the programmer

as part of a word, and it is not interpreted as an end-of-file.

TnPut/Output of CR

In AMBIT/L iaput/output the BASIC SYMBOL %CR represents a "new

line" character, which represents the characters CR (octal 015) and LF

(octal 012).

On Teletype input the DEC PDP-10/50 Monitor echos and also places

in the input stream a LF character immediatbly foliowing any CR typed in.

Any disk file created by common methods also has a LF following every CR.

Therefore, AM BIT/L character input functions always read and ignore the

character immediately following a CR. Thus a line which ends in CR/LF is

presented to the AMBIT/L program terminated by %CR. However, if a lone

IX is encountered in an input line it is treated as any other text character, thus

appearing as %LF.
Consistently, AMBIT/L character ou.put functions interpret %CR as both

CR and LF characters for output to the Teletype and to a disk file,

Input/Output of ESC

Although the PDP-10/50 Monitor standardizes on a code of octal 175,

AMBIT/L input/output reduces ESC or ALT characters to a code of octal 033.

On character input code 175 is internally translated into code 033. On

character output AMBIT/L will generate code 033.

F-6

"Input/Output

j ..

/Vo Traps

S••Some of the AMBIT/L built-in input/output functions fail in order
to indicate an unusual condition. Any condition which is considered an
error, however, causes an I/O trap which is an indirect function call
through the POINTER TRAP.,IO of the following form:S------------------------F +-------- C

1 1 1 1
@TRAP.Io 1---->1*fRESUrT1

I 1 1 1
+--------- --------- - +

1 1 1

1 1 1

V V V

1 1 1 11I 1 1 1

----------+ --- -�-- ----- -------+1 1
1 1

1 1 1 1

l*ARG11 I *Ai G-2 1

where *NAME is the name of the built-in input/output function;

*ERROR is a short indicative diagnostic of the error;

*ARG 1, *ARG2, etc. ace the arguments which were used to call

the function; and
*RESULT dictates what the input/output function should do next:

"a) If it is the NULL CELL, or any other CELL which points down to

"the NULL CELL, then the input/output function gracefully does

- -- -- F-9j

'77

input/Output 1

nothing, but succeeds as if it had performed properly. Those

input/output functions with results will deliver default results.

The default results are indicated with the description of each

function. Failure of the trap function is equivalent to its returning
the NULL CELL.

b) Otherwise, *RESULtT is a list of alternate arguments for the input/

output function (in the same form as the third argument of the I/O

trap function). Another attempt to execute the input/output function

will be made if the I/O trap function returns with its result in this

form.

The function called to service an I/O trap may be supplied by the

programmer; it may intercept any trap and then perform some computation

which could remove the cause of the trap. For example, if an attempt to

OPEN causes a 'CHANNELS FULL' trap, a programmer-supplied I/O trap

routine could CLOSE some physical device and then return with the same

list of arguments so that OPEN would then succeed.

Initially, as a default setting, the POINTER TRAP. 10 points to a

FUNCTION node FTRAP.IO. The function FTRAP.IO is an AMBIT/L built-in

function which is equivalent to the AMBIT/L function definition on the next

page.

Note that after FTRAP.IO calls upon OUTL to type the error message

it calls USER. BREAK and returns to its caller. When it returns, it returns

as result the NULL CELL which causes its caller to gracefully do nothing.

The USER. BREAK built-in function causes the DAMBIT/L Debugger to gain

control at the next rule-enter in the user program.

IF

Input/Output

s4

$

FTRAP.I0(FUNC TYPE ARGS) RES :
RULE

..-------------- F -------------- F
I I I I '

I OUTL IZZZZ>l USEH.BREAK I

v1

II I I

1 1

1 1

V V

+----------+ ÷---+ ÷---+ +---+ +----+1 11I 1 1 1 1 1 1 1 1 1

ILISTING- 1 ->- I ----- > 1 --------- --- - A . -->I I
1 11 1 1 1 1 1 1 1 1 1

4- ÷---- ÷---÷ ----- + ÷--4 ---+ +-÷- --- ÷ . ---

1 1 1 1 1
1 1 1 1

/-------./ 1 1 1 1

-------------- A -- .---------- S - -A +---B
1 1 1 1 1 1 1 1 1 1
111/0 TRAP: '1 I@TYPEI 1' IN %''1 lOFUNCI IZ' I
1 1 1 1 1 1 1 1 1 1
+----- .--------------- + +------+... +-------------- ---------- + +---+

$
$

ii

Input/Output

If the programmer wants more than the FTRAP.IO function provides,

he may write his own I/C trap function(s). As indicated previously, such
a function should have three arguments and one result. In order to activate

an alternate I/O trap function, the programmer need only set the POINTER

TRAP. 10 to point to a FUNCTION node whose name is the name of the
alternate function. Thus the programmer may provide a variety of Z/O

trap functions for various recovery procedures. Of course, the program-

mer may employ the default I/O trap function FTRAP.IO at any time. Also,

the programmer is free to call FTRAP. IO as any other built-in function.

List of Errors

The second argument of the I/O trap function is a STRING which

is a short indicative diagenstic of the error which caused the trap. This

section lists all of these STRINGS; with ,acch one is a list of those

functions which might detect such an error and a mo•e complete explanation

of the cause of the trap. The list of STRINGS is presented in alphabetical

order.

'ALREADY OPEN'

Detected by: OPEN

Explanation: an attempt is made to open an already opened

physical device in an inconsistent mode.

'ALREADY WRITING'

Detected by: OPN

Explanation: an attempt is made to opurn a physical device

for output or input-output which is already being
written or renamed by ancther job.

F-12

Input/Output

I " 'BASIC I/O ERROR'
Detected by: CLOSE, DELETE, RENAME, INW, INL, INLS,

e b ou OUTS, OUTL, OUTLS

Explanation: a data transmission error has occured or thereis a

malfunction of the monitor or hardware.

'CANNOT OUTPUT'

Detected by: OUTW, OUTS, OUTL, OUTLS

Explanation: the second argument of the function being called

is not of proper form.
'CHANNELS FULL'

Detected by: OPEN, DELETE, RENAME

Explatiation: all available 14 channels are in use, and another

is needed.

'INCONSISTENT'

Detected by: OPEN, DELETE.,RENAME

Explanation: there is an internal inconsistency, probably due to

an error in implementation.

'IS OPEN'

Detected by: DELETE, RENAME

Explanation: the argument of DELETE or the second argument of

RENAME (old name) specifies an already open physical

device.

'LOG. NAME IN USE'

Detected by: OPEN

Explanation: the first argument is a logical name which is already

in use.
'NAME IN USE'

Detected by: RENAME

Explanation: the first argument (new name) already exists in the

user' s directory.
'NOT DEVICE'

Detected by: OPEN

Explanation: the third argument is not a proper physical device

name.

F-13
½

Lnput/O itput

'NOT FILE NAME'

Detected by: DELETE, RENAME

Explanation: the argument of DELETE or one of the arguments of

RENAME is not a proper physical device name for

a file on disk.

'NOT LOG. NAME'

Detected by: OPEN, CLOSE, INW, INL, INLS, OUTW, OUTS,

OUTL, OUTLS, SELWI, SELWO, RDSELI, RDSELO,

RDINFO

Explanation: the first argument is not a MARK or INTEGER, i.e. it

is not a logical name,
'NOT MODE$

Detected by: OPEN

Explanation: the second argument is not MARK IN, OUT, or INOUT

nor INTEGER 1, 2, or 3, i.e. it is not a mode name.

'NOT PERMITTED'

Detected by: CLOSE, INW, INL, INLS, OUTW, OUTS, OUTL,

OUTLS, SELWI, SELWO, RDSELI, RDSELO, RDINFO

Explanation: the first argument is a logical name not assigned to a

physical device or it is assigned in a mode which

does not permit the attempted operation.

'NOT SEQ..NO.'

Detected by: OUTLS

Explanation: the third argument is not the INTEGER -I or a positive

INTEGER, i.e. it is not a sequence number.

'NOT WORD NO.'

Detected by: SELWI, SELWO

Explanation: the second argument is not an INTEGER greater than 0,

-* i.e. it is not a word number.

F-14

r
AL•

Input/output

; I.

Sg Descriptions of the I/O Functions

Each I/O function is described with allowable arguments and

possible results, an example of a function call, traps which may occur

(in order of detection), conditions for FAILure (if appropriate), and default
results (if appropriate).

OPEN
Use: initiate input, output, or input-output using a logical name

on a physical device (see the section "Opening and Logical Names").
Arguments:

#1: a logical nam3

#2: a mode name

#3: a physical device name

Example:

----------------------- F
1 1
1 OPEN 1

KI I I ITTYI

NOT LOG. NAME

LOG.NAM INUSE

I 1 I

CHNNLST F OULLITY

* -~ ALREADY OPEN

* +t-....-*-- - --- + 4 .- *----

Input/Output

* t

ALREADY WRITING

INCOIM SISTENT

-- Conditions for FAILure:

a) A disk file is specified as the physical device to be

opened for input, and either the file doesn't already

exist or it already exists and is read-protected.

b) A disk file is specified as the physical device to be

opened for output, and the file already exists and is

write-protected.

c) A disk file is specified as the physical device to be

opened for input-output, arid the file already ex,,sts
and is either read-protected or write-protected.

Description:

Case 1: Open for input

a) If the given physical device is not already open, then

open a new channel. Set the input word selector to 1.

If the given physical device is a disk file determine the

length. If it is the TTY as ;ume a length of 0.

b) If the given physical devic , is already open for either

input or input-output then E ssociate the given logical
name and given mode with the device.

Case 2: Open for output

a) If the given physical is a disk file which already existed

and is not in use by other jobs for output or input-output,

then the old version is either deleted or marked for later

deletion after all read references by other jobs are com-

pleted.

b) If the given physical device is not already open, then open

a new channel. Set the output word selector to 1 and asI

sume a length of 0. It it is a disk file this implies

creation of a new file.

F616

T IInput/Output

c) If the given physical device is already open for eitherIoutput or input-output associate the given logical name

and given mode with the device.

Case 3: Open for input-output

S. a) If the given physical device is not already open, then

open a new channel. If it is the TTY, set the input 1
word selector to 1, set the output word selector to 1,
and assume a length of 0.

b) If the given physical device is a disk file which did not
already exist, create it, set the input word selector to

1, set the output word selector to 1, and assume a length

of 0.

c) If the given physical device is a disk file which already

existed, but is not open, determine the length, set the
input word selector to 1, and set the output word selector

to one more than the length of the file.

d) If the given physical device is already open for input-output,

then associate the given logical name and given mode with
the device.

1*3

P-1

.i:I

F
li Input/Output

CLOSE

Use: terminate input, output, or input-output for a logical
name (see the section "Opening and Logical Names").

Arguments:

#1: a logical name associated with an open physical device

Example:

----------------- F

1 CLOSE 11 1

1
1

1

ILSTGI

Traps:

NOT LOG. NAME J

NOT PERMITTED

BASIC I/0 ERROR -

Description:

Terminate use of the given logical name fbr its associated physical

device. If no other logical names are associated with 1hat physical device,

close the channel being used and return it to the available pool.

F-18

1'

--- i
7 Input/Output

a, 1.
S__DELETE

Use: delete a file on disk

•Arguments:

#1: a physical device name for a file on disk
Example:

+-------------------- FS "1 1

1 DELETE 1
I -1 1

V V

1
1

1I
1l 1 1 1

I I• I I - REL-> 1

S1 1 1 1

Traps: •
:• • NOT FILE NAME

S~CHANNELS FULL
B .• IS OPEN

41 1

BASI 1/ 1RO

"1 F-19

t• . .w - - •. . ." .-

Input/Output"4
)

Conditions for FAILure:
The file does not exist.

Description:
The given file is deleted or it is marked for later deletion

after all read references. by other jobs are completed.

~I.

SFP-20

Input/Output

RENAME

Use: change name of a file on disk

Arguments:

"#1: a new physical device name for a file on disk

#2: an old physical device nfame for a file on disk
Example:

------------------------------ F1 1 II1-RENAME I

1 1
1 11 1
1 1

+-----------S

1 1 1 1 11 1-.... •1 1 1'•GAIBAG'•1

111---- --------.... .. +
1 1

1 I
1 1

1 1
V V

+---------S +-------S
1 1 1 1
1 'JUNK' 1 1 'REL:1.
1 1 1 1

Traps:

,. NOT FILE NAME

.. CHANNELS FULL

S~ IS OPEN

NAME IN USE
--- = 'BASIC I/O ERROR

INCONSISTENT

•v F-21

Input/output -

IiI
Conditions for FAILure:

The file does not exist or it is read-protected.

Description:

a. The given old file is renamed with the given new file name. If

the two names are effectively the same (empjoying the degenerate-list

convention) renaming does not occur.

[A
i i
ii I|:1

T"1

I

-247
F-22 _

Input/Output

INW

Use: input one word
SArguments-:
i #I: a logical name associated with mode input or input-output

for an open physical device

Results:

•.I: an INTEGER

Example:

1VALUE1

E
H
H
H

•. , V

--------------F
W1 > 1 I

1 IWW 1---- 1
S~1

I SYLMBOL •TABLE 1+----------------N1 1

Traps:

NOT LOG. L:AME fl

NOT PERMITTED

BASIC I/O ERROR

F-23 J

Input/Output

Ii.

Conditions for FAILure:

a) The physical device is a disk file, and the input word

selector points to a non-existent word.

b) The physical device is the TT", and the user has typed

in I Z (see the section "Teletype Input/Output").

Default Results:

#1: the INTEGER 0

Description:

The next word of the input stream is delivered, and the input

word selector is advanced by one. If the physical device is th.e TTY

and J1 typed input has been read previously, the function waits for

the user to type wore (up to a break character).

Additional Description for Non-Uniform Input/Output:

Beware that if either INL or INLS was previously preformed

to input a line of characters which did not occupy an integral number

of words, then any characters of the partial word will be lost. Note,

however, that any disk file produced via AM.IV/L input/output functions

will always pad out a line with NULL characters to occupy an integral

number of words

F

!--S

" ~F-24

Input/Output

QI

INL

Use: input a line of chardcters

Arguments:

#1: a logical name associated with mode input or input-

output for an open physical device.

Results:

#1: a list of BASIC SYMBOLS, terminat'.ng with either %CR,

%ESC, %VT (vertical tab), or %FF (form feed)

Example:

+ ---------------F +---+ +---+
1 1 1 1 1 1

1INL I ---- >1 I ... >

1 1 1 1 1 1
+----------------------+. +-- -+÷÷-

:.1 1 A

S1 1 H

•:-V V H

HH

Si151 1 1 H
S1 1 1 1 H

+---+ +-- -+ H
IA H

•-H H

-• H H

÷- H H

SIFIRSTI IRESTI

+---------- +------

Traps:

NOT LOG. NAME

NOT PERMITTED

BASIC I/0 ERROR

F-25

Input/Output

Conditions for FAILure:
a) The physical device is a disk file, and an attempt to

read a non-existent word occurred while developing an input

line. The input word selector has been advanced pointing
to the non-existent word.

b) The physical device is the TTY, and the user has typed

in a line (possibly null) ending in t Z (see the section "Tele-

type input/Output"). The input selector has been advanced by

one plus one for every five characters typed in preceding the t Z.
Default Results:
#1: the NULL CELL

Description:

br wi If a previous call upon INL or INLS caused a line to

be read which did not account for an integral number of full words, then this

call begins reading the very next character of the parti .l word (unless the
SEIWI function has been called meanwhile). Any sequence number appearing

in the line being inputted is ignored, and the very next character (should be

£ TAB) is ignored. A line of arbitrary length is read terminated by either CR
(see the section "Input/Output of CR"), ESC (see the section "Input/Output

of ESC"), VT, or FF characters. Any NULL character is ignored. The input

word selector is advanced selecting the next full word following the last

character of the line. If the physical device is the TTY and all typed input
has been read previously, the function waits for the user to type more (up
to a break character).

"If INL calls an input/output trap function it presents as first
argument the STRING 'LNLS' rather than 'INL'. This "bump" in the design

was made to optimize the time and space required for these character
input functions.

F-26

Input/Output

INLS

Use: input a line of characters and a sequence number

Arguments:

#1: a logical name associated with mode input or input-

output for art open physical device

Results:

#1: a list of BASIC SYMBOLS, terminating with either %CR,

%ESC, %VT (vertical tab), or %FF (form feed)

#2: either the INTEGER -1 indicating a line with no sequence

number (always for TTY), or a positive INTEGER which is

the sequence number
Example:

++-A+ P +---P

1@DEV1 ILINEI ISEQI
1 1 1 1 1 1

- H-- H-
A H H
1 H H
1 H HI H H

I V H
-------- F- +---+ H

I I I 1 H
1 1 ---- >1 1 H
I 1... . 1 H
1 1 +---+ H
1 1 H

1 I H
1 INLS I H
1 I H
1 1 V

1 1+--.
-•1 1 1 1

S-------------- >1 1
.. 1 1 1 1

)i2
F-27

Input/Output

Traps:
NOTLOG. NAME

NOT PERMITTED
BASIC I/O ERROR

Conditions for FAILure:
a) The physical device is a disk file, and an attempt to read

a non-existent word occurred while developing an input

line. The input word selector has been advanced pointing

to the non-existent word.
b) The physical device is the TTY, and the user has typed

in a line (possibly nul) ending in t Z (see the section "Tele-

type Input/Output"). The input selector has been adlvanced
by one plus one for every five characters typed in preceding the t Z.

Default Results:

#1: the NULL CELL
#2: the INTEGER -1

Description:

If a previous call upon INL or INLS caused a line*

to be read which did not account for an integral number of full words, then

this call begins reading the very next character of the partial word (unless
the SELWI function has been called meanwhile). A line of arbitrary length

is read terminated by either CR (see the section "Input/Output of CR"), ESC
(see the section "Input/Output of ESC"), VT, or FF characters. Any NULL

character is ignored. If the line contains a sequence number, it is read
and the very next character (should be TAB) is ignored. If the line has

more than one sequence number, only the last one is reported. The input
word selector is advanced selecting the next full word following the last '

character of the line. If the physical device is the TTY and all typed input
has been read previously, the function waits for the urer to type more

(up to a break character).

F-28

Input/Output

OUTW

Use: output one word

Arguments:

#1: a logical name associated with mode output or input-

Output for an open physical device

#2: an INTEGER

Example:

----------------- F1 1
I OUT. I
1 1

1 1
1 1
1 1
1 1

V V
- -... +- -- I

1 1 1 1

IDUMPI 1-1 1

Traps:

NOT LOG. NAME
NOT PERMITTED

CANNOT OUTPUT
BASIC I/O ERROR

Description:

The given word is outputted, and the output word selecwur

"is advanced by one. If the physical device is the TTY, five ASCII chara.;ters

(except NULL is ignored) are placed into the Teletype output buffer, which is

flushed by a call on OUTW only when the buffer is filled to its 16-word capacit54

The user should beware of outputting 1D and other troublesome characters to

the TTY.

F-29

•-• ... 2•p , , •i •'' • ... "• ' '-•: • -- • r•.•i,,--,----_ • •,. '4

Input/Output

OUTS

Use: output a string of characters

Arguments:

#1: a logical name associated with mode output or input-

output for an open physical device

#2: a list c- possibly varied content: each element may be
either a BASIC SYMBOL, STRING, INTEGER, REAL, or

NULL CELL; the degenerate-list convention applies

Example:

+-------------------- F1 1
1 OUTS 1

S1 1
+------------------ -+

S1 1

V V
+-- -M +-- -B
1 1 1 1

--- +--

Traps:

NOT LOG. NAME

NOT PERMITTED
CANNOT OUTPUT

-j BASIC I/O ERROR

Description:

Each element of the second argument is replaced by a uniform

list of BASIC SYMABOLS by applying the AMBIT/L built-in function TRD to

each STRING, INTEGER, and REAL, and each NULL element is eliminated.

Input/Output

4 A4

U?
The resulting list is outputted using an integral number of words by pad-

ding out unused bytes with NULL characters. The output word selector is
S""advanced accordingly. If the physical device is the TTY, the Teletype

- "output buffer is flushed so that all characters are typed (even if this call

on OUTS did not contribute any characters for output).

OUTL

Use: output a I '. of characters

NOTE: The characteristics of OUTL are the sanme as those of OUTS,

except effectively a BASIC SYMBOL %CR is always appended

to the end of the list of elements of the second argument.

40

I

,- •I

Li

Input/Output

OUTLS

Use: output a line of characters and a sequence number

Arguments:

#1: a logical name associated with mode output or input-

output for an open physical device

#2: a list of possibly varied content: each element may be
either a BASIC SYMBOL, STRING, INTEGER, REAL, or
NULL CE-); the degenerate-list convention applies

#3: either the INTEGER -1 indicating a line with no sequence
number, or a positive INTEGER which is the sequence number

to be outputted.

Example:

F------------------------F
1 1
1 OUTLS I
1 1

1 1 1

IUTPUTI 1 1

1 1

S 1 +-- > I - -

,! 1 11

1HEOTPT 1 1 170
--------1 1 1

S,1 1"

S•+-------------S+---
I_: 1 1 1 1 1

" '1'H O1 1~ 1 1 191

1"1 1 1 1

+-------------+----+ +..
-. , , /" ;'

F-3

Input/Output

3

Traps:

NOT LOG. NAME

NOT PERMITTED

CANNOT OUTPUT
NOT SEQ. NO.

BASIC I/O ERROR

Description:

The characteristics of OUTLS are the same as those of

OUTL when the given third argument is the INTEGER -1. When the given
third aigurment is a positive INTEGER the characteristics of OUTLS are

the same as those of OUTL, except the line being outputted begins with

a sequence number and TAB.

r1

AA

Input/Output

SSELWI

Use: select word for input, i.e. set the input word selector
) ~Arguments:

#1: a logical name associated with mode inpit or input-

output for an open physical device

#2: an INTEGER greater than 0
Example:

-------------------------- F
1 1

I SEL.WI 1

1 ~1 :

------ ------ +----I

ISYVTBL1 I I I4-.. .. - +----+

Traps:

NOT LOG. NAME

NOT PERM1TTED

NOT WORD NO.

Description:

The input word selector is set to the value of the given

second argument.

Additio)nal Description for Non-Uniform Input/Output:

Beware that if either INL or INLS was previously performed

to input a line of characters which did not occupy an integral number of words,

then any characters of the partial word will be lost. Note, however, that any

disk file produced via AMBIT/L input/output functbns will always pad out a

line with NULL characters to occupy an integral number of words.

F-34
r

Input/Output

SELWO

II?

Use: select word for output, i.e. set the output word selector

Arguments:

#1: a logical name associated with mode input-output for an

open physical device.

#2: an INTEGER greater than 0

Example: 1 2

+-------------------- F

1

1
1 1EL O

1-----------A
I 1

1

II1 1 11

1SYM~TBL 1 1leV ALUE 1l'
1 1 1 1

+----.++---- -------- +

Traps:

NOT LOG. NAME
NOT PERMITTED

NOT WORD NO.

Description:
The output word selector is set to the value of the

given second argument-

ifil F-35

Input/Output

RDSELI

S-. Use: read the input word selector

Arguments:
#1: a logical name associated with mode input or input-

output for an open physical device.

Results:

#1: an INTEGER greater than 0

Example:

+---p

1 1

1 1

H
H

H

V
---------------- F

S1 1 I 1

1 RDSELI I ---- >1 1

----------------------- -.------- + --
S,- 1

S~1

V

:• .. 1 1

ISYMTBL1

Traps:

NOT LOG. NAME

"NOT PERMITTED

Default Results:

*1i: the INTEGER 0

Description:
t The result is set to the current value of the input word selector.

F-36li"

I'Input/output

RDSELO

Use: read the output word selector

Arguments:

#1: a logical name associated with mode output or input-

output for an open physicdl device

Results:

#1: an INTEGER greater than 0

Example:

+--------------------- F
1 1 1 1

1 RDSELO 1 ---- >1 1 I
1 1 1 1
÷+-------------- •.------ +-----4

I

M

1

I
+ N

1 1
1 F--L-------

Traps:

NOT LOG. NAME

NOT PERMITTED

Default Results:

#1: the INTEGER 0

Description:

The result is set to the current value of the output word selector.

F- 37

11i2

Input/Output

BDLNGTH

Use: read the length

Arguments:

#I- a logical name for a:, open physical device

Results"
#1: a positive INTEGER

Example:

+----------------------- FI! 1 I 1

1 RDLNGTH 1---->1
I 1 1 1
+=----------------+ +----

1 A
I 1
1 1
I I

A A

+ ---------------------------- ------ F

1 SEL I-0

-------------------------- ----------------+

Traps:

NOT LOG. NAME

* NOT PERMITTED

F-38

1 AJ

input/Output

Default Results:

#1: the INTEGER 0

Description:

The result is set to the current length of the physical device.

Note this is also defined for the TTY (see the sections "Files on Disk"
and "Teletype Input/Output").

7F-39

Input/Output

A'

DRLLNMS

Use: read all logical names
Results:

#1: a list of all logical names

Example:

ISIZE1

H
H

H
H

1LEN.GTH 1-> 1

VV
--------------- F----

HDLNMS ... 1>1 I

1LE ITHI 1

'=• •Description:

•-• • The result is set to a created list of all logical names of

S~currently open devices. The list is ordered, with the most recently opened

name last. Note that the degenerate list convention is not used for the

result.

- 40

Input/Output

RDINFO

Use: read information associated with a logical name

Arguments:--

#1: a logical name for an open physical device

Results:

#1: a mode name in INTEGER form, i.e. 1, 2, or 3

#2: a physical device name, i.e. a list

#3: a channel number, i.e. an INTEGER 0, 1, 2,...., or 13

#4: a list of all logical names associated with the physical

device associated with the given argument.

Example:

-------------- +
1 1 1 1

1 1CHAN I
1 1 1 1 .
1 1 +-+

! 1

1 1 - - +. .

11 I

II 11 11 1

1 flDIF0 1-....>1 1 1CHAIN 1
1 1 1 1 1 1

III H I
1 1 HF

1 1 +---+

1 1 1 1
1 [-..-.>1 1

-t1 1--\ 1 1•
++ 1 + - - - +

1 1

ILS 1 11
1 1 1 1

+- ... - 1 - - --

- F-41j

- -4Input/Output

Traps:

* NOT LOG. NAME

NOT PERMITTED

Default Results:

#I ; the INTEGER 0

#2: the NULL CELL

#3: the INTEGER 0

#4: the NULL CELL

Description:

The four results are set as indicated above. Note that

the degenerate list convention is not used for the second and fourth
results. Also note the second result is not a created list and thus

should not be altered by the programmer.

• •" F-42

(END)

Section G

Using DIAGEN: the AMBIT/L

Diagram Generator

January 10, 1972

I

This section describes how to use the AMBIT/L
Diagram Generator.

I

DIAGEN

The Diagram Generator (DIAGEN) is a translator in the AMBIT/L
Programming System which reads as input an encodement of one insertion

(or block) of an AMBIT/L program and produces as output a listing of

that insertion. This kind of translation is often performed by the compiler

of a programming system, and such an organization would make sense in
the case of AMBIT/L. Historically, however, DIAGEN has been written

in FORTRAN and MACRO - 10 assembly language, and merging DIAGEN
and the AMBIT/L Compiler (which is written in AMBIT/L) would require

the establishment of the desire or need on the part of the AMBIT/L user

community. The current separation of these two translators decreases

their combined effectiveness in reporting errors; this will be elaborated

upon later.

Since the format of the listing produced is described in Section C,

"The Drawing of AMBIT/L Programs and Their Encodement", this section

is concerned more with the actual use of DIAGEN.

The Diagram Generator is invoked by a Monitor command of the

form:

RUN DIAGEN [proj , prog]

where proj and prog are the project and programmer numbers of the

directory where the AMBIT/L Programming System is residing. This calling

sequence may be somewhat different, depending upon the method used to

Install AMBIT/L on a parti,-ular PDP - 10.

When DIAGEN is invoked it first prompts the user by typing an
asterisk on a new line. The user is then expected to type the file name

IA

of the source file he wishes to list. The name is accepted in standard
form: a primary name of one to six alphanumeric characters followedI optionally by an extension of zero to three alphanumeric characters with"

G-1

F DIAGEN

a period as. separator. The file name must be immediately terminated by

a carriage return. If no period and no extension is provided DIAGEN assumes

a default extension of "AL" for AMBIT/L. A null extension name is specified

by following the primary name with just a period. Note that there is no

option for specifying a project-programmer number; thus the source file must

exist in the disk directory in which the user is currently logged in. If there

is a syntax error in the name or if the specified file does not exist, DIAGEN

informs the user by typing a question mark followed by another prompting

asterisk on a new lire. Otherwise, a listing file is created in the user's

current disk directory with the same primary name as the source file and an

extension name of "LST".

DIAGEN then reads the source file and produces the listing file.

When it reads a source file with sequence numbers (as produced by some

text editors and PIP), it notes the number of the starting line of each

rule and includes that number in the listing of the rule. DIAGEN treats

a source file without sequence numbers as if it were sequenced by one

(starting with 00001 as the first line). A source file may even be mixed

in its use and omission of sLquence numbers since each line is individually

examined for the presence of a sequence number.

All textual material except for blank lines is simply copied from

the source file to the listing file. To separate parts of a program listing

use comment lines (beginning with a '$'). DIAGEN expects the very first

non-blank line of a source file is not the beginning of a rule. It also

expects that the last line of a source file includes the 'END' scatement not

followed immediately by a semicolon. When reading a source file which

does not end in this way DIAGEN detects an error condition which is

reported as:

ERROR READING SOURCE FILE

and it returns control to the PDP - 10 Monitor; however, the listing file is

not lost.

. .. G-2

DIAGEN

Other than seeking the words 'END' or 'RULE', DIAGEN does

not analyze any of the textual portion of the program outside of rules

and, therefore, it does not detect or report on any errors in that text.

For example, the lack of matching parentheses or BEG:'`T - END pairs

goes unnoticed.

When it finds 'RULE' DIAGEN reads the encodement of the rule

up to the terminating semicolon and performs some syntactic analysis on

the encodement. As it begins to analyze each rule DIAGEN types one

decimal digit on the terminal to inform the user of its progiess. As each

node specification of the encoded rule is read DIAGEN places that node

and its links onto the representation of the listing page it is building.

After assimilating the entire rule, the representation is sent to the listing

file. If a syntax error is detected within a rule DIAGEN types 'SYNTAX

ERROR' followed by the current source line (with sequence or line number)

and then a line with an arrow pointing to the character of the source line

which triggered the detection of the error. In the case of such an error

DIAGEN abandons further analysis of the current rule; the listing includes

the initial part of the diagram and then the source text of the encodement

from the line of the error to the terminating semicolon.

The syntax accepted by DIAGEN is very permissive. For example,

it does not check that the type-set is one of the allowed forms, and most

node names are not analyzed. Nodes in a rule which are either inaccessible

or missing do not trigger any error condition. Links are drawn only on the

basis of their origins and routes (expliz:.L L. de-lult); the specified

destinat'on of a link is not checked for consistency. This can lead to a

hard-to-find bug when a diagram may look good, and the specified

destination may not be the correct one; the AMBIT/L Compiler ignores

specified routes (except for the initial perburbation) and bases its analysis

on the specif.ed destination. USERS BEWARE!

171

G3-3j ""1

DIAGEN

"Since DIAGEN diagnoses so few errors, users are urged to

L examine the listing to notice incorrect or undesirable rule encodement.

Such a review of the program prior to its submission to the compiler can

be used to catch other syntactic erro:s or even semantic ones. As long

as there are no ambiguities in the specification of a rule, the Compiler

does not complain about poor layout.

When DIAGEN completes its translation of a source file, it

restarts by again prompting the user with an asterisk on a rnew line. The'

user may then specify another source file which he wishes to be translated.

If he is finished using DIAGEN he types tC (i.e., CTRL C) to return con-

trol to the PDP-10 Monitor. To stop the operation of DIAGEN at any time

the user may type two tC's (CTRL C) on the terminal to abort the current

translation and return control to the Monitor.

Then to obtain a listing the user may use the 'TYPE' command to

see it immediately on his terminal or he may request a line printer copy

by standard methods. In some cases the user may wish to use a text

editor to help look at some of the listing. The listing file is unsequenced,

i.e. no sequence numbers are attached to lines. The listing includes TAB

characters whenever possible corresponding to tab settings at every eight

typing positions. Thus if a terminal with hardware tab capability is used

as the listing device the user should be sure to take advantage of the

possibility fbr a much quicker listing.

DIAGEN always translates the entire source file it is given.

Occassionally the need arises to produce diagrams for only a few rules of

a large insertion. The user can use a text editor to produce a temporary

file containing only those rs he wishes to diagram. When doing so,

it should be recalled :hat the file must end with an 'END' statement and

it must begin with a non-blank line other than a rule's beginning. It is

suggested tha in initial line of 'BEGIN' be used.

i72
G-4

(END)

i.=

gA

II
F;

Section H

Using COMPIL: the AMBIT/L Compiler

January 10, 1972

This section describes how to use the AMBIT/L Compiler
and how to interpret its informative typeout. Included is
a collection of all possible error diagnostics along with
associated explanations and error recovery transformations
made on the source text.

COMPIL

The AMBIT/L Compiler, which is itself an AMBIT/L program, is

used to translate one insertion of an AMBIT/L program from a source file

of (ASCII) characters Into an intermediate binary encodement file. The

source file represents both textual and diagrammatic portions of the

program in an encodement language whose syntax is presented in

Section D, "The Syntax of the Encodement of AMBIT/L Proqrams". It

prepared usually by a text editing program available on the host PDP - 10

Time-Sharing System, such as EDITOR, TECO, SOS, etc. The primary

name of the source file must match the name of the insertion which it

contains, except the primary name does not include any periods which

might be in the insertion name, and only up to six characters can be used

as a primary file name.* The programmer is free to choose any file

name extension of zero to three alphanumeric characters, but the Compiler
(and also Diagram Generator) expect the default extension "AL" (for

AMBIT/L)

The AMBIT/L Compiler is invoked by a Monitor command of the

form:

RUN COMPIL [proj , plog]

where proj and prog are the project and programmer numbers of the directory

where the AMBIT/L Programming System is residing. This calling sequence

may be somewhat different, depending upon the method used to install

AMBIT/L on a particular PDP - 10.

When the Compiler is first invoked it prompts the user with the

following request:

*SOURCE=

*This rule need not be strictly followed at compilation time or diagram

generation time, but it is a requirement that, the primary name of the REL

file conforms to this rule when the insertion is linked by the AMBIT/L

Link Editor.

I
37I

COMPIL

!)

The user Is then expected to type the file name of the insertion he

wishes to translate. The name Is accepted In standard form: a primary

name of one to six alphanumeric characters followed optionally by an

extension of zero to three alphanumeric characters with a period as

separator. The file name must be immediately terminated by a carriage

return. If no period and no extension is provided, the Compiler assumes

a default extension of ".L". A null extension name is specified by

following the primary name with just a period. Note there Is no option

for specifying a project-programmer number; thus the source file must

exist in the disk directory In which the user is currently logged in. If

there is a syntax error in the name or if the specified file does not exist,

the Compiler appropriately informs the user and then repeats the prompting

message on a new line.

& ' I
The source file may optionally include sequence numbers on any

or all lines. The Compiler treats each unsequenced line as if It had a

sequence number one higher than the previous line; a thoroughly unsequenced
A

source file is treated as if it were sequenced by one, starting with 00001 on

the first line. The compiler uses these sequence numbers only for informative

typeout on the terminal. Such typeout is done for correct programs as well

as for reporting error diagnostics. The Diagram Generator uses the same

method for providing default sequence numbers when necessary and thus the

user can make the correspondence between the diagrammatic listing and the

Informative typeout of the compiler.

Except for the typeout on the terminal, the only output of the

compiler is a binary file in the user's current disk directory called a "REL"

file to conform to the name of intermediate code riles produced by other

translators on the PDP - 10 (e.g., FORTRAN, MACRO - 10, etc.). Although

"REL" is for "relocatable", AMBIT/L intermediate code (or even final interpreter

code) really doesn't have anything to do with relocation. Furthermore,

the format of an AMBIT/L REL file bears no relation to that of other programming

H-

: H1-2

4

COMPIL

subsystems of the PDP - 10. The FEL file produced by the Compiler is

given the same primary name as the source file of which it is a translation

and an extension name of "REL".

An AMBiT/L REL file is always produced even if several error
conditions axg detected during compilation. it is also correct or meaningful

code since the Compiler performs well-documented error recovery

tra nformations on the given source program specific to each type of error

conrjition. However, In tl.v rare cse that the Compiler itself "bombs out"

the REL file is lost; there are no known bugs of this sort for either correct

or incorrect AMBIT/L programs. Any user encountering such a problem

should inform the system maintainer of his trouble, hopefully accompanied

by the typeout and by a copy of the source file.

If the user wishes to stop a compilaticn prematurely, he may do so

at any time by typing two t C's (CTRL C) on the terminal to return control

to the PDP - 10 Monitor.

The Compiler's typeout is useful to the user as a continual indication

of Ls successful progress as it begins to tianslate each rule of the insertion.

It can also be of help during debugging of the program and thus should always

b,= saved. Foi each rule, one typed line is issued which contains two or

more columns. Thc fir.st column has a de:rmal number which is the sequence

number of the rule in th- source file. The second column has a decimal

number which indica es the woid number In the binary object code being

produced where the en, .dement of that rule begins. Remaining columns are
used to indicate any identifiers (if any) which are de-laed as labels of

that rule. A similar typeout is issued for each END statement in the source

program. The automatically declared identifiers 'RET' and/or 'EXIT' are

listed when appropriate. Each INSERT command in the source program which

inserts a function body and each one-ruie function bdy causes one line to

be typr-d indicating that 'RET' is automatically declared. As errors are

detecued throughout the compilation, appropriite error diagnostics -re typed.

Also, the bell may ring as compilation proceeds; each ring indicates the

a'o

COMPIL

Garbage Collector has been invoked automatically to regain free storage.

Such activity is normal and expected.

After typing the line which corresponds to the final END statement,

the Compiler types a list of all undeclared identifiers (if any). The user

should always look through the list to see if it contains just what he expects.

An undeclared identifier should be one which is declared within an enclosing

block in some other insertion or is built-in to the user's environment. The

resolving of these identifiers is done by the Link Editor. The user should

not be surprised to find certain built-in function names in the typed list which

are employed as a result of certain macro expansions: MEMBER, EQ, TRT,

TRS.

After typing the undeclared identifiers the bell on the 4erminal rings

indicating a forced invocation of the Garbage Collector. Then there is a

pause for several seconds while the Compiler appends the symbol table to

the REL file. Finally, t-i Connect Time (in seconds) and the number of Kilo-

Core-Seconds of computing performed by the Compiler are typed and control

returns to the PDP - 10 Monitor.

Below is a sample program in both diagramma:ic and encoded form

followed by a typeout of its compilation.

H-

1-

_. Ho4

- - - -.

COMPIL
INSERTION EXAMPLE;

- BEGIN

B(X) Y :
"INSERT B;

C(X)Y:
BEGIN
RULE

1 IH
H

I H
1 H

>1 I

V V

1 1 i I

1 1----.. 1
1 1 ! 1

SF/RET;
END;
START: RULE
(00140)

+t-- -T +--.-P
1 1 1 1

I(Q)1 I R I
1 1 1 1

H- -

H H
H H
H H
H H
V H

H1 1 H

1@P I H
I I H

A H
1 H
1 H
1 H
1 V

+------
* 1 1 1

I C I ---- >1

F/ERROR;
END

H-5

AAe

COMPIL

r1r)10r INSERTION EXAMPLE;
00,)020 BEGINI 601)30 B(X) YI
r 00040 INSERT B;
0 0 05 r C(X)Y:
r5ro0i6 r BEGIN
r0r0070 RULE
0006'0 AI/P/X D/Blp

000irs9 0 A2/P/Y BD/B2o
00100jr BI R/B2,
00,110 B32//
rir0 12 r- SF/RET;
0r0130 END;

00rj140 START: RULE

00ci160 A2/P/'R BD/C2*
r00170 BI/A/~eA
00180 Cl/=F/C U/B1 R/C2*

*SOURCE=EXAMPL

140) 11
2110, 20r EXY.
UN DECLARED I DENT I FIERS:
R
P
TRT
Q
ERROR

123 KOS
rT 71 Si Z
EXIT

COMPIL 'c
This memo concludes with the following collection of all error

diagnostics of the Compiler arranged in numeric order. With each message

is given further explanatory material and the transformation performed on

the source text to recover from the particular error. The meta-variable n

used in the diagnostic messages represents a line number which is a sequence

number of the source file. When an error condition is reported as being "IN"

a particular line, the us-r should expect to find the error right there. Several

diagnostics, however, indicate an error occurs "NEAR" a particular line. In

this case the user should look on that line and thin look backward from there

(towards the beginning of the source file) to locate the error being diagnosed.

Usually, the error is, in fact, on the very line mentioned.,

The Compiler is usua' very thorough in its detection of syntactic

and semantics errors. The olib exception to this is in the way it (currently)

ignores link routes except for at most Zhe first two characters. Syntactically,

the compiler requires that a route begin optionally with a perturbation

followed by a direction, but then the remainder of the route is ignored as long

as it consists of letters and/or digits. Compilation is based only on the

destination node specified. Users must be rather careful in this area since

the Diagram Generator draws links based only on the route, and it ignores the

destination. Thus. total reliance on a diagrammatic listing is not sufficient.

When a diagnostic message appears during a compilation, the user

should not assume that re-compilation is necessary. Instead, the recovery

procedure employed may be adequate, if not exactly appropriate. Since there

is a recovery for every error condition the user should usually allow a

compilation to continue to completion.

Several of the recoveries are represented by a transformation on the

source to the compiler. A right-arrow is used to separate the before and after

forms of the transformation. A delta (,A) is u-ed to show where the input

scanner is located before and after the transformition is applied. As a

shorthand notation to show its context, a transformation may be enclosed

within curly braces, and the contextual for -: appears outside of the braces.

F H-7

IS"" COMPIL.

1001: ILLEGAL CHARACTER IN n

error We find a character x which the operating

system permits in an input file but which is

not permitted in an AMBIT/L program.

recovery f A x - A 3

note The character may be a non-printing character,

such as a control character.

1301: PROLOG IS 'sl s2' NEAR n

error We are beginning compilation of an insertion

and expect to find a prolog (namely INSERTION

followed by an identifier). Instead, we find

the segments sl s2.

recove•y A -# A INSERTION X) sl s2

1302: PROLOG IS FOLLOWED BY 'sl' NEAR n

error We have read a prolog and expect to find a

semicolon. Instead, we find the segment sl .

recovery {A -A;} sl

1303: PROGRAM SECTION BEGINS WITH 'sl s2' NEAR n

error We have read a prolog followed by a semicolon.

We expect to find the beginning of a block.

Instead we find the segments sl s2 .

recovery { A - A BEGIN _ sl s2

-H-8

COMPIL

1401: ARGUMENT LIST ENDS WITH 'sl' NEAR n

error We have read a (possibly empty) list of

arguments in a functicn headi.ng and expect ,

to find another argument (an identifier) or a

right parenthesis. Instead, we find the

segment sl

recoverA 4 A) } sl

1402: RESUj. LIST ENDS WITH 'sl' NEAR n

error We have read a "possibly empty) list of

results in a funcL-, on 1-eading and expect

to find another result (t:n identifier) or a

colon. Instead, we find the segment sl

recovprv {A " :} si

L 1403: FUNCTION BODY BEGINS WITH 'sl' NEAR n

error We have read a function heading and expect

- to find the beginaing of a block, rule, or

insert. Instead, we find the segment sl

: !• . recovery { -* A BEGIN END} sl

H1

•. i H-9

COMPII

1404: PROGRAM SECTION BEGINS WITH 'sl s2' NEAR n

I error We have read a procram section (see note)

and expect to find the beginning of a following

program section. Instead, we find the segments

si s2

recovery {A sl s2 s [i-1] 4 A s i-li] }sril

where

'1 sl, s2, , s[i-1l, and s[i'
are segments and i is the smallest i.ateger such

that

s I i- i] is an identifier which can begin
a program section, and

s [i] is any segment except colon or

a left parenthesis.

note A program may be viewed as a prolog followed

by a sequence of sections, where

section 4 BEGIN

declarative; I
function- heading :
identifier :

rule;

insert;

END;
END end-of-file

"H-1- LS3

'I

COMPIL

1405: DECLARATIVE FOLLOWED BY 'sl' NEAR nI!
error We have read a declarator followed by a

sequence of identifiers, and we expect to
find another identifier or a semicolon.
Instead, we find the segment sl

recovery { -4" ;} si

1406: MISPLACED DECLARATIVE BEGINS WITH 'sl' NEAR n

error We have read one or more function definitions,

attached labels, or imperatives in the current
block, and we do rot expect to find a declarative.

Instead, we find a declarative beginning with sl

recovery (Same as 1404; that is, we skip over the next

section of the program.)

1407: FUNCTION DEF FOLLOWED BY 'sl' NEAR n

error We have read a function definition and expect

* to find a semicolon. Instead, we find the
segment sl

recovery {A4 -* ; } s_

1408: MISPLACED FUNCTION D"PBEGINS WITH 'sl' NEAR n

error We have read one or more attached labels or 2

imperatives in the current block, and we do

not expect to find a function definition. Instead,

we find a function definition beginning with s5l

recovery (Same as 1404; that is, we skip over the next
section of the program.)

H-11

COMPIL 2
1409: BLOCK FOLLOWED BY 'sl' NEAR n

error We have just read a block which may have

a transfer-list. We expect to find either a
transfer-list or a semicolon. Instead, we

find sl. "

recovery { ,} + A si

1410: SECTION BEGINS WITH END-OF-FILE

error We tried to find the beginning of a section

(see 1404); instead, we find the end-of-file

which termin.ates the insertion being compiled.

recovery -4 - A END }

1601: REDECLARATION OF 'sl' NEAR n

error Ws have read one declaration of the identifier

s- in the current block and do not expect to

find another declaration of this identifier.

Instead, we find another declaration of sI.

recover' {A s-- A}

note Thus, we skip the new declaration of s1.

1602: MISDECLARATION CF 'sl' NEAR n -

error We have read a reference instance of implicit

type L or F of the identifier s_ in the current block.

We expect to find a declarcion instance of implicit

type L (in an attached label) or F (in a function

definition). Instead, we find some other declaration

of sl.

r, covery The declaration of the identifier sl we have just

read is ignored, and the previous declaration holds.

note This may lead to later 1801 diagnostics.

H-121

COMPIL

2501: TOKEN NAME ENDS WITH 'si' NEAR n

error We have begun to read a name which ts a token.

Such a name should have the form

({ literal } ')0)

So far, we have read

({literal }c. ({literal }c ... (literal }c

and we expect to find a literal or a right

parenthesis. Instead, we find si .

recovery f x j- 4 A (0)] sl

where

x2 is the portion oi the name already read.

Thus, this error in a name which is a token causes
the entire name to be replacred by the token (0).

2701: NODE BEGINS WITH 's_' NEAR n

error We have just read either

RULE (node, }
or

{node, } 4
as the beginning of a rule and we expect to find a

position which will beý..i a new node. Instead, we

find the segment sl.

recovery (A sl ... s [i-2] -+ A s i2] } s[i -1] s Q]

where the s [i] are segments and i is the smallest

integer: such that

a. s [1-1] is a semicolon, or

b. s i- 1] znd s [i] are bo-h slashes, or

c. s [i-2] is a comma, or

d. s [- 1] is an end-of-file.

H-14

COMPIL

2702: RE-USE OF POSITION 's_' IN n

error We have read one or more nodes of a rule
and found sl as the position of one of these

nodes. Now we find sl as the position of

another node in the same rule.

recovery (A Sl -# A]

where gl is an arbitrarily selecte-4 position

whiLh has not been used and (v-. -orrectly

predict) will not be used in this rule.

2703: ILLEGAL TYPE-SET 'sl' IN DATA-NODE NEAR n
?I

error We are reading a data-node and have seen

a position and a slash, and we expect to

find a type-set. Instead, we find si.

recovery { s . s[1 sil C/** }s '+l] s[i+2]

where the s r j] are segments and i is the

smallest integer such that

a. sri+l_ 4s a comma, or

b. s [i+ 11 is a semicolon, or

c. sri+l] and s[i+2] are both slashes, or

d. s[i+!1 is an end-of-file.

2704: ILLEGAL TEST-NAME 'sI' IN D.'TA-NODE NEAR n

error We are reading a name-test in a data-node.

We have seen zero or more occurrences of a
name followed by a slash and expect to find a

name. Instead, we find sl.

recove, (same as 2703; thaL is, the current node is

replaced by a null cell.)

H-IS

COMPIL

2705: ILLEGAL MAIN NAME 'sl' IN DATA-NODE NLhR n

error We are reading a data-node and have seen

a position, a siash, a type-set, and a slash.

We expect to find a name or the beginning

or '#') of a name-test. Instead, we

find si.

recovery (Same as 2703; that is, the current node is

replaced by a null cell.)

2706: NODE FOLLOWED BY 'si' NEAR n

error We are reading the links of a node and we

expect to find another link or the termination

of the node by comma, semicolon, or double-

slash. Instead, we find s:.

recovery { sFr1 ... si [} s i+ l1 sri+21i

where the s i1 are segments and i is the

smallest integer such that

a. s R+ 1] is a commi, or
b. s [ri+ 1] is a semicolon, or

c. sI[i+l1 and st[+21 are both slashes, or

d. s [i+ 1] is an end-of-file.

2707: ILLEGAL TYPE-SET 'sl' IN CALL-NODE NEAR n

error We are reading a call-node and have seen a

boundary, a slash, and an '='. We expect to

find a type-set. Instead, we find sl.

recovery (Same as 2703; that is, the current node is

replaced by a null cell.)

H-16

COMPIL

2708: ILLEGAL TYPE-SET 'sl' FOR CALL-NODE NEAR n

error We are reading a call-nocie and have seen

a boundary, a slash, a type-set sl, and

either nothing more or a slash followed by a

name. The type-set sl should have been F.

recovery { sl -4 F }

2709: ILLEGAL NAME OR VALUE-CALL 'sl' IN CALL-NODE NEAR n

error We are reading a call-node and have seen a

boundary, a slash, An '=,, a type-set, and a

slash. We tried to read a name and didn't find

one and t:,en read a '#' if there was one. We

now expect to find a value-call. Tnstead, we

find sl.

recovery (Same as 2703; that is, the current node is

replaced by a null cell.)

2i'J ¼ RE-USE OF POSITION "sl' IN n

error We have read one or more nodes of a rule and

found sl as the position of one of these ,nodes.

Now we find a ioae whi ., ,as an extended

boundary (covering two or more positions) which

contains sl and wnich is in the same rule.

recovery The position sl is deleted from the set of

positions specified vy the extended boundary.

2802: ILLEGAL EXTENDED BOUNDARY 'sl-s2' IN n

error We find extended boundary, sl - s2 at the

beginniuig of a node such that sI is to the right
of and/or below s2.

T ""

recovery { A si - s2 -. . s_ }

H-17

COMPIL

2901: TYPE-SET 'sl' CONTAINS 's2' IN n

error We are reading a type-set si and expect

to find a type-code or a termination of the

type-set. Instead, we find s2, which is
not a legal type .:ode.

recovery { t s2 - A)

2902: TYPE-SET 'sl' CONTAINS DUPLICATE 's2' IN n

error We are reading a type-set sl and have

seen the type-code s2. Now we find a

second instance of s2.

recovery {A s2 " A }

3001: ILLEGAL WALK 'sl' IN VALUE-CALL IN n

error We are reading a value-call in a call-node

and have seen the 'V' with which it begins.

We expect to find a walk. Instead, we find sl.

recovery { a sl -4 , } @ identifier

3301: ILLEGAL LINK ROUTE 'sI' IN n

error We are reading a data-node and expect to find a
7. link or a turmination of the data-node. Instead,

"we find an identifier sl. This should be (at

this point) a route, but it is not.

recovery { A s_ -0 A)
and assume the termination of the node is next.

note This diagnostic will be followed by diagnostic

2706 (indicating improper termination of a node)
when the assumption made in the recovery, above,

is incorrect. A termination for a node is a comma,

a semicolon, or a double slash.

\ • -H-18

COMPIL

3302: LINK ROUTE 'sl' NOT FOLLOWED BY DESTINATION IN n

error We are reading a data-node and expect to find

a link or a tormination of the data-node. InsLead,
we find a route sl which is legal but is not

followeu by a slash and a destination.

•i! r~~ecover { s__l-
evand assume the termination of the node is next.

;• i(See note 1- 3301.)

3 3CK: LINK WITH ROUTE 'si' IS DUPLICATE IN n

error We are reading links in a data-node and have
already seen a link of some particular type

(solid or broken) and name (horizontal or

vertical). Now we find a link whose route,
sl, has the same type and name as that already

seen.

recovery {A s_ / dest -4 }

I3401: LINK ORIGIN 'sl' OUT OF NODE IN n

error We are reading the links of a c;,ll-node. We

expect* to find a link which either has no origin

or an origin within the (possib'.y extended) call
boundary. Instead, we find tie origin si.

recovrery Accept the origin sl as the orki.n of the link.

3402: ILLEGAL LINK ROUTE 'sl' NEAR n

error We are reading a call-node and have read an

origin and a slash. We expect to find the route

of a link. Instead, we find sl.

recovery f origin/sl -4 A)
and assume the termination of the node is next.

(See note to 3301.)

SH-

COMPIL

3403: BROKEN LINK WITH ROUTE 'si' ON CALL-NODE IN n

. error We are reading the links of a call-node.

" •We expect to find only solid or flow links.

Instead, we find a link with route sl indicating

a broken link.

recovery Replace the 'B' in sl with an 'S', thus convertir.g

it to a solid link.

3404: ILLEGAL LINKROUTE 'sI' IN n

error We are reading a call-node and expect to find

a link or a termination of the call-node. Instead,

we find an identifier sl. This should be (at this

point) a route, but it is not.

recovery { a si .4 }
and assume the termination of the call-node

is next. (See note to 3301.)

3405: (Same as 3404)

note 3405 and 3404 are for routes which have and

do not have perturbations, respectively.

3406: LINK ROUTE '-1' NOT FOLLOWED BY DESTINATION IN n

error We are reading a call-node and expect to

find a link or termination of the call-node. Instead,

we find a route sl of a solid or broken link

which is legal but not followed by a slash and a

destination.

recovery (.4 si .) A)

and assume the termination of the node is next.

(See note to 3301.)

COMPIL
•-,

3407: LINK ROUTE 'el' IS DUPLICATE IN n

error We are reading links in a call-node and have

already seen a solid link of some particular

name (see note). Now we find a solid link

whose route is sl and whose name is that

already seen.

recovery The link in question is ordered immediately

before the previous link which had the same

name.

note The argument (result) links of a call-node

have names specified by, primarily, the digit

(letter) of their names and, secondarily, the

perturbation (implicit or explicit) of their routes.

In diagrammatic form, an argument (result) link

is before another argument (result) link if its

point of origin is to the left of (above) the other

argument (result) link.

3408: LINK ROUTE 'se' NOT FOLLOWED BY DESTINATION IN n

error We are reading a call-node and expect to find

a link or termination of the call-node. Instead,

we find a route sI of a flow link which is legal

but not followed by a slash and a destination.

: recovery {A 14 l A}
* -- and assume the termination of the node is

next. (See note to 3301.)

H-21

COMPIL

3901: VALUE-CALL NODE HAS RESULTS IN n

error A call node with a negated value-call is

on line n. No results can be used on such

a node, but results appear on this one.

recovery Delete the result links from the node.

3902: (Same as 3901)

note 3901 and 3902 for negated and non-negated

value-calls, respectively.

4301: LINK (S) CONTRADICT TYPE-SET OF NODE iN n

error The iight link (s) of the node on line n imply

a type which is not permitted by the explicit

type-set of that node.

recovery The link (s) are eliminated.

4302: (Same as 4301)

note 4301 and 4302 are for right link (s) and down
link (s), respectively.

4401: RIGHT LINK FROM NODE IN n1 TO NODE IN n2

error There is a right link from the node on line nl

to the node on line n2. This implieL, that the

node on line n2 is a cell; but its type-set
conitadicts that.

recovery The linK is eliminated.

"H-22

S.. . -•-• .. • •" i • • • ,.. .. V ! "• "i... i . .. f i•

COMPIL
lit

4501: TRANSFER-LIST BEGINS WITH 'sl' NEAR n

error We have just read a double slash dnd

expect to find a transfer-list. Instead, we
find s1.

recovery (A " A S/NEXT F/ ?;}sl

4502: ILLEGAL LABEL REF 's" NEAR n

error We are reading a transfer-list and have just

seen the SF/ or S/ or F/ with which it begins.

We expect to find a label reference but instead

find sl.

recovery {x A-.A S/NEXT F/?;} si

where x is SF/ or S/ or Fl.

4503: ILLEGAL LABEL REF 'sl' NEAR n

error We are reading a transfer-list and have

seen the first transfer followed by S/ or F/

as the beginning of the second transfer. We

expect to find a label reference but instead

find sl.

recovery { 0 -A x;} s_
where

x is F/? if the first transfer was a

success transfer, and

x is S/NEXT if the first transfer was

a fail transfer.

H-23

-~ -- -H-23

COMPIL

"4504: TRANSFER-LIST FOLLOWED BY 'sl' NEAR n

error We have just read a transfer-list and

expect to find a semicolon. Instead, we

find sl.

recovery { 4 - ; } sl

4701: FLOW LINK BIND FROM NODE IN n1 TO NODE IN n22

error The current rule has a flow cycle; we (for

the moment) blame the cycle on the flow lirk

from the node on line n1 to the node on

line n2.

recovery Delete the fow link in question.

note This is a guess; if it doesn't work, this

diagnostic will be followed by diagnostics

4701 or 4702 or 4703.

4702: CANNOT VISIT NODE IN n

error The current rule has a node on line n which cannot

be visited because it is unnamed and is not

the destination of a link from a node which

has been visited.

recovery Replace the name of the node on line n with

the name @ A.

note This is a guess; if it doesn't eliminate all other

unreachables, further 4702 or 4703 diagnostics

will occur.

I_ -. H-24

COMPIL

4703: ARG/'RES BIND FROM CALL-NODE IN n1 TO NODE IN n2

error The current rule has d cycle where the

argument(s) of function call(s) cannot

be determined until the function (s) are

called. We blame the problem on the
argument link from the call-node on line n1

to its argument on line n2, since the binding
of the argument node depends on the function
of which it is an argument to be called.

recover? Change the argument link being blamed to
point to the NULL CELL.

5901: ILLEGAL LABEL REF NEAR n

error We find a label-reference, sl, which is a

legal name bur is not an identifier, negated

identifier, or indirect, as required.

recovery {Ls -i 6 ? }

note Diagnostic 5901 applies to the fail transfer

of a rule; 6001, to any success transfer; and

6101, to the fail transfer of a block.

6001: (Same as 5901)

S6101: (Sam e as 5901)

6701: DESTINATION 'sl' IS MISSING IN n

error We have read a link whose destination node has

been referenced cn line n, but has not been

"specified in this rule.

recovery Place a type-icss, nome-less node at sl.

(END)
H-25

".-.ction i

U 1, LINK: the AMBIT/L

Link Editor

January 11, 1972

St: • "his section describes how to use the AMBIT/L LinkEditor. First its simplified use by a novice user is

Sdescribed . N ext, its norm al use is given , and finally
the advanced use of partial dumping is described.

LINK

The AMBIT/L Link Editor (LINK) is used to prepare an executable

"AMBIT/L pro, -. from one or more AMBIT/L REL files (which are the compiled

"output of the AMBIT/L Compiler). This process is done in two steps: first,

each insertion of the program being prepared is "linked", which means that

it is transformed into a final binary representation which is embodied as an

"ABS" file (for "absolute"). Linking of a particular insertion must be done

.. in the context of all insertions which include the blocks enclosing it. Linking

of a particular insertion amounts to resolving all of its references to undeclared

identifiers as detected by the Compiler. The intermediate binary code of the

REL file is created with holes or space which can be filled in by LINK to create

the ABS file. Since a REL file must contain the information on what is un-

resolved and also a complete symbol table, its size is usually considerably

t•reater than the corresponding ABS file. In fact, each ABS file merely contains

one word of overhead plus the number of words o1 interpreter object code which 4
was indicated by the Compiler as it translated the corresponding iniartion.

The second step of the program preparation process performed by LINK

is the collection or dumping of all ABS files of a program into one large "DMP"

file. A DMP file is the entire final representation of a complete AMBIT/L

program in a form which can be cxecuted interpretively by the AMBIT/L interpreter.
4

If the program the user is preparing consists of just one insertion in

which no PERM pointers are declared, the method of using LINK is greatly

simplified. This is an advantage for the niovice AMBIT/L user since link edit-

ing has proven to be the most "mystcrious" part of using the AMBIT/L Programming

System. Thus the simplified use is first described, and the novice user need

,. not confuse himself by reading further. However, as soon as a program exceeds

one Insertion the "normal" method of link editing must be used. It is not

intended that a program should be very large (say, ove;" 50 rules) and still

consist of only one insertion. Instead, it is expected that when that large a

program is being developed the user is no longer a novice, and he should not

*- hesitate to split his program into several insertions. A

I7I

S -1 N-•4

LINK

Note that for LINK to operate in the simplified mcde the directory

where the REL file is located and the directory in which the user is currently
•- logged in must not contain a file of the same primary name as that of the !

REL file being processed and with an extension of "LNK".

Novice Use of LINK, I
The AMBIT/L Link Editor is invoked by a Monitor command of the

form:

RUN LINK proj, prog

where proj and prog are the project and programmer numbers of the directory

where the AMBIT/L Programming System is residing. This calling sequence

may be somewhat different, depending upon the method used to install

AMBIT/L on a particular PDP - 10.

When LINK is invoked it first prompts the user by typing an asterisk

on a new line. The user is then expected to type the primary name of the

REL file to be processed; normally this is also the primary name of the source

file of his insertion. The name must consist of one to six alphanumeric

characters, beginning with an alphabetic character, and it must match the

name of the insertion (up to the first six characters excluding periods). The

name may be optionally followed by a project-programmer number within square -

brackets to specify that the REL file is in that disk directory, rather than in
the one in which the user is currently logged in. The file specification is

7 immediately followed by a carriage return.

Then LINK goes through the two steps of processing: link'ng and

dumping. Unless there are severe errors, LINK produces three files in the 4

X!
S~~~user's current disk directory, each wi.th the same primary name as the REL iebngposed°•

1. an ABS file with an extension name of "ABS" which is the

intermediate representation of the program between the two

steps of link editing; and

1-2

- ______

LINK

: ,:o

2. a DMP file with an extension name of "DMP" wh!hh is

the final representation of the program in the form ready

to be executed interpretively by the AMBIT/L interpreter;

and

3. a listing file with an extension name of "MAP" which

indicates all identifiers defined in the program along

with a numeric definition of each one. This map is

used primarily in conjunction with the DAMBIT/L

debugging system and thus its format is described in

the section, "Using DAMBIT/L: the AMBIT/L

Debugging System".

LINK normally will produce one typed line on the terminal to inform

the user that it has linked the REL file. It consists of the pr.mary name of

the REL file (which is the same as the "command" given to .INK) followed by

a decimal number which is the page number assigned to the insertion by LINK.

At present, the built-in environment to every AMBIT/L user program consists
of 26 pages; thus page number 27 is assigned as the page number of the
insertion being linked.

During the linking process LINK may detect that an identif: 'er which
was undeclared within the program is not defined in the built-in eiAvironment.

In this case it will inform the user of this by typing an Inf'rmative error

diagnostic on the terminal and then proceed with the linking process. Evcn

with one or more errors of this type a potentially executable program is produced.

"If during execution, however, the interpreter encounters a reference to an

undeclared identifier it will detect an error condition and cause an error trap

to occur.

At the conclusion of a successful application of LINK or after a fatal

error is detected and reported to the user, control is returned to the PDP - 10

"Monitor. At any time during an application of LINK, the user may abort the run

1-3

L (LINK.FI, L
by typing two t C's (CTRL C) on the terminal; control will then be returned

to the PDP - 10 Monitor.

Normal Use of LINK

The previous description was appropriate only for the link editing

of programs consisting of one insertion in which no PERM pointers are declared.

The following text describes use of LINK in its complete generality. The
general method of use can also be used to link single-insertion programs.

Before invoking LINK, the user must prepare two text files in addition

to having compiled any insertions to be linked. One file must be prepared

once as a description of the structure of the program being prepared. It

is called a "BLK" file for "block structure". This file must be created with

one line for each insertion in the program; each line contains any number of

SPACEs and/or TABs followed by the primary name of a REL file corresponding

to one of the insertions of the program. This name consists of one to six

alphanumeric characters, beginning with an alphabetic character. If tnere

are any PERM pointers declared in the corresponding insertion the name must

be followed by the unsigned decimal number which indicates the total number

of PERM pointers explicitly declared within the text of the insertion, If such

a number is given it is separated from the name by one or more SPACEs and/or

TABs.

It is recommended that the user prepare a BLK file using relative

indentations of the file names to show the block structure of his program.

Although such arrangement is optional, it is strc.igly urged for it aids in

preparing UNK command files, and it helps document the program as a whole.

if this arrangement is used the ordering of names within the BLK file is

constrained, If the user chooses not to adnere to the recommended arrangement,

he must at least include the primary file name of the outermost or main block

"of his program on the very first line of the BLK file.

1-4

LINK

A BLK file may optionaly have sequence numbers as provided by

some text editing programs available on the PDP - 10. ,t is customary and

helpful for the file to be sequenced by ones and to have each sequence number

conform to the page number assigned to the insertion by LINK. This page

numbering will be explained later.

Next is presented an example of a BLK file prepared as suggested.

This particular BLK file is one for the AMBIT/L Compiler, which is itself an

AMBIT/L program. Note that some insertions of the Compiler include PERM

declarations.

kiI

!iii
iI

I :
• I

LINK

%^OO-P1L*BLK 12-22-7toI520 C 72* 2701

00027 COMPIL
00028 ERR
00029 ERRI

00030 ERR2
~I ~00031 ERR3

00032 GETSEM4
00033 CO.ITRO
00034 TYPECO 1
w89O35 OPL'4C0I00036 GETPRO
00037 GETBLO 17
00038 OPO49L
00039 DECLAR
00040 GERhID 2
00041 CLOSEBA00042 DESCR
M~0043 GETINJS 2400044 GETDEC
00045 ISFLK

400046 GETMAM
00047 GETTEL
00048 GETRU.
00049 WRI4POS
00050 GETTYP
00051 GETV1N
00052 GETELS
00053 GETCLS
00054 PLOWRE
00055 EKPqND
00056 GATH{ER
00057 TYPE'M~ 2
00058 GEN4RUL 9
00059 GE04MAT 1
00068 GEr4L!N 1
00061 GENREF 6
00062 GBOIAW 2
00063 GEI4TYP 5
00064 GENM4LI 7
00065 GENERR
00066 GLNTR 8
00067 aENIJ,'JC 3
00068 GERFAI 3
00069 GENWAZ. 5
60070 CLCPI.

LINK

The other text file which the user must prepare may vary from one

application of LINK to another. It is called a "command file" since it

contains the sequence of commands to control LINK. Each command is a two- or

three-character mnemoni', and some commands may take one argument.

Each command must be on a separate line of the command file. SPACEs

f and TABs may be used optionally before each command. One or more

SPACEs and TABs must be used to separate a command from its argument

(if any).

During its operation LINK must look-up several files: a BLK file,

Rn:L files and/or ABS files, and perhaps a DMP file. When pellorming any

such look-up LINK first tries to find the file it is seeking in the disk directory

in which the user is :,;-rently logged in. If the file is not there, then LINK

tries to look in the current "library directory" if one was specified. The

command file may contain any number of "LIB" commands to specify the

current library directory. A LIB command may optionall-y take one argument

which is a directory specification in the following standard format:

roj , pro]

where proj and prog are the project and programmer numbers of the directory
being specified. If no argument is given to a LIB command no library directory

is used during succeeding file look-ups.- At the beginning of an application

of LINK the library directory is initially the one where the command file is.

Except for a possible LIB commdnd, the coramand file must begin with

a "BLK" command to specify the name of the BLK file to be used for this

application of LINK. The argument to the BLK command must be a file name

"in standard form: a primary nar..e of one to six alphanumeric characters

followed optionally by an extension of zero to three alphanumeric characters

with a per!od as separator. If no period and no extension is provided LINK

.-. assumes a default extension of "BLK". A null extension name is specified by

following the primary name with just a period. i.

1-7

-.... ..-- FH [.... .. iil- -

LINK

Next, the command file may contain commands to control the linking
of any number of insertions of the program being prepared. Except for LIB

commands, these commands are "LNK" (for "link"), "IN", and "OUT". If

this application of LINK is used only for dumping then none of these commands
need be included. The LNK and IN commands each require one argument
as the primary name corresponding to the insertion to which they refer; thus

it consists one to six alphanumeric characters. The OUT command has no

arguments. These three commands are used to "wind.around" the block
structure of the program being prepared as necessary so that those insertions

to be linked are appropriately linked in their proper context of enclosing
blocks. Each LNK or IN command moves the current point of context deeper

one level in the block structure, and each OUT command pops out one level.

As an example, for the following program structure:

A

[B

[E

the following sequence of commands must be used to link all five insertions:

LNK A

LNK B

LNK C

OUT
LNK D

OUT

OUT

-INK E

"OUT

OUT

1-8

S!-

LINK
o...

If only insertion E were to be linked the sequence of commands would be: I
IN A

LNK E

OUTOUT

Since insertions B, C and D do not enclose insertion E they do not have to

enter into the sequence of commands.

The two examples just given include correspondl.ng OUT ccmmands to
evefy LNK or IN command. Although this is conceptually correct, a lazy user
is free to omit any number of final OUT commands in his sequence of commands
to affect linking.

Following the commands to control linking (if any), the command file

may contain a "DMP" command to specify that a DMP file be created. Thej

DMP command may take an optional argument as a primary file name of one to
six alphanumeric characters. If such a name is provided, the DMP file is

created with that primary name and an extension of "DMP". If no argument

is given the DMP file is created with the same extension name ("DMP"), but

with the same primary n•ame as that used for the REL file of the insertion which

is the outermost or main block of the program being prepared.

Finally, a command file may terminate optionally with an "END" comman~d
which has no argument. Since LINK interprets the reading of an end- of-file

as an END command the user is free to omit it.

This description of the normal use of LINK has thus far described the
preparation of the BLK file and command file. The remainder of this section

-" -provides a description of its use. The AMBIT/L Link Editor is invoked by a

"Monitor command of the form:

RUN LINK proj , o] I

1I-9 1

LINK

where proj and prog are the project and programmer numbers of the directory

where the AMBIT/L Programming System is residing. This calling sequence

may be somewhat different, depending upon the method used to install

AMBIT/L on a particular PDP - 10.

When LINK is invoked it first prompts the user by typing an asterisk

on a new line. The user is then expected to type the name of the command

file he has prepared for this application of LINK; the name is accepted in

standard form: a primary name of one to six alphanumeric characters followed
optionally by an extension of zero to three alphanumeric characters with a

period as separator. If no period and no extension is provided LINK assumes

a default extension of "LNK". A inull extension name is specified by following

t'ie primary name with just a period. The file name may be optionally followed

by a project-programmer number in square brackets to specify that the command

file is in that disk directory, rather than in the one in which the user is

currently logged in. The file specification is immediately followed by a

calTiage return

LINK then tries to find the specified command file, and if successful

it then continues automatically until proper or improper termination as controlled

by the commands of the command file. If, however, it cannot find the specified

command file, LINK assumes it has been invoked for novice use. This is

equivalent to its finding a command file .of the form:

BLK pname

LNK pname

DMP

and a BLK file whose name Is pname .BLK, whose one-line contents are:

pname

where pname is the primary name given for the specified command file. If the

user had made a typing error, he should expect an error diagnostic being

produced resulting from LINK's inability to locate pname.REI,

1-10

ie LINK

After it finds the specified co-m.miand file it reads that file one command

at a time. A description of the LIB command and the meaning of the library

directory was provided earlier. LINK expects to find a BLK command

specifying a BLK file; if there is no such command or if it cannot locate the

BLK file, an informative error diagnostic is typed and control returns to the

PDP - 10 Monitor. Otherwise the BLK file is read and assimilated.

Then LINK goes through the two steps of processing accordingly a
they are specified: linking and/or dumping. As 'jrintable output for this

one application of link, a listin': file is produceJ in the disk directory in

which the user is currently logged in with an extension name of "MAP" and
a primary name which matches that of the command file. Each insertion

which is linked contributes a logical page to the listing which indicates all I
identifiers defined in that insertion along with a numeric definition of each one.

This map is used primarily in conjunction with the DAMBIT/L debugging system
and thus its format is described in the section, "Using DAMBIT/L: the

AMBIT/L Debugging System".

LINK normally will produce one typed line on the terminal for each

insertion which has been linked. It consists of the primary name of the REL

file followed by a decimal number which is the page number assigned to the

insertion by LINK. At present, the built-in environment to every AMBIT/L

user program consists of 26 pages; thus 27 is assigned as the page number of

the outermost or main biock of a user program, and succeeding numbers are

assigned according to the ordering of the file names in the BLK file.

For each REL file (or insertion) being linked, an ABS file is created in

-- the disk directory in which the user is currently logged in with an extension
name of "ABS" and a primary name which matches that of its corresponding

REL file. Each ABS file is the intermediate representation of an insertion

between the two steps of link editing.

During the linking of an insertion, LINK may detect that the definition
of an identifier which was undeclared within that insertion (at compile-time)

cannot be resolved since no enclosing block, including the built-in environment,

- I-5C

I
LINK

defines the identifier. In this case, LINK will inform the user of this by

typing an informative error diagnostic on the terminal and then proceed

*. with the linking process. Even with one or more errors of this type

potenti, Ily executzble interpreter code is produced. If during execution,

however, the interpreter encounters a reference to an undeclared identifier

it will detect an error condition and cause an error trap to occur.

If a DMP command is included in the command file LINK creates a

DMP file by collecting together all ABS files of the program as governed by

the primary names included in the BLK file. All ABS files must exist for

the dumping to be successful in either the current disk directory or the current

library directory (as set by the most recent .IB crmmand). A missing ABS file

will cause an error condition to be detected which results in an informative

diagnostic message being typed on the terminal and control returned to the

PDP - 10 Monitor, as with any fatal error. At any time during an application

of LINK, the user may abort the run by typing two tC's (CTRL C) on the

terminal; control will then be returned immediately to the PDP - 10 Monitor.

Once a program's DMP file has been created, the only reason for not

deleting the constituent ABS files is that a partial linking may later be done

to fix just one part of the program. The user must beware, however, that

such partial linking must be done carefully since errors are difficult to detect.

When re-linking a particular insertion, the user should be sure that all

enclosed insertions should also be re-linked since the definition of an identifier

may have changed in the enclosing block. Since compilation is relatively

expensive and linking is not, for long-term storage it is recommended that all

ABS files be deleted. Also for long-term documentation one complete map

listl.g of all insertions of a program is more desirable than individual ones.

Partial Dumpin

For large programs it may be desirable to use partial results of a

previously created DMP file so that only changes or additions need be processed.

This is an advanced use of LINK which should be avoided unti) the user feels

1-12

A_

LINK

rather comfortable with link editing. The normal user may cease reading

this memo hera.

As previously described, the command filc may end in a DMMP command
which directs LINK to collect all ABS files mnentioned tn the BLK file and create

a DMP file. The optional argument used for specifying a primary name of

S* th' DMP file is given on the same line as the DMP command.

For specifying paitial dumping, the user nmay provide an optional

second argument (even if the first argument was not given) as a decimal integer

at tVe beginning of the very next line of the comrjwa;nd rile. This inteqer is a
pace number indicating the HIGHEST PAGE NUMBER WHICH DOES NOT PAVE TO

BE RE-COLLECTED.

If the integer argument given is less than 27, or if it is not given, or

if there is no DMP file in the current disk directory whose name is the same

as the DMP file being specified, then a new DMP file is created. Otherwise,

the old DMP file will be used and appropriately altered; note that its creation
* date remains the same. Also, the length 0'- the new DMP file will be at least

as large as that of the old one, even if there is less useful information in the

* new one.

There is, however, one restriction on increasing the number of pages
of a DMP file by partial dumping: if there are x pages in the old DMP file

(this dues not include the 26 built-in pages) and there are v pages in the

new one, then

if i & x • 123, then y must be :5 123,

if 124 S x 251, then y must be : 251,

if 252 - x - 374, then y must be -s 374.

At the present time DMP files are restricted to being 374 user pages long.

1-13
"" 1-13

LINK

As an example, for the following BLK and command files, LINK will
use the existing A.DMP as a base from which to create a new one. In
particular, up to page 30 of the previous DMP file is assumed to be
unchanged. Note that if, for example, the old DMP file had only up to
page 28, then LINK would "know enough" to I- -gin collecting at page 29,
even though the command file has "30". Only those ABS files which are

being collected need to exist for such a partial dumping.

A. BLK A. LNK

A BLK A
"B IN A

C LNK E
D DMP
E 30

|2

L (rND)
1-14•" IEND) - -

1r
I

I i
Section j

Using the AMBIT/L Cross-ReferencerIifI
' 'i

January 13, 1972

oI

This section describes how to obtain and interpret cross-

refe-ence maps of off-page references to identifiers }

accoirding to the five categories: LABELs, MARKs,

FUNCTIONs, PERM POINTERs, and TEMP PONTERs. To

take advantege of this facility the user must be familiar
with using the AMBIT/L Link Editor.

Cross-Referencer

FisThe cross-referencing process is performed by the user in two stages.

.Fxst, the user must invoke the AMBMAP program by a Monitor command of

the form:

S' '" RUN AMBMAP [rio~j ,prog

where proj and po__ are the project and programmer numbers of the directory

where the AMBIT/ Programming System is residing. This calling sequence may

be somewhat different, depending upon the method used to install AMBIT/L

on a particular PDP - 10.

o When AMBMAP is first invoked it prompts the user with an asterisk

on a new line. The user is then expected to type the name of a command file

he has prepared for this application of the Cross- Referencer; the name is

accepted in standard form: a primary name of one to six alphanumeric

characters followed optionally by an extension of zero to three alphanumeric

characters with a period as separator. If no period and no extension is

provided AMBMAP assumes a default extension of "LNK". A null extension

name is specified by following the primary name with just a period. The file

name niay be optionally followed by a project-programmer number in square

"brackets to specify that the command file is in that disk i'rectory, rather

than in the one in which the user is currently logged in. The file specification

i-s immediately followed by a carriage return.

AMBMAP then tries to find the specified command file, and if successiul

it then continues automatically with the first stage of the cross-referencing

process (until proper or improper termination) as controlled by the commanas t-f

the command file. If, however, it cannot find the specified command file, it

notifies the user with an informative error diagnostic typed on the terminal

"and control is returned to the PDP - 10 Monitor.

The form of the command file which AMBMAP accepts is exactly the

same as the command file for a link edit. AMBMAP interprets a DMP commend

"as if it were "END". The user should refer to the part, "Normal Use of

LINK" in Section I, "Using LINK: the AMBIT/L Link Editor". Note that

-14

Cross-Referencer

AVAMBMAP does not accommodate the same simplified or novice use of LINK.

"Thus a BLK file must exist for the program being cross-referenced.1
Although AMBMAP accepts a command file of the :.rme form as that

of LINK it interprets the LNK command as the signal to include the particular

insertion in the cross-reference maps it produces rather than link edit the

corresponding REL file. As for LINK, AMBMAP requires the existence of any

REL files which are mentioned in either IN or LNK commands.

AMBMAP normally will produce one typed line on the terminal for each

insertion being cross-referenced. It consists of the primary name of the REL

file followed by a decimal number which is the page number of that insertion.

Recall that 27 is the page number of the outermost or main block of a user

program.

During the cross-referencing of an insertion, AMBMAP may detect
that the definition of an identifier which was undeclared within that insertion

cannot be resolved since no enclosing block, including the built-in environment.

defines the identifier. in this case an informative diagnostic message will be
typed on the terminal and cross-referencing will proceed normally. Undeclared

Identifiers are not included in the cross-reference listing.

The result of applying AMBMAP is the creation of five text files in thc
current disk d.,.ectory containing the cross-referencing information in an encoded

form. Each insertion which is cross-referenced may contribute information to

any of these files. The primary name of each of these files is the same as
rA

that of the specified command file. Different extension names are used to

indicate their contents:

J--2
• ,

-•-•. • 2 .

Crors-Referencer

Extension Contents -Off Page References to:

LBL LABELs

MHK MARKs

FNC rUNCTIONs

PRM PERM POINTERs

TEM TEMP POINTERs

If AMBMAP terminates properly all five files will be created even if some do
not have any cross -referencing information. If improper termination occurs,
entries will be made in the disk directory, but the files will have no cor.tents;

in such a case an informative diagnostic message will be typed on the terminal[

and control returned to the PDP - 10 Monitor. At any time during the execution
of AMBMAP, the user may abort the run by typing two tC's (CTRL C) on the

terminal; control will then be returned immediately to the PDP - 10 Monitor.

This concludes the first stage of cross-referencing.

The second stage of cross-referencing consists of the user's directing 3
the ALXREF program to create a cross-reference listing of one of the five types

of references in alphabetical order by converLing one of the files created during

the first stage. ALXREF must be separately invoked for each of the five possible ji

:*stings which is desired. For each identifier which was referenced off-page,
the listing indicates on which page (by insertion name) the identifier is declared
and then a list is given which indicates in which insertions such an off-page

reference occurs. Multiple declarations of the same identifier on a page are

merged (unfortunately). If on identifier is declared in the built-in environment

the insertion name given for where it is declared is one of the following:

ZENVO, ZENVI, ZENV2, ZENV3. There is no reason for the normal user to
distinguish among these four insertion names.

The AIXREF program is invoked by a Monitor command of the rorm:

RUN ALXREF[proj , pLrog

J-3

r 2Ji

Cross-Refe-encer

where proi and plog are the project and programmer numbers of the directory

Ii where the AMBIT/L Programming System is residing. This calling sequence

may be somewhat different, depending upon the method used to install

AMBIT/L on a particular PDP - 10.

When AIXREF is invoked it prompts the user to supply an input file

"name by typing

* INPUT

on a new line. The user is then expected to provide the name of one of the

five files produced by the first stage of the cross-referencing process. The

file name is accepted in standard form, but it may not ba followed by a disk

directory specification. Thus the file must exist in the disk directory in

which the user is currently logged in. If the file is not found or if a

syntactically incorrect file name is specified, the user is given another try.

If the file is found, ALXREF next prompts the user to supply the name

of the BLK file oi the program being cross-referenced by typing:

BLK FILE: INPUT =

The user is then expected to provide that file name in standard form. If no

period and no extension is provided ALXREF assumes a default extension of

"f"BLK". A null extension name is specified by following the primary name with

just a period. The name of the BLK file may not be followed by a disk directory

specification, and thus it must exist in the disk directory in which the user

Is currently logged in. If the file is not found or if a syntactically incorrect

file name is specified, "INPUT=" is repeated for the BLK file, and the user is

' " Vgiven another try.

-. If the BLK file is found, ALXREF next prompts the user to supply the

name of an output file for the cross-reference listing by prompting the user with:

OUTPUT =

J-4

Cross-Referencer

The user is then expected to provide a file name in standard form, but it may
not be followed by a disk directory specification. If no period and no
extension is provided ALXREF assumes a default extension of "LST". A null

extension name is specified by following the primary name with just a period.

If a syntactically incorrect file name is specified, the user is given another

try. The specified output file is then created in the disk directory in which
the user is currently logged in. After successful completion ALXREF returns

control to the PDP - 10 Monitor. The listing thus produced may be typed or
listed by standard means. The user should eventually delete the intermediate
five files used to hold the intermediate cross-referencing information.

This memo concludes with a sample cross-reference listing of FUNCTIONs
in the ALXREF program itself.

Ji5

i''

II-

6

Cross-Referencer

AMBSIT/L EXTERNAL SYMBOL CROSS-REFERENCE MAP
INPUT FILE: ALXREF.FNC
BLK FILE: ALXREF.BLK

ADI (ZENVO)

USE: XRPRO FILEN ALXREF

AFTER (ZENVO)
USE: ALXREF

ALPHNUM (ZENVO)

USE: XRINP FILEN

CLOSE (ZENV2)
USE: XRPRO ALXREF

COPY.LIST (ZENVO)
USE: XRINP FILEN

DELCR (ALXREF)
USE: XRINP '

INL (ZENV2)

USE: XRPRO ALXREF

INLS (ZENV2)
USE: XRINP

LE (ZENVO)
USE: FILEN

MEMBER (ZENVO)
USE: XRrRO XRINP FILEN ALXREF

OPEN (ZENV2)
USE: ALXP.EF

OUTL (ZENV2)
USE: ALXREF

OUTS (ZENV2)
USE: XRPRO ALXREF

REQ.XRINPUT (ALXREF)
USE: XRPRO

TRD (ZENIJO)
USE: ALXREF

TRI (ZENVO)
USE: XRINP

TRS (ZENVO)
USE: XRPRO XRINP FILEN ALXREF

TRT (ZENVO)
USE: XRPRO ALXREF

J-6 (Ei4D)

Section K

System PERM POINTERs for the

AMBIT/L User

December 13, 1971

This section indicates the names, numbers, and uses
of those System PERM POINTERs which are built-in to
the AMBIT/L Interpreter and are of interest to the
normal user. Other such pointers are used internally
by DAMBIT/L, the IMBIT/L debugging system.

3 -•

PERMs

PAGER.CT - PERM 13

Each time a page is read from the DMP file into the object area
of the interpreter the destination of the DOWN link of this POINTER
is updated to point to an INTEGER whose value is one greater than before.
It the NULL CELL is found, it is treated like the INTEGER 0. This counter
operates modulo 32768.

FREE.CT - PERM 15

After each garbage collection or call on the built-in function
FLTH this POINTER is made to point DOWN to the INTEGER which represents
the number of words (count) of free storage available.

TRAP.GCOL - PERM 16

When garbage collection is invoked automatically (i.e., not by
calling the GCOL built-in function), then after FREE.CT is updated an
attempt is made to call a trap function via this POINTER. If it points
DOWN to the NULL CELL no function call is made. At present, this
POINTER is initialized to the NULL CELL.

GCOL.CHOKE - PERM 17

After a garbage collection is complete and FREE.CT is updated,
if there are no words of free storage then an attempt is made to transfer
control indirectly ,via this POINTER. If it points DOWN to the NULL CELL
(which is how it is initialized) the GC fatal error trap occurs; otherwise
an "indirect goto" is performed under the assumption that the programmer
has set the DOWN link of this POINTER to point to a LABEL node
corresponding to an asppropriate place in his program. Since this is a "1goto"
rather than a function call it may pop the interpreter control stack in such a
way that previously referenced structures are made available for garbage
collection.

STACK.CHOKE - PERM)8

If an overflow of the interpreter control stack occurs an attempt
is made to transfer control indirectly via this POINTER. If it points DOWN
to the NULL CELL (which is how it is initialized) the STK fatal error trap
occurs; otherwise n "indirect goto" is performed under the assumption
that the programmer has set the DOWN link of this POINTER to point to a
LABEL node corresponding to an appropriate place in his program such that
the stack will be popped by some amount.

P.RAND - PERM 19

This POINTER is used only by the RANDOM built-in function; for
a complete description of its use see the documentation of the functionV - In "AMBIT/L Built-in Functions for the Programmer" (Section E).

I' K-I

"W?2

r -PERMs

P.SEED - PERM 20

I' .This POINTER is used only by the RANDOM built-in function; for
a complete description of its use see the documentation of the function
in "AMBIT/L Built-in Functions for the Programmer" (Section E).

31
I: I

K-2

222 (END)

;W2

st

Section L

AMBIT/L Program Execution

4-:

January 14, 1972

This section describes how to invoke the AMBIT/L
interpreter to run a particular AMBIT/L program which
has been compiled and link edited into a single DMP
file. Also included is a description of how to prepare
a bootstrap for running a commonly used AMBIT/L
program.

fix

Execution

Once an AMBIT/L program has been linked and dumped by the Link

Editor it is embodied as one DMP file (whose extension name is "DMP").

It is then ready to be executed as a running program by the AMBIT/L

interpreter. Although a special bootstrap can be made up to cause the

interpreter to run the program, the usual method of use during program

development begins by invoking the interpreter directly. The creation

"and use of a bootstrap will be discussed later.

The AMBIT/L interpreter is invoked by a Monitor command of the
form:

fo.m RUN AMBIT [proj , prog]

where proj and pro2 are the project and programmer numbers of the directory

"where the AMBIT/L Programming System is residing. This calling sequence

may be somewhat different, depending upon the method used to install

AMBIT/L on a particular PDP - 10.

LJ
S"I

When the interpreter is invoked it first prompts the user by typing an

asterisk on a new line. The user is then expected to type a command line

which must begin with the name of the program to be run, which is the primary

name of the DMP file containing the executable program. The name must

consist of one to six alphanumeric characters, but note that the user is free

A to alter the primary name of any AMBIT/L DMP file after it is created by the

Link Editor or between two uses of the program. The name may be optionally

followed by a project-programmer number within square brackets to speAify

t that the DMP file is in that disk directory, rather than .n the one in which

the user is currently logged in. Then, the command line may be terminated

by a carriage return if the user does not wish to supply any optional

parameters affecting interpreter initialization. The i. terpreter then looks for

F "the specified DMP file and if found uses it in read -only mode and proceeds

k with the execution of the program. If the DMP file is not found an indicative

I•L-

Execution

error message is typed on the terminal, and the interpreter restarts by
prompting the user with another asterisk on a new line. If a syntactic

error is detected in this or any other part of the command line only a

question mark is typed and the interpreter then restarts.

Several options are available to the user to control the allocation of

memory space and the employment of the AMBITiL debugging system or the

DDT debugger (useful only to AMBIT/L systems programmers). These options

are controlled by "switches" (consistent with PDP - 10 monitor terminology)

following the name (and perhaps directory specification) on the command line.

The switches may be given in any order and the use of SPACEs as separators

is entirely optional. Each switch begins with a slash followed by one or

more letters. Although just the first letter is checked by the interpreter,

names of switches presented here are .onger for mnemonic value. Those options

which require an argument accept the argument following an equal sign which

follows the switch name.

The novice user is expected to ignore all but one switch, and thus

it is first described so the remainder of this section may be skipped until special

needs arise. The following switch may be included on the command line
following the DMP file name (and perhaps directory specification):

/BRK

which is a mnemonic for "user break". When this switch is included on the

command line the DAMBIT/L debugger will be invoked at the very first rule

(just before its execution) of the user's program. This is particularly useful

for setting console breaks or "breakpoints" in one's program before it begins.

Details of using DAMBIT/L are covered in the section, ';Using DAMBIT/L:
the AMBIT/L Debugging System". (The novice user should stop reading this

memo here, and skip foward to pages L-7 and L-8.)

I

L-2

Execution

To fully describe the impact of using the various other switches is

i ~a difficult tash, and thus the following descriptions are rather sketchy.

The reader is encouraged, however, to read through all of the descriptions
since a variety of useful information is found within them. For those

Ilk switches which require a numeric argument, the value of that argument

is checked to see that it lies within an allowable range; if it does not, the

error is reported in the same way that a syntactic error is indicated.

"U. /LOW = kcore

where kcore is a decimal number between 3 and 32; a default value

"of 6 is normally used. This switch is used to specify in decimal K (i.e.,

1024-word blocks) the size of the low segment used for the running of the

program. The AMBIT/L interpreter -runs on the PDP - 10 as a low ard sharable

high segment program. The high segment always occupies 6K words but the

size of the low segment is adjustable at initialization time to conform to the

particular needs of the AMBIT/L program being executed. The low segment

includes all changeable memory of the AMBIT/L interpreter. Of particular
concern are the three relatively large ereas of this memory: the object code

paging area, the control stack, and free storage area. The size of the low
segment should be chosen large enough for these three arees to be sufficiently

large. Using a smaller low segment is more economical if it does not lead to
increased computing time; this becomes a space/time trade-off.

/OBJ = n

where n is a decimal number between 400 and 16000; a default value

of 2000 is normally used. This switch is usad to specify the size in memory

locations (words) ,,f the object code paging area used for the object code in

-*- the DMP file, for input/output buffers, and for the Grhbage Collector bit table

(when in use). The bit table's length is approximately 1/32 of the size of
free storage. At a minimum, all input/output buffers which are active must

remain in this area plus the page currently being executed or the bkt týble

during a garbage collection. The Teletype buffers normally take up 85 words
and each open disk channel requires 533 words. To avoid a lot of paging

L-3

:•- - • %=.-*.,•%:...•. -• • • . ,,• • . . •..,.7 --" .7 -=• ,••• '. ... :. •

Execution

activity, which slows down the running time of a program (and adds some cost),

Sthis area should be sufficiently large to hold several pages at once. If it H

is too small the PAG fatal error trap will occur arl the user will be so informed.

7" To gain information on the activities of the paging system the user may employ

the page-timing instrumentation version of the AMBIT/L interpreter called

"TAMBIT". Details of its use are given in Section N, "Using TAMBIT" the

4 .AMBIT/L Initerpreter with Page Timing Instrumentbtion". Short of that, the user

"may observe (possibly with the DAMBIT/L debugger) the System PERM POINTER

?AGER.CT. Each time a page is read from the DMP file (either environmental

or user) into the olject area, the destination of the DOWN link of this POINTER

is updated to point to an INTEGER whose value is one greater than before. If "

the NULL CELL is found, it is treated like the INTEGER 0. This counter

operates modulo 32768.

/STACK n

where n is a decimal number between 300 and 16000; a default value

of 600 is normally used. If the /DDT switch is also included on the command

line, a fixed stack size of 1000 is use&, independently of this switch. The
stack is used as an ALGOL stack for the saving of function call information and

for temporary storage. Its size requirement mostly depends upon the depth of

funcLion calls or insertions entered and on the amount of recursion the program 4

performs. It must he long enough to accommodate the needs of a particular

program run. If it is too small, at the time stack overflow is detected, the

interpreter vI. 1i attempt a recovery procedure of transferring control indirectly

via a label pointed to by the System PERM POINTER STACK.CHOKE. It is

expected that the programmer has set the DOWN link of this POINTER to point

to a LABEL node corresponding to an appropriate place in his program such

that the stack will be popped by a sufficient amount. If there is a stack

overflow and STACK.CHOKE points to the NULL CELL the STK fatal error trap

occurs and the user will be so informed.

{£

ii

{..

-- L4

Execution

i IMAXPAG =n

where n is a decimal number between 2 and 60; a default value of

50 is normally used. This parameter is the maximum number of pages which

may be in core at the same time. More precisely, the pa:ameter affects

the number of entries in the page-use table in the low segment. Each entry

occupies three words of memory. One entry is required for each page or

input/output buffer or garbage collection bit table residing concurrently in

the object code paging area. The numb- - %f entries allocated by the interpreter

is the minimum of the value of the MAX ', parameter and the highest numbered

page in the user's program. The MAXPAG parameter should be adjusted to

correspond reasonably with the size of the object code area. For example, if

this parameter were small and the object code area were large there would

probably be thoroughly unused memory being wasted.

/PRINT

this switch takes no argument; its presence causes the interpreter to

print on the terminal several values of parameters which describe the user's

program and the allocation of memory just before execution of the AMBIT/L

program begins. This information includes:

a) total core occupancy in decimal k (low segment and high

segment) ..

b) length of the stack in words

C) size of the object code paging area in words

d) maximum number of in-core pages (i.e., the number of

entries in the page-use table)

!.e) r•ize of free storage in wor-ds

Sf) highest page number of the user's program

L.-5

• Execution

1. g) total number of PERMs of the user's program and the

built-in environment

h) maximum static levels or depth of block structure

Note that there is no switch which directly controls the size of free storage.

Instead, after all other allocation of the low segment is complete, the free

storage area is allocated as all remaining space in the low segment. If it is

smaller than the required minimum of 200 words then a fatal error condition

is detected, an informative diagnostic message is typed on the terminal, and

control is returned to the PDP - 10 Monitor.

NOTE: THE FOLLOWING TWO SWITCHES ARE INTENDED ONLY FOR USE
BY AMBIT/L SYSTEMS PROGRAMMERS.

/ENV nameE proj , ro.•g

where name is a primary file name consisting of one to six alphanumeric

characters, and p.rj and prog are the project and programmer numbers of a disk

directory. This switch is used to specify an alternate environmental DMP file

for the run if one is needed. The directory specification need only be given if

the DMP file is not in the disk directory in which the default environmental

DMP file is located. The default environmental DMP file is usually ZENV.DMP
in the disk directory where the AMBIT/L Programming System is residing. This

may vary somewhat, according to the method used to install AMBIT/L on a
particular PDP - 10.

/DDT

this switch takes no arguments; its presence causes the interpreter to

allocate memory so that the copy of DDT (the standard debugging program of

the PDP - 10) which is initially in the low segment of the AMBIT/L interpreter

is not overwritten as it is normally. When this switch is included, the size

of the stack for the run is fixed at 1000 words The user must be sure that

L-6

r Execution

the low segment size is made large enough to accommodate DDT along with

everything else. DDT and its associated symbol tables occupy approximately

6K of the low segment. DDT is used by AMBIT/L systems programmers to

adjust default values for interpreter initialization and to help track down

bugs in the interpreter or strange ones in users' programs.

S - After any number of the above switches are included on the command

.. line, the line is terminated by a carriage return. There is no provision for

continuation of a command across more than one line. As already indicated,

any error detected in t •e command line will be reported by the typing of a

question mark on the terminal followed by another prompting asterisk on a

new line indicating the user should try again. Other types of errors cause

more informative diagnostics, and most of these are fatal.

The program then begins execution. If the /BRK switch was includer4

on the command line a DAMBIT/L user break occurs right away; otherwise

the AMBIT/L user program is "off and running". Other than the output typed

by the running program the user may find only a few other kinds of typing

"* • which are diagnostics of the system. Throughout execution, the AMBIT/L

interpreter perfor..s extensive checking on the correctness of the program it

- • is interpreting and on the AMBIT/L data with which it is working; various

internal consistency checks are also performed. If an error condition is

detected by the interpreter, the interpreter immediately reports it to the user

by typing a diagnostic message on the terminal which includes a one-to-three-

"character mnemonic indicating the type of error. A few error conditions are

so serious that a return to the PDP - 10 Monitor follows the typing of the message.

Usually: however, control is transferred to the DAMBIT/L debugging system.

A complete list of all error messages of this type is given in Section M,

"Error Traps".

1C L-7

Execution

Another type of error which may cause a diagnostic message to be

i" typed is an input/output error. This class of errors is handled differently

since a true error trap occurs and an indirect function call is made by the

system via the System POINTER TRAP.IO. The function called to service

an input/output error trap may be supplied by the programmer. As a default

setting, however, the POINTER TRAP. 10 points to a FUNCTION node

corresponding to a built-in function which types a diagnoctic error message

on the terminal. As with interpreter-detected error traps, input/output error

traps are followed by a transfer of control to the DAMBIT/L debugger at the

beginning of the next rule in the user program. Further details on this type

of error are described in Section F, "AMBIT/L Input/Output".

While a program is running, the bell on the terminal may ring from

time to time. Each ring indicates that a garbage collection is taking place.

Excessive ringing of the bell indicates that either there should be more free

storage allocated or perhaps the user program has strange characteristics

relative to the use of free storage. Further details on this are giv n in the

section on Free Storage Management in Section E, "AMBIT/L Built-in

Functions for the Programmer".

When an AMBIT/L program terminates normally or after a fatal error

. trap occurs, the system types on the terminal the number of Kilo-Core-Seconds

(KCS) used and the number of seconds of connect time (CT) or real time used

since the program execution began. A KCS is the basic unit of cost in a

PDP - 10/50 Time-Sharing System which represents one second of CPU usage

per 1K .1024 words) of core memory occupancy.

Under no circumstances should the PDP - 10 Monitor issue an error

diagnostic during the running of an AMBIT/L program, such as "ILLEGAL

MEMORY REFERENCE". If a user encounterL such an error he should report

it to an AMBIT/L systems programmer, preferably with sample terminal listings.

-L-8

-- - ------- _ _ _ _ _ _ _

.,, -7 - 7- ~ - ýf'77 --

Execution

Bootstrap Preparation

"This memo has already described how the AMBIT/L interpreter must I
be invoked to run an AMBIT/L program and then the user must type a command

line. For a smoother invocation of a commonly used AMBIT/L program, a j
bootstrap MACRO -10 program may be prepared which is simply invoked by a

Monitor command of the form:

RUN MYPROG

which may optionally be followed by a project-programmer specification in

square brackets. Such a command causes MYPROG.SAV to be run which is a

one-block bootstrap which directly calls upon the AMBIT/L interpreter at an
alternate entry point. The bootstrap program first creates in the disk directory

in which the user is currently logged in a one-line text file whose name is

of C _ form xxxAMB.TMP, where xxx is the user's job number. When AMF-T

is started at the alternate entry point it looks for such a file and expects it

to contain a one-line command in the same format as the command line which

a user may normally type. After reading the one-line temporary file AMBIT

deletes it. Since a bootstrap pro(, im is presumably carefully prepared and

tested at least once, it is not expected that a,. initialization error condition

will arise. If one does, however, the interpreter proceeds to act as if the

command had been typed in, and it either prompts the user with an asterisk

or fatally terminates. Not -:a that the naive user of a bcotstrap cannot detect

that he is running an AMBIT/L program. As an example, the AMBIT/L Compiler

is an AMBIT/L program which is run by the normal interpreter; it is invoked by

a command of the form:

RUN CU),PIL [proj ,prog

"where proj ad proag are the project and programmer numbers where the

V" COMIIL.SAV bootstrap is kept.

L-9

' jExecution

For the user or systems programmer who wishes to create a new
bootstrap the general bootstrap program is kept as a MACRO- 10 source file

In the directory where the AMBIT/L Programming System is residing. It is
nnamed AMBOOT.MAC. The user may copy that file into his own directory

and then edit the one command line according to his needs. The comments

in the source program should serve as sufficient guidelines for where the

command line is. Under special circumstances a user may wish to alter

the name of the interpreter being invoked (perhaps TAMBIT) or the disk

directory where the interpreter is being sought. After editing AMBOOT.MAC,

the user should type the Monitor command:

LOAD AMBOOT. MAC

Then after compilation and loading is complete, the user should save the
bootstrap under any name he chooses by typing a Monitor command of the

form:

SAVE MYPROG I
and thus a bootstrap has been prepared.

S*

4"

ii

j..- 3 (END) I
'_ iL-10 i

14

_A.

I Section M

lis oError Traps

I

December 14, 1971

1-

"" ~This section provides the AMBIT/L user with a complete
-- list of all error traps which may occur during the running

of an AMBIT/L program. Errors are listed alphabetically
based on the short mnemonic which is typed on the

-• terminal as part of a diagnostic message.

* -I

Errors

When an error condition is detected by the AMBIT/L interpreter, I
an error trap occurs. This causes the AMBIT/L System to type a

message on the terminal which includes a one-to-threp-c-hbracter.... -

mnemonic indicating the type of error. A few error conditions are

""* so serious that a return to the PDP-10 Monitor follows the typing

of the message. Usually, however, control is transferred to the

DAMBIT/L debugging system. In the future the non-fatal traps
will be implemented as actual traps where a function call is I
performed so the programmer may substitute his own recovery

procedures. Such a trap facility now exists only for the input/

output built-in functions.

This section consists of an alphabetic listing of the mnemonics;
associated with each one is a one-sentence explanation of the cause
or condition of the error. An error condition which causes a fatal error

trap is so indicated. There are some error diagnostics which may be

printed as a result of improper interpreter initialization; these errors

are considered to be in a different category and are therefore not

included in this memo.

Most error conditions are caused by an erroneous program. Several

error conditions, however, may arise from an internal inconsistency

due to a bug in the interpreter itself. The mnemonics for the unexpected

:- error conditions each start with letter 'Z'.

Following the explanation of each error is a letter in square
brackets which indicates the interpreter switch (except A) which

must be ON for the error condition to be detected. Normally all
switches are ON except for G and I. An interpreter with alternate

switch settings can only be created by an AMBIT/L systems programmer.

* - M-l

ii1

Errors

> ! LetteA When Error is Detected[IA always

7 C detection of cycles

:1~D general debugging mode

G consistency checks in Garbage Collector

A I internal consistency in interpreter

P consistency checks inpaging system

T check STRING and TOKEN display

list format in TRS and TRT

ACR: An arithmetic computation involving REALS has

"produced a result whose magnitude is larger than

"can be represented by a REAL. [A]

B**: An attempt is being made to write both the DOWN

link and the RIGHT link from the NULL CELL (*). [D]

BS: An argument to one of the following built-in functions

is not a BASIC SYMBOL: AFTER, BEFORE, NEXTB, PREVB. [D]

CAL: The first argument to the built-in function CAT or LAST

is a cyclic list. [C]

S- CAT: An argument to the built-in function CAT is not a CELL. [D]

_ -CLI: The 1st argument to the built-in function COMPARE.LIST

is a cyclic list. [C]

M-2
S~M-2

- -%- A ~ ~ .

Errors
Sm.

CL2: The 2nd argument to the built-in function COMPARE.LIST

is a cyclic list. [C]

"CSI: The 1st argument to the built-in function COMPARE.STRUCT
"is a cyclic structure. [C] 1

CS2: The 2nd argument to the built-in function COMPARE.STRUCT
is a cyclic structure. [C]

D**: An attempt is being made to write the DOWN link from
the NULL CELL (•). [A]

DZl: An attempt is being made to divide by the INTEGER
zero with the DVQ built-in function. [A]

DZ2: An attempt is being made to divide by the REAL zero
Swith the DVQ built-in function. [A]

DZ3: An attempt is being made to divide by the INTEGER zero
with the DVR built-in function. [A]

DZ4: An attempt is being made to divide by the INTEGER zero
with the DVQR built-in function. [A]

EWK: An attempt is being made to end a walk by following the

RfGHT link from a non-CELL. [D]

F#A: In a function call the number (#) of arguments given
is not the number of arguments expected. [D]

F#R: In a function call the number (i) of results given is not
the number of results expected. [D]

M-3

1jI

Errors
F/?: A rule has failed where a failure exit label was

not provided. [A]

GC: A garbage collection has occurred which yielded no
"free CELLs. An attempt was made to transfer control

"via the system PERM POINTER GCOL.CHOKE, but that

POINTER points DOWN to the NULL CELL. This Is a
fatal trap. [D]

12: The 2 arguments to one of the following built-in

functions are both REALS, and they must be

INTEGERS: AND, DVQR, DVR, OR, XOR. [A]

IF: An attempt is being made to make an indirect function
call via a node which is not a FUNCTION. [D]

IFT: An attempt is being made to make an indirect function

call as a trap via a node which is not a FUNCTION. [D]

ILF: A reference is being made to an inactive LABEL or

FUNCTION. [A]

IRI: The 1 argument of one of the following built-in functions
is neither an INTEGER nor a REAL: ABS, ADD1, EQO,

"GEO, GTO, LEO, LSHIFT (first argument), LTO, NEO,
NEG, NOT, SQ, SUB1. [D]

IR2: The -2 arguments of one of the following built-in

functions are neither bothINTEGERS nor both REALS:

ADD, AND, DVQ, DVQR, DVR. GE, GT, LE, LT, MAX,
MiN, MUL, ORSUB, XOR. [D]

ITC: An indirect transfer of control is being attempted where
the walk ends by a RIGHT link pointing to a CELL. [D]

- ITN: An indirect transfer of control is being attempted via a

non-LABEL. [D]

ITU: An attempt is being made to indirectly transfer control
to a LABEL which is undefined (by the Link Editor). [A]

97 - -

Errors

LAS: The argument to the built-in function LAST is not a CELL. [D]

"LCL: The argument to the built-in function LENGTH is a
.yclic list. [C]

- LNR: The argument to the built-in function LENGTH is a

REAL. [A]

LSH: The first argument to the built-in function LSHIFT is

a REAL, and it must be an INTEGER. [A] V

NOT: The argument to the built-in function NOT is a

REAL, and it must be an INTEGER. [A]

* PAG: The pgaing system cannot load a requested page

because it is too large. This is a fatal trap. [A]

R**: An attempt is being made to write the RIGHT link

from the NULL CELL (*). [D]

RAR: During the execution of the built-in function RANDOM,

P.RAND was found to be pointing to neither an INTEGER

whose magnitude is less than 2 nor the NULL CELL. [D]

RAS: During the execution of the built-in function RANDOM,

P.SEED was found to be not pointing to an INTIEGER whose

magnitude is less than 235. [D]

RDU: An attempt is being made to read the DOWN link of an

undefined (by the Link Editor) POINTER. [A]

RR: An ettempt is being made to read the RIGHT link from a

•- non-CELL. ED]

VRWID: An attempt is being made. to read or write a DOWN

link from a node which doesn't have one; tnis may be

• part of a walk. rA]

L .

- ""M-.

Errors

STK: An overflow of the interpreter control stack has occurred.

"An attempt was made to transfer control via the system

PERM POINTER STACK.CHOKE, but that POINTER points

DOWN to the NULL CELL. This is a fatal trap. [D]

T SWK: An attempt is being made to take one step of a
walk by following the RIGHT link from a non-CELL. [D]

TIC: The argument to the built-in function TRI or TRR is
a list which includes an element which is a BASIC
SYMBOL representing an illegal character. [A]

TIS: The argument to the built-in function TRI or .TRR is
a list of BASIC SYMBOLS which attempts to represent

a number, but with illegal syntax. [A]

TLB: The argument to a type transfer built-in function

or the built-in function LENGTH is a BASIC SYMBOL. [A]

TLF: The argument to a type transfer built-in function ,r
the built-in function LENGTH is a FUNCTION. [A]

TLL: The argument to a type transfer built-In function or the
built-in function LENGTH is a LABEL. [A]

TLM: The argument to a type transfer built-in function or the
built-in function LENGTH is a MARK. [A]

TNB: The argument to the built-in function TRI or TRR is
a list which includes an element which is not a
"BASIC SYMBOL. [A-

* TRR: The argument to the built-in function TRR is an INTEGER

whose magnitude is larger than can be represe'tted
S".'"by a REL. [A]

TRS: The argument to the built-in function TRS is a list
which includes an element which is not a BASIC SYMBOL. [T]

TRT: The argument to the built-in function TRT is a list
which includes an element which is a CELL other than,-

the NULL CELL. [T] M-6

Errors

TTUL: There is an attempt to transfer control to an undefined (by
the Link Editor) LABEL. This may be due to a SI? exit. [A]

TYP: A debug-mode type test has failed (corresponding

to a use of !). [D]

WB: An attempt is being made to write both the DOWN

link and the RIGHT link from a non-CELL. [D]

WDU: An attempt is being made to write the DOWN link

of an undefined (by the Link Editor) POINTER. [A]

WR: An attempt is being made to write the RIGHT link
from a non-CELL. [D]

WRN: An attempt is being made to write the RIGHT link of
some CELL to a non-CELL. [D]

ZBI: An attempt is being made to call a non-existent primitive

built-in function. [D]

ZBL: The second argument to the "special" built-in function
PLANKS is an INTEGER whose value is greater than 100. [D]

ZDI: The first argument to the "private" built-in function
DECODE is not an INTEGER whose value is 9,11,12,13,

14, 15, 16, or 17. [D]

ZD2: The second argument to the "private" built-in function

DECODE is not an INTEGER whose value is in the proper

range, but the first argument is an INTEGER whose value is

between 11 and 17. [D]

ZD3: The second argument to the "private" uuilt-in function

DECODE is not a CELL, but the first argument is the INTEGER

9. [D]

M-724

J Errors

J ZF1: The argument to the "private" built-in function

I.FL is not an INTEGER whose value is between

Soand 7. [D]

ZF2: During the execution of the "private" built-in

function I.FFL more space cannot be allocated

for flag links. [A]

ZF3: The second argument to the "priva:c" built-in function

W.FL is not an INTEGER whose value is between

0 and 7. [Dj

ZF4: The first argument to the "private" built-in function

R.FL or W.FL is not a CELL. [D]

ZF5: A call has been made on the "private" built-in function

R.FL or W.FL when flag lirks are not allocated. [D]

"ZF6: During the execution of the "private" built-in function
"T.FL an error has been detected when attempting to

*" de-allocate space occupied by flag links. [A]

-- ZFL: During the execution of the built-in function FLTH

a CELL has been found on the free storage list which

is not marked as being free. [W

ZFN: An attempt is being made to free a STRING or TOKEN

-name headed by a non-CELL. [D]

ZFX: A function-exit (QVX operation code has been encountered
-" when not in a function. [D]

M-8

7 Errors

ZGh: An unexpected internal inconsistency has been

sib detected by the Garbage Collector: the root of

a tree is not a CELL. This is a fatal trap. [G]

ZG2: An unexpected internal inconsistency has been

detected by the Garbage collector: an improper

tree walk has occurred. Th's is a fatal trap. [A]

ZG3: An unexpected internal inconsistency has been
detected by the Garbage Collector: an attempt

has been made to mark a non-CELL. This is a A

fatal trap. [G]

ZG4: An unexpected internal inconsistency has been

detected by the Garbage Collector: an attempt

has been made to test the marking of a non-CELL.

This is a fatal trap. [G3

ZG5: An unexrected internal inconsistency has been

detected 1,y the Garbage Collector: an attempt

has been made both to test and to mark a non-CELL.

This is a fatal trap. [G]

ZGT: An attempt has been made to get a word from free

storage and an unmarked word has been found which

probably represents data in use. [D]

ZI: An argument to one of the following "private" built-in

functions is not an INTEGER whose magnitude is

less than 235: DECODE, DVLD, MLLD, TRF, TRL,

TRM, TRPD, TRTD, ZSET.INDIC. [D]

3 ZIN: An INSERTION is not inserting a block since an INSERT

chain does not end in a BE operation. [D]

£1

TM-9

7!
Errors

ZIS: After allocating some variables on the internal

L: stack there is not enough room left for further

use. Th.s is a fatal trap. [A]

ZLE: The argument to the built-in function LENGTH

is illegal data. [D]I

ZLI: An attempt is being made to call a long integer function

as a trap, and the system PERM POINTER P.LIFL doesV not point DOWN to a CELL. [D]

"T ZND: The argument to the "special" buil'c-in function

NUM.DIGITS is REAL. [A]

"ZOl: There is insufficient free storage for complete

execution of the "private" built-in function

, • -_OUTSTB. This is a fatal trap. [A]

Z02: The "private" built-in function OUTSTB has been given

a structure which includes either a LABEL, FUNCTION,

PEAL, or long INTEGER. This is i fatal trap. [A]

_-A
Z03: The "private" built-in function OUTSTB has been given a

"structure which includes a TOKEN. This is a
fatal trap. [A]-

Z04: A basic input/output error has occurred during the

kexecution of the "private" built-in function OUTSTB. This is
a fatcu trap, [A]

ZOP: An illegal interpreter operation code hds been

encountered (such as 0). [A]

ZPl: An input error has been detected by the paging system while
reading an environmentbl oage. This is a fatal trap. [A]

ZP2: A premature enzi-of-file has been detected by the paging system

while reading an envlronmental page. This is a fatal trap. [A])

Errors

ZP3: An input error has been detected by the paging system

while reading a page of the user program. This is a fatal trap. [A]

ZP4: A premature end-of-file has been detected by the

paging system while reading a page of the user

ink. program. This is a fatal trap. [A]

ZP5: An unexpected internal inconsistency has been

detected by the paging system. This is a fatal

trap. ?P]

ZPC: In a pop of the control stack an attempt is being

"made to go to a level higher than the current one. [D]

ZRD: An attempt is being made to read DOWN to a given

long integer, and that operation is not implemented. [A]

ZRI: A REAL argument has been given to an input/output
primitive built-in function. [A]

ZST: A STRING or TOKEN ring has been found which is

not cyclic. [I]

ZTO: The argument to the "private" built-in function TRCODE

is the BITO pattern. [D]

ZTC: The argument to the "private" built-in function TRCODE
is a CELL, STRING, or TOKEN. [D]

ZTI: The argument to the "private" built-in function TROODE

is illegal data. [D]

ZTL: The argument to a type transfer !built-in function or the

built-in function LENGTH is illegal data. [A]

M-11

t I Errors

- -ZUT: An attempt is being made to read DOWN to a node

using an unimplemented type test. [A]

"ZWD: An attempt is being made to write DOWN to a yiven

long integer, and thst operation is not imphlmented. [A]

FJ

M1..

=tM- 12 (E.ND)

Section N

-Using TAMBIT: the AMBIT/L

"Interpreter with Page Timing Instrumentation

January 13, 1972

This section describes how to use the alternate version of
the AMBIT/L interpreter for the instrumentation of timing
and paging characteristics of a program. An example is
Included.I

I TAMBIT

I -•Use of the normal AMBIT/L interpreter is covered in Section L,
"AMBIT/L Program Execution". An alternate version of the interpreter is[t available for the instrumentation of timing and paging characteristics of a

program. This alteinate interpreter is called TAMBIT (for timing AMBIT) and

is used in exactly the same way as the normal interpreter. Its operation is

somewhat less efficient for the interpretation of the INSERT commands and .
page-changes of any sort. The low segment portion of TAMBIT includes an

extra 70010 words of tables for keeping track of the instrumentation data.

TAMBIT may be used to instrument programs which consist of less than 350
pages (including the 26 built-in environmental pages).

TAMBIT is invoked in the same way as the normal interpreter and at
any time after execution of the AMBIT/L program begins the user may obtain

.. a summary of instrumentation data. The user may interrupt execution by

typing one or two tC's (CTRL C), or he may wait until the interpreter returns

control to the Monitor after a termination of execution. Then the user may

type one of the follow,.ig commands to the Monitor:

START 140

or

START 141

"" Using either of these commands will invoke the typing of the instrumentation

•- data collected thus far. If the first form of command is used the data thus far

-- collected is retained; however, use of the second form of command clears out

7' the accumulated data after it has been typed. In either case, after the typing

is done control returns to the point from which it was interrupted. Thus if it

was in the midst of execution, then executiorn continues. If it %,;as at Monitor

command level, then control returns there.

For each page and for the Garbage Collector (which is called page 0)

"three statistics are kept and reported:

IN1

Sr N-I

TAMBIT

- the number of milliseconds spent on the page (or in the Garbage

Collector) based on the number of clock ticks which occur while11 on the page; a clock tick occurs once every 16 2/3 milliseconds

or 60 times per second.

- the number of times control transferred to the page by an INSERT

I command, or for page 0 the number of times garbage collection

was invoked.

I- the number of times the page had to be read from the DMP file

since it was not already in memory when needed. This is always

1 0 for page 0.

J The statistics typed are only for those pages where there has been some

activity. Also a total is given for each of the three statistics.

Note that a page must be used when a function declared on it is

called. This can contribute significantly to the time statistic if the clock

ticks happen to occur at function entry or exit.

11Since statistics for the 27 environmental pages is also reported, the

following key to their use is given.

N-
II

S~N-2

STAMBIT

S Page Name Use

1 ZENV1 general long integer arithmetic

2 ZLICM long integer comparison

S3 ZMLLL long integer multiply

4 ZQRLL long integer division

5 ZASLL long integer addition and subtraction

v 6 ZENV2 general input/output except for what

is elsewhere

7 ZIOP OPEN

8 ZICL CLOSE

9 ZIDEL DELETE

10 ZIREN RENAME

11 ZIRDI RDINFO

12 ZIZPH used by OPEN, DELETE, RENAME

13 ZIZOU OUTS, OUTL, OUTIS

14 ZIZSE SELWI, SELWO, RDSELI, RDSELO,

RDLNGTH

15 ZIMES input/output error trap message:

16 ZOSTR OUT.STRUCT

17. ZISTR IN . STRUCT

18-25 ZENV3, etc. DAMBIT/L

26 ZINIT initialization (once only)

This section ends with a sample listing of the statistics from instrumenting

an AMBIT/L compilation of a typical insertion. For demonstration purposes it is

o being run using a somewhat smaller object code paging area than the one

normally employed.

i

-o.

N-3

c 'a

- TAMBIT

PAGE MILLISEC INSERTS DISK READS

0 3700 5 0
1 17 0 1

6 18637 1 1
7 101 5 2
8 0 3 1

"11 17 1 1
. 12 0 5 2

13 2673 91 9

18 0

26 67 1 1

27 16058 1 1

32 13614 65 3
"33 184 32 12

34 1168 340 1

35 17 1 1

36 16 1 1

37 6957 8 1

38 33 4 3
39 978 119 7

40 3671 338 2

41 699 4 4

42 968 403 2

43 0 4 4

44 50 10 3
45 33 B 4
46 3241 368 1

47 469 54 3
48 9932 58 1
49 417 34 11
50 2063 287 3
51 84 5 3
52 2475 318 6
53 4432 '82 10

54 771 54 9
55 3331 54 9
56 5236 54 8
57 1884 54 8

5L 14694 54 1
59 13d5 152 7

60 927 69 11

61 5729 936 1

62 2084 453 1

63 617 82 12

64 33 3 2

66 505 54 7

67 117 54 7

70 1350

JTOTALS 131434 4731 190

EXIT

. -2 1 (END)

j I

k .

Section 0

FILUT: File Utility

January 12, 1972

1- -1

This tsection describes how to use FILUT, a disk file utility
program written in AMBIT/L. It permits a user to create,
examine, or alter a PDP-10 disk file on a word-by-word
basis. The user of FILUT deals in octal numbers only, both
for word numbers and contents.

:3

FILUT

K FILUT is a disk FILe UTility program written in AMBIT/L. It permits
a user to create, examine, or alter a PDP-10 disk file on a word-by-word

basis. The user of FILUT deals in octal numbers only, both for word numbers

and contents.

"4 -As in AMBIT/L input/output, a disk file is viewed as being composed
- of a one-way potentiily infinite number of 36-bit words, numbered 1, 2, 3, etc.

4. -. At any time, an initial set of these words (possibly none) are considered to

exist with meaningful values, and the remaining are considered non-existent.

FILUT is invoked by a Monitor command of the following form:

RUN FILUT [proj , 9ry J

The user is prompted for typed input by the program's issuing an initial
request of:

*FILE=

The user is expected to type a file name with or without an extension. The
file name must consist of one to six alphanumeric characters, and the extension

may consist of zero to thiree alphanumeric characters. A period (.) is used

to separate the name from the extension. If incorrect syntax is used, the
"program types a question mark and recycles with another "*FILE= " request.

-* if a &yntactically clorre-:i fiie name given, that file is opened b;-,
-,. FILUT for input-outpu&.. T"his implies that if s .ch a file did not previously

exist, it is created. The program then t;,pes out "OCTAL LENGTH="

followed by the numoer of words in the file. If the file has just been created,

that number will be zero.

FILUT now types an asteris< (*) on a new line to indicate it is waiting

for the user to type a command.

0-1 5

- ' ".-

FILUT

Note: Throughout the remainder of this memo a dollar

sign ($) indicates a user has typed ALT (or ESC). The

PDP-10 Teletype service routine always echos a dollar
sign when the user types ALT (or ESC).

The following command forms are accepted by FILUT. Lower case characters

are used to represent any octal number of one to twelve digits. Any illegal
S•. command causes FILUT to type a ""followed by a "*"1 on a new line.

"Short form" refers to printing values of words with leading zeros suppressed.

"Long form" refers to printing values of words as 12-digit numbers. FILUT

normally prints values in their long form.

Form Interpretation

" x$ EXAMINE WORD x.

If x is 0, this is an error; otherwise EXAMINATION mode is

entered. If word x does not exist, "NO-WORD" is typed

followed by a "*" on a nev. line. If word x exists, the

word is typed (in either short or long form), and word x J
is considered to be opened as in DDT. The user may then

type one of the following forms:

<CR> Word x is closed and a "*" is typed on a new line.

$ Word x is closed and an attempt is made to

examine word x + 1.

y<CR> Word x is changed to have the value y, and
"*" is typed on a new line.

y$ Word x is changed to have the value x, and§3 then an attempt is made to examine word x. + 1.

0-

- FILUT

x-y$ EXAMINE WORDS x THROUGH y.

or

x-y<CR> If x is 0, or if x is greater than y, this is an error;

otherwise EXAMINATION mode is entered. If word x

does not exist, "NO-WORD" is typed followed by "*"

on a new line. If word x exists, x is typed on a new

line followed by "$" followed by the value of word x
(in either short or long form). This format continues on

successive lines with word x + 1, word x + 2, etc. until

,!, either word y has been typed or the last existent word

has been typed. Firanly, a "*" is typed on a new line.

x--z<CR> SET WORD x TO z.

If x is 0, this is an error; otherwise SETTING mode is

entered. Word x is set to z. If it does not exist, it

-i is created. Then a "*" is typed on a new line.

Sx-y--z<CR> SET WORDS x THROUGH TO z.

If x is 0, or if x is greater than y, this is an error;

otherwise, SETTING mode is entered. Words x through
y are set to z. Any non-existent words are created. Then
a "is typed on a new line.

%I
7'

.II

0-3

FILUT

17
x-z$ SET WORD x TO z AND PREPARE FOR THE NEXT.

[: If x is 0, this is an error; otherwise SETTING mode is

entered. Word x is set to _z. If it does not exist, it

is created. Then on a new line x + 1 is typed followed

by "--". The user may then type c ne of the following

forms:

. <CR> A "" is typed on a new line.

w<CR> Word x + 1 is set to w. If it does not

exist, it is created. Then a "*1" is typed

on a new line.

$ Word x + 1 is not affected, but then on a

new line x + 2 is typed followed by "--", etc.

w$ Word x +1 is set to w. If it does not

exist it is created. Then on a new line

ix + 2 is typed followed by "--" etc.

x-y•-z$ SET WORDS x THROUGH y TO z AND PREPARE FOR THE NEXT.

If x is 0, or if x is greater than y, this is an error; -

otherwise, SETTING mode is entered. Words x through y

are set to z . Any non-existent words are created. Then

"on a new line y + 1 is typed followed by "-". The user

may then type one of the following forms:

<CR> A "*" is typed on a new line.

w<CR> Word y+ I is set to w. If it does not exist,

it is created. Then a "1* is typed on a new

line.
$ Word y + 1 is not affected, but then on a new

ine y + 2 is typed followed by "--, etc.

w$ Word y + 1 is set to w. If it does not

exist, it is created. Then on a new line

y + 2 is typed followed by "- etc.0-

O-40-4

FILUT

I. <CR> NULL COMMAND.

A "*" i typed on a new line.

S$ EXAMINE NEXT WORD OR PREPARE TO SET NEXT WORD.

If FILUT is in EXAMINATION mode, word x + 1 is examined

on a new line, where x is assumed to be the most recently

examined word. If FILUT is in SETTING mode, it types out

x + 1 followed by "-" on a new line, where. x is the most

recently set word. The user may then type one of the forms

permitted in the "x4-z$" command.

S<CR> PRINT VALUES IN SHORT FORM.

-I "Leading zeros are suppressed on further typing out of

values of words.

-. L<CR> PRINT VALUES IN LONG FORM.

Further typing out of values of words is done as 12-digit

numbers.

E<CR> END THE SESSION.

This command should always be used to terminate a

session with FILUT in ordeL to guarantee that all changes

the user has made to a file are properly completed.

4
..

1 0-5
(END)

i.° °9 ;,'

