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*a .•, ABSTRACT

The Krook kinetjc equation is used'as the governiig equation

in'an .investigation of a class of exterior flow problems involving

S •flow past an elliptic cylinder. A numerical method for solving the

integral equation form of the Krook equation for this Plass of problems
is Id sS' is described, and several sits of splutions are presented.
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1. INTRODUCTION

The Krook kinetic ec(t4 .n [61 provides a useful characterization

of many flow problems in ktir;tic theory. By integrating this equation

along its characteristics., j coupled set of nonlinear integral equations

for density, velocity ar 'temperature can be obtained. This paper

describes a numerical ,.c-edur- which can be used to solve these integral

equations for a class ,, exterior flow problems involving flow past an

elliptic cylinder.

A si•iulation teinique has been applied by Vogenitz et.al. to

several exterior flow problems, including the leading edge problem

[15] and flow past cylinders and spheres [14). However, the only finite

Knudsen number solutions of the kinetic equation to have been reported

previously for ext(eý,:ior flow problems are those due to Huang et,,al.

[7-10], in which a discrete ordinate method was applied to the finite

and semi-infinite flat plate problems.

The work reported here is part of a coordinated effort by several

people to develop numerical procedures capable of yielding accurate

solutions of the integral equations for a sequence of prototype problems

in kinetic theory. Anderson [4,51 has solved the integral equations for

several one-dimensional steady state problems, and Watanabe (16,17]

has obtained numerical solutions for several time dependent problems.

Apart from their intrinsic interest, these solutions can be used

as standards in assessing the efficacy of approximate methods for

solving the Boltzmann equation.

In §2, the integral equations are formulated in the context of

the problem of a gas flowing past a circular cylinder. The free molecule
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form of these equations is obtained in §3 and used in §4 in the develop-

ment of a numerical method for solving the integral equations. Through

the use of elliptic coordinates, this procedure is generalized in §5

to accomodate the case of an elliptic cylinder, one of whose axes is

aligned with the free-stream direction. It is also shown that

singularities develop at the front and rear stagnation points as the

elliptic cylinder degenerates into a finite flat plate parallel to the

freestream direction. In §6, free molecule solutions are presented

for several freestream Mach numbers for elliptic cylinders ranging from

a flat plate parallel to the freestream direction to a flat plate

perpendicular to the freestream. In addition, finite Knudsen number

solutions are presented for subsonic and mildly supersonic Mach numbere

for elliptic cylinders deviating sufficiently from the flat plate limit.

2. FORMULATION OF THE INTEGRAL EqJATIONS

Consider the steady state flow of a rarefied gas past a stationary

circular cylinder, as depicted in Figure 1.

For this problem, the Krook equation can be written in dimensionless

form as follows:

'A v.' ~+v~ 'f v(ix)(F(_V-;x~) -f(v4;xD_) iSx•+Vy

The pbrameter 7\ is the Knudsen number, v(lx is a collision frequency

depending on density and temperature, and F(•;-x is a local Maxwellian

distribution

F(V~i•') T32 exp- (2)
(2TT(x-')) 2 2e(xp
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where n, q and T are density, velocity and temperature, respectively.

These, in turn, are given by the following moments of the distribution

function:

n(x•) dV f(V; X

qi fd V Vf(V,; X) (3)
n(x)

T3x) - x)

In 4*,he foregoing formulation, the following nondimensionalization

conventions have been implicitly assumed. The characteristic density

and temperature are taken as their freestream values n and TL00
and the characteristic length is taken as the cylinder radius R.

Characteristic values of velocity and collision frequency are then

defined by u = and v = v(n ,T ), where k is Boltzmann~s

constant and m is the molecular mass. The Knudsen number is then

given by 'A = RO/f and the freestream Mach number by M o o3/5 qC,

where q 0 is the dimensionless freestream velocity.

By an integration along its characteristics, the Krook equation

can be formulated as a closed set of nonlinear integral equations

for the low order moments - density, velocity and temperature. Using

the notation of Anderson [3], these integral equations can be written

=n- 2 7O d i K4 + r• crt
2n

B 3 B dt -- K 2
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fl= dIU n %FTBK(--
[B B (ý ýB 1i

+ dt n K i t-

3nT+nq 2 J02r dIn lK -q-p ) (4)-4- d•BT 5( ,• , *B' )
""'TB 0 'TT B

qB c

+ ~ ~ ~ ~ 3 dt-L 1K, ,4-ý, - -B

+ dt n -4+I- IT T ?I77 + AT xTT

These equations relate the flow properties at a point x = (r,@) to

integrals over the flow field as viewed from x. We thus have a radial

(t) integration along characteristics passing through ix and an

angular (4) integration over all such characteristics. For a given

angle 0, we integrate rtioially along the characteristic

=1 x su (5)

where u makes an angle 0 with the x-axis. Along this characteristic,

t is given by

t ds v(3- s^) , (6)

and c is the value of t at s = b, the distance traversed until

a .-t
aboundary is intercepted. A.lso, •r is the angle between q and

S L . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . .. .... .. . . . . . . . . . . . ... . . . . . . . .. . . .. .



and the x-axis, and the kernel functions are given by

(cy =H (a~ cos ý,ry) exp (a, sin 2
n 2

I.. / O du u exp -

In the derivation of ,equations (), a complete accomodation boundary

condition is assumed. Thus, at the boundary point x - bu, the distri-

bution function for the outgoing stream of molecules has the Maxwellian

form

nB B_ _

F(v-;x - bU) 3/2 exp - 2 TB (8)

where q and T are the velocity and temperature of the boundary
B B

at the point x - bu and nB, a pseudo-density variable, is determined

through the condition that there be no net momentum normal to the

boundary. In the context of the cylinder problem, the requirement that

the radial component of velocity vanish at the cylinder leads to the

following integral relation for n

nB(e)= - J 2 -d (_,. (9)

B 0 3B

the integral on the right being evaluated at the point on the surface

to which 9 corresponds.

The solid angle subtended by the cylinder at the point (r,O)

is described by the cone of influence angles

R'



6'
°i

E1, + .Arcsin~. .(10)

For 0 E (C ,2), the corresponding characteristics intercept the

cylinder a distance Al

b r cos(O - [i - [r sin(O - 9)]2 (11)

away. For 0 / (01,02), the corresponding characteristics do not

intersect the cylinder and the radial integration extendi overa semi-

infinite range. In general, the angular integrqnd is discontinuous

at 01 and 0."
1 2

Equations (4), in conjunction with (9), constitute a closed coupled
.-4

set of nonlinear integral equations for n, q, T. and nB . In addition,

these integral equations are singular since Kn(aPy)' contains a term

which behaves like n-lIn y a3 Ty-0 [3- .3

The collision frequency v is commonly chosen as s function of

density and temperature to match some continuum transport coefficient

of a particular gas; however, there is no unequivocal recipe for this

function. Moreover, the use of any such vaiiable collision frequency

model necessitates the repeated numerical evaluation of the transformation

(6), which is embedded in the radial integration. While this 1problem

can be handled in a straightforward manner, a prohibitively large

computation expense would be required for the class of problems

considered here. On the other hand, the assumption of constant ,

collision frequency reduces the computation to an economically tractable

level. The emphasis of the present work is primarily on the development

of numerical methods capable of yielding accurate solutions of the kinetic

equation, rather than attempting to model specific physical situatio.as.
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Therefore, the assumption of constant collision frequency will be t

implibit in all that fdllows.

' THE FREE MOLECULE LIMIT

The free polecule solution to the circular cylinder problem has

•. previously been obtained by Trepaud'& Br•-n [131 and compared with

experimental data. For our purposes,, the free'molecule limit furnishes

useful information: relevant to the problem of solving t'he integral

equations numerically. In the collisionless limit = o, the integral

equations reduqe to the following closed form expressions:

i n' =1 i j"l! d0 K3(,0~) +• d0 nB

2 2

n= q'- "d- u K4(qOO) + dV u n (14)

13nT 2,q• + q2 ". .-- [. d4[K5(q,0,O) + K3(q•,0,O)J

II I B
2f 2

, i rJ, B2, + 3 dý nBT

2 J $i

where

2, 2 /• q cO5 o / _ _ cos
n-(e). f Xo COS" 2 ) COS erfc e0

,2F2

I 1

. I I t

As explicitly recognized Jin tl,.• above equations, the free mole ,-le

solutibn depends inherently on the cone of influence angles 2 ,
*'l,2

e + Arcsin(1/r). Th.s as r -o. o, we anticipate that the free molecule

i I - -- - --,-i
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solution decays to its freestream limit like 1/r, and that as r -i,

the gradients of the flow variables approach infinity like i/, r4--.

These effects stem directly from the geometric configuration of the

boundary. As such, they may be expected to occur for finite Knudsen

numbers which are sufficiently large that the "boundary" terms (i.e.

those involving n B1 qB) TB) in equations (4) are of the same order

of magnitude as the integrals over the interior of the flow field.

4. METHOD OF SOLVING THE INTEGRAL EKUATIONS

The integral equations can be discretized by replacing the solution

by an approximate form involving finitely many free parameters, replacing

the integrals by quadrature formulae, and requiring that the residual -

the extent to which the approximate solution fails to satisfy the integral

equations - be minimized in some sense. For computational purposes, a

collocation condition was adopted, the residual being required to

vanish at a finite set of grid points. The values of the flow variables

n, q, T at these points are then used to interpolate the flow field

over the rest of the domain. The numerical solution of the integral

equations can thus be considered in three stages: (1) interpolation

of the flow field; (2) discretization of the integrals; and (3) solution

of the discrete equations.

Since the flow pattern for y < 0 is the mirror image of that

for y > 0, we need only interpolate over the upper half plane portion

of the domain; r > 1, 0 < e < 7r. As previously noted, for sufficiently

large Knudsen numbers, the flow field may be expected to vary roughly

as Arcsin(l/r) in the radial direction. Accordingly, the radial

coordinate is mapped into a bounded interval by means of the



transformation

=Arcsin(±) , (16)

and, 's an additional means of controlling the distribution of grid

points, bilinear transformations are applied to 9 and T1. In the

transformed domain - a bounded rectangle - the flow variables are

interpolated over a uniformly spaced set of grid points. A 4-point

local Lagrangian scheme is used in the radial direction, while cubic

spline interpolation is used in the angular direction. Both inter-

polation schemes entail approximation by piecewise cubic polynomials;

in the latter case, the approximation has two continuous derivatives

The integrals in equations (9) and (11) are discretized by means

of composite low order Gaussian quadrature formulae. Gauss-Legendre

quadrature is applied in subintervals in which the integrand is analytic,

while special logarithmic and square root Gaussian formulae are applied

in subintervals in which these singularities occur. To account for

the discontinuities in the angular integrand at the cone of influence

angles *1 and 02' separate formulae are applied to (0 and

its complement, each of these intervals being allotted a number of

subintervals in proportion to its length. A sequence of arithmetically

expanding subintervals is used for the radial (t) composite. For

infinitely extensive characteristics, the composite is applied over

a finite interval 0 < t < tm. For t > t the integrand is
max* a

approximated by its freestream form, which can be integrated directly

using the relation
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K (Uj,•y,) = -Knl (ap.,) .(17)

The discretization of the integral equations typically yields a

non-sparse system of several hundred simultaneous nonlinear algebraic

equations. These equations are solved iteratively by means of Anderson's

EY rapolation Algorithm [2], which entails a linearization of the

successive substitution iteration function about several of the most

recent iterates. The flow variables are assigned new values as soon

as they become available, as in a Gauss-Seidel iteration. As ?

decreases, the integral equations become more difficult to solve numer-

ically because the kernel functions decay more rapidly. Hence, the

best strategy for obtaining solutions of the integral equations for

various values of ?\ is to start with the free molecule solution and

proceed in the direction of decreasing ?\, using as initial iterate

for a particular value of 2ý, the solution corresponding to the next

larger value.

Another crucial problem is the evaluation of the kernel functions.

Since H (p,q) must be computed repeatedly during the course of solvingn

the integral equations numerically, it is imperative that this process

be as efficient as possible. Thus the computational algorithm is as

follows. The domain jpj: 2, q > 0 is mapped into a bounded rectangic

with a bilinear transformation in q, and a rectangular grid of uni-

formly spaced points is laid down over the transformed domain. For

n = 2,3,4, Hn is approximated over this domain by the bicubic Hermite

polynomial which interpolates H , its first partial derivatives,

and its mixed partial derivative st each of the grid points. Values

of Hn for n > 4 are computed via the recurrence formula

F i



HH =pH + (n- 3)Hn_2 + qoHn.3

This completes our discussion of the numerical procedure used to

solve the Integral equations for the circular cylinder problem. This

procedure can be generalized in straightforward fashion to elliptic

cylinders, as described in the next section.

5. GENERALIZATION TO ELLIPTIC CYLINDERS

We now consider a more general class of exterior flow problems

involving flow past an elliptic cylinder described by

x2 ~2x y
A2 + 2=1 •(19)
A B2

To facilitate the study of this class of problems, we use an elliptic

coordinate system, which arises from the complex transformation z =

c cosh p. Equating the real and imaginary parts of this transformation

and making the appropriate identifications, we obtain the following

families of confocal ellipses and hyperbolas

2 2x y

2 2 (1 A + 2 2 (=1p -(1 - A) p - (1 - B)-

(20)
2 2

x Y 2 2
2 -A -B22

cos p. sin p.

In terms of this orthogonal coordinate system, the domain exterior to

the elliptic cylinder is described by

-7< ýt <7r, p > i.
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Equations (9) and (1i) still appiy tosthis class of problems,

although the cone of influence.aangles are now given by I

tan- y . x 4 A 2y "A2 . (21)
. x 2 A2

and e in (1i) must be rpgarded as the angle between the horizontal

and the unit outer normal to the surface.,

"It can be shown that the cone of the influente of; the elliptic

cylinder, varies like 1/p as p -*Co, and. like c 1 + c % as
1 2,

p -*l. Thus it is appropriate to use the trangformatibn

• 22Arcsin )
S Iii

for the,interpolation of the solutlion. The rest of the numeribal
'a

procedure 'is as previously described, and the generalization to elliptic

cylinder is thus "acbieved. I' I

It is instructive to considerithe behavior df the free molecule

solution to the elliptic cylinder problem as the elliptic cylinder
.5 I * a

degenerates into a flat plate parallel to the freestream direction.

As B -+ Oi all the curvature, of the elliptic cylinder becomes

concen~trated at the front and rear stagnation points, end the cone of

influence - and hence the fýee molecule solution - va.ies most markedly

in the vicinity of Phese two points. In: the limit B = 0,,, the cone

of influence of the cylinder (in. this case at flat plate) is not well-, a

defined aL the leading and trailing edgesi. Similar1ly, the limiting

values of the flow variables as either of these two points is approach'ed

depends upon the direction of approach.
, I A

I .I
I
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Free molecule solutions for a diffusaely reflecting, flat plate

have previously been'obtaine'd by Ortloff [1i]. kowever, these s'olutions

are tainted by an incorrect expresuion for the distribution function.

The correct free molecule form of the distribution function Is
S' 4 , '

27r) 3/2 2

F(v;x)=
S •I

where S is the cone of influence ;of the flat platie at the pont x.I 
I

The qualitative bdhavior of the singularities which occur for-, I I

infinite Knudsen number should also be manifest at finite Knudsen

'numbers) since within regions of wid~h w <, ? about the leading

Sand itrailing edges; the flow is essentiallyfree molecular. Also,

as B -0 (and likewise as A -40), the flow field approaches its

singular limiting form, and the foregoing numerical procedure for

obtaining finite Knudsen,'number solutions of the integral equation

fails for "too oblong" elliptic cylinders.
S2 

I

6. NUMERICAL RE6ULTS

The integral equations were solved numerically for the sets of
I 

2

parameters listed in Talihe I. Up 1to 100 grid points were used to inter-2 I,

polate the flow field. Roughly ten or fewer i~eratiorns were required

to satisfy a quasi-convergence 2criteirion pf l0-, while the time

taken per iteration oh the IBM 360/65 .angea as high as1 five minutes.

, Flgurds 2-5 and 6-9 depict the flow of a gas past a circular`

cylinder at q = 1.5,, whith corresponds to a slightlysupersonic

I I



freestream Mach number. The first set of contour maps refers to the

free molecule limit 'A = , while the second refers to 7\ = 1. Figures

10-12 present a comparison of the c = a and 1 = i solutixons along

the rays e = 0, 7r/2 and 7r. The similarity of the two solutions stems

from the fact that at 'A = 1, the boundary conditions still have a

direct influence on the interior flow pattern. However, the disturbance

induced by the cylinder is more diffuse in the lower Knudsen number

case. Thus, the square root singularity at the cylindrical surface

is less conspicuous at 7\ = 1, and the flow variables approach their

freestream limits more slowly. Also, the density in the shielded region

behind the cylinder is considerably higher at 7\ = 1.

Figures 13-16 depict the flow pattern of a gas past an elliptic

cylinder whose semi-minor axis is one-fourth the length of its semi-

major axis. Essentially all the structure of the flow field is

concentrated in the vicinity of the front and rear stagnation points,

where the variation in the cone of influence of the cylinder is greatest.

As the elliptic cylinder degenerates into a finite flat plate, it

becomes increasingly difficult to interpolate the solution accurately

in these two regions.

Figures 17-20 illustrate the free molecule solution for the

aligned flow past a finite flat plate. The singularities at the leading

and trailing edges are manifested in the coalescense of the contour

lines at these two points. The free molecule solutions obtained by

Ortloff [111 do not exhibit these singularities because an incorrect

form was assumed for the distribution function. Figures 21-24 illustrate

the free molecule flow pattern for the other extreme case of a flat plate

perpendicular to the freestream direction. Both sets of free molecule
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solutions are for q = 3, which corresponds to a freestream Mach

number slightly greater than 2.

CONCLUDING REMARKS

The numerical procedure used to solve the integral equations is

most suitable for high Knudsen number (? > 1), low Mach number

(M < 1) flaws. In this regime, the geometrical configuration of the

boundary is of primary importance, and the flow field varies essentially

as the cone of influence of the cylinder.

At lower Knudsen numbers, the "width" of the kernel functions

decreases, and the effect of the boundary conditions on the interior

flow pattern is less direct. More precisely, the boundary integrals

in (4) at a fixed point iX decrease in magnitude as 2 -+0. Thus a

numerical method tailored to the variation of the cone of influence

angles is not necessarily appropriate for solving the integral equations

for low Knudsen numbers.

At higher Mach numbers, the gradients in the flow variables become

larger, posing additional numerical difficulties. Due to the shielding

effect of the cylinder, density may var-y by several orders of magnitude.

For example, the free molecule density at the rear stagnation point

2is of order i/q, exp -(qJ2) as q,-. m (this result can be obtained

from equations (14) and (15)). Also, at finite Knudsen numbers, the

occurrence of shock waves presents an added complication. The question

of how to handle these effects numerically remains unresolved.

Also unsettled is the question of how to adapt the integral equation

approach to the flat plate problem. It would seem that the singularities

at the leading and trailing edges should be taken account of numerically,
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yet it is unclear how this should be accomplished. At any rate, one

cannot asstme a priori that the effect of these singularities is

negligible.
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V TABLE I

q T A B00 B

00 - 1 1 1 1

S10 1 1 1 1

1 1 1 1 1

0o 1.5 1 1 1

10 1.5 1 1 1

1 1.5 1 1 1.1
01 1 1 .25

10 1 1 1 .25

1 1 1 1 .25

lO 1 1 .5 1

10 1 1 .5 1

1 1 1 .5

0j 3 1 1 0

CO 3 1 0 1

Parameter values for elliptic cylinder problem
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