R R T S R R A AL L T R T LT T T s

- - ,W“,XWEEE%” E

AV Bl LR !
Y iab A

AD 744700 V@

APPLIED DATA RESEARCH, INC.

i
i

Reoradluten B
NATIONAL TECHNICAL
INFQ.‘_Z_MAT!O{\IC SERVICE

S oregfAld VA 2TI0Y

y e Cae ke et a0 N 2 T L e

Pued Gmes wemq SEmq NN SN SO BUS wmw

I
I
|
I
I
I
I
i
!

G~ APPLIED DATA RESEARCH, INC.

5 LAKESIOE OFFICE PARK ¢ WAKEFIELD, MASSACHUSETTS 01880 o (G17) 245-9540

1

ol N A NS S ANl € Lk e

SEMI-ANNUAL TECHNICAL REPORT
(1 October 1971 - 31 March 1972)

FOR THE T”OJECT
AMBIT/L DOCUMENTATION

Principal Investigator: Anstol W. Hoit
(617) 245-9540

Project Scientist: Anatol W. Holt
(617) 245-9540Q

ARPA Order Number - ARPA 1228
Program Code Number - 8D30

e Lot R o ara,

Contractor: Mass. Computer Associates, Subsidiary of Applied Data Res.
Contract No.: DAHC04-68-~C-0043 ' ‘
Effective Date: 21 June 1968
Expiration Date: 30 September 1972
Amount: $891,975.00

LA S 0

Sponsored by
Advanced Research Projects Agency
ARPA Order Number - ARPA 1228

The views and conclusions contained in this document are those of the
author's and should not be interoreted as necessarily representing the
official ponlicies, either expressed or imnplied, of the Advanced Research
Projects Agency or the U.S, Government.

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

mewuium.m.m.. PR
d 3 L At Bk

e I e M T =

_ 2
1O APPLIED DATA RESEARCH, INC.

LAKESIDE OFFICE PARK © WAKEFIELD, MASSACHUSETTS 01880 e (617) 245-9540

AMBIT/L Programming System

Users' Guide
by
Michael S. Wolfberg

CA-7201-1711
January 17, 1972

PRSI RO gt ©

Py e e

e

This research was supported in part by the Advanced
Research Projects Agenr of the Department of Defense and was
monitored by U. S. 2 , «esearch Office - Durham, Box CM,
Duke Station, Durham, North Carolina 27706, under Contract

DAHCO04 68 C 0043.

L L

Wkttt o LU

|
N
1
B
I
:
1
1
:
u
1
1
1
l
I
i
|
|

S bl e oo B PR i
R - NI e e e T

Nk P L AR L o

SUMMARY

~

This User's Guide is a collection of separately-written sections

which describe how to use the AMBIT/L Programming System as implemanted

on the DEC PDP-10 under the DECsystem-10 time-shared operating system. .

b ity

This document supplements the basic reference manual which is a paper by
Carlos Christensen, the creator of AMBIT/L, entitled "An Introduction to
AMBIT/L, A Diagrammatic Language for List Processing”.* i

The sections in this collection are arranged in an order suggested

for initial reading. The title sheet for each section includes the date

section letter and page number within that section (e.g., C-4).

In the initial release of this document one section which is in
preparation is not included - "Using DAMBIT/L: the AMBIT/L Debugging
System". Any questions concerning this part of the system should be directed

to the author.

i

*A full bibliographic reference to this paper is given in Section A.

I corresponding to its most recent revision. Each page is identified by its

@

B DN Gy e e e b by

CONTENTS

An Introduction to AMBIT/L

How to Write an AMBIT/L Program

The Drawing of AMBIT/L Programs and Their Encodement
The Syntax of the Encodement of AMBIT/L Programs
AMBIT/L Built-in Functions for the Frogrammer

AMBIT/L Input/Output

Using DIAGEN: the AMBIT/L Diagram Generator

Using COMPIL: the AMBIT/L Compiler

Using LINK: the AMBIT/L Link Editor

Using the AMBIT/L Cross-Referencer

System PERM POINTERs for the AMBIT/L User

AMBIT/L Program Execution

Error Traps

Using TAMBIT: the AMBIT/L Interpreter with Page Timing Instrumentation

FILUT: File Utility

F s e R AR S T RS e e A AR A AT I R AL T T e a B e s A

! bt AW o b st 0Lt ok s

btk b a1 ol 'S S Rl e A DA il R T ey

AR g #1 w

4

Section A

An Introduction to AMBIT/L

January 14, 1972

This section should be read by users of the AMBIT/L
Programming System as a supplement to the paper
which serves as a reference manuai, "An Introduction
to AMBIT/L, A Diagrammatic Language for List
Processing".

-
;%1
v 4

x4

e Dk

Rt e bt ¢ o
&k - 1)

et e\

o G AN AT bl

o el | g Lo

Ot e

O AP AT TR RO (MR

RRReT)

5 -

L

I
I
I
I
I
I
I

N e A RS T TR T e TR T TR LTS E G - L RS e T RS LLT T e |

Introduction

The paper by Carios Christensen entitled "An Introduction to
AMBIT/L, A Diagrammatic Language for List Processing" is the current
reference manual for the AMBIT/L Language.* It was written to be a
self-contained tutorial introduction, however, and, therefore, the author
took the liberties of occassionally being imprecise and incomplete. Until
the paper is rewritten, this memo should he used as a supplement to the
paper by those learning AMBIT/L so they can use it as a programming language
within the PDP - 10 implementation of the AMBIT/L Programming System. The
slight discrepancies in detail between the paper and the characteristics of
the implemented language may be overlooked by the reader simply interested
1n understanding the essence of AMBIT/L.

The following notes are ordered according to page numbers in the

paper.

Page 8: Concerning mark nodes, each one is declared in some program
block by the programmer. AMBIT/L programs have a block
structure which scopes mark nodes exactly as ALGOL 60 block
struc:ure scopes own variables.

Page 8: Coacerning basic symbol nodes, the AMBIT/L Compiler and

DAMBIT/L Debugging System currently acknowledge the
following names for non-printing characters:

*Christensen, Carlos. "An Introduction to AMBIT/L, A Diagrammatic
Language for List Processing", Proceedings of SYMSAM/2, the Second
Symposium on Symbolic and Algebraic Manipulation, 1L.os Angeles, March
1971, available as CA-7102~-22]1 (February 22, 1971) from Applied Data
Research, Inc., Wakefield, Massachusetts 01880.

6

kit
i, kil

Al Bk A

e
AR
shalraSunt X

ML AL s 4

N AL hiAL

b oA, B B e

St iy S

pe,
k=
E
3
23

AL i N R 5 o L

et U A

KA 0 it B ¥ e s e

0 ol e ik A i ko S |

TR TURE T IOnL

S G S RLIANLL 1 bbb s A st
EWEY b

L A b

T e T

, o i

g e Pemd b e B) i

Page 9:

Page 9:

Page 9:

e e T s B e e e

Introduction
Subriame Representing ASCII Octal Code
%CR CR 015
%LF LF 012
%VT VT 013
%FF FF 014
%TAB HT 011
%ESC ESC (or ALT) 033
%SUB SUB (or 12) 032

Note that the character SPACE is represented by the basic symbol
node whose subname is the character ‘%' followed by the character SPACE.

Concerning integer nodes, although there is a unique canonical
subname for each integer node, both the AMBIT/L Compiler and
DAMBIT/L Debugger accept +13 and +013 as allowable input
syntax. The programmer can consider that some macro converts
such non-canonical forms into the canonical one.

Concerning real nodes, although there is a unique canonical
subname for each real node, both the AMBIT/L Compiler and
DAMBIT/L Debugger accept several non-canonical forms as
allowable input syntax. For example:

-34 34ES
.34 .34E -5
.+ 34. 34.ES56
3.4 3.4E+5S

Concerning pointer nodes, each one is declared in some program
block by the programmer in one of wo ways: as a temporary
pointer (as an ALGOL 60 }local variable) or as a permanent pointer
(as an ALGOL 60 own variable).

/]

A
. \;
.
4

P X

o
u.....-.n\.t "

Ao, Rk B

PP
LSt A LN S

Al At 1 i e [

T R T T 1

U ’;“."‘“gwmamumw EE
5 e o . ¥

d

s RAT AT SR SEINTIY o
] \
ot

Pages] -9

Bond] wmg eemd eme k% Band g BN

Page 18:.

7

o g b Kb R oo
" d i LA (LA LR A P
Pl st i B e s e U "

OIS DS M G bem S bl Beef

T R R N R e e R S R AT T R I B S T R T R SN T e

Introduction

Concerning tokei, sijodes, the only nodes which cannot
contributs "¢ the subname of a token are pointers and cells
othe: than ti.2 null cell.

There has bee~ nc conscious attempt at showing the canonical
subnames of real nodes.

I'he corrent implementation permits the programmer to suffix an
excla ati~n point (!) to a type-s2t. This has the meaning that
i, ibe. p2 1. match lails due to an incompatibility between a
nodr in ».e data and the specified type-set, then rather than
causing failure of the rule, a normal interpreter wiil produce an
error condition which either traps or aborts execution; if a

LTI MRFPR U 1Y 77 PRSP I ST SV

production” interpreter were ever used, it would ignore the]
test catirely.

On the seventh line of text, the "P" should be eliminated from 3
the type-set, thus reading "type-set CST is implied."

ERY)

In the second step for adding @ function link the word "if"
should have been "is". However, the entire step should be
changed to be:

2. Make the lower side of the node bhoundary into a
double line; the result is a ::all node.”

Also, the third and fourth steps should be changed to be:

SINEFATPLP TR LN

AN N PR

"3, From distinct points along the top and/or bottom
side, draw m ordinary links to appropriate
destinations. Consider these links ordered by
their origins (from left to right), and call their
destinations the origins [sic] of the function link.

SRR o AR S S S SO TR o X R, T T T - e T T T

right side, draw n ordinary links to appropriate
destinations. Consider the links ordered by
their points of origin (from top to bottom) and

§ Introduction
-
- £
2
: g 4, From distinct points along the left and/or

call their destinations the destinations of the
function link., "

Also note that pointer nodes may not be either origins or

ROTRPA A RN A

destinations of a call node.

Page 22; The example in RULE E8 includes a function link with the
subname "DIVIDE". Although the built~in function ADD may
be applied as shown in that rule, if the function to perform

Nt VR

- AR AL LA MRS
ot S NNDNC 0l il P 8 e B 5D 80 U Wi ane U LY L M AL AAA RN o VR

e

the division is also meant to be the appropriate built-in one,
then its name should be "DVQ", for “divide yielding quotient".

IRV T IR

AL,

Page 23: Although the example in rule E9 may serve a tutorial purpose,
it is ill-formed according to the current implementation, since

an argument of a function call may not be a pointer node. There
could be a more restricted definition of the function DOWN which
reads the down link of a string, token, or cell. i

avantads W (840 ASE Tttt ol 4w 2AEAY

ati
Yt

Page 24; Note that the comment that the rule E9 is ill-formed (on p.ze 23)
also applies to rule E10. Although the paper avoids a
discussion of flow links among ordinary nodes, this topic will

e

Woahh kol Nl € o et o B e it 1

be covered rere. The programmer should understand that when
a rule is interpreted nodes in the rule are matched with nodes
in the data essentially one at a time. When the interpreter
direc’s its attertion at 3 node, i.e., "visits” that node, it
follows links originating from that node (if any) to their :
destinations. If a node at the destination is either a fully-
named node or one with just a type-set, then these destinations
are tested and if the match continues to succeed we say that

Ak U3 E0d S G A s P i A AR B e b 2t

o ghiatast
PRIy L YR LN

<yt p i duronnTa Sb ARG e
" N4
Vo e AWl Sy Bk aw ead Sl Bund W S BDEDE DS BN BN N R e

4

]
Z

P ELL O AN LY BT SRS ATN it e % .
oS pe Lot " oo RS
- d Lo on g LI A W

L4
LM b 9O SO A s
I o T (O

Introduction

the original node has been visited. The notion of visiting
also applies to a call node: when 3]l of its origins have
been matched then a call node may be visited (also see
page 28). This process begins by performing the specified
function call and then all destination links from that call
node are followed as described for an ordinary node. After
all destinations of the call node have been matched we say
that the call node has been visited.

With these definitions made, it can be stated that
a flow link between any two nodes in a rule causes the node
at the tail of the flow link to be visited before the node at
the head of the flow link. Thus rule E10 can be correctly
redrawn as:

P

ZERO.DIV
P 4] F R

DENOM [1—1 &~ =
\!’R ‘L R ﬁ P
0.0 QUO

1) P
NUM

19

A-5

oot A

wadON

O o 2 S Mo, 9 et a0 AR

ISkt

A bt K 0 S s T b N 24,

o by b b

AP A~ + bl s 8 0
Ly

.ol

P ST A P AN CROTE AR IITIRYRS AT cFETITN T T ea T RS T Mose S BRSO T T R T TR TR T

Introduction

There is an additional confusion when using flow links associated
with nodes whose names cause some macro to be invoked such as the use
of the name set notation as shown in the upper diagram or page 38. If a
flow link had emanated from the pointer Q (see page 38) then it would not
be ordering very much; since the expansion occurs as it does, such a flow
1ink would mean that only the type of the node pc’nted to by Q is tested
when Q is visited. In such a construction it is more likely that such a flow
link should emanate from the node employing the name set notation; this
would cause the membership function to be called before the node at the
head of that flow link is visited. The following rule shows such a use of a

flow link as an example:

=1/3/5 11| INDIC.A

Note from the comments associated with page 38 that literal token

nodes and string nodes cause macro expansions.

Pages 30-34: Some built-in functions are briefly mentioned here. A much
' more complete description of these and others is found in the
AMBIT/L User Memo entitled "AMBIT/L Built-in Functions for

the Programmer".

- ST ELTENE

T3,
3
3
%
4
F

A s ot S bl

Senc 1 1

ol f i RN S

€M N L%

0y

o

AkO

o3 e b b ey

4 bbb S g e ittty o o ¢ g

L

E,
=
g

A ARG Vo oimdntbtiion w0 v«
e . gt o it

s

Introduction

Page 30: The fourth line of the second paragraph under "Arithmetic"
should begin with "base 234 »

Dt ab LA i

T B TEL g M2 U AT LA, K " & N
(A D AR L ST N AR E
pidy F e I et ':m 3

Page 31: The second and third paragraphs describe trap functions. 3
Input/output traps are handled this way, but traps for
arithmetic functions have not yet been implemented.
Thus the example presented using P/ZERO.DIV is at
present hypothetical.

Page 33: The function GET,CELL referenced in the section on “Cell
Management" is used as a tutorial means for describing these

concepts. There is no such function upon which the programmer
may call; instead, the programmer may employ the new celi

EMUTICTARV U R TR

notation and th= gather arguments notation described on pages
35 - 37 -

In the second paragraph under "C=11 Management”
the first word on the fifth line should be “rendered" . In that
paragraph the description of the trap function being called
for a garbage collection chouke is wrong; instead the system _
pointer GCOL.CHOKE is expected tc point a label node P
corresponding to somewhere in the program where there is a
recovery routine, and thus the interpreter performs a transfer
of control via this pointer when a choke occurs. Such a recovery
routine should be placed high enough in the block structure so
that a transfer to it will tend to release cells which are
accessible only via local (TEMP) pointers.

A R S0 n w2,

1
]

TR T A, st

Page 34: The structure input/output routines mentioned in the last

paragraph do exist and are being employed in the JAM program.
However, these functions have not been dctumented snd are
thus considered unsurported. If any interest (or requirement)
develops, an attempt will be made to support them.

s P gt g T N Ty T TP
L R bt we A ¥) fy Boda bty &
R ok e el e e e T N e e R

¥
&

*
=
3
i
5

A-7

]

O - -

R AR D

PRI

™

e g g g el L R R
s ek A B LR L ML

b e WA B B
o b .

i A ARAC SR AR F o - w11

Meni Gewni Gmeq Gemi Gusd SR @R

-

S T R e B R S I e I S B

4

Pages 35-39:

Page 36:

Page 37:

Page 38:

Introduction

The description of the built-in macros is not complete; the
following supplements the paper by presenting additional
macros. Also, this section makes use of the GET.CELL
function as a tutorial aid. The reader should recall there
is no such function upon which the programmer may call.

Use of the "new cell" notation always yields a cell whose
right link and down link both point to the null cell. Thus the
right modification link on the rightmost cell in both of the
diagrams on page 36 is redundant. Incidentally, including
them in the rule does not affect the amount of work to be
done by the interpreter when the rule is executed.

In describing the (Gather Arguments Notation the GATHER
function has been employed as a tutorial aid. There is no
such function upon which the programmer may call. The
example rule of this page includes a call node with a subname
IS.MEMBER. Note that this is not a built-in function of the
AMEIT/L Programring System; there is, however, a MEMBER
function which is essentially the same predicate, but it
accepts an arbitrary number of arguments (as illustrated in
following comments). If a cell in a rule is used to gather
argument (s) then it must be the destination of exactly one
solid link (including the one coming from a call node); such
a cell may be the destination of any number of modification
links.

The current implementation of Naae Set Notation employs the
MEMBER function, rather than the IS, MEMB™R function as
shown. MEMBER accepts all arguments directly snd is the
only AMBIT/L function which accepts an arbitrary number of
arguments. Thus the lower diagram on page 38 should be

as follows:

13

A-8

o A R w "% . ﬂ
o

AP e e,

i en

PRUEIAFATYE T AN oYY

I

b 8 R Ve B

g
g
E
3
3

T

ihhan v o bl d b gt 1) S bt Tkl

TSRS SRR T AL ATRSERIT TSR - - o T e D AT o B e R SR D P LTI R F e ¢ % e o a s

Introduction

LU L M Ll

Q MEMBER

/ 1 V1 I VLI

[

The fermal way of expressing these macros referenced at the bottom of page 38
will be introduced here with minimal explanation since the intent should be
obvious. First the name set notation macro will be presented. Note that .y
using the number sign (#) rather than the equal sign (=), the programmer may

assert that a node is not contained in a specified set. A common use of
this notation in AMBIT/L programs is the advancement of a pointer along a
list unless the end is reached; this is shown in the following rule:

= #**

The diagrem on the page zf{ter next represents the general trensformation
performed by the name set notation macro. The "ANY" labels of the upper
diagram are associated with those links where any number (including zero)

I
I

1

I

1

1,

I

; = -
1

1

I

1

l

ST AARARR e by I it o

Introduction

of such links may be present. The "OPT" labels, for optional, are associated
with those links which optionally may be present (i.e., either zero or one
occurrence). The pair of diagrams demonstrates how such links are transformed.
The curly braces in the upper diagram indicate that there may be either an

equal sign or number sign; the vertical bar separates these two characters.

In macro descriptions which follow such a choice is shown by vertical
positioning within braces. The curly braces in the lower diagram are used to

N 0D |1 PRI

\l ,‘ e ’ ! ' I I

pe in direct correspondence with the ones in the upper one. Namely, if a

3 number sign had been in the original node then the expansion would use

" -MEMBER" .

; 3

3 ¢
b - :

T

- o

- 5
- &
= £
b ol
E B
33
4

e T e

4

Introduction

(N et PG A bt cethc cupeans £ gl mm s

ts

ANY ¢———p> na{=|#}nbl,/nb2/.../nb

m

ANYl/ h

~»OPT

'CPT

OPT OPT

/"/‘7 P

{ MEMBER | ~-MEMBER }

Tor 1% Jo

nb1 nb2 e m

| ==

-

where, form > 0,
na is a < name > or is < null >;
ts is a < type-set >;
nb, is a < name >; and
g_:i is the < type > implied by nbi.

16

- A-11

¥

N ﬁ

P T

z
*
3
b
E
;

R T R A
.

e A'J’\ﬂ\“l‘ &

o

L

A0 B o kS bt i

ek Mg,

et i b

AL I E Dk i Lo &

i UL S il ol

g

at kgl b

A a0 ond W .5

UL WLl "S 0 st 4

' Introduction

l 4

4

The non-terminal names within angle brackets (‘<' and '>"') are g

l defined in the complete syntax presented in the AMBIT/L User Memo “The %

Syntax of the Encodement of AMBIT/L Programs". For example, one]

l’ production of the grammar indicates that a8 < name> is either a <dummy>, s

or an < indirect>, or a < literal>.

I Indirection: There is a notation by which a node may be named by a path *

via which it can be reached from a pointer. For example, the following two 3

3 I rules are equivalent: :
: ¥ I

: g
i P C
1 I X RRD@P

E N i

‘e N C C C g

15 = = 3

E %Y é

‘E ' i

3 il ;3]}

3 B S

13 %Y

This notation is explained in several steps as follows:
a. Default Link
For a data node or call node, if its subname is of the form
@id
where id is an < identifier>, then transform the subname to

D@ id

L T . i eray wa

3
E
F]
i
3
3
1
k]
3
3
3
=
El
E
k
H
3
L]
4
2
3
=
<
k-
3
3
%
4
3
3
2
4
i
z
2
=
i
»
A2
3
1

3

2 A-12

o

T R R 7 [T e - e T
- - e - ~ - - - AT

e e

Introduction

b. Indirect Down (data node)

AT R A

walk @id
id

i

|

|

|

|

I

I
1 i : J\‘q s
¥ . | (Dwaxeid
1B ! }

I

l

I

I

I

I

I

I

ANY ‘ =>e OPT) :
D@id i : 5.
z‘- ot =] ' \

N Y o

]

— + 3
OPT OPT ANY]

et sl L

where
walk is an < indirect-walk >;

ol v

id is an < identifier >; and
ts is a < type-set >,

W

Pl ot & ibistiNg el v kL A U

A-13

~x

PR LI e RO U 4 LU T v TN iy o

C. Indirect Down (call node)

—t i ed ey ey e e I

ANY
F
i ANy Dwalk@id
11 peuw
ANY 4%‘/)5 : !
i\t
¥ ;
ANY

where

id is an < identifier >.

ANY

walk is an < indirect-walk >; and

. Introduction

{

walk @ id

V_<Sr
4
- N
|
i
]) Q,

i ne il AL m 0 A RAREIA Lt Ut e VA SNV

s T e B e N A AN e A Wi e Tz

TR REISNONEL L X EoiA PR E SR GRE TSR T T S - —s“
Introduction

d. Indirect Right

aNY ANY ANY

\YJ ts
Rwalk @id ﬁ»om
'OPT

NY
& C!) ts
—3 N
where

walk is an < indirect-walk >;
id is an < identifier >; and
ts is a < type-set >,

20

A-15

/ WWWM#Wv PP Y I IS

cew wLNT

TS SRS MM TN L R

Value Call: There is a notation by which the result of a function (which
has exactly one result) can be named by the name of the function itself.
For example, the following two rules are equivalent:

h
Introduction ;

[P I Y 11

N(‘.r
s o AT, W14 R RS R R TR T D P k
i PRI i),

—
it At A Yot arnio 1k, Wika du i

V@ADD

e

[Rr Tt

ADD =

NomyRR e § 4

o 51
—> Q
m
<=
) - o T—] N
]

This notation is explained by the f>llowing transformation diagram:

3

X 3

£ E

E E

- 2

3 E
3
E
E

W’:WW WMW'WWWMMWWW’W”WW LY ¢

i iy & :ﬂmmml. (L " Wy

}
f

Y

g

) ey o

)

e e R RS S

b L LNVIN

e e B T

$ -t

!

s

=

PR

B P e sy os o

ANY

B R -t U SS

T TR AR TN

Introduction

ANY ANY

VUL T ~g»t?&-&ﬂ
4]

A

¢

ts

V salk @id
vV@id

Y G
L g

4

ANY

v ts

walk @ id

il

where

g A

walk is an < indirect-walk > ;

—

id is an < identifier > ; ar_ld

e

is a < type-set >,

—

etk St et s om it N2

b 00 ST S 82 5 s S 15 1L P i v 40 el €

4 bl N DLl B b

el b L

WEAN

DITAINN) ML R

o AL e £V L L W 1 0 T I SR S 0 D e 00 3 A Yo D00 M A A e

3

W M e R

PO Py

iy (L E R T BT

Introduction

Negative Value Call: If a node is sccessible via some link from an

accessible node its name may have the same form as a value call node, but
with an additional number sign (#) prefixed. This notation is used to assert
the node in question is not the result of the function specified. This notation
is explained by the following transformation diagram:

ANY ANY ANY

#Vwalk@id
#V@id

i 1 1)
ANY

y \/ ts A

¢ Vwalk @id
i vV@id

-t
St
3

where
waik is an < indirect-waik >;
id is an < identifier >; and
ts is a < type-set >,

-

it 2 B 0 A RO A K a0) AR e NS

£ AR Mol Akt A W (gt

41
y
E_‘_.
3
3
i
3
z
,‘é

¥

GG i e G e e i

TR TG T » T W AR I S AU TSR, T T oL L T

.
RGP HRAE I K vaipm v s s

Introduction

The EQ function employed above is a predicate which succeeds if and only
if its two arguments are the seme; since its negation is called above (-EQ),
that call is testing whether its two arguments are not the same.

String and Token Names: Although the programmer is expected to consider

literal names of string nodes and token nodes as atomic, the implementation
actually expands such names into calls on the built-in functions TRS and
TRT. (These functions were mentioned on page 33,) Furthermore, gather
notation is used to collect the argument (s) to these functions. For example,
although the programmer writes the following rule:

‘ABC'

1,

5

a macro transforms it to be executed as:

TRS

Tuese macros are given by the following transformation diagrams:

—

LI

R

BHeN

,mnrm,

I
I
3
1
I

String Names

ANY

- T AR N ST T Y 3R NS I TR O TN SMTRVTRR ST T

Introduction

ANY ANY

» ANY

\
v g

OPT OPT

TRS

ts

T T

%s2

P 4
8
-

where, form > 0,
8 is a < symbol >; and
ts is a < type-set >,

Fat bk B £ K,

il

AT

e

oy

S L AL R B4 g

o AR A vt Chi Kot

i b, AL et o A b LR s

AAkinih e L AL AN A0 N AL o LR T S e R v

\
ki o 506040 150012 02 L1 0, SA l M LA S AR

S

Sl e O e EE W2]t o e R i i St A L AT

Introduction

Token Names

ANY ANY ANY

pa—

R V ts

(nln2 ..'.nm)

{3 |
1 - ;
: 3 OPT OPT
1
- F . ts
;. TRT e
* -l
1 ¥ c c c
o =6 s 70¢
I 3
; \7 tl T t2 % tm
I ny n, .« o n n_
I e
where, form >0,
n; is » < name >;
l _ti is the < type > implies by n;; and
l ts is a < type-~set >,
§§
: - H
;" 2b a2 i
3 2
3
AN ol

e o T TE R

Introduction

Dummy Names: There is a notation by which a node in a rule without a
subname (including one employing name set notation) may be "split" four
convenience into two or more instances in the rule. A dummy name begins
with an asterisk (*) and that must be followed by either an unsigned integer
or an identifier. For example, the following two rules are equivalent:

p C p
Q *% Q
VK C ch C
fr—— *1 >
| ‘17
$ M I M ¥
A 0 A 0
C C
*1 ey *x

The usual reason for employing dummies is for drawing rules in ways which

help demonstrate their operations more clearly. Also, any unnamed node which

is not “split" may be named with a dummy name as a documentation convenience.
There is, however, one use of dummies in a rule whichk can alter the interpretation
of a rule: each instance of a dummy is separately visited during the pattern

match (see comments associated with pege 24). Thus by using flow links among

dummies and other nodes of a rule, the programmer may perform rather subtle
testing.

A-22

Lo R L 27

W A L ¥ i, A

T

RO ITE UL VWL VLI TINRUPRTSE SR S TR~ ghd L Tact oy

WA LA LAS OA PR R AL AN £ 2 K 3ot NG B e e

ot b b Dok o] Do a A ol s MR KA o DA ks S Bt BN B M ST il 2 1

.*MHINU!V by

i

HERL P et et e -

Introduction

RN

LA atre s

Pages 40-45: This section presents a good overview of most of the AMBIT/L
Programming System. Further details of each part of the system
are given in other memos. Other features available in the
AMBIT/L not indicated in the paper are mentioned here and
detailed elsewhere.

a. When the user initiates execution of an AMBIT/L program he may
choose to accept the default memory allocation for the interpreter
of he may exercise complete control over alternate allocations for
specialized purposes. For example, he may wish to allocate an
unusually large control stack for the execution of a highly recursive ;
program.

i eenp e Qe ey

b. There is an alternate interpreter which can be used to do instrumentation
studies of the insert-block activities of an AMBIT/L program in
execution. At any time the user may print complete statistics of the
total time spent in each particular insert-block, the total number of
times control transferred to that block, and the total number of times
that block had to be read into core memory from disk. This has been a
very useful tool for arriving at optimum memory allocations and for
discovering those portions of an AMBIT/L program which deserve re-
writing for the purpose of optimization.

L A

E b
- &
3
;. T
%
%
B
3 %
B
-
<
r ¥

I

I

c. It is also possible to instrument the total number of calls on each ‘
built-in function and the total number of calls on each basic operation
of the AMBIT/L interpreter. This kind of instrumentation is normally
of value to the AMBIT/L systems programmer, but may in some cases
also be of interest to one who is a user of the system.

gl o SNSRI M KA
il say o et o R o< 0 s U G A T

d. The normal AMBIT/L interpreter performs consiucrable checks on
program validity at execution time and reports a variety of specific
diagnostic error messages to the user. For a program which is well

T TR
¥

L RS

debugged and which must run as fast as possible, the user can employ
a "production” interpreter which avoids most of this checking.

e

o G G e e B} i

;
.
:
3
3 C
§:
i
8!

I

i3
ig

‘
oD
=)

T s A ot T g L % o v R T e e AN e Tl T = e S wwe e e e e e S T . R R O o Y M Y A TN L AT B T T A T mﬁ“{ﬁ
e e H

L

=3

Introduction

e. For those working with large AMBIT/L programs there is a cross-
referencer which produces five individual listings of references
which cross insert-block boundaries; these are separately
presented for TEMPs, PERMs, MARKs, LABELs, and FUNCTIONs.
The user has control over which insert-blocks of his program are

EXTVCVTITA TR RS A PN T AP, ¥ \u\l PRI

to be considered for any particular application of the cross-referencer.

boei (v fomey e DN

Pages 48-51: Appendix A should be read only as a formal definition. The
syntax presented does not correspond to that encodement

RPN B P RRVIIE S L R VTR I TR o

wLa

actually used to represent programs in the AMBIT/L Programming
System.

Page 49: Formula F12 should be changed to:

L

Y baba b o, !

F12. unsigned-real +# unsigned-decimal { scaie-—factor}é |

{ digit}‘: scale-factor

Pages 52-56: Again, the program syntax should be read only as a formal

definition since what is presented is incomplete compared
with that of the encodement actually used to represent

WL Tetins b MR A

programs in the AMBIT/L Programming System.

© . BN

Page 61 The fourth paragraph labeled "Modify memory" should he at
the same indentation as the first three paragraphs, and it
should also have an equal sign as the other paragraphs.

.

ot

-

Page 64: As & comment on the first paragraph, it is useful to employ
resetting of the execution value only when control is about
to be transfeired o the exit point of either a function body
or a block. Otherwise, note (at the bottom of page 60) that
the EVR is initialized to success at the beginning of every

[T LT

rule.

oh ot 0 o i A) b e 3 A8 e LR e, UMD 8 RS b v 14 R e 4

L I I e B e I T e T e s T o TR = Iy B Sy SR = ¢ "

(END) &

J

A D R AL S e P T e PN

R s S = S o Gitae P s Fa STl v R TSI (RS R T
s
- e . - . R =

1

s
Section B
How to Write an AMBIT/L Program
January 10, 1972
This section provides the AMBIT/L programmer with
supplementary information on block structure,
declarations, insertions, and transfer lists which
he needs to know to be able to write AMBIT/L programs.

ol

SR s e
st 5wt wr b L a

’

Program Writing

This section presents, rather informally, some techniques of writing
AMBIT/L programs. The Reference Manual (with its supplementary memo)
describes the AMBIT/L Programming Language. Appendix B of the manual,
which is admittedly difficult to read, describes how programs are interpreted.
The syntax presented in that appendix is not complete; the programmer
should refer to Section D, "The Syntax of the Encodement of AMBIT/L Programs"

for the complete syntax of the current implementation.

An AMBIT/L program is structured by program blocks in the same
method employed by ALGOL 60. Each block is bounded by a BEGIN statement
at the beginning and an END statement at the end. A user's AMBIT/L program
is organized overall as one block; often it is broken down internally into other
blocks. Any contiguous sequence of rules (and/or blocks) within one block
may be collected together as a sub-block by enclosing them within a BEGIN -
END pair of statements; this organization is, however, of minor utility. When
it is employed it appears as one giant rule to its surroundings, and as such
the block may have a transfer-list associated with it. The success exit is
taken if control ever falls through the end or is transferred to the end via an
attached label on the END statement. Note that the identifier 'EXIT' is
automatically declared as an attached label before the END statement of
every block in the program. Thus the block's success may be caused by the
execution of a 'S/EXIT' or 'F/EXIT' from some rule in that block. Failure of
the block may likewise be caused by the execution of a 'S/-EXIT* or 'F/-EXIT'.
Since label nodes (as well as function nodes) may include a minus sign
preceding the identifier used as subname, indirect transfer of control may be
employed to exit from a block with an execution value of either success or
failure. (Indirect transfer of ccntrol means that a success or fail exit of a
transfer list is specified as a walk from a pointer.)

More common is the use of a block as a function body; i.e., the
executable part of a function definition. A function body may consist of just
one rule without a transfer list. During execution that rule's success causes

i

3
i
E:

i bl s A A A Lok

st %80 8 BRI M b

A 1 ke AL 070, 50 2 A A 0 A o e e Sl b sl

P

.
»
: ‘
sl

IO FTY

Lot e

Lo R e B L i

g
-

B
.
4

=
§
13
&
§
§
i
f‘?
=

N A P R PN ey

ey kL

SRR N OIS TR T n R Ll e SRR I v e L e AR TR T, AT A R T

Program Writing

the function's success, and the rule's failure causes the function's failure.
It is more efficient to write one-rule functions in this way when possible.
Usually, a function definition consists of several rules, in which case
they must be enclosed within & block. It is also necessary to enclose a
single rule (which is a function body) within a block if its transfer-list
must be given explicitly. As one would expect, success or failure of the
function is directly affected by the success or failure of the block used as
the function body. In addition to ‘EXIT', the identifier 'RET' is automatically
declared as an attached label before the END statement of every block in
the program which is a function body. Thus returning from a function is
usually specified by either S/RET or F/RET for su..ess or S/-RET or F/~RET
for failure.

Each block begins with any number (including zero) of declarations
of identifiers as PERM (for a permanent pointer), TEMP (for a temporary pointer),
and MARK (for a mark). Then there may appear any number (including zero) of
function declarations. The remainder of the block includes any number
(including zero) of rules or blocks, each optionally followed by a transfer
list. Thus the block structure is employed (as in ALGOL 60) to delimit those
parts of an AMBIT/L program where an identifier can be referenced; i.e., its.
scope. In AMBIT/L scoping of identifiers is done for PERMs, TEMPs, MARKs,
FUNCTIONs, and LABELs. An identifier is declared as a label by following it
with a colon and attaching it to either an imperative (rule or block) or to an
END statement.

PERM pointers and TEMP pointers are both referenced in the same
manner within rules and transfer-lists {(when indirect transfer of control is
used) ; i.e., simply as pointer nodes. Both types of pointers have identical
scope; however, each PERM pointer is allocated exactly once for the
duration of the execution of an AMBIT/L program. Initially, each PERM is
made to point to the null czll. When the block in which a particular PERM
is declared is entered or exited its value is not affected. A PERM acts like

;«.L&w‘..

35N bkl ap s

Tobin v

R TIPS
I I PPy PP PO BT

ke w2 w

+ ene

@ Bl o e i v 1 o e O st

LI OVF PR
H

|

B e e S R o e e e e e g e e e e St L e b e A i T

¥,

R —

" AP AB
s .
w»!‘f‘zawﬁ o

Program Writing

list to the TRT (transfer to token) built-in function to locate such a token.

Each function declaration includes a heading which specifies the

S AN (Mnm‘,‘:jﬁmwymm

argument pointers and result pointers to be used within the function body.
An AMBIT/L function, therefore, has a fixed number of arguments and a
fixed number of results according to how it is declared. All built-in
functions in the AMBIT/L Programming System also have this characteristic

except for one: MEMBER (alias ONEOF). Each argument pointer and result
pointer of an AMBIT/L function are automatically declared as TEMP pointers
within the body of the function definition, whether it is a one-rule body or

i AU At UL Ll G- b Sliied i & i i LA KL L A
AR e MY gag

a block. Within a function body the down link of any argument pointer may

i et i eme et

be modified and used as any other temporary pointer without any external

4 effects. ;
3 In review, a block is used within AMBIT/L programs as:
._ ? " 1. the structure of each user program as a whole, or
: .- 2. a collection of a sequence of rules and/or blocks, or
== 3. a function body which cannot be a single rule.
; o In addition to the scoping of identifiers, there is one other important aspect of
; - a block: in the AMBIT/L Programming System a program can be broken up
3 along the boundaries of its block structure. Suppose, for example, that it is
T desirable to separate from a program a certain block, b. A copy of b can be
T made (from ‘BEGIN' to its corresponding ‘END') and placed in a separate source

file. Then one declaration line must be inserted before the BEGIN statement
in that file, for example:

INSERTION FILE.NAME;

The entire block b in the original program is then replaced by the one corresponding

ok 1k R
o HORK s
iy R g,

INSERT FILE.NAME;

I
I
I command line:
I
I

E
4
3
~ 3> ~ s) -
Rt -.~. R e P e SR S h It 2o 2 iy

TR ST

Program Writing

The transformation on the preceding page may be performed on any
or all of the blocks in a program, however deeply nested those blocks may
be. BAlthough such transformations have no effects on the logic of a program,
they can have drastic effects on the economics of preparing and running

that program since:

1. each insertion is compiled separately and independently
of the compilation of every other insertion;

2. each insertion is link-edited depending only on the previous
link-editing of all containing blocks; and

3. each insertion becomes a separate program segment or
"page" of the reentrant binary code whi h is swapped in
from the disk, according to need, automatically, by the
interpreter during execution of the program.

Thus the AMBIT/L Programming System works in units of blocks (or insertions)
for compiling, linking, and actual run-time program storage.

Notice that the name a programmer chooses for a particular insertion
may have the syntax of an AMBIT/L identifier. Namely, it consists of
alphanumeric characters and perhaps individually embedded periods, and it
must begin with an alphabetic character; there is no practical restriction on
its length. There is a convention that users' insertion names should not begin
with the letter 'Z'; all built-in environmental insertion names start with ‘2"'.
The name chosen must match exactly in the corresponding INSERT and INSERTIOM
commands, except the programmer is free to choose any name for the outermost

or main block.

In the PDP - 10 implementation the name of each source file of an
AMBIT/L program must correspond with its insertion name as follows: ignoring
the periods of the insertion name, tne primary name of the file muét be the
first six characters (or less if there are fewer) of the insertion name. The

[RRNPERNS | LIV Pr Tees

TN

Ca e s S F AT 2 2 lT X 0% 5L o e Ly e R EI RIS S s mee L E e AR AR INA NG

= e SRR - - P - - P U e 3 -;nvnzw,y*z:h«‘*?", S

(AT O, SRS R gt B man o eev e LT TR :’E-Bza
i

i

3

Program Writing

RN i

et g e e e b B by S e} emd e e By NS AN G

file name extension may be anything the user chooses (including null). For
example, for the insertion FILE,NAME, the source file may be FILENA.AL .
The extension "AL" is for "AMBIT/L" and is the default extension name

1 At WO SR AN L e T
Gt sl i

assumed by the AMBIT/L Compiler and Diagram Generator. As another example,
for the insertion A.B,.C1, the source file may be ABC1.SRC . To avoid
ambiguity, the primary names of the various insertions of one AMBIT/L program

must be distinct.*

Now a rough example is given of a simple program which is composed
of two insertions. First is presented the main or outermost block of the user
program as might be contained in the fil¢ MYPROG . AL:

3
4
]
i
'
i
E
%
3
]
2
z
3
F
H

INSERTION MYPROG;

$ THIS 1S AN EXAMPLE OF A COMMENT
BEGIN

TEMP A B G5

YT U X WER T

F(X) Y:
BEGIN $SANOTHER COMMENT!
TEMP Zs
RULE
. several rules as body of F

‘.
.

END;

G(A)
INSERT FUNC.G>

LO0P: RULE

several rules as the main program
.

END ;

*This rule of naming a source file need not be strictly followed at
compilation time or diagram generation time, but it is a requirement
that the primary name of the REL file conforms to this rule when the
insertion is linked by the AMBIT/L Link Editor.

7]

&t e i AL 1%t 0 DR L 8 s § S i, i s w s K

| FormTe ST

yr
i
o
)
¥
k-

Ee

AR TR
st LE S LD N R UL R

Sl Gm b e bed b R —f —

R

Lk

AN i b sl e

.
QAETE S s

™

o
o
4

Y
P
AR

Ricth

5
TS
3

£

vt gt ..y-,M,\-,,Mamwmzwﬁm%ﬁwﬁq@%ﬁm‘w’g g

bt ey b eed bund ey g el

-

Program Writing

Next is given the general format of the one inserted block as might be
contained in the file FUNCG.AL:

INSERTION FUNC.G’

BEGIN

H():

RIJLE

. one rule as body of H

L]

RULE

. several rules as body of G

END

The rea.»r should notice above that pointers A, B, and C are declared for
use throughout the entire program. Function F is declared for use throughout
the program; pointer X is used to receive the argument and Y is used to return
its one result. Pointer Z is used locally within function F. Function G is
declared with one argument and no results for use throughout the program.
Notice that the argument pointer A overrides the other use of A within the
body of function G. Function H is declared with no arguments or results for
use only within the body of G.

Notice that each insertion begins with an INSERTION declaration and
ends with an END statement which is not followed by a semicolon. All other

appearances of an END statement in AMBIT/L programs are follcwed by a
semicolon.

Earlier, it was stated that the identifier 'RET' is automatically declared
as an attached label (in addition to 'EXIiT') before the END statement of every
bleck in the program which is a function body. Although this is logically true,
it is not done in exactly this way for insertions which are function bodies; the
compiler cannot make the distinction when it is compiling a particular insertion
whether that insertion is a function body or a collection of rules and/or blocks.
Thus ‘RET’® is really declared in the enclosing block where the INSERT command
is specified for the block in question. (The confused reader should ignore
this distinction if it disturbs him; it is significant only in making full use of

£ A S ey s S 8w, A Stk st Sri et

Lo ad JkAAYA AN AR 3 gy

bbbt vy ik B E S I e S S S Fa W e

I

e et

bty
sep bt b da b

:]
s

(ERAN-E S ke b B R LT Rl B R ST RGN AR RN I AL RN D LS TN SRUA T LRSI S T e T eIV A e

A

e = WA e ey .

W bbb
St L (L

L
i 'Mmmmmmmm\mw..y. FIRCREET T (o0

Program Writing

the DAMBIT/L debtgging package.) Consistent with this, the identifier
'RET"is also declared for a one-rule function, although the programmer cannot
make use of it.

The novice AMBIT/L programmer will probably want to avoid the added
complication of organizing his small tutorial programs into separate insertions.

However, for any "real" program this activity should usually not be avoided.
Beware, however, that probably not every block should be made into an
insertion. There are several factors which must be considered to arrive at
the appropriate choice for this organization:

ot Bt eed e e e e

1. Since compilation is somewhat expensive, the programmer

should avoid an organization which leads to frequent
re-compilations of large insertions due to, for example, a
program which has potentially many bugs or which is

- gradually being modified. At the present time the DAMBIT/L
- debugging system cannot be used to patch programs or even
- modify the AMBIT/L data structure; thus recompilation is

almost always required to correct a programming bug. A
"large" insertion has over 50 rules of average complexity.

ha 2. Even if it doesn't have to be compiled often, very large

- pages are a handicap because they are more difficult to fit
- into the limited region of memory used for pages. The)
.o automatic paging system of the interpreter makes room for a

page which cannot otherwise fit by "kicking out" the oldest
page and trying again; very large pages which are not used
constantly can cause a lot of overhead activity in the paging
I system. A special version of the AMBIT/L interpreter is
available for instrumentation of page timing characteristics;
I it also reports on the number of times each page must be read
from the disk. Thus the user has the means to find out if
I such a high overhead situation exists.
I

37

Sy e R Sl o s e

Program Writing

There is some overhead for each insertion in terms of the

number of files kept in the user's directory and the extra
effort (and perhaps documentation) there is in maintaining
a distinct program component. At execution time, there
is some overhead in transfering control from page to page;
note that when returning from a functi>n whose body is an
insertion, control must pass through RET which is on the
page which inserts the function body. Thus rather small
insertions should be avoided, and instead, small blocks
ought to remain as parts of their parent insertions.

Since a page is nc. -.apped in from the disk until needed,
rarely invoked blocks should be made into insertions.
Likewise, two insertions which are not very iarge might
be merged if one is inserted by the other and both are nearly

always executed together.

To help analyze the running characteristics of a program, a
user may organize insertions in such a way that timings
reported on the basis of duration on each page can yield
meaningful results. A special version of the AMBIT/L
interpreter is available for such instrumentation.

St et A s N b

To help examine a program (perhaps written by somecne else),

a user may organize insertions in such a way that results of
applying the AMBIT/L Cross-Reference Mapper can be useful.
Such results are restricted to reporting only the existence of
references which cross insertion boundaries.

The ultimate form of an AMBIT/L user program as a collection
of pages of binary code is called a "DMP" (for "dumgp") file.
Each page is represented as an integral multiple of 128 36-bit
words. Therefore, if the length of a DMP file is to be minimal,
a user may wish to organize insertions so that resulting pages

[e e i -2 B,

Program Writing

do not result in significant wastage, such as would result

g

|

|

l from several 257-word pages. The number of words on a
page is reported to the user by the compiler and again by

I the link editor. A fanatic programmer may wish to try to
shorten certain pages for this purpose by rewriting some

1

|

I

rules or transfer lists.

Finally, it should be re-emphasized that all organizations of insertions of
a program are logically equivalent, and that the choices available affect

e et a6 L i o YL

only the efficiency of the programmer and of the programming system.

SN el gy T G UEE STIEHE T IR IT ey
{ AT e S

LEgsn

L4t

* Next, a different topic is introduced concerned with the writing of
AMBIT/L programs. Following any rule or block which may have a transfer-

= list specified can be one of the following forms:
E ;. Form Meaning
k!
P §/a $/a F/?
i F/3 S/NEXT F/
- S/ F/B S/a F/B
- F/3 S/a S/a F/8
. SF/a S/a F/a
' (if not given) S/NEXT F/?

where o and B are label-references. Note there are several predefined
labels, the last three of which are relative to the rule in which they are

’
.- P v N

B R R IO I TP PN s TS (F TGO WAL 1008 e ognLte e o
1
"

E : used:
T Label Use
- EXIT This identifier is wutomatically

declared as an attached label before
the 'END' of every block in the

program.

Program Writing

Use

This identifier is automatically
declared before the ‘END' of every
block in the program which is known

to be a function body.

NS AR S PR

? This special label should be employed
in a rule exit which the programmer
expects will never be taken. At

execution time flow of control to

PRt e P X T

this label causes the interpreter to
initiate an error trap and print a

g o

diagnostic message on the terminal,*

e

PREV This relative label refers to the
previous imperative (i.e., rule or
block) if it exists; otherwise its
use is an error.

ot £ A
et M?‘W{M"‘""""’f“‘"’ wowre Ao

CUR This relative label refers to the
current imperative (i.e., rule or
block).

o . AR 14 Ll S AL L

PRI - X

. , O 2 B

b aaia it ; [rnes wipe s 5 + 5 TR TR 2 3
[% -

4

:

ey ned ipmonnad) D] fowamnd ° S
! i

]
3

NEXT This relative label refers toc the next
imperative {i.e., rule or block) in
the current block, or to the end of
the block (the label EXIT) if the
current imperative is the last one of
the block.

.
P RN e b S ae Bbe e b e

i-\-lu

—~The &rror trap "TUL' is caused by the interpretation of a 3/? exit. the
error trap 'F/?' is causcd by the interpretation of a F/? exit.

e e o e

B-11

i
|
1
i
€ AUAYIAL LS L LA SIS ad PR SastAtd 1#&%/&1;&35&”&* WA sl S s s

3§
4

‘g’
N
g o
3
!

§

O B

g l Program Writing
2] ;
£ 5
§: Note that although the use of ' ?' as a label is restricted to be within the
. £ :
:E l transfer list, the other five predefined labels may be used within rules (as N
;= label nodes).
S | i
= % One special construction is allowed which permits a dummy name to
. ¥ I be used as the success exit of a rule, as shown in the following example:
Eol RULE ;
= I GGG20) :
é ; i +-=-=A 5
@ 1 1
I leq 1
1 1]
y :f: fo——t %
>k A :
B I) 14
:F 4. PE
(= 1 3
=3 s l .E
1 n ¥
o O et 3 +===A
£ 1 1 11
kB I I GET.LAB 1=--=>1%} 1
: K 1 1 1 1 i
éi FE T F G —— é
E & S/*13
E £ Such a dummy name cannot be given as the fail exit since it might not be
bound when failure of the rule is detected during the rule's interpretation.

o AN AL LY RS A

I
I
I
I
I
I

1
I 41

il WA s e 1w
PRIy

B e L mrE s P e 2 A e e S e i . e i e R L

3 Section C

3 I The Drawing of AMBIT/L Programs
g and their Encodement
3

‘ 3 &

g . January 11, 1972

i

E -

i

]

-,
. .

YR DT RIREIRTIEY) FTVORINENNNI

This .ection presents, by exawple, the forms of

I diagrammatic listings which the Diag.am Generator of
the AMBIT/L Programming System can produce. Thus,
the programmer should first use this as a guide to draw-

I ing rules of his programs. Also Jescribed is the method ol
of translating the diagrams intc a linear encodement L
language. Finally, a recommended canonicaj encodement

I is provided.

E
?;
%g

o
e
™
i 1 ;?Wmmﬂ ‘MM:.M!:}&" RN

T A N R e A O A A R S E S e R SR L ees

A N N L R DB T I ROV A PN PRSI 5 IRl TaT

LY

Drawing & Encodement

It was indicated in the Reference Manual that a programmer sketches
his program on paper and then inputs both the textual and diagrammatic
portions of his program via a typewriter-like terminal (often a Model 33
Teletype). Thus an entire program is reduced to being a string of characters
in the PDP - 10 implementation of the AMBIT/L Programming System. The
programmer, however, initially prepares textual specifications for overall
program structure and he draws diagrams for rules. 1t is important the
programmer understands how the Diagram Generator produces diagrammatic
listings from the character input so that he may organize the layout of each
rule to be easy to understand. Selection of a good rule layout is important
as a documentation aid, and the simpler structure there is to . rule the more
likely it will not have hard-to-find errors. To avcid over-entanglement of

links the user should not hesitate tc employ explicit link ronting and dummy
nodes.

The Diagram Generator (CIAGEN) is a translator in the AMBIT/L
Programming System which reads as input an encodement of one insertion
(or block) of an AMBIT/L program and produces as output a listing of that
insertion. All textual material is passed right through DIAGEN without
checking or formating, except for an attempt to introduce new pages (forms)
where appropriate. When it comes across a rule, however, it assimilates
the character string encode:nent and vroduces a listing of that rule as a
diagram. When rules are short enough DIAGEN inserts new pages to avoid

any rule getting split across the end of a page of ithe listing. DIAGEN icnores
new-page marks {form feeds} in its input.

S o s AR
orert

P g e
i e bl ALY

DIAGEN bases its drawing cf rules on the medium it uses as output:
the typed page (either Ly terminal or line-printer). To torce the programmer
to keaep his diagrams within *copvakle" size (e.g., by XEROX), the maximum
width of a diagram is liinited to be less than 72 character positions; this also
corresponds tc the printiny width of the Model 33 Teletype. A ruie is considered
to be drawn on a rectangular gnd of rows (named A, B, C, etc.) and columns
(named 1, 2, 3, etc.). To fit on one 8 1/2" x 11* page a rule must use at most

L
T
L
iR
13
11
1 I
I
I
I
-
]
I
|
i
|

- - - . . o - 2
o N AN Lt R e e T Y suma
S N = e 2 i -

T ITS wo S\ Yrneardr
W“ (&,u“wﬂm.,mm A st

30 S e s R s 2 S T iRt L s e e

e s 5 7
,gﬁ
l Drawing & Encodement ;
¥
4
6 rows and 7 columns. Although DIAGEN insists that all rules be no wider :

have as many as 13 rows. The programmer may position a node at a

than 7 columns, it can accommodate up to a double-page rule which can I;

|
particular grid position, for example, A2, Bl, or D5. Each position normally g
takes up five character positions vertically and horizontally. Between each
pair of adjacent 5-position boxes are five character positions available)
mostly for routing of links. The rule on the next page demonstrates the ‘;

format just described. See how there are five character positions between

the node at B2 and each of its vertical and horizontal neighbors. The left

AN e b D iahandis ST ol A L st LRI

and right sides of each node boundary employ the digit '1' as a close
approximation to a vertical bar. The top and bottom sides use a minus sign

as an approximation to a horizontal bar. The corner of each boundary is
designated by a plus sign. Type-sets are right adjusted as part of the top
of a node boundary.

i] feenep feend et e umd

—1

-A
o P S A ot M el e A

FRT I

e e e T e
UTCRTEOX DN TR TN DI APER ST R L W L3 7]

g e umy ey

o
Q
}
N

PR - - oo ol A TR N R I R

T NIRRT IS P e TS s o e o M AT ST OS] e e s SRR PR TN

5
i
Drawring & Encodement i
RULE i
(GO626) ©
7
+-~=A +===A +===-A +-==A +===A +=--A +-=--A i
1 1 1 1 S| 1 1 1 1 11 11 1
1*Al1L 1*A21 1%A31 1*A41 1*AS5t 1%A61 1*AT1
1 1 1 1 11 1 1 1 1 B 11
bt o=t o=t to——t ==+ tm——t -t
+---A +-=-=~A +===A +--=-A +-==f +~==A +-==A
Tt 1 1 1 1 1 1 1 1 1 1 1 1 ;
1%B11 1*B21 1%B31 1%B4l 1*B51 1%B61 1%B71 :
1 1 1 1 1 1 1 1 1 1 1 1. 1 1 :
tom=—t b=t o=t tm—t ===t +=-= t-—=t
£ | l +==--A +-=-A +=-=-=A LT Y-\ +=-==A t===f $mm=f
2 2 1 1 1 1 B 11 11 =
A 1%C11 1xc21 1%C31 1%C41 1*C51 1%C61 1%C71
b 11 11 I 1 1 11 | 11
E we tmmad o=t L ahded 4 -t L Xk 2 by L daded o
: t===f t+===a +--=A +-=-A +--=A +===f +-=-A :
1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ;
E 1*D11 1%D21 1%D31 1*D4l 1*D51 1xD61 1%D71 :
3 1 1 1 1 11 1 1 1 1 1 1 1 1 :
i 4===t ot $o=-—t te——t to—=4 ot b=t
1 2 i
FEz o :
s F I +---A +-==-A +-==A +-==A +=-==A +-=-=A +---A
: £ 1 ! 1 1 | 1 1 1 1 1 1 1 1 1 i
£ 1*E1l 1*%E21 1*E31 1*%E41 1*ES5] 1*%E61 1xE71
3 1 1 1 1 1 1 1 1 ! i 1 1 1 1 :
I o=t o=t toet to——t o=t te=-—+ ;
I +t=-=-A +--~A +=---A +--=A +=-==A +---A +-~-A i
EE 11 11 | S S 1 1 11 I :
; 1%F11 1%xF21 1%xF31 1xFal 1*FS1 1%F61 1%F71 :
33 I 1 1 ! 1 1 1 1 1 1 1 11 1 1
m——t tom=d tm—— - == - -t
2 :
‘ c-3 45

Drawing & Encodement

When specifying that a node be placed at a particular grid point

position / type~set / subname

Seliiicdalydtonii,
G
B Al B i PR PR3 o i) e 3
Dol ;
\E
i
]

’ specification.
: - 66626 RULE
05030 Al/1R/eX, A3/P/Y,

RULE
. (G5620)

- +-~1IR
1 1
3 1eX 1}
E i 1 1
e | ===t

+-#LF
1 1
1 1
1 1
et

+-=-A
11
1451

I the encodement is done as:

Bl/#LF,

4+==-=pP
1 1
1 Y1
1 1
ot

The subname corresponds to the text enclosed within the node boundary; it
may be a subname of a data node or a form of macro call. The second slash
and subname may be omitted for an unnamed node in the rule; however, if a

- subname is included a type-set must also be included. The letter 'A' (for
w "any") is an allowable type-set which means no type testing is done. A
- node may also be specified with just a position; this is equivalent in meaning

to having 'A’ as its type-set. The following sample input and associated
diagram demonstrate these possibilities. A comma separates each node

B4/Mt, C2/A/#%x%, Cu4s

==t
1 1
1 1
1 1
ot
t-==%
1 1

1 1

s
3
S

PRARSSMNDPERTEY s e as @™ es wTo - s TR RS O AN S A e s L L R o e O S D s S S T I S e DR SnSe e s

» Drawing & Encodement
» The integer within parentheses under the word ‘RULE' in the diagram
indicates the line number or sequence number within the source file on which ;
the rule's encodement begins. DIAGEN treats unsequenced files as if they ;

were sequenced by one.
3

TRETY A LT

Up to this point names have been chosen carefully in these examples
to not exceed three characters, for that is the limit that will fit inside a
standard node which is 5 by S character positions. If a node name is given
which is longer DIAGEN attempts to stretch the node to the right as required
without "bumping into" another node or a link with some vertical component.
If it can do so, it stretches the box so the name just fits. Ctherwise, it
labels the node with a name of its grid position followed by a period; then at
the bottom of the rule each such label is repeated along with the full node

name (somewhat like a footnote). For example, here is some input and its 4

S4Bl et

A DA U R Lt I LA St A M AT S A N I B o

|
s i TR ol 2N on T
LA gl T, AT GOF AN AR AL (S T

TR I 15y R m LR S N a7 g

T

associated diagram:

i

0y

e G Bemed i Gmond Geed Geey Gemt G BEG RS

RTINS, oy

Ay
Prighe
N

Ay

"\\':"ﬁ"‘ﬂvl -5
R om e

S A

A
ffg e

1
]
2 S
-

LA v LR R T

e Lt
3
'

A

LML

QIR X ramey
L]
*

SITEEGS S

WY AR T S B A S

e

Drawing & Encodement

RULE

Al /LFBS/eaABCD, A2/P/X, AS/T/CA 12), AT/1/1234, Bl/M/LISTING,
B2/A/=1/3/75/7, B3/R/3.14159265358979323846, B7/1/12345,
Cl1/S/*SUPERCALIFRAGILISTICEXPIALIDOCIOUS ENCYCLOPEDIA OF AMERICA®';

RULE

(G060652)
+--LFBS +---P e T to==--1
1 1 1 1 1 1 i 1
12ABCD! 1 X1 1¢(A 12)1 112341
i { 1 1 1 | 1 1
frcoen + -t fomwnaw + L LT)
- M +-~--A bt crr et r e e e e - R $-==1
t 11 1 1 .. 1 1 1
ILISTING] 1B2.1 13.141592653589793238461 I1B7.1
1 11 1 1 1 1 |
o wen 4+ o= L At et d el il ol el i + LD
oo awa FET T O T LT PR R R ey PR R R R TN R R T R R R R R R R R T R R R T s
1 1
1 *SUPERCALIFRAGILISTICEXPIALIDOCIQUS ENCYCLOPEDIA OF AMERICA']
1 1
X X X WR R R R R R R R R R R R R X R R R P Y L L L L T Y T Y T Y Y Y Y N NSSurNes - -

B2.=1/3/5/7
B7.12345

Notice that a node may stretch to have a name of up to seven characters when
it has an immediate right neighbor and no links (vertical or horizontal) intervene.

A call node or value call node is specified by a type-set which begin§
with an equal sign. DIAGEN draws sucl. node with a bottom side of the node
boundary as equal signs so that it locks like a double line. For these nodes
only, a larger node boundary may be specified by giving both an upper left and
a lower right grid position separated by a minus sign. When such a specification
is made DIAGEN does not attempt to stretch a box for a name which cannot fit.

For example, here is some input and its associated diagram:

e e S S S e B R e e e e AL R e b Pl At O S S R Y

P NIRRT L SURAAPELATNTNAIFY T A e M a N P YL SR

FE Yt N e we s« s e i 24

I Drawing & Encodement .
I 60662 RULE /’3
660063 Al1-Cl/=F/0PEN, A2/=A/VDRRRDEA.LONG.FUNCTION.NAME., ;
GGGG4 B2-C4/=F/ADD, BS5-B6/=1/V@SUB, C5~C7/=F/@FUNC.PTR; 3
I RULE 3
O0G02)
l boob aemmemmmmmeeeemmmmmeeeeeas)
1§ 1 1 1
- 1 1 1 VDRRRDE@A.LONG« FUNCTION.NAMEI
- 11 1 1
1 1 4SS=SSSSSSSSSESSSS=SEESS=I=S+4
- 1 1
1 1
L 13 l l
. 1 1
1 i
3 T | $ommmmmmmmmee—ccecme e F $mmmmmmm—ee oo 1
R § 1 1 1 1
- 1Al1.1 1 1 1 vesuB 1
E i 1] 1 1 1 1
E - 1 i 1 1 4$S==SSR==T=S==4
g - 1 1 1 1
1 1 1 1
b 1 1 1 ADD 1
4 1 1 1 |
o 1 1 1 1
E L. 11 1 i 4mmmmmc—cccccmanmmm—e—e F
1 1 1 1 1 1
- 1 1 1 1 1 @FUNC.PTR 1
: 1 1 1 1 1 1
i 4-===+ -.-::-.=====================+ +=======================+
- Al +OPEN
_ Now that node specification has been fully described, links will be
- discussed. Since a standard node is 5 by 5 character positions, the middle
three positions of each side are suitable for link origins and destinations.
E ¥ I Recall that a solid link or a modification (double-line) link which emanates
3 from either the upper or bottom side of a data node is considered to be a
; I I"down" link. Similarly, a solid or modification link emanating from either
4 3 the left or right side of a data node is considered to be a "right" link. _
& Argument links may likewise emanate from the upper and/or bottom sides of
§ I a call node or value node; and result links may emanate from the left and/or 3
-§ 3 right sides of a call node. i
i3 I 13
E 1 13
E - C"7
& SRS v‘ £ o

e R A OB WV ¥ e o TR o T i B . .
AT NE T - . 8 R

ULl St iyl A LN EOL i g

T

LR M i i

ALY 2

RO R T T

IR A

IRt T

Drawing & Encodement

The middle link origin of a side of a standard node is the "normal"
one. When dealing with down links, a "plus" perturbation means towards
the right (towards increasing column numbers), and a "minus"” perturbation
means towards the left. When dealing with right links a "plus" perturbation
means towards the bottom of the page (towards "increasing" row letters),
and a "minus" perturbation means towards the top of the page.

Links are routed in lanes on the page. Some normal lanes are those
which pass through the normal link origins of each standard node position
(both vertical and horizontal). The other normal lanes are those which are
half-way ketween standard node positions. The following diagram shows
all normal lanes in the vicinity of the first three rows (by N's) in 8 backgrou~

.

of name-less nodes.

RULE
(HO266) .
NND
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N
N +-N-+ N +=-N-+ N +=N-+ N +-N-+4 N +-N-+ N +-N-+ N +-N-+
N I N1 N I N1 N INI N IN! N IN!? N IN] N INI
NNN
N I N! N I N1 N IN]1 N IN!I N INI N I1N1 N 1NI
N +<N-+ N +=N-+ N +-N-+ N +=N-+ N +-N-+ N +=-N-+ N <+-N-+
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N
NNN
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N
N +~«N-+ N +=N-+ N <<-N=-+ N +=N-+ N +-N-+ N +~N-+ N +-N-+
N I N1 N I N1 M I N! N IN!1 N I NI N IN!? N 1IN
NINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
N I NI N I N!1 N INI!I N INI! N INI>I N INI N 1INI
N +-N-+ N +-N-+ N +-N-+ N +=-N-+ N +-N-+ N +-N-+ N +-N-+
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N
NNNNNNNNNNNNNNNNNNNNNNNINNN
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N
N +=-N-+ N +~N-+ N +-N-+ N +~N-+ N ++N-+ N +-MN=-+ N +-N-+
N I N1 N IN1 N I N1 N IN! N IN1 N INI N INI
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
N I N1 N I N1 N I N1 N 1IN N I1N!?1 N IN!] N INI1
N +-N-+ N +<N-+ N +=-N~+ N +-N-+ N +=N-+ N +=-N-+ N <+-N-+
N N N N N N N N N N N N N N
N N N N N N N N N N N N N N
NNN

20

X
C e e e o

M AR L T vt 15

ks

5 did

e S T A AT TR T o T e e
Eal e i el o IR AR SRR AR S N e s R S - T Tt

Drawing & Encodement

- Next is presented a similar diagram showing all plus perturbation
in lanes of the first three rows (by P’'s). It does not seem necessary to present

a third diagram showing minus perturbation lanes.

R LAY el SRR
[]
L]

[.

RULE

(GG2606)

-- P P P P P P P P P P P P P P

i PPP

b P P P ? P P P P P P P P P P
P +--P+ P +--P+ P +--P+ P +--P+ P 4--P+ P +--P+ P +--P+
P1 Pl P11 PI P 1 Pl P1 Pl P 1 PIl P 1 Pl P11 Pi

sa P1 P! P11 PI P1 Pl P11 PIi P 1 Pl P11 Pl P11 PI

PPP

I P +--P+ P +--P+ P +=--P+ P +--P+ P +--P+ P +-~P+ P +-~P+

; TP P P P P P P) o P P P P » P

P P P P P P P P P P P P 2 P

& .- P P P P P P P P P | o P P - o

:) PPE ™ > %P

e P P P P P P P P P P P P) -

P +--P+ P +--P+ P 4+--P+ P +--P+ P +-»P+ P +--P+ P +--«P+

P 1 PI P1 PI P 1 Pl P1 PI P11 Pl P11 PI P1 Pl

i. P1 Pl P1 Pl P 1 Pl P11 PI P 1 Pl P11 Pl P11 Pl

PPP

o P +~-P+ P +--P+ P +--P+ P +--P+ P +--P+ P +--P+ P +--P+

P P P P P P P P P P P P P P

P P P P P P P P P P P P P P

-- P P P P P p P P P P P | P P

i AN 3 TR

PY IS ST TR S FORPR PNy

NN N
.

£
AEraeme e P

'y
R L

3 PPP
3 . P P P P P P P P P P P P P P

¥ P +~=P+ P +=<P+ P 4=~P+ P 4==P+ P 4~=P+ P +-=P+ P +--P+
= P P11 PL P! PIL P! PL P11 PI P11 Pl Pl PL P11 Pl
S P! P! P11 PIL P11 PIL Pl PI P11 PI P! PI P11 Pl
E PPP
2 e P +--P+ P +--P+ P +--P+ P +--P+ P +~-P+ P +~-P+ P +--P+
P P P P P P P P P P P P P P
e § 7 P P P P P P P P P P P P P P

2 P P P P P P P P P P G P P P

g

'ﬁWmmmmmmmwmmmmm.”.
ol e ey

R eI ST e e e T AR R Ly, L VDR T T T I T T, v L ,'ia

3
i
s e o e vmrgnintaritasty FE

ey
4

;' g

ol

Drawing & Encodement

With this introduction the specification of a link can be explained.
; I First, fully explicit link specification will be given. Then several default
!

RASRETHAS TIHE Y

cases will be introduced which allow for rather simplified encodement;
nearly all link specifications of most AMBIT/L programs take advantage of
the defaults, especially for routing.

RSP

w e YR

Links emanating from a particular node are specified (in any order)
along with that node's position and name specification. A SPACE or carriage
return separates the link specifications from the node specification and from
P one another. For a data node a link specification begins with a route.
However, for a call node or value call node which has a large node boundary
encompassing more than one grid position, each link from such a node must
first have an origin grid position specified followed by a slash (/), and that
is followed by a route.

s o

A route begins with a letter whi.ch designates the kind of link:

B pR e Wl
REINETI

S for a SOLID (or normal) link g
E ¢ B for a BROKEN* (double-line or modification) link i
E £ F for a FLOW link

- The remainder of the route consists of a sequence of segments. Each segment
- begins with a letter which designates its perturbation (i.e., the particular
lane along which it travels):

3
LY P cata

N for NORMAL (or no) perturbation
P for PLUS perturbation
M for MINUS perturbation

*Historically, modification links were drawn as broken lines rather than
double lines.

C-10

- _ S s - TSt
et R P w TFss g rrao U o S .

Drawing & Encodement

The remainder of a segment consists of one or more occcurrences of the same
letter which designates direction:

Y AT R SR SRR

for the direction UP

for the direction DOWN
for the direction LEFT
for the direction RIGHT

BT

e vy

®
WY

Yy e

Each occurrence of a direction letter means that the route continues in that
direction to the vicinity of the next normal lane which crosses its path.
Although DIAGEN draws links which begin and end on node boundaries,

. link routes must be thought of as beginning and ending at the crossing of
.- normal lanes inside of the source and destination node boundaries.

RIS

The route ends after one or more segment specifications. The complete
link specification then ends with a slash followed by the grid position of the
node at the destination of the link. If that node is & call node or value call
node with a large nocdea houndary, any grid position around the edge of that

Ay

boundary may be the (uitination grid position of the link specification.
Otherwise, the grid position of a data node as destination must be the
destination grid position of the link specification - EVEN IF THAT DATA NODE
-- HAD BEEN STRETCHED TO ACCOMMODATE A LARGE NAME!

Ll R N
.

- Solid links emanating from call nodes and value call nodes indicate

AT Y AP Yau bk i ST

E : . arguments nd results. Both arguments and results of a function have a
‘ particular ordering according to the function's definition. Thus it is essential

]
[]
.
Loathedr ALt

YA A

that there is no ambiguity concerning the order of arguments or order of results.
Links used to locate arguments of a function may originate at either the top

"

or bottom side of a call node boundary. Similarly, result links may emanate

[2V
L]

from either the left or right side of a call node boundary. Arguments are

3
3
=
N
3
A3
-
i
3

ordered from left to right; results are ordered from top to bottom. There is no

a..-:nk l

restriction which forces all arguments or all results to originate on the same
side of a call node. The ordering or arguinents and results can easily be
shown on large call nodes by using different grid positions as origins. Also,

23

L e B oy |

C-11

d

IR TN, R A e i e o - _

A VYA e R R T e AR T OO TN AR AR TR AT RPN W NEARS | Vi AT I R AR L AR NS e SIS R O RS L A RV AR O

Drawing & Encodement

perturbaticns can be used to show ordering. To aveid any ambiguity, no two
argument links {or two result links) may emanaie from the same origin point
or two points exactly on opposite sides of the node boundary.

1

A few examples should clarify the above descriptions; hzre is some
input and its essociated diagram:

S bl B N AR O A R e Ok P L S ANt M U S P O &4 20 "
’ peppTTY Y S Gl s Wl e G E RA i e

- 06626 RULE
66030 Al/P/A SNDD/BY, A2/P/B SPDD/B2,
. CGH4G A3/C/eC SNLNDDMR/B3»
1 6G6GS5 A4/P/D FMDDDNLLPD/C3 BNDDDD/C4 FNRR/AS,
s 60660 AS/T/(E) SNDDNRNDDNLLL/CA4,
60670 A6/P/F SI“DNLLLLLLPD/C3.,
o o080 Bl/1, F:2/CSTs B3,
. G690 Ci-C2/=F/DDDeG C1/SNUU/B! C2/SMUU/B2
66160 C1/SNDD/D1 C2/SNDNLLPD/D1,

- OG116 C3/5/7°'ARCD* FNLL/CZ2 BMUNLLPU/B2 SNUU/B3, -
66126 C4/M/NEWNODE, Dl1/1/6Gs

RULE
- (356620)
.- T +-=<P +==C +-==P 4+-==T +=-=P
1 1 i 1 1 1 1 1 I 1 1 1
o 1 a1 1 81 /--i8C 1 1 D 1222Z>1(E)} 1 F 1
1 1 1 1 1 1 1 1 1 1 1 1 1
o b t=——t 1 -y -t tm—— bt
“- i 1 1 ZH 1 1
1 1 1 ZH 1 1
b ! 1 ! fommmm—— thmmm $omemm——— /
! 1 1 1 7H 1
” v v 1 v ZH 1
.- +-=-=-1 +~-GCST 1| +==--+ ZH 1
! 1 1 1 \->1 i ZH 1
- 1 1 1 1 i 1 - ZH AT LY
1 ! 1 1 t 1 ZH !
b S al S 4o -t ZH H
— A A B A rAL 1
i 1 B 1 Z8 1
A 1] \=======\1/Z2ZZ2Z2Z/H 1
1 1 H1Z H 1
1 1 Hiv v 1
Sl b bt = tommnm- S +--=-==- Y 1
1 1 1 I 1 i 1
1 DDDOG 1<2ZZZZ1*ABCD*1 INEWNJDE[€~~r==w=-- / :
1 1 1 1 i
$ovm——— + Femmme-- + §
i:
3
24

Drawing & Encodement

Note how solid links are drawn with 1's and minus signs, and "broken" links
are drawn with H's and equal signs as approximations to double lines. Flow
links employ the letter ‘Z' in poth vertical and horizontal directions. Slash
and back-slash are used where links turn corners. Angle brackets are

used for ieft and right heads of links, and letters 'A* and 'V' are used for
upward and dowrward heads of links. A plus sign is used where links cross

one another.

There is one additional notation for specifying those solid or broken
links which employ the twisted link notatioa (shorthand for a i‘nk whose
des aation is the null cell}). Such links have a route which consists of one
perturbation letter and one direction letter; then after the separating slash
the destination of such a link is specified as two asterisks (**). The next

example demonstrates this notation.

The previous example judiciously avoided stretched node boundaries
bumping into links. The next example demonstrates such effects. Here is

some input and its associated diagram:

VI A e

LCERY L N P ICAE VR AT U P YO N7 S IT T MO T X118 PSP A Sy S

kjjyk\dlwm PR
v XY FE P

o *Y‘R’W > <
3 .'i% Q.WM Sa N 2 L s e s e T L — e T BGOSR -

ML JEEREGR

] R

G y

o

» i3

a ;

. oy
t
et W

Drawing & Encodement

2 {
=3 i
;5 I ¥
Eio, 00325 RULE i1
;- 60030 Al/P/ABCDE SND/x* FNRR/AL, IR

; 6GO4G A2/P/ABCDZF SNDD/S2 FNRR/A3, L

) I 60650 A3/P/ABC BED/*% SPDNRNUUNRRHDML/A4, ¢

: 56660 A4/1/1234. :

- 66579 B1/A/@A12345 SNLNDNRRNDNL/C!, ‘
:] 66686 B2/=1/VeSQ SNDD/C2s ;]
R 60690 B3/A/%1=RDEP FNRNDNLLLPD/C2, f
& 60160 Cl/A/*%) #x%, “
3 T 66116 C2/1/8BIG.1NTEGER. FOR.AREA.0OF.SPOT , NRRRRRRNDNI.LLLLLLLNU/C}; X
: 4 3
s) RULE
E - 7 165020) £
N . . /-“-----‘--\ ; ::3

1 1 1 ;
g v 1 : A
g tmceasP po-ee-- P 4-=-P | 4----1 3
£ ;T 1 11 U T S 1</ ¢ 3
E L 1ABCDE1ZZ>1ABCDEF1Z>1ABCI 1 11234] D
E 1 11 1 1 1 i 1 i
. § -- tm—mm—t - 4+ Feeer] des=-t g
, 3 1 1 Hi 1 ;
%_% - 1 1 2
fji " : \=-=s :
. 1 f 4
& £ ze v 3
, e A +----) +=-=A
3 -- 1 11 1 1 1 3
- . /--18A123451 1vesal iBY.122\ d
- 1 1 11 1 S T/ k
-‘ g 1 fmmmmmned $S=R4 PRI 4 E
£ X i i z “ g

1 1 z oA
\evomean -\ 1/222z22222222227/ "3

1 1z -3

1 vy i

+===A 1 #-mccccccemccmeaa. mmccmom———a i b
i1 1 [
1Clel<=/ 18BIG.INTEGER.FOR«AREA.JF.SPOTIZ\ Pl

| } 12z i
to——t tmrmmmm—n R T L L R ey Z :

A z ;

ot z ;
\Z2222222Z222222222222222222222Z222.2222Z/ i
B3.*1=RDEF i;
Cl oexl #x% g

.o LAY
h

Caadl

Bl
:

K:

R o S

Drawing & Encodement

Most of the complexity of coniposing link routings can be simplified
by using variouas default options. First, if the kind of link is omitted then
S {for solid) is assumed. Secound, if the perturbation is omitted then N
(for normal) is sssunied. Thus it is customary never to see either of these
lefters in link specifications.

When a link emanates from a large call node or vaive call node, its
source grid position and separating slash can be omitted in its specification
if that position is the upper left position of that node bcundary.

The most important default option is the “default route" which permits
the user to use just one direction letter to specify all segments of a route.
For example, here is some input and its associated diagram:

l 7
]

—

e e B S A e e s A S G

L
re AT YTV "

P S H R i w S rytn v or v

?

Q) ot ovs o0 4 ol et o o P
]]] 1
] a. I omt oot ot e D | < []
] [=3+ BN] 1
=] F oot oo =+ # b ot
b A "
£ N i
k) N 1]
o] N]!
° N il
o N]
& < N f
@ 3 N j
N fl
o m N Il
g N N " *
2 D¢ ~ " k,
o < N 0 i
5 T N I |
i < N |
a N 1 i
& N l
< z :
N
© N i
a N 1 et e e
~ o) Nmonommomommumnum> ' -
a ~N] ™] “w (c
N ~N S et o v omt vt et omt vt o et wa D |] L -
M N ' & w4 e e o [1
N]
a 3 " °
, N
4 m N]
N N [}
m o (3¢ omt ot ot o [] S vt me ey o
¥ N ' H oot o ' '
™] H) omt ot omt ot omt owt ot ot e et oy omd ond nd oud omt S sl W ot e omt sw oms o0 | (o] [
y < 1 I oo oo N t 1
. LY [] n] & et e o P
; — -] it]
; N P "
. Qan ' {s i ' !
m., [} 1] [} 1
F o< 0 i ‘ o -
! (ol &) |] N o= ' ¥
3 b N §]] - 1 3
; A ! | o= N\) ' ;
FB d et o o P] o oo P !
' o 0l 4 4 8 o t k
] QONDQ = TN [} :
NMONNNNN A T e vt et ot et et een e S
3 () vt € D, v st et o=t 1
‘ ' - NN NN [}
. SN~ IO 1
' gL CmMmoLA N
» v
1 ~
(]
3 oo QLoo M
AMITNHOV-DO W
QOQQOOUDOQ0 mrj
m # - QOO OOLOQC o
‘ LALOOLQQ oo~
L
{
W_. ey -

A e R R A A WL R TR e i L, SEw e

R TR T S L R TR PN T R G AT TN RS | el v-:vu—ﬁ‘qw

E:
4
-
b
3
E
E

-

Drawing & Encodement

This example demonstrates several default down links and a default right
link. The general idea is that DIAGEN will draw a straight link if possible;
when it does, it uses the normal lane (no perturbation). A default link
always terminates on its destination node on the side opposite the one from

which it originated. A link which turns corners leaves its origin node with i

a perturbation towards where it will first turn, and its final segment has a :

Boond pnnd e oy

perturbation towards from where the link just turned. Except for the first and :

L1 Lt T
R i ool Ll L [® L ERG AE AR

last segments of a link which turns, all other segments of links specified with

T T O T Sy AT T YRy

a default route travel on normal (no perturbation) lanes. Another heuristic

-

% used is that for a link which turns, those turns are made as soon &s possible.

T Finally, if a link must make a complete 36(0° turn it does so counter-clockwise. ‘
: - For example, the link specified as: i
3 B3 BR/B2,

- will be drawn with the following explicit route:

B3 BMRULLLLDMR/B2,

L Y e I

x> this route is shown in the following.diagram:

RULE
(G5116)

e Bt

T mannp N o B

/======S=sSs=S=ss===sTss\ .
H H
H H
H 4=--% +---+ H
\=>] 1 1 ==/

1 1 1 1

1 1 1 1

o ——t R adaded 3

39
C-17

P haas ki b il LA

RANTFIROR ey

-

-

b e g e g 4

4

A il A RN N A P I NS St s, JAARIT N c e a e TR AR ST P mv\ E ot e A CR B S L, G At e B . - S

Drawing & Encodement

Note that all default routes are always drawn independently of other
parts of the rule which they may cross or overlay. Thus if a programmer
wishes to produce a rule without conflicts he must know what to expect
from a default route. Consider the problem of interchanging the values of
two pointers. The following input and associated diagram demonstrate
three altervatives. Notice that DIAGEN permits the specification of overlay,

and indicates it with a '$*' at each character position where there is a conflict.

601106 RULE
65126 Al/P/A D/Bl1 BD/B2,
GG136 A2/P/B BD/Bl D/B2,
651 46 A3/P/C D/B3 BU/B4,
60155 A4/P/D BD/B3 D/B4,
60, 65 AS/P/E D/BS BPDMRRMD/B6.,
66176 A6/P/F DPLLPD/B5 BPDD/B6,
6041806 B1, B2, B3, B4, BS5, B6;
RULE
(551106) ,
/7===\
H H
H H
+=-==~P +===P +=---P H +~--P 4+===P +=--P
1 1 1 1 1 1 H 1 1 H 1 1 1
1 Al 1 B1 1 C1 H 1 D1 1 EI 1 F1
1 1 1 1 1 1 H 1 1 1 1 1 1
ot ot +===¢ H +===+ Ll bt to——t
1H H1 1 H HI1 1H 1H
1H H1 1 H H1 I\=======\1H
158353385 8\1 1/===4===/] 1 H1HK
1H H1 1H H 1 1/-ere=e= +/H
uv \'AY vv H v vv vv
t=——+ -t 4~==¢+ H 4===3 to——t =+t
1 1 1 1 i 1 H 1 1 1 1 1 2
1 | B 1 1 1 1 H 1 1 1 1 1 |
1 1 1 1 1 1 H 1 1 1 1 1 1
to==t to—— +===¢+ H 4=--+ -t o=t
H A
K H
\===/
b0

- e ;l','-ﬂ

K
PR T

F‘ A e e L TR N SR T TR AL A 2 e e WAV FINETIN R B AU s Sl LAY o CATELATAN T o R v st aa - e cas o e L RO
3 - e Y R

I.'_ Leren 2 e A - e

a3

g ;s i Drawing & Encodement
s 7 ;
‘ I The use of '$' to show conflict may be caused also by links conflicting with ’
] 3 node boundaries or node names, and nodes conflicting with nodes, as
H I demonstrated in the next diagram. Also shown next is the effect of forgetting
E - to provide a proper link origin of a result link emanating from a large call
E I node. Here is some input and its associated diagram:
o 60025 RULE
660305 Al/P/A D/Cl.,
- LoGA4G A2-B3/=F/DEF.,
E 650650 A2/P/BCD BD/Bl.,
: " 66660 B1/M/XYZ,
- GLGT70 Ba/1,
GOG 80 Ccl, .
- 66690 ¢c2-C3/=F/F R/B4&;s
RULE E
- (556203 g;
2 +===P $58P~cm - F 5
- T 1 s 1 1 e
] 1Al ,$BCD! 1
foe 11 s 1 1
: o=t $---+ 1
§ o 1 1H 1
2 1 1H 1
{ | /======8/ DEF 1
-- 1H 1 1
; v 1 1
c z T +-3$-M 1 1 +-=-=1
E P . 111 1 1 11
g ; 1XsZ1 1 1 1 1
. 111 1 /-===== $---->1 1
. +=-%-4 4$=====S=ESS==S=¢ PR
- 1 1
JPS 1 1
E 1 1
3 1 1
3 v 1
==t o= L L F
11 1 --7 1
1 1 | F |
1 1 1 1

o=} 4=============¢

Breiinal i G ne il A og o)

3
2

o
:i
5
L g
B
S >3
T 2
i
i
2 3
g’
&
4
by
H
:
£
®
S

wr e

e o e = v e

R

¥ -1

-5

Drawing & Encodement

All fundamentals of the diagrammatic parts of rule encodement have
been covered. The syntax of AMBIT/L progrcm encodement, which is
provided in a separate memo, should be consulted as the authority on rule
encodement. A few comments on the textual portion of a program are given

here, however, to give some context for the encodement of a rule.

Although the syntax indicates it is optional, for DIAGEN to properly
perform, each rule specification must begin with the word "RULE". That is
then followed (after a SPACE or carriage return as separator) by one or more
node specifications; ei .» of these is separated by a comma. Following the
last node specification of a rule may optionally be a transfer list (when one
is allowed - a transfer list is not allowed following a rule employed as a
function body). If there is none, a semicolon follows the last node
specification thus serving as the terminator of the rule. Otherwise, two
consecutive slashes follow the last node specification; then a transfer list
is specified ir. one of tne forms given below. The transfer list is finally
terminated by a semicolon which also serves as the terminator of the rule.

Allowable Forms

S/n

F/a

S/a F/B
F/B S/a
SF/a

where o and g are label-references.

Finally, a suggested canonical form for rule encodement is presented
based on the experience of several AMBIT/L programmers. Although the
syntax allows for rather free form encodement, a stylized encodement leads
to source files which are easier to read (by a human) and to edit using the
ccaventional text editing programs available on \he PDP - 10. The encodement
language for AMBIT/L programs is meant to serve a one-way communication

b d

T A A L A TS = = T ey a2 xw = 2
: = z TR it e 8 T ETARE R T I

T R S N s i e cwt, g

Sy - ~

Drawing & Encodzment

from the programmer to the system. However, the realities of use usually
require the editing of the encodement. The syntax permits optional use
of any number of SPACEs, TABs and carriage returns nearly everywhere
except where they would break up an identifier or within string quotation
marks. The canonical encodement, however, restricts the employment of

R e i

these separators.

The following is a listing of the canonical encodement of two rules:

T TRT e TIF Y ATTVaT

b i en) Nemmd nen)) e

GGG20 RULE
1 606030 Al1-A3/=F/0PEN Al1/D/Bl A2/D/B2
6GGAG A3/D/B3,
3 GO0 50 Bl /M/70UTPUT,
3 66060 B2/M/0UT,
3 GOGT0 B3/M/TTY3
G580 LOOP: RULE
- GG0G90G Al/P/X D/B1 BD/B3,
3 Z 66165 Bl R/B2,
65116 B2/A/#x%x R/B3,
_ 66126 B3//
66136 S/CUR F/NEXT:
‘ - Note that the first line includes any attached lahel (s) of the rule and the word
= 'RULE'. If there are labels then 'RULE' is at the left margin. Then the canonical
- encodement continues with one line per node specification if that is possible.
= In the case where two or more lines are required, the split occurs between link
- specifications. Otherwise, individual SPACEs are used as separators within a

:
i
!
H
{
i
!
:
£
§
3
£
;
&
£
<

- node specification. Additional or continuation lines may be indented by a .
couple of SPACEs for easier recoqgnition. Each node specification of a rule
except the last ends with a comma.

If a transfer list of any kind is given, the last node specification is
terminated by two slashes, and the next line includes one or two exit specifications
terminated by a semicolon. If two exits are included they are separated by a
SPACE or a TAB. If no transfer list is given, the last node specification ends in

63

C-21

I
I
I a semicolon.
I

~y Lationics Sl W

TR RV

Y R NSRRI R AT

'

A

B L e R B LR PR

TR e e s - o - .

1

Drawing & Encodement

3
1
=

Although any ordering of node specifications is allowed, a canonical
encodement calls for them to be ordered by rows and columns as has been

e Wl st

shcwn above. This convention usually makes it possible to locate a
particular node specification within a rule relative to the first line of its
encodement (i.e., where ‘RULE' is).

Each programmer may wish to decide for himself whether he wants to
establish his own conventions for the ordering of links within node specifications.
The canonical encodement does not specify any ordering, but the author has
prefered to order links as "solid", "broken", and "flow" and then within each
category "down" before "right". At least it is preferable to maintain the
relative ordering of argument links and result links of call nodes and value

call nodes.

(END)

s

AN

-»

2
2
3
<
3
E
3
H
H
*

o AR VAR RN b s

§ooes ‘

Lo B

P TR oF, R R e S P N R TRIN I 0w TNV ST TR

Section D

The Syntax of the E..codement of
AMBIT/L Programs

December 14, 1971

This section employs a BNF-like grammar to present
the syntax for one insertion of an AMBIT/L Program
in its encoded form.

L
M‘» Y T T M L

Syntax

An AMBIT/L program is composed of one or more separately-
compiled "insertions". This section presents a BNF-l1ike grammar for the
syntax of the encodement of one insertion. The grammar may be consulted
as the authority on what is acceptable to the AMBIT/L Compiler.

The grammar is organized in four parts: insertion syntax, ‘rule
syntax, name syntax, and symbol syntax. The productions of each part
are not self-contained, but all four parts together cover the grammar,

As in BNF, a vertical bar is used as a metasymbol to separate
various choices. Lower-case words which may be hyphenated are used as
non-terminals of the grammar. A pair of square brackets encloses an
optlonal constituent, i.e., one which may be included zero or one time.
A pair of curly braces encloses a constituent which may be included any
number (including zero) of times.

In general, a separator may be inserted anywhere in an insertion
between two constituents unless the grammar includes the special meta -
symbol ¢ , which means its left and right neighbors must be concatenated.
A non-null separator must be used between two constituents if both its left
and right immedlate neighbors are then either alphanumeric or the character
period. The syntax of a separator is:

separator —— { space | tab | carrlage-return | comment)

comment — $ { true-symbol } carriage-return

The non-terminal "space" represents the character obtained by depressing
the space bar on the keyboard. The "tab" represents a horizontal tahulation
character (ASCII HT), which is obtalned as CTRL I on the Model 33 Teletype.
The "carriage-return" represents a new line, i,e,, both a carriage-return
and a line feed., The "true-symbol" is defined in the symbol syntax as any
printable character on the Model 33 Teletype including the space.

pHb

T A PR T B T e TRt o S It D S o F0 B RN o0 s s B T O IO P T oAb i s 247 w Tm&'%
sy
e

A gy o eh L L e . - - R B e i
3

UNEETIRT SN PRRR.?

Syntax

L Ll

e
R TTIY 17 ‘u‘.\-l\

Insertion Syntax : i

11. insertion — prolog block
12. prolog — INSERTION insertion-name ;

13. block —
insert-commarnd |
BEGIN

{ declarative ; }

{ function-defn ; }
{ attached-label : | imperative ; }

St ! SNt 1o M U AN KM SN NS S Lt ot o

END

insert~-command ~ —+ INSERT insertion-name
declarative — declarator identifier { identifier }
declarator —t PERM | TEMP | MARK :
function-defn — function-heading : function-body :~
function-heading —* function-name ({ argument }) { result} E
function-body — free-imperative %s

%
imperative — free-imperative [/ / transfer-list] 3
free-imperative - bleck | rule LE

£

|

D—Zb"

112,

I13.

114,

I15.

116.

117.

118.

h 119.

transfar-iict

exit-label

pure-exit-label

relative-label

insertion-name

attached-label

function-name

argument

recult

—

S / exit-label [¥/ exit-label] |
F / exit-labe: [S/ exit-label] |

SF / exit-label

[-] purz-axii-label | dummy | indirect| ?
identifier | relative -labei

RET | EXIT | PREV | CUR | NEXT

identifier

L 50 BN (0 A b L a2 Al e R PP S0 NS A L L0112 4ad NS VL vt i e EAT AP Lt e LA 8 S bt vt Y Db st

SO R RS L

PIOE TR 7Y

o wx-rv,!wr‘.‘”»'mw
Y

Rule Syntax

R1l. rule

- R2. node

R3. data-node

RS. data-content

R6. data-link

R7. link-type

R8. call-node

R10. call-content

R11l. call-link

R12. type-part

R13. iype-set

R14,. type

R15. name-part

o
> fﬁ ‘i\E‘ E . - . Pt e

b

R4. data-boundary —

R9. call-boundary —»

Syntax

[KULE] nod= { , node}

data-node | call-node

data-boundary [/ data-content]{ data-link }
position

type~part [/ name-part]

[link-type @] route / destinaticn
s|B|rF

call-boundary / = cafl-content { call-link }
position { - position]

F [/ name-partj | type-part/ value-call
lorigin/] [S ¢] route / destination
type-set [1)

[#1type {o type} | A
FlIirlsiT|B|CliP|L]|M

name | " name] name-test

b9

- = m’ = _"'ﬂ:" e o — JE—

s

*:5«—)!‘.,. e B S S FASEN ik vt - S A S A pvieiathadiday

ha e . A o~
L RE N A s e

3 § I Syntax
X
e
¥ I R16. name-test —r = name {/name} | # name { / name}
B Ri7. value-call ——t [#1 Ve indirect
]
E . R18. origin — pesition
!
; R1S. destination — position | **
) E R20. position —t letier o digit
l R21. route — segment { ¢ sogment }
1 |
. R22. segment — [perturbation @7 direction :
- R23. perturbation — NiP|M
R24. direction — UID|L{R
L~
< ;‘

L e

;’ ONTEPONIC PNyt saver MUY UKL SR Ty

E&m.mﬂm@emw@mm SR

Name Syntax

N1.
é N2.
N3.
v N4.

-~ NS.

NS.

- N7.

N3.
N1O.

- N11.

e N13.

I
I
I
I

‘N14.

name

dummy

indirect

indirect-walk

literal

token

string

basic-symbol

real

integer

null-cell

—

function-or-label

poiater-or-mark

unsigned-reail

RIS RYOEN N ROTNAR IR L AL

Syntax

dummy | indirect | literal

* jdentifier | * unsigned-integer
[indirect-walk] @ identifier
{DelRelD

token | string | basic-symbol | rea: | integer |
null-cell | function-or-label | poirter-or-mark

({ literal})

' { quoted-symbol o }°
% @ symbol

[sign] unsigned-real

[sign] unsigned-integer
*%

[-] ide (ier
identifier

unsigned-decimal [o scale-factor] |
unsigned-integer ¢ scale-factor

e

il i S L F e
it s oo oo doins auEadi A
L e T ,

N15.

N16.

N17.

N18.

unsigned-decimal

scale-factor

unsigned-integer

identifier

Syntax

unsignad-integer ¢ . [¢ unsigned-integer] l
. ¢ unsigrned-integer

E o unsigned-integer |
E sign unsigned-integer

digit { o digit }

letter { @ alphnum } { @. ¢ alphnum { ¢palphnum}}

P T

T I

1
Eh-wommum v
A

Symbol Syntax

S1.

S2.

S3.

S4.

SS.

S7.

S8.

S9.

S10.

symbol

quoted-symbol

true~symbol

protected-symbol

control-s+ mbol

special-symbol

free-symbol

alphnum

letter

digi:

Syntax

true-symbol | control-symbol
free-symbol | % ¢ protected-symbol
free-symbol | special-symbol
control-symbol | special-symbol
CR|LF| vt | FF | TAB | ESC | SUB
% | *

(any printable character on the Model 33
Teletype including the space)

letter | digit

(any upper-case alphabetic character:
AlB]| ...|2)

oj1}213]4]s5|6]7]8]9

+1 -

(END)

ek e

U " ¢ Al e e
i SN a00b

R AR AT RS, RS N R a TR T e e L S0 T SSRGS e A e e .

LIRS T Y |

Section E

AMBIT/L Built-in Functions

for the Programmer

October 11, 1971

This section describes the functions predefined or
built-in to the AMBIT/L System upon which the AMBIT/L
programmer may csll to perform standard operations.

The built-in functions for input/output are discusszd in
Section F.

S T R R S N R T O e R R T I T T T T L i m em = - R A o A I T I s T I B BT % SN o T v oo ® nd® Hmags .&a
"

I Built-in Functions
1])
3 I There are well over 100 primitive built-in functions implemented
in machine language as part of the AMBIT/L interpreter. Some of these are
I private to be used by system programs only. To an AMBIT/L programmer

most of the primitive functions can be called as built-in functions. In
- addition, some built~-in functions are written in AMRIT/L and defined in
-~ the environment. This distinction will not be made in the following

descriptions.

LA
(]
1t

The built-in functions of AMBIT/L can be categorized into classes

as follows:

] a) Arithmetic Computation
E - ADD add two numbers
1 ADDI add 1 to a number
-- SUB subtract one number from another
.. SUBl subtract 1 from a number
i) NEG negate @ number (i.e., change its sign)
- ABS yield absolute value of a number
) MUL multiply two numbers
o SQ square a number
: S © DVQ divide yielding quotient
- DVR divide yielding remainder
.- DVQR divide yielding quotient and remainder
.- MAX yield maximum of two numbers
. MIN yield minimum of two numbers
- b) Arithmetic Predicates
- EQO is a number equal to 0?
. NEO is a nuiaber not equal to 07?
- LTO is @ number less than 0?
i LEO is a number less than or equal to 0?
I E-1

- FLETURTIINITRY RGO SRR T ERI N I I TR T e A
Lol 2o SUATIOL, m e g T AR SREE IR TP TR A T | U S AT Y S BTN T FLRLETRART. IV 0T I LT T oo TR

TG

F P Tt v

Built-in Functions

TR TIF R
. """"“‘“"""‘n""‘V”"‘memm n 1
3 4%

_ I GTO is a number greater than 0
GEO is a number greater than or eqial to 0?
E : EQ is one number equal to another?
= I NE is one number not equal to another? : a
n LT is one number less than another? §
3 . LE is one number less than or equal to another?
GT is one number greater than another?
- GE is one number greater than or equal to another? ' ‘
i c) Logical Computation)
. A yield logical AND
N OR yield logical inclusive - OR E
XOR yield logical exclusive - OR
NOT yield logical NOT
) LSHIFT logical shift
T d) Membership Predicates
3 g B TQ are the arguments equal?
: NE are the arguments not equal?
- EQNUL is the argument equal to the NULL CELL?
S SGN is the argument either the BASIC SYMBOL %+ or

o the BASIC SYMBOL %~ (i.e., an arithmetic sign)?

LETTER is the argument a BASIC SYMBOL which represenis
one of the 26 upper case letters?

- DIGIT is the argument a BASIC SYMBOL which represents one
of the ten decimal digits?

ALPHNUM is the argument a BASIC SYMBOL which represents
either an upper case letter or a decimal digit?

L ATy e et W
[}

o

: PRINT.CHAR is the argument a BASIC SYMBOL which reprcsents
f - a printing character? bk
I BEFORE is one character strictly earlier in the ASCII collating
E— sequence than another?

I

et e SNV .

AT R O

L
.

[I T)
s »

+

[A)
.

[2TV
[

-

[E

!.\4 n,‘

e I iy =g ey

e)

Built-in Functions

AFTER is one character strictly later in the ASCII
collating sequence than another?

MEMBER is the first argument tiic came as any other
argument?

List and Structure Processing

LAST yield the last CELL of a list
LENGTH yield the length of a list
CYCLE.LIST is the argument a CELL which heads a cyclic list?

CYCLE.STRUCT is the argument a structure which includes at
least one cycle?

COMPARE.CELL compare two arguments for equality or for
whether they are equivalent CELLs

COMPARE.LIST compare two arguments for equality or for
whether they are CELLs which head equivalent
lists

COMPARE.STRUCT compare two arguments for whether they are
equivalent structures

CAT catenate (or concatenate) two lists
COPY.CELL copy a CELL or a terminal node
COPY.LIST copy a list or a terminal node
COPY.STRUCT copy a structure

Free Storage Management

GCOL invoke garbage collection of free storage
FLTH update FREE.CT with the free storage length
FREE.CELL free a CELL

FREE.LIST free the CZLLs of a list

FREE.3TRUCT free the CELLs of a structure

i

e

J

EUNINE BTV NIEE F T R DR T L L e ki e el
A R b Lo

s bt 3 (LU W i M

By

oed At]

1

2RI e ioe g o AAEE S

Built-in Functions

g) Type Transfers
TRI transfer to an INTEGER
TRR transfer to a REAL
TRS transfer to a STRING
TKRT transfer to a TOKEN
TRD transfer to the display
h) Miscellaneous Functions
LENGTH yield an integer which indicates the length
of the argument
NEXTB yield the next BASIC SYMBOL
PREVB yield the previous BASIC SYMBOL
RANDOM yield a pseudo-random number
PJOB yield the job number
RUNTIME yield the running time in KCS
USER.BREAK causc a user break into the DAMBIT/L debugger
AMBIT .EXIT exit and terminate execution

The various

built-in functions will now be presented by classes.

Most functions detect error conditions which lead to error traps. At present.
an error trap causes the AMBIT/L System to type a message on the terminal
and then enter the DAMBIT/L debugging system (unless it is considered to

be "fatal"). In the

future the "almost fatal" traps will be implemented as

actual traps where a function call is performed so the programmer may

substitute his owr recovery procedures. Such a trap facility now exists only

for the input/output built-in functions.

.~r\~}\:~ 13

frfacae

g b

[TRV YTIPv

CURDWTONI RV ¥4 SO, VISRt

b et Ly AL

i wd G wur At o bl il

AL o AP) e W a0 Wi e

0 T 9 DAL A b2 4

EARRD o bty

LSRR o R Y

Ot Y s e BRSSO

[O

et e

W Sy 7o

YO

Built-in Functions

Arithmetic Computation

All of these functions may be called with either INTEGER or REAL
arguments, except for DVR and DVQR which are defined only for INTEGERs.
If a function has two arguments their types must agree; otherwise, an
error trap occurs. An error trap also occurs if the type of an argument is
neither INTEGER nor REAL., Results of these functions are either of type
INTEGER or REAL, according to the given arguments.

If a computation involving REALs produces an overflow condition,
an error trap occurs. This problen does not arise with INTEGERs, since
(in AMBIT/L) an INTEGER has practically urlimited precision.

An attempt to divide by zero causes an error trap to occur.
None of these functions can FAIL.

ADD or ADD.I or ADD.R

Use: add two numbers

Arguments:
#1: an INTEGER or REAL representing the first addend

#2: an INTEGER or REAT, (same type as the first argument)
representing the second addend

Results: %#1: the INTEGER or RCAL (same type as the arguments)
which represents the sum of the two addends

The name ADD.I is available as a r..nemonic for adding

INTEGERs, and the name ADD.R is available as a mnemonic
for adding REALs; all three names invoke the same function.

£-5 79

LIRS vmp s o
i Eoad

LR A RA220 NS0 €Ll a0 SRR 2 LI L a s o 154 e b b

ot oot A A1 Ve g

oy

il ot

d $al Gaunere,

SRR A R Ry PR TN ARV AR S TSRS T DR SR IS S GRS O I TR S L0k T L AR T TA NG

Built-in Functions

Use: add 1 to a number

SRR LR

Arguments:

$#1: an INTEGER or REAL aj

I
|
| ADDI or ADI
I
]
I

: Results: #1: the INTEGER or REAL (same tyoe as the argument) which
‘ represents the number resulting from adding 1 or 1.0 to

the number represented by the argument

SUB or SUB.I or SUB.R

9 3 Use: subtract one number from another

Arguments:

#1: an INTEGER or REAL representing the minuend

#2: an INTEGER or REAL (same type as the first argument)
representing the subtrahend

Results: #1: the INTEGER or REAL (same type as the arguments)
which represents the difference of the minuend minus .

the subtrahend ’
Notes: The name SUB.I is available as a mnemonic for subtracting
INTEGERs, and the nam: SUB.R is available as a mnemonic $

for subtracting REALs; ail three names invoke the same function.

ot S L AR Vbt stk o sas bams 4
{

P 4 P e ALt Al AN LA A LA TR 2 20k

E-6 80

H Earact 2y - - o oo
{ S T s oo € o p o o T S S o o

e e

Y.L

Built-in Functions

oA

T
3 - SUBI or SBl
L ! Use: subtract 1 from a number %
L, % L E .
= Arguments:
T #1: anINTEGER or REAL i
E . }
3 .o Results: #1: the INTEGER or REAL (same type as the argument)
L - which represents the number resulting from
e subtracting 1 or 1.0 from the number represented by
. the argument
.
3 NEG or NEGATE or NEG.I or NEG.R
3 2 Use: negate a number (i.e., change its sign)
A
E: - Arguments: ,
.- #1: an INTEGER or RFAL i
E .. Results: #1: the INTEGER or REAL (same type as the argument) !
: £ which represents the negation of the number ‘
£ 5 represented by the argument
' - Notes; The name NEG.I is available as a mnemonic for negating
£ an INTEGER, and the name NEG.R is available as a mnemonic
E ' for negating a REAL; all four names invoke the same function.
I ABS or ABSOLUTE
g : I Use: yield absolute value of a number
L
, I Arguments:
.3 #1: an INTEGER or REAT.

kw«a SreaiRass temma s

L . . .
L4 AN T T
. wnwy;r‘sﬂmmm%ﬂm
oy X
13
A
&

S e,

3
H

AR AR, I S LT TS T ST I T T T T

Built-in Functions

Results: #1: the INTEGER or REAL (same type as the argument)
which represents the absolute value (or magnitude)
of the number represented by the argument

MUL or MUL.I or MUL.R

use: multiply tw~ numbers

Arguments:
#1: an INTEGER or REAL representing the multiplicand

#2: an INTEGER or REAL (same type as the first
argument) representing the mult:plier

Results: #1: the INTEGER or REAL (same type as the arguments)
which represents thie product of the multiplicand times
the multiplier

Notes: The name MUL,I is available as a mnemonic for multiplying
INTEGERs, and the name MUL.R is available as a mnemonic
for multiplying REALs; all! - hree names invoke the same

functicn.
SQ
Use: £quare a number
Arguments:

#1: an INTEGER or REAL

Results: #1: the INTEGER or REAL (same type as the argumert)
which represent: the square of the number represented

by the argument

E-8

[T TR Trew A

N a8

I e

PREL

I R, VO TR C PO

Lo gy G e Bt gl

LA Gk

PP TS

s S S g

toan Zancerehe,

PPN

N
-
3
N
1
t
«

it o o S Zaa i Vo ks i B e MOt i s s o TR Lo oo Lot T G MU TR L ,_@-»rurwg..\,v,..,r,,..n.:_.,v.m.p—ww,ma
:

[,
47

Built-in Functions

DvQ

RIALIN S S WSO K ooty Yol s

Use: divide yielding quotient

Arguments:
#1: an INTEGER or RIAL representing the dividend

#2: an INTEGER or REAL {same type as the first
argument) representing the divisor

Results: #1: the INTEGER or REAL (same type as the arguments)
which represents the quotient resulting ‘rom the
division of the dividend divided by th: divisor

DVR
b Use: divide yieiding remainder
- Arguments:

- #1: an INTEGER representing the cividend
#2: an INTEGER representing the divisor
Results: #1: the INTEGER which represents the remainder

resulting from the division of the Jdividend divided
by the divisor

I. DVOR
Use: divide yielding quoiient and remainder
T
4
Argumenis:
T #1: an INTEGER representing the dividend
. E-9 43

T ——— e re———— e e

Built-in Functions
#2: an INTEGER representing the divisor

VIR

Results: #1: the INTEGER which represents the quotient resulting
from the division of the dividend divided by the divisor

| Gy

i i #2: the INTEGER which represents the remainder
resulting from the division
: MAX

Use: yield maximum of two numbers

Arguments:

; #1: an INTEGER or REAL
#2: an INTEGER or REAL (same type as the first arqument)

Results: #1: the INTEGER or REAL (same type as the arguments)
which represents the maximum of the numbers

represented by the two arguments

\. ,
M.

o

3 Use: yield min:mum of two numbers
B Avguments:

i #1: an INTIGER or REAL

#2: an INTECER or RFAL (same type as the first
argument)

. Results: #l: the INTEGER or REAL (sam¢ ;e as the arguments)
- which represents the minimum of the numbers

representad by the two arguments

LR AL MR AL el

T T R PP TR

I
]
I

]
v

|
f

Arithmetic Predicates

Built-in Functions

These functions may be called with either INTEGER or REAL
arguments. If a function has two arguments their types must agree;
otherwise an error trap occurs. An error trap also occurs if the type
of an argument is neither INTEGER nor REAL.

If the arithmetic predicate is TRUE the function SUCCEEDS;
if it is FALSE the ionction FAILS., These functions have no results.

Pirst, the arithuietic predicates with one argument are

presented:

Function Name (s)

EQO
NEO
LTO or ISNEG or IS,NEG
LEO
GTO or ISPOS or 13, POS
GEO

Condition for SUCCESS

argument equal to 0

argument not equal to 0
argument less than 0

argument less than or equal to 0
argument greater . .an 0
argument greater than or equal
to 0

ey

PRI

TERETIRT LAY

P AL S 8 A bl $ s A ML S bk L SR LR A L

o WY AV A ‘qm‘% :
,
H

Rl B T T LT

P T of e W
UL Ar g,

e ¢

oy dmoeerg

Built-in Functions

Next, the arithmetic predicates with two arguments are presented.

Each one is a comparison of the first argument with the second one

(in that order).

Function Namne

EQ*
NE*
LT
LE
GT
GE

Condition for SUCCESS

_equal

not equal

Jless than

Jess than or equal
greater than

greater than or gqual

*Although EQ and NE may be used to compare the equality of two
INTEGERs o RTALs, they are predicates which may accept any data nodes

as argumen

) they are also classified as membarship predicates.

HE

RS ««m?m%mfm{-T:r oo T """"1
Built-in Functions {

i

¢

i
/7
A

" b0 vang

Logical Computation ;

|

3 These functions operate on INTEGERs which represent 36-bit

R words in the PDP-10 implementation of AMBIT/L. Thus these functions :
b are machine-dependent and implementation-dependent. An AMBIT/L i
-- INTEGER is represented in the standard two's complement form which the

1 PDP-10 machine structure expects. Thus those INTEGERs which can

.. represent 36-bit words have values between —235 and 235 -1. If an

INTEGER whose value is outside of this range and which is meant to

represent a 36-bit word is given as argument to any logical computation

func-ion, the function treats that argument as -235.

AN Rt 0w Nl a8 a8

el ul

£ AND .

Use: yvield logical AND L
Arguments:

#1;: an INTEGER representing a 36-bit word
#2: an INTEGER representing a 36-bit word
Results: #1: the INTEGER representing the 36-bit word

which is the bit-by-bit logical AND of the 36-bit
words represented by the arguments

E-13

T L TS LT S TSI 1o AR G R e B B AR SR I T TR ::1
3
» 3

Y

Built-in Functions

|
;
’/i
14
]
3
3
OR g
, 5
’!’ Use: vield logical inclusive - OR :
é~ 4
3 ~ Arguments: E
3 . $1: an INTEGER representing a 36-bit word
a .. #2: «n INTEGER representing a 36-bit word :
?) Results: #1: the INTEGER representing the 36-bit word
, . which is the bit-by-bit logical inclusive-OR
1 i of the 36-bit words represented by the arguments]
> 3
.. XOR ;
3 . Use: yield logical exclusive - OR
, Arguments: 2
e #1: an INTEGER representing a 36~bit word f
- #2: an INTEGER representing a 36-bit word
f - Results: #1;: the INTEGER representing the 36-bit word ’
Pl which is the bit-Ly-bit logical exclusive - OR :
.. cf the 36-bit words represented by the arguments é
¥ NOT
25 Use: yield logica: NOT]
2 A 4 Arguments: %
E E I #1: an INTEGLER representing a 36-bit word %i
- L8 %
E-14 5

Ml Sl T d LNk R A T

TR T T

BT L e u-wmﬁm

Results: #1:

Built-in Functions

the INTEGER representing the 36-bit ~vord
which is the bit-by-bit logical NOT (or one's
complement) of the 36-bit word represented
by the argument

LSHIFT

Use: logical shift

Arguments:
#1: an INTEGER representing a 36-bit word
#2: an INTEGER representing a shift count

Results: #1:

the iINTEGER representing the 36-bit word which
results from performing a logical shift of the 36-bit
word represanted by the first argument by the number
of bit positions indicated by the value of *he s2cond
argument; if the second argument is greater than 0

a left shift is done; if the second argument is less
than 0 a right shift is done; any bits "dropping out
of either end" are lost

QAL AP Bttt <

ARET TR R R TR R TR T A
- -

[HE et A i S Sl b e ST VS RS S S) LSl TSl R el 23 Yty

Buiit-in Functions

Membership Predicates

Thesa functions determine whether a first argument is a
member of . of data nodes. That set may be fixed or it may
depend upon other arguments; the set may have only one member.
- 1f the predicate is TRUE the function SUCCEEDS; if it is FALSE the
- function FAILS. These functions have no results.

Q
- ‘ Use: are the arguments equal?

.- Arguments:

#1

any data node

#2

any data node

Y}

Use: are the arguments not equal?

Arquments: ;
$) i.nv data node

#2: any data node

EQNUL
- Use: is the argument equal to the NULL CELL?
3 J. Arguments:
¥ #1: any data node

—

E-16 90

i
§

H

(e b St L ARG A S

er ™
DN

b il

T

Use: is the argument either the BASIC SYMBOL %+ or
the BASIC SYMBOL %- (i.e., an arithmetic sign)?

Arguments:
#1: any data node

LETTER

Use: is the argument a BASIC SYMBOL which represents
one of the 26 upper case letters?

Arguments:
#1: any data node

DIGIT

Use: is the argument a BASIC SYMBOL which represerts
one of the ten decimal digits ?

Arguments:

#1: any data node

ALPHNUM or ALFNUM

Use: is the argument s BASIC SYMBOL which represents

either an upper case letter or a decimal digit (i.e., an

alphanumeric character) ?

Arguments:
#1: any data node

Built-in Functions

fadans 2t3dnze £t Praarahbl

P I

LQ

MY

CnthPlas em e n a2 h P b o n SESAAN L A s Al Al Surcia M L 020000 B4 ¥

oo 1k 2ud rawhS AV DU AT S Nata

L4 a Ui

ARV PSR, USSP Y PRI NPT N WO T s

PRI

it

L‘mm“u‘w .

paae et ig it d g

SRR SRR B o AR TR TR e e - TR S e e R S T I S SRR LT R AT R A Y

Built-in Functions

PRINT.CHAR

Use:

Arguments:

BEFORE

Use:

Arguments:

AYrTER

Use:

Arguments:

is the argument a BASIC SYMBOL which represents a
printing character (i.e., one whose ASCII octal code is
between 40 and 137 inclusive; note that the character
SPACE is included) ?

#1: any data node

is the character represented by the first argument before
(strictly earlier) in the ASCII collat.ng sequence than the
character represented by the second argument?

#1: a BASIC SYMBOL which represents an
ASCII character

#2: a BASIC SYMBOL which represents an
ASCII character

is the character represented by the first argument after
(strictly later) in the ASCII collating sequence than the
character represented by the second argument?

#1: a BASIC SYMBOL whi :h 1epresents an ASCII
character

$2: a BASIC SYMBOL which represents an ASCII

ch-. -1

E-18

k!
:;
1
#
X
:
§
3
g
3
4
3
X
F
3
3
F
Z
%
=
=
Ed
3
3
3
£
£
3

st A K ab by vl b

P P WA, R T PR N R Xy Tl g WA ST *

b
Built-in Functions
3 .- MEMBER or ONEOF
. Use: is the first argument the same as any one of

the other arguments?

1 e Arguments:
#1: any data node

Others: this function can accept any number of other

ol T R

arguments as any data nodes

Gy S8

Notes: This function FAILS if only one argument is given.

E-19

:f
\:";

PR STSTr W AT T

Built-in Functions

List and Structure Processing

Within this category are various types of functions: those
which compute some result based on the given data, predicates fcr
cycle tec'.ing, predicates for determining equivalence of structures,
and functions used for transforming and copying structures. The
COMPARE.CELL and COPY.CELL functions are defined for logical
completeness, but they are of minor utility.

LAST

Use: yield the last CELL of a (non-cyclic) list

Arguments:
#1: a CELL

Results: #1: the CELL which points RIGHT to the NULL
CELL and which is accessible by following

RIGHT links from the argument

Notes: If the argument is the NULL CELL it is returned as
the result. If the list is cyclic an error trap occurs.

E-20

R e L Lt e i “:1
3

sritd sa s BiLiMY sl

[T PRI T R IR YL)

-~
E:

Built~-in Functions

LENGTH*
Use: yield the length of & (non-cyclic) list
Arguments:

#£1: a CELL*
Results: #1: the INTEGER which represents the number of
CELLs in the given list other than the NULL CELL;

this is 0 when the NULL CELL is given as argument

Notes: If the list is cyclic an error trap occurs.

CYCLE.LIST or CYCLST

Use: is the argument a CELL which heads a cyc::c 1ist?

Arguments:
#1: any data node

Results: none

Notes: This predicate FAILs when its argumen* is not a CELL,
or if its argument is th.: X771, C* 7, or if the NULL CELL
is accessible by following RIGHT links from the argument.
This function SUCCEEDS if its argument is a CELL which
heads a list which has a cyvcle. A list has a cycle if there
is a CELL (X) other than the NULL CELL accessible from
the initial CELL by following RIGHT links such that there
is a (non-null) sequence of RIGHT links leaving X which
leads back to X.

+The LENGTH function may also be called with an argument of an
INTEGER, a STRING, or a TOKEN. The complete description of

Y e ekt o el A A

Ay

i B o ok e i Lt Lo e e

L g o s £t

R

this function is given under "miscellaneous functions,"
g
L-21 95

W e T

Aoty

|

33
i
|

R Y PR E A T TR T e L D M e R LR e an LN T e s Tt e S TR v

Built-in Functions

CYCLE.STRUCT or CYCSTR

Use:

Arguments:

Results:

Notes:

is the argument a structure which includes at least
one cycle?

#1: any data node
none

This predicate FAILs if its argument is not a CELL, or if
its argument is the NULL CELL, or if all "walks" through
CELLs beginning at the argument and following RIGHT and/or
DOWN links lead to a terminal node. A terminal node is
either the NULL CELL or any data node other than a CELL.
This function SUCCEEDS if its argument is a CELL which
heads a structure which has a cycle. A structure has a
cycle if there is a CELL (X) other than the NULL CELL
accessible from the initial CELL by following RIGHT and/or
DOWN links through CELLs su<h that there is a (non-null)
sequence of RIGHT and/or DOWN links leaving X which
leads back to X via CELLs.

COMPARE.CELL or CMPCEL

Use;

Arguments:

Results:

compare two arguments for equality or for whether they
are equivalent CELLs

#1: any data node

#2: any data node

none

E-22

36

TR AR T e AP LTI

4.
RATAN) O\ uz.ﬁ
X! > , Aard LT kS 21N WRISORILTINREY SN AR I e

st st ot B RN D O A WA AL i A i AN LS R A M A AP« &l e NS e A St

S

A M

e et el

DV L e a RO M

TR Sl rh b be .
st Live Lty .

O L v RTINS L B A W ST e s e T s Y R TAT S R E

TR B TR s e 2P s R

Built-in Functions

. R
R

Notes: This predicate SUCCEEDs if its two arguments are the
same or if they are equivalent CELLs; otherwise it FAILs.
Two CELLs are equivalent if they both point DOWN to

- the same node and if they both point RIGHT to the same

an node.

SRR A O S LR L O SO R 4 il
R P PR
e

3
-

Lo AR bk o WL Feoa bacrrs WESIGRET S 1ot 8k Nre Nt s i

LR R AN b 4

COMPARE. LIST or CMPLST*

3

: Use: compare two arguments for equality or for whether they) %
{ are CELLs which head equ..alent (non-cyclic) lists ¥
) Arguments:

T #1: any data node :

#2: any data node

L arr e eats Al Ui

Results: none

_ Notes: This predicate SUCCEEDs if its two arguments are the
g B same or if they are CELLs which head equivalent lists;
otherwise it FAILs. Twec lists are equivalent if they are
the same, or if the first CELL (X) of one list and the first
T CELL (Y) of the other list both point DOWN to the same node
R and X points RIGHT to a list which is equivalent to the one
S to which Y points by its RIGHT link. If the arguments are
two different CELLs they must each head a list with no cycles;
otherwise an error trap occurs.

VSN Lk old I8 B Comende A b L 3 e R Kbt B0 £ kR ekt o) I

p e o SRR

g *This fuaction has another synonym which is considered obsolete:
: 'COMPARLLIST'.

RN Y
’

- E-23

Aedey N R A e R AR AR A AR SR Y SRR

ey

Built-in Functions

&
-

>~

%
S
(e
A
E

iy
51 I

COMPARE.STRUCT or CMPSTR* i}

Use: compare two arguments for whether they are equivalent

SRR AL R | L i 8 b L el e
& -

(non-cyclic) structures

g -- Arguments:
E . #1: any data node i

b

.. #2: any data node

Results: none RE

Notes: This predicate SUCCEEDs if its arguments are equivalent
structures; otherwise it FAILs. Two structures are

3 equivalent if they are the same, or if each is headed by

3 T a CELL such that the header CELL (X) of one structure and

: the header CELL (Y) of the other structure point DOWN to i

-. two equivalent structures and X points RIGHT to a structure

which is equivalent to the one to which Y points by its

RIGHT link. If the arguments are two different CELLs they

must each head a structure with no cycles; otherwise an

crantie B Sl

LA NG Lo 01 A it 8 20 00 00 o N 0 e il M) o' WU it B A0

error trap occurs.

L

I

e)

i, 8 0 w0 36 Y

PRl AL

‘ 2 R it i .
Lk i oy T L N PP,
[l
v
N L B

*This function has two other synonyms which are considered obsolete:
I 'COMPARESTRUCTURE' and 'COMPARE .STRUCTURE'.
v E-24

g T - . peyey R " 2 T
TR L Ay i e BT o v ey e o

R IS IR E ST S e s L L T T

&
g Built-in Functions E
; 31
E o CAT
3 Use: catenate (or concatenate) two lists
™ Arguments:
- #1: aCELL 5
E L g §
- #2: a CELL

Results: #1: the CELL which heads the list produced by
catenating the list headed by the first argument
to the list headed by the second argument; this

b bl

.
-
TLEN

nqux"ﬂ"»“ i

| function properly handles empty lists
Notes: If the list headed by the first argument is cyclic an
- error trap occurs. This function may create a cyclic
list if its two arguments are already part of the same
.- list. The AMBIT/L function definition presented below and on i
the next page is equivalent to the built-in CAT function. 3
P CATCA B) C :
- BEGIN i
£ L. RULE g
b | (50930) i
3
s 4o=ep +e=~p §
1 1 1 1 11 3
1 B1 141 1 ¢c1 i
1 1 1 1 1 1 2
t==-t bomat toot %
1 1 H E
1 1 H E
1 1/=======/ ;
1 iH
v vV -3
4===C +-=C! *
1 1 1 1
1%x%x] 1 1 gj
11 1 1 i3
et Rt gg
S/RET F/NEXT: i
99 1

i

Y e TRV Ui Laspilie o b ubdl e aiaid d bbbl e bEli Y faaard s AARED H Mt L A A GRS A A T TR A A LML S 7 2 Pt R i AL Pl LU AN A S bt £0u Tt iug el Y rdunitl ariit i b vt Dt th it Lt L L _,é,.:n.,..‘iq?.ésﬁ
W 7 i - v d Ve Ok ¥ " M

e e .. - s - D]

Built-in Functions

B R M

Q vt vt o $ Ry vt ot o0 - oot vt e P
') ' '] Q '
3 ’ 13 t ' @ ottt Dy '
¥ ‘ rmmN) ' ' '
V,‘. o 1] > ot - P & oo e
5 I A
X 1] n
A 1] 1]
, ““ ““
Qo vt n4 wt § n e ek J Dy =t ot oo & oot et o P
' [NEDO |] '] !
' Q t rtotmiom D ¢ ' (3] ' ' '
' ' | ¢] t NN ' '
+ ot et - ot et e ot ot e b 1l * vt ot e P
1] A
¢ - 1])
5 e] N ot ot ot ot ot ot o N
iy mm it '
q 1] (2, oot ot ot &
O oot ot o $ O vt vt o ¢ 2 Q¢ vt vt s i} - vt v ot b ’ [1]
' t '] S] ’ N0 ' [2 f
' a I oot oot oot e Dy %* ' {2, t <) oottt D N M i
~]]] * (] ~ (] [} ']] 1] "
rN ot oot v ¢ et - - fee nfU * ot vt o @ ot ¢ ot oot e foe
<
- [[y
23 3 2O 3
[~ -

R Y N o

By

R R R T o o e e T T L I O R T P e T S o o e

‘-
L I Built-in Functions
3 r
3 ‘L A
3 Y
B COPY.CELL or CPYCEL ;
1 i
Use: copy a CELL or a terminal node I
, - Arguments: :
b - g
b #1: any data node ;
- - Results: #1: the data node which was given as argument if 3
Ef - it is not a CELL or if it is the NULL CELL;
: § . otherwise an unused CELL is obtained, its DOWN
i and RIGHT links are made to point to the destinations
) of the DOWN and RIGHT links of the argument, and
it is returned a3s the result
3
' COPY.LIST or CPYLST*
Use: copy a (non-cyclic) list or a terminal node
1 Arguments:
é . #1: any data node
i

Results: #1: the data node which was given as arqument if it is
not a CELL or if it is the NULL CELL; otherwise a
copy of the given list is returned after being constructed

\; - by linking together unused CELLs and making their

% } - DOWN pointers point to the destinations of the DOWN
g - links of the corresponding CELLs of the argument

) Notes: If the argument is a cyclic list an error trap occurs.

VAot D B AN R i ¥4 WD T i 1 TES M98 s BRI ML AN L 010 AL 800t AT oo i e ol Y08 R L S A AL LS AR L b

*This function has another synonym which is considered obsolete:

‘COPYLIST".

v]_OIQ

W bsr 90
PITRT PRt PR P)

r

S CREETINGEL WA IERROSRRIC A TR S LA TR RETIMAS UL TN T e TR IS P A e S A S IR TR PRI ST LA L L LT L AU MR

Ruilt-in Functions ;
- COPY.STRUCT or CPYSTR]
- E
- Use: copy a (non-cyclic) structure g
% %
- - Arguments: %
#1: any data node 3}
Results: #1: a copy of the argument constructed as follows: g
if the argument is not a CELL or if it is the NULL 3
CELL it is returned; otherwise an unused CELL is
obtained, its DOWN link is made to point to a copy

of the structure at the destination of the argument's
DOWN link, its RIGHT link is made to point to a
copy of the structure at the destination of the
argument's RIGHT link, and it is returned

Notes: If the argument is a structure which includes a cycle, an

error trap occurs. If the given structure contains any CELL
which is pointed to by more than one other CELL of that
structure some CELLs will be copied more than once.

By ARSI 0 L e,

Ll

Caieat L ity

et Egiomay o Fasmamoace. e . .

gt ot S R A N R e b et R AL S i A Ll davay v ks XTI TTIORY., o oTRETINIE S Py L) B dtucaliishiiadita
y ' P :s/f.«/ v ¥ Pp——— T il ks
@, " — - [
ﬂ,.
A [& 3 R R
K] [}
K] *]
¥ [*]
ot oy
,
N '
; o .
¥ (=} [}
i o '
5 ot $) ot vt e 4 e e R I D vt vy o &
: (] [] [}] [] [}
4 m 4 Y ot et oD) [y t] *]
3] 1]] [} * []
[9 b ot ot e ey oy P b ot vt e P
, g o 4 A
! To* ' '
e
3 = ' ‘ <3
i =3 m Q ot ot L ot ot =0 b RN R ,
[]]]]] [} (Lol |
mnu_, 1 § omt ont ot vt ot ot o oot emt wet et vt ool vt oD | P ow ot et e D | [y¢] t]
) 1]) [] [} [}
“m & ot e b et ot o P L I I ,‘
A iy
¢ .
- o . A,
- y .
4 .w [] F
! D ot ot ot) [B]
: [1 ' ' ' 1 o
b M 1 * [}] [} *] ~N
) 2 T S ' to*)
13 Q * == P] L IR I [#]
p 2 t “ :
! ' ' '
¢ @ 1 . '
i o 1 (]]
m m L =t o e e et ' (D vt ot o~ b et oty _
. [] []])] [} v [} [}
¥ 3 t I ot oot D) [y}] .o] 1] | oot oD | ™]
b S ' ' ' ¢ e ‘ \ 0 | 1
¥ s ¢ ot~ + et - L0 ' * oo ¢ ot ot P
4 ke A A - ' A
B) = ' ' i
ﬂ,_ [RN R IS = ' '
@ 5 “ " 2 “ “
T "o, € vt =t ' - ’ t Q o~ b
W, £~] ' $ ~]] [} (]
% ~ D 1 P 3 $ '] * ¢
i 2D ' ' 0 ' 1 [| i
. Q. o * vt m] [] & o oo P j
¢ g K A A]] A
4 3 "0 Q ' ' 1
g 8 - 1N vt N 5 ' H H
i g 2 ' ' o ' ' '
ﬁ m. @) [R . ' 'muw [& B LD vt vt ot € ot ot o bl ot v it P
N)] ! [) 4) [) [}]]
W_ m O ' P oo = ’ I vt oot g e D) | oo DY | oot oo D | o™]
) 1] [) [] [} [] [} [} [})
,J P e et ed & vt P b ot oot oy P & oot P & o P
:
4
s
mm.m { Tlls Y:!..La_ ‘ ﬂ » " " 1] " ’ -. ’ '

I 5 . 4 .
by B.ﬁ&,n,m, " Bl € b ity e L i bt g
' i
|
m i I I

Pt i SRR b Vs by S o A A il ATy ey g gt BNty st sl

=3

E
k.
=
>

Built-in Functions

Free Storage Management

The AMBIT/L prc jrammer normally does not have to be conce vead
with the management of free storage. The system automatically invokes
the Garbage Collector when necess _ry to reclaim space rescurces in the
implementatic: which are no longer in use. un the PDP-10 impiementation
of AMBIT/L fr—-- storage is managed as individval 36-bit storage words.
Such space i ! ken up Oy JELLs, TOKENs, 3STRINGs, and those INTEGERs
whose values ~+ ~utcide o. t*. range 0 to +32767; INTEGERs whose values
are within that range tak« i 1¥. iree storace space.

Fach CEL. and each separately created RFAL, LABEL, or FUNCTION
node o~cupies one free storage word. Each TOKEN occupies one word
for each constituent in its subname plus two words of overhead. Each
STRING occupies one woru for each BASIC SYMBOL in its name plus two
words of overhead. Each separately created INTEGER whose value is

between —2"5 +1 and -1 or between 32768 and 235 -1 occupies one word.

Each INTEGER whose value is less than --235

-1 is called a "long inteaer" in the PDP-10 implementation. Although

+1 or greater than
235
the AMBIT/L programmer cons:ders all INTEGERs as "atomic" nodes, each

long integer is internally represented as a list of INTEGERs interpreted as

34. If any arithmetic involves a long integer, then

a number with base 2
an undetermined amount of free storage may be used. An upper bound may
be defined, however, for each separately cieated long integer: for a given
integer take its absolute value and compute the number N of "digits” base

234 required to represent it; the long integer occupies at most 2N +1 words.

A fine~ upper bound may be determined by subtracting 1 word for each

ndigit" (in the representation of the long integer) which is less than 32768.
Since some of the internal long integer routines attempt to conserve space,
no lower bound on the number of words occupied by a long integer can be
given,

1t f g L d ALk

! S Mot ol e A S

L R bt e o g e dn kA

ML RS il A Do Al AL

2434 eha M A

i:
‘h#hin
MG A At s AP At A L8 S 28,20 AR ol s B2,

Built-in Functions

When the Garbage Collector is invcked it rings the BELL on the
user's terminal and then proceeds to make up a free storage list out of
those words in the free storage area which are not accessible by a
sequence of linvs beginning at a POINTER, STRING, or TOKEN. Thus
the Garbage Collector frees all CELLs which are not accessible and all
M words used to represent nodes of other types which are no longer referenced
= (e.g., a REAL). At present, the Garbage Collector makes no attempt to

merge separately created equivalent copies of REALs, IABELs, FUNCTIONSs,
- or INTEGERs.

-

; When garbage collection is complete the system PERM POINTER
'FREE.CT" is made to point DOWN to the INTEGER which represents the
. number of words of free storage available. Then, if that number is 0
an attempt is made to transfer control indirectly via the system PERM
- POINTER 'GCOL.CHOKE'; if that POINTER points DOWN to the NTTLL CELL
3 ’ an error trap occurs; otherwise an "indirect goto" is performed under the
. assumption that the programmer has set the DOWN link of GCOL,CHOKE
V R to point to a LABEL node corresponding to an appropriate place in his
program. Since this is a "goto" rather than a function call it may pop
the interpreter control stack in such a way that previously referenced structures

4
4
)
2
3
:
%
3
E4
1
3
i
i
:
k1
3
4
L
3
4
i
3:
3
b
g
1
3
i

. —— o 1
"

rm

A daddlewd L

are made available for garbage collection.

*
.
v

Although the Garbage Collector is automatically invoked when
needed, the AMBIT/L programmer is permitted to invoke a garbage collection
at any time by calling the GCOL built-in function.

Ao

ve 1f a garbage collection was invoked automatically, then after

.- FREE.CT is updated an attempt is made to call a trap furnction via the system
PERM POINTER ‘TRAP,GCOL'; if that POINTER points DOWN to the NULL
CELL no function call is made.

ok vy e 312 L 0 e A B L o

kgl

Note that the POINTER FREE.CT is not updated continuously. It
I is updated after each garbage collection, and also the programmer is

; Moo,
lad it d L bt A
) I%mﬂmmm&wwnmm R) T TR O MV R W v gt L e e
"

permitted to cali at any time the FLTH (for Free LengTH) built-in function
which updates FREE.CT.

o ‘H MM
A % Mo o ke L et YA A Ll

E‘31 -

e »
M AU A G) P
¥ 4 (lus e i Hud R

B

MR K P A5 ’M‘mﬁ
LA

PR

TS STV LTRSS S IS T ARIR CY TV SN, BTN 8, D i s

L g

By

§omd

i

e

52 M Lt A A NG R W s - i g by T e A nt i L S St 0 E SRS S IS

Built-in Functions

Garbage collect.on reclaims space taken up by several node types,
but most occupation of free storage is by CELLs. Since garbage collection
is custly, three built-in functions are available to the AMBIT/L programmer
for controlling the freeing of CELLs (only) either individually, in a list,
or in a structure. The use of these functions is optional; correct use can
produce significant savings. However, erroneous use can produce terribly
obscure bugs since these functions "blindly" return to the free storage
list whatever is given them as arguments. Any of these functions may be
called during (or just after) a garbage collection choke since none attempt
to get a free word. Furthermore, since these functions will accept
partially-freed as well as cyclic structures, the careful programmer can
cause the freeing of rather entangled structures.

The descriptions of the built-in functions associated with free
storage management are now presented.
GCOL
Use: invoke garbage collection of free storage

Arguments:

none
Results: none

Notes: The invocation of the Garbage Collector is normally automatic,
but this function provides the programmer with a method for
causing a garbage collection to occur. As usual, the system
PERM 'FREE.CT' is updated to point DOWN to an INTEGER
representing the number of words of free storage after garbage
collection. If that numker is 0 an attempt is made to transfer

v
167
E-32

i
1y

ot LB st 0 i Sl ek LA s sl NS ot AL e A a0 o

LTI prYwEer rerary

L it

e A i AR S S e 0 AL Y "

p
4
]
4
3
=
327
g
3
3
3
3
z
g
El
]
3
i
)

N AR b
" . . s

T P RS T T VA, P

IR 7 Y

49

R
. 24
-

L e IR e |

e

Built-in Functions

control indirectly via the system PERM POINTER
'GCOL.CHOKE'; if that POINTER points DOWN to the
NULL CELL an error trap occurs. If there is at least one
word of free storage after garbage collection, this function
SUCCEEDs. There is no way for it to FAIL.

FLTH

Use: update FREE.CT with the free storage length

Arguments:
none

Results: none
Notes: The system PERM POINTER ‘FREE.CT' is updated to point
DOWN to an INTEGER representing the number of words of

free storage. This function always SUCCEEDs. FREE.CT
is also updated after each garbage collection.

FREE.CELL or FRECEL*

Use: free a CELL

Arguments:
#1: any data node

. Results: none

Notes: If the argument is a CELL other than the NULL CELL it is
rendered free; otherwise, no action takes place. This
function always SUCCEEDs.

*This function has another synonym which is considered obsolete:
‘FREECELL".

14t

rlat etaMiesslindam 2 ot d wistn ootk

IR T TN

) T
12 MK b A Yt A A b sl S w S £

Tkt d A Sy o N S B

Sl Wil

ML b o a3

Nttt ST ol 1itd ok A

FlANL

- mem oA e, o

Built-in Punctions

E - FREE.LIST or FRELST*
: Use: free the CELLs of a list
Lo Arguments:
S #1: any data node
= Results: none

L A S IL W I P YT

Notes. If the argument is a CELL other than the NULL CELL,

i it and all non-NULL non-free CELLs accessible by
RIGHT links are rendered free. If an already free

i N ZELL is encountered the freeing stops; thus a cyclic
. list may be given as the argument. If the argument
 § is the NULL CELL or not a CELL no action takes place.
E This function always SUCCEEDSs.
E 3

E

I *This function has another synonym which is considered obsolete:

'"FRELLIST' .
r E-34 N -

. Fyy

- o e, o o .

PR RS S ALE T IR et s o PR S = T .-

3
3
i
?

SN \-, .

IEPLE TSN

TRAVALSVPA A L ST LS 3

AL AT,

FERVLLITS WS R A

oy e L L

i

Frafoh Nob g g N gt i PN gh byt A KD B B v 40 ey 3) e g ged

g b A B S 2

Vi EE ‘Skﬂ"ﬂhl o

!

Built-in Functions

e ALORNE
) . L by s

FREE.STRUCT or FRESTR*

£
3
1
b
i
£
=\
=i
{
;i
. i

- Use: free the CELLs of a structure

, - Arguments:
E #1: any data node
‘ N Results: none
e Notes: 1f the argument is a CELL other than the NULL CELL,
E ' : it and all non-NULL non-free CELLs accessible by
: o RIGHT and DOWN links through CELLs are rendered
E i - free. If an already free CELL is encountered it
Do stops that particular "walk" as if it were a terminal
g i . node; thus a cyclic structure may be given as the
] argument. If the argument is the NULL CELL or not
2 a CELL no action takes place. This function always
SUCCEEDs. g
13 j
] - i
3 2 3
1 :

*This function has another synonym which is considered obsolete:
e 'FREESTRUCTURE'.

-4

E-25 My

£l L LA TR

T

i O

2l

S
g
=
2
¥
2
<
g
;-
§
fodd
H

__
|

§

oy]

s — o TR R TR R ST AT TR TN TSRS G- Ty N L T
PR, BT T WP TN AT, TETY SRR AT T L - e AT SIS s R SR AT TN RIS s

N

Built-in Functions

Type Transfers

Type transfer or conversion functions permit the AMBIT/L
programmer to transform or convert an INTEGER, REAL, STRING, TOKEN,
or CELL (a "display") into either an INTEGER, REAL, STRING, TOKEN,
or CELL (display). Five functions are available which each accept one
of these five types of nodes and (potentially) yield a particular type
as follows:

Function Name Type of Result
TRI INTEGER
TRR REAL
TRS STRING
TRT TOKEN
TRD CELL (display)

Thus there are 25 t.ansformations which are individually described in
this section. For each of the five functions a description of five
transformations is presented according to the type of the given argument.
Several of these transformations have questionable utility, but all are
implemented for logical completeness. If a node of type BASIC SYMBOL,
MARK, IABEL, or FUNCTION is given as argument to a type transfer
function an error trap occurs. None of these functions FAIL; if some
error condition is detected by a function it causes an error trap to occur.

When a CELL is given as argument to these functions it is
interpreted as heading a list of terminal nodes. A terminal node is
either the NULL CELL or any data node other than a CELL. The TRD
function produces a list of terminal nodes as its result. These lists are
called “cisplays" since they represent che external form of subnames of
INTEGERs, REALs, STRINGs, and TOKENs disassembled into their
constituent parts. For exampla, if the TRD function is given the INTEGER
-62 as argument, it will produce as a result a "display” of that subname
as a list of three B,\SIC SYMBOLs: %- , %6 , and %2

Yy

e R —

o BRI A 1afy ¥ e >

AP St 22 T L DU 3 L a0 2t bty D 8RN 15 S N s Y i R 't

FENTY PR FIRRT LIPS ES) N VT T DR VLA TR 2 %

%
i

<
2
3
2
3
3
3
:

I Built-in Functions

T
S A SRR R
]

-~ Recall that a STRING has a subname whose constituent parts
- are BASIC SYMBOLs. Similerly, a TOKEN has a subname whose
constituent parts are any terminal nodes.

IRL

Use: transfer to an INTEGER

- Arguments:
.- #1: an INYEGER, REAL, STRING, TOKEN or CELL

Results: #1: five cases are described according to the type
of the argument:

a) INTEGER the argument is returned as the result

b) REAL the result is the INTEGER which
represents the integer part (including
sign) of the real number represented
by the argumeit; th. s a truncation of
the fractional part of the real number is

h performed

c) STRING the display of the given STRING is
derived and used as if it had been the
argument (see the description of the
TRD built-in function)

, . . . ,u
RPUNPC VTSN 120 AP W e e TS AW § 825 SE 4 wer S

- d) TOKEN the display of the given TOKEN is
derived and used as if it had been the
argument (see the description of the TRD

built-in function)

VR Rt P ,." VML R e o R IO« r e SRRt L
Pt il b ety v mvoneny

boae w\w(mwmw,w‘mwvmmm
&

g

TR T P v Je,

ey

CORE g S g s

AP Y it

e gy

AL R ST

Syntax:*

number

2

g

5

IS

Examples:

e)

CELL

Built-in Functions

the argument is interpreted to be a list of BASIC
SYMBOLs which represents a string of characters
which represents an integer according to the syntax
given below; although the syntax allows for a
fractional part and/or an exponent the result is the
INTEGER which represents the integer part (including
sign) of the number represented by the given string;
this same syntax of a number is allowed for an
argument to the TRR built~in function

SP [sgn sP! int [.] {dig} [exp] sP |
SP [sgn sP] {dig} [.] int [exp] sP |
E SP [sgn SP] int

dig {g¢:g}

+ | -

0] 1] 2|3}14]s5]6]7]8]|3s

{spACE | TAB}

-34 34E5

.34 .34E -5

+ 34. 34.ES56
3.4 3.4E+ S

*/n the BNF-like grammar used here underlined words are non-terminals;
a pair of square brackets encloses an optional constituent; a palr of curly
braces encloses a constituent which may be repeated any number of times

(including zero).

1t
E-38

e

U 1AL 0 Ak AN i

e il WK, o [Ll

S TR BRI AR RO LR A oy, RTINS 2 L AT AT L T e S RRREERRSTRIRI N S N pR LT T RS & s

i,

—— .

CYD EY T RNES

Built-in Functions

VSRR o
st s o SELEUMRTS

R -

Use: transfer to a REAL

Arguments:
#1: an INTEGER, REAL, STRING, TOKEN, or CELL

=3
%

Results: #1: five cases are described according to the type of
the argument:

$—i

a) INTEGER if the argument represents an integer whose
) magnitude is not larger than the largest
= 154 127
possible real (277" - 2

38 decimal digits preceding the decimal point) 3

. which has about

= then the result is the REAL which represents
- thet integer (possibly with rounding if its
ws magnitude is greater than 227); otherwise an

Lt b Bt

— error trap occurs
. b) REAL the argument is returned as the result
| c) SIRING the display of the given STRING is derived

and used as if it had been the argument
(see the description of the TRD built-in
function)

[N

- d) TOKEN the display of the given TOKEN is derived
and used as if it had been the argument (see
the description of the TRD built- in function)

B T T T e RV p—
L LERR ER NI, 1 F Rt ORRT .y "
Sl RN ity

M i 0ot W or 2 1

L}
a
[
L ”,. - e
o I VT TR TS .

-
&3
?
£
4
P
£
2
£
ke
ES
b3
£
3

- 4

o AL A

. RN o AT FTy R T ., Lyt
A e o, ik v d £ P T AR TN A IR A T b e

TR T LY S AR

S

Built-in Functions

the argument is interpreted to be a list

of BASIC SYMBOLs which represents a
string of characters which represents a
real according to the syntax given on the
following page; although the syntax allows
for highly precise numbers and/or just
integers the closest real is determined, and
the comresponding REAL is returned unless
its value is too large (i.e., its magnitude
is greater than 2154 - 2127) in which case
an error trap* occurs

*As a temporary measure this function FAILs if the value of the REAL
is too large; this "bump" in the design is to accommodate the simple
implementation of IAM.

113
E-40

o

Ao dedeA A AL

bl s Pl Bae e

il ity i e A e

SR bt b N G St bl

IR A TE LT

o b fh o b,

chiels adiad b e S P 2 VL A

e P b ¢ il
7

ol

AN PRSI e ANT EE aa Ee E s it SRR

- Built-in Functions

PYCRL I Y PN mw-rpf;f’wﬂ

' |

k]

o Syntax:* i

- 3

4

- number -+ SP [sgn 3P] int [.] {dig} [exr] sP |

SP [son SP] {dig} [.] int [exp] SP | ;

3

exp N E SP [sgn SP] int ;

int - dig {dig}

sgn <+ + | - é

dig + ol1lz213lalsiel7]slos ;

SP + {SPACE | TAB}

3 Examples: ~-34 34ES ﬁ

3 .34 .34E -5 :
3 +34. 34.E56

3.4 3.4E+ 5 ;

*In the BNF-like grammar used here underlined words are non-terminals;

a pair of square brackets encloses an optional constituent; & pair of curly
E - braces encloses a constituent which may be repeated any number of times
3 - (including zero) . 114

) E-41

Ty e e g ey e T et WO o o

fad Vo
P AR R L T T
1
’

3 = oL A e = 7 T
- 2 3 z .- R T mw G IATIIPOITAT: e+ STAT ARSI AITRIEINRIL Y DT e TBS e e Ao e = o R
T A TR ISRV AN e I RIS S e s 5 o o = SRS, BT

PRt .y

§
: % I Built-in Functions
z
Pl
Use: transfer to a STRING
== Argu: ents:
s -- #1: an INTEGER, REAL, STRING, TOKEN, or CELL :
3 .
1 Results: #1;: five cases are aescribed according to the type 3
.. of the argument: i
= a) INTEGER the display of the given INTEGER is
= - derived and used as if it had baen the 3
-- argument (see the description of the 3
. TRD built~-in function)
] b) REAL the display of the given REAL is derived g
3 o and used as if it had been the argument :
(see the description of the TRD built-in ;
S function) :
= . c) STRING the arqument is returned as the result
E d TOKEN the display of the given TOKEN is derived
eE - and used as if it had been the argument
; .- (see the description of the TRD built-in
1 . function)
& - e) CELL the argument is interpreted to be a (possibly
1 T nul.) list of BASIC SYMBOLs, and the
- STRING node is returred whose subname is
; - a pair of single quotes surrounding the
3 - catenation of the characters represented by
% . the BASIC SYMBOLs; if the argumeant is not
; i a (possibly null) list of BASIC SYMBOLs an 3
§] I error trap occurs HE
i3 {
3 I , i
o bR
5 " E-42 ¢J 3
oy i
: 3

N A R N o T e T T R S 5 i P N M B e sy o C i o 2 e o ST PR T e T L T G 1T RN LR e R A A T itk ae e R Lree s 1 ann i
P s P TENS i =5 = S R I
== E=t }

- - - e P IR

3 R SN

Built-in Functions

LR TP Y 3 «
ok ;

N o
LN Do A A s

Foe
Po- IRT
E

o Use: transfer to a TOKEN
] Arguments:
1 #1: an INTEGER, REAL, STRING, TOKEN, or CELL
i Results: #1: five cases are described according to the type of ?
- the argument: j
a) INTEGER the display of the given INTEGER is 2

derived and used as if it had been the
' argument (see the description of the
TRD built-in function)

b) REAL the display of the given REAL is derived
and used js if it had been the argument
escription of the TRD built-in

b 2 Shar e S ot d e

(see the

Sy B

function) '

LTI R AT

c) STRING the display of the given STRING is derived
and used as if it had been the argument
(see the description of the TRD built-in

function)
d) TOKEN the argument is returned as the result
e) CELL the argument is interpreted to be a (possibly

null) list of terminal nodes (i.e., data nodes
other than non-NT11L CELLs), and the TOKEN
noue is returned whose subname is a matching
pair of parentheses surrounding the sequence
of subnames of the given terminals

L e AN Al a1
Do A8 0 e sk . i AL L e A 20 Nt S e i ol S

E-43

A DA AR
Towwnnd

Results: #1;

a)
L 22
b}
) :’_ .
H
£ -
¢
P
% -
- 2

o gy SALS ST

Built-in Functions

. I TRD
. Use: transfer to the display
o
S
Arguments:

an INTEGER, REAL, STRiINGC, TOKEN, or CELL

five cases are described according to the type of

the argument:

INTEGER

REAL

STRING

the display of the given argument is returned
as &« list of BASIC SYMBOLs which constitutes
the canonicai subname of the INTEGER; the
canonical subname of an INTEGER is the
decimal repre:sentation without leading zeros
and with « leading minus sign if the integer
heing represented is negative

the display of the given argument is returned

as a list of BASIC SYMBOLs which constitutes
the canonicai subname of the REAL; ti.. canonical
subname of a REAL is of the following form,
where a "d" is a decimal digit:

d.ddddadgE[-1{d]d

the matching square brackets enclose an optional
constituent; the optional digit cannot be a ‘0’

the display of the given argument is returned
as a (possibly nul}) list of BASIC SYMBOLs
which represent the characters of the subname
of the STRING except for the surrounding single
quotes

TR WU, ML

w40 b LR i 50 e A A RO a0 Bt NG N Al ds D 1AL TA

hinaca o T

g -
3 g 3 Built-in Functions
2 S
B
A
, g - d) TOKEN the display of the given argument is returned
% . as a (possibly null) list of terminal nodes
¢ (i.e., data nodes other than non-NULL CELLSs),
. whose sequence of subnames constitute the

-

a0

subname of the TOKEN when surrounded by a
pair of matching parentheses

ERULERT g
3

e) CELL the argument is returned as the result

PRI R

[B P

E-435 1 “‘ 8

CAPRRMAENS L2 - i TIN5 £ PN o s I e s FRTT

i 2 "\-ﬁ‘\' oo Rl s S A

P R YT TTY Y

L AL b s

2y

PIPIPHPURRIVEES

‘
P e P PRLNUAT AR 2 T8 K B0 B0 P SR Lo S B0 T AN i 0 At et el 30 AL B LN R 00t o0 a2 U A

Built-in Functions

l
I

" G .
AL N R g et b

i Miscellaneous Functions
b
3
; . Presented here is a variety of functions which don't belong to E
L - any of the other classes of built~-in functiors.
. LENGTH i 8
, - Use: yield an integer which indicates the length of the argument :
Argument: ;
#1: an INTEGER, STRING, TOKEN, or CELL §
3 a@s : E
boo-- Results: #1: an INTEGER; this function always SUCCEEDs; four 3
Y cases are described according to the type of the argument:
.. a) INTEGER the result is the INTEGER which represents
: the number of significant bits of storage

required to represent the absolute value of
the integer representec vy the argument; thus
leading bits of ZERO are not counted; the
length of the integer 0 is 0

L]
o 2y 0 i 1

it B Lo e

b) STRING the result is the INTEGER which represents
3 the nu.aber of BASIC SYMBOLs in the display
E | of that STRING or (equivalently) the number
of characters in the subname of the STRING
excluding the surrounding single quotes

S
. f o
.
-
AL PV 24 T

b

HERNY
PO
)
o
!

c) TOKEN the result is the INTEGER which represents
the number of terminal nodes in the display
of that TOXEN or (equivalently) the number of
constituents in the sequence of subnames
which constitutes the subname of the TOKEN

B LI E PO WOMIVIFP Y RETHTPRR-] 5. PIISCTIT PN

E-46 1% g

P I PR AT RIS NI N G G R T A P T T AT N S TR A T TR I L FRSIRE L SO W CIETTE

D it a2 v S

Built-in Functions

i it "
N N P Yoy 15y

S|
] ;
, d) CELL* the argument is interpreted as a
2 I (possibly null) non-cyclic list, and
: : _ the result is the INTEGER which
; represents the number of elements $
Eof N of the list or (equivalently) the :
- number of CELLs in the given list
;i other than the NULL CELL; if the ;
* - list is cyclic. an error trap occurs
E Lo NEXTB
- Use: yield the next BASIC SYMBOL
] E . Argument: g
i #1: a BASIC SYMBOL which represents an 3
3 N ASCII character ;
7, T Results: #1: if the argument represents the ASCH character
- DEL (whose octal code is 177) this function FAILs; %
L,(- otherwise it SUCCEEDs and returns the BASIC ;j
RE - SYMBOL which represents the next character in :
' — the ASCU collating sequence (i.e., whose numeric g
i code is 1 greater) 3
i i
3
5‘1
I *This form of the LENGTH function was also described under "List ;

and Structure Prccessing",

I E-47

S D A e e, e S R o P P N R T G P LT R e, ~ o 7 i PO RS Wit V2L LM 8 O TR P B T8 5 a0

Built-in Functions

i
N

AR L it e 2 8 kbR " R W T P TP

¢ PREVB :
k T Use: yield the previous BASIC SYMBOL E
_ Argument;
#1: a BASIC SYMBOL which represents an ASCII ;
character ‘E
" Results: #1: if the argument represents the ASCIH character
" NUL (whose octal code is 000) this function
. FAILs; otherwise it SUCCEEDs and returns the

-- BASIC SYMBOL which represents the previous
character in the ASCII collating sequence (i.e.,
whose numeric code is 1 less)

RANDOM
. Use: yield a pseudo-random number
-~ Arguments:
- none

Results: #1: a REAL which represems a positive real number
less than 1.0

LNt 30 bl S0 AN shanc, 2 00 oW L 3 0320, o b b L NN Tt s 4 G O

Notes: This function uses two system PERM POINTERs which point
- DOWN to INTEGERs each corresponding to a 36-bit PDP-10
- word: 'P.SELD' and 'P.RAND’'. Initially these two POINTERs
-~ are initialized to point to the NULL CELL. If RANDOM is E
- called and finds that P.RAND points to the NULL CELL it

supplies a base number or seed to P.SEED which is the decimal
number 1220703125; that number is also supplied to P,RA2ND.

E-48

IR, o e e 2 R L

Built-in Functions

T The programmer may choose his own seed by initializing
> both POINTERs, or he may change the seed at any time.
- Using the default seed produces a cycle (the quantity of

ax random numbers produced before the same sequence re-
. appears) of 8589934592. Each call on RANDOM causes
. the DOWN link of P,RAND to be updated to point to an

INTEGER which represents the product of the previous
random number (P.RAND) and the cutrent seed (P.SEED).
Then the first 27 bits of the low-order 35 bits of the

new random number are used to form a real number

which is returned as the result. This function always
SUCCEEDs (unless it causes an error trap by finding that
N P.RAND points DOWN to neither an INTEGER less than

- 23% or the NULL CELL).

3 PJOB

Use: yield the job number
Arguments:
: none
. Results: #1: the INTEGER which represents the user's job
- number :r. the PDP-10/50 Time-Sharing System on
. which the AMBIT/L Programming System is operating;
. this rumber may be used to create a unique temporary
file na.ne
- Notes: This function alway. SUCCEEDs.

E-49

AT WO PTARN I Vg %y e s o

P]

Built-in Functions

[S Y.
- " » isARY,

RUNTIME

" Use: yield the running time in KCS

- Arguments:
none

Results: #1: the INTEGER which represents the number of
Kilo-Core-Seconds (KCS) which the running
program has used since its execution began;

R
.
Y

E | a KCS is the basic unit of cost in a PDP-10/50
o Time-Sharing System which represents one
- second of CPU usage per IK (102410 words) of 3

P

gL - core memory occupancy.

‘ S Notes: This function always SUCCEEDSs.
E USER. BREAK
EE Use: cause a user break into the DAMBIT/L debugger
- Arguments:
. none

Results: none

Notes: This function puts the interpreter into a state such that at
the very next rule-entry in the user's program the DAMBIT/L
debugger will gain control. The same effect .. obtained by

" a user's temporarily exiting his AMBIT/L program by typing

N one or two CTRI, C characters and then typing the 'REENTER'

command to the PDP-10 Monitor.

.
SN €Tt S kel 2 S KN AR Db 08 T N o8 0Bt AR LS008 8 J Nhton e B S s e AR AL S

.
3
i
: 4
i
£
i
§
%3

3
i
2
E]
.

fatoy o

gt

Ll AN S

TR HIE]

AL RUR ST St § SRR] e b N iy
i

Lres MR <md RIATn AUAYESSIRE RN YYISTRRIY

T

|
|
|

Built-in i‘'unctions

AMBIT . EXIT

Use: exit and terminate execution of the AMBIT/L program 5

Arguments:
none

Results: none

Notes: This function terminates execution of the running AMBIT/L
program as if it performed an exit through the outermost
plock. It is not appropriate to discuss this function's
SUCCESS or FAILure. Upon termination, the system
indicates on the terminal the number of Kilo~Core~Seconds
(KCS) used and the number of seconds of real time used since

the program execution began. A KCS is the basic unit of
cost in a PDP-10/50 Time-Shariug System which represents

one second of CPU usage per 1K (102410 words) of core memory
occupancy.

o Lt ol o B e 2L

(END)

= e D A0 N v A RS -2o5. > Sty = —; = 5o el o, 2005 Sl ;

_,%‘ e R
P

LR W P Ly

o e
(TGN \ib*\w:mm-m.m:.4..'».=mn.rrmm

et Bt

P
B
2 e
2

T oy
PRI P ATRRARS, SR e

$—nd

|

. Section F

st 1 o

] AMBIT/L Input/Output é
2 S ;
23 _ :
3 July 22, 1371

FPRIOn LRI TN TV IO

I,

This section describes to an AMBIT/L programmer the
available built-in functions for performing input/output
in the AMBIT/L Programming System.

12H

s od

F-4
F-5
F-6

i A i L

l
I s
l

AR LS o P e R R LA Wiy T B 3 doni g o
R i
y k.
o TR st Rt k.
Y

T ry
] - F-8
P F-8
Fo. -9
Eo F-12

P F-15
F-15
F-18
F-19
F-21
F-23
F-25
F-27
F-29
F-30
F-31
F-32
F-34
F-35
F-36
F-37
F-38
P-40
F-41

Wikt b e
1\
L}

IR e s g s et ¢ e

A

R o a o i TR St G i i i R IR o O e e A Mo 3oty 2 b 2

CONTENTS

Definitions
Opening and Logical Names
Word and Line Input/Output
Files on Disk
Teletype Input/Output
Input/Output of CR
Input/Output of ESC
I/O Traps
List of Errors
Descriptions of the I/O Functions

OPEN

CLOSE

DELETE

RENAME

INW

INL

INLS

OouUTW

OUTS

OUTL

OUTLS

SELWI

SELWO

RDSELI

RDSELO

RDLNGTH

RDLNMS

RDINFO

Input/Output

2
3
g
/i
i/
]
:
E
z
3

SrAb A i

A pahar TR VR) Se vy 8 8 20

2y AR ary

Sl s N s ARy

kbl a il % N feon £ i Bk A 24dd 8 Fu 2 4 b omind

A L el

Ll LR R D i e S

A

Rl LUl A I EES S S i LU el

Lt i L

Input/Output

This section describes to an AMBIT/L prcqarammer the available
built-in functions for performing input/output in the AMBIT/L programming
system. There are 19 functions which the programmer may call. At
present, each of these functions is written in AMBIT/L and defined in
the environment. Many of these functions call upon primitive built-in

input/output functions which are written in MACRO-10 assembly l~nguage

and are not available to the programmer. These primitive functions are
described in AMBIT/L Internal Memo 3.

Although the input/output functions are presently written in
AMBIT/L the programmer should consider them as purely built-in functions
since any substructure of these functions cannot be detected. In the future,
these functions may be rewritten entirely in MACRO-"0 assembly language
completely transparently to the programmer. The only cifference which
may arise is a change in the space-time characteristics of the AMBIT/L
interpreter and therefore, AMBIT/L programs.

All errors detected by the built-in input/output functions are re-

ported by an indirect function call using the TEMP POINTER *TRAP. IO*' declared

in the environment. Initially, as a default setting, TRAP.IO points to a
FUNCTION ncde 'FTRAP.IO'. The function FTRAP.IO is a built-in function
which reports a trap by typing an indicative error message on the terminal.
The programmer is encouraged to provide his own trap function(s), which
can be enabled by altering the POINTER TRAP.IO .

L gt o patad

Al P ARA VRS 5.

Input/Output
3 ﬂ The following built-in input/cutput functions are available to the
S It AMBIT/L programmer:
F 3 : Function Name Use
‘ : OPEN initiate input, output, or input-output using a logical ;
:- name on a physical device g
. CLOSE terminate input, output, or input-output for a lcjical name E
1 DELETE delete a file on disk
P] - RENAME change name of a file on disk
E INW input one word 9
E 3 INL input a line of characters
‘) INLS input a line of characters and a sequenc= number
. oUW output one word :%
1 o OUTS output a string of characters
) OUTL output a line of characters
3) OUTLS output a line of characters and a sequence number
. SELWI select word for input E
. SELWO select word for output
; - RDSELI read the input word selector
§ ot RDSELO read the output word selector j
- RDLNGTH read the length
: RDLNMS read all logical names
_ RDINFO read information associated with a logical name
‘ -- FTRAP.IO default I/0 trap function which reports an error message 35
| . é

Ot e e e e pragm s o = A, g, A iy e, Sy T Al A Y, R MRV~ i oy WP L D Ty e
saniag i s RSk s b = Tt e e e TS T ——y =) - T O e

R - s -

3 I Input/Output
l T The bulk of this document describes each input/output function in /;
- a format appropriate for reference use. Firsi, however, some of the jargon
» — is defined and an overview of the philosophy of AMBIT/L input/output is i
? . presented., The major influence of the design was the existing specifications ;
L of the DEC PDP-10/50 Monitor. | 3
. Definitions

10 e el B

Channel: one of sixteen ports (named 0-15) available to a PDP-10 job

Ehin e Mk A R LR Tt L
wiskt ¥ MAK

oo for either input, output, or input-output. In the AMBIT/L system,
' channel 0 is initially assigned for Teletype input-output, and
. channels 14 and 15 are permanently assigned for private use by

the AMBIT/L interpreter. A channel may support at most one physical

ieday PRy T o 22

device at a time.

Pt

Physical Device: either a real device, such as the Teletype or Printer
or Card Reader; or an individual file on a multi-file device, such
as DECtape Unit 5 or the disk. In order for input and/or output to
» - take place on a physical device, it must be assigned to a channel
(by the function OPEN).

ddia Lo i

Logical Name: a MARK or INTEGER associated with a physical device (by i
the function OPEN) in a particular mode of input/output (either input,
output, or input-output).

. Mode: one of three ways in which a physical device may be opened with
- an associated logical name; namely, input, output, or input-output. :

400 2 L M S R 0 AR A A e 10 Eil

Degenerate-List Convention: when an argument of an input/output function

; .. is a list of either zero or one argument, it may be given without the
i CELL. Thus, for example, the third argument of an OPEN function
call could be the MARK *‘TTY'.

PR NTEPINFERE NP, S DT RN P B

E
3
E
=%

Latbanmn 2,

MMM

o
i

i

i

Y

M

i) &‘

. 4

‘ Y
~'I=‘m~

S
e ANt fnd O 07 SR M

Input/Output

Physical Device Name: a list of one or more MARKS and STRINGS. At
piesent, only two types of physical devices may be specified:

a) the MARK 'TTY' for the Teletype, or

b) one or two STRINGS for the name of a file on disk; if
only one STRING is given a null extension is assumed. A
legitimate name for a file on disk consists of one to six
alphanumeric characters and an extension of zero to three

fakndan

Kot Zatenct

S,

FRYL

alphanumeric characters.

Mode Name: a node which names a mode:

a) the MARK 'IN' or INTEGER '1' names mode input,
b) the MARK ‘OUT® or INTEGER *2' names output, and
¢) the MARK ‘'INOUT' or INTEGER *'3' names mode input-output.

Sequence Number: five decimal digits at the beginning of a text line
normally followed by a TAB. A disk file is said to be sequenced if
each line has a sequence number, Sequenced files are required by some

PDP-10 editing programs. A sequence number is implemented with
an indicator bit which is used to distinguish it from the text line.

Opexninc and Logical Names
As previously explained, channel 0 is initially assigned for Teletype

:. input~output, and chanrnels 14 and 15 are permanently assigned for private
.. use by the AMB:T/L interpreter. This implies at most 13 other different physical
) devices may be simultaneously opened for input and/or output. However,

L1159 A 28 LS 2 A b L L 211k R MECAPA L i e B a0t 3 PR 0 a3 P S 0t 50050 i s 228 M L O

. the DELETE and RENAME functions each require that there be at least one open channel
i - for proper execution; but the channel is available after the function returns.

The functions OPEN, DELETE, and RENAME always use the numerically lowest
chaniiel available. The programr.er need not be aware of channels and channel
numbers, except when approaching the limit of 13 available ones.

. In AMBIT/L input/output, a physical device may be open on only one

.- channel at a time in at most one mode. The OPEN function takes three arguments:

a logical name, a mode name, and a physical device name. The first call upon

£ AR kS LA

S s i L SN B S ot g

Al R P el

A
Pon - P2 A P P

TR el Qs ke O

I N T TR ? B Carr T e Tt s ianen bl bt R I s B R o T A A AR S
R R S T R T S VR L i TR - e PRI réais .

Input/Output

OPEN dictates the mode in which the physical device is opened on a channel .
A later call upon OPEN fcr the same physical device, and with a different
logical name does not cause a new channel to be opened; instead, the same
channel is used. Each call upon OPEN also includes a mode specification
which remains associated with the logical name also supplied in that function
call. The programmer must not violate the following two rules when performing
raultiple openings of the same physical device:

a) The mode specified in a later OPEN may be the same as the mode
specified when the physical device was initially opened, or

b) Any mode may be specified in a later OPEN if the physical device
was initially opened in input-output mode

The zingle argument of the CLOSE function is a logical name. When CLOSE
is called the associated physical device is closed on its channel only if no

other logical names are associated with the physical device.

Word and Line Input/Output

Ultimately, the basic unit of data for input or output is the 36-bit
word. The programmer may call the INW function to input one word, and
the OUTW function may be called to output one word. More often, however,
the AMBIT/L programmer deals with ASCII characters, particularly for Tele-
type input and output. The INL function may be called to input a line of
characters, and the OUTL function may be called to output a line of
characters. A few other functions are also available for similar character
handling. Although a programmer will normally make use of a file uniformly
as either words or characters, the input/output functions operate so that
botn types of data input/output may be intermixed. For this reason the
descriptions of the data input/output functions first present the simpler
explanation o6f unifcrm input/output, and non-uniform input/output is
explained separately.

F-5 1.1

%
I3
'8

;

I

! i
o

N

b

.
LV A LT e et 5 e i AR

A4 sk

A SHEAS Yo,

e e A P 2% Ky £ 03 A LSS

Rate b LAY B

0 e A P

uii & R LASR e

b

A g) ok g

pclad S0 Hon by

Bt v g3 e

§ 35 ufa by

s AR R
AR L At Wity

"l

T A R A S T o o e e g o O L R A e L e T L o T L S MOl S o Sl R SN ¥ A e T F T e oo Mff‘#’ﬁ‘ﬁﬁmmfﬁ"ﬁ"i‘ﬂ‘l@ﬁj

#o o vt D

Input/Output

Files on Disk

M t'\-'»"d‘\m‘!\ "

A file on disk is viewed as being composed of a une~-way poten-

tially ,infinite number of 36-bit words, numbered 1, 2, 3, etc. At any
time, an initial set of these words (possibly none) are considered to 3

exist with meaningful values, and the remaining are considered non-
existent. Each file has one input word selector and one output word

selector which each select a word (possibly non-~existent) of the file.

it e e St M

Normally, the input word selector selects the next word to be inputted,

Boder £

and the output word selector selects the next word to be outputted. The
programmer is given the power to interrogate and also set these selectors 3
as follows: 3

a) The input selector of a file may be interrogated and/or set through
a logical name which is opened for that file with an associated

mode of either_input or input-output.

b) The output selector of a file may be interrogated through a log-
ical name which is opened for that file with an associated mode

™

of either output or input-output.

c) The output selector of a file may be _set through a logical name
which is opened for that file with an associated mode of input-

output.

Therefore, note that a file on disk must have been opened initially
! for input-output in order for "random-access" output to be performed to
that file.

it AR AN) Bk} EEALL b ad A ittt A kAR H . i S i R NG s

An attempt to input a non-existent word will cause the input
.- function call to FAIL, Any output operation may be viewed as ove:r-
, writing any previously existing word, or extending the length of the
file by one or more cxisting words. A file may be extended by many

ekt A

existing words when a word is outputted after the output word selecter

o " o ater .
Phon <acah P LA Skt e o e S8 b 1 ¢

F-6

132

("% S
AT

TR

o gy e T

P

gar

St

o e e Y

P P R & Al 2t

D RN IR A?
P

AT AR g ool B T W B L W L e O - - LU= o L . L AT Y e e . L T
S R o R SR S R S S O A S S - Flw . o~ L

B S AR S PR A N

§
!

Tron T ot v ar e s

— Input/Output
1.1
;
E
has been advanced into the non-existent portion of the file. In this case, all
1 words before the word just cutputted which were non-existent are all made to

exist with a value of zero.

The length of a file on disk is the number of existent words (possibly
zZero).

Teletype Input/Output

Although the Teletype is a character device, the AMBIT/L input/
output functions treat the Teletype in the same way as the disk. Namely,
an input word selector and. output w¢ ~ -elector are maintained as well
as a length., This compatibility has been provided mainly for debugging
purposes so that a program which nomally uses the disk in a “random-access"
manner could alternatively perform such input/output on the Teletype.

The Teletype input functions are implemented using the ASCII LINE
mode of the DEC PDP-10/50 Monitor. Thus the normal typing conventions
apply, such as the use of RUBOUT to delete the previous character. The
following list indicates those characters which are interpreted as break
characters:

a) CR

b) FF (1L)
c) VT (1K)
d) ESC (or ALT)
e) {2 (SUB)

In AMBIT/L Teletype character input the { Z character is inter-
preted as an end-of-file as if it were a non-existent word of a file on
disk. The {Z character itself (octal 032) is not passed to the AMBIT/L

: . program, nor is any partial line of characters which may have been typed
i in preceding the }{Z. Instead the call upon the INL (or INLS)

- function fails when the line being read ends in{ Z. The next call upon
one of these functions, however, will perform independently of the

@ e e S - a

PR

3
E
3

Aot shabtnt G DaSRAENG

st B}

Lo bRH O a0

Nt

j

T ——
PSPy

sl A st DX AN

Input/Output

ek

condition, i.e. the Teletype input acts as if it were immediately re-
opened. For example, if the user wishes to cause twc consecutive
calls upon INL to fail due o an end-of-file condition, he must
type 't Z twice.
Note { Z acts as any other character {i.e. dces not terminate a
line) when read from a file on disk. In the rare case that Teletype word input

is used, { Z. acts as a break character, it does get passed to the programmer
as part of a word, and it is not interpreted as an end-of-file,

Input/Output of CR

In AMBIT/L i.aput/output the BASIC SYMBOL %CR represents a “new
line* character, which represents the charaeters CR (octal 015) and LF
(octal 012).

On Teletype input the DEC PDP-10/50 Monitor echos and also places
in the input stream a LF character immediately foliowing any CR typed in.
Any disk file created by common methods also has a LF following every CR.
Therefore, AMBIT/L character input functions always read and ignore the
character immediately following a CR. Thus a line which ends in CR/LF is
presented to the AMBIT/L program terminated by %CR. However, if a lone
LT is encountered in an input line it is treated as any other text character, thus
appearing as %LF.

Consistently, AMBIT/L character ou:put functions interpret %CR as both
CR and LF characters for output to the Teletype and to a disk file,

Input/Output of ESC

Although the PDP-10/50 Monitor standardizes on a code of octal 175,
AMBIT/L input/output reduces ESC or ALT characters to a code of octal 033.
On character input code 175 is internally translated into code 033. Cn
character output AMBIT/L will generate code 033.

F-§ 134

m»mW&Mumawvm» [PRRPIESPRH
o i e A

* e o - -
SRS EYCOC IR C =

Ak T4

QA S R 2

Sopsidai oo, I

Sdbeman)
. '

Input/Output

/O Traps

Some of the AMBIT/L built-in input/output functions fail in order
to indicate an unusual condition. Any condition which is considered an
error, however, causes an I/O trap which is an indirect function call
through the POINTER TRAP.IO of the following form:

Ll b L et Dl DAL R Ll F tomccnaa c
1 1 1 1
1 @TRAP. IO l====>1%RESULT1
1 1 1 1
L3t - - 1] L R) +
1 1 1
1 1 1
< 1 1
1 1 1
v \Y V)
tom——— S tremmee- S 4~~=~C 4=m==C
1 1 1 i 1 1 1 1
1 +NAME] 1%ERR011 1 jewee>} 1====> .
1 1 1 1 1 1 1 1
tomm—— + fomm——— + Fem-=t -
1 1
1 1
1 1
1 1
\Y \Y
- + s +
1 1 1 1
1xARG11 1%x81.621
1 1 1 1
N + o~ +

where *NAME is the name of the built-in input/output function;
*ERROR is a short indicative diagnostic of the error;
*ARG1, *ARG2, etc. are the arguments which were used to call
the function; and

*RESULT dictates what the input/output function should do next:

a) If it is the NULL CELL, or any other CELL which points down to
the NULL CELL, then the input/output function gracefully does

IR IP AR SR BT L
IOSTYS WERTR ST COTII PP IRATIL AL PIRTE A AP Ay

ad s LB AL e

ety o IR

3
e
4
Z
F-
5
3
3
i
3
]
kol
2
E

PR RPN PRI P X4 25 AN § WOV /AL T

i Ll

YRVSI T T TS

. N T r v T YLy S] N
£ Ptk e ST i GRTLEL UL R A g
ICATONONE AR T SETRTIVIPHAISE IV A0 R b gt b & r e g Ry

T M PR XN ERAR Y

sy ek

¥

P e e s

»

AL T R T R T LT A T I S R R R P e e R L G T TR R ST e e Ty

Input/Output

nothing, but succeeds as if it had performed properly. Those
input/output functions with results will deliver default results.
The default results are indicated with the description of each
function. Failure of the trap function is equivalent to its returning
the NULL CELL.

b) Otherwise, *RESULT is a iist of alternate arguments for the input/
output function (in the same form as the third argument of the I/O
trap function). Another attempt to execute the input/output function
will be made if the I/O trap function returns with its result in this
form.

The function called to service an I/O trap may be supplied by the
programmer; it may intercept any trap and then perform some computation
which could remove the cause of the trap. For example, if an attempt to
OPEN causes a 'CHANNELS FULL' trap, a programmer-supplied I/0 trap
routine could CLOSE some physical device and then return with the same
list of arguments so that OPEN would then succeed.

Initially, as a default setting, the POINTER TRAP.IO points to a
FUNCTION node FTRAP.IO. The function FTRAP.IO is an AMBIT/L built-in
function which is equivalent to the AMBIT/L function definition on the next
page.

Note that after FTRAP.IO calls upon OUTL to type the error m2ssage
it calls USER.BREAK and returns to its cailer. When it returns, it retums
as result the NULL CELL which causes its caller to gracefuliy do nothing.
The USER.BREAK built-in function causes the DAMBIT/L Debugger to gain
control at the next rule-enter in the user program,

F-10

SR e

.
} I
T T U YR W

apr o il

e LS LANE LT 2R,

A AN 3 L NN AR A 0 b LA o T e s CANER L P i 4 0 WA i

B, ABAIAI AU Bt a1

LV R 17 1T BRSE R T T R VTR IR ST R TR TITA

AP

rerRs

R R R AR B P P PR S (BT T e S BT T T S T N TR, Y B S S B R R I

Input/Output 3

3

S

$

. FTRAP.IO(FUNC TYPE ARGS) RES :
‘e RULE

4
3
-
4
2
=
e
3

e L e L T o trmm - ————— F
: 1 1 i 1
E: : 1 OUTL 12ZZZ>1 USER.BREAK 1
& 1 1 1 1

S tormnnanl fecas tm——i N F ey Fommt
3 1 11 1 T 1 1 1 1 1 1 1
ILISTINGl 1 l====>] j~ce=>]]eccceccccccccead] fee-e>l |

1 11 1 1 1 1 1 1 1 1 1
toemmena N T tm——t tonnt Y Y domot

1 1 1 1 1

1 1 1 1

[ommm——ey 1 1 1
1 1 1 : 1

v v v v
tecnccccrcee=G fomna=f tomrewen=§ temnne A ++-=B
1 1 1 1 1 1 1 1 1 1
F 1'1/0 TRAP: '} 18eTYPEL1 1* IN 3'°*1 1eFUNC1 1% 1
3 1 1 1 1 1 1 1 1 1 1
=f - L et } toeemmnt R st & tom——— + T

K W) M

gD g Mg AL e i

AN

¥
{
S
3!
3 B
A
le -
-
3
H
-
H
i
-
-

r-11

bl

i
1
i
i
2
%
3

BBt P LA N C A AORIRE U N TS LI 1908 S e atitan vt 8 v A Tt Lh e | MM By it v T 2470 €430 16 ainds 1 Zn L5052 BN

(R TRTNIEN

ES
R

Input/Output

If the programmer wants more than the FTRAP,IO function provides,
he may write his own I/C trap function(s). As indicated previously, such
a function should have three arguments and one result. In order to activate
an alternate 1/O trap function, the programmer need only set the POINTER
TRAP.IO to point to @ FUNCTION node whose name is the name of the
alternate function. Thus the programmer may provide a variety of 1/0

trap functions for various recovery procedures. Of course, the program-
mer may employ the defaclt 1/0 trap function FTRAF,IO at any time. Also,
“he programmier is free to call FTRAP.IO as any other built-in function.

List of Errors

The second argument of the I/O trap function is a STRING which
is a short indicative diagnastic of the error which caused the trap. This
section lists all of these STRINGS: with each one is a list of those
functions which might detect such an error and a more complete explanation
of the cause of the trap. The list of STRINGS is presented in alphabetical

order.

‘ALREADY OPEN'

Detected by: OPEN
Explanation: an aitempt i< made to open an aiready ovened
physical device in an inconsistent mode.

‘ALREADY WRITING'

Detected by: OPYN
Explanation: an attempt Is mace to opun a physical device
for output or input-output which is aljready being
. written or renamed by ancther job,

F-12

| L AR

1
2

-

-o

RN L e e RS TTOE T S, A e T I

Input/Output

*BASIC I/O ERROR'
Detected by: CLCSC, DELETE, RENAME, INW, INL, INLS,
OouUTW, OUTS, OUTL, OUTLS
Explanation: a data transmission error has occured or therecis a
malfunction of the monitor or hardware.

*CANNOT OUTPUT'

Detected by: OUTW, OUTS, OUTL, OUTLS

Explanation: the second argument of the function being called
is not of proper form.

'CHANNELS FULL'

Detected by: OPEN, DELETE, RENAME

Explahation: all available 14 channels are in use, and another
is needed.

'INCONSISTENT _

Detected by: OPEN, DELETE, RENAME

Explanation: there is an internal inconsistency, probably due to
an error in implementation.

'IS OPEN'

Detected by: DELETE, RIENAME.

Explanation: the argument of DELETE or the second argument of
RENAME (old name) specifies an already open physical
device.

‘LOG. NAME IN USE'

Detected by: OPEN

Explanation: the first argument is a logical name which is already
in use.

'NAME IN USE'

Detected by: RENAME

Explanation: the first argument (new name) already exists in the
user's directory.

‘*NOT DEVICE'
Detected by: OPEN
Explanation: the third argument is not a proper physical device

name.

139

LU mdhmmhmm%m&u.‘n..-;.!:«‘.i:u' i

LRGN Fa s At G il i

" W 1
WP NIRREIET I A

)

*NOT FILE NAME'
Detected by:
Explanation:

‘NOT LOG. NAME'
Detected by:

Explanation:

‘NOT MODE*
Detected by:
Explanation:

'NOT PERMITTED'
Detected by:

Explanation:

'NOT SEQ..NO.,!
Detected by:
Explanation:

NOT WORD NO.'
Detected by:
Explanation:

{nput/Output

DELETE, RENAME

the argument of DELETE or one of the arguments of
RENAME is not a proper physical device name for
a file on disk.

OPEN, CLOSE, INW, INL, INLS, OUTW, OUTS,
OUTL, OUTLS, SELWI, SELWO, RDSELI, RDSELO,
RDINFO

the first argument is not a MARK or INTEGER, i.e. it
is not a logical name.

OPEN
the second argument is not MARK IN, OUT, or INOUT
nor INTEGER 1, 2, or 3, i.e. it is not a mode name.

CLOSE, INW, INL, INLS, OUTW, OUTS, OUTL,
OUTLS, SELWI, SELWO, RDSELI, RDSELO, RDINFO
the first argument is a logical name not assigned to a
physical device or it is assigned in a mode which
does not permit the attempted operation.

OUTLS .
the third argument is not the INTEGER -1 or a positive
INTEGER, i.e. it is not a sequence number.

SELWI, SELWO

the second argument is not an INTEGER greater than 0,
i.e. it is not a word number,

FE YL LT e R e R A T N R R AR R B AT TR T T ST LS

s A

g i+

& T

[

by

o

M
[RPRERPPTORL- U

A
)
'ﬁ',m-m“ AL AR T B it # 4e
’
ot

.:.Nb.(.h FIRTa:

IEITTETOR WO TEAE 7T WS W2

TER YL X P YTRRSCR LIRS

coarldl

st iagd

H
5

s,

TS RS AN AT TP

P

Y T PRI RO BT TR T OV TR TR AR AR 1 LIS SonTIn

P T O T T O Ol T F AT R U T T TS P T ¥ I RY TI0)

e I e e e e b R i L. S e T N A e e

B
1
H
Fe
. Y
A st e\ AL M e 2

Input/Output
t A
: k - :i
% : Descriptions_of the I/0O Functions 3
E E ol Each I/O function is described with allowable arguments and
4 possible results, an example of a function call, traps which may occur o3
] (in order of detection), conditions for FAILure (if appropriate), and default ;
results (if appropriate).
OPEN ;
Use: initiate input, output, or input-output using a logical name
on a physical device (see the section "Opening and Logical Names").
Arguments:
#1: a logical nam=
#2: a mode name
#3: a physical device name ;
Example; 4
e L L LD D LD Ll il F ‘
1 1
1 OPEN 1
1 1 3
E+++ -+t + -+t 2 ¢ -+ F-F 2 53 F £ 4 Z
1 1 1 E
1 1 1
1 1 1 3
1 1 1
v v \Y
 atabaded +e-=i] k Saleded it 3
1 1 T 1 11
1LSTG1 10UT1 1TTY1 -‘g‘
1 1 1 1 1 1 3
PO, 4=t PRI 3
Traps: é
NOT LOG. NAME
) NOT MODE
o NOT DEVICE]
- LOG. NAME IN USE
- CHANNELS FULL HE

- ALREADY OPEN

A S SR I T R R TR TR EIT N T 3

IR

Input/Output
15 ALRLADY WRITING
P INCONSISTENT
:) Conditions for FAILure:
I a) A disk file is specified as the physical device to be
opened for input, and either the file dcesn't already
exist or it already exists and is read-protected.
b) A disk file is specified as the physical device to be
opened for output, and the file already exists and is

write-protected.

c) A disk file is specified as the physical device to be
opened for input-output, and the file already ex.sts
and is either read-protected or write—-protected.

Pt

Description:
Case 1: Open for input z
a) If the given physical device is not already open, then ;

open a new channel. Set the input word selector to 1.
If the given physical device is a disk file determine the
length. If it is the TTY assume a length of 0.

b) If the given physical devic: is already open for either
input or input-output then ¢ ssociate the given logical

name and given mode with the device.

Case 2: Open for output ']
a) If the given physical is a disk file which alresady existed N

and is net in use by other jobs for output or input-output,
o then the old version is either deleted or marked for later

, deletion after all read references by other jobs are com-
- pleted.
-- b) If the given physical device is not already open, then 2pen
.. a new channel. Set the output word selector to 1 and as-
sume a length of 0, If it is a disk file this implies

creation of a new f{ile.

" T s) s o) AT . o
AR 7 i e | I - T T]
- P et e - . . . e W REG T, ol

" WD e TR [o .

R e
<

i i ot AR

stad v alila b L

AN il

& utSela AL

et WA LAY

o

2

h o 215

Mt AL,

Y T BN AN S A M ¥ skt ot « 120 DA B

SEA A S b bR EY b

Foit g ot ek

L ko A S A

P b e A R R T L S e R oo T T T R A T " R TR BN F e R e e L s

-
=
g I Input/Output
=
EE
., c) If the given physical device is already open for either
: 1 output or input—~output associate the given logical name

ey

and given mode with the device.

. Case 3: Open for input-output

a) If the given physical device is not already open, then
open a new channel. If it is the TTY, set the input
word selector to 1, set the output word selector to 1,
and assume a length of 0.

b) If the given physical device is a disk file which did not
already exist, create it, set the input word selector to
1, set the output word selector to 1, and assume a length
of 0.

c) If the given physical device is a disk file which already
existed, but is not open, determine the length, set the
input word selector to 1, and set the output word selector g
to one more than the length of the file.

d) If the given physical device is already open for input-output,
then associate the given logical name and given mode with 3

’
.
4 100 00080 Bt A LA o e Mttt i i 17

e s e e
d adtodh e

ey Al Sy bt B

the device.

S 2ed A LA

R D

St 0 e LI bt N S A T 8 td S a8 " 0 1 £ A A 0D A 0 20 S tad AN AN

P I S TN R Ny T PR I ERETAT T L SV E RS IV . y
Wi 8 &2 o SR R 3 R A R A RS P AP N R T] I e SRR RIS RN T R TSR s ST, T e . L

L g - Input/Output
N ;
L de ;
S
. CLOSE ;»}
.: %
3 Use: terminate input, output, or input-output for a logical ;-‘;
. name (sec the section "Opening and Logical Names"). faj
Argumen:s: ?;
4 $#1: a logical name associated with an open physical device 3
3 Example: ;‘
; PO ————— F :
1 1 3
- 1 CLOSE 1 :
. 1 1 3
; $===zzmsz=m=mnz==4 %
Li, 1
1 ;
1 p
1 P
v ‘E
Fommail CE
1 1
1LSTG1 5
1 1 x
¢ oot £
: Traps:
- NOT LOG. NAME .
o NOT PERMITTED |
= f T3%
-1 BASIC I/O ERROR {3
% N
| Description: 3
} Terminate use of the given logical name fér its associated physical
device. If no other logical names are asscciated with that physical device,
* close the channel being used and return it to the available pool. 3
¢ ' ;
4 2
%
435 i
33
F-18 Z

' g :- Input/Output
b
DELETE
Use: delete a file on disk
Arguments:
#1: a physical device name for a file on disk
Example:
T R - F
1 1
1 DELETE 1
1 1
L - F-+-F .+ 3 P9
1
1
1
1
v
tomemy tomeyt
1 1 1 1
1 lee==>] i
1 1 1 1
-t -
1 1
1 1
1 1
1 1
v \Y
trmccanl jevecaw S
1 1 1 1
1*JUNK*' 1 1*REL"}
1 1 1 1
fowmcnct fowmcen
Traps:
NOT FILE NAME
CHANNELS FULL
IS OPEN
BASIC 1I/0 ERROR
INCONSISTENT

Ao
e~

F-19

R T T R P L T T A R T S LT T TR (o T T YA el W0 o) D P T E P I T Y S amem e

Tk o e e

Input/Output

R Conditions for FAILure:
. The file does not exist,

Vhicad

b - Description:

The given file is deleted or it is marked for later deletion
. after all read references. by other jobs are completed

.
%
.3
}
3
£
a
§
3
:’3
3
i
g
=
4
:
S
3
é
j
o

3

Sl A

Alnd £ Moo

=% it sl

watinitnad s

s N P TS A £

A,

«
ol i

. N S LM ot Mot s

£2

;%
é

F-20

N T R, A0 =

Input/OQutput
,ﬁ , RENAME
77 Use: change name of a file on disk
? E Arguments:
‘ $#1: a new physical device name for a file on disk
#2: an old physical device name for a file on disk
Example:
| Sy S U F
= !
3 1 RENAME 1
j 1 1
_ L O P b
3 1 1
1 !
1 1
1 1 :
v v ;
et Famey LT S ?
) S 1 1 1 1 j
; S B | 1 1*GALBAG"1
1 1 1 1 1 1
Fom—d tommdt R + ;
1 1 ;
1 1 E
1 1 :
1 1 3
v v E
mmmm—— S 4mm-w- S i
1 11 1 i
1'JUNK*1 1°REL'1 E
1 1 1 1
b + tmew—- + .
- Traps: %
; NOT FILE NAME 3
. CHANNELS FULL 3
' IS OPEN 4
i NAME IN USE E
I . BASIC 1I/C ERROR 3
. - -3
INCONSISTENT 3
! 3
i S 3
% E -y . 7;13
B - ‘4b 3
N .. N
] F-21 L3
iy

R AU T xR b At

MRS UA N A SN) L SO L LN

e

A
RS S i et B AN

i
H
i
i
3
i
!
H

Samma ¢

[T

[PR

Input/Output

Conditions for FAILure:
The file does not exist or it is read-protected,

Description:

The given old file is renamed with the given new file name., If
the two names are effectively the same (employing the degenerate-list
convention) renaming does not occur.

ik

(7

L 1t A DR A R i3 50 e AR bl AP e

AU SR 2P b 2 KA bich 4 DI,

B AL e 19 2t 35 et 20

(enbak ATV bk A B Kt DM .10

Ef% .
e

T Y e R R A T S N I O R s P P P A R R g, B0y - e T5 s o A = I T AN T S SRR

2 3

- F L. Input/Output
BEE

:g

§

B¢ INW

Use: input one word

3 Arguments:
#1: a logical name associated with mode input or input-output

for an open physical device

i3

Results:
12 an INTEGER
Example:

Rt AR it L G
+*
t
]
f
]
|
0

1 1

1 1

-
fo s
-
Pt
[]

O BN RAAR SRS PN F L vaga <

-
G ot s e

. Traps:
- NOT LOG. ILAME
NOT PERMITTED
BASIC 1I/O ERROR

1 ‘;8
F-23

SR s g

.

S ’“a

<

o £ sl AL 3 0

2 R AR AL B3 A Nsimsn

2k

H L isto €A Oy e rrin B 01 M el 334 KIS RNt 8B AN A i LU Gt PRI b S AR B e BRI UAR W3 fA L SRS

3
¥
E
b
. A
L3
< 3
3
13
2 2
o 1
33
33
35
4 3
2S5
3 3
A

[akilad

p 8 KT8 oy

rre ety n e

ey LTS AP > 2D T TR A WO vs
RSB s o e T AN A 2 R (5 I T s ey et R e G Aot g5 52

Input/Output

Conditions for FAILure:

a) The physical device is a disk file, and the input word

selector points to a non~2xistent word.

b) The physical device is the TTY, and the user has typed

in { Z (see the section "Teletype Input/Output”).

Default Results:

$#1: the INTEGER 0

Description:

The next word of the input stream is delivered, and the input
word selector is advanced by one. If the physical device is the TTY
and 'l typed input has been read previously, the function waits for
the user to type more (up to a break character).

Additional Description for Non-Uniform Input/Output:

Beware that if either INL or INLS was previously preformed
to input a line of characters which did not occupy an integral number
of words, then any characters of the partial word will be lost. Note,
however, that any disk file produced via 3M311/L input/output functions
will always pad out a line with NULL characters to occupy an integral

number of words.

I Aleh S AN e d s b s Son

Ly L

2ardd

“TPRRIS ST NS

e AN RS R LI ST L e BRALE ERES L o SRR Wem e U MERER T, LT T s LT s e

A, "’”“a“'«"ﬁ‘

» Input/Output §
x4 %
i INL §
Use: input a line of characters g
Arguments: 3;’
) #1: a logical name associated with mode input or input- §
|
output for an open physical device. 7
Results: %
#1: a list of BASIC SYMBOLS, terminat‘ng with either %CR, 3
E:
%ESC, %VT (vertical tab), or %FF (form feed) 3
Example: 3
3
R L L L P F o= 4ot é
1 1 1 1 1 1 %
1 INL l1=m==>1 1==-=>1 1 3
1 1 11 1 1 3
+==cms=m=mcm===s=+ oot EReRr §
1 1 A 3
1 1 H 2
1 1 H 3
1 1 H Z
v v H 3
PR | tm——t H E
1 1 11 H
1 51 1 1 H 3
S 1 1 H
Lt LR H
A H
.H H
; H 3] 4
: fom——— P 4-==-P P
i 1 3 1 y
IFIRST! 1REST1 .
1 1 1 1
bt R ik S §f
Traps: ’i
g . NOT LOG. NAME i
£ NOT PERMITTED
1 BASIC I/0 ERROR
: _
& Y - f}
’:'Z - 3

D B o s e N S e R 0 B e L e = e R N

g - Input/Output
Y ds
|
e X -
E % - Conditions for FAILure:
% Eoo., a) The physical device is a disk file, and an attempt to
4 read a non-existent word occurred while developing an input

Ut kg

line. The input word selector has been advanced pointing

4 to the non-existent word.

: b) The physical device is the TTY, and the user has typed
in a line (possibly null) ending in t Z (see the section "Tele-
type Input/Output”"). The input selector has been advanced by

.- one plus one for every five characters typed in preceding the t Z,
Default Results:
.. #1: the NUILL CELL
Description:
If a previous call upon INL or INLS caused a line to
be read which did not account for an integral number of full words, then this
call begins reading the very next character of the partial word {unless the

; h SEIWI function has been called meanwhile). Any sequence number appearing
b= ’ in the line being irputted is ignored, and the very next character {should be
TAB) is ignored. A line of arbitrary length is read terminated by either CR
(see the section "Inpui/Output of CR"), ESC (see the section "Input/Output
of ESC"), VT, or FF characters. . Any NULL character is ignored. The input
word selector is advanced selecting the next {ull word fcllowing the last
character of the line. If the physical device is the TTY and all typed input
has been read previously, the function waits for the user to type more {up

to a break character;.

If INL calis an input/output trap functicn it presents as first
- argument the STRING '[NLS' rather than 'INL'. This "bump"” in the design

%
&
e
3
=
E
4
3
=
bl
3
2
2
3
2
Py
e
=
3
3
3
=3
-
=
=
i
3
2
¥
=
3
2
3
3
»
K

was made to cptimize the time and space required for these character

24

.3 .. input functions.
s
§~
§ E E
B - f
X9 oy 3z
§ B e H al 5
: F-26 3
FE ~ :

.0k TN
22 a8]

’

WAL s

{

a
)
E [

ekt TS s e e s LR e e Dl TP TS, A AT o L T (NSRRI AT ARSERAT ETITAESS TR o T et L s o e YRR

3 ’% :
=L Input/Output 3
3 |
c 1
INLS
B .
(— 5 Use: input a line of characters and a sequence number :
3 Arguments: %
#1. a logical name associated with mode input or input- z
1 output for ar open physical device E
. Results: §
- #1: a list of BASIC SYMBOLS, terminating with either %CR,
: %ESC, %VT (vertical tab), or %FF (form feed)
' #2: either the INTEGER -1 indicating a line with no sequence i
|

number (always for TTY), or a positive INTEGER which is 5

the sequence number

Example:

b

3

;

toe==A t====P +===P
1 1 1 1 1 1
1eDEV1 1LINE1L 1SEQl

1 1 1 1 1 1 :

S k2 LT LY o=t

A H H E

1 H H ;

1 H H 3

1 H H

1 v H

feeem e ——— F T > H :

1 1 1 1 H

1 1====>1 1 H

1 1. 1. 1 H

1 1 -t H 3

1 1 H i

1 1 H :

1 INLS 1 H 3

1 1 H

1 1 v

1 1 Fmmot

1 1 1 i

1 e ceee=>]1 1

i 1 1 1

$mmomm==onsemsnsd Fom 2

152 i1

F-27 % ~

o

ST Y Y A e g T A ST e ARSaR R N o% o TERRNIEALT B2 o ATLEIAAR S

Input/Output

Traps:

NOT LOG. NAME

NOT PERMITTED

BASIC I/O ERRCR

Conditions for FAILure:

a) The physical device is a disk file, and an attempt ta read
a non-existent word occurred while developing an input
line. The input word selector has been advanced pointing
to the non-existent word. ‘

b) The physical device is the TTY, and the user has typed
in a line (possibly null) ending in { Z (see the section "Tele-
type Input/Output”). The input selector has been advanced

by one plus one for every five characters typed in preceding the t Z.

Default Results:
#1: the NULL CELL
#2: the INTEGLR -1

Description:
If a previous ccl! upon INL or INLS caused a line’

to be read which did not account for an integral number of full words, then
this call begins reading the very next character of the partia: word (unless
the SELWI function has been called meanwhile). A line of arbitrary length
is read terminated by either CR (see the section "Input/Output of CR"), ESC
(see the section "Input/Output of ESC"), VT, or FF characters. Any NULL
character is ignored. If the line contains a sequence number, it is read
and the very next character (should be TAB) is ignored. If the line has
more than one sequence number, only the last one is reported. The input
werd selector is advanced selecting the next full word following the last
character of the line. If the physical device is the TTY and all typed input
has been read previously, the function waits for the ucer to type more
(up to @ break character).

o~

. i s e e

ST adin b s ot A

o bl

v . T - I
A b R R L P k] £ 4 e o AR A s AL 21) Bt T, A i e 64 S AN A ' 1

bl o ng gl o kel

e G v T e Ems P -~ g T L o e i o g e Do aa i e
Wy et DS T2 3yt P T Lt PO P e v == By T

i Sy PR A IECSTRRTTE L UG e e T AT WEWRTED v T e TSR L D R R TR -, i
1 9 Input/Output ©]
S B ¢
3 . 3
- QUTW :
4 2 Use: output one word %
] . 3
: £ Arguments: g
130 #1: a logical name associated with mode output or input- 3
3 output for an open physical device 5
3 #2: an INTEGER
Example: :
- 3
T c====F 3
1 1 5
1 ouTy 1 3
1 1 3
4===c======s===+ "5
1 1
1 1
1 1
1 1 3
\Y \Y i
4=e==] +e==1 !
1 1 1 1 ;
1DUMP1 1-1 1
1 1 1 1
R foant
Traps: q
NOT LOG. NAME
NOT PERMITTED
CANNOT OUTPUT
BASIC 1/0O ERRCR
Description: i
The given word is outputted, and the output word selectur
is advanced by one. If the physical device is the TTY, five ASCII characters
- (except NULL is ignored) are placed into the Teletype output buffer, whica is
.- flushed by a call on OUTW onlv when the buffer is filled to its 16-word capacity :
-- The user should beware of cutputting {D and other troublesome characters to i
i the TTY.
. 'S4
F-29 3
A L‘A‘j

Input/Output

z
z
H
H
:
=

OUTS
Use: output a string of characters
Arguments:
#1: a logical name associated with mode output or input-

output for an open physical device
, #2: a list ¢l possibly varied content: each element may be
’ either a BASIC SYMBOL, STRING, INTEGER, REAL, or
NULL CELL; the degenerate~list convention applies

: Example:
!
o cn v me- F
1 1
1 OuUTS 1
1 1
$emssm=mosm=mmms4
1 1 .

3 1 1

b 1 1

? 1 1

; v v

¥ PR +---B

| 1 1 11

E 1TTY1 1Z2% 1

3 1 1 1 1
Fo——t o=t

3 Traps:

NOT LOG. NAME

3 NOT PERMITTED

CANNOT OUTPUT
BASIC 1I/0 ERROR

: Description:

“ : Each element of the second argument is replaced by a uniform
list of BASIC SYMBOLS by applying the AMBIT/L built~-in function TRD to
each STRING, INTEGER, and REAL, and each NULL element is eliminated.

. .
s ALt Rt PN Lol P ent e U ol e 2 o0 LA 1 el e A 1 s fuh

g
A
]
s

Input/Output

S The resulting list is outputted using an integral number of words by pad-
- ding out unused bytes with NULL characters. The output word selector is
- advanced accordingly. If the physical device is the TTY, the Teletype

2 T output buffer is flushed so that all characters are typed (even if this call
] o on OUTS did not contribute any characters for output).

Use: outputal) < of characters

NOTE: The characteristics of OUTL are the same as those of OUTS,
except effectively a BASIC SYMBOL %CR is always appended
to the end of the list of etements of the second argument,

m n Yo s ‘
8 oia , . "™
AT s el FEARLD A i AL A, G B A b LN a0 K2 YL AR b e ko bt

DL e Dttt N

BN 2 T

Gt Lt

S H TS P TR AT ey

YRR

B 3 b L

PR U

E ¥ B
E | Input/Output :
i :
; :
3 OUTLS g‘g
Use: output a line of characters and a sequence number %
Arguments: 14
. #1: a logical name associated with mode output or input~ 5
output for an open physical device 2
#2: a list of possibly varied content: each element may be ;i
either a BASIC SYMBOL, STRING, INTEGER, REAL, or §
: NULL CEL.; the degenerate-list convention applies -
: #3: either the INTEGER -1 indicating a line with no sequence j
S 3
3 number, or a positive INTEGER which is the sequence number 2
to be outputted. g
7 Example: ;
_ et bt L L D DL Lt F 3
3 1 1 ;
3 1 OUTLS 1 1
A 1 1 3
1 1 1 1
1 1 1
E 1 1 1 3
1 1 1 §
v i v
3 e M 1 to-= &
! 1 1 1 1
3 10UTPUT1 1 11651
1 1 1 1 1 3
torme—— + 1 =t 3
: 1 : i
i 4
e | 1
E 1 P 3
-t S t tm—— E
3 11 1 1 1 1
1 i=--=>1 le==-=31 1
1 1 i 1 1 1
; toet de—=+t FS ;
E P - 1 1 1 i
; A 1 1 1 !
E 1 1 1 ;
e 1 l l ; 3
. \Y \Y \Y :
: - o= S +---8 +e-=e]
- 1 11 1 1 1
e T 1'HELLO'1 12 1 119751
E .. 1 11 1 1 1
;: D + ===+ temmmy
‘ | . PNy
f F-32

A g

i Input/Output
-- Traps:

: NOT LOG. NAME

) NOT PERMITTED

; CANNOT OUTPUT

NOT SEQ. NO.
BASIC I/0 ERROR

- £ Description:

; The characteristics of OUTLS are the same as those of
OUTL when the given third argument is the INTEGER -1. When the given
third aigument is a positive INTEGER the characteristics of OUTLS are
the same as those of OUTL, except the line being outputted begins with
a sequence nuinber and TAB.

A A N R e
A Qi

SR e e R i e e e g Bt R i s B e e R

S TR r.ziﬁmmqaﬂ
E;

Vb b S LA

AIWEENY ;JS»;Am. rrEm

Lt SN R i P N el RS 6 B

- e IANELIALT T vt
AR S- P S A e b e L s S ot s e e ELALIEE A .3;5.1
B

Input/Output
1 8 SELWI
, Use: select word for input, i.e. set the input word selector :
- E Arguments: 3
: e #1: a logical name associated with mode input or input- :
. output for an open physical device :
#2: an INTEGER greater than 0 :
3 cxample: K
3 EX LR L LY D F z
] 1 1
: 1 SELVI 1 z
- 1 1
3 Y Y F T é
2 1 1 ;
1 1 3
1 1 ;
1 1 k
\Y v 5
b datadai M 4e==1 %
1 1 1 1
18YMTBL1 1 1 1§
1 1 1 1
fomm——— + ===
Traps: :
NOT LOG. NAME
NOT PERMITTED
NOT WORD NO.
Description:
The input word selector is set to the value of the given
L second argument,
B Additional Description for Non-Uniform Input/Output:
Beware that if either INL or INLS was previously performed ‘
to input a line of characters which did not occupy an integral number of words, é
P then any characters of the partial word will be lost. Note, however, that any 2
. disk file produced via AMBIT/L input/output functions will always pad out a §
T line with NULL characters to occupy a8n integral number of words., §
: 7
i /&7

F-34

ma b A T i =

1y
g
i
¢
b
Mxmmmmmu [RTIR.

()

T

e ,nma:m yoos g 1

oA e e

e

AT IR T T SRS E g b FeS R PRI T e T e L S0 R S B2 e F TR CE W AT S P A IR R RGN T T Lt - - s s e MY

Input/Output

.]
O N N -mumm'md

Use: select word for output, i.e. set the output word selector

Arguments:

#1: a logical name associated with mode input-output for an

open physical device.
#2: an INTEGER greater than 0

Example:
LD el F
1 1
1 SELYO0 1
1 1
frmomommmmmomSsSee
1 1
1 1
1 1
1 1
Y Y
dommn—- M te=e===-p
1 1 1 i
15YMTBL1 1eVALUE1
1 1 1 1
fovcacna + fommne- +
Traps:
NOT 1.OG. NAME
NOT PERMITTED

NOT WORD NO.

Description:
The output word selector is set to the value of the

given second argument.

i

<
i
¥

PP VT IOR T N VYRR CIPI STORIUICI S AR)

AR

i Gt ik

3 LML

@

RARANTHS TPPR S JLE T ST 2PN VISR)

Y

AR 0 Ix ot WA AN Sy 1l

it 24 AR b o il L L A 7 ead

T

£ Rditaa s

'
m.um»ww;
ALY,

P e B S L S R B S R R TSR DR T B O R PRI St e e o e T TR s SIS RSN B R L A A T R R e AR I IS TR A T AT

] g n Input/Output
3 RDSELIL
} . Use: read the input word selector
E P Arguments:
E #1: a logical name associated with mode input or input-
.) output for an open physical device.
. Results:
#1: an INTEGER greater than 0
] Example:
t=e=P
1 1
3 INOU1L
3 1 1
] toemt
2 H
3 H
H
H
v
fm———— —————— F $mm—t
1 1 1 i
1 RDSEL1 lem==>] 1
1 1 1} 1
fmmmmmm=======+ Jomowt
1
1
1
1
v
tomnm—— M
1 1
1SYMTBL1
1 1
tom - +
Traps:

NOT LOG. NAME
NOT PERMITTED

Default Results:
#i: the INTEGER 0
Description:

The result is set to the current value of the input word selector.

- o ai
O Al

v iy Pogere 3w,

F-36

R N s T g S e e TSR & TS FERECRE BT TR TN VR kY T ke e TR
Input/Output
RDSELO
Use: read the output word selector
2 Arguments:
;- #1: a logical name associated with mode output or input-
’ output for an open physical device
: Results:
. #1: an INTEGER greater than 0
Example:
R et F ==
1 1 1 1
1 RDSELO jeew=>1 11
1 1 1 1
$==o=mmmmSms====4 fm——t
1
1
1
1
v
fomene]M
1 1
IFILELl
1 1
S +
Traps:
NOT LOG. NAME
NOT PERMITTED
Default Results:
#1: the INTEGER 0
Description:
The result is set to the current value of the output word selector.
E b .
|
¥ B
: E F-37
29
: 1h2

NN

ha kb2 SO N b L

LA b et

owhlraivh, ot i s kel

i

4

P Input/Output

ROLNGTH
Use: read the length
Arguments:
#1: & logical name for ai: open physical device
Results?
#1: a positive INTEGER
Example:
e e S F dmm—t
1 1] 1
1 RDLNGTH lecee>] 1
1 1 H 1
$mmmmmmmmmmsSm=4 L iainde 2
1 A
: 1
1 1
1 1
v 1
$rocana=- a tm——=F LD T 3
1 1 1 1 1 1
1eTEMFILEI] 1ALDl 1 ~=-=->1 1
1 1 1 1 1 1
trmemnew + ===sy ot
A A
1 1
1 1
1 1
1 1
L b TP Y -F
1 1
SELWO 1
1 1
L3ttt F 3323+ + I+ 522 23 2 S S S F 1 F F 2+ 2
Traps:

NOT LOG. NAME
NOT PERMITIED

Y U

E.
3

bt SR A

Input/Output

Default Results:
#1: the INTEGER 0

Description:
The result is set to the current length of the physical device.
Note this is also defined for the TTY (see the sections "Files on Disk"
and "Teletype Input/Output").

F-39

TR T L S SRR S BT R A R RS I BT AT P LKL

Input/Output

RDLNMS

Use: read ail logical names
Results:

#1. a list of all logical names
Example:

o " Lo B
2 Stk ANAL G126 T L4 20 MDA Fikudas 2 AW lky;mM;;\&m\\..viz\i:z.\‘t\»\;.}u.\ WAL 20 AP L A 5S AR

$====P
3 1 1
1SIZE1
: 1 1
3 fomant
e H
H
H
E H

| Y

E tocemeeF to==t
1 1 11
; 1LENGTH1->1 1
- 1 11 1

RSP o el
A M LA P ALY 1 It M 2 AU

E ¢======¢ +===+
'3 1
1
35 1
1 :
v :
E 1 1 1 1 i
& i RDLNMS j====>1 1 E
1 1 1 1 :
: fFo=m=m=s=mms==d to=-=t :
| E
Description: 3
The result is set to a created list of all logical names of ;
currently open devices. The list is ordered, with the most recently opened :
name last. Note that the degenerate list convention is not used for the v
result.
3 -+ 4
s § 3
£ {]
E & - F-40 11
E < 13

————— i R o |

e RS L Lo A 4

At lin Lt il

AT
- ey PR veme

UL B i e L L A R b R

o« pores

e B

Py

Ry 5 it e ST W A e e, o e SRR SRET AR SR S R e e s e A e R S N I R L S ARG SN

Input/Output

RDINFO

Use: read information associated with a logical name

Arguments:

#1: a logical name for an open physical device

Results:

#3; a mode name in INTEGER form, i.e. 1, 2, or 3

#2: a physical device name, i.e. a list

#3: a channel number, i.e. an INTEGERO, 1, 2, ww.., Or 13
#4. a list of all logical names associated with the physical

device associated with the given argument.

Example:
LT L F LY
1 1 1 1
1 l==~=>] 1
1 1 1 1
1 1 o
1 1
1 1
1 b
1 1
1 :
1 1 tom——t tme==pP
1 1 1 1 1 1
1 RDINFO jeoce=>1 | 1CHAN1
i 1 1 1 1 1
1 1 -t dommoat
1 1 H
1 1 H
1 1 /=======/
1 1 H
1 1 1Y)
1 1 -t
1 1 1 1
1 l-===>1 1
1 1--\ 1 1
Fmmmmm=cs===x===4 1 tomed
1 1
1 1
1 1
1 1
\YJ 1
=== 1 +===
1 1 \=>1 1
e 1LSTG1 1 1
1 1 1 1
} tmm— s

. - .
v . .
ottt AN AN A A o) Nt 0 AP (LAY A i BO b AN NS K Btz M (s A AV I Ml a3 B KN e dr e tbns A ts bt ol 2 U e UM n DDA s SN S WA MR 0200 2088 N n Bty sV N 86 221 0L B L AR AR M AR A5 ¥ L S0 u\r- e ee Mz P LA HAEAY

)

R e T A & e R e O e N A s L e

Input/Output

Traps:
: NOT LOG. NAME
NOT PERMITTED
: Default Results:
. #1: the INTEGER 0
A :
3 #2: the NULL CELL 3

#3: the INTEGER 0
#4: the NULL CELL

LGS A

Description:
The four results are set as indicated above. Note that
the degenerate list convention is not used for the second and fourth
results. Also note the second result is not a created list and thus

Dand eSS LZRAN R Bei iy i 4o

danad i aid

should not be altered by the programmer.

S LA b st

Y ot S ot s ¢ L

e . e L s 9
Foaoton, o Dl . i kDt e) R LA S e s 2% v Ll on P U o e a1 € s it A S A8 K W AN P a2 i el F

~
.

F-42

(END)

%

Rl aniirtaniien = R0 - o A R
= ma— et o M

e s NN

L RLGLA A AR I

o

Section G

Lo L Kby £ AL i

LT e A Lt G

Using DIAGEN: the AMBIT/L

Diagram Generator

o

A S ol SN R e oo

e

January 10, 1972

Adil

o S bidu

5t £l g8

b g

AL A s AL W S LS o

N

This section describes how to use the AMBIT/L
Diagram Generator.

Lo

LEPE

b b L e et)

i F R

[T PR il e - -

DIAGEN

it latipn e
iy
i,
e e) byt
3
“

The Diagram Generator {DIAGEN) is a translator in the AMBIT/L
Programming System which reads as input an encodement of one insertion
(or block) of an AMBIT/L program and produces as output a listing of
that insertion. This kind of translation is often performed by the compiler
of a programming system, and such an organization would make sense in
the case of AMBIT/L. Historically, however, DIAGEN has been written
in FORTRAN and MACRO - 10 assembly language, and merging DIAGEN
and the AMBIT/L Compiler {which is written in AMBIT/L) would require
the establishment of the desire or need on the part of the AMBIT/L user
3 community. The current separation of these two translators decreases
their combined effectiveness in reporting errors; this will be elaborated
upon later.

Since the format of the listing produced is described in Section C,
"The Drawing of AMBIT/L Programs and Their Encodement”, this section
is concerned more with the actual use of DIAGEN.

The Diagram Generator is invoked by a Monitor command of the
form;

RUN DIAGEN [proj , prog]

where proj and prog are the project and programmer numbers of the
directory where the AMBIT/L Programming System is residing. This calling
sequence may be somewhat different, depending upon the méthod used to
install AMBIT/L on a parti~ular PDP - 10.

!
;
|
i
£

When DIAGEN is invoked it first prompts the user by typing an
asterisk on a new line. The user is then expected to type the file name
of the source file he wishes to list. The name is accepted in standard
form: a primary name of one to six alphanumeric characters followed *
optionally by an extension of zero to three alphanumeric characters with

N . it e
. L WANEA 21 L "
N YT IR 0y o w5 <ome 1 =
' . . .
.

154
G-1

oo el

ot 43 M

i
»
d
¥,
§
i
b
*
P
K
E:
x'Y
3
1,
«
W
E/
b
§
;
*
ke
4
b
]
i
\
X
P
.
]
k
b
i
y
¥
P
B
#
b
¥
umhﬁ.hll*.:\&xmu..“m i A....m.««f,‘;a..ukmﬁj

§ TS RO R LN

v ttacd iAo ST AP Al t Suinit Sk,

st datants 16 1 A

S ki el A 2 Lk,

»L

ARG st

R o0 bl AL S i

PR LA Lo o b i L

g b G s il b T L

T

b AR B Y AE A AE I NI

[T

R P I I, e v ey W] N S S

SRR R R TR RN IR S TR T L RO TGRSR | 1A O anen

DIAGEN

a period as separator. The file name must be immediately terminated by

a carriage return. If no period and no extension is provided DIAGEN assumes
a default extension of "AL" for AMBIT/L. A null extension name is specified
by following the primary name with just a period. Note that there is no
option for specifying a project-programmer number; thus the source file must
exist in the disk directory in which the user is currently logged in. If there
is a syntax error in the name or if the specified file does not exist, DIAGEN
informs the user by typing a question mark followed by another prompting
asterisk on a new line. Otherwise, a listing file is created in the user's
current disk directory with the same primary name as the source file and an
extension name of "LST".

DIAGEN then reads the source file and produces the listing file.
When it reads a source file with sequence numbers (as produced by some
text editors and PIP), it notes the number of the starting line of each
rule and includes that number in the listing of the rule. DIAGEN treats
a source file without sequence numbers as if it were sequenced by one
(starting with 00001 as the first line). A source file may even be mixed
in its use and omission of s.quence numbers since each line is individually
examined for the presence of a sequence number.

All textual material except for blank lines is simply copied from
the source file to the listing file. To separate parts of a program listing
use comment lines (beginning with a '$*'). DIAGEN expects the very first
non-blank line of s source file is not the beginning of a rule. It also
expects that the last line of a source file includes the ‘END' scatement not
followed immediately by a semicolon. When reading a source file which
does not end in this way DJIAGEN detects an error condition which is
reported as:

ERROR READING SOURCE FILE

angd it returns control to the PDP - 10 Monitor; however, the listing file is
not lost.

74

G-2

¥
i

A s recs THef T

L

AR e g LA SIS (DA D S b B s AL 0 L TR WAL 16 ur 2T N AMWimmm.mm\v_mwmu:xtr.«mam‘.m

ol e SR

Loallonil i i al e ihe as S AL 44

Do i s oo d ¥ RO b St L

FATRF P TR PR

FVITIY

TR MR TN

L I 2 SR e R

T Y LT W P

el baba g b en dho L Ll s

e B TN T T R I R IR I T T T T A R T T

DIAGEN

Other than seeking the words 'END® or ‘RULE', DIAGEN does
not analyze any of the textual portion of the program outside of rules
and, therefore, it does not detect or report on any eircrs in that text.
For example, the lack of matching parentheses or BEGIM - END pairs
goes unnoticed.

When it finds 'RULE' DIAGEN reads the encodement of the rule
up to the terminating semicolon and performs some syntactic analysis on
the encodement. As it begins to analyze each rule DIAGEN types ore
decimal digit on the terminal to inform the user of its progiess. As each
node specification of the encoded rule is read DIAGEN places that node
and its links onto the representation of the listing page it is building.
After assimilating the entire rule, the representation is sent to the listing
file. 1If a syntax error is detected within a rule DIAGEN types 'SYNTAX
ERROR' followed by the current source line (with sequence or line number)
and then a line with an arrow pointing to the character of the source line
which triggered the detection of the error. In the case of such an error
DIAGEN abandons further analysis of the current rule; the listing includes
the initial part of the diagram and then the source text of the encodement
from the line of the error to the terminating semicolon.

The syntax accepted by DIAGEN is very permissive. For example,
it does not check that the type-set is one of the allowed forms, and most

node names are not analyzed. Nodes in a rule which are either inaccessible

or missing do not trigger any error condition. Links are drawn only on the
basis of their origins and routes (explicii &. uelault); the specified

destinat.on of a link is not checked for consistency. This can lead to a
hard-to-find bug when a diagram may look good, and the specified
destination may not be the correct one; the AMBIT/L Compiler ignores
specified routes (excect for the initial perburbation) and bases its analysis
on the specif.ed destination. USERS BEWARE!

insrivhad b Sttt B SR s LN

sdtbh! ok adgsdidiak

TP SIS T SIS

FOPRTICES v MU N T AT o)

st ittt ot LA S LR

<m0 b A i DA s S B L R e bt B B M

DIAGEN

Since DIAGEN diagnoses so few errors, users are urged to
examine the listing to notice incorrect or undesirable rule encodement.
Such 3 review of the program prior to its submission to the compiler can
be used to catch other syntactic errors or even semantic ones. As long
as there are no ambiguities in the specification of a rule, the Compiler

does not complain about poor layout.

When DIAGEN completes its translation of a source file, it
restarts by again prompting the user with an asterisk on a new line. The
user may then specify another source file which he wishes to be translated.
I1f he is finished using DIAGEN he types tC (i.e., CTRL C) to return con-
trol to the PDP-10 Monitor. To stop the operation of DIAGEN at any time
the user may type two tC's (CTRL C) on the terminal to abort the current
translation and return control to the Monitor.

Then to obtain a listing the user may use the 'TYPE' command to
see it immediately on his terminal or he may request a line printer copy
by standard methods. In some cases the user may wish to use a text
editor to help look at some of the listing. The listing file is unsequenced,
i.e. no sequence numbers are attached to lines. The listing includes TAB
characters whenever possible corresponding to tab settings at every eight
typing positions. Thus if a terminal with hardware tab capability is used
as the listing device the user should be sure to take advantage of the
possibility for a much quicker listing.

DIAGEN always translates the entire source file it is given.
Occassionally the need arises to produce diagrams for only a few rules of
a large insertion. The user can use a text editor to produce a temporary
file containing only those rulcs he wishes to diagram. When doing so,
it should be recalied :hat the file must end with an 'END' statement and
it must begin with a non-blank line other than a rule's beginning. Itis
suggested tha 1n initial line of 'BEGIN' be used.

S e AR o 4

(END)

!
.
.
" imﬁmwmmﬁ

wd
Subtn 2wt M b Lo S 3 e LA

.wu'Nx\.v WL

bl o NS NI Sy B ot A I O Lt 300 A MY B0 Waara2 L i a8 22

RIS

PLETINITEEE TR KN TS O VT W (XY TTEUR R TPPEFIV TN VRO

i Soh VAL s o AR AL S 0B

WO AR AT Y ARG R e T

PECAAL ittt

Rkl

regen R M

s

W e e axe s

P TP

N,

3
3
3
3
3
2
3
;‘%l
4

o 0

L2y e

u il

L L

P b L

Section H

Using COMPIL: the AMBIT/L Compiler

January 10, 1972

LSt P S, S A i R AR R AR A P R

LML Mkttt TN A A A 18 M ot DR W0 28 0

This section describes how to use the AMBIT/1 Compiler
and how to interpret its informative typeout. Included is
a collection of all possible error diagnostics along with
associated explanations and error recovery transformations
made on the source text.

H
3
-
3
k!
3
4
E
3
g
3
H
<
2
a
E]
2
E|
E:
H

113

o AL b e P thnchr

FageenTs

R LA

Rl iR L

RN AN RO ORI

:
L
i
3
§
£
-
H
g
<
S
3

[v
3

PENPRIR Sen bl R B R U AR P N B T IR R PR IR KPR B R R B i T T T T TSR WA ST s, PRy %,

COMPIL

The AMBIT/L Compiier, which is itself an AMBIT/L program, is
used to translate one insertion of an AMBIT/L program from a source file
of (ASCII) characters into an intermediate binary encodement file. The
source file represents both textual and diagrammatic portions of the
program in an encodement language whose syntax is presented in
Section D, "The Syntax of the Encodement of AMBIT/L Programs®. It ..
prepared usually by a text editing program available on the host PDP - 10
Time-Sharing System, such as EDITOR, TECO, SOS, etc. The primary
name of the source file must match the name of the insertion which it
contains, except the primary name does not include any periods which
inight be in the insertion name, and only up to six characters can be used
as a primary file name.* The programmer is free to choose any file
name extension of zero to three alphanumeric characters, but the Compiler
(and also Diagram Generator) expect the default extension "AL" (for

AMBIT/L).

The AMBIT/L Compiler is invoked by a Monitor command of the

form:

RUN COMPIL [proj , piog]

where proj and prog are the project and programmer numbers of the directory
where the AMBIT/L Programming System is residing. This calling sequence
may be somewhat different, depending l'lpOn the method used to install
AMBIT/L on a particular PDP - 10.

When the Compiler is first invoked it prompts the user with the

following request;

*SOURCE=

*This rule need not be strictly followed at compilation time or diagram
generation time, but it is a requirement that the primary name of the REL
file conforms to this rule when the insertion is linked by the AMBIT/L

Link Editor.

B i ol e eopisiitiio aeendet et oo ey

T AR

COMPIL

g
2
el
4
¢

The user is then cxpected to type the file name of the insertion he
wishes to translate. The name is accepted in standard form: a primary
name of one to six alphanumeric characters followed optionally by an
extension of zero to three alphanumeric characters with a period as

Bl Aot

il
3
e
E}
)

1
E 3
Es -3

k.

<
43 3
: £
e §
4

B e,

TP
5 Lot)

separator. The file name must be immediately terminated by a carriage
return. If no period and no extension is provided, the Compiler assumes
a default extension of "AL". A null extension name is snecified by
following the primary name with just a period. Note there is no option

Ctets bl S P A N

for specifying a project-programmer number; thus the source file must
exist in the disk directory in which the user is currently logged in., If
' ; there is a syntax error in the name or if the specified file does not exist,
the Compiler appropriately informs the user and then repeats the promnting i

PRV LU

BB M 4 [k 12 5en

message on a new line,

o

The source file may optionally include sequence numbers on any
or all lines. The Compiler treats each unsequenced line as if it had a
sequence number one higher than the previou_s line; a thoroughly unsequenced
source file is treated as if it were sequenced by one, étar’cing with 00001 on
the first line. The comgiler uses these sequence numbers only for informative

¢ et e g s e -

seRAnL) e

e,

typeout on the terminal. Such typeout is done for correct programs as well
as for reporting error diagnostics. The Diagram Generator uses the same
method for providing default sequence numbers when necessary and thus the
user can make the correspondence between the diagrammatic listing and the

e

PA PR Y (¥

informative typeout of the compiler.

Lo s S S

Except for the typeout on the terminal, the only output of the
compiler is a binary file i1n the user's current disk directory called a "REL"
file to conform to the name of intermediate code “iles produced by other
translators on the PDP - 10 (e.g., FORTRAN, MACRO - 10, etc.). Although
“REL" is for "reincatable®, AMBIT/L intermediate code (or even final interpreter
code) really doesn't have anything to do with relocetion. Furthermore, :
he format of an AMBIT/L REL file bears no relation to that of other programming 3

EPY LTV TS T

ARG T R WL

E
s
E

o Lo
i i
e heans aan N e

COMPIL

subsystems of the PDP - 10. The REL file produced by the Compiler is
given the same primary name as the source file of which it is a translation
and an extension name of "REL".

An AMBIT/L REL file is always produced even if several error
conditions ar< detected during compilation. 1t is also correct or meaningful
'code since the Compiler performs well-documented error recovery
trancformations on the given source program specific to each type of error
conaition. However, in th~s rare c..ze that the Compiler itself *bombs out"
the REL file is lost; there are no known bugs of this sort for either correct
or incorrect AMBIT/L programs. Any user encountering such a problem
should inform the system maintainer of his trouble, hcpefully accompanied
by the typeout and by a copy of the source {ile.

1f the user wishes to stop a compilaticn prematurely, he may do so
at any time by typing two t C's (CTRL C) on the terminal to return control
to the PD? - 10 Monitor.

The Compiler's typeout is useful to the user as a continuai indicstion
of i’s successful progress as it begins to tianslate each rule of the insertion.
It can also be of help during debugging of the program and thus should always
b saved. Foi each rule, one typed line is issued which contains two or
more columns. The first column has a dez.mal number which is the sequence
number of the rule in th~ source file. The second column has a decimal
number which indica es the woid number In the binary object code being
produced where tae enr ~idement of that rule begins. Remaining columns are
used to indicate any identifiers (if any) which are de.laved as labels of
that rule. A similar typeout is issued for each END statement in the source
program. The automatically declared identifiers 'RET' and/or 'EXIT' are
listed when appropriate. Each INSERT command in the source program whch
inserts a function body and each one-ruie function budy causes ong line to
be typed indicating that ‘RET® is automatically declared. As errors are
detecced throughout the compilation, appropriute error diagnostics are typed.
Also, the bell may ring as compilation proceeds; each ring indicates the

) LAY
1O

f
E
l"
i
l

1]
L

L R e e d e ™ ¥ Moy Y343

£ P Lalakiond bt o (D s

it kb

LD bt

-t

¢ et ph il o) SRR T T R TR TR T T T N e SIS S R RS T TR TS PR

COMFIL

Garbage Coliector has been invoked automatically to regein free storage.
Such activity is normal and expected.

After typing the line which corresponds to the final END statement,
the Compiler types a list of all undeclared identifiers (if any). The user
should always look through the list to see if it contains just what he expects.
An undeclared identifier should be ore which is declared within an enclosing

fanctiin s Gt

block in some other insertion or is built-in to the user's environment. The
resolving of these identifiers is done by the Link Editor. The user should

not be surprised to find certain built-in function names in the typed iist which
are employed as a result of certain macro expansions: MEMBER, EQ, T1RT,
TRSQ

ST AR VAL AR | At

After typing the undeclared identifiers the bell on the *erminal rings
indicating a forced invocation of the Garbage Collector. Then there is a
pause for several seconds while the Compiler appends the symbol table to
the REL file. Finally, th» Connect Time (in seconds) and the number of Kilo-
Core-Seconds of computing performed by the Compiler are typed and control
returns to the PDP - 10 Monitor.

J S <kl

Below is a sample program in both diagrammetic and encodead form
followed by a typeout of its compilation.

St o 1 s bl ALkl Laltardeiatid

PRI ATY

itandn 2 »

i g
PRI IV, R Y AT IO ESREPPPAY TPt oL

Wy,

PRV ATV NTTRTA T SO M

Llaltic]

R T AR AT e KA

e,

R L P

TS WA, Penare ok Ba

0
s

24

INSERTION EXAMPLE:

BEGIN
B(X) Y

INSERT B’

CxXdyY:
BEGIN
RULE
(GGGT6)

$owaD

1

I X1

}

1 1

1 1

PR Y 3 b=

1

i

|

1

v
+eo-=+t

H

1

dm——d

1 i
1--==>]

1 1

SF/RET;

END;

START: RULE

GG140G)

4=
1

+eo-—t

H
1
i

o=y

-T 4~ =P

1 1

1¢(Qsrt Il R

1

R et &

1 1

el
fs o<

=
X

F/ERROR;

END

i
1
1

fm——

ot > e B rmg = L B — L o o e — o e S
AR IR L e R Rt L e emas — e o e o o LT

COMPIL

T

A sttt ot St 30,

i At 5 v it i

e Gl rw.; & oo R L e e Sl i g

3 ;
b i COMPIL
: GO0 INSERTION EXAMPLE;
3 66625 BEGIN
: 66030 B(X) Y @
£ 66640 INSERT Bj
4 6G6SG CCX)Y:
: 66060 BEGIN :
3 665670 RULE o
1 66660 Al/P/X D/Bl, :
3 66696 A2/P/Y BD/B2, E
E 66166 Bl R/B2,
] 66116 B2//

6126 SF/RETS

00136 END;

001406 START: RULE

65150 Al/77T/7¢Q) BD/Bl.,
G160 A2/P.'R BD/C2,
60170 Bl/A/:®,

00180 Cl/=F/C UsB1 R/C2,
50195 carsrs

66265 F/ERROR;

66216 END

«RUN COMPILL 72,213) :
xSOURCE=EXAMPL E
45 4 RET E
76 6 ;
136G 16 RET EXIT 3
146 11 ;
216 25 EXT .

UNDECLARED IDENTIFIERS:

R 3
P
TRT 3
Q 3
ERROR

123 KCS :
6T 71 Si3 i
EXIT i

TETLEW "

113 ;
E

B A g

COMPIL

This memo concludes with the following collection of all error
diagnostics of the Compiler arranged in numeric order. With each message
is given further explanatory material and the transformation performed on
the source iext to recover from the particular error. The meta-variable n
used in the diagnostic messages represents a line number which is a sequence
number of the source file. When an error condition is reported as being "IN"
a particular line, the us~r should expect to find the error right there. Several
diagnostics, however, indicate an error occurs "NEAR" a particular line. In
this case the user should look on that line and th.:n look backward from there
(towards the beginning of the source file) to locate the error being diagnosed.
Usually, the error is, in fact, on the very line mentioned.

The Compiler is usua’ very thorough in its detection of syntaccic
and semantics errors. The oue exception to this is in the way it (currently)
ignores link routes except for at most the first two characters. Syntactically,
the compiler requires that a route begin optionally with a perturbation
followed by a direction, but then the remainder of the route is ignored as long
as it consists of letters and/or digits. Compilation is based only on the
destinatinn node specified. Users must be rather careful in this area since
the Diagram Generator draws links based only on the route, and it ignores the

destination. Thus, total reliance on a diagrammatic listing is not sufficient.

When a diagnostic message appears during a compilation, the user
should not assume that re-compilation is necessary. Instead, the recovery
procedure employed may be adequate, if not exaclly appropriate. Since there
is a recovery for every error condition the user should usu&lly allow a
compilation to continue to completion.

Several of the recoveries are represented by a transformation on the
source to the compiler. A right-arrow is used to scparate the kefore and after
forms of the transformation. A delta (A) is u-ed to show where the input
scanner is located before and after the transformartion is applied. As a
shorthand notation to show its context, a transformation may be enclosed
within curly braces, and the contextual for : appears cutside of the braces.

N

]
]
3
]

B R e A I S s ot C R T S R

COMPIL

1001: ILLEGAL CHARACTERIN n

error We find a character x which the operating
system permits in an input file but which is
not permitted in an AMBIT/L program.

QAL i

3 recovery {ax=a)
5 note The characier may be a non-printing character,

such as a control character.

1301: PROLOG IS ‘sl s2' NEAR n
error We are beginning compilation of an insertion

and expect to find a prolog (namely INSERTION
followed by an identifier). Instead, we find

the: segments sl s2.

" e e e

recovery { A - A INSERTION X} sl s2

Aol

1302: PROLOG IS FOLLOWED BY ‘sl' NEAR n

Lottt er

error We have read a prolog and expect to find a
semicolon. Instead, we find the segment sl .

recovery {A-+nr:} sl
1303: PROGRAM SECTION BEGINS WITH ‘sl s2' NEAR n
error We have read a prolog followed by a semicolor.

We expect to find the beginning of a block.
! Instead we find the segments sl s2 .

kP el €t e 2B LA LA R WPARKS b AN g A 1 AR S ik R L M A

recovery {a + o BEGIN } sl s2
i
g
3 ‘ _ IR ;

I
ST T =
e = P Ve P L S L nj

AT BT L, TR T RETERET Y x Ll Ny e RN AN ARG NS R AT ST e h o L LD SORONMRNERNT S - e e Sy BTRETR AR S TR SRR A3 TR S h o ns T s Ly s ae B WS TR

COMPIL
1401: ARGUMENT LIST ENDS WITH 'sl' NEAR n :
error We have read a (possibly empty) list of ?
arguments in a functicn heading and expect .

to find another argument (an identifier) or a
right parenthesis. Instead, we find the
segment sl .

recoverv {a+a)} sl
1402; RESULT LIST ENDS WITH 'sl' NEAR n
error We have read a ‘possibly empty) list of

results in a func:ion i:eading and expect
to find another resuli {-.n identifier) or a
colon. Instead, we find the segment sl .

recovery {a~+ ar:} sl 3

1403: FUNCTION BODY BEGINS WITH ‘sl' NEAR n ?
error We hz2ve read a function heading and expect

to find the beginuing of a biock, rule, or :

insert. Instead, we find the segment s} . 3

recovery {a » A BEGIN END } sl

VTSR TN N PRSI

120 gini gt

.2

~ E

V9 D3

3) T3

H-9 , 3

s e Teat el - - e i AN rni T Rt el L a

COMPIL ;

1

: %

1404: PROGRAM SECTION BEGINS WITH ‘sl s2' NEAR n 3

E error We have read a program section {see note) j

and expect to find the beginning of a following ﬁ

] program section. Instead, we find the segments :
S5 recovery {a sl s2...s[i-1] » As([i-1] }s[il

where ;

sl, s2, ..., s[i-1], ands[i"

: are segments and i is the smallest i:'nteger such ‘

' that ‘ ;

sti-1] is an identifier which can begin 1

a program section, and ;

s(i] is any segment except colon or 3

E a left parenthesis. ;

E note A program may be viewed as a prolog followed i

by a sequence of sections, where

section - BEGIN l

declarative ; I s

function- heading : ‘

‘; identifier : , :

- rule ; I J

insert ; | ;

END; |

END end-of-file

ERSYOURRI VN 7% K TR

PrT

IR TY N SART TP P TR SR)

-
ORI 0 A s B
o Ly

o bante .

13
L
R
2)

kLA L)

4 LA A A AR KR TN

AR

1405:

1406:

1407:

1408;

)
i
[

B 2 s

COMPIL

DECIARATIVE FOLLOWED BY ‘sl' NEAR n

error

Yecovery

We have read a declarator followed by a
sequence of identifiers, and we expect to
find another identifier or a semicolon.
Instead, we find the segment sl .

{a+4:1}) sl

—

MISPLACED DECIARATIVE BEGINS WITH ‘sl NEAR n

error

recovery

We have read one or more function definitions,
attached labels, or imperatives in the current
block, and we do nut expect to find a declarative.
Instead, we find a declarative beginning with sl .

(Same as 1404; that is, we skip over the next
section of the program.)

FUNCTION DEF FOLLOWED BY ‘'sl' NEAR n

error

recovery

We have read a function definition and expect
to find a semicolon. Instead, we find the
segment sl .

{a'»2a:} sl

MISPLACED FUNCTION DIF BEGINS WITH 'sl' NEAR n

error

recovery

We have read one or more attached labels or
imperatives in the current block, and we do
not expect to find a function definition. Instead,
we find a function definition beginning with sl .

(Same as 1404; that is, we skip over the next
section of the program.)

H-11 SHA

e R T LTI TR

Py

3l WY cpiogn RNt vitiabai b o

Lt ..

7T EUTRRETTEWEY |

W74 € ek L B M W b 2R O Bl b

AR Y AN i AN I I e,

bled

viris

1409:

1410:

1601:

AmTE LR L et L T s fRRTESETERASITOIN YT o Tk T T TR WAL RIS RIS . e Y

COMPIL
BLOCK FOLLOWED BY 'sl' NEAR n

error We have just read a block which may have
a transfer-list. We expect to find either a
transfer-list or a semicolon. Instead, we
find sl.

recovery {a +A:} sl

SECTION BEGINS WITH END-OF-FILE

error We tried to find the beginning of a section
(see 1404); instead, we find the end-of-file

which terminAates the insertion being compiled.

recovery {a » o END }

REDECLARATION OF 's1l' NEAR n

error We have read one declaration of the identifier
£. in the current block and do not expect to
find another declaration of this identifier.
Instead, we find another declaration of s1.

recovery {p sl 4}
note Thus, we skip the new declaration of sl.

MISDECLARATION CF ‘'sl' NEAR n

error We have read a reference instance of implicit
type L or F of the identifier s1 in the current block.
We expect to find a declaracion instance of implicit
type L (in an attached label) or F (in a function
definition). Instead, we find some other declaration
of sl.

r.covery The declaration of the icdentifier s1 we have just
read is ignored, and the previous declaration holds.

note This may lead to later 1801 diagnostics.

H-12 Vi

Db

DR SLATWE LS 1

e e A e,

T

ﬁu)w.ﬁ(_u-‘um..;um.‘.nmmummw LaaTve R2OLR A LS it 0 b P2 actdan ke 2 LA A DS S RN o 27 1 U0 S S0 L 036 e ab Shakvrn B 6 aviaSt Dt e LR ALE

4

8 e ped SR LA L o

(LR H R TR b Lk r IS o R

COMPIL

2501: TOKEN NAME ENDS WITH ‘s1' NEAR n

error

recovery

We have begun to read a name which is a token.
Such a name should have the form

({ literal } 3)
So far, we have read
({ titeral }o ({literal }5 ... ({ litera} } o

and we expect to find a literal or a right
parenthesis. Instead, we find s1.

{xa-a(0)})sl
where
x is the portion o1 the nam« already read.

Thus, this error in a name which is a token causes
the entire name to be replaced by the token (0).

2701: NODE BEGINS WITH 'sl' NEAR n

error

recovery

We have just read either

RULE {node, }go
or

{node, }o
as the beginning of a rule and we expect to find a
position which will beg..1 a new node. Instecad, we
find the segment sl.

{as1... s[i-2)+as[i-2] }sli-1] s[i]
where the s[i] are segments and i is the smallest
integer such that

a. s [i-1] is a semicolon, or

b. s [i-1] end s [i] are borh slashes, or
c. s [i-2] is a comma, or

d. s [i-1] is an end-of-file,

TPRPT N ST AYEDIRI R

WA

A

fye et s

A ARG E R NS ko) & 14 i St 1L A

AT b iyl

2
]
i
3
H
3
!
!
1
2
4
Y
H
M
H

R R ot R N e S i

COMPIL

2702: RE-USF OF POSITION 'sl' IN n

error We have read one or more nodes of a rule

L Fi M Mt L L

and found sl as the position of one of these
nodes. Now we find sl as the position of

AR LR S AL A

another node in the same rule.

1
E recovery {asl+pgll
where gl is an arbitrarily selecte? position
which has not been used and (v~ :orrectly
] predict) will not be used in this rule.
4
2703: ILLEGAL TYPE-SET 's1' IN DATA-NODE NEAR n
3 error We are reading a data-node and have seen
a position and a slash, and we expect to
find a type-set. Instead, we find si.
recovery {a s{1]...s(i1a AC/** }s{:+]1] s[i+2]
' where the sTi] are segments and 1 is the
smallest integer such that
a. s[i+1? is a comma, or 2
b. s[i+1] is a semicolon, or :
c. sfi+1]) and s[i+2] are both slashes, or §
R d. s[i+11is an end-of-file. ~
' ; 2704: ILLEGAL TEST-NAME '‘'sl' IN DATA-NODE NEAR n _
error We are reading a name-test in a data-node. 3
We have seen zero or more occurrences of a
e | ‘ name followed by a slash and expect to find a

name. Instead, we find sl.

recovery (same as 2703; tha. is, the current node is
replaced by a null cell.,)

IR 3T T PRI T U5 T SR A XL

T e T

TIRET T e

COMPIL
2705: ILLEGAL MAIN NAME '‘sl' IN DATA-NODE NEsR n
3 error We are reading a data-node and have seen

a position, a siash, a type-set, and a slash,

We expect to find a name or the beginning
('=* or '#') of a name-test. Instead, we
find sl.

recovery (Same as 2703; that is, the current node is
replaced by a null cell.)

TP T FIROT

2706: NODE FOLLOWED BY ‘sl' NEAR n

error We are reading the links of a node and we
expect to find another link or the termination

of the node by comma, semicolon, or double~
slash. Instead, we find s!.

recovery {a sr1Y ...s[i] « A }sli+1] sli+ 27 :
where the sli] are segments and i is the g

smallest integer such that |

{

a. s i+ 1] is a comma, or
b. s[i+1] is a semicolon, or
c. s[i+17 and s[i+2] are both slashes, or ;
d. sfi+1] is an end-of-file. :

2707 ILLEGAL TYPE-SET 'sl' IN CALL-NODE NEAR n

error We are reading a call-node and have seen a

Dt s b R e e XA il £, .81

boundary, a slash, and an '=', We expect to
find a type-set. Instead, we find sl.

P

recovery (Same as 2703; that is, the current node is
replaced by a null cell.)

RN Gy e g

1 1]
GRS AIEIAASE 2bb AR Lo
PR NN T R 1] Celihe 1t

-

COMPIL

- 2708: JLLEGAL TYPE-SET 'sl' FOR CALL-NODE NEAR n

error We are reading a call-node and have seen
a houndary, a slash, a type-set sl, and
either nothing more or a slash followed by a

GG X U BN i

name. The type-set sl should have been F.

AT

recovery { s1 »F}
2709: ILLEGAL NAME OR VALUE-CALL 'sl' IN CALL-NODE NEAR n
error We are reading a call-node and have seen a

boundary, a slash, an '=', a type-set, and a
slash. We tried to read a name and didn't find
one and t..en read a '#' if there was one. We
now expect to find a value-call. Tnstead, we
find sl.

recovery (Same as 2703; that is, the current 10ode is
replaced by a null cell.)

T RE-USE OF POSITION °sl' IN n

error We have read one or more nodes of a rule and

, found s1 as the position of one of these nodes.
IR Now we find a n.ode whi ., :as an extended

» . boundary {covering two or more positions) which
‘ contains sl and wnich is in the same rule.

recovery The position s1 is deleted from the set of
positions specified vy the extended boundary.

-- 2802; ILLEGAL EXTENDED BOUNDARY 'sl-s2' IN n

error We find .-:* extended bounc-ry, sl - s2 at the
beginning of a node such that sl is to the right
of and/or below s2.

. recovery {a s1-52+ 3 51}

YN VRSMAANE Y v s wew o by
¥
,

v ERERS
‘ H-17

NS L T T T T R e T

- COMPIL

" 2901: TYPE-SET 'sl' CONTAINS ‘s2' IN n
;, error We are reading a type-set sl and expect

to find a type-~code or a termination of the
type-set. Instead, we find s2, which is

not a legal type <=ode.

3

.. recovery {r s2 + 4} g
] 2902; TYPE-SET 's1' CONTAINS DUPLICATE ‘s2' IN n :
error We are reading a type-set sl and have

o seen the type-code s2. Now we find a

RY, S

second instance of s2.

| recovery {a s2+2} ,

) 3001: ILLEGAL WALK 'sl' IN VALUE-CALL IN n i
error We are reading a value-call in a call-node ?

] and have seen the 'V' with which it begins. %
§ We expect to find a walk. Instead, we find sl. 5
. recovery {a sl + A} @ identifier i
? o T 3
- 3301: ILLEGAL LINK ROUTE 'sl1' IN n
!
) error We are reading a data-node and expect to find a
tink or a termination of the data-node. Instead,

T we find an identifier s1. This should be (at
--) this point) a route, but it is not.

recovery {a s1 +4a}
and assume the termination of the node is next.

- note This diagnostic will be followed by diagnostic
2706 (indicating improper termination of a node)
when the assumption made in the recovery, above,

E' is incorrect. A termination for & node is a comma,
4 semicolon, or a double slash.
1499

H-18

Lot

i
,
E]
Eh |
v
hlloia /a3 00 dd SOSN8 0 SIS NN A 3 4o L D

TR A, T T BT ¥y,

Hd

oy

e g S Ssi cdedAAES

v
i3

TR T A S R T L RN T RSSO S IS LA T BRI TS BN LR S A TS SRS S TS Y L 0L

3302:

33C3:

3401:;

3402:

COMPIL

LINK ROUTE 'sl' NOT FOLLOWED BY DESTINATION IN n

error

recovery

We are reading a data-~-node and expect to find

a link or a tcimination of the data-node. Instead,

we find a route sl which is legal but is not
followeu by a slash and a destination.

{a s1 44}
and assume the termination of the ncde is next.
(See note +., 3301.)

LINK WITH ROUTE 'sl' IS DUPLICATEIN n

error

recovery

LINK ORIGIN

error

recovery

We are reading links in a data-node and have
already seen a link of some particular type
(solid or broken) and name (horizontal or
vertical). Now we find a link whose route,

s1, has the same type and name as that already

seen.

{a sl / dest » 4}

's1' OUT OF NODE IN n

We are reading the links of a csll-node. We
expec't to find a link which either has no origin
or an origin within the (possib'y extended) call
boundary. Instead, we find tte origin si.

Accept the origin s1 as the oriyin of the link.

ILLEGAL LINK ROUTE 's1' NEAR n

error

recovery

We are reading a call-node and have read an
origin and a clash. We expect to find the route
of a link. Instead, we find sl.

{origin/Asl + A}
and assume the termination of the node is next.
(See note to 3301,)

B9 151

&
mmmm‘ﬂ
1N A £ L R %2

R A W By Yy

LN

e

ECRC LA S VRN P S STLRIIRTNOPL 15 TR O POH

ARAL A R ademiia Y Lasisk L

o 203 DS AL a0 RS A I L 0 A1 LRI Y0 2kt 0 Bt £S5 1V N A N 09 E 3 AL O 0l e LA i DALV R AN At il B LD 5,

.

3403:

3404:

3405:

3406;

COMPIL

BROKEN LINK WITH ROUTE ‘sl' ON CALL-NODEIN n

error

recovery

We are reading the links of a call-node.

We expect to find only solid or flow links.
Instead, we find a link with route s1 indicating
a broken link.

Replace the *B*' in s1 with an 'S*, thus convertirg
it to a solid link.

JLLEGAL LINK ROUTE 'sl' IN n

error

recovery

We are reading a call-node and expect to find

a link or a termination of the call-node. Instead,
we find an identifier sl1. This should be (at this
point) a route, but it is not.

{a sl »a}
and assume the termination of the call-node
is next. (See note to 3301.)

(Same as 3404)

note

3405 and 3404 are for routes which have and
dn not have perturbations, respectively.

LINK ROUTE ‘'s1' NOT FOLLOWED RY DESTINATION IN n

error

recovery

We are reading a call-node and expect ‘o

find a link or termination of the call-node. Instead,
we find a route sl of a solid or broken link

which is legal but not followed by a slash and a
destination,

{a sl +4}
and assume the termination of the node is ne»xt.
(See note to 3301.)

3 5
i
¥
i
i

O st Mtaie e

YO bl 3

ak

WORS AL SR LTR PO Yy

P b 100 gy b

£ dew L e lndiny o, i o,

T

2 Lk

LbardaL i,

L 1 L

i b Lt

5

i

Lt g Mg i

Lt 3 e 0 A il

B L R TETIN

it o O
sl e

3407:

3408:

=T L e S P £t e e Y R i e e

COMPIL

LINK ROUTE 'sl' IS DUPLICATE IN n

error

recovery

note

LINK ROUTE

enor

recovery

We are reading links in a call-ncde and have
already seen a solid link of some particular
name (see note). Now we find a solid link
whose route is s1 &nd whose name is that
already seen.

The link in question is ordered immediately
before the previous link which had the same
name.

The argument (result) links of a call-node

have nemes specified by, primarily, the digit
(letter) of their names and, secondarily, the
perturbation (implicit or explicit) of their routes.
In diagrammatic form, an argument (result) link
is before another argument (result) link if its
point of origin is to the left of (above) the other
argument (result) link.

's1' NOT FOLLOWED BY DESTINATION IN n

We are reading a call-node and expect to find
a link or termination of the call-node. Instead,
we find a route sl of a flow link which is legal
but not followed by a slash and a destination.

{a s1 »a}
and assume the termination of the node is
next. (See note to 3301.)

)
4
|
|
|
X
|
}
|
|
-
p-._\,b» I e G s a1 A L

el hh L AL R A 0

) W

ottt

)

b L

A aas Ve e

B P TP P A WYY o

A B AR S ik wt o

FANTRIY T RN ZURY Y'Y

TR T DR T T L

MU E L B

| COMPIL
,; 3901: VALUE-CALL NODE HAS RESULTS IN n
error A call node with a negated value-call is ,f

on line n. Noresults can be used on such
a node, but results appear on this one.

£ il s e) w3

: recovery Delete the result links from the node.

&

i 3902: (Same as 3901)
note 3901 and 3902 for negated and non-negated

value~-calls, respectively.

Ay o

LINK (S) CONTRADICT TYPE-SET OF NODE iN n

Ak

error The right link (s) of the node on line n imply
a type which is not permitted by the explicit
type-set of that node.

R AT

recovery The link (s) are eliminated.

(Same as 4301)

note 4301 and 4302 are for right link (s) and down
link (s), respectively.

LA e e At b o bt B 4

RIGHT LINK FROM NODE IN nl TO NODE IN n2

error There is a right link from the nocde on line nl
to the node on line n2. This implies that the

node on line n2 is a cell; but its type-set
coniradicts that.

recovery The link is eliminated.

AL Kok 1 S A

il oAbl e
b 500 S i B

4
; w1t bl e o,

LLike LEALL SULE LU ST L e LY
y I N " “

4501:

4502:

4503:

R e o

COMPIL

TRANSFER-LIST BEGINS WITH ‘sl‘ NEAR n

error

recovery

We have just read a double slash and
expect to find a transfer-list. Instead, we
find sl.

{pA+AS/NEXT F/ ?2;}sl

ILLEGAL LABEL REF ‘si' NEAR n

error

recovery

We are reading a transfer-list and have just
seen the SF/ or S/ or F/ with which it begins.
We expect to find a label reference hut instead
find sl.

{x pn -8 S/NEXT F/?2;:} sl
where x is SF/ or S8/ or F/.

ILLEGAL LABEL REF 's1' NEAR n

error

recovery

We are reading a transfer-list and have
seen the first transfer followed by S/ or F/
as the beginning of the second transfer. We
expect to find a label reference but instead
find sl.

x is F/? if the first transfer was a
success transfer, and

x is S/NEXT if the first transfer was
a fail transfer.

,
o
2% o b L P Rt b N

NN

S A SR VLR R TR Y 22 2y T AT WO IIIOAA L a SIS P e TG vy T o e e T TR AT TRy ra TS RS G N s DA A R S R SR R IRV R T e e A R R S SR

il

%
COMPIL B
3) /:
= 4504: TRANSFER-LIST FOLLOWED BY 'sl' NEAR n :
: - error We have just read a transfer-list and :
expect to find a semicolon. Instead, we .
find sl. ;
recovery {a +a:}) s
: . 4701: FLOW LINK BIND FROM NODE IN nl TO NODE IN n2
: error The current rule has a flow cycle; we (for ;
the moment) blame the cycle on the flow lirk 2
from the node on line nl to the node on 3
line n2.
;
recovery Delete the f.ow link in question.
note This is a quess; if it doesn't work, this

diagnostic will be followed by diagnostics
4701 or 4702 or 4703.

CANNOT VISIT NODEIN n

error The current rule has a node on line n which cannot
be visited because it is unnamed and is not
the destination of a link from a node which
has been visited.

bbb ALY R Al 2 TP RS £ty PP A S L O St kA R S Bt

recovery Replace the name of the node on line n with
the name @ A.

note This is a guess; if it doesn't eliminate all other
unreachables, further 4702 or 4703 diagnostics
will occur.

AT AL

a

(N TTRLIVIE R FTRTION NAOLIRA R S TR e YV

.

5901:

6001:

6101:

Wy ks b
FIN

6701:

£

v ,'," s n “ b i Y s
1% Lad
RV IN s AATIrt s 30 AR et P

4703:

FRETA SOOI AT AT S TR TN A A UEENEYURY ARATITIANNS - IMAL A OSSENE IV S0 L DI YSRGS P T RS L e o

COMPIL

ARG/RES BIND FROM CALL-NODE IN nl TO NODE IN n2

error

fecovery

The current rule has o cycle where the
argument (s) of function call(s) cannot

ba determined unti] the function (s) are
called. We blame the problem on the
argument link from the call-node on line nl
to its argument on line n2, since the binding
of the argument node depends on the function
of which it is an argument to be called.

Change the argument link being blamed to
pnint to the NULL CELL.

ILLEGAL LABEL REF NEAR n

error

reccvery

note

We find a label-reference, si, which is a
legal name bur is not an identifier, negated
identifier, or indirect, as required.

{a s1 »a 2}

Diagnostic 5901 applies to the fail transfer
of a rule; 6001, to any success transfer; and
6101, to the fail transfer of a block.

(Same as 5901)

{Same as 5901)

DESTINATION ‘sl' IS MISSINGIN n

error

recovaery

We have read a link whose destination node has

been referenced cn line n, but has not been
specified in this rule.

Place a type-~icss, name-less node at sl.

(END)

3§
3
} |
13

3 3
3 o

-,

A S R R S s e e A PP S

-3 -
3
-
3
L e —
3 . <"action 1
1 U .. LINK: the AMBIT/L
ﬁl Link Editor
' January 11, 1972

4,

b

A

AZHD) "
[T

v

it

This section describes how to use the AMBIT/L Link
Editor. TFirst its simplified use by a novice user is
described. Next, its normal use is given, and finally
the advanced use of partial dumping is described.

o~
0 mn oy

" - P
e Ls A

DI AR T, TSI ORERAPII NN 0 = 33510ty

Siamannr §
. ,

)
H
\
.
" i - . .
s WAL Ll e L RS b, L b B e A min A S AN R b e, il

-
Kb o

',V g’
- 154

PR S s iv.' 7ii-.

N T TR v s e Aai gk ai

G S S A St sl IR, RPN IR B0 F L L SRS YUSRI, I T ST NS S SR AL s o - L L e o b L »a

LINK

A

o p..\r\ g

The AMBIT/Z Link Editor (LINK) is used to prepare an executable
AMBIT/L prog. ‘: from one or more AMBIT/L RLL files (which are the compiled
output of the AMBIT/L Compiler). This process is done in two steps: first,
each insertion of the program being prepared is "linked", which means that
it is transformed into a final binary representation which is embodied as an
“ABS" file (for "absolute"). Linking of a particular insertion must be done
in the context of all insertions which include the blocks enclosing it. Linking

7 of a particular insertion amounts to resolving all of its references to undeclared
: identifiers ac detected by the Compiler. The intermediate binary code of the
180 REL file is created with holes or space which can be filled in by LINK to create
the ABS file. Since a REL file must contain the information on what is un-
resolved and also a complete symbol table, its size is usually considerably
vreater than the corresponding ABS file. In fact, each ABS file merely contains
one word of overhead plus the number of words of interpreter object code which
3 was indicated by the Compiler as it translated the corresponding insertion.

a0 L b s 80 S NS M AN i K iy o Sttt Bnee oo

3 The second step of the program prepzration process performed by LINK

is the collecticn or dumping of all AGS files of a program into one large "DMP"
file. A DMP file is the entire final representation of a complete AMBIT/L

program in a form which can be executed interpretively by the AMBIT/L interpreter.

If the program the user is preparing consists of just one insertion in
which no PERM pointers are declared, the method of using LINK is greatly
simplified. This is an advantage {or the nnovice AMBIT/L user since link edit-
ing has proven to be the most "mystcrious® vart of using the AMBIT/L Programming
i System. Thus the simplified use 1s first described, and the ncovice user need
; not confuse himself by reading further. Jowever, as soon &8s @ program exceeads
one insertion the "normal" method of link editing must be used. It is not
P intended that a program should be very large (say, ove+r 50 rules} and stili
consist of only one insertion., Instead, it is expected that when that large a

2 program is being developed the user is no longer a novice, and he should not :
i M
- hesitate to split his program into several insertions. i
k. %. i. %
B E>
E i gy 5
£ . ?;H §
/: % -1 Z

L SN ORI RN R N0 S0 B B b WG BB AAA N L 00 MBS RN AS S 0 6 Bt b AR A A

SO LS IR T LES ; s L AR Ui 3 B2 S50 S 2 0N DA AN e

T

“T8

Rk

l LINK

e AR SO Y u

Note that for LINK to operate in the simplified mcde the directory
where the REL file is located and the directory in which the user is currently
lcgged in must not contain a file of the same primary name as that of the
REL file being processed and with an extension of "LNK".

SRS Lo Ui i S
R e e i Loy Lo g L ol

Novice Use of LINK

RN T T T
o vomeon
L}
1

The AMBIT/L Link Editor is invoked by a Monitor command of the

form:
RUN LINK [proj , prog]

where proj and prog are the project and programmer numbers of the directory
where the AMBIT/L Programming System is residing. This calling sequence
may be somewhat different, depending upon the method used to install
AMBIT/L on a particular PDP - 10.

AN Dl i 4 g4 s bt gte

When LINK is invoked it first prompts the uvser by typing an asterisk
7 on a new line. 7The user is then expected to type the primary name of the 3
g i REL file to be processed; normally this is also the primary name of the source
: file of his insertion. The name must consist of one to six alphanumeric
) characters, beginning with an alphabetic character, and it must match the
S name of the insertion (up to the first six characters excluding periods). The
name may be optionally followed by a project-programmer number within square
. brackets to specify that the REL file is in that disk directory, rather than in
* the one in which the user is currently iogged in. The file specification is
- immediatcly followed by a carriage return.

e

Ut)

Then LINK goes through the two steps of processing: linking and
dumping. Unless there are severe errors, LINK produces three files in the
user's current disk directory, each with the same primary name as the REL

JALE 5 A Gt e Pt

. .
ATl R D b M ELAPE k82 ot ADS D Yoa WOR R S LR A B SR LA 0 KB A RN A e e 2

file being processed:

3,
ez DA T P T L

b e "‘,,.‘.“. -k

1. an ABS file with an extension name of "ABS" which is the
5 L,) intermediate representation of the program between the two
N % . steps of link editing; and
B 2 H
A 204
.
; I-2

Baiane o
-

Prawnse 8
. .

LINK

2. a DMP file with an extension name of "DMP" whi<h is
the final representation of the program in the form ready
to be executed interpretively by the AMBIT/L interpreter;
and

3. a listing file with an extension name of “MAP" which
indicates all identifiers defined in the program along
with a numeric definition of each one. This map is
used primarily in conjunction with the DAMBIT/L
debugging system and thus its format is described in
the section, "Using DAMBIT/L; the AMBIT/L
Debugging System" .

LINK normally will produce one typed line on the terminal to inform
the user that it has linked the REL file. It consfsts of the primary name of
the REL file (which is the same as the *command" given to L{NK) followed by
a decimal number which is the page number assigned tc the insertion by LINK.
At present, the built-in environment to every AMBIT/L user program consists
of 26 pages; thus page number 27 is assigned as the page number of the
insertion being linked.

During the linking process LINK may detect that an identif:er which
was undeclared within the program is not defined in the built-in euvironment.
In this case it will inform the user of this by typing an informative error
diagnostic on the terminal and then proceed with the linking process. Even
with one or more errors of this type a potentially execuiable program is produced.
If during execution, however, the interpreter encounters a reference to an
undeclared identifier it will detect an error condition and cause an error trap
to occur.

At the conclusion of a successful application of LINK or after a fatal
error is detected and reported to the user, control is returned to the PDP - 10
Monitor. At any time during an application of LINK, the user may abort the run

233

I-3

I S, v o
& - fx e I . T SRR P T e e R
T g = oy - ,

s Mm;mumm\m»mwmmm.mw,mwm ¢

N

SRR

Pl £ kA S ke A A AL

A AP e LA BeVuie e gl g it s TS e S

LINK

oA RS L ;‘.‘lf.}t’a
st

by typirg two tC's (CTRL C) on the terminal; control will then be returned
tc the PDP ~ 10 Monitor.

Normal Use of LINK

The previous description was appropriate only for the link editing
of programs consisting of one insertion in which no PERM pointers are declared.
The following text describes use of LINK in its complete generality. The
general method of use can also he used to link single-insertion programs.

T S T N T S U oV T o T TP TR TR Y, T T T TR
. .~ [™™

Before invoking LINK, the user must prepare two text files in addition
to having compiled any insertions to be linked. One file must be prepared
once as a description of the structure of the program being prepared. It
is called a "BLK" file for "block structure". This file must be created with
one line for each insertion in the program; each line contains any number of
- SPACEs and/or TABs followed by the primary name of a REL file corresponding
to one of the insertions of the program. This name consists of one to six
alphanumseric characters, beginning with an alphabetic character. If there
are any PERM pointers daclared in the corresponding insertion the name must
be followed by the unsigned decimal number which indicates the total number
of PERM pointers explicitly declared within the text of the insertion. If such
@ number is given it is separated from the name by one or more SPACEs and/or
i TABs.

Lo e B

R e

AL A I 2L

.- It is recommended that the user prepare a BLK file using relative

- indentations of the file names to show the block structure of his program.
Although such arrangement is optional, it is strongly urged for it aids in
preparing LINK command files, and it helps document the program as a wholc.

If this arrangement is used the ordering of names within the BLX file is
constrained. If the user chooses not to adnere to the recommended arrangement,
he must at least include the primary file name of the outermost or main block

MAT P AF LN RN 25 AMACA g

100 et UK Bt ML LA LA,

of his program on the very first line of the BLX file.

b A Ml 20U D X e i

AT PO TR NG Y, T AT et e g
ol “ L0 Sy % L2 LT e iy . 5 Ee d)e
xmmamaywmmmwwm DA ety v e
P]
*

TR o s T e R S rar o L PEL ST

e SRR L B R AT P ERAATT. A TRSSTNTS AR e R o Fa R
TR PRl
.

LINK

hta ki , v
i

A BIK file may optionaliy have sequence numbers as provided by

[y}
ol G 0 AL o et 580t a2t

’ some text editing programs available on the PDP - 10. .t is customary and

* o helpful for the file to be sequenced by ones and to heve each sequence number

;- conform to the page number assigned to the insertion by LINK. This page

. numbering will be explained later.

: Next is presented an example of a BLK file prepared as suggested. i 51
1 This particular BLK file is one for the AMBIT/L Compiler, which is itself an

AMBIT/L program. Note that some insertions of the Compiler include PERM

declarations.

LYY
abinscduaen NP e R BN Gk

'
.
H
.
S .
< !
> 1 ¥
:
E o
= f 3
. 2
"R} s 3
: 3
g .3
3 .
k- E:
H 3
s . 3
E i i3
< .
& .
3 ‘o
E. {
> 3N E
= 'y
K [} é
= * F
3 1 ‘Tg
|
] 4
E- & 5
£
3
3 3
3 -
H
g
? -
FY 3
oL
¥
= H -
Y kY +
F H
{ :

i
1

TNVRXETT TR SEARTY s E TR PR WL Wl A5 S T R

- 2P A | ERAALIYETTIRS

COMPIL.BLK 12-22-71.1520
88827 COMPIL

90028 ERR

000629 ERR1

03030 ERR2

02031 ERR3

200632 GETSEM

00033 CONTRO
00034 TYPECO 1
JB035 OPENCO

00036 GETPRO

20037 GETBLO 17
00038 OPENEL
08339 DECLAR
00040 GENID 2
00041 CLOSEB
00042 DESCR
noo43 GETINS 2
08044 GEYDEC
80045 ISFLK
00046 GETNAYM
00047 GETTRL
00248 GETRUL
00049 WRMPOS
000850 GETTYP
00051 GETVIN
00052 GETILS
90053 GETCLS
80054 FLOWRE
80055 EXPAND
90056 GATHER
00857 TYPEAQN 2
00058 GENRUL 9
20059 GENMAT 1
00060 GENLIN 1|
000861 GENREF 6
00062 GENNAM 2
22063 GENTYP S
00864 GENMLI 7
20065 GENERR
00066 GLNTR 8
20067 GENUNC 3
00068 GENFAI 3
20069 GENWAL S5
80070 CLCPL

TR s TGN BT, DR -

. LINK

72,2701

'
{
o i
Shliifudi mmm&\zhammmudhmmwmﬁ

. e e Tt _ae Hay

AN AL bbbl

gt 1y Gl 0 50

AL L

O L R P TV AT Y L TR

B NNt o RN A Lo L A e

e SN S A NN T e e R b ST B RORINLDE TR A T e T e - A eSS RS RTA TV A el I S S e TR R TS R s ﬁ?ﬂ?ﬁ:ﬁfi&»’&?ﬂtﬁ?@%

LINK

.
A ’ . - K
2 atbi 'Ju\‘.r.a\gtm!,m;;;..r.:.h aiad Lo otarnead £ 1SS

% ! The other text file which the user must prepare may vary from one

Seibet ety

application of IINK to another. It is called a "command file" since it

[
S0

contains the sequence of commands to contro]l LINK. Each command is a two- or

three-character mnemoni~ and some commands may take one argument.

o

Each command must be on a separate line of the command file. SPACEs

and TABs may be used optionally before each command. One or more
SPACEs and TABs must be used to separate a command from its argument
(if any).

%
p:
&
F
2
E]
E
é
]
=
2
3
£

PETTeEITE Y

During its operation LINK must look-up several files: a BIK file,
REL files and/or ABS files, and perhaps a DMP file. When pe-forming any
such look-up LINK first tries to find the file it is seeking in the disk directory
: in which the user is currently logged in. If the file is not there, then LINK
1 tries to look in the current “library directory" if one was specified. The

5 ML VAL FRLOANS 3 Lo b7l

command file may contain any number of "LIB" commands to specify the
current library directory. A LIB command may optionallv take one argument

. which is a directory specification in the following standard format:

[proj , prog]

where proj and prog are the project and programmer numbers of the directory

. being specified. If no argument is given to a LIB command no library directory
is used during succeeding file look-ups. At the beginning of an application
of LINK the library directory is initially the one where the command file is.

‘ Except for a possible LIB command, the coaramand file must begin with

’ a "BLK" command to specify the name of the BLK file to be used for this
application of LINK. The argument to the BLK command must be a file name

- in standard form: a primary nan.e of one to six alphanumeric characters

T followed optionally by an extension of zero to three alphanumeric characters

with a period as separator. If no period and no extension is provided LINK

-- assumes a default extension of "BLK". A null extension name is specified by

i following the primary name with just a period.

n 4 v il P
St e B A A0 o' 2, B S DR YA S 200 e o5 00 o M D 2o UK 8 A S50 e,

TRy

v
i

| LINK

Next, the command file may contain commands to control the linking

T T
[e—

of any number of insertions of the program being prepared. Except for LIB
commands, these commands are "LNK" (for "link"), "IN", and "OUT". If
this application of LINK is used only for dumping then none of these commands

picl ok st L AL S D)

need be included. The LNK and IN commands each require one argument

as the primary name corresponding to the insertion to which they refer; thus
it consists one to six alphanumeric characters. The OUT command has no
arguments. These three commands are used to "wind around" the block

structure of the program being prepared as necessary so that those insertions
to be linked are appropriately linked in their proper context of enclosing
blocks. Each LNK or IN command moves the current point of context deeper
one level in the block structure, and each OUT command pops out one level.
As an example, for the following program structure;

—A
B
[c

E

e

the following sequence of commands must be used to link all five insertions:

LNK
LNK
LNK
our
LNK
our
ouT
INK E
our

ouT

w >

(@)

w)

{ weburuho Kbkt o0 MM aed e Sl S0y 3 00 A et et T

2iity
1-8

Wt) b w b pan)

E LA W 1A w ke s

SESER LN £ ok s oo

Ao i e i D P TY R NI > ERT i - - i -
SR L S Y L+ A P AT A S R RERIERRLIATTIE TS T o 7 e NETREIIEEI R L ., O T T L L L. L3 - R

LINK
%

N

1f only insertion E were to be linked the sequence of commands would be:

T AT e e T T T ATy 1

IN A
LNK E
OouT
ourT

Since insertions B, C and D do not enclose insertion E they do not have to

2oLV A e e A2 G

entar into the sequence of commands.

o ol ok
gt i L b G

The two examples just given inciude corresponding OUT ccmmands to
every LNK or IN command. Although this is conceptually correct, a lazy user
f is free to omit any number of final OUT commands in his sequence of commmands

AR RN L F s v

to affect linking.

Following the commands to control linking (if any), the command file
may contain a "DMP" command to specify that a DMP file be created. The
DMP command may take an optional argument as a primary file name of one to
six alphanumeric characters. 1If such a name is provided, the DMP file is
created with that primary name and an extension of "DMP". If no arguinent
is given the DMP file is created with the same extension name ("DMP"), but
with the same primary name as that used for the REL file of the inserticn which
is the outermost or main block of the program being prepared.

1 N Finally, a command file may terminate optionally with an "END" command
] ‘; which has no argument. Since LINK interprets the reading of an end-of-file
as an END command the user is free to omit it.

E _ This description of the normal use of LINK has thus far described the
: preparation of the BLK file and command file. The remainder of this section
o provides a description of its use. The AMBIT/L Link Editor is invoked by a

- Monitor command of the form:

E RUN LINK [proj , prog]

i
o RN A b s by bt 1073822

Mbw 8 2 R £ e b G i AL B0, . AL a8 A e k00 20 ML Jibilart bt _ Lo 't MUIALS s s A U OA N L O e ok ittt S0 K g -

i
iyl
$
1]

Punf
I
w

,
{
3
B!
i

h

T, SR

s

LA

(e}

=
-
-

Lty A R i
W“m’%’mmnmw Wt

Ry MR

B A s

e

FNE oy e IRy

NPT

TP S TSERRORTRG L AT SR T LA I SO TAERN LA Sl DL e o L

LINK

where proj and prog are the project and programmer numbers of the directory
where the AMBIT/L Programming System is residing. This calling sequence
may be somewhat different, depending upon the method used to install
AMBIT/L on a particular PDP - 10.

When LINK is invoked it first prompts the user by typing an asterisk
on a new line. The user is then expected to type the name of the command
file he has prepared for this application of LINK; the name is accepted in
standard form: a primary name of one to six alphanumeric characters followed
optionally by an extension. of zero to three alphanumeric characters with a
period as separator. If no period and no extension is provided LINK assumes
a default extension of "LNK". A null extension name is specified by following
the primary name with just a period. The file name may be optionally followed
by a project-programmer number in square brackets to specify that the command
file is in that disk directory, rather than in the one in which the user is
currently logged in. The file specification is immediately followed by a

cairiage return .

LINK then tries to find the specified command file, and if successful
it then continues automatically until proper or improper termination as controlled
by the commands of the command file. 1f, however, it cannot find the specified
command file, LINK assumes it has been invoked for novice use. This is
equivalent to its finding a command file .of the form:

BLK pname
LNK pname
DMP

and a BIX file whose name is pname .BLK, whose one-line contents are:

pname

where pname is the primary name given for the specified command file. If the
user had made a typing error, he should expect an error diagnostic being
produced resvlting from LINK's inability to locate pname.REIl. .

. L i
Bttt sl ok At il AT R A

Ln by b it gy

ey ol gD b

in i

A

CEETESLETTRITIIES L e - — -

LINK

After it finds the specified conwnand file it reads that file one command
at a time. A description of the LIB command and the meaning of the library
directory was provided earlier. LINK expects to find a BLK command
specifying a BLK file; if there is no such command or if it cannot locate the
BIK file, an informative error diagnostic is typed and control returns to the
PDP - 10 Monitor. Otherwise the BLK file is read and assimilated.

Then LINK goes through the two steps of processing accordingly a
they are specified: linking and/or dumping. As vrintable output for this
one application of link, a listin: file is produced in the disk directory in
which the user is currently logged in with an extension name of “MAP" and
a primary name which matches that of the command file. Each insertion

which is linked contributes a logical page to the listing which indicates all
identifiers defined in that insertion along with a numeric definition of each one.
This map is used primarily in conjunction with the DAMBIT/L debugging system

and thus its format is described in the section, "Using DAMBIT/L: the
AMBIT/L Debugging System".

LINK normally will produce one typed line on the terminal for each
insertion which has been linked. It consists of the primary name of the REL
file followed by a decimal number which is the page number assigned to the
insertion by LINK. At present, the built-in environment to every AMBIT/L
user program consists of 26 pages; thus 27 is assigned as the page number of
the outermost or main biock of a user prdgram, and succeeding numbers are
assigned according to the ordering of the file names in the BLK file.

For each REL file (or insertion) being linked, an ABS file is created in
the disk directory in which the user is currently logged in with an extension
name of "ABS" and a primary name which matches that of its corresponding
REL file. Each ABS file is the intermediate representation of an insertion

between the two steps of link editing.

During the linking of an insertion, LINK may detect that the definition
of an identifier which was undeclared within that insertion (at compile-time)
cannot be resolved since no enclosing block, including the built-in environment,

My

I-11

AN A it

o M 0% b b e 2 e L 2t Bl

i

LEXRERTLATEET T X

Attty ey 1 e

S0 L iyl N e 2 bl Ak e

e s AR AN

wa T
WAt

{
L)

CFORL LA AR AN B S T e TN AR R e LA e

A T N TIETE AR R RIS, o S AR e

LINK

defines the identifier. In this case, LINK will inform the user of this by
typing an informative error diagnostic on the termina! and then proceed
with the linking process. Even with one or more errors of this type
potenti- lly executable interpreter code is produced. If during execution,
however, the interpreter encounters a reference to an undeclared identifier
it will detect an error condition and cause an error trap to occur.

1f a DMP command is included in the command file LINK cresates a
DMP file by collecting together all ABS files of the program as governed by
the primary names included in the BLK file. All ABS files must exist for
the dumping to be successiul in either the current disk directory or the current
library directory (as set by the most recent LIB ccmmand}. A missing ABS file
will cause an error condition to be detected which results ir an informative
diagnostic message being typed on the terminal and control returned to the
PDP - 10 Monitor, as with any fatal error. At any time during an application
of LINK, the user may abort the run by typing two t1C's (CTRL C) on the
terminal; control will then be returned immediately to the PDP - 10 Monitor.

Once 8 program's DMP file has been created, the only reason for not
deleting the constituent ABS files is that a partial linking may later be done
to fix just one part of the program. The user must beware, however, that
such partial linking must be done carefully since errors are difficult to detect.
When re-linking a particular insertion, the user should bes sure that ail
enclosed insertions should also be re-linked since the definition of an identifier
may have changed in the enclosing block. Since compilation is relatively
expensive and linking is not, for long-term storage it is recommended that all
ABS files be deleted. Also for long-term documentation one complete map
listi-g of all insertions of a program is more desirable than individual cones.

Partial Dumping

For large programs it may be desirable to use partial results of a
previously created DMP file so that only changes or additions need be processed.
This is an advanced use of LINK which should be avoided unti) the user {eels

I-12

¥

RN o,

/
;
£
Yo .wmk.ﬂ.\wmm

Ly
%umwawuwammm«wmm RSN B W . MR L s BRI S A N iyt S £ WSS S S DA e P AR NI AR A L2 L SR Y S st W58, (AT L RNty IR AN Al Rt

‘..';i.

H
7~
X
13
3
¢
£ 3
$
¥
v
3
2

Y,y o ¥ ATy

Y

v "“’\ X
N

B S A A o R T SN N SR S
LD b s ola u ..A“,‘\‘r.-,.\r""«_;-..; 4 550y o S R e e e

=

2 or ey .. - o or oAy
PSR et e 5 e ; &, - R i
» ./;3 v R W EOAE2 o SE e R
" » w, 8 RN Y " .
. . v .

<

RN S AR B S PRI

LINK

rather comfortable with link editing. The normal user may cease reading
this memo hera.

As previously described. the command fiic may end in a DMP command
which directs LINK to collect all ABS files mentioned in the BIX file and create
a DMP file. The optional argument used for specifying a primary rame of
ths DMP {ile is given on the same line as the DMP command.

Fer specifying partial dumping, the user may provide an optional
second argument {even if the first argument was not given) as & decimal integer
st the beginning of the very next line of the command flle. This integer is 2
page number indicating the HIGHEST PAGE NUMBER WHICH DOES NOT EAVE TO
BE RE-COLLECTED,

1f the integer argument given is less than 27, or if it is not given, or
if there is no DMP f{ile in the current disk directory whose name is the same
as the DMP file being specified, then a new DMP file is created. Otherwise,
the old DMP file will be used and appropristely altered; note that its creation
date remains the same. Also, the length of the new DMP file will be at least
as large as that of the old one, even if there is less useful informetion in the

new one.

There is, however, one restriction on increasing the number of pages
of a DMP file by partial dumping: if there are x psges in the old DMP file
{this dues not include the 26 buiit-in pages) and there are v pages in the

new one, tnen

if 1= x = 123, theny must be = 123,
if 124 = x = 251, then ¥y must be = 251,
if 252 = x = 374, theny mustbe = 374,

At the presant time DMP files are restricted 1o being 374 nser pages long.

71l

I-13

i
3
3
3
E
A
H

A

3

7

SV U vt S

ST ST I E e A R T SR T Y T S Lg

N A TR TS L T T A

3

=

LINK 3

!

3

h:

As an example, for the following BLK and command files, LINK will é

i use the existing A,DMP as a base from which to create a new one. In ;?;
i particular, up to page 30 of the previous DMP file is assumed to be g
: unchanged. Note that if, {or example, the old DMP file had only up to §
! page 28, then LINK would "know enough" to * :gin collecting at page 29, _%
even though the command file hes "*30". Oaly those ABS files which are %

being collected need to exist for such a partial dumping. §

A.BILX A.LNK &

A BLK A ‘%

B IN A %

C LNK E b

D DMP j

E 30 3

3_%

3

3

£

. E

b

2

ga ran o i et

~t
T
EFRNY

22 M fsat e e Dot s RIS R AT L SN S

S re © In

WA

L o AR K ol ot a6 3 rTAT T e S
LS e e A Il g R it MO MGl TR T I B B G e T T T m ey
AR T L TR T T N =T

E
3
&

Wrthsg
i

.

T]
.

~

L ST |

T YRR BT TP

R I M g TR T SN AT T PR S P SOOI

4 M tans g

Section J

‘) Using the AMBIT/L Cross-Referencer

¥y .

eE January 13, 1972
) .

S

"‘ i

vt

[PP
. .

£ T This section describes how to obtain and interpret cross-
oE 1 reference maps of off-page references to identifiers
£ accoiding to the five categories: LABELs, MARKs,

3 5 FUNCTIONs, PERM POINTEks, and TEMP POINTERs. To
3 take advantage of this facility the user must be familiar
Y with using the AMBIT/L Link Editor.

| LS EW

"
[

ke 1
gr

e R v

2 €. 3

& 3

. = ¥

N {3
- o - L
G T

ER:

I e e et

o nv gt = Sar o

N s wer e

e

ok st i M

b i,

YL,

Laizl

PARNL ALY S MBI R M R i

OAMS YD 2l 102 005 b4,

TG
Wm\ Lt Pt &

T
Aol
TR

aaly i

Sy AL

PETPERY ~£;.§u{ w i iy iy g Whin

e
IR TR PN Y N
TR

-
-
2
I
as

o)
.

B ey)

[TR

Phne s § Caores s [

Cruwinn |
. .

TR T I Ty e T TR
e T T T P R T o L e T T T o e, o T T -

Cross-Referencer

The cross-referencing process is performed by the user in two stages.
First, the user must invoke the AMBMAP program by a Monitor command of

the form:

RUN AMBMAP [proj , prog]

where proj and prog are the project and programmer numbers of the directory
where the AMBIT/L Programming System is residing. This calling sequence may
be somewhat different, depending upon the method used to install AMBIT/L

on 3 particular PDP - 10.

When AMBMAP is first invoked it prompts the user with an asterisk
on & new line. The user is then expected to type the name of a command file
he has prepared for this application of the Cross- Referencer; the name is
accepted in standard form: a primary rame of one to six alphanumeric
characters followed opticnally by an extension of zero to three alphanumeric
characters with a period as separator. If no perioc and no extension is
provided AMBMAP assumes a default extension of "LNK". A null extension
name is specified by following the primary name with just a period. The file
name ni.ay be optionally followed by a project-programmer number in square
brackets to specify that the command file is in that disk irectory, rather
than in the one in which the user is currently logged in. The file specification
is immediately followed by a carriage return.

AMBMAP then tries to find the specified command file, and if success¥ul
it then continues automatically with the first stage of the cross-referencing
process {until proper or improper termination) as controlled by the commandas f
the command file. If, however, it cannot find the specified command file, it
notifies the user with an informative error diagnostic typed on the terminal
and controi is returned to the PDP - 10 Monitor.

The form of the command file which AMBMAP accepts is exectly the
same as the command file for a link edit. AMBMAP interprets a DMP command
as if it were "END". The user should refer to the part, "Normal Use of
LINK" in Section I, "Using LINK: the AMBIT/L Link Editor". Note that

J-1

’

% B *
m:mwm‘ém&yw&mmw LR e SN

e mssom

it i el ek 1t ol AN AR e Y S e MM A

e L

Iamcwn i

ST

P

SR
. .

Prenworny
. '

YT

[}

Bk}
4

e .

H

| B WA
~

,.ﬂ’.‘lu!

-
H
?

Cross-Referencer

AMBMAP does not accommodate the same simplified or nevice use of LINK.
Thus & BIK file must exist for the program being cross-referenced.

Although AMBMAP accepts a command file of the .ome form as that
of LINK it interprets the LK command as the signal to include the particular
insertion in the cross~reference maps it produces rather than link edit the
corresponding REL file., As for LINK, AMBMAP requires the existence of any
REL files which are mentioned in either IN or LNK commands.

AMBMAP normally will produce one typed line on the terminal for each
insertion being cross-referenced. 1t consists of the primary name of the REL
file followed by a decimal number which is the page number of that insertion.
Recall that 27 is the page number of the outermost or main block of a us~r

program.

During the cross-referencing of an insertion, AMBMAP may detect
that the definition of an identifier which was undeclared within that insertion
cannot be resolved since no enclosing block, including the built-in environment,
defines the identifier. in this case an informative diagnostic message will be
typed on the terminal and cross-referencing will procezed normally. Undeclared
identifiers are not included in the cross-reference iisting.

The result of applying AMBMAP ic the creation of five text files in thc
curvent 4isk d.-ectory containing the cross-referencing information in an encoded
form. Each insertion which is cross-referenced may contribute information to
any of these files. The primary name of each of these files is the same as
that of the specified command file. Different extension names are used to
indicate their contents:

32 Akt

Ay

T A L) SR TA T} gt

At it Sl

PRV SR F LDy IV Y TP R T WIA LR

R R T N R T N S S o P AT I oTwr e e, o I PR kL TR T
Z 2

Crocs~-Referencer

- Extension Contents - Off Page References to;
LBL LABELS

]) MRK MARKs

E . FNC FUNCTIONS

3 PRM PERM POINTERs

: i TEM TEMP POINTERS

- If AMBMAP terminates properly all five files will be created even if some do
not have any cross-referencing information. If improper termination occurs,
entries will be made in the disk directory, but the files will have no ¢ ortents;
in such a case an informative diagnostic message will be typed on the terminal
and control returned to the PDP ~ 10 Monitor. At any time during the execution
of AMBMAP, the user may abort the run by typing two tC's (CTRL C) on the
terminal; control will then be returned immediately to the PDP - 10 Monitor.
This concludes the first stage of cross-referencing.

The second stage of cross-referencing consists of the user's directing
the ALXREF program to create a cross-reference listing of one of the five types
of references in alphabetical order by converting one of the files created during
the first stage. ALXREF must be separately invoked for each of the five possible
listings which is desired. For each identifier which was referenced off-page,
the listing indicates on which page (by insertion name) the identifier is declared
and then a list is given which indicates in which insertions such an off-page
reference occurs. Multiple declarations of the same identifier on a page are
merged (unfortunately). If an identifier is declared in the built-in environment
the insertion name given for where it is declared is one of the following:

o ZENVO, ZENV1, ZENVZ, ZENV3. There is no reason for the normal user to
distinguish among these four insertion names.

0 oL MY AR ki it

P

o

1o, e

The ALXREF program is invoked by a Monitor command of the “orm:

omnes
1

PR

RUN ALXREF [proj , prog]

AN P e (v,
-

RIS ATAR R e e ORISR I PR IR SN et ete e TR A e T S T R SR, R e A P R e ety T AL IS I8 - e ST I s

ke

Anll LU L s MR X Bt

B B e R Lh i Y e it mem p
I

J<

. Cross-Referencer

where proj and prog are the project and programmer numbers of the directory
where the AMBIT/L Programming System is residing. This calling sequence
inay be somewhat different, depending upon the method used to install

i AMBIT/L on a particular PDP - 10.

3
#

When ALXREF is invoked it prompts the user to supply an input file k|
name by typing

AL LU LGRSO A e 2ol Dot L
[T

INPUT=

on a new line. The user is then expected to provide the name of one of the
five files producad by the first stage of the cross-referencing process. The
file name is accepted in standard form, but it may not b2 followed by a disk
directory specification. Thus the file must exist in the disk directory in
which the user is currently logged in. If the file is not found or if a
syntactically incorrect file name is specified, the user is given another try.

If the file is found, ALXREF next prompts the user to supply the name
of the BIK file oi the program being cross-referenced by typing:

BLK FILE: INPUT=

The user is then expected to provide that file name in standard form. If no

1 period and no extension is provided ALXREF assumes 3 default extension of

. *"BLK" . A null extension name is specified by following the primary name with
3 5 | just @ pericd. The name of the BIK file may not be followed by a disk directory
: specification, and thus it must exist in the disk directory in which the user

is currently logged in. If the file is not found or if a syntactically incorrect
file name is specified, "INPUT=" is repeated for the BLK file, and the user is
a given another try.

1f the BIX file is found, ALXREF next prompts the user to supply the
name of an output file for the cross-reference listing by prompting the user with:

OUTPUT =

IR

"
5T AR

Mo g mape e wwee

R

23
3
=

Fmratins
.

Cross-Referencer

The user is then expected to provide a file name in standard form, but it may
not be followed by a disk directory specification. If no period and no
extension is provided ALXREF assumes a default extension of "LST". A null
extension name is specified by following the primary name with just a period.
If @ syntactically incorract file name is specified, the user is given another
try. The specified output file is then created in the disk directory in which
the user is currently logged in. After successful completion ALXREF returns
control to the PDP - 10 Monitor. The listing thus produced may be typed or
listed by standard means. The user should eventually delete the intermediate
five files used to hold the intermediate cross-referencing information.

This memo concludes with a sample cross-reference listing of FUNCTIONSs
in the ALXREF program itself.

2l

B e s - [I e A = D S 2 S b AT, e Ve A g it A A AT N i SR mﬂ,

3
3
Cross-Referencer
AMBIT/L EXTERNAL SYMBOL CROSS-REFERENCE MAP 4
IN®UT FILE: ALXREF.FNC E
BLK FILE: ALXREF.BLK 3
1 i AD! (ZENVG) %
: USE: XRPRO FILEN ALXREF 3
i AFTER (ZENUG) E
; USE: ALXREF ;
: ALPHNUM (ZENVG) :
i USE: XRINP FILEN :
':j:
: . CLOSE (ZENV2) ;
3 : USE: XRPRO ALXREF i
E COPY.LIST (ZENUD) :
3 ; USE: XRINP FILEN g
3 * 4
2 , DELCR (ALXREF) 3
3 i USE: XRINP]
= INL (ZENV2) :
4 USE: XRPRO ALXREF 3
e - INLS (ZENV2) ;
E L USE: XRINP 3
o LE (ZENUG) i
E USE: FILEN 7
* 2) kS
E . . MEMBER (ZENVS) 3
¢ USE: XRFRC XRINP FILEN ALXREF 3
P OPEN (ZENV2) 3
: USE: ALXREF
¥ OUTL (ZENV2) 3
E b USE: ALXREF 3
E OUTS (ZENV2) ¥
£ b USE: XRPRO ALXREF %
S 3
e REQ.XRINPUT (ALXREF) :
S USE: XRPRO]
B 3
2 TRD (ZENVG) i
20 USE: ALXREF i
£ TRI (ZENVG) :
i USE: XRINP
£ 3
L
;& TRS (ZENVS)
E & USE: XRPRO XRINP FILEN ALXREF
E §
E L -~ TRT (ZENVG)
€ USE: XRPRO ALXREF

[P S bt |
- .

P

T I L A T T LTI e
= TSR OISR R AR e e SRR P S atcbliaged o S

Section K

System PERM POINTERs for the
AMBIT/L User

December 13, 1971

This section indicates the names, numbers, and uses
of those System PERM POINTERs which are built-in to
the AMBIT/L Interpreter and are of interest to the
normal user. Other such pointers are used internally
by DAMRIT/L, the AMBIT/L debugging system.

230

St e 0 % B et

el

prprovp T arnrv e R
b A H b sl W ot Y A A S 03 8t AN Bt S

Ev'
]

Y
/RN
m

vt 4 O

Dal aenesic) L AL ol P

LT

Attt el SR I AL

k4

-

i (it

3

" [l LE it 2 e o A
v R R A i &

o
AT WO MAY AN 2 b A (AR (1 e SRTIAI R b R s

ik i

IR P et

i

Baunonins |
.

[|

TR LTI o T v a2 — p o T AFETAT Y 7 e DB 4 PR
g 2o L e e g R R A VIR MR TSR R A T SRR AT . IR TR SIPAITTNG, L e LR TRET i dotinss £ D0 e g i sl i sipa SNt ELE)

PERMs

PAGER.CT - PERM 13

Each time a page is read from the DMP file into the object area
of the interpreter the destination of the DOWN link of this POINTER
is updated to point to an INTEGER whose value is one greater than before.
If the NULL CELL is found, it is treated like the INTEGER 0. This counter
operates modulo 32768.

FREE.CT -~ PERM 15

After each garbage collection or call on the built-in function
FLTH this POINTER is made to point DOWN to the INTEGER which represents
the number of words (count) of free storage available.

TRAP.GCOL - PERM 16

When garbage collection is invoked automatically (i.e., not by
calling the GCOL built-in function), then after FREE.CT is updated an
attempt is made to call a trap function via this POINTER. If it points
DOWN to the NULL CELL no function call is made. At present, this
POINTER is initialized to the NULL CELL.

GCOL.CHOKE - PERM 17

After a garbage collection is complete and FREE.CT is updated,
if there are no words of free storage then an attempt is made to transfer
control indirectly via this POINTER. If it points DOWN to the NULL CELL
(which is how it is initialized) the GC fatal error trap occurs; otherwise
an "indirect goto" is performed under the assumption that the programmer
has set the DOWN link of this POINTER to point to a LABEL node
corresponding to an appropriate place in his program. Since this is a "goto"
rather than a function call it may pop the interpreter control stack in such a
way that previously referenced structures are made available for garbage
collection.

STACK.CHOKE - PERM 18

If an overflow of the interpreter control stack occurs an attempt
is made to transfer control indirectly via this POINTER. If it points DOWN
to the NULL CELL (which is how it is initialized) the STK fatal error trap
occurs; otherwise n "indirect goto" is performed under the assumption
that the programmer has set the DOWN link of this POINTER to point to &
1LABEL node corresponding to an appropriate place in his program such that
the stack will be popped by some amount.

P.RAND - PERM 19

This POINTER is used only by the RANDOM built-in function; for
a complete description of its use see the documentation of the function
in "AMBIT/L Built-in Functions for the Programmer" (Section E).

K-1

T

2t

okl Tt B,

i WA S i e, i

i D ke

SR

Wit Pi.

o
ot okl B

-~ n
N s ar

DA b Lt b s SELT 2

»))
st s Ak O b b R0 1 210 B s B N

IS A TAI L EECROREEREN e, & L 5 R RIS i A T LS U T Ty A I S T e . T T L S AT X O S AT L B i Ry

PERMs

4
3
3
3

[FroCe I)

P.SEED - PERM 20

This POINTER is used only by the RANDOM built-in function: for
e a complete description of its use see the documentation of the function
in "AMBIT/L Built-in Functions for the Programmer" (Section E).

LRt et ekl ki go
’

R 4

RIWIRTN
 wetaeas

R ST RS RN PRI (LTI W TR PN P mm.emmmmm:zwum.mmM\sm.‘;. PR

(SR S AL A L
-

e

o s VR R RN
ps o
A Ay

ol e b

L

ALl ot

.

VLT RV IR TS F TP

A i a

o 2 s A T IR Y s

Lot A dond o S 2% A

LR WAt i1 553 55 20

.,. ,
i P

ekl ot

il

(END)

ES

Section L
AMBIT/L Program Execution
January 14, 1372
!,
) This section describes how to invoke the AMBIT/L
3 interpreter to run a particular AMBIT/L program which
i has been compiled and link edited into a single DMP
file. Also included is a description of how to prepare
;’ a bootstrap for running a commonly used AMBIT/L
.. program.

7:3

R e e B s o S R A e et i b ol e Sy Sese T AT

=
b
3
k.
E
X
k-

[

LN 2 s 2,

CNA NP wid kit . diba 20 i e,

|
!
i

etk o) LA

PP TR JRTRTTREETEEN « w0 EIR
P

Eu-mm '

& ety

[e

Srsunine ¥
.

o —— e o i i e . e e e .
i SR N L A e T S e e x-S T

Execution

Once an AMBIT/L program has been linked and dumped by the Link
Editor it is embodied as one DMP file (whose extension name is "DMP").
It is then ready to be executed as a running program by the AMBIT/L
interpreter. Although a special bootstrap can be made up to cause the
interpreter to run the program, the usual method of use during program
development begins by invoking the interpreter directly. The creation
and use of a bootstrap will be discussed later.

The AMBIT/L interpreter is invoked by a Monitor command of the
form:

RUN AMBIT [proj , prog]

where proj and prog are the project and programmer numbers of the directory
where the AMBIT/L Programming System is residing. This calling sequence
may be somewhat different, depending upon the method used to install
AMBIT./L on a particular PDP - 10.

When the interpreter is invoked it first prompts the user by typing an
asterisk on a new line. The user is then expected to type a command line
which must begin with the name of the program to be run, which is the primary
name of the DMP file containing the executable program. The name must
consist of one to six alphanumeric characters, but note that the user is free
to alter the primary name of any AMBIT/ L DMP file after it is created by the
Link Editor or between two uses 6f the program. The name may be opticraily
followed by a project-programmer number within square brackets to specify
that the DMP file is in that disk directory, rather than in the one in which
the user is currently logged in. Then, the command line may be terminated
by a carriage return if the user does not wish to supply any optional
parameters affecting interpreter initialization. The interpreter then looks for
the specified DMP file and if found uses it in reac -only mode and proceeds
with the execution of the program. If the DMP file is not found an indicative

: nSuy.mmmumszhmmmum.dum:a-:mmmmmmmﬁzﬁ'u}&ymu et st

VR b LA e N3 o P B0 MDA/ st il 1AL s AL AT A 0,

prrso-acn 20 S PNE T RPPPES RSN P VX R RT RS FE R LU APY.L

Execution

i
k&

error message is typed on the terminal, and the interpreter restorts by
prompting the user with another asterisk on a new line. If a syatactic
error is detected in this or any other part of the command line only a
question mark is typed and the interpreter then restarts.

Several options are available to the user to control the allocation of
memory space and the employment of the AMBIT/L debugaing system or the
DDT debugger (useful only to AMBIT/L systems programmers). These options
are controlled by "switches"” (consistent with PDP - 10 monitor terminology)
following the name {and perhaps directory specification) on the command line.

R T S ST (TR D
W Wy 3 " N A S0

L. The switches may be given in any order and the use of SPACEs as separators
. is entirely optional. Each switch begins with a slash followed by one or
P more letters. Although just the first letter is checked by the interpreter,

names of switches presented here are longer for mnemonic value. Thcse .options
which require an argument accept the argument following an equal sign which
follows the switch name.

' E The novice user is expected to ignore all but one switch, and thus
i it is first described so the remsinder of this section mey be skipped until special \
- needs arise. The following switch may be included on the command line 3
- following the DMP file name (and perhaps directory specification):

/BRK

which is a mnemonic for "user break". When this switch is included on the
command line the DAMBIT/L debugger will be invoked at the very first rule
(just before its execution) of the user's program. This is particularly useful

for setting console breaks or "breakpoints" in one's program before it begins.

AL s e

; Details of using DAMBIT/L are covered in the section, "Using DAMBIT/L: . 3
. the AMBIT/L Debugging System". (The novice user should stop reading this :
i memo here, and skip foward to pages L-7 and 1L-8.) ; :
H 3 3
L. 3
i 2.5

L-2

@mtnanns § | T
. I . .

Wowsaman §
. .

coRSptiasriiaagere) e e Rt

A - ol ol

Execution

To fully describe the impact of using the various other switches is
a difficult task, and thus the following descriptions are rather sketchy.
The reader is encouraged, however, to read through all of the descriptions
since a variety of useful information is found within them. For those
switches which require @ numeric argument, the value of that argument

is checked to see that it lies within an allowable range; if it does not, the
error is reported in the same way that a syntactic error is indicated.

/LOW = kcore

where kcore is a decimal number between 3 and 22; a default value
of 6 is normally used. This switch is used to specify in decimal K (i.e.,
1024-word blocks) the size of the low segment used for the running of the
program. The AMBIT/L interpreter runs on the PDP - 10 as a low ard sharable
high segment program. The high segment always occupies 6K words but the
size of the low segment is adjustable at initialization time to coniorm to the
particular needs of the AMBIT/L program being executed. The low seument
includes all changeable memory of the AMBIT/L interpreter. Of particular
concern are the three relatively large creas of this memory: the object code
paging area, the control stack, and free storage area. The size of the low
segment should be chosen large enough for these three areas to be suificiently
large. Using a smaller low segment is more economical if it does not leed to
increased computing time; this becomes a space/time trade-off.

/OB] =n

where n is a decimal number between 400 and 16000; a defaclt value
of 2000 is normally used. This switch is used to specify the size in memory
locations {words) ~f the object code paging area used for the object code in
the DMP file, for input/output buifers, and for the Garbage Collector bit table
(when in use). The bit table's length is approximately 1/32 of the size of
free storage. At a minimum, all input/output buffers which are active must
remain in this area plus the page currently being executed or the bit teble
during a garbage collection. The Teletype buffers normally take up 85 words

and each open disk chaanel requires 533 words. To avoid a lot of paging

3
K
2

L Kihiplatiunt A0n Ak

o

e

I LA

U U B Ao KRN AADR S s B ERRAAR drinse Mottt A ortphrie AN AR S SN S i L DD bt e SR S L

AN G/ 52 M STt bt n A S

32

S T L LR R A e A o S

DO s AR e %W,,wm-@awmb ST
. \ TR e e et v pimsronm o o é
‘ : s S AT N s AAmAY LYY W R A % E
e g

. g I Execution g3
18 it
= 14
£ % activity, which slows down the running time of a program (and adds some cost), 4
g i this area should be sufficiently laryge to hold several pages at once. If it

N % ok

s‘f {s too small the PAG fatal error trap will occur an+ the user will be so informed.

g ¥ To gain information on the activities of the paging system the user may employ

y % s the page-timing instrumentation version of the AMBIT/L interpreter called o ;
< = s 3
g2 - “TAMBIT". Details of its use are given in Section N, "Using TAMBIT: the "3
e = 3 .
" § k. AMBIT/L Interpreter with Page Timing Instrumentation”, Short of that, the user V3
i— -. may observe (possibly with the DAMBIT/L debugger) the System PERM POINTER
E- §~ i PAGER.CT. Each time a8 page is read from the DMP file (either environmental f
3 % or user) into the oktject area, the destination of the DOWN link of this POINTER

. £ :
N © g is updated to point to en INTEGER whose value is one greater than before. If 3
-3 the NULL CELL is found, it is treated like the INTEGER 0. This counter ;
§ operates modulo 32768, 3
g /STACK = n

20
v
LR

where n is a decimal number between 300 and 16000; a default value
of 600 is normally used. If the /DDT switch is also included on the command
line, a fixed stack size of 1000 is usecd, independently of this switch. The
stack is used as an ALGOL stack for the saving of function call information and
for temporary storage. 1Its size requirement mostly depends upon the depth of
funciion calls or insertions entered and on the amount of recursion the program :
performs. It must he long enough to accommodate the needs of a particular
: program run. If it is too small, at the time stack overflow is detected, the
i interpreter v {4 attempt a recovery procedure of transferring control indirectly Z
via a label pointed to by the System PERM POINTER STACK.CHOKE. It is -
expected that the programmer has set the DOWN link of this POINTER to point
to a LABEL node corresponding to an appropriate place in his program such
that the stack will be popped by a sufficient amount. If there is a stack
overflow and STACK,CHOKE points to the NULL CELL the STK fatal error trap 3

o veir

[y
'

PR —
.

Metwboneay

o occurs and the user will be so informed.

F A S S R B

“v‘!" u”'
1

o

TP T T

AR A MR A Mttt R T A R8s . ————

’l"{.

PY L R AEER RTTRAECETEEF L ok OIS e ARSI FeTEEy

& P e

SO

[PR
-

Coman o

(v

Suinnr,

[I——"y
. a

Qe y
> .

[N
.

#niietar o
.

Lrtwnd, §

H

Execution

/MAXPAG =n

where n is a decimal number between 2 and 60; a default value of
50 is normally used. This parameter is the maximum number of pages which
may be in core at the same time. More precisely, the pa:ameter affects
the number of entries in the page-use table in the lJow segment. Each entry
occupies three words of memory. One entry is required for each page or
input/output buffer or garbage collection bit table residing concurrently in
the object code paging area. The numbh- - =f entries allocated by the interpreter
is the minimum of the value of the MAY . parameter and the highest numbered
page in the user's program. The MAXPAG parameter should be adjusted to
correspond reasonably with the size of the object code area. For example, if
this parameter were small and the object code area were large there woula
probably be thoroughly unused memory being wasted.

/PRINT

this switch takes no argument; its presence causes the interpreter to
print on the terminal several values of parameters which describe the user's
program and the allocation of memory just before execution of the AMBIT/L

program begins. This information includes:

a) total core occupancy in decimal k (low segment and high
segment)

b) length of the stack in words

c) size of the object code paging area in words

d) maximum number of in-core pages (i.e., the number of

entries in the page-use table)

e) size of free storage in words
1) highest page number of the user's program
2.4

LRI ot L © . YA N LC S R e L

UL ks ¥ Sad b
g st s -

t

f e

s

BVt)
. .

B3Pk ik an §
v 4

o i gniiden, {
.

Risbones &

R TR R TR FLTTIR N T S

Execution
q) total number of PERMs of the user's program and the
built-in environment
h) maximum static levels or depth of block structure

Note that there is no switch which directly controls the size of free storage.
Instead, after all other allocation of the low segment is complete, the free
storage area is allocated as all remaining space in the Jow segment. If it is
smaller than the required minimum of 200 words then a fatal error condition
{s detected, an informative diagnostic message is typed on the terminal, and
control is returned to the PDP - 10 Monitor.

NOTE: THE FOLLOWING TWO SWITCHES ARE INTENDED ONLY FCR USE
BY AMBIT/L SYSTEMS PROGRAMMERS.

/ENV = name [proj , prog]

where name is a primary file name consisting of one to six alphanumeric
characters, and proj and prog are the project and programmer numbers of a disk
directory. This switch is used to specify an alternate environmental DMP {ile
for the run if one is needed. The directory specification need only be given if
the DMP file is not in the disk directory in which the default environmental
DMP file is located. The default environmental DMP file is usually ZENV.DMP
in the disk directory where the AMBIT/L Progremming System is residing. This
may vary somewhat, according to the method used to install AMBIT/L on a

particular £DF -~ 10.

/DDT

’ this switch takes no arguments; its presence causes the interpreter to
allocate memory so that the copy of DDT (the standard debugaing program of
the PDP - 10) which is initially in the low segment of the AMBIT/L interpreter
is not overwritten as it is ncrmally. When this switch is included, the size
of the stack for the run is fixed at 1000 words The user must be sure that

PR V.

s mm Nt e s 03RS i

SR By 0 PN A i AL AR A B DA

0 Bt hn b atud kS o

)

CAERIAC b 80 0 S Y

R B T T

’
&,)
i,
oot a Sl ks bt AR 2 D SR DAL e i 30508 sy LA o 0 Mo P ity WAL AR NS b AL B Rt 4 L 0

g 1 Execution
3 s

LR TR s OV

B! “* the low segment size is made large enough to accommodate DDT along with ! 3
2 S everything else., DDT and its associated symbol tables occupy approximately :

3 -e 6K of the low segment. DDT is used by AMBIT/L systems programmers to ;]
% & - adjust default values for interpreter initialization and to help track down

bugs ir the interpreter or strange ones in users' programs.

- After any number of the above switches are included on the command

L ILEE A i M

. line, the line is terminated by @ carriage return. There is no provision for
- continuation of a command across more than one line. As aiready indicated,

HG AP IRIP T NIRRT ¥ § 1 2 PLOEW R P RV

any error detected in tie command line will be reported by the typing of a
question mark on the terminal followed by another prompting asterisk on a

T T O I AT,

Do it A Y it

new line indicating the user should try again. Other types of errors cause

AT

more informative diagnostics, and most of these are fatal.

The program then begins executicn. if the /BRK switch was includer

A PRI X TR T

on the command line a DAMBIT/L user break occurs right away; otherwise
the AMBIT/L user program is "off and running”. Other than the output typed

Myhoern wwrvacm

by the running program the user may find only a few other kinds of typing
which are diagnostics of the system. Throughout execution, the AMBIT/L

rurtr webenth

interpreter performs extensive checking on the ccrrectness of the program it

is interpreting and on the AMBIT/L data with which it is working; various

' internal consistency checks are also performed. If an error condition is

E detected by the interpreter, the interpreter immediately reports it to the user

‘ by typing a diaynostic message on the terminal which includes a one-to-three-
cheracter mnemonic indicating the type of error. A few error conditions are

- so serious that a return to the PDP - 10 Monitor follows the typing of the message.
. Usually, however, control is transferred to the DAMBIT/L debugging system.

i A complete list of all error messages of this type is given in Section M,

- “Error Traps®.

,
. s
Zrn P ie Y DIVEEE T 3 LIV S NP CIIR T LI L PIIE | FTTT OIS [UIT SRSU R TRy e TPTS SN A

Y
3
E
E &

B
= 3
A
5
s
> £
3
2
£

Lo S Pyl

piakd

WAL ALK LA
o ain 2 LHUL RS i
P YIS idatii

-

Bitmrian |
- .

Arreman §
.

[IREEN

Execution

Another type of error which may cause a diagnostic message to be
typed is an input/output error. This class of errors is handled differently
since a true error trap occurs and an indirect function call is made by the
system via the System POINTER TRAP.IO. The function called to service
an input/output error trap may be supplied by the programmer. As a default
setting, however, the POINTER TRAP. IO points to a FUNCTION node
corresponding to a built~in function which types a diagnostic error message
on the terminal. As with interpreter-detected error traps, input/output error
traps are followed by a transfer of control to the DAMBIT/L debugger at the
beginning of the next rule in the user program. Further details on this type
of error are described in Section F, “AMBIT/L Input/Output".

While a program is running, the bell on the terminal may ring from
time to time. Each ring indicates that @ garbage collection is taking place.
Excessive ringing of the bell indicates that either there should be more free
storage allocated or perhaps the user program has strange characteristics
relative to the use of free storage. Further details on this are given in the
section on Free Storage Management in Section E, “"AMBIT/L Built-in

Functions for the Programmer".

When an AMBIT/L program terminates normally or after a fata: error
trap occurs, the system types on the terminal the number of Kilo-Core-Seconds
(KCS) used and the number of seconds of connect time (CT) or real time used
since the program execution began. A KCS is the basic unit of cost in a
PDP - 10/50 Time-Sharing System which represents one second of CPU usage
per 1K {1024 words) of core memory occupancy.

Under no circumstances should the PDP - 10 Monitor issue an error
diagnostic during the running of an AMBIT/L program, such as "ILLEGAL
MEMORY REFERENCE". If a user encountere such an error he should report

it to an AMBIT/L systems programmer, preferably with sample terminal listings.

e A e e i S Sl G = g g B e bt e e e 4 57 S = o e e o :Angg:gﬁa

R

b Fowrh

GOSN A pa b S s B R b) e Ly 2 '\n bt

E

il Ll i Svr Ak ko w4

"y

Mo s

Lelln

Gt ¢ e I el §

il Laal,

)

s £ AL G i L

ﬁv;ﬂm’ GRS LU RS RAAI b bi a1 ¢

At LR

Execution

[Y TR
‘

~
Biwvidirn §

Bootstrap Preparation ;

| L W}
.
i

This memo has already described how the AMBIT/L interpreter must
be invoked to run an AMBIT/L program and then the user must type a command
3 ! line. For @ smoother invocation of a commonly used AMBIT/L program, a
k- bootstrap MACRO - 10 program may be prepared which is simply invoked by a

. Monitor command of the form:

RUN MYPROG

ViR NI it gen T A A e S Sl

which may optionally be followed by a project-programmer specification in
square brackets. Such a command causes MYPROG.SAV to be run which is a
one-block bootstrap which directly calls upon the AMBIT/L interpreter at an
alternate entry point. The bootstrap program first creates in the disk directory

in which the user is currently logged in a one-line text file whose name is

: of t. > form xxxAMB.TMP, where xxx is the user's job number. When AMIT
:) is started at the alternate entry point it looks for such a file and expects it

] to contain a one-line command in the same format as the command line which
a user may normally type. After reading the one-line temporary file AMBIT
deletes it. Since a bootstrap pro¢ - sm is presumably carefully prepared and
tested at least once, it is not expected that a.. initialization error condition
will arise. If one does, however, the interpreter proceeds to act as if the
command had been typed in, and it either prompts the user with an asterisk
or fatally terminates. Not == that the naive user of a bcotstrap cannot detect
that he is running an AMBIT/L progrém. As an example, the AMBIT/L Compiler
is an AMBIT/L program which is run by the normal interpreter; it is invoked by
a command of the form:

RUN CO™MPIL [proj , prog]

M
2
i
é
3
K|
2
k-
1
i
3
p4
3
H
b
<2
K
2
3
-
3
2
3
i
3
A
5]
H
3
3
3
3
3
3
-
3
e
3
3
3
R
¥
<
:
3
5
£
H

where proj and prog are the project and programmer numbers where the
COMI1IL.SAV bootstrap is kept.

P bt Wi M 2 LAY FIALAL L g v v S

i
3
M
o
3
4
i
K
3

s RS % DS RN mi'q\m'ﬂ?qlm
LAy

W LW e e a

S T g o v b

A e umrwnmmm’?‘ WA e b pyabed A L
A) neliiiaiAa bRl

Lok

Brateans)

[I

LTI
B

!-u-lm ’

(e

T

e A A B T o T B, T T o T o PO o T S S Mo I P T R B L R BT " AT Y T o 0 ol &

Execution

For the user or systems programmer who wishes to create a new
bootstrap the general bootstrap program is kept as a MACRO - 10 sourze file
in the directory where the AMBIT/L Programming System is residing. It is
named AMBOOT.MAC. The user may copy that file into his own directory
and then edit the one command line according to his needs. The comments
in the source program should serve as sufficient guidelines for wherz the
command line is. Under special circumstances a user may wish to alter
the name of the interpreter being invoked (perhaps TAMBIT) or the disk
directory where the interpreter is being sought. After editing AMBOOT.MAC,
the user should type the Monitor command:

LOAD AMBOOT.MAC

Then after compilatio: and loading is complete, the user should save the
bootstrap under any name he chooses by typing @ Monitor command of the

form:
SAVE MYPROG

and thus a bootstrap has been prepared.

733 (END)

r

bt

8]

.)
.‘\ig

o et /

Y
R IEII DA L]

~._.......-
umv\lx'\l PO TP TR

FISy T -:ﬂ,\.(h P RARY

i AR UL B ety B et A N SN b Y ks ookl NSk

ark husinn ma it id A ado o o

PR

rdel e gL

LSRR N PP PR30 O T L FOR W8 S N [Er B TN YT ST, S T PRI ST LSS 31

R S ek s S5

I CAS P e ok s s etos = 8

R bR L L il

-

TR

o

VAT

TP FAL, T IE vy e

e
it

ALY

¥ ivnwin 1

[P

O s f

Section M

Error Traps

December 14, 1971

This section provides the AMBIT/L user with a complete
list of all error traps which may occur during the running
of an AMBIT/L program, Errors are listed alphabetically
based on the short mnemonic which is typed on the
terminal as part of a diagnostic message.

ot

2 ot 2

L3 e L e oAl

P el A s Y Rl WA Bt

Liaotle it g, k0 %

i ol A D, D, Lor b Pt o SR atud LN

sk il

[Ten

5
7

Wy e .
n

:
-
H
H
H
P
]
z
Ed
»

+

[ey [TNTNY | Barinsen |

Brvamin £
- .

Errors

When an error condition is detected by the AMBIT/L interpreter,
an error trap occurs. This causes the AMBIT/L System to type a
message on the terminal which includes a one-to-three-character ..
mnemonic indicating the type of error. A few error conditions are
so serious that a return to the PDP-10 Monitor follows the typing
of the message. Usually, however, control is transferred to the
DAMBIT/L debugging system. In the future the non-fatal traps
will be implemented as actual traps where a function call is
performed so the programmer may substitute his own recovery
procedures. Such a trap facility now exists only for the input/
output built-in functions.

This section consists of an alphabetic listing of the mnemonics;
associated with each one is a one-sentence explanation of the cause
or condition of the error. An error condition which causes a fatal error
trap is so indicated. There are some error diagnostics which may be
printed as a result of improper interpreter initialization; these errors
are considered to be in a different category and are therefore not
included in this memo.

Most error conditions are caused by an erroneous program. Several
error conditions, however, may arise from an internal inconsistency
due to a bug in the interpreter itself. The mnemonics for the unexpected
error conditions each start with letter 'Z2'.

Following the explanation of each error is a letter in square
brackets which indicates the interpreter switch (except A) which
must be ON for the error condition to be detected. Nommally all
switches are ON except for G and I. An interpreter with alternate
switch settings can only be created by an AMBIT/L systems programmer.

i 3

Ll g i rel

it

et YU £ Lk,

AP0 0 LA L AL 10 G 1 128 DS A i K d AL Tt

e et ' wedbads S L L Y

ACR:

B¥**:

BS:

CAL:

CAT:

CL1:

Letter

A

O Q

ety e

S e 2 g T ST AR T i Gt o S

Errors

When Error is Detected

3lways

detection of cycles

general debugging mode

consistency checks in Garbage Collector
.internal consistency in interpreter
consistency checks in _paging system

check STRING and TOKEN display
list format in TRS and TRT

An arithmetic computation involving REALS has

produced a result whose magnitude is larger than

can be represented by a REAL. [A]

An attempt is being made to write both the DOWN
link and the RIGHT link from the NULL CELL (**). [D]

An argument to one of the following built-in functions
is not a BASIC SYMBOL: AFTER, BEFORE, NEXTB, PREVB. (D]

The first argument to the built-in function CAT or LAST

is a cyclic list. [C]

An argument to the built-in function CAT is not a CELL. [D]

The 1lst argument to the built-in function COMPARE.LIST

is a cyclic list. [C]

Lk oy @ topbe

Lk B s /0 BN G S

.
i3
',
4
.

E 2
= |
=
E ¢
-
T
E 3
H

L A N T

AR ¥ e

oo

"

A TR]

! il)

Y-

-

CL2:

CS1:

CS2:

D**:

DZ1:

DZ3:

DZz4.

FH#A:

F#R:

e, B e T A R N T T e T o LN LT TSI TS S T B AT S S R E L T A T T

Errors

The 2nd argument to the built-in function COMPARE.LIST
is a cyclic list. [C]

The 1st argument to the built-in function COMPARE.STRUCT
is a cyclic structure. [C]

The 2nd argument to the built-in function COMPARE .STRUCT
is a cyclic structure. [C]

An attempt is being made to write the DOWN link from
the NULL CELL (**). [A]

An attemp: is being made to divide by the INTEGER
2zero with the DVQ built-in function. [A]

An attempt is being made to divide by the REAL zero
with the DVQ built-in function. [A]

An attempt is being made to divide by the INTEGER zero
with the DVR built-in function. [A]

An attempt is being made to divide by the INTEGER zero
with the DVQR built-in function. [A]

An attempt is being made to end a walk by following the
RIGHT link from a non-CELL. [D]

In a function call the number (#) of arguments given
is not the number of arguments expected. [D]

In a function call the number (#) of results given is not
the number of results expected. [D]

e l\~\.

i S it b,

2 A A ik i

I e N s b R Kt S st

ekl il Puvoa L4 2 ORI AN

Mgt

Yot

b A,

IRCTI)

Lok P g £ b 5 22 Bl

W}
ot da]

Errors

A rule has failed where a failure exit label was
not provided. [A]

A garbage collection has occurred which yielded no
free CELLs. An attempt was made to transfer control
via the system PERM POINTER GCOL.CHOKE, but that
PCINTER points DOWN to the NULL CELL. This is a
fatal trap. [D]

The 2 arguments to one of the following built-in
functions are both REALS, and they must be
INTEGERS: AND, DVQR, DVR, OR, XOR. [A]

An attempt is being made to make an indirect function
call via a node which is not a FUNCTION. [D]

An attempt is being made to make an _indirect function
call as a trap via a node which is not a FUNCTION. [D]

A reference is being made to an inactive LABEL or
FUNCTION. [A]

The 1 argument of cne of the following built-ia functions
is neither an INTEGER nor a REAL: ABS, ADD1, EQO,
GEO, GTO0, LEO, LSHIFT (first argument), LTO, NEO,
NEG, NOT, SQ, SUBl. [D]

The 2 arguments of one of the following built~in
functions are neither both INTEGERS nor both REALS:
ADD, AND, DVQ, DVQR, DVR. GE, GT, LE, LT, MAX,
MIN, MUL, OR,SUB, XOR. [D]

An indirect transfer of control is being attempted where
the walk ends by a RIGHT link pointing to a CELL. [D]

An indirect transfer of control is being attempted via a
non-LABEL. [D]

An attempt is being made to indirectly transfer control
to a LABEL which is undefined (by the Link Editor). [A]

|
.;i
3
El
A
A
k)
.

7] . ce vt eae s
E 4.
A8kt 9800 0 v ik AN AL RN & AN IOH Y AL AN A ey SOL 127 01 W A b A B A AL 2ttt A A T s s st ot ENEY et A BtV ia e Dy FNED I3 wih akiat b

|
; Errors
A
. &
= L LAS: The argument to the built-in function LAST is not a CELL. [D]
> i,
; f LCL: The argument to the built-in function LENGTH is a
F R cyclic list. [C]
' . LNR: The argument to the built-in function LENGTH is a
3) REAL. [A]
3 }
. LSH: The first argument to the built-in function LSHIFT is
a REAL, and it must be an INTEGER. [A]
NOT: The argument to the built-in function NOT is a
REAL, and it must be an INTEGER. [A]
PAG: The paging system cannot load a requested page
because it is too large. This is a fotal trap. [A]
R¥*; An attempt is being made to write the RIGHT link
from the NULL CELL (**). [D]
" RAR: During the execution of the built~in function RANDOM,
E: P.RAND was found to be pointing to neither an INTEGER a
3 whose magnitude is less than 23° nor the NULL CELL. [D] 3
e %
"" ;- RAS: During the execution of the built-in function RANDOM,
3 P.SEED was found to be not pointing to an INTEGER whose !
) magnitude is less than 2°°, [D] E
£ §
3) RDU: An attenipt is being made io read the DOWN link of an i
2 undefined (by the Link Editor) POINTER. {A] ;
: .
3
v RR: An attempt is being made to read the RIGHT link from a : 335
. non-CELL. [D] g
. 13
E RWD: An attempt is being made to_read or write a DOWN gi
- link from a node which doasn‘t have one; this may be : 3
part of a walk. [A] E
; M-S 249

e R s

Errors
I STK: An overflow of the interpreter control stack has occurred.
: An attempt was made to transfer control via the system
PERM POINTER STACK.CHOKE, but that POINTER points
DOWN to the NULL CELL. This is a fatal trap. [D]

o TR ONRRNY

boi Keed

I

SWK: An attempt is being made to take one step of a
B walk by following the RIGHT link from a non-CELL. {D]

= TIC: The argument to the built-in function TRI or IRR is
~ a list which includes an element which is a BASIC
N SYMBOL representing an illegal character. [A]

o TIS: The argument to the built-in function TRI or TRR is

a list of BASIC SYMBOLS which attempts to represent
a number, but with illegal syntax. [A]

TLB: The argument to a type transfer built~in function
or the built-in function LENGTH is a BASIC SYMBOL. {A]

. TLF: The argument to a type transfer built-in functicn or
the built- in function LENGTH is a FUNCTION. {A]

:] TLL: The argument to a type transfer built-in function or the
E built-in function LENGTH is @ LABEL. [A]

TLM: The argument to a type transfer built-in function or the
built-in function LENGTH is a MARK. [A]

- TNB: The argument to the buiit-in function TRI or TRR is

-- a list which includes an element which is not a

L BASIC SYMBOL. [A]

i_ ' TRR: The argument to the built-in function IRR is an INTEGER

whose magnitude is larger than caa be represe:ited
! by a REAL. [A]

TRS: The argument to the built-in function TRS is a list
which includes an element which is not a BASIC SYMBOL. {T]

i TRT: The argument to the built-in function TRT is a list
. which includes an element which is a CELL other than-
the NULL CELL. [T) M-6

PR NI S BaL YNPC AR RO T TSRS, AP T TR LN T WL APSTERIASTEL . SRR T P T T TR T A AL ST T AT s

{

g § Errors

§§ § 3 TUL: There is an attempt to_transfer control to an undefined (by

= s the Link Editor) LABEL. This may be due to a S/? exit., [A]

20
“‘ TYP: A debug-mode type test has failed (corresponding E
3 k toauseof !). [D] :
. ! WB: An attempt is being made to write both the DOWN 3
L link and the RIGHT link from a non-CELL. [D] ?
R
, WDU: An attempt is being made to write the DOWN link

of an undefined (by the Link Editor) POINTER. [A]

Pinanse *

E WR: An attempt is being made to write the RIGHT link
from a non-CELL. [D]

i,

‘WRN: An attempt is being made to write the RIGHT link of
some CELL to a non-CELL. (D]

o A pae curlindy

ZBI: An attempt is being made to call a non-existent primitive
built-in function. [D]

: ZBL: The second argument to the "special® built-in function
PLANKS is an INTEGER whose value is greater than 100. [D]

e

¢!
o S O Ml A P

ZD1: The first argument to the "private" built-in function
DECODE is not an INTEGER whose value is 9,11,12,13, 3
P 4, 15, 16, or 17. [D] |

I
R R e L LT

Caver = 4

b smam }
. .

ZD2: The second argument to the “private" built-in function
- DECODE is not an INTEGER whose value is in the proper
o range, but the first argument is an INTEGER whose value is
between 11 and 17. [D]

A e, e

S o o

ZD3: The second argument to the “private" puilt-in function
DECODE is not a CELL, but the first argument is the INTEGER
9. [Dp]

DA O QPR RY % e,
]
.

ZF1:

ZF3:

ZF4:

ZF5:

ZF6:

ZFL:

ZFN:

ZFX:

Errors

The argument to the "private"” built-in function
I.FL is not an INTEGER whose value is between
0and 7. [D]

During the execution of the “private" built-in
function I.FL more space cannot be allocated
for flag links. [A]

The second argument to the "privaze" built-in function
W.FL is not an INTEGER whose value is between
0Oand 7. [D]

The first argument to the “private" built-in function
R.FL or W.FL is not @ CELL. [D]

A call has been made on the "grivate" built-in function
R.FL or W.FL when flag lirxs are not allocated. [D]

During the execution of the "private" built-in function
T.FL. an error has been detected when attempting to
de~allocate space occupied by flag links. [A]

During the execution of the built-in function FLTH
a CELL has been found on the free storage list which

is not marked as being free. [D]

An attempt is being made to free a STRING or TOKEN
name headed by a non-CELL. [D]

A function-exit (FX) operation code has been encountered

when not in a function. [D]

St L E WS 3 ittt Ao e b D e L S R LR e o Ko $ AR

TN
!
=
3

T D gy

oA et ol
RN AT A YA

e SRR A ',-,gv_qﬁ.qg,fﬁqw%

Y Ay o e

¥ rap LA S AT

Ngh . e

s

-

i gk

L]
i
% 3
13
f2

TR e .

| e
"

| ey
t »

| P
-

o d
. f

¥ i §
" '

Py
. H

'™
L]

] M-Nm, § bk § j R
L) v] "

-&.‘

s m.

bmd o)

o~

T T R A R R AR ET

Z2G1:

2G2:

Z2G3:

ZG4:

ZG5:

VA Y

ELT TR TR T L T TR T TR R IR UL

Errors

An unexpected internal inconsistency has been
detected by the Garbage Collector: the root of
a tree is not a CELL. This is a fatal trap. [G]

An unexpected internal inconsistency has been
detected by the Garbage collector: an improper
tree walk has occurred. This is a fatal trap. [A]

An unexpected internal inconsistency has been
detected by the Garbage Collector: an attempt
has been made to mark a non~-CELL. This is a
fatal trap. [G]

An unexpected internal inconsistency has been
detected by the Garbage Collector: an attempt
has been made to test the marking of a non-CELL.
This is a fatal trap. [G]

An unexrecteq internal inconsistency has been
detecte. Ly the Garbage Collector: an attempt

has been made both to test and to mark a non-CELL.
This is a fatal trap. [G]

An attempt has been made to get a word from free
storage and an unmarked word has been found which
probably represents data in use. [D]

An argument to one of the following "private" built-in
functions is not an INTEGER whose magnitude is
less than 2°°; DECODE, DVLD, MLLD, TRF, TRL,

TRM, TRPD, TRTD, ZSET.INDIC. [D]

An INSERTION is not inserting a block since an INSERT
chain does not end in a BE operation. [D]

v
:r
L ot ™
i e al Lk NN

3
3

L6k

_

e

MR

e T o AR G

P ITp

Lided

st S s

PN T P

.‘L&Aul%ﬂhﬁ‘WM_MJMWAa‘.i;‘.éh..\l."-ﬂ-’mu::dmm SN

S VLA MLD Vit Yok, WEhab o n WS B8

o d o

R4 A

RTDEIMEITYICS, P Sy Pron e s IS T AR

o i &l Sl
AP nwx«mw.m»r.'#mPMMQW&*ﬂWW '
o p
3

PRV

&

i i ped fd ad e

-

-

i

F

i e
4 o ! R

VALK

ZLE:

ZLI:

ZND:

Z201;

Z203:

Z04:

ZOP:

2ZP1:

ZP2:

Errors

After allocating some variables on the internal
stack there is not enough room left for further
use., This is a fatal trap. [A]

The argument to the built-in function LENGTH
is illegal data. [D]

An attempt is being made to call a long integer function
as a trap, and the system PERM POINTER P.LIFL does
not point DOWN to a CELL. [D]

The argument to the "special® buili-in function
NUM.DIGITS is ~ REAL. [A]

There is insufficient free storage for complete
execution of the “"private" built-in function
OUTSTB. This is a fatal trap. [A]

The "private" built-in function OUTSTB has been given
a structure which includes either a LABEL, FUNCTION,
REAL, or long INTEGER. This is 3 fatal trap. [A]

The "private" built-in function QUTSTB has been given a
structure which includes a TOKEN. This is a
fatel trap. [A]

A basic input/output error has occurred during the
execution of the "private" built-in function OQUTSTB. This is
a fawal trap, [A]

An illegal interpreter operation code has been
encountered (such as 0). [A]

An input error has been detected by the paging system while
readiiig an environmenis! oage. This is a fatal trap. [A]

A premature endi-of-file has been detected by the paging system
while reading an environmental page. This is a fatal trap. [A]

bl e kSR AR ZE e b B b

Ly

2t sl "L

LIS W8

WFFRIT LT
LAV NPT RO TS S WIROEIN 2 AT PN

: ot v .

M 3 o "
LN NI

e i G i

A

ZP3:

ZP4;

ZPS5:

ZPC:

ZRI:

Z28T:

2T0:

ZTC:

ZTI:

ZTL:

R S R e tanie,

Errors

An input error has been detected by the paging system

while reading a page of the user program. This is a fatal trap. [A]

A premature end-of-file has been detected by the
paging system while reading a page of the user
program. This is a fatal trap. [A]

An unexpected internal inccnsistency has been
detected by the paging system. This is a fatal
trap. [P]

In a pop of the control stack an attempt is being
made to go to a level higher than the current one. [D]

An attempt is being made to read DOWN to a given
long integer, and that operation is not implemented. [A]

A REAL argument has been given to an input/output
primitive built-in function. [A]

A STRING or TOKEN ring has been found which is
not cyclic. [I]

The argument to the “private" built-in function TRCODE
is the BITQ pattern. [D]

The argument to the "private® built-in function TRCODE
is a CELL, STRING, or TOKEN. [D]

The argument to the “private® buili-in function TRCODE
is jllegal data. [D]

The argument to a type transfer Luilt-in function or the
built-in function LENGTH is illegal data. [A]

- - = T Yo S

o1 1k

A 20 b N 00 LA A M L ot WA S B 02 b S 15 205 50 i

.
VUGS pet fﬂazr“;,wwﬁ“ L
ekt R TIRY 27 Y1

3

Errors

ZUT: An attempt is being made to read DOWN to a node
using an unimplemented type test. [A]

et Ao
§osran s
M

Bosareee b

ayead) lmf&mmn:.mzéhu‘a\d L b B 1 ¥ oy A AT

' ZWD: An attempt is being made to write DOWN tc & gyiven
long integer, and that cperation is not implemented. [A]

v
RPN AR AT
-
PNt 1

bl 1 AL R

i

‘'
et Ak Sa e K

o Y ads

Fihaitiak s bt 808 0%

Il

)

R PAY o

M-12 (END)

A T s AR D R ELT L I A T e AT T

4 3

g -

-k Section N

y . i
- Using TAMBIT: the AMBIT/L
£ - Interpreter with Page Timing Instrumentation

% ., - %

iE January 13, 1972 ;

N %

g -

. This section describes how to use the alternate version of 3
; I the AMBIT/L interpreter for the instrumentation of timing

» and paging characteristics of a program. An example is

. included.

LVEL A L b O St
B N A

] FeV U

!“t‘i’!’ﬁ*:&l L8

3
%
o x‘.'

PR T
- '.

¢ IR e BN aaiilinfas i atndi i
" fohd o Ayl bl) ; " %

e Ve

*!m-u

L T . N R T T, o e T P R A S T T s R e

TAMBIT

Use of the normal AMBIT/L interpreter is covered in Section L,
“"AMBIT/L Program Execution". An alternate version of the interpreter is
available for the instrumentation of timing and paging characteristics of a
program. This alternate interpreter is called TAMBIT (for timing AMBIT) and
is used in exactly the same way as the normal interpreter. Its operation is
somewhat less efficient for the interpretation of the INSERT commands and
page-changes of any sort. The low segment portion of TAMBIT includes an
extra 70010 words of tables for keeping track of the instrumentation data.
TAMBIT may be used to instrument programs which consist of less than 350
pages (including the 26 built-in environmental pages).

TAMBIT is invoked in the same way as the normal interpreter and at
any time after execution of the AMBIT/L program begins the user may obtain
a summary of instrumentation data. The user may interrupt execution by
typing one or two tC's (CTRL C), or he may wait until the interpreter returns
control to the Monitor after a termination of execution. Then the user may
type one of the follow.1g commands to the Monitor:

START 140
or
START 141

Using either of these commands will invoke the typing of the instrumentation
data collected thus far. If the first form of command is used the data thus far
collected is retained; however, use of the second form of command clears out
the accumulated data after it hes been typed. In either cass, after the typing
{s done control returns to the point from which it was interrupted. Thus if it
was in the midst of execution, then executior continues. If it vsas at Monitor

command level, then control returns there.

For each page and for the Garbage Collector (which is called page 0)

three statistics are kept and reported:

P4l

A

g g Bt

 Bhada bnaie o nil

s

TP ISRV Py

.
E"_m..wmmm AN bt 2 A 45 5 BN et B0 000 MR € iond A S AP 32

SR LR T I R TR R T TR b e e

e

Ly

TAMBIT

2P RETRCIERS RSN

- the number of milliseconds spent on the page (or in the Garbage
Collector) based on the number of clock ticks which occur while
on the page; a clock tick occurs once every 16 2/3 milliseconds
or 60 times per second.

- the number of times control transferred to the page by an INSERT
command, or for page 0 the number of times garbage collection
was invoked.

- the number of times the page had to be read from the DMP file
since it was not already in memory when needed. This is always
0 for page 0.

The statistics typed are only for those pages where there has been some
activity. Also a total is given for each of the three statistics. 3

% ; called. This can contribute significantly to the time statistic if the clock
% E ticks happen to occur at function entry or exit.
R A
;3 §
3 s
: 3 Since statistics for the 27 environmental pages is also reported, the 4
i 3 3
3§' 3 following key to their use is given. ;
1 3 3
g E
i} 3

A,

S LA ER AN Bt e A0 Pl g

33
E I Note that a page must be used when a function declared on it is

N I - e A M G e R L

TAMBIT

L/
A
Name Use .
ZENV1 general long integer arithmetic ‘ §
ZLICM long integer comparison
ZMLLL long integer multiply f 1

ZQRLL long integer division
ZASLL long integer addition and subtraction 2 3
ZENV2 general input/output except for what 3
* is elsewhere
;o ZIOP OPEN ‘
E P 8 ZICL CLOSE
E ;T 9 ZIDEL DELETE i
E : 10 ZIREN RENAME
- 11 ZIRDI RDINFO E
E - 12 ZIZPH used by OPEN, DELETE, RENAME %
T 13 ZIZOU OUTS, OUTL, OUTLS i
. 14 ZIZSE SELWI, SELWO, RDSELI, RDSELO, :
P RDLNGTH %
3 E) 15 ZIMES input/output error trap messages §
16 ZOSTR OUT.STRUCT 3
i 17. ZISTR IN.STRUCT
; 16-25 ZENV3, etc. DAMBIT/L
. 26 ZINIT initialization (once only)
This section ends with a sample listing of the statistics from instrumenting 4
) an AMEIT/L compilation of a typical insertion. For demonstration purposes it is *
: being run using a somewhat smaller object code paging area than the one *
5 N normallv employed. ;
|-
¥ 3 3 3
’i - 251
AN N-3

i

PAGE

..
-

R =N

3o

bE 11
3 12
g 13

18

26
27

¢ B 32
- 33
34
35
- 36
£ 37
. 38
44

.. 41
42
- 43
44
45
46
47
- 48
49
54
51
52
- 53
54

= 55
56

57

L o‘n‘ e 5{,
EE 59

3 e 6%
1 61
13 62
-3 63

A

ot
1

RN N i b
T

TN A

64

66

I
I 67
I

e

G

2 EXIT

TOTALS

MILLISEC
3765
17

18637
161
G

17
O

2673

o

67
16658

13614
184
1168
17
16
69517
33
978
367:
699
968
s]
56
33
3241
469
9932
417
2663
84
2475
4432
771
3331
5236
1884
14694
13385
927
5729
2684
617
33

565
117

1356

131434

INSERTS

5
5

368

287

318

TAMBIT

DISK READS
o
1

[

N = I = RNV OONWWS=Wm=EbWDNE2NNIW=——==OW

)

|

i it o Lkt e L e Skt e

e o s X o ERAL 0 i S o

Ty Sl A T B e ST

b
] I
A 1 3
£ i,
E ; %0
3
B
£ 1. Section O
;2 H
e 1 FILUT: File Utility

January 12, 1972

i

Ly e ST n‘wu v
4 ,,M!mm“.ﬂfﬂm AR e o
L}

E | This section describes how to use FILUT, a disk file utility
- program written in AMBIT/L. It permits a user to create,
examine, or alter a PDP-10 disk file on a word-by-word
basis. The user of FILUT deals in octal numbers only, both
for word numbers and contents.

LA s 0T LAR L LA b Bt LD KoY 3 S P R0 1S DT A AN S L8 50 S WL WO e B LGRS

v

WW“-‘-WAA»-M -

Lo hind € S B s AP 0 v TN AN L D W P2 kA1

e Ny

A4 St

Saggn

Aol

R

Tt §
Py

— R TR RN TN e AT £ R Mgty i e

FILUT

FILUT is a disk FILe UTility program written in AMBIT/L. It permits
a user to create, examine, or alter a PDP-10 disk file on a word-by-word

T

basis. The user of FILUT deals in octal numbers only, both for word numbers
and contents.

As in AMBIT/L input/output, a disk file is viewed as being composed
of a one-way potentizally infinite number of 36~bit words, numbered 1, 2, 3, etc.
At any time, an initial set of these words {possibly none) are considered to
exist with meaningful values, and the remaining are considered non-existent.

FILUT is invoked by a Monitor command of the following form:

RUN FILUT [proj , prog 1

The user is prempted for typed input by the program's issuing an initial
request of:

*FILE=

The user is expected to type a file name with or without an extension., The

file name must consist of one to six alphanumeric characters, and the extension
may consist of zero to thiees alphanumeric characters. A period (.) is used

to separate the name from the extensior.l. If incerrect syntax is used, the
program types a question mark and recycles with another "*FILE= " request.

if a syntacticallv corre-x file name .. given, that file is opened &,
FILUT for input-outpui.. ‘this implies that if s .ch a file did not previously
I exist, it is created. The prcgram then tvpes out "OCTAL LENGTH="
followed by the numper of words in the file. If the file has just been created,
that number will be zero.

FILUT ncw types an asterisk (*) on a now line to indicate it is waiting
for the user to type a command.

b{a*ﬁm«um-wm —
el e o

Note: Throughout the remainder of this memo a dollar
sign ($) indicates a user has typed ALT (or ESC). The
PDP-10 Teletype service routine always echos a dollar
sign when the user types ALT (or ESC).

2

;. The following command forms are accepted by FILUT. Lower case characters
- are used to represent any octal number of one to twelve digits. Any illegal
command causes FILUT to type a “?" followed by a “*" on a new line.

“Short form" refers to printing values of words with leading zeros suppressed.
"Long form" refers to printing values of words as 12-digit numbers. FILUT

& PSR HA A A i

LindL

- § normally prints values in their long form.

Form Interpretation

v x$ EXAMINE WORD x.

If x is 0, this is an error; otherwise EXAMINATION imode is
entered, If word x does unot exist, *NO-WORD" is typed
followed by a “*" on a nev. line. If word x exists, the
word is typed (in either short or long form), and word x

is considered to be opened as in DDT. The user may then

type one of the following forms:
<CR> Word x is closed and a "*" is typed on a new line.

$ Word x is closed and an attempt is made to

examine word x+ 1.

y<CR> Word x is changed to have the value y, and
"x* js typed on a new line,

y$ Word x is changed to have the value y, and
then an attempt is made to examine word x+ 1.

354

T T

ety

m..
e T ST

ANY

o WA wr g

(LR

x-y$
or
x-y<CR>

x+2<CR>

X-y+—2<CR>

FILUT

EXAMINE WORDS x THROUGH y.

If x is 0, or if x is greater than y, this is an error;
otherwise EXAMINATION mode is entered. If word x
does not exist, "NO-WORD" is typed followed by "*"

on a new line. If word x exists, x is typed on a new
line followed by "$" followed by the value of word x

(in either short or lor.g form). This format continues on
successive lines with word x+ 1, word x+ 2, etc. until
either werd y has been typed or the last existent word
has been typed. Fir«lly, a "*" is typed on a new line.

SET WORD x TO z.

If x is 0, this is an error; otherwise SETTING mode is
entered. Word x is set to z. If it does not exist, it
is created. Then a "*" is typed on a new line,

SET WORDS x THROUGH y TO z.

If x is 0, or if x is greater than y, this is an error;
otherwise, SETTING mode is entered. Words x through

y are set to z. Any non-existent words are created. Then
a "*" is typed on a new line.

B I

AL ¢ 4
il s kA L 6

Y ke b

LN AP At R A e el AN RS IR VA A 0 i NN ST e SN A

s ik)l ey 307

Mt

A LAY LR b Fn et 4 e S,

R e R e R T < I St - ¥ R

FILUT

SET WORD x TO z AND PREPARE FOR THE NEXT.

If x is 0, this is an error; otherwise SETTING mode is

entered. Word x is set to z. If it does not exist, it
is created. Then on a new line x + 1 is typed followed
by “<". The user may then type ¢ ne of the following

S0 Vg SR AN R

forms:
<CR> A "*" js typed on a new line.
w<CR> Word x + 1 is set to w. If it does not !

exist, it is created. Then a "*" is typed
on a new line.
$ Word x + 1 is not affected, but thenon a
new line x + 2 is typed followed by "+", etc.

A RN AL e Ao

w$ Word x + 1 is set to w. If it does not

exist it is created. Then on a new line
x + 2 is typed followed by "+", etc.

x-y+z$ SET WORDS x THROUGH y TO z AND PREPARE FOR THE NEXT.

If x is C, or if x is greater than y, this is an error;
otherwise, SETTING mode is entered. Words x through y
are set to z . Any non-existent words are created. Then

o on a new line y + 1 is typed followed by "<-". The user
may then type one of the following forms:

A DR ST YL i e DX T 0000, L b i i C A2

- <CR> © *A "*" js typed on a new line.
- w<CR> Word y + 1 is set to w. If it does not exist,
. it is created. Then a "*" is typed on a new
% line.

$ word y + 1 is not affected, but then on a new

RAMTEAIRAA a5 de 9 oA 5 o

ine y + 2 is typed followed by "+", etc.
w$ Word y + 1 is set to w. If it does not
exist, it is created. Then on a new line
y + 2 is typed followed by "+—", etc.

3

2
3
=
2
£
=
=
E
i
E]
3
A

ah o ompd

redak. L.

At

i
o
Svdibiatont S s v
"

T RN AN AN ALY

pdg ity ko) aronbilics
TR AT A

<CR>

S<CR>

L<CR>

E<CR>

FILUT

NULL COMMAND,
A “*" is ityped on a new line.
EXAMINE NEXT WOxKD OR PREPARE TO SET NEXT WORL.

If FILUT is in EXAMINATION mode, word x+ 1 is examined
on a new line, where x is assumed to be the most recently
examined word. If FILUT is in SETTING mode, it types out
x+ 1 followed by "-" on a new line, where. x is the most
recently set word. The user may then type one of the forms
permitted in the "x-—2z$" command.

PRINT VALUES IN SHORT FORM.

Leading zeros are suppressed on further typing out of
values of words.

PRINT VALUES IN LONG FORM.,

Further typing out of values of words is done as 12-digit
numbers.

END THE SESSION.
This command should always be used to terminate a

sescicn with FILUT in orde: to guarantee that all changes
the user L5 made to a file are properly completed,

(END)

b bttt e 0

v A wand et o AR e St ke

L CAntedirn Bt bt b s (ALt 20 St FE AL 4t 0 0 L6 202 80 O TN 2 0 i DDt i B,

