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PREFACE

This thesis is the presentation of the results of an

extensive literature search in the area of robust estimation

techniques-. Presently there is no formal text available

on the market that gives more than an introductory look

at robust estimation techniques. Most of the theory i
developed over this area has been presented only in

statistical journals and technical reports. It was the

intent of this thesis to present in a concise manner a

survey of several oi the most current and useful techniques.

Robust estimators were chosen which were theoretically

and computationally tractable so that they could be easily

understood by a practicing analyst or scientist. Section III

contains a descriptive analysis of the chosen estimators

and is followed by an extensive analysis of their performance

using Monte Carlo techniques in Section IV.

The method of presentation assumes a basic understanding

of the principles of probability and statistics. All material

is presented as simply and concisely as possible. It was

intended that the estimators chosen for study would be

ones ,vhose overall performance was good and which lent

themselves toward application fairly easily.

S~ii
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ABSTRACT

Several robust estimators were considered for analysis

and explanation. Monte Carlo techniques were used to

investigate the efficiency of these robust estimators relative

to the best estimator for the distribution under consider-

ation. Sample sizes of 12 and 24 were drawn 4200 times

from five symmetric probability distributions. The results

showed that over a class of distributions the robust est-

imators provided a higher guaranteed efficiency than the

best estimator for any particular distribution in the family.

Some interesting results are apparent from an analysis of

the graphs in Appendix C indicating some upper bounds

on the size of the Monte Carlo sample when conducting

this type of a study.

vi
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I. BACKGROUND

Throughout many areas of scientific investigation there

has been established a storehouse of information and

techniques as a result of previous research and experiment-

ation. This previous research and experimentation coupled

with an ability which exists in many disciplines to isolate

a situation for the purpose of observation has been an

invaluable aid to the experimenter when testing a hypothesis.

During this century all areas of science have turned at one

time or another to mathematical statistics as an aid to

scientific investigation. In the last quarter century extensive

empirical investigation has given way almost completely

to statistical inference and statistical testing of hypothesis.

Some disciplines benefit more than others by this technique.

Consider a continuum with the exact physical sciences

positioned at the far left extreme and the inexact social

sciences positioned at the right extreme. As you progress

from left to right one notices a marked decrease in the

degree of confidence that can be placed upon statistical

estimates. The physicist and chemist at the far left side

of the continuum have an abundance of empirically supportable

evidence with which to base assumptions concerning the
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distribution of the population from which they are sampling.

This empirical support decreases rapidly as you move from

left to right along this continuum.

Located at a point somewhere right of center on the

continuum is a relatively new discipline, Systems Analysis,

of which the author of this paper is a student. The basic

tools of Systems Analysis are mathematics and mathematical

statistics along with many of the techniques of Operations

Research. A concise definitive explanation of Systems Analysis

does not appear to be available and maybe not even possible.

In a vague sense Systems Analysis attempts to combine

pieces of information, which can be disjoint and totally

unrelated, about a large or small system, and to draw

inferences for basing conclusions so that a decision may be ]
made or a course of action plotted.j

'1

Measures of central tendency e.g., mean, mode, median,

are usually important statistics in all areas of investigation.

Estimates of these measures are usually made based on the

assumptions concerning the distribution of the sampled

population. For the reasons stated earlier the sciences

close to the left of the continuum have relatively little

trouble in determining the form of the underlying distribution

of a sample. Now consider the plight of the Systems

2,
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Analyst outlined in the following hypothetical situation.

A Department of Defense analyst is asked to estimate

the total number of nuclear submarines and/or conventional

submarines required to effectively defend the coastal

United States from attack. Whether a point estimate or an

i.terval estimate is required is immaterial since the same

difficulties will exist in either case. There might be a

large number of individual estimates which could be comb-

ined to determine the overall estimate. For example an

estimate of the average speed of conventional and nuclear

submarines would probably be required. It would be

necessary to determine the amount of ocean area that these

submarines could cover per unit of time. The natural

tendency would be to take some random observations of the

cruising speed of both types and then to compute the

arithmetic mean. This statistic is known to be reliable

when the sample is drawn from a normally distributed

population. But what if this assumption was not justified.

The resultant error in most cases would be small but could

be catastrophically large in certain cases. Lct as suppose

the error was small. Consider now, however, a possible

one thousand plus individ.ut1 estimates that might be used
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in determination of the optimal force size. How much

confidence could you have in this estimate with the possibility

of a small error compounded one thousand times present?

In problems of this type assumptions about population

distributions are difficult to make because of a usually

small number of observations but even more so as a

result of the uniqueness of each problem.

With this background in mind this thesis will examine

some of the recent innovations in statistical estimation

theory. An attempt will be made wherever possible to

present the statistics considered in a manner which lends

itself toward application of these statistics as opposed to

a purely theoretical approach that may be of interest only

to the theoretical statistician.

4
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II. INTRODUCTION

Possibly the most important problem of statistical inference
r

is the estimation of parameters (such as population mean,

variance, etc.) from the corresponding statistics (i.e. saryuple

mean, variance, etc.). The theory of estimation originated

with problems where almost all of the statistical variability is

due to measurement errors. This situation should be clearly

distinguished from the opposite case where the data shows a

large internal variability. It is interesting to note that Gauss

introduced the normal distribution to provide an assymptotic

distribution for the sample mean. That is the statistic

existed before the theory for the normal distribution v-"s

developed. Throughout the years the use of the arithmetic

mean has become almost sacred even though it could have

easily been designed in some other form, for example omitt-

ing the three largest observations. This dogmatic use of the

sample mean caused experimenters to be ignorant of the

high sensitivity to deviations from normality of some of

these standard procedures. In the late 1940's distribution

free procedures brought relief to some of these estimation

difficulties. More significant advanceL in this area were

made throughout the 190's. It was recogeiicd that one
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never really has a very accurate knowledge of the true

underlying distribution and that the performance of some of

the classical estimates is very unstable under small changes

in the underlying distribution.

Thi3 paper will be confined to a study of estimation of

location parameters. Throughout this paper the location

parameter will denote the center of symmetry of a symmetric

distribution on the real line. When the density function of

a distribution is well specified there are usually several

methods available to obtain large sample estimators of the

location parameter. For example if f (the density function)

is Uniform the the midrange is an efficient estimator of

X (the location parameter) or if f is Double Exponential

(Laplace) then the median is an asymptotically efficient

estimator of A. This study will primarily be concerned

with estimates of location parameters when the exact form

of the underlying distribution is not known.

Statistical methods which are relatively insensitive to

assumptions about their underlying distributions have been

termed robust methods (Ref 3:169). This term has been

extended to include estimators which have been specifically

d•.cignd for estimation when the form of the underlying

distribution is not known but some character of the family

6
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of which the underlying distribution is a member is known.

For example we may know that the density function is sym-

metric. These are cailed robust estimators. The main

idea is that these estimators have been specifically designed

for this liurpose and we are not merely investigating the

statistical robustness of an existing estimator for a known

distribution. This study has been limited to estimators of

location parameters and does not consider investigation of

the estimation of scale parameters. Huber (Ref 8:93) dis-

cusses at some length the unsatisfactory aspects of attempt-

ing to estimate a scale parameter. He summarizes the rea-

sons why this author and most statisticians have avoided this

area.

"The theory of estimating a scale parameter is less
satisfactory than that of estimating a location param-
eter. Perhaps the main source of trouble is that
there is no natural "canonical" parameter to be est-
imated. In the case of the location parameter, it was
convienent to restrict attention to symmetric distribu-
tions; then there is a natural location parameter.
namely the location of the center of symmetry, and
we could seperate difficulties by optimizing the est-
imator for symmetric distributions (where we know
what we are estimating) and then investigate the
properties of this optimal estimator for non standard
conditions, e.g., for nonsvmmetric distributions.
In the case of the scale parameter, we meet, typically,
highly symmetrical distributions, and the above device
to ensure unicity of the parameter to be estimated fails.
Moreover it becomes questionable, whether one should
minimize bias or variance of the estimator.
So we shall just go ahead and shall construct cstima-

tore that are invariant under s- transfortnations and

7
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that estimate their own asymptotic values as
accurately as possible. Of course one has to
check afterward in a few typical cases what these
estimators really do estimate".

Specifically this thesis has two purposes.

1. To provide a survey of the current techniques involved

in robust estimation of a location parameter of a

symmetric probability distribution.

2. To explore, using Monte Carlo techniques, the performance

of some selected robust estimators of a location parameter.

The purpose of this investigation will be to ascertain

what benefit, if any, can be achieved through the use

of robust estimators making no assumptions about the

specific form of the underlying probability distribution,

as opposed to employing known estimators for a

predetermined probability distribution.

To achieve these objectives an extensive literature search

and study was made of the available literature. The results

are presented in this thesis. The bibliography contains

a listing of those sources found to contain much of the

applicable information on robust estimation which were used

directly in the formulation of this paper. Appendix A

8
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is a supplemental bibliography which contains a listing

of those sources which were either applicable to robust

estimation techniques and were not available, which apply

only to statistical robustness in general, or were sources

of a general nature which were useful in the formulation

of this paper.

qI
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III. TYPES OF ROBUST ESTIMATORS

The purpose of this section is to present in a summarized

form several robust estimators which have been developed

for the purpose of estimating the center of symmetry of

an unspecified distribution. The estimators considered

will be of two basic types. One type has the characteristic

that the functional form of the estimator does not depend on

the sample while the other type has the actual functional form

of the estimator determined by the information contained

in the sample.

Pioneer efforts in robust estimation were mainly

concerned with departures from the assumptions of normality.

By appealing to the central limit theorem many distributions

can be considered to be approximately normal. However it

is easily demonstrated that even a slight departure from

the assumption of normality can often cause the sample

mean to behave badly as an estimator of the location

parameter. Early studies were devoted primarily to

estimation methods where the underlying distribution was the

standard normal but was contaminated in some manner by a

distribution, usually normal, with a larger amount of dispersion.

More recent inquiries consider situations involving more

10
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varied sets of distributions. In most cases only symmetric !

unimodal distributions are considered. Tukey (Ref 13:30)

emphasizes this restriction when he considers the treatment

of "spotty data".II
"Accordingly it will be for us to begin with long
tailed distributions which offer the minimum of
doubt as to what should be taken as the true
value. If we stick to symmetric distributions
we can avoid all difficulties of this sort ......
No other point on a symmetrical distribution
has a particular claim to be considered the
true value. Thus we will do well by restrict-
ing ourselves to symmetric distributions".

This quote is presented here because throughout all the

more recent papers dealing with robust estimation the

restriction of a symmetrical distribution appears to have

been strictly adhered to and the Tukey (Ref 13:1) paper

given as the reference source. This quote will also

provide some justification for the structure of the Monte

Carlo analysis presented in the next section of this thesis.

The first robust estimators considered here will be

of the type where the specific form of the estimator cioes

not depend on the information contained in the sample.

The functional form of these estimators will be struct-

ured as order statistics.!1
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This type of estimator was analyzed rather extensively by

Croe and Siddiqui. A class, F, of distributions are

considered which are normal, cauchy, parabolic, triangular,

and rectangular. The results presented claim that

asymptotic efficiencies of at least . 82 relative to the best

estimator for a single distribution are achieved by the best

trimmed mean or linearly weighted mean (Ref 3:353).

Estimators Which are Special Symmetrical Linear Combinations
of Order Statistics

Two estimators of this type wilh be considered here.

The winsorized mean and the trimmed mean. These

estimators have been present for many years but were used

very sparingly. The theoretical basis for winsorized and

trimmed means is the technique called rejection of outliers.

The trimming removes equal numbers of the highest and

lowest observations and then proceeds with the remainder

as if it were a complete sample. If the samples do come

from a normal distribution there will be some loss in

efficiency and there will be an increase in efficiency when

the samples are from a distribution with long tails.

Let X . . - be the order statistics

resulting from random sampling of F( X- X ) C G

12
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* and subsequent ordering. G consists of distributions which

are symmetric about the median X and such that A. is

the unique mode. The amount of trimming or winsorizing

p is determined here such that

P -1/2- r (3-1)
P 1/2In

where r is a non-negative integer less than n1 2

Winsorized Mean: (Ref 13:1).

Wn(P/ n) n (r+= )Xr+ n-ri (3-2)

x]

and if 2l 2v41

where r-(n-1)/ 2

13
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Trimmed Means (Ref 13:1).

r

Tn(p) (n 2 r)-Z X (3-4)

In,,a normal sample winsorized means are more stable

than trimmed means. The possible loss in efficiency

through the use of these estimators is far overshadowed by

the large possible gain when the assumption of normality

is violated. Many papers published in the area of robust

estimation have dealt with linear combinations of order

statistics (Ref 1, 3, 4, 5) and in many cases much of the

analysis centered around winsorized and trimmed means.

For an in depth discussion of this area see the paper by

Gastwirth and Rubin (Ref 5). Gastwirth and Rubin demon-

strate that within a large class of estimators there is a

unique maximum efficient linear estimator. The difficulty

of determining a maximum efficiency linear estimator for

specific families of densities is emphasized and the paper

is restricted to searching for maximum efficient estimators

in smaller classes of linear estimators such as the trimmed

means and linear combinations of a few sample percentiles.

14
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EstimaLors Which are not Strictly Functions of Order
Stat.istics

This section will develop the estimators in the same

manner as the previous section. While many of these

estimators, which make up the greater part of this study,

do utilize order statistics they are not considered strictly

functions of order statistics as were the estimators in

the previous section. These estimators were chosen

from the many which exist today for several reasons.

First of all they have been shown in some previous studies

to possess a high relative efficiency over fairly broad

classes of distributions. Secondly they are, in most cases,

theoretically simple to comprehend and computationally

tractable to apply.

Hodges-Lehmann Estimator (Ref 6).

This estimator was one of the earlier attempts at !,:,e

development of a robust estimator and.from most results

in the literature appears to be c- '. of the best estimators.

Results obtained by Blickel (Ref 1) indicate that, in terms

of robustness, the Hodges-Lehmann estimate is superior

to the trimmed and winsorized means. It is simple in

form and computationally easy to handle. Hodges (Ref 6)

defined this estimator of the location parameter in terms

15
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of rank test statistics such as the Wilcoxan or Normal

scores statistic.

Let X1t X2 - An be a random sample from

an unknown symmetric probability distribution. Then

HL[XX~r.I~ =ME X.IXl*(3-5)

i:- j L 2

1i,j =12,...,

This estimator is formed by taking the median of the

mean of all of the (n)pairs in the sample. In the

Hodges-Lehmann paper (Ref 6) it is shown that the estimates

are symmetric with respect to the parameter being estim-

ated and thus to be unbiased if the underlying distribution

of the observations on which the estimate is based is

symmetric. The form of the estimator makes it the only

practically tractable estimator derived from the ranks

test. When the sample gets very large, however, the number

of steps involved becomes prohibitive. An alternate form

of this estimator which uses ordered samples and is n.uch

quicker to compute for large samples has shown to be

good in certain situations

16
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Let XIX2, X 11 Xn be an ordered rando-i

sample.

2I
J: i

2

Huber's Estimator (Ref 8).

Huber deals with the asymptotic theory. of estimating

a location parameter. The emphasis in this paper was

placed on treating contaminated normal distributions.

There seems to be some discussion over just how well

this estimator actually performs. It is presented here

in summary form mainly because Huber does attempt to

design a robust estimator of the scale parameter.

Basically Huber considers the method of least squares

where the idea is to minimize the expression

17
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Swhere X1 , X•.. Xn is a random sample and

-X (3-8)

Huber's approach was to search for a • such that

= X1,X2,...,n (3-9)

minimiz.,s

ZiPXi - I (3-10)

where

kltl-12k• (3-11)

ti--- 1× -v1

kwas here related to the contamination proportion.

Huber showed that taking k7 §2. will do well for

any contamination proportion less than twenty percent.

Huber obtained robust estimators T and S for both

the location and scale parameters as the solutions of the

following simultaneous equations.

18
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AKII 0(ýjx (3-12)

In-11 kXI-T)-o,-,

n

nE k, )=En w•2(k X) (3-13)

where

x ixl k
w~k~x)-(3-14)

k sgnX IXA k

and

i~~E EU (kX) =12 -'l _•2.Xl e- 2 x ,~S

I.

.19
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Solutions to these equations for T and $ along with

an iterative computational procedure can be found in

Leone (Ref 10). Leone performed a Monte Carlo study

using contaminated normal distributions drawing a sample

of size 20. The sample was drawn 500 times. The

results indicate that the variance of the estimators

increased with an increase in the scale parameter of the

contaminating distribution but are less sensitive to a change

in the location parameter.

The remaining estimators to be considered in this section

are the type whose functional form is determined by the

information contained in the sample. Takeuchi (Ref 12:292)

called this type quasilinear estimators.

Quasilinear Estimators

The estimators of this type considered here will normally

use some known statistic for information with which to

base a choice between several competing functional forms

available. The various functional forms used in the following

estimators were chosen on the basis of some very weak

assumptions about the general form that the underlying

distribution might possess. Thus it should be clear that

20
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these choices are merely examples and the intent of the

ana.ysis here is to emphasize the great flexability available

in choosing these competing functional forms, making these

very powerful estimators.

Keeping the notation consistent with that used previously

G will denote a family of distributions which are

symmetric anout the median X and such that N
is the unique mode.

Switzer's Estimator (Ref 11).

The method employed here is to choose from a set of

competing estimators that estimator which has the minimum

standard error for the sample being considered. The forms

of the competing estimators are predetermined but which one

is chosen is determined by the infr,rmation contained in the

sample. In formulating this estimator Switzer outlines two

fairly loose restrictions on the set of competing estimators

from which to choose:

I. that the competing estimators be such that their

standard errors can also be estimated without making

use of the unknown shape of the underlying distributior

and,

2. that the collection should contain only estimators

$

whose efficiency relative to one another ranges from

21
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very small to very large numbers as the distributions

range over a set of reasonable possibilities.

Estimators are chosen in the manner described for each

available sample of equal size and a sequence of estimates

of the location parameter is obtained. Switzer chose to

limit the number of competing estimators to three. This

papers author will continue this convention throughout this

thesis. However it is apparent that this principle could be

exfended to include a larger number of competing estimators

and is so suggested by Switzer at the close of his paper.

Let i=1i •1 2, 3 be three sequences of competing

estimates obtained from three selected estimators which

are defined for every sample size N and let S i =,

2,t 3 be non-parametric estimates of the standard errors.

Then the recommended estimator is:

3
Sw

(3-16)

1 if min [S,,$,$S3]= Si

7. o
0 Otherwise
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It is assumed here that~f(N .x) has a

limiting normal distribution with 0 mean for i =1I2,13
and that the standard error estimates were chosen so that

NfS consistently estimates for each

and f belonging to a large class G i n:t(f) is

the most efficient of the three competitors for a given f 41
then- has the same limiting distribution

asF (S - for all f E G

Switzer outlines two general procedures for obtaining

non parametric estimtes of the standard errors of the

competing estimators. Only one procedure will be presented

here. It is a two step procedure.

Step I. Assume the sample can be divided into K
blocks of equal size n= NI K

Step 2. Compute •. based on samples of size fl.

kIk=l1 21,i, K i 1= 12,13

k k
(3-17)

S23
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and

k

tik (3-18)

Specifically, Switzer chose for study an N (sample size)

which was divisible by six and computed the three mid

ranges.

kI
I, [X (3) X1 )V

(3-20)

t-k [X(2) x+ 1/ ""

k (3-2 1)

k=1,2,,, K

24
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The results of the Monte Carlo analysis performed by

Switzer using his estimator as previously outlined showed

that the SW estimator performed very well when the sample

was drawn from short, long, and normal tailed distributions

with samples of size 30, 60, and 120. In each case the

SW estimator was not quite as good as the best estimator

(sample mean, median, mid range, etc.) for that particular

shape. It was showr however, to always have less variance

than the other estimators considered for that shape.

Hogg's Estimator (Ref 7).

This estimator is very interesting because of the large

amount of possibilities it presents and very appealing because

of 2ts extreme simplicity. Hogg uses the kurtosis of the

sample to determine which form the estimator should take.

Kurtosis here being defined as the fourth central moment

divided by the square of the variance. The sample kurtosis

1 nS

where n is the sample size and X is the sample

means converges in probability to the kurtosis of the

underlying distribution of the sample. Ilogg subsequently
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structured his estimator in the following manner.

-C
k 2.

H 2.G k n 4. (3-23)

N1/ A. k--0 5.5

M 5.5ck

where

X C is the mean of the /4 smallest and n/4
V4 largest items of the sample.

4 is the mean of the remaining interior sample items.

X is the sample mean.

M is the sample median.

The many possibilities of this estimator should now be

apparent to the reader for there is really no restriction

on the possible ranges of k or the choice of forms for

the estimator. Based solely on the kurtosis of the sample

this estimator might prove useful indeed if its corresponding
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results were fruitful. Hogg performed a Monte Carlo

analysis in which the performance of his estimator was

compared mainly with the performance of the Hodges-

Lehmann estimator. The analysis was performed over a

class of distributions ranging from Rectangular to Cauchy.

Hogg's estimator performed better overall than the Hodges-

Lehmann estimator which also performed very well.

It is possible to generalize Hogg's estimator in such a

manner that the estimator is a linear combination of the

sample items with weights which are continuous functions

of the sample items. The procedure is summarized below.

See Hogg (Ref 7:1184) for a more complete discussion.

if X1 ,X 2*,,, Xn are sample values then

(3-241HG2- W x
i= 1

where

1N
- (3-25)Wi = / Z/Vi
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and

2
Vi =Max[1+ IO3)Ik- 31Xi -M) 0.0i (3-26)

The author notes that if k2,,3 this statistic places

less weight on the extreme observations and with ku 3
it assigns more weight to the extreme observations.

28:
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IV. MONTE CARLO ANALYSIS

This investigation was conducted to explore the perf3rmance

of three of the estimators discussed in the previous section.

The three chosen were the Hodges-Lehmann estimator, the

Switzer estimator, and Hogg's estimator. There were two

reasons for selecting these three estimators from the many

which can be found in the available literature. First of

all the Hodges-Lehmann estimator and Hogg's estimator

had demonstrated a high degree of efficiency in estimating

location parameters in much of the analysis found in the

literature. The Switzer estimator is very new and could

be found in only one article (Ref 11). The Switzer estimator

does however demonstrate a new and interesting technique

for exploration. Thus in an attempt to test the performance

of the Switzer estimator it was necessary to select what are

generally considered the best available robust estimators

as competitors. The second reason was that these

estimators had not previously been compared against one

another for these sample sizes and probability distributions

and also that these, as with all the estimators considered

in the previo-us section, were computationally and theoretically

manageable.

29



GSA/MAOR/72-3

* The analysis was basically a computer exercise and all

"computations were performed on the Control Data Corporation

6600 Computer System. Five basic probability distributions

were selected which were symmetric and unimodal.

Utilizing Monte Carlo techniques, random samples of

s~ze 12 and 24 were drawn from these five distributions.

At the outset of the analysis several larger sample sizes

were drawn but the additional gain in information did not

prove to be worth the extra cost in computer time so these

larger sample sizes were eliminated. Using the random

samples drawn, estimates of the location parameter were

computed using the robust estimators and also using the

known statistics which are the "best" estimators for each

of the distributions considered. The final step was to

compute the variance from the true value of the location

parameter for each of the estimates. The computer

program listing of the program designed to accomplish this

procedure can be found in Appendix B.

Probability Distributions Used

Samples of size 12 and 24 were drawn from each of five

probability distributions. As stated earlier each was a

symmetric distribution. The specific distributions were
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selected because of their similarity in the sense that they

could easily be mistaken for one another when a decision

maker had to base a decision on a small sample. It is

also possible for these distributions to occur in combination

with one another thus causing further confusion.

Rectangular.

(4-1)Fix] 1 O xt-: 1•"
F(xI = 1

Triangular.

F1 (xJ ~(4 ~ [a+ x3 -a x~ 0 (4-2)

c~rv-[2,~lrkxl 0X~b (4-3)

Drawings were maue from this distribution with three

different parameters.

-10:!x -1O
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Normal.

1~) exp - -..)]

Contaminated Normal.

10% Contamination

F[x] .0=x

(4-5)

10 exp

20% Contamination

(4-6)

• exp-

Double Exponential.

F[x]= ½ exp IxI
2(4-7)
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Estimators Considered

The three robust estimators analyzed were used in the

forms stated earlier in this text, i.e., equations 3-5, 3-16,

and 3-23. Three popular statistics were also computed,

the sample mean, the sample median, and the mid range.

The form of these statistics should be familiar to anyone

with an interest in statistics.

Computations

The variance of each estimator with respect to the true

value of the location parameter was computed using the

7I
mean square error. Each sample size was drawn 4200

times.

4200 2

VAR 4200
i-1

The computer program was designed to compute the mean

square err - every 350 repetitions and provide these values

as outputs. Appendix C contains graphs of some selected

result: obtained for some of the estimators from each

distribution considered. The majority of the graphs were

omitted from this thesis to keep the size manageable
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and it was the opinion of this author that they would not

provide any meaningful information.

Relative efficiencies were also computed and the results

are excpressed in per-centage form and presented in

Appendix D. Relative efficiency is defined here to be

the ratio of the variance of the best estimator for th'e

distribution considered to the estimator whose efficiency

is under consideration.

1 34
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V. CONCLUSIONS

Since this thesis was intended mainly to provide a

survey of existing robust estimation techniques the content

is not easily extrapolated to many significant conclusions.

Several interesting observations however, were made in

the course of this study which are worthy of note.

First of all the technique of robust estimation as it

has been presented here is not over 10 years old. The

scarcity of practical estimation techniques and an absence

of a theoretical foundation for this discipline emphasizes

its newness. The fact that investigation in this broad

and interesting area of statistics has h rdly scratched

the surface is a conclusion worthy of mention. There
I

appears to be approximately ten theoretical statisticians

who are doing the majority of the research in this area.

Their names car, be found in the bibliographies at the end

of this thesis. The amount of duplicated effort evident

in the literature is testimony to the infancy of this

discipline.

Sevcral interesting conclusions can be made based on

the results of the Monte Carlo analysis summarized in

j Tables I thru VI in Appendix D. As stated earlier these
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estimators uere designed to estimate the location parameter

of a symmetric distribution. The relative efficiencies

presented in Appendix D denote the performance of each

estimator relative to the "best" estimator for that distribution.

Obviously if the exact form of the underlying distribution

was known the "best" estimator could easily be selected.

Suppose however, that a sample cf size 12 was drawn

from either a Normal, Contaminated Normal, or Double

Exponential distribution, with equal probability. Tables

I and V show that if the Sample Mean were selected to

estimate the location parameter the highest efficiency that

could be achieved would be 100% and the lowest efficiency

would be 72.7%. If however, the Hlodges-Lehmann est-

imator was chosen the highest efficiency would be 100%

(efficiencies in the Tables greater than 100% are taken here

as 100%) and the lowest 92. 1%. If Hogg's estimator were

chosen the high would have been 98. 5% and the low 78%.

Now consider all five distributions from Tables I thru VI.

Suppose the Mid Range was selected as the estimator of

the location parameter. Then the efficiency would range

from 10054 to 6. 2%. Once again if the Ilodges-Lehmann

estimator was choseli the efficiency would range from

100% to 32. 5%. The Ilodges-Lehmann estimator is truly

I36
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superior to the Mid Range when the efficiencies are comp-

ared for each distribution. The data presented in Appendix

D shows that for the estimators and distributions considered

the robust estimators are superior.

Several minor conclusions are worthy of mention here.

First of all a comparison of the efficiencies for sample

sizes 12 and 24 show that as the sample size gets larger

the "best" estimator gets better and the efficiency of the

robust estimator decreases. This is to be expected how-

ever, since the robust estimators were designed and have

value only for small sample sizes. Another conclusion

of some import is that varying the scale parameter of the

underlying distribution has no effect on estimation of the

location parameter. This is evident from Tables 1, 11,

III, and IV.

The final conclusion has more application in the area

of Monte Carlo techniques than robust estimation techniques.

During the course of this investigation there was some

question as to the number of times each sample should

be drawn. The low figure was approximately 5U0 drawings

and the high figure 5000. The graphs presented in Appendix

C show that for all practical purposes 1000 repetitions

would be sufficient and that any over 2000 is just not

worth the computer time.
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Areas For Further Investigation

Initially the author of this paper felt that the Switzer

estimator would have the most efficient form. The choice

of competing forms of the estimator did not bear out this

premise as was demonstrated in the analysis. If however,

a more judicious choice of competing estimators was made

the performance of this estimator might be significantly

enhanced. This area plus the possibility of analyzing

the performance of these robust estimators when the

restriction of a symmetric underlying distribution does

not apply could be extremely fruitful areas for further

study.
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APPENDIX 13

COMPUTER PROGRAM LISTING
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Fv0OGPik4 "TN UPUT o0U-'PUTq PLOT)

CALL PLOT(1.,2os-3)

00 5 JJ4,44
00 3 i1=1,6
DO 1 1=19N
RS5.11,X(I)

00 2 J=114
Tr'4p=xu +TEMP
Y(J) =IE&P/J
GC TOC20qliji2, 13, 14,15)I

4 H=J*3=0
Z(J)=j

2 P"INtT 502,'1,Y(J)
CALL GRA'DI(ZqY,H)

-3 CCOJTINUz
5 CONJTINUIE

GO TO 7

GO TO 4
12 PRIN'T 602

.GO TO 4
12 PP*tJT 604

-GO TO 4
14 PRINT 604

GO TOl 4

15 PPINT 616

GO T') 4I
601 FVR,,AT(2RX*H3O1ES LE~4MATiP ESTIMATOR*$
60? FOV!'AT(2'RX*!irGGS 7STIOATOR4)
601 F 0 :%.1AT(24XSW1TZF:S SSTIM9'TO-'*)
604 F ?I:AT(23X5~'~At-.L_ FFA'19)
635 FCZ,,ATU?3X*S&t'LE V'E)TLANv)
606 FO0M-A7T2BX'M10 RANGE*)
S01 FORM'A T (13)
591 COPp.AT (F' 4, 9)
502 FOR.9ATW//2SX-AFTER 014- REPrTITICNS-//,28X,F14.1D)
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PROGRAMn mfl4It(rnPUT*0UTPuT,ovC$4)

DIMENSION Nj0

R~EAD q00,AVGsPCTS1O,A,N

READ 501,SI
X=~S
PPVI4T 601tX
00 1;0 JAr)1 ,1 IORINT 60l.AVG ':CTgSTO,L,N00 18 JJ~1Z,2

4,12
VO(JJ)=O.

VI(JJ)=O.

00 111f41

On 2 J=1,iC
XZRANzp(Y)

2 QAfaD(J) =x
CALL GALUSS(X,JI,qoPe)
CALL TRA:(,971,,l

CIALL EXPJIl , rXAJ~I

CALL AF"?OG (COT, K, ACIR-3)

Ct.LL AO' K *1O
CtLI. tH0Df(EXP#!(!EXpo)

VC (K) (c ') *VrCCp()
Vy (K) 2( fTO-tD-p) 4VJT (K)

CONTTI3UE

VC (0.') --VC (<K:) /N

PUNCH~ 531*VR(KK),VC(K,)VT( 1),V'JcKj ,V:-CKAK20 ccijlI .-1~)E
50 C014T1UE

PU'Cm 5.31,y

WRE&PET1TI0.US WIN~ S4'iPLE S;Zr *12,//,,2SX' ;S

600 CC~,
1 ~601 V~(X(F~g

3S00 Fc:.*MI tVS.?,F5.2,at.3,FtPI21)
E IJD
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PIO:;A.% i 'INZf(It4DUT, OUTPUT, DUmCt4

DI.9aflStiN XR5T4T.C(8)SAT(),STT(5St:5),STATP.C),SAE

RNENA! D smvGPrso)tOANS 5) s.(51)VZ.clý
DIEUS513N *WD41v3M4a CU ,)9R 414)POP(8

PIEN13 OAGPTT,,
D IO--N 18 'J1 .2,P45ot.,12 D43
SIEN1:4RJJ484)1(4)9D.(5
S14(JJVION TT.()S-T()SATST-?()SAE
STmrNJ)N t s)lc ): 5) Ot:.I~ ý
0c Ili uson . 5)Y( y ~)Y45)y S
SFA9 JJVO GPTT,..

00 isJJ=12*4,1
XT (JJ) =D.
X'4(JJ) :o*

SC(JJ)=O.
ST(JJ)=D.
bI'~jj) -30
YD(JJV=D. It

VE(J.J) =0.

U~(SJVIO.

?Q(JJ) =0.I
RE(JJVzo.

IsC4TI'JJ)D

DR I .112,4,1

DO ) 2 .Jii

2 i~(JJ)=D

18CALL CI3TO,,.-GR~C'J
CALL TJI~(,',Ti.i,

Y&L --JCIC?,I

CALL GAUSS(A~DK,JS1AOR)
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IC4LL8DSCJTfKtSTATC)
CALL BO)SC 0ý3 KS.'rCCALL SOS(Ex ~<StArf)

XrCKC1= (SrAICST11Cy

CALL-K 4, (1)

CALL S~lTRej
CALL SITC:,l SR
CALL S(T-Oi

CALL S UT RI .CALL. SHOKPSr4i

CALL 4Rt- ,i- 3 <-OR)
CALL "I'T <, C9.0
CALL An;.;cVGE (to J,1100 'PI

CALL A.'fP <p & . N.
CALL C0 "--t.
CALL AIIO- ppE

CALL 2) HO: (ST4

HO,,,CS4,ý 4

SU(9 L 9K fS7 )

~O~rz~J 2'Sr(K

CALL 450
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00 20 KK=12,2'e,12

Vt t(KK) --T( <K) /N

RT (KK) RT (<K) PI

UMC) =IE <K)/IN

ST(KK)=YT(<'C)/N
1.1 KKi) SC( ( KK /H

Xi (KK) =:SZC(<K) /N

CX.L 'ANXT(Y)/
t X~~PN( CH=t CK 5 /11

X-- FTCF5.,F5.2FE.3,F.2113

HN(K) =44 (<K)L /N ! /, 51.~/,3F~HG~ SI~O'

51 FVT(KKXST(<K./

20 3CONNUT-r .1DXK8

501 Ft!A(FC2 4.9)

500 J LRIA(52;*v63F.,
£ NDTEM=P

502 :)I:-T 23XI RPE SUA 5R
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SUSZOUZ- AJwtANi(XttAUGE)013ýflsIq3-4 X(,6) ,RANSGE(a.8p
NOP=K-1
00 la XI=,NCP

DO 10 J=ZP,KZF(x(x).L-r.X(j))GO TO 10
TEnPzx(J)
X(I)=X(J)

* 10 RANG E ) =x (I)
RANG(K) :x (K)
RtETURNt
ENO

SU3RWUTIN-E SWIT(XK,SW)

SOA:0.

SQC=O.
00 5011,

00 56 IHN

DO 56 KK=J<,NIF(Xt11)-L:7.X(KK))GO TO 56
TLEMP=X(II)
Xill) :X(Kv.)

56 Xtll1)=XtIl

X2=A(1U) *:TEU

S2A:A(I '2A/
SQ3:=(x) 4SL

SQAS23=0L

SSIC=O.

0051i JJ=1,t.

51 SS3:(C(JJ)-Slý^1**2 #SS7,C)

Ir(SS2A.Lr.SS~a)GO TO S2
I rISS:1.3.L---SSfi) GO TO 54

S? IF(SS:A.LE.SSO-%)GO TO 53

SO To 55
53 SW=SDA

;3 To 55
54. 3423ý3

RET URN

E~~1D 52 - -
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S'J3OUTINE HOGGcXtBoCtKgA)
DIMENSION XC8),C(48)X()1X3)3
IF(X(8).-1t4.)GO TO 35
IF(XC8).LT.2.)GUO TO 36
A=X (I)
GO TO 40

35 IF(X(8)oLE*5o5)G0 TO 37
A=B

L=K/4

DO 38 ?J=1, !
34 A='wI+A

SO GTO 40

DO 61 H1 9.11

4 0 CD4 J1,12

RETURN
END

SUnROUTIOIE GRAUSG(K9J(TqRZANJ)
nOJW?~S1Ot TRIAF(43)
YY=JI2

X= 0.
00 80 J=1112

60 X=.A?%F QZ) +X

RE TURN
END

SIeUIFITN(toRAiI
01hrNSON TRAU(53
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SuatoLITINE C'JOR~STD,PCTKAVGRCRfl,CONTJI)
DItIFtSIOfl CONT(48) gROR4(48)
YY=JI43
0O " L=I,'(
X='P.AUF (YX)
IF(X.GT.PCT)GO TO 5
IF(X*LE.PCT)GO TO 6

5 COtJT(L)=%'.ORMCL)

6 CONT (L)=AVG+STO'RORtSCL)1 ~ 4 CONTINUIE
RETURN
E f.1

SUR2OUTINE SOPT(AK)

LOGICAL SWITCH

1 SwlITCNý*FAL5E#

IF(A(J)oLE*A(J44))GO TO 2

A (JeI)=A(J)

IFiSWITCH)GO TO 2
J3=J
S14ITCI4= *TRUE*

2 CONTtNU:
IFC.NlOT.SWITCI4) RETUR~N
J1l MAX0(lvJ3-1)

GO TO I
END

SLMMOOIifNE FXPOq(KIAIJI)

Y7=JI*4
DO 2's r~i,rii X=Qt"F (YZ)
IVCX*LE*,5)GO TO 26
IF(X.rT..5)-Go TO 2?

26 AcI)=ALaG(X)
GO TO 25

27 Y=(3./2.)-X

.28 nTJU
25 CONTI?4UE

E ND
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SUlc!0UTTNE Aff0G(A,ic,A,%jS)* Dxmrurslosj 4148) sB(48)#C(12)jST(6,Sj,j)(Sog)
111TEGER ST
OP' 1 I=1,aC

I 81) V a I = 1
CALL SORT(9pK)
!1l'C/2
00 2 111

2 C (I I=9(1) +:3 K- +1,)
CALL SORT(CIK,2)
C1:=C C/4)

00 19 I=I,'C
00 9 J1l,K
IF IT-ClJvo,5,3

3 IF(I-C2)71B,
4

GO To 19

6 N2-124 L~

GOi3Ea~ GO TO1

GOT To

10 XP13,±

GO TO j9

19 Cola SOtON3

19 C1CUTC 10)

GO *3EG3 TO To .

TOO 20

24 I(U.TM.t0(~L.)GO To la.

CC0 XO 12.

14 TO 14lC2*,2
END.It

16 CgL S~z(Oq55
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CALL SCALE (7,8.9,-), 1)
CALL 5CALE(Y,5,G,'J,1)
CALL
CALL SQUARE ER-CR)92?,5oOq9O*DqY(N,1

CALL Llt:=(Z,YM,'J,i,j1j)
CALL PLori(o.,g.,-3)
RFTURNf
EIJNO
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The thirty graphs presented in this section were selected

from several hundred which were generated in the course

of this investigation. One graph was chosen for each of

the six estimators considered from each of the five dist-

ributions. The values plotted along the abscissa are the

number of times the sample was drawn times 350.

The values along the ordinate are the cumulative values

for the mean square error. The graphs are labeled at

the bottom by ESTIMATOR/PROBABILITY DISTRIBUTION/

SAMPLE SIZE.
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APPENDIX D

TABLES OF RELATIVE EFFICIENC;IES
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All efficiencies recorded in the following tables are

efficiencies relative to the best estimator consideded for

that particular distribution. The best estimator which

was used as the base is listed as 100%. In the case of

the contaminated normal distribution there are efficiencies

greater than 100%0 recorded. This is because some of the

robust estimators actually performed slightly better than

the best estimator for that distribution which was the sample

mean.
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VITA

John Caso was born in Philadelphia, Penna., 9 June

1939. He graduated from Monsignor Bonner High School

in 1957 and enlisted in the United States Air Force. In

1963 he was selected for the Airmen's Education and

Commissioning Program. He subsequently received a

Bachelor of Science in Mathematics from Michigan State

University and a commission in the USAF in 1965. Afcer

completing a radar-electronics course in 1966 he served

as an instructor in the course until 1968. He then served

a tour as a Radar Maintenance Officer at Indian Mountain

IAir Force Station, Alaska. Prior to coming to the Air

Force Institute of Technology he was Course Supervisor

of the OBR3041 Electronics Systems Officer Course at

Keesler AFB, Miss.

Permanent Address: 2232 Theresa Ave.
Morton, Penna.
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