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1. INTRODUCTION
The Krook kinetic equit.ion [6] provides & useful characterization

of many flow problems in kisstic theory. By integrating this equation

along its characteristics, 3 coupled set of nonlinear integral equations
for density, velocity ar’ temperature can be obtained. This paper

describes a numerical,pvmﬂedure'which can be used to solve these integral
equations for a class » exterior flow problems involving flow past an
elliptic cylinder.

A sjaulation ternique haes been applied by Vogenitz et.al. to

several exterior flow problems, including the leading edge problem

[15] and flow past oylinders and spheres [14]. However, the only finite

Knudsen number solutlons of the kinetic equation to have been reported
previously for axterior flow problems ere those due to Huang et.al.
[7-10], in which @ discrete ordinate method was applied to the {inite
and semi-infinite flat plate problems.

The work reported here is part of a coordinsted effort by several
people to develop numerical procedures capable of yielding accurate
solutions of the integral equations for a sequence of prototype problems
in kinetic theory. Anderson [4,5] has solved the integral equations for
several one-dimensional steady state problems, and Watsnabe [16,17]
has obtained numerical solutions for several %ime dependent problems.

Apart from their intrinsic interest, these solutions can be used

as standerds in assessing the efficacy of espproximete methods for

solving the Boltzmann equation.
In §2, the integral equations are formulated in the context of

the problem of a gas flowing past & circular cylinder. The free molecule
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form of these equations is obtained in §3 and used in §4 in the develop-
ment of & numerical method for solving the integral equations. Through
the use of elliptic coordinates, this procedure is generalized in §5

to accomodate the case of an elliptic cylinder, one of whose axes is
aligned with the free-stream direction. It is also shown that
singularities develop at the front and rear stegnation points as the
elliptic cylinder degenerates into a finite flat plate parallel to the
freestream direction. In §6, free molecule solutions are presented

for several freestream Mach numbers for elliptic cylinders ranging from
a flat plate parallel to the freestream direction to a flat plate
perpendicular to the freestream. 1In addition, finite Knudsen number
solutions are presented for subsonic and mildly supersonic Mach numbers

for elliptic cylinders deviating sufficiently from the flat plste limit.

2. FORMULATION OF THE INTEGRAL EQUATIONS

Consider the steady state flow of 8 rarefied gas past a stationary

circular cylinder, as depicted in Figure 1.

For this problem, the Krook equation can be written in dimensionless

form as follows:

k(vx -g-xi-: + vy -g-yg) = (X {F(V;X) -~ 2(HX)Y . (1)

The perameter A is the Knudsen number, v(§3 is a collision frequency
depending on density and temperature, and F(Vﬁiﬁ is & local Maxwellian
distribution

- e 2
F(V3X) ='(EHTJZ(_%§7§ exp -{L—@L} ) (2)
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where n, 'q') and T are density, velocity and tempersture, respectively.
These, in turn, asre given by the following moments of the distribution

function:

(@) - [ 67 2(753)

) =-n—(-1§,)- f &7 ¥ £(¥;%) (3)

ox) = L= [ WP - AR Pe@D)
3n(x)

In the foregoing formulation, the following nondimensionalization
conventions have been implicitly assumed. The characteristic density
and temperature sre taken as their freestream values n_ end T,
and the characteristic length is teken as the cylinder radius R.
Characteristic values of velocity and collision frequency are then
defined by u =‘JEE;Z5 and v =v(n_,T ), where k is Boltzmenn's
constant and m is the molecular mess. The Knudsen number is then
given by A = RG/E and the freestream Masch number by M, =\[§7§ a
where q, is the dimensionless freestream velocity.

By an integration along its characteristics, the Krook equation
can be formulated as a closed set of nonlinesr integrsl equations
for the low order moments - density, velocity and temperature. llsing

the notation of Anderson [3], these integral equaetions can be written

~C

ar q
1 T B e 1 n q t
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These equations relate the flow properties at a point X = (r,8) to :

integrals over the flow field as viewed from X. We thus have a rsdial

e

(t) integration along characteristics passing through X and an

angular (¢) integration over all such characteristics. For & given

A REYoa ot pw ey R T S,

angle ¢, we integrate regially along the characteristic

mne

X =% - su (5)

Y

 Fime ey

where 1 mekes an angle ¢ with the x-axis. Along this characteristic,

t 1is given by
8 5 .
tE[ ds v(x - su) , (6)
Y0

and ¢ 1s the value of t at s =V, the distance traversed until

a boundary is intercepted. Also, ¥ is the sngle between E) and
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and the x-axis, and the kernel functions are given by

2
Kn<a’5:'Y) = Hn(\’i cos B,Y) exp - { (c Sig B) }

T un-eexp_{[ﬁs_:e_aﬁﬁug]}. (1)

1l
B s o ewe——n
n(p Q) ‘l-— \/

In the derivation of ‘equations (}), a complete sccomodation boundary
condition is assumed. Thus, &t the boundary point X - bﬁ, the distri-

bution function for the outgoing stream of molecules has the Maxwellian

form

-3 = - nB (;" a;)g
F(VyX - bu) = -2-27—;—)—37-2- exp - {-———2-@-]-3-——-} (8)
B

vwhere E; and TB are the velocity and temperature of the boundary

at the point X - ba snd g a pseudo-density variasble, is determined
through the condition that there be no net momentum normel to the

boundary. In the context of the cylinder problem, the requirement that

the radial component of' velocity vanish at the cylinder leads to the
following integral relation for nB

L

0+

d -8 [‘w ‘g‘"‘b)"'"t':— ’
¢ cos(o )ho dtnKB(\ﬂI\ ¢ 7\\/&1) (9)

1
n (9) = . ——— J
B
X‘JE; e-+g
the integrsl on the right being evalusted at the point on the surface

to which 8 corresponds,

The solid angle subtended by the cylinder at the point (r,8)

is described by the cone of influence angles
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0 + Arcsin(

el L

) . (10)

For ¢¢ (@1,¢2), the corresponding characteristics intercept the
1

H

cylinder a distance

P

b =r cos(¢ ~ 8) - - [r siﬁ(¢ - 9)]2 (11) o L
§

away. For ¢ ¢ (¢l,¢2), the corresponding chardcteristics do not B

I3

intersect the cylinder and the radial integration extends over-a spmi-

B ke

infinite vange. In generel, the angular integrgnd is discontinuous

at ¢l and ¢2. )

Equations (4), in conjunction with (9), constitute & clcsed coupled
set of nonlinear integral equations for n, EZ T. and ng.
these integrel equations are singular since Kh(a,B;v)' contains a term
1

In addition,

fnv a3 vy -0 (3. : _ ]

The collision frequency v 1is commonly chosen as a function of

which behaves like Wp-

density and temperature to match some continuum transport coeffiﬁient
of a particulaf gas; however, there is no unequivocal recipe for this

function. Moreover, the use of any such variable collision frequency

L]

model necessitates the repeated numerical evaluation of the transformati;n !
(6), which is embedded in the radisl integrationi While this problem l

can be handled in a straightforwaerd menner, a prohibitively 1ﬁrge
computation expense would be required for thg cl;ss of p}oblems '
considered here. On the other hand, the assumption of constant , } '
collision frequency reduces the computation tb an ecvomically tractable .
level., The emphasis of the present work is p{imarily on the Jeve}opm;nt |

of numerical methods capable of yielding accurate solutions of the kinetic

equation, rather than attempting to model specific physical situatioas.
|n
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P Therefore, the assumption of constant collision frequency will be
1 1

4 ' implicit in 811 that follcws. L

1
.

Q

: 3. THE FREE MOLECULE LEIMIT & ¢ . S

The free molecule solution to the circular cylinder problem has

‘- previouslyI been obtained by T:;'epaud"& Brun [13] and compared with

i experimental data. For our purposes, the free-molecule limit furnishes
useful inf!orma'pioni relevant to the problem of solving the integral
=equa1':ions numerically. In the collisio’nless‘ limit A = », the integrsl

equations reduce to the folllowing closed form expressions:

S ' ot

. . .2 2
) <1 ] 1
: n‘=1-——-j d¢K(q,¢0) [ dé n
Jor Vo 2 B
l N R 1 H ; l i
| |
' % |
Ve a 1 ‘A 1 ~ /""‘ !
. ng = qi = ~=— f «do u K, (q_,¢,0) + j déo u n_ VT (1k) i
b = Jer e APV Y BB |
. ' |
' , 1 i . 1 N
i ' ,,°2“ . J
2y 1 ; |
1 . - S
N | aslxy(a,,0,0) + K581 ¢:0)] ﬁ
, ‘ \ = f
i ! ! ‘
. . ¢ '
' ~ ‘ ‘ . 3 [ ;
1 i i ) ' +ﬁ j¢ d¢ nBTB ;
H | i l !
vhere !

i x 5 “ ! ; ¥
‘ o ! !
. q cos* Q g, cos 6 qQ cos @ .
, ! n (_9),:-3-‘—- -rex_g - ) - \/'-Ir/ —— s erfc/-—m——-——- . (15) |
' B JE; l. / N \ J2 f

' : , | i i
. i
| As explici‘clyl recognized in tl-: above equations, the free mole ule j
) ' !
solution depends inherently on the cone of influence angles ¢l o =
1 . . . . )
8 + Arcsin(l/r). This as r - ®, we anticipate that the free molecule

e i e e ol oo e oo onoen o o i e o e g




solution decays to its freestream limit like 1/&, and that as r =1,
the gradients of the flow variables approach infinity like l/J;:I.
These effects stem directly from the geometric configuration of the
boundary. As such, they may be expected to occur for finite Knudsen
numbers which are sufficiently large that the "boundary" terms (i.e.
those involving Ny E;, TB) in equations (%) sre of the same order

of magnitude as the integrals over the interior of the flow field.

4, METHOD OF SOLVING THE INTEGRAL EQUATTONS

The integrasl aquations can be discretized by replacing the solution
by an approximate form involving finitely many free psrameters, replacing
the integrals by quadrature formulae, and requiring that the residusl -
the extent to which the approximate solution fails to sstisfy the integral
equations - be minimized in some sense, For computationsl purposes, a
collocation condition was adopted, the residual being required to
vanish at a finite set of grid points. The values of the flow variebles
n, ai T at these points are then used to interpolate the flow field
over the rest of the domain., The numericsl solution of the integral
equations can thus be considered in three stages: (1) interpolation
of the flow field; (2) discretization of the integrsls; and (3) solution
of the discrete equations,

Since the flow pattern for y < O is the mirror image of thst
for y > 0, we need only interpolate over the upper half plane portion
of the domain; r > 1, 0O < @ < 7. As previously noted, ror sufficiently
large Knudsen numbers, the flow field may be expected to vary roughly
as Aresin(l/r) in the radisl direction. Accordingly, the radial

coordinate is mapped into a bounded interval by meuns of the
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transformation
N = Arcsin(%) ’ (16)

and, as an additional means of controliing the distribution of grid
points, bilinear transformetions sre spplied to © and n. In the
iransformed domain - a bounded rectangle - the flow variables are
interpolated over a uniformly spaced set of grid points. A L-point
local Lagrangian scheme is used in the radiasl direction, while cubic
spline interpolation is used in the angular direction. Both inter-
polation schemes entail approximation by piecewise cubic polynomials;
in the latter case, the approximation has two continuous derivatives
1].

The integrals in equations (9) and (11) are discretized by mesns

of composite low order Gaussian guadrature formulae. Gauss-Legendre

quadrature is applied in subintervals in which the integrend is analytic,

while special logarithmic and square root Gaussian formulae are applied

in subintervals in which these singularities occur. To account for
the discontinuities in the angular integrand at the cone of influence

angles ¢1 and ¢ separate formulae are applied to (¢1,®2) and

2,
its complement, each of these intervals being allotted a number of

subintervals in proportion to its length. A sequence of arithmetically

expanding subintervals is used for the cadial (t) composite. For
infinitely extensive cheractzristics, the composite is applied over

a finite iuterval 0< t < tma ., For t> tmax’ the integrand is

X
approximated by its freestream form, which can be integrated directly

using the relation
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-50’? Kn(Ci;B"Y) = 'Kn_l(a:s.:"}’) . (17)

The discretization of the integral equations typically yields a
non-sparse system of several hundred simultaneous nonlinear algebraic
equations. These equations are solved iteratively by means of Anderson's
Ev rapolation Algorithm [2], which entails a linearization of the
successive substitution iteration furnction about several of the most
recent iterates. The flow variables are assigned new values as soon
as they become aveilable, as in a Gauss-Seidel iteration., As A
decreases, the integral equations become more difficult to solve numer=-
ically because the kernel functions decay more rapidly. Hence, the
best strategy for obtaining solutions of the integral equations for
various values of A is to start with the free molecule solution and
proceed in the direction of decreasing A, using as initial iterate
for a particular value of A, the solution corresponding to the next
larger value.

Another crucisl problem is the evaluation of the kernel functions.
Since Hh(p,q) must be computed repestedly during the course of solving
the integral equations numerically, it is imperative that this process
be as efficient as possible. Thus the computational algorithm is as
follows., The domain lpl <2, >0 1is mapped into & bounded rectangie
with a bilinear transformation in q, and a rectangular grid of uni-
formly spaced points is laid down over the transformed domain. For
n = 2,3,k Hn is approximated over this domain by the bicubic Hermite
polynomial which interpolates Hn, its first partial derivatives,
and its mixed partial derivative et each of the grid points. Values

of Hn for n> 4 are computed via the recurrence formuls
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11

H =DpH

o 1t (n - 3)Hn-2 + an- .

3

This completes our discussion of the numerical procedure used to
solve the integral equations for the circular cylinder problem, This
procedure can be generalized in straightforwerd fashion to elliptic

cylinders, as described in the next sectior.

5. GENERALIZATION TO ELLIPTIC CYLINDERS

We now consider a more general class of exterior flow problems

involving flow past an elliptic eylinder described by

%2 y2
3tz =l (19)
A2 B2

To facilitate the study of this class of problems, we use an elliptic
coordinate system, which arises from the complex transforn}ation 2 =

¢ cosh p. Equating the real and imeginary parts of this transformation
and meking the appropriste identifications, we obtain the following

families of confocal ellipses and hyperbolas

(20)

x2 y2 _ 42 2

2 . 2
cos | sin”

In terms of this ortliogonal coordinate system, the domain exterior to

the elliptic cylinder is described by

-T < L& T, p>1 .,
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Equations (9) and (11) still apply to.this class of problems,
} 1 |
although the cone of influence angles are now given by |

, . - 33 53 33 C ’
: 6. _ =tén L xy’,’JBx tAy -8B [ (21)
- 1,2 . 2 2

b4 I-A \

1
1 .

. H )

3

L 1 i .
and 6 in (11) must be regarded as the angle between the horizontal

| v !

and the hnit outer nPrmal to fhe surface.. !

It cen b? shown that the cone of the influence of. the elliptic
M ' ! ! b .
cylinder, varies like 1/p as p - o, and like e, + ¢, Jp -1 as
. ' : *
p 1. Thus it is appropriate to use the transformestion '

i
' . . . t
1

1 fAnmih(%ﬁ l(22) '

v,
for the interpolation of the solution. The resf of the numeritcal
o
procedure ‘s as previously described, and the generaliaation to elliptic

cylinder is thus achieved | " ' ) I

It is instructive to considerithe behavior of the free molecgle
solution to thelelliptic cylidder problem as Fhe elliptic cylicder ) )
degehe?ates into a flst plate parallel to the freestream direction. |

! ;
As B —-0; 8ll the curvgturg of the elliptic cylinder becomes ’ ,
concehtrated at the front and rear stagnetion points, end the cone of
I
influence - and hence the free molecule solution - vanies most merkedly

in the vicinity of fhese two points. In:the limit B =0, the cone
of influence of the cylinder (in this case & flat plate) is not well- i
defined av the leading and trailingledgeé. Similarly, the limiting

values of the flow variables as either of these two points is approached '

»

1
depends upon the direction of approach.

. h ' ] . '
! . 1 !
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: Free molecule solutions for a diffuqely reflecting!flat,plate
have preyiously been‘obtaineh by Ortloff [11]. However, these solutions
are tainted by an incorrect expression for the distribution function.

The correct free molecule form of the distribution function is

. N
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. Where Q@ 1is the cone of influencevof the flat plate at the po*nc X.

The qualitative béhevior of the singularities which occur for:

infinite Knudsen number should also be menifest at finite Knudsen '
i
’numbers, since within regions of width W << l about the leading

and trailing edges, the flow is essentially.free nolecular. Also,

as B-0 (and likewise s A -0), the flow field approaches its

(]

singular limiting form, and the fonegoing numerical procedure for

obtaining {inite Knudsen.number solutions of the integral equation

fails for "too oblong elliptic cylinders. .

H 1
6. NUMERICAL RESULTS ' ;

The integral equations were solved numerically for the sets of
] ! . . !

parameters listed in Teblle I. Up 'to 100 grid points were used to inter-
1 ]

polate the flow field. Roughly ten or fewer iterations were required

t - L)
to satisfy a quasi-convergence criterion of 10 3, while the time

taken per iteration oh the IEM 360/E§~§?ngeh as high as'five minutes.
l Figurés 2-5 and 6-9 depict‘the flow of & gas past a circular’
!

cylinder at 3, = 1.5,, whi¢h corresponds to a slightly, supersonic
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freestream Mach number. The first set of contour maps refers to the
free molecule limit A = », while the second refers to A =1l. Figures
10-12 present & comparison of the A =~ and A =1 solutiuns along
the rays 6 = 0, T/2 and 7. The similarity of the two solutions stems
from the fact that at A =1, the boundary conditions still have a
direct influence on the interior flow pattern. However, the disturbance
induced by the cylinder is more diffuse in the lower Knudsen number
case, Thus, the square root singularity at the cylindrical surface

is less conspicuous at A =1, and the flow variables approasch their
freestream limits more slowly. Also, the density in the shielded region
behind the cylinder is considerably higher at X =1,

Figures 13-16 depict the flow pattern of a gas past an elliptic
cylinder whose semi~minor axis is one-fourth the length of its semi-
major axis, Essentially all the structure of the flow field is
concentrated in the vicinity of the front and rear stagnation points,
where the variation in the cone of influence of the cylinder is greatest.
As the elliptic cylinder degenerates into a finite flet plate, it
becomes increasingly difficult to interpolate the solution accurately
in these two regions.

Figures 17-20 illustrate the free molecule solution for the
aligned flow past a finite flat plate. The singularities at the leading
and trailing edges are menifested in the coalescense of the contour

lines at these two points. The free molecule solutions obtained by

Ortloff [11] do not exhibit these singularities because an incorrect
form was assumed for the distribution function. Figures 21-24 illustrate
the free molecule flow pattern for the other extreme case of a flat plate

perpendicular to the freestream direction. Both sets of free molecule
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solutions are for q, =3 which corresponds to a freestream Mach

number slightly grester than 2,

CONCLUDING REMARKS

The numerical procedure used to solve the integral equations is
most suitable for high Knudsen number (A > 1), low Mach number
(Mc° < 1) flows. 1In this regime, the geometrical configuration of the

boundary is of primary importance, and the flow field varies essentislly

abas Radinms D RIS e A s s am e e e

as the cone of influence of the cylinder.
At lower Knudsen numbers, the "width" of the kernel functions

decreases, and the effect of the boundary conditions on the interior

RI% B Sy Y P TIL ALY  J

flow pattern is less direct. More precisely, the boundary integrals

in (4) at a fixed point % decrease ir magnitude as A —0. Thus a

numerical method tailored to the variation of the cone of influence f
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angles is not necessarily appropriate for solving the integral equations
for low Knudsen numbers,

At higher Mach numbers, the gradients in the flow variables become
larger, posing additional numerical difficulties. Due to the shielding
effect of the cylinder, density mey vazy by seversl orders of magnitude.
For example, the free molecule density at the rear stagnation point
is of order l/q°° exp -(qi/e) a8 g - (this result can be obtained
from equations (14) and (15)). Also, at finite Knudsen numbers, the
occurrence of shack waves presents an added complication. The question
of how to handle these effects numerically remeins unresolved.

Also unsettled is the question of how to adapt the integral equstion
approach to the flat plate problem. It would seem that the singularities

at the leading and trailing edges should be taken account of numerically,
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yet it .is unclear hcw this should be accomplished. At any rate, one :
cannot sssume a priori that the effect of these singularities is .

negligible. .
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