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PREFACE

This technical report is a reprint of a paper submitted
to ASME for publication and results from a Ph.D. thesis done

at the Automatic Control Center by E. Dawson Ward under the

direction of Professor R.E. Goodson. This paper has been

accepted for presentation at the Joint Automatic Control

‘Cbnference of the American Automatic Control Council.

Research support for the work was provided in part by a
National Science Foundation Science Faculty Fellowship and

by the Office of Naval Research under contract N00014-67-A-
0226-0012, K« 041-423.
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IDENTIFICATION OF PARAMETERS IN NONLINEAR BOUNDARY CONDITIONS
OF DISTRIBUTED SYSTEMS WITH LINEAR FIELDS

E. Davson Ward
Assigtant Profesnsor

Raymond E. Goodson
Professor

furdue University
Autonmgtic Control Center
School of Mechanical Engineering

Lafayette,

Abstract

A method 18 presented for the formula-
tion of unknown parameters in nonlinear
boundary conditions in distributed parame~
ter dynamic systems. In contrast to other
available techniques, this method requires
only as many measuremrent sensors within the
field ‘as there are unknown boundary con-
ditions. Results are presented for simu-
lated data from an exanple of heat con-
duction with radiation boundary and for
experimental data from 3 cantilever beanm
with a nonlinear moment at the boundary.
The method may be applied to partial differ
ential equations which cre linear, one-
dimensional, and have known tizc invariant
coefficients. The nonlinear boundary con-

dttions are specified up to a set of un-
known constant parameters which appear
linearly in the boundary conditions.

Introdu.tion

Distributed system identification nmust

address itself to four interrelated prob-
lems. They are:

1. Measurement Restrictioans

Since the system is distributed in space,
measurements can be taken anywhere within
the field and ar the boundaries. | wever,
for a method to be practical, successful
identification should be accomplished with
a minisum number of sensors. Furthermcre,
measurement locations in che field must be
selected such that nodes of the dozminant
wodes of the system are avoided(1)?

I1X. Simulation Method

Closely tiesd to the measurement problen
above, is the selection of 2 simulattion
method. For purposes of efther digital or
analog simulation, the Infinfte order
partiii differential equatlion muat be re-
duced to a finfte order, or equivalent
lunped parameter, model. The sirulation
method selected should not require an ex-
cessive number of measurements and {f fm-

plemented digitally should be fast enough
to be practical.

INumbers iIn parentheses designate References

at end of paper.

Indians

I1I1. Performance Criterion

In order to acconplish the tdentfifica-
tion, some criterion must be selected to
measure the error {n the method. 7PFor a
practicail method, selection of this error
again must not require an excessive number
of gsensors. In particular, sn error de-

fined over the entire spatial domain is
impractical.

IV. Optimization Technique

Finally an optimization technique must
be selected to minimize a gerformance
criterion in some stable fashion by identi-
fying a "best" set of parameters.

Systems considered in this paper are
those which can be adequately represented
by known one-dimenational, linear, station-
ary field dynamics but have boundary coa-
ditions which sre nonlinear algebraic
equations in the field energy variadles.
Heat conductfion in a continuum with =
radiation boundary condition 1s an example
of such a system. The method presented in
this paper identifies the unknovn parameters
in these nonfinear slgebraic relations be-

tween the energy variables at the bound-
aries.

Developnent of the ldentificarion
Procedure

The method presented in this paper, as
shown {n Figure 1, takes advantage of
several properties of distributed parame-
ter systems. In simulating partial differ-~
ential equations one can eeparately simu-
late the field dynamics and the bdoundary
conditfions and then combine them to obtairn
the interactive respunse(2). Purthermore,
since internal spatisl data sppropriately
lccated are adequate along with the field
model to describe regponae throughout the
entire field, one can use information at »
sensor located within the field to deter-
nine the energy variable response at the
unknoun boundary. Thus, the appropriate
energy varisble csn be simulated at the
unknown boundary using only as many appro-
priately located sensors as there are un-
known boundary con'itions. Having recover-
ed the boundary enecrgy varisble by such
simulation, the boundary forcing then can
be expressed as a functfion of only the
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unknown boundary parameters. If the un-

du _ _ 3g
known boundary ccndition is appropriately at Ix )
E modeled, this boundarv forcing will be =& " . 2u
E linear function of the unknown paraweters q ax

even though nonlinear in the field vari-
ables. For the £full power of the proposed
method tc be utilized a lfpear function in
the unknown paramecters is necessary.
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The symbols are defined in the nomenclature
scction of this paper. Since the heat con-
duction is assumed symmetrical only half of

r.__.__._____.. Linear Fiald .
Known Unknown
Boundary { n i SoRIBUTED SYSTEM Boundary
: Internal Non-zero o —-———=
Measured I'B.C. s Bo:xd::y $INonlinear '
3 Data Linear P i}Boundary 1
A P.D.E. - —joperators 1
; Variable | Boundary
Simulation Input 1
| Functions
Identified 1 '
3 Boundary {Optimiza-~ + i Boundary
; . Error,
: €——}  tion | e m——
- Paraneters Algorithm t M
- ot ' Parameters
t
Estimate of ¢
3 Boundary {
Response Linear Output ! §
P.D.E. v
: simulation| variable, :
: T N |
Non~-zero Unknown
. B.C.'s Boundary
E Model

Figqure 1 Block Diagram of the Basic Identification Method

After forming the toundary forcing st the
unknovn boundary as a linear function of
the unknown parameters, an error is defined
at the original measurement location be-~
tweean the actual mseasured response and the
simulated response using the unkncun bound-
ary conéicion asz forcing. An ISE perform-
ance index is then einimized yielding a set
of linear algebraic equations which are
solved digitally for the unknown parameters
(3.%). sSfnce a digital computer (s used a
steep descent technique {s nct necessarcy to
solve the optimigzation prodlem.

The method is best explained by example.

Applicatfon of the Identificarion Method

Example 1. Heat conduction with a radia-

tion and forced convection boundary con-
dition.

The prodiem considered fn this first
example s one~dimensional heat conduction
in & homogeneous sladb with boundary radia-
ti o and forced convection. Constant
dift sivity, environment temparature, and
the in'tial uniform constant temperature
are kn wan. The field dynamics are

the slab is simulated and the doundary at
the center, x = 0, is equivalent to an
insulated boundary. At the unknovn bound-
ary condition, x = 1, heat transfer occurs
by combined radistion and forced convection.
Thus, the boundary coanditions are

q(0,t) = 0 (2)

q{l,t) = H[(u(i,c) + 1)* - ec')

€3)
+ nf(u(l,e) + 1) -~ 0]

Data were availsble in the literature for
this problem with n = 0, 8 = 1.0(3) and for
nel1.0, 8« 104, These date in the
literature were genarated at x = 1 by en
{iterative numerical scheme given the n and
£ valuves. By further simulation, vslues of
u(.5,t) vere generated as the measurement
data for the fd. tification method. Fig-
ure 2 shows the aecessary steps in applying
the {dentification method to this example.

By spplying the Laplace transform to the
partial differential equation, sn ordinary
differential equation is obtained in terms
of u(x,s) and x where s ic the Laplace
variable. If the actual sessured internal
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u(.5,t) 1
u({l,t)
Measured Temperature ?in:;r
Data at e Keoove Y 4
Intetpal Simulation NOOOI:ZtY
Location Boundary
Temparature
cz {t)
8, (t),
R, (t), i Non~linear
p 8 Linear da ,
Field ”xdaiy g
Simulation Non-linear
Measure- Functions,
ment Boundary Heat
Location Flux Con-
Response, tributions
Temperature
Contributions
Formation of a
1dentification I, Lino:t i
Integrals based Equation
M ongE::Ot at Solver Identified
Measurement Paramsters
Location

figure 2 Boundary Condition Identification Procedure

data at x = xg i3 ug(t), then the spatisl
conditfions used to recover u(l,t) are
Equation (2) and

u(xg,t) « uy(r) (%)

Using these spatial conditions, a trans-
cendental transfer function, Gy, is obtatn-
ed relating u{l,t) to un(t)

G(1,8) = Gy{da(s)] ()

To simulate this G; transfer function, de-
fined tn the Appendix, truncated f{nfinfte
product expansions wvere used as proposed Ly
Goodson(5). 7o avcid noise probleas due to
1ead netvork simulation involved in Gy, 2
tenth order least squares curve fir was

used L0 smooth the input data without fntro-
ducing phase shift. This transfer function
vas then digitally simulated using & matrix
exponential routine with a tenth order hold

on t?c iarut as developed by Krouse and
Ward(6)

Having recovered boundary temperature,

u(l,t), the unknown boundary heat flux {is
formed as

q(l,t) = le(t) + ﬂsz(t) (6)
vhere $,(t) = [(uta,r) +1)* - Gc‘l m
and Sz(t) o [(u(l,t) +1) - ec] (8)

Necv the response at the measurement location
can be estimated as a function of the un-
kaowns § andn using q(t) ae & spatial con-
dition. Tha spatial conditions for this
simulation are Equation (2) and q{1,t) 1o
Rquation (6). This yields

Blxg,8) = G2{3(1,s)] (9)

Stnce q(l,c) fteelf is not knowan, but 3;(t)
and S2(t) ere krown, the estimaie of u(S5,t)
is expressed as a function of the unknown
parameters § and n.

6(.5,8) = BG2(8;(s)] + nGy{82(e)) (10)

To fdentify 8 and n, an error, €{t), is
defined as

€(t) = R3(t) - [BRy(t) + aR2(t}]) (11)
where
Ry(s) = Gg(s), and Ry(s) = Gy[S,(s)]

1 =1,2 (12)
In a manner aimilar to Rubin(7) aad Xohr(8)
an ISE performance index is minimized to
find the “bYest"” B and n.

[ 4
b I % I b ei(t) dc (13)
tl

Hinimization of the performsnce index re-
sults in a set of linear algabraic equa-
tions .
° 8 I3t n Iy = Iy s
B I3 +n 132 = 123

vhere

b
Iy, = It Xg(t) Ry(r) de (15)
3

Since a digital computer was used in this
methad, this set of linear algebrafic equa-
tions was solved directly using a Caussian
elimination routine.
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r Time, t, Seconds 3
3 6.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 3
2.00 4 - 4 + + N v " 8
-~ ~0.104 Identified 8 = 0.974
8 u(.5,t) = BR, (t) ;
< -0.20 4 i
3
-4 - i
g ¢ -0.304 :
F- a3 3
E o E
A ] s
i % -0.40 4 ;
E > £
i
" -0.50 ¢
. ;
e :
S 3
¢ -0.60 4 R) (t), — ;
& ;
5 Estimated radiation 3

-0.70 4 contribution to u{.5,t}/8

Figure 3 Simulated Rl(t) Compared with Internal Input Temperature, u-(t)
" 0.500
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U.tng data at x5 = 0.5C) from Crosbie
and Viskanta for radiatfon slone aZ the
boundary (n » 0,8 = 1.0) the simulated re-
sulre {n Figure 3 were obtatned and § =«
0.974 was tdentified. Thus the radfation
coefficient was fdentified to within 3X of
the correct value. Using this tdentified
value of 8 the agreement with the actual
measured dats fs quite good.

In Figur2 4 the resul.a are shown using
data at xg = 0.500 for combined radiation
and forced convection at the boundary (8 =
1.0, n = 1,0). 1In this case the sensitivigy
to the radiatfion contribution is much less
than the convection coatribution. Thus,
the rsdiation coeffi.tent, 8, vas {denti~
fied only to within 20X of the corvect
valye but the convuction coefficient, n,

Time, t, Seconds E

0.0 1.0 2.0 {.0 ‘UP

-—

[

[}
[~
.
ot
[~]
A

v

Actual u(.5,t) dus to radiation

v

-0.20 ¢ \ R (t) Simulated 8 = 0.798
N = 4 Ne+ele$s
-0.304 ! %

-0.40 ¢

-0.50 4 Actual u{.5,t) due to convection
/‘/

-0.604 Uaft

Internal Temrperaturs, u(.5,t)

Rz(t) Simulated n = 1.006
Ne ¢ NeleaS$s
-o.701‘ B(.5.t) = BRy (€} + nRy(£) ¢ Gy

Figure ¢ Simulated Rl(t) and “2‘” Compared with Actual Values and Total

Input Temperature, u,it), at x, - 0.500
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was correct to within 1Z. More importantly,
the estimated u(.5,t) resulting from these
identified parameters virtually coincides
with the measured data. It was also ob-
served that a higher order model for Gj
would allow better identification of B (with~
in 5-10%) because of inclusion of less
3ignificant eigenvalue terms.

Engineering judgment must be used to
select the order of the simulation uodel.
A more complete and therefore more costly
simulation model results in the more accu-
rate quantitative parameter identification.
However, a much simpler field model, while
resulting in less accurate parameter
identification, may still yield equally
accurate state estimaction results. 1In
actual practice, the a-reement between
measured and estimated responses would gen-
erally be the final measure of a successful
identitication. Since the field dynamics
are known, well known linear system tech-
niques such as frequency response can be
used to determine which eigenvalues are
significant and therefore where the model
should be truncated. A more complete con-
sideratinn of field model selection is
fouad in reference(2).

Example 2. Transverse beam vibration with
a nonlinear support.

In the second example, 2 long slender
beam, sketched in Figure 5, was excited in
transverse motion by an electrodynamic
shaker table clamped to the right end of
the beam as shown in Figure 6 and Figure 7.
The boundary condition at x = 0 was the un-
known nonlinear one whichwas identified.
Furtiiermore, the energy variables at this
boundary zould not be measured directly d«ue
to the interference of the knife edges.
fhe input motion of the shaker table. z(t),
wvas measured with a reluctarce distance
detector and the measurement internal to
the field was obtained from a set of stra’n
gages mounted to provide 2 temperature com-
pensated measurement of bending moment.

A partial differential equatio~ model for
this system, neglecting shear anc rotatory

Stationary Support

Fiqure 6 Test Beam Mounted in Clamped-
Unknown Boundary Configuration

inertia, is

A, LB 2., LN
s_.‘,%_a_z_,_.%%z.‘o (16)
ax® 3¢ t

Equation (16) assumes, as a first approxi-
mation, that an equivalent viscous aamping
term is a valid approximation for internal
structural damping. Since the system was
started from rest both initial conditions

Figure 7 Bear Test Stand

z(t)
1/4% Steel
Drill kod

2 mil .........‘ S
“stops D)
y(xl,t)
0!

0.015" Spring Steel

Figure 5 Test Beam Mounting Configuration
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are zerc. The known spsti:l conditions ot
X = 1 are

y(1,t) = z(¢) (17)
snd 32 a,e) -0 (18)

At x = 0, the knife » ;ges restricted verti-
cal motion such that

y(0,t) = @ (19)

The problem is to formu at: and identify
the fiurth remafining be:. *'ary condftion.

Since the geccion of the beam tnsida of
the boundary at x3 = 0 vae only 10 per cent
of the total beam length, the displacescut
of the tiy of the beam was -sgumed o be
propartioral to the slope aL x3 = 0,
9y/9x3(0,t). Because of the eventual con-
tuct with the rubber stops, the force .x-
erted .n the tip of the be:m would be sim-

ay = 2.5
a, ~ -5.550
a3 = 21§ .50

v} |

0.400 T

imulated

Morent, u(.14,¢t) x 30, in.~1lb.

-0.400 +

-0.600 — }

Measured
0.200 -+ ‘1———"‘
0.0001
-0.200 + t\
ﬂ{f£rzfi___-

ilar to a hardening spring forco5 Furghet-
more, the moment at x3 = 0, BI 2°y/3x37(0,0),
would be proportional to the force on the
beam tip. Thus & cubic, hardeniag spring
relationship vas assumed for tbis unknown'
bo.ndary conditicn model:

M(t) = Q:f(o,:) = a35;(t) + az82(t):

ax + a3S3(e) (20>

where 5 () = 30,0 21
Sa(t) = (Bx(o’t))z . (22)

s3(6) = (2L(0,0))° (23)

The &, term allows for a nonsymsetrical
boundary -ondition. This boundary model is
able to fit a dead band reasonably well.

Having completed the important modeling
step, the application of the identification:

0.25

e?(t) dc = 1.839 x 1076

0.15

3 B} .

k § T LS IR 3 B
0.000 0.050 0.100 ¢.150 0,200 0,236
Time, t, Seconds

Figure 8 B8imulated u(.14,t} Given a's for N = ¢,
Cy ~ 4(1 Identification Model,
= lcx Damping Model

o vt i 2 U e 2 0 4 KA,
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method prozeeds in a fashion similar to
Exaqple 1. | Laplace transforms are applied
to the partial differe- 1al equation in
{16) above. Thé three known spatial con-
ditions and the internai mwecasured bending
moment data, up(t), st x = x5 were used to
simulate the boundary slope at x = 0 :
ylelding . .

2200,2) = 6113(8)] + Gyliigis)} (24

where ‘") denotes Laplace transformed vari-
able: u.n»d again G} and €3 are defined 1in
the Appendix.

Having recovered the boundary slope
using 2quation (24), the unknouwn boundary
condition, M(t), is formed as a functivn of
the unknown parameters using Equatfon (20).
Using 1{t), and the three known boundary
conditiona, an ebtimate of the bending
moment at x = xpn, P(xp,t), 18 simulated
from:

B(xqe8) = G3(2(8)] + G,lfi(s)] (25)
Now the error at x = x, is

€(s) = Du(s) - (a;G4151(8)) + az64[5,(s)]

v 4 a364(83(8)) + G3[2(e)]) (26)

Linear regression analysis using an ISE
performance fndex again yields a set of
Iinesr algebralc equations which are solved
for the desiied a's as in Example 1.

Some difficulties were encountered during
the simulation due to the equivalent viscous
damping model selected in Equation (16).

Thus, the damping ratio of the second mode
war increased by a factor of four over the
first mode damping ratio after comparison
,with experimental data. After the boundary
parsmeters vere identified a separate closed
loop simulation was used to check the re-
sults against the actual zeasured datas.
These results are presented in Figure 8 for
the identified bdundary condition which s
plotted in Figure 9. Although ringing +till
exlsts in the simulation uwodel due to cu
imprecise dam,’ing model, it 1is significant
to note that the identification method was
revertheless able to successfully match the
peak amplitudes after the first two peaks,
These peak gmplitudes are important since
they aid in predicting fatlure of a part.
Distortion of the first two peaks was

caused by FM tape recording of the messured
data. : !

Summary and Conclusions

. In summary, to implament the mzathod pre-~
sented fa this paper, the user

1. Models the linear field with the known
boundary conditions.

2. PFormulates the unknown nonline~gr bound-
ary condition as an algebraic relation
ship linear in the unknown parsmeters.

3. Solves, Ly simulation, for the boundary
_variable necessary a&s input in (2)
using internal measured data for the

missing spatial .condition in the smodel
in (1).

T
2
nt (0) x 10, 304
in./(in.%/in.?) T
0&‘- 2.510 2.04
0, = -5.550 .
ey = 218.6) . T
"l1.0¢ 1
L : : .5; % ' -d 3 x/L i rl 2 5 2 e 2
'. L gl L ) 1 ] v . ¥ L] 4 N 4 L 4 L d '
1 -7.0 -5.0 -3.0 -1 1.0 3.0 5.0 7.0 0.0
-1.0t - 2 2
3= (0) x 102,
T in./(4s /in.)
-2.04L
' / P S

Figure 9 Plot of Identified Boundary, 31% ©) vs. § (0,
F X
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GCenerates the unknown boundary output
varisble as a function of the unknown

parameters using the boundary model in
{2) and the results of (3).

5. Solves, by simulation, for the response
et the origina) meagurement location as
a function of the unknown parameters
using the results of (4) for the niss-
tng spatial condition in the model in
1

Identifies the unknown parareters using
regression analysis applied to an error
between the actual measured data and
the estimate in (5).

This parsmeter identification method was
successfully applied to a heat conduction
example using numevically genevated data
from the literature and to & beam equation
example using experimentally measured data.
In both cases the estimate«d response using

the identified parameters was in good agree-

ment with the actual measurvcd data. Tan the
heat conduction example, where < comparison
with the correct paramveter values was poss-
ible, the correct parameters vere identi-
fied to within 3 per cent in one case and
in the other case to within 1 per cent on
one parameter snd due to low sensitivity

10 to 20 per cent on the other psrameter.

A particulsrly important result is the
fundication that & single measurement not
at the boundary includes enough informa-
tion for identification of parameters in

the boundary given some knowledge of the
field dynamice.
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APPENDIX

Transfer Functions and Infinite
Product Approximations

Example 1 Heat Conduction

N-1 .
1+ —————
cosh Vs _ m=l (2251)2 n?
1 cosh /s Xy

N
miL+ LR |
n=l ——

For xu = 0.50C and a fcurth order model
(N - ‘)c

: ] -1 E )
(353 *V (33 3 *+1( +1)

61.7
O ) (s +1) (s +1) (e +1)
9.87 88.8 246.7 483.6
(28)
N-} .
nil+ ————]
mel (2--1), x?
cosh /ex 2 x-z
G, = ~ LS m {29)
/s sinh V8 s T fL+ —2
n=1 nin?
For x, = 0.500 and & fifth order model,
o - 0, .
s. s s
. = (G7e7 *V Ge.g *V Gie7 Y
2

8 : 3 ] 8
s(g7gy t (555 D (gg s VG55

(30)
Example 2. Bezm Equation

Yisinh y + 8in Y)(sinh v x

Gl . - + sin yx-)]
Denom.

Y{(cosh ¥ - cos Y)(cosh Y x, + cos Y x.)]
Denom.

(31)
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2
%%; (1 - cosh Y cos Y)
G, = (32)
Demon.
Denomw., =

(cosh Y(l-z.) + cos Y(l-z.))(sinh Y - siay)

+(sinh yv(1l-x5) + sin Y(l-x-))kos'y- cosh v)
(33)
and

v oo _ qBLY 2, DL
Y (3~ 8> + 3 8] (34)

Por x_ = 0.14 and a2 fourth order model,
infin!te products yield(2)

L AN
1.367 (1 + 7o
Gl - (35)
y*
A ~ 375080 ¢ - 354753
L? .
- 0.316 37 1 - 55756
c, - - - (36)
(- =0 - =2
348.08 394753

c Y2{coe y sinh yx + cosh Y sin yx)
3" (37)
(ainh Yy cos Y ~ cosh Yy sin Y)

G = {cos Yy - cosh y)(sinh Yy(1-x)+ siny(1l-x)
4 2{(sinh Y cos ¥y ~ cosh vy sin Y)

+ (sinh vy - sin y)(cosh Y{(l-x) + cos Y(l~x))
2(ainh Yy cos Y - cosh Y sin Y)

(38)

For x_ = 0.14 and a fourth order model,
infinlte products yields

&
- 2 .
0.42 BI/L? (1 + 35.36)
Gy - (39)

o Qo -grEac

—X
2496.49
Y

2 - X
0.790 EI/LS (1 348.08)

(40)
L]

U, A -
Q - 3357700

L -
2496.49

Nomenclature

internal damping ternm
in
(lbf/(.ec in)

beam modulus of elasticty
(pst)

°1'°2'63'c4

M(c)

-
q(x,t)

Rl(t)

$4(1)
8

t

u(x,t)

ugp(t)

)
y(x,t)

s(t)

u(xn.t)

ug (v)

= beanm spatial distance (inch)
= bpeam deflection (inch)

= gshaker table motion (inch)

= unknowr radiation coeffi-
= Laplace function detined

= meassurement location

= unknown forced convection

s knecwn coustant dimension-

transfer functions defined
in Appendix

= beam moment of 1nert1.(in°)
= fdentification integral

= 1ISE performance index
» beam length (inches)
= gignal proportional to )
i
boundary moment (1n/( nz))
in
= beam mass/L (lbf-sec?/in) :

in
=« dimensionless heat flux

1t

= measurement locition
response functions

PPN 1Y

= boundary 1input functions

= Laplace variable

= time (dimensionless in
Example 1, seconds in
Example 2)

e

=« dimensionless temperature

scaled to zero at t » 0

Aot

= measured dimensionless
tempersture date st xexg

PRI TTAR,

= dimensionless spatial dis- 3
tance

Do

Fulmenat.

boundary parameters to be
identified in beam example E

cient

by Equacion (34)

response error

coefficient

TR RO RO TS L DI g Y

i ke

less environment tempara-
ture

2
§§ g—f(x-.:) = dending
L x

moment (in~1bf)

measured bending aoment
at x = x_

3
H
i
4
K
3
H
2
g
3
3
A
3
3
3
3
E:
3
3
2




