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IDENTIFICATION OF PARAMETERS IN NONLINEAR BOUNDARY CONDITIONS
OF DISTRIBUTED SYSTEMS WITH LINEAR FIELDS

E. Dawson Hard Raymond E. Goodson
Assistant Professor Professor

Purdue University
Automatic Control Center

School of Mechanical Engineering
Lafayette, Indiana

Abstract III. Performance Criterion

A method is presented for the formula- In order to accomplish the identifica-
tion of unknown parameters in nonlinear tIon, some criterion must be selected to
boundary conditions In distributed parame- measure the error in the method. For a
ter dynamic systems. In contrast to other practical method, selection of this error
available techniques, this method requires again must not require an excessive number
only as many measurement sensors within the of sensors. In particular, an error do-
field-*s there are unknown boundary con- fined over the entire spatial domain is
ditions. Results are presented for plmu- impractical.
lated data from an example of heat con-
duction with radiation boundary and for IV. Optimization Technique
experimental data from a cantilever beam
with a nonlinear moment at the boundary. Finally an optimization technique must
The method may be applied to partial differ- be selected to minimize a Ferformance
ential equations which zre linear, one- criterion in some stable fashion by identi-
dimensional, and have known ti=: Invariant fying a "best" set of parameters.
coefficients. The nonlinear boundary con-
ditlons are specified up to a set of un- Systems considered in this paper are
known constant parameters which appear those which can be adequately represented
linearly in the boundary conditions. by known one-dimensional, linear, station-

ary field dynamics but have boundary con-
Introdv'.tion ditions which are nonlinear algebraic

equations in the field energy variables.
Distributed system identIfication muast Heat conduction in a continuum with a

address itself to four interrelated prob- radiation boundary condition is an example
lems. They are: of such a system. The method pzisentod in

this paper identifies the unknown parameter
I. Measurement Restrictions in these nonlinear algebraic relations be-

tween the energy variables at the bound-
Since the system is distributed in space, aries.

measurements can be taken anywhere within
the field and at the boundaries. I waver, Development of the Identification
for a method to be practical, successful Proceeure
identification should be accompl~shed with
a minimum number of sensors. Furthermore, The method presented in this paper, as
measurement locations in che field must be shown in Figure 1, takes advantage of
selected such that nodes of the dominant several properties of distributed parame-
modes of the system are avoided(l)'. ter systems. In simulating partial differ-

ential equations one can separately sliu-
II. Simulation Method late the field dynamics and the boundary

conditions and then combine them to obtain
Closely tied to the measurement problem the interactive respunse( 2 ). Furthermore,

above, is the selection of a simulation since internal spatial data appropriately
method. For purposes of either digital or lccated are adequate along with the field
analog simulation, the Inf!nite order model to describe response throughout the
partial differential equation =ust be re- entire field, one can use information at a
Juced to a finite order, or equivalent sensor located within the field to deter-
lumped parameter, model. The sivulation mine the energy variable response at the
method selected should not require ar. ex- unknown boundary. Thus, the appropriate
ccssive number of measurements and It im- energy variable can be simulated at the
plemented digitally should be fast enough unknown boundary using only as many appro-
to be practical. priately located sensors as there are un-

'Numbers In parentheses designate References known boundary con'itions. Having recover-
at end of paper. ed the boundary energy variable by such

simulation, the boundary forcing then can
be expressed as a function of only the



unknown boundary parameters. If the un- au - -

known boundary ccndition Is appropriately Wt ax (1)
modeled, this boundazv forcing vill be a au

linear function of the unknown parameters q -x
even though nonlinear in the field varl-
ablts. For the full power of the proposeJ The symbols are defined in the nomenclature
method to be utilizeJ a linear function in section of this paper. Since the heat con-
the unknown parameters is necessary. duction Is assumed symmetrical only half of

) a . - Linear Field -i

Known L F Unknown
Boundary D I S T R I B U T E D S Y S T E M Boundary

IZnternal _Non-zero Bon- - - - - ---

Deata su Linear I •oundary I
's i atto.Boundary I

Identified I u

F Bounct ar

Parameters Algo i

Model

Figure 1 Block Diagram of the Basic Identification Method

After forming the boundary forcing sa the the slab is simulated and the boundary at
unknown boundary as a linear function of the center, x p 0, is equivalent to an
the unknown parameters, an error is defined insulated boundary. At the unknown bound-

at the ori$inal measurement location be- ary condition, x - 1, heat transfer occurs
tweFn the actual measured response and the by combined radiation and forced convection.

simulated response using the unkncwn bound- Thus, the boundary conditions are
ary condition as forcing. An ISE perform-
ance index is then minimiz&d yielding a set q(0,t) - 0 (2)
of linear algebraic equations which are
solved digitally for the unknown parameters q(lt) * ,[(u(l,t) + 1)% - E)
(3.4). Since a digital computer is used a (3)
steep descent technique is not necessary to + nf(u(l,t) + 1) - 0c
solve the optimiastion problem.

Data were available in the literature for
The method is best explained bj example, this problem with n a 0, 0 * 1.0(3) and for

* 1.0. 8 - 1.0(4). These data in the
Application of the Identification Method literature were generated at x a I by an

Iterative numerical scheme given the n and
Example 1. Heat conduct!on with a radia- a values. By further simulation, values of
tion and forced convection boundary con- u(.5.t) were generated as the measurement
dition. data for the id.-tification method. FIg-

ure 2 shows the aecessary steps in applying
The problem considered in this first the identification method to this example.

example is one-dimensional heat conduction
In t homogeneous slab with boundary rndia- By z.plyinq the Laplace transform to the
ti n and forced convection. Constant partial differential equation, an ordinary
dift iivity, environment temperature, and differential equation is obtained in terms
the i,,'tial uniform constant temperature of u(x,s) and x where a ic the Laplace
are knwn. The field dynamics are variable. If the actual weasuread internal

2
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Time, t, Seconds

0.0 i.0 2.0 3.0 4.0 5.0 6.0 7.0
2.00 . . -.. . . - "-

f -0.10 Identified 0 - 0.974

u(.5,t) OR 8 (t)
.. -0.20

k -0.30

S-0.40

S-0.50 Input

S-0.60 (t),

Estimated radiation

-0.70 contribution to u(.5,t)/S

Figure 3 Simulated R(t) Compared with Internal Input Temperature, Wt)
S- 0.00 M .

UIng data at xa - 0.5C3 from Croable In Figura 4 the reaul-a are shown using
and Vlakanta for radiation alone a: the data at x. - 0.500 for combined radiation
boindary (n - 0,0 - 1.0) the simulated re- and forced convection at the boundary (8 -
suire in Figure 3 were obtained and I - 1.0, n - 1.0). In this case the seneitivity
0.974 uas identified. Thus the radiation to the radiation contribut:on Is much lees
coefficlent was identified to within 31 of than the convection coatribution. Thus,
the correct value. Using this identified the radiation coefflent. 0. wao identi-
value of 8 the agreement vith the actual fled only to within 202 of the correct
measured data Is quite good. value but the convuction coefficient, n,

Time, t, Seconds

0.0 1.o 2.0 3.0 4.00.00.

-0.10- Actual u(.5,t) due to radiation

.. -0.20. R1(t) Simulated S - 0.731

N a-4 N + I-$
-o;.oo G1 G2

S-0.30

-0.50-. Actual u(.S,t) due to convection
.4

S-0.60 ILM
di R2 (t) Simulated i - 1.006

-0.70 21 N

u(.St) A 5R1 (t) + RiR2 (t)

Figure 4 Simulated RI (t) and R (t) Compared with Actual Values and Total

Input Temperature, u 3 (t), at s* a 0.500
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was correct to within 1%. More importantly, . • -. .. ..
the estimated u(.5,t) resulting from these - .
identified parameters virtually coincides
with the measured data. It was also ob-
served that a higher order model for Gi
would allow better identification of 0 (with- .I..in 5-10%) because of inclusion of less

significant eigenvalue terms.

Engineering judgment must be used to
select the order of the simulation uodel. ..

A more complete and therefore morc costly --

simulation model results in the more accu-
rate quantitative parameter identification.
However, a much simpler field model, while I
resulting in less accurate parameter

identification, may still yield equally
accurate state estimation results. In
actual practice, the a-reement between Fiqure 6 Test Beam Mounted in Cldmped-
measured and estimated responses would gen- Unknown Boundary Configuration
erally be the final measure of a succeszful
identitication. Since the field dynamics
are known, well known linear system tech- inertia, is
niques such as frequency response can be
used to determine which eigenvalues are* .DO L1 .2* +DL OY 0 (16)
significant and therefore where the model 3x4 EI ;t2 EI at
should be truncated. A more complete con-
sideration of field model selection is Equation (16) assumes, as a first approxi-
found in reference( 2 ). mation, that an equivalent viscous aamping

term is a valid approximation for internal
Example 2. Transverse beam vibration with structural damping. Since the system was
a nonlinear support. storted from rest both initial conditions

In the second example, i long slender
beam, sketched in Figure 5, was excited in
transverse motion by an electrodynamic
shaker table clamped to the right end of
the beam as shown in Figure 6 and Figure 7.
The boundary condition at x = 0 was the un-
known nonlinear one which was identified.
Furthetrmore, the energy variables at this
boundary could not be measured directly d-te
to the interference of the knife edges.
rhe input motion of the shaker table, z(t),
was measured with a relucta:ce distance
detector and d'-e measurement internal to
the field was obtained from a set of straln
gages mounted to provide a temporature com-
pensated measurement of bending moment. 3

A partial differential equatio- model foe
this system, neglecting shear anc rotatory Figure 7 Beam Test Stand

Stationary Support Z(t)•i1/4" Steel

Dril hIiod

2 mil
Rubber

Stops

0.015" Spring Steel

x 1

L

Figure 5 Test Beam Mounting Configuration



a9re zerc. The known apatit! conditions at ilar to a hardening spring force. Further-I

x a1 are more, the moment at ul 0. 113 II1 (,)
y~l~) -~t) 17) would be proportional to the force on the
y(I't -ZW(17) beam tip. Thus a cubic. hardening spring

and - 1) relationothp vas assumed for this unknown'

K~1. - 0, h

camotion such that ax 2 (20)

y(0,t)+ -19 3S3(t)

The problem Is to fortztt -it- andi identify S1 (t) - ax (Olt) (1

ofthe total beam length, the displacenciat The Ct2 term allows for a nonsymmetricalofthe tire of the beam was -qouued to be boundary -ondition. This boundary model Is
0y3Since Bcaseo :ithei i~~ eventual~cls t co(22

etect n thet the thber beps the worldce _im- Having completed ihe ý.aportant modeling
step, the application of the identification-

al is2!1

a--5.550I

Pu J r(t) dt -1.839 x 10

-. 11

C;

x 0.000

-0. 400

-0.6001-
0.000 0.050 0.'1100 0.150 0.200 01256

Times, t, Second*

Figure 8 Simulated ia(.14.t) Given a's for N 4,

4C, Identification Model.

C2 4C, Damping Model
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method proceeds in a fashion similar to Thus, the damping ratio of the second mode
Exalple 1. Laplace transforms are applied wap increased by a factor of four over theto the partial differe" is! equation in first mode damping ratio after comparison
(16) above. The three known spatial con- with experimental data. After the boundary
ditions and the internai measured bending parameters were identified a separate closed
moment data, um(t), at x - x. were used to loop simulation was used to check the re-
simulate the boundary slope at x - 0 sults against the actual measured data.
yielding These results are presented in Figure 8 for

the identified b6undary condition which Is
Sploetted in Figure 9. Although ringing Itill

er (0 ,) - Gll'(s)] + G2[0m(s)) (24) exists in the simulation Model due to Lawhere '^) denotes Laplace transformed varl- imprecise dam,,ing model, It is significantable- ._Pd again Gý and 02 are defined in to note that the Identification method was
the Appendix. nevertheless able to successfully match the

Having recovered the boundary slope peak amplitudes after the'first two peaks."usIng 2quation (24), the unknown boundary These peak amplitudes are important since
condition, M(t), Is formed as a functiun of they aid In predlcting failure of a part.
the unknown parameters using Equation (20). Distortion of the fi-ist two peaks was
Using hft), and the three known boundary caused by FM tape recording of Xhe measured
conditions, an ebtimate of the bending data.:
moment at x - xm, P(xm,t), is simulated
from: Summary and Conclusions

O(xma) . C 3 [i(a)] + G4['(8')] (25) In summary, to implament the mathod pro-
Now the error at x - xm is sented 1h this paper, the user

(s) - Pm(s) -. (a 1 G4[Sl(s)] + a 2 G4f1 2 (s)J 1. Models the linear field with the knownboundary conditions.

+ 0 3 G4 19 3 (s)J + G312(s)]) (26)
2. Formulates the unknown nomlinoar bound-Linear regression analysis using an ISE ary condition as an algebraic relbtion.

performance indeF again yields a set of ship linear in the unknown parameters.
flneer algebraic equations which are solved
or the desired s as in Example 1. 3. Solves, ýy simulation, for the boundaryvariable necessary as input in (2)

Some difficulties were encountered during using Internal measured data for the
the simulation due to the equivalent viscous missing spatial condition In the model
damping model selected in Equation (16). in (1).

23 (0) x 10,;• •x•3.0.

fin./(in. '/in •)

01 2.510 2.0

*2 - -5.550
03 218.61

I I I I I -4 ! • •- 4 •
-7.0 -5.0 -3.0 "-1• 1.0 3.0 5.0 7.0 9.0

-130 (0) n 102,

in.l(it& /in.)

-2.0

Figure 9 Plot of Identified Boundary, LX (0) vs. !X (0), for 90st Identified 6-.
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4. Generates the unknown boundary output 5. Goodson, R.E., "Distributed System Sim-

variable as a function of the unknown ulation Using Infinite Product Expan-

parameters using the boundary model in sions," Simulation, Vol. 15, No. 6,

(2) and the results of (3). December 1970, pp. 255-263.

5. Solves, by simulation, for the response 6. Krouse, C.L. and Ward, E.D., "Improved

at the original measurement location as Linear System Simulation by Matrix

a function of the unknown parameters Exponentiation vith Generalized Order

using the results of (4) for the miss- Hold," Simulation, Vol. 17, No. 4,

Ing spatial condition in the model in October 1971, pp. 141-146.

(I).
6. Identifies the unknown parareters using 7. Rubin, A.I., "Continous Regression Tech-

regression analysis applied to an error niques Using Analog Computers," IRZTEC,

between the actual measured data and Vol. EC-ll, October 1962, pp. 691-699.

the estimate in (5).
8. Kohr, R.H., "On the Identification of

This parameter identification method was Linear and Nonlinear Systems," Simu-
successfully applied ro a heat conduction lation, March 1967, pp. 165-174.
example using numerically generated daLa
from che literature and to a bea& equation APPENDIX
example using experimentally measured data.
In both cases the estimated response using Transfer Functions and Infinite
the identified parnmeters %as in good agree- Product Approximations
ment with the actual measurv4 data. 7n the
heat conduction example, where , comparison Example 1 Heat Conduction
with the correct parameter values was poss-
ible, the correct parameters were identi- N-1 _ _

fid to within 3 per cent in one case and + (I ÷ .- I 2

in the other case to within I per cent on cosh /a !-I (2.7))
one parameter and due to low sensitivity GI N (27)
10 to 20 per cent on the other parameter. cosh rs xm U [1 + 2

-- +

A particularly important result is the 2-X-) a

indication that a single measurement not
at the boundary includes enough informa-
tion for identification of parameters in For xm - 0.500 and a fourth order model
the boundary given some knowledge of the (N - 4),
field dynamics. a
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2L 2 Gl9G 2, C3) G4 transfer functions defined
G2 E ( -cosh y Cos y) 43)In Appendix

SDemon. -beas moment of Inertia(In

Denom. I Ilj - identification integral

(cosh y(l-x + Cos Y(1-XM)snh Y slay) • - ISE performance index
aaL a bean length (inches)

+(sia y(l-x,) + sin y(1-xa))(cosy- cosh y) MW - signal proportional to
(n 33) boundary moment (in/( In_22)

S (33) 2/ (in2 )

"El(34) beam mass/L (lbf-sec 2 /ln)

in
For x - 0.14 and a fourth order model, q(xt) - dimensionless heat flux
Inf n~te products yield( 2 )

Ri(t) - measurement locition

1.367 (1 + 1-1- response functions
1.36 (1 1116 .04)

G -. (35) S(t) - boundary input functions
(1 -__ _) (1 Y4 I

348.08 3947.53 s - Laplace variable

t- time (dimensionless in

0.316 •- (1 - Y Example 1. seconds in
500.56 Example 2)

G2 -- (36)
2 - Y Y Au(xt) . dimensionless temperature

348.08 M 3947.53 scaled to zero at t w 0

Y2 (c Y sinh ux + cosh y sin yx) UM(t) - measured dimensionless
G3 (con y s y - cosh y sin y) (37) temperature data at x-xm

x . dimensionless spatial dis-

tance

G (coo y - cosh y)(sinh Y(I-x)+ siny(l-x))
2(sinh y cos y - cosh y sin y) x1  - beam spatial distance (inch)

+ (slnh y - sin y)(cosh Y(1-x) + cos y(.-x)) y(x.t) - beam deflection (inch)

2(anh y cos y -cash y sin ') s(t) - shaker table motion (inch)
(38)

CL - boundary parameters to be

For x t 0.14 and a fourth order model, Identified in beam example

infin~t products yield.
- unknown radiation coeffi-

- 0.42 EI/L2 (1 + 2ce.t
25.36

3 (39) Y - Laplace function definedS(1 Y 0)( 24964 by Equation (34)
237.72 2496.49

£ - measurement location

0.790 EI/L2 (1 -3.) response error
348.08)

G - (40) n - unknown forced convection
4 y._._) - ) coefficient-237.72 2496.49)

0 known constant diaension-less environment tempera-

Nomenclature ture

D - uinternal damping term i(x ,c) El _Z(x_,t) , bending

(:bfI(!n in) L2sec

beam modulus of elasticty moment (in-lbf)
(psi) a3 (t) - measured bending moment

at X x x
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