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WELCOMING REMARKS

DR. GENE G. MANNELLA
Dean of the School of Engineering and Architecture
The Catholic University of America

It is a gratifying task for me to extend to you on behalf of the Catholic
University of America an official welcome to our campus, It is a pleasure
for us to host the 1972 Symposium on the Applications of Walsh Functions,
and we join witl, our co-sponsors, the Naval Research Laboratory and the
Eiectromagnetic Compatibility Group of the 1EEE, in wishing you a suc-
cessful meeting.

The program for this year continues the strong international flavor that
has come to be a hallmark of this symposium. A total of 64 papers from
11 countries will be presented in the next three days, giving this meeting
the broadest representation it has had to date. To our colleagues who have
journeyed here from other countries we extend a special welcome and the
hope that your visit will be most productive.

Bascd on the pre-registration and the pattern of symposium attendance
established in tiie past several years, we anticipate a total exceeding 200
persons will attend this symposium. In keeping with the practice of the
previous Waish Functions symposia, the proceedings will again be published
and distributed at a ncminal charge through the National Technical Infor-
mation Service, although all registrants will receive a free copy as soon as
they are available. This will enable the broadest distribution of the material
preseuted here, so that our colleagues throughout the profession can avail
themselves of advances in the applications of Walsh Functions as reported
here. s

It is clear from the statement of the Symposium objectives published
in this vear’s program that.especial interest will again be placed on the ap-
plication of Walsh and other nonsinusoidal functions. This is certainly in
keeping with the mood of today’s society which is oriented toward the use
of the gr<at store of knowledge built up in the past several decades in
finding the solution to many problems which cause us concern. This is not
in any way to diminish the need for, or importance of, increasing the body
of knowledge in a given ficld, but only to illustrate that our first duty as
engineess and scientists lies in explicitly applying our capability to the ulti-
mate benefit of society.

There is something particularly gratifying in successfully applying the
abstract to specific problems. Perhaps in the next three days we will see
several exciting examples of this. To that end I wish you welin your
symposium and hope that it will be as productive as those that have preceded
it.
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THFE._WONDERFUJ. WORLD OF WALSH FUNCTIONS *

Robert B, Lackey

Flectrical Engineering Department

The Ohio State University
Columbug, Ohio 43210

As I pondered the submission of an abstract
for this paper, the first title that occured to
me was "Everything you always wanted to know....
etc." Aside from the fact that everyone is using
that title these days, I am a person whe likes to
come to the point. I chose instead, "The Wonder-
ful World of Walsh Functions." I will row pro-
ceed to arswer my own question {n as painless a
way as I can.

The original paper, by J.L. Walsh, perhaps
surprisingly, is not recent; it appeared in
print in 1923, As is often the case, with a few
notable exceptiuns, not much wag done with these
functions, or to them, or about them until 1968.
It was then that Dr. H.F., Harmuth's article
appeared in the Spectrum of the IFFE, and in-
spired a tremendous amount of work in the area.
It was alse at this time that mv own persoral
intimacy with Walsh functions began. The second
thing I did after reading the article was to
order a copy of Dr. Harmuth's book.[1] I rea-
soned that if the article were good, the book
should be even better, ard I wes right., (Not
always true when they make a movie from a book.)
I have been using the book as a text for a course
in signal processing with a digital computer.

It was during the time that I was waiting for
the book to arrive that I began the self-educa-
tion process whirh I have found ever 30 valuable
to an ultimate understanding. It is of course
my hope that this paper will similarly motivate
at least one person to explore the area of Walsh
functions more deeply.

Before I tell you now to generate the happy
family of Walsh functions, I want to tell you
sone of their characterfstics. Generally speak-
ing, Walsh functions are defined 2n the unit
interval, ¢ to 1, and in this interval, they
take on the values ¢ 1. They flip back and forth
between plus and minus one in a fairly regular
and highly predictable way. The independent
variable on this interval is 68, a normalized
kind of time. 8 = t/T where t is o-dinarv time
and T might be called a sampling interval. Walsh
functions have some characterisitics which make
them interesting to mathematicians as well as to
engineers. I will just mention these {n passing.
Walsh functions are orthogonal, rormalized, and
complete. Orthogonal means that if you multiply

*This work was supported i{n part by Grant GN-
534.1 from the Office of Scionce Information Ser-
vice, Vational Science Foundation to the Computar
and Information Science Research Center, Ohio
State Urniversitv, Columbus, Ohio.

any two functions together and integrate over
the interval (add up the values) the &nswer is
zero, unless the two functions are the sume
function. Normalized means that 1if the two
functions are one and the same, the in*egral of
their product is unity., Complete is a nice
property, not worth discussing further here.

As luck would have it, the best way to de-
fine the Walsh Zunctions is in terms of another
set of funccions called Rademacher functionms.
(This is my own personal favorite definition;
others are equally valid)., I will define
Rademacher functions first. The first step in
defining these functions is to take the unit
interval and imagine it divided up into 27 sub-
intervals. Did you do it? Okay. Next, a plus
sign in a subdivision means +1 and a minus sign
means -1. Now I shall list the first few Rade-
macher functinns using this notation with 16
sub-intervals. Let's see 1f a pattern emerges.
(A sketeh of each function is shown Leside the
function to give a picture along with the +,~
notation)

Ro A R
f1 HAAAAAA Fhe—
wo s e PR
Ry st FLTUUC
Ry ototmtt—- [

Note the following things: the subscript on R 1is
an integer, and the number of complete square-
wave cyclgs the function makes in the interval
is 2(1 -1 , vheti the subscript is 1. The excep-
tion is Ry, which 1s +1 over the whole interval.
Easy? You bet.

Now the next step is to define for any who
may not know it, the Gray code. If I count in
binary from O to 7, I can make a table like the
one shown below,

Decimal number Binary Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 106 110
S 101 111
6 110 101
7 111 100
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The Gray code has two intercsting properties. wal (5,8) H e - sal (3,0)
(1) As you progress from 0 to 7, only one digit
at a time changes. (2) It is helpful in definfng wal (6,6) bt —H cal (3,8)
Walsh functions. It is particularly easy to con-
vert a number from bipary to Gray code. If the wal (7,6) B e = R sal (4,0)
binary numbezr is b, bp-1 d4.p....by then the Gray
code is gy gn-) Bp-2¢+.-8; and the g's are found wal (8,8) D S Rt i = S cal (4,0)
from the b's by the following rules:
wal (9,8) B s T  JRte sal (5,8)
8n = bp
wal (10,€) +o—ptb b~ cal (5,0)
Bn-1 = by ® by
wal (11,8) B e o T e A sal (6,8)
8n-2 - bn-l a bn-z
wal (12,8) o et e 3 cal (6,0)
. wal (13,8) +t ottt sal (7,0}
g1 = ba®b; wal (14,0) +tb oot cal (7,0)
The symbol @ means addition modulo 2. wal (15,8) Frt ettt ot~ sal (8,9)
Now, at last, we're ready to generate some
Walsh functions. A Walsh function is character- 0 1/2 1 8 axis
ized by two pcrameters. j 1is the secuency (more

about that later) and 6 is the independent vari-

Now let's see what some other interesting prop-
E. able. To find wal (j,8)

erties are. Each «ime one of the functions

changes from + to ~ or - to +, it is an occurence
1. VWrite j in binary called a zero-crossing, a most descriptive nawe.

[ 2. Convert j to Gray code Also, there is a zero-crossing at the origin
2 3. Multiply together all Rademachor func~ (6 = 0) for each of those fuuctions which has odd
3 tions whose subsccipts correspond to the symmetry about 6 = 1/2. (they also end with & ~).

position of the l-bits in the Gray code

This is true for every other one in the table.
number. They line up as shown below:

If we count the number of zero crossings in each
of the previcus functions, we find the following
Code word ... g4 83 82 81 numbers: 0,2,2,4,4,6,6, etc. with the last one
having 16. Remember the word I used a bit ear-
lier -sequency? Well, sequency is defined as

one half the average number uf{ zero-crossings in
I will do an example, then show you a list the interval. With this in mind, we can list
of Walsh functions. To find wal (13,6) the sequencies of the first sixteen Walsh func-
tions. They are, from top to bottom, 0,1,1,2,2,
1. 13 = 1101, in binary 3,3,4,4,5,5,6,6,7,7,8. 1In cther words, there
Gray code = 1011 are two functions, one with odd symmetry and one
3. R4 . Ry« Ry even, at each sequency from 0 to 8, except for
the first and last. In order to point out the
2 R4 B e e Bt e g similaritv hetween these functions aud the also
-4 orthonormal set of sines and cosines, the appro-
priate Walsh functions have been given the names
"cal" and "sal" as follows:

ik
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wal (2n-1, 0) = sal(n,8)

.
)

wal (2n,8) = cal(n,0)
3 wal (13,0) sttt —ttti

2

except for 0 sequency where all we have is wal
So there you have 1t. A relatively simple (0,8). The index n for sal and cal 1is their se-
way to define Walsh functions. The table bhelow quency. There are the names listed on the right
shows the first sixteen of them., I will explain in the previous table.
the names on the right later.

S

s

= Now that we can define Walsh functions at

E wal (0,0) i e wal (0,8) will, and put the appropriate label (cal or sal)
E 1 on them, as weli as find their sequency, we are
‘5 val (1,6) A aass sy SR sal (1,0) ready to start working with them., This sectior
E might be called "What are they good for?"

z val (2,6) b an it cal (1,8)

E Using Walsh functions to represent signals
4. wval (3,0) e e sal (2,9) is porsibly the most important applicatiou today.
5 This application is exactly analogous to the use
e wal (4,0) e ans e 2 cal (2,0) cf sines and cosines to represent a function in
3
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2
terms of what we 2]l learned as Fourier Series. Tet the x{'s take on the following values: 0,0, b
The difference now is that the function is repre- 1,1,0,0,1,1,. This is a square wave with se~- ;
sented as a series of Walsh functions in the quency 2 and some d.c. A series of additions g
"sequency domain.” I would like to digress for and subtractions gives the following results: 3
Just a moment. All the masses of literature that ;
hzve been released to the scientific community a(0) = 4 as(2) = 0 3
since the famous Cooley-Tukey algoritim appearved 3
ii; print have referred to the digital Fourier ag(l) = 0 a,(3) = 0 3
Transform. They call it a discrete version of a %
continuous process. I prefer to think of it as ac(l) = 0 2,(3) =0 >
what it really is: a Fourier Series. If you i
think this way, then the Fourier Transform be- ag(2) = -4 agf4) = 0 R
comes a special case, using an infinitely fast uf
sampler. Now let's get back to the subject and a(0) represents the d.c., while ag(2) is due to kS
talk of a Walsh series for a function. A good the component at sequency 2. Now let's try an 3
way to represent the formulstion of a Walsh interesting thing. Shift the phase of the irput 4
series is by a matrix equation: signal, by letting the x's be (in order) 0110 3
0110, Now, computation of the Walsh coeffi- g
W] . [X] = (A} cients gives I
15
vhere (W] is the matrix of Walsh functions, {X] a{0) = &4 a.(2) = -4 %
is & column vector of sampled values of the
original function, and (A} a column vector of a,(1) = 0 ag(3) = 0O
WHalsh coefficients.
ac{l) = 0 a.(3)=0

The Walsn matrix, because cf the nature of

the functions is simply an array of plus and ag(2) =0 ag(4) = 0
minus ones. With the functions as defined here,
& the preceding table is the Walsh matrix for This example {llustrates thar the Walsh trans-
% N = 16, Now you know why the so-called "Walsh forn is sensitive to the phase of the input
= Transforn" is so fast. All you do to generate signal as well 1s to the sequency. This is not
the Walsh coefficients is add and subtract, and true for the exponential form of Fourier Series,
if you do it according to the Cooley-Tukey algo- although it is for the sfne-cosine form, as
rithm, it's really fast. Another nice thing might be expected.
about this representation of Walish functicas is
that the original signal can be regenerated oy If we sum the squares of the terms at the
multfplying the columm vector of Walsh coeffi- various sequencies, we have the equivalent of a
cients by the same Walsh matrix, and dividing by pover spectrum, called appropriately enough, the
N. 1In other words, the Walsh Matrix is its own Walth spectrum, Note that the spectrs for the
inverse, within a censtant multiplier N, In previcus two examples are the same, as they
terms of a matrix equation, should he; d.c. term and a term at sequency 2.
{x] = % (W) -(A) = % c W) ¢ W] - (X) Let mc end this series of ideas with a sim-
) ple statement. You can mull it over on your own
and (W] - [W) - % = [1} time. A time-1limited square wave function (such
as one obtains at the output of a sample-and-
vhere (I] is an NxN identity matrix. let's do a hold device) can be exactly represented by a
simple example, Jor N = 8, Let the sampie values finite nmbar of Wolsh functions. You can't say
be x, through x7, and the Walsh series coeffi- that about sines and cosines!
cients be given by a. (n) or ag(n). (Except for
the coefficient of wal(0,0) which is a (0).) Another interesting set of orthogonal, com-
Here the subscript ¢ or s refers to cal or sal. plete functions, which muy be normslized 4f you
r - — - - - desire, is the set of Haar Functions. I will
a(0) - xq now list enough Haar Functicns to allow you to
generate as many more as you like. As with the
a,(1) R e m x1 Walsh Functions, the interval !s divided into
1/20 spaces. For this list, use sixteen divi-
ac(1) L e X sions. Capitsal H with supersciipts and sub-
scripts will denote the Haar Functions. The
33(2) -t X4 plus sign again means +1, the minus s{gn mesns
- -1, and now the nuxber O mesns exactly that ~
2, (2) ot x4 zero.
a,(3) R e o X Note the following cheracteristics of the
Haar Functions: for the gubset M ], there are
2. (3) bt x6 n = 2)-1 different functions in the incerval,
. and 1 <k < n.
a,(4) ottt Xy
4
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0 1/2 1 0 axis

Alao note the interesting relationship to the
Rademacher Functions.

231
B
kel

3
k "Ry

With this in mind, it i{s reasonable to talk
of a "sequency" for Haar Functions, although a
more important parameter is delay, which, for
Haar Functlons, i3 zrnalagous to the phase of
sines and cosines. For the Haar Functions, the
delay is given by k - 1. To normalize the Hiar
Functions of order §, each should be mul¢iplied
by 2(3 = 1)/2, An application will be described
later,

For the remainder of this paper, I shall
point out some of the many actual as well as
potential applications of Walsh Functions, and
other square-wave functions. Perhaps I will be
asking more questions than I answer.

1. Two-di{mensional image transformation.

Two very active persons in this area are
Andrews and Pratt.[2) They were certainly amonsg
the first to point out the advantages of using
Walsh Functions for image transformations rather
than sines and cosines. I thought it might be
fun to examine several simple cases in order to
see exactly vhat a Walsh Transform does to an
image. As I define the two-dimensional Walsh
Transform, it is a matrix operation given by

w1x](w)

vwhere (W] is the Walsh matrix and [X] is an image
(actually an nxn portion of an image).

First, consider an image containing infor-
mation at sequency 1 in the horizontal direction
and sequency 0 in the vertical direction, asg
shown below.

|
J

The transformation is shown below.

(e
(= Ne NeNe]
s e
e b
00020

Image

++++]{o110!f++++] [so0-se
++--[lorio|l++--_. |00 00
t--+{{0110]|¢+--+ 00 00
+-+-[lo110]|+-+- 00 00

The 8 in the upper left corner is the d.c.
or average term and the -8 is due to the sequency
1 component. Note that the ~8 lies in the firs:t
row, third column, indicating sequency 1 in the
horizontal direction.

Next consider an image with O sequency in
the horizontal direction and sequency 2 in the
vertical direction.

-0 r 0
OO
0o r~o
[ =R =]

Image
The transformation is showm below.

8
++--|l1111 0
+--+|loooo||+--+ 0
+-+-{l1111 J -8

PP Fooo e+ }

Note that the d.c. term is in the same
place, while the sequency 2 term in the vertical
directior i3 indicated by the -8 in the fourth
row, first columm.

Finally, using the notation that the Trans-
form array is [T}, the original image can he
recovered by exact}y the same matrix operation
as the one which generated {t, with a factor of
1/N2. This is shown in equation form below.

(X] = g (W] {T]. (W)
[x] = %— NUBUNGSENUNG!
(x] = [1}.(X].[1] = [X]

(1] is the fidentity matrix.

2. Sequency filtering.

It is possible to do filtering based upon
sequency rather thar frequency in two different
ways: the first way utilizes sample and hold
ampllfiers, switches, integrators, sultipliers,
counters, etc. Any type of filter can be

1T

U e BTN S T Lt el oA B R bl IR R0 2 198 2 LA SSHET i A

i e A i g x

Sy B s Lot SRR T2kl

AR

e Y S Iy iy HCA L B L BT S SR A b B G2 8RS M At R e b i

o)

i

o

Lor FR AT

Y



RETDN G s S AR

e e
> ST ERR

s e, e

RS Ve

synthesized; lowpass, bandpass, highpass, etc.
{3) The other approach is to use a digital
computer, perform the transformation to a Walsh
series, then retain for outputting only those
sequency terms which are to be passed hv the
filter. The feature that makes this approach
feagible is the speed with which the tvansform
can be computed., There will of course be a time
delay in both cases. Note that a sequency fil-
ter can differentiate between sal and cal. An
RLC filter has no such capability,

3. Non-linear system analysis.

A non-linear system i{s often described by a
transfer characteristic as shown belfow.

output

input

If analysis by sine-cosine input waves §s per-
formed, the, output will he distorted sine wave,
expressable as a fundamental and harmonics of a
Fourier Series. If, however, a square wave is
the input, the output will also he a square wave
at exactly the same sequency with d.c. bias.

Now all that {s left is to make something out

of that.

4. Spectrescopy.

The two-beam interferometer spectrometer
works by first forming an interferogram, then
by means of an ianverse Fourfer Transform, re-
constructing the spectrum. Interest in this
technique is currently high because ‘of the de-
creasing cost and increasing speed of performing
this transformation digitally. Interestingly
enough, the processing can be done by using a
mask with transparent and opaque portions encoded
so as to perform a Walsh (lladamard) transform.
The result seems to be increased speed with no
ioss of rescolution. (4]

5. Multiplexing.

The multiplication heorems of sine and cos-
ine, applicable to amplitude modulation, yield
upper &nd lewer sidebands., This is not true in
the case of Valsh Functions. The multiplication
of wal(j,8) by wal(k,6) yields wal[(¥Pk),8] where
again @ stands for bit-by-bit addition modulo 2.
So you might say a Walsh amplitude modulation
has = single, sometimes upper, sometimes lower
side-band. This feature leads to Walsh function
multiplexfng which i# most interesting.[5]

6. Radiation of Walsh waves.[1]

Perhaps the most {mportant reason to be con-
sidering the radiation of Walsh waves (electro-
magnetic or acoustic) is this: there is a differ-
2nce butween a Walsh wave at sequency 3, and
another Walsh wave transmitted at sequency s' tut
Doppler shifted to sequency s. The application
of ttis feacure should be apparent.

7. Resolution of point targets.,

1f two closely spaced point targets are
illuminated with a sine wave, the receivedi sig-
nal will have the appearance of the curves below
due to small differences in path length.

A
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Thc composite waveform w11l be altered on
the first snd last period of the sine wave only.
If illuminated by a Walsh wave, the effect of the
other target is seen during the entire period of

the pulse. This seems to indicate superior reso-
lution capability for the Walsh wave.

8. Information Content.

A sine wave has vanishingly little fnforma-
tion content. Give me four points without vio-
lating the sampling theorem and I'll give you
the whole sine wave., A Walsh function, on the
other hand has the property that the more samples
you get, the more information you have ahout it.
Yor may have to think about that for & while.

I know I did.

9, Speech synthesis and analysis.

Two of my graduate students have used Haar
Functions in connection with speech, The first
of these was a speech synthesis, redundancy-
removal e¢ffort conducted by Meltzer.[7] The
motivation was due to the fact that since hard-
clipped speech 18 still recognizable, the infor-
mation may be contained fn the zero-crcssings.
The Haar Functions are extremely well suited to
u zero-crossing context. Briefly, Meltzer's
resulsts indicate that with sampling at SkHz and
a subscquent Haar Transform, at least one half
of the coefficients may be eliminated without
loss of intelligibility on playback. It is
theorizid that up to one half of the remainder
may alsc be removed, but the question is which
one-half It seems to vary depending upon the
sounds prvsent. Current investigation into
analysis using Haar Functions is just stacrting.
It is too soon to give results.

So what's next? As far as I'm concerned,
the applicaticn of Halsh functions as well as
other square-wave functions such a3 Haar func-
tions is a wide-open field., As evidenced by tne
broad subject 1ist from the several Walsh
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Functfon Workshops 16] the interest is becoming
moere general, and the applications more diverse.
I cannot say "What's next".
lot of interesting times ahead for me, my grad-
uate ctudents, and, perhaps some of you.

I can only gee a
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Kbstract,

This is a tutorial paper which deals with
the fundamental aspects of the transform prop-
erties of Walsh functions. By appropriately
sampling Walsh functions, it is shown that one
can generate a class of matrices vhich have
transform properties. These matrices are
called Hadamard matrices. The name of the
corresponding transform is the Welsh-Hadamard,
or Hadamrd transform (WHT or HT).

The Walsh-Hadamard analysis resembles the
Fourier harmonic analysis in both geometrical
and analytical characveristics. While the
Fourier bases are sinusoids with harmonic fre-
quencies, the Walsh.Hadamard bas=s are Walsh
functions. Since Walsh functions are square
Zaves, the corcesponding Hadamgrd matrices
consist of elements vhich are -1 and hence en-
able relatively easy informetion procesaing in
several applications.

Introduction

Walsh functionsl and their transforms2 have
found reccnt%zls aumber of applications in di-
verse areess, {Ee zyaposium on applications
of Walsh functions™  held annually i3 a testi-
rmony to this., The object of this paper {s to
present a tutorial exposition on the transform
properties of Walsh functions.

Walezh Funcsions

Walsh functions, vhich form & complete ore
thonormal sst of reit?nsular vaves, can Rg e~
fined seversl wvays. ''’" The definition
adopted here is based on Rademacher functions,T
which form an incomplete ortnonosymal set, and
Gray code. Rademacher functions, Ri(t) are
periodic rectangulur pulses, with 22-1 cycles
on the unit interval and alternste between ¢1
and -1, with the exception of R (t) which is a
unit step fuaction (Fig. 1), Walsh functions,
Wal(m, t) are developed as products of the
Rademacher functions based orn the Gray code,

1. e., convert m to binkry. ms(b, b..j3...b, bl)
binary, then the Gray ude of m is (z, €papter
8; 31) binery, where :

by
sﬂ'l'bﬂ L bn- 4

where the symbol @ denotes addition moduls 2,

WALSH_FUNCTIONS AND HADAMARD THANSFORM

K. R. Rao
Dept. of Elec. Engg.
Univ. of Texas at Arlington

Arlington, Texas 76010

Then
Wal(m, t)=(R (£))% (R (£))80-1...(n,(e)®
(R, (t))E1  ® -1 ’

For example, when m=6=(110)binary, its Gray
code is (101)binary, and hence

Wal(6, t)=(R3(t)) (R (¢)).

The first set of eight Walsh functions with
corresponding sine and cosine harmonics super-
imposed on them is shown in Fig. 2. Unlike
sinusoidal functions, the interval between suc-
cessive zero crossings may not be the same for
a given Wslsh function, The term analogous to
frequency is sequency,ll vhich is based on the
number of sign changes, g. Sequency is one
haif che number of zero rossings per unit in-
terval (zero crossing at the lsft end only and
nct at the right end is counted.). In temms
of sign changes, sscuency, s, is defined as

s*(g*l)/a. g odd,
=g/2, g =ven.

Walsh functions can be further classified as
"sal" (sine-WALSH) or cal (cosire-WALSH) based
on the odd or even symmeiry of Val(m, t) ac
t=1/2, i, e.,

Wal(2z-1, tj=sai(m, t) (s o)
Wal{2n, +)=cal(m, t} sequency=m

Discrete Walsh Transform

Th2 evelutisn of FFT (Fast Fourier Transform)
and the digital computers have hrought digital
sigral and image processing ard 2i_itsl commun-
ications into limelight. The diacrete version
of the Walah tranaform is based on the sampled
velues of the Walsh functiong and the sampled
data of the time series. The discrete Walsh
trenstorzt’ of an N-veriodic sampled dats x(X),
K=0,1,...,0=) and a=log,N is given by

{Xtn)i= §l#(n}] {(x{n)}, (1)

vhere {2{n}} {s the N-dimensionel date (coluan)
vector, {X¥(n)} is the N-dimensional Walsh trans-
for (eclumn)} veeter, snd {¥(n)] is the (Px2n)
Walgh mutrix. As (W(z)] is orthogonal and sym-
neiric, the inverse Walsh uatrix i

{x(n})={w(n)] (X(n)}. (2)
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The transform vector {X(n)} represents the ce-
quency decomposition of {x{n)}, whercas the DFT
{discrete Fourier transform) decomposes the da-
ta vector into its frequency components.

Hadamard Transform

The rows of the Walsh matrix can be rear-
ranged to obtain Helamard matrix“ ,16 which has
a simple recursive structure. This rearrange-
went is based on the follcwing simple rule:

Rov of Walsh matrix, mﬂ(b by pe:eby by)binary,
Gray code of m is (g, &, l"'gz .;l)binary

{x(n)} = {5{~)] (By(n)]}, (s)

vhere {By(n)} is the H-dimensional Hadamard
trausform (column) vector.

Fist Hademard Transform

By factoring {H(n)] into n sparse matrices,
an efficient algorittm for fast cﬂputation of
the transform can be developed. For ex-
ample, {H(Z!] can be factored as

(#(3)] = [#,(3)] [¥;(3)] (B5(3)]

where
Row of Hademard matrix, =(g, 8,...8, &,.,)bi~ Ry ]
nary, which is the ¥it re:ersa.l of the Gray 1 -1t
code of m. For example let m=2=(010)binary, T T T
Gray cods of 2 is (0ll)binary whose bit rever- (43(3)] = (1 -1
sul is (110)vinary=6. For k=8, the Walsh ma- == r T
trix based on the sampled data of tae Walsh |t -1
tunctions, and the zorresponding Hedamard ma- —— | ~T
triz are, ’1 -_l_l .
Sampled data of Row of Number of
Walsh fuaction [H(3)] #ign changes Sequency
Wal{o, t) fl 1111111 0 0 0
Wal(l, t) = ssl(1, t) 111 1-1-1-1-3 Y 1 i
Wwal(2, t) = cal(l, t) 1 1-1-1-2-1 11 6 2 1
Wal(3, t) = sal(2, t) 1 1-1-11 1-1-1 2 3 z
Wal(k, t) = cal(2, t) [W(3))s |1 -1-1 1 1-1-1 1 3 4 2
Wal(s, t) = 3a1(3, t) lelw-l 1-1 1 1-1 7 5 3
Wal(6, t) = cal(3, t) 1« 1-1-21- 1 5 6 3
Wal{7, t) = sal(l, t) 1-1 1-1 1-1 1-1 1 7 4
and L. __j Row of Number of
— - (w(3)} sign changes Sequeacy
wal(0, t) 11111112 c 0 0
wal(7, t) 1-1 1~ 1.1 12 7 7 i
Wal(3, t) 1 1-1-111-1-1 2 3 2
wal(k, ¢} [H(3)]= {1 -1.1 2 11112 4 ) z
Wal(l, t) 1 1 1 i«l-1-1-1 1 1 1
Wal(6, t) 1-1 1-1-1 1-11 6 6 3
Wal(2, t) 1 11-1-1-1 11 2 2 1
wa1(5, t) 1-1-1 1-} 1 1-1 5 5 3
Hadapard matrix of any ovder caas be generated b 121
recursively from I I
[Ha(3)] = == —b— .
(H(0}) = 1, and I, Ip
i " and n 12 -1_2_‘ ’

" - ufK L i 5% P ... -

((ke1)] lk;?x; i I{H ajf £ 52 fig(m)) = [ Iy
! (3) I, -1,(- (6)
= [#(1)] @ [H{K}] -

where [#(1)] = [} _}i and the symbol @ Genotes
Kronecker product, Hadmard matrix is both sym-
metric and orthcgonal i. v.o fH(n)) {H(2)]} =
NIy, whers Iy is the (N « ¥) ldentity mstrix.
The Hadanard transform (HT) of (x(n)% and its
inverse are resvectively defined as,

{3,(n)} « § [H(n)] (xin)} (4)

and

The signal flow graph based on (6) is shown in
Fig. 3. The fast al;orithm requires about N
loroi arithmetic operations (ladamard tranaform
involves additions and substractions only as
all the elements in the transform matrix are +1
or -1) compared to N° required by the direct
methord. Factoring of transfo>m matrix of any
order and developing the corresponding flow
grapb is straightfcrvard.
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The power spectrum invariant to the cyclie
shift of the samyled date can b? developed
using the shift =matrix. If 'x (n)} iz {x(n}}
shifte? gjclically to the left by 2 nlaces and

if B, 2){n)} is the HT of the shifted secquence
I(a)}, then
(§x<‘)(n)} = % tam) &)
= L mo)) o) wy

-

= L tatm)] 9 ()] (i) iy (m))

£
where [M( )(n)] is Iy whose columns are shifted
to the right cyclically by % places, The trans-
forns of the shifted and the orig.aal se%u nces

arc relatad through the shift matrix, {s'%2/(n)],
{. e.,

(3, (2 () = is“’<n>1 (B, ()}, (8)
anere [ (m)] = 1 (5tn)] (6P (n)] G(n)) ra-

presents the sinilarlt/ transformation.

The shift mairix has block diagonnl ortho-

normal structure. For i = 8, and 2 = 1, the
shift matrix becomes
—-T ————
11
S
10 =21
[y
L L
(s1)(3)] = AR
I yf1-1 1 1
-1 U B T A (9)
| -1 -1 l—ﬁ

S —

where each of the block diagonal matrices is

aorthonormal., This is the key tc¢ the invariance

of the power spectrum to the periodic shift of

tne time series. Also the nower spectrum for
= § is as follows:

> Sequency
Po = Bx (0) 0
2
Py = 3,°(1) b
2 2 (10)
B, = (2) + By (3) 2
3 =L h By (v) 1,3

In general for any ¥ = 2P, the power spectrum
and its sequency composition is as follows:

> Sequency
by = B,~(0) 0
2 N
P, = B,<(1) >
11)

22-1 2 4 '
Py = (E,2-1 B,5(K) L

23e1 o3

2 - 2 v 2
Py = (3-1 Bx (x) 8’ 8

10

201 2 Sequency
%n = Kﬁan-l By (K) 1,3,5 a7s---(‘2\! -1)

An inspection of (11) shows thut the Hadamard
pover ircetral points do not represent inaivid.
ual sequencies but groups of sequencies. But
this grouping is noct arbitrary, but i3 based on
the half-wave symmetry structure, i. e., each
group contains a fundagental and ali the odd
narmonics relative Lo that fundamental.

Hodified Hadamard Traosform

The HT power spectrum (11) can be comnouted
direci?y nsing the modified Hadamard transform
(MHT)." The MET of {x(n)} and its inverse are
respectively defined as,

{F(n)} = § [D(n)] (x(n)}, (12)
and
{x(a)} = [D(a)] {E(n)}, (13)

where {F(n}} is the ll-dimensional MHT {column)
vector, The transform matrix [D(n)] is ortho-

#gonal and can be gerc.ated recursively as fol-
lcws:

]
{n(x)] o) (1%)
{D/K+1)} = ST T K'=0.1
Kl2 o K2 o
2 1'2}_ Ii 2 1'25( 2,400
with [D(0)})] = 1. For #l = 8, the transform ma-
trix is,
1 i 1 11 1 1 1
1-1 1 -1l1 -1 1 1
2 0-/2Z oW2Z o022 o
(p{3)) = |0 2 o /ELo vZ 0 -/ (15)
2 | o2y __J

and the flow yraph for fast compuiation of
{P{(3)} is shown in Fig. h. As in the case of
HT, the flow graph is based on factoring [D(3)]
into sparse matrices i. e.,

where
1 ll -1
1 -1‘
- - _.:_ -5
(p,(3)] = ,_:/—Z’.Eg;._
1T N
- = (16)
Ip Il
[02(3)] = IQ "I2|
e
125
and

PO M

.

g 08 B A P

W AL A

SL 2 A e 14 P Rt e 20 e

S SR b

PR Wt Mot 4 4 b it dwe s R at

g g ko

v

i

AL L

3
3
:




PR

R TP T

s A L

Lhide S st B

pehid AL T

A L Ml 4

™

]

s R

T

(G

. i sl
o' L RS

W

o

M E b e N SR AANE Y m—t

T T T T T SR T L LT R T T R R T I R L R I

The MHT requires .auca less nuncer of arivhmetic
operations compared to HT, because of the
sparseness in [D(n)]) and consequent increased
sparseness in its factors. Ccrparisen of Fig-
uces 3 and 4 yielos the following relationships
between the BT and BT coefficients:

8.(0) = F(0), B,(1) = F(1),

B,(2)
= & (1))
B(3) "¢ F(3) ),
and (17)
ex(uy ?(h))
B, (5) F(5)
4= 3 (w(2)
Bx(6) F(6)
B,.(7) L F(7)J .

From (10) and (17) it is ciear that the BT
power spectrum can also be expressed as,

Py = B,2(0) = ¥2(0)

207y = p2
P, = B,“(1) = F5(1)
3 2 3 2 (18)
Py = oLy By (K) = (B, FO(K)
7 2 . o
Py =L, By (x) = th F<(K)
or in general,
2 2
P, = B_“(0) = F¢(0)
0 X (19)
em_ 2m)
B =t B2K) =L L FR), mo= 12,0000,
k=221 K=2""

The BT power spectrum can thus be evaluated
directly without computing (gx(n)}.

Multidimensional Hadamard Transfoim

As with other discrete orthogonal transforms,
42 can te extended to multiple dimensions., For
example, the two airensional HT, which has been
used in image processing, can ve defined as

Hy-1 fip-1 <y, w
P T, x (vy, v.)(=1
Bx(ul ’ U2) “1 N2 v1=0 V2=0 ( 1 2) ( )
(20)
where

Bx(ul. u2) i{s the transform coefficient,
x(vl, v2) is the sampl~d data,

Vi Yy = 0,1, 2,..., Nl-l, ny = lorzjl,
V2, u2 =0, 1, 2,004, Nz—l, n, = ‘_og2N2,

W, W o= <V, ul> + Vo, u2>,

11

T W RS TR AT

ng-1
<y N ua> = q[

. k, vi(m) ul(m), L =1, 2.

The terms v,(r) and u,(m) are the binary re-

nrresentations of v, and v, respectively, i. e.;

(1)gecimal = (Vl(nl") Vl(nl-2)...
v1(2) ¥ (0))pinary -

The inverse transform of (20) is

. Nl-l 32-1 u, v>
x(vy, vo) = I_ T Beluy, uy) (-1)
t Uy =0 up=0 12 (21)
Conclusions

A tutoriel exposition on ‘Jalsh functions and
their trarsforms is presented. ‘The trunsform
analysis based on Walsh functions amounts to
sequency decomposition of a signal or ‘mage
unlike frequency decompositicn in the case of
Fourier transform. As only add‘tions anc sub-
tractions are involved ia evalua.ing the Hada-
nard transform, savings in executisn time and
memory requirements of the digita) eomputer
can be gained compared to DFT. ‘lowever, the
HT power spectral pcints reprev.ent groups of
sequencies unlike the indiviaual frequency
representation in the cage »>f DFP.
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Fis. 3. Signal flow graph 1]lustrating the cmputation of HT for N = 8.
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&2 Fig. 4. Signal flow graph for the modified
% HT for N = 8.
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Walsh Functions in Image Processin~ and Two-Dimensional Filtering

William K. Pratt
Department of Electrical Engineering
University of Southern California
Los Angeles, California

INTRODUCTION

The role of Walsh Functions 1n tmage
Processing and Two Dimensional Filter-

ing has been, appropriately enough, binary.

Walsh Functions have found useful appli-
cation for image coding, image enhance-
ment, pattern recognition, and general two
dimensional filtering [1,4 ). In addition,
the introduction of Walsh functions to these
applications has fostered new concepts of
generalized spectral analysis and signal
representation. Furthermore, research
on Walsh functions has led to a better
understanding of images and their struc-
ture than was previously available from
purely sine wave analysis,

Digital Images

Before embarking on the subject of
Walsh function image processing, it will
be fruitful to present some background on
digital image processing.

Imag« Representation

A digital monochrome 1mage, denoted
as f(x, y), 1s defined here as an array
(assumed square of dimension N by N for
simplicity) of samples of a continuous two
dimensional 1ntensity pattern of light,
Each picture element {pixel) of f(x, y) 1s
assumed to be limited in amplitude to A
units and hinearly quantized to L levels
where L is usually a binary number, i.e.
L=2" with an integer. Since {(x, y) repre-
sents samples of light intensity, the image
array must be positive. It can be further
argued that every intensity pattern contains
at least a few quanta of light. Hence, it
will be assumed that

0 <f(x,y) SA

In the past few ycars there has been an
expanding activity in the processing of
digital color imagery. The discussion here
will be limited to a consideration of digital
color images represented by the three
primary color systems. In this system,

which is the basis for color television sys-
tems and photographic processes, the color
image is described at each coordinate point
by three arrays f R(x, ¥),s fG(x, y)h f B(x, y)

that specify the red, green, and blue tris-
timulus values of an image point. The
tristimulus values designate the amounts of
red, green, and blue primary lights that are
required to provide a colorimetric match of
a color by a display system.

Image Processing Systems

Figure |l a contains a bloch diagram of
a general 1mage processing system based
upon the processing of the image intensity,
Many researchers have suggested that
the logarithm of the intensity, which 1s
proportional to photographic density, chould
be processed or coded in a system, such
as shown in figure lb, rather than the image
intensity f4 1. The rationale behind thie
suggestion, indicated in figure lc, is that
the human eye responds logarithmically to
intensity, and actually is a linear system to
logarithmic changes in brightness. The
performance of the 1mage ""density” pro-
cessor has been found to be superior to
the image "intensity'" processor in many
applications, However, 1t should be
remembered that both systems are predicated
upon an ideal sensor intensity response and
an ideal image intensity display. If the
sensor or display responds nonlinearly,
extreme imuege degradation may occur,
Most physical image sensors and displays
are inherently nonlinear in intensity, and
1t 15 necessary to compensate for the non-
linearity either electrically or phctographi-
cally if precision image processing is to .
be performed.

Sampling and Quantization

In the analysis of a digital image pro-
cessing system, consideration should be
given to the effects of sampling and quanti-
zation. The two dimensional sampling may
not necessarily be performed at a suffi-
cient rate to satisf{y the two dimensioral
sampling theorem. The implications of
processing an under or over sampled 1mage

*This. research was suapported by the Advanced Research Projects Agency of the Defense and was
monitored by the Air Frice Eastern Test Range under Contract No. F08606-72-C-0008.
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Figure 1. Image processing systems

are indeed serious, and can cloud the ex-
pected processing results. If the image is
under sampled, spurious low spaiial fre-
quency components may be unintentionally
introduced. On the other hand, an over
sampled image contains redundant samples
which unnecessarily iucrease the compu-
ational Joad. Also, it should be realized
that quantization intrcduces a non-recover-
able error in the specification of the amp-
litude of each ‘mage sample. The number
of quantization levels required to maintain
the quantization error Lelow the subjcctive
threshold of noticeability is strongly depen-
dent upon the characteristics of the image
sensor and display. It is obviously not
worthwhile to quantize too finely if the image
sensor is noisy or if the image display is
incapable of rendering only a few grey shades.
While the eye is only capable of the absolute
discrimination of 10 to 15 shades of grey, it
can detect the relative brightness hetween
two grey shades with much greater sensi-
tivity., The effect of too few quantization
levels 1s usually first noticed as gr~y scale
contouring over regions of gradual shading.
jenerally speaking, 64 quantization levels
re sufficient for television broadcast
quality displays. Up to 256 quantization

levels may be required for a high quality
mechanical or flying spot scanner display.
These limits assume a linear quantization
of the image intensity.

Performance Measures

In the development of image processing
systems ii is highly useful, and often necc-
ssary, to have some quantitative perform-
ance measures. The search for a quanti-
tative measure of image quality has been
long, and unfortuately, not particulary
fruitful. For monochrome imagery because
of its simplicity, most reseaichers have
utilized the mean square errow between
an original image f(x, y) and a processed
image {(x,y) as defined by

2

L
=z
1]

ec=

fean-fx 1 (2

2
N

=
"
o
~
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where the overbar indicates a statistical

overage. It hag been suggested that the

basic mean square error exprussion can be

improved by taking into consideration the
15
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impulse response h(x, y) of the human eye is the image amplitude probability distri-
[5] . The resultant error is given by bution,

;1 N-l N-1 — v E
e= F Z [;(x, y)*h{x, y}-£(x, y)¥*h(~, y) ] Image Transformation :g
i
x=0 y=0 ) The two dimensionz]l Hadamard trans- ?i
where * indicates a spatial convolution, It form .F(u, v') of an imzge function f(x,y) can 5
is possible to extend both of these image be written in series form as g
error measures to each of the tristimulus N-1 N-1 qlx, y,u,v) :’g
arrays of a color image. Neither the ¥a, V)'.,/N 2 Z fx, y)(-1) g
ordinary nor spatial frequency weighted (5) -,*‘g
mean square error expressicn has proven §

to be completely adequate measure of
monochrome or colur image quality; much
more research ctfort is needed in this area,

where q(x, y, u, v) 1s defined in [l J. Itis
often more convenient to express the trans-
formation in matrix notation as

&
e
3

i
-

For image coding it is necessary to mea- Fl=H_IEIH.] (6)
3 sure the redundancy reduction or band- N N
width compression obtained by a coding where [H Jis an Nth order real, sym-

1 process as well as specify any possible

£ degradation in image quality. The speci-

: fication of image coding performance should
be a relatively simple matter, but seems

to be a subject of much confusion in the

matric, and normalized Hadamard matrix
whose rows arc¢ Walsh functions. The

Hadamard matrix [HN Imay be obtained by
the construction

i T A S s NS R i

v

2
s literature. There are two "comprassion [H i= ,,/"[ _1J '%
e factors' that are often stated as image K
: coding performance measures: SLIH N/2 HN/z P 7
¢ b 1= /2 N 4
3 sample number of original image HN/z 'HN/z 3
1 reduction = samples ?‘;
A factor number of coded image samples where the matrix [P ]is a permutation }f
b matr’ that orders tye sequencies of the %
# bit number of original 1mage code Walsn functions. The computation indicated ;3:
3 reduction = bits by equation (6) is simply a one dimensional B
g factor number of coded image code Hadamard transform of each row of the image ’—fi:‘
: bits array and a cne dimensional transform of <4
L

=

each column of the resultant serii-trans-
3 The sample and blt reduction factors are formed array. If the image array is too

identical if the same number of bits are large to be stored in the computer then it
assigned to each sample. Both measures, can be placed in a secondary sequential

=
b

however, can be misleading since they do
not indicate the "information' content of
the original image. A high compression

storage unit {rnagnetic tape or disc) ard
brought to the computer a line at a time,
The computation then proceeds as follows:

factor can sften be obtained if the ori-

5 ginal image is over-sampled and over

; quantized. The information content of an
image can, in theory, be measured by the
entropy of the :image source. But, in
general, the computation is difficult. An

= |
=
3
=
)
=
kS
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%
3
2
=
ax
=
el
¥
]

[r 1= L3l ]

- " ;T
[r,_]- [ e ]

row transform

matrix transpose

[F3 1= [ F, ] [H‘\I} - row transform %
- estimate of the total source entropy can be ! g
%4 , ’ obtained Ly performing a grey scale histo- [Fl= [F3 ]T - matrix transpose E
e gram of the image and computing the first é
B order entropy as given by The last matrix transposition usually can X
s L be ignored since it is immaterial whether - &
e Hif(x,y)]} = 'z P, (k) logz[Pl(k)] (4) o~~ transforms the original image, or its A
% : k=1 transpose. The first matrix transposition
- can be performed efficiently by the algori- Z
i3 where thm described in reference [6]. ‘;ij‘%
pl(k) =P f(x,y) = k) ' Fig.ure 2 contains pl?otogra.phs of two ori- ;;
r ginal images and magnitude displays of the A
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Hadamard transforms. The images contain
256 by 256 pixels and 64 grey levels,

Image Coding

The Hadamard transform has received
much at{ention for its vse in image coding
applications to reduce channel bandwidth.

By itself, the transformation does not reduce
The . o \ ‘)" channel capacity requirements because the
. S S ransformation is information preserving, :
(2) Original girl ' * . f0 v s ! That is, the entropy of the ima d th g
o ddtac tron ate, te ' Y ge an ¢
berter detais ntropy of the transform of the image are
. identical. A reduction in the channel coding
requirements, however, can be obtained for
natural images, at the expensc of some aver-
age distortion, by efficiently coding the
Hadamard transform domain coefiicients
for transmission., It is important to remem-
ber that the transform domain cecding process
will usually introduce sore average distor-
tion, and that there is no effective means of
limiting the peak distortion. Thus, applic-
ation ot transform coding is often limited to
image transmission systems for human
viewing.

P
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¢ B

’
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In the transform coding process a two
dimensional Hadamard transform is taken
over the {ull size image or some smaller
segment called a block. Next each trans-
form coefficient is quantized and coded. At
the receiver, after decoding, an inverse i
transform is taken to reconstruct the image, -
Two basic methods of transform domain
image coding have been applied. The first,
called zonal coding, entails the establish-
ment of zones in the transform domain. In
each »one every coefficient is then quantized,
usually according to some nonlinear amp-
litude scale, and assigned a code group. A
more efficient variant of zonal coding is to ;
assign an averayge code length to each zone h
and use variable length Huffman codinyg of
the quantized saniples, In either case, the
bit assignment is based upon the assumed
variance of the transform domain samples.
A convenient algorithm, based upon results
of rate distortion theory, is to select the
number of bits according to the relation

TR,

" Py
PO ... S PRV T GO

s

Nglu,v) = In [o:, (o, v) J- In D] (N

2

where 0, (u,v) is the variance of a transform
domain coefficient and D is proportional to )
the mean square error of the coding process. -
Figure 3 illustrates a typical assignment

of code bits for image coding in 16 by 16
nixel blocks. The performance of the trazs-
(d) Hadamard display of tank form zonal coding system can be specified
Figure 2. rigina! fmages and transforms in terms of the mean square error between
17
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the original image and the reconstructed
image for a statistical class of images.
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Figure 3. Typical bit assignments for
transform coefﬁc:ents
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Figure 4. Mean square error performance
of image transforms
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Figure 4 contains a plot of mecan squarce crror |
as a function of block size for several image }
transforms. This plot was obtained for an x
image statistically described by a Markov
process. In the coding process the trans-
form coefficients are ranked according to

their variance. The 25% with the largest
variance arce coded with 6 bits cach and the
remainder are discarded. Thus, the coding
requires an average of 1,5 bits/pixel. From
the diagram it is scen that the Hadamard
transform comparcs favorably with the other
transforms, which are more complicated to
implement, and provides a coding of less

than 1% mean square error for reasonabiy
small block sizes.

The second type of Walsh domain coding,
called threshold coding, is based upon the
establishment of a magnitude threshold. If
the Walsh cocfficient is grecater than the
threshold it is quantized and coded, other-
wise it is discarded, It is necessary, of
course, to code the location of the signi-
ficant coefficients as well as their ampli-
tude. The performance of the threshold
coder is somewhat better than that of the
zonal coder, but is more difficult to imple-
ment. Figure 5 contains reconstructions

(b) Threshold coding 1. 5 bits /pixel
Figure 5. Examples of Hadamard
monochrome image coding.
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of images coded with 1.5 bits/pixel for the

Two Dimensional Filtering
zonal and threshold coding processes.

The initial concept of two dimensional
Walsh function filtering to be developed here
is very broad and generalized. Basically,
the Walsh functions are used to perform a
spectral decomposition of the image into a
domain that facilitates the linear or non-
system where the Y signal represents the linear processing operations. The two
image luminance and the I and Q signals dimensional {iltering steps are indicated
jointly provide the hue and saturation infor- below:
mation of a color., Figure 6 contains photo-
graphs of the I and Q color planes of a
typical color image. The Y plarz is shown
in figure la. It is scen that the IQ planes
o i ot any Mah Spatia (ehencien,  Limarity ar snlinearity f a flring pro-
of zonal coding without significant impair- cess is defined here by the opf&ratxons
ment, In a series of experiments it was performed on t.he Wals}j domain comp?nents,
A found that the Y signal could be transform not on the spatial domau} elements prior to
2} coded with an average of 3. 0 bits/pixel and ic forward tx;ansior.mauon or after the
= that the I and Q signals only reguired an nverse transiormation.
::;lla&e;fsol;iif;pt;::l/.plxel each for a Linear filtering. In its most general form
linear filtering may be defined as a linear
combination of all of the image transform
domain components to produce a modified
transform domain as defined by

N-1 N-I

F(u.v)=2 Z F(u', v')G(u, u', v, v') (8)

u'=0 v'=0

E The concept of two dimensional trans-
E: forms coding has been extended to color

2 imagery. In this process the red, green,
and blue tristimulus signals are linearly

converted to the Y I/} color coordinate

f(x, y)—>F(u, v}—=>F(u, v)—>f{(x, y)
transform f{ilter transform
process
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where Glu, u', v, v') 15 the {ilter weighting
function. If the filter weighting function is
separable

A

iy

Glu, u', v, v')=G (u, )G (v, v') )

then the filtering op..cation can be performed
as scquential operations on the rows and
columns of the image transform,. In this
case it is convenient to switch to the matrix
representation of the filtering operation.

[FHG“][F][GV] (10)

If the fi'ter matrices [G Jor [G Jare
diagonal, then the filtering operation reduces
to an individual weighting of the image seq-
uency components. In general the optimum
filter for a particular application is not

diagonal since the sequency components are
correlated.
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Nonlinear filtering. In the dsfinition of
nonlinear Walsh domain filtering the only
restriction that applies is that the filtering
operation must perform a mapping of F(u, v)
into an array F(u, v) of the same dimension.
To date, the only nonlinear filtering functions

(b) Q
Figure 6. I and Q tristimulus planes of
a color im_age.
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that have received much attention are the
logarthmic

’F"(u, v)=F(u, vllo I F(u, v),}
F(u, v) (11)

and power law

'f"(u,v)=F u, v | F(u, v) :a.
[Flu,v) | (12)

functions where 2is a constant, Tlae log-
arthmic Walsh filtering operation is sim-
ilar to the cepstrum operation agsociated
with the Fourier transform.

Iinapge Restoration and Enhancement

Image restoration has commonly been
defined as the reconstruction of an image
back to its original form as closely as
possible. Typical restoration applications
include correction for defocus and image
motion blur, geometric distoration com-
pensation, and noise filtering, Image
enhancement entails operations that
improve the appearance of an image t> a
human viewer. Several examples of the
application of Walsh functions to image
restoration and enhancement are given
below,

Noise reduction a frequently encountered
image processing problem is the reduction
of the visual effects of image noise generated

of great importance to note that the minimum
mean square error obtained with Hadamard
transform filtering is the same as could he
obtained with the Fourier or Karhunen-

Loeve transforms or any other unitary trans-
formation, The potential advantage of using the
the Hadamard transform is the reduced amount
of computation required as compared to many
other transforms. Figure 7 contains displays
of a Markov process covariance matrix for

a vector length of sixteen and the corres-
ponding optimum Hadamard Wiener filter
matrix, It is possible to reduce the com-
putational requirements even further by
taking advantage of the character of the

filter matrices. Ia many applications it

will be found that the optimum filter matrices
contain many near zero elements. 1lfa

filter element is very small it can simply be
discarded from the computation. It has

been found that up to 90% of the filtering
multiplications can be avoided in this manner
with only a slight increase in error for

many applications.
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by the sensor, processing system, or display. 1‘

Consider a "noisy" image, f(x,y), composed 3

of additive signal, s(x,y), and noise, n(x,vy), ':

components, £

£x, y)=<(x, y)+nix, y) (13)

T' e optimum filter to minimize the mean Figure 7. Display of Hadamard Wiener 3

square errcr between the signal image filter for N=16 and Markov J

8(x, y) and ihe filtered image f(x, y) is process signal with R=0.9 H

obtained from an extension of classical ,

] Wiene. filter theory [7]. For the special, Figure 8 shows an example of Walsh 3
8 but practical, casc of the signal and noise domain Wiener filtering, H
uncorrelated with each other, and separate g
processing of the rcws and columns of the Inverse filtering. In many imaging systems . ;
3 image, the optimum filter matrices are an obgervable image can be considered as <
3 found to be the output of a linear, ghift invariant two - %
‘ . - dimensional system with an impulse response -
[c ] =[H]ic IC +Cc 1 H] (14) h .(x, y) that mod :1s the degrading mechanism -3

u “opt §X 7 8x nx . Jed

- of the imaging system, Thus, the degraded 3

[Gv )o t=[H IC IC ’* Cn ) M (15) image is given by _ff

where [C_ 1, fC Llc 1, i Jare £ (%, y)=(x, y)*h, (x, y) (16) -k

the covar?:fnce ma&-xces o?xthe eler¥1ents 2

along the rows and columns of the siynal By the" qonvolu'ton theorem of Fourier e

and noise arrays, respectively, It is also
n..m

transform theory
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of the zeros of 34 (u, v) and amplication

of high frequency image noise. An exact
analog of Fourier inverse filtering does
not exist for Walsh function because of the
lack of an equivalent "Walsh convolution
theorem™ as represented by eqs (16) and (17).
It is possible, howe ver, to achieve some
improvement in image quality by a form

of Walsh domain inverse filtering in which
the magnitude of the Fourier inverse filter
is used as an inverse filter for the Walsh
spectrum of an image. Reference 8 gives
an example of Walsh domain inverse filter-
ing.
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Summary

7
4
3
-4
&
3
3
=

When evaluating the usefulness of Walsh
functions for image processing, one is
led to the question: Do Walsh functions
possess any properties inherently useful
for image processing? The answer is
equivocal. Walsh functions do not chara-
cterize an image particulary well; they do
not ""resemble’ tvpical image lines. From
this standpoint there is no reason to preier
Walsh functions overy any other functions
with a property of spectral decomposition.
The major potential advantige of Walsh
functionsa in image processing is their
relatively simple computability. This is a
major factor of consideration for the pro-
cessing of pictures with millions of elements.

The future role of Walsh functions in
image processing is uncertain to this
obgserver. In image coding Hadamard
transform coders may find practical use

o

T
.

in specialized applications in which a small \%
amound of image degradation is permitted, 3
but the coder must be relatively simple. 3
For the computer processing of images I
o ) for restoration purposes, the Walsh functions 1
{c) Selective computation Hadamard hold promise. But, as mentioned earlier, ;
Wier.er filtering perhaps the greatest benefit Lo the field z
Figure 8. Example of Walsh domain Wiener of image processing to be derived frum -
filtering the introduction of Walsh functions is that %
they have stimulated research into new -
"fd(u, v)=Rlu, vmd(u, v) 17) concepts of generalized spectral analysis, 3
and bave brought into deeper consideration ;
where the script letters indicate the two the comprises of procesaing performance 5
dimensioral Fourier transforms of the and computation requirements.
degraded image, original image, and
imaging system transier function, respecti- References
vely. If the Fourier spectrum is multiplied
point by point with the transfer function 1. W.K. Pratt, H.C. Andrews, and J. Kane,
1) ,(u,v), the result is the original image "Hadamard Transform Image Coding,"
Fourier spectrum, which can be inverse Proc. IEEE, Vol. 57, No.l, January,
Fourier transformed to obtain the original _}_2_69,J,p._ 58-68. o

image. This process of inverse Fourier image
reconstruction is exact in theory, but often
fails in practice because of the inversion
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Abstract

Electromagnetic waves uced in communi -
cations arc predominantly sinusoidal waves.
This should not lead one to believe that sisu-
soidal waves are the only possible or useful
ones. Itis shown how an optical specirometer
would have to be constructed to decompose
light into Walsh functions, that such a spect-
rometer would yield more information than
the usual spectrometer showing the frequency
power spectrum, but that extremely fast time
variable shutters would be needed for its
implementation. Electromagnctic Waish
waves of interest in ccmmunications, on the
other hand, require switches with transient
times of about 1 nanosecond, which is within
the state of the art, Antennas, generated
field strengths, quadrepole radiation, au
interference effect and the Doppler effect are
discussed in a nonmathematical way.

INTRODUCTION

It is frequently believed that an electro-
magnetic wave mnst have an electric and
magnetic field strength that vary with lime
like a sinusoidal function. Actually the gener-
ation of sinusoidal waves is 2 considerable
technological feat. Heinrich Hertz rever
succeeded ,;n producing anything close to a
sinusoidal wave. His experiments with wave
propagation were done with what we would
call colored noise today. The generation of
reasonably sinusoidal waves was a vexing
problem for some twenty years following
Hertz's experiments, and it was not solved
satisfactorily until the invention of the elec-
tronic tube. Anybody working with fast
swilching circuits knows that the problem is
not how to produce nonsinusoidal waves but
how not to produce them. Indzed we cannot
cswitch an electric lamp on or off without
generating nonsinuscidal waves.

Visible light is a form of electromagnetic
waves for which the sinusoidal time variation
is often believed to have been proved by inter-
ference experiments., This is not so. Let us
investigate in some detail what interference
experiments prove.

% The author wants to thank the International
Telephone and Telegraph Corporation, Electro-
Physics Laboratories for the financial support
cf his work,

ALL YOU ALWAYS WANTED TO KNOW
ABOUT ELECTROMAGNETIC WALSH WAVES

Henning 7. Harmuth®
Department cf Electrical Engineering
The Catholic University of America

‘¥ashington, D,C, 20017
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Figure 1. Lineay, time invariant diffraction
qrating with lixed light source and movable
aetecter (2), and -vith fixed detecter and
movable light source (b).

Figure la shows a diffraction grating
with eight transparent slots at a ¢lstance d.
A sinusoidal wave with wavelength )\ coming
from the left produres eight spherical waves
on the right side of the grating. The waves
add up for the angle @ = 0, they cancel to
yield a first minimum for sina = A/2d, they
odd again to yield the first maximum for
sina = A/d, and so forth.

If a sum of sinusoidal waves

E; sin 2T ct/A{ + B;) is received from
the l2ft one obtains minima and maxirna for
each wave. This means that the incident
light signal is decomposed into sinusoidal
functicns. Since we know from Fourier
analysis that alinnst any signal can be decom-
posed into sinusoidal functions, the pattern
of minima and maxima produced by the
diffraction grating will prove to us that this
device has the necessary features to actually
perform such a decomposition. In other
words, the diffraction pattern proves that
the diffraction grating is a linear, time
invariant device, One will suspect that a
time variable diffraction grating will decom-

pose light into some other system of functions.

DECOMPOSITION OF LIGHT
INTO WALSH FUNCTIONS

Figure 1b shows a2 modification of the
diffraction grating of Figure la. The detector
observes the light emitted vertically to the
gratiag while the light source is moved to
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provide angles of incidence from a = 0 to
€ = 900, In Figure la, on the other hand,

the detecter has to be moved while the light
svurce is fixed,

cl=(23-Nd sna

Figure 2. Linear, time variable diffraction
grating with fixed detector. The time varia-
tion is provided by on-off shutters Sl to S8.

Figure 2 shows how the diffraction grating
of Figure 1b lias to be changed to decompose
light in‘o Walsh waves. The Walsh functions
have the parameters time base T and se-
quency @ which are significant for our
purpose, while only the frequency or wave-

length was importa.ut for sinusoidal functions.

The tirne base is determined by choosing the
angle of incidence a. If the diffraction
grating has ef:. . slots with distance d one
has to choo.c @ according to the formula

c¢T = 7dsinQ , (n

where ¢ is the velocity of light. In the
general case of 2N slots one has to substitute
2n.-1 for 7.

The Walsh functions sal(i, t/T} and
calfi, t/T) with time base T but various
normalized sequences i are separated by
making the transparent slots of the diffrac~
tion grating time variable. In the case of the
Walsh functions this time variation is pro-
vided by on-oft shutters Sl to S8 that are
either open or closed. For other systems
of functions one would generally need a more
complicated form of time variation. Let us
ignore for the moment how such shutters

24

could be implemented and let us find the rule
for their operation,

sal(4.t/1) sal(3,t/T)

R S r 1 " — bl L
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a b

Figure 3. Operation of the shutters Sl to

S8 for passage of the waves sal{4,t T) and
sal(3,t/T); black: shudter closed, white:
shutter open. The amplitude samples shown
by a heavy line illustrate the delay between
the eight waves.

Figure 3 shows the operation of the
shutters Sl to S8 to permit a Walsh wave
sal(4,t/T) to pass. The lines | to 8 show
the function represented by samples with
time shifts 0, T/8, 2T/8,... 7T/8. These
time shifts correspond to the arrival of such
a wave at the eight transparent slots in
Figure 2, The shutters Sl to S8 are open
(white) or closed (black) as shown. Onc may
see that there are always four positive
samples of the Walsh wave that are super-
imposecd by the properly opened shutters
while the negative samples are blocked. One
may readily see that the opening of the shutter
S1 coincides with the four positive samples of
sal(4,t/T) in Figure 3a and with those of
sal(3,t/T) in Figure 3b. The opening times
of the shutters 52 to S8 are obtained from
a cyclical shift of the opening times of the
shutter Sl.

Figure 4a shows the shutters operated
for passage of sal(3,t/T) but the function
sal{4,t/T) is applied. Two positive and two
negative samples are passed through the
diffraction grating at any time and their sum
yields zero, Figure 4b shows the shutters
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in heavy linc are passed all the others cancel

by interference. Note that the constant function
sal{6.t/1) sal(3,/1) wal(0,0) - wal(0,/T) is always passed in
1 ‘L‘T_lTJ“T‘LT ‘I—LJ“'T"J 11 L addition to the desired function. A short
Sl ——— —— — - —————— reflection of Figure ! shows that the same
1 | 1 | L 1 | holds true for a ime invariant diffraction
%7 __‘ U ¥ 1—1 J '_ grating - put there is no light wave with
3' [ \ | ) i | frequency or sequency zero
i T 1 T T 1 -
38— - — [ To obtain an estimate for the operating
IA S RS —_ - times of the shatters let us reflect that the
A — —_——— . frequency of visible light lies between 4x1014
i \ 1 | s 4 and 8x1014 Hz. This calls for switching times
25 __1 J T T T in the order of 10-165 or less to permit the

| ) y ) | L | use of the sampied amplitude representation
b - T T T L I I = of Walsh functions as shown in Figures 3 to
% ————- e —— 5. One cannot rule out that this will eventually
7 Al b - be possible but presently known effects for the
ST - - - —_— implementation of shutters, such as the Kerr
8 | I 1 i L] B effect, are some 5 to 6 orders of magnitude
<g 1 T T 1 T slower. An obvious advantage of time variable
spectrometers would be that they would not only
' g e st e e e e e e show the relative pewer of different spectral
17 0t~ 12 12 0t{- 112 lines but also uncover a relationship between

the times of emission.
a b y

WALSH SHAPED RADIO WAVES

Figure 4. (a) Shutters S1 to S8 operating to

i pass sal(3,t/T) block sal(4,t/T. (b) Shutters Having shown that electromagnetic waves
! operating to pass sal(4,t/T) block sal(3,t/T). are not nccessarily sinusoidal the engineer is
i faced with the task of showing that something
i operated for passage of sal(4,t/T) but usefhﬂ c};n:\_bc do‘r.w W.uh n;)nsmu.smdd.ldw]aves.
! sal{3,1/T) is applied. Again the waves cancel So far the investigation of nonsinusoida

i at all times., electromagnetic waves has been restricted

essentially to Walsh wuves, Four basic

differences between Naish and sinusoidal
wol0B st 1 a ey Lttty tagra g vty

Qi s D functions have been found that might be
. rrrrd A e i ) i i .
col{18) A PP R P turned irto useful applicatiors:
L3[R S W Ny I G U G i SIS Sy . ) ]
: COlZB Ly 1ty Gyt L U L2y a) The technlogy for the implementation of
: SOU3B) ik qoboqad el ol d g g ity equipment 1s ditfe.ent.
N COMIB ot Lt p g d g bepdy bl ey oy 0
ke SRUABI L, byt gty begede bty Uy

| b) The differentiation of a sinusoidal function
yizlds the samec function except for a changed

amplitude and phase, while the differentiation

k= $1:z

: 3
3 §§ IZITIIIII /oI oI —— /ST of a Walsh function yields a lifferently shaped %
. funciion, k:
E WOE(GQ:LL.I_I_L_LL.I Lty ety ey 5
& SOUTOH oy oy 1 4eld o g LAy 0 i L ¢) The sum of several sinusoidal functions §
5 TN P O O RO I 1 I RPN U I N 1 SR I I R A . . , &
. e S with arbit rary amplx_ludcs. and phas_ s bu.t equal 4
JRVY) 4 NN S0 SR [y Uy S B I D TN T frequency yields a sinusoidal function with 3
B seil3@) 11,0y, R I I Y R the same frequency. This is the basis for 2
i3 ccff?,@), Py llpiq phy bl dy gl g0 20y interference effects. Walsh functions are !
el R R A e s B e summed differently and their interference 3
: effects are thus different 3
e : d) The Doppler effect can transform a sinu- %
i soidal function into another for any velocity K
1 ratio v/c while a ratio v/c = 3/5 or more is z
s Figure 5. Operation of the shulters Sl tv required to transform a Walsh function into F
= S8 in Figure 2 for separation of the first another one of the same system. A
i eight Walsh functions. k
4 Let us look at examples of these effects. k<
g Figure 5 shows the operation of the Figure 6 shows a radiator for Walsh waves '
= shutters Sl to S8 for separation of the first implemented by four Hertzian magnetic 3
o cight Walsh funcdons. The f{unctions shown dipoles, Currents will flow clockwise in the E
%
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Figure 6. Array of four Hertzian magnetic
dipoles.

loops shown by dashed lines if the function
wal(}, 9) has a positive value. A negative
value of wal(j, 8) will cause rurrents to tlow
counter clockwise in the loops shown by
dashed lines. he diameter of the loops is
small compared with ¢T, where T is the
time base of the Walsh fun.tion wal(;.8) =
wal(j, t/T).

The time variation of the clectric and
magnetic field strengths produced by a
Hertzian magnetic dipole are shown in
Figure 7. The first line shows the 1dea-
lized current i(t) = Ical(3,t/T) flowing in
the dipole. E(1/r%,1) is a component of
the electric field strength declining pro-
portionate to 1/r2, which is the near zone
component, The far zone component de-
clining proportionate to 1 /ris represented
by E(l/r,t) Themnagnetic field strength
consists of the three components
H(l/r3,t), H(1/r2,t) and H(l/r.t) which
decline proportionate to 1/¢v3, 1.r2 and I/r,

The time variation of the far zone
components E(1/r,t) and H(1/r, 1) is the
first derivative of the dipole cusrent i(t).
The components  E(i/r2,t) and H{l/r2,1)
vary like the current i(ty, and the compo-
nent H(1/r3,t) varics like the integral of
the current i(t). These relations betwecen
the time variation of the dipole current it
and the components of the elect~ic and
magnetic field strongths hotd true for any
current 1(t). If i(t) varies like a sinusoaal
functions its derivative and its integral will
vary like i(1) except for phase shifts. Hence.
the near and far zone compenents of sinusol-
dal waves are hard to separate while those
of Walsh waves can be much more :eadily
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Figure 7, Time variation of the antenna
current i/t in a Hertzian magnetic dipole and
the tin.. variations of the produced 2lectric
and magnetic field strengths declining
proportionate to 1/r, 1/r% and 1/r3.

scparated due to their different shape. If
one can scparate E(1/r,t) and E(1/r2,1)
one may compare their power and derive the
distance of the receiver. One interesting
aspect of this passive distance measuring
effect is that one might be able to obtain a
signal-to-noise power ratio that decreases
like 1/r3 while the active distance measure-
ment by the radar principte yiclds a signal-
to-noisc power ratio that de« reasces like
1/rt, However, the radar principle permits
a much higher accuracy of distance measare-
ment.

N o Y e E PANTER T

.—‘ll_fl_\\:lhhm /= (tl=1 cal G.U1,81M)

L o 0 g
REE

7 0, W

Figure 8 Walsh shaped antenna current 1i{t)
with a finite rise time AT and its first
derivative dif*) /e,

Figure 8 shows the rdcalized antenna
current I cal(3.t T) replaced by a mor e
realistic current {1 with a swit hing tire
AT troin <1 to =l or from -1 o =I.  ~he
frst derivative consists of recrangular pulses
of duration 1 and magnitude 21, AT When
L T approaches 2ero one obtaing the Divac

X - R R T R ot

PN ot AL o Al

e

"

e §

Bt oA Te b e £

ST 503 A M A LD

A )

DA Al i 3R A e

g e,

D A DR LR

- -

et i

AT GT AT

>y

S,



pulaes of Figure 7, The energy of 7 rectangu~
lar pulse is proportionate to (2i/ AT)EAT =
4I2/AT. Hence, the average power of the
electric and magnetic field strength in the

far zone cannot only be increased by a larger
amplitude I of the antenna current but also by
a shorter switching time AT. This indicates
that a small antenna can radjate a large
average power.

T~
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Figure 9. Two-dimensional array of 16
Hertzian magnetic dipoles.

Figure 9 shows an array of 16 Hertzian
magnetic dipoles. They are arranged ir a
two-dimensional pattern. Let us observe
that the power radiated by n interacting
dipoles is n2 times the power radiated by one
dipole and that the power radiated by one
dipole increases proportionate to n. There
is thus a great incentive to use many inter-
acting dipoles. To maxe the dipoles inter-
acting they must nct he spaced too far apart;
more precisely, if the distance betweep two
dipoles is d it will take the time d/c for a
change of current in one dipote to affect the
current flowing in the other, Obviously we
can have more Partzian dipoles close toge-
ther if they are arranged in a two-dimens-
ional array rather than in a onc-dimensional
arsay as in Figure 6. Even more desirable
is an extension of the radiator of Figure 9
to a three-dimensional array.

Antennas for sinusoidal waves are usually
one-dimensional. The typical resonant
dipolec is long in one space dimension and has
virtually no extension in the two other space
dimensions, One could of course use the
antennas of Figures 6 and 9 to radiate sinu-
soidal waves but the gencrators delivering
the currents to the Hertzian magnetic dipoles
could no longer be simple switches but would
have to be amplifiers for sinusoidal currents.

Consider a transmitting antenna consisting
of a parabolic reflector and a radiator at its

. -~

mognetic Gpeles

focal point. A two-dimensional array accord-
ing to Figure 9 and even more sc its exten-
sion to a three-dimensional array will come
closer to a point-like radiator than the one-
dimensional array of Figure 6 or the one-
dimensional resonant dipole used for sinu-
soidal radiation. This is a s=cond incentive
for the development of two~ and three-
dimensional radiators.

QUADRUPOLE RADIATION

Sinusoidal waves in free space are
generally dipole waves. The main reason
seems to be that quadrunole and higher order
multipole waves are radiated with less power
by a radiator of fixed size, This is not so
for Walsh waves.

welki2,2)

Figure 10. (Jlasgsification of dipoles,
quadrupoles and multipoles by two-dimension-
al Walsh fuactions wal(k, x)wal{m, y); k,m =
0,1,2.

Figure 10 shows on the left vertically
and horizontally polarized dipoles denoted
"dipole 21" and "dipole 22", Furthermore,
there arc three quadrupoies denoted 41 to
43. Tane right side of Figure 10 shows two-
dimer.sional Walsh functions. The black areas
reprasent the value +1, the white areas the
valve -1. One may readily see that the
poritive and negative signs of the dipoles
or the left correspond to the positive and
negative signs of the two-dimensional Walsh
‘unctions. This correspondence greatly
simplifies a discussion of radiation modes.
For instance, it is obvious from Figure 10
that there is no ""unipole" correspoading to
the all black function wal(0, x)wal(0, y).
Unipole radiation does not exist for electro-
magnetic waves due to the preservation of
charge but it is the major mode of radiation
of acoustic waves.

According to Figure 10 a quadrupole 41
consists of two dipoles fed with currents
flowing in the opposite direction. Two such
electric Hertzian dipoles are shown in detail
in Figure 11. The electric and magneltic
field strengths in the far zone, declining
proportionate to 1/r, vary with time like the
second derivative of the current flowing in
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Figure 11. Hertzian electric quadrupole 41.

the dipoles. The resulting time variation

is shown in Figure 12. On top is the nominal
dipole current I cal{3,t/T). The second line
shows the more realistic current with finite
transient time between +I and -I; furthermore,
the transients are rounded while those in
Figure 8 had sharp breaks. As a result the
first derivative shown in line 3 consists of
trapezoidal rather than rectangvlar pulses of
width AT. The second derivative consists of
pairs of rectangular pulses of width €AT.
The energy of a rectangular pulse is pro-
portionate to

2
[217e(aT)?]” aT = 4%/€%(8T)3. Hence,

the average power of the electric and mag-
netic field strength in the far zone increases
faster with decreasing switching time than
for dipole radiation. This means that it is
theoretically possible to radiate rore power
in the quadrupole mode than in the dipole
mode for an antenna of given size if one
succeeds in decreasing the switching time
sufficiently, The different time variation

ol the electric and magnetic field strengths

¢ dipole and quadrupole radiation indicates
tkat interference effects will be different.
Generally speaking, interference effects of
quadrupole radiation yield a better resolution
than interference cffects of dipole radiation,
and this holds even more so for higher order
multipole radiation.

INTERFERENCE CZFFECTS,
DOPPLER EFFECT

Figure 13 shows as an example of an
interference effect the reflection ot a sinusoi-
dal radar pulse from two point-like targets
Bl and B2. The reflected pulses are shown
in lines a and b, Line ¢ shows their sum,
which is the signal received by the radar.
Except for the bulges of duration 2(d,-d,)/c
at the beginning and end ot th. signal there
is nothing that irndicates that this signal was

T lcad i/n
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Figure 12, Time plots for quadrupole
radiation. (1) nominal antenna current;

(2) rcalistic antenna current; (3) first
derivative cf the antenna current; (4) second
derivative of the antenna current or time
variation of the electric and magnetic field
strength in the far zone.

caused by two targets rather than by a single
larger target. A typical radar pulse will
contain abcut 1000 carrier cycles, hence the
relative energy of the bulges at the end is
very small,

A NN /\Zi?%;d-.\lc
c o

Figure 13. Example of an interierence
cffect of sinusoidal and Walsh shaped waves.
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Let a Walsh wave in dipole mode be
reflected by the two targets, The far zone
components of the electric and magnetic
field strengths consist of narrow vectangular
pulses. The pulses reflected fror: Bl are
shown in line d and those reflected from B2
are shown in line f. The difference bet-seen a
reflection from two small targets or ore
larger target is no longer represented by
low energy effects at beginning and end of a
radar pulse,Indeed, even a periodic Walsh
wave would distinguish between one and two
targets,
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Figure 14. Doppler effect for sinusoidal
and Walsh shaped waves: (a) functions
generated and observed in the same system
of reference; (b) functions observed in a
system moving away with velocity -v/c =
5/13.

Figure 14a shows three Walsh and three
sine functions as observed in a system of
reference that has no relative velocity to the
system of reference in which they are ge:
erated, Figure 14b shows the observed
functions if the system in which they are
generated moves away with velocity -v/c =
5/13. An observer cannot tell whether
the observed sine function sin 2n(6f/3)t was
produced by a transmitter without * -lative
velocity radiating the function sir z i [2f)t
or one with relat.ve velocity -v, 513
radiating the function sin 2w (3f)1. In the
case of the Walsh function there is no diffi-
culty telling that sal(3,t/T’) in Figure 14b
was caused by sal(3,t/T) in Figure 14a and
not by sal(2,t/T). The same applies to the

first or second derivatives of the Walsh
functions.

If transmitter and receiver move away
from each other the relative velocity must
be at least -v/c = 3/5, if they approach each
other it must be at least +v/c = 3/5 before
a Walsh function with known time base T
is transformer into another. There are
no such minimum velocities for sinusoidal
functions,
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HALSH FUNCTIONS IN GRILLE SPECTROSCOPY

by

Alvin M. Despain
Utah State University

George A. Vanasse
Air Force Cambridge Research Laboratories

Abgtract

Walsh Functions have been very useful in
transform spectroscopy as evidenced by the recent
work in Hadamard transform spectroscopy. It is
algo peossible to use Walsh functions to generate
a suttable grille for use in grille spectroceopy
as developed by Girard. The hyperbolie grill
that i8 often used in this technique is very
closely related to the grill whose transmittance
18 defined by a complete set of the sal func-
tions. This paper explores this relationship
and indicates how other grilles of spesified
properties may be generated. Thus, the applica-
tion of Walsh functions can be profitably ex-
tended to the domain of the grille spectrometer.

Introduction

The purpose of this paper is to explore how
Walsh functions may be effectively employed to
greatly improve the performance of grating
spectrometers by using Walsh functions patterned
grilles (masks) to increase the 1ight throughput
and to multiplex the various wavelengths to be
examined. A typical grating spectrometer is
iliustrated in Figure 1 and may be schematically
diagramed as shown in Figure 2. The function of
the grating is te produce an angular deviation
of the 1ight beam impinging upon it in propor-
tion to the wavelength of the 1ight.

The original light beam is defined by the
entrance mask and collimate¢ by the mirror be-
fore falling on the grating. The angle at which
the Tight is reflected from the grating is a
function of wavelength. This beam is focused by
the mirror onto the output mask. A detector
behind this mask then converts the light %o an
electrical signal for recording.

The sensitivity of the spectromater is a
measure of the weakest 1ight signal it can de-
tect and is a function of the effective area and
solid angle over which 1ight may be gathered
(throughput) and the noise level of the detector
employed. The throughput &, of a conventional
spectrometer is proportiona? to several instru-
ment parameters.

E =42
g Q/R

30

whera
A_ = grating area
R = resolving power
2 = "2" number = L/F
L = entrance aperture height
F = focal length of mirror

and it is assumed that the system is "energy"
lim{ted not diffraction limited. The resolu-
tion in the usual spectrometer is generally
inversely proportional to the entrance aperture
(s1it) width.

A grille or mask may be employed as an
ontrance aperture, exit acerture, or both, to
improve the performance of the system. These
grilles were first employed by Golay (Golay,
1949; Girard, 13963) to increase the effective
entrance and exit apertures without sacrificing
resolution (throughput advantage). It {s also
possible to use them to multiplex various wave-
lengths using one detector, {Golay, 1949) thus
improving the signal-to-noise ratio of the
measurement compared with that obtafned by
recording each wavelength in sequence (multi-
plex advantage). A grille spectrometer may
have both the throughput advantage and the
multiplex advantage (Harwit, et aZ., 1970} and
can compete with an interferometric spectro-
metar; without requiring the extreme mechanical
stability of the interferometer (Vanasse and
Sakaf, 1967). A great variety of grilles have
been employed as summarized {n Table I. Golay
(1953), the pioneer of this field, mentioned
that Walsh runctions might be useful as grille
patterns, but they have only been recently em-
ployed despite their natural advantage of being
a complete ortho-normal set of "on-off" form.

General Formulation

The operation of a grille spectrometer may
be mathematically modeled by describing the
total radiation intensity incident on the de-
tector in terms of the incident radiation
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sgectrum and the functions that describe each
element of the entrance and exit grilles (see
Figure 2). £ach clement is a slot whose width
determines the spectral resolution of the
spectrometer, just as the single slit dces for
a monochromator. Tha entire entrance and exit
apertures are filled with slots and each sisi
can, in general, be modulated (opened or c?~:z4}
independently of any other siot. As shown :»
Figure 2, the effect of the gratirg is te
cause radiation of amplitude A; and wavelennth
number ¢ entering slot ;7 to be shifted to the
exit slot © + 4.

In general, we wish to enccde each slot in
the spectrometer so that we can measure and re-
cord all the exiting radiation and then re-
cover an estimate of the spectral elements
{a;}. Thus, let y; represent the encoding
function for entrance slot j. Similarity ¢
will represent che exit slot encoding function.
The total exiting radiation is therefore de-
scribed by summing all radiation over all wave-
lengths that enter each entrance slot and leave
each exit slot. Thus,

S=TLINv;epd(i+s-k)
ijk

where S is the signal that is detected, re-
corded and later analyzed to recover {);} and
§ s the unit delta function. The funcfion v
and ¢ can of course be, in general, any of a
very large set of functions. However, our in-
terest here is to restrict each y and ¢ to be
some modified combination of Walsh functions;
modifying referring to the an-off properties.
Thus, we define an offset Walsh function X3

x; (6) = !!l_iitﬂl_i_l ,

where Wal {7,0) is the usual notation for the
Walsh functions. The functions ¢ and v are
often combinations of the X's which take on
only the values 0 or 1.

It is a well known property of Walsh func-
tions (Harmuth, 1970; p.zog that

Wal (r,0) Wel (k,6) = Wal (mek,0) ,

where the operator # signifies the module 2
sum. Thus, it 1s found that

Xz Xy = Xiap * X5 %+ X - 1.

For the case where y and ¢ are taken as "offset
Walsh functfons" then

2s(0) = £ £ £ a; SIA(Z, 44 KN
idk

* Xy (0) + x5(0) + xle))

where the f{(<, j, k) determines how the X func-
tions are assigned to the slots. Since the

11

Walsh and hence the x functions form an orthog-
onal set, each of the above terms (that are
unique) can be extracted from the recorded
signal S by Walsh-Fourier aralysis.

Multiplex Advantage Grilla Spectrometers

The Grille Spectrometers of Gulay (1951),
Ibbett et al. (1968), Sloane et al. (1969), may
be described by choosing the constants one for
a single entrance slot and zero for the remain-
ing entrance slots, Then orthogonal functions
are chosen for the exit slots, thus multi-
plexing the amplitudes of the spectral elements
onto a single signal. An excellent choice for
the exit slot functions is, of course, the
"offset Walsh functions" (see Figure 3 for an
example) and the radfation spectrum may be re-
covered by a Walsh-Fourier transformation.
Thus,

2s(e) =zt o(f) s(2+g4-%)
idk
'{Xj+k(9) + XJ'(G) + Xk(e) = U

5(e) = R x;(e)
1

and thus the spectrum is easily recovered as
X = Walsh Transform [S(e)]

Throughput Advantaga Grille Spectrometers

The Grille Spectrometers of Golay (1951),
Girard (1963), and others employ identical
{except for displacement) entrance and exit
grilles but record only the average value of
the modulated signal and exhibit very high
luminosity. In anmalogy with the Girard grille,
a grille herein named a sal qrille may be form-
ed using the “offset sal functions". This
grille may be comparzd with Girard's grille in
Figure 3. The output signal is civen by the
average of

25(c) = LE A §(1 + 25 - 2k) 8(2k - n)

ijk
*X25q21(0) + X35(0) + Zzp(0) - 1)

or

(o) +

25(0) = 2 £ 3y Uinijan

x, ;(0) +x(e) -1

where »n = displaced number of siots as the exit
mask is muved across the exit aperture. Since
Xy =0 if{ n #0, then forn # 0
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s(e) =v L A s(n-t) + J
£

Thus, for position n, the signal averaged over
the independent variable o, produces a measure
of the spectral component 1,. Note the

throughput advantage indicated by the factor J.

It is interesting to note that in practice,
difficulties were experienced with the Girard
grille in that nonuniform illumination on the
entrance aperture produced serious distortions.
Moret-Bailly et al. (1970) developed a "random
grille” composed of slots “randomly" chosen to
be open or closed to overcome this problem. A
similar grille can be realized using a pseudo-
random sequence which may in some cases be a
certain Walsh function with the leading element
deleted. These sequences would be pseudo-
randomly arranged to produce a pseudo-random
grilie with properties very similar to the
“random"” grille of Moret-Baflly et al.

Multiplex and Throughput Advantage Grille
Spectrometers

The grille spectrometer of Harwit et al.
{1970) employed grille functions derived from a
Hadamard matrix which for some cases (but not
most) are also Walsh functions. Separate masks
are required for the entrance and exit aper-
tures and they must be displaced {ndependently.
Nevertheless, this configuration with both the
throughput and multiplex advantage greatly im-
proves the performance of a spectrometer.

It 1s also possible to derive a grille
spectrometer with the above properties but with
the important advantage that a single common
mask can be used for both the entrance and exit
apertures. Such an arrangement is shown in
Figure 4 for a Littrow mount. This "Walsh
grille spectrometer" would be very similar to
the mock interferometer devised by Mertz (1965),
but would be without its disadvantages and would
emloy "offset Walsh functions" for encoding
purposes. Thus, in terms of the above for-
mulations let V0 x3 then

25 =T LA

+x,-1]
ig v

Xy vast Koo
i K(iag)est Fiag

5= TH

Now by a Walsh-Fourier transformation of S
%ne sequency amplitudes I can be recovered.
us

-

23

TK=
In general T 1s not square. Therefore, the

least squ%re estimate of the amplitudes of the
spectrum A s

= 3

>4

e

— 24
25(0) = i _z] 8(n-2) [xo(0) + xo(0) + 0 -1] T2t Pt =52
JI
where

P 2(t*t T B

An example of how the spectrum X can be re-
covered for the case where four separate ele-
ments are to be ascertained {1lustrates the de-
sign of such an instrument. It is convenfent
to use a mask of 2n - 1 or seven slots for n =
4 spectra) elements (this is not a requirement,

however). Conseguently,
3 7

25 n I 5N Deengeg * Xoag * 5= 1
g::mbgsgip§EQggxasge:gmmon terms collected to

4 -4 .4 4

1 6 00

1160

= 1215

111

0113

00 31

[0 1 0 2]

T is then found
P2t t G T

or 5 = .
176148 -.050292 -.02253 -.009008 "5
.029118 .150659 -.026963 -.063176 ,é
.075509 -.005€34 .125660 -.046127 ?
100225 -.014821 -.021023 .126166 3

" |.ossss0 .003703 .or2¢64 013143 =
024363 -.015691 -.005163 .070177 3
.018691 -.027126 .056548 .008422 E
L215453 .001309 -.019275 047543}

Now to estimate the spectrum of the radia-
tion that impinges on the entrance aperture,
the coded disk is rotated and the signal 5 is
recorded. A Walsh-Fourier transform of S
yields the sggygncy components £, Then the
spectrum X = D 4.
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Summary

Grilie spectrometers have 2 great advantage
over the usual monochromator and compare favor-
able with the interferometric spectrometers in
sensitivity. Grille patterns of offset Waish
functions produce especially useful instruments.
Three new configurations of grille spectro-
meters, the sal grille, the two-dimensional
pseudo-random grille, and the Walsh grille

Table 1. GRILLE PATTEPNS FOR GRILLE SPECTROMETERS

spectrometers were synthesized using Walsh
functions. The Walsh grille spectrometers has
several significant advantages over all the
other types of grille soectrometers, exhibiting
both the throughput and multiplex advantage
using a single common mask for both the en-
trance and exit apertures and requiring no more
than 2n - 1 measurements if n spectral elements
are to be determined.

GRILLE DESCRIPTION REFERENCE s e ons  TooucHPUT  MLTIRLEX
Complementary series Golay (1949) No Yes No
) Hyperbolic Girard (1963) "o Yes ™
v Mock Hertz (1965) Mo Yes Yes
Circular symmtry Tinsley (1966) No Yes No
Fourfer coded Grainger ot al. (1967) Ho No Yes
Truncated Nalsh Ibbett et al. (1968) Yes Mo Yes
Algebrafc code Decker and Harwitt (1968) N No Yes
Hadamard - single encoded Sloane ¢t al. (1969) No No Yes
Hyperbeltc ) Girard (1970) No No Yes
Psuedo-random - one dimensional deGraaww and Yeltman (1970) (- No Yes
Hadamard - double encoded Harwitt ot al. (1970) Yes Yes Yes
Random Moret-Baflly et al. (1970) No Yes No
Sal function Despain and Vanasse (1972)*  Yes Yes No
Psuedo random - two dimensional Despain and Vanasse (1972)*  Yes Yes Mo
Walsh function Despain and Vanasse (1972)*  Yes Yes Yes

*These grilles are described in this paper.
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HADAMARD TRANSFORM SCINTILLATION COUNTER
by .
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Abstract

The Hadamard transform scintilla-
tion counter designed to measure the
angular or spatial distributions of nuc-
lear and atomic particles in the pre-
sence of heary noise from the photomul-
tiplier is described. The gain in the
effective signal-to-noise ratio achiev-
ed by this counter in the result of the
spatial multiplexing, that is, of cod-
ing the spatial or angular distributi-
on to be measured before counting it.

The counter consists of a multi-
element heterogene scintillator, two
lightguides, two photomultipliers and
an electrical puls bipolar counter. The
multiscintillator consists of (2M-1)
scintillation elements. The lightflashes
can enter only the tower cr only the
higher lightguides, the (4-1) elemants
of the multi-scintillator being outside
the lightguide.

The counting rate to be measured
is equal to the difference between the
number of ¥ (i)events and the number
of ¥ (i) events at all ¥ positions(ocis¥-1)
of the movable multi-scintillator rela-
tive to the lightguides. It is needed
to perform ¥ independenr measurements.

The spatial distribution of par-
ticles undergoes the binary coding ac-
cording to the Hadamard transform al-
gorithm., The system of the multiplex
Hadamard transform detection gives rise
to the gain in the signal-to-noise ratio,
being equal to (M+1)/yNwhere u is the
number of the element-scintillators in
the multiplex block scintillator. Neit-
her the reduction of the angular reso-
lution nor the lost of the counting
rate of the useful events take place.
The Hadaward transform scintillation
counter gives the direct efficiency gain
in the working time of particle accele-
rators and also in the cost of the
eqguipment.

Introduction

The myltiplex transform detectors
of particles provide a new class of in-
struments designed for use in the nuc-
lear physics laboratories. The basis
for the existence af such instruments
is the renouce éf the traditiona2l lo-
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gics by sampling point by point of the
unknown distribution. In contrast to
this, the subject to be measured in the
multiplex transform system is the coded
integral transform of the function desc-
ribing the distribution to be investi-
gated.

The multiplex system of particle
detection is characterized by high im-
munity against the different foreign
perturbations. This property opens up
the possibility to overcome the limit
put up by the traditional logics of ob-
servation. 1/

It was M.H. Fizeau who perfor-
med, more than a hundred years ago, the
first multiplex measurement in optics.

At the late forties the ideas of multi-
plex optical spectroscopy arose/2/. The
basis of the present paper is as follews:
the multiplex communication,m particu-
lar, Walsh Hadamard multiplex systems/3/,
modern multiplex Hadamard transform Spec-
troscopy/4,9,11/ and the covrelation
time-of-flight method in neutron speciro-
scopy/5,6/. The multiplex Hadamard tra-
nsform scintillation counter is descri-
bed below/7/.

Traditional Logics of the Experiment

In performing the experiment the
investigator always must choose the op-
timum relation between the factors which
are multially exclusive. For example,
the rise of the counting rate by incre-
asing the sizes of the scintillator
(Fig. 1) inevitably makes the spatial
resolution of the counter worse. Parti-
cularly a hopeless task awaits the in-
vestigator when the useful events are
so rare that the noise from the counter
becames the principal limiting factor,
and the noise-error exceeds the statis-
tical error.

It is easy to show that any ways
for increasing the counting rate would
come to the loss of spatial resolution.
There are traditional solutions of this
conflicting situation. One of them con-
sists in the increasing of the working
time of the expensive particle accele-
rator. Another way of the solution is
the converting of the one-channel sys-
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tem into the multi-channel equipment.
The economical after-effects of these
methods are ohvious.

Multi-Element Scintillator

Meanwhile there is a nontraditional
solution, namely, the use of the multi-
plex transform system of particle detec-
tion. The passage to the multiplex scin-
tillation counter can be performed as
follows. First of all, the spatial re-
solution of the system must be left
unchangable. For this aim we take seve-
ral element-scintillators and one photo-
multiplier. The group of element-scintil~
lators is arranged in a such a way that
gaps between some elements are left.

The counting strips and the gaps alter-
nate one another. The law of this alter-
nation is given by the pseudorandom dis-
crete sequence g (i). The number M of
elements must be chosen acygrding to the
cyrlic transorthogonality . This pro-
perty is expressed by the relation

M-

g(i) » g(i) '5 8(k) g(ivk) =

1
~(Me1)8(i) = 1(i} )

and can be satisfied onily for several
values of M. For exzmple, for M = 11,
the function ¢ (i) is as follows:

W, el, =101, ed, 00, =1, =1, =1, 41, ~1. {2}

The function ¢ (i) can be subdivided in-
to the two unipolar terms

8(i) = &, (i) v 4_ (i) (3)

where

8,(i)=+1.41,0,41, 41, +1,0,0,0, +1,0 (4)

and

§_(i)<0,0, ~1,0,0,0, =1,~1,~1, 0, -1, (5)

The unipolar system #&.(i) of seve-
ral elements (+1) and gaps (0) is shown
in Fig. 2. The multiplex advantqge of

this unipolar multiplex system /%/ is
equal to

EXE (6)
2vT
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i.e. the gain in the effective signal-
to-noise ratio achieved by this unipolar
system. However, the unipolar cystem 4,
(i) is not yet optimal. It is desirable

and effecient to take the bipolar system.

For this aim we take another comb with
many element-scintillators and gaps
according theg (i) function. Both sys-
tem supplement each other. The multiplex
advantage of such a bipolar system is
equal to
Myl

il (7

The light-flashes can enter only
the lower or only the higher lightguides
(Fig. 3), the (M-1) elements of the
scintillatos being outside the two light-
guides. The whole heterogene scintilla-
tor can be moved between the two ligh*
guides.

The electrical pulses from the
ohotomultipliers are fed to the couantar
device, the upper channel lLeing in tar
anti-phase. Therefore, the t~unting ra
of the upper system is subtracted from
the counting rate of the lower system.
The intermediate data measuired by this
bipolar system is the difference of the
counting rates (Fig.4).

AN (i) = N, (i) -N_(i) (8)

between the number of pulses from the
lTower N, (i) system and the number of
pulses from the upper K_{(i) system. This
difference must by samplizd M times for
different mutually independent positions
of the movable scintillator. The values

of AN(i) can be both negative and posi-
tive.

General Description of the
_Operation

The measurements performed by the
multiplex scintillation ccunter are
made in two stages: the detection stage
and the processing one. In the course
of the first stage the function f(i) to
be searched is converted into the integ-
ral transform

o(1) = £(i) x &) (9)

where x is the operation of convolution
which is performed simultaneously in
the course of the measurements. The
transyorm r (i) is sampled at all values
of i, from {5a¢ = 0 till dfypay =M-1.

The really measured function s(i) is
equal to

s(i) = 1(D) x (i) +An(i) (10)
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where
An(i) = n, (i) =n, (i) an

and n, (i) (k = 1,2) is the noise count-
ing réte of the k-photomuitiplier at
all M rositions of the movable multi-
plex scintillator. Obviousely

M=2

EoL\n(i) - M [An(i)],,50 (12)

The intermediate data s(i) are to be

retransformed according to the algo-
rithm

M~s
f '(i).._.l__[S(i)xg(i)d si)  g(i)) (13)
res M+l =0

where is the operation of correla-
tion. The second term in (13) reflects
the second term in relation (1).

Nithou} noises the following rela-
tion holds /7/

Ml M=l

E 0% g(i)x gli) =(Me1) I £(i)  (14)

In the presence of noises relation (14)
is valid only approximately in the
Timits of (12).

If the statistical error of the
measurements of the useful events f(i)
is negligible, then the total error
is determined by the noise from the
photomuitiplier:, and finally

M=
g"p)=ﬁ§71s(u y &(i) + 3 s(i)x 40i)]=

1 M1
= —— [ (i), §(i) + 2
Ml i

(i), e )+ (18)

P2
=0

«Mv(i) = £{i) +Avii).

Let us compare this result with the
traditional system of a homogeneous
scintillator. For the latter system

,und (i) = £(i) +¥nli) (]6)
The gain in effectiX? signal-to-noise
ratie is given by £

9 \n M+

——- 3 s 17
%\ ¥ a7
The corridor of noise errors for the
bipolar multiplex transform system is
M+ 1)\ times narrower, than for
the traditional system.
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Results of the Simulation

The simulation accomplished for
the ca'e of M = 19 clearly demonstrates
the efrect of supression of the-noise-
error. The initial distribution f(i)
from ijp = 0 tiil gy, = 18 is shown in
Fig. 5. The bipolar kernel ¢ (i) for
M =19 is given in Fig. 6. The integral
transform r (i) shown in Fig. 7 is the
subject of the measurements. The bipolar
multiplex system without noise does
sample the function

18
(i) =1() X g(0)= 2 [(k) g (i-k)  (18)

This intermediate data undergo the decod-
ing. The results of the correlation

(i) x g(i) 0

are shown in Fig. 8. This func.ion di,
fers from the initial function f(i) in
two points, namely, in the ratio of sca-
ling and in the different biases.

The nois: components n, (i) from the
lower phetumultiplier and n, (i) from
the upper -hotomultiplier are shown in
Fig. 9. The bipolar pulse counter detects
the fluctuating component of the noise
Aan (i), shown in Fig. 10, The results
of decoding of the fluctuating noise
component are given in Fig. 11. The ra-
tio of standard noise errors found for
this simulatior is equal to o, Jo,  , =4.65,
instead of the theoretical mean value

(o / . Mo d

mattip. Jiheor, - = = 459,
vy
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Fig. 2. The unipolar Hadamard transform !
multiplex counter of several ele- i A
ment scintillators (+1) and gaps E ;
(0). ©
Fig. 1. The traditional arrangement of Pog
the particle beam 11 , the tar- &
get M and the counter C of the ct £
homogeneous scintillator cn 2 .3
lightguide ¢8 and photomulti- r 3
plier o3y . The particles oo
escaping the target M at the i ;
A angle ¢ are registering within .
E the angular resclution \o, !
- H
: i |
o
E cé,
M=11

& 9(£)=*f,*f,—1,+1‘+1,+f'-1_-l‘-1,+/'-/

E Fig. 3. The bipot.r multiplex counter
E of the two mutually optically
= isolated combs of element-scin-
kK tillators. The alternation of

£ the directions (' - ) of entering
3 the two lightguides €, and C¥,
is described by the bipolar func-
tion ¢ (i). The multiplex scin-
tillator shown in Fig. 3 is set
up of 171 element-scintillators.
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Fig. 4. The electrical scheme includes
two photomultipliers 3¥1
and ¢3y2 , two counting de-
vices C¥, and ¢¥, , and the
electrical pulse bipolar countar
BC.
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Fig. 5. The initial distibution f (i)
for M = 19, used for simulation.
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Fig. 6. The bipolar kernel 4 (i) for
M= 19.
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Fig. 7. The integral transformr (i) of
the function f (i) shown in

Fig. 5.
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Fig. 8. The results of decoding correla-
tion r (i) <« 4 (i).
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Fig. 11, The decoded fluctuating noise
componant \v (i).
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MULTIPLEX TARGET

by
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Abstract

The multiplex Hadamard transform

»

target designed to measure the angular
distribution of the particles in the
presence of heavy background 1n the
experimental hall is described, The

gain in the effective signal-to-back-
ground ratio achieved by this multiplex
target is the result of spatial multi-
plexing, that is, of coding the angular
distribution to be measured before count-
ing it.

The multiplex target has multi-
element heterogene structure, which per-
mits the detection of particles at se-
veral angles simultanecusly by the integ-
ral coding algorithm. The transform co-
de is the cyclic trans-orthogonal Hada~-
mard code. The angular distribution of
particles to be measured can be found
on the second stage by decoding trans-
formation with the same coage, as was
used on the stage of primary coding.

The multiplex target gives the
gain n the signal-to-background ratio
if the background does not depend on
the parameters of the target and the
beam. This gain is equal to(H:!)/2vH,
where & is the number of comn elements
of the multiplex target. The multiplex
Hadaimard transform target gives the
direct efficin.cy gain in the working
time of particie accelerators and also
in the cost of the equipment.

Introduction

The traditional target used in the
experiments with high energy particles
consists of the substance of desirable
agrigate state. The target possesses
almost homogeneous proper’ies inside
the region at which the beam of accele-
rated particles hit. The sizes and the
depth of the target are chosen accord-
ing to the required energy and/or angu-
far resolution.

The counter or the particle teles-
cope of several ccunters is commonly hic

not only by the particles which emerge
from the target but also by the partic-
les which originate outside the target
and are the background ones. At the
high level of background particles the
error of the measurements is determin-
ed almost completely by the background.

Any variations ir the geometrical
sizes of the counter do not change the
relation between the useful events and
the background ones. The increase of the
target dimensions does deteriorate the
spatial or angular resolution of the
system.

Multi-Element Target

Meanwhile there is a nontraditional
solution of this conflicting situation,
namely the use of the multiplex target.
By leaving unaltered the spatial resolu-
tion of the target we take several ele-
ments of target and perform the measure-
ments simultaneously at several angles.
Thus, the one and the same background
event detected by the counter falls
within several angular intervals, but
not within a singular angular interval
as in the traditional target.

For this aim the target is trans-
formed into heterogemeous myltiplex tar-
get. The latter has the structure of a
comi,, The prongs and gaps of the comb
alternate one another. The law of this
alternation is given by the discrete
pseudorandom unipolar sequences ¢, (i) or

4. (i) . The function ¢, (i) can have the
vaiues +1 or 0 and the function 4- (i)
the values (-1) or 0. The function g (i)
which is equal to the sum of é+(i) and
é_(i) functions foerms the row of the
truncated Hadamard matrix with the trans-
orthogonal properties, that is

M-

1
8(i) x g(i) =£oé(ﬂ glivk) =

m (M4 18 (i) =1(i). (1
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where ¥ is the number of elements prengs
in comb target.
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The anguiar ¢ stribution of the par-
ticles emerging “rom multiplex target
undergoes the coding transform. Instead
of the function ¢ (i) the counter does
sample the function

N,(1) ~ (D)o g, (i)+a,(0) (2)

from the comb target g, (i) and another
function

Npdi) = £(i)% (i) +ny(i) (3)

from the comb target 4_(i) . Here a, (i)
and na,(/ ) are the number of the back-

ground particies hit the counter during
the first and the secon< measurements.

The data to be measured in the 2xperi-

ment are equal to the difference

ANGi) = ¥ (i) =N, (i) (4

These intermediate data mvst be retrans-
formed by the decoding correlation with
the help of the bipolar 4(i) function.
The result has the form ‘

ot (i) = ‘MIZT' [(ANCI) x €(i) +

Yy {5)
+‘2." ANC) x 8(i) Y + Av £i)

The ratio of the mean square packground-
ercor [Av (i) 1,, for the multiplex target
to the m.s. background-error {Aa(i)l,,
for the tragitional system is equal to
2R/ (M 1),

The multiplex target consists of
the substance in any agrigete state,
Ther: are two sets of the centainers or
frames for two unicolar multiplex comb-
targets. The elements of the combs can
move independently relative to the par-
ticle beam. Two arrangements of the
comb-elements must be built according
to the unipclar sequerces g,(i)or g-(i) .
The change of the polarity of the bi-
polar counting device 1s performed si-
multaneously with the exchange of one
comb-target to arother one,

The total numbe; of elements of
multiplex targets. including prongs and
gaps is equal to ( 24 - 1 ). These ele-
ments aie subdivided into three groups,
the first qrovp bcing outside of the
beam to the left, the second group of
elements hitting by the pripary partic-
les of the beam and third group being
outsice of the beam to the right. In the
course of the measuresmnts the spatial
structuzes ef the combs undergo the cyc-
lic rearrangements. It is necessary to
perform & indepeadent measurements with
§,0i) muitipiax target and as many
withg, (i) multiplex target.

The structures of prongs and gaps
for two unipolar multiplex targets for
the case of M =~ 7 are shown in Fig.1l.
There are 13 elements which broken down
into three groups (Fig. 2). The beam
of the particles shown as a ring in
Fig. 2 intersects only # elements,prongs
or gaps /, The configurations of the
multiplex targets £.(i)and g.(i) are shown
for the i =3 ,

The results of the simulation are
analogous to the case of # .19 /1 /,

The ratio of the mean square background-
error for the multiplex target to the
mean square background-error for the
craditional system is equal to 2vM/(4+l).
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Fig. 1. The spatial structure of muiti-
plex target cnnasisting of two
unipolar comb-targets. The measu-
rements are carried out at seven
different intervals (¥ =7) si-
multaneously. The comb-targets
consist of 13 elements nrongs
ard gaps, (-1 ), The upper
comb-target corresponds to the

¢.(i) coding function. The lower
one corresponds to the ¢_{i)
coding function.
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Abstract

The particle telescope of two mul-
tiplex Hadamard transform scintillation
counters is described. Each scintilla-
tor is set up of several element-scin-
tillators which are surrounded by the
light-quides and photomultipiiers. Four
coincidence circuits are detecting the
four groups of events. The coincidence
counting rates define the intensity of
the angular correlation events induced
by the two-particle channels. And the
angular resolution of the discrimina-
tion of the events to be measured is
equal to the angle which subtends the
single element-scintillator of the
multipiex scintillation cuunter.

5dch a particle telescope allaws
to colve some new problems, for example,
it can be used in the experiments with
interesting beams to restrict the vo-
lumz from which the binary channels
particles are emerging and this can be
done without the additional defining
counters.

* Introduction

In the previous communications

the Hadamard transform scintillation
counter /1/, the multiplex target /

and the principle of their operation
have been describec. The telescope of
two multiplex scintillation counters
presented earlier in the communica-
tion /4/ is reported below.

The traditional telescope designed
to detect the penetrating particles is
set up of two or more scintillation
counter, electrical pulses from which
are fed to the coincidence or anti-
coincidence circuits. The connections
between the telescope counter signals
are chosen in such a manner, that the
output pulse would come when the light-
flashes in either photomultipliers
originate simultaneousely that is in
the time resolution of the coincidence
circuit.

Let us consider that traditional
telescope of two scintillation counters

L.M. Soroko
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INFORMATION PROPERTIES OF PARTICLE TELESCOPE
OF MULTIPLEX SCINTILLATION COUNTERS
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(Fig. 1).: The pulses from the counters
are fed to the coincidence circuit. Such
a telescope counts the processes induc-
ed in the target by the particles of
the beam whenone of the secondary partic-
les is emitted at the angle ,and the
other one is emitted at the angle
(180° - ¢ ) to the beam axis. To de-
tect two-particle channels in the wide
interval of angles from 0, to 4, one
does the followiny. A sufficient small
target and a sufficient small telescope
angular view are taken, so that the
halfwidth of the angular correlation
curve has the required value A¢ (Fig.2).
Under real conditions the maximum of
the curve lays above the pedestal due
to the background events from many par-
ticle channels. The measurements are
made at several angles @ from o: to

0; . The required results can be
obtained by summation of the events
which are above the pedestal. Any at-
tempts tc increase the telescope angu-
lar view give the broadening of the
maximum and a higher pedestal,

Telescope of Muitiplex Scintillation
Counters

Meanwhile there is a nontraditional
way to cover all the correlation events
within the wide interval of angles from

0, to 0, without the loss of angular
correlation resolution.The telescope
which processes these properties is of
the following design. The homogeneous
scintiilators in the counters are
exchanged by th? heterogeneous multiplex
scintillators /1/, Each multiplex scin-
tillator is set up of several element-
scintillators (Fig. 3). The butt-ends
of the multiplea scintillaters are
surrounded by lightquides and photomul-
tipliers. The light-flashes induced by
the charged particles hit the element-
scintillators can enter only one of two
lightguides and can not enter the ad-
Jacent eiement-scintiltator. The direc-
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tions of the light-outcomes alternate
accordiyg to the law of pseudorindom
coding /3/. In the case of seven ele-
ment-scintillators ( ¥ =« 7 ), this al-
ternation of the light-outcomes is des-
cribed by the rule
r e 2 1t
for the first scintiliation counter,
and by the "mirror" rule
it

for the second scintillation counter.

The electrical pulses from four
photomultipliers are fed to four coinci-
dence circuits (Fig. 4), thus permitt-
ing to count four groups of events:
N, »N_. , N,_ and N#_, . These
observed counting rates, as shown in/4/,
completely define tne counting rate of
the correlation events to be searched.
The angular correlation resolution of
the events with 180° correlation angle
is defined by the angle which subtends
the single element-scintillator ov the
: multiplex scintillation counter, if the
=, dimensions of the target being very
small. The number of the 180%-corrala-
tion events to be searched is equal

IR e 2o oy O o

= APy

”c-ou- (Ni i’”-—) = N 1_1 (NO--+ N—) ) (l)

The background correlation events from
many particle channels are supposed to
be distributed uniformiy.

It is easily seen that this algo-
rithm is valuable not only for the case
of the 18092 correlation angle, bui also
for any correlation angie. The correla-
tion angle is changing by the turn of
the telescope arm, a3 in the case of
the traditional telescope. It is pos-
sible also to shear the coding pictures
of the counters relative to each other.
The processing 2lgorithm for the latter
case has the form different from (1).

New Problems

The telescope of multiplex scintil-
lation counters allows to solve some
new probiems. Namely, such a telescope
can be used in the experiments with in-

\\ tersecting beams to restrict the volume
from which the binary channel particles
are emitted, and this can be done wi-
thout the additional defining counters.
Such an experiment is shown in Fig. 5.
The telescope of two multiplex scintil-
lation counters ¢, and ¢, is turned
to count the binary channel particles
emerging from the cell with number k..o0.

.The algorithm of the processing is
defined by (1). The background events
include the particles from binary pro-

46

cesses which taking place in the cells
with the numbers « /0 , and also the
uniformely distributed particles frcm
many-particle channels.

The telescope of multiplex scin-
tillation counters allows to detect the
particles with given curvature on the
background of the particles with differ-
ent values of curvature. Another examp-
les are as follows. 1) The restriction
of the working volume inside the gaseous
target without the help of the collimat-
ing entrance stits or defining counters.
2) The detection of the events in the
target, immersed in the constant mag-
netic field. The events to be measured
are characterized by the combination
of two parameters: the curvature of
the trajectory and 3ngu1ar correlation
between particles /4/
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1. L.M. Soroko. JINR Comm., Dubna,
P13-5696, 1971.

2. L.M. Soroko. JINR Comm., Dubna,
P13-5699, 1971.

3. L.M. Soroko. JINR Comm., Dubna,
P13-5722, 1971,

4, L.M. Soroko. JINR Comm., Dubna,
P13-589€, 1971.

Fig. 1. Traditional telescope of two
scintillation counters C; and
C, . The particle correlation
angle 1is equal to 1809,
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. Fig. 4. Four coincidence circuits
Fig. 2. The angular correlation curve coupled with four photomulti-
meastured by the traditional pliers of the telescope.
telescope as a result of the

movement of the one counter,

The mean correlation angle is
equal to 9, and the angular

resolution is equal to \9.
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Fig. 5. The experiment with intersect-
ing beams. The cells of the
common volume are numerated by
the index K.
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:
Fig. 3. The telescope of two multiplex §
scintillation counters and the 3
target ¥ .The telescope is set g
up of two multiplex scintilla- g
tors ¢, and €, , four light- 3
guides and four photomultipliers. 3
The alternation of the light P
?utcomes is central symmetrical- ;iiﬁ
y.
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WALSH SPECTROSCOPY O RAYLEIGH

~

WAVES CAUSED KY UKDERGROUND DETONATIONS
M. B&th

Seismological Institute

Urpsala
Sweden

and

S. Burman
Councit of Scientific and Industrial EKesearch
New Delhi

SUMMARY

There are inocreasing attempts to
apply Walsh functions to communica-
tion enginecring and other flelds.
This paper describes the results of
¥Walsh and Fourier spectra of the
vertical components of Rayleigh waves
at & set of stations, vig., Oulu,
Uppsala, Copenhagen and Stuttgart,
due to the underground nuclear
explosion at Novaya Sgemlya on Oct.
27, 1966, It wao found that dboth the
Fourier and the Walsh spectra at all
these stations have interference
peaks and troughs as well as sharp
cutoffs at both the low and high
frequency ends. Most of the energies
in these stations are concentrated in
the 0.08 -~ 0.2 ops ( Fourier ) and
interesting feature in the Walsh case
is that the spectral heights can be
put in%to two groups, M, \ue primary
one at the lower sequency range and
N, the secondary one at the higher
end. Most of the energy iu in the M
group in case of ¥Walsh spectrum.

Ir both cases, for the farther
stations the spectra shifts toward
the lower fxsauency end. The physical
reason may be due to the propagation
and/or to the gradual lengthening of
the wave period. Because of the
complicacy in the mathematical foramu-
lation of arithmetical convolution
in gase of Walsh transform, it is
diffioult to get true ground motion
spectra from the recordings. Since,
however, the Walsh spectrum obtained
does characterise the signal, it may
have some use as a simply performed

Irdia

operation to get a general indication
of the spectral nature of the signal.

ZETRODUCTION

There is an upsurge of interest
presently in engineering circles on
the use of functions, such as the
Walsh functions, with orthogonal seri-
es octher than the traditional sine-
cosine series. The present paper
compares the Walsh and the trigono-
metric Fourier power spectra of a set
of Rayleigh waves ( using vertiocal
components ) from the underground
nuclear explcsion on Oot. 27, 1966 by
the Russians at Noveya Ssemlya
recorded at severazl stations, vis.,
Oulu, Uppsala, Copenhagen and Stutt-
gart lying on or very near the great
circle path through the explosion site
and the stations.

The Walsh function set, being =
binary one, is directly suitadble
with digital computers and digitel
circuitry. In contrast, vhen the
Fourier transformation by digital
computer as the decoding process is
conslidered, it is known that it falls
short of being ideal because the
trigonometric functions sine and
cosine involved in it are not naturally
ta%ted to the essentially binary
opecsations of digital computers.
Another advantage of using Walsh
funotion set is that it is a somewhat
natural describer of pulse or pulse-
like signals ( Browm, 1970); that
nakes it suitadble for studying pulse-

like seisaic signals such as the P
vaves.
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Kersuth ( 1968, Bquation 2 ) has

given the Walsh-Fourier series

expansion of a funotion F(x) defined

in the interval -Y2{x</2, as
F(x) = :(O)va_l(o.x) +

S [ac(1)oal(i,x) +

= ag(1)ea1(4,x)}

vhere, Ve
a(0) = [?(x)val(o,x)dx
A|_|/z
= fﬁf(x)dx

'/a.
a5(1) = /_y/f?(x)cal(i.x)dx

ag(1) = /_E(x)lnl(i.x)dx o

Squaring the Walsh-Fourier series
expansion ( eqn. 1 ) and integrating

over the interval of orthogonality,
-¥2<4 x <Y2, one gets,

Ya Ve
frz(x)dx = JT [r“-‘(t/r)dt
a2 : i

- &2(0) +

S [e2(4) + ag2(1)]
1 eee (2)

where, x = t/?, T is the time unit
used to ncrmalise the time variadle

t 4in cal(i,x) and sal(i,x). The left
side of eqn. 2 is interpreted as the
average pover of a signal F(x).

22(0) and  a,2(1)+a5%(1) are then

interpretsd as the power spectrum of
the discrete variable 4.

For the purpose of computation the
Finite Walsh Transform theory and the
Fast Walsh Transform nlforithn
developed by Kennett ( 1970a, 1970b )
were usdd. There exists a convenient
representation of the discrete Walsh
funotions wal(k,j) in terms of the
binary representation of the indices;
the N-length disorete Walsh functions
nmay de defined for x = 2 by &
continued product rogreeontation
{ Kennett, 1970a, 1970b ),

For an N-length real sequence
X(J) Vh.l‘. j = F) ” 2’ cesy N",
the finite Walsh tranaform is defined
az

- — iy

Nt
X(k) = (Y¥) T X(§)wal(k,])
$=0 eee (3)
vh."' Nizp ' ps= " 2. veee}
k = o, 1, 2’ L XN H“ md V&l(k,.‘”

is the N-length discrete VWalsh
funotion of order k. Similarly, X(j)
mey be sxpressed as the inverse
finite Walsh transform of the

seguence (k?,
N~
X(3) = ‘z;f(k)“l(koi) .

L e
a J X(k)wal(§,k)

kso (XX} (4)
Kennett's paper ( 1970a ) contains
the Fortran program for computing
the Fast Walsh transform for N = 128
i.0., for p = 7. This prograa
calculates the expression under the
sunmsation sign in eqn. 3 namely,

nN-t
2 x(3)wal(k,d)

=0
and tolget the Walsh transform the
values are to be divided dy K. The
factor YN is not of significance us
in the case of the Fourier transform
as one may also define the forward
Walsh transf?rm as

X(k) = J_%x(a)m(k.:)
and the inverse ?allh transforn as
N
X(3) = (mkz X(k)wal(lk,J)

=0

For application to our seismograas
the value of p was taken to be 9. The
actusl aumber of data points were
less than X = 512 ( beinz 2 raised to
the power 9 ) points, 30 that the
requisite number of geros were added
at the end of data to make the total
number of points equal 512. Kennett's
prograz was broken up into
constituent blocks and by the addition
of similar blocks was extended for

Na= 29 data points. The extcnded
program was tested for F(x) = 10/x

and the result was found to be
identical to that given by him

( 19702 ). A second test was
euccessfully carried out by calculating
the Walsh transfora of & sine wave

with two cycles.

¥ALSH & FOURIER SPECTRA
For our work, part of the Rayleigh
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wave train from the vertical coaponent
of the geismometers due to tho
underground nuclear explosion st
Novaya Ssexlya cv October 27, 1966
vere taken. The stations selected
were Oulu, Uppsala, Copenhagen and
Stuttgart -- all lying nearly on a
great circle paasiuz thro the
explosion site and the stations. The
seismogran trace amplitudes were
taken and the instrument characteris-
tics and the processing of data prior
to the compuler analysis are .
described in a separate paper ( Bath
and Burman, unpublishad 3. It may be
antioned that the rate of digitisa-
tion was taken to be oné sample per
second and a sampled-data Butterworth
filter ( 3 sec = 133 se¢c ) was used
to cut-off frequencies doth from the
higher and lower sides,

Pigure 1 shows a filtered Rayleigh
wvave train recorded by the vertical
component Press-Eving seismometer at
Uppsala. Pigures 2, 3, 4, and 5
depict the Pourier power spectra of
Rayleigh waves recorded at Oulu,
Uppsals, Copenhagen and Stutigart
respectively. Figures 6, 7, 8 and 9
indicate the Walsh powsr gpectra at
those stations taken in the same
order as the Fourier spsoctira.

All the Pourier power spectra are
marked by sharp cutoff at both ends
of the frequency scale, and also
these are characterised by sharp
amplitude upswings and drops, probdably
due to multipath interference and
other effects. The spectra at Oulu
and Uppsala lying on a homogeneous
geologic formation can more easily be
correlated. An interesting observa-
tion is the shift in the spectrum at
Uppsala towards the low-frequency
end such as the shift in the pesk
identified in both by the letter A.
This shift may be due to th® propaga-
tion and/or to the gradusl lengthen-
ing of wave period. It is of interest
to note that the energy content at
higher frequencies ( from about 0,2
$0 G.3 cps ) at Uppsala is more than
that at Oulu, Although the reason is
not presently clear, it is not due to
any background noiss. Microseisaic
lgectra just bvefore the arrival of
the explosion energy at Uppsala were
computed and it is insignificant;
this is also borne out by visual
oxamination of the record.

The interpretation of the trace

amplitude spectra at Copenhagen is
complicated by the fact that a
difZerent instrument ( Galitzin )
with different response characteris-
tice yas used. Besideo, the spectral
responss at Copenhagen and Stuttgars
were influenced by other factors,
such as, (@) deviations from the
great circle path, (b) departure
from lateral homogeneity, and (o)
station factor. The peak A, at the
low-frequency cutoff region, has
shifted following the previous
observation, at Stuttgart in compa-
rison to that at Uppsala.

The Walsh -Harmuth power spectirs
at all these¢ four stations have
interference peaks and troughs as
well as sharp cutoffz at both low
and high frequency ends as in the
case of the Fourier onem. Most of the
energy is concentrated in the range
0.08-0.2 zps, and in case of the
Fourier power spectra it is approxi-
nately the range 0.08-0.2 cps. Of
great interest in these Walsh spectra
is the observation that the spectral
heights can be put in two groups,

M, the primary 2t the lower sequency
range, and N, the secondary at the
higher end. Most of the energy is in
the M group. For comparison it is
interesting to study the Fourier and
Walsh spectra due tc a damped
monochromatic sinusoidal wvave

( Campanella & Robinson, 1970 )
which is shown in Pigure 19. The
Fourier amplitude spectrum shows
only one maxima while the VWalsk one
indicates two maximas corresponding
to the two groups M and N; the M
group containing more energy compared
to the N one. Similarly, the M groups
in the vWalsh spectras of the
seismogramns represent greater energy
than the N ones do.

Kennett ( personal communication )
has given an explanation of the
effacts leading to the splitting of
the Walslh power spectrum into M, N
peaks. Froa the logical analog of
the Wiener - Khinchine th¢orem
( Kennett, 1970a, 1970b ) the Walsh
govor spectrum is the finite Walsh

ransfora of the logical suto-
correlation given by

N-1

Ln(3) = (¥YN) 3 X( )
: 2P Ly

where (3 indicates addition module 2.
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Bven for large jJ because of the
nature of the addition module 2 some
Ly(J), according to Kennett, will
only be a measure of short raige
correlation and 80 L,(J) will be a
mixture of samples of long and short
rauge correlation in the record- which
will require higher order Walsh
components to descride them -~ the I
sories. Por smaller jJ Kennett thinks
this prodlea willnot be s0 acute and
the M series will come from the

smoothed out logical autocorrelation
segquence.

Comparisca of Walsh spectru at
different stations also as in the
previous case shov the shift towards
low frequency end of the spectra for
the further stations. The spectral
peaks J, K, and L in the region M
at Uppsala show shifts towards the
low frequency end compared to the
corresponding peaks at Oulu. Correla-
tion of the individuanl peaks become
difficult ixn case of Copenhagen both
because of (=) aifferent inatrument
used, (b) station factor, the nature
of the basement rock on which the
instrusent rests, and (c) departure
from lateral homogeneity and for
Stuttgart because of the last two
factors (b) and (¢). In conformity
to the region M the peak power values
at P, R, and S in the region N at
Uppsala indicaie, compared to those
at Oulu, a shift towarde the zero
frequency end. Comparison with the
other two stations becomes difficult
becauss of the uncertainty in
identifying the corresponding peaks.

COCLUDING REMARKS

In case of the Fourier trace
amplitude spectra it is a straight-
forward procadure to get the true
ground motion spectrum by correcting
for the response characteristics of
the instrument. This follows from the
well-known relation that the Fourier
transform of the convolution of two
signals is equal tv the product of
the Pourier tranaforma of the two
signals. Such a simple relationship
between convolution and the product
of Walsh transforms of two sequences
doces not exist ( see equation 8
below, Kennett, i970b ) making it
difficult to remove the effect of the
instrument characteristics.

Given a sequence X(j) and ite

Walsh transform X(k) and another

sequence Y(J) and its Walsh transform
Y(k), such that,

X(3) > X(k) and Y(j) == Y(k)

te e (6)
tLe convolution of these two

sequences X(J) and Y(J) is defined
by the relation,

N-1
2n(s) = (YN) T X(r)¥(s-r)
vhere, 7=0
Y(m) = O,
if m<0, and s = 0, {, s.., N=t.
000(7)
Thus,
N-1
Zn(s) = (YN) T X(r).
N-1 Y=o
G?Y(k)wal(k,s-r)]
=0 .
Nef
= (YN) 3 Y(k).
k=0
SX(r)wal(k,s-
[%j:(o(r)v (k,s r)]
N—l__ N- N-1
= (VN) TY(K)Z 3 X(k).
k=0 Ta0 k=0

val(k!, r)wal(k, s-r)

so e (8)

As seen from Bquation (8) the
theoretical complication arises from

the lack of a known relation between
the two functions

wal(k',r) and wal(k,s-r)

The same consideration prevents any
simple expression for autocorrelation
or orosscorrelation in terms of the
Walsh transform coefficients.

— On the other_hand, given X(j) =+
X(k), Y(j)<e= ¥{k), the logical or
dyadic convolution ( Gibbs, unpubliish-
ed report, 1968, Kennett, 1970b ) is
defined as,

21(8) = () Zx(x)¥{s @)
=0

eee (9)
Symbolically, it is denoted by,

g ’LM&W.&&?M@MW&W&&B&m;ammwmmdﬂyﬂf&%mw‘ﬁm‘zMmmmummmmaum.,.A —




21 =X MV Y
1 ® vee (10)

Now, X1

2)(s) = (¥N) S x(r)¥(s ®r)

rz=o

- (10) S x(r).
rso

['é?(k)'val(k, s ® r)]

N-1 =1
= (19) 2 ¥(x) [NEX(r).
=0

b £ X

wal(k,r)wal(k,s)]

=5 (k) ¥ (k)wal(k,s)
kIO
ees (11)

Thus, the logical convolution is the
finite Walsh transform of the product
of the Walsh transforms of two
sequences; symbolically,

X ® YeseX.Y
eve (12)

A close similarity is thus seen in
the mathematical structure between
the arithmetical convolution in case
of Fourier and logical convolution
in ccse of Walsh transform theory.
However, because of the fact that the
trace amplitude in a seismogram is
the result of arithametical convolu-
tion between the ground motion and
the instrumental characteristics, one
is not able to use the simple
relation given by the Bquation (12)
and use of the arithmetical convolu-
tion expressed in Bquation (8) is
complicated, as seen before, by the
lack of a known relation hetween the
two functious,

wal(k’,r) and wal’k, s-rj.

It is true that by the procedure
adopted here one has not obtained a
true Walsh power spectrum of the
ground motion. 3ince, however, the
spectrum obtained does characterise
the signal it may have some use as a
simply performed operation to get a
general indication of the spectral
nature of the signal.

Based on an analogy of detection
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of radar signals, Harmuth ( personal
communication )} has pointed out
another interesting possible applica-
tion of Walsh functions to seismology
and seismic prospecting. A4 standard
way to detect radar return signals is
by means of the autccorrelation
function. For long signals the
autocorrelation function has a peak
value when the reflected signal and a
locally produced signal of the same
shapes have no time shift between

each other. However, the gidelobdes
occur for certain time shifts. If only
one radar target is present this
causes no problem. If the signal is
reflectod by several targets it is
difficult to decide whether a certain
peak in the autocorrelation function
is the main peak from a second,
third, etc. target or a sidelobe of
the first target. By means of Walsh
functions one can completely
eliminate, according to Harmuth, the
sidelobes and thus obtain a definite
resolution of several targets that
are close together. He envisions that
the same technique should be !
successful in the seismic problem '
wheres a signal is multiplied

reflected %nthereby glving several

return signals ) through several

closely spaced layers in the earth.
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WALSH DOMAIN PROCESSING CF MARINE SEISMIC DATA
Chi~hau Chen

Southeastern Massachusetts University
North Dartmouth, Massachusetts 02747
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Introduction

The enormous amount of marine seismic data
makes it necessary to process the data with a
high speed digital computer. Fast Walsh trans-
form (FWT) has been used along with the fast
Fourier transform (FFT) in digital processing
of marine seismic data., The digitized seismic
data processed include two sets of seismic re-
flection profiler data from the Woods Hole
Oceanographic Institution and one set of seismic
refraction data froa the Scripps Institution of
Oceanography. The objectives of the study are
two-fold: (1) to filter the marir2 seismic
data in order to obtain a good estimate of the
time of occurrcnce for the primary and the
gecondary reflections and the first refracted
arrivals, and (2) to reconstruct the seismogram
from the filtered data xrur a better interpreta-
tion of the ocean subbottom structure, In our
preliminary study using IBM 360 Model 40 com-
puter (presently limited to the 64K bytes in
memory), FWT has demonstrated two distinct
advantages over FFT: (1) FWT requires only one-
fourth of the computation time as compared with
FFT with the same number of data points, and
(2) the simple lirear Walsh filtering can be
very effective. As & result, FWT performs
better than FFT in reconstructing the marine
geismogram. In this paper, the computational
aspects of Walsh domain processing will be
discussed and some preliminary computer results
pre- 2nted. Detailed results of Fourier domain
processing have been reported in Ref. 1.

Development of the FWT Algorithm

Let yy be the Hadamard transform of the
data vector xy with N data points. Then

1
"N"m'-“x’\u )

where 1/¥N is a normalizing factor and Hy is
the Hadamard matrix, The Walsh transform,
denoted as wy, of the vector xy is obtained
by rearranging all components of the vector
yN Aaccording to the sequency order. Eq. (1)
requires N(N-1) additions., If N is a power
of 2, N = 20, fast algorithms rave been con-
sidered. A somewhat different approach is
used in this paper. Let & be the Kronecker
product. Rushforth (2] has shown that the
Hardamard matrix, in general, can be written
as

Hn = @ L, @ -+ ® I)
(Iz ® Hz ® Izn.® 12)...
L @ L, & ® H) )

for the positive integer n, wherz Eq. (2} has
n factors, For n = 3,

Hg = (Hz ® L® LXI:Q@ 1 I2)
(1@ L@ Hy)

which can be described by the flow chart in
Fig. 1. Figure 1 can be implemented exactly in
the same manner as the fast Fourier transforam
program except replacing the multiplications
in FFT with additions or subsracrions. The
dots at stages Ay, Az, A3 represent the addi-
tion except that the subtraction is specified
by a minus sign above a line. The results of
each stage can be stored "in place" in the
original vector xy. This operation perforus
the Hadamard multiplication upon xy. The
resulting Hadamard transforms must be un-
scrambled according to the number of sign
changes in the Hadamard row vectors, the so
called sequency order. The inverse Walsh trans-
form is an identical operation as the Walsh
transform. A detailed listing of computer
programs is described in Ref. 3. Presently on
our computer facility the FWT program can per-
form transformation up to 4096 samples as
compared with 2048 samples in using the FFT

program,
A A A

O0AN .
AN OGN

Direction of Computation —

Fig. 1 Flow Chart of an
Eight-Point FWT

Computer Results

The results presented in this paper are
based on the second set of Woods Hole seismic
data taken in Java sea, June 1971. The sampling
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rate is 500 Hz, Each shot has 2048 data points
including the explosion which indic~tes the
starting time, Figure 2 i{s a plot of shotr 522.
The primary reflection which occurs at 0.33
second after the explosion provides information
on the water depth, There are a number of
multiple reflections which should be removed
or suppressed. Walsh domain linear filtering,
logexponentisl filtering, and nonlinear filter-
ing as described by Pratt [4] have been applied
to a number of shots, By taking the Walsh
transform of shot 32z and then the inverse
transform of the first half of the transformed
gamples, the result of the linear filtering
is shown in Fig., 3. In Fig. 2, the ratio of
the second peak to the first peak is 0.44.
This ratio is improved to 0,406 in Fig, 3.
Fov legexp filtering of shot 522 as shown in
Fig. 4, the ratio is 0,42, Nonlinear filter-
ing introduces many. high sequency components.
Nonlinear filtering of shot 522 followed by
low-pass filtering is shown in Fig. 5. One
way to suppress the multiple reflections is to
3 bring each sample to a power 1 + ¢, where ¢ is
E a small positive number, and then filter the
data, For a power of 1.2, the ratio of the
gecond to the first peak of the linearly
3 filtered data was found to e 0,.315. The dis-
3 advantage of this method iz the suppression of
useful but low-amplitude data, Several shots
of data can be combined by simple averaging to
improve the signal-to-noise ratio, Linear
filtering of the average of shots 520, 521 and
522 is shown in Fig, 6. The ratio of the
second to the first peak is improved to 0.307,
3 A portion of the marine seismogram is recon-
Fﬂ structed as shown in Fig, 7. Starting from
shot 423, every three shots are combined by
simple averaging and then linearly filtered.
For each combined shot, the Walsh transform
of the fivetr 1024 ssmnles is taken. This
operation requires 7 seconds of computer time,
The inverse transform of the first 128 trans-
formed samples i8 then obtained. The filtered
sample is quantized into 10 levels with the
magnitude increasing from Y.:vel 0 to level 9.
Each vertical line of Fig., 7 corresponds to
one combined shot with each filtered sample
represented by a level number (level 0 is not
printed). The time difference between every
two adjacent samples !5 15.6 msec, The computer

ToUTRTR S
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time for processing 60 combined shots as shown
in Fig. 7 is 11 minutes and 48 seconds. This
includes time for tape reading, compiling (3
minutes) and computation. To do the same job
using FFT requires at least 50 minutes, Fig. 7
indicates the rise in the ocean bottom as the
distance increases. The multiple reflection is
particularly evident as tine water depth de-
creases. Finally the FFT magnitude and the FWT
of shot 522 are shown in Figs. 8 and 9 respec~
tively,

Concluding Remarks

“alsh transform has provided us with an
important computational metnod in the digital
processing of marine seismic data. The improve-
ment ~f FWT over FFT in both computation time
and u..se reduction is particularly significaut
in seismic study, Presently, additional Walsh
filtering techniques and deconvoluticn using
Walsh function are being examined.

Acknoyledgment

The author would like to thank Dr. G. F.
Anderson, Associate Director of SMU Research
Foundation, for his continued support on this
work and Ronald Boucher, and electrical epgi-
neeriug student, for his programming help.

References

1. C.H. Chen, 'Digital Processing of Marine
Seismic Data", report submitted to SMU
Research Foundation, July 1971,

2. C.K. Rushforth, "Fast Fourler-Hadamard
Decoding of Orthogonal Codes", Information
and Control, Vol. 15, pp.33-37, 1967.

3. C.H. Chen, "Listing of Major Computer
Programs', supplement to the report, Ref.l,
October 1972,

4, WX, Pratt, "Linear and Nonlinear Filter-
ing in the Walsh Domain", Preceedings of
1971 Symposium on Apnlications of Walsp
Functions, Washingtor, D.C., pp. 38-42,
April 1971.

Fig. 2 A Plot of Shot 522

- P
Aot LA

A A B AR i h e AN Al S i SRR 2

R A e s G YR AR A




A W

Fig. 3 Linear Filtering of Shot 522

\ Fig. 4 Logexp
: Filtering of Shot
< 522

v{\/\,@g\ Al GO DA, J%}“!\;\A;A AL ey e

|
| |
l
I

-2
G St 4

e Ml%www«m

4 Fig. 5 Nonlinear Filtering of Shot 522

R —

Fig, 6 Linear Filtering of the Average
of Shots 520, 521, 522

i3
Es
34

§ G
()

BT

Whyd

$6

e AT e




AT T ST R R T YD T e A TARTY R X ke o 1Y e Sy SR T o Sorse R PR T I T AN S TR RO R RN

£ L

b o AR S IR YA R 3 2Tt e P AECT R ATEICGPE (AT B Yy TR

TR

SN e o b 0t SRR RS

21
2 s ¢ < $afd s
= é 167 N IR EEEEEERE [ -
3 ? 122277 z
—vt o . .
% Sha - =
< PR ’ . -

>y
P
M

1Y 7e ANNapy sas

] © 3 R Fig. 7 Reconstructed
E i , LRI M Marine Seismogram
1 = ST _ A (including shots
- - . - 423 to 602)
: v )
< - -
s . - .
o g
3 em oD - . T

Distance —=

Lo e e i Ui Do Sov s i U S O

o o A YRR N S A B N LN A DT SR
P
’
corveavsprmen ey

, ! Fig. 8 Amplitude Spectrum
: l | tt of Shot 522 (obtained
: I by using FFT)

. o ‘ . .
. N » . - - e T PEad - .« - w

Fragraney (W) =

- V
30 70 1o 150 190 230 210 3l0 350

Fig. 9 A Major Portion of the Walsh Transform for Shot 522,
(plotted as a function of the number of zero-crossings per
second divided by two)

67

2
3
%
:
1
:
H
3
3
*
N
b
%
.
N

ks

oy 2o 300 = Kby




R AR R

i

JE TR DY o o8 R K

e

Ve i

B ITICR AT

T

i ey

TR LS e e

I ETTSRR TR A SRR

A DIGITAL INSTRUMENT FOR THE INVERSE WALSH TRANSFORM

Mr. W.0. Brown, M.Lng.
Bell-Northern Rescarch
OTTAWA, Canada

This paper describes the design, implement-
ation, and test results of a unique, 1inexpen-
sive, all digital device for performing the
inverse halsh or Hadamard transform. It is
suitable for operation as a programmable wave-
form synthevizer, and ultimately as a speech
synthesizer. ‘lhe inverse transform is
performed using dominant term synthesis rather
than 1sing a full set of coefficient values.

Introduction

fhe results of various techniques for speech
synthesis presented by Boswetter (1], and
Campanclla and Robinson {2] have shown that
dominant term synthesis of specch from the
halsh domain was possible, and with fairiy
good quality. 7The orthogonal transform showed
promise in reducing the bit-rate necessary
for intelligible specch communication over the
usual PCH technique. These preliminarv results
prompted this study into an instrument which
would accep. as an input up to eight dominant
terms in ecither the Walsh or Hadamard domains,
and then automatically resynthesize tie wave-
form described by the coefficients. The device
uses an cight-word data storage register (each
word is 13 bits in length), a single "halsh
or Hadamard" function generator, one 6-bit
rate multiplier, and an eight-bit bLinary up-
down counter coupled to a final eight-bit
/A converter. It is basically a special-
purpose computer, designed to be directly
coupled tc almost any general purpose computer,
or can ve controllcd manvally or from Read-
Oniy memor:ies, and designed to act as a function
generator.,

Theory

Being orthonorral, thc Walsh and Hadamard
functions can be used for a series expansion
of a signal (3). The functions are orthonormal
over an interval of time 8 and have the value
+} or -1. Figure 1 demonstrates the rclation
between the Hadamard and Walsh numbering. The
halsh series are numbered according to the
"sequency" of the function, The scquency is
related to the number of zero crossings within
5; the higher the sequency, the more zero-
crossings (3]. ‘Though the instrument described
here can perfora erther the Hadamard or Walsh
inverse transform, only the Walsh serics
representation will be used for most of the
explanations to simplify the presentation.

The halsh Series expansion of a function
f(t) is defined as:

£(t) = § Cln)haL(n,d) (n
n=0

Dr. A.R. Elliott, P.Eng.
Communications Research Lab.& the
Department of Electrical Engineering

McMaster University
HAMILTON, Canada

where C(n) is the coefficient of the nth Walsh

function WAL(n,8). Assuming an interval of
orthogonality equal to unity, any specific
coefficient C(j) may be determined from the
following relationship.
(1
C@y) = J f(t)WAL(3,0)d6 (2)
0

Thus the coefficients can be evalvated by
cquation (2), and the original waveform f(t)
reconstructed by applving cquation (1).

For rcal-timec analysis of signals,
the integral on the right side of equation (N
can be approximated by a finite scries by
sampling the signal f(t) a finitc number of
times. If the signal 1s sampled N times during
the interval 0 < & < 1 then a coefficient C(j)
can be approximated by the following cquation:
N-1
ciy ¥ gl £ WAL(G L6, ) (5)
“h=0
where f, is the valuec of f(t) at the kth samp -
ling instant, andt“AL(J,O )} is the value of
WAL(j,0) at the k™ sampling instant. 1lhis leads
to the discrete inverse transform given by
high!
£(t) = J C(n)WAL(n,®) '€})
n=0

Previous work (1,2) has shown that not all
N coefficients need by used in the restructuring
of f(t) 1f a rcasonable error can be tolerated.
The most dominant terms tend to contain the
major information .for spcech waveforms, in
particular, dominant term synthesis 1s a prom-
ising means of data compression. bata compres-
sion is carried out by choosing only the M most
dominant terms (in absolute value) from the
complete set of N terms used in a discrete
Walsh transform. The final gencration aleorithm
thei. becomes:

M
~ . , -
f(t) ~ § ¢, WAL(k_,8) (5)
2 N n
n=l 'n

hhcre'Ck is the nth most dominant cocfficient
sclected” from a set of the first N coefficients.
The valuc of !l must be chosen, based on suittahle
criteria, to obtain the degrec of accuracy
desired, as must N.

The number N was chosen to be 64. 1his
w.s a figure based on published results of
several authors (1,2) which seemed to i1ndicate
than a set of 64 terms might contain the most
information, (Generaily, it was assumed that
the information-beaing terms arc tuc lower-
rdered sequency terms). The update frequency

(corresponding to the time interval ¢) 1s a

WRRE I 0 8 R G S X R e

S e A i e S B

LA Lt T S S BRI AN Lk T O B el s it L B Sl

A




cumpromise botwoon the accuracy of tho genoratoed
waveform, and the number of coofficinnts that
rust be produced in a given time intorval.
Because the instrumont was to be used ultimatoly
as a speech synthosizor, an update rate of 5
nilliseconds was choscn a5 a suitablo minimum
update ratc. Provision is mude in tho instru-
meat to vary this from about 4 milliscconds to
over A9 hours by simply varying the fundamental
clock frequency,

The next parametor to be cvaluated was M,
From provious work, both at McMaster [4]) and
Ly bBoBwetter 1], a value of 8 for ! was dcemed
suitable. Finally, tho range of the amplitude
of the cocfficicntis was chosen, ‘This effect-
ively quantizos the €y to a predotermined
accuracy. ‘the systom Brcscntcd here uses only
the cight most dominant terms within an
analyzed field of 04 Walsh cocfficicents. With-
in this set of the cight most dominant tcrms,
the ratio of the absolute valuc of the most
dominant to the lcast dominant coefficient
(ignoring any zero-valucd cocfficients) for
some basic waveforms was dotermined (Fig. 2).
As can be scon in Figure 2 the maximum ratio
was less than 50:1, Bascd on this anulysis,
and knowing that speech is rcasonably wvell
syathesized with an amplitude crror of up to
2 or 3 percent, a ratio of 64 to 1 was chosen
for the coefficients. 7This produces a 7-bit
designation for the coefficicnt amplitude
allowing for the sign bit, The cocfficicat
of the j‘h <orm can have any integral value
from -63 to +63,

Vesign

In order to perform the mathematics of
cquation (5), the final system must be capable
of handling programmable Walsh function inputs,
multiplying these by thelr coefficients, and
then adding all the terms togethor. Assuming
that a programmable Walsh function generator
cxists, the system shown in Fig. 3 will pener-
ate the required Walsh series reconstruction.
Lach of the eight Walsh functions arc multiplied
by their cocfficicnts, and the results summed
in a binasy adder. ‘The sum is converted to
analog form by a fiunal D/A convertor, The
process is repeated cach time any of the Walsh
functions or cocfficients changes value, The
coefficients Ck and the Walsh number kn arc

usually periodically updated by the driving
computer.,

This system is not yory efficient in terms
of hardware comploxity, in that eight distinct
Walsh function generators arc required, A
multiplexing system using one Walsh function
generator, and one multiplier to scquentiolly
produce the required terms for the sum is sim-
pler. lowcver, tho binary adder now nceds a
memory element in it to storc the partial sums
as cach additional torm is boing calculated,
Since tho absolute value of tho Walsh function
is always unity, instoad of the Walsh function
boing multiplicd by its coofficlent hoforc
adding, the Walsh function value (1) and the
sign of the confficient can be logically come
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binod., If tho Walsh function and the coefficient
havo tho same sign, thon tho absolute value of
tho coefficiont can be addod directly to the
partial sum in the binary adder. If the signs
arc different, the ahbsolute value of the co-
officiont should be subtracted from the partial
sum in the adder. Figurc 4 is likely circuit

for this implementation.

tiowever, tho complexity of the adder
circuitry has increasced substantially from the
first system. The circuit proscnted in Fig. §
Is the novel circuit actually used to producc
a s.mpler system than that of Fig. 4. The
technique used converts the absolute value of
the coofficients into a series of pulses. For
instance, if €y cquals 37, then thirty-seven
pulses would be produced. Thoso pulses arc
then simply counted in a binary up-down :ounter.
The direction of the count is determined by
the Walsh function gencrator, and the sign of
the coefficient. By using such a system, the
complex adder-subtractor with memory is replaced
by a binary up-down counter, which inherently
contains the required memory.

Operation

A block diagrm of the final apparatus is
given in Fig. 6. The circuit that converts
the absolute valuc of the coefficicnts into a
string of pulscs is the ratc-multiplicr [5].
Basically, the rate multiplicr is a device
having a ciock input, a series of r control
lines, and an output, A binary numbor (Ck )
ls placed on the control lines, and a cloc
signal of frequency £, is placed on the clock
input. Tho output consists of a scries of
pulses having a frequency fo,e such that:

fout - fin'(a/b) (6)

where a is the binary number on the r controd
lines, and b = 27,

The Walsh function gcnerator used is one
proposed by Siemens and Kitai [6], and modified
to also generate Hadamard functions.

The eight input storage registers are
loaded scquentially, cither directly from a
computer, or manually through the use of puncl
switches, A multiplexer under external control
is used to determine which register is being
loaded with the data. In this manner, data can
be loaded independently while the instrument
is porforming the inversc transform from the
provious sct of data,

In order to facilitate the handling of
positive and negative numbers, it was necessary
to have the digital-to-analog converter centered
in its range for a zero (nput sipnal. This was
done by presctting the binary up-down counter
to half-scalo. Internally, an oxtra 4-bit
countor was coupled to the basic §-bit up-down
countor tn allow cxpansion to a 10-bit b/A
convarter if roquired, and to act as a scrateh
rad for intermudiate calculations in case of
ovorflow. Overflow does not occur, however,
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if scaling of the initial cocfficient values
is suck that tho sum of the absolute value of
all the cocfficients' amplitude uscd is less
than 127.

The input word for each ctorage rcgister
is organized as shown in Fig. 7. The 13-bit
word required for each dominant coefficient
inciudes a six-bit portion for the Walsh function
number, ard a 7-Lit portion for the coefficient
amplitude (one bit being a sign bit).

Results

The final instrument is shown in Fig. 8§,
while typical outputs arc shown in Fig. 9.
Ihe outputs in Fig. 9 werc *aken directly from
the /A converter, and shown the obvious com-
putation frequency., The signals synthesized
were periodic, and hence there is no change
when the coelficient values are updated every
U milliseconds. For non-periodic waves, a
change <hould also appear torresponding to a
frequency of akout 200 Hz. Filters should
prevent much of this frequency component com-
putation froquency comporent (12.8 Khiz.) from
appearing at the final outnut.

An error analvsis shows that errors occur
mainly in two ways. Fi=st, there are math-
ematical errors arising from using a truncated
series, fiom quantizing the criginai signal
before obtaining the coefficicnt values, and
from quantizing the cuefficient values to 7 bits.
Sceoundly, there arc machine errors, namely in
the /A converter, the finite transfer time
from the up-down counter to the Ii/A converter,
the calculution time (busically 1/64 of the time
6) before a new valiue is presented to the D/A
converter, and the reset tire of the counter
before performing the next calculation. liachine
errors vin the amplitude of the output) are
1 maximum of 0.8%, while qiv tizing of tne
cocfficicent amp?.tudes produces an error of
about 1.6% maximum. The main source of error
appears to be in the finits lenpth of the ser-
ics, and the coefficient truncation.

The errer in the sine wave shown in Fiz, 0
is about 2%, while the discontinuocus ramp and
triangle nroduccd errors of less than 1%.° The
pulse waseforms have abou¢ 0.2% error, mainly

due to machine limivations.

Lhaveform ‘lost lom. Least Dom. Ratio

Coeff. (Abs. won-zero

Valuc) ocff. (Abs.

“alue)

Sine 63 1.3 48.5
Triangle 48 3 16
Ramp 32 1 32
Speech|uy 36 9 3.6

Fig. 2: Ratio of Walsh Coefficients for
Scme Wavscforms
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Conclusions

Tne instrument described above has bee.
built, and is presently being interfaced to
a POP-8/L computer for continuing research in
speech awl waveform synthesis uader cumputer
control. The final system has a maximum
frequency response of aubout 8,00C Hz., and a
ninimum of 1.5 x 10-5 Hz,

Its mactical vses inelude a low-frequency
function generator (especially for ramps,
triangles, and pulses); or as a speciai rurpose
function gencrator, which can be proorammed
with a read-only memory; or (as a long term
poal) a usetul syeech synthesizar for coupling
to a computer.
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GROUP HULTIPLEXING BY CONCAT NATION OF MNON-LINEAR CCDE DIVISIOIN SYSPENS

J.4. Gordon, M.A.,
}. Barrett, B.Sc., Fh.D, C.Eng., F.I.Z.E.
The Hatfield Polytechnic,
Hatfield, Hertfordshire, U.K,

Summery

PMurther work on a systen of multiplexing in
Jhich bimry-modulated .alsh functions axe
swiied und limited, individual channel data -
being recovered by correla’ii, is preseu.xl.
In particular, s method of extonding the system
is indlcated, in vhich multiplexers are
concatenatea.

Introtuction

The normal mothod c¢f multiplexing digital
~ignals, time division, is inefficient if the
lead factor is variable. This is becauss vhen
some channels are not in use, capacity is boing
wvasted, Inquiries indicate that typical mean
load factors (mean/peak) are in the region of
10 to 35 percent, Since mrost systems ure
desimed for peak capacity, this represents a
signiricant wastage. Recently a system has
been described in which the spare sapacity is
used to provide conastructive redundancy in such
a way as to offer error-protection when the
systen is not fully loaded, @#nd in varticulexr
to provide a tradeoff Letween the number of
channels in use and the degree of errox-
protection offexred. This syctem, called
Correlation~iccovered .‘\daptive Hajority
.ultiplexing (CRAIL) is extensively discussed
clsewhere (Refs, 1,2, 3) and ~1v a fev details
¥ill be included here, since the puz;wse of
tais paper is to present some theovetival
results for a corcatenated version.

A diagran of the syctem is shown in fis, 1.
« set of .alsh carriers ure modulated with
binary data in a set of modulo-2 gates. The
Jalsh curriers are in legical 1-0 form with O
corresponding to the +1 and 1 to the «1 of the
normal form. A mcdulo-2 gate is thus eguivalsnt
to & multiplier. Thuse modulated Yalsh
functions are then passed to a majority gate
which must be of the type vwhich always forms a
aejority, no mutter how many inputs are present.

The output signal consists of the output
from this majority gate plus a synchronising
signal, vhich overv-itec one of the timeslots
of the .ialsh carriers.

The tineslots are then re-orderea in a
eircuit called the dictributor., This takes
place just before transmission and has the
effact of breaking up bursts of errors, it
the demuliiplexer, a correspondiug rodistributor

re-allocaéss the original t:meslots to the
characters, The nett resuvlt of passing
through the distribution and redistribution
circuits is a delay., The demultiplexer -
Fropexr coriiats of a shift registor with normal
and complimentary outputs, an! a set of majority
gates%hone for each chunnel, The §th input to
the 1*? majority gate is connected %o the
norm:1 output of the j*P rogicter stage if the
4% character of the il® /alsh function of the
carriex set is a logica® 1, and to the conmp-
limentary output otherwise. Registor stages
are measured Trom the bask.

The sutputs of these gatez are then heid in
Vistable ciivuits which read the majority gates
at the insiont the received frame fills the
register, ac determined by the synch circuitry.

Theoretical and experimental results for
the sysiem are reproduced in fig. 2. An
analysis of the systen is presented in the
appendix, For the present we note that the
nusber of channels which may be usel dapends
upon the existence of s mairix, the rovs of
which display a sign-invariant correlation-
coefficient after being moduiated, sumwxé and
threshold-limited. “uch a mairix is the set
of “alsh functions .al;(t) to al,(t) with the
fiist character in cach suppresse;, thetys have
been called Truncated Ualsh functions by the
avthors, Computer scarches indicate, and
Gough: has shown (4% “nat such mtrices of
Walsh functions do not ezlst for order lo by 16
or grester. ‘The origiral syatem (refs 1,2,3)
used a 7 by 7 matrix, and & typical example of
a sigoal passing through the system is indicatal
in fig. 3.

Inoreasing the  .per or channels

The obvious way of extonding the syatem,
namely by using a larger matrix is thus not
availatle, Other mcthode thich heve bsen
considrred include time shriing two or more
such systems TDH-wise in a longer wordlength,
which will of c-hurse extend the rumber of
channels but will not inciuase ths error-
protection.

It would seem a pity to have a system whoze
chicf feature ic its ability to udept to a
recizad luvad by increasing the ecrorwpretection,
if this property could not be extended <hen the
t8tem 18 extended,
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Tthe only .».1ining method of intercct is
thus concaien .taon, for which the output of one
multiplexer ic fuken to be the input of a secord
multiplexer and so one. Thus cach successive
demultiplexer 'secs' a lover error rate, and
itgelf reduces this rate,

Figure 4 shows the general idea, and the
notation employed.

Hunbering i2 urranged in the conceptual
order in thich a signal passes through the
mvltiplexer, with the reverse numbering at the
cdemultiplexer, such that a demultiplexing
stage ith the same numbering as a given
:mltiplexing stage persoms the inverse
operation to the latter. The first lovel of
nultiplexing is perfornod with the umultiplexcrs
numbers {1,1),(1,2),s.{1,n); the firal stage
of denmultiplexing is carried out with
demultiplexers similurly nunbored, and referred
to herein as the first level of denultiplexing,
performing as it does the inverse operation to
the first level of nultiplexing, In a
sinilar way the second level of multiplexing is
muvered 2. 4he k¥ input of the jth nulti-
plexer at the rirst level of this system is
labelled 1,j,k. e tein this mode of
connsction of mul%tivlerers a concatenation.

In the transmission path a device to
introduce inlependent ermwrs is indicated,
51026 4% will (e ¢Xplained, e cousider only
the prooability 2f a given character being in
error.

Je will use the itzms 'errur rate' and
‘provability that a given ch.uracter is in
error' a3 synonymous, as izplied by Bernoulli's
hypothesis that the probabilify nray te inferred
by the average _a-e. .e assume that all
canracters have the zame probteability of veing
in error of p, indereniently of all others
errors, this in turn izpiies that uny tendeucy
tovards bursts of wriyoirs has been ccuntered by
for azanple, reordering the characters of the
si¢gnul in tae tine domain before transmizsion,
and perlorming the inverse operation aiter
transmission, ..fier the addition of crrors,
the error rate is p uiwn O< <1, It is shom
(in the appendix and refs. 1, 2 and 3) thal for
small error rzies, trere exisis a siaple
relationsnip f(p) betwveen the sigmal error rate
p end the chonnsl c.oror rate 2 where P is the
provability that there will te a discrepency
betueen tho input character into the mul ti-
piexer on a _iven chunnel in a given tinaslot,

4

Je have assumed that signal orrors are
indepeident, and thus blocizs of characters nay

. be taken as indepenient with regard to the

probability of obtaining a scusceptible error
pattern, ‘These blocks correspond to characters
for each of the demuitiplexers ai the first
level, wd thus statisticul independence is
naintained ut the first lovel, Let the
relationship between input exror rate p* and
output crror rate »" for tne first level of
demultiplexing bte given by p" = fl(p'), then we
nay sy that |

P = 1, (5,(p))

.
Yo the 1elationships £; and £, are of the
ferm AN

£(p) = kp~ and ve hote that
£, (5,(p)) £ £5(£5,(p)).
w.less the k's and the x'c are rvlated,

ow the k's and x's are functions of the
number or chamels in use at one 3ine, and thus
if all the multiplexers are identical, and all
the demultiplexers are identicul, it makes a
dilffcrence to the overall error pariornance
whether nj chamels are nulitiploxed at cach
first level rmltiplexer of vhich there are np,
or vice versa, .n exumple will make the
foragoing clear, mppose that both multiplexer
éemultiplexer at both levels are of the 7 input
type a3 nes been descrided olsewhere, Lot the
first level of nultinlexing be carried out with
all seven chzmmels in use and the secoad using
three such nultiplexed inputs. The input/
outut erros relationship for a fully loeded 7
chumnel sysien is f(p) = 2.2p, and for a 7
channel 3y.‘en loeded -rith three chanzels
£(p) = 7.5p. hese res-1is are derived in
the a_:,emdix2 “hug ue hove fl(P) = 2.2p ed
fz(p) = 7.5p° vhich -ivos:

fl(t‘a(p)) = 2.2(7.592) = 16.4p2

If ho:ever the first level nad used only three
chanrels per 'wltiplexer =nd the second level
hed w-ed 7 irputs, the usne mucsr (namoly 21)
chaa.els vowld have bcog ncconnodated out wve
would have fl(p} = 7.50 and f5(p) = 2.2p sivin:

£, (f0)) = 7.5(22p)° = 35.98°

vhich i3 awut tiuice tiie nrevious mie.
K

and the corresponding character fron the o 1nt £ . S L2 %

i 1enuitiplexer. Thus P = f(p) If ue 1ot t}(p) =kp" ol ‘.‘2(9) = kP ;,i

b i

! Let the cutput ercor rete in the streum then ve nave

i Jcom the aemultiplexer levelled 2 {second level. . Ty 0 Yy X%
2 of denultiplexer in the zenze déscribed £,(65(p1) = 1(ep Sl =Kk, T p :
o earlier) ve given by p' = £,(p). Then tris - “
5 error rate is the input errcr rate into the lg“
s ‘} next {or “irst) level of demultiploxing. :
i
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and f ( (p)) = kz(klp kl L 172 The error relationship for ol is £(p) = wniry,
thus if one of the multiplexers i3 10K it is as

. . . there we oncatonntic
and we see that in general chese are not equal i ve o concaton:tion.

since unless ei ther ; The same results are yresented graphically
_ | . _ in figc 50
kl..k2 cr:l—xz_l\leh‘we

*1 "2k2 The Aiuthors would like to thank the Dircctox,
k1k2 " k1 Signals Tescearch and Developwnt kstablishment,
uvnder whose sponsorship the work was carvied
These results are swmerised in table 1 for the out ac a wsearch agreemont with the liinistry

= 7 channel system, In this table ths rows " of Yefence (frocwrcment xccutive).
2 refer to the first level a~d the colunns to the
& sceond level.s In the fir. . row and column are

included the Ivii case, for reforence puaiposes,

Table 1

Error rates for
concatenated systenm

2nd TDM T cheus 3 chans 1 caan

oM P 2.19p T.50% 35p"
7 channels ; 2,19p 2.,19{2,19p) 2.19(7.5;:2) 2.19(3513‘)

3 chennels | 7.5p 7.5(2,29p)% 7.5(7.5p%)2  T.5(350%)2

| 1 channel 35ph 35(2.19;-)" 35(7.5p2)" 35(35ph)h I

»
2nd TDM 7 chans 3 chans 1 chan

LM P 2.19p T.59° 35p"

T chennels 2.19p 4,78p 16'592 76.6ph

3 channels 7.5p 35-9P2 h21.9ph 9187'5P8

1 channel 35ph 8 -"Pk

. 8 1
110 Th2.2p 52 521 875.0p‘5
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Je corsider a sat of code .ordg 2 such that n, be the aumber which contriimbe negautively.
atj is the j character in the i ccdovord,
7he number of characters in euch codeword is L To begin with ve have n,+n, = L
and there are n codevords, ‘Thus | is an n by

L motrix. let aj3 have ihe tuo possible and in addition, by the choiceof the partition

values £ 1, Let D be a colwm vecter of n of'the charasters we havo

components Each of which may have one of the

two values ~ 1. D will be culled the data

vector. the vector B=TD { hos as its jti

component the swm of the J*' components of the Thus ve got

codevords, each weighted by the data

approprinte to ite .o define the oporator n, = -}(ri+L)

'signs! to have the effect of roplacing a

vaector by another vector vhose conponeats are e nov consider two cases depending on vhether

the signs of those of the original vector. L is even or odd, (actuaily in the case to vhich
most attention has beaen given (1,2,3) L = 7 is

The sigmml trensmitted by the ClA... systenm ocd).
is thus:

LAY

'

- —t L 0dd

S = signs (B) = sims DA

“he addition of an crior to one of the n

by dermitiplexer finds the correlation positively contrituting chersctlers will redued
coefficicnts of this signal with each of ihe n, and inercace n, by one, and thus reduce ry

codeword3, The column vcetor of' such
correletion coefficients is given by

b} o, .¢ may 2dd errors until ry is reduced
to a ncgative mumber, in vhich case a chamnel

- -t Tl Fivret] error will resalt. The nwioxr of crrors vhich

P o= 35 = Alsigne (DR) my be so addod is Hr,~1), and the addition of
and the co. = vector of recovercd data is one nore, namely ¥(ry+h) errors, could lead to 2
giver by th. .i2ns of these correlation chunnel error providing all the signal errors
cocrficiontss ’ occur emong the n_ positively contributing

characters. e Say that tre channel is
D' = sims (A(signs(B°M)¥) susceptible to

r
ARSI Weved

o At el

vt

It will be observed that the notation has been x = i(r; +1) errors.

chogsen wuch thut events uhich tule place . .

serinlly such as tie transmitted signil, are 031 thie assumption that t:q? nost l?xely ocource of

reprecented by rov vectors, und simulianeous chennel arrors i3 thet hich requires the least

events, such as the input of data, by colunn nunber of siimal e rors, n.-f.nely when exactly x

vectors, thus in 2all thcse matrices, 'time* < 1 errors occur in & signal such that the

goes horizontally. i*" chaanel is susceptible to x errors, we may
say that the probability that exactly x crrors

Je define the column vector R to be uill occur atong the n, pesitively contribating

characters is

I=T7 sxaim('ﬁ"z)

dia 1, X =X n X
- th (z2) @ (9 a (xp) ?
vhure ;)d tog has as it 11" component the data

di' and zeros everywhere olse. thus if r, is
positive, the recovered duta orc the 1~ chanuel

is the same as that at the input, snd there is
2 R 1 he ? rNe . .

3:0253 r:md zE hfc‘:owrzgszii;zie tﬁﬁ tﬁag"“‘ inee iz a dava vector of least susceptibility.

chamnel. f’ione churactor in the sigmol 5 Let ”n%n be the nunber of data vectors of least

is altcred, '.0 cassurunces on cach chonios will susceptibility Xnin®

chanse by - 2,

- and the probability that an arbitrary vord is
succeptible o x errors is 1/2® on the ziven
channel. Thon the most likely source of errors

The probability of errer in the il

Thus a reassurance of 2t+1 is ¢ guarantes clivon by
of protection against t errors.

channel

Let n_ be the numboer of characters in 2
sigal T “which contribute positively to r, and
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where “nin = «&-(rm+ 1) and X = i-(rm +1)

and Toin is the leaat reassurance on the :l.th

channel,
1 even

Here the rumber of errors tc .uduce Ty to
2670 is %ri provided they occur in the B,
positively coartributing characters. .e assune
that the majority gate will be designed to
rownd upwards of downwards for 50-50 divisions,
and so half of these cases will lead to error.

Otherwigse the argument is identical to the
case for n odd.

p Nain ( "m119 ©

= 'z'nTl' x
) h]
withn . = -5-(1:mm + L)’x::lin = Y(rmin +1)

and Tnin is the least reassurance on the ith

channel,

7

In order to evaluate ticsc rormulae it is
necessary to have a table of ceassurances for
all input data vectors, Mis informatior is
best provided by conputation und the nett
result is that for the thrce cases considered
(one, three and seven channels in use) ve
obtain the following results:

fumber of channels Channel error rate

in use
7 2.19p
3 7.50°
1 ESP‘
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E RESULTS OF MUV TIPLEXING EXPERIMENTS USING WALSH FUNCTIONS

by David L.
Grumman Acrospace Corporation

Abstract

0 ks Mkt

An investigation was condueted to study the use
of Walsh functions as orthogonal carricrs m both an-
alog and digital multiplexers for several of Srum-
man’s ¢l etronic development projecets, An analog
. qaltiplexer, relying heavily on the use of integrated
3 civeuits, was constructed and tested, revealing en-
couraging simphieity of implementation, while point-
ing out various circuit deficiencies which restrict
F; system pertormance. A digital system, based upon
3

¥

an adaptive majority multiplexing scheme, was sim-
ulated on a digital computer. ‘The data which was
obtained concerning the distribution of scequency

- power can ve of value in mfluencing the choice of
1 Walsh carriers to be used in this svstem and gives
3 insight into the nature of certain deterministic er-
3 rors imolved 1 system opaerition,

x

: Introduction

The Grumman Acrospace Corvoration is active
; in a number of arcas of electronic deyvelopment which
4 eould henetit from the use of Walsh functions.  These
3 includ-+ interior multiplexing of data and control

4 sigma’  hoavd aireraft where cable weight is a sig-
ni - s™ factor, high-speed computer pro-

3

k.

Transmitter

Durst

cessing of transforms, the enhancement and com-
pression of surveillance photog: aphs, and naviga-
tional ranging using time=shift dependent spectra,
Multiplex systems are omr ereatest mterest at this
fime. This paper deals with an evaluation ot a pro-
totvpe Walsh function analos multiplex svstem, and
results of a computer sinalation of an all digital,
adaptive majoritv multiplexirg techniqae,

Analog Multiplexer

The analog svstem whose vioek diagram s
shown in Figure 1, 1s capable of m- alating up io 16
band-hmited signal channels onto . ¢ of Walsh
carriers for transmission over onr une, and recon-
structing the signals 1t the recenving end., While
only two channels have becen activated and tested,
complete 15-channe!l operation can he achiceved by
the addition of several redundant analog circu.t
hoards. The multiplexer was designed and built tor
evaluation, study, and demonstrations. Photographs
of the complete sy stem are shown it Figure 2.

The system was constructed  ntirelv of readdy
available digital and lincar mtegrated circeurts, The
Walsh function sencerater, consisting of a clock os-
cillator, binary counter and exclusive -or logic gstes,

Iig. 1

eceiver
4 r
laout Sequ!ncy‘ Waish Wal.h 1 Sequency
aputy O~-———P} Low Pass Multipher Multiphe r—# LowPass ——3p
Filter I Filter
Sample o_—1 wat (1,t) -J * Wal (1) —F Sample -J
Dschrg (EJ—Q Dschrg e
+ 1]
Sequency Walsh Watsh Sequency
Inputy O——9p Low Pass Mattrohe I Nasltphier P Low Pass ——Pp
Fitter uttipher Filter
A
Sample O—j Wal (K1) _5 Wal (K.t} _J Sample _J
Dschrg e Dschrg
Sample & p——7_pp Sample I Sample l——3» Sample
Discharge I & Duscharge
Logic p———mP» Dschrg Logic J—b Discharge
L | J— .
I i Synec
Clock p—— I P! Etractor Clock
L.
Waish ———> Wal (0, t} Walsh F—=P Wal {0, t)
Function L — @byt (1, 4) Function =P Wal {1, 1)
Genetator Gen
Logie L pwal (15, 1) i Logie b war (°5, 1)

Waish Function naloy Muitiplexer
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was fabricated from standard 7400 series TTL dig~
ital logic, The analog processing {s completely
performed by LM201 operational amplifiers and
DG141 analog switches, The system clock frequen-
cy was selected to produce a 150 microsecond ortho-
gonality interval for the Walsh functions, thus pro-

: viding 2 theoretical input bandwidth for the system of
approximately 3 KHz (usable for intelligible voice
trangmission). Some oscillograms of representative
system waveforms are shown in Figure 3.

] It is of interest to note that by pushing the
i 7400 series of digital logic to its maximum speed

capability, it is possible to generate the 16 low~
order Walsh functions with an orthogunality interval
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Fig. 2 Photographs of Prototype Analog System
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by Triangle Function

Cacrier Mod. by
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Sinusoid

Sumef (1) & (2)

{c) Modulated Walsh Functions &
Multiplexer Output

Fig. 3 Oscillograms of Representative System
Waveforms

as small as 0,5 microseconds, or a maximum se-
quency of 30 Mega zps., Neglecting analog circuit
limitations, the maximum frequency bandwith of the
input signals could be as high as 1 MHz, Futher-
more, using state-of-the-art, emitter-coupled inte-
grated logic circuits, such as the Motorola MECL
III family, sixteenth~order Walsh functions can
readily be generated with orthogonality intervals as
low as 25 nanoseconds, This corresponds to a
maximum input frequency bandwith of 20 MHz, The
Iinear integrated circuits which are available for
our analog circuit requirements severely limit the
operating sequency of this multiplexer. This is
described later.

Performance Data

An important performance parameter in a
multiplex system is crosstalk between channels,
Measurements were made to determine the magni-
tude of the crosstalk in this system for all possible
combinations of 16 Walsh function carriers, It was
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found that the degree of ¢rosstalk is strongly de-
pendent upon the sequency of the Walsh function
carrier sclected for each channel, with the magni-
tude varying between ~13 db and -45 db, Figure 4
shows how the crosstalk in a channel incressed as
the sequency of the adjacent channel carrier was
increased. An increase in the amplitude of the in-
put analog signals was also found to increase the
crogstalk, although a change in signal frequer y had
no effect, thus eliminating the possibility the.. .apac~
itive coupling between channels was involved.

The total harmonic distortion of the output sig-
nals introduced by the multiplexer was found to be a
function of the sequency of the Walsh function car-
rier selected, As shown in Figure 5, the percer’
harmonic distortion of a 100Hz, input signal was
found to vary from .8% for a wal (0,#) modulatea
carrier to 2% for the wal (15, #) carrier. All dis-
tortion measurements were made with a 3-kHz
single-pole low-pass filter in cascade with the out-
put to eliminate the high frequency sampling har-
monics inherent in the multiplexer,

Synchronization

E: Due to the nature of the correlation function
. of the Walsh functions, precise phase synchroniza-
tion between the multiplexer and demultiplexer is

¥ essential to proper system operation, In order to
b observe the effects of phase shift in the prototype
2, multiplexer, we provided an external synchroniza-

tion link capable of varying the phase between the
two Walsh function generators in precisely con~
trolled increments, Figure 6a shows a graph of the
amplitude gain through one channel of the multiplex
system as a funiction of the phase shift between the
cal (7,0) carriers. A similar graph for the sal

(1, #) carrier is shown in Figure 6b. Each mea-
surement was made with a step change in phase of
1/64th of the orthogonality interval, The graph is
representative of the absolute magnitude ot the auto-
correlation function of the carrier and agrees with
theoretical results. Increases in crosstalk, with
phase shift, of up to 10 db were also observed.
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For higher sequency Walsh functions, a very
slight change in phase can result in a significant
change in charnel output. As an example consider
the cal (7, 0) function with an orthogonality interval
of 1 microsecond. Figure 6a, shows that a synchre-
nization error of ag little as 16 nanoseconds (1/64
period) can result in a 20 db change in received
signal output. As the sequency of the carriers
which this multiplexer is designed to handle, in-
crease, precise control of time delays through the
synchronizetion circuits becomes critical.

Analog Circuit Restrictions

The degree to which the mcdulated sequency
carriers within the multtplexer circuits approach
perfect Walsh functions is an important factor in
explaining previously mentioned deficiencies in
system op-.ration, Although good quality Walsh
functions can be synthesized digitally, the ability to
perform multiplication and addition operations with
these functions requires linear devices which can
slew between voltages of opposite polarity in zero
time. Such impractical devices would be optimized
in the sequency domain, Ir order to approach this
optimum device with practical hardware, the prop~
erties of frequency~domain-optimized linear am-
plifiers can be combined with time~domain-opti-
mized electronic switches, The multiplier configu-
ration shown in Figure 7 i{s an example of this. This
circuit which was used in oer protofype syaters
multiplies the wal (0,0) component of the input ana«
log signals by a selected Walsh carrier by switching
the amplifier from an inverting to a non-inverting
mode in step with a digital control signal.

It is desirable to use an operational amplifier
in this curcuit for precise gain control and Irequency
control characteristics. Modern integrated circuit
operationai amplifiers, however, sre limited to
slew rates of approximately 100 +»lits per micro-
second at unity gain, Furthermore, integrated
analog switches have maximum upeeds of the order
of one microsecond, &nd non-syminetrical turnon
va turnoff delays of approximately 500 nanoseconds,
Because of these analog circuit Mmitations, tho
multiplexer in multiplying two near-perfect Walsh
functions produces a distorted Weish function naving
much longer transition times, This is a divect
result of the degredation in performance involved in
tue interface between high-spced digitat logic with
limited-slew=rate linear circuitry.
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Fig. 7 Walsh Function Miitiplier. Combination
of Linear Amplifier and Electrenic Switch
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In an effort to preserve the orthogonality of
the Walsh functions, it is necessary to reduce the
maximum sequency, 8o that the finite transition
times are a small (raction of the orthcgonal interval.
‘This, of course, reduces the sampling frequency of
the sequency low~pass filter, thus limiting the maxi-
mum [requency bandwidth of the input cignals,

As was previously mentioned, the percent
harmonic distortion of the input signal channels
processed by the muitipiexer and the crosstalk he=
tween multiplexer channels will, in general, in-
crease as the sequency of the carriers increase.
This is in line with the sequency limitations of the
Walsh multiplier and other linear circuits used in
this multiplexer. Furthermere, the increase in
crosstalk with increases in the amplitude of the
multiplexer input signals {s related to the higher
voltages to which the Walsh multiplier must slew.
The correspendingly longer transition times of the
modulated Welsh function result in 2 cross-cor~
relation function in the demodulation process which
is increasingly greater than zero, thus producing
higher levels of crosstalk, Amplitude comnression
and limiting of the raultiplexcr input signals will
reduce the voltages to which the linear amplifiers
must slew. This compromise can be uscd to re~
duce crosstalk level when faster slew-rate ampli-
flers are unavailable,

These experiments and observations with the
prototype, have reaffirmed the feasibility of con~
structing a multiplex system using amplitude-
modulated Walsh functions, rather than sinusoidal
functions. However, certain deficiencies in avail-
able integrated circuit performance, impose
various restrictions on the system design. While
Walsh functions of sequency greater than 100 Mega
2ps can readily be synthesized using state-of-the-
art digital circuits, the linear integrated circuits
which can modulate these functions and preserve
their orthogonal properties are severely speed
limited in comparision,

Further improvements in linear integrated
circuite will certainly enhance the performance
possibilities of Walsh function muitiplexers, It
should be noted, however, that in any applica-
tion where multiplication by an analog signal is
involved, the inherently binary Walsh functions
ere immediately transformed into a multilevel
analog sigual, and all further processing must
be donc by linear circuitry. A much more desir-
able application of Walsh functions would retain
thelr binary structure throughout all stages of
processing, and thus make more «fficient use of
their properties. Suck an all digital system is
discuseed below.

igital Multiplexur

Barrett end Gorden [1] have deacribed an
adaptive majority multiplexing scheme in which
several channels of binary data are multiplexed by
modulation onto the seven lowest-order Walsh func~
tions, Eachbitofbinary input data is represented in
terms cf the wal {0,0) function, witk a logic "zero"
designated 28 + wel (C, # ) and logic “one" desig-~
nuted as - wal (0, #). If the logic level for each
input chaime! is multiplied by its respective Walish
carrier, and the products are algebraically added,
the systom would de identical to the linear system
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Fig. 8 Adaptive Majority Multiplex System

previously described. This linear superposition
of Walsh functions can be hard-limited by a major~
ity gate before transmission [1]. The resulting
binary signal will, in most cases, stili contain
separable input logic information for each channel.
It has been skown that such a multiplexing system
is then capable of providing automatic tradeoff be~
tween its redundancy properties and the number of
channels in use at one time,

The digital multiplexer shown in the block
diagram of Figure 8 can be built entirely of digital
integrated circuits, thus enabling high~speed
operation. Exclusive OR logic gates can be used
as Walsh~function multipliers and the adaptive
majority gate can easily be implemented with a
256-bit read-only memory chip. In fact, it is con-
ceivable to implement the entire multiplexer or de~
muitiplexer circuitry with one read-only memory
and a shift register,

Computer Simulation

A computer simulation of this system was
performed in an effort to study an inherent deter-
ministic error [1] , and to determine the sequen-
cy power distribution of the multiplexed signal,
The computer program simulated actual system
operation with from one througk seven channels
active at any one time and with all possible input
logic combinations genera.2d and tested,

The computer was programmed to calculate the
results of each step of the adaptive majority multi-
plexing process, and makes a bit-for-bit comparison

between the binary levels selected at the input and the
resulting levels calculated at the output, If a match
is found, a new word is calculated and the process is
repeated until all possible binary bit combinations are
exhausted., If an error is detected in any output bit
channel, a warning message is printed, indicating
the calculated output results containing the error, the
corresponding input binary bits, and a representa-
tion of the Walsh sequency spectrum of the multi-
plexed signal. When all possible input combinations
for a given number of active channels is exhausted,
an additional channel is activated and the process re-
peats until all seven channels are activated and
checked, The designation of the sequency of each
Walsh carrier per channel is provided as input data
for each run. It should be noted at this point that for
synchronization purposes in a practical system, the
first time slot of each orthogonal interval of the multi~
plexed signal is truncated and forced to a logic ""cne'.
The computer program uses this truncated signal but
there is little difference in the final results whether
the signals are truncated or not.

Computer Results

The system operates satisfactorily when the
number of active channels is either one, two, three,
six, or seven. When five channels are active, deter-
ministic errors are generated for certain combina~
tions of input logic levels. This is true for all pos-
sible choices of five out of seven Walsh carriers.
Each of the 21 possible combinations of five carriers
were tested by the computer program. Each run

- showed similar errors in the output binary bits. For

the four~channel case it was possible to choose sever-

6 al combinations of four Walsh carriers such that the

e e N s LB bt et B B N S R

»
i el R

B4 vt Betie

2o b Sk e 0, S R LY,

[ 1Y n
3b, 1% St vl W

Paal W
o N}'&’fm‘;ﬂ

-,.,‘
1

LTI

) ~ Y
R LR I A R L

EaTa
F o,

4

R
i e b P la i

==
.

» ry PP A
D S R AT AR P e

FATC I RErS IR
154 i

3
AR

SRS S I




—y ~re Ferg ypETY e T p———
B YU S A . Sin e RS TR R G Vet v e, T ) £ 555,% YOIV (AL SRR D= - R
o - o

multiplex system operated without any deterministic
errors. A list of three sets of Walsh function car-
riers which can be used when only four multiplexer
channels are operetive is prerented in Table 1. Time
limitations prevented a check of all 42 possible
choices of four carrier sets.

TABLE 1 THREE SETS OF WALSH FUNCTIONS,
SUITABLE FOR FOUR-CHANNEL
MULTIPLEXER OPERATION

CarrierSequency (XT)}| 1| 2| 3] 4| 5] 6 | 7

Set1 X X
Set 2 X Xy X X
Set3 X X| X| X

Majority Multiplexer Spectral Analysis

The computer-derived spectral analysis of the
multiplexer output signal indicates a spreading and
shifting of the spectrum of the signal as it passes
through the majority gate, This, of course, should
be expected since the majority gate effectively re~
celves a multi-level superposition of Walsh functions
at its input and performs a hard-limiting operation on
it to produce a binary output. The deterministic er-
ror inherent in five~channel operation and most cases
of four-channe! operation of the multiplexer is due
entirely to a loas or inversion of certain spectral
components of the multiplexed signal as they pass
through the highly non-linear majority gate. The
resultirg sigual which is transmitted to the demulti-
plexer either contains erroneous information or
doesn't contain any information concerning the binary
state of the channel associated with the affected
spectral component.

An example of this phenomenon is shown in Fig-
ure 9. Figures 9a and 9b show the majority gate in~
put ard output spectra representative of the signal
genemted by logic levels non' non’ nln’ non’ "o
modulating Walsh carriers wal (1, ¢ ), wal (2, ¢ ),
wal (3, ¢ ), wal (4, ¢), wal (5, # ), respectively. .
The spectra for logic levels 1", "0", "1, "0", "0"
modulating the same carriers are shown in Figures
9c and 9d. Note that the output spectra for the two
different input signals are identical, and the wal (i,¢)
component which was present at the input has dis-
appeared completely. All the information determin-
ing the logic leve! that was multiplexed from channel
numbey one for this particular set of input signals has
been destroyed by the non-linear limiting process,
and the multiplexed signal has become ambiguous.

Similar input and output spectra are shown in
Figure 10 for input logic levels '00001" and "10001".
Although both input spectra contain energy only in
the sequency range wal {1, ¢ ) through wal (5, # ), in
this case the majority gate processing has trans~
ferred energy to the wal (0, #), wal (6, # ) and wal
(7, # ) sequences, Again for these selected five in-
put channels, note that the output spectra for differ-
ent inputs are identical. Yet for this particular set
of inputs, no spectral component has disappeared
completely, It is, of course, impossible for the de~
multiplexer to correctly identify the logic level
transmitted on channel number one for this particu~
lar set of inputs, since the demultiplexed channel
number one logic level would always be identified as
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Fig. 9 Binary Input and Qutput Spectra for Five Input
Majority Gate (Sequency of Active Carriers:
1, 2, 3, 4, 5)

"zero' regardless of the binary bit{ actually trans-
mitted. In general, for each choice of five Walsh
carriers, eight pairs of five-bit input word sets
were found to be ambiguous (out of a total of 32 sets).

For the case of four active multiplexer chan~
nels, it was noted that only certain choices of Walsh
carriers will produce unambiguour operation. Fig-
ure 11a shows the input spectral components for the
four-bit input word *'1100", Note that in the output
spectrum of Figure 11b, the wal (4, 8 ) spectral
component has been inverted, causing the multi-
plexed signal to be incorrectly identified as "1101"
by the demulitiplexer. A better choice of Walsh car-
riers for four-channel operation is shown in Figure
12a, where four input logic bits "1001" are modu~
lated onto Walsh carriers wal (1, 8 ), wal (2, ¢),
wal (5, # ) and wal (6, ¢ ). The resulting output
spectrum in Figure 12b shows that the spectyal com~
ponents representirg the active Walsh carriers will
be correctly demodulated at the receiving end of the
system. Indeed, as noted in Table 1, all 16 possible
four-bit input combinations will produce valid out-
puts for this particular set of Waish carriers.

Spectrum Spreading

As a result of the spectrum spreading caused
by the non-linear majority gate processing, the mul-
tiplexer output signal includes all Walsh components
from wal (0, ¢ ) to wal (7, # ). It is therefore im=~
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Fig. 12 Input and Output Spectra for Four Input
Majority Gate (Sequency of Active
Carriers: 1, 2, 5, 6)

perative that the demultiplexer "knows" which chan-
nels are active and the sequency of the carriers ser-
vicing each channel. This requires some kind of link
between the multiplexer and the demuitiplexer to con-
vey channel activity information, One of the multi-
plexer channsls could, of course, be reserved for
this purpose.

Although the multiplexer will not operate pro-
perly when only five channels are needed, the infor-
mation for one of the five channels can, of course, be
redundantly multiplexed onto a sixth channel for this
special case. When four channels are needed, it is
essential that the carriers be selected properly.
Furthermore, regardless of the number of active
channels, it is essential that the demultiplexer be
informed, in some manner, as to which Walsh com~
ponents must be ignored. Otherwise, erronsous in-
formation will be received on inactive channels, In
general, the adaptive majority technique is an attrac~
tive multiplexing scheme that can make effective use
of modern dagital integrated circuits, and the binary
nature of Walsh functions.
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A WALSE-FUNCTION POWER-CABLE MONITORING SYSTEM

Frank Furrer, Arvind Shah and Martin Maurer '

Institute of Applied Physics
Swiss Federal Institute of Technology

1. Abstract

The continuous supervising of the
temperatiure and a numter of possible
other parameters of a power-vable in-
creases its economy and its reliability
cor.siderably, It is-necessary to measure
the temperature at many different points
along the catle and to transmnit these
values to a cerntral moritoring station.
This central statiorn then possesses all
the informatior necessary to load the
cable best. The required transmission
of information from meny measuring
points to one single central station is
done by Walshk-functions.

2. Introduction

This paper deals with the appli-
cation of Walsh-functions to the problem
of menitoring a power-cable., The problem
25 defined by the cable producers, was
as follows [li :

A system which can monitor a power
cable (specifically an oil pressure
cable) along a length of approx.
500 ft shculd be designed. Infor-
mation on the local surface tempe-
rature of the power-cable and a
number of possible other parameters
(such as 0il leakage) is to be
gathered from 50 measuring points
distributed zlorg the ceble and
transmitted to a central moritoring
station (Fig. 1.).

Measuring units
\

:.:- \
Monitoring
station

Power-cable

Fig. 1: Monitored power catle

Zuerich

Svek a system would te cf consider-
atle comrercial importance tecause it
would permit a tetter utilize€ion of
pcwer caktles. A cable with an urkrown
terperature profile carnct be utilized
to its proper limit because of the
danger of thermal breakcown. Thus, with
the monitering system, a corsiderable
amcurt in the laycut of an wderground
power distribvijor netwerk could te

saved. -

This protleém, although inspired by
the specific aprlicatior of pcwer catles,
car be corsidered typical of many moni-
toring situations or alarm networks,
such as might be required for pipelines,
gas conducts, railwvay lines, etc.

It is t ypical of such an
alarm or monitoring system that a great
number of measuring or control points
have to be connected over a few common
wires. The use of some form of m ul t i-
plexing becomes imperative: it
seems that Walsh-functions are narticu-
Larly suited for this power-cavle
monitoring situation, because the trans-
mission rates are very low and a whole
signal-cable network can be reserved
entirely for the monitoring system.

In fact, the higher harmonics (in the
frequency domain) of the Walsh-functions
do not become into conflict with the
cut-off frequency of the signal-cable

or with other transmission channels as
is the case e.g. if sequency multi-
plering is used in telephone cr radio
communications,

The practical advantage of sequency
multiplexing for this particular
application hecomes evident when one
looks into the further concitions that
are imposed on implementation:

- The measuring elements and zll local
electronic circuitry required for
multiplexing has t¢ be miniaturized
because they will be mounted between
the lead and the thermoplastic sheath
of the power cable (Fig, 2). This is
necessary for monitoring the surface
temperature of the lead and to detect
any oil leakage., Any inductances or
large capacitances required for sine-
wave generation thus fall out of .
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consideration, and preference must be
given to simple digital circuitry that H
can be packed into a medium scale !
Integrated Cireuit. i
- The reliability of the measuring W trnmd ¥z W %
elements and multiplexers should be k it B 1 :
typically larger than that of the W W W :
power cable itself, which has a mean- J 4 2 i
time to failure of over 20 years. This 5
again calls for Integrated Circuitry. 4
- D Central %
Y monitoring 3
L Thermoplastic Measuring cells station 3
""""" sheath ﬁ
\ Measuring Fig. 3: Structure of the System %
cell Each unit therefore acts as a Walsh- i
fuaction generator. A common clock is §
---Lead fed from the monitoring station to all ﬁ
the peripheral units: it is used to %
clock a binary counter in every unit, %
the various outputs of this counter are =z
fed to a logic network consisting solely i
of exclusive-or gates. The few variable %
connexions of this logic network allow 5
the programming of the desired Walsh- g
function. %
B
Fig., 2: Power cable cross-section , This scheme permits to transmit o n e 4
binary decision from every measuring cell ¥
- A large amount of disturbances (noise, to the monitoring station according to a b
spikes, bursts) are expected on the simple convention: the presence of a K
transmission wires of the mcnitoring particular Walsh-function means "1", i
system: these could be due to short- the absence means "0". i
¢lrouits, load changes, ete, which The signals of all the sending units 5
e present on the high-voltage, fed simult 1 4 additivel I
high-power-cable, This condition calls ?re ed simu’sansous ¥ and additively ¥
for a system with a high noise- 0 the channel. Thus the woritoring %
: ; tation receives the s um of all the 9§
immunity ard there again, a Walsh- stabic s ke
function system synchronized by strong individual signals. B
synchronization pulses from the To transmit more than one binary
central monitoring station has the decision from every measuring cell to
added advantage that correlation de- the central station, a s ignal -
tection at the central station is word (e.g. 8 bits) is defined (Fig. 4) .
possible. U
A time multiplexing technique could . -
not be used just because the re- Digital coded Alarm
quired high noise immunity would call temperature value conditions
for long transmission times for the Signal-
single measuring point to the central 'l ‘) 'l (’ " 0 'l 'l wofg -
monitoring station. This would lead :
to unpermissible high cycle-~-times for 1 1 ; !
the supervision of the whole cable. L H jHL ggzgzgitted :
U i
3. Description of the System l, AlSynchroni- 2
We have basically a structure with | Zation £
a channel, a centrel monitoring station o
wnd many measuring or sending cells Fig. 4: Signal-woxrd 2%
. 2
(Fig. 3). ) The signal-word contains the Gray- %%
To every measuring cell o n e coded information given by the tempera- %7
perticular Walsh-fuiction is assignced. ture-sensitive device and the oil-probe. ﬁ
This Walsh~function carries address To every bit of this signal-word, id
and information of the cell at the exactly one period of the Walsh-function
seme time. is assigned. If the corresponding bit is
90
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"1", the period is transmitted, other-
wise not.

The required synchronization is pro-
vided by a oynchronization pulse at the
beginning of each signal-word. The
synchronization pulse is also trans-
mitted from the centrael station to all
the peripheral units and assures the
parallelism of the signals of all the
peripheral units.

In our cnse the channel consists of
a S5-vire-system, Clock, synchronization
pulses, signals and supply voltage are
carried on different lines. The signals
of all the peripheral units are super-
posed on the channel by current-addition.

At the mnnitoring station the signals
are separated by synchronous correlation
(Fig. 5). The correlation is extended
over many signal words, typically 32.
This is possible because the information
changes very slowly: the cable has a
thermal constant of hours and the
occurence of oil-alarm is unique: if
oil-alarm occurs, the operation of the
cable has to be stopped. As an addition-
2l feature, the information is Gray-
coded, so that a change in temperature
by one quantizing step always changes
only one bit of the signal word. The
uncertainty of the measurement arising
from the "long" measuring time is there-
fore at most one quantizing step of the
temperature value,

v 1 J
Y, a-ve—— )
I il CORRE
Wy SRR~ = LaToR
——-a-
¥,
//’
W, gpgpgn g0 | Signal-word
°  of the j-th

l‘q !’q Ifﬁ A measuring unit

Fig. 5: Central monitoring station

This scheme allows the extraction of
the data of any arbitrary sending unit,
or - with the aid of a multiple or
multiplexed correlator -~ groups of
sending urits. The output of the cor-
relator is equal to the signal-word sent
by the measuring cell. It can be trans-
formed back into an analog value for
display.

The time required to extract the
information of all 50 unite if
serial ocalling is used is about
1 § minutes (the olook-frequency in the
syotem being 2500 Hz). With parallel

N

N

calling (multiplexed corr~lator) this
time would be reduced to apprur. 2 sec,

4, Additive Cauggian Moige

The signal arriving at the monito-
ring station (i.e. the Wulsh-functinn
we are interested in) has a certain
signal power 3, and the unavoidable
noise has a power N. The signal to
noise power ratio S/N at the input of
the detection process is therefore
given,

If we assume for the moment that only
o n e Walsh~function is present
(s(t)=0) and that we have ideally low-
pass filtered Gaussian noise (Fig.5),
the signal to noise power ratio S'/N'
at the output of the detection process,
or better, the signal to noise ratio
improvement
S'/N!
=8/ 8

can be calculated.

—

Correlator

R, (0
4y (O

N(t)

Fig. 6: System for noise-caleulations

The output of the correlator is
called wa.(o) and is the cross-corre-

lation-funftion of the incoming, noise-
corrupted signal and the locally gene-
rated Walsh-function W!. Since the cor-
rupting noise is a ran&on\variable, the
correlator output will itself be a ran-
dom variable. Its value without input-
noise, that is with just the function
a-Wi(t) as input, is

B [wai(ox- a

The additive noise §ives the random
variable a variance -, which is de-
pendent of f (low=pass-filter cuteoff
frequency), - the sampling frequency f
and the correlation duration. 8



+ This variance turns out to be
: (4], p 282)

n-1
o 3 g [n )-#Le(s1]
S

k=-(n~1}

&? is the noise power at the output
1 of the correlator.

Therefore the signal to noise power
ratio at the output becomes:

2
E°[R 0
st [ fWi( 8
Nt T &2
The signal to noise ratio then can be
A rewritten:
] 2
i St E [Rf'ﬂi(o)]
3 N—" = |
n-1 n ~lk k k
=== Ry s () Ry(3 )
ﬂ 2w el e
k=-(n-1)

From this equation S'/N' can be cal-
culated. The calculation is rendered
i easier if

k
Ry ()
WIWIE

is assumed as the constant value

Rw,w,(0)=a (worst-case)
1"i
k . .
Furthermore, RNN(§$) is given by

_ sin(2Tf . t)
Ryy(t) = 4Tl'fc)'N - c
‘e

fNN being the double-sided power

density of the white Gaussian noise.
t

The calculation of %7 was carried

out, under the above worst-case condi-
tion, for a cut-off frequency of the low-
pass-filter chosen' at

fc = l/tr

(t_= shortest pulse duration of highest
walsh-function).

The calculated values of the signal
to rnoise improvement % are given in
Fig. 7, in function of the number of
samples per Walsh-function period where
m is obtained from S'/N'kthe equation:
2
a ; N!

é

2= 3N _ N
= = ; I
N ST~ 2fp@7E, S

In the same figure values measured on a
test system have been plotted.

50+ 40
L0+ 30

0+ 20 ‘4
204 10

ll) 50 100 m
Correlation over 1 period
Correlation over 10 periods

m = samples per Walsh period

e calculated (without low-pass filter)
== calculated (low-pass filter)

~~~~~ - measured (RC-section)

Fig., 7: Signal to noise power ratio
improvement

If now several Walsh-functions are
present (s(t) # 0) neither the expgeted
value E [(g{t) nor the variance & of
the correlator output are affected, if
an equal number of samples are taken
from every time interval ty. (This
follows from the orthogonality of the
Walsh-functions and the linearity of
the s's-ec of Fig. 6). Thus, the curves
shkowr in Fig. 7 are valid independent
of the number of Walsh-functions present

on the channel.

5. Conclusions

Walsh-functions have shown to be
particularly well suited for a sitvation
where a large number of binary coded
signals with a low transmission rate
have to be multiplexed in a single,
noisy chennel. A Walsh system Becomes
particulariy advantageous where mini-
aturization or high reliakility is re-
quired because it can easily be im-
plemented by fully-digital MSl's,

With a synchronous transmission and
correlation detection over many periods,
the main problem would seem to be the
transmission of the clock and synchro-
nization pulses from the central moni-
toring station to the various monito-
ring points. In the situation deseribed
in this paper, it may be assumed that
the central monitoring station, which is
at the same time the power source of the
whole system, is capable of se=xding out
very strong pulses that are hardly dis-
turbed. In another situation, howevs .
where the power of the pulses are limi-
ted, this additional problem would have
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to be carefully studied.
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SOME CONSIDERATIONS IN SEQUENCY MULTIPLEXING SYSTIMS

chiang Lin and Someshwar C. Gupta
Information and Control Sciences Center
SMU Institute of Technology
Dallas, Texas 75222

Abstract

This paper describes a Sequency Multiplexing
System, First a output of a sequency low pass
filter (SLPF) in the matrix form is developed
for any input by considering the first m-terms
of Walsh series expansion of the input, The
SLPF is assumed to be composed of an integrator,
delay elements, a sampler and a zero-order hold,
The number of delay elements {s dependent upon
m, Using a block impulse as a testing input,
the sequency multiplexing system is constructed
using the sequency low pass filters., The output
of each channel of the system is expressed in a
closed mathematical form., The use of the pre
and post amplifier in the wmultiplexing structure
is also discussed, Results of the cross talk
between the channels are obtained and these are
given in a table form., The noise in the channel
18 also considered.

Introduction

In recent years Walsh function has become
quite popular in communication applications. The
advantages of Walsh functions are primarily due
to the efficiency of implementation and signal
manipulation, Digital networks are more accept-
able to the practical applicatioens since the in~
vention of IC circuits, For digital networks,
pulse type wzveform like Walsh functions are
more suitable than sinusoidal waveforms. The
uge of Walsh functions in multiplexing systems
have been discussed in previous papers [1,2,3].
In this paper we s:lect a communication model
generally used in a multipgl:xing system for de-
tailed investigation. The derivation of the
equations and results are stated,

Representation of Walsh Functions by Matrices

Walsh functions form a complete set of ortho-
gonal functions [4]., The Walsh function W(m,0)
may be defined by the difference equation

Wiantp,8) = (1) 1M/ 2I) gypa 200 3
+ -0 ™Pa, 200- 1) w

where p=0 or 1; n=0,1,2,...; ~1/2<6<1/2;
In/2] defines the largest integer less than or
equal to n/2. befine W(0,8) as
- 11 for -1/2 < 8 < 1/2
W(0,6)= 19 for 1/2 <0 < -1/2 @

With the above difference equation and W(0,6),
W(m,0), m=1,2,..., can be generated in sequence.
For example, W(1,8) can be obtained by setting
p=1l and n=0. From eq. (1)

H(L,0) = - (W[0,2(8+ D] - W[0,2(6- 3 )1}

The function W(0,20) has the same shape as W(0,0)
except it is squeezed into -1/4 < 0 < 1/4.

W(0,2(8+ 1)) and W[0,2(8- 2)] translate W(0,26)
to the left and right by 1/4. After W(1,6) is
found, W(2,9) can be generated by letting n=1,
p=0. W(3,8)...etc.

Fig. (1) shovs samples of Walsh function. e
jndependent variable is the normalized time O6=x.
Tp is the smallest orthogonal period for Walsh™0
functions. Since Walsh functions are pulse-type
waveforms with amplitude +1 or ~1, it is more
convenient to represent the subset {W(0,8),...,
W(m,8)} within one crthogonal interval To by an
(m+1)x(2F) matrix, where r can be calculated by
the inequality

2"l < () < oF 3
For example: .
n=0 m=1 = [r t
"0 (+] Wl [_ J
- ¥ o4+ 4+ F
m=2 M - -+ +
W, = |~ =~ + + W, =
I 3T - + + -
+ - + -

where + and - nmeans +1 and -1 and each column
rcpresents a Tp/2T interval.

Qutput of An Ideal Sequency Low Pags Filter (SLPF)

The Walsh series expansion of a function F(0),
~1/2 < 8 < 1/2, can be expressed as

© 1/2
FO) = Ja(W(L,0) ; a(i) = [ F(O)W{1,0)d0
i=0 -1/2 4)

The Walsh series expansion has the same proper-
ties as the Fourier series expansion, except
when F(8) extends over the range of ~1/2<6<1/2.
then the Walsh se ‘ies expansion must be recalcu-
lated oa each orthogonal interval such as 1/2<8
<3/2, 3/2<6<5/2, etec.

Let F(0) pass through a scquency filter, the
general expression for the output can be written
as b
Fo(5) = 1{ a(1)K(1)W[1,0-0(1)] (5

=3
The type (low psss, high pass, bandpass) cf se-
quency filter depends on the values of a and b.
K(1) and 6(i) determine the characters of the
sequency filter., K(i) is called the attsnuation
factor and 6(i) is called time delay.

The difference between the ideal frequency
and sequency filters is stated as follows. In
the frequency sense, the ideal filter can be
defined by having a flat amplitude and linear
phase responses. However, we defined "the se-
quency as the generalized frequency ," [5] hence,
the "phase" is not meaningful ir a sequency sense.
Instead the ideal sequency filter is defined as a
filter with a flat amplitude response and a con-
stant time delay.

The output of sn ideal sequency low pass fil-
ter ~an be obtained by inserting the following
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values in Eq. (5): a=0, bem; K(0)=K(1l)=...=K(m)=1;
; 8(0)=6(1)=,,.70(m)=1 6)

. That means the sequency low pass filter passes

the first m+l terms with a unity attenuation and
t.me delay. Eq. {5) now becomes
Fo(6)=a(0)w(0,8-1)+a(1)W(1,6-1)+...+a(m)w(m,6-l)

With the help of Eq. (4), the form of Eq. (“%7)

Ly

3
2 can be rewri;;en as 1/2
1 6) = 19)d0
] Fo® = 1 [2 r@me,nae [ roma,e
5 -
3 1/2 w(0,6-1)
] e f F(6)W(m,0)d8] |W(1,6-1) (8)
i -1/2 .
: Wim,0-1)

Each element in the row matrix may be considered
as tne summation of 2T subintegrals. In each
subinterval ¥(m,f) is a constant with value +1
or ~1. The column matrix is a Walsh watrix with
a unit tim. delay. It does not effect the re-
sults if we calculate Eq. (8) in current time,
then dealy the whole waveform by 1.

A more convenient form of Eq. (8) is

RS T eI v KR T} X

For convenience, let D=2¥

% 1.1 1 kt+l

3 WAbTS e

- Fo(e) - [J-l F(8)de ... I-£+&_ F(6)d8 ...

e 1 2 2 2T _

; . I F(0)d6] fW(1,6)} |w(1,8) (9)
g 11 : :

} i 2"' w(mye) W(m;e) O=8-1

. T,
FO(O) = v"mwm|6=9-l where

| 1.1 1 ktl 1
: "7 7D 3
v-[f L ?(e)de...I Lk F(e)de...I1 L F(£)d0]1(10)
~2 3% 7D

Eq. (10) shows the most general form of the out-
put of an ideal sequency low pass filter.. In a
real situvation F(8) is divided into time section
-1/2<0<1/2, 1/2¢8<3/2,.... The outputs of the
filter are calculated on each time base. Such

a division does not place any rastriction on

the signal F(8). However, a synchronization
signal is required from which the beginning and
end of the intervals can be derived. The results
of the first few w&-wm are presented as follows

W =1 ; WW =20 3 Ww, =3 1 -1 I

» »
c¥o 1 i A S
T 4101 03 1
W3 = 41 1 -1 1 3
when m=25-1 W W =271

m m

Example:

For explanation purpose the input waveform
S, is picked as step, ramp and parabolic function
in each interval. The output waveforms calculated
from Eq. (10) with m=0,1,2,3 are plotted in Fig. 2.

Circuits for Ideal Sequency Low Pass Filter (SLPF)

The basic lay out of a SLPF according to Eq.
(10) is shown in Fig. 3.

The integrator integrates the input function
F(6) with time interval for integration which
depends upon the value of m. In the circuit the
time interval for integration is determined by
the operating speed of the switches P, and Pz.
Practically the operating speeds of Pl and P2

95

are set equal to Tp/D sec. Switch P2 samples
the value of the integrator at the end of each
To/D sec. Pj resets the initial condition of
the integrator, then the integration for the
next To/D sec. starts. The switch P3 sends the
sampled values to each delay element. The period
for a complete full circle of switch Py is T
sec. It is obvious that an accurate time refer-
ence for switches Pji, Py, and P3 is required.
At the end of each Ty sec the D=2T samples values
from P, are available to the matrix multiplier
simultaneously. The output of the matrix mulci-
plier is a row matrix. In the time domain this
row matrix is generated in columnwise order. The
ZOH holds each value from the matrix multiplier
for Ty/P sec. The step function like waveform
at the output of the ZOH is Fg(8).

The special case for SLPF cccurs when m=2%-1,
In this case Wh Wy = 2¥1 always holds. This
relation not only simplifies the mathematical
nmanipulation but also simplifies the hardware
associated with a practical sequency low pass
filter. The modified SLPF for this case is
shown in Fig. 4. It is apnarent that this is
the most desirabie type of the SLPF.

Multiplex System by Using Walsh Functions

1t is often desirable to transmit severcl
messages on one transmission facility. The pro~-
cess is called multiplexing. Multiplexing sys-
tem which utilize sinusoidal carrier or subcar-
riers have been studied extensively in communica-
tion theory. The use of Walsh function as
carrier or subcarrier in multiplexing systems
has recently been studied by Harmuth [4] and
Hubner {1-3]. In this section we derive the
output for each channel. The related topic such
as pre and post amplifier, crosstalk, etc., are
discussed in the following sections.

Fig. 5 shows the block diagram of a multiplex
system which uses Walsh functions as subcarriers.
The set of Walsh subcarriers is written in
matrix form.

31 %12 't %p
= |a a
a

iD ab

WS = .o a

i1 "i2

. . .

a1 a2 **

where D = 2°, The input signal Sp; is an impulse
block with amplitude 1 and duration 1. This sig~
nal is the basic '"building block" for various
order of Walsh functions. The general pesformance
of the system can be roughly described by using
a signal as an input. The signal waveforms at
various stages of the system can be eagily ob~-
tained with the help of Eq. (10) and Fig. 2.
S74 Patses through a pre-amplifier (PRA) with an
agjustable amplification factor Ay. Therefore,
S14 has the same shape as Sry except the ampli-
tude times A;. For the special input signal Sgy,
the output of the SLPF has the same waveform
as the input. This fact can be easily observed
from Fig. 2. Therefore, S5y }as exactly the same
shape as S1j except that S;¢ 1s delayed ty Tgp.
After multiplying by the Walsh matrix in Eq. (11)
S3 is represented in matrix form as

2 A%z v AP

537 [4i%1 4%12 o A% (12)
Ananl AnanZ vt AnanD
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Since each column dominates a Tg/D interval, the
signal S; can be obtained by row wise summation
of S3

E ) E
S, =[)Aa LAa, ... Aa ]
b Tomp PPl Ly P P2 pe1 P PP

R h-1 h
Sa-hzl PZlApaph{ule-(l+-Er0 - ule-(1+5)1} (13)
The actual waveform of S, is shown in Fig. 6.

Theoretically, we can feed the signal Sa
directly into the communication channel. Due to
the step function like waveform as shown in Fig.
6, the wide spread of the frequency spectrum of
the signal S; and the continually increasing
demands for érequency allocations as function
of n provide undesirable properties for direct
transmission. An ideal frequency low pass fil-
ter (LPF), with normalized cut-off frequency
F , has been placed at the final stage of the
tfansmitter for the purposes of reducing the
bandwidth requirement for the whole multiplex
system and reducing the interference to other
communication system.

The output signal, S5, at the transmitter
may be obtained by taking the Fourier transform
of Sb and then taking the inverse transform
with a frequency limitation Fc. The Fourier
transform of an individual "step element"

ty h-1 h
L Agay (ul6-QHED] - ulo@p1)
is represented by the amplitude response A(f)
and phase response ¢(f).
1 sin ﬁ% n —jan(1+g%%£)

D p

(14)
Taking the inverse Fourier transform of §4 with
frequency limitation F, yields for the output
of the LPF
nf _ 2h-1

D n 1 Fc sin D jan(1+-§5—) 2nfy
se=J) 1 A30n D —ie e? "t
h=1 p=1 —Fc 3

D n
= Ly SRR L RSV - _B

B ) Apaph{51[2nFc(6 1-55) §-s, [20F (8-1-5) 1}
h=l p=1 as)

Z
where 5,(2) = J sint g (e (16)
0

t
Assuming the communication channel is ideal which
means the channel introduces constant attenuation
and time delay to all frequenies, compensation
for constant attenuation can be achieved by either
the pre or the post amplifier. Detection of the
signal in the presence of variable time delay
may be accompliched by sending synchronous sig-
nals across *the channel. This sets up the exact
timing between the transmitter and receiver.
Hence, it is reasonable to assume that the sig-
nal passes through the channel without any dis-
tortion.

Multiplying S5 by the Walsh matrix WS gives
Ssal1 oo sSala e SSSID}
86 L] Ssa-11 PR Ssaja cen SSajD 17

Ssanl ven Ssana ces SsanD
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At the receiver assume that the SLPF with m=0,
the output of the SLP¥, Sy, can be calculated by

apply;ng Eq. (10)
373.11 [35831°"ssaja'"ssajn]de
1+2

g J P § 3 -1

= a = {)aa_l[S 2aF (6-1-7)

a=1 Ja 1+§:l“ hel pml pphti™ ¢ b
b

6=0-1

- SiZHFc(e-l-g)]}del (18)
0=0-1
By memorizing the time delay;introduced by SLPF,
we omit the time delay sign [6=8-1, Closed form
integration {8 obZained by appling the following
formula

)

]Si(x)dx = xSi(x) + cos xt ¢ 19)
S 3 equals § i times B,. ‘“herefore, the outputs
og the entirz systenm aée written as
N1
S, .= A_a_, [H. (a,h)+H,(a,h)]
R§" T 2} pel perdd P PROL 2
a=-h+1 a-h+l,, ,a-h-1 (a=h-1
Hl(a,h) ( D )812nFc( D )+ D )siznvc -
a~h a~h
- 2658, 27F . OF)
1 a~-htl a=-h-1
Hz(a,h) §;§:[c032nFc( D )+cos2nFc¢-1;-')
a-h
- ZCOSZHFC(—B—)] (20)

r1g. 7 shows the output of each channel (n=4).
Syy is calculated by setting Ay=l, A =0 if 3%p,
Bi=l with §=1,2,3,4, In Fig. g S} is obtained
by letting Ay=Bs=l with j=1,2,3,4. Figs. 9 and
10 are similar {o Figs. 7 and 8 except that six
channels are used.

The Use of Pre and Post Amplifiers

From Fig., 7, 8, 9, and 10 we observed that
the performance of each channel is different.
The situation becomes worse as the number of
signals increases. This is the case as in tele-
phony multiplex systems when combining twelve
channels as base-group, three base-group as super-
group, etc., The final performance of each indi-
vidual channel in such systems will be far dif-
ferent, This circumstance should be improved if
the values of Ap in the pre-amplifier of the
transmitter and Bj in the post-amplifier of the
receiver can be a&justed. In order to get the
same quality in each channel, we solve the fol-
lowing simultaneous linear equations

D D n
e = aj a§1 h§1 ZlajaApaph[Hl(a,h)+H2(a,h)]
F 3=1,2,.00,n (21)

In Table 1 we show the possible values of the
pre-amplifiers and post-amplifiers for four and
six signal channels, The assumptions for calcu-
lation ave:(l) c=l, For the case c¥l the values
of Ap and By should change proportionally. This
relation can be obviously seen from Eq. (21).
(2) when we ajust the pre-amplifiers, all the
post-amplificrs have value 1. The relation being
reversed when we ajust the post-amplifiers.

The negative values for the pre and post ampli-
fiers can be expleined as at the cut-off frequency
Fc the crosstalks dominate the outpus (discussed
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in next section), In multiplex systems his is
undesirable. Therefore, we choose F, such that
all the values of the pre and post amplifiers
are positive.

Discussion of Channel Crosstalks

The crosstalks between channels can be obtained
directly from Eq. (20). is defined as the
crosstalk between channels ji and j. Its value
means that with an input at channel i of the
transmitter, we calculate the output at channel
j of the receiver. The symmetrical relation
S14=531 become obvious after we discuss Eq. (20)
in detail,

From Eq (20) we write out sij directly

X Zaja (B (a,h)HEy (a,h) ] (22)

A better way to manipulate this summation is
to write out the following matrix

anlfal® [eo 2% o ¢ 2%l

8201232 7 [352%1 %32%2 ¢ %52%p
ai?J ajD . e .« o ajaaih o v e

21 %012 c 0 ¢ #5p%p)

(23)

This matrix 18 the multiplication of two rows

in the Walsh matrix with all the entries +1 or
-1, The summation of Eq. (22) equals the summa-
tion of each individual element inmatrix times
its respected H'S functions,

Observe from Eq. (20) thar Hl(a,h) and Hp(a,h)
are symmetrical with respect to 2 and r. 1In
addition, they are even functions of (a-r). The
interchange of 1 and j in Eq. (23) does not
change the result of the summation, By use of
the aforementioned properties, it can be shown
that Sji =S

By defining d = |a-h|
H(d)=H, (a,h)+H,(a,h) = H, (Ja-h|)+H,(|a-h]) (24)

then the summation of Eq, (22) becomes a summation
of each element in the following matrix

jianH(O) ajlaizﬂ(l) .« o s jlainli(D-l
jZLLIH(l) aj?aizﬂ(O) ) j2 iDH(D—Z)
: . : : : : ajaaihﬂ(a-h) .. :
JDailil(D-l) ajDaiZH(D-z) . e ajDainH(O
(25)

From Eq. (25) we get the "free of crosstalk"
condition

with |a=h]=d ; d=0,1,2,...,D~1

Zaja th * @6)
le: Calculate the crosstalk between chan~
nels when {=4, j=4,
From the Walsh matrix shown in the first sec-
tion, we calculate the crosstalk between channels
1 and 2 by using Eq. (23).. oy

+
3112 ¢
321%2] = [T~ -+ +i &
2131523 I}

14 [ %24

Using the criterion of Eq. (26) we show S
By the same token the crosstalk betvee% chan-
nels 1 and 3 can be calculated by

a a +
Guflaal ¥
12|{%32] =
a a +
13| 1233] |}
21411234
Therefore, S , = 2H(1) - 2H(3). The crosstalks

between otherchannels are shown in Table 2.
Included in the Table are crosstalks when

i=8 and j=8. Fig. 11 shows the crosstalks

between channels with values of 1 and j up to 6.

Noise Consideration in Multiplexing System

In the previous sections ine multiplex system
without medium noise was considered. When the
ccmmunication channel noige is introduced some
of the equations require changes, A rcview of
the system in Fig. 5 shows that the medium noise
is added to S5. The equations requiring modi-
fication are

siox 2 Z A8 {8, [20F (6 -1

- sitznrc(e-1-5)1)+ n{l (as')
D 1+%
za J Z ZA 3 (8 (20F (9-1—-—-)1
a-l 1+ a—l hel
- si[ZﬂFc(e-l—B)]k ane as')
|
s, = E{B,*5.,) 20")

Rj I n

where E{x} means the expected value of x. The
sample noise waveform in the orthogonal interval
is presented as D

LY

h=1

Assuming that n is stationary with E{n} = N,
Eqs. (18) through (20') yield

B, D 143

' m ] D
Sps = Spy * 7 aglajaj a_ls{n}de
D
B

s, +-ln -1
Sl = Mo : 2n
R}

st 1¥1

In the above equation we applied the basic
property of Walsh functiorns, f.e., in the Walsh
matrix the summaticn of each row equal to zero
except W(0,0), We sav from Eq. (27) that the
medium noise Introduces distortion only limited
to the first mrssage channel which use W(0,0) as
the carrier., This result is caused by the com
bined use or the Walsh function and SLPF, This
result is not obtained in frequency multiplexing
systems, because the LPF in each message channel
passes a portion of the noise whose frequencies
are located within the signal frequency band.
This is one of the advantages in using sequency
multiplexing systems.
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COMPARISON OF METHODS FOR MULTIPLEXING DIGITAL SIGNALS
USING SEQUENCY TECHNIQUES

H. Hibner
Research Institute

of the

Telecommunication Engineering Centre
of the Deutsche Bundespost
Darmstadt, Federal Republic of Germany

Intrbduction

In communication engineering the
methods applied for multiplexing
analogue signals using Walsh functions
as carriers have proved useful in prin-
ciple. In their performance they are
comparable to carrier frequency systems
[1, 2]. They also allow the multiplexing
of digital signals. For this iypc of
signal, however, where the information
is available in a quanti;ed fora more
specific methods are known. All of them
can be derived from a common system
concept as shown in Fig. i.

Tig. 1: General concept of transaission
system
According to it, sourcc-coded digital-
signals of p channels with i bingry
elements each reach, within a time
interval ro, a stage which, by format
convarsion, takes the signal vector So
into the system input vector 8y with n
rows and j columns. This conversion is
only necessary if the format of S, does
not correspond with that of 84 for which

the multiplex arrangement shows optimum
system characteristics. The multiplexing
vhich is performed by combining digita}
signals with the carrier set T can, in
general, be described by the matrix
equation

(5y) = (T)-(Sy) (1)

In order to adapt the resulting
multiplex signal Sy to the characteris-
tics of the transmission channel it can,
in addition, be subjected to a limiting
or signal protection process befcre the
elements of the transmit-signal column
vector S” resulting therefrom are, one
after the other, transmitted to the
receiver input. Trom th’ signal S'H the
receiver recovers the channel signals Sa
by an operation which is inverse to the
multiplexing. For this purpose the
matrix equation

(sy) = (T (s’ (2)

is to be performed, it requires the
transpose of the carrier matrix to de
kr.own. Subsequently, the receiver pro.
duces the system output signal S, by
weighting of S; in accordance with
system-inherent conditions in the stage
for signal detection. After signal for-
mat re-conversion S, becomes Sg ard
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contains the digital signals of the p
input channels to be transmitted. With
error-free transmission channel there
holds <

Sy = Sy - (3)
Irrespective of the above the entire
transmission process will be free of
errors if
1 and S = S (u)
The described general transmission
concept does not only comprise multi-
plexing by means of sequency divieion
but, as a special case, also the siynal
combination and transmission by pure
time division and thus shows the close
relation between these different multi-
plex principles. The assignment of
j-digit, binary code signals of n
channels to n time slots in the multi-
plex signal, which is common practice
in the case of PCM systems, and their
re-assignment can be obtained fro?
equations (1) and (2) with 52 = Sy if
(T) is the identity matrix. Then (T)
represents the system of the orthogonal
block pulses which serve as carriers in
the case of multiplexing with pure time
division.

Methoas of multiplexing

Multiplexing by carrier modulation

This method is rigorously based on
the sequency multiplex principle for
analogue signals [3. u]. It allows
binary signals to bes transmitted on
Walsh carriers, which can be represen-
ted in the time interval T, by a one-
digit column vector S; of the length 2k
with the elements ¢ 1. The multiplexing
process according to equation (1) is
described by the modulation equation

(Sy) = (W)(S,) )

where (w) is the orthogonal system of
2* walsh functions. Multi-digit column
vectors S, are also permissible. In this

case, however, only certain Walsh func-

tions may be used as carriers [S]. If

S, is not limited, the multiplex signal
sH is obtained. In the case of n chan-
nels with n £ 2X its amplitude has

(n + 1) possible levels. Here, the
frequency of occurrence of the indivi-
dual amplitude levels shows a binomial
distribution and is symmetrical to zero.
The multiplex signal can be transmitted
over any distancs on channels with rege-
nerative repeaters without impairment

of its infornati?n content by cumulati-
ve noise. From sn one obtains S, accord-
ing to equation {2) by performirg the
matrix operation

(sy) = 27 T.(s (6

After passing through the signal detec-
tion stage which normally contains zero-
symmetrical limiters, there holds

(s,) = sign [(s] . N

Interference signals N which, during
transmission, are superimposed on the
multiplex signal and are quantized by
the regenerative repeaters will remain
ineffective as long as the interference
D - which is calculated from

-k T
(s = 27K T [espen] - -

2 (s427 TN = (5) + D

according to equation (6) - is suppress-
ed Jduring signal detection in accord-
ance with equation (7).

With n = 2¥ channels there are
(n + 1)" different signal patterns in
the multiplex signal, only 2" of which
occur in their representation by the
input signal vector S,+ Because of its
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multi-level amplitude, S, contains a Multiplexing by binary addition
high redundancy component. It-is not
required for signal recovery in the re-
ceiver and can be partly removed by li-
miters in the signal limiting stage.
Here, the number of amplitude levels
required for an errcr-free transmission
depends on the number of operated chan-
nels and the multiplex signal-to-noise
ratio. For a 4~ and 8-channel system
with the limiting degree a as parameter
Fig. 2 shows the immunity of the multi-
plex equipment against external noise as
a function of the number n of active
channels. Here, St is the minimum thres-
hold distance occursing in the case of
all possible gignal vectors S, to §,.

The disadvantage of a multi-level multi-
plex gignal is avoided by a computer-
aided multiplex method which is based
on the multiplexing by carrier modula-
tion but performs the calculating ope-
rations required for multiplexing and.
signal recovery in the binary number
system [8, 7]. It is not necessarily
confined to Walsh functions as carriers.
Any orthogonal carrier sets (T) are
permissible if there is the transpose
of (T). Because of its two-valuedness,
signal S, which is produced by multi-
plexing is well suited for transmission.
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If j-digit binary signals per chan-
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Se nel form the signal input vector §,,
f, $ the multiplexing process according to
61 $a equation (5) with 27 channels results .
05<-2 ] * in (k + j)-2k binary digits for S,. The
H |2 468 multiplex signal has a high redundancy
g -4 —2 component because for a redundancy~-free
6 -6 ) transmission with multiplexing by time >
- division only jo2k digits are required. ig
= . o 100 The inevitable redundancy R rises d
? 1050 \ exponentially with increasing number of §
= L > channels §
o 1 aso R = k.2¥ €9) 5
3 : . g
e T o J 0.2%0 The ratio of the number of binary digits “
‘%: 0 i L {1; " produced by the binary addition to the %
2, —n —t N number of digics required for the time S
b 4-chanrel-ayseem 8-channel-ay stom . : ; 1
3€ Fig. 2: System immunity division multiplex techniques is des- %
i coibed by §
g% For an error-free transmission the Vsl %, (10) %
kS nultiplexing by carrier modulation in y
48 general requires a higher bit rate than It moves towards unity to such an %
2 a pure time division multiplex method extsnt as the number of channels decreas- :
5 and a more complex regenerative re- es with respect to the length of the ‘
i peater because the multiplex signal binary signals to be transmitted.

has more than two levels. Zquations (9) and (10) illustrate the
high redundancy content which results
in an uneconcmical system design.
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When considering the signal characte-
ristics of S, it becomes evident that
by utilization of signal symmetries the
inevitable redundancy can only unessen-
tially be reduced to

R' = (k - 1).2K (11)
The division by 2K to be carried out
according to equation {(6) does not lead
to any reduction in digits in the multi-
plex signal,

Investigations into the system be-
haviour in the case of interference in
the multiplex signal have revealed that
its effect depends on the error location
in Sy and influences all channels. Here,
it becomes apparent that the possible
signal patterns of Sn have unequal
Hamming distances between each other.
Very often they are only separated from
each other by the minimum distance 1.
The redundancy in the multiplex signal
thus allows error detection and correc-
tion only in some specific cases.

There is no basic change in the
system behaviour if not all of X possi-
ble channels are active. The isultiplex
signal then has (j + x)-2K binary digits,
where x is a discontinuous quantity
which depends on the activity factor. It
assumes the value ). even with mean
system loading. On the other hand, there
is a decrease in the number of signal
patterns of Sy having the Hamming
distance 1, In general, there are no new
symmetries in the multiplex signal,
which can he utilized for bit rate re-
duction.

Only in the case of 8-channel systems
with activity factors £ 25 % symmetry
characteristics develop in the multiplex
signal, the utilization of which leads
to minimum bit rates. With two active
channels they are, however, still 1 bit

R T N s e

Ty
Sy

per channel above the bit rate required
for the method applying pure time divi-
sion multiplexing.

It becomes obvious that the multi-
plexing with binary addition produces
a two-valued multiplex signal with re-
dundancy which can neither be eliminated
nor be sufficiently used for error de-
tection and correction. The multiplex
method described above results in a
procedure with non-optimum coding.

Multiplexing by majority decision

This principle is a modification ¢f the
multiplexing by carrier modulation. It
differs from the latter in specially
chosen carrier sets and enables digital
signals to be transmitted free from
redundancy on a limited number of
channels or under certain conditions
the utilization of system-inherent
redundancy for error detection and
correction purposes [8, 9].

The input signals of n channels
which are combined to form one-digit
column vectors S, change according to
equation (1) the amplitude of the row
vectors of (T) serving as carriers.
After summation one c¢btains a signal
82 whogse amplitude has (n + 1) levels.
By a clipping symmetrical to zero, it
is transferred into the two-valued
redundancy-free signal Sy

(5,) = sign[(s,)] (12)
and transmitted to the receiver input.
Demodulation is carried out in the
manner normally used in the sequency
technique, i.e. by correlation with
subsequent thyreshold weighting of the
detected signal. With equation (2) one

obtains

(s,) = sign[(sy)] (13
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The signal transmission is free from
errors if number of channels and

carrier set meet certain conditions,
i.e. the number of channels and the
elements of the row vector of the
carrier matrix must be odd. Then, the
carriers form only a quasi-orthogonal
system since the cross-correlation be.
tween the individual functions no longer
is zero. The information loss increas-
ing with growing number of channels

due to amplitude limitation in the
multiplex signal and the errors due

to disturbed correlation confine the
unambiguous signal transmission to a
maximum of seven channels. Here, the
carriers used either can be derived

from reduced Hadamard matrices, which
are obtained by rewoving one of the rows
and one of the columns, or they may cone-
sist of cyclically shifted 3- and
7-digit binary pseudo-random sequences.

Other carrie: sets give rise to system
errors.

The effect of bit errors in the
multiplex signal occurring during
transmission varies with the degree of
system loading. It has become apparent
that the error distribution and correc-
tion properties are independent of the
carrier system used. Investigations into
the behaviour of a fully loaded 7-chan-
nel system show that the error effect
depends on the values of the disturbed
amplitude level in the multiplex signal
prior to clipping. If one element in
Sy is disturbed, a maximum of 4 chan-
nels are falsified. Fig. 3 illustrates
the probability p (i) with which, in
the case of one errvor in the multiplex
signal, i channals become faulty when
all of the 128 possible signal vectors
S, are equally distributed.

Contrary to the 7 .: plex signal
in a fully loaded system, sn contains
redundancy components in a partly load-
ed gystam. Under certain ccnditicns

o

-

BN

Fig. 3: System error behaviour

this redundancy has an automatic error
correction effect. However, error correc-
tion only takes place in systems where

4 or 6 channels are disconnected. Other-
wise, errors occur in spite of redundancy.
A 7-channel system with majority decision
corrects up to 3 errors in the multiplex
signal if one channel only is active.
With 3 channels in operation, one error
remains ineffective. If signals from more
than 7 channels are to be transmitted by
multiplexing with majority decision,
groups derived from 3- and 7-charnel
systems must be used in hierarchical
structure. Here, it is advisable to
fully load the systems of the lower
groups and to assign free channels to
the uppermost group if there is thé risk
of a disturbed transmission. This

avoids the possibility of magnified
error propagation in the case of fully
loaded and cascaded systems.

The multiplexing by majority decision
turns out to be a method for the combi-
nation of a limited, odd number of
channels which enables the signals of a
fully loaded system to be transmittad
at the sake bit rate as in the case of
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time division multiplexing. Its error
behaviour is poor if the system is fully
loaded. Only with one and three active
channels it makes optimum use of the re-
dundancy existing in the multiplex sig-
nal without requiring additional circuit-
ry for error correction.

Multiplexing by dyadic combination

The calculating operations, addition and
subtraction, which are required for
multiplexing and which, in the case of
the twn previously described multiplex
methods, were performed in the decimal
and binary number systems are here re-
placed by dyadic combinations [10, 11].
In this method the modulo-2-addition
corresponds to the addition and the
"Searle" operation to the subtraction.
The latter is so defined that for two
j=digit binary numbers A and B each
the expressions

A:=208; B:=A08B (14)
allow unequivocal conclusions to be
drawn with respect to A and B. This
multiplex method permits the combination
of 2k channels, The multiplexing prccess
produces a two-valued multiplex signal
without additional digits.

If n; is the j-digit input signal at
channel i, the multiplexing process
according to equstion (1) for 4 channels
yields

tn, @n) @ (n3®n“)‘

. (n; Dn,) O (ng @ ny)
2 [ (n; @n)) D n; 90y
(ny ©n,) ©® (n3 ©ny)

(15)

The - -¢tor 32 can be calculated step by
step so that each of the expressions
used need be dete: mined only once.
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In the receiver the multiplex signal
can no longer be separated by means of
correlation methods. The multiplexing
process represents an unambiguous and
thus reversible mapping. Recovery of
the signals is, therefore, effected by
operations being inverse to (® and @ .

The dyadic combination may refer to
either one or several binary digits.
With the one~digit combination, 2 j-
digit binary numbers each are combined
digit by digit.

AzA®B A= (aj, ‘j-l""ai)
B = A@B B s (bj’ bj"l".‘bi) .
© y . Oy (16)
3oy @b |0 1 bjeay @b |0 1 ,
o {0 1 o {1t o
% 1]t oo R TE P

This is a possibility of defining the
non-ccmmutative "Searle" cperation in
such a manner that the ..inery charac-
tersA and B allow conclusions to be
érawn with respect to A and B. The
separation is effected by the inverse
operations:

isverse (0 ‘
b

lnvtrn.‘? (17)
l'| 0 1 bi l n 1

~ 0|1 O o 0 1 0

Y10 1 Y1l o0

Even-number input signals can be com-~
bined with the two-digit dyadic combi-
nation which is performed in pairs:

® ®
IE AR 1O T A S IO TR
A "y 00 01 11 10 AR YRR
701 60 0131 10 ® [0 001
Lo, olwwnn o otlioio
2244 1| 11100000 %260%26.1 11| 10 00 11 01
10§ 10 11 01 00 1] 01110010
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With the aid of the one-digit mul-
tiplex law column vectors of the input
signal matrix S, are mapped to column
vectors of the multiplex matrix S+ On
the other hand, the two-digit method
allocates column pairs to each other,
This is a coding process. The inverse
operations required for decoding two-
digit combined signals are defined as
well.

If during transmission errors arise
in the multiplex signal due to inter-
ference signals, the analysis of the
system behaviour shows that the inter-
ference effect ic largely dependent on
tre error location in Sy. The unambiguous
mapping of S4 to Sy indicates that there
is a regularity.

For a fully loaded 4-channel system
with multiplexing by one-digit Ayadic
combination, the upper diagram of
Fig. 4 shows the number F, of disturbed
output channels with one falsified mul-
tiplex bit as a function of error loca-
tion. The lower diagram represents the
maximum number Femax °f disturbed
channels if at the same time e errors
oceur in S;. The system behaviour of
a fully loaded 8~-channel syste~ is
shown in Fig. 5 in the same manner.

The channels disconnected by being
loaded with a constant zero signal
produce redundancy in the multiplex
gignal wiiich leads to an increased
Hamming distance betwesn the remaining
multiplex signal patterns. It depends
essentially on the position of the
inactive channels in the gyetem and, in
general, is smaller than in the case of
optimum coding. Only one special multi-
plexing mode i each case allows the
maximum posrible redundancy utiliza-
tion. /n aralysis shows that in the
Y=channel system optimum ccnditions
exist with disconnected channels 1 tc 3

and that in the 8-channel system the 106
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Fig. 4: Error behaviour of the 4-channel
sysiem with one-digit dyadic
combination
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Fig. S: Error behaviour of the 8-channel
system with one-digit dyadic
combination
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Hamming distance is 8 if only the first
channel is active. Here, three errors can
be correctcd and quadruple disturbances
can be detected as it is the case with
optimum codes,

For a fully loaded 4-channel system
where the multiplexing process is perfor-
med by a 2-digit dyadic combination of
the input signals, the upper diagram
plotted in Fig. 6 shows the number Fo
of disturbed receiving channels which
occur if the sign of one digit in the
multiplex signal is inversed. Th2 ab-
scissa is the error location Sy i,5°
The lower diagram shows the maximum num-
ber Pemax of disturbed output channels
with e simultaneously occurring errors
in the multiplex signal., Fig. 7 illuse
trates the corresponding behaviour of a
fully loaded 8-channel system.

'f.l

«

Fig. 6: Error behaviour of the 4-channel
system with two-digit dyadic
combination
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Fig., 7: Error behaviour of the 8-channel
system with two-digit dyadic
combination

The investigation of the usability of
the redundancy that inactive channels
produce in multiplex signale formed by
2-digit dyadic combination of the input
signals yields optimum conditions for the
4-channel system only with an active
fourth v..annel.The other operating cone-
ditions of the 4-channel system as well
as all loading possibilities of the
8-channel system do not meet the stand-
ard get S} the optimum codes.

The multiplexing by dyadic combination
proves to be a method which enables di-
gital signals to be combined to a two-
valued multiplex signal. The multiplexing
and signal separation processes can be
described by matrix operations. Thesge
are based on formation laws which are
equivalent to the coding instructions
for linear codes., The error behaviour of
fully loaded systems is inferior in com~
parison to the transmission with pure
time division multiplexing. The same '
applies also to transmission systems
having inactive channels. A few systems
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with special loading conditions are the
only exception. They enable signal pro-
tection which is only possible in the
case of optimum coding.

Comparison of systems

The described methods allow the trans-
mission of digital signals over a
coumon channel by means of multiplexing.
They differ in the veqﬁired bit rate of
the multiplex signal as well as in
their error behaviour in the case of
transmission disturbances and do not
utilize the different redundancy compo-
nents inherent in the respective system
to the same degree for signal protec-
tion when the system is fully or only
partly loaded.

When using the characteristics of a
multiplex equipment with pure time
division as a criterion for the suita-
bility of digital communication systems,
the multiplexing by carrier modulation
does not prove equivalent since it
produces a multi-level multiplex signal
with an increased bit rate the error-free
transmission of which requires expensi-
ve regenerative repeaters. This rating
will certainly not be changed by the
fact that with identical signal-~to-
noise ratios the two multiplex methods
are equally sensitive to white noise,
whereas the sequency multiplex systemn

is mor. insensitve to short pulses as
source of interference [S]. Moreover,
because of the higher bit rate to be
trensmitted and the poor ut.ilization of
redundancy, the multiplexing by Linary
addition in general proves inferior to
the time division multip}ex principle,
The multiplexing by majority decision,
too, is less advantageous due to low
flexibility and poor error behaviour

in the case of a fully loaded s, stem.
However, it compensates for its disadvan-
tages occurring in connection with

108

certain minor activity factors by auto-
matic signal protection which requires
additicnal circuitry in the case of time
division multiplex techniques. The mul-
tiplexing by dyadic combinaticn which,
owing to the dyadic operations used is
to be included in the sequency technique,
is, in general, also disadvantageous
because of its poor error behaviour.
Here, the characteristics of a time divi-
sion multiplex system are obtained only
under a few, very special operating con-
ditions.

All in all it becomes apparent that
the multiplexing of digital signals in
the sequency technique with characteris-
tics of normal time division multiplex
systems can be performed only under
very specific and very limiting con-
ditions.
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AN ADAPTIVE DIGITAL VOICE MULTIPLEXER USING WALSH FUNCTIONS
H. E. Jones
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Baltimore, Maryland
Introduction E

a4 &Lk

The transmission efficiency of multiplex-
ed digital voice channels can be significantly
improved if the distribution of the total channel
capacity among the various baseband channels

“is not fixad but is varied on the basis of the in-
stantaneous requirements. The reason for this
is that the amplitude of a single voice signal
varies from relatively short periods of high
levels to long periods of very low levels. While
signal companding (attenuating the higher signal
levels at the encoder input and the lower levels
at the decoder output - compressing and expand-
ing) can improve the situation there still re-
main the conversational pauses. Brady {(Dhas
obtained data which indicates an activity factor
of only 40% for one-way in a two-way conversa-
tion. Thus a coding scheme based on an equally

posite. From the central limit theorem, the
amplitude distribution of the sum of 2 number
of voice signals approaches a normal distribu-
tion as the number becomes large, so even
though each channel might require a peak-to-
mean coding range of 28 dB the peak-to-mean
coding range of the overall encoder may only
have to be somewhat greater than the 8 dB
needed for a normal distribution. This can
only be obtained if the proportioning of the
overall coding capa:ity among the baseband
channels is not predeterminecd but rather is
allowed to vary in accordance with the instan-
taneous demands. In this way, the capacity
released by one baseband channel during periods
of inactivity can be utilized for the transmission
of information pertaining to the other channels.

" r———— - ™ PETIRE
T T T - AT VR BV WL Y TR0 3 VR e PR LA D)

3 spaced sample values taken on a single voice . A .

X signal will produce the zero-level code word Besides havu?g a code that pe‘rmns the

3 with a probability of 0. 6. This in itself leads to total channel capacity to be proportioned among

H a fairly poor transmission efficiency even when the mdlvxdual_baseband‘ channels as. nes=ded, the A
only a small number of distinct code words are encoder/muluple.xc?r will also‘ require s.orn.e 4
ig used mezns of determining what this proportioning g
X : should be. This should, of course, be what- :

An indication of the extent of this ineffi~
ciency can be obtained from the data reported
in either Brady (1) and (2)or in Sunde \3). If
we establish the criterion that 99% of the voice
signals are to be below the maximum coding
level at least 99% of the time, Brady's data in-
3 Jdicates that the mean power level of a channel
must be, on the average, about 26 dB below the
maximum coding power level while Sunde's data .
ohows this o be about 28 dB. Of this, 4 dB re- The Multi-Channel Delta Modulator

ever is required at the time to achieve the best
performance from the equipment, which implies
that the encoder/multiplexer rnust be capable

of judging how badly things are going so that it
can juggle the channel capacities around to try
to make things better. One version of this

technique ig uged in multi-channel Delta modu-
lation.

K]
o g e

i E presents the 60% inactivity. In comparison, the A block diagram of the multi-channel
T same criterion could be satisfied with an average Delta modulator is shown in Figure 1. In this
S mean power level only 8 dB below the maximum device the performance of the encoding process
2 X coding power level if the signal amplitude were is measured by comparing the input signals,
E normally distributed. This 18 or 20 dB is a Si(t), with what the modulator believes the de-
o significant difference. If, for example, a 204B modulator outputs to be. These estimates of
2 improvement in signal-to-noise ratio were ob- the recovered signals, Bi(t), are obtained by
i tainable in a linear PCM encoder, the number feeding the output binit stream into a model of
e of bits per sample nceded could be reduced from the demodulator. The differences beiween
X seven to four or from six to three. these signal-pairs are fed through linear
‘.: ' In simultaneously encoding a number of "weighting ﬁl‘ters. g‘ ultiplied by one of a set
e voice channels, these inefficiencies can be mea- of Walsh funcuon.s. (et _ﬂ' and -sur.nmed to
b i surably reduced by encoding the several base- form .tl‘le compo'sxt error .sxgnal. While the
] band signals collectively. In doing this, advan- magnitude of this error signal repregents a
tage can be taken of the statistics of the com- measgure of how badly the modulator is perform-
¢
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ing, little of this utilized in this rather simple
encoder. Rather, in a manner similar to that
uged in Delta modulation (hence the name), the
modulator attempts to maximize the perfor-
mance by selecting at each clock time a pulse
of whichever polarity is required to drive the
composite error towards zero.

The weighting filters are used to con-
struct a reasonable performance measure from
the S;(t) -@g(t) differences. The weighting
used is integration plus an instantaneous com-
ponent (lead) added to obtain good rebalancing
behaviour. The transfer functions of these
weighting filters are proportional to:

Wis) =142 (1a)
where §i= 3 x loa(seconds) o {1b)

The reconstructed baseband signal esti-
mates are obtained by passing the output binit
stream, multiplied by the same Walsh functions
delayed one clock time, through linear predict-
ing filters. These filters are used to obtain the
minimum variance linear estimates of the base-
band signals at each clock time based on the
preceding multiplexer output. This minimum
variance requirement can be achieved if the
impulse response of the filter is proportional
to the autocorrelation function of voice signals
fort > 0. The filter used has a transfer func-
tion proportional to

F(s) =s—iT- . (2}

The impulser': response of this filter,
_fexp L-Gt] for t20
h(t) _{o otherwisc ! (3)

is a reasonably close approximation to the de-
sired autocorrelation function which was ob-
tained from the power spectrum of composite
speech reported by Tarnoczy \¥/,

The set of Walsgh functions are used to
provide the variable proportioning of transmis-
sion capacity among the several basebands.
From a geometric viewpoint, these functions
can be considered as elements in an L-dimen-
sional linear vector space {under modulo - 2
addition), where LT is the length of the longest
period of the functions and T is the clock per-
iod. If the N functions used are linearly inde-
pendent,they span an N-dimension linear mani-
fold of this L-space.

The output binit stream can be taken L
binits at a time, resulting in a sequence of ele-
ments, {g1}, in the L-space (all possible am-
plitude transitions of the output stream and the
Walsh functions occur at clock times).

Define the inner product:

Lt

(o), o) e exp LO(t -LT)J oy (t)aa(t) dt. (4)

The outputs from a predicting filter can
be obtained by convolving the input with the im-
pulse response given in (3). Using the innex-th
product defined in {4), the output from the K=~
filter at the end of the B binits can be express-

ed as:
§.. =8, 11 exp [- QLTI+ (&, Bi) (5)

The first term on the right represents
that part of the output value based on al) output
binits preceding B; while the inner product re-
presents that portion of the output due to the B
binits. The baseband signals will be effectively
separated if the @;'s are orthogonal with res-
pect to this inner product. In general, LT is
much less than unity, the kernel in (4) is ap-
proximately unity and the Walsh functions are
nearly orthogonal.

":0

Computational Model

The behaviour of the Multi-Channel Delta
modulator can be computed from the discrete-
time model shown in Figure 2. In this model,
the signals at various places in the multiplexer
are represented by real-valued sequences cor-
responding to sample values taken on the con-
tinuous signals at clock times. The model
uges only one of the N channels with the effects
of the remaining channels being introduced by
the sequence {N;}. To provide some continu-
ity with the preceding discussions, the base-
band input signal is represented by {s¢}. The
subscript will now be used to indicate a parti-
cular member of the sequence rather than a
channel, which it signified in §;(t). This is no
longer needed since this section is concerned
with the model of Figure 2, which has only one
identifiable channel.

The recursive relationships among the
seguences are:

€x = Ba =~ 9: (63)

Sn = ba + .’-ﬁ\n -1 (6b)

Xxs =en-Kea-1 + Xa=1 (6c)

bs = Sgnlxa-3 = M=y ] (6¢)
where

K =expl-0T] (6e)

Since by = * 1, the peak encoded power
level is, using (6b),

p = ng(snz) = ——I(IEK y (n

With the number ot channels, N, suffi-
ciently large, the amplitude distribution of the
sum of the baseband signals is roughly normal,
in which case 99% of the channels will overload
less thaa 99% of the time if the variance of the
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composite is at least 8 dB below p. Thus the
variance of {s;} is taken to be

.15

A .15
o2z ({sf1)-= TP=§(—1_—K:-)-.

(8)

Define the quantization error sequence
{‘1 }l with

€ = by - Xa-1. (9
From equations (6) and (9):
Xa = 8p - K 8p-1 - €5 (10)

The variance of {x; 1, using equations
(9) and (10) and recalling that ({sy184-1] = Ko?,

is: A

022 ({xf1=(1 -K® 0f +0} (11a)
where A

08 = 2 {{by(sy - K 83=1)) + {€§]  (11b)

Thus {x;:} can be viewed as the sum of
two uncorrelated sequences, one, with variamce
(1- K% o2 representing the prediction error
and the other, with variance 07, the quantiza-
tion error.

The baseband input signals are statisti-
cally independent and because of the Walsh
function multiplication, the error signals are
uncorrelated. So the variance of {n;} is just
(N - 1) times the variance of {x1}. so

oh=(N-Dl1-KYel+al]  (12)

For these same reasons, the elements
of {ﬂg] are uncorrelated and, in addition, [ﬂ;]
is of zero mean.

Computation of Quantization Noige

The baseband quantization noise tor var-
ious numbers of channels was computed using
the computational model and a post-detection
frequency band from 200 Hz to 4 kHz. Since
the computer program was not, at the time,
capable of computing the amplitude distribu-
tion for the composite baseband signal, a nor-
mal distribution was assumed even thouyh the
numbers of channels used were so small. In
addition, the {irst termn; in the quantization
noise of (11b) was assumed to be negligibly
small. This assumption should hold reasonably
well since (sy-Ks5-1) is small at the bit rates
used and by is not too strongly dependent on
(81-K 81-1) because of {ns}.

The computational procedurs used was
to assume aa initial value for 03 + This value
is then used in {12) to obtain 03, The assump-
tion that 05 = ({€®}) leads to a discrete Ma k-
ov process and the transitional and appro.:-~
mate state probabilities can be obtained from

and the assumed normal distribution. A
aew value for 0.3 is computed frora the state

112

probabilitics and the procedure is repeated,
converging to a solution. The transitional and
state probabilities used in obtaining the final
value for 02 are then used to compute the auto-
correlation function of {x;}, which in turn is
used to compute the power spectrum of {es],
or, to be more accurate, the integral of the
power spectrum over the band assumed fox the
post-detcction filter.

The results of this are shown in Figure
3 along with actual data obtained from a five
channel breadboard and the theoretical linear
PCM curve for comparative purposes. The
"peak signal" was taken to be 0.5 (:~K) 2
which is the RMS value of the maximum mono-
chrornatic tone that can be encoded without am-
plitude limiting.

Concluding Remarks

As can be seen in Figure 3, the signal-
to-quantization noise is reasonably good in
spite of the simplicity of Multi-Channel Delta
modulation. The modulator also offers other
desirable features. One of these is that stand-
by channels can be readily provided since the
additional circutry needed is miniinal. This
is due partly to the Walsh function modulation
used to separate the basebands and partly to
the adaptive behaviour. The main effect in
activating stand-by channels is an increase in
the quantization noisge.

The spectrum of the quantization noige
is very smooth with a maximum occuring at
from one to three kHz depending on the clock
rate. The coloration is barely noticeable-
aurally, and, in fact, most listeners take the
noise to ve white.

Another feature of the modulator is that
the sensitivity to transmission bit errors is
low, with a transmission error appearing as
a single one-pulse zrror on all the channels.
This also is a consequence of using Wailsh
functions to separate the channels. In com-
parison, a single transmission error in PCM/
TDM would hit only one channel but the effect
on thig one channel would be, on the average,
much greater. This would also be the case if
address rreambles were used in the adaptive
multiplexer, but there would also exist the
possibility of error occuring in the preamble
causing the correct code word to be directed
to the wrong channel.

As for further improvements, our inter-
est at this time is directed mainly to the weight-
ing functions. Presently, linear weighting is
used, with the result that errors in a channel
with a high baseband signal lei el are weighted
equally with those in a chanr.el with a low base-
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band signal level. We intend to imprecve on
this by introducing a weighting function scale
factor inversely proportional to the input
signal level. Sinzc the baseband signal is not
directly subjected to this non-linearity the
demultiplexer is unchanged and it follows
that the transmission bit error sensitivity
«ould not be increased.
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BEnzo S. M. Moro

Electrical Engineering Institute
Tucuman National University, Argentina

Translated by Eduardo Schonbom, Jr.
DCA System Engineering Facility
Reston, Virginia 22070

Susmary

Utilizing the Rademacher functions pro-
vided by a bistable chain, it is possible to
sizultaneously synthesize 20 Walsh functions,
vhose normalized and non-normalized sequence
can be varied. The device also provides
command pulses for low-pass sequency filters
and an arrangement for synchronization with
another generator is included.

Introduction

Upon confronting the exrerimental study
in the practical possibilities of utilizing
Walsh functions {1, 2] in electronics, the
first problem faced by the designer is that
of disposing of the neceesary instruments.
The measurements obtained from the instru-
ments will make possible the comparison
between the theoretical results and those
provided by the practical application with
its inherent natural limitatioms.

The applications of the Walsh functions
in practical electronics is actually found
in the typical initial development stage in
the laboratory. The instruments needed for
the specific mesasurements are not offered
commercially, while on the other hand the
practical information given by publications
is scarce. Logically a good part of the
available instruments in an electronics de-
velopment lctcratory finds application when
one is working with Walsh functions, with
the exception of certain instruments con-
ceived expressly for sinusoidal signals; for
example, generators and filters for these
functions.

An experimsantal study plan regarding
Walsh function was startad at the Electrical
Engineering Institute of the Tucuman National
University. The first problem that was pre-
sented was, naturally, that of disposing of
a Walsh functions generator. In a previous
development a generator had been obtained
that provided 20 functions and cosmand pulses
for low-pass sequency filters. With the same
generator a sequency multiple for three tele-
phone channels was attempted [3]. With the
experience gained in that first model, the
second version of the instrument was prepared
as described in this current article.

114

The second model differs from the first,
essentially, in the inclusion of certain
characteristics that make it possible for it
to be utilized as a generator fixed in
sequency by an external signal. A previous
article [4] treated the theoretical aspects
of the synthesis of Walsh functions in elec~
tronics, wvhile this article only considers
the practical points corresponding to the
development and realization of a generator
for laboratory use.

I. Block Schematic

In figure la the distinct sections of
the device are represented in a functional
schematic:

1. Trigger pulses section ~ gencrates
the pulses to trigger sections 2 and 3.
Permits varying the non~normalized sequency
from 15 zeros per second to 16,000 zeros
per second. It can operate as:

a. Free running oscillator.

b. Fixed oscillator; in which case the
normalized seaquency £ = 1 is fixed in
sequency with an external signal.

2. Sequency division section - permits
the normalized sequency { to be divided by
the factors 1, 2, &, and 8.

3. Walsh function synthesis section -
generates simultaneously 10 odd functions
and 10 even functions with normalized
sequency { = 1, 2, 3,....10.

4. Command pulses section - its objec-
tive is to generate two pulses that will
pemmit the command of an external circuit
(low-pass sequency filter).

To simplify the description of the device
it is convenient to discuss first a funda-
mental model that consists only of the Walsh
function synthesis saction and the oscillator
section (Figure 1b). A later step will con-
sider the aggregate of the sequency division
section and the command pulse generator
section. Therefore, that which follows will
use this order for discussion.
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II. Walsh Function Synthesis Section

The adopted [1] scheme of generation
indicated in Figure 2 permits obtaining 10
odd functions, sal (i, 6), and 10 even
functions, cal (1, 6), with normalized
sequency i = 1, 2,....10.

The bistable chain (bistables B, to Bs)
delivers sal (2K, 6) + A cal (0, 6) by
having utilized bistables whose voltage vary
between a ‘7alue near zero and some positive
voltage. It is convenient to note that if
one supposes that an output of one bistable
(i.e. Bg) delivers one voltage A cal {0, 8)
+ sal (2k, 0) the complementary output By will
deliver the voltage A cal (0, ©) - sal (2k, 0).

Starting from the Rademacher functions
sal (2K, 3) it is possible to synthesize the
Walsh functions effecting products of Rade-
macher functions. Therefore, it is necessary
to accomplish ele:tronically the product
operation of normalized Walsh functions, of
which sal (2k, 8) are a particular case.

A Walsgh function takes only +1 or -1
values. The product of two functions will
therefore be +1 1f both are of the same
sign in a certain time; and if that condition
is not met it wili be -1. The factor func-
tions as well as the product function cam “
take only two well defined values, which
makes it possible to utilize binary algebra.
Let the product of two functions be W} snd

W2. For them we can make the following
truth tables:

S O ®) ©
W W W, W W W, W W W
+ o+ o+ 1 1 1 0o 0 O
- - ¢ c 0 1 1 1 0
+ - - 1 0 o o 1 1
- 4+ - 0 1 o 1 0 1

Table (a) refers to the signs of the
product of two Walsh fumctions, table (b)
to the corresponding logic function if a
+1 (Walsh function) is taken as equivalent
to a logic 1, and a =1 equivalent tv a
logic 0, while table (c) indicates the
logic function 1f a -1 is taken as oquivalent
to a logic 1 and +1 equivalent to a logic O.
Yor tables (b) md (c) one has:

M) W= Wy + WiW,
(c) W = WHg + iﬂlz

These axpressions sre implemented with
digital gates; both varisdbles require dispos-
ing of the binary varisble mnd its complement
(negation). It is opportuns to note that
whils ths (b) expression provides thbe de~
sired Valsh function, expression {c) also
provides it, but delivers the function with
a changed sign. Strictly speaking, the out-

~—

put of the gates is equal to a positive con-
stant plus the product function (case b) or
less the product function (case c).

In figure 2 are indicated in symbolic
form (the circles represent the product
operation) the operations that must be im-
plemented to obtain each function, for which
a unique standard circuit is utilized,
excited just as inferred by the expression
(b) or (c). The utilization of one or other
variable is a question of practical conven-
ience, the only detsil that must be observed
in essence is the fact that the function must
appear in the series with the correct sign.

Between the direct outputs of the bi-
stables and the gates, one has 20 Walsh
functions. These signals are taken to
20 separating amplifiers designed in such
a form that an eventual short circuit at the
at the output of the amplifiers does not
produce any harm neither in the amplifiers
nor in the integrated TTL circuits utilized
in the logic (bistables Texas SN5474 and
gates Texas SN5450 and SN5400).

Prior to passing the signals through the
separating amplifiers, the 20 Walsh functions
are taken to a connector situated at the
rear panel of the device. In the front
panel there are two keys of 10 positions
each, Channel A and Channel B, Each key
allows to chcose simultaneously the even
function and the odd function for a given
sequency (1 = 1, 2,...10), with outputs for
the function with the correct sign or with
the chanjed sign. In addition, the signal
~sal (1, 6) is taken to a BNC conmector on
the front panel, to be utilized as a syn~
chronizing signal for an oscilloscope.

IIT. Zrigger Pulses Section

Figure 3 presents the schematic of the
principly of this section. The rectangle
marked (1) symbolizes an oscillator controlled
by voltage. It is of the LC type, utilizing
a veriable capacitance diode to obtain fine
frequency adjustment through the action of
& control voltage coming from the phase com~
parator (4) and the low-pass filter (3). By
means of a variable capacitor, whose axis is
controlled from the front panel of the
davice, it is possible to vary the frequency
of the oscillator between 480 KMt and 1100 KBk,
The zircuits described permits two modes of
operation: a) as a free oscillator, and
b) us an cscillator contzolled by voltage.

If one desires, it is possible to use an
externsal oscillator ms a substitute.

it 1s couvenient to consider first the
case of the frea running oscillstor (or
using an external oscillator). The signals
from the oscillator (intamasl or extersal)
pass through block (2) waich is a separatiag
mplifier and limiter; and furnish trigger
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pulses to the chain of 9 bistables (Texss
SN5474) indicated sysbolically as By7,...

B13secelye

The output of circuit (2) aand the outputs
nf the 9 bistables are taken to & 10 position
switch Lp, that permits selecting signals
whose sequency is susller as the switch moves
to the bistables of the lower swbscripts.

It has teen stated that as a first step
it vould be assuaed that the trigger pulses
section would be comnected directly (Fig 1d)
to the synthesis section. This mode of
operation preseats iteelf in one of the
applications of the device; 1.e. vhea the
sequency division factor is equal to 1 (nee
psragraph 5). I this caese, betwesn the
syathesis section (6 bistables) and the
trigger pulses section (9 bistebles)ons can
dispose of a total of 15 bistables. If all
the bistables of this last section are
utilized, the sequency of the sigaal sal
qQ, 0)131'0'““ by the B, bisteble will
be 1/2%2 of tha sequency of the oscillator;
that is, it will be possible to vary the
sal (1, 0) sequency approximstely between
15 serce par seccad to 33 zeros per second.

Baing bothersoms to work with division
factors, it was chosen to assign to ths os~
ciiistor (front panel) a nominel sequency of
15 to 30 zoros per second and to mark the Lp
switch (front panel) with multiplication
factors 2°, 21,....27, a8 it is shown on
Pigure 3. The sal (1, ¢) signal provided by
the B, bistable is taken to a BIC connactor
locaied on the rear panel, which permits
the utilizstion of a digital frequency-mster
o determine (if it was necessary) the non-
roraslized sequency of sal (1, #), md which
in conclusion, can be varied betveen 15 serce
per second sand slightly more than 16,000
geros per second. If an extemal oscillator
is used, the signal from By can have a8 low
a sequency as desired, and ss high as the
bistables utilized will permit.

Assuming alvays the connsction of the
Tigura 1b, the following will diecuss ths
opsyvation of the oscillator whem it is sya-
chronised by an external signal (Figurs 3).
For this operation it is mecessary to tako-
the.synchronising signal sad the -sal (1, 9)
sigaal-provided by the B, bistsble {synthesis
saction). to-the two inputs of s distable
(XTuL9923) that -acts as a phase comparator
(4). To.be capable of triggering the bistable,
the signal from B;-must bs previowsly differ-
entisted by mems of circult (3); while the
extemal signal cen first pass through a good
limiter smplifier.and then be differemiisted;
operstions which correspond to dblock (6) of
Figurs 3.

The aggregate of trigger pulses mad
synthesis sectious operate as a phase-locked

loop*; a subject over vhich.there is ‘ample
bibliography. In reference [5], that subject
is discussed relative to the utilization of
a divider chain. 1Tn order to operate using
a synchronizing signal, the B, signal is
taken to a #sequency close to the funlamental
ssquency of the external signal. This is
accomplished by actuating switch Lp and .the
varisble capacitor of the oscillator to
bring the device into a synchronizing cap-
ture zone. With a small variation of the
varisble capacitor it is possible, if one
desires, to obtain coincidence of-zero
crossings between the synchronizing sigcal
and the sal (1, 6) signal; and also, to
obtain nuvll time delays betwesn both signals.
Switch Lp is in reality a switch with two
commutator sections, one of them for the
multiplication factor already explained, and
the other to commutate capacitors and o vary
the RC constant of thoc low-pass filter (3).

IV. Command Pulses Section

This part of the device has as its ob-
jectivs to control a low-pars sequency
filter [1], that is an alien arrangement
to the generator per se, and vhich needs to
be synchronized with the generator for its
operation in receiving command pulses.

In succint form the work cycle of a low-
pass sequency filter (Figure 5) is the
followin;;: The input signal ¥(0) is inte-
grated during time T; at the end of the
{ntegration interval the ocutput voltage of
w integrator is transferred to memory
capaitor Gy, for which switch Ly goes
from position 1 (position for the integra-
tion) to position 2 (transfer). Immedistely,
the switch goes to position 3 (erased),
taking the integrator to its initisl com-
ditions to begin a new integration interval
(owitch to position 1). The commutation of
the switch is realized in actual practice
with two commend pulses.

Lat B; te the pulse that determines the
transfer of the informsticn to the memory
capacitor, md let 32 be the erasure pulse.
To minimize the error both operations mwst
be perforuad in the least possible tims, sad
B2 must appear immediately after B;.

The previous statements are ideal con-
ditions which must be reconciled with those
of the practical behavior of the low-pass

In an earlier work [4] it was stated thet
it did not mske senss to-talk sbout phase
difference for Walsh functions, so that for
the prssent case it would be correct to
refer to & sequency-locked loop, and to call
tha phase comparator (bistsble) as a time
dalsy comparator. '
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The commond pulses (Figure 6) ar: By and
By; and both have a duratica (high positive)
of t»T/64, vhere T is the integration interval,
corresponding to the sal (1, 6) periodic
intarval, just as it is explained further
shead. (paragroph 5).. The triggering of the
By pulse can be realized for O=-1/2 or 6=0,
seslectablc by means of switch L (front panel).
Pulse B2 is present immediatsly after pulse
Bl. Mgure 6 includes a schematic of the
logic used (bistables Tsxas SN5474 and gates
Texas SN5400 used os inverters, N). Pulses
B1 and B; and their complements B md Bz
and taken through separating mmplifiers to
the front panel and to the connector located
in the rear panel, vhich is the same connector
wvhere the 20 functions from the synthesis
section also meet.

V. Normalized Sequency Division Section

In the entire discussion that precedsd,
it vas assumed that bistable B, (synthesis
section) corresponds to the unitary sequency,
providing sal (1, 8). Multiplying the
oscillator sequency (15 to 30 zeros per
second) by the multiplication factor (ses
paragraph 3) one obtains the non-normalized
sequency for the B, bistable.

It has been sCated that in the low-pass
sequency filter the (theorstical) inte-
gration intervai must correspond to the
repetition interval T of the sal (1, 0)
fmction.

For the behavioral trial of a low-pass
sequency filter it is conwenient to dispose
of signals with fractional ssquency. This
is obtained by means of the sequency div-
ision section, which is inserted (Figure la)
between the trigger pulses saection and the
synthesis section. .

The sequency division section simply
consists of three bistables (Bg to Bg)
connected as dividers by factors of two.
When the davice operates with sequency
divigion factor equal to 1 thoss distables

filters; for that operation, the switch
1lsbsled sequency divuion factor must also
perform the necessary commutations so that
in every case the command pulises will ful-
£111 the lped.ficattoul defined in paragraph
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- A_NEW WALSH GENERATOR AND ESTIMATION OF THE

TOTAL ORTHOGONALITY ERROR OF THESE GENERATORS.

Reiner Nawrath
Institut fir Elektrische Nachrichtentechnik
der Technischen Hochschule Aachen
Aachen, West Germany

1. Introduction.

The large number of papers on sequen-
cy-technics, which appeared during the
last few years, proves the increasing
importance of this subject. When rea-
lizing sequency systems, as coders or
decoders, the development of Walsh-
function generators is a special pro-
blem. Such generators must comply with
the following requirements:

To be capable of producing a large num-
ber of Walsh-functions simultanously
and to permit an expansion from m to
2i.m functions.

To effect only a small crthogonality
error in the system of generated func-
tions up to high clock frequencies.

The binary structure of the Walsh-func-
tions gives reason to develop the gene-
rator with digital IC's. To keep the
costs low, Standard TTL-IC's should be
prefered for the realization.

The orthogonality error is a crite-
rion for the efrficiency of generators
producing orthogonal functions. It is
brought about by three facts: i, the
displacement between two functions
caused by propagation delays in IC's,
2. the tolerances of the propagation
delay time and 3. the difference be~ -
tween rise and fall times of most IC's.

Varying output voltages of different
IC's may be equalized by operational
amplifiers and therefore don't affect
the orthogonality error.

2. Walsh-function generators
and their properties.

One of the possible arrangements of
Walsh-functions in the normalized time
interval - 1/2 < 6 < 1/2 resulting from
the difference equation of Harmuth [ 1]
is shown in figure 1. The same figure
shows Walsh~functions in the normalized
time interval 0 < @ <1 (8 is the
time normalized on the orthogonalicy
interval length T ). Two of the genera-
tors later discussed may be switched
over from one time base to the other,

e
2 A e R
TR e Rl Ty

Y N Y

0%

wal (00018)

il
5

-2 0 12

Fig. 1: Arrangement of Walsh-functions
fcr two time bases

2.1 Hitherto existing
Walsh~function generators.

In 1968 Harmuth [2] proposed a gene-
rator for Walsh-~-functions, which is re-
ported in practical use. The idea of
his concept is based on the multiplica-
tion theorem of Walsh-functions.

wal(i,8) - wal(j,0) = wal(i® j,0)

@ denotes’ the bit per bit mod 2 addi-
tion

For generating 2P Walsh-functions he
first produces n Rademacher functions
as output waveforms of a n-stage binary
flip-flop counter. The remaining

2B~ (n+l1) functions are obtained by ta-
king all possible mod 2 sums of the di-
gital Rademacher functions:

n n n n
2 =1+(1)+(2)+...+(n)
The 1 denotes the Walsh-function wal

(0,8) and (}) specifies all possible
combination3 of i elements out of n
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without repetition. Fiqgure 2 shows the
realization of the "Harmuth"-generator
with counter flip-flopsand halfadders
for n = 4.

r:ounter_}

watl {0001,0)

*{FFL

|
1
| H

l H
e

I

1

I

I

|

I

d

)

(= 2

f r v Ir y v Vv

Lo{FF 2

Lo{FF1

- — — —

clock

171

at{11018)

1

I

onIHLe;

Fig. 2: "Harmuth"-Walsh generatror (n=4)

Disadvantages of this generator are:
The displacement of the Rademacher func-
tions wal(l,68) and wal(2nh-1,6) amounts
to 1) = (n-1)t, if an asynchronous
counter is chosen (1, is the propaga-
tion delay of a counter flip-£flop).
Some other Walsh-functions are further
delayed up to (n-1)ty while passing
halfadders (ty propagation delay of a
halfadder) . f£f the asynchronous counter
is replaced ky a synchronous counter,
the maximal time lag between two func-
tions is reduced to T3=AT,+{(n-1l)1y (i12
is the difference of the risetimes ol
two counter f£lip-flops). Maximal clock
frequencies under worst case condit .ons
are £3=1/3(1z+ty)) = 5 Mc for a ger~ra-
tor with asynchronous counter (n=4) and
£,=1/(Atz+314) = 10 Mc for a generator
with synchronous counter (n=4) resp2c-
tively.

In 1970 Lebert [3] presented a gene-
rator producing a large number of diffe-
rent sequencies. It is also possible to
change the time base; see figure 3,
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Ir [ FF
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—_— cc

-
I Ve I
clock - time

| base

>

wallijk(,0}

Fig. 3: "Lebert"-Walsh generator (n=4)

The elaborateness of digital IC's in-
creases rapidly if one wants to generate
more than one function simultanously.
For 2N Walsh-functions the whole circuit
except the counter, must be duplicated
2N-2 times. In Leberts design the nega-
tive edges of the Rademacher functions
produce triggering pulses when passing
through differentiators. A particular
amount of these pulses is combined by
OR~gates and used to trigger an output
flip-flop. The maximal time lag between
two functions is given by t3=(n-l)Tt; +
ATQRHATRCHATNORTATFF Or T4=A1,+AToR +
ATRC+ATNOR+A1FF dependent from the choo-
sen counter (ATor, 4Tmes AT ¢ AT

are propagationogelayngime gg%feregges
of two OR~gates, two differenuiators,
two NOR-gates and two flip-flops). Fur-
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ther delays in the time base have not
been considered. Maximal worst case
clock frequencies of the "Lebert" gene-
rator are f3 = 1/t3 ~ 7 Mc (n=4) and

f4 = 1/14 =15 Mc (n=4).

A Walsh~function génerator develop-
ped by Yuen [4] is shown in figure 4.
The circuit is a modified version of
the "Lebert" generator. The differenti-
ators are replaced by AND-gates which
also have the task to synchronize fuac-
tion generation by clock pulses. Fur-
thermore Yuen uses a special counter.
The maximal displacement between two
produced Walsh-functions is given by

T = &Tyanp *+ TOR + Tpp: It must be

—-FFL—-E]———DO-:]))_DO__ T
| ) —E-
| FF3 ..E}—E—po-
o] FF 2 -—po-:!)
L & == ‘
-of FF1 ———D‘H:{:}A, i
clock ”
© wot(13.08)

Fig. 4: "Yuen"-Walsh generator (n=4)

noted that the propagation delay time
of the OR~gate must be calculated from
the sum of the propagation delays of a
NOR- and a NAND-gate, as OR-gates with
four inputs are not available in Stan-
dard TTL. The generator can be driven
under worst case conditions with the
clock frequency fg = 1/(2d+Tpp+{(n-2)Gyp
212 ¢ (n=4) (4 ls the lengiﬁ of the
clock pulse). This frequency is deter-

mined by the counter alone.

2.2 New Walsh-function generator
using multiplexers.

In this paper we outline the design
of a Walsh~-function generator consist-
ing only of counter flip-flops and mul-
tiplexers. For producirg 2" Walsh-func-
tions one needs 2%~1 multiplexers. Each
of the 2N/k inputs of a multiplexer is-
switched k~times to the output in each
interval T. Some input signals must be
changed in their logical value with tae
frequency £ = 2{V=nl.f. if v 4 0, Fur-
ther one needs n-v counter flip-flops
and p additional gates.

o) v <1
k=2v; v=0,1,...,n; u= v-1
2 -1 v~>1

Later we shall evaluate which values
for v are significant.

The structure of this generator is
showa in figure 5 for n=4 and v=0.
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Fig. 5: "Multiplexer"-Walsh generator
{(n=4, v=0)

Incrementing the counter by 1 at each
clock pulse one multiplexer input after
the other is switched to the output.
The desired time base is obtained by
choice of the input signals. In the
same manner &ll 27 Walsh-functions can
be generated by one multiplexer in
chronical sequerce. Attention must be
paid to the fact that gome multiplexers
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invert the input signals .

A simultanous generation of m < 2" = 16
Walsh~functions (figure S5) is accom-
plished by connecting in parallel m-1
multiplexers with 16 inputs. The maxi-
mal time lag between two Walsh-func-
tions comes to tg = (n-1)t,+ATy when
operating with an asynchronous counter
and to 17 = AT,+ATy when operating with
a syachronous counter (Aty is the pro-
pagation delay time difference of two
multiplexers). Maximal worst case clock
frequencies are fg = 1/(2tz+1ty) 7.5 Mc
(asynchronous counter and n=4, v=0) andé
£7 = 1/(Atz*TH) ® 20 Mc (synchronous
counter, independent of n, v=0).

Now the operation of the "Multiple-
xer" generator is discussed for v=l,
Figure 6 shows one possible realization
(n=4).
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Fig. 6: "Multiplexer"-Walsh generator
(n=4, v=l)

The 16 1line c¢o 1 line multiplexers are
replaced by 8 line to 1 iine multiple-
xers.As a3 bit binary cou.ter is now
sufficienc one flip-flop may be used
otherwise. The counter must run twice
from O to 7 to get the 16 cutput levels
for one Walsh-funotfop. Each time the
countes has reached tne decimal eight
the input signais of some multiplexers
must be changed in their logical level.

e —— : T TS
[ T SO 2 7] el o ¥ oy e L L

Figure 6 shows an example of solving
this prcblem by means of flip-flop FFé&.
When producing the function wal(l,6) in
the normalized interval -1/2 < 6 < 1/2
the output signal of the multiplexer
must change to logicai 1 after (2m+1;8
clock pulses and to logical O after
2m<8 clock pulses (m=0,1,...). FF4 just
changes its output level in this manner
and is therefore connected directly to
all ipputs of the multiplexer MP1l. The
number of multiplexers whose input sig-
nals must be changed is calculated as
follows: If the Walsh~-function wal(i,0)
produced by MP i is periodic with Tn,’2
(Th is the normalized tim: interval)
then the input signrals of MP i remain
unchanged, ctherwise they have to be
changed. The normalized sequency [2] of
these functions is an even number, and
runs up to 2n~1l, Therefore the input
signals of b(v=l) = 20~1 multiplexers
must be changed.

The replacement of the large multiple-
xers by smaller ones does not bring up
any disadvantages. On the contrary ad-
vantages are achieved: Maximal clock
frequency remains constant, costs and
occupied space decrease to 50 %&.

Choosing v=2 results in the circuit
shown in figure 7 (n=4). Two of the
counter flip-flops are no lenger used
directly for counting. That is indica-
ted in the figure by separating them
from the others by a dashed line.
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The number of switchiny points where
some input signals must change its lo-
gical values increases from two (v=1)
to four. These four switching points
can't be determired by two counter flip-
flops. The requireuent of one additio-
nal gate arises here. This additionai
gate, exactly a halfadder,causes a pro-
pagation delay time, which decreases
the maximal cleck frequency. Now it
holds fg = /(31 +ty+tTy) =~ 6 Mc (asyn-
chronous counter) and gg = 1/ (tytr+aT2)
«13.5 Mc (synchronous counter). The
costs are still decreasing by this ope-
ration as well as the occupied space.

Enhancing v to 3 will result in an
increasing number of additiunal gates
and a not desired decrease of the clock
frequency below 10 Mc.

Sulimarizing we state that it ig rea-
sonable to build up the generator with
a factor v = 2 or v = 1. The factor
v = 2 permits to develop generators for
64 different wWalsh-functions, using
todays available multiplexers(1G line
to 1 line)without cascading.

3. Orthogonality error of
Walsh generators.

A well known measure to compare the
features of different Walsh generators
is the orthogonality error of the pro-
duced functions. Dealing with logical
levels {0 and 1) a possible definition

is:
€y,q " |4_£(wa1d(1,9)-1/2)°

(wald(3,0)-1/2)d0-5, ,| (#)

where:
wald(i,6):=1/2(val (1,0} +1)
. 1 i=j
84,3 Lo 143
Tnt normalized orthogonality interval

(mainly Tp=1)
6 : on T normalized time

Equ. (#) shows, that ¢; 5 is only diffe-
rent from zero if i%j. A’constant dis-
placement of all 27 functions against
the interval borders does not affect

the orthogonality error.

Circuits of Walgh-function genera-
tors may be decomposed into three se-
parate stages, see figure 8.

First a counter stage - or modified
counter stage (Yuen) -~ second a stage
where logical operations are performed
and third a stage with output gstes.
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Fig. 8: Block diagram of a Walsh gene-
rater and orthogonality error

Analog to the decomposition of the ge-
nerator the orthogonality error is cal-
culated in three parts. The first part
is found under the assumption that the
circuit is built up out of a real coun~
ter and ideal gates (no delay) in the
second <nd third stage. The "counter”
error is reasoned in
a) different rise and fall times of
counter flip-flops and tolerances of
rise and fall time of counter flip-
flops (time lag At,),
b) prepagation delay when using an asyn-
chronous counter (time lag (n-1)T,).

The secord part arises from the
assumption, that counter flip-flops as
well as output gates are ideal and that
real gates are taken for the logical
operations in the second stage. This
"logical” error g, is caused by the
different number of gates which ¢trigge-
ring siynals must pass to produce diffe-
rent Walsh-functiong (time lag 1) and
the Jifference of rise and fall times
and its tolerances cf thase gates (time
lag Atp).

At lasc the third part arires from
the assumption of an ideal counter
stage, ideal logicai operations stage
and real output gates. This "output”
error is reasoned in the differing rise
and fall times and its tolerances of
the output gates (time lag Atg).
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AN ORTHOGONAL TRANSFORM APPROACH TO THE DESCRIPTION

OF BIOIOGICAL AND MEDICAL SYSTEMS
Pritz J. Seif and Donald S. Gann

Medizinische Universitiits-Poliklinik, D7400 Tiibingen,

West Germany, and Department of Biomedical Engineering,

Johns Hopkins University, School of Medicine,Baltimore,
Maryland, USA.

Abstract

In biologinlnd medicine a systems
description discrete form is manda-
tory and can be based on & Boolean
algedbra maintaining a quantitative and
deterministic relationship between the
variables. In contrast to previous ap-
proaches (GANN,SCHOEFFLER),the nngping
of the logic systems description into
a set of orthozonal functions over a
Galois field leads to computationsl ad-
vantages, The apiplicability of the
mathematical tech:igue tc biological
systems descriptic: is demonstrated by
the human female reproductive cycle as
an example,

Introduction

In biology and medicine systems des-
cription serves the purpose of summa-
rizing our knowledge of a system. A
mathematical rogreacntation can help
to check a complex hypothesis or to
predict results by simulation. There-
fore (empirical) data and (theoretical)
assumptions must be incorporated in a
mathematical model.

Empirical information of a system
can only be obtained by observables
;gd bgliggresentgd by a sequence of

8CY: bory states anc a diagram
o ‘ormation flow Eogether’ii%ﬁ—fhe
memog* depth of the system. This repre-
sentation of data can be extended by
assumptions to meet a certain hypothe-~
sis or to f£ill a gap of knowledge,

- As we want a definite answer,
decision, or feedback by a simulation,
only deterministic systems are of
interest. By Heisenberg's principle of
indeterminancy measurements yield only
discrete data of finite resolution, if
we exclude any probabilistic statements.
Por the same reason only disjoint equi-
valence sets of state variables x. (t),
i=1,2,3y...4n and state sequencés

T = 1,2,5y0+. are allowed, Thus the
mudel of the system is conceived as a
determinigtic finite sutomaton or se-

-

Mathematics

A deterministic systems description
can be obtained by assigning discrete
variables, i.e., two-valued Boclean

ctions x.(t) to the observables
(GANN,SCHOEFFLER), To -~ qualitative
obgservable - with the . st order of
resolution - only one Boulean function
is attributed, whereas quantitative
observables xtt) are quantized by the
dyadic expansion into several two-val-
ued functions x; (t):

x(t) & iﬁ; 2*x, (6). )

t21,2,3,000,2" is the attributed state
out of.the state sequence.

A complete state description in the
discrete variables x. (t),i=1,2,ce.4n
at the state t is obtained by an ele-
mentary Boolean conjunction

n
y®) = Bxi(®) &)
with i=1 1290001} xj'.l xi or ii and with

the operatorsA"AND"_ (usually written as
concatenation) and X as"NEGATION" of x.

Thus in g system with n variables
maximally different states can be
observed forming the same number of
elementary conjunctions, The system is
called to be of n-th order.

The dynamic behavior of the systenm
czn be represented by a consecution of
states

t 1 1 1.2 1 1. € {tslh..
7| Bxg (0] Txg @) . JTx o) ..

or by a state transition matrix, as
usually applied in the description of

Markovian processes. The state -
ition matrix T (in general Q;,QE; maps
all possible state descriptions y(t-1)
at state t-1, represented by the vector

¥(t-1)ttint° 8ll possible state descrip-

icn y(t) at the next state t, repre-
sented by y(t):

uential machine,.
guppof%aﬁ by @ fellowship of the Deutsche Forschunzsgemeinschaft (F.J.S.) and by

NIH Grant AM 14952 (D.S.G.).
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In other words T_ maps the vector space
Y of g, into itsBif, :

Ve call zh(t) an intensional vector,

and went to distinguish it from another
vector to be introduced later as an
extensional-or spectral vector (LEIN-
I'HINER) o

The intensional vector y.(t) is
called to bg of n-th order With n re-
presenting jthe nuaber of discrete vari-
ables of the system., The elepents of
the vactor y. (t) amount to and cen
be obtained the ordered Cartesian
product of all. rn two-valued eleaentary
vectors. Omiiving the state index t,
we write:

G

el o

Fgr example‘nnB yields:
R e
x1x2x3,x4x2x5,qu2x5,x1x2x3).
Equation (3) can be considered es

an overall transfer function cf the
system, In order to obtain more in-

sight into the structure of the system
and the ways of information flow, it
would be desirable to have an explicit

solution for the single discrete vari-
able xi(t) in the form:

xi(t)-r(x1(t-1),x2(t-1)...xn(t-ﬂ)) (5)

This can be achieved by three different
basis transformations in (3). In tha
intensional vector the variadles of
the elementary conjufictions xi are
substituted (DE LUCA,HAMMER) “by the
following:

H-transformation:
x; = 1/2(1+ri) A=,
X5 = 1/2(1-x4) V= +
or in vectorial form

- Gz) - "/2[:: -:](:1) ;

Y = V2 = B3z, (6)
: elementary transformation matrix
: elementary Hadamard matrix

elementary spectral Racemacher-
Walsh vector
: Rademacher function of i=th order,

Pl

P=transformatiorn:
*i-ui’-ii.1‘ui, A=q ;3 V= &

i'r P Y ey e, 2T ey &'«F:ﬁi “zfi?*:? et TR Ay ,,‘igr‘é;vgfzi R )
RL
iy s —
S
or in vectorial form
T (8) = T3, (-1, (3)

- E)-15 16)

Iy * Puu, ()]
P,: elementary transformation matrix
u,: elementary spectral vector
Setransfo-mation:

Xg =X A= o

X = 19 x4 V= @
o denotes the logic exclusive OR.

§1 1 07 fx4
H=\x,) "L 1J\1
I = S4%q (8)
8,: elementary transformation matrix

X4: elementary extensionel Boclean
vector.

The H~ and P-~transformation msps
from a Booiean space into tlie re
space, whereas the S-transformprojects
into another Boolean spaca, which is-
éggggrphic to a Galois fieid mod 2

The elements of the transformation
matrices of the n-th order are obtained
by the n~times Kronecker product (m) of
the elementary matrices, as the latiers
are given over a finite field (GRUBNER):

Hy = I} ® B s...8 H] (n-times)

oy in the fora of the normslized Hada=
mard matrix

4/2nan - 1/2“"“1-111_1 ® 1/24, (10)
The same holl> for Pn and Sn:
P, =P, 48P, 1)

In the case of H&,H and P, the oper-
ations +, -,and . used,vhereas in
the case of s, the operations e and
A=, in the finite fieid GF(2) with ad~
dition modulo 2, with 1e1=0, 1e0a0e1+1,
and 00«0,

It is easily shown that the elemen~
tary matrices have the following pro-
perties:

H, is orthogonal under the operations
+1and o o

1/35434 = 21 (13)
uith!H; = Hy = Hy,and E is the identi-
ty matrix,

P, is_zot grtgosonnl, with P, # Pqﬂ
and P1 =14 4] we have

v
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8,4 ig orthogonal under the operatious u (t) = Bngn(t-1) (24)
@ ANA A=,
-1 -1,
With 821 = 8, and (S.q‘:)’1 - Bf we have By Pp TpPp and T, = PB P 5 (25)
8181 = E1 (15) Bn;n(t) - Tnsn!n(t.1)
n As ther§§onec§e§hproguct preserves and "it?t§18)s . 6t
e properties o € elementary ma- = 8 -’
tricgs GRUBNER), we have: I n°n°n¥n
= Cpx (t-1) (26}
V2, = By (16 C,=S8T78 and T_ = 8C.58, « (27)
P;1Pn - PnP;1 - En 17) n n n“n n n‘n“n *
858 =E 18) Thus we obtain among others the ex-
n™n n plicit solutions for

Yhe elements.or the vectors Tpy Yy

and of n-th order we obtain also by
the 3sian produgt: For example .

rq(t), ra(t)no's rn(t)i
u1(t)9 “2("7);-0-0 un(t)i
(£)y x5(t) ey X, (t);
Iy =Ipu X \p ) amd uhichf;epreszﬁt the structural depen-

n dency of one variable at t from the
variables at the former state t-1. How

*n

X, "% X ('1 ’

withn = 3 we get

£§ '(191‘3,1‘2,1‘21‘3.1‘1,1‘,,1‘3.1‘11‘2,1‘11‘21‘3)
Zg '(qu2x30x1x29x1x5’x1’x2x3,129x591)

The elements of the spectral vector
r, represent the Walgh functions in
the natural Walsh-Paley order written
as products of Pademacher functions.
Here we replace the nonlinear Rademach-
aer products Ty ToTzeeeTy by auxiliary

variables, the Walsh functions, in the
sense of % Hamilton transformation.
This "linearization" together with the
intrinsic groperties of the Rademacher
functions leads to the advantage of
egolving logic (Boolean) equations by
matrix operations despite the under-
lying nonlinearities. The same is true
vith u and x .

For the intensional vector of
n-th order we thus have the ¢ e
bagis transformations:

I, = /2,2, (19)
I, = Fuliy (20)
I = Sn_x_n. 1)

The substitution of (19),(20),and(21)
into (3} yields:

/2%, 5, (£) = 1/2°0 H o (t-1)
and with (16)
£, (%) = n/ananmnnngn(t-ﬂ
- 1/2”A:rﬂ(t-1) (22)

A BT H and T«1/27%8 A ; (23)

P () = TP (t=1)
end with (17)
w,(t) = X' P u (-1

to reach the explicit solution in X,
given a solution in R or U,is depicted
in the following diagram:

sni \P,:‘;\%lf%"'

—F
vith w = /270 r  1/2°Qr, and

n n=r

' =1 1 1
-PH-
@y = Py Hy [2 o]

"and £: + =0 .

The structural dependencies in X
tell us a possible way of information
flow in the system,

Equations (2%),(25), and (27) show
how to solve the inverse problem of
finding the state transitions given
the structural relationship between
the variables. An, Bn , and C, we call

the structure matrix of order n of the
system,

So far we have silently assumed
that the state t is completely deter-
mined by the irevious state t-1, In
reality this is seldom true;the state t
might as well depgnd on earlier states
t"d, 331'2,3’000 "19 J’.‘epresenting the

:e:gﬁisdggggaoietE:igzgtem. Under these
In (8)=Tp (2, (5=1) x 3, (¢-2) x...
eoeX ;h(t-j)...)

- Ti,hlh(t') (28)
with h representing the order of the
newly formed vector of the "previous®
states, The order h can increase to
n(2n-1) nuxinallg. The number of the -
elements of ;h(t ) and the rows of ?n,h

will then be 2% = 28(20%1) 4.4 the




number of the columns 2. The structur-
al relationship bstwesn the state
variables will oe obtained, for example
by the S-transform,by substituting(21)
into (28) and we have:

x,(t) = SnTn,hShEn(t') (29)
Static systems can be described by
the s%rucfuraI relationship
%3 = OpXy (30)
in the X domain,

Por & system with memory depth of
one state it can easily be shown that
the following holds:

,(t) = Ty, (6-3)
with § = 1,2,3,...2%1,
It for some J=e, zh(t)-zn(t-e) , O
To*E, With the rank r of T, and E_
r-an, we call ? cyclic, It has got the

roperties of a® permutsvion matrixand
%B)Acan be inverted to (CULL):

1,(5-1) = T2y, (%) (32)

With these properties the system under
ccnsideration shows cyclic or periodic
bvehavior with & cycle length or period

of e.
In 2&89 of 1 5
e _ne+l e+
TnfTi#Tz{. ° .#TnITn ’Tn Boee

we call T transient with the charact-
eristic e¥ponent e. The system has got

& transient length of e, i.e. starting
in state e system reaches thelimit-
i te t+e or the stateof equifinal-
I?g'%%ﬁN"BERTALAHFFYS after e transi-
tions. We can write:

I, (t+e) = Ty (t),
or generally
L, (t+e+a)=T0* 0y (£)=10y ()
with a=0,1,2,35.4.,00 .

In the limiting state t+e the system
has lost all infotmation of pre~
vious state, This gives some plausi-~
bility, why a transient matrix is not
inwertible.

There also exist systems and thus
matrices that are cyclic and transient.
The cyclic and transient properties of
the state transition matrix T are also
%nhq:;gfcin thetgtrgctugo matgigga *

'3 s 88 € li=, -y ant
tﬂrq&tiong preserve these properties
(GRUBNER).

Application

As gn example out of the field of
biology and medicine we have chosen

the human female roductive cycle
or mens cycle. evolves in time
with a period of about 28 days. In

(31)

(33)

sinmplifying we can say that the gitui-
tary glend,anatomically and function-
ally connected to the hypothalamus,
produces two hormones ag information
carriers, the follicle stimulating hor-
mone (FSH) and the luteinizing hormone
(IH#), which stimulate the ovaries with
rsggect to follicle wth, maturation,
ovulation, and steroid (sex) hormone -
production.

The ovarian steroid hormones com-
prise two groups of different biolog-
ical activities, the estrogens and
gestagens. Both control the IH- and
FSHaproduction and secretion in the
pituitary by a negative feedback. In a
certain state of the system the estro-
gens elicit also a positive feedback on
the pitvitary, which causes the FSH«
and IH-surge in the middle of the cycle
and is followed by the ovulation and a
considerable increase of the gestagen
production by the ovary during the sec-
ond half of the cycle. Estrogens and
gestagens also induce proliferation and
secretion in the endometrium, At the
end of the cycle the hormonal decline
causes the menstrual bleeding,
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Fig. 1

The discrete events in the system
and the time dependencies of the hor-
mone levels in the blood are depicted
in Fige.1. Further simplification and
abstraction to discriminatory states
yield Pig.2a and Fig.3s. Seven differ-
ent states (t=1,2,...7) can be distine
guished and described by 8 two-valued
variables X,yXs90ee3Xg o« The 80 far
known structur of th8 information flow
in the system can be seen in PFig.4.
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Nermel cycle Simulation
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Figs 3 a b

The problem to be solved is to find
a transfer function of the"black boxes"
61,62,.3.68, representing subsystems,

which generate xi(t), i=1,2,...80ut of
xi(te1). In general the memory depth

is assumed to be one state, except for
Xg1X0s and Xgs in which case a memory

depth of 2 states is necessary to ob-
t determinancy.

With the mathematical technique dis-
played in the former chapter we obtain
the axplicit solutions or transfer
functions in the Rademacher-Walsh do-
main by the Hadamard (H-) transform:

With r(t)ary, v, (6-1)=r], v, (t=2)=r}

we §°t6 )

r4=1/2 (1+ré)(1-rg)(17ri)(1-ré)
(2(1-r4)(4+ré)+(1+rq)(1-r§)(4-r§))-1

%
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Fig. 4

r521/25(1-05) (2(1-24) (1-13) (1-1)
(1428) (1=r)+(1424) (1-24) ((1-r})
(1+r4)(ﬂ+ré)(1+ré)+(1+ré)(1-r4§
(1=2£) (1-2¢)))-1

r5-1/24(1-r5)(1~r;'_)(1+ré)(4-ré)('l+r.‘7)-1

r,=1/2%(1424) (1413) (=141
r5-1/2(1-ré)(1-réré)-1

2x1/2(1474) (1424) (=15 (1424)-1

r7-1/28$1+r4)S1-ré)§1-r5)S1+ri)(1+ré)
(1+r6)(1-r4)(1—r5)(1-r6)-1

rg=1/2%(1-04) (1424) (1=x§) (1425)
(1-r§)(1+rg)-1

And in the logic domain by the S~trans-
form with xi(t)uxi. xi(t-1)-xi,

xi(t-a)-xg we have:

Xq= xé(1ox5)(10x4)(40xé)(x40xé(10
xj(1ex5)))

X5= (10x§)((1ox4)(10x5)(ﬁox&)xé(1oxé)
° x4(1oxé)((1oxé)xix§xé ° xé(1ox4)
(10:5)(16xé)))

xz= xéx§(1oxé)(4ox4)(1oxé)

%= Xixy o Xjxgxs

X xé ° xé [ xéxé ® x%xé

Xe= Xpxjxy(tens)




Xp= x%x&x'xé(1oxé)(10x5)(1ox3)
(40xg (1oxg)
Xg= xgxix3(1exs)(ex3) (16xg)

Fig. 5

According to the above formulas
circuits can be constructed that be-
have analogously to the quantized ob-
servables of thc menstrual cycle.

A possible realization of the network
in the logic S-domain, with a DC source
of unity (1), delays zt), and the logic
olements "exclusive OR"(+) and "AND"
(o)' is ghown in Figosc

The effects of a contraceptive ese
trogen and gestagen zedication, as
shown in the two upper curves in Fig.
2b and the three upper rows in Fig.3b
can be simulated. The results are seen
in the lower parts of Fig.2b and 3b
and are consistent with the biological
tindings of & missing ¥SB- and 1IH-
sgrge and tke omission of the ovula-
tion.

Cone¢lusion

The application of this mathemati-
cal technique is not limited to the

femgle reproductive cycle, but can be
applied %o other biologicsl and medical
systems for the purpose of description,
simulation, and prediction. It can
equally well be used for the design of
logic switching circuits.

By the H~, P-, and S~-transform the
intensional state description of the
system in the Boolean domain is pro-
Jected into other domains,where matrix
operations are possidle and explicit
solutions can be obtained for the dis-
crete logic variables. The computation-
al simpliciby is greatest in the logic
exclusive=OR domain X, lower in the
3ad§macher-Walsh domain R, and lowest
ln ®

In our example of a systems descrip-
tion we have incorporated only perti=-
nent information in a digcrete-form,
Thereby we have circumvented the ungur-
mountable difficulties of a continuous
description in the realm.of biology’-
and excluded the pseudoaccuracies re=
sulting from differential and integral
calculus.
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A QUANTIZED VARIABLE APPKUACH TG DESCRIPTION OF
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Abstract

Models of biological systems are often based
oh ‘sampied data tn which the values of variables
are assoclated with large varfances. Under these
conditions it is traditional to ascume continu-
fty in time and amplitude, so that time Is con-
tinuous and each ampliitnde is an element of the
real line. An alternative apprecack is to utllize

tion of the real system !n orde- to assoclate
certain mathcmatical objects with elements of
the real system. Ilnevitably, certain features
of the real system are emphasized at the ex-
pense of others. The best models are those
which are isomorsohic to the real system xith
respect to those featurc~ which zra considered

T R LR T A T L U TR BT S e TS e P £ S e e« 1o e
7 IR 2 s A i T S I e | e O .;mw?r—;(a

7

by

a discrete time scale with time {dentifled by critical and which have :otivated the construc- e
points at which semples are obtained {sempled tion of the model §.a the first place. Scversl e
data aporoach} or at which changes of state oc- properties of biological systems,and certain 3
cur (discrete event approach). Furthermore, var- aspects of bio'ogy as a sclence, suggsct the "3
fables may be quantized to distingulish only that validlity of constructing models of biological i
nuimber of levels of a variable which may ke dis- or medical systems which utiliz. .»%-.‘-s o
tinguished statistically. This results in an or- quantized in both ampiitude and ¢ . ;3
dinal scale of measurement, In cur experience it ¢ orl i . _ B
Is rore to require more than elght levels of an . 0f primary lmoortance, e maf 3y ; 3
experimental variahle, using the above criterion, rary nroblems In such are.s as PP” . d‘ %
The mathematical handling of such discrete vari- ::::;g:2273:52:t:“gfmigicz;nglzg?:?;3 ;:"syzf =
ables may be greatly simalified by coding each tems. The problem may be stated, in a comrlex %g

variable into a Boolean vector. This aporcach
aiso eliminates certain problems of nonlinear-
ity. State variables which have not been ob=
served are distinguished in such a representa~
tion a5 unknown paramaters which are themselves
Boolean elements, These parameters ¢an be iden-
tifled by the solutlieon of 2imultansous Coolean
equations, These equations arise by application
of a constraint of functionailty {determinism)
whereby a ~iven input zpplied zt & given state
must lead .0 a unique output, A technique for
solving such eguations has been evolved for the
Boolean algebra of n-dimensional Boolean vectors,
conjunction and Tnclusive disjunction, Simpli-
fication following paraneter identification leads
to compact representations. The finite cardina-
1ity of the models alds In identificartlon of
inconsistencies and thus of critical sxpariments,
and aids in the consideration ¢f the relative
validity of alternative structur.s, A simple
theorem relates the disjunctive normal repre-
sentation of a Boclean sequence, in which the
elements are regarced ss intagers, to the Wylsh
Transform, and thus relates a logica! formula-
tion to an (arithmetic) algebraic one. Boolean
minterms can then be identifled by solution of
simsitaneous algebrsic equations. The refation

is of potential significence for applications

to large systems of the varlsty descriled above,

Introduction

Hodels of biclogical systems are formulated
to summarize comsliicaced sets of data, to serve
as & basis for simulation and thus for predic~
tion of ths outComes as-yet-unperformed experl-
ments, or to increase one's understanding of the
real system described by the model. The prccess
of modeling incvitably begins with the abstrac-

svstem in whicf. all the elements are intercon-
nected, which connectors are of c-itica? im-
portance? What is the relative importance of
the critical connections? {f the svstem is
mslfunctionina, s a connection disturbed, or
has the relati{ve importance of ths connections
chanaed? Alonaside these guestions, the nead
for precise measurement may be minimized.

Furthermore, biological systems tend to be
noisy, and measurements on them often are
associated with large varianzes. As Chang (1)
has nointaed oux, there is a natural guantiza-
tion assoclated with the signal/noise ratio,
and with all band-limited signals,. As variances
become high, the number of lavels into which »
sianal can be resclved becomes quite small. Li
and Uraquhart {2) have analyzed the secretory
orcoerties of the adrenc! aland in this way,
and have shown ths{ it can be viewed as secro-
tory not continugusly, but at phly eight dif-
ferent rates. In addition to large variances,
certaln measurements can be made only at dis-
crete intervals. Thiz is always the case for
sannles of bodv flulds or tissues which must
be submitted to Liochemical analysis: it Is

also the case for so-calied continuous measure-

ments In which the time constant of the meas-
uremant i3 large with respact to the dynamic
oroserties cf *he sy3iem. The measurement of
cardiac cutout, which is based on the dilution
of an Injected dve, In one example: since the
vhenomenon of distrikbution must be measurnd
ove: 8 period of meny heartbeats. Thus quanti-,
zation may he Implicit efther in the system
or in the arocess of measurement,

The nresent naper describes a;:ecﬁnlque for
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the modeling of systems with variables quantized becomes f%;
in amplitude and time which extends previous {rira +F173) (5152 +-§-‘-s- ) 2) %
descriptions of this approach (3,4,5). 1t is 1 2 e
Since the statement a b is equivalent to a+b, s
shown that the problem of identiftication of tion (2) be tten |n matrix form as %
parameters in such a model reduces to the nrob- equa ggm : ﬁgl ,""'j ) z
lem of the solution of simultaneous Boolean 0001 | 1110 " ) =2
equatlions, and a new method ts introduced to ac- 1110 i 0001 ;f 1 ’;f
complish this. A relation of this formulation to o1 ! 0010 ‘ 9 B (3) LA
the Walsh transform is examined, An extension : J 2. §
of the present approach wi:ich was suagested by n 3
this examination, but which offers certain com- r2 @j
putational advantages, is described in an ac- 3] LB
companying paper (6). LSz -5
The Formulation of Boolean Models ‘ﬁ;
in general, for a subsystem with multiple in- ¢ 4
Glven a system to be modeled, It is first puts and o&tnuts. the identification problem ?
necesSary to abstract the system, to define the 11 th d to the bl £ solvi n i
sets of Inputs and outputs and to formulate an w en re :cef o problem ot solving a 2
initial view of the connectivity of the system. equation of the form L
The variables can be ouant!ze(:d)!n amp!itude Ax + BX =1, 1)) b4
according to Chang's method (1), or in any other - - - - e
intuitively useful way. For example, the process where X isdarB\ n- v;g:clar of the nth;puts ':d‘OUt g
of measurement or the design of experiments may puts, A an are ean mxn matrices anc [ -
su N {s an m-vector all elements of which are 1, S
ggest appropriste approaches to quantization A method for th lution of this class of ‘A
: (3,4). Quantization In time may be based on me ?r e so I on o a -3
2 sampling intervals (sampled data approach, des-~ equations s given below.
X cribed below) or on times at which changes in Examples of static (3) and discrete event -3
4 state occur {discrete event approach (See (7)). {7) Boolean models have been presented else- . 3'3
. The differences between levels of the amplitude where, The statlic exanple is particularly in- 3
4 variables need not be equal: only linear order- teresting in light of the discussion above; - B
| ing is required. The scale of measurement for sfnce it was shown that the initial structure -
Lt amplitude is thus ordinal. The amplitude vari- (connectivity) chosen for the system did not %
e ables are then coded Into appropriate Boolean allow any solution to the simultaneous equations 3
vecrors. Any code will suffice. We have in gene- for one of the subsystems. Accordingly an alter- H
B ral used the natural aquivalent to a binary re~ nate connectivity was selocted which appeared o
4 presentation of the ordinal number. On the other compatible with the experimental evidence. 3
ks hand, Brand (18) has shown that the firay code Further experiments were conducted to test the -z
= has certain advantages if there are ambiguities new connectivity, and this was shown to be 'z
2. in the quantization. Since the mapping from or- correct (9). Thus,applicatioa of this modeling a2
=8 dinal measure to Boolean vector is one-to-one, procedure led to a novel, hitherto unsuspected E
A the decoding procedure is Implicit. In general and important physiological finding concerning «rf‘f
=N the model will take the format of a set of in- a hormonal actlon on the central nervous system, &
£ terconnected subsystems. As a result of the The discrete-event example is interesting be- 4
ol quantization, there can be only a finite number cauge it offers a Boolean model! of a techno- £
2 of inputs to the system or to any of the sub- logical process (in this case a conveyor systen) .
A systems. Cne might be able, {f all intermedi- and thus indicates the applicability of this p
=3 ate vartables are known, to write a truth table approach to non-blological cases. Aveyard (7)
for each subsystem and for the system as a whe showed that the discrete event approach was
ole which will list all possible outputs for dimensionally smaller and thus simpler than an
al! possible inputs and times (4). In general, equivalent model of the system as an automaton,
there will be one or more intermediate variables Nevertheless, there are occasions in which one
which cannot be observed. This gives rise to the may orefer the autcmata approach. One such
problem of identification: to find the values circumstance is that in which Inputs and outputs i
of all unobserved variables. This procedure are sampled periodically, and one szeks a model T
would be entirely arbitrary iT "we did not want to relate them in the absence of knowledge of .
to be able to use the model for prediction, the mechanisms relating inputs and outputs. An -
Huwever, predictability implies determinism, example follows. -
which introduces in turn the constralnt of 5
functiorality: for a given input and state, A Sampled-Data Dynamic Boolean Model 2
e there can be one and only one output. This The adrenal gland of many mammals secretes a i
constraint, appifed to each subsystem implies hormone | cortisol, in response to the presenta- 2
that if In any two rows of a truth table the tion of a hormone from the pituitary gland, cor- ;
inputs are equal, then for these rows, the ticotrophin, or ACTH, ACTH i¢ released by the
oitputs must also be equal (4). Thus for a pltultary in response to a variety of stimu¥i
subsystem with Input ri and output sj one could generally termed "stress," and cortisol plays
write a central role in the defenses of the body aﬁg;
‘- inst hemorrhage, injury and other stresses .
‘r'w; r2) > (51 = S2), ('). for reasons given elsewhere (3) it seems desir-
ere ——) stands for implication
from the oxions of Boolean algebra, equation (1) able to model the overall system in Boolean
9 » tquation form, Urquhart and L1 (11) have described in de-
tail the dynamics of the adrenal recponse to
186
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ACTH, and have offered a contlnuous model to
account for these dynamics. The adrenal dis-
plays a static nonlinearlty so that its respon-
se saturates at large Inputs of ACTH. There it
also a dynamic asymmetry such that an over-
shoot s present In the response to presenta-
tion of ACTH {at submaximal levels only), but
there is no undershoot i~ response to with~
drawal of ACTH, All of these prope:ties can

be displayed If cortisol secretion is viewed in
four levels (2 bits), though the gland itself
actually behaves as If it operates in elght
lavels (3 bits) (2). We offer here this simpli-
fled model of the adrenal response to ACTH,
based on a 2-bit processor, as an illustration
of a sampled-data dynamic Boolean model.

The (sampled) output of secretion of cor-
tisol in response to presentation of ACTH as
a unit pulse ¢nd as pulses of three different
amplitudes and longer duration is shown, after
quantization, In Fiqure 1. The overshoot and
saturation are evident. For, convenience the
differences between levels of the outout vari-
able F have been drawn as equal. In fact the
distance from v = 10 to F = 11 should be short~
er than that from F = 01 to F = 10,
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A truth table was constructed to relate a
state vector I to the two past cutputs, each of
which is a 2-vector, to the next output, and
to the past input. The constraint of functiona-
lity was applied to define the state elements,
as indicated above. For a six-component state
vector Z, for thc output at time k, f = (f,
fz) and the output at time k-1, f .- (f3 fhs
and for the Impur at time kjak = (a},a,); the
state equations are slmply:’

Z' - fz-f.B?[’

22-f|+f2 Zs-a,
3= f 26 = a,
zy = f2

A truth table was next constructed for the
overall system relating ¢he Inputs and present
state to the present outout. The missinn ele-
ments of the truth table were derlved from the
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tdenttfication proceduru outlined above. The
overall dvnamic model for the system as two
Boolean eauations is relatively compact, yet
describes in full the complexity of the data
of Figure 1, Furthermore, the model is com=
onlete: simutation will aive an cutput for
any waveform of input, restricted to freaquen-
cies at or below the sampling rate. The ovacr-
all equations are for outout at time

ktl, Fpq =(F1, £2):

£, = Zyzp2324%5 + 7\ 2225 (z3+zk)
+ 275732y, (z5 + z¢)
F1/2 = Ty37320 (25 + 2g)+ 2132324
(2c+Zc2g) + Z322(2374, 75 +
Y3115.;6 +6Z3Z526) 3

The overall model of the adrenal can be re-
presented as a finite automatjon, as In Fie-
ure 2, A is a delay of one time-unit.

s [ 1]
F A
Pt
A Ak Z
Axu S | Fien
[22]

Solutlion of Simultaneous Boolean Equations

The solution of Boolean equatiors seems
deceptively simple, In fact, many techniques
are available and are effective rrovided that
the number of variables 15 very small, Most
techniques Jdepend upon enumeration of the

2N possible values of N boolean variables

and hence are directly or indirectly techni-
ques for solution based on exhaustive search,
Such methods are completely ineffective when
the nurber of variubles becoires reasonable
(areater thsn 20). The objective of this sec-
tic~ is to describe the technigue which has
been developed and implemented for the solu-
tion of Boolcan equrtions which a-f‘se in the
applications described In the previous sections,
Two criteria are evident: first, the form of
the boolean eauations and the technique used
for their solution must be amonable to digi-
tal computer implementaticn: and second, the
solution technique must not be equivalent to
enumeration of all possible values of thé
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variables.

The efficient representaticn of the equations
in computer memory leads to the llnear-liie form
shown:

AX+BX=1 (5)

Here, as before, X s an N-vector of the N
boolean variables, A and B are M x N matrices
all of whose elements are 0 or 1, | is an M-
vector all of whose elements are 1, and matrix
multiplication {s implied in the usual sense
except that multiolication is replaced by logi-
cal '"and" and additiun by legical inclusive
"or!', Thus the first of the M equations is
simply

apyx) + agxy + ... +ame + *"ll 17 oceeees

b 1

INN T
In the above equation, either aj; or bij is

zere: for otherwise the equation is redundant,
since x5 + X; is ldentically 1. Notice that the

storage of such linear-like eouations in me-
mory is straightforward, requiring one bit per
variable for the storaae of aj and one bit for

bij- It is convenient in the solution to groun

L coefficients in each computer word (where L
is the word length of the computar) to mini-
mize storage and to take advantage of whole
word log'cal operations avatlable in most
digital computers. Hence in a 36-bit machine
and a set of 50 variables (say), two words are
used for the storage of a row of the A-matrix,
and another two words for the storage of the
corresponding row of the B-matrix with 22 bits
unused in each group of two words. The unused
storage is less important when the number of
variables i. large and is more than made up for
by the simplicity of logical operations that re-
sult.

it is important to note that the form of
simultaneous linear-1ike equations is complete-
ly general:

Theorem 1: Any set of boolean equations in-

volving N variables x:xz, cee ey Xy may be ex-

pressed in the form of Equation (5).

The proof of this theorem follows immediately
from the well known result that any set of
simultaneous boolean eauations can be written
in the form f(x) = 0 where the function f ()
involves the x;s and their negations. Moreover,

any boolean furction in M vzriables can be
expanded into the standard min-term form

2N
f(x) =i£i clmi(x) =0
where m; (x) is the i-th minterm and ¢; is zere
or 1.

In the above .npansion, the symbol '+" corres-
ponds to logical inclusive ''er'. Since the
lonlcal sum Is zere, each term must be zere
with the result that the equation can be writ-
ten in the form )

{m; = 0 Icr =1, i=12,...,MN

24 S AR g Sy S S SN
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That is, any ¢; which is zero causes the term
to be ident!ca‘ly zero. All terms for which

¢c: = | then require that the corresponding
min-term be zero. Noting that each minterm Is
the logical product of the x{ or their nega-
tions, It follows immediately that negating
eaca simultaneocus equation produces the logi-
cal sum of variables or their negations, which
is the desired form. Hence, any arbitrary
Boolean equations can be expressed in the
linear-like form which proves convenient for
automatic soluticn on a digital computer.

As an example, consider the problem

t{x) = X)XgX3 + X)Xpx3 + X|xpx3 = 0
This function becomes
{1x2Y3 =0
xliéx3 =0
;}XZX3 =0

Neqating each equation yields

oot [hvof_
o1 ofx+[1 01 |%=
1oof o111 1

which is the form of Eq. (5).

It should not be inferred from the above proof
that this is the easiest or most efficient
way to generate the linear-like Boolean
equations; for in fact exopanding in min~terms
results in many extra equations, since often
terms can be combined and simplified. None-
theless, this form Joes lead to the solution
alqorithm discussed in the next section,

Solution of Simultaneous Boolz:an Equations
by Successive Elimination of Variables

In order to satisfy the second criterion,
and to avoid enumeration cf the 'arge number
of combinations cf values of the Boolean vari-~
ables, a successive elimination scheme is
developed. That is, one variable at a time
is chosen to be elininated, resulting in a
new set of equations in the identical form put
with one fewer variable, 1f this is carried
out until only one variable remains, the solu-
tion for that variable is trivial. Back sub-
stitution then permits the dete-mination of
all other variables., In the case of multiple
solutions, it is possible to generate cnly
one solution at & time.

The successive elimination zlgorithm proceeds
as follows.

(step 1) Pick the variable to be eliminated
(callzd x) in this algorithm). Let
the vector of remaining variables
be called Z, Write the equations in
the form

ax +b Xy + A‘Z + BIZ = l

Here a and b are the first columns

of the matrices A and B, and A} and
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B8, are the remaining columns of A and
B. This rewriting is simply for nota-
tional convenience.

Denote the i-th equation by

ajx; + biXy + Ap()Z + B (i)Z = 1
Each eguation for which aj = by = 0
does not involve x; and hence is added
to the reduced set and eliminated from
the above set. Hote that any equation

for which aj = bj = 1 can be eliminated
as redundant.

(step 3)
Each of the remaining equaxtions aas
either a; or b; zero but not both.

(step 2)

For each pair of equations which have
aj = bj = 0, form a new equation

E(r) + A (ﬁ} z E(i) +8(j§‘z =1

and add it to the reduced set. Note
that if there are M equations with M
having aj = 1 and (M-M)) with a; = 0O,
that Mj{ M-M;) equations results. This
completes the reduced set, x| having
been eliminated. The reduced set has
the same solution for Z as the oriqi-
nal set.

(step 4)
Co to step 1 unless | variable remains
in the reduced set. In this case, go
to scep 5. If there are no equations
in the reduced set, go to step 7.

(step 5)
The reduced set has only one equation
which must be of the form

a x; + b 5 1

If a=b =0, no solution exists. If
a=b-~1, x, is arbitrary. To gere-
rate one solétion, pick a value for
X3 ( 0 or 1) and procsed to step 6.

If a=1andb =0, X5 = i.1fa=0

an¢ b <« 1, x; = 0.

In either of the last two cases, pro-
ceed to step 6 after determining Xj.

(step 6) )
If all N variables are determined,halt.
Otherwice, recover the previous set of
equations which i{nvolves one more vari-
able than the set used in step 5. Sub-
stitute the values of the known vari-
ables. The resulting equations have
only one known variable, Proceed to
step 5.

(step 7)

This step is reached only if the algo-
rithm results in no equations in the re-
duced set. This implies that all vari-
ables which have not been eliminated

are arbitrary. In order to generate one
solution, pick any vaiue for these and
proceed to step 6.

The above algorithm is quaranteed to deter~
mine one solution if at least ane solution

1

8

to tne simultaneous equations 2xists. Notice
that it proceeds by generating new sets of
equations, each set in the sequence having
one less variable until one or more variatlies
can te agetermined. Then the sets (which must
be saved) are recoverad in invers¢ order, the
known variables subeatitired in order to deter-
mine the remaining ones. Notize the aralogy

to ordinary Gauss elimination in the case of
lirear algebraic equations.

In order to demonstrate that the algorithm is
correct, and that no extraneous solutions are
generated or legitimate colutions lost, it is
necessary merely to demonstrate the correct-
ness of step 3, the other steps being obvious.
To this end, group the equations so that all
those with just x; appear first:

Y-!+5]=l i"l,z,..---.,p
The remainder involve X):

X+ sj =1 j=.1,2,......,9
where s; and sj are the remainder of the

equation,

These can be written in alternate form by
necating each equation:

X1s5;p =0 i=1,2,....p

xiTp=0 i=1,2,....9
Each group may be combined into a scalar
equation:

%, 5, =0
¢ H

Consider the truth table corresponding to the
following two scalar equations:

X1y A=20
X B=20
AlB|[Solution
01041
01
1j6i}
ttilo

Clearly a necessary and sufficient condition
for a solution for X is that A B =0,
Applying this result to the above scalar
ecquations yields

£ 5.¢ %'
i t J
Combining the summations changes the form to

ij }
Now negate the entire equation to 'get the
alternate form
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in order for the loglcal product of quantities
to be 1, each must be 1, Hence this reduces to
thz set of simultaneous equations

s; *+ s} =1 i=1,2,...p, J=1,2,...9

which is exactly the set of reduced equations
specified in step 3.

The remaining steps need no formal proof. Thus
this algorithm produces a reduced set of equa-
tions which have the same solution set as the
original equations,

An example of this scheme is in order before
its advantages and disadvantages are discussed.
Consider the following equations

X + X3 = 1
.J_(" + 7(-2 = |
i} + §3 = ]
X + x, = 1
Xy * x3 = |

First, eliminate Xy . Note that thn last eq-
uation does not ‘nvolve x| and oniy one equa-
tion, the fourth, involves xy. Eence the re-
duced set is formed by forming the logical
sum of the fourth equation with each of the
first three tc get the first reduced set:

;} + xy = 1
Xo + X3 = 1
Xy + i; = ]
Xy + ;3 = ]

Note in this set that the third equation is
trivial and can be deleted. Next eliminate
the variable x». All three equations involve
either x, or its negation., Two invoive the
negation and one x, itself, Hence the second
reduced set is the logical sum of the first
and second and the first an< fourth equations
to yield:

X3 + x, =]
=]

|
(VY3 LVNY

X3-‘

Of these two, the second is trivial, The first
yields the value x3 = 1 as the only solution.
Substituting into the second reduced set yields
xp = | as the only solution. Finally substitu-
ting into the first set gives x; = 0, Hence
the unigue soluticn fs (0,1,1) which may be
verified by exhaustion in this simple example,

Elimination of Redundant Eguations

It was observed in the example above that
the reduction process could produce redundant
equations. This will not affect the solution
but plays havoc with computer memoty, in that
extra equations can generate mauy redundant
equations at each stage of reduction since
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each equation is logically summed wlth many
others. In practice this is intolerable, not
only because of the axtra computing time in-
volved, but more importantly because of the
extra computer main memory needed to store
the equations. It is necessary to eliminate
redundant equations at each stage. This may
be done with the aid of the following.

pefinition: Equatfon ax 4+ byX = 1 Is sald

to imply the equation azx + byx = 1 if each
element of a; implies each element of a; and
each element of by implies each element of bjp.
This is equivalent to saying that if x; appe-
ars in the first equation it appears in the
second cquation and similarly for X;. Terms
may appear in the sscond eguation which are
not in the first equation however,

Theorem 2: Any equation which is implied
any other equation is redundant and may be
deleted without affecting the solution to
the set of simultanecus equations. This
follows immediateiy by writl:g one equation
as A = 1 and the ¢-iatien which is implied
by this one as A+B = ., This is possible
since every term in the first equation must
be present in the second equation. Ciearly
if the first equation !s satisfied, no con-
straint is added Ly the second for it is satls-
fied for all 8, Hence 't is redundant.

A more powerful reduction is provided by

Theorem 3: Consider two equations X + A = 1
and x + B= 1, If A implies B then these
two equations are equivalent to

B =1

X+ A=l
The proof follows from the consideration that
X+ A=X+B8a=1 has a solution only i¥ A*B =
1. Since A implies B, it follows that A+B = |
is equivalent to 6 = 1, This is evident from
examination of the truth table for A znd B
adding the two conditions, A impiies B and A
48 = 1. Hence the second ¢quation, X + B =
1 reduces to 6 = 1 and the first equation is
unichanged, This complrtus the proof.

Nete that the effect of this theorem is to
delete an equation involving X, This means
in the reduction, that equation passes im~
mediately to the reduced set without being
added logically tu others and decreases signi-
ficantly the numter of equations produced.

The reduction procedure is now modified as
follows:

1. Add to step 3: Check each new equation
to determine if it contains both 2
variable and its negation. If so, delete
it.

2, Add to step I: Check each equation against
the others using Theorems 2 and 3 to
eliminate redundant equations.

With these changes, the number of equations
generated is minimum and the solutlon easily
generated. !t should be noted that if the
number of equations is large, it can be time
consuming to compare each equations with all
others to check ror redundancy. However, the
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computer Impleumentation can be simplifled
greatly by defining the difference between two
equations to be the number of varliables which
appear negated in the one equatinn but not the
other. That is 1€ x; appears in one equation
and Xi In the other. this contributes to the
value of the difference. If x; appaars In both
or only in one equation, It does not contri-
bute to the difference. Then note that two
equations can satisfy theorem 2 only if their
difference is zerc whereas they can satisfy
theorem 3 oniy If thelr difference is 2. Add-
ing & list structure to the implementation in
memory permits the programs to keep track of
which equations differ from others by 0 or 1,
and waly these need be checked to elimirate
redundancy. This greatly decreases the com-
puter time required for solution.

Relatlon of Boolean Functions to Walsh
‘Functions

The Walsh Functions are related to Boolean
expressions through the disjunctive normal
form, The fundamental theorem of Boolean alge-
bra states that any Boolean expression can be
expressed in this form. Thus for any Boolean
expression f, one can write

f= ?B (m‘)p

where I. indicates the Boolean sum {indusive
dtsjuncglon) and m; Is an Individual minterm,
One can then form a truth table for the sat
of minterms. |f one then Walsh transforms each
minterm column and the column for the original
function f, one finds that

W(f) = ;:A (W(mi)],
where W(x) is the Walsh transform of x and
Zp indicates the arithmetic sum,
For example, consider the EBoolean expression
y = X2 + 1 %

The truth table representing this function
would be

Y X X Xixg X%

000 0 0
1 01 1 0
110 0 ]
011 0 0

Taking the Walsh transform of the appropriate
columns as indicated above yields

wxix2) = 176 (1 - 1,1,-1)

Wixyxz) = 176 (1,1,1,1)

wly) = 174 (2,0,2,0) = W (Xyx,) + W(xyx3)
- f A [Wni)]

Conversely, cne can reduce a Boolean truth
table to the disjunctive normal form in an
equivalent way, This reduction is equivalent
to solving the equation

f= %B (ctm'.)

for the values of the coefflicients ¢;, vhich
will be | 1¥ m; is an element of f and o is
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1t not,
For exsmple, given the truth table
f %X %
1t o0 o0
0 o 1}
2 1 O
| I T |

one can write the table with minterms as

The Walsh transforms of the columns are found.
usirq the Hadamard matrix

H22 -

+ + ¢+
" ¢+
t o+ 4
+ 01+

and are

w(xixy) = 174 (1,1,1,1)

W(xixg) = 174 (1,-1,1,-1)

W(x)X3) = 174 (1,1,-1,-1)

Wixyxz) = 176 (1,-1,-1,1)
and

wif) = /4 (2,0,0,2)
Nne can then write the linear equation
i1 1] R/l P
-1 1 -] fepl . o
11 -1 -] fe3 0
vara ] o) 2

Sinca the matrix is orthogonal one can write
immadiately

e, 11 8] 2 i
col=178]-1 1 -1 1| Jo] =]o
c3 -1-1 1 1] jo 0
<y 1-1-1 1} {2 i

Thus cyand cy are = 1, and ¢cp and ¢y are = 0,
and
f = "I."z + X} %y

This result was self-evident in the simple
example but provides a simple basis for the
comouter implementation of expansion in-min-
terms of large truth tables by solution of
linear arithmetic algebraic equations.

Tne relation indicated above is entirely gene-
ral. It may be stated as the theorem

(wif) = }‘:A fegWimg) 1 Y4 {c; = £,)

The proof is stralghtforward
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W(f) = 1/2n tin {£;) where Hn is the
Hadzmard matrix.

‘The matrix of minterms M Is merely the identity
matrix
Therefore Hn¥ = Hn
Accordingly there will be a vector ¢ such
that

V2V H (c) = 1/20 H (f) iff c= f
that is c; = f;.

We hoped initially that this relatior would
provide a means of rapid solution of the identi-
fication problem by permitting a transformation
from simultaneous Boolean equations to simulta-
neous algebraic equations, and thus permit
solution of n equations without the expansion
to 20, However, this proved to be a false hope
because the algebraic equations are in acneral
not linzar. Accordingly the Walsh transform oer
se does not appear particularly useful in the
manipulation of Boolean models. Howevar, in the
Z course of this exploration, It was found that
4 a related orthogona! transform is particularly
useful, Its properties and some applications
are deszribed in the accompanyina paper (6).
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MOCELLING THE COMPOUND ACTION POTENTIAL OF THE NERVE
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Abstract

In the paper the peripheral nerve is
considered from a communications point
of view as a special transmission
system having dispersion-like proper-
ties. The mathematical model of the
nerve irunk turns out to be a trans-
versal filter with non-uniform distri-
bution of the delay elements. It is
shown that the input-output relation-
ship of this special filter may be
described in terms of discrete cross-
corrslation rather than of discrete
convolution. The correlation matrix of
the nerve is derived. The discrete
impulse response of the system is shown
to consist mainly of the fiber diameter
histogram of the nerve. It follows that
undexr the condition of non-overlapping
unit discharge waveformscompund ac-
tion potential and discrete impulse
response become identical. Thus, at
least in theory the fiber diameter
histogram of a nerve usually deter-
mined by tedious electron-microscopic
procedures may be measured electroni-
cally. The discrete model of the nerve
may be used to compute the waveform of
the compound action potential for ar-
bitrary unit discharge waveforms, con-
duction distances and nerve types. The
early graphical point-by-point proce-
dure for reconstruction of the action
potential is thereby replaced dy a
matrix algorithm well suited to be
adapted to computer programming.

1. Introductio

Mammalian peripheral nerves consist of
thousands of isolated individual fibers
with different diameters and different
conduction velocities. Thus, in gene-
ral the actually recorded action.poten-
tials are compound, that means they
contain the activities of a lot of
individual neurons. Consequently it is
difficult to separate the composite
waveforms into a number of independant
neuronal signal components. However,
this has to be done before prostheses
or other external devices controlled
by neuronal_information may be devel-
oped. In {5] an excellent review of all
techniques currently being used is
given., However, practically alil methods
are based on the severse restriction of
non-overlapping unit discharge wave-
forms. As we shall see this condition
is not met in most cases.
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Vhat we are looking for is the mathe-
matical model of the nerve trunk as.a
transmission system based on the knowm
physiological facts [4] thereby repla-
cing the earl aphical reconstruction
techaique [1]{2 {3] by analytical com-
putation.

2. Statement of the Problem

Fig. 1 shows simplified a peripheral
nerve containing many isolated indivi-
dual tibers. At t = o a stimulation
pulse is given., The amplitude is such
that all fibers are innervated at once,

80 [ pveront )
1 potwerx | °
st) st

Fig. 1 a) Basic measurement scheme
b) Equivalent transmission systes

Each fiber responds with the typical
unit discharge waveform s(t) travel-
ling over the fiber with a velocity
determined by the fiber diameter (and
the nerve .type). At x the compound
action potential S(x.t) is recordsd.
The unit discharge waveform cf all
fibers has the same shape, but not the
same amplitude. It depands on the
fiber diameter, too. The model of the
nerve as transaission systew is a lin-
ear system which may be destribed in
the time domain hy his impulge responss
h(t). Bvidently, the conduction dis-
tance will infiuvence strongly the para-
meters of the system. These parameters
and the iaput-output relationship.of
the system are to be determined. -

All f£ibers of the gross nerve are
grouped accordimg to their diameters
falling into the discrete classes
having the mean diameter Di‘ This
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classification scheme is used by histo-
logists to characterisze 2 nerve by his
fiber diameter histogram obtained by
electron microscopic procedure. The
histogram may be a function of the
space variable x. However, little is
known about this effect. Thus, at a
first approximation it is neglected.
Fig. 2 shows the typical shape of a
fiber diameter histogram. Nj is the
number of fibers falling into the i-th
diameter class. The mean diameter of
the i~th class is Dy = 1 A withisisen
where 4 denotes the width of the classes.

n i
Fig. 2 Typical fiber diameter higtogram

The unit discharge pulses of all fibers
withir a specific class can be repre-
sente! by one spike whose amplitude is
prozortional to the diameter of the
c"ass. The delay of this spike is tj.
T... conduction velocity of the Nj fibers
of the i-th class is vy=k,D;. This
linear relationship is true in a wide
range of diameters. The delay ti is

ti-x/viax/k‘,'Di-z/ko-:l.-Axx/vo-izttli (1)

with the upper limit of the delay
tlcx/kooA-x/vo (2)

Thus, the influence of all fibers of
the i-th class on the compound action
potential is given by

oi(t)-ioNi°:(t- tlli) (3)

where s(t) donotes the actual unit
discharge waveform of a fiber. The
compound action potential is given by
the superposition of all n signals
representing the n diameter classes

s(t)ai 1-Ni-t(t- tilx) (&)
=1

Considering this equation some general
statements on the output signal S(t)
can be rnade (Pig. 3). If the fiber
discharge signal has the finite lenigth
T the output waveform_ begins at t=atp
and ends at t=ty+T. Thus the ocutput
signal of Equ. }h) is time limited, too,
and has the duration

'r.-'ntt( i1~ 1/n) i5)

stt)

st
b)

ta taels ¢

Fig. 3 a) Unit discharge waveform ..
b) Compound action potential
waveform

The time delay is tp=ty/n. Full reso-
lution occurs if the n-th and (n-1)-th
waveform don't overlap. Since the time
difference is tp.y-tpsty-n(n-1) we
have the condition of non-overlapping
t4&T.n({n-1). Using Equ. (1) this

becomes
xhkooA-T-n(n-l) (6)

For conduction distances larger than
given by Equ. (6) n individual neuronal
spikes may be rescivad. For real data
usially being measured in physiology

+ saphenous nerve of the cat, T=ims,
v _=kqA=3,6m/s A=0,5/u and n=16) the
minimum distance would be xp86cm. This
example gshows that in general the com-
pound action potential is caused by
overlapping pulse trains since in many
cases the minimum distance (Equ. (6))
is much larger than the overall size of
the test animal.

k. The Peripheral Nerve as a Trgng-
versal Filter

Equ. (4) may be interpreted directly as
a transversal filter (Fig. 4&).

o, S foney %} o}
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Pigz. & Transmission model of the nerve
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The network N at the front end of the
filter transformstho quite arbitrary
waveformsof the stimulation pulse into
the actual wave shape of the fiber
discharge spike s(t). The weights of
the filter are

hy (?)
The time delays at the taps of the de-
lay time are ti=ty/i. Thus the delay
elements itself are ti'ti-ti+1 or

T =t /i(i21) with 19ié(n-1)

ti'Ni

8

Other than the ordinary transversal
filter this specific type has a non-
uniform time delay distribution. Inde-
pendent of the length of the filter
operator the first delay elements from
the right are

Ty=ty/2 Ty=ty/6 =t /12 Tgaty/20...
Thc question is whether the input-out-
put relationship of this filter is of
the convolution type or the cross-
correlation type. It has proved to be
useful to analyze first the cossion
discrete linear filter and the dis-
crete cross-correlator. The differen-
ces to the discrete operatios. of the
peripheral nerve may than easily be
shown.

5. The Discrete Linear Filter

The input-output relatioaship of a
linear system in the time domain is
given by the convolution integral

S(t)= f.(t)-h(t.t)at- Sfott-02-n(0)aT (9)

- - N

with the impulse response h(t) of the
time invariant system. For causality
h(t-T)=0 fcr Trt holds. If h(t) has
the effective duration T the condition
of causality becomes h(t-1)=0 for
T$¢t-T.Equ. (9) becomes

t T
S(t)= /s(t)-h(e-t)dr.-/-(t-t)-h(t)dt(xd
t-T o

Using th discrete vapiables t= y-At
and U= §-At with At-; we have

Z s@bt)oh [(y-p) At] =
=1

n
D nluse) s [iy-mae

s

Writing the arguments as indices

S(yM) =

n n -
s, -z spehy = ) bpsy . (1)
pe1 =1

The ordinary convoluiion is & commuta_
tive operation. Input signal and

i e 2P ool < i o
o 1*5-:,('.“ - R e oh e AR A
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impulse respcnase are. interchangable..
Iqu. (11) denoiss also a matrix opera-
tion. Using the causality-h,_ .= 0. for
§#*¥V the convoluticn matrix H besomes
for the first oxpression im (1)

rhl 0 o 0 voee 0
h, hy, 0 O0...0
hy h, hl. 0 veea O -
l.l‘ h’ hz h1 ooo? hand
\hn By Byp Bygee na

The discrete convolution is expressed
as (12)

where S denotes the output signal vec-
tor and g the input signal vector. The
n-th row of the convolution matrix is
the discrete filter operator {h;} ¢ha-
racterizsd by equally spaced s- ples
of the impulse response.

Considering the right expression in
Equ. (11) a different matrix notation
of the discrete convolution results

$§=Hg

S = sp°h (13)

The transformation matrix is now

s, 0 0 o0....0)

s, 31 o 0 ¢e0s O

33 s, '1 0 ¢ee0 O = 29
f‘ 33 s -1.... (4]

*n *n-1 *n-2 ®n-3° %y

The discrote convolution according to
(12) or (13) is performed by the trens-
versal filter with n sections (Fig. 5).

sodl} et ped 2] ool
o
—— o » L] L
-t

Fig. 5 Discrete model of convolution

The discrete impulse response of the
filter is the operator h=(h;,hy,h3,...
hy). Coneidering a time-limited-input
signal s(VAt) and n=A the compléte set
of equations determining the output
signal S(YM) becomes

O SN AN x e
e o cop, WO 0 08 L oo
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1= 840y

2 = 84B, + syhy

3 '1"3 + -313,‘; + s’h‘

8& = l‘h\* * czh’ + l’ha + l,‘h’
55 = lzh‘ + o,h, + I‘Ez
36 - .3h~ <+ .bhj
37 = ‘“b‘

Vith Equ. (12) amd (13) in mind this
set of equations may be interpreted as
two different matrix operaticns. The
time delay At of the output signal is
not included.

The first notation

, ,

w0 0o o) (s sJ

hz h1 o o0 sy Sz

h‘.’ hz hl 0 55 53

hy hy By h| .[s ] = |8, (1%)
0 b,‘ h, hz S5

(o] C hh h3 56

o 0 0 h S

{ 4 ("7,

and the second

, Fe )

s, o 0 o h1 S1

s, s, 0 o hz S2

33 s, s, ] h3 33

s, 8, s, 8| hf= |8, (15)
0 l’. '3 -2 35

o [+] sy -3 86

(o] 0 (] S
§ *4 \7J

or graphically for both

|
n
. SeHys
Selp-h)
-

Equ. (14) and (15) follow from the fact
that also the discrete convolution
forms a commutative operation, that is
*gsgr°h. It coen be seen that the
traneformation matrices Hy or of the
discrete filter realiszable as trans-
versal filter are rectangular ones.
Thus, only in the special case of
square matrices the corresponding in-
verse discrete filter is realixzable.
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6. The Discrete Cross-Corrslstor
For continuous signals s(t) convolution
and cross-correlation are linked by

ccr (D) = s(t) 'h(-t)l,_t

Cross-correlation is identical to com-
volution by the time-reversed filtar
operator. Since this is true also for
digerete signasls and opsrators the phy-
sical realisation of the discrete cross-
correlation is again the transversal
filter. l!ovo(vor, the elements of t:o’
operator hys » _r -9 e B3z,

are locat i:u r.c:rsodﬁcsuuco.z 1
Corresponding to chapter 5 the set of
squations determinins the elements of
the output vector $ may be interpreted
as two different matrix multiplications.
For the previous example (n=4) the
first operation boco’-n Heg =8

(b, 0 0 0 (s, sﬂ i
h3 h,‘ o0 s, 85 4
hz h3 h,‘ o s, 83

h‘ h2h3hlo sy <154

(] h' hz h3 ss

0o 0 h‘ hz 86 ‘
‘0 o 0 hu ¥s7' L
and the second

(0 0 0 8] f1,) 5;)] B
0o O s, s, "z S2

0 8, 8, 8, h3 83

s, '2'3"‘ohlo's‘0

s, 33 8 o 55

55 8, o o 8¢

@ o 0 OJ \57‘ 1

The discrete cross~correlation is a
commutative operation also, that is

*3=gp°h. It should be noted here
that the commutative property of con-
volution and cross-correlation is not
self-explanatory but needs the con-
dition of operators be represented
equally spaved samples. As chapter
shows is not the case for the peripher-
al nerve.

7. P N As g Specif
o3s-Corr

The physical model of the transmission
properties of ilia peripheral nerve is
the transversal fiiter having non-uni-
form time delay distribution (Fig. &4).
The system responds to a unit impulse
at ts0 aftor the time delay t,=t;/n
with h =(hy, hy_ 4y By st .00 hy) where
the time utcrv-i betwrien two samples
hy and hj.q is tysty/i(i-1) with 26i8n.
The duration of the impulss response.
Tgaty(1-1/n) approaches t, for.n-eee
(Fig. 6). Evidently the time:revérasd
fiber histogram (Equ. (7) and Fig. 2)
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Fig. 6 Duration of the discrete
impulse response

multiplied with the wights i plays

the role of the discrete impulse re-
sponse. For the simple casze of uniform
distribution Njsconst. the weights of
the filter h; have a triangular shape.
Since the rointionlhip betwsen delay
and index i is non-linear the resul-
tznt impulse response is represented
by non-equally spaced samples (Fig. 7).
The maxiwum delay t4 is a function of
the conduction distance x (Equ. 2).
Thus there is a linear change in scale
and the shape of the impulse response
is not affected.

[TTTT~
g
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Fig., 7 Discrete impulse response of
the nerve model (n=6

It would follow from this that it must
be possible to measure the fiber dia-
meter histogram of a nerve bundle
eloctromically by stimulating the nerve
with Dirac impulses and recording the
impulse response thereby eliminating
the time consuming electron-microscopic
techniques. However, all fibers of a
nerve bundle are able only tc propagate
the typical unit discharge waveforms
s(t), usually called "spike". This is
equivalent to the fact that the input
of the real transversal filter (Fig. 4)

is inaccessible. The only input experi-
mental accessible is the input of the
pulse forming network N. Nevertheless
it may be possible to determiné the
fiber histogram of a nerve from the
compound action potential S(VAt), that
is the output of the model for unit
discharge input s(t), if the condition
(6) for non-overlapping spikes is met.
Beyond this limit compound action poten-
tial and discrete impulse response
become identical. For the example of
Fig. 7 the limit of resolution is given
by x#3,6 J 1ms-30410 cm. With this
minimum conduction distance n=6 separa-
ted spike waveforms may be observed.
Dividing the discrete amplitudes by
11,2 ... 6 yields the fiber histogram.
This new technique just briefly men-
tioned here has still to be verified
experimentally.

Evidently, the fransmission properties
of the nerve mzy be described as a
specific cross-correlator rather than
as opsration of the convolution type
since the impulse response of the system
is the time-reversed filter operator.
Additionally, it is easy to see that
the transmission behavior of the nerve
cannot be formulated as a matrix opera-
tion like Equ. (16). That is why there
exists no shifting incremeat for opera-
tors defined by unequally spaced sam-
ples such that a notation like Egqu. (16)
would be possible. Tharefore, the nota-
tion of Equ. (17) must be used. In the
folliowing the cross-correlation matrix
8 in general shall be derived.

8. The Cross-Correlation Metrix of
the Nerve Trunk

With the maximum time delay component
ty=x/vg=m-At and eliminating the mini-
mum delay component t,=(m/n).At we ob-
tain from Equ. (&) with t=wAt

n
s [(y-m/n)At]= Zi-ni--[(v(gj-})-)AtJ

isg
Using the abbreviation for the shifting

increment Sn-iln
vy (18)
it follows
n
SV‘I. Z hi"y-ri (19)
n ist

in general the shifting parameter r

is non integer. The elements Sy-ry
are the samples of the unit

discharge waveform taken at ths times
t=(y-r4)At, If the unit spike a(t) of
the fibers has the time duration
Tsp:At the time length of the compound
potential S(y-At) becomes (Equ. (5))

T, elpem(1-2)] At= 2-4¢ (20)
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The number of rows of the correlation
matrix g, will therefore bs z+1 or [z]
depanding on whcther z takes integer
values or rot. [s]denctes in the latter
case the next integer number following
2, It is usefui to consider the corre-
lation matrix column by column. We ob-
tain the y-th element of the i-th co-
lumn vectoer s{y-r;)At =

(21)
s( L?J,-riﬂ)ét for {ri]!l" [r‘}p-i

iy 1¢7.D3 or T "ere ¥ ap
0 for O -Yt{rij—l
0 for 0O ays Ty 1

with j=0,1,2 ...p. The upper row is
valid for non-integer values of r .,

the lower for integer values. 7Thus the
i=th colum vector of the matrix sy
has the following structure:

r; non integer ry integer
(1] o
. ry] . ¥3
0 ’ 0
o £ 0 ) L
[ry] -4 %o
'[’ﬂ -r1+1 %
'[ri] -r;+2 82
'[rd -r;+3 rp 83 |pp+l
'Erd -ri+p-1 ] sp_1
o
'p }
o 0
* o
0 0

The complete cross-correlaticn matrix
has than the form:

l _l_‘_z_‘_3______Ln-1 0
v
% 2
or
241
2
%
Y J

147

5
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The construction procedure of the cor-
relation matrix shall be explained by a
sixple exaxple.

Exawple: p=3, nek, m=6

from Equ. {20):=7,5 thus [z]a8

from Equ. (18) we obtain the shifting
paraseters
"1""5" r, =5
ro=1,5= fry]=2 Regarding Equ. (21)
r3-0.5-o 3]-1 the complete matrix
r,&-o may be constructed
i N
l (1] 0 n s,
v 0 (] 31/2 s,
0O 84/2%y2 %2
O %3/2%/2 %3) = s,
31/2 0 0 0
:3/2 0 o 0
L'5/2 o o ¢

The gimple example shows the unequally
spaced sanples of s(t) forming the rows
of the matrix. The vector of the com-
pound action potential represented by
egually spaced samples S(YA:) is than
obtained by the matrix oparation Szs,-h
whare h denotes us earlier the filter
operator representing the fiber diameter
histogram multiplied by the weights i.
It may easily be shown that compound
action potential S and impulse response
hy=(hy,h3,ha,hq) become ideniical if the
conduction distance is beyond the limit
given by Equ. (6). If x increases than
the number of the rows [z] or z+1 in-
creascs, too. For the example the limit
for non-overlapping spikes would be

m 2 pn(n-1)=12 for p=1 and z=10.
Choosing m=15 yields zx=12,25-[z]=13
The shifting increments are in this
case:

r1s11.25—b r =12
ro= 3,75 —= = 4
r3- 1,25 — r = 2 The correlation
= 0 mairix 8 thus
becomes
(0 0o o ) fo 0o 0 7
] (1) (] ) O 0 0 O
(] (1] s 1) 0o 0 1 0
o o oY% 0 00O
1] s (V] (0] 0O 1 0 O
o o¥*o o 0 0 0 O
0 ] o 0o |=|0 0 O O =8
] 0 0 (0] o 0 0 O
)] 0 (] 0 o 0 0O O
1] o o 0 0O 0 ¢ O
(] (] [+] 0 o 0 0 O
(¢] ] 0 [4) 0O 0 0 O

Multiplying the matrix by the filter
operator h yields the discrete impulse
response hi being represented by the
four unequally spaced samples h".hyhz.
and hi'
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Abstract

A plausible method for classification
of electrocardiograph data as comi.g from a
normal or ah sdnormal subject using the Walsh-
Hadamard Transform is demonstrated. Several
types of ECG signals were obtained from re~
search cavnines. These signals were declared
normal or abnormal by the veterinary cardiol-
ogist at Kansas State University's Dykstra
Veterinary Hospital. The Walsh~Hadamard
power spectrua of these signals was then ob-
tained and four of these spectral points were
used to train a specific pattern classifier.
The results of using the clagsifier show per-
fect classification of the normal and ab-
normal signals frem a given gubject. In the
case of signals from a mixed population, a
population consisting of samples from all sub-
Jects, ten spec -um points were used to train
the classifier .hich proved to be ecighty-nine
per cent correct.

The results suggest that the Walsh-
Hadamard power spectrum could prove useful in
characterizing ECC's for the purpose of auto-
matic classification. Thus, recommendations
for future work along these lines are in-
cluded. Several applfcations of these re-
sults are suggested,

Incroduction

Many applications of the principles of
engineering to medicine have been made in re-~
cent years. One such application is the use
of the digital computer to process the vast
amounts of medical data available [1, 2].
The use of the computer to aid in diagnosis
comes as a result of its ability to hendle
this data.

One of the signale available for proc-
essping is the electrocardiograph signal (ECC).
This signal 1{s geirerated by the heart muscle
during the cardiac cycle. The signal 1is
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measured using a lead system, which is a pau~
ticular placement 0. measurement electrodesg

on the surface of t'e body. The shape and
frequoncy of tuis rignal provides the cardiolo-~
gist with information pertaining to the phys-
ical well-being of *%e heart. Thc computer
can then be used to distinguish between normal
and abnormal ECG signals. It is used most
commonly for mass screening and for patient
monitoring. In mass screening the goal is to
automatically detect abnormalities in large
populations. In individual monitoring a
single patient is monitored and any future
changes in his ECG can then be detected.

Past work has emphasized the time domain
approach {1, 2], With thie approach the para-
meters a cardiologist looks for in the time
domain are measured and compared to a range
of known characteristics for normal. This
wethod has probably been the most popular
since the parameters it uses are those the
cardiologist ordinarily examines.

Frequency analysis, however, can be an
important tool when used witn “he computer,
Past work has shown that in many cases abnor-
malities are accompenled by an increass in the
high-frequency zontent of the ECG. une such
frequency ansiysis is the method using the
Walsh~Hadamsrd Transform (WHT) . (3].

Fundrmentals of Electrocardiography

The eiectrocardiogram is a weasure of
the electrical activity o5 the heart. Thise
electrical signal is generated during the
cardiac cycle by the depolarization and re-
polarization of the heart muscle cells during
their process of contraction and relaxa:lon.
The actual potential measured across the cell
membrane is due to an ifonic gradient. The
changes in this ionic gradient occur with the
muscle action of the heart and these changes
in the ionic potential are recorded as the
ECG. (See Fig. 1),
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The heart is a cyclic pump. The cerdiac
cycle includes pumping blood from the ventri-
cles to the body and to the lungs as well as
the return of blood from the body and the lungs
to the heart. The right and left ventricles
are the pumping chambers of the heart with the
right sending oxygen deficient blood to the
lungs and the left sending oxygen-laden blood
to the body.

The atria are the receiving chambers of
the heart with the left receiving oxygen-laden
blood from the lungs and the right receiving
oxygen deficient blood from the body.

The ECG under most circumstances may be
assumed to be periodic since it is generated
during the cardiac cycle. The sino-atrial
node initiates the stimulus for the contrsaction
of the heart muscle. The stimulus travels
across the atria causing them to contract
and then after a short delay #n passing through
the atrio-ventricular node it passes down the
geptum and on through the ventricles which
then contract. The depolarizations of the
atria and of the ventricles are evidenced by
the P wave and the QRS complex respectively
as shown in Figure 1. After these muscle cells
contract they return to their initial state
through the process of repolarization. The
repolarization of the atria 1s masked by the
GRS complex while the repolarization of the
ventricles produces the T wave of the ECG.

The ECG's waveform is dependent upon the
recording electrodes' placement on the body.
This arrangement is called a lead system. The
lead system used in this study was the McFee
orthogonal lead system. It consisted of 10
leads and a ground. This lead system theore-
tically measures the ECG along 3 mutually cr-
thogonal axes as illustrated in Figure 2.

The ECG is an important adjunct used by
the cardiologist in diagnosing heart ailments.
It gives information used im the diagnosing cf
such conditions a3 myocardial infarction, and
many systemic diseases affecting the heart.
Any aid to the interpretation of the ECG is
thus an aid to the prevention of death from
heart disease.

As previously suggested, most past efforts
in automating the interpretation of the ECG
have focused on the time domain approach.

This is perhaps due to the fact that cardiolo-
gists are familiar with and can attach sig-
nificance to the time domain signal. The
frequency characteriscics of the ECG have been
used mainly for specifying the recording and
monitoring equipment necessary for time domain
analysis. In this study the frequency approach
appeared to be valuable also in distinguishing
between normal and abnormal ECG's.

The Walsh~Hadamard Transform

The Walsh-Hadamard Transform (WHT) or
Bifore (Binzry Fourier Representation) is aa
octhogonal transformation in which square waves
form the basis set. These square waves are
analogous to the sine waves of the Fourier
Transform. The one dimensional Walsh-Hadamard
Transform is defined as

fa,m} - & e frm W
where n = logzN

{B (ni} is an (NX1) vector whose compo~
nents B,(k), k=0, 1, ..., (N-1) are the
transform coefficients,

[H(n)] is an N x N Hadaward matrix,

%x(nig represents the sampled values of an
ECG in the form of an (NX1) vector.

The power spectrum corresponding to the
above components is defined as {3]

0) (2)

- 2
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8 =1, 2, ceeuy
n= logZN.

This power spectrum possesses two useful
properties. (1). The spectral points Py, i=0,
1. . .+ . . logyN are inveciant to shifts of a
sampled ECG signal X(m); and (2). They also
represent the distribution of power in the ECG.

The WHT used for the case of two channels
of ECG data as shown in Figure 3 is defined as
follows:

1 .
[B(nl“z)l = ﬁ;ﬁ;" [H(Nl)] [X(nl.nzll [H(Nz)]
3)
n, = logZNl
n, » logzﬂz
[B (nl,nz)] is an (N1 x NZ) transform matrix
[X(nl,nz)] is an ( nox Nz) data matrix
and [H(k)] is a (2k x 2k) Hadamard matrix.

In the application of iaterest (see Fig. 3),
N; = 2 and N3 = 32, Thus the two-dimensional
WHT in (3) can be expressed in termns of the
one-dimensional WHT of the "sun” and "differ-.
ence" channels defined by X(k) + Y(k), k = 0,
1, « « + 5 31 and X(k) - Y(k) k=0,1, ..

+ « 31 respectively.
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The WHT power spectrum {8 related to the

discrete Fourfer power spectrum in the follow-
Ing munner,

.2
p, = ¢ (0
AL
PG )
8-2
_1 -
P2 2 c 12" %k + 1)) |2 (4)
X
k=0
a=2,3, .., .,n
nw logzN

and ¢ (1), 1 = 0, 1, . . . N are the
discrete Fourler Transform power spectrum
points.

ECG Data Acquisition

The intent of this study was to demon-
strate the fearibility of automatically classi-
fying ECG's using the WHT. The experimental
data was obtained from a group of laboratory
canines. The canine was chosen because of the
similarity of its heart and ECG to that of the
human. This similarity would then allow the

extension of the techniques developed to the
human.

The signals were recorded at Kansas State
University's Dykstra Veterinary Hospital with
the system shown in Figure 4. The procedure
used 1n recording the data included anesthe-
tizing the canlne, recording its normal ECG
and then inducing various cardiac abnormali-
ties while continuing to record its ECG. The
resulting signals were then iuterpreted by a
veterinary cardiologist and classed as normal,
abnormal or questionable.

One segment of the ECG signal was chosen
upon which to distinguish the classes of ECG's.
This segment wes the QRS segment which, as
stated earlier, corresponds to the depolariza-
tion and contraction of the ventricles. Figure
3 ghows the two cliannels of the sampled QRS
segment ugsed. Not all abnormalities can be
detected in this segment but it was felt that
cnough of them could be to warrant using it
as a first step in this sgtudy.

The sampling of the ECG began with the
start of the QRS complex and ended 80 millisec~
onds later after having recorded 32 samples.
Consequently, the corresponding trequency anal-
aysis applies to the frequency interval of
0 <F<200H . The X and Y leads of the
McFee orthogoﬁal lead system were sampled
simulianeously to obtain a (2 x 32) matrix of
data points which was then used to compute
the two-dimensional WHT power spectrum. The
resulting spectrum consisted of 12 WHT points
as follows:
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r(0,0) P(0,1) .... P(0,5)
P(1,0) P(1,1) .... P(1,5)

Classification Considevations

A training algorithm which uses a least-
squares mapping technique was used [5, 6].
The basic idea used was to map (in the least
squares gense) the training samples of a class
k, k=1, 2, . ,, K into a unit vector Vk in
a K-dimensional decision space. All the com-
ponents of Vi are zero except for the kM one
which 18 unity. The corresponding mapping
matrix is obtained during the training process.
Then, the trained classifier assigns an in-
coming pattern to class i, if the pattern is
mapped closest to the unit vector \'i in the
decision space. o

Discussion of Results

Pigure 5 shows the results obtained using
different numbers of components of the power
spectrum. These results were obtained using
three classes for training; normal, abnormal
and questionable. The abnormal and question-
able classes were then combined into one class
and the efficiency was calculated using these
two classes. For this case the signals from
the canines studied were mixed, As can be
seen, the efficiency of classification in-
creases to 89Z when 10 components are used.
Fig. 6 shows the groupings used from 4~10
WHT power spectrum points.

A related measure of the success of
classification involves the measurement of the
number of abnormal signals classed as normal.
When this type of error occurs the individual
in question might not receive the medical
care he should have. Figure 7 shows the fre-
quency of this type of error versus the number
of components used to classify. As can be
seen the best results are obtained for the
case of 10 components. The other type of
error, that of a normal classed as abnormal,
is not as serious, since the individual would
ordinarily seek further medical care and other
tests would show him to be normal.

The classification process was then ap-
plied to detect variations from normal within
a given canine. The power spectrum points of
the canine's normal were compared with that
cf 1ts induced abnormals using a two class
version of the classifier wentioned abcve.
With four components used the classifier
was 100Z efficient.

Concluding Remarks

The results of this study suggest three
plausible uses for the techniques devcloped.
First, in patient monitoring a normal or ac-
ceptable signal would be obtained from the
individual being monitored. Then variations
from this normal could be detected and could



alarm the appropriate medical personnel to

the change in the patient's condition. This
application is strongly supported by the suc-
cess in separating normal from abnormal within
a given canine.

A second, related, application would be
for use in serial electrocardiography. In
serinl electrocardiography an individual's
normal =CG is recorded for comparison with
one recorded at a later time. Any changes
detected would again be called to the atten-
tion of appropriate medical personnel.

Mass screening i the third application.
In this case large numbers of normal and ab-
normal ECG's would be collected for the train-
ing of the classifier. The resulting classi-
fier would then be used to detect abnorral
ECG's in large populations. The success of
the classifier in separating normal as shown
in figure 5 and abnormal in the mixed popula-
ticn supports this application.

This study has shown the feasibility of
using the Walsh-Hadamard Transform approach
to detect cardiac disease.
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Fig. 1 The Electrocardiograph Signal as
Recorded on Lead X.

Fig. 2 The Placement of Electrodes on the
Canine Using the McFee Lead System.

X(0) X(1).. kk..xm Load X

“I{

Y(0) Y(1). , h’hm;'"’“‘” laad ¥
N

Fig. 3 The se~pled QRS Interval as Recorded
With the McFee Lead System on Leads X
and Y. N = 31.

PrTeY

e, Seies

Ao

MLt s o s et ST 28 S B e v

PR

B

FIORPCLE N, PR R T T 1

P e Y

A v nrid,

¥




SN ’ 1 z TE
g - '\ég,:_:. .- ‘,“ }‘ - v
4 Components: P(0,4), P(0,5)
g P(1,4), P(1,5)
‘ 5 Components: P(U,3) P(C,4) P{(0,5)
E . " oom P(1,4) P(1,5)
- st
6 Components: P(0,3) P(0,4) P(0.5)
P(i,3) 2(1,4) PQ,5)
';‘m % Snteion fotris
Servilesian 7 Components: P(0,2) P(0,3) P(0,4) P(0,5)
P(1,3) P(1,4) P(1,5)
Fig. 4 The Data Acquisition System Used for
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HEART RATE REPRESENTATION USING WALSH FUNCTIONS

C, W, Thomas § A Welch

The University of Texas at Austin

In uction

The common interpretation of the term "heart
rate"” is the number of heart beats per minute
measured by feeling the pulse within an artery,
listening to heart sounds or looking at an elec-
trocardiogram. In each case, the heartbeats
are counted for a minute and that number is
called the heart rate or pulse rate. Although
heart rate is considered a relatively stable mea~

A representation we wish to consider in
detall is a sequence of impulses. The time of
occurrence of each impulse corresponds to the
time of the heartbeat (R wave neak of the elec-
trocardiogram). That is, the occurrence of
heartbaats may be represented as:

I = ;6(:-1‘1) (1)
where T, is the time of occurrence of the heart

P b DA e L T et R ok L L8 4

4 -3
R surement, there is a large variation in the times beat, ;’
‘ between heart beats. The interval between Definition of Heart Rate Using Walsh Transform ‘
: :::;s ax:a:hz::?:egu g::re: lf;:;tt thri:izc::;f:lm In the above represeptatlon of heart rate, K
i of this interval is designated as instantaneous the time of occurrence of ea:".h heartbeat 15 <
4 heart rate. In this paper, we view heart rate as marked by an {m. ulse, IfIis the input to a S
“ a piecewise, continuous function whose value fiip-flop, the output of the device would be a
z at any time is the instantaneocus heart rate two-level signal which may be mathematically
; (See Figure 1(b)). The average value of the con- represented by a sequence of unit step func-
tinuous heart rate function over one minute is tions as: .
= the classical heart rate. This general interpre- =-1+2Z ﬁl(t—'l‘m_l) - u(t-'l‘u)] 2)

& tation of heart rate is necessary if we are in- i
ke terested in the dynamic effects of body temper- The instantaneous heart rate is determined

& ature, respiration, emotional state, etc., upon from the time between zero crossing. The rate
{ the beating of the heart, of heart beats is represented by the rate of
35 Variations of the heart intervals are more :er; te:rdossinqs ‘g ﬁ‘i heart rataplaa function <
medically and physiologically significant t: -, efined by equation 2. [
¥ the mean heart rate or even the wave shape ot If the heart rate is constant, the gene~- ¥
k' the electrocardiogram. This is obviously true rated time function will be a square wave. If
g in abnormal heart conditions in which extra the heart rate varies, the zero crossings of the
beats or missing beats are common symptoms. square wave will vary and the instantaneous
k. ‘_ 1n the normal human, a large variation of heart heart rate is the instantaneous rate of zero
3 intervals with respiration is usually indicative crossings of the heart rataplan function.

Ex of good health. Therefore, a more general rep- .

i ) resentation of heart rate than the one minute ﬂ:;:;:ﬁm : ::‘t ;‘;ethr:tﬁezfnzmci::sg::éow:
averages may be clinically useful. In many z(:e th taty € tﬁ flip-flop) & t: desired

£ clinical situations, especially intensive care or the state ol the ILp-Lop) or the ces

o time period and take the Walsh Transform »f the
3 or coronary care units, most medical and phy- sampied function. The seqrency coefficients

'\ :;;;ogfcgjer:ls::tﬁ};'a l%x;g;::lni:s;:zant;tl;mni- from the Walsh Transform represent the heart

b monitored and the times of occurrence of heart rate function,

k- beats are available for analysis. There\are several advantages to this repre- i

= sentation of heart rate, First, the time func-

3 Representation of Heart Rate tion, i.e. the heart rataplan function, is i

% Womack (1) has attempted to extract respira- simple to generate with & computer or with a ’,H
S tion information from instantanecus heart rate flip-flop. Second, it can be sampled uniformly E
- by frequency analysis procedures. In order to allowing flexibility in the choice of time period i
*; work with a bandlimited system, the discrete and the number of samples in that period. v
: level heart rate function of Figure 1(b} was Third it allows straightforward computation of :
¥ represented as a continuous function as shown the Walsh Transform coefficients which repre-

= in Figure 1(c). This is a convenient represen~ sent heart rate, v

tation even though it {5 not directly measurable,

-
PP Ak
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Experimental Data

In the normal human and many other animals,
the most prominent hoart rate variation is the
sinus arrhythmia, {.e. the variation in heart
rate with respiration as described by Richardson
et al (2). In this paper we use four sets of data
in which the sinus arthythmia is cicarly present,
The first two sets are simulations of square
wave and sine wave variations in heart inter-
vals, The third set is data taken from a sub-
ject who was breathing sinusoidally as des-
cribed in Womack (1). In the fourth set of data,
the respiration is unknown, but the stage of
sleep is known from other considerations as
described by Welch (3).

In the two sets of siinulated data a constant
rate of 72 beats per minute (intervals of 5/6
second) is modulated according to

'J.‘1 = Ii-—l +5/6 + (M/72) sign Q (3)

and
T, =T, . +5/6+ X )
i i-1 72
2nR
where Q = sin (S5 T, )

M= amplitude of the interval modulation
and R = regpiration rate in breaths per minute

In equation 3 the sinus arthythmia is simu-
lated as a square wave modulation of the heart
in* wrvcls, while equation 4 simulates a sinu-~
soidal sinus arrhythmia. In both cases, the
amplitude of the sinus a:rhythmia is represented
by M. When M = 0, the heart rate is constant,
i.e., our heart rataplan function is a square
wave, For non-zero values of M, the heart
interval in equation 4 vary sinusoidaliy between
5/6 - M/72 and 5/6 + M/72 or the heart rate
varies between

72 72
T+M/60 ™ T-M/eo -

Notice that the variation in heart rate is not
exactly sinusoidal since the mapping from heart
intervals to heart rate is nonlinear. We have
assumed that sinusoidal sinus arrhythmia means
sinusoidal variation of heart intervals not stnu-
soidal variation of heart rate.

In equation 3, non-zero values of M yield a
square wave modulation of heart intervals.
Wiile this type of sinus arthythmia is not ex-
perimentally possible, it does furnish a com-
parison with the sinusoidal case which can be
closely approximated in the laboratory.

Simulated data was obtained using equations
3and4withM=4and8andR=4, §, 8, 10,
12, and 14 breaths per minute. The mean in-

terval was 5/6 seconds which corresponds to a
rate of 72 beats per minute. One minute seg-

ments were used to construct the heart rataplan
function which was sampled at 1024 per minute,

The Walsh Transform of the sampled function
from the square wave variation was calculated
for each one minute segment and the Walsh
Transform coefficients plotted in Figure 2. As
in frequency modulation of sinusoids, increased
modulation amplitude M, resulted in an increase
in number of major coefficients around the funia-
mental.

The effect of increasing the frequency of the
modulation, i.e. increasing the simulated res-
piration rate, is not so easily described and
appears to be frequency dependent., The trans-
form has fewer major coefficients for rates of 8
and 12 than for the other rates. However the
coefficients obviously vary with the modulation
frequency.

The Walsh Transform of the simulated sinu-
soidally varying heart intervals are shown in
Figure 3, Again the number of significant co-
efficients varies with both amplitude and fre-
quency of the sinusoidal modulation.

The data from the hum.. subject breathing
sinusoidally was used t. . ..astruct one minute
segmants of heart ratap... functions whose
Walsh Transforms are shown in Figure 4, The
frequency of the sinusoids are the same as in

the simulated data in Figure 3, However, the
simulation was sinusoidally varying heart intor-
vals while the data from the human subject was
sinusoidal respiration,

The Wzlsh Transform of the human data in
Figure 4 is similar to both sets of simulated
data in Figure 2 and 3. The human data is
better correlated with the simulated data with
the larger modulation amplitude. The plots in
Womack (1) show a heart rate variation of about
15 beats per minute. The simulated data with
M = 8 has about the same heart rate variation.
Therefore, the correlation with the human data
should be higher than for M = 4,

The fourth set of dzta was obtained during a
normal night of sleep. Respiration in the sleep-
ing human is not sinusoidal and its amplitude
and rate vary with sleep stage.

The heart rataplan function was constructed,
sampled, and Walsh Transformed for the sleep
data as in the pravious sets of data. The heart
rate functions plotted in Figure $ obviously
change with sleep stage, but the respiration
rates cannot be determined by visual comparison
with Figures 2 and 3.
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This is not surprising since the variation in
heart intervals is certainly not sinusoidal or
square wave, and as shown in Figures 2 and 3,
the number of significant coefficients varies
with modulating frequency. The non-sinusoidal
non-symmetric modulation of the heart intervals
during sleep seems to increase the complexity
of the heart rate fonction.

To compare the Walsh Transform of the
hcart ratapian function with the Fourier Trans-
form of the samse function, both transforms of
the sleep data are shown in Figure 6. First the
coefficients from both transforms are p'stted,
then the square root of the sum of the squares
of the two coefficients at each sequency and
frequency are plotted.

The lotter plots represent power at bands of
sequency and frequency. In other words, they
are the amplitude spe->tra as defined by Har-
muth (4),

Conclusions

The representation of heart rate using the
Walsh Transform has been presented. The data
shows that variations in heart rate are repre-
sented by several coefficients in the transform.
The number of significant coefficients depends
on the amplitude, period, and complexity of
the modulating function.

We have not solved any problem, but we
have demonstrated a tool which may be useful
in problems involving the use of heart rate and
especially variance of heart rate. We have
used only one time period and one sampling
rate, but these two parameters may be chosen
to fit a panicular problem. Such flexibility and
the computational speed make this technique
potentially useful.
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Figure 2. Heart rate functions from tho
simulated square wave variation of
heart intervals. The sequency
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Figure 3. Heart rate functions from the
simulated sine wave ariation of
heart intervals. The sequency and
vertical scales are the sam2 as in
Figure 2.
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tigure 4, Heart rate functions for the two
human subjects breathing sinu-
soidally. The breathing rates and
the plot scales are the same as in
¥igutes 2 and 3.
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Figure 5. Heart rate functions for the sleep-
ing human in different stages of
sleep. The plot scales are the
same as in the previous three fig-
ures. Stage O is the awake but
drowsy state, stages 1, 2, 3, and
4 are progressively deeper sleep,
and stage 5 is at the level of stage
1 but with REM (rapid eye movementd
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Figure 6. Comparison of the Walsh Transform

(left) and the Fourier Transform
(right) of the heart rataplan function
for the sleeping human in stages 4
and 5. The upper plots are cooffi-
cients from the transform, while the
lower piots sre the amplitude spec-
tra. The scales for the upper plots
are the same as in the four previous
figures, In the amplitude spectra
plots, the sequency scaleis 1 to
240 zpm.
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Introduction

Brain wave (EEG) analysis is a very impor-
tant tool in meny research and clinical appli-
cations. The clinical diagnosis of epilepsy and
sleep research are two areas which owe their
development almost entirely to the discovery of
the EEG, These studies always entail the pro-
cessing of large amounts of data, and have
prompted many investigators to try automated
techniques to assist in the data analysis and
iélc attempts to discover new knowledge about the

Fourier spectral analysis is the technique
wost widely applied. Applications include the
analysis of EEG data collected from astronauts
{1] and the discrimination among states of con-
sciousness (sleep and wakefulness) [2]. The
utilization of the EEG to classify slesp into
several stages [3] has led to the development of
automated systems for the computer classifi-
cation of sleep stages [2, 4, S].

This study was carried out to determine if
the Walsh Transform could be utilized in dis-
criminating between sleep stages and to compare
Walsh and frequency EEG spectra.

The luman sleep EEG, as shown in Figure 1,
consists of six sleep stages (stage W, 1, 2, 3,
4, and REM). The sleep stage W (wakefulness)

WALSH PONER SPECTRA OF HUMAN ELECTROENCEPHALOGRAMS

W. C. ;eg‘lmdrg R. Smith
Department ©: ectrical

University of Florida

Gainesville, Florida

is characterized by a-wave activity (8 - 12 Hz
nearly sinusoidal activity), and stage 1 by a
relatively low voltage, mixed frequency (2 - 7
Hz) EEG. Stage 2 is defined by presence of
phasic activities of spproximately 1 second
durstion (sleep spindles and/or K-complexes)
superimposed on a of relatively low
voltage, mixed frequency EEG activity [3].
Stage 3 and 4 contain moderate and large amounts
{in tims) of high amplitude, .5-2.5 Hz activity
Te vely. RBM sleep - thought to coincide
with periods of dreaming - has sn EEG similar
to sleep stage one, but is distinguished by
rapid eye movements and or the attenuation of

Methodology

Three haman sleep EEG's were recorded on
magnetic tape and then processed off-line. All
the data was cbtained from the frontal position
(F1-F7) of the skull, except for the swake data
(stage W) which was obtained from the occipital
region (03-0ZPZ). The data presented here were
obtained from a single night's reading of a 22
g&r old male with a relatively low amplitude

The EEG data was filtered by 2 low pass
filter with an upper cut-off frequency of 25 Hz

100 W
1 second |
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gorithm employed to obtain the, Walsh Transfomm.
The data ingdiffersfml’uttet al's
method [8] in that the mmber of blocks,
indicated by a roctangle, lndtheu-berof
data points in each block on a level are first
calculated to obtain terminal conditions for
the loops used in computation of intermediate
data on next level. All the intercediate data
on the next level are then processed through

a nosted loop and the results stored in separ-
ate memory locations. The loop for computation
of intermediate data in odd blocks has, as a
unit operation, only the addition of two data
while the loop for even blocks consists of two
operations as showm in Figure 2(b). For inter-
mediate data storsge an additional 1024
locations are allocated. This computation al-
goritim has the advantage that the Walsh co-
efficients are obtained in sequency order with

i

2 3

. =]
X0

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)

x(6)
x(N

ANAAA AL AA]

(s)

)

Figure 2. Data Processing Algorithm.
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and then converted to digital data and pro- fewer computing operations. The instructions
cessed with a PDP-8I computer. The sampling needed for the transformation only sbout
peticdmszmmdtbsquuntem 100 memory locations and can be applied to my
sﬁ:s/m.,gi meximm sequency of mmber of input data points which are of two's
16. t is close to the upper power. The transformed Walsh cvefficients were
fmmylinitofintemtiasleepm&u. squared and summed pairwise for each sequency.
The spectra were ccn\m'ted to a logerithmic
The input data was transformed into a scale and displayed on & storsge oscilloscope,
series of Walsh functions [6] using the Fast from which the ¥alsh Spectra:-plots have been ob-
Bifore Transform to soive ths equation tained,
X=Hx 'ﬂnsneepodxswmmlyzedwithacen-
where x and X are 1024 element column vectors eral Radio 1921 Real Time Analyzer to chtain
representing the input and transfcrwed -dats res- Fourier power spectra estimates. The analyzer
pectively, and H a matrix generated oy & peri- consis®s of 4S5 filters, spaced 1/3 octave apart,
odic smmpling of Walsh ﬁnctions 7. covering the 3.5 Hz to 8%
Hz. The Aaslyzer les the outputs from the
Figure 2(a) shows the computation al- filters to ectimate Fourier power spectra.

The EEG was reproduced at 32 times real speed,
given &1 equivaleat filter bandwidth of 2.5/3

Hz to 2.5k Hz. An integration time of 1 secomd
wis employed - to 32 seconds real
time. 19 estimates in the frequency

spectral
range (.3-19.7 Hz) hmbea\ plotted.
Results and Discussion
Figure 3 shows typical Fouvisr spectra and

Walsh spevtrs of esch sleep staye. It is ob-
served, in general, that the Walsh power spec-

is diffuse it the seque:cy
than the ccnem Fourier power

spectn The better waveform discrilimtion of

3(A0) and 3(B0). The approximately 10 Hz alphc
activixisobsrvedinﬂnmshspectmsmo),
but cs are more prominent thon in the
corresponding Fourier spectra. Aliasing is not
believed to contribute to the observed sequency
diffusion as the Fourier power shows
relatively low EEG activity above 16 Hz. Al-
s0, ten seconds epochs (approximetely 100 sam-
plu/sec ) showod the same £ diffusion.
of the plots for the other sleep

stages shas that the activities present in the
piots are also evident in the seqmmcy
plots. Huuwsr the peaks are more

plots, undoubtedly due to the
ihe duracteristics of ull sleep
stages except 1 and 1-REM.

Lubin et al [2] have described the ina-
bility spectra to discriminate between
sleep stages using stepwise multiple regression.
The sule _problem exists if Walsh spertra are
used. fli rare 4 illustrates the problar by show-
ing the similarity in the Walsh spectra of a

2 ¢nd a sleep stage 3, Larsen and
4] reported that a multipie discriminant
function analysis of frequency spectra could
discriminate between sleep stages if an adequate
training smsple was used, Such techniques wouid
probably be es effective using Walsh spectra.

Similar characteristics were observed in
the comparison of the speciras of the other two
subjects.
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Oonclusicns

The discrimination by Walsh power spectra
is rot as good as the Fourier spectra for sinus-
oidal like EEG dote, but activity present in
the frequency spectra was evident in the Walsh
spectra plot. The Walsh power spectral amaly-
sis has very significant advantages over Fourier
spectral analysis in that the former requires
much less computing time and computer memory,
advmniteges which are quite significant in a
laboratory possessing a mini-computer. For in-
vestigators desiriug to meke a spectral de-
composition of EEG data, the poorer discrimin-
ation of rearly simscidal waveforms may be
more than compensated by the ease with which the
Waish spectra can be computed.
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Figure 3. Walsh and Fourier power spectra of
Human Sleep EEG (A: Walsh, B: Fourier)
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SPEECH PROCESSING WITH WALSH FUNCTIONS
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Technische Hochschule Darmstadt
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Introduction

A main topic in data transmission especiall Source Source
for speech exists in pointing€out optimal source |
and channel coding [1,2]. The basic block dia-
gram is shown in figure 1.
compraseed
Deta
x)}—of Source Channel
Cader Coder Figure 2. Source coding and decoding
Because speech signals exist one part of nearly
periodic waveforms, the voiced vowels, and
ol on the other hand of the more unregular un-
voiced parts optimal coding must refer to these
characteristics in speech. This segmentation
b To m c»mn , will causc difficulties-especially the pitch de-

tection problem-and first we make no difference

between voiced and unvoiced signals.

. P Linear orthogonal transformation offers a me-
Figure 1. Basic communication system

thod for data compression by means of coding

I e el is . . . :
The r dancy of the source sicna: is sup- the spectral coefficients. The spectral distri-

pressed in the source coder and the reduced bution is exploited by different quantiz- . >

binary data is protected against noise and dis- schemes. These s h processing sys ..

turbance in the channel coder. The channel co-

are also known as orthogonal transform voco-
ders | 3].

ding and decoding may be separately solved

and we now consider a subsystem as shown in

figure 2.
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Linear Transformation

A time-continuous frequency limited signal x(t)
can be represented with respect to the sampling
theorem as a discrete series of samples x(kat).
The discrete signal samples are written in fi-
nite intervals as column vectors

2(0) = (xp)%,, «ox
x(1) = (x

[}

Kt XNe1)
)

N?ENe1 Nk " XaNo1)

x() = (x

NP UNa1t ¥

(#+1)N-1 )!

and transformed with any regular matrix G

with the elements g. . on a generalized spec-
. Jyk
tral domain

() = G x(v)

3__(;/) is the spectral vector of the p-th interval

and has the elements

2w) = RG,R]5.0 000 Ry )
The time dependent coefficients may be regar-

ded as samples of convolution functions between
signal and the rows of the transform matrix [4].
The inverse transform onto the original domain
is given by

x(v) = 9-1 ()

There is a one-to-one correspnndance between
signal and transform domain and no errors are
made by linear transformation [5].

Most signals are correlated hecause they are
output-functions of convolution type systems.
Tnerefore the optimum linear transformation is
given by the Lodve-Karhunen expansion because
the correlation between the signal sampler is
eliminated in the trarsform domain.

The statistics of the signal are given in terms
of correlation coefficients p; aefined as

rxx(i)

=

e
by (0)
XX

and ¢  denotes the autolorrelation of the
stationary process. The covariance mairix of

dae

the process is of Toeplitz form and given by

lp1 Py Pnyq

Pyl Py v Py

P, P, 1 ... P
Cov(x)= o 2 . N-3

Pogovrrrerenl

2 . .
0° = r_ (0) is the variance of the process.

The Loge-Karhunen transform diagonali.o-s
the covariance matrix [6]

K Cov(x) l(_-l = Diag (Ai)

and elimminates the correlation of the process

in the transfor-n domain. For wide-sense
stationary processes and N -e o the covariance-
matrix is diagonalized by the discrete Fourier
matrix. But for finite N and non-stationary
signals as short speech sample blocks the
optimal finite Loeve-Karhunen transforms are
given by

X(¥) Cov (x(1)) K™ = Diag(A(v)

and will be different in each interval. For each
interval the Eigenvalues and Eigenvectors must
be determined which requires a large compu-
tation time and it is nearly impossible to per-
form real-time processing of the signal. There
are other methods [7,8] based on a mean
Karhunen-Lobve expansion where the signal is
treated as a stationarv process.

On the otherhand discrete Walsh transformation
offers new methods for real-time signal pro-
cessing and digital hardware imp’>mentation.
There exist fast transform algori.kims and no
multiplications are required in Walch transforms
except sign changes. The correlation is not
completely removed in the transform dom.ain
because there are non-vanishing elements out~
side the diagonal of the following transform

%‘z_’ Cov(x) W= A

If the covariance matrix is a dyadic convo-
lution-type matrix the process is a wide-sense
dyadic~statiocnary process and the correlation

of the process x is eliminated by linear Walsh
transformation 19].

Because there are not many non-vanishing ele-
ments outside the diagonal we derive our moti-
vation for an application of the Walsh transform.
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The discrete Walrh transform of the finite in-
tervals with the (ength N=2" is defined as

Llw) = W x(v)

with the inverse transform

_1 F&( .
x(v) =g W (v

W is the N-th order Walsh-matrix and the ele-
mer(s w(j,k) take only the values +1 and -1.
The matrix is orthonormal [10,11]

-1
W=W = NW

Data compression is achieved when the vari-
ances ir the spectrzl domain of the specral
cignal to be processed are known.This can be
done by compater simulation [127. According
tc the mean enargy distribution G.Robinsoun has
derived the bit-assignment for the spectral co-
efficients in 2 system with N=16 and proved
good results.

For the real-time signal processing with high
order systems (N=16 - 1024) as required for
example in imege prncessing we dovelopped

a transform processor based on Walsh functions,

asther two- .alued scad also three-valued functions.

Analog ha dware imple .entations heve already
been Jdiscussed [13,14].But using modern inte-
grated MSI sni LSI circuits the system may be
implemente . -ith minimized expense and
highest flexibility. In th2 following chapter the
implemeiitation ;s diccussed in detail.

Digital Herdware lLinplementation

Figure 3. shews the basic diagra-. of a trans-
form processor.

reduced data

!
i
» a nreced -
x——o Irgnstormation}—~- S~} Goder S—E-—elicnrpoeeat, S X

W P | .

Figure 3, Basic diagram of a trensiorm-pro-
Cessor.

The subsystem: called spectral coder can alse
be rer‘aced by other units for iinear ani non-
linear filtering. With a .ogarithie it the sys-
tem ilows the double specirum analysis n
the Wwalsh asmain.

P

0

The transform and inverse transform subsys-
tems are showr in figure 4,

s low | la falzsh
Ht) Pass [ d {p-bit Transform

per

9
2 nyerse ~ Low
= pen) Transform » P Pass i-‘;;;_ B

Figurc 4.Block diagram of the transform units

Any arbitrary waveform is frequency limited
in a low-pass frequency filter with respect to
the sampling theorem. The discrete values at
iimes kat are converted into binary words with
finite length p.The quantized signal has here
an input quantization errcr.  The transform

of the binary input signal yields N spectral co-
efficients. 1f the word-length is p+n no additio-
nal errors are made in the transformation pro-
cess. The original binary signal word is given
by the inverse transform which i1s thce same as
the transform. The binary word is shifted to
the right and thus multiplied with 1/N.The d/a
converter is producing an analeg signal which
is the same as the quantized input sic- al 2¢-
cept a time delay of Nat or N samples. w
pass filtering yields a time continuous iieqt -~
cy limited signal.

The total number of required opzrations in a
matrix multiplication is N2. There exist fast
algorithms called Fast Walsh Transform Fwl)
reducing the regiroed operations to NIAN=nN
[15,16]. A tranzform oato sequen:y order &
spectra regitires additional storaye and the com--
plete input vector x{v). Atransform onto se-
quency order however will be usetul for com-
paring the results irom the well inown Fourier
spectrum direct with the Walsh spectrum be-
ranse there i{s a first erder one-to-one corres-
rwndence betweer. sequency and frequency f17}.
Therefere and Hecause of more flexibility an
ordinary matrix muldplication processor has
been worked outinstead »f a iast transformer.

. s e e . 2
The matrix multiplico*i w1 is computed in N°
steps and the transiuenm vector is given by N
nartial subsums

2y = Wale) = Duphe ngg  Jav)

o3, S0
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where w, aére tne columns of the Walsh matrix clock frequency. After N(N-1) operations the
input word is muitiplied with the last
v)=x. w. + X % x column of the Walsk matrix ,added to the sums
XWWI=XG W + X My ve e X My oo XN 18N R.(N-2) and at the output of the adder the Walsh
» chefficients appear serially. In the feedback
3 xo,x e+ X, . are the elements of the y-th between shiftregister and ad-er there are AND-
E: sxgnaII vector. gates for the multiplication with zero.This is
; A k-th partial sumn of the transformation vec- required at the beginning of each interval and
;‘ tor is given by also useful for the multiplication with the
X three-valued functions {-1,0,+1}.
b= A r
E X () = (wlwl.dy ] x()
3 k 0 -1 k k wii k) lo.ct
‘. X0 w0,0""'wo,k X ‘ 1 —J
k! & pon -
g )sl ) wl,o.....wl,k xl x s p z } shft reg
X N Clle ;
'3 R. W, reeeneW, X 01 N1
: ] 3,0 Jyk [ VKly .
3 "Netly P WN-1,0" Rk
5 Transform
= The Matrix operations consist of stign changes wiir)
and additi~ns. M operations are comptited seri- i prn
’,' ally in each sampling intervai 4t. With parallel I |
3 bmary ar_nhnfetxc the clock frequency of the : ahitt rogisth . % s P &
k- machine is given by l[»n? pen = k
. {O,L) M :
- \J -
3 £ = Nf - N 0 N-1 W
3 clock sampl. at
4 The logic ( TTL and MOS) is limiting the cloc.
< . . o Inverse transform
! to fcmax so that ti.e upper signal band limit
i is Figure 5. Block diagram of the arithmetic
1 £ _ _Ctmax units of the processor
g2 up 2N

During the last sampling interval (N-1)4t

th~ coefficients 52(‘)',2“.. appearing at the output
of the transform unit are read into the shift
register of the inverse transform unit. This
register has an intern recirculation logic. In
each sampling interval the register content is
shifted cyclically to the right and at the output
of the last stage the N Walsh-coefficients will

The implemented processor has a clock ~
quency of 2MHzand the_upper signal be--
limit is 15.6kHz at N=64. There is no limit
for low freyuencies and long intervals.

Figure 5. shows the block diagra; of the
transform and inverse transform units. For

23 1548 SRS, AR

the binary representation we use the two's
complement because there exists a simple rale
for the multiplication with +1 and -1.

The arithme < unit contains parallel exor-qates
adders and stiftregisters. We regard now :he
state k at the ti.nc kat . The bina:y input word

appear. The multiplication with the correspon-
ding row of the Walsh matrix and summation
yield the original signal word x, . The word
is now shifted n-times to the right accor.ing
to the maltiplication with 1/N. Because of the
symmetry of the Walsh-matrix the signs for

Sk

i,

is multiplied N-times with the column vector
w, of the Walsh matrix. At w, =-1=L the word
is inverted and an L is added 1b' the last signi-
ficant bit. The N products are added to the

R

transform aud inverse transform are the same
"and only one Walsh-generatur is needed. We
have used a proposal of Peterson [18].
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. . . . The arithmetic units as shown above ¢ 1 be ]
N foregoir * partial sums which are stored in . . . i
. . . also used as digital Walsh-filters simply E
> the M-stage shift-register. The new sums % modifying the register commands[19 0] 2
4 are readintothe fir.:t stage of tre shift reqister ying s resde §
I and shifted cynlically to wne right with the ; z
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At

q. is the number of bits for the quantization ;
Spectral Coding of each coefficient. The quotient between in- £
put bit-rate (8-bit PCM) and spectrum rate §
The first investigations with the transfcrm pro- thus is given as reduction factor of B
c?ssor .hav.e shown energy distributicns as 64kb/s
hQown in figure 6. r = = 1,455
44kb/s

~{In

and therc was no difference and loss in quality

between input and outputsignal. Experiments

have also been done with higher reduction up
:::::.4 to 22kb/s and there was no loss in intellegibili-
ty and only a small amount of increasing quan-
tization unois¢ especially in the unvoiced parts.
But this is aiso clear because the distribution
of the voiced parts was taken. Further improve-
ment will be achieved if voiced and unvoiced
parts are cuded with different schemes.

Figure 6. Qualitative energy distribution of

Pitch-synchronous Walsh Transform
German speech in the Walsh-spectrum

High data compression however is only possible
Because the absolute spectral distribution is if the speech significant characteristics are

constant , the short time spectrum is differing turned out bztter. Thus, the bit-rate of the
very much at changes of the transform inter- voiced quzsiperiodic vowels can be reduced far-
vals from short duration as 2ms to long one reaching using pitch-synchrorous adaptive Walsh
as 8ms. But the total energy of the signal is transformation.The main problem is the pitch E
always constant in the spectral demawn because detection, which must be determined exactly %
Parseval's theorem holds true; the areas under for reducing the variances in the several spec-~
the curves are the same. The distribution will tra. Figure 8. shows the basic diagram of an
also be different for voiced and unvoiced parts. orthogonal Walsh-vocoder.

The distribution of figure 6. is nearly the same
as in the Fourier case. The voiced vowels have
their maximum at the absolute sequencies

¢ = i/I‘O“ 1kzps (kilo zero crossings per sec.)

Pitch Coder t—e-codod petch

which is equivalent to 1kHz in the frequency Piteh Walsn =
8 - . . )
spectrum. 7The unvoiced parts bave their maxi- Extractor Generstor
mum at higher sequencies ( 3-6 kzps) ¢ --
ding to 3-6kHz in the Fourier spectrum. Drich-synchronoas
Doley Analyzer 1= Woish - spectre
For N=64 and T =8ms the energy distribut.on

of the voiced parts has been quantized as
shown in figure 7.

£
-

FigureB. Basic diagram of an orthogonal adap-
tive Walsh-vo.oder

The pitch frequency is multiplied by N and the
delayed speech signal is sampled adaptive so
that ench periodconsists of Nsamples. The
sample frequency is also controlling the Walsh
generator and the arithmetic unit.Pi*ch and
co~fficients could be coded effectively with

- differential PCM. The estimated bit-rate might

be 1-2kb/s. Th-~: * other systems allow highor
Figure 7. Bit Assignment in the Walsh-spectrum data cor'press ¢ 21} the advantage of the
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Walsh transformaticn lies in the minimai elabo-

rateness. A photogreph of a prototype transform

processor is shown in figure 9.

Figure 9. Walsh transform processor
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WORD RECOGNITION BY MEANS OF WALSH TRANSFORM3

Moyett T. Clark, Dept.
John E. Swanson, Dept.
John A. Sanders, Dept.

Abstract

An experiment is described in
which word recngnition is based on
comparing ths lgh sequency components
of spoken wo. #ith those of a stored
library of words. A Walsh transform
computer program is used to calculate
the sequency components of successive
segments of spoken wcrds. The
components for each word to be recog-
nized are arranged into an ampiitude -
sequency - time matrix and correlated
against a set of known test matrices.

A test matrix is generated for each
word by averaging six matrices of the
word. By using the highest correlation
coefficient to determine which word

is 3poken, recognition scores between
89.%% and 100% are achieved for a ten
word vocabulary spoken by four spcakers.

Introduction

In the recognition technique
des.civcl in this paper, amplitude -
seoency* - time matrices for ten
spoken wo.“s8 are prepared for four
speakers, and these matrices are
compared by means of a decision rule.

A Walsh transform comprter program
calculates the sequency components for
successive sections of each spoken
word. After the discrete Walsh sequen-
cy components of a spoken word are
determined, a computer program arranges
the components into a matrix of
identifying numbars. By correlating
the matrices with those of a stornd
library of words, the spcken word is
identified by the largest correlation
coefficient.

The objective of the pilot exper-
iment is tc recognize a limited
vocabulary of words and to take advan~
tage of the speed of the Walii trans-
form which requires only real time
additions and subtractions.

*Harmuth {1] has defined sequency
to be one half the average number of
zero crossings per second of a function
and has abbreviated sequency as “zps”
in analogy to cycles per second.

by

of Defense, Ft. Meade, Md.
of Defense, Ft. Meade, Md.
of Defense, Ft. Meade, M4.

Walsh Spectral Analysis of Speech

If a segment of a speech signal

f(t) is represented by a sequence of
N samples, f£(nT), O<n¢N-1, the discrete
Walsh Pourier or Hzdamard transform
can be defined as [2]

N-1
W(k) = ¢ £{(nT)wal(k,n),k=G,1,...,N~1

n=0 (1)

where T is the sampling i~terval.
Similarly, the inverge WaiwX transform
is
1 N-1
f(nT)-;; £ W(k)wal(n,k),n=0,1,...,N=1
k=0 (2)

where N is an integral power of two.
The first two discrete Walsh
functions are defined as

wal(0,n)=1, for n=0,1,2,.,.N~1 (3)

1' fcr n‘O,l,z,...N/Z-l
wal(l,n)= (4)
-1,for nwN/2, N/241,...,8=1

The remainder of the set of Walsh
functions can be generated by the
following iterative equation:

val(k,n)=wal({k/2],2n)wal (k~2fk/2},n)

.:xe {k/2] indicates the integer part
9f k/2.

In this paper the discrete Walsh
transform of f(nT), 04n%N-1l is computed
on an iIBK 360/85 by an algorithm
developed by Ulman [3]. The algorithm
provides the components W(k), 0<¢k&¢N-1,
in order of sequency.

If the even and odd discrete ¥alsh
components in (1) are combined, a
power gpectrum can be comput~d as
follows [1,4]:

w2(0) k=0
P(k)= 5 (5)
W2 (2k) W2 - ) ,k=1,2,...,N/2-1

Tlie computac..ons in {1) and (5)
provide only one spectral section, that
is, the sequency components at a time
t=(N-1)T. To obtain a short-time
spetral analysis, we compute (1) and
{5} at successive instcnts of time and
ezsentially cdetermine a running talsh
spectrum for each spoken word.
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Hence

N-1
Wr(k)- £ £(nT+rMT)vallk,n)k=0,.. . ,N-1

n=(
{6)
w2 (0)
Sp(k)= (7)
wg (2k)+W2(2k-1) ;k=1,2,.. o N/2~1

and
1 X=0

The two sets of numbers W.(k) and
S_(k) represent the discrete Walsh
tfan-form and power spectrum,
respectively, of z section of a
speech signal starting at t=rMT and
ending at terMT™+(N-1)T. Successive
sec%i?ns ave spaced in time by

MT [5]}.

A normalized gpectrum, Q.(k), is
calculated from (7) for ecch word
by finding the maximum value of S, (k)
for each utterance and modifying
71 as

2, (k)+-10 iog

Srs
A k=0,1,...N/2-1

8, (i) \8)

All values of Q. (k) below -30db are
set ecual to -38ab. Hence

{-30db if Q. (k) £-30db
AP (k) if Q. (k)>-30ab

P (k)= (9)

Each word is represented by an
amplitude - seguency - time matrix
whose vaiueg are between 0 and ~304db.

Genaral Procedure

The spoken digits, one through
ten are low-pass filtered to 4kHz,
sampled at 10kHz by a 12 bit PCM
coder, and recorded on a digital
tape. The digital tape is edited
80 as to produce =ix records, each
containing 1024 sample data points,
or 6x1024=6144 samples for each
spoken word.

The utterances on the digital
tape are processed by the Wslsh
Lpectrum analyzer described by (6) to
{9). The sots of numbers P (k) for
successive retions of each word are
arranged in the computer as a data
matrix with the furnat shown in
Pigure 1. The columns of the matrix
correspond to successive segments of
a word, where each segment starts at
time t=rifT and ends at time t=rMT
+({n-1)T. The rows are the sequency
components P, tk), 0<k<N/2-1, which
correspond to each word segnent.
Such a matxix may be regarded as a
afgital spectrogram [S5,6].

For each utterance, a test matrix
is generated by averaging six matrices
of the same word. Thus there are ten
test matrices for each speaker. The
words to be recognized for a particular
speaker are compared with each of the
speaker's test matrices.

matrix cell

\

© .
“ L]
5 -
g
2
8§ 3
&
0
-
e
[ 1l

0 MT 2MT 3MT . ...
Time
Exanple of the coordinates

of the amplitude - sequency
~ time matrix

Figure 1.

Let C(i,j) represent a matrix
cell in a word to ba recognized, where
i is the index for the sequency compo-
nents and j is the index for successive
time sections. A correlation coefficient
can be generated for the two matrices
as follows (7):

N/2 L
Tz c(i,§) b(i,3)
i=l jm1

= {10) .

g N/2 L N/2 L 2
t £ cqi, | r D(i,P
i=l =1 i=2 4=l .

N/2 is the number of components in
the Walsh power spectrur and L is

the total number of successive time
segments. By generating a correlation
coefficient betweer the unknown word
and each of the test matrices, a
decision can be made on the basis of
the best correlation coefficient.

Experiwentsl Procedure

Three expariments were performed.
Por the first and second experiments,
the parameter N in (6) to (10) was
chosen as 128, This means that sep-
aration between successive spectral
samples was 78.125 zps (xp3 ig one-

half the averzge number of zero

\
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Recognition Scores Approximate
Computer Time

First |Second jThird |(Female |Generation |Corre-
male male male speaker jof spectral|lation
speaker | speaker speaker camponents

First Experiment

No. of sequency components=N/2=64 96.6% 94.9% [100.0% | 93.3% 80 sec 34

No. of spectral sections=L=4{8 sec

Seco ' Experiment

Lower order components used

No. of sequency components»N/4=32 | 93.3% | 93.3% | 96.6% | 91.6% 80 sec 21

No. of spectral sections=L=4{8 sec

Third Experiment

No. of sequency components=N/2=32 | 96.6% | 94.9% [100.0% | 89.9% ]112 sec 42

No. of spectral sections=L=96 sec

Tabie 1. Recognition scores for four speakers and approximate computer time
required to generate, correlate, and recognize words.

crossings per second (11)., The para-
meter M was chosen as 128 in (6) to (9).
With the sampling interval T=6.1 ms,
M=128 corresponds to obtaining

spectral sections every MT=12.8 ms.
since each utterance consists of 6144
sample data points, there were 48
spectral gections for each spoken

word. Hence L in (10) was 48.

In the first experiment the
successive spectral sections, P (k),
05k$N/2~1, contained 64 components.
Bach word to be recognized was repre-
sented by a 64x48 amplitude - sequency
- time matrix and correlated against
each of the 64x48 test matrices.

In the second experiment only
the lower order sequency components,
P_(k), 0<ks3l, were used. PBach word
vis represented by a 32x48 matrix
and correlated against each of the
32x48 test matrices. The results
of the first and second experiments
are shown in Table 1.

For the third experiment the
parameter N in (6) to (10) was chosen
as 64, and the separation betwaeen
sequency samples was 156.25 zps.

By choosing M=64, we obtained 96
spectral sections, where the sections
were separated by MI=6.4 ms. The
successive spectral sections, P.(k),
0¢ksN/2-1, contained 32 components.
Pach word was represented by a 32x96
matrix and correlated against each
of the 32x96 test matrices. The
results of the third experiment are
also shown in Tsble 1.

Experimental Results

Twelve sets of the numbers one
to ten were spoken by three male and
one female speaker. The first six

n

sets were used to form the test matrices.
Matrices for the second six sets werc
compared againat the test sets. The
recognition rates which varied from
89.9% to 100% are shown in Table 1.
Table 1 also shows the approximate
computer time necessary to generate

and correlate the spectral components
for each experiment.

In the second experiment an
attempt was made to reduce the computer
computation time and storage requirement
by using the lower nrder sequency
components., Since the results do not
vary sagnificantly from thoze of the
first experiment, it appears that we
were able to achieve data reduction.
This is similar to the results obtained
by Pratt, Kane, and Andrews [8] who
were able to achieve bandwidth rednction
by ignoring the higher ordexr sequency
components.

In experiment number three the
sequency components were further agart.
The recognition scores of the first and
third experiments were similar except
for the female speaker, but more
computer time was required for the third
experiment. Therefora, the first
experiment produced satisfactory
overall results.

Discussion

Because the Walsh transform
requires less computer tims than the
Fourier transform, the Walsh transform
was chosen for the recognition
experiments. The Walsh transi ™m
requires only real additions and sub~
tractions whereas the Fourier transform
requires complex multiplicatiuns,
additions, and subtractiorz. Pratt,
Xane, and Andrews [8] were ble to
realize a reduction in time b7 a
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factor of 6.6 by using the Walsh
transform.

)

Hence the objective of this
experiment was to recognize words with
a minimim amount of computer time and

. storace by correlating Walsh spectrums.
It required approximately 80 %o 112
seconds of computer time on an IBM
360/85 +o generate matrices for twalve
sets of 10 spoken words. It also
regquired approximately 21 to 42
seconds to generate the test matrices
and perform the recognition procedure.

P
o~

The major disadvantage of the
system was its inability to cope
with the variations of the duration
of tke spectral events which constitute
words. This problem was partially
sclved by using test matrices which
were the average of six matricec.
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4 Abstract during the period 9, and exact inovledge of the

1 beginning of the time period 6, along with high

‘ A novel circuit for gensrating the first 64 /3

i Valsh functions withno timing error, hasard- froqwancy operation, and a simple cigcuit are
i) free, and synchronising pulses for the time required. The t proposed hesw aocom-

L& - plishes 221 these aims, snd is also programmbls.

3 period © is exp.ined, The circuit requires a The

miniwom amomt ot hardware, and can be operated input of a standard code Loy the

at high apseds. Its uwoe in an inverse Walsh mnﬁwlgcmou&)unognym ;

Traneform apperatus for displaying video data is rela 'mtionp mtbu'm “mm \

Introduction also generate these, E

The projest outlined hers was undertaken when The selected Walsh function is gemersted for .
an interest was shown in using Walsh functions the entire period 6, A "SYIC" pulse is pro- i
for Lusge transfcraation by some authors (1,2). duced at tho begiming or end of the tims period -3
The possibility of tranemitiing the image in the 0. Thocircuthdwhgl’u.l.

bility of bandwidth reduction. In order to use o

this transform sconomically, ve hard- Vi |

ware had to be developed which would work at the Ye .

high speeds demanded by video processing for %e <

real-time applications, The results outlinod Y2 i

below ave the result of an imitial investigation v = L

into such hardware. T =" -3¢

Walsh Generator Design 10 17103

Ths typical Walsh function gensrator uses I € J &

exclusive-or {3,L,5) or sxclusive-nor gates (6), S 1 O I O O O -

1o produce the appropriate Walsh functions, >

Oererally these 21e bssed or combinations of !L'.' !E |

Radomacher fwmctions, One design requires the
\(m)» of digcrete resistor-capecitor ccmponents
7) o produce the finsl function output. A )
reoant circuit (8) has the advantage of being Fig. 1t A 6-bit Prograssmbls Walsh -
adls to deterxdins the exact valus of the Walsh Function Generator, .

<

waighting shown on the W input lines, For ex- )
geusrators produce a variable time -delay in gen- -
srating the higher sequeny functions, £ince the m']']“u”‘)mhgbtﬁmdwwu ‘

waa Hm Vs Hh Hz '1
0O 01 0 o0 1

A
A
v v,

:
§
Hif

£
4

ocefficients, this tSaing ervor mey be oritical, &
partioulariy at high frequencies. “muum:ymuumwm&mm =

: s 6-bit binary down cownter the clock A

%m.h;tho input, B,rm:gawchcl’:mn,thociro N
produce 1 s I Sesy palees, ovit can produce a pulse train depending oh the =
ximply beozize of the inbarest techniques used state of the comter. In effect, the sero- v
in gemerating the functions, These hasards aro crossings of the Radamacher functior~ are detect- 33
moet notabie wher genereting funotions using od and the appropriate ones sre used to toggle &
sxlusive-or gates and previously generated a final flip-flop, Because the output is taken g
terms, In oxder to produce a better cirouit for from a memory elsment (the final flip-flop), its =
genersting these fudctions, the rroblems of - » 1
hasards, sosurate timing of the sero-crossing Patent, applied for, Janvary, 1970, &
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output state is held at a fixed level until the vwhexe 1
next clock pulse is permitted to toggle the .O.Sf(e)do
0

1
put is tied to the clock fre changes of ay = % £{0)CAL(1,0)d0
the

!

f

g

E

5

3

g;‘

1

angwer, The circuit was also designed to b, = S £(0)sL(1,0)d0 H

fully iterative (i.e. each stage in the main 0 f

ey %wbuhug,dwmum. ﬁ;’;‘:ﬁn‘m“m the The first few Walsh functions ard their re- g

lation to the SAL and CAL functions are shown in g

number of Walch series required)., Iterative Fig. 2 i

design, howevar, does cut down on the speed of * o ¥

op-ntionotthocircut. If a fully synchroh- ]

ous ciroulit werc used for the counter, very 8

high speed could be buiit, With standsxd logic | . i

. modules (series 54 or T4 TTL logic), the circuit w( gy ! ! 2

would work up to 10Mis, z

The circuit slso genemates a "SYNC* pulge at: w e 1 w1, é

the begimning of the time pericd @ which is o &

effectively used in the high speed trensform wize | | I a1 7

apparatus described later to transfer data frem . £

a buffer mﬁ;r (cotghd to a computer or w e ' L. 1 wze 3

namal switches) to holding the " 2

Soetficient muber WAL(H,9). Henos the dete w1 T LT wiaw i

pregented on ths W lines of Fig. 1 is held for *‘5*’“1'_'\__[_—]__[—__1__&(") K

the entire time period 9, and is only updatel -1 ! £

-at the tegiming of the period. The buffer e S N e N e B LT ¥

register cin be easily loaded whils the main -1 %

gensrator is producing the actual functions. w(7.0) .:W_J_—l_, w40 3

Series Bxpansion by Walsh Functions - 7 “

‘ te L L L L wam 3
. Any periodic function £(t) can be expanded in -1

a series of the orthogonal system of Walsh func- w.(s.v)::ll | e Y

tions WAL(N,t) in the interval of orthogonality

T. By making 6 = 4/T, the aystam will be norm- woon LT T UL ouse

alised, and the expansion of £(0) will be given
as:

v ML UL LT e

£(e) -fo AJMAL(N,0) (1) TS N B i W W B g W Y
5 ' wozo T LML LM (7.9 "
for0s8<1 . L e :
g waee) LML LML e :
H The coefficisnts A, of the series expansion ‘: -
3 can be obtained by multiplying equation (1) by wase LML L UL, s ]
WAL{3,0), and uumgu the ﬂm over the 3
Es period of orthogonality using otthogonality .
,_‘ r.lation.hip: Fi‘. 2: The first 16 Walsh Functions,
e § WALLORIL(1,0000 = §y (2)  Amplitnde Senp)ing and Walsh-Fourier Analyais
1 o The sampling theorem of Fourier amalysis i
? stages that a signal band limited to B Hs is :
3 vhere §., =1 for N= 3 ocampletely determined by 2B amplitude samples
& Nj psr second, This theory is also trus for Walsh-
Fourisr analysis.
. Syy=Ofor¥Ney It a signal £(t), band 1imited to B He,, be

2 *h represented by amplitude semples scken at a rate

38 Hense the 1°° coefficient is given by equal to 2B samples per second, If the

. : A L

3 oq -

< Ao 0“"’"‘“**"“9 (3) sigal £(t) ), and making @ = t/7, then the ex~

: pansion of the sigral £{t) in a normalised Walsh

2 mnmncxpmdonoié(e)mbomudmm) m'"iub",o

tarms of the even and Walsh functions CAL(1,6
:4 and SAL(4,0) a8 » £(0) = E:oaimu.e) oo (5)

£(0) = 35+ %‘.{.icuu,e) + 5 8AL1,0)] (k)  The coafficients will be given by equation (3).
1= )
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From uho sxew syceatry property of Walsh funce generated continuously across the screen, Tha
tiony, tiw Walsh-ourier coefficients a, for 1 time period @ was taken as ) of tiw sorsen

2 M will vanish, This means that the um trace time,.

sequancy contained in the signal f£(t) in the in-
tarval T is (2B7-1). This will be the upper

limit in the sumaation of equation (S), and the I R
discrete transform becomes: X MWWV
N-1 WAL,
£(8) « izoaiwuu,o) (6) cm n
- , X A
In other words, the maximum sequency of the WALg
signal f(t) is B sero crossings per second, By cp R
representing £(9) by N samples in the interval X
0 5 9 <1, the integration of equation (3) for WALp |1
detarmining the coefficients can be changed to P
a swmation by dividing the period @ into N sub- 9 x [ Cever
intervals of length 1/N, Then the coefficients waL, 1 SHIFT &
are given by: | DRIVE
1 N2 S ™ x A Amgiifiers
a, = 3 o £(8)WAL(4,0) (7 WAL,
i N
=0
ot
i - 0.1,...,""1. WAL. VIDEO
These equations can be implemented to perform C, R DISPLAY
the Fast Walsh Transform, and the coefficients a, X WA
obtained, WAL,
The Instrument Design Cu N R
X
The fundamental limitation of the Walsh Func- wAL, |1
tion generator dezcribed sarlier to be program-
malle to obtain the firast 64 coefficients limits Fig. 3: Inverse Transform Basic Circuit,

the number of samples N to 6L. The instrument
vas designed to operate with dominant term syn-
thesis, and a gelaction of the dominant 16 terms
rom the field of 64 is used in the final design,

The instrument was designed to perform the
inverse transform {eff{ectively equation (6)) but
only using dominant terms, The nain objective
of ths circuit was to directly drive a television
screen to display video data being generated in
the Walsh domain., The loug term objsctive of the
work was to investigate bandwidth reduction
schemes by transforming an original image to the
Walsh domain, transsitting significant terms,
nd then reconstructing the image at the receiv-
ar,

The general circuit for the hardware implemen-
tation is shown in Fig. 3, where only eight
terus are ehown being generated, The circuit is
duplicated and summed in the final adder in order
to obtain the 16 term zynthesis described. The
final circultry was analog in nature in order to
raintain spoeds srouwnd 1 to 10 MHx, and used
IC analog multipliers to perform ha arithmetic,
The coefficients &, ars convarted Lo analog form
bty D/A convertera, and the output of ths Walsh
function generator direotly drives ths othor
terminal of the multiplier. The cutput of each
maltiplier 14, in effect, an amplitude modulated
Wolsh function. The outputs of the multiplier
are added using a standard operational awplifier
adder, and the final ocutput drives a CRT inten.
ity grid,

A mynchronizing pulse is used to lock the

horizontal sweep generator to the standard
fras " “Pig. | shows the test oircuit Fig. ls Test Apparatus and Inverse Trrnsform

apparatus, with a manually preset signal being Instrument,




Sas tentative resuiis on using more bits
to spacify the domdnant coefficients, and fewer
bite to represent the smaller coeffisients, as
well as dominant teims selection have shown

vidso signals, based on deminant term syntheais,
and hance the need for a programable Walsh
function gemerator that will work at these kigh
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Y.Y. Shum

Abstract

The sequence of +1's and -1's of any Had-
amard function can be deduced from its binary
index. The factorization of a Hadamard matrix
is derived similarly. An "in place" Fortran
subroutine to compute the liadamard transform
of a rcal signal is developed.

tiadamard Matrices

The Hadamard matrix is a square array of
plus and minus ones, whose rows and columrs
are orthogonal to each other (i.c., the product
of the xatrix and its transpose is the idontity
matrix times a constant N). N is the order
of the matrix, and the lowest value it may
assume is two, thus giving the lowest ordered
ladamard rmatrix as

, 11
L o« )
2 -l -1-

Hadaward matrices of higher order, for N
a power of two, may be generated by a Kron-
ecker product operation, such that

-

ey Hg
N
Hyy = (2)
Hy -Hy
For example,
H, H.|
2 M2
Hy =
l, -Hy
1111
-hill ®
1--1
W, H,]
4 T4
Hg =
~H4 .l“‘
111111117]
1-1-1-1-
LU UETE U e
1--11--1
*lh111---- @
1-1--1-1
11----11
1-=-1-11-

COMPUTATION OF THE FAST HADAMARD TRANSFORM

A.R. Elliott

Department of Clectrical Engincering and
the Communications Rosearch laboratory
Mcllaster University
Hamilton, Ontario, Canada

Generation of Hadamard Functions

Each rov of a Hadamird matrix corresponis
to a tladamard function had (j,k), for
j =0,1,2,....,N-1, It is well known that
these functions may be generated through the
first » Rademacher functions{1]. For example,
with N = 33. the values of the Rademacher
functions, namely r , v, and r,, for ke«0,1,2..
veey?, AYC 2S illus?ratld in Fgg. 1.

k 01 2 3 45 6 7

rl1 111 - -« - -
11 - -11 - -
1 -1 -1 -1 -
Fig. 1: Rademacher Functions

For this example, j can be expressed in a
binsry notation as

j o= 4bg+ 2b, e b )

for bi = Oorl,
i = 1,2,4 ,

Fig. 2 shows all the possible values of j.
i by by b

0 0 0

(-]

20 1 0
30 1 1
4 1 o o
s 1 0 1
6 1 1 0

7 1 1 1
Fig. 2: Binary Lquivalent of j

The correct combination of r,, r1 and ry, to
produce had (j,k) is given by the binary 1's
under columns by, b2 and b respectively, as
shown in Fig. 2. For bj ~ 0, the correspend-
ing Rademacher function i: not involved as a
multiplying factor and, in its place, for all
values of X, a vaiue of 1 is assumed.

From the binary equivalen: of j, the entire

-
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sequence of +1's and -1's for any Hadamard
function had(j,k) can bc deduced [2].
‘tial value of this sequence is +1 as had(j,0)is
equal to 1. The length of the sequence is
determined by the number of binasy digits in j
such that, for every bj, the sequence is to be
extended to the right by i bits, The binary
nature of this system means that this cxtension
can be achieved simply by doubling its original
length, Accordingly, the bits to be examined
successively are by, ba, ...., by, ""’bN/Z‘

As mentioned earlier, if b; = 0, a multi-
plying factor of +1 is assumed. Consequently,
the original string of +1's and -1's is to be
copied once more to the right. On the other
hand, if b; = 1, the corresponding Rademacher
function is involved in the product. Its value
is equal to +1 for k = 0,1,..., i-1, but -1
for x = i, i¢l, ...., 2i-1. Hence the sequence
is to be cxpanded by adding on the complement
of the existing string of +1's and -1's. The
formulation of had(j,k), where j = 101 in
binary form, is illustrated in Fig. 3. This
simple technique to generat’ any Hadamard
function through its binary indexing is valid
as long as the length of the sequence is a power
of two,

-

Hadamard function had(j.k) of length N=2™

let j = bl + 2b2 + ....Oibi + ..,

wheve bi «0orl,
i=1,24,....,N/2.

For every b., extend the sequence of
+1's and -1%s to twice its length by
adding the sequence on the right under
the following rules:

1) the same seyuence if b; = 0,

2) tle complement of the sequence
if by = 1.

For example, with N=8,

j =by s 2>, ¢ 4b

4
had(5,k) = had{101,k)

Sequence

initial value
bltl
bz =0
b4 = 1

s et
LI T |

1 -
l1-~-~-1-1

Fig. 3: Generation of a Hadamard Function

Through Binary Indexing

Hadamard Transform of a Real Signal

The Hadamard transforn .f a real signal
may be defined as

N-1
FG) = g 5 £(K) « hed(j,K) ©)
k=0
where F(j) = jth normalized Hadsmard coefficient,

f(k) « discrete samples of the signal,
had(j,k) = jth Hadamard function.

The ini-
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The inverse Hadamard transform is given by
N-1

£(k) =]

j=0

F(j) - had(k,j) &)

Since the ftiadamard matrix is orthogonal,

had(j,\) = had(k,j) 8
Equations (6) and (7) are analogous. except
for the factor N. Conscquently the procedure
to compute the Hademard transform and the
inverse process are basically the same.

Squation (6) may be expressed in an iter-
utive form, thereby improving computational
efficiency. For simplicity of explanation,
consider the case when N=8. Then j and k may
be represented by the following binary equiv-
alents:

j = 4j4 + zjz hd jl (9)
k =4k, + 2k, + k| (103
w e ji’ ki =0orl.

The iz damard function may be comnletely
fact.~ zed [3,4] into

had(j,k) = (-39 (pyizke (piaka

Equation (6) mey now be rewritten in an itera-
tive form [3,4)

1 R 1 .
PR 1
Fligigip) =5 1 (nitR ] ik
R S k,=0

&

1
kg
D098 £k k0 k) (1)

4::{]
A s
The array from ) (-1)k434 £(k,,k,,k,) becomes
k=0
4

the data array for the next stage of computation
each of which requires N/2 additions and N/2
subtractions. Eventually the Hadamard coeffi-

k

k (k)

~—==& Computing direction Fh |}

Fig, 4: Signal Flow Graph for Fast

Hladanard Transform
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cients will be produced in their correct order
without any shuffling [4]. The signal flow
graph corresponding to cquation (12) is shown
in Fig. 4

Computation of the Fast Hadamard Transform

The fast lladamard transform may also be
derived from the binary notatioa of j, where j
is the index of the Hadamard coefficient. With
N=8, Fig. 2 and Fig. 4 can be referenced again.
As will be shown, the locations (i,b;) under
columns by, b b1 in Fig. 2, are related to
the corresponaxng nodes on the sxgnax flow
graph of Fig. 4.

From thc graph, it may be apparcnt that the
terms (any term apnearing in the flow graph will
be given the general symbol d) concurring at
any node differ in their indexing by i. The
same result can be obtaincd by noting where
asymmetry occurs under column b, as indicated
by the horizontal lines in Fig.”2. The math-
ematical operator associated with thesc two
terms is determined by (- 1)3.01 or [1-2x(j,b. )]
If (j,b,) = 0, the two terms d; and d i are?
summed.? On the other hand, 1f'(3,b1) = 1 a
subtraction should take place. From Fig. 4,
the correct formulation is dj-i - dj.

Any two terms that are summed arc also
involved in a subsequent subtraction, and the
results can be stored in the same memory
locations, such that

dj = dj + dk (13)

dy = dy - 4y (14)

k

wherc d,, d, = sampled data, intermiate results
J or Hadamard coefficients,

k=3« 2"
i=0,1,2,..., m-1,

=0,1,2,..., N-1,
excluding those of k.

.
)

For a general-purpose computer, comnutations
are done in a serial fashion. Consequently,
"in place" arithmetic requiresthec modification
of equation (14) to

d dj - dk - dk (15)

k=
Computation of the inverse Hadamard transform
can be formulated from equations (13) aud (15).

In computing the Hadamard transform, the
normalization factor of 1/N (szm) may be in-
corporated into cach of the m stages of compu-
tation as a factor of 1/2, thereby preventing
the possibility of an 'overflow" in integer
arithmetic. Accordingly, the basic cquations
for the Hadamard transform are

di = 1/2(dj + dk) (16)

d, = dj - d an
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For example, with i = 4:

= 1/2(d0 + d4), d4 =d, -d

0 4
d1 = 1/2(d1 + dS)' ds = d1 - d5
dz = 1/2(d2 + J6), d, = d2 - dg

dg = 1/2(dg + d)), dy = d; - d

The next two stages of computation, for i=2,1,
may be similarly devecloped. The general steps
to implement the fast Hadamard transform based
on binary notation correspond to the signal
flow graph of Fig. 4, except for the nacessary
modification mentioned carlier,

SUBROUTINE SFHT2 (MR,N,M)

DIMENSION MR(N)

IIADAMARD TRANSFORM OF A REAL SIGNAL
MR = SAMPLED DATA

N = NO. OF DATA

2+*M = NO. OF COEFF. PER TIME INTERVAL

zEsEzKs]

" n
b4

3NM = 1,M

non
™ O
~

£ 1,K DO2NL=1,L

2
K
+ 1
+

G Eg 1= - Eg =

K
(MR(1)+MR(J))/2
HR(I) -MR{J)

=
=
—~
-t
~—r

LN O
-
n
Ct

RETURN

END
For the inverse Hadamayd transform, the lines
with the same statement numbers are to be
replaced:

4 MR(I) = MR(I) + MR(J)
1 MR(J) = MR(I) - MR(J) - MR(J)

Conclusions

The entire sequence of 1's and -1's of
a Hadamard function can be deduced from its
binary indexing. A fast Hadamard transform
algorithm, using '"in place' computations, is
similarly developed. The same algorithm can
be modified to compute the inverse transform.
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A PAPALLEL ARRAY HARDWARE IMPLEMENTATION
OF THE FAST HADAMARD AND WALSH TRANSFORMS

Y.Y. Shum

Department of Electrical Enginsering and
the Communications Resca.ch Laboratory

ticMaster University
liamilton , Ontario, Canada

Abstract

The design of a relatively simple, but very .1 ...
fast, digital circuit that can generate both D S
the Hadamard or Walsh coefficients is explaincd. 1.-.....
A slight modification to the circuit allows the G. = |° 1.-.... )
inverse transform to be performed as well. A 1 e s 11
uscful communication application is described. D T |
R
Introduction o+ ¢+ 1. -J
A previous papcr {1] has described an al- _ -
gorithm for implementing the fast Hadamard l1...1...
transform of an N-length data array, where D SR
N = 28 using "in place" computation. A N S N
hardware implementation of the algorithm G = |* ¢ 1...1 N
illustrated by Fig.4 of [1) requires m adders 2 1...-...
for each coefficient when working in a par- Ll -
allel mode of operation. If m = 1, the hard- R P J
ware cost per coefficicent is minimized. This RIS PR
can be achieved by recycling the output from
the adders into the same storage registers m _ -
times. The loss in speed with such an arrange- 11......
ment is immaterial for most practical appli- IR O R
cations. N I S
.- S DR 11 (8)
Factorization of the Hadamard Matrix 1- 1 o« s e e
It is well known that an efficient way to e R
implement the Hadamard transform of an N- I
length (r\-Z ) real signal is to decomposc the
transform matrix into m factors that have many
zero elements, thercby reducing the number of T ...1..0
arithmetic operations. For examnle, 1 1 R
. PO S
1111111 T
1-1-1-1- L DU U 1 ®)
11--11-- ..li..~i
1--11--1
Hg = llll----i (1) N U
1-1--1-1 ~
11-=--11 Each factoxr G;, where i = 0, 1, 2, is an
1--1-11 -,j orthogonal matrix. Multiplication of G; and
a column matzix requires only additions and
= G, - Gl . G, ()] subtractions and the arithmetic may be done
"in place". A fast Hadamard transform zlgor-
n P.P.P (&) itha has been implemented [1] based on the
concept of equation (2).
= Q.Q.Q 4)
_ Matrix Q is the transpose of P, or vice
n e e e s e versa. Consequently the characteristics of
1,004 both are analogous. It may be sufficient to
NP B S dascribe the properties of P, and deduce those
where Go - R 1 1 . (s) of Q on similar guidelines.
e Computation of the Fast tadamard Transform
P I
A S It may be observed from equation (8) that
\ the product of matrix P and a one-dimensional
array involves merely additions and subtractions
of data that arc adjacent, and the storing of
the results in memory registers that are N/2
181
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locations aport. In the typical computer,
mathematical calculations are done in a serial
fashion. Hencc, in softwarc simulation, at
least one othcr array is required as a buffer,
as illustrated by the array LR in the Fortran
subroutine PHTR2 shown below. Each factor P
corresponds to one stage of computation. After
m stages, the Hadamard coefficients arc located
in the original data array.

SUBROUTINE PHTR2 (JR,LR,N,M)

DIMENSION JR(N),NR(N)

HADAMARD TRANSFORM OF A REAL SIGNAL

JR = DATA ARRAY

LR = BUFFER ARRAY

N 2**M ; NO. OF DATA

NH = N/2

LF = 1

Ml = AND(M, 1)

IF (M1.NE.O) GO TO 20

M =M

K = NH

GO
20 1M =

K =
22 LL =
30 JF =

4

M-1 4
NH/2
K
LF+1
IN=1
DO4 T = 1,MM
J = JF
IF (IN.LT.0) GO TO 2
b0 1 L = LF,LL
S LR(L) = (JR(JI-1)+JR{J))/2
6 LR(L+#K)= LR(L)-JR(J)
1J =J+2
GO TO 4
2D0 3L = LF,LL
7 JR(L) = (LR(J-1)+LR(J))/2
8 JR(L+K)= JR(L)-LR(J)
3J =042
4 IN = <IN
IF (41.EQ.0) RETURN
IF (M1.LT.O0) GO TO 40
Ml = <1
LF = LF+NH
LL = LL+NH
GO TO 30
40 DO 9 I = 1,NH
J = I+NH
10 JR(I} = (JR(I)+JR(J))/2
9 JR(J) = JR(X)-JR(J)
RETURN
END
To perform the inverse tladamard transform, the

lines with the same statement numbers are to
be replaced by the following:

5 LR(L) = JRI-1)+JR()

6 LR(L*K) = JR(J-1)-JR(J)

7 JR(L) = LR(I-1)+IR(J)

8 JR(L+K) = LR(J-1)-LR(J)

10 JRI) = JR(I)+JR(J)

9 JRE) = JR(I)-JR(J)-JR(J)

Hardwarc Implementation of the
Fast Hadamard and Walsh Transforms

In a parallel-operating system, the same
memory elements may be utilized to hold the
original sampled data, Intermediate results,
and eventually, after m operations, the required
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Hadamard coefficients in their correct order.

A preliminary design shows that it is possible
to usc complement arithmetic along with M.S.I.
adder packages available, and D-type flip-flops
arranged as registers for the sampled data as
well as the coefficient values.

A general rule for recycling of the results
. from the output of the adders, based on equation
‘(8), is thus given by:
(10)

(11)

dy = 5(dy + dp,y)

dianyz = (4 - 4,)
where j = 0,1,2,....., (N/2-1),

for k=0,2,4,....., N-2.
Fig. 1 demonstrates a proposed digitai
circuit that will implement the fast Hadamard
transform for the determination of 8 coefficients.
The expansion to a circuit that will obtain the
first 64 coefficients is straightforward and
will have tle same general structure as the
circuit of Fig. 1. Under the assumption that
a 7-bit coefficient value is sufficient, with
the cighth bit handling transient arithmetic
overflow, the cost per coefficient, with ofr-
ghe-shelf components, would be approximately
12.00.

For N = 26, (i.e, 64 coefficients) the
circuit need only be clocked 6 times, with
adequate time between clock pulses to allow
the output of the adders to settle. With
modern IC's this should be accomplished in
less than 200 nanoseconds. A circuit for
obtaining 128 coefficients would take about
250 nanoseconds.,

The Hadamard coefficients may be rearranged
to obtain the Walsh ordering. In a hardware
implementation to obtain the Walsh coefficients,
a straightforward approach would be to add a
new set of registers at the output of the adders
to hold the Walsh coefficients. This is illu-
strated in Fig. 1.

Note that the forward and the inverse trans-
forms differ only by a simple factor of 2(1].
Accordingly, a shifting of the bit lines return-
ing to thec storage registers by one bit will
allow the inverse transform to be performed by
the same hardware,

Application of the Parallel Hardware Array

A possible commmication system using this
novel hardware design is shown in Fig. 2. This
is a combination transmitter-receiver assumed
to be used in a mobile communication system
(e.g. an aircraft) in such a way that the bit-
rate of transmission is lower than standard
PCM systems. Others [ 3,4,5 ] have demonstrated
the feasibility of this approach. The circuit
proposed here is a tentative design for a
speech communications system. It determines
and transmits the eight dominant coefficients
out of a field of 64 in either the tHadamard or
Walsh domains. Simijarly, it can receive




e J30 R 5 SR s S FVAK - Pl NSy S S S R ISP £ TR T AT L F. Oh}, SF iy < SIS LU, -t
el O v RNy T o S ST USRI o Fd iy P RATBANT i 4 d vt 24 RN S U et CHIT O YRR T Mt v il G R e A £ o n A T A I S
et ’

"dominant* cceffic.ents and reconstruct the
necessary waveform. Zonsequently, for such a
comaunication system the relevant  data are
formatted as the amplitude of the coefficient
and the corresponding cocfficient number.
These data words are transmitted over standaxd
data links to similar tre smitter-receivers.
It is estimated that a total package of this
type would cost about $3,000 - $5,000. Future
research will be aimed at constructing such a
package and comparing its operation with other
forms of digital transmission of speech.

Conclusion

It is shown that the decomposition of a
Hadamard matrix into identical factors leads
to the implementation of a feasible software
subroutine and a high-spced hardware design
for the fast Hadamard transform. The same
hardware can be modified for the fast Walsh
transform, and for the inverse transform as
well. A tentative design of a digital trans-
mitter-receiver system is nroposed.
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Y.Y. Shum

Abstract

An efficient algorithm is used to obtain
64 Hadamard coefficients for every 8 milli-
seconds of speech. Using only 8 Or 4 of these
coefficients, it is possible to reconstruct
intelligible speech on a CDC-1700 computer
system. The results of this investigation
into speech analysis and synthesis in the
Hadamard domain arc presented.

Intraduction

Several previous papers [1,2,3] have de-
monstrated the feasibility of using the
discrete Hadamard or Walsh transform in image
or speech processing with promising results.
The immediate objective of this research is
to evaluate the usefulness of transforming
speech to the lladamard domain, retaining
several dominant coefficients per specific
time interval, and then reconstructing the
original signal from these coefficients.
long-range goal is to reduce the bit-rate
necessary for speech commmication over data
links for those applications r.quiring intel-
ligibility rather than high quality, and
simultaneously to reduce the memory require-
ment of any associatsd hardware.

The

Computer Facility and Implementation

A block diagram of the CDC-1700 computer
system and the apparatus used to perform this
experiment is illustrated in Fig. 1. The
present configuration of the system is such
that the 1/0 bus can only handle A/D or D/A
conversion one at a time, in a buffered mode.
Consequently, real-time operation is not
possible, although the algorithms used are
sufficieatly fast that real-time operation
(actuslly a 16 msec. delay) can be contem-
plated in the future.

The original sentences for analysis and
synthesis weretaken from a master tape
supplied by the 1972 Intcrnational Conference
on Speech Communication and Processing. The
speach waveform was sampled at an 8KHz. rate,
amd the data wore formatted into 14-bit words
by the A/D converter. These digital samples
were stored on a disk capable of holding 1.5
million words. Only 12 cylinders out of a
total of 99 wore used, which correspond to
approximately 23 seconds of speech being
handled on one pass. A fast Hadamsrd transform
algorithm [4] was used to transform every

of 64 datz words into the first 64
coefficients in the liadamard domsin. For
the sampling rate used, the update time inter-
val was thus 8 milliseconds. The dominant
(in terms of largest absolute value) 8 (or 4)
184
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coefficients were selected through another
software algorithm. Synthesis was performed by
using the dominant coefficients, their corre-
sponding coefficient numbers, and the inverse
Hadamard transform. The results were stored on
the disk, destroying the original data file.

A final D/A conversion through a low-pass filter
produced the resultant analog signal that was
recorded on tape.

Format and Bit-rate of Test Results

The tape recording presents the results as
first, the "original"speech. This is simply
the original digital samples sent directly
through the D/A converter to demonstrate the
degradation of the speech waveform due to the
operating system. The bit-rate of data transfer
is equivalent to 112,000 bits/seconds. Scaling
the 14 bit words to 6 or 7 bits (about 48,000
bits/second ) shows little change.

The second recording was speech reconstructed
from the dominant eight coefficients of an
snalysed 64 coefficients, updated ever 8 milli-
seconds. To specify the caefficient number, 6
bits are required. The coefficient amplitude
values are of 7 bits (including sign). In
effect, this corresponds to an average bit-rate
of reconstruction of 13,000 bits/second.

The final recording was made using the four
most dominant coefficients in the same 8 milli-
second time interval. The reconstructed signal
corresponds to a bit-rate of 6,500 bits/second.

The tentative results presented here are
the beginning of a project to determine an
effective digital scheme for minimizing the
bit-rate of data transfer for intelligible
speech commmication. For this purpose, the
salgorithms used in the research are made suf-
ficiently flexible such that changes may be
made on the sampling rate, the update time in-
terval, and the number of dominant coefficients
for synthesizing speech. A possible outcome
of this approach is the production of an
inexpensive audio voice response unit for a
computer that will require a minimm of wmemory
storage. To this end, future research is aimed
st analysing phonemes and diphones, with an
attempt to create a digital vocabulary for
voice synthesis.
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DIGITAL SIMULATION OF A LCS RESONANT FILTER FOR WALSH FUNCTIONS

Joe P, Golden
U.S, Naval Research Laboratory
Code 5712
Washington, D.C., U.S.A,

Introduction

An analog LCS serial resonant fiiter for
Walsh functions is presented. Difference equa--
tions describing the lossless resonant filter
were programmed on a general purpose com-
puter to simulate the iilter as a digital reso~
nance filter {1-3], The direct programming
form for digital simulation was modified by
using time variable coefficients to simvlate the
time variable switch neceasary for tuning the
filter to a discrete sequency. The steady state
difference equations necessary for digital
simulation of a lossy analog LCS resonant
filter are also given,

Fundamentals

The serial resonance filter for Walsh func-
tions as shown in Fig, i is basically the same
as for sinusoidal functions except that it has a
switcit S which is used to tune the resonant
filter. To illustrate the properties of this cir-
cuit, let switch 8 be closed, swilch Sy be
open, v4(0) = V4, vo(0) = Vg and C; =Cy=C.
The current and voltages yield the following
equations:

i) =Yz (Vq-Vg)sin ot (1)

vy(t) = Vq - 3 (V1 -Vg) (1 -cos wt)
Vz(t) = Vz + % (Vl -Vz) (1 -cos wt)

where w= N2/LC. Attime t= 7/w, the cur-
rent goes to zero and the voltages are

viln/w) = Vg (2)

voln/w) = Vq .

The important point is that the capacitor
voltages at t = 0 and t =7/ have interchanged
values, To make use of this property, assume
that the sampled Walsh function sal(4,9) as
shown in line i of Fig. 2 is applied to capecitor
Cy by instantaneously closing and opening
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Fig. 1. Serial LCS
Resonance Fiiter.
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Fig. 2. Time Diagram for a
LCS Resonance Filter ‘{funed
to the Forcing Function.

switch Sp. The sampled functica sal(4,0)
must be in the form of a charge source if volt-
age is to be added accumulatively to Cy. Let
v4(t+T/2) = vo{t+T/2) = 0 and suppose

q = +V4C is applied to Cy at time { = -77/16
as shcwn in line 2 of Fiy. 2 which gives

vy(t-7T/18) = Vy
vo(t-TT/16) = 0,

According to the results of eguations (1) and (2),
the voltages will interchange in the next time
interval of At = T/8 whick gives

vi(t-5T/18) = 0

(3)

4)
Vz(t «5T/16).= Vi
a3 shown in line 4 of Fig, 2. The charge

q = =V4C §s then applied to Cy attime t =
-57/16 according to the a ed Walsh function




sal(4,0). Again the voltages interchange and this
building up process continues until steady state
is reached. It should be noted that switch 8 is
closed throughout this discussion, thus, tuning
the filter to the forcing function sal(4,0). It is
noted that the voltage vo(t) 18 the complement

of the forcing functicn sal(4,9) which implies

the desired condition for resonance.

Consider sal(3,0) as shown in line 5 of
iy, 2 with all initial conditions set to zero.
The charge q = -V{C is applied to Cy at
time t = -7T/16 and the voltages are then al-
lowed to interchange. The charge q = +V{C is
applied at t = -ST} 16, however, the voltages
are not allowed to interchange this time.

Switch S i8 opened at t = -5T/16 and it re-
mains open for the duration t = T/8 us shown
in line 8 of Fig. 2. The switch S could be
opened at that time since the current is zero.
Al time t = -3T/16 switch S is closed and the
charge q = +V1C is applied to C;. The volt-
ages are allowed to interchange as before. If
this process is continued with the switch S
being opened (whitec——2) and closed (black mmm)
58 shown in line 7 of Fig. 2, the voltages will
build up with time which implies that the circuit
is a serial resonant LCS filter for time sam-
pled Walsh functions., The switching character-
istics of switch S is the determining factor
necessary for resonance to occur.

Fig. 3 shows what will happen if the forcing
function sal(3,0) is applied to the circuit that
is tuned to sal(4,0) an: vice versa. The volt-
ages do not build up with time which implies
that the circuit is not tuned for resonance.

sol{3,1’T)

7 vz(') Vi.*.i- ]
solid 1/ T) J—
5 =
6 —i y 1 1 . 1 S oo

o DX BN
YT S (R |

-T/2 0 - 172

IFig. 3. Time Diagram for a
LC8 Resonance Filter Not
Tuned to the Forcing Function,

The separation of the sum of two Walsh
functions is llustrated in Fig. 4. I the input
signal is sal(1,0) + 8al(3,8) as shown on line 3
with the fiiter tuned to sal(3,0) as indicated by
line 5, the mtput voltages vi and vy are
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90401, 1/T) e sol(3,0/7)
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Fig. 4, Time Diagrams Illustrating
Separation properties for LCS Res-
onance Filter for Sum of Two Walsh
Functions,.

shown in line 6 of Fig. 4. Note that vg clearly
indicates the resonance condition.

Since the voltages vy(t) and vo(t) are only
of interest at certain time points t, = n7/4w +
T/16 where n = 0,:1,42, ... according to
Fig. 2, difference equations may be used for
the analysig of the circuit of Fig. 1. Denote
vi(t,) by vi(n) and velt,) by ve(n) with switch
S always closed and 59 always open. Accord-
ing to equation (2) the voltages vy(n) and ve(n)
are related by the following two erence
equations of first order:

vi(n+1) = vp(n), va(n+1) = vy(n). (5)

If the switch 8, is momentarily closed at the
time t,, the applied charge q, = Cv{ (n) in-
creases the voltage across C; from vy(n) to
v1(n) + vq'(n). Equations (5) will assume the
following form

vi(n+1) = va(n), vo(n+1) = vy(n) + vy'(n), (6)

Separation of the variables ylelds two differ-
ence equations of second order:

viin+2) - vi(n) = vy'(n), {7
va(n+2) = va(n) = vi'(n+1).

It would be instructive to carry the differ-
ence equation technique one step further by con-
sidering 2al(3,0) as applied to Figs. 1 and 2
[4). In analogy to (6) the following sets of equa-
tions are derived‘from Fig. 1 and line 8 of
Fig. 2

vi(n+1) = vo(n) (8) (Cont.)
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vi(n+2} = vy(n+1) + vy'(n+1) (8)
(Cont.)

viln+3) = 29{n+2)

vi(n+4j = vo(n+3)

2n+1) = vy(n) + vq'(n)

vo(n2) = vog(n+1)

vo(n+3) = vi(n+2) + vy'(n+2)

vola+4) = v4(n+3) + vi'(n+38)

where n=9,4,6,12,..., 4i,... . Separation
of the variables yields:

vi{n+1) = vi'(n-1) + v{x-1) (®)
vi(2+2) = vi'(n+1) + vi(n+1)

vy(n+3) = vy'(n) + vy(a;

vi(n+4) = v¢'(n+2) + v;(n+2)

va{n+1) = vy'(n) + viin-1)

voln+2) = vo(n+1)

vofn+3)
vo(n+4;

vy'(n+1) + vi(n+2) + vo(n)

vi'(n+3} + vo(n+2}

where n> 4, 1=0,1,3, ... .

Digital Sirulation

The ideal digital 1.C8 rescnant filter can
be simulated on & geaeral purpose digital
computer by prog:amming the differsnce egoa~
ticns which desciile the particular resocance
filter.

The sirulstion of the digital zesonant
filter tuned to 3r}(4,6) can be accumipiishe by
reaxzauging equations (7} by shiting back two
time units which gives

vi{n} = vi'(n<2) + v4{n~2) (10)
va(n} = v{'(n-1) + valn=~3).

Let the following changes in notation be
made to uid ia progyamming *he variables
n-J, V1 - Vi, Vg ~» Y2 ant ‘Jf'-. viv,
Equation (10) now becomes

V1{J; = VIV(G~2) + VI{F-2) (11)
VI = VIVI-7) + 3T -3)

Equation (11) can he 3imclated in binck dla-

gzrin form ueing the direct form of pregrammngm

&

%3 shown in Fig, 5 wheze 4 indicstes a time
delay of one unit time, Figure 6 shows the re-
sults when the input foreing funciion VIV =
sal{4,6) with the filte~ tuned to sal(4,6). MNote
that the filter resopant coadition has been met
as previously definmd, If another Walsh func-
tion were applied as the input, resonance would
not occur as simulated by ¥ig, 7 where V1V =
sei(3,0). The voltages V1 and Y2 were limited
to a + value. This limitinz process '8 neces-
sary since the digital simulation is v:astable and
the output voltages would continue tc increase
as long as the input is applied. This wouidq, of
ccurse, be txpected fnr « resonance circuit
when applying an input ot the sam# sequency as
the iilter is tuned. This is direcily .alogous
te the reacnence filters in the frequeacy domain,

o

Fig. 5. Sirnulated Block Diagram
of Digital Filtsr Resonance Tuned
to 8c1(4,9),

a
o
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TIME
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Fig. 6. Filter Tuned to sal
(4,0) with ViV = sal(4,9).

The simulation of the digital fiiter shown
in Fig. 5 which used the direct program:.ing
form had conatant coefficients of eithsr plua
(ne or zero in the feedback and feed Jorward
loops. The conztunt time invariant coefficients
provided a rather simple simuliation, Suppose
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Fig. 7. Filtor Tuned to sal

(4,6) with ViV = sal3,6),

tise same type (direct) of programming form de
used to simulate u digical filter tuned to
sal(3,9). This would i2quire the coefficieats
15 be time varicblc with values of plus cae cor
zero depending on the time necessary to cause
resoncace. The simulated block dingram of the
digital filter tuned to sal(3,9} is skewn in

¥ig. 8 where the Krcuecker Delta is

61+§,J=? it 1+4=7J
=0 it 1+4= J.

Figure 8 i# the sir.uiatio; of squation (8) where
the following notations Lave Yeen changed ta
facilitate programming ..ﬁe 2quazions 41 + :
I+4 43 -il m-«», \’ -aVlV v

vg — V2, Equxt.an (C; cnn ke rewri 1f:t'su using
the Kroneczer Delta notatin as follows:
[Vi{J)= VIV(Z-5)+ V1(¥-2)]
0424, (12)

1.V2/1)=VIVid=1)+V2(J-2) |

[71(3) = V19(3-1)+ V3(3-1;]
85453 sy
| V2(J)=v¥33-1)

{’ V1(J) = VIV(I -85 + V1(J-3)
0548,2 |
LV = VIV(I-2)+ VIViJ -1, +V2(J-3)

(14)

V1(J) = v1(J-2) + V1(J-2) ']
0147,3 {. {15)
V() = VIV(I-1)+ V2(-2) ]
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—
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#ig. 8. Jinwlated Block Diagram
~f Digital Resonance Filter Tuned
to sal(3, 8.

Figure 9 shows the digital simulation of
the resoaance fiiter tuned to sal(S,8) with
8ai(3,68) app.ied as the forsing function. The
steady state condition is simulated the same
as diszussed earlier, The non-resonance
condition i8 seen in Fig. 10 where the forcing
function is s2l{4,6).
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Fig. 8. Filter Tuned
to sal(%,6) with VIV =
sal(3,6).

The separaticn property of the digital
filter can be peen in Fig. 11 wiere ViV e
sal(1,0) + 8ai(3,6). ThC output voltsge V2 is
ciearly s21(3,0) which has been separated from
its sum with 82l(1,0). This result is analogous
o the sum of Irequencies being separated by 2
resonance filter in the frequeney doraain,

The difference is thatr {requenc» resonance

R4 E S LA oy 4 3«‘_;&_ N T -
e xv,, 4

EESH IS %me-—-—‘*_ . PRS-,

P A




e Wy i %
o s ST AR W R R o ST L g acaiad SR OLE Bl '3 L

tfg\/\/\/\/\/\/\/\
“WVVVVVVA

Vo P> —tg R o

simulating this type of digital filter should
make their future very promising,

Derivation of Steady State
Difference Equations

The digit::l simulation of the theoretical
model of the LCS serial resonance fiter has
been precented. The difference equations
which were simulated assumed perfect ele-
ments with no losses, The simulation of an

actual arialog model would require that lossy

o elements be considered in the derivation of the
A o difference equations. To do this, assume that
1 ; switch S of Fig. ! when closed has a resistance
T R and that the initial voltages across the ca~
: : 8 —_ pacitors are vy(0) = Vy and vo(0) = V4. Solve
{ > for i(t), vy(t) and v (5 for C = Cq =C with

o SG openif S is clesed at t= 0 The integro-
¢ differential equation for the circuit in Fig. 1 is

iy oI jic ™
TIME

Fig. 10, Filter Tuned

to sal(3,0) with V1V =

¢
vy-vp =18, 2 f i(t) dt + Ri(t).
sal(4,6). 0

! (16)
- Ny The current and voltages yield the following
= /\ /\ equations:

= | »8) 1 /

, . \/ \/ it) = -5% (vi-Vg) el sinwt  (17)
E

.00
i

L o vilt) = vy '15 V1-Va)

2 : ;: o~ —\\/A // \ [ \1‘ H -

i ° \._/ \»/ ‘v/ \ / X {i e-at (—- sin wt + cos wt\ll
- Ja
i vo(t) = Vo + 5 (vl Vo)

X {1 -¢mat (w sin wt + o3 wt):]

(19)
¥ig, 11, Filter Tuned
\ to 3al(3,4) with viv =
% sai(1,0) + £al(3,6).

LR Ty

where C; = Cg=C, wl = 2/LC, @ =R/2L and

13 v"":ﬂbl

wz = w:"az.

&

fiiters psgs a band of irequencies; whereas, the
sequéncy resonance filter passes only a dis-

ceele saquendy. The following relations are obtained at the

time t = (7/2);

N e

-3 Digital resonance filters tuned to other n/w) =0 {20)
e | Walch functions can be developed using these .
£ techniques. The simplest version sal(4,9) and vi(r/w) = -5 (Vi+V3) -K

the mest difticult sal(3,6) were illustrated

g kexre. The difficulty of the others lies between
- these two extremes. The relative ease of

vz(n/w) = % {Vy +V2) +K
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where
= % (Vi-Vy) corfo

K must be a positive real number for any
physical realizable circuit if V§ > Vg, The
voltages across the capacitors at t = 0 and

t = 7/w no longer interchange as for the ideal
circuit. If R =500 &, £ =400 Hz, L = 0.21 Hy
and C = 1,5 uF [2], the constant K becomes

K= 0.115(V1-V2).

Let the initial voltages be Vi =1 and Vg9 =0,
The voltages at t = 7/ become

vy(n/v) = 0.5 - 0,115 = 0,385
vo(m/w) = 0.5 + 0.115 = 0,615,

For this value of K, the voltages would
slowly build up as time increases. Since K
varies exponentially with the amount of resist-
ance, anj .rease in R would decrease the
constant K sabstantiully. For example, sup-
pose R =1000 Q; then K would equal 0,052 as
compared to 0.115 for R = 500 Q. This implies
that as the series resistance of the circuit ap-
proaches infinity the constant K approaches
zero. Under this condition, the voltages will
not build with time but will remain at a steady
state value as long as an input signal as the
proper sequency is applied. Upon removal of
the input signal the output will damp out very
quickly. The point is that an analog LCS serial
resonance filter contains a considerable
amount of series resistance. ‘The effect of the
series resistance is to prevent the continual
building up as predicted by the lossless cirzuit,
This would imply that K is small enough to be
considered as zero,

The difference equations fur this condition
can be derived similar to equations (11) which
are

ViJ) = Vig-1) + 0,5 viv(g-1)  (21)
Va2(J) = V2(J -1) + 0,5 VIV(T ~-1),

The digital simulation under the steady state
condition for the filter tuned to sal(4,8) can be
obtained by simply substituting equations (21)
for the equations (11).

The difference equations for ihe steady
state condition with the fiiter tuned to ssl(3,6)
can be derived similar to equations (12) - (15)
are

[(V1(3) = V(T -1) + 0.5 V1V(T ~1)

0144,3 (22)
| V2(3) = V2(J ~1) + 0.5 V1V(J - 1)

(V1(3) = V(T ~1) + V1V(F -1)]

6145,5 (23)
| v2(3) = V2(J -1)

[V1(3) = V17 ~1)

0146,J (29)
| V2(J) = V2{J ~1) + VIV(y-1)

[-r1(3) = V1(3 ~1) + 0.5 V1V(J -1)'!

0147, 125)

| v2(3) = va@ -1) + 0.5 V1V(J-1)J .

For steady state digital simulation the equations
(22) - (25) would replace the equations {12) -
(15).

Conclusion

The LCS resonant filter for Walsh functions
was successfully simulated on a general pur-
pose computer. The digital si.aulation of the
resonance filter was based on a set of differ-
ence equations which described the lossless
theoretical model., Therefore, the simulated
output had to be limited to an arbitrary value
to mimic the steady state condition of an analog
filter. The steady state difference equation for
the lossy analog circuit was derived,

The resonance condition is clearly indi-
cated by the filter if and only if the forcing
function is at the same sequency as the filter
is tuned.

With the advent of integrated circuits ana-
log or continuous Walsh functions may easily
} 2 generated and used for carriers in multi-
plexing or coding systems., Discrete Walsh
functions can easily be generated by special
purpose or general purpose computers which
could aleo be used for multiplexing or coding.

2
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» " ay + alz'l + .o +a2" x(a+l) = 1(n) + x(n)
E D(z) =
1 - -
oo L4br b+ e +p 2 x(n+2) = 1(n-1) + x(n-1)
B |
3 x(nt+3) = 1(n+l) + x(ntl)
3 where aj and by are real coefficients. y(n) = 1(n-1) + v(n-2)
E The digital filter specificied by a z-
A domain transfer function may be physically y(ntl) = y(n)
E: realized in several ways; general~purpose
| computers, special-purpose computers [3,4], or y(nt2) = i(n) + 1(oHl) + y(n-1)
& hybrid devices [5]. The digital tronsfer
E function D(z) may be programmed in :ieveral y(nt3) = i(n+2) + y(atl)
. difference equation forms [6,7]. One of the ..
| most common forms is the direct form shown n=1,5,9,
E b s ’
g ' elow where i(n) is the input signal. The initial
i conditions are specified by defining values
b | eo(kT) = age, (KT) + aje, (KT-T) + +-- for:
= -nT) - “T) = oo 1(-1) = 0
) + anei(kT nT) bleo(kT T)
: - - 1(0) = 0
¢ b, e (kT-nT)
' x(~1) = 0
2
e . where k is an integer, eq(kT) is the filter x(0) =0
. input, and eg(kT) s tue filter output. The
: sampling period T is usually omitted to sim- y(-1) = 0
& plify the notationm.
g y(©0) =0 .
Now let us consider the poles and zeroes of
N D(z). The z-plane is defined as g mapping of
> the s-plane according to the rule
; z = I8
o
3
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RESONANT SEQUENCY FILTERS IN THE Z~DOMAIN
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Abstract

In this paper, the characteristics of a
resonant sequency filter proposed by Harmuth [1]
and constructed by Golden [2] are examined in
the z-domain as a digital filter. Special-
purpose digital hardware is propos