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INTRODUCTION

z A new high pressure research chamber has been provided by the ofi‘ico
of Naval Research for the high pressure section of the Laboratory

Y of Environmental Physiology in the Department of lf’l'ws:lof!.ogyr State )
i University of New York at Buffale. This ( iamber has two compartments

' suitable for human occupancy and a working pressure of 170 atm abs,
2500 psig, or 5,600 ft. of equivalent sea water depth,

3 Except for experiments at relativsly low pressures, utilizing coms
pressed air for pressurization and ventilation, operation of such a
chamber for human or animal studies requires an environmental cone
ditioning system, Such a system must remove carbondioxide amd various
- gaseous contaminants, must provide for maintenance of the desired

4 partial pressure of oxygen, and must ensure suitable temperature,
humidity and circulation of the chamber atmosphere,

All of these requirements are important, but the means employed for
, removal of CO2 is the central and most crucial component of most

5 practical environmental control systoms, Almost without exception,
% removal of CO2 from high pressure research chambers has been accori~
2 plished by chemical adsorption utilizing soda lime or Baralyme R*,
Although usually providing a satisfactory means of CO, removal, the
use of a gramilar absorbent presents several problems, Most impor-
: tant is the fact that a relatively large wolume of material must be
1 replaced at quite frequent intervals,

LA 2e

i In a chamber occupied by human subjects, pre-packed canisters ‘of
adsorbent can be passed in and out through an access lock and
utilized in a basically simple and inexpensive internal scrvbbing
system, The main defect of this arrangement is that incapacitation
of the occupants or malfunction of the lock or scrubber could cause
i3 a life-threatening crisis, An "external loop" system svoids such

4 potential hagards and is also suitable for maintaining the chambeyr '
atmosphere during animal studies,

; An external environmenial control system must include at least one
R significant vessel, with working pressure equal to that at which the
chamber wiil be used, to hold the adsorbent, This (or these) must
be very readily openad for rapid replacement. of the material, ' Other
components of the environmental conditioning system may or may ot
be provided externally. In any case, the vessels and accompanying
large~-bore valves, piping and connections inevitably become items

A of major cost especially in a system of 2500 psig working pressure,

*(indicates registered trademark)
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In considering an environmeital conditioning system for the new
Buffalo chamber, we felt strongly that the usual approsches left
much to be desired and that this warranted opon-minded considera=
tion of other possibilities, Our major objective vas to develop,

if pcasible, a system that, combined the simple and inerpensive
structures of an internal loop with total, or almost total, capa-
bility for operation and control from the outside of the chamber,

In addition, we were intent upon providing a secondary system that
could be put into operation from the outside in the event of failure
of the primary system,

Our proposal for an engineering fexsibility study of environmental
control systems, which led to the present work, involved considera-
tion 'of four concopts that had seldom or never been applied in high
pressure research chambers, One of these concepts was the use of a
compact countercurrent heat exchanger for dehumidification and tem-
perature regulation. Two relatively uncommon approaches to COp
removal were included, One of these was use of low temperature in

a nmuliistage countercurrent heat exchange system, The other em-
ployed adsorption of CO2 with synthetic zeolites and periodic in=-situ
rogeneration of the adsorbent, The fourth concept employed familiax
chemical CO, ausorption but made use of the unusual pass-through lock
design of the Buffalo Chamber for a system intended primarily for
emergency uUse,

Althcugh the primary motive of the study was to determins the most
promising approaches to ervironmental conditioning for the new
Buffalo chamber, we belisve that this report will be useful in
several other connections, We have made a particular effort to
provide ar instructive document applicable to many aspects of
environmentzl conditioning in high pressure atmospheros,
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I. Physislogical Requivemsnis

The design of a system to control ¢he environmental parameters of s
ohaser must bs predicated on certain assumptions for th» rete of
changze of temperature and gas constituonts, For short torm cpera-
tion, the major concern is the products of respiration frox the
chamber ocsupants, When using recirculation and purification
systems, trace contaminsnts from outgacsing of cquipment, supplies
and chambey occupants becomes xyre important as “he time of sxposire
increases,

A.__Oxypen, Carbon Dicxide and Water Rates:

The main use of the High Pressure Rsgearch Facility at the State
University of New York at Buffalo is to investigate physiological
offects umdor various conditions of pressure and gas composition,
These e~u<>iments would typically have two or more chamber occupants
altern: iry between performing exercise (as the experimental sub-
Ject; sid wonitoring the test, A man might, for examplo, have a
deily routine equivelent to» six hours of relatively heavy werk,
ton Lours of 1light work and eight hours of sleep., Table 1 is a
copilation of the respirstory gas exchange of such a scheduls,
avcsuming a respiratory quotient (R.Q,) of 0,85, This is probably
2 reasonabls approximation for an active diving gahedule az well
but would boe conservative for' an extended decompression period
vhere the daily CO, production weuld only be about 2,2 #/duy.

TARLE 1
Metabolioc v ¥ Respiretory
- €O 02 HO

Rate
Xeal/ BIU/ Hours/ I/ain I/ain 2
Work  Min  Br, _Day. _STPD f/hr, #/dey STPD #Jhr. §/day

Heavy 7.5 1800 6 L5 38 2,3 1.75 .18 1,08

Light 2.5 600 10 o5 W3 1.3 0,6 L0610 L&
Slesp 1 40 8 25 06 5 3 .02 8
Daily Total/Men 4,1 1,87

In addition to respirstory water thers will bs evaporation from the
skin assumed to be about .8 liter of wter per day (1.,8#) or u total
water vapor from the chamber ocnupants of about 3.7 lbe/man day,

It will bs recesesry to replace the oxygen consumed by the chamber |
occupats, Based on the values in Tahle 1, this will amount to about
35 SCF/man during the daytime and 4 SCF/man when sleeping,
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Obviously this idealised mode} will not L» duplicated exactly,
However, the wvalues give realistic design porameters to determine
daily tetals and maximua instantaneous retes of production,

For comparison, the heavy work srigified in Table 1l wuld correspend
% a booted Giver wmaking at maximum speed an a zuddy bottom or
swimming with fir- at a speed of 90 feet por minute. The metabolis
levols sre cbvioualy mmch hijher than those for space activity where
the estimated CO2 production is 2,1 to 2,3 #/man day and water
producticn is .8 #/man day (Ref. 1, 2 and 3), There is some evidence
that 4 lbs/msn day is typical fo:r long undersea expesure besed on
the experience in Tektite I (Ref, 4),

B, Chamber CO2 Equilibrium Pressure

1. Determine CO2 Loop flow given meximum CO2 pressure:

o K Figure I-1 shows the chamber equilibrium CO2 pressure versuc Llow
R & rate through the CU» removal system for various work rates, This
% is walid for steady stste conditions regardless of the vessel

: sigse, To find the required CO2 loop flow with a known maximua
level of CO2 pressure enter the curve at the ordinste correspond-
k& ing to the maxismm CO2 level desired and draw a horissntal line.
For each level of activity multiply the number of occupants at

.3 that work loevel times the required loop flow, Add the flows to
1 deternmine the reciroulation rate required.

|3 v Example 13 Determine tho recirculation rate for a three men
. A team with one man doing heavy work and two
3 ocoupied at light duty, The maximum desired 00p
4 lovel is 4 mm Hg,

7] 1 x10,7 +2x 3,7 =18 cfn

i This 1s shown on the horjigontal dashed line
5 on Figo I-1.

2, Detormine CO2 preusurs for a known CO2 loop flows

B Sincs most cironlation loops operate at a constant flow it is
possible to use Fig, 1 to evaluate chamber CO2 pressures at
varying conditions of ocoupant activity, This is done by
entering the curve absissa at tho loop flow and drawing a ver-
tical line, Add the COz pressure contributed by each occupant,

Exaxple 23 For the above case a2t 18 efm flow, two men on
light duty and one at heavy work the chambsr
equilitrium pressure would bes

1 x24+4+2x.824mHg
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When all three men are sleeping the CO, pressure
would approach:

3x .39 1.2 mm Hg

.

This is shown on tle vertical dashed line on Fig, I-1

Hotes The curves in Figure I-1 are based on complete re-
moval of CO3 in recirculation loop, While this is a
valid assumption for most systems the rates and
equillibrium pressures must be adjusted if only
part of the (0o is removed by adding the exit
pressure of CO, to tho value given in Fig, I-l.

Figure I-2 has curves showing the increase in CO2 level as a function
of time, for the SUNYAB High Pressure Research Facility if the CO,
removal system is out of service or not functioning properly. It is
obvious that, especially in the smaller compartment, the COp level
will become prohibitively high in a short period of time, less than
one hour with 3 men awake but not overly active (curve B), It is
certainly possible to have very high CO, producticn rates for short
pariods of time, In physiolcgical measurements of faxinmum oxygen up-
take, this could reach &4 liters of CO2/minute for perhaps ten minutes.
Thic(' gas would normally flow to measuring devices which would have
geparate CO2 removal means, However, if the COp was allowed to flow
into the chamber this would be an excess of 2,5 liters (over the

1,5 1/min assumed for heavy work)., The rate of CO, pressure in-
crease would follow curve A in Fig, I-2 or after 10 minutes the
pressure would increase by 4 mm Hg. This is not considered a problem,

The change (deorease) in oxygen pariial pressure will be approxi-
mately the same as shown in Fig, I-2 for CO2 (increase), Since

the normal operating level for Oz will be over 150 mm Hg, a uniform
control of the oxygen makeup is much less critical then for CO2
removali,

C. Humidity Control

I-3 sliows the amount of water removed per hour as a function
of the flow through the water loop. There s soms indication that
a relative hamidity of about 50% is desiradis from the standpoint
of diver cenfort, However, there has been iiltle study on the effect
of varying the humidity at high pressures,

From Figure I-3 it can by seen that if an 18 cfm loop is used for a
three man chambur, to maintain & low 002 level, the huvnidity level
will drop woll below 50%, As noted in part I-A the expected Ho0
vapor production is 3,7 #/man day or about 11# total, Thus in an
18 cfm system the “aversze” R,H, will be about 25%, This can be
remedied by periodically reversing the flow and evaporating the
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condensed water, if a heat exchanger is used, or by humidfying the
dry gas when it returned to the chamber atmosphers (similar to
commercial air sonditioning).

In view of the very high convective loss in helium atmospheres at
high pressures (see Ref. 5)¢ Melative humidity is no doubt much less
important at these pressures than it is at one atmosphere of air,

When the wet compartment of the High Pressure Facility is being used,
it is expected that the relative humidity will approach 200% due to
splashing and large wet surface areas in the chamber, In non-use
periods, the water/gas interface will be covered to minimize evapora-
tion,

D, Temperature:

Tt is well known that the ambient temperature in & helium en~
vironment must be higher than in air to maintain a suitable comfort
level (Ref. 5)s For the purpose of this study a chamber temperature
of 9OOF was chosen, At very high pressures the temperature will no

' doubt approach body temperature (98°F) to maintain comfort., How-
ever, the results shown in the following sections can be easily
adjusted if a differe..t ambient temperature is desired,

In view of the considerable amount of hest required due to heat
loss from the vessel wmlls to the enviromment, only the process
loop heat requirements are considered here, Geoneral heating will
be accomplished by other means such as heating coils at the chamber
floor,

E, Trsce Contaminants:

It is difficult to obtain a quantative estimate of the type and
amount of the varicus trace gases that will be present after pro-
longed exposure in a chamber, Several studies have been made
(Ref, 6 and 7), however, the results for any particular chamber
might be quite different, depending on the type cf paint and other
materials and equipment that might outgas,

Probably of greatest concern for meanned occupancy is the CO level
because of the physiological consequences. Again, except for some
data in the Sea Lab II reports (see Ref, 8) little information is
availeble,

Ammonia and methane might be of concern as well for animsl experi-
ments,

The control of CO will be through use of "hopcalite" in the dry side
of the purification leop, In addition there is evidence that many
of the trace contaminants will be removsd by molecular sieves (Ref, 9),
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Concentrated ges samples will be taken periodically to monitor the

ties, This will be done by passing some of the chamber gas
through a liquid nitrogen trap. In this wmy all the gases with a
freeging point above -3200F will be concentrated for analysis, If
the concontration of impurities becomes too high, it will bs necessary
to have a complete chamber purge, passing the gas through a cleanup
system, The proposed method of accomplishing the cleanup is by re-
turning the purified gas to the chamber in a large flexible bag vhich
will expand within the chamber., This will permit more efficient cleaning
by & one pass method rather than by dilution,
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II. Properties of Gases

Ao Assumptions

It ws assused that tho perfect gas laws apply in the analysis of

methods for removing CO2 and water, Although the gases deviate from

the ideal state at high pressures, this assumption wpe made to permit a more
complete analytic solution , The accuracy is considered sufficient

for this study,

Thermal conductivity, specific heat and viscosity were assumed to be
temperature dependent but invarient with pressure, While this would
not be sufficiently accurate for oxygen, water or carbon dioxide alone,
the assumption is considered justified because, at high pressures
heliun is the predominant gas, Helium has a very low critical tem-
perature and critical pressure and for the pressure ranges cnnsidered
this is a valid approximation (Ref, 1),

B, mn‘it! ]

The gas density for the helium-oxygen mixture was determined from the
perfect gas laws assuming the mixture was composed of one half at-
mosphere of oxygen with the belance helium, Helium density at 85°F
and one atmosphere is ,010 #/ocu, ft. and oxygen is ,081 $#/ou, ft.
The dengity of the aixture at 85°F would be

£ = .01 (P-.5) + ,08L (,5)

= ,01P + ,0355 #/cu, ft.

A curve of Density as a function of pressure is shown in Mg, II-1A,

Ce Specific Heat:

The specific heat was determined by the weight % of each gas multiplied
by the correspending specific heat for that gass R

P P
Pu 2 Pu e

00355 (.218) + 001 P ( )
= » .2
P u Cy 125

1

= —— (.00776 + .0125) BIU/#
Py

This is shown in Fig, IT-1B,

D. Visocsity end Thermal Conductivitys

The viscosity of oxygen is very close to that of helium over the temperature

N T (L
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range of interest in this analysis, The viscosity valus fer helium
s wed (Raference 2) in the calculations,

The value for thermal conductivity was calculated on the basis that
the Prandtl Masber (cp/k) is essemtially constant, Fer oxygen and
helium gages the Pranitl No, has a walue of approximately 0,7,

B, Diffusivitys

3 The diffusivity values for the gaies wre calculated using the
relationship prooosed by Wilke and Lee, For s more complete de-

3 scription and a tabular listing of constants for a number of

gases the reader is refsrred to Reference 3 and 4 or to Reference 1,
Section 14, pages 17 threugh 21,

%
<
Diffusivities for the gases of interest are given in Table II-1,
o Values for a background of air and of hydrogen are also given for
i reforence purposes:

5

. Table II-1

- Diffusivity of Péivs of Gases

3 Cme/Sec @ 1 ATA

, Gas Helium sgen Air

B®F 325F ~io0°F BBF XOF -1900F BR°F 32°F =1009F
. Carbon Dioxide ,600 ,50% ,185 .66 D3 ,178 167 .139 045
Water 0936 779 28 BB 739 M6 270 ,225 069
E- Oxygen o Pile e635 237 .78 6% 0223 225 ,186 0%3
: Methane 676 572 212 682 571,200

Diffusivity is inversely proportionsl to pressire,fhsrefore at meximum

3 chamber presgure the sbove valnes wouid be divided by 170, Tais is
evident in the sectien on adsorption (Chapter IV) where, at high

pressures, low diffusion of the gsmes reduces the adesrptien affioiemay
appreciatly, This will else partsin %o removel of COz by

chemical means(kydrexides s» peraxides), In view of this, special

oare should bs used in the design of life support syviees at high
pressurs to assuwre sdequate contaet time betaweon ihe gae uwd adser-
bent (or shemiesl),

F,_Vaper Preasurs of Q02 and Water:

pts
ks

‘-_&,;: u

ravad by
CIsEr A

o b o>
gl

Figure II-2 18 & curvs of {0z Vaner preasuvre vs, témpersteve, It is
necessary to oool the gas o bolew 15097 in asder to start freesing
4 out C0p fer the iow partial pressursg desired.

' Figure II-3 shows the vapor prsesurs of water va, tomperetwrs for the
- lew temperature region, 4 secend surve on Shis figure gives Lhe
A wolghkt of water in groine por oubis Soot wo. tamperature,
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TII, Heat kchargeru

A, General:

Helium, having the lowest boiling point of the elements, can be purified
by lowering the temperature and condensing the umwanted contaminents,
Most of the major imourities, water and COp, can be removed at tempera-
tures about 100°F warmer than the hormal boiling poim of oxygen (297°F)
and about 25.°F warmer than the normal boiling point of helium (~4520F),

A counter-curremt heat exchanger is one in which the gas is cooled to
the low temperature required in one passage and then returned to the
same heat exchanger in an adjacent passage to be warmed by the incoming
gas, These are uzed to make the process more efficiemt since it is
necossary to only provide the refrigeration for a driving force (AT)
across the heat exchanger and to make up for heat transfer frem the
warm ambjent gas to the cold surfaces of the heat exchanger, This is
shown schemetically in Fig, III-1.

If material is removed (e,g, water and CO» condensed out of the gas
stream) it is necessary to provide additional refrigeration to account
for this in the system heat balance, In this case, howsver, with high
presswre helium and a low percentage of sontaminents the heat capacity
of the gas requires the major part of the refrigerition and latent heat
of the contaminents can be neglectad as a first approximation,

B. Ceompact Heat Exchangers:

Heat transfer by comvection can be estimated by the use of a coefficient
(h)(Ref 1) in the simplified epressions

Q=hA At

Where:
Q = heat transfer rate, BfU/hr,

h = overall coefficient, BIU/Ft2HrOF

A = Surface area, Ft2

i\

At = Temperature difference, OF

The quantity of heat oan be ircreased by increasing the area, the film
coofficient or the temperature difference, There are many styles of
commorcial hoat exchangers which have very large surface area per unit
of velume (Ref, 2), However, the brased sluminum plate - f£in type is
probably the most efficient, These have alte nate layers of corrugated
aluminum passagss sepsrated by a flat sheet (Figure IJ(~2) similar to '
many layers of corrugated cardboard, The very high thermal conductivity
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of aluminum assures that the temperature on the thin fin is essentially
the same as the flat plute, Plate - fin heat exchangers of this type
typ.cally have surface areas of 350 to 500 sq. ft. per cubic foot of
heat exchanger.

The film coefficient for gas can be increased appreciably by using a
serrated fin (see Fig, III-2), The fin has notches, typically every
1/8 inch, along the flow, This interrupts the boundary layer and
creates turbulence around the surface enhancing the heat transfer, This
additional turbulence is accompanied by a higher pressure drep.

C, Heat Transfer and Pressure Dropi

Figure ITI-3-A shows the correlation between the heat transfer coefficient
and the mass flow rate for two typical compact heat exchangers (see Ref,

2 for other exchangers), A curve showing the correlation between mass
rate and friction factor is st »wn in Fig, III-3-B, Characteristic
goometry dironsions of these vwo heat exchangers are given below:

Table III-1
Zraged Aluminum Heat Exchangers

(Ref 3)
*in Free Flow Heat
¥in Height Thickness Spacing Area Transfer
Style Type Inches  Inches Fins/In, % Ft2/Ft3
A Serrated(1/8") .375 .006 15 88 410
B Straight «310 . 006 12.5 90 365

Aymbols used in Fig, TIT-3 and in the calrulations are:

L

G Mass velocily, 1b/hr,ft.?

¢ Spec ific heat, BTU/#

h

1t

Film coefficient, BIU/hr,ft2 OF
k = ™nermal conductivity,Bru/hr, f£t,°F

>

Entering density, 1b/cu,ft,

= Bxit density, 1b,/cu.ft,

L

Viscosity, 1b/ft.hr,

I
1

Gravity constant, 4,17 x 108 £t /hr?

2}
{i

>
el
0

Pressure drop, lb/ft.2
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"oat orchanger length, ft.
$ = Fanning friction factor, dimensionless
3 - Colburn factor, dimersionless

Fp = Prandt] number, dimensionless = C/[k
The film coefficient. can be determined by assuming a mass velocity and
evaluating the pas properties for the average temperature, This will
permit obtairing the Colburn factor (j) from curves on Fig, III-3-A.

The film coefficient is the only unknovm and can be calculated by:

W= oG ocfeee)?l3

the friction factor £ can be found from the curves in Figdre 111-3-B"
using the same mass velocity, The pressure drop per foot can be cal-

culated frem;

7 6 fL 304 1,507
+

YR . e e
ce LA+ A1 s

A

Heat exchanger longth and total pressure drop curves for two fin styles
are plotted on figures 1l1I-4 and T:1-5, Figure IIT-5 is for low tem-
perature (~190°F CO, removal) with a heat exchanger temperature difference
(botweenr passages) of 109F, Figure ![i-lt 's for a heat exchanger cooling
to 3007 (dehumidification) with a tomperature difference between passages
of 3°F, Tn both cases the pas is lelium +:1/2 ATA oxygen with a chambor |
temporature of 90°F, The curves are plotted for a velocity of 2 ft/sec,
Values for other gas velocities are tabulated in the computer print outs
apperded to this section,

|
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“e  "Brazed Aluminum leat Transfer "urface" Engineering Bulletln, The
Trane Co,, LaCrosse, llisconsin,




o6

Dbt et my T T
P

.g ! \ 1 I
Rerwicerariay
;
il :
)
| |
. | N TR A = 5
BELT S
~» o R jL' Tt /’1'"7
E: -———-——-—-L ﬁf/éf/r’ /%/ b
* | ""“ ’-
f* } e . e f B
' — = \S’,mmw F',y // L
A ‘ Lo RN
] | | TR
, ! ; ! :} |/
E i I ;/. 3
| | bk .
v“

Y
Pressore Deop ~ Incies 4O

Herr ELxewowecer lewersr ~ F7

o

b e e vt - vt wo o

i

. T

' ] 4 !
' ' i TR

P a-.~l . .

dnadd TR 0

\ SO Zo 2o 60 /00 EY- %)

FrRessyre - Armasayercs

Fre I -4

; Lou TEMPERATIRE ~ DEHOM DI IOITION




o eri s > . R T Rt PR G R LTI O Lo

N -

II1-7

Heater

%01~£%J0?+ } + O
B,0~0 A NN—ELENNNN—
Kerriscp

oo™ oo e s ANN—ANVI T €

¢, -
A Fr,0~16n. 4 F0%

S CHEMAT I

T P S
NP AN LR

NS
Mo

s
Fum

.....

v

i -
.
P
%

'y

3
B
-
4

]

%
b
A
by
R
b
*4%8
-3
A

cp LemsTH - F7

Deor — JNCHES

T U EALEL R S cerofase
v )

Lox HANSE
N o
N

5 — ol ed /
! Y T B
';,Z' d (.

FRESSUEE

/TER]
e
-\

T

—— i = e

AU EORINCH SOV WO S A & .:;z:::l il o
: /0 2O 0 60 1or 200

FRESSUME = S rsdts/ERES

fro TIL -5

Low TemrPlRaTire = c_’c% Frrs ovaL.




111-8

1 1=APFRID]L
leat Exchanger Calculatiors

‘he followirs pages contain computer printouts for film coefficient h,
lergth 1, frictior “actor f and pressure drop for the two plate and
fin heat exchangers described in Table [.'~1 and Figure i17-3, These
are arranpge? as fcllows (gas is helium + 1/2 ATA Oxygen)s

ippeniin ."-a - Serrated Fin -cooling from 90°F to -190°F,
10°F temperature difference

Appendix  Ti-E ~ Straight Fin-cooling from 90CF to ~-190°F,
10°F temperature difference

dpperdix ["i-. - Jerrated Fin - cooling from 90°F to 30°F,
20F temperature difference

spoerdit - i~ - Otraight Fin - cooling from 90°% to 30°F,
3°F temperature difference

To adjust the calculations for other temperature differences multiply
the length and the pressure drop (for the desired velocity) by the ratio
of  t/10 for .ppendices A % B and by t/3 for Apperdices C & D.
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Ay Gonordn
The use of an adsorbent to remove CO2 and/or water is attrective in

that it permits a self-contained systéa that can be regenerated from
outside of the vessel if required,

Adsorbents have been used to remove CO2 from the atmosphers in several
applications, Great Britain and France both have: programs to develop {
rolecular ‘sieve systens for sutmarines, In addition several systems I
have been designed for space use, At least one of thess uses an

adiabatic desorption cycle (see Ref, 1 and 2), In a space applica=
tion, the oconvenience of a readily available high vacuum simplifies 3.
the equipment needed for reactivation,

B, Moisture Remowvals

Many adsorbents are used to dry gises, Among the more popular are !

silica gel, activated alumina and molecular sisve, Each of these

has properties which make it desirable for oertain purposes, Silica

91 can be reactivated at a relatively low temperature, Aactivated

alumina has somewhat greater capacity but requires a higher reactivation
‘ temperature, - Type 13X Moleocular Sieve will produce an extremely

dry gas. This material (Type 13X MS) will adsorb about 256 witer

by weight and mintain a very low partial pressure of water (See

Fig, IV=]1 and Ref, 3), The dimensionless plot shown in Fig, YV -2

indicates the relative)y high adsorption potential for water at 779F,

The 4OOOF curve is inclwnded for the reactivation oycle,

Figure IV-3 is a plot of the isotherm ocurves for silica gel as
taken from Ref, Iy, These are plotted in dimensionless form in
g, TV<4, Comparing the shape of the curwes in Mg, IV-3 and
Fig. IV=1 it is obvious”that molecular sieve Will have.a higher
ospacity for water, at low partial pressures, than will silica gel,
Conversely, it is much easisr to remove the wter from silioa gel.

Ce €02 Removals

Either Type 5A Molecular Sieve or Type 4A could be used for the re-
moval of COz. Type 5A has a 8lightly greater capacity, The isotherms
of 5A Sieve ave shown in Fig, 1IV-5, A dimensionless plot of the €02
isotherms for 5A Molecular ieve is shown in Figure .1IV-6, There is
a signifioant inorease in the amount of CO2 that can be adsorbed at 32°F
_over that at 770F as shown in IV-5, In addition the adsorption
offioienty is enhanced (smaller R in : IV=-6) resulting in a sharper
“break-through” curve,

Comparison of Figs, IV-2 and IV-6 shows that molecular sisves have
a much stronger adsorption potential for water than for (02, (S5A

P — KiSAWENG




Molscular Sieve water isctherms are similar to 13X,) For this
reason it is necesssry to remove esgsentially all of the water prior
to adsorbing COp. Otherwise the water will displace tl.. CO2,

Referring to Fig., IV-4, water vapor can be removed by reducing the gas
temperature or by an adsorbent or by a combination of low temperature
and adsorption,

D. Reactivations

There are two possible cycles to consider in desigring an adsorption
bed of this type, An adiabatic desorption by lowering the pressure

is practical if a source of low pressu.s is readily available, In

this case the quantity of adsorbed material would follow the isotherm
to the new equilibrium pressure, It is necessary to have a relatively
high vacuum to remove much weter if the adsorbsnt is at ambient tem-
perature, In the case of CO2, an adiabatic desorption is possible by
either lowering the adsorbent pressure or by purging with a gas having
a low partial pressure of COj.

The other cycle for desorption is to raise the temperature, This is
the more common approach, In the case of water adsorbed on molscular
sieve it is necessary to increase the temperature to over 400°F before
reactivation is very effeoctive, Carbon dioxide can be remowed at 212°F
with reasonable efficiency,

E, Dimensionless Isothorm Plots:

The dimengionless plots of adsorption isotherms (Fig, IV-2, 4, 6) are
useful in determining the adsorption efficiency., The curves in Fig,

IV-2 were obtained from the deta in IV-1l by dividing the partial pressure
of water at a given adsorbent loading by the partial pressure when no

more moisture will be adsorbed or g’o' The ordinate for the curve is the

concentration ratio ..g_. or weight percent (at the corresponding water

pertial pressurv) divided by the maximum weight psrcent, when no more
water will be adsorbed,

The shape of the isotherm curve as plotted above will given an indica~
ticn of the ease with which the adsorbent can remsve water (or C05),
The shape of the curve determines the "R" factor (see Ref, 5 for a
more detailed review of the mechaniem of adsorption), For ideal
adsorption, the isotherm would be a horigontal line on Fig, IV~l and
IV-2, In other words, the adsorbent would have maximum capacity
rogardleas of the conosntration of water vapor in the gas, This would
give an "R factor” of gerc,

A curve with an "R factor” greater than 1 will result in unfavorable
adsorption, It is desirable to have a smsll K during the
adsorption port of the oyole and large R during the desorption phasze.
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F. Adserption "Efficlency”:

The effectivencss of an adsorbent depends on the ease with which
the material being adsorbed can reach the adsorbent ( a function
of the diffusivity and void space of the bed), the cortact time (a
function of velocity and bed length) and the equilibrium curve
characteristic,

The dimenuionicss parameter which relctesthese variables is called
the Peclet Rumbers

Po = -Hp Vs
D, F
whero d.p = Equivalent diameter of the adsorbent particle, ft.
Vg = Superfipial velocity of bed (with no adsorbent), ft/sec
D, = Diffusivity of the gases £t2/sec
F = Fractional vold space cf adsorbent bed

When the Peclet number is greater than 20, the diffusion of the gas
is controlling and the number of recation units can be determined by:

2.5 b

N=——

d o

Wheret: N = Number of reaction units per ft, of bed
(Tt is desirable to have a large number of reaction units
sinece this will result in a much sharper “break through"
curve, see Ref, 5)

2

= Isotherm adsorptis factor = i—-:-}-{-

At a given temperature, the diffusivity varies inversely as the pressure,
In the case of an adsorbent system for diving it is necesazary to increase
the contact time (either by reducing the velocity or increasing the bed
length) to compensate for this, Another method of improving the adsorption
officlency is to decrease the particle sige of the adsorbent at the penalty
of a higher pressure drop,

Figures IV-7, IV-8 and IV~9 show the number of reaction units per foot of
adsorbent bed for superficial velocities of ,5, 1 end 3 ft, per second
and as a function of pressure (depth). Each graph shows values for water
and for (02 for four adsorbents, 1/8 and 1/16 molecular sieve and 4«8 ard
8-12 mesh granular materisl., The latter materials would be silica gel

or activated alumina for water and soda lime or baraylyme for removing
CO» (in this case it is a chemical reaction rather than adsorption

but diffueion would be controlling), Values of pressure drop for each
adsorbent as a function of pressure are also shown,
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Ei - ! ‘ Ve Comparlson of Low remperature, Adsorption and : . '
. Chemical Removal Systems :

A. General: . C ' : \

: 'The result® given in this section of the report pertain to evaluation

, of a three man module ,using 18 cfm gas flow, Information given in the

' . physiological portion of this report (Section I) indicates that this
'provides an expected level of CO, pressure ranging between 1,2 milli-
meters of mercury and:l4 millimeters of mercury, The following design
parameters were used in the evaluation of ‘the environmental control ;
systems

550 S g T e 8

s ‘..41-4

NI XA N Rt e

Préssure - 10 atmospheres to 170 atmosppereh - !

Za AP

Chamber volume - Sphere 180 cu, ft. o
\ = Cylindrical section 540 cu. £t

R o R L Py S 2 LIS Wy ST

Lo

05 PN AR 2 E,

, Dry bulb temperature ~ 85°F

S e O
R

Relative!humidity - 504 . 4

T, I,
s
Raaceee- |

Gas - Helium + 1/2 ATA Op ~ '

. Although the results given in this section are specific to the High
X ) Pregsure Research: Facility at the State University of New York at .
3 Buffalo,.data given in the balance of the report are presented in a
. general way so that they can be extrapolated for the design of other '
£ 0 : ,systoems with different flow rates and chamber sizes,

I

i
' ‘ ' B.. Cooling to Remove CO2s '

i The use of a compact counterflow heat éxchanger to cool the gas and
, remove water and COE has the advantage that no high pressure equipment
e

is required if the heat exchanger is kept within the confines of the '
chamber environment, ' -

Functionally this is the simplast of all systems, ., However, it requires’
a source of very low temperature refrigeration since the carbon dioxide

’ will not start to condense until tho temperature reaches. ~190°F, A 10°
temperature drop across the refrigeration portlon of the equipment is

| necessary to condense most of the COz and to provide an adequate “driving
forece" for the heat exchanges,

The results for s three man module are shown in Fig; V-1, Design data
for compact heat exchangers is given in Section III, '

‘Where the refrigeratlon is available this could be a very promising
gystem for pressures up to 30 atmospheres (about 1,000 ft. of depth),
However, tho refrigeration requirement becomes prohibitive at very

high pressures, It 1s necegsary to add an amount of heat to the chamber
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V-3

equivalent to the refrigeration supplied in order to awvoid lowering
the overall chamber temperature (the heat of condensation of H,0 and
COz contributed very little in this case), This heat is in addition
to that required dus to heat loss of the walls of the chamber or
hardtat,

A system similar to this has been proposed for space applications,
and szone test results are available indicating that it is technically
feasible (see Ref, 1), The results shows that CO2 can be condensed
and revaporized at 1 atmosphere, Since the diffusivity of the gas is
inversely proportional to pressure, additional test work needs to be
done at high pressures to verify the efficany of removing COp under
these conditions,

Coe_ Cooling for Humidity Controls

Cooling the gas to remove water appears to be a practical method,
. Standard refrigeration equipment (o.g. Freon) can be used to remove
R heat to maintain the temperature difference. Countercurrent heat
exchangers are alse indicated for this cooling to reduce the total
refrigeration requirements and size of the cooling coils.

4

F The resulting pressure drop and refrigeration requirements for a

g three man 18 cfm module cooling the gas te 329F is shown in Fig, V-2,
This is based on a driving force across the heat exchanger nf 3°F,

It is possible to reduce the lengthof the heat exchanger by increasing
the temperature difference.at some penalty in refrigeration power cost
and increased replacement of heat,

D, Humidity Control by Adsorptions

Water can be removed from the air by use of silica gel, activated alumina,
or molecular sieve, Silica gel has a very high capacity for water and
can be reactivated at a relatively low temperature, However, it will

not produce the very low dewpoint that is attainable through the use

of fresh melecular sieve,

When using an adsorbent, to control humidity, the air will become too
dry if all of the gas from an 18 cfm module is passed through the
adsorbent, (See Section I, Fig. I~2) 1In this case it will be necessary
to rehumidify the air either by returning some of the moisture laden

gas to the vessel when the adsorbent is reactivated or by separate
humidification of the gas downstream of the adsorber,

An alternative to this would be t¢ circulate only a part of the gas
through the drier section of the environment control system,

Pressure drop and adsorbent capacities for water of various materials
are given in Section IV of this report,

Es CO2 Removal by Adsorptioni

— -

The use of an adsorbent to romove carbon dioxide is attractive in that
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the system can be regenerated, eliminating the need to replenish the
material as is necessary in a chemical removal system, (Baralyme or
soda lime) The material most suitable for adsorption of CO2 appears
to be 5A Molecular Sieve, (Linde Div,,Union Carbide Corp, Type 5A
Molecular Sieve),

In order to affectively remove (O, by adsorption it is necessary to

have extremely dry gas since molecular sieve will preferentially

adsorb moisture, Moisture in a gas will displace any CO, that has been
adsorbed,Thi:refore the gas must remain dry until the C0> is desorbed,

A system using molecular sieve is being used in submarines by the French
and by Great Britain, The main disadvantage of this type of system ic
that it usually requires a very high reactivation temperature in order
to effectively remove all of the water (500 to 600°F),

An interesting cycle using adiabatic desorption has been proposed for a
space application (see Ref, 2 ard 3), Essentially this is a method of
using the adsorbent inefficiently with regard to the pounds of material
adsorbed per pound of adsorbent. A"pressure swing” cycle is used, re-
ducing the adsorbent bed pressure to desorb CO2 and recycling very
fraquently, In this case a 15 minute cycle adsorb-desorb oyole was used.
The readxly avallable vacuum of space simplified the equipment roquired.

The test results showm in Ref, 2 are .nteresting in that this gsystem
effoctively moved moisture and maintained a system outlet partial
pressure of (02 less than 1-1/2 millimeters for move than two months
test time all without the need for a high temperature reactivation. The
data would seem to in.icate a noderate temperature-pressure swing cycle
might be used very effectively to enhance the adsorption cepability of
such a systenm,

In addition, some tests of this unit made at the Marshall Spacs Center,
Huntsville, have indicated the removal of Ammonia, Methyl Chloride and
othoer trace contaminants, Carbon monoxide and Hydrogen were also
tested but not adsorbed, as might be expected due to the Jow oriticsl
temperatures of these gases,

Data on adsorption capacity and pressure drop for 5A Molecular Sieve
is given in Section IV of this report, '

F, CO2 Removal by Chemucal Reaction:

The most common method of removing COp is by recirculating the gas
through a chemical that will react with the carbon dioxide (usualiy
baralyme or soda lime),

These materials are effective and will be used as a "back-up” purifica-
tion system for the High Pressure Resesrch Facility, In the case of
chemical reaction, weter will be liberated,Therefore any humidity removal
syster sbould be placed downstream of the ri.ction, A cu, £t, of water
vapor is produced for every cubic foot of carbon dioxide gas removed
from the air for baralyme, soda lime and lithium hydroxids,

O ':ni,d-v»w!t D R I L T T
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Although the data varies somewhat it appears thet the usual efficisncy

of baralyme or soda lime will result in a capacity of 20 lbs, of CO2

per hundred pounds of chemical (see Ref, 4 and 5), Therefore, for a three
man mission generating 12 1lbs, of CO, per day, 60 1bs, per day would be
required (about 1 cu, ft.). Data on pressure drop and transfer rate for
solid gramular chemicals is given in Section IV,

G. System Elowers

The 18 cfm system does not require very stringent performance from the
air compressor, Several commercially available blowers would satisfy
the capacity and presasure head requirements, However, these have the
disadvantage of very high noise level and relstively large ulk, In
addition, since blowers are usually designed for alr at one atmosphere,
a Jarger motor will be required for the more dense gas at high pressure.

Thers are several small blowers used for pipe organs designed to be very
quiet. This is accomplished by careful design of the impeller and care
in balancing the blower-motor unit, In addition sound adsorbing material
is placed at critical places in the stream flow, While these would be
ascceptable from a noiss and performance standpoint, the motor and
materials of construction are not considersd acceptable in the confined
high pressure environment of a diving chamber,

It is proposed that a positive displacement, low pressure pump would be
most suitable to this application due to the low flow that is required,
This could be in the form of a multiple cylinder compressor or a

bellows type gystem, Since this operates at low speed, the noise level
should be very acceptable, A second advantage of this approach is that it
could be manually operahle for emergency use in.case the diving system
would f&ilo

A magnetically coupled drive will be used in the Uniwversity High Pressure
Research Facility. This will have the motor and all wiring located outside
of the chamber and coupled to the blower (or crank) directly or by means
of a pulley system within the pressure vessel,

References:

1. "An Experimental Investigation and System Design for Humidity and
Carbon Dioxide Lovel Control Using Thermsl Radiation", John S,
Maulbetsch, AMRL-TR-68~174, Available from Clearinghouse, CFSTI,
5285 Port Royal Rd., Springfield, VA 22151,

2, Joseph B, Gillerman "A Regenerative Carbon Dioxide Removal System
for the AAP Cluster”, Society of Automotive Engineers Paper 690626
presented at Natlonal Aeronautic and Space Engineering & Manufactur-
ing Meeting, Los Angeles, California Oct, 6-10, 1969,

R BT e g L N S i e

e o T K e




i

2
2
R

>
E

3.

Se

"Skylab « Part 3 - Life Support Systems," G, D, Hopaon, J. We
Littles and W, C, Patterson, Mechanisal Engineering Vol, 9, No. 5
May 1972 pp 3540,

“Soda Lime Handbook", Malliuckrodt Chemical Works, St. Louis, Missousi,

“A Study of Carbon Dioxide Gas Adsorption" Nationsl Cylinder Gas,
840 North Michigan Ave,, Chicago, Illinois 60611,




VIl

VI, Recommanded System and Program
SUNYAB - High Pressure Research Facility

A, Main System:

The main flow loop for removal of CO2 and control of humidity is a
combinstion system, A countercurrent heat exchanger is used to remove,
some of the water and to lower the temperature of the gas flowing to
the adsorbent bed. Silica gel is used to remove essentially all of
the remaining wator. The capacity of the silica gel is enhanced at the
33°F gas temperature by a factor of 3 to 5 times over the equivalent
capacity at 85%F, F-1llowing the silica gel and in the same adsorbent
bed is a large section containing Type 5A Molecular Sieve to remove '
carbon dioxide, Refrigeration is supplied after the adsorbent bed
using a conventioral freon refrigeration unit. Locating the cooler |
downstream of the adsorber permits cooling the gas below the freesing
point without the difficulty of having to defrost the cooler, The ocold
raa 18 returned to the countercurrent heat exchanger where it is warmed
almost to chamber temperature, passed through a small bed of Hopeolitb
and charcoal ,and returned to the chamber, Heat will be added to the
charber (in the heater coil) to make up for the heat emoved by the
cooling coil, The environment control gystem is shown schematically
in Fig. Vi-1,

The heat exchanger and cooling sections are located within the high
pressure vessel, thus permitting the use of standard aluminum plate and
£in heat exchangers for the countercurrent exchanger and light wall
vessel for the cooler, Originally, it was planned to locate the ad-
sorbent beds within the chamber, However, it was found that there would
be no saving in weight since these adsorbent beds.will be vacuum '
pumped and would have to be designed for high external pressure if
located inside, The additional pressure drop to flow through the
piping in the vessel wsll is not prohibitive becauge of the low flous
involved and small piping and valves (1-1/4 PS) can be used, Other
advantages in locating the units on the outside of the chamber are
saving of valuable test space, ease of reacting and.the impreverent of
insulation around the adsorbent due to the lowor thermal condustivity
of air compared to helium,

Reactivation of the adsorbent bed is unconwentional, Initially the
adsorbent bad gas will be wented into a storage receiver., Since most
of the water and CO2 will be held on the adsorbent the residuval gas will
be essentially all helium and oxygen and can be racemproszed and re-
turned to the chamber or to storage bankas, The adsorbent ixd will be
repressurized with helium or a helium~oxygen mixture before returning
it to the control lcop, This will avoid a changs in chamber pressure
when switching adsorbers,

When the preassure has been reduced to atmospheric, the bed will be
heated and v aum pumped to remove the adsorbed water and COp, With

'
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vacuum pumping, only a modest tempersture (100 to 150°F) will be

to recondition the adsorbents, A small gas purge of dry
nitrogen will be introduced to maintain the adsorbent bed prossure
above the transition pressure of the silica gel (about 2 sm Hg),
This will assure a flow of gas and contaminents out of the bed
through the silica gel end and eliminate bsck f1aw of moisture to the
Molecular Sieve, A gas ballast vacuum pump or cold trap will be re-
quired to prevent contamination of the vacuum pump with the large
amount of water vapor being pumped from the bed, The reactivetion

cycle is shown dlsgramatically in Fig, IV-2,

The control loop will be siged for a three man module, This will
use 18 cfm during the day time, rosulting in an expscted COp level
between 2,4 and 4 mm of Hg, At night the system will xun at one-
haif flow, 9 cfm, The lower flow will reduce the refrigeration
raquirenent and have a lower noise level, Nine cfm will result in a
CO, level of just under 2 mm Hg due to the lower :setabolic rate when

the occupants are sleeping (ses Fig, I-l),

The hasic calculstions for the main system heat exchanger and ad-
sorbor design aro appended to this seétion, .

B, Pass Through Lock Module - High Pressure Research Chamber:

A back up system to remove COp in the event of the primary system
failure is shown in Fig, VI~3, This sgain is a "half day" charge
using baralyme to remove carbon dioxide and silica gel to remove
part of the water. The back up system canister will be inserted in
‘the pass thrbugh lock, In the case of manned chamber occupancy

the connection to the module can be made manually after pressurising
and cpening the lock inner door, For animal experimentation, it will
0o necessary to perform these operations romotely from anteide of

the chamber, Calculations on adsorbent capacity are appended to
this section,

An alternate system using a blower in place of the silica gel section
will be designed for use in the event of failure of the primary blower
or magnetic drive in the chambez,

C, Rutvre Program:

Small scale tests are needed to verify the "breakthrough” characterise
tice of the silica gel-molocular sieve combination, This will include
tests at 10, 50 and 100 atmosphorcs pressure using 1/2 atmosphere
pressure 02, 4 mm Hg CO2, 5 mm Hg Hy0 and helium,

This gas will be cocled to 320F and passed through a sample cylinder
containing the appropriate ratio of silica gel and molecular sieve
sections, Tho gas wlll be analyved at the end of the silica gel and
at the outlet for pressure of CO2 and Hy0, The samole bottle will
then be heated to 100 ~ 120°F and desorbed, followsd by cocling and
another tesi., This will be continued until the adsorbent capacity
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|
, shows signs of deterioration,
P l‘, Figure VI-4 ghows the test arrangement, The estimated cost for this
i work is:
t Apparatus Design $ 400,00
g Puscheso 600, 00
‘ Gases & Liquid Nitrogen 200,00
Technician 4 weeks 1600, 00
Analysis of rosults 600,00
4 Total $3400, 00
Detail design of the heat exchangers, pressure vessels, blower and re-
o frigeration system along with the interconnecting piping must be
A completed prior to procurement and installation, The estimated cost
of the equipment and lesign is (letters refer to items on Figure VI-1):
f’ A, Blower or Pump $ 500,00
B, Plate and fin heat exchanger  2,200,00
C. Adsorbent bed (2 required @ 1200)2,400,00
3
3 D, Refrigeration system 800,00
E. Cooler Heat Wxchanger 600,00
F. Purifier 300,00
> Vacuum Pump 600,00
Piping, fittings and valves ___ 600,00
Total Parts % 8,000, 00
B Design _.1,400,00
$ 9,400,00
Assembly & Installation  1,600,00
b (Technician 4 veoks)
< Total $11,000,00
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Apparatus Design $ 400,00

4 Purchage 600, 00 .

Gases & Liquid Nitrogen 200, 00
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’ Analysis of results 600, CO '

Total $3400, 00
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