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WELCOMING REMARKS

DR. GENE G. MANNELLA
Dean of the School of Engineering and Architecture

The Catholic University of America

It is a gratifying task for me to extend to you on behalf of the Catholic
University of America an official welcome to our campus. It is a pleasure
for us to host the 1972 Symposium on the Applications of Walsh Functions,
and we join wit]. our co-sponsors, the Naval Research Laboratory and the
Eiectromatnetic Compatibility Group of the IEEE, in wishing you a suc-
cessful meeting.

The program for this year continues the strong international flavor that
has come to be a hallmark of this symposium. A total of 64 papers from
I I countries will be presented in the next three days, giving this meeting
the broadest representation it has had to date. To our colleagues who have
journeyed here from other countries we extend a special welcome and the
hope that your visit will be most productive.

Based on the pre-registration and the pattern of symposium attendance
established in the past several years, we anticipate a total exceeding 200
persons will attend this symposium. In keeping with the practice of the
previous Walsh Functions symposia, the proceedings will again be published
and distributed at a nominal charge through the National Technical Infor-
mation Service, although all registrants will receive a free copy as soon as

they are available. This will enable the broadest distribution of the material
presented here, so that our colleagues throughout the profession can avail
themselves of advances in the applications of Walsh Functions as reported
here.It is clear from the statement of the Symposium objectives published

in this year's program that.especial interest will again be placed on the ap-
plication of Walsh and other nonsinusoidal functions. This is certainly in
keeping with the mood of today's society which is oriented toward the use
of the grn at store of knowledge built up in the past several decades in
finding the solution to many problems which cause us concern. This is not

in any way to diminish the need for, or importance of, increasing the body
of knowledge in a given field, but only to illustrate that our first duty as
engineers and scientists lies in explicitly applying our capability to the ulti-

mate benefit of society.
There is something particularly gratifying in successfully applying the

abstract to specific problems. Perhaps in the next three day3 we will see
several exciting examples of this. To that end I wish you well-in your
symposium and hope that it will be as productive as those that have preceded
it.

xi
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THE WONDERFUL WORLD OF WALSH FUNCTIONS *

Robert B. Lackey

Electrical Engineering Department

The Ohio State University
Columbus, Ohio 43210

As I pondered the submission of an abstract any two functions together and integrate over
for this paper, the first title that occured to the interval (add up the values) the answer is
me was "Everything you always wanted to know.... zero, unless the two functions are the same

etc." Aside from the fact that everyone is using function. N;ormalized means that if the two
that title these days, I am a person who likes to functions are one and the same, the irfegral of
come to the point. I chose instead, "The Wonder- their product is unity. Complete is a nice
ful World of Walsh Functions." I will rov pro- property, not worth discussieg further here.
ceed to nrswer my own question in as painless a
way as I can. As luck would have it, the best way to de-

fine the Walsh functions is in terms ol another
The original paper, by J.L. Walsh, perhaps set of functions called Rademacher functions.

surprisingly, is not recent; it appeared in (This is my own personal favorite definit4on;
print in 1923. As is often the case, with a few others are equally valid). I will define
notable exceptiuns, not much was done with these Rademacher functions first. The first step in
functions, or to them, or about them until 1968. defining these f.nctions id to take the unit
It was then that Dr. H.F. Warmuth's article interval and imagine it divided up into 2 n sub-
appeared In the Spectrum of the IEEE, and in- intervals. Did you do it? Okay. Next, a plus
spired a tremendous amount of work in the area. sign in a subdivision means +1 and a minus sign
It was also at this time that my own personal means -1. Now I shall list the first few Rade-
intimacy with Walsh functions began. The second macher functions using this notation with 16 1
thing I did after reading the article was to sub-intervals. Let's see if a pattern emerges.
order a copy of Dr. Harw~ith's book.[l) I rea- (A sketch of each function is shown beside the
soned that if the article were good, the book function to give a picture along with the +,-
should be even better, and I ws right. (Not notation)
always true when they make a movie from a book.) ti
I have been using the book as a text for a course Ro +|:::::::::::II -

in signal processing with a digital computer.
It was during the time that ! was waiting for RI ++++•-..-------

the book to arrive that I began the self-educa-
tion process which I have found ever so valuable R2 --- ++' + .... ..IT' .
to an ultimate understanding. It is of course

my hope that this paper will similarly motivate R5 ,---------.-.----,---

at least one person to explore the area of Walsh
functions more deeply. R4  +-+---+-+-+- fIJjJ-f1J1

Before I tell you ,ow to generate the happy Note the following things: the subscript on R is
family of Walsh functions, I want to tell you an integer, and the number of complete square-
some of their characteristics. Generally speak- wave cycl s the function makes in the interval
ing, Walsh functions are defined on the unit is 2 (i-), ;hen the subscript is i. The exep-

interval, C to 1, ani in this interval, they tion is Ro, which is +1 over the whole interval.
take on the values ± 1. They flip back end forth Easy? You bet.
between plus and minus one in a fairly regular
and highly predictable way. The independent Now the next step is to define for any who
variable on this interval is 0, a normalized may not know it, the Gray code. If I count in
kind of time. 8 - t/T where t is o:dinsry time binary from 0 to 7, 1 can make a table like the
and T might be called a sampling interval. Walsh onP qhown below.
functions have some characterisitics which make
them interesting to mathematicians as well as to Decimal number Binarv Gray Code
engineers. I will just mention these in passing.
Walsh functions are orthogonal, rarmalized, and n 000 000

complete. Orthogonal means that if you multiply 1 001 001

2 010 011
3 Oil 010*This work was supported in part by Grant GN- 4 i01 010

534.1 from the Office of Scionce Information Ser- 5 101 111
vice, National Science Foundation to the Computer 6 110 101
and Information Science Research Center, Ohio 7 11 100

State UnLiversitv, Columbus, Ohio. 4
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The Gray code has two interesting properties. wal (5,0) ++---4+--4-++-- sal (3,e)
(I) As you progress from 0 to 7, only one digit
at a time changes. (2) It is helpful in defining wal (6,G) ++--4+--+--- + cal (3,6)
Walsh functions. It is particularly easy to con-
vert a number from binary to Gray code. If the wal (7,0) 44--++--++--4--- sal (4,e)
binary number is bn bn-1 o')-2* ... bI then the Gray
code is gn gn-1 gn-2 .... g1'and the g's are found wal (8,0) +--++--44--+--+ cal (4,0)
from the b's by the following rules:

wal (9,0) +--++--+-++--++- sal (5,8)
gn - bn

bwa (lO,e) +--+-4--+--+--+ cal (5,6)

gn-1 - bn eD bn-1
wal (11,e) +--s-+----+-++- sal (6,6)

gn-2 - bn-1 (. bn-2
wal (12,6) +-+--+-4+-+--+-+ cal (6,6)

wal (13,0) +-+--+-+-+-4-- sal (7,e)

;I= -b. 0 bl wal (14,0) +-+-+-+--+-+-+-+ cal (7,0)

The symbol • menns addition modulo 2. wal (15,0) +- -+-+-+ - sal (8,9)

Noi, at last, we're ready to generate some
Walsh functions. A Walsh function is character- 0 1/2 1 0 axis
ized by two p.rameters. j is the seqjency (more

Sabout that later) and 6 is the independent vari- Now let's see what some other Interesting prop-
able. To find wal (J,e) erties are. Fach nime one of the functions

changes from + to - or - to +, it is an occurence
1. Write j in binary called a zero-crossing, a most descriptive name.
2. Convert j to Gray code Also, there is a zero-crossing at the origin
3. Multiply together all Padems,%har func- (6 t 0) for each of those functions which has odd

tions whose subscripts correspond to the symmetry about 6 - 1/2. (they also end with d
position of the 1-bits in the Gray code this is true for every other one in the table.
number. They line up as shown below: If we count the number of zero crossings in each

of the previous functions, we find the following
Code word ... g 4 93 92 9l numbers: 0,2,2,4,4,6,6, etc. with the last one

having 16. Remember the word I used a bit ear-
Rademacher ... R4 R3 R2 R1  lier -sequency? Well, sequency is defined as

one half the average number uf zero-crossings in

of Walsh functions. To find wal (13,0) the sequencies of the first sixteen Walsh func-

tions. They are, from top to bottom, 0,1,1,2,2,
1. 13 - 1101, in binary 3,3,4,4,5,5,6,6,7,7,8. In ether words, there
2. Gray code - 1011 are t.wo functions, one with odd symmetry and one
3. R4 . R2 .R even, at each sequency from 0 to 8, except for

the first and last. In order to point out the
R4  +-+-+-+---+-+-+- similaritv between these functions and the also

orthonormal set of sines and cosines, the appro-
R2 -H------- .priate Walsh functions have been given the names

"cal" and "sal" as follows:
R1 +444 ----

wal (2n-l, 0) - sal(n,O)

wal (2n,6) - cal(n,e)
wal (13,6) +-+--+-.-+--4-+-

except for 0 sequent7 wbere all we have is wal
So there you have it. A relatively simple (0,0). The Inde'. n for sal and cat is their se-

way to define Walsh functions. The table below quency. Theme are the names listed on the right
shows the first sixteen of them. I w!ll explain in the previous table.
the names on the right later.

Now that we can define Walsh functions at
Val (0,0) +i:ii;:iigiiiti wal (0,6) will, and put the appropriate label (cal or sal)

on them, as well as find their sequency, we are
wal (1,0) + -++ ..---------- - sal (1,0) ready to start working with them. This sectior

might he called "What are they good for?"J
wal (2,0) ++4- --------1,11 caa (1,6)

Using Walsh functions to represent signals
wal (3,0) 4+++ ---•t++ - sal (2,0) is popsibly the most important application today.

This application is exactly analogous to the use
wal (4,0) +4----4-t+ ----4+ cal (2,0) of sines and cosines to represent a function in

3



terms of what we all learned as Fourier Series. Let the xi's take on the following values: 0,0,
The difference now is that the function is repre- 1,1,0,0,1,1,. This is a square wave with se-
sented as a series of Walsh functions in the quency 2 and some d.c. A series of additions
"sequency domain." I would like to digress for and subtractions gives the following results:
just a moment. All the masses of literature that
have been released to the scientific community a(O) - 4 ac( 2 ) - 0
since the famous Cooley-Tukey algoritlim appeared
ii: print have referred to the digital Fourier as(l) = 0 a,(3) - 0

Iransform. They call It a discrete version of a
continuous process. I prefer to think of it as ac(l) = 0 ac(3) = 0
whac it really is: a Fourier Series. If you
think this way, then the Fourier Transform be- asz( 2 ) - -4 a,(4) - 0
comes a special case, using an infinitely fast
sampler. Now let's get back to the subject and a(O) represents the d.c., while as(2) is due to
talk of a Walsh series for a function. A good the component at sequency 2. Now let's try an
way to represent the formulation of a Walsh interesting thing. Shift the phase of the input
series is by a matrix equation: signal., by letting the x's be (in order) 0 1 1 0

0 1 1 0. Now, computation of the Walsh coeffi-
[W] . [Xl - (A] cients gives

where [W] is the matrix of Walsh functions, [X] a(O) - 4 ac( 2 ) - -4
is a column vector of sampled values of the
oriSinal function, and (A] a column vector of am(1) - 0 as(3) - 0
Walsh coefficients.

at(l) - 0 a,(3) - 0
The Walsih matrix, because of the nature of

the functions is simply an array of pl:ts and a&(2) - 0 as(4) - 0
minus ones. With the functions as defined here,
the preceding table is the Walsh matrix for This example illustrates that the Walsh trans-
N - 16. Now you know why the so-called "1a4sh form is sensitive to the phase of the input
Transform" is so fast. All you do to generate signal as well is to the sequency. This is not
the Walsh coefficients is add and subtract, and true for the exponential form of Fourier Series,
if you do it according to the Cooley-Tukey algo- although it is for the sine-cosine form, as
rithm, it's really fast. Another nice thing might be expected.
about this representation of Walsh functions is
that the original signal can be regenerated oy If we sum the squares of the terms at the
multiplying the column vector of Walsh coeffi- various sequencies, we have the equivalent of a
cients by the same Walsh matrix, and dividing by pover spectrum, called appropriately enough, the
N. In other words, the Walsh Matrix is its own tWalrh spectrum. Note that the spectra for the
inverse, within a censtant multiplier N. In previous two examples are the same, as they
terms of a matrix equation, should he; d.c. term and a term at sequency 2.

[X] .[W] A) [ -[ W] -[H] (X] Let me end this series of ideas with a sim-
1 ple statemen-. Tou can mull it over on your own

and (w) [W] = [I] time. A time-limited square wave function (such
as one obtains ot the output of a sample-and-

where (I] is an NxN identity matrix. Let's do a hold device) can be exactl represented by a
simple example, Zor N a 8. Let the sample values finite nitmber of Welsh func ,tions. You can't say
be xo through x7, and the Walsh series coeffi- that about sines ano cosines!
cients be given by ac (n) or as(n). (Except for
the coefficient of wal(0,e) which is a (0).) Another interesting set of orthogonal, com-
Here the subscript c or s refers to cal or sal. plete functions, whlsh may be normalized if you

-. . . . desire, is the set of aear Functions. I will
a(0) 4-H+H4+ x 0  now list enough lHar Functivns to allow you to

generate as many more as you like. As with the
a(l) +4-4--- x1  Walsh Functions, the interval Is divided into

1/2n spaces. For this list, use sixteen divi-
acO1) x 2  sions. Capital H with superscripts and sub-

scripts will denote the Haar Functions. The

a as(2) 4-4---+-- x 3  plus sign again means +1, the minus sign means
- -1, and now the number 0 means exactly that -

Rea (2) +-----+ xzero.

a,(3) +-+i- i X5  Note the following characteristics of the
N"aar Functions: for the subset PkJ, there are

-x6 n - 21-1 different functions in the interval,
as(4) +-+L- x7 and 1 t k < n.
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H0 HHII i i HIIIII where (W] is the Walsh matrix and [X] Is an image
(actually an nxn portion of an image).

First, consider an image containing infor-
H2 ++++----00000000 mation at sequency 1 in the horizontal direction

± and sequency 0 in the vertical direction, as
H2 00000000-+ ..... shown below.
2 44-ooooooo~oooo l~o i

H3 oooo+--oooo0o 0110 I
20 1 1 0J

H3 00000000++--0000L
Image

P• 000000000000++--

The transformation is shown belot.
H4 +- 00000000000

E 00000+-000000000-I-004
H4 00000000(-00000000

S1 component. Note that the -8 lies in the first
H4 000000000+-0000 row, third col+ m, indicating sequency 1 in the
6 +horizontal direction.H4 000000000000,-00

Next consider an image 8Ith 0 sequency in4 00000000000000r- the horizontal direction and sequency 2 in the8 vertical direction.

I I-'-
H4 00 1/00100000s0000

Also note the interesting relationship to then0 0O 0

Rademacher Functions. 1 1

2J-1 Iage

k H1k . R The transformation is shown below.
+++ 0000 ++++ 001

With this in mind, it is reasonable to talk + - 111 + - 000
of a "scquency" for Haar Functions, although a - 0 0 0 - 0
more important parameter is delay, which, for [+ 1 + [08
Haar Functions, ia enalagous to the phase of
sines and cosines. For the Haar Functions, the Note that the d.c. term is In the sme
delay is given by k - 1. To normalize the H,•r place, while the sequency 2 term in the vertical
Functions of order J, each should be multiplied direction la indicated by the -8 in the fourth
by 2(1 - 1)/2. An application will be described row, first column.
later.

Finally: using the notation that the Trans-
For the reminder of this paper, I shall form array is (TI, the original image can he

point out some of the many actual as well as recovered by exactly the ame matrix operation
potential applications of Walsh Functions, and as the one which generated it, with a factor of
other square-wave functions. Perhaps I will be 1/M2 . This is shown in equation form below.
asking more questions than I answer.

X • W]. [TI.[W]
1. Two-dimensional image transformation.
Two very active persons in this area are jIrI .W.WI.[X].I I.

Andrews and Pratt.[2] They were certainly amonts
the first to point out the advantages of using [X] - [I]I.[].I - [XI
Walsh Functions for image transformations rather
than sines and cosines. I thought It might be II is the identity matrix.
fun to examine several simple cases In order to
see exactly what a Walsh Transform does to an 2. Sequency filtering.
Image. As I define the two-dimensional Walsh It is possible to do filtering based upon
Transform, It is a matrix operation given by sequency rather thaL frequency In two different

ways: the first way utilizes sample and hold
(WI [X](W amplifiers, switches, Integrators, multipliers,

counters, etc. Any type of filter can be
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synthesized; lowpass, bandpass, highpass, etc. 7. Resolution of point targets.
[31 The other approach is to use a digital If two closely spaced point targets ire
computer, perform the transformation to a Walsh illuminated with a sine wave, the receiveJ sig-
series, then retain for outputting only those nal will have the appearance of the curves below
sequency terms which are to be passed bv the due to small differences in path length.
filter. The feature that makes this approach
feasible is the speed with which the transform A26
can be computed. There will of course be a time
delay in both cases. Note that a sequency fil-
ter can differentiate between sal and cal. An -
RLC filter has no such capability.

3. Non-linear system analysis. V *V-
A non-linear system is often described by a

transfer characteristic as shown below. bV
output & --

d 1- i F r~l-

. •input UU

If analysis by sine-cosine input waves Is per- Thc composite waveform will be alterea on
formed, theý output will be distorted sine wave, the first and last period of the sine wave only.
expressable'as a fundamental and harmonics of a If illuminated by a Walsh wave, the effect of the
Fourier Series. If, however, a square wave is other target is seen during the entire period of
the input, the output will also 1,e a square wave the pulse. This seems to indicate superior reso-
at exactly the same sequency with d.c. bias. lution capability for the Walsh wave.
Now all that is left is to make something out
of that. 8. Information Content.

A sine wave has vanishingly little !rforma-
4. Spectroscopy. tion content. Give me four points without vio-
The two-beam interferometer spectrometer lating the sampling theorem and I'll give you

by means of an inverse Fourier Transform, re- other hand has the property that the more samples

constructing the spectrum. Interest in this you get, the more information you have about it.
technique is currently high because of the de- You may have to think about that for a while.
creasing cost and increasing speed of performing I know I did.
this transformation digitally. Interestingly
enough, the processing can be done by using a 9. Speech synthesis and analysis.
mask with transparent and opaque portions encoded Two of my grnduate students have used asar
so as to perform a Walsh (1ladamard) transform. Functions in connection with speech. The first
The result seems to be increased speed with no of these was a speech synthesis, redundancy-
loss of resolution.[41 removal effort conducted by Meltzer.[71 The

motivation was due to the fact that since hard-
5. Multiplexing. clipped speech is still recognizable, the infor-
The multiplication heorems of sine and cos- mation may be contained in the zero-crossings.

ine, applicable to amplitude modulation, yield The Haar Functions are extremely well suited to
upper and lover sidebands. This is not true in u zero-crossing context. Briefly, Meltzer's
the case of Walsh Functions. The multiplication results indicate that with sampling at 5kHz and
of wal(J,O) by wal(k,6) yields wal[((k),8J where a suhscquent Haa Transform, at least one half
again 0 stands for bit-by-bit addition modulo 2. of the coefficients may be eliminated without
So you might say a Walsh amplitude modulation loss of intelligibility on playback. It is
has a single, sometimes upper, sometimes lower tbeorizod that up to one half of the rema'nder
side-band. This feature leads to Walsh function may alse be removed, but the question is which
multiplexing which it most initeresting.[5] one-half It seems to vary depending upon the

sounds pr,.sent. Current investigation into
6. Radiation of Walsh waves.[I] analysis using Maar Functions is just etarting.
Perhaps the most important reason to be con- It is too soon to give results.

sidering the radiation of Walsh waves (electro-
magnetic or acoustic) is this: there is a differ- So what's next? As far as I'm concerned,
ence b.-tween a Walsh wave at sequency a, and the application of Walsh functions as well as

another Walsh wave transmitted at sequency a' but other square-ynve functions such a3 Haar func-
Doppler shifted to sequency a. The application tions is a waide-open field. As evidenced by tne

A of t1ls feacure should be apparent. broad subject list from the several Walsh
6 l



Function Workshops 161 the interest is becoming 10, 1968.
more general, and the applications more diverse.
I cannot say "What's next". I can only see a 4. Decker, J.A., and iflarwit, 4., "Pxperimental
lot of interesting times ahead for me, my grad- Operation of a Padamard Spectrometer," Ap-
uate ctudents, and, perhaps some of you. plied Ootics- vol. 3, no. 12, Dec. 1969.
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Abstract

This is a tutorial paper which deals with The..
the fundamental aspects of the transform prop-erties of Walsh functions. By appropriately Wal(m, t)-(R_(t))g (n-lt .(R()
sampling Walsh functions, it is shown that one (R1(t))g!

can generate a class of matrices which haveStranuform properties. These matrices are For example, when m=6=(llO)binary, its Gray

called Hadamard matrices. The name of the code is (10)binary, and hencc
corresponding transform Is the Welsh-Hadamard,
or Hadamrd trans form (WHT or HT). WaI(6, t)=(R3(t)) (P (t)).

The Walsh-Hadamard analysis resembles the The first set of eight Walsh functions with
Fourier harmonic analysis in both geometrical corresponding sine and cosine harmonics super-
and analytical charac(eristics. While the imposed on them is shown in Fig. 2. Unlike
Fourier bases are sinusoids with harmonic fre- slnusoidal functions, the interval between stc-
quencies, the Walsh..Hadamard bases are Walsh cessive zero crossings may not be the same for
functions. Since Walsh functions are square a given Walsh function. The term analogous to

;iaves, the coreespornding Hadamtrd matrices frequency is sequency, 1 1 which is based on the
consist of elements which are -1 and hence en- number of sign changes, g. Sequency is one
able relatively easy information processing in half zhe number of zero roasings per unit in-
several applications. terval (zero crossing at the left end only and

not at the right end is counted.). In terms
Introduction of sign changes, sequency, s, is defined as

Walsh functions 1 and their transforms 2 have 5 =(g+i)!2, g odd,

found rece�� 1 1 number of applications in di- sg/2, g eve,.
verse areas. Re -y.aposium on applications
of Walsh functions held annually is a testi- Waish functions can be further classified a6
mony to this. The object or this paper is to "sal" (sine-WALSH) or cal (cosir.e-WALSH) based
present a tutorial exposition on the transform on the odd or even symme*.ry of Val(m', t) at
properties of Walsh functions. t=l/2, i. e.,

Walsh F'uncs.ions Wal(2-l, t)-sal(m, t)
Wal(2m, t)-cal(m, t) (sequen-ym)

Walsh functions, which form a complete or-
thonormal set of reiticular waves, can -Discrete alsh Transform
fined several ways. ' The definition
adopted here is based on Rademacher functions, 7  Tha evolutinn of FFT (Fant Fourier Transform)
which form an incomplete orthonormal set, and and the digital computers have brought digital
Gray code. Rademacher functions, Rg(t) are signal and image processing and it;ital comun-
periodic rectangular pulses, with 2-1 cyclen ications into limelight. The discrete versiot,
on the unit interval and alternate between +1 of th2 Walsh transform is based on the sampled
and -1, with the exception of ROWt) which is a values of the Walsh functionp and the sampled
unit step function (Fig. 1). Walsh functions, data of the time series. The discrete Walsh
Wal(m, t) are developed as products of the transform1 4 of an N-periodic sampled data x(K),
Rademacher functions baaed or the Gray code, KaO,1,... ,U-l and n-logzN is given by
i. e., convert m to binkry. mm(bn b.ýI..b 2 bl)
binary, then the Gray -ode of m is . -.X~n) } AW(n,] . x(n)1, (1)
92 gl) binary, where where {•(n)1 is the ,N-dimensional data (column)
gnabn vector. {X(n)} is the N-dimensional Valsh trans-
g--jbn * bn- for (column) wcctor, &nd l;(n)) is the (2nx2n)Wlsh a.%trix. An NW ! is orthogonal and sy-
g 2 ab3 0 b2  metric, the inverse Walsh matrix i4

glub2 * bI
•=(n}-[wn) {x~)).(2)

where the symbol b denotes addition modulo 2.

7 j.-



The transform vector {X(n)) represents the se- {x(n)} = [(n)] ({x(n)), (5)
quency decomposition of {x(n)), whercas the DFT
(discrete Fourier transform) decomposes the da- where fpx(n)) is tne N-dimensional Hadamard
ta vector into its frequency components. transform (column) vector.

Hademard Transform Fist Hadamard Transform.

The rows of the Walsh matrix aan be rear- By factoring D1i(n)] into n sparse matrices,
ranged to obtain HP.!amard matrix4,lb which hap an efficient algorithm for fast computation of
a simple recursive structure, This rearrange- the transform can be developed.2, For ex-
iuent is based on the following simple rule: ample, [H(•).] can be factored as

Row of Walsh matrix, mz(bn bn.j...b 2 bl)binary, [H(3)] = [l(3)] [12(3)] [P3(T)l
Gray code of m is (gn gn-1..g2 , 1)binary

where

Row of Hadamard matrix, l=(g g 2 ... g, gn•bi- I F
nary, which is the 'rit reversal of t e Griy
code of m. For example let mm2n(OlO)binary, If-- T
Gray code of 2 is (Oll)binary whose bit rever- [dl(3)] = I -i1
cal is (llO)binary=6. For N=8, the Walsh ma- - I "n
trix based on the sampled data of the Walsh liYr
functions, and the corresponding Hadamard ma-

trix are,

Sampled data of Row of Number of

Walsh function [H(3)) ] ign changes Sequency

Wal(O, t) F1 1 1 1  1  1 1 7 0 0 0
Wal(l, t) - sal(l, t) 1 1 1 1-1-1 --1-i 4 1 1
wal(2, t) - cal(l, t) 1 1-l-1-1-1 1 1 6 - 1
Wal(3, t) = se.(2, t) 1 1 -1 -1 1 1 -1 -1 2 3 3.

Wal(, 0t) cal(2, t) [W(3)]- 1 -1 -1 1 1- -1 1 3 4 2
Wal(5, t)c -al(3,t) 0 ] 1-1- 1 -1 1 1-1 7 5 3
Wal(6, t) = cal(3, t) 1 -i 1 -1 -1 1 -1 1 5 6 3
Wal(7, t)0 sal(, t) L- 1  1I 1-1 1-1 1 7

and - - Row of Number of
[W(3)J si&n changes Sequency

Wl8(0, t) 1 1 1 1 i 1 i 0 0 0
Wal(T, t) 1l-1l-1 1--1 -_ 7 7
Wa&,13, t) 111 1 1 1 -1 -1 H 3 2wal(4, t) [(H)1- 1 -1 --1 : 1-1 -1 1 4 2
Wal(l, t) 1 1 1 -1 -1 -ii 1 1 1
wal(6, t) l-l -l -1 6 6 33
Wal(2, t) 51 1 1 2 2 12
W&l(5, fl I -1 -I 1 -1 1 1 -1I 5 5 3

"H-hdarard matrix of any order c&4% be generated I
recursively frem ["12-12L j[H12)(3)1]. . .

[(o()] = 1, and

a -, ad L12J
. [ )N 30)] 4 (6)

The signal flow graph based on (6) is shown in

where [H(1)] j I- and the symbol ®denotes Fig. 3. The fast al;orithm requires about N

Kronecker product. Hadmard matrix is both sym- lor2N arithmetic operations (Iladamard transform

metric and orthogonal, i. 4,.. 9H(n)] [H(M01 n involves additions and substractions only as

NIM, where ;H is the (N x N) Identity matrix, all the elements in •he transform matrix are +1
Thre Padanard transform (HT) of {x(n)} and its or -1) compared to N required by the direct
inverse are resnectively deIn-d as, 24 methord. Factoring of transform matrix of any

order and developing the corresponding flow

%Wx(n)} - (11(n)] {•n)}, (1) graobh is strai6htfcrward.

and



p n.I Sequency
'ower Srectrum En nxcK 2 .

, , K=2n . -Q'

The power spectrum invariant to the cyclic
shift of the sampled data can b• developed An in:.:,ectton or (1i) shows thut the Hadsmard
using the shift -vitrix. If .x 1 W(n)} is {x(n)) power 4.cctral points do not represent inai',id..
shifte zyelclally to the left; by Z olaces and ual sequencias but groups of 3eauencies. 13ut
if (jvj t(T)} is the HT of th,! shifted sequence this grouping is not arbitrary, but is based onN t(he(Tn)o, then the half-wave symmetry structure, i. e., each

group contains a fundamental end ali the oddS(Dx(')(n)} [il(n)] {x(4)(O)} narmonics relative to that f'undamental.

(11(n)] [M()(,))] x(,,)} (7) Modified Hadamard Tranu:frrm

[11(n)] [(M (n)] (11(n)] {Bx(n)) The HT power spectrum (11) can be conouted
direcjýy using the modified }!adamard transform

where (M (n)] is IN whose coluumis arc shifted (WIT). The MHT of (x(n)) and its inverse are
to the right cyclically by Z places. The trans- respeclively defined as,

forms of the shifted and the orig.aal -e~u1 nces (are related through the shift matrix, [SU](n)], {_F(n)l [DWI(n) x(n)}, (12)

and(_Bx(l)(-.O} = [s( W)(n)] Oxn} 8 n
M ( (x(n)) = (0(n)] {_(n)), (13)

where [.') (n)] = , (11(n)] (N (n)j {H(n)) re-
presents the similarity transformation. where {F(n)) is the :l-dimensional AHT (column)

vector. 'he transform matrix [D(n)] is ortho-
The shift ,natrix has block dia.,on-.l ortho- gI'nal and can be g(P'ndted recursively as fol-

normal structure. For 'I = 8, and £ = 1, the lCws:

shift matrix becomes [D( r [D(K (lb)

"L- = - . . /- - K= 0,1,
,0 -2K/

10-1-' 2: •I r•, ,_KI 2d,...

with [D(0)] = 1. For 11 8, the transform ma-

(9) trix is,

where each of the block diagonal matrices is [i-i 1 -i I 1 -l 1 -
orthonormal. This is the key to the invariince 5 0 -/2 0 1/2 0 - /2 0of the power spectrmi to the periodic shift of [(3)] -- /2- 0 -r2 0 Vý 0 - r] 4151)
tne time series. Also the nower spectrum for L -

U1=8 is as follows: 2 14 -2 I4

Sequenc and the flow .iraph for fast comupu'ation of
P - B 2(0) 0 (F(3)} is shown in Fig. 4. As in the case ofHT, the flow graph is based on factoring [D(3)]

P1  Bx 2(1) 4 into sparse matrices i. e.,
2o0)

P2 = Bx2(2) + ;x2(3) 2 [D(3)] = (DI(3)j [D2(3)] [D3(3)]

P3 t Bx1(K). 1,3 whe-e
3K=Is

In general for any N 2 n, the power spectrum F 1
Rnd its aequency composition is as follows: -l

2 amun-Cy [D.1(3)] r212

o B 2 (l) (16)..
1 x 212 2122-l ;' (n) I

B 21 2(K) (D2(3)] I2 K!22-a 4 F2--1211
31 2 14

p 2 T- 3B)I and

3 K=23-1 x 

D3j(3) I = I 4 4
10



The MHT rtquires .ucn less nu.noer of ,rithmetic nZ-l
operations compared to HT, because of the <vZ, U9> 1v(m) ut(n), t 1, 2.
sparseness in [D(n)] and consequent increased '
sparseness in its factors. Ccroar'son of Fig-
ures 3 and 4 yeles the following relationships The terms v.(m) and u (m) are the binary re-
between the BT and MBT coefficients: presentations of vZ and ut respectively, i. e.

B,(O) = F(O), Bx(l) = F(l), (Vl)decima! = (vl'(n-'1) vl(n 1 -2)...

fBx(2) F(2)') vl(l) v,(0))bin~ry.

Ek.(3 3) F(3)) , The inverse transform of (20) isSN-i :2-1 <11, v>

and (17) x(v1, 2 E=O0 u =0 Bx(Ul, u2), (-I) ) I

B X(4j .(4)) Conclusions

X(5) F(5)(= J 1%A tutoriel exposition on Walsh functions and

iB,(6) F(6) their trar~sforms is presented. The transform
analysis based on Walsh functions amounts to

IBx(7)) F(7)J sequency decomposition of a signal or Image
unlike frequency decomposition in the case of

From (10) and (17) it is clear that the BT Fourier transform. As only add~tions and sub-
power spectrum can also be expressed as, tractions are involved in evalua,,ng the Hada-

mard transform, savings in executixn time and
P0 = B,2 (0) = F2 (0) memory requirpments of the digita) computer

can be gained compared to DF'. '.owever, the

P1 = Bx() = F2 (1) HT Dower spectral pcints repre'.ent groups of
S(18) sequencies unlike the indiviuual frequency

S2 ' K=2 Bx2(K) = K!2 F2 (K) representation in the case of DFP.
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Walsh Functions in Image Processin- and Two-Dimensional Filtering

William K. Pratt
Department of Electrical Engineering
University of Southern California

Los Angeles, California

.ahich is the basis for color television sys-
INTRODUCTION tems and photographic processes, the color

image is described at each coordinate pointThe role of Walsh Functions in imaage by three arrays f R(x, y), f G(x, y), f B(x,y)

Processing and Two Dimensional Filter- R G y

ing has been, appropriately enough, binary. that specify the red, green, and blue tris-

Walsh Functions have found useful appli- timulus values of an image point. The

cation for image coding, image e:nhance- tristimulus values designate the amounts of

ment pattern recognition, and general two red, green, and blue primary lights that are

dimensional filtering [1,4 ]. In addition, required to provide a colorimetric match of

the introduction of Walsh functions to these a color by a dnsplay system.

applications has fostered new concepts of
generalized spectral analysis and signal Image Processing Systems

representation. Furthermore, research
on Walsh functions has led to a better Figure I a contains a block diagram of

understanding of images and their struc- a general image processing system based

ture than was previously available from upon the processing of the image intensity.

purely sine wave analysis. Many researchers have suggested that
the logarithm of the intensity, which is

Digital Images proportional to photographic density, should
be processed or coded in a system, such

Before embarking on the subject of as shown in figure lb, rather than the image
Walsh function image processing, it will intensity [4 1. The rationale behind this
be fruitful to present some background on suggestion, indicated in figure Ic, is that
digital image processing. the human eye responds logarithmically to

intensity, and actually is a linear system to
imag, Representation logarithmic changes in brightness. The

performance of the image -density" pro-
A digital monochrome image, denoted cessor has been found to be superior to

as f(x, )r), is defined here as an array the image "intensity" processor in many
(assumed square of dimension N by N for applications. However, it should be
simplicity) of samples of a continuous two remembered that both systems are predicated AS
dimensional intensity pattern of light, upon an ideal sensor intensity response and
Each picture element (pixel) of f(x, y) is an ideal image intensity display. If the
assumed to be limited in amplitude to A sensor or display responds nonlinearly,
units and linearly quantized to L levels extreme in:.,ge degradation may occur.
where L is usually a binary number, i. e. Most physical image sensors and displays

L=2 with aan integer. Since f(x, y) repre- are inherently nonlinear in intensity, and
sent3 samnples of light intensity, the image it is necessary to compensate for the non-

"array must be positive. It can be further linearity either electrically or photographi-
argued that every intensity pattern contains cally if precision image processing is fo R
at least a few quanta of light. Hence, it be performed.
will be assumed that

Sampling and Quantization
0 <f (x, y) 2A

In the analysis of P digital image pro-
In the past few years there has been an cessing system, consideration should be

expanding activity in the processing of given to the effects of sampling and quanti-
digital color imagery. The discussion here zation. The two dimensional sampling may
will be limited to a consideration of digital not necessarily be performed at a suffi-
color images represented by the three dient rate to satisfy the two dimensional
primary color systems. In this system, sampling theorem. The implications of

processing an under or over sampled image
*This research \%as supported by the Advanced Research Projects Agency of the Defense awid was
monitored by the Air F-:ce Eastern Test Range under Contract No. F08606-72-C-0008.
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SENSOR PROCESSOR DISPLAY

(a) image intensity processorItIMAGE LG- IMAGEIMG
SENSOR PROCESSOR DISPLAY

(b) image deasity processor

IINITERCTIONTO BRAIN

CONES (c) eye model

Figure 1. Image processing systems

are indeed serious, and can cloud the ex- levels may be required for a high quality
pected processing results. If the image is mechanical or flying spot scanner display.
under sampled, spurious low spatial fre- These limits assume a linear quantization
quenc y components may be unintentionally of the image intensity.
introduced. On the other hand, an over
sampled image contains redundant samples Performance Measures
which unnecessarily increase the compu-
ational load. Also, it should be realized In the development of image processing
that quantization introduces a non-recover- systems i" is highly useful, and often nece-
able error in the specification of the amp- ssary, to have some quantitative perform-
litude of each *mage sample. The number ance measures. The search for a quanti-
of quantization levels required to maintain tative measure of image quality has been
the quantization error below the subjective long, and unfortuately, not particulary
threshold of noticeability is strongly dcpen- fruitful. For monochrome imagery because
dent upon the characteristics of the image of its simplicity, most researchers have
sensor and display. It is obviously not utilized the mean square erro;, between
worthwhile to quantize too finely if the inage an original image f(x, y) and a processed
sensor is noisy or if the image display is image f(x, y) as defined by
incapable of rendering only a few grey shades.
While the eye is only capable of the absolute
discrimination of 10 to 15 shades of grey, it N
can detect the relative brightness between e-- .1 (f(x,y)..F(x,y) (2))
two grey sh-ides with much greater sensi- N X =0 y=0
tivity. The effect of too few quantization
levels is usually first noticed as gr-y scale
contouring over regions of gradual shading. where the overbar indicates a statistical
lenerally speaking, 64 quantization lev,.ls overage. It has been suggested that the

re sufficient for television broadcast basic mean square error expression can be

quality displays. Up to 256 quantization improved by taking into consideration the
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impulse response h(x, y) of the human eye is the image amplitude probability distri-
[5) . The resultant error is given by bution.

N-i N-I
e= " E E [,'(x, y)*h(x, y)-?(x, y)*h(:, y) 3 Image Transformation

x=O y=O (3)
The two dimensionzl Hadamard trans-

where * indicates a sgatial convolution. It form F(u, v) of an imrage function f(x, y) can

is possible to extend both of these image be written in series form as

error measures to each of the tristimulhs N-1 N-I q(x y. u. v)
arrays of a color image. Neither the b(u, v)•=• x'- ' fýx')(- )A-uv
ordinary nor spatial freuency weighted y=0 (5)
mean square error expression has proven
to be completely adequate m.-asure of where q(x, y, u, v) is defined in [13. It is
monochrome or color image quality; much often more convenient to express the trans-
more research eifort is needed in this area. formation in matrix notation as

For image coding it is necessary to mea- [F) [HN [f)[HN (6)
sure the redundancy reduction or band- N

width compression obtained by a coding where [H I is an Nth order real, sym-
process as well as specify any possible Nrretric, and normalized Hadamard matrix
degradation in image quality. The speci- whose rows arc Walsh functions. The
fication of image coding performance should Hadamard matrix [H ]may be obtained by
be a relatively simple matter, but seems the construction
to be a subject of much confusion in the 111
literature. There are two "compression [HZ -I

factors" that are often stated as image Aý
coding performance measures: HN H N/N

sample number of original image N 2  HN/ZJ
reduction = samples
factor number of Loded image samples where the matrix [P I is a permutation

matr: that orders the sequencies of the
bit number of original image code Walsn functions. The computation indicated
reduction bits by equation (6) is simply a one dimensional
factor number of coded image code Hadamard transform of each row of the image

bits array and a one dimensional transform of

each column of the resultant sei ui-trans-
The sample and bit reduction factors are formed array. If the image array is too
identical if the same number of bits are large to be stored in the computer then it
assigned to each sample. Both measures, can be placed in a secondary sequential
however, can be misleading since they do storage unit (magnetic tape or disL.) and
not indicate the "information" content of brought to the computer a line at a time.
the original image. A high compression The computation then proceeds as follows:
factor can often be obtained if the ori-
ginal image is over-sampled and over [FI] [f][ I - row transform
quantized. The information content of an I N

image can, in theory, be measured by the [F j= I ? T - matrix transpose
entropy of the image source. But, in 2 

71

general, the computation is difficult. An [F3] F2 [1N4 row transform

estimate of the total source entropy can be F2  N

obtained Ly performing a grey scale histo- I= [F I matrix transpose
gram of the image and computing- the first
order entropy as given by The last matrix transposition usually can
H y L be ignored since it is immaterial whether j

H H[f(xy)= - l(k)I og1Pl(k)] (4) o.-' transforms the original image, or its
k=l transpose. The first matrix transposition

can be performed efficiently by the algori-

•-' where thin described in reference [63.

p (k) P f(x ,y) k Figure 2 contains photographs of two ori-
JI r ginal images and magnitude displays of theel
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Hadamard transforms. The images contain
256 by 256 pixels and 64 grey levels.

Image Coding

The Hadamard transform has received
much attention for its use in image coding
applications to reduce channel bandwidth.
By itself, the transformation does not reduce

S....... :hannel capacity requirements because the
ransformation is information preserving.(a) Original girl " . . . ....

it u,,", that is, the entropy of the image and the
b,•t(_ý "'t;L.UL ntropy of the trantform of the image are

identical. A reduction in the channel coding
requirements, however, can be obtained for
natural images, at the expense of some aver-
age distortion, by efficiently coding the
Hadamard transform domain coefxicients
for transmission. It is important to remem-
ber that the transform domain coding process
will usually introduce some average distor-

tVon, and that there is no effective means of
limiting the pek distortion. Thus, applic-
ation ox transform coding is often limited to
image transmiasion systems for human
viewing.

(b) Hadamprd display of girl In the transform coding process a twodimensional Hadamard tre.nsform is taken

over the full size image or some smaller
segment called a block. Next each trans-
form coefficient is quantized and coded. At
the receiver, after decoding, an inverse

transform is taken to reconstruct the image.
Two basic methoda of transform domain
image coding have been applied. The first,
calledi zonal coding, entails the establish-
ment of zones in the transform domain. In
each -one every coefficient is then quantized,
usually according to some nonlinear amp-
Hitude scale, and assigned a code group. A
more efficient variant of zonal coding is to

assign an average code length to each zone
and use variable length Huffman coding of

~~~~~c Origign tankae oelng] oeahzn

(c) Original tank the quantized samples. In either case, the
bit assignment is based upon the assumed
variance of the transform domain samples.
A convenient algorithm, based upon results
of rate distortion theory, is to select the -A

number of bits accoraing to the relation

NB(u,v) In [aF (u,v) I- ln (D) (7)
B

where a (u, v) is the variance of a transform
domain coefficient and D is proportion,'l to
the mean square error of the coding proeess.

Figure 3 illustrates a typical assignment
of code bits for image coding in 16 by 16
nixel blocks. The performance of the traiq-

(d) Hadamard display of tank form zonal coding system can be specified
in terms of the mean square error betweonFigure 2. _-rlglnal Images and transforms
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the original image and the reconstructed Figure 4 contains a plot of mean square error

image for a statistical class of images. as a function of block size for several image
transforms. This p)ot was obtained for an
image statistically described by a Markov
process. In the coding process the trans-
form coefficients are ranked according to

A 4 A A PA AR A a A A A A K % their variance. The Z5%with the largest
4 A N 4 4 4 4 2 0 2 2 2 2 P P variance are coded with 6 bits each and the
6 44 29 •• 2 2 2 ; *2 2 p o remainder are discarded. Thus, the coding
Rd 3 2 9 224 1 AA 0 01 requires an average of 1.5 bits/pixel. From

2 4 9? V V ' 0 1 A P the diagram it is seen that the Hadamard
4d 9 2 01A P 0 h 'A 01t ~Pn

S4 2 2 P transform compares favorabl-. with the other
A 4 P 2 P 0 0 0 0 a 0 A 9 a 0 transforms, which are more complicated to
4 2 2 0 0 0 % MA a 0a implement, and provides a coding of less
i 2 2 ' 9 C 0 ra 4 q 14 01 9 P p 01 than 1% mean square error for reasonably
S9 0 k 'A (A C- (A 'A P 'A small block sizes.

*A V 2 0 A P (' A V it 9 * 0 It
The second type of Walsh domain coding,

;A V 1 0 P 0 Ppcalled threshold coding, is based upon the
91 ' 1 4 . V , 1 - V, . ' A 9 p A 1 establishment of a magnitude thresbold. If

the Walsh coefficient is greater than the
threshold it is quantized and coded, other-
wise it is discarded. It is necessary, of

Figure 3. Typical bit assignments for course, to code the location of the signi-

transform coefficients ficant coefficients as well as their ampli-
S.........- tude. The performance of the threshold

coder is somewhat better than that of the
zonal coder, but is more difficult to imple-
ment. Figure 5 contains reconstructions

5% - \ MAXMUM VARIANCE
ZONAL FILTER
4:1 SAMPLE REDUCTION

4%

X* . .95

:~Y ¥- .95

S 3%
.3.

0
(a) Zonal coding 1.5 btits/pixel

<Z2% ,•
4 rFOuRIF' TRANSFORM
w

P- T R ANTS FO R M

n NS

HADAMAPD TRANSFOR

K-L TRANSFORM
(o,"eI. cotil. - .95)

SLANT TRAIUSFORM

0 kt 4,4 8 646 32&32.6464 t 256.256
6LOCK VALUE 128si1?

(b) Threshold coding I. 5 bits/pixel

Figure 4. Mean square error verformance Figure 5. Examples of Hadamard
of Image transforms monochrome image coding.
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of images coded with 1. 5 bits/pixel for the Two Dimensional Filtering
zonal and threshold coding processes.

The initial concept of two dimensional
The concept of two dimensional trans- Walsh function filtering to be developed here

forms coding has been extended to color is very broad and generalized. Basically,
imagery. In this process the red, green, the Walsh functions are used to perform a
and blue tristimulus signals are linearly spectral decomposition of the image into a
converted to the Y I Q color coordinate domain that facilitates the linear or non-
system where the Y signal represents the linear processii.g operations. The two
image luminah.ce and the I and Q signals dimensional filtering steps are indicated
jointly provide the hue and saturation infor- below:
mation of a color. Figure 6 contains photo-
graphs of the I and Q color planes of a f(x, y)---F(u, vt-.F(u, v)--f{x y)
typical color image. The Y plarn is shown transform filter tran'sform
in figure Ia. It is seen that the 10, planes process

do not contain many high spatial frequencies, Linearity or nonlinearity of a filtering pro-
and hence can be subjected to a high degree cess is defined here by the operations
of zonal coding without significant im-air- performed ,mn the Walsh domain component3,
ment. In a series of experiments it was not on the spatial domain elements prior to
found that the Y signal could be transform the forward transformation or after the
coded with an average of 3. 0 bits/pixel aitd inverse transformation.
that the I and Q signals only required an
average of 0.375 bits/pixel each for a Linear filtering. In its most general form
total of 3. 5 bits /pixel. linear filtering may be defined as a linear

combination of all of the image transform
domain components to produce a modified
transform domain as defined by

N-I N-1

F(u'v)=E E F(u',v')G(u,u',v,v') (8)

u'=O v'=0

where G(u, u', v,v') is the filter weighting
function. If the filter weighting function is
separable

G(u, u', v, v') =G u(U, u')Gv (V, V') (9)

then the filtering cl..ation can be performed
(a) I as sequential operations on the rows and

columns of the image transform. In this
case it is convenient to switch to the matrix
representation of the filtering operation.

[?[ u I[F (I[GJ1 (10)

If the fP ter matrices 0G Ior CG IareU V.

diagonal, then the filtering operation reduces
to an individual weighting of the image seq-
uency components. In general the optimum A
filter for a particular application is not
diagonal since the sequency components are
correlated.

Nonlinear filtering In the definition of
(b) Q nonlinear Walsh domain filtering the only

Figure 6. I and Q tristimulus planes of restriction that applies is that the filtering
a color image. operation must perform a mapp;ng of F(u, v)

into an array F(u, v) of the same dimension.

To date, the only nonlinear filtering functions
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that have received much attention are the of great importance to note that the minimum

logarthmic mean square error obtained with Hadamard
transform filtering is the same as could he

F(u, v)=F(u, vOlom I F(u, v)J obtained with the Fourier or Karhunen-

F(u, v) (11) Loeve transforms or any other unitary trans-
formation. The potential advantage of using the

and power law the Hadamard transform is the reduced amount
of computation required as compared to many

7(u, v)=: Fu, v) F(u, v) other transforms. Figure 7 contains displays
-F(u-v-)F (12) of a Markov process covariance matrix for

a vector length of sixteen and the corres-
functions where ais a constant. The log- ponding optimum Hadamard Wiener filter
arthmic Walsh filtering operation is sim- matrix. It is possible to reduce the corn-
ilar to the cepstrum operation associated putational requirements even further by
with the Fourier transform, taking advantage of the character of the

filter matrices. In many applications it
Image Restoration and Enhancement will be found that the optimum filter matrices

contain many near zero elements. If a
Image restoration has commonly been filter element is very small it can simply be

defined as the reconstruction of an image discarded from the computation. It has
back to its original form as closely as been found that up to 90% of the filtering
possible. Typical restoration applications multiplications can be avoided in this manner
include correction for defocus and image with only a slight increase in error for
motion blur, geometric distoration corn- many applications.
pcnsation, and noise filtering. Image
enhancement entails operations that
improve the appearance of an image to a
human viewer. Several examples of the
application of Walsh functions to image
restoration and enhancement arc given
below.

Noise reduction a frequently encountered
image processing problem is the reduction
of the visual effects of image noise generated
by the sensor, processing system, or display.

Consider a "noisy'" image, f(x, y), composed
of additive signal, s(x, y), and noise, n(x, y),
components.

I(x, y)--z(x, y)+n(x, y) (13)

T' e optimum filter to minimize the mean Figure 7. Display of Hadamard Wiener
square error between the signal image filter for N=16 and Markov
s(x, y) and Lne filtered image f(x, y) is process signal with R=0. 9
obtained from an extension of classical
Wiene. filter theory [71 • For the special, Figure 8 shows an example of Walsh
but practical, case of the signal and noise domain Wiener filtering.
uncorrelated ,vith each oLher, and separate
processing of the rows and columns of the Inverse filtering. In many imaging systems
image, the optimum filter matrices are an observable image can be considered as
found to be the output of a linear, shift invariant two

"dimensional system with an impulse response
[G J [H ] LC xC + C - LH) (14) h (x, y) that mod Is the degrading mechanism

pn. o? the imaging system. Thuu, the degraded

[G0 t [H IC 1 C) [H3 (15) image is given by

where [C .1, [C ) [ , •C 1 are fd(x, y)=f(x, y)*h(X, y) (16)
the covariance ma 'ices othe ele entv
along the rows and columns of the signal By thes 4nvolution theorem of Fourier
and noise arrays, respectively. It is also transform theory

Af)
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of the zeros of1dýU, v) and amplication
of high frequency image noise. An exact
analog of Fourier inverse filtering does
not exist for Walsh function because of the
lack of an equivalent "Walsh convolution

theorem" as represented by eqs (16) and (17).
It is possible, however, to achieve some
improvement in image quality by a form
of Walsh domain inverse filtering in which
the magntitude of the Fourier inverse filter

is used as an inverse filter for the Walsh
spectrum of an image. Reference 8 gives
an example o! Walsh domain inverse filter-

(a) Tank plus noise ing.

Summary

When evaluating the usefulness of Walsh

functions for image processing, one is
led to the question: Do Walsh functions
possess any properties inherently useful
for image processing? The answer is
equivocal. Walsh functions do not chara-

cterize an image particulary well; they do
not "resemble" typical image lines. Fr'nm
this standpoint there is no reason to preier

"Walsh functions overy any other functions
with a property of spectral decomposition.

(b) Hadamard Wiener filtering The major potential advantage of Walsh
functions in image processing is their
relatively simple computability. This is a
major factor of consideration for the pro-
cessing of pictures with millions of elements.

The future role of Walsh functions in
image processing is uncertain to this
observer. In image coding Hadamard
transform coders may find practical use
in specialized applications in which a small
amound of image degradation is permitted,
but the coder must be relatively simple.

For the computer processing of images
for restoration purposes, the Walsh functions

(c) Selective computation Hadamard hold promise. But, as mentioned earlier,
Wiener filtering perhaps the greatest benefit to the field

Figure 8. Example of Walsh domain Wiener of image processing to be derived from
filtering the introduction of Wa-ilsh functions is that

they have stimulated research into new

'd(u' v)='vu, Vd(u, v) (17) concepts of generalized spectral analysis, |
and have brought into deeper consideration

where the script letters indicate the two the comprises of processing performance 41
dimensional Fourier transforms of the and computation requirements.
degraded image, original image, and
imaging system transier function, respecti- References
vely. If the Fourier spectrum is multiplied
point by p.-int with the transfer function 1. W. K. Pratt, H. C. Andrews, and J. Kane,

the result ia the original image "Hadamard Transform Image Coding,"
Fourier spectrum, which can be inverse Proc. IEEE, Vol. 57, No. 1, January,
Fourier transformed to obtain the original 1969, pp. 58-68.
image. This process of inverse Fourier image
reconstruction is exact in theory, but often
fails in practice because of the inversion
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ALL YOU ALWAYS WANTED TO KNOW
ABOUT ELECTROMAGNETIC WALSH WAVES

Henning ". Harmuth*
Department cf Electrical Engineering
The Catholic University 3f America

Washington, D.C. 20017

Abstract

Electromagnetic waves used in communi-
cations are predominantly sinusoidal waves. ab
This should not lead one to believe that sinu-
soidal waves are the only possible or useful | ""
ones. It is shown how an optical sp.-ctrometer s V-.t .- 'A --

would have to be constructed to decompose '4" ,
light into Walsh functions, that tuch a spect- - l-' -
¢ometer would yield more in!ormation than -
the usual spectrometer showing the frequency
power spectrum, but that extremely fast time
variable shutters would be needed for its r a
implementation. Electromagnetic Waish
waves of interest in ccmmunications, on the
other hand, require switches with transient Xd sna first sOaum. X. 2d;ina first mnmurn

times of about I nanosecond, which is within
the state of the art. Antennas, generated Figure 1. Lineaý', time invariant diffraction
field strengths, quadrepole radiation, az .rating with ixed light source and movable
interference effect and the Doppler effect are detecter (a), and with fixed detecter and
discussed in a nonmathematica- way. movable light source (b).

INTRODUCTION Figure Ia shows a diffraction grating
with eight transparent slots at a d':stance d.It is frequently believed that an electroý- A ,qie:usoidal wave with wavelength coming

magnetic wave moist have an electric and frort the left produces eight spherical waves
magnetic field strength that vary with time on the right side of the grating. The waves
like a sinusoidal function. Actually the gener- add up for the angle a = 0, they cancel to
ation of sinusoidal waves is a considerable yield a first minimum for sine -/.d , they
technological feat. Heinrich Hertz pever add again to yield the first maximum for
succeeded ;n producing anything close to a sine aL: Xd, and so forth.
sinusoidal wave. His experiments with wave
propagation were done with what we would If a sum of sinusoidal waves
call colored noise today. The generation of TEi sin (2 IT c t/Ai + pi) is received from
reasonably sinusoidal waves was a vexing the left one obtains minima and maxima for
problem for some twenty years following each wave. This means that the incident
Hertz's experiments, and it was not solved light signal is decomposed into sinusoidal
satisfactorily until the invention of the elec- functions. Since we know from Fourier
tronic tube. Anybody working with fast analysis that almost any signal can be decom-
switching circoits knows that the problem is posed into sinusoidal functions, the pattern
not how to produce notrsinusoidal waves but of minima and maxima produced by the
how not to produce them. Increed we cannot diffraction grating will prove to us that this
cwitch &n electric lamp on or off without device has the necessary features to actually
generating nonsinusoidal waves, perform such a decomposition. In other

words, the diffraction pattern proves that
Visible light is a form of electromagnetic the diffraction grating is a linear, time

waves for which the sinusoidal time variation invariant device. One will suspect that a
is often believed to have been proved by inter- time variable diffraction grating will decom-
ference experiments. This is not so. Let us pose light into some other system of functions.
investigate in some detail what interference DECOMPOSITION OF LIGHT
experiments prove. INTO WALSH FUNCTIONS

SThe author wants to thank the International Figure lb shows a modification of the
Telephone and Telegraph Corporation, Electro- diffraction grating of Figure Ia. The detector
Physics Laboratories for the financial support observes the light emitted vertically to the IA
cf his work. grating while the light source is moved to
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provide angles of incidence from a 0 to could be implemented and let us find the rule
a = 900. In Figure la, on the other hand, for their opeation.
the detecter has to be moved while the light
source is fixed,

so1(4.J/T) sa1(3,t/I)

is lS 53 1 I

V- --- -r- 3-J-I - -I L I I-L-.F.-I-r

SS2

SS3 J5, -r, , ,

IS4 s6 '' ' '

IS6 $8 ' ' '' ' ' ''S d

, l I

3 .B112 a V-12 -1/2 .. .- 1/2

c1 =(2 -1)d s n alnb

a bi

Figure 3. Operation of the shutters SI to
Figure 2. Linear, time variable diffraction S8 for passage of the waves sal(4, t T) and
grating with fixed detector. The time varia- sal(3, t/T); black: shuder closed, white:
tion is provided by on-off shutters SI to S8. shutter open. The amplitude samples shownby a heavy line illustrate the delay betweenY

Figure 2 shows how the diffraction grating the eight waves. :t
of Figure lb his to be changed to decompose
light into Walsh waves. The Walsh functions Figure 3 shows the operation of the
have the parameters time base T and se- shutters SI to S8 to permit a Walsh wave
quency whi,7:h are significant for our sal(4, t/T) to pass. The lines f to 8 show
purpose, while nly the frequency or wave- the function represented by samples withlength was irrhporta... for sinusoidal functions. time shifts 0, T/8, 2T/8,... 7T!8. These

The tir, ase is determined by choosing the time shifts correspond to the arrival of such
angle of incidence a. If the diffraction a wave at the eight transparent slots in
grating has eof.Z .slots with distance d one Figure 2. The shutters SI to f8 are openhas to choo-. a• according to the formula (white) or closed (black) as shown. One may

see that there are always four positive
(1) samples of the Walsh wave that are super-e

imposed by the properly opened shutters
where c is the velocity of light. In the while the negative samples are blocked. One
general case of t n slots one has to substitute may readily see that the opening of the shutterS.2n-l for 7. SI coincides with the four positive samples of .7i

sal(4, tgT) in Figure 3a and with those ofraf
The Walsh functions sal(i,t/T) and sal(3, t/T) in Figure 3b. The opening times

calvi, tdT) with time base T but various of the shutters S2 to 88 are obtained from
norm~alized sequences i are separated by a cyclical shift of the opening times of the .
making the transparent slots of the diffrac- shutter S1.I tion grating time variable. In the case of the
Walsh functions this time variation is pro- Figure 4a shows the shutters operated

vided by on-off shutters SI to S8 that are for passage of sal(3, t/T) but the function

either open or closed. For other systems sal(4, t/T) is applied. Two positive and two
of functions one would generally need a more negative samples are passed through the
complicated form of time variation. Let us diffraction grating at any time and their sum
ignore for the moment how such shutters yields zero. Figure 4b shows the shutters
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in heavy line are passed all the others cancel
by interference. Note that the constant function

Sol (0/1/) sol(3.R/l) wal(O, 0) - wal(O, t/T) ;is always passed in
-I- ---- LL-L-TJ - addition t-j the desired function. A shor'

S1 - reflection of Figure I shows that the same
r " -J- .L T.____J_ holds true for a time invariant diffraction

grating - out there is no light wave with
3 .L__.. I .-I- I I I frequency or sequen( y zero

53 To obtain an estimate for the operating
4 i - -' T - - - -- -L t - times of the shutters let us reflect that the
$4 frequency of visible light lies between 4xl1014

and 8xl014 Hz. This calls for switching times
5 _L t L in tie oorder of 10- 16s or less to permit the

-1 1 L use of the sampled amaplitude representation
6 -I--L-I- of Walsh functions as shown in Figures 3 to

S6 5. One (annot rule out that this will eventally
7 I 1.I I J----L be possible but presently known effects for the

Simplementation of shutters, such as the Kerr

8 Leffect, are some 5 to 6 orders of magnitude
..8 _..T-_ L _ . slower. An obvious advantage of time variable

S8 spectrometers would be that they would not only
9 . show the relative pcwer of different spectral

1/2 0 I- 1/2 1/2 0 t -1/2 lines but also uncover a relationship between
Sb the times of emission.

WALSH SHAPED RADIO WAVES
Figure 4. (a) Shutters SI to S8 operating to
pass sal(3, t/T) block sal(4, t/T. (b) Shutters Having shown that electromagnetic waves
operating to pass sal(4, t/T) block sal(3, t/T). are not necessarily sinusoidal the engineer is

faced with the task of showing that something

operated for passage of sal(4, t/T) but useful can be done with nonsinusoidal waves.

sal(3, t/T) is applied. Again the waves cancel So far the investigation of nonsinusoidal

at all times. electromagnetic waves has been restricted
essentially to Walsh woves. Four basic
differences between ,Vaish and sinusoidal

wIo~lw.09},i,,.ea , i,,,, LU t LJa t.xa functions have been found that might be

sol0 .)0-4, -U _r,• r -I• .- turned into useful applicatior.s:,
cOt(2

8
)L rr I I L I - - r L Ly'-L Lf..LL,. a) The techn,,logy fo." the implementation of

SQOI( ) '1-1 i-'-rJ r-1 L H-Y t J r-1 , r 1 1 r-7- r - t rj equipment is diifeent.
Co0(3W) ra-i r, r 1 

1  
r-L, r- -r-L r---i r-I T I I r I,

eO(I)4B,) L7t I I t F
1 

t~ ' ,Lv.Ll . -L .LA.. L. 7 .1 7 7.- ,S1 - b) The differentiation of a sinusoidal function
yields the samc function except for a changed
amplitude and phase, while the differentiation a

S8 of a Walsh function yields a lifferently shaped
function.

S1o~lr ,, .r .IJ- i*1J c) The sum of several sinusoidal functions
Sa 41 L-o 1 I I I i-r" i I Il i| T, I 1 1-1 L I I with arbit rary amplitudes and phas s but equal

-1(2 7) .. . I I . . L T I I I I J , frequency yields a sinusoidal func tion with
Sal L L38JI A , I r , the same frequency. This is the basis for

Col( , )f 7,I , 1 1,•,1•' 11 1.7,, interference effects. Walsh functAons are
SCV. 9)L I I I I L, .,•, j 

1  Ly I I I .1  ,- r r'L' sunmmed differently and their interference
-,1 z - zzeffects are thus different

d) The Doppler effect can transform a sinu-

soidal function into another for any velocity
ratio v/c while a ratio v/c = 3/5 or more is

Figure 5. Operation of the shutters SI to required to transform a Walsh function into
S8 in Figure 2 for separation of the first another one of the same system. I•1 eight Walsh functions.
eg WahfcisLet us look at examples of these effects.

Figure 5 shows the operation of the Figure 6 shows a radiator for Walsh waves
shutters SI to S8 for separation of the first implemented by four Hertzian magnetic
eight Walsh functions. The funttions shown dipoles. Currents will flow clockwise in the

25

\4

I I l '1



b ,V I..a ( 1 0 ,Mo(3 / )

0- 10 A= EO/r!t)

-wlj8) it- ' I rH(1_

.wo010.8) o4 F)
H(1/r 't)

oý Figure 7. Tim- variation of the antenna
current i/t in a Ifertzian magnetic chpole and
the tin., variations of the produced 21-,ctri(
and magnetic field strengths declinin-

Figure 6. Array of four !lertzian magnetic proportionate to I /r, I /r 2 
and I /r 3

.
dipoles.

separated due to their different shape. Ii
loops shown by (lashed lines if the function one can separate El0 /r, t) and E( 1r 2

, t)
walt),g) has a positive value. A negative one may (ompare their power and derive the
value of wal(j, 0) will (ause currents to tlow distance of the receiver. One interesting
dtcounter clockwise in the loops shown by aspect of this passive d'istance measuring
dashed lines. The diameter of the loops is effect is that one ;7igaTt be able to obtain a

small compared with cT, where T is the signal-to-noise power ratio that decreases
time base of the Walsh fin, tion wal(j. 9) like I /r 3 

while the active distance measure-
wal(j, t/T). ment by the radar pr.,' fjle yi(cIds a signal-

to-noise power ratio that de( reases like
The time variation of the elect riL and I /r 4

. lowever, the radar principle permits
magneti( field strengths produ(cea by a a much higher a curacy of distance meas,)re-
Hertzian magneti( dipol,, are shown in ment.
Figure 7. The first line shows the idea-
lized current i(t) = Ical(3, t /T) flowing iii
the dipole. E(0 /r 2 , t) is a compona ni of
the electric field strength declining pro- -J "ai "T)

portionate to I ir 2
, which is the near zone

component. The iar zone component de- i - (t0=1cIlOtJ,t/I1hi)
clining proportionr te to I /r is rep,-esented --.[ \-j '
by E(I / r, t) The magneti( field strngth 21
(onsists of the three (ompone.nts r r

H(lIr
3
,t), H(l/r2, t) and H( I Z) w!',i~b dl(t)

decline proportionate to I /r
3

, t r
2 

and I/ r. U dl

The time variation of the far zone * - .
components E (I /r, I) and H( /r, t) is the a 1/2 0 T/2
first derivative of the dipole (u,'rent i(t).
The components E(i /rZ, t) and H(I /r

2
,t)

vary like the current i(t), and the compo-
nent H (1 /r

3
, t) %aries liKC the integral of Figure 8 Wa) sh shaped anteknna current i(t)

the (urrent i(t). These relations betw'en with a finite rise time AT and its first
the time variation of the dipole (urren, i(t) derivative di(')idt.
and the components of the elect-ic and
magnetic field str(ngths hold true for any Figure 8 shows the 'kaliz-d antenna

current i(t). Ifiut) varies like a sinosoinal cu,'rrent I ,al( . t T) r( placed by a moat
fun tions its derivative and its integral will ralibil( cirrn, i(t4 jvil'h a •wi:, hing tir'

vary like i(t) except for pha e shifts. V!, n( e. AT ro:n -I to -I or ;rrn -I to -1. " he

the near and far zone components of sinusoi- :irs' derivative (onsists of rec'angular pulses
dal waves are hard to separate while those of duration I and mnatnitude 21,A T % b!,n
of Walsh .Aaves can be much more :eadily L T approac hes /ero one obtains the l)i-ac
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pulbes of Figure 7. The energy of F rectangu- focal point. A two-dimensional array accord-lar pulse is proportionate to (211 A7)JAT ing to Figure 9 and even more so its exten-

41 2 /AT. Hence, the average power of the sion to a three-dimensional array will come
electric and magnetic field strength in tMe closer to a point-like radiator than the one-
far zone cannot only be increased by a larger dimensional array of Figure 6 or the one-
amplitude I of the antenna current but also by dimensional resonant dipole used for sinu-
a shorter switching time AT. This indicates soidal radiation. This is a second incentive2 that a small antenna can radiate a large for the development of two- and three-average power. diriiensilnal radiators.

elecc 0.l C QUADRUPOLE RADIATION

3 --. Sinusoidal waes in free space are
- generally dipol.- waves. The main reason

seems to be that quadruiole and higher order
multipole waves are radiated with less power
by a radiator of fixed size. This is not so

"- for Walsh waves.

I 1.

qt~'a

Hertzianemagneticcdipoles
Figure 9. Two-dimensional array of 16 ox Z4.ZCHertzian magnetic dipoles. ,,,40A WO,,,, woo..)"'

Figure 9 shows an array of 16 Hertzian Figure 10. Classification of dipoles,
magnetic dipoles. They are arranged in a quadrupoles and multipoles by two-dimension-
two-dimensional pattern. Let us observe al Walsh fuactions wal(k,x)wal(m, y); k,m
that the power radiated by n interacting 0,1,2.
dipoles is n2 times the power radiated by one
dipole and that the power radiated by one Figure 10 shows on the left vertically
dipole increases proportionate to n. There and hori-,ontally polarized dipoles denoted
is thus a great incentive to use many inter- "dipole 21" and "dipole 22". Furthermore,
acting dipoles. To mace the dipoles inter- there are three quadrupoles denoted 41 to
acting they must not be spaced too far apart; 43. Tne right side of Figure 10 shows two-
more precisely, if the distance between two dimensional Walsh functions. The black areas
dipoles is d it will take the time d/c for a reprtsent the value +1, the white areas the
change of current in one dipole to affect the valve -1. One may readily see that the
current flowing in the other. Obviously we poritive and negative signs of the dipoles
Lan have more l-'ertzian dipoles close toge- or the left correspond to the positive and
ther if they are arranged in a two-dimens- negative signs of the two-dimensional Walsh
ional array rather than in a one-dimensional 'unctions. This correspondence greatly
arxay as in Figure 6. Even more desirable simplifies a discussion of radiation modes.
is an extension of the radiator of Figure 9 For instance, it is obvious from Figure 10
to a three-dimensional array. that there is no "unipole" corresponding to

the all black function wal(0, x)wal(0, y).
Antennas for sinusoidal waves are usually Unipole radiation does not exist for electro-

one-dimensional. The typical resonant magnetic waves due to the preservation of
dipole is long in one space dimension and has charge but it is the major mode of radiation
virtually no extension in the two other space of acoustic waves.
dimensions. One could of course use the I
antennas of Figures 6 and 9 to radiate sinu- According to Figure 10 a quadrupole 41
soidal waves but the generators delivering consists of two dipoles fed with currents
the Lurrents to the Hertzian magnetic dipoles flowing in the opposite direction. Two such
could no longer be simple switches but would electric Hertzian dipoles are shown in detail
have to be amplifiers for sinusoidal currents. in Figure 11. The electric and magnetic

field strengths in the far zone, declining
Consider a transmitting antenna consisting proportionate to I /r, vary with time like the

of a parabolic reflector and a radiator at its second derivative of the current flowing in -1
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dipole I IcFIL.:II.

-Ill)
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S J (.3fAI.

dipole 2

Figure 11. Hertzian electric quadrLupole 41.JAA

the dipoles. The resulting time variation
is shown in Figure 12. On top is the nominal Figure 12. Time plots for quadrupole
dipole current I cal(3, t/T). The second line radiation. (1) nominal antenna current;
shows the more realistic current with finite (2) realistic antenna current; (3) first
transient time between +I and -I; furthermore, derivative of the antenna current; (4) second
the transients are rounded while those in derivative of the antenna current or time
Figure 8 had sharp breaks. As a result the variation of the electric and magnetic field
first derivative shown in line 3 consists of strength in the far zone.
trapezoidal rather than rectangular pulses of
width AT. The second derivative consists of caused by two targets rather than by a single
pairs of rectangular pulses ofwidth CAT. larger target. A typical radar pulse will
The energy of a rectangular pulse is pro- contain abfout 1000 carrier cycles, hence the
portionate to relative energy of the bulges at the end is

[2I/C(AT)
2 ]2 AT = 4?/E/2 ( AT) 3 . Hence, very small.

the average power of the electric and mag- B2
netic field strength in the far zone increases
faster with decreasing switching time than d ý 1
for dipole radiation. This means that it is
theoretically possible to radiate more power
in the quadrupole mode than in the dipole R
mode for an antenna of given size if one
succeeds in decreasing the switching time
sufficiently. The different time variation _
oi the electric and magnetic field strengths V V v v
r dipole and quad rupole radiation indicates t A \
tlh.t interference effects will be different.
Generalty speaking, interference effects of
quadrupole radiation yield a better resolution A AA AZ(dd. 1c
than interference effects of dipole radiation,
and this holds even more so for higher order C
rmultipole radiation. V \Y

INTERFERENCE ZFFGc'S, nnhlI
DOPPLER EFFECT d

Figure 13 shows as an example of an f l fl ,f
interference effect the reflection ol a sinusoi-
dal radar pulse from two point-like targets U U U

•:i ~ ~~BI and B2. The reflected pulses are shown • f•Il l'
in lines a and h. Line c shows their sum, |
which is the signal rece:ved by the radar. UU UUUUU

Except for the bulges of duration Z(d -dl)/c I
at the beginning and end 31 th 2 signal"there Figure 13. Example of an interference --
is nothing that indicates that this signal was effect of sinusoidal and Walsh shaped waves.
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Let a Walsh wave in dipole mode be first or second derivatives of the Walsh
reflected by the two targets. The far zone functions.
components of the electric and magnetic I
field strengths consist of narrow vectangular If transmitter and receiver move away
pulses. The pulses reflected frorn- BI are from each other the relative velocity must
shown in line d and those reflected from B2 be at least -v/c = 3/5, if they approach each
are shown in line f. The difference bet':een a other it must be at least +v/c = 3/5 before
reflection from two small targets or ore a Walsh function with known time base T
larger target is no longer represented by is transformer into another. There are
low energy effects at beginning and end of a no such minimum velocities for sinusoidal
radar pulse.Indeed, even a periodic Walsh functions.
wave would distinguish between one and two
targets.
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WALSH FUNCTIONS IN GRILLE SPECTROSCOPY

by

Alvin M. Despain
Utah State University

George A. Vanasse
Air Force Cambridge Research Laboratories

Abstract where

Walsh Functions have been very useful in Ag grating area
transform spectroscopy as evidenced by the recent
work in Hadamard transform spectroscopy. It is R - resolving power
also possible to use Walsh functions to generate
a suitable gritle for use in grille spectroccopy = "i" number - LIP
as developed by Girard. The hyperbolic grill
that is often used in this technique is very L = entrance aDerture height
closely related to the grill whose transmittance
is defined by a complete set of the sal func- F - focal length of mirror
tions. This paper expZore3 this relationship
and indicates how other grilles of specified and it is assumed that the system is "energy"
properties may be generated. Thus, the appZica- limited not diffraction limited. The resolu-
tion of Walsh functions can be profitably ex- tion in the usual spectrometer is generally
tende.d to the domain of the grille spectrometer. inversely proportional to the entrance aperture

(slit) width.
Introduction

A grille or mask may be employed as an
The purpose of this paper is to explore how entrance aperture, exit aperture, or both, to

Walsh functions may be effectively employed to improve the performance of the system. These I
greatly improve the performance of grating grilles were first employed by Golay (Golay,
spectrometers by using Walsh functions patterned 1949; Girard, 1963) to increase the effective
grilles (masks) to increase the light throughput entrance and exit apertu'es without sacrificing
and to multiplex the various wavelengths to be resolution (throughput advantage). It is also
examined. A typical grating spectrometer is possible to use them to multiplex various wave-
illustrated in Figure 1 and may be schematically lengths using one detector, (Golay, 1949) thus
diagramed as shown in Figure 2. The function of improving the signal-to-noise ratio of the
the grating is to produce an angular deviation measurement compared with that obtained by
of the light beam impinging upon it in propor- recording each wavelength in sequence (multi-
tion to the wavelength of the light. plex advantage). A grille spectrometer may

have both the throughput advantage and the
The original light beam is defined by the multiplex advantage (Harwit, et al., 1970) end

entrance mask and collimated by the mirror be- can compete with an interferometric spectro-
fore falling on the grating. The angle at which meter, without requiring the extreme mechanical
the light is reflected from the grating is a stability of the interferometer (Vanasse and
function of wavelength. This beam is focused by Sakai, 1967). A great variety of grilles have
the mirror onto the output mask. A detector been employed as summarized in Table I. Golay
behind this mask then converts the light to an (1953), the nioneer of this field, mentioned
electrical signal for recording. that Walsh functions might be useful as grille

patterns, but they have only been recently em-
The sensitivity of the spectrometer is a ployed despite their natural advantage of being

measure of the weakest light signal it can de- a complete ortho-normal set of "on-off" form. L".
tect and is a function of the effective area and
solid angle over which light may be gathered
(throughput) and the noise level of the detector General Formulation
employed. The throughput E of a conventional
spectrometer is proportional to several instru- The operation of a grille spectrometer may
ment parameters. be mathematically modeled by describing the

totdl radiation intensity incident on the de-
E A LIR tector in terms of the incident radiation
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spectrum and the functions that describe each Walsh and hence the X functions form an orthog-
element of the entrance and exit grilles (see onal set, each of the above terms (that are
Figure 2). Each element is a slot whose width unique) can be extracted from the recorded
determines the spectral resolution of the signal S by Walsh-Fourier ar.alysis.
spectrometer, just as the single slit does for
a monochromator. The entire entrance and exit Multiplex Advantage Grille Spectrometers
apertures are filled with slots and each siol
can, in general, be modulated (openei or c"'•) The Grille Spectrometers of Gulay (1951),
independently of any other slot. As shotn ;r Ibbett et aZ. (1968), Sloane et aZ. (1969), may
Figure 2, the effect of the grating is to be described by choosing the constants one for
cause radiation of amplitude xi anJ wavele,,th a single entrance slot and zero for the remain-
number i entering slot j to be shifted to the inq entrance slots. Then orthogonal functions
exit slot i + J. are chosen for the exit slots, thus multi-

plexing the amplitudes of the spectral elements
In general, we wish to enccde each slot in onto a single signal. An excellent choice for

the spectrometer so that we can measure and re- the exit slot functions is, of course, the
cord all the exiting radiation and then re- "offset Walsh functions" (see Figure 3 for an
cover an estimate of the spectral elements example) and the radiation spectrum may be re-
{ 1 ). Thus, let 4-j represent the encoding covered by a Walsh-Fourier transformation.
function for entrance slot j. Similarity 4k Thus,
will represent che exit slot encoding function.
The total exiting radiation is therefore de- 2,e• - r r r . 6(., 6(1 + j -k
scribed by summing all radiation over all wave- s u i z x ^ ) 6(; + a -k
lengths that enter each entrance slot and leave • k
each exit slot. Thus, 4x+(e) + X(e) + Xk(e) - 11

Su Z E Xi j 4~i* 6(i + Q cI• - s(e)-*E z.(
where S is the signal that is detected, re-
corded and later analyzed to recover (.X) and
6 is the unit delta function. The function and thus the spectrum is easily recovered as

and * can of course be, in general, any of a
very large set of functions. However, our in- W Walsh Transform [S(e)]
terest here is to restrict each * and o to be
some modified combination of Walsh functions; Throughput Advantage Grille Spectrometers
modifying referring to the on-off properties.Thus, we define an offset Walsh function X The Grille Spectrometers of Golay (1951),

Girard (1963), and others employ identical
e) Wal (i,e) + I (except for displacement) entrance and exit

2 grilles but record only the average value of

e W . the modulated signal and exhibit very high
where Wel (je) is the usual notation for the luminosity. In analoqy with the Girard grille,
Walsh functions. The functions * and i are a grille hsrein named a sal grille may be form-
often combinations of the X's which take on ed using the "offset sal functions". This
only the values 0 or 1. grille may be compared with Girard's grille in

Figure 3. The output signal is 7iven by the
It is a well known property of Walsh func- average of

tions (Harmuth, 1970; p.20) that
2S(o) - z E k. 6(i + 2j - 2k) 6(2- n)

Wal (h,e) Wal (k,e) Wal (hak,o) , j Ic

where the operator + signifies the module 2 .(rX2j2k(e) + X2j(e) + Z2k(O) - 11
sum. Thus, it is found that

2Xj X7< k . + X+X. -1 . or

2 s~e) -z E A~ ( X(n-i).,ulG + _

For the case where o and o are taken as "offset i "
Walsh functions" then ___(e)_+__(e)_-_1]

2s(e) - z Ez xi 61f(i, j, k))
where n = displaced number of slots as the exit

[ eXjk) + X/0) + Xk(e)] mask is m'ived across the exit aperture. Since
SX, 0 if n 0, then for n 00

where the f(i, j, k) determines how the X func-
tions are assigned to the slots. Since the

i~~'+T7Z77771 N' 0 :~~: f#_
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Ise E 8(n-i) [YOM6 + Xo(e) + 0 -1) 2 [Vl

s-) = j z ),£ 6�(-i) + j where
T. the signal av-ea. ove

Thus, for position ii, the signal averaged over An example of how the spectrum • can be re-
the independent variable 0, produces a measure covered for the case where four separate ele-
of the spectral component An. Note the ments are to be ascertained illustrates the de-
throughput advantage indicated by the factor T. sin of such an instrument. It is convenient

to use a mask of 2n - I or seven slots forn
It is interesting to note that in practice, t seca ma s o thos s lot fore n

difficulties were experienced with the Girard 4 spectral elements (this is not a requirement,
grille in that nonuniform illumination on the h )q
entrance ,aperture produced serious distortions. 3 7
Moret-Bailly et al. (1970) developed a "random 3 L [X(€+J),3 + + - 17
grille" composed of slots "randomly" chosen to
be open or closed to overcome this problem. A i0 j-l
similar grille can be realized using a pseudo- can be explnd
random sequence which may in some cases be a "orn cm t collectedere

certain Walsh function with the leading element
deleted. These sequences would be pseudo- 4 -4 -.4 4
randomly arranged to produce a pseudo-random
grille with properties very similar to the 600
"random" grille of Moret-Bailly et aZ.

Multiplex and Throughput Advantage Grille 1 6 0
Spectrometers Cu 1215

The grille spectrometer of Hartit et al. 1 1 1 1
(1970) employed grille functions derived from a
Hadamard matrix which for some cases (but not 0 1 1 3most) are also Walsh functions. Separate masks
are required for the entrance and exit aper- 0 0 3 1tures and they must be displaced independently.
Nevertheless, this configuration with both the 0 1 0 2
throughput and multiplex advantage greatly im-proves the performance of a spectrometer. • is then found

It is also possible to derive a grille 2 2-C Cj-
spectrometer with the above properties but with
the important advantage that a single common
mask can be used for both the entrance and exit or D u

apertures. Such an arrangement is shown in .176144 -.050292 -.022536 -.00904
Figure 4 for a Littrow mount. This "Walsh
grille spectrometer" wo'ild be very similar to
the mock interferometer devised by Mertz (1965), 029118 .150659 -. 026963 -. 063176
but would be without its disadvantages and would .075509 -. 005634 .125660 -. 046127
employ "offset Walsh functions" for encoding
purposes. Thus, in terms of the above for-
mulations let 91* - u 14 then 100225 -. 014821 -. 021023 .126166

.066880 .003793 .012464 .019143
23 . (+j)*+ ++ X. - 1) .024363 -. 015691 -. 005163 .070177

2S = T • .018691 -. 027126 .056548 .008422

Now by a Walsh-Fourier transformation of S .016453 .001309 -. 019275 .047543
the sequency amplitudes I can be recovered.
Thus Now to estimate the spectrum of the radia-

tion that impinges on the entrance aperture,
the coded disk is rotated and the signal 3 is
recorded. A Walsh-Fourier transform of SIn general Vis not square. Therefore, the yields the seqguency components 1. Then the

least square estimate of the amplitudes of the
spectrum •i s spectrum 'A u= 9,.
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Grilie spectrwmeters have a great advantage spectrometers were synthesized using Walsh
Over the usual monochromator and compare favor- functions. The Walsh grille spectrometers has
able with the interferometric spectrometers in several significant advantages over all the
sensitivity. Grille patterns of offset Walsh other types of grille soectoe ters, exhibiting
functions produce especially useful instruments, both the throughput and multiplex advantage
Three new configurations of grille spectro- using a single comeon mask for both the en-
meters, the sal grille, the two-dimensional trance and exit apertures and requiring no more
pseudo-random grille, and the Walsh grille than 2n - 1 measurements if n spectral elements t

are to be determined.

Table 1. GRILLE PATTEPMS FOR GRILLE SPECTROMETERS
GRILE ESRIPIONREERCEEMPLOY THROUGHPUJT MUL.TIPLEX
GRLL DSCIPIO RFEENE RLHFUNCTIONS ADVANTAGE ADVANTAGE

Complementary series Golay (1949) NO Yes NO

Nmprbolic Girard (1963) No Yes NO

Mock Mertz (1965) NO Yes Yes __ Z

Circular symuetry Tinsley (1966) no Yes NO

Fourier coded Grainger ot at. (1967) Ho No Yes

Truncated Walsh Ibbett et at. (1968) Yes NO Yes

Algebraic code Decker and Harwitt (1968) NO NO Yes

Hadmamrd - single encoded Sloane st at. (1969) NO No Yes

"yprbolic Girard (1970) No NO Yes

Psuedo-rando. - one dimensional deGraaw and Veltman (1970) NO Yes

Hadamard - double encoded Harwitt st at. (1970) Yes Yes Yes

Random Noret-BailIly *at c. (1970) NO Yes No

Sal function Despain and vanasse (1972)* Yes Yes NO

Psuedo random - two dimensional Despain and Vanessa (1972)* Yes Yes No

Walsh function Despain and Vanessa (1972)* Yes Yes Yes

*These grill*s are described in this paper.
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HADAMARD TRANSFOR4 SCINTILLATION COUNTER

by

L.M. Soroko

Joint Institute for Nuclear Research
Dubna, USSR

Abstract

The Hadamard transform scintilla- gics by sampling point by point of the
tion counter designed to measure the unknown distribution. In contrast to
angular or spatial distributions of nuc- this, the subject to be measured in the
lear and itomic particles in the pre- multiplex transform system is the coded
sence of heary noise from the photomul- integral -transform of the function desc-
tiplier is described. The gain in the ribing the distribution to be investi-
effective signal-to-noise ratio achiev- gated.
ed by this counter in the result of the The multiplex system of particle
spatial multiplexing, that is, of cod- detection is characterized by high im-
ing the spatial or angular distributi- munity against the different foreign
on to be measured before counting it. perturbations. This property opens up

The counter consists of a multi- the possibility to overcome the limit
element heterogene scintillator, two put up by the traditional logics of ob-
lightguides, two photomultioliers and servation.
an electrical puls bipolar counter. The It was N.H. Fizeau 11 who perfor-
multiscintillator consists of (2M-1) med, more than a hundred years ago, the
scintillation elements. The llghtflashes first multiplex measurement in optics.
can enter only the lower or only the At the late forties the ideas of multi-
higher lightguides, the (4-l) elements plex optical spectroscopy arose/ 2 /. The
of the multi-scintillator being outside basis of the present paper is as follows:
the llghtguide. the multiplex communication,m particu-

The counting rate to be measured lar, Walsh Hadamard multiplex systems/ 3 /,
is equal to the difference between the modern multiplex Hadamard transform spec-
number of N (i)events and the number troscopy/ 4 ,9,11/ and the correlation
of N (i) events at all positions(omi•-z) time-of-flight method in neutron spectro-
of the movable multi-scintillator rela- scopy/ 5 ,6 /. The multiplex Hadamard tra-
tive to the llghtguides. It is needed nsform scintillation counter is descri-
to perform N lndependenr measurements. bed below/7/.

The spatial distribution of par-
ticles undergoes the binary coding ac- Traditional Logics of the Experiment
cording to the Hadamard transform al- In performing the experiment the
gorithm. The system of the multiplex investigator always must choose the op-
Hadamard transform detection gives rise
to the gain in the signal-to-noise ratio, timum relation between the factors which
being equal to (N+)/vlwhere N is the ' are multially exclusive. Fbr example,
number of the element-scintillators in the rise of the counting rate by incre-
the multiplex block scintillator. Nelt- asing the sizes of the scintillator
her the reduction of the angular reso- (Fig. 1) inevitably makes the spatial
heuthon noretheiost of the coguntig rresolution of the counter worse. Parti-lution nor the lost of the counting

rate of the useful events take place. cularly a hopeless task awaits the in-
rThe ofd rd theauseful eentsvestigator when the useful events are
The Hadamard transform scintillation s aeta h os r~ h onecouner gvesthe iret eficincy ain so rare that the noise from the counter
counter gives the direct efficiency gain factor,in the working time of particle accele- bcmsteplcpllmtn atr

and the noise-error exceeds the statis- 'U..
rstors and also in the cost of the tical error.
equi pment. 

Q
It is easy to show that any ways

Introduction for increasing the counting rate would
come to the loss of spatial resolution.

The multiplex transform detectors There are traditional solutions of this
of particles provide a new class of in- conflicting situation. One of them con-
struments designed for use in the nuc- sists in the increasing of the working
lear physics laboratories. The basis time of the expensive particle accele-
for the existence of such instruments rator. Another way of the solution is
is the renouce 6f the traditionel lo- the converting of the one-channel sys-

36

n_ý _7



tem into the multi-channel equipment. i.e. the gain in the effective signal-
The economical after-effects of these to-noise ratio achieved by this unipolar
methods are obvious. system. However, the unipolar cystem g,

(i) is not yet optimal. It is desirable
Multi-Element Scintillator and effecient to take the bipolar system.

For this a;m we tako another comb with
Meanwhile there is a nontraditional many element-scintillators and gaps

solution, namely, the use of the multi- according theg _(i) function. Both sys-
plex transform system of particle detec- tem supplement each other. The multiplex
tion. The passage to the multiplex scin- advantage of such a bipolar system is
tillation counter can be performed as equal to
follows. First of all, the spatial re- 2 -!+' (7)
solution of the system must be left VU
unchangable. For this aim we take seve- The light-flashes can enter only
ral element-scintillators and one photo- the lower or only the higher lightguides
multiplier. The group of element-scintil- (Fig. 3), the (M-l) elements of the
lators is arranged in a such a way that scintillator being outside the two light-
gaps between some elements are left. guides. The whole heterogene scintilla-
The counting strips and the gaps alter- toe- can be moved between the two lighl
nate one another. The law of this alter- guides.
nation is given by the pseudorandom dis- The electrical pulses from the
crete sequence g (i). The number M of photomultipliers are fed to the countir
elements must be chosen according to the device, the upper channel Leing in the
cyclic thansorthogonality 1. This pro- anti-phase. Therefore, the Lnunting ra
perty is expressed by the relation of the upper system is subtradted from

N_• the counting rate of the lower system.
g(i) ) g(i) , g(k) j(itk) = The intermediate data measured by this

bipolar system is the difference of the
(1) counting rates (Fig.4).

(M.( ) S (i) -1(i"

AN (i) = N (i) - Nji) (8)

and can be satisfied on~y for several between the number of pulses from thevandes can be satisedamol for severa, lower N (i) system and the number of
values of u . For eximple, for l = 11, pulses from the upper Ni(i) system. This
the function a (i) is as follows4 difference must by sampld M times for

different mutually independent positions
i,•-I , , 1 , 1,-I,-).-1, 1,-I. (2) of the movable scintillator. The values

The function g (i) can be subdivided in- of AN(i) can be both negative and posi-

to the two unipolar terms tive.

N(i) , 9, (i) F- (i) (3) General Description of the

where Operation

The measurements performed by the
•(i)•.. •l,O ,f , ,o oo, ,o 4.0 (4) multiplex scintillation counter are

made in two stages: the detection stage
and the processing one. In the course

and of the first stage the function f(i) to
be searched is converted into the integ-

_i) o.o , ,, (5) ral transform
r(,) - It(i) X 9(0) (9)

The unipolar system 9,(i) of seve- where x is the operation of convolution
ral elements (+1) and gaps (0) is shown which is performed simultaneously in
in Fig. 2. The multiplex advantage ofthis unipolar multiplex system is the course of the measurements. The
equal t s transiorm r (i) is sampled at all values

of i, from 1int = 0 till ifinal =M-1.

M+J (6) The really measured function s(i) is
2vQ equal to

3 ti) I I(i) x g (i) f An (1) (10)
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where Results of the Simulation

An(i) n (i) -n2 (i) (11) The simulation accomplished for
and n, (i) (k = 1,2) is the noise count- the ca'e of M = 19 clearly demonstrates

ing rite of the k-photomultiplier at the efrect of supression of the-noise-
all M ,ositions of the movable multi- error. The initial distribution f(i)
plex scintillator. Obviousely from iin 0 till ifin = 18 is shown in

Fig. 5. The bipolar kernel g (i) for
"I Mn(i) M [•%n(1) ( = 19 is given in Fig. 6. The integral

,(12) transform r (i) shown in Fig. 7 is the
subject of the measurements. The bipolar

The intermediate data s(i) are to be multiplex system without noise does
retransformed according to the algo- sample the function
eithm

AIr(i)=I(0)5cg(,)• t(k)g (i--k) (18)

,,{i) 6 X. 0S(i)x +•-()+ s(i) g(i) 1 (13)

This intermediate data undergo the decod-
where is the operation of correla- ing. The results of the correlation
tion. The second term in (13) reflects
the second term in relation (1). r(i)× g(i)

Without noises the following rela-

tion holds are shown in Fig. 8. This fun(,ion di,
fers from the initial function f(i) in
two points, namely, in the ratio of sca-

l(i) g .(i) Xg •() -(,04 ) ,1 1M(() ling and in the different biases.
,1o = The nola Lnmponents n1(i) from the

lower photimultiplier and n2 (i) from

In the presence of noises relation (14) the upper photomultiplier are shown in
is valid only approximately in the Fig. 9. The bipolar pulse counter detects
limits of (12). the fluctuating component of the noise

the statistical error of the An (i), shown in Fig. 10. The results
measurements of the useful events f(i) of decoding of the fluctuating noise
is negligible, then the total error component are given in Fig. 11. The ra-
is determined by the noise from the tio of standard noise errors found for
photomultiplier;, and finally this simulatior is equal toinstead of the theoretical mean value i

" - (i) ( ) = S( )./ . ) o,..5. . ... 4.59

![1(i), g(i 4 +-{(i). a ) ]+ (15) References
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Fig. 2. The unipolar Hadamard transform
multiplex counter of several ele-
ment scintillators (+1) and gaps(0).

Fig. 1. The traditional arrangement of
the particle beam II , the tar-
get M and the counter C of the C62
homogeneous scintillator ca
lightguide CS and photomulti-
plier 4)3Y . The particlesescaping the target M at the

angle o are registering within
the angular resolution \0.

CLII i

9 N

Fig. 3. The bipol]r multiplex counter
of the two mutually optically
isolated combs of element-scin-
tillators. The alternation of
the directions (',. ) of entering
the two lightguides C9, and C9,
is described by the bipolar func-
tion g (i). The multiplex scin-
tillator shown in Fig. 3 is set
"up of 11 element-scintillators.
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an y2 ,t o n50

M:19

CL4 AN

Fig. 4. The electrical scheme includes -50
two photomultipliers 51-)I
and 413Y2 , two counting de-
vices CY, and CV.? , and the Fig. 7. The integral transfo--' r(i) of
electrical pulse bipolar count.r the function I (i) shown in
BC. Fig. 5.
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Fi 5. Tht, i niti al di sti butio.-. I () (1441)
for 14 =19, used for simulation.

Wo) . 2Mf f 37 Fig. 8. The res;ults of decoding correla-
tion r 4(i)

Fig. 6. The bipolar kernel g(i) for
M 19.
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Fig. 9. The noise components n, (j) and
n2 (1) from the lower and from

the upper photomultipliers.
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Fig. 11. The decoded fluctuating noise
component %. (i).
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MULTIPLEX TARGET

by

L.M. Soroko

Joint Institute for Nuclear Research
Dubna, USSR

Abstract

The multiplex Hadamard transform not only by the particles which emerge
target designed to measure the angular from the target but also by the partic-
distribution of the particles in the les which originate outside the target
presence of heavy background in the and are the background ones. At the
experimental hall is described. The high level of background particles the
gain in the effective signal-to-back- error of the measurements is determin-
ground ratio achieved by this multiplex ed almost completely by the background.
target is the result of spatial multi- Any variations in the geometrical
plexing, that is, of coding the angular sizes of the counter do not change the
distribution to be measured before count- relation between the useful events and
ing it. the background ones. The increase of the

Tbh multiplex target has multi- target dimensions does deteriorate the
element heterogene structure, which per- spatial or angular resolution of the
mits the detection of particles at se- system.
veral angles simultaneously by the integ-
ral coding algorithm. The transform co- Multi-Element Target
de is the cyclic trans-orthogonal Hada-
mard code. The angular distribution of
particles to be measured can be found Meanwhile there is a nontraditionalon te scon stae b deodin trns- solution of this conflicting situation,
on the second stage by decoding trans- namely the use of the multiplex target.
formation'the sthge of-ia ry codeinas wBy leaving unaltered the spatial resolu-

The multiplex target gives the tion of the target we take several ele-
g nthe mulsipnlexto-arkge v rathe ments of target and perform the measure-

Sgain 4n the signal-to-background ratio ments simultaneously at several angles.
if the background does not depend on
the parameters of the target and the Thus, the one and the same backgroundbeam. This gain is equal to(H. ) /2VF, within several angular intervals, but
where m is the number 3f como elements within s ingul angular interval
of the multiplex target. The multiplex not within a singular angular interval

Hadamard transform target gives the as in the traditional target.diret efice,,c gan i theworingFor this aim the target is trans-
direct efficiý:1cy gain in the working formed into heterogeaeous multiplex tar-time of particle accelerators and also ge.Te latteroha s t ucture oaget. The latter has the structure ofa
in the cost of the equipment. comb. The prongs and gaps of the comb

alternate one another. The law of this
SIntroduction alternation is given by the discrete

pseudorandom unipolar sequences g (i) or
g_ (j) . The function g,(i) can have the

The traditional target used in the values +1 or 0 and the function g_(i)
experiments with high energy particles the values (-I) or 0. The function g(i)
consists of the substance of desirable which is equal to the sum ofg+(i) and
agrigate state. The target possesses g_(i) functions forms the row of the
almost homogeneous proper'ies inside truncated Hadamard matrix with the trans-
the region at which the beam of accele- orthogonal properties, that is
rated particles hit. The sizes and the M-1
depth of the target are chosen accord- g(i) Xg(i) 1 g90) 4(ihk)
ing to the required energy and/or angu- A0

lar resolution. (1)
The counter or the particle teles- (M+'8(i)-1(i).

cope of several counters is commonly hic

where in• is the number of elements prongs
in comb target.
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The anguiar c,'Itribution of the par- The structures of prongs and gaps

ticles emerging rrom multiplex target for two unipolar multiplex targets for
undergoes the coding transform. Instead the case of At - 7 are shown in Fig.].
of the function I u) the counte, does There are 13 elements which broken down
samiple the function into three groups (Fig. 2). The beam

of the particles shown as a ring in
N,)(2) Fig. 2 intersects only.41 elements,prongs

or gaps /2/. The configurations of the
from the comb target g,(i) and another multiplex targets g,(i) and g(i) are shown
function for the i = 3 .

The results of the simulation are
NIi) - I(i).x 9-M - n,() (3) onalogous to the case of _ - 19 /1

The ratio of the mean square background-
from the comb target L_(i) . HerenU(i) error for the multiplex target to theand n; (i ) are the number of the back- mean square background-error forthe

ground particles hit the counter during traditional system is equal to 2\N/IM/I().
the first and the second measurements.
The data to be measured in the axperi-
ment are equal to the differenceSRef'erences

AN(i) N ,(i) -N2  (i) 
(4)

1. L.M. Soroko. JINR Comm., P13-5696,
These intermediate data mL'st be retrans- 1971.
formed by the decoding correlation with
the help of the bipolar g(i) function. 2. L.M. Soroko. JINR Comm., P13-5699,
The result has the form/1; Dubna, 1971.

4.., (i) z [AN(i) x 9(i) +
'1-1 (5)•+ E A N: x 9(0) 1 ý Av ýi)•

The ratio of the mean square oackground-
error [A, (i) ].,for the multiplex target .
to the m..s. background-error[An(i) I_,
for the traditional system is equal to

The multiplex target consists of

the substance in any agrigte state.
Therk: are two sets of the ccr,tainers or
franes for two uniool~r multiplex comb-
targets. The elements of the combs can
move independently relative to the par-
ticle beam. Two arrangements of theS~comb-elements must be built according

to the unipolar sequences g,(i)or g-6(i)
lhe change of the polarity of the bi- Fig. 1. The spatial structure of multi-

polar counting device )~s performed si- plex target consisting of two
multaneously with the exchange of one unipolar comb-t.argets. The measu-
comb-target to another one. rements are carried out at seven

The total numbe;' of eleients of different intervals (Al -7) si-
multiplex targets. including prongs and multaneously. The comb-targets
gaps is equal to ( 2M - I ). These ele- consist of 13 elements prongs
ments av'e subdivided into three groups, and gaps, (2,W-1 ). The uoper
the first qroL'p beinS outside of the comb-target corresponds to the
beam to tho .eft, the second group of g(i) coding function. The lower
elements hitting by the pripary partic- one correrponds to the g_4i)
les of the beam and third group being coding function.

outside of the beam to the right. In the
course of thre measurer~ents the spatial
structu.-es of the combs undergo the cyc-
lic rearrangements. !t is necessary to

performm indepe.adent measurements with
9+(i) muitipiax targe.t and as mdny

Swith9i) multiplex target.



Fig. 2. The arrangement of the elements.
prongs and gaps, of the comb-targets relative to the cross
section of the beam.
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INFORMATION PROPERTIES OF PARTICLE TELESCOPE

OF MULTIPLEX SCINTILLATION COUNTERS

by

L.M. Soroko

Joint Institute for Nuclear Research
Oubna, USSR

Abstract

The particle telescope of two mul- (Fig. 1); The pulses from the counters
tiplex Hadamard transform scintillation are fed to the coincidence circuit. Such
counters is described. Each scintilla- a telescope counts the processes induc-
tor is set up of several element-scin- ed in the target by the particles of
tillators which are surrounded by the the beam whenone of the secondary partic-
light-guides and photomultipliers. Four les is emitted at the angle ,and the
coincidence circuits are detecting the other one is emitted at the angle
four groups of events. The coincidence (1 0 0 - o ) to the beam axis. To de-
counting rates define the intensity of tect two-particle channels in the wide
the angular correlation events induced interval of angles from 0, to 0. one
by the two-particle channels. And the does the following. A sufficient small
angular resolution of the discrimina- target and a sufficient small telescope
tion of the events to be measured is angular view are taken, so that the
equal to the angle which subtends the halfwldth of the angular correlation
single element-scintillator of the curve has the required value A0 (Fig.2).
multiplex scintillation counter. Under real conditions the maximum of

ýich a particle telescope allows the curve lays above the pedestal due
to solve some new problems, for example, to the background events from many par-
it can be used in the experiments with ticle channels. The measurements are
interesting beams to restrict the vo- made at several angles 0 from 0, to
lume from which the binary channels 0o . The required results can be
particles are emerging and this can be obtained by summation of the events
done without the additional defining which are above the pedestal. Any at-
counters., tempts te increase the telescope angu-

lar view give the broadening of the
maximum and a higher pedestal.

Introduction

In the previous communications Telescope of Multiplex Scintillation
the Hadamard transform scintillation
counter /]/, the multiplex target /2/ Counters

and the principle of their operation
have been describeG. The telescope of Meanwhile there is a nontraditional
two multiplex scintillation counters way to cover all the correlation events
presented earlier in the communica- within the wide interval of angles from
tion /4/ is reported below. 0, to 0. without the loss of angular

The traditional telescope designed correlation resolution.The telescope
to detect the penetrating particles is which processes these properties is of
set up of two or more scintillation the following design. The homogeneous
counter, electrical pulses from which scintillators in the counters are
are fed to the coincidence or anti- exchanged by the heterogeneous multiplex
coincidence circuits. The connections scintillators /I/. Each multiplex scin-
between the telescope counter signals tillator is set up of several element-
are chosen in such a manner, that the scintillators (Fig. 3). The butt-ends
output pulse would come when the light- of the multipleA scinti!lators are
flashes in either photomultipliers surrounded by lightguides and photomul-
originate simultaneousely that is in tipliers. The light-flashes induced by
the time resolution of the coincidence the charged particles hit the element-
circuit. scintillators can enter only one of two

Let us consider that traditional lightguides and can not enter the ad-
telescope of two scintillation counters Jacent eiement-scintiliator. The direc-
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tions of the light-outcomes alternate cesses which taking place in the cells
according to the law of pseudorandom with the numbers k ,0 , and also the
coding J/. In the case of seven ele- uniformely distributed particles from
ment-scintillators ( M - 7 ), this al- many-particle channels.
ternation of the light-outcomes Is des- The telescope of multiplex scn- --

cribed by the rule tillation counters allows to detect the
S,,particles with given curvature on the

for the first scintillation counter, background of the particles with differ-
and by the "mirror" rule ent values of curvature. Another examp-

SL 1( I I les are as follows. 1) The restriction
for the second scintillation counter. of the working volume inside the gaseous

The electrical pulses from four target without the help of the collimat7
photomultipliers are fed to four coinci- Ing entrance slits or defining counters.
dence circuits (Fig. 4), thus permitt- 2) The detection of the events in the
ing to count four groups of eveots: target, immersed in the constant mag-
N++ v N__ , N+_ and N_+ . These netic field. The events to be measured

observed counting rates, as shown in/4/, are characterized by the combination
completely define the counting rate of of two parameters: the curvature of
the correlation events to be searched. the trajectory and angular correlation
The angular correlation resolution of between particles 4.
the events with 1800 correlation angle
is defined by the angle which subtends
the single element-scintillator of the References
multiplex scintillation counter, if the
dimensions of the target being very 1. L.M. Soroko. JINR Comm., Dubna,
small. The number of the 180 0 -cort-ala- P13-5696, 1971.
tion events to be searched is equal 2. L.M. Soroko. JINR Comm., Dubna,

P13-5699, 1971.
N.,,- (N i+ N__) (M2Z _+N_) (I) 3. L.M. Soroko. JINR Comm., Dubna,

i- P13-5722, 1971.

The background correlation events from 4. L.M. Soroko. JINR Comm., Dubna,
many parti.cle channels are supposed to P13-5896, 1971.

be distributed uniformly.
It is easily seen that this algo-

rithm is valuable not only for the case
of the 1800 correlation angle, but also
for any correlation angie. The correla-
tion angle is changing by the turn of C:, c,
the telescope arm, as in the case of T-
the traditional telescope. It is pos-
sible also to shear the coding pictures ce
of the counters relative to each other. J
The processing algorithm for the latter n
case has the form different from (1).

New Problems
N, p

cc
The telescope of multiplex scintil-

lation counters allows to solve some
new problems. Namely, such a telescope
can be used in the experiments with in-
tersecting beams to restrict the volume
from which the binary channel particles
are emitted, and this can be done wi-thout the additional defining counters. Fig. 1. Traditional telescope of two

Such an experiment is shown in Fig. 5. scintillation counters c, and
The telescope of two multiplex scintil- cg The particle correlation

lation counters c, and c, is turned angle is equal to 1800.
to count the binary channel particles
emergin§'from the cell with numberk..O.

-The algorithm of the processing is
defined by (1). The background evwnts
include the particles from binary pro-
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S~Fig. 4. Four coincidence circuits

Fig. 2. The angular correlation curve coupled with four photomulti-
measu red Iytetaiinlpir ftetlsoe

telecopeasaresu t o2.0h

move ent f ,,h ,on co unt er

The mean correlation angle is-_.•C
equal to Oo and the angular +
resolution is equal to iO.•

(2)

\ /f N/

W3 */

0 IN-Fig.- 4. Fou coicienc ciruit

Fig. 2. The eaperulen corelaio cnuersect

ma su red bny the T e p is of the t

Sthe index K.
Fgtelescope ba m. Tult of the

scintillation counters and the
target N .The telescope is set

up of two multiplex scintilla-tors c, and Ct , four light-

guides and four photomultlpllers.
The alternation of the lightoutcomes is central symmetrcal-

ly. • 497
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WALSH! SPECTROSCOPY OV RAYLEIGH! WAVES CAUSED BY UL•DERGROUND DETONATIONS
M. 1ath

Seismological Institute
Uppsala
Sweden

and

S. Burman
Counc4.L of Scientific and Industrial Research

New Delhi
India

There are increasing attempts to operation to get a general indication
apply Walsh functions to oommunioa- of the spectral nature of the signal.
tion etgineering and other fields.
This paper describes the results of XXTRODUCTION
Walsh and Fourier spectra of the
vertical components of Rayleigh waves There in an upsurge of interest
at a set of stations, viz., Oulu, presently in engineering circles on
Uppsala, Copenhagen and Stuttgart, the use of functions, such as the
due to the underground nuclear Walsh functions, with orthogonal sern-
explosion at Iovaya Szonle a on Oct. *a other than the traditional sine-
27, 1966. It was found that both the cosine series. The present paper
Fourier and the Walsh spectra at all compares the Walsh and the trigono-
these stations have interference metric Fourier power spectra of a set
peaks and troughs as well as sharp of Rayleigh waves ( using vertical
cutoffs at both the low and high components ) from the underground
frequency ends. Most of the energies nuclear explosion on Oct. 27, 1966 by
in these stations are concentrated in the Russians at Novaya Ssemlya
the 0.06 - 0.2 ops ( Fourier ) and recorded at several stations, viz.,
0.08 - 0.2 spa ( Walsh ) range. An Oulu, Uppsala, Copenhagen and Stutt-
interesting feature in the Walsh case ga:t lying on or very near the groat
is that the spectral heights can be circle path through the explosion site
put into two groups, M, the primary and the stations.
one at the lower sequency range and
N, the secondary one at tbe higher The Walsh function set, being a
end, Most of the energy iv in the M binary one, is directly suitable
group in case of Walsh spectrum. with digital computers and digital

circuitry. In contrast, when the
In both cases, for the farther Fourier transformation by digital

stations the spectra shifts toward computer as the decoding process is
the lower ti-•zuency end. The physical considered, it is known that it falls
reason may be du4 to the propagation short of being ideal because the
and/or to the gradual lengthening of trigonometric functions sine and
the wave period. Because of the cosine involved in it are not naturally
coaplicacy in the mathematical formu- ti"ted to the essentially binary
lation of arithmetical convolution opezations of digital computers.
in case of Walsh transform, it is Another advantage of uAing Walsh
difficult to got true ground motion function set is that it Is a somewhat
spectra from the recordings. Since, natural describer of pulse or pulse-

T4 however, the Walsh spectrum obtain@4 like signals ( Brown, 1970); that
does characterise the signal, it may makes it suitable for studying pulse-
have some use an a simply performed like seismic signals such as the P

waves.
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Esrauth ( 1968, Bquation 2 ) has
given the Walsh-Fourier series I-I

expansion of a function F(x) defined X(k) = (YN)2X(J)val(kj)
in the interval -Y2<x <Y2, as Jto ... (3)

P(x).. a(O).al(Oz) + where, N 2P ; p - , 2, # ;
00a(i)oa(ix) k - 0, 12, .. , N-1 and llk,,)

is the N-length discrete Walsh
function of order k. Similarly, X(J)
asy be expressed as the inverse

where, finite Walsh transform of the
a(O) sequence 1(k),

&(O) fPx)•al(O,x)dx N-t

~'X(J) - YR(k)val(k,J)f I" (x)dx M-1
a0(i�) =-,,�a 1(k)al (J,k)ac(i) ='/P•(x)oal(i,x)dx k.o ... (4)

Kennett's paper ( 1970a ) contains
Sas(i) fF(x)"•(,x)dx the Fortran program for computingi(,) the Past Walsh transform for N = 128

"'" i.e., for p = 7. This progra

Squaring the Walsh-Fourier series calculates the expression under the
expansion t eqn. i ) and integrating summation sign in eqn. 3 namely,

over the interv of orthogonality, XX(j)wal(kJ)I -•-Y2 4 x < Y2, one gets, o

rV.2 and to get the Walsh transform the
fP2(~dx YT F(t/~dtvalues are to be divided by 5. The

-y."y. factor YN is not of significance %s
in the case of the Fourier transfoy'Z

-2 ()+ as one may also define the forward
Walsh transform as

[&C2(i) + N-I

(2) X(k) - 2:X(J)wal(kj)

where, x - t/T, T is the time unit and the inverse Walsh transform as
used to norualise the time variable
t in cal(i,x) and sal(i,x). The left X(3) - (YN) i(k)val(kj)
side of eqn. 2 is interpreted as the k-oaverae poer o a sinal ix).For application to our seismoao s

avera ethe value of p was taken to be 9. The

a2(O) and a 0 2(i)+as 2 (i) are then actual number of data points were

interpretsd a. the power spectrum of less than N p 512 ( beintsv 2 raised to
the discrete variable i. the power 9 )points, 3o that the

requisite number of zeros were added
For the purpose of computation the at the end of data to make the total

Finite Walsh Transform theory and the number of points equal 512. Kennett's
Fast Walsh Transform algorithm program was broken up into
developed by Kennett ( 1970a, 1970b ) constituent blocks and by the addition
were used. There exists a convenient of similar blocks wms extended for
representation of the discrete Walsh N = 29 data points. The extonded
functions wal(k,j) in teors of the program was tested for F(x) w 1O/x
binary representation of the indices; and the result was found to be
the N-length discrete Walsh functions identical to that given by him
may be defined for N - 2 P by a ( 1970a ). A second test was
continued product representation euoeessfutly carried out by calculating

Kennett, 1970a, 1970b ) the Walsh transform of a sine wavewith two cycles.
For an N-length real sequence

X(3) where .a 0 , 2, 29 ... -X, .
the finite Walsh tranaform is defined
WC For our work, part of the Rayleigh

49



wave train from the vertical component amplitude spectra at Copenhagen is
of the eismonsteors due to tho complicated by the fact that a
underground nuclear explosion at different instrument ( Galitzin )
Novays Ssaclya on October 27, 1966 with different response oharaoteris-
were taken. The stations selected tics !me used. Besideo, the sp4ctral
were Oulu, Uppsala, Copenhagen and response at Copenhagen and Stuttgart
Stuttgart -- all lying nearly on a were influenced by other factore,
great circle passing through the such an, (a) deviations from the
explosion site and the stations. The great circle path, (b) departure
seismogram trace amplitudes were from lateral homogeneity, and (0)
taken and the instrument characterls- station factor. The peak A, at the
tics and the processing of data prior low-frequency cutoff region, ha.
to the computer analysis are shifted following the previous
described in a separate paper ( Bith observation, at Stuttgart in compa-
and Burman, unpublished ). It may be risen to that at Uppeala.
mentioned that the rate of digitisa-
tion was taken to be one sample per The Walsh -Harauth power spectra
second and a sampled-data Butterworth at all these four stations have
filter ( 3 see - 133 seo ) was used interference peaks and troughs as
to out-off frequencies both from the well as sharp cutoffs at both low
higher and lower sidea. and high frequency ends a* in the

case of the Fourier ones. Most of the
Figure i shows a filtered Rayleigh energy is concentrated in the range

wave train recorded by the vertical 0.08-0.2 zps, and in case of the
coaponent Press-Ewing seismometer at Fourier power spectra it is approxi-
Uppsala. Figures 2, 3, 4, and 5 mately the range 0.08-0.2 cps. Ofdepict the Fourier power spectra of great interest in those Walsh spectra

Ryleigh waves recorded at Oulu, is the observition that the spectral
Uppsala, Copenhagen and Stuttgart heights can be put in two groups,
respectively. Figures 6, 7, 8 and 9 M, the primary at the lower sequency
indicate the Walsh power spectra at range, and N, the secondary at the
those stations taken in the same higher end. Most of the energy is in
order as the Fourier spectra. the M group. For compaison it is

interesting to study the Fourier and
All the Fourier power spectra are Walsh spectra due to a damped

marked by sharp cutoff at both ends monochromatic sinusoidal wave
of the frequency scale, and also ( Campanella & Robinson, 1970
these are characterized by sharp which is shown in Figure 10.. The
amplitude upswings and drops, probably Fourier amplitude spectrum shows
due to multipath interference and only one maxima while the Walsh one
other effects. The spectra at Oulu indicates two maxima corresponding
and Uppsala lying on a homogeneous to the two groups N and N; the N
geologic formation can more easily be group containing more energy compared
correlated. An interesting observa- to the N one. Similarly, the M groups
tion is the shift in the spectrum at in the Walsh spectra of the
Uppsala towards the low-frequency seismograas represent greater energy
end such as the shift ia the peak than the N ones do.
identified in both by the letter A.
This shift may be due to ths propaga- Kennett ( personal communication )
tion and/or to the gradual lengthen- has given an explanation of the
ing of wave period. It is of interest effects leading to the splitting of
to note that the energy content at the Walsh power spectrum into M, N
higher frequencies ( from about 0.2 peaks. From the logical analog of
to 0.3 cps ) at Uppsala is more than the Wiener - Xhinchine thooren
that at Oulu. Although the reason is ( Kennett, 1970a, 1970b ) the Walsh
not presently clear, it is not due to ower spectrum is the finite Walsh
any background noise. Mecroseosmic transform of the logical auto-
spectra Just before the arrival of correlation given by
the explosion energy at Uppsala were N--
computed and it is insignificant; Ln() (YN) •X(J 9)
this is also borne out by visual
examination of the record.

The teprfthe trac where 9 indicates addition module 2.SThe interpretation of h re
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Even for large J because of the Walsh transform i(k) and another
nature of the addition nodule 2 some sequence Y(J) and its Walsh transform
Ln(J), according to Kennett, will Y(k), such that,
onl be a measure of short raacge
correlation and so in(j) will be a X(J) * i(k) and Y(J) . Y(k)
mixture of samples of long and short ... (6)
range correlation in the record- which
will require higher order Walsh tLe convolution of these two
components to describe then - the I sequences X(J) and Y(J) is defined
saries. For smaller j Kennett thinks by the relation,
this problem willnot be so acute andthe N series will come from the 1-3
smoothed out logical autocorrelation Zn(s) - (YN)Y X(r)Y(s-r)
sequence. h=0

where,
Comparison of Walsh speotra at Y(a) = O,

different stations also as in the 0
previous case show the shift towards if m<0, and a 0, 1, ... , N-I.
low frequency end of the spectra for ... (7)
the fPrther stations. The spectral
peaks J, K, and L in the region N Thus,
at Uppsala show shifts towards the
low frequency end compared to the N-I

corresponding peaks at Oulu. Correla- Zn(8) - (YN) YX(r).
tion of the irividual peaks become
difficult in case of Copenhagen both N-1 kak -A
because of (e) different instrument ks-r)]
used, (b) station factor, the nature k=o
of the basement rock on which the N-
instrument rests, and (c) departure (YN) T Y(k).
from lateral homogeneity and for k=o
Stuttgart because of the last two N-r
factors (b) and (c). In conformity .1
to the region M the peak power values r=o -
at P, R, and S in the region N at M-1 N-1 N-1

Uppsala indicate, compared to those (YN) _Y(k)2- •X(kl).
at Oulu, a shift towards the zero V=o r1o INO
frequency end. Comparison with the
other two stations becomes difficult wa(k, r)wal(k, s-r)

because of the uncertainty in
identifying the corresponding peaks. ... (8)

COCLUDING N As seen from Equation (8) the
theoretical complication arises from

In case of the Fourier trace the lack of a known relation between
amplitude spectra it is a straight- the two functions
forward procedure to get the true
ground notion spectrum by correcting wal(k 1 r) and wal(ks-r)
for the response characteristics of
the instrument. This follows from vhe The same consideration prevents any
well-known relation that the Fourier simple expression for autocorrelation
transform of the convolution of two or crosscorrelation in terms of the
signals is equal tj the product of Walsh transform coefficients.
the Fourier transforma of the two
signalu. Such a simple relationship On the other hand, given X(J)
between convolution and the product I(k), Y(J) -.- Y(k) the logical or
of Walsh transforms of two sequences dyadic convolution I Gibbs, unpublish-
does not exist ( see equation 8 ed report, 1968, Kennett, 1970b ) is
below, Kennett, 1970b ) making it defined as,
difficult to remove the effect of the N-i
instrument oharaoteristice. ZI(S) = (YN) 2x(r)Y(s( r)r... (9)

Given a sequence X(J) aed its Symbolically, it is denoted by,
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of radar signals, Harmuth ( personalZ1 - • Tcommunication 11 has pointed out

.(10) another interesting possible applica-
tion of Walsh functions to seismology

Now, v.. and seismic prospecting. A standard

ZI(e) - (YN)ZX(r)Y(s (r) way to detect radar return signals is

)r ) )by means of the autcoorrelation
ryo function. Fnr long signals the

- (YN) YX(r). autocorrelation function has a peak
value when the reflected signal and ar.e locally produced signal of the same

_ ."Vklwalk, s (shape have no time shift betweenk~ a r)each other. However, the uidelobesoccur for certain time shifts. If only
N--i ..•.-' one radar target is present this

- (YN) Y(k) [2X(r). causes no problem. If the signal is
k-o r-o reflected by several targets it is

difficult to decide whether a certain
wal(k,r)wal(k,s)] peak in the autocorrelation function

is the main peak from a second,
third, etc. target or a sidelobe of
the first target. By means of Walsh= 2L(k)Y(k)wal(ks) functions one can completely

•(¶¶) eliminate, according to Harmuth, the
sidelobes and thus obtain a definite

Thus, the logical convolution is the resolution of several targets that
finite Walsh transform of the product are close together. He envisions thatof the Walsh transforms of two dthe same technique should be

sequences; symbolically, successful in the seismic problem
where a signal is multiplied

X 0 Y•-0X. reflected ( thereby giving severalreturn signals ) through several

( closely spaced layers in the earth.
A close similarity is thus seen in
the mathematical structure between
the arithmetical convolution in case ACKNOWLEDGMEMNT
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WALSH DOMAIN PROCESSING CF MARINE SEISMIC DATA

Chi-hau Chen

Southeastern Massachusetts University
North Dartmouth, Massachusetts 02747

Introduction for the positive integer n, wher2 Eq. (20 has
n factors. For n - 3,

The enormous amount of marine seismic data
makes it necessary to process the data with a H8 = (H2 ® 12@ 12)(12® H2 @ 12)
high speed digital computer. Fast Walsh trans-
form (FWT) has been used along with the fast (12 12t® H2)
Fourier transform (FFT) in digital processing
oi marine seismic data. The digitized seismic which can be described by the flow chart in
data processed include two sets of seismic re- Fig. 1. Figure 1 can be implemented exactly in
flection profiler data from the Woods Hole the same manner as the fast Fourier transform
Oceanographic Institution and one set of seismic program except replacing the multiplications
refraction data from the Scripps Institution of in FFT with additions or subtractions. The
Oceanography. The objectives of the study are dots at stages Al, A2 , A3 represent the addi-
two-fold: (1) to filter the marin. seismic tion except that the subtraction is specified
data in order to obtain a good estimate of the by a minus sign above a line. The results of
time of occurrence for the primary and the each stage can be stored "in place" in the
secondary reflections and the first refracted original vector xN. This operation performs
arrivals, and (2) to raconstruct the seismogram the Hadamard multiplication upon XN. The
from the filtered data xvr a better interpreta- resulting Hadamard transforms must be un-
tion of the ocean subbottom structure. In our scrambled according to the number of sign
preliminary study using IBM 360 Model 40 com- changes in the Hadamard row vectors, the so
puter (presently limited to the 64K bytes in called sequency order. The inverse Walsh trans-
memory), FWT has demonstrated two distinct form is an identical operation as the Walsh
advantages over FFT: (1) FWT requires only one- transform. A detailed listing of computer
fourth of the computation time as compared with programs is described in Ref. 3. Presently on
FF1 with the same number of data points, and our computer facility the FWT program can per-
(2) the simple linear Walsh filtering can be form transformation up to 4096 samples as
very effective. As P. result, FWT performs cumpared with 2048 samples in using the FFT
better than FFT in reconstructing the marine program.
seismogram. In this paper, the computational A, At A3aspects of Walsh domain processii.g will be w
discussed and some preliminary computer results
pre-2nted. Detailed results of Fourier domain
processing have been reported in Ref. 1. _W?

Development of the kWr Algorithm ._

Let yN be the Hadamard transform of the
data vector xN with N data points. Then W*

N V9 , HxN (1) 1 1-

where l/S is a normalizing factor and HN is -

the Hadamard matrix. The Walsh transform,
denoted as wN, of the vector xN is obtained

by rearranging all components of the vector -, I
yN according to the sequency order. Eq. (1)
requires N(N-l) additions. If N is a power WS
of 2, N - 2 n, fast algorithms have been con- Direction of Computation -

sidered. A somewhat different approach is F
used in this paper. Let @ be the Kronecker Fig. 1 Flow Chart of an
product. Rushforth 12] has shown that the Eight-Point lW
Hardamard matrix, in general, can be written
as

H2n - (H20 12 ® Id2 Computer ResultsI

(12 ® H2  12 1 12) The results presented in this paper are
based on the second set of Woods Hole seismic

(12 1 12 ' H2) (2) data taken in Java sea, June 1971. The sampling
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rate is 500 Hz. Each shot has 2048 data points time for processing 60 combined shots as shown
including the explosion which indicites the in Fig. 7 is 11 minutes and 48 seconds. This
starting time. Figure 2 is a plot of shot 522. includes time for tape reading, compiling (3
The primary reflection which occurs at 0.33 minutes) and computation. To do the same job
second after the explosion provides information using FFT requires at least 50 mainutes. Fig. 7
on the water depth. There are a number of indicates the rise in the ocean bottom as the
multiple reflections which should be removed distance increases. The multiple reflection is
or suppressed. Walsh domain linear filtering, particularly evident as the water depth de-
logexponentiol filtering, and nonlinear filter- creases. Finally the FFT magnitude and the FWT
ing as described by Pratt [4] have been applied of shot 522 are shown in Figs. 8 and 9 respec-
to a number of shots. By taking the Walsh tively.
transform of shot 522 and then the inverse

transform of the first half of the transformed Concluding Remarks
samples, the result of the linear filtering
is shown in Fig. 3. In Fig. 2, the ratio of Walsh transform has provided us with an
the second peak to the first peak is 0.44. important computational metnod in the digital
This ratio is improved to 0.406 in Fig. 3. processing of marine seismic data. The improve-

For lcgexp filtering of shot 522 as shown in mcnt -f FWT over FFT in both computation time
Fig. 4, the ratio is 0.42. Nonlinear filter- and it..oe reduction is particularly significait
ing introduces many high sequenzy components, in seismic study. Presently, additional Walsh
Nonlinear filtering of shot 522 followed by filtering techniques and deconvolution using
low-pass filtering is shown in Fig. 5. One Walsh function are being examined.
way to suppress the multiple reflections is to
bring each sample to a power 1 + e, where c is Ackný.wledgment
a small positive number, and then filter the
data. For a power of 1.2, the ratio af the The author would like to thank Dr. G. F.
second to the first peak of the linearly Anderson, Associate D~rector of SHU Research
filtered data was found to be 0.315. The dis- Foundation, for his continued support on this
advantage of this method is the suppression of work and Ronald Boucher, and electrical epgi-useful but low-amplitude data. Several shots neeririg student, for his programming help.

3f data can be combined by simple averaging to
improve the signal-to-noise ratio. Linear References
filtering of the average of shots 520, 521 and
522 is shown in Fig. 6. The ratio of the 1. C.H. Chen, '*Digital Processing of Marine
second to the first peak is improved to 0.307. Seismic Data", report submitted to SHU
A portion of the marine seismogram is recon- Research Foundation, July 1971.
structtd as shown in Fig. 7. Starting from
shot 423, every three shots are combined by 2. C.K. Rushforth, "Fast Fourder-Hadamard

simple averaging and then linearly filtered. Decoding of Orthogonal Codes", Information

For each combined shot, the Walsh transform and Control, Vol. 15, pp.33-37, 1967.

of tha first 1024 samples is taken. This 3. C.H. Chen, "Listing of Major Computer
operation requires 7 seconds of computer time. Programs", supplement to Lhe report, Ref.l,
The inverse transform of the first 128 trans- October 1972.
formed samples is then obtained. The filtered
sample is quantized into 10 levels with the 4. W.K. Pratt, "Linear and Nonlinear Filter-
magnitude increasing from > ivel 0 to level 9. ing in the y alsh Domain", Proceedings of

1971 Symposium on Applications of Walsp
Each vertical line of Fig. 7 corresponds to
one combined snot with each filtered sample Functions, WashingtoL, D.C., pp. 38-42,

represented by a level number (level 0 is not April 1971.

printed). The time difference between every
two adjacent samples !a 15.6 msec. The computer

I~I, ,

Fig. 2 A Plot of Shot 522
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Fig. 3 Linear Filtering of Shot 522

FIg. 4 Logexp ?
Filtering of ShotI 522

V 34

Fig. 6 Linear Filtering of the Average
of Shots 520, 521, 522

IS66

ju.'A



I

I

- - - - - - - - - - - - - - --- --'' ' -i - - - - -" -- - -_ '

W•'- -----. : Fig. 7 ReconstructedS• - , -[ ; •;" -- . .. _: :" marine Seismogram

(including shots
_ 423 to 602)

I
II

Pstance

9,e9~ 10

II

Fig. 8 Amplitude Spectrum

of Shot 522 (obtained
by using FFT)

ZPS/2 -

3070 No 49 23o 270 310 350

Fig. 9 A Major Portion of the Walsh Transform for Shot 522.
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A DIGITAL INSTRUMIENT FOR TIlE INVERSE WALSH TRANSFORM
Mr. W.0. Brown, M.lng. Dr. A.R. Elliott, P.Eng.
Bell-Northern Research Communications Research Lab.& the

OTTAWA, Canada Department of Electrical Engineering
McMaster University

HAMILTON, Canada

Abstract

This paper describes the design, implement- where C(n) is the coefficient of the nth W~alsh
ation, and test results of a unique, inexpen- function WAL(n,O). Assuming an interval of
sive, all digital device for performing the orthogonality equal to unity, any specific
inverse lialsh or Hadamard transform. It is coefficient C(j) may be determined from the
suitable for operation as a programmable wave- following relationship.
form synthe-izer, and ultimately as a speech (I
synthesizer. 'fhe inverse transform is CO) = jo f(t)WAL(0,O)dO (2)
performce using dominant term synthesis rather
ti'an ising a full set of coefficient values. Thus the coefficients can be evalvatcd by

Introduction equation (2), and the original waveform f(t)
reconstructed by applying equation (1).

1he results of various techniques for speech For real-time anal)'-is of signals,
synthesis presented by Bo-wetter (1], and the integral on the righlt side of equation L2
Campanella and Robinson 12] have shokn that can be approximated by a finite series bydominant term synthesis of speech from the sampling the signal f(t) a finite number of
halsh domain ias possible, and with fairly times. If the signal is sampled N times during
good quality. 1he orthogonal transform showed the interval 0 < 0 1 then a coefficient C(j)
promise in reducing the bit-rate necessary can be approximated by the follo:,inp equation:
for intelligible speech communication over the N-1

usual PC,. technique. These preliminarv results C(i) • " " fkI'hlJ o) (3)
prompted this study into an instrument which N k
iould acce, as an input up to eight dominant th
terms in either the W'alsh or Hladamard domains, hhere f is the value of f(t) at the k amp-
and then automatically resynthesize ti,e iave- ling instant, andtIAL(j, O) is the value of
form described by the coefficients. The device WAL(j,0) at the k sampling instant. "llis leads
uses an eight-%,ord data storage register (each to the discrete inverse transform given bv
iord is 13 bits in length) , a siingle "halsh N_1
or HIadamard" function generator, one 6-bit f(t) I C(n)WAL(n,O) (1)
rate multiplier, and an eight-bit binary up- n=O
doun counter coupled to a final eight-bit Previous %,ork (1,2) has shon that not all
1/A converter. It is basically a special- N coefficients need by used in the restriucturing
purpose computer, desig~ned to be directly of f(t) if a reasonable error can be tolerated.
coupled tc almost any general purpose computer, The most dominant terms tend to contain the
or can be controlld manually or from R~ead- major information.For speech iaveforms, in
Only memories, and designed to act as a function particular, dominant term synthesis is a prom-
generator. ising means of data compression. Data compres-

Theory sion is carried out by choosing only the N most
dominant teras (in absolute value) from the
complete set of N terms used in a discrete

being orthonorral, the W'alsh and Hadamard qWalsh transform. Tile final generation alorithm
functions can be used for a series expansion tht, becomes:.
of a signal (3]. Ihe functions are orthonormal 1
over an interval of time 0 and have the value f(t) I • Ck WAL(k,0) 6)
+1 or -1. Figure 1 demonstrates the relation n=l n
betueen the Hladamard and Walsh numbering. The
halsh series are numbered according to the 1,hereCk is the n most domnant coefficient

"sequency" of the function. The scquency is selecteun from a set of the first N coefficients.
related to the number of zero crossings .1thin Tile value of :1 must be chosen, based on suitablc6; the higher the sequency, the more zero- criteria, to obtain the degree of accuracy
crossings (3]. Though the instrument described desired, as must N.
here can perform either the IHadamard or Walsh
inverse transform, only the lalsh series The number N %,as chosen to be 64. 1bis
representation will be used for most of the i.s a figure based on published results of
explanations to simplify the presentation, several authors (1,2) which seemed to indicate

than a set of 64 terms might contain tie most
The halsh Series expansion of a function information. (Generally, it was assumed that

f(t) is defined as: tthe information-bea ing terms are tne lo,ýer-
(1)rdered sequency terms). The update frequency

f(t) == 6 (crspdntot tieitvl)is
n-0O6 (corresponding to the time interval €)is a



cuvmpromise between the accuracy of tile generated bined. If the Walsh function and the coefficient
wavaform, and the number of coofficiins that have the same sign, then the absolhte value of
must be produced in a given time interval. tile coefficient can be added directly to the
Because the Instrument was to be used ultimatoly partial sum in the binary adder. If the signs
as a speech synthesizer, an update rate of S are different, the absolute value of the co-
milliseconds was chosen as a suitable minimum efficient should be subtracted from the partial
update rate. Provision is made in the instru- sum in the adder. Figure 4 is likely circuit
ment to vary this from about 4 milliseconds to for this implementation.
over 19 hours by simply varying the fundamental
clock frequency. Ilowevor, the complexity of the adder

circuitry has increased substantially from the
Tile next parameter to be evaluated was ,1. first system. The circuit presented in Fig. S

From previous work. both at Mchaster [4] and is the novel circuit actually used to produce
by BoBwetter (11, a value of 8 for Hi was deemed a s.mpler system thnn that of Fig. 4. The
suitable. Finally, the range of the amplitude technique used converts the absolute value of
of the coefficients was chosen. This effect- the coefficients into a series of pulses. For
ivoly quantizes the Ck to a predetermined instance, if Ckn cquals 37, then thirty-seven
accuracy. '1he system Ilrosented hero uses only pulses would be produced. These pulses are
the eight most dominant terms within an then simply counted in a binary up-down -ounter.
analyzed field of 64 Walsh coefficients. With- The direction of the count is determined by
in this set of tihe eight most dominant terms, the Walsh function generator, and the sign of
the ratio of the absolute value of the most the coefficient. By using such a system, the
dominant to the least dominant coefficient complex adder-subtracter with memory is replaced
(ignoring any zero-valued coefficients) for by a binary up-down counter, which inherently
some basic waveforms was determined (Fig. 2). contains the required memory.
As can be seen in Figure 2 the maximum ratio
was less than 50:1. Based on this anulysis, OpEration
and knowing that speech is reasonably i'el.
s,-othesizcd with an amplitude error of up to A block diagrm of the final apparatus is
2 or 3 percent, a ratio of 64 to 1 was chosen given in Fig. 6. The circuit that converts
for the coefficients. This produces a 7-bit the absolute value of the coefficients into a
designation for the coefficient amplitude string of pulses is the rate-multiplicr [5].
allowing for the sign bit. The coefficient Basically, the rate multiplier is a device
of the jth .arm can have any integral value having a clock input, a series of r control
from -63 to *63. lines, and an output. A binary number (Ck

Is placed on tile control lines, and a clock
ucsi.n signal of frequency fin Is placed on the clock

input. The output consists of a series of
In order to perform the mathematics of pulses having a frequency fout such that:

eluation (5), the final system must be capable
of handling prop.rammable Walsh function inputs, f oul fin' (a/b) (6)
multiplying these by their coefficients, and
then adding all tile terms together. Assuming. where a is the hinarv number on the r controj
that a programmable Walsh function generator lines, and b - 2 r "
exists, the system shown in Fig. 3 will gencr-
ate the required Walsh series reconstruction. The Walsh function generator used is one
Lach of the eight Walsh functions are multiplied proposed by Siemens and Kitai [61, and modified
by their coefficients, and the results summed to also generate Hbadamnrd functions.
in a binaLy adder. 'Tle sum is converted to
analog form by a flimal D/A convertor. The The eight input .;toragc registers are
process Is repeated each time any of the Wialsh loaded sequentially, either directly from a
functions or coefficients changes ,rslue. T'he computer, or manually through the use of p:ncl
coefficients Ckn and the Walsh number kn are switches. A multiplexer under external control
usually periodically tupdated by the driving is used to determine which register is being
computer. loaded with the data. In this manner, data can

be loaded independently while the instrument
This system is not Very efficient in terms is performing the inverse trainiform from the

of hardware compiesity, in tlht eoiht distinct previous Aet of data.
Walsh function generators arc required, A
multiplexing system using one Walsh function In order to facilitate the handling of'
generator, and one multiplier to sequentially positive and negativu numbers, it was necessary
produce tile rcsptired terms for the sum is sim- to have the digital-to-analog convertur centered
pier. However, the binary adder now needs a In its range for a zero input signal. This was
memory element in it to store the partial stums done by presetting the binary up-down counter
as each additional term is being calculated, to half-scale. Internally, oin extra 4-bit
Since the absolute value of the ianlsh function co'untor was couplec to tile basic 8-bit tip-down
is always unity, instead of the IValsh function couteafr to allow expansion to a 10-bit 1)/A
being multiplied by Its coefficient before converter if required, and to act as a scratch
adding, the Walsh function value (tl) and the pad for lntormmdlatc calculations in case of
sign of the coefficient can be logically Com- overflow. Overflow does not occur, however,
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if scaling of the initial coefficicnt values Conclusions
is such that th2 sum of the absolute value of
all the coefficients' amplitude uscd is less The instrument described above has bees.
than 127. built, and is presently being interfaced to

a PIDP-8/L computer for continuing rcsearch in
The input word for each rtoragc register speech anl waveform synthesis u.ider cuonputer

is orgaoized as shown in Fig. 7. The 13-b.t control. The final system has a mayimum
word required for each dominant coefficient frequency response of .about 8,000 Hiz., and a
inciudes a six-bit portion for the Walsh function ninimum of 1.5 x 10-5 liz.
number, ard a 7-bit portion for the coefficient
amplitude (one bit being a sign bit). Its piactical t'ses include a low-frequencv

function generator (especially for ramps,
Results triangles, and pulses); or as a special 7'urpose

function generator, which can be proorammed
The final instrume:.t is shown in Fig. 8, with a r2ad-only memory; or (as a long term

while typical outputs are shown in Fig. 9. goal) a usetý! speech synthesizer for couplingMhe outputs in Pig. 9 were taken directly from to a computer.
• ithe D/A con-,,rter, and shown the obvious com-
•" !putation frequency. The signals synthesized References

were periodic, and hence there is no change

when the coefficient values are updated every 1. r. Bbowetter, "Analog Sequency Analysis and
.'; milli'econds. For non-periodic waves, a Synthesis nf Voice Signals", Proc. Symp. Appl.
change should also appear torrtsponding to a W'alsh Functions, I;ashington, 1079, pp. 220-229.
frequency of alout 200 liz. Filters should
prevent much of this frequency component corn- 2. S.J. Campanella, G.S. Robinson, "Digital
putation frequency c6apornent (12.8 Kl;z.) from Sequency Decomposition of Voice Signals", Proc.
appearing at the final outnut. Syrup. %pPi 1. W\alsh Functions, Washington, 1970,

pp. 23(0-237.
An error analysis shows th-.L errors occur

mainly it, two ways. Fi-it , theice are ihath- 3. II.F. Ilarmuth, "Transmission of Informationematical errors arisfig p'rom using a trnicated by Orth'ional Functions", Springer-Jerlag,

ceries, f;om quantizing the criginai signal .T,"'-Yor/ik-/l-e-:RTifei•!n, 1970.
before obtaininp the coefficient values, and
from quantizing the coefficient values to 7 bits. 4. Y.Y. Shum, A.R. Elliott, "Speech Analysis
Se'ondly, there are machine errors, namely in and Synthesis Using the Hadamard Transform",
the D/A converter, the finite transfer time Proc. Sym,,. Appl. Walsh Functions, 1972,
from the up-down counter to the 1)/A converter, H'ashintgton, D.C.
the calculation time (basically 1/64 of the time
0) before a new valze is presented to the D/A S. A.R. Elliott, "t Iligh Speed Binary Rate
converter, and the reset tire of the counter Multiplier", cc. IEEE, Vol. 59, No. 8,
before performing the next calculation. lachinc pp. 1256-1258, Aeg., 1971.
errors ir. the amplitude of the outptit) are
•1 maximnum of 0.8%, uhile q;, tizinp of tne 6, It. Kitai, K. Siemens, "A Htazard-Free W1lsh
cocfficient amp)' .tudes produces an error of Function Generator", Trans. Inst. and Mcasure-
-about 1.6% maximum. The main soiirce of error me|it, Feb. 1972, pp. 80-81.
-"pp(ars to be in the finit. length of the s5r-
ies, and the coefficient truncation. Waleh

'lhe error in the sine wave shown in Fi.i. 9 Niaiooring Numbering
is about 2%, thile the discontinuous ramp and
triangle prnduccd errors of less than l%." 'le
pulse waneforms have abotmc 0.2% error, mainly 0 0
due to machine limitations.

I.a veforr :-Most Dorn. Least Dom. flatio
Coeff. (Abs. Non-zero
Valuca Coeff. (Abs. 3 -- J.- J -S',alue)

Sine 63 1.3 48.5 - _ _[

Triangle ,48 3 16 - 6

Ramp 32 1 32

Speech %I1 36 3.6

Fig. 2: Ratio of halsh Coefficients foZ
Sme70 F.: alsh-tiadamard Relation l Ordcring

""-. -.
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GROUP HULTIPLF(IIF By CONCATAlATION OF 1r3-LIlR _CpD DIVISID:N SrTES

by

J.A. Gordon, M.A.,
1. Barrett, B.SO., a.D, C.Ung., F.I.E.E.

The Hatfield Polytechnic,

Hatfield, Hertfordshire, U.K.

re-allsca';cs the originL t: mslots to the
characters. The nett result of passing

!urther work on a system of multiplexing in through the distribution and rediz tribution
ahich binary-modulated ..alsh functions are circuits is a delay. The dtmultiplexer -
curL.Lod an limited, individual channel data rroper cos3iats of a asift reri3ter with normal
boing recovered by correla'.ai, is prest . 3d. and complimentary outputs, cml a set of majorify
In particular, a method of extonding the system -ate• me for each ch]anel. The jth input to
is ind'*,atod, in which multiplexers are the iah majority gate Is connected ýo the
concatonateos normal output of the joh register stage it the

Jtth character of the ith Jaluh function of the
Introduction carriexr set is a logicsC 1, and to thm oomp-

limentary output otherwiso. Ragisttr stages
'The normal method cf multiple-ina digital are measured !ro. the beck.

rignals, time division, is inefficient if the
load factor .s variable. This is because when The outputs of these gates are then hei• in
come channels are not in use, capacity is being bistable ci-uits which read the sajority gates
wasted. Bhquiries indicate that typical mean at the instcnt the received frame fills the
load factors (mean/peak) are in the region of register, ac determined by the synch circuitry.
20 to 35 percent. Since Post systems are
designed for peak capacity, this represents a Theoretical and experimental results for
signaficant wastage. Recently a system has the system are reproduced in fig. 2. An
been described in which the spare capacity is analysis of the system is presented in the
used to provide conatructive redundancy in such appendix. For the present we note that the
a way as to offer error-protection when the number of chaniels which may be usel depends
system is not fully loaded, and in particular upon the existence of a matrix, the rows of
to provide a tradeoff between the nunmber of which display a sigm-invariant correlation.
channels in use and the de-ree of erroe•- coefficient after being modulated, sun(ce and
protection offered. This sy,•tem, called threshold-limited. Uuch a matrix is the set
Correlation-.Rocovered ;Adaptive lajority of ":alsh funcsions .:a1 1(t) to ":'a1 (t) with the
.,ultiplexing (CRA0'::) is extensively discussed fiiit characte., in each suppressei, thet.) have
elsewhere (Refs. 1,2, 3) W •1 y - few details been called Truncated 'ialsh functions by the
will be included here, sincq the pu:;ase of authors. Computer searches indicate, and
this paper is to presen" tome theoretical Gough has shown (4' '-mat such matrices of
results for a concatenated version. Walsh functions do not ezi.;t for order 10 by 16

or greeter. The original sy-.tem (refs : ,2,3)A diagram of the system is shmn in fir. 1. used a 7 by 7 matrix, and a typical example of
, set of .alah carriers are modulated with a signal passing thrugh the sy.rtem is indicated
binary data in a set of modulo-2 gates. 'The in fig. 3.
.Jalsh carriers are in logical 1-0 form with 0
corresponding to the +1 and 1 to the -1 of the cýrasin& kz, Der of channel.c
normal form. A modulo-2 gate is thus eqc'ivasnt
to a multiplier. These modulated 'ialsh The obvious way of extonding the system,
functions are then passed to a majority gate namely by using a larger m-trix is thus not
which must be of the type which always forms a available. Other methoda i&ith have been
majority, no matter how many inputs are present. considrred incltude time shi-ing two or more

sumc systems TDB-wise in a longer wordlength,
Thc. output signal consists of the output which will of ciurse extend the number of

from this majority gate plus a synchronising channels but will not incrtcase the error-
signal, which overw-ites one of the timoslots protectiom.
of the Jalsh carriers.

It would seem a pity to have a syntem whose
The timeslots are then re-orderea in a ahitf feature is its ability to atdapt to a

circuit called the distributor. This takes redh-.qd luad by increasing the e'ror-pro+ection.
place just before transmission and has the if tais property could not be extended ahen the
effect of breaking up bursts of errors. At ;jstem is extended.
the demul~iplexer, a corresponding rcdistributr
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The only .. m.-ining method of interect is .,e have assumed that signal orrors are
thus concahen .tion, for which the output of one indepeo ent, and thus blocks of chartctere may
multiplexer is taken to be the input of a second be taken as independent with regard to the
multiplexor and so on. Thus each successive ýrobability of obtaining a susceptible error

demultiplexer 'sees' a lower error rate, and pattern. These blocks correspond to characters
itself reduces this rate. for each of the demultiplexers at the first

level, uzA thus statistical independence is
Figure 4 shows the general idea, and the maintained at the first level. Let the

notation employed, relationship between input error rate p' and
output error rate p" for the first level of

Numbering is arranged in the conceptual demultiplexing be given "y p"' = fl(p'), then we

order in tkiicli a signal passes through the may say that .

multiplexer, with the reverse numbering at the
demultiplexer, such that a demultiplexing P 'f!1 (f 2 (P))
stage ;'ith the same numbering as a given .
multiplexing stage perfozrs the inverse *• the relationwaps and are of the
operation to the latter. The first level of 1 f2
Multiplexing is performaed with the multiplexers
numbers (l,l),(l,2),...(l,n); the final stage f(p) = kpx and we kote that
of demultiplexing is carried out with
demultiplexers similurly numbered, and referred fl (f 2 (p)) # f 2 (f 1 (P))-
to herein as the first level of demultiplexing,
performing as it does the inverse operation to u.less the k's and the x*= are r.lated.
the first level of multiplexing. In a
similar way the second level of multiplexing is :ow the k's and x's are Ainctions of the
numbered 2. The kth input of the jt multi- number of channels in use at one Aime, and thus
plexer at the first level of this system is if all the multiplexors are identical, and all
labelled l,j,k. .,e tern this mode of the demultiplexers are ilentical, it makes a
connection of nultipleoers a concatenation. difference to the overall error perrormance

whether nI charnels are multiplexed at each
In the transmission path a device to first level riultiplemer of w:hich there are n2,

introduce independent errors is indicated, or vice versa. An example vill. make the
since &f will ae cxplained, -.e consider only foregoing clear. ;,tppoze that both multiplexer

the prooabilitT of a given charactet beinE in demultiplexer at both levels are of the 7 input
error, type as has been described elsewhere. Lit the

first level of ailti:lrexicn be carried out ,i'th
.; will use the ,irms 'srr-r rate' and all seven chnrnels in u:,e and the secoad using

'probability that a jiven ch.iracter is in three such nultiplexed inputs. The inrout/
-rror' as synonymous, as implied by Bernoulli's outjast error relationship for a fully loaded 7

hypothesis that the probability may te inferred c'.annl systea is f(p) = 2.2p, and for
by the average :ke. .,e asme that all channel sy,.em loaded uaith three channels
c',uracterz have the oame probabilit~y of being f(p) = 7.5P2. •hcse teais-1c are derived in

in error of p, inle-en ,ently of all other, the a) em'ixi Thus ue hzive fl(p) = 2.2p and
errors, this in tuxn iiplies tiat .ny tondelcy f2(p) = 7.5p which -ivos-
toards burs s of -rzo-s has ben aoiuntored by 2 2
for axample, reord-erin" the characters of the f1(f 2 (p)) = 2.2(7.5P) = 16.4pV
Ssignal in the time domain before trans:issi=,1n,
and per.orming the inverse operation alter If ho:ever the first level had used ozly three
trnnsmiasion. .fter the add•tion of crrors, channels per *vltiple-er ýn,] the second level
the error rate is p ".ixn O , l1. it ic shaon had u ed 7 irputs, the Pu-ie nnbr (namely 21)
(in the appendix and ref3. 1, 2 and 3) tha" for cham.els w;ouald }have bce- ncco:uiodated but iwe
small error retes, tiere exists a simple would have fl(p) = 7.5p and f 2 (P) = 2.2p .ivi•,t:
relationship f(p) between the signal error rate
p and the channal e.--or rate ? where P is the )2 2'(f() 7.5(2.2p2 35.9p'A

probability that there will te a discrepancy l (f 2 (p)) = 7
betieen the input charact'r into the multi-
pie:.er on a Aivan channel in a ,iven tiranlot, rvo r2
and the corresponding charactor from the If we let f•(p) kl. kx 2

""emuW.tiplexer. Thus P = f(p) = '2(P) 2

Let the cutpuw er'or rate in the rtream then we have C
S-.om the aeenltirlexer labelled 2 !second love.. Xx1 Xl2

of desultiplexer in thi, zen-e d6scribed fl(f2 (P)) = 1:(kp 1  klk% p
earlier) be giveen by pt error Then this
error rate is the inpu.t error rate into the

net(or :'irst) level of denultiploxing.V~I



k2lxl x2 xkpl2
ad f 2 (f(p)) = ) = '1 2 The error relation1i•i) for -20I is f(p) unity,thus if one of the multiplacers 1i TDM it is as

and we see that in general chess are not equal if there were no concatonotion.
since unleso either: The same reaults zre uosentedd Graphically

k = k2 or X -• X = I we have in ffi. 5.
1c~ 2  er~~ 2 =le~

k 2x 1he Authors would like to thank the Director,
:ignalz '."ccoewxch and Devolorjiunt ~Ntablinthmcnt,
under whose sponsorchip tio work ras carried

Theoe re-ultt are Lumiarised in table 1 ibr 'lhe out au a rosoarch ageoomont with the li[nictry
7 channel syotem. In this table the rows o eferene (Poouroeent "2ocutivo).
refer to the first level a-d the columns to the
occond level. In the fix. row and column are
included the ?J11 cave, fbr reference puriposos.

Table 1

Error rates for
concatenated system

2n TDM 7 chsns 3 chans cnan

2 14
TDM p 2.19p 1.5p 35p

7 channels 2.19p 2.19(2.19p) 2.19(7.5p2 ) 2.19(35p')

3 channels 7.5p2  7.5(2.19p) 2 7.5(7.5p2)2  7.3(35p) 4-)
1 channel 35p 4  35(2.19p) 35(7.5p2)4 35(35p 4)

2nd TDM 7 chaem 3 chans 1 chan

JDM p 2 .19p 7.5p2  35p

7 channels 2.19p 4.78p 16.4p2  76.6p 4

3 channels 7.5p2  35.9p2  421.9p4 9187.5p 8

1 channel 35p1 84l.1p 4  110 742.2p8  52 521 873.Op16
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is corsider a cat of code ords A such that n~ n e the niumber which oontribute negatively.
a!is the jth character in the ill codoword.

The number of characters in each codeword ic L To begin with we have 11 + n =L

and there are n codewords. Thus I is an n by
L matrix. Let aij. have the tire possible and in addition, by the choice of the partition

values t 1. Let *ý be a colum vectc of n fthe characters we have
components rch o f which ruay have one of the rp-n
twio values-i1. 3 will bsple the data r
vector. e!he vector 3 has its its jtll
component tho amn of the Jt! components of the Thus we get ~
codewords, each weiehted by the data

vetoe sign another vector whoma eorponeoito are '..e now consider two cases depending on ihether

th in fthose of the original vector. L is oveni or odd, (actually in the case to which
hecnltrm~umitted by the C.UA.. system o)

cicn siotsD3A
Teaddition of an orror to one of the n

lei,., den'i-tiplexer finds the correlation positively contributing chlr-:.cters will reduce
cooefficients of this signal 4ith each of theo n Pand incroaste n. by one, and thus reduce rj
cedextorda. T~he column vector oe such by two . .o may add errors until rj is rc-ducedcorrelation coefficients is given by to a ncgative nicaber, in iwhich case a channel

P = (* errr wll rs'.t. hc' nunib-r of errors which
may beso added is txr-lAn the addition of

and the co.- , rector ofrcvro1dt is one moer, namely -r(r-i'iL) errors, could it-ad to aI
giver, by th, i_-w of these correl.ation cno ro rvdn all thle signal errors
coe-.ficients: occur among the n iositively contributing

characters. We Pa'y that the channel is
U,=s-nio Is~siX~ sitscoptible to

It will be observed that the notation has bcon x = +1 )eros
chosen tuch that events which takte plac~e ,ri+1 ros

..erially such as tile transmitted signil, axe On %he assumption that the most likely sorce of
reprecented bj rou vectors, and simultaneous channel 'ýrrors is thr.t -;:hioh requires the least
events, -;uch as the input uf data, by column number of si~nal e Tom, namnely when exactly x
vectors, thus in all Qlaoso matrices, 'time' s-tpal errors occur in a zixenal such that the

*Goes horizontally. i channel is susceptible to x errors, we may
say that the probabil.lty thnt exactly x eriors

.a ie ene the c-olumn vector IR to be will occur a,-vn,- the n ppositively contribatinc
characters is

v~h,-re Dd!%g has as it ii th eomponent the data ~ ~ l.?~ (~
and eo vrweees. thuf ri J5 *. and the probability that an arbitraryj word isI

positive, 'ho recovered data ore the i channel susccelptible to x errors is ::y./2n on the Zivenis the name as that at the inpuxt, and Otere is channel. Then the most l.ikeoly source of errors
no error. a ha3 been called the e8Oroaiflrtne is a da~a vector of leart susceptibility.
vector' and r. the reassurance on the it- Let N be the nvvmbor of dat-a vectors of least
channel. Ifione character in the silfaal SuJe TlX

is dltorrd~ t*,o eassurunces on each chanroe.L will uceibilitj x min
ebance by ~2.

The probability of error in the i th channel isThua a reassurance of 2t+l 18 r. Guarantee civon by:
0of protection against t errors.

zj Let n be the numbor of characters in -x

sigi~al 7ý wh'ich contribute positively to rj and
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p %in~A (-nmi) In order to evaluate tioso formulae it is
= 2  necessary to have a table of reassurances for

all input data vectors. .'his informatior' is
best provided by conputation and the nett

where nmin = +(rmin+ L) and Xmin =(rmi + 1) result is that for the throe cases considered
(one, three and seven channels in use) we

and rmin is the leaat reassurance on the ith obtain the followin: results:

channel. Nimber of channels Channel error rato
in use

L even
7 2.19p

Here the number of errors to .,duce ri to 2
zero is vri provided they occur in the np 3 7.5P2

positively cortributing characters. * ..e assume
that the majority gate will be designed to 1 5p4
round upwards of downwards for 50-50 divisions,

and so half of these cases will lead to error.

Otherwise the argument is identical to the 1. GOrd(x, J.A., an. jxrrett, A. 'Correlation-
case for n odd. Recovered Adaptive .ajority .:ul~iploxing',

Proc.lI:., vol.118 nos 3/4 :;r/Apr 1971

" " inminm± pp417-422.

p (Z 2. Gordon, J.A., and rrett, A., 'Digital
majority iiultiplexing using Talsh A'nctiondt,

with nmnn j(rmin + L)Ixmin = +(rain + 1) Uashin.ton, April 1971.

and ra the ith 3. Gordon, J.A., and Jarrett, 1., 'On
sad is the least reassurance on thCoordinate .-ansformationo and Digital

channel. iajority I4ultiplexir,', 3:aposi-,= on .;alsh
lunctions, Fatficld Yolytechnic, June, 1971.

4. Gough, ..R., Private co'runication, to be
published.
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JESHSULTS OF' MUT,'I'P1)LEXING EXPEIJMENTS USING WALSII FVINCTIONS

Iby David 1. Diurst
G rumman Aerospace Coiroration

Abstract ceSsing of t-se (nlhflln.C('f(flcnt :15d COMa-
I)pession of sirx eillance p)hoto.t aphs, and nax iga-

An investigation was conducted to studv the usc tional ,angi ng usng, tlme-bhillt depeIcldent "pect a.
of Walsh functions as orthogonal carriers in both an- Multiplex systems a,'r, O0t teratest interest at this
alog anid digital multiplexers for several of rtuini- time. This paper deals with :n (, altiuation o0 ai pro-
man's el, ctronic dv~elOl)pnnt projects. An analog totypc Walsh function anlalo, multip)lex sv'Acil, aInd
mnultiplexeri, i'elying heaxily on tile usc of ilteg.ra-t,,Id iestilts of a oniffifter ,iAnul'ation of an a!ll dgigtal,
circuits, was constructed and tested, re\,tlinarg (,1- adaptix e iajorilv nilutilioxii, techniqac.
cotraging simplicity of imlplementation, while point-
in', out various circuit (leficien(ies which restrict Analog M1ultipleer
system performance. A digital system, based upon
an adaptive majority nttsliplexin,; scheme, was sinm- The analog svstem whose ,ocl, dia;,s am is
uilated on a( di.gital computer. The data which was shown in Figure 1, is c:q):ablc of l tullating up) o 16
Obta ined conco minog the distri)ution of sequency band-himited signal chanonelis onto ., t of Wa Isi s
power can be of %alhle in influencing the choice of carriers tor tranlllission O\x]i o0l, ]iie, and recoln-
Walsh carriers to be used in this system ain(d gies structing the signals it the rccei ing elid. While
insight into the nature of certain deterministic er- only two channels hake i hen actix atCld and tested,
rois inmolved in system opurltion. complete 13-channiel opei ation can be achic~ed by

the addition of sever:.! redundant analog (,ircu.t
Introduction boards. The multiplexer was (designed and built lot

exaluation, stiudy, and demonst'at ions. I)hotographs
The G r'uinman Aerospace Corioration is acti\e of the complete s% stem are ;hOwn in Figxire 2.

in a nimlmber of areas of electronic do\ (lopment which
could henelit from the use of Walsh functions. These The system was constru ted, ,rtireiv o0 readhil
ictlu0', interior multiplexing of data and control .x ai al)le digital and linea'r integrated circuits. The
signia' hoaird aircraft whe- cable weight is a s-g- Walsh function aencrater, consistinm, of a clock os-
ni s-"S factor, high-speed computer l)i'o- cillator. binarv counter and exclusix( -or logic g:'te',

I'ransmitter 'ec•iler

Feqi1~ic Walsh WI I Sequency
Inut O- Low Pass MultpirMlil Low-Pass

Filter ai7I' 1  Filter
Sample +a (ial Sample
Dschrg 0-- Dschrq

equency Wal SquncyInpt 2 Low Pass Was -*ALowPas
Filter Multiplier iM.1ltiplier IFLoweP

Sample Wal t(K.tl W~al (K0t " Sample
Dschrg Dschrq

Sample & 1'SampleSape Sml
D ischarge -*I & Discharge|
Logic Dschrg Logic Discharge

I Clok I-Extractor Cloc_0 c L
I Wai" ' W I to ua,,o Wal t0, 0

Function F- il(1. o I Function I~*Wal (1, i0SGn.,dr Gen

1-p Wil 1105, 0i Logic '-40 Wa ('5, if

IFig. I Wa'ilh lt,'nr.lion \nalog M'iuit.iph.,xr

-I-2



was fabricated from standard 7400 series TTL dig-
ital logic. The analog processing is completely Si. Wi I
performed by LM201 operational amplifiers and
DG141 analog switches. The system clock frequen- -ut * of ,efSa
cy was selected to produce a 150 microsecond ortho- Lew-hs Filter
gonality interval for the Walsh functions, thus pro-
viding a theoretical input bandwidth for the system of Cact.

approximately 3 KHz (usable for intelligible voice
transmission). Some oscillograms of representative MduhtdWI
system waveforms are shown in Figure 3. MJrubW Walsh

It is of interest to note th~at by pushing the
7400 series of digital logic to its maximum speed (a) Multiplexer Section Waveform.
capability, it is possible to generate the 16 low-
order Walsh functions with an orthogonality interval

Walsh Carrier Med.
by Sinuuid

0~ Walsh Carrier Mod.by Tritql Function

(b) Multiplier Outputs

Carrie Mod. by
Triengle Feactien

.Carrier Md. by

$inuomi

-Sum of(1) &(2)

(c) Modulated Walsh Functions &
Multiplexer Output

(a) Fig. 3 Oscillograms of Representative System
Waveforms

- ". = .: .as small as 0. 5 microseconds, or a maximum se-
quency of 30 Mega zps. Neglecting analog circuit

S• .. •limitations, the maximum frequency bandwith of the
U ,.input signals could be as high as 1 MHz. Futher-

more, using state-of-the-art, emitter-couplad inte-
-0 0grated logic circuits, such as the Motorola MECL

III family, sixteenth-order Walsh functions can
. " ,readily be generated with orthogonality intervals as

"low as 25 nanoseconds. This corresponds to a_ maximum input frequency bandwith of 20 MHz. The
.. .. linear integrated circuits which are available for

our analog circuit requirements severely limit the
,- operating sequency of this multiplexer. This is

. "described later.

Performance Data

An important performance parameter in a
multiplex system is crosstalk between channels.
Measurements were made to determine the magni-

(hi tude of the crosstalk in this system for all possible
Fig. 2 Photographs of Prototype Analog System combinations of 16 Walsh function carriers. It was

83

- - ~ ~ -~•' - n



ZVI

found that the degree of crosstalk Is strongly de- 2.0-

pendent upon the sequency of the Walsh function
carrier selected for each channel, with the magni-
tude varying bytween -13 db and -45 db. Figure 4
shows how the crosstalk in a channel ineressed as
the sequency of the adjacent channel carrier wasi 1.s
increased. An increase In the amplitude of the in-
put analog signals was also found to increase the 14A-
crosstalk, although a change In signal freque- ir had
no effect, thus eliminating the possibility tht. .apac- 1.2-
itive coupling between channels was involved.

The total harmonic distortion of the output sig- 1.0-
nals introduced by the multiplexer was found to be a
function of tho sequency of the Walsh function car- 0.8*1_ _ _ _ _

rier selected. As shown in Figure 5, the percer"
harmonic distortion of a 100Hz. Input signal was 2 4 0 ' 10 12 14
found to vary from .8% for a wal (0,S) modulatea
carrier to 2% for the wal (15, 9) carrier. All dis-
tortion measurements were made with a 3-kHz
single-pole low-pass filter in cascade with the out- Fig. 5 Percent Harmonic Distribution of 100 Hz
put to eliminate the high frequency sampling bar- S!nusoid as a Function of Walsh Carrier V

monies inherent In the multiplexer. Sequency

Synchronization

Due to the nature of the correlation function
of the Walsh functions, precise phase synchroidza-
tion between the multiplexer and demultiplexer is
essential to proper system operation. In order to
observe the effects of phase shift in the prototype A
multiplexer, we provided an external synchroniza-
tion link capable of varying the phase between the
two Walsh function generators in precisely con-
trolled increments. Figure 6a shows a graph of the 1-
amplitude gain through one channel of the multiplex
system as a function of the phase shift between the -24-
cal (7,0) carriers. A similar graph for the sal

( ) carrier is shown in Figure 6b. Each mea- -32-
surement was made with a step change In phase of
1/64th of the orthogonality Interval. The graph is
representative of the absolute magnitude ot the auto- -40
correlation function of the carrier and agrees with 0 a Is 24
theoretical results. Increases in crosstalk, with
phase shift, of up to 10 db were also observed. "Me Mh (L 64)

T

-22 0% vo
4i .34- g(9cu~ 41

S/ ~.-,,

_30 --- 0•. 0) CMrW 32

42 2

00 12 1 312

0 ~~ ~ ~ ~ f. 2 01 1 6dmOft (ta4)
AW. Charond Fig. 6 Multiplexer System Gain as a Function of

Fig. 4 Cros.7talk in Designated Channel as a Walsh Generator Phase Shift Between
Funclon of Adjacent Channel Sequency Transmitter and Receiver
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For higher sequency Walsh functions, a very In an effort to preserve the orthogonality of
slight change in phase can result in a significant the Walsh functions, it Is necessary to reduce the
change in channel output. As an example consider maximum sequency, so that the finite transition
the cal (7, 0) function with an orthogonality interval times are a small (raction of the orthogonal interval.
of I microsecond. Figure 6a, shows that a synchrc- This, of course, reduces the sampling frequency of
nizatlon error of as little as 16 nanoseconds (1/64 the sequency low-pass filter, thus lirdting the maxi-
period) can result in a 20 db change in received mum frequency bandwidth of the Input rignals.
signal output. As the sequency of the carriers
which this multiplexer is designed to handle, in- As was previously mentioned, the percent
crease, precise control of tifme delays through the harmonic distortion of the input signal channels
synchronization circuits becomes critical, processed by the multiplexer and the crosstalk be-

tween multiplexer channels will, in general, in-
Analog Circuit Restrictions crease as the sequency of the carriers increase.This is in line with the sequency limitations of the

The degree to which the modulated sequeney Walsh multiplier and other linear circuits used In
carriers within the multtplexer circuits approach this multiplexer. Furthermore, the increase in
perfect Walsh functions is an important factor in crosstalk with increases in the amplitude of the
explaining previously mentioned deficiencies in multiplexer input signals is related to the higher
system op.ration. Although good quality Walsh voltages to which the Walsh multiplier must slew.
functions can be synthesized digitally, the ability to The correspondingly longer transition times of the
perform multiplication and addition operatlons with modulated W*-lsh function result in a cross-c~or-
these functions requires linear devices which can relation function in the demodulation process which
slew between voltages of opposite polarity in zero is increasingly greater than zero, thus producing
time. Such impractical devices would be optimized higher levels of crosstalk. Amplitude comaresslon
In the sequency domain. In order to approach this and limiting of the riultiplexur input signals willoptimum devicewith practical hardware, the prop- reduce the voltages to which the linear amplifiers
ertles of frequency-domain-optimized linear am- must slew. This compromise can be used to re-
plifiers can be combined with time-domain-opti- due crosstalk level when faster slew-rate ampli-
mized electronic switches, The multiplier configu- flers are unavailable.
ration shown in Figure 7 Is an example of this. This
circuit which was used in our prototype systern These experiments and observations with themultiplies the sal (0,0) component of the input ana- prototype, have reaffirmed the feasibility of con-
log signals by a selected Walsh carrier by switching structing a multiplex system using amplitude-the amplifier from an inverting to a non-inverting modulated Walsh functions, rather than sinusoidal
mode in step with a digital control signal, functions. However, certain deficiencies in avail-

able integrated circuit performance, impose
It is desirable to use an operational amplifier various restrictions on the system design. Whilein this curcult for precise gain control and frequency Walsh functions of sequency greater than 100 Mep

control characteristics. Modern integrated circuit zps can readily be synthesized using state-of-the-
operationai amplifiers, however, are limited to art digital circuits, the linear integrated circuits:slw rates of approximately 100 •,lts per micro- which can modulate these functions and preserve
second at unity gnin° Furthermore, integrated their orthogonal properties are severely speed
analog switches have maximum speeds of the order limited in comparlelon.
of one microsecond, and non-symmetrical turnon
vs turnoff delays of approximately 500 nanoseconds. Further improvements in linear integrated
Because of these analog circuit limitations, the circuits will certainly enhance the performance
multiplexer in multiplying two near-perfect Walsh possibilities of Walsh function multiplexers. It
functions produces a distorted Welsh function having should be noted, however, that in any applies-
much longer transition times. This is a direct tion where multiplication by an analog signal is
result of the degredation !n performance involved in Involved, the inherently binary Walsh functions
tue Interface between high-speed digital logic with are immediately transformed Into a multilevel
limited-slew-rate linear circuitry, analog signal, and all further processing must

be done by linear circuitry. A much more desir-
able application of Walsh functions would retain
their binary structure throughout all stages of
processing, and thus make more nfficient use of

2K•i their properties. Such an all digital system is
discussed below.

FroTo Digital Multiplexer
tow~q B•~ . Ad arrett stW Gordon (li have described an

adaptive majority multiple.'ing scheme in which! several channels of bEnary data are multiplexed by

Ig tions. Eachbitotbinaryinput data In represented in
Fu e"_1112 terms cf the wal (0,,) funetion, with a logic ",zero"
Gens ta designated Ps + wal (C, 0 ) and logle "one" desig-

nated as - wal (0, #). If the logic level for each
input cha•nnel is multiplied by Its respective Walsh

Fig. 7 Walsh Function M iltiplier. Combination carrier, and the products are algebraically added,
of Linear Amplifier and Eloctranlc Switch the system would be identical to the linear aystem

33
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Fig. 8 Adaptive Majority Multiplex System

previously described. This linear superposition between the binary levels selected at the input and the
of Walsh functions can be hard-limited by a major- resulting levels calculated at the output. If a match
ity gate before transmission [1]. The resulting is found, a new word is calculated and the process is
binary signal will, in most cases, still contain repeated until all possible binary bit combinations are
separable input logic information for each channel, exhausted. If an error is detected in any output bit
It has been shown that such a multiplexing system channel, a warning message is printed, indicating
is then capable of providing automatic tradeoff be- the calculated output results containing the error, the
tween its redundancy properties and the number of corresponding input binary bits, and a representa-
channels in use at one time. tion of the Walsh sequency spectrum of the multi-

plexed signal. When all possible input combinations
The digital multiplexer shown in the block for a given number of active channels is exhausted,

diagram of Figure 8 can be built entirely of digital an additional channel is activated and the process re-
integrated circuits, thus enabling high-speed peats until all seven channels are activated and
operation. Exclusive OR logic gates can be used checked. The designation of the sequency of each
as Walsh-function multipliers and the adaptive Walsh carrier per channel is provided as input data
majority gate can easily be implemented with a for each run. It should be noted at this point that for
256-bit read-only memory chip. In fact, it is con- synchronization purposes in a practical system, the
ceivable to implement the entire multiplexer or de- first time slot of each orthogonal interval of the multi-
multiplexer circuitry with one read-only memory plexed signal Is truncated and forced to a logic "one".
and a shift register. The computer program uses this truncated signal but

there is little difference In the final results whether
Computer Simulation the signals are truncated or not.

A computer simulation of this system was Computer Results
performed in an effort to study an inherent deter-
ministic error [1] , and to determine the sequen- The system operates satisfactorily when the
cy power distribution of the multiplexed signal. number of active channels is either one, two, three,
The computer program simulated actual system six, or seven. When five channels are active, deter-
operation with from one through seven channels ministic errors are generated for certain combina-
active at any one time and with all possible Input tions of input logic levels. This is true for all pos-
logic combinations generu.:0 and tested. sible choices of live out of seven Walsh carriers.

Each of the 21 possible combinations of five carriers
were tested by the computer program. Each run

The computer was programmed to calculate the - showed similar errors in the output binary bits. For
results of each step of the adaptive majority multi- the four-channel case it was possible to choose sever-
plexing process, and makes a bit-for-bit comparison alcombinations of four Walsh carriers such that theP
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multiplex system operated without any deterministic +1-

errors. A list of three sets of Walsh function car- oI | I
riers which can be used when only four multiplexer Amplitudo (a) 00100
channels are operative is prepanted in Table 1. Time 0 0 Input
limitations prevented a check of all 42 possible 0 1 2 4 6 7
choices of four carrier sets.

TABLE 1 THREE SETS OF WALSH FUNCTIONS,
SUITAB3LE FOR FOUR-CHANNEL 12
MULTIPLEXER OPERATION S.ptc"i (b) 00100

CarrierASemuuiylXT) 1 2 3 4 5 6t 7 0lu 0 output

set1 1 x 3 X0

Set 2 X X X X -1/2
set 3 X x X X

Majority Multiplexer Spectral Analysis ofpcore su ld10100

The computer-derived spectral analysis of the Amliud 0 Input 45 :

multiplexer output signal indicates a spreading andJ
shifting of the spectrum of the signal as it passes -
through the majority gate. This, of course, should
be expected since the majority gate effectively re-
ceives a multi-level superposition of Walsh functions

it to produce a binary output. The deterministic er- 1/1 ( 0100
ror inherent in five-channel operation and most cases r Otu
of four-channel operation of the mulfplexer is due Mjo 2 G4 s o 7entirely to a loss or inversion of certain spectral

components of the multiplexed signal as they pass
through the highly non-linear majority gate. The .eIn/
resultirg sigual which is transmitted to the demulti- caWr s ei, p)
plexer either contains erroneous in"ormatin or "tat sets).

doesn't contain any Information concerning the binary Fig. 9 Binary Input and Output Spectra for Five Input
state of the channel associated with the affected Majority Gate (Sequeocy of Active Carriers:
spectral component. 1, 2, 3, 4, 5)

An example of this phenomenon is shown in Fig- "zero" regardless of the binary big . actually trans-
ure 9. Figures 9a and 9b show the majority gate in- mitted. In general, for each choice of five Walsh
put and output spectra representative of the signal care) four-bit input word 1etpgenerated by logic levels "10", 1101t, "1", ?lol, ""l warers, foundto beamiguos (u of ai-b toipta wofrd sets)

modulating Walsh carriers wal (1, i ), wal (2, specreum of e ),big hews (4, of petral
wal (3, p ), wal (4, e ), wal (5, i ), respectively. For the case of four active multiplexer chan-
The spectra for logic levels " of, i t, s1 gs, by0h d u01x nels, It was noted that only certain choices of Walsh
modulating the same carriers are shown in Figures carriers will produce unambiguour operation. Fig-
9c and 9d. Note that the output spectra for the two ure 1la shows the input spectral components for the
different input signals are identical, and the wal (1, four-bit Input word "1100( . Note that in the output
component which was present at the input has dis- spectrum of Figure 11b, the wal (4, s t s)pectralappeared completely. All the information determin- component has been inverted, causing the multi-
Ing the logic level that was multiplexed from channel plexed signal to be Incorrectly identified as "1101"1

number one for this particular set of input signals has by the demultiplexer. A better choice of Walsh car-

bee dstoyd y te onliea lii~ngpha es , ri- er corrcl deodul-c atned oeatio t she w rciinFguedofte

tsand the multiplexed signal has beome ambiguous. 12a, where four I nput logic bits Tl1001" are modu-
lated onto Walsh carriers wal (l, p ), wal (2, ot),Similar input and output spectra are shown in wal (5, t ) and wal (6, r ). The resulting outputFigure 10 for input logic levels t00001" and "10001". spectrum In Figure 12b shows that the spectttal com-Although both input spectra contain energy only in pectru preadingthe sequeney range wal (1, m ) through wal (5, e ), In dee-orretly te ative reciviend wilhthis case the majority gate processing has trans- aem. rdesdult aoted et T splreeiading causesdilei] ~ ~~ferred energy to the wal (0, 0), wal (6, 0 ) and wal sse.Idea oe nTbe1 l 6psil

(7, P )seqencs. gai forthee sleced ivein- four-bit Input combinations will produce valid out-
put channels, note that the output spectra for differ- puts for this particular set of Walsh carriers.

ent inputs are Identical. Yet for this particular set
of inputs, no spectral component has disappeared Spectrum Spreading
completely. It Is, of course, Impossible for the de-
multiplexer to correctly Identify the logic level As a result of the spectrum spreading caused
transmitted on channel number one for this particu- by the non-linear majority gate processing, the mul-
lar set of inputs, since the demultiplexed channel tiplexer output sign.d Includes all Walsh components
number one logic level would always be identified as from wal (0, 9) to wal (7, ). It is therefore im-
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(0) 00001 (a) 1001
Input Input

01234567 Ampli.ude 0 2 3 4 56 7 1 1

3/4+/2 b) 1001I t Oulpit(b) 00001 Spectral i

Output Amplitude 0 27S tOW8,
Amplitude. 0 1 1 2 3 f42-5 67 Wui.aI

Fig. 12 Input and Output Spectra for Four Input
Majority Gate (Sequency of Active

+1 Carriers: 1, 2, 5, 6)

~+11 (C) 10001
SInlut perative that the demultiplexer "knows" which chan-0 11 2 3 4 0 7 nels are active and the sequency of the carriers ser-

vicing each channel. This requires some kind of link
between the multiplexer and the demultiplexer to con-
vey channel activity information. One of the multi-
plexer channels could, of course, be reserved for
this purpose.

- tAlthough the multiplexer will not operate pro-
(d) 00001 perly when only five channels are needed, the Infor-

Output mation for one of the five channels can, of course, be
0m0i1d2 redundantly multiplexed onto a sixth channel for this

123 4 6 6 7 special case. When four channels are needed, It Is
1/4 "0-- , essential that the carriers be selected properly.Furthermore, regardless of the number of active

channels, it is essential that the demultiplexer be
Fig. 10 Binary Input and Output Spectra for Five Input informed, in some manner, as to which Walsh coin-

Majority Gate (Sequency of Active Carriers. ponents must be Ignored. O)therwlse, erroneous in-
1, 2, 3, 4, 5) formation will be received on inactive channels. In

general, the adaptive majority technique Is an attrac-
tive multiplexing scheme that can make effective use
of modern digital integrated circuits, and the binary
nature of Walsh functions.
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A WALSH-FUNCTION POWER-CABLE MONITORING SYSTEM

Frank Furrer, Arvind Shah and Martin Maurer

Institute of Applied Physics
Swiss Federal Institute of Technology

Zuerich

1. Abstract Such a systefr. would be of consider-
The continuous supervising of the able comffercial importance because ittemperature and a number of possible would permit a better utilization of

other parameters of a power-uable in- power cables. A cable with an urkrown
creases its economy and its reliability temperature profile cannot be utilized
considerably. It is-necessary to measure to its proper limit because of thethe temperature at many different points danger of thermal breakcown. Thus, withthengtehperatue ant m ranysdiffert p tse the monitoring system, a considerable
along the catle and to transmait these
values to a central monitoring station. amcutt in 'he layout of an urderground
This central station then possesses all •ower distribution network could be
the information necessary to load the saved.
cable best. The required transmission This probldt, although inspired by
of information from many measuring the specific application of pcwer cables,
points to one single central station is can be considered typical of many moni-
done by Walsh-functions. toring situations or alarm networks,

such as might be required for pipelines,
2. Introduction gas conducts, railway lines, etc.

This paper deals with the appli- It is t y p i c a 1 of such an
cation of Walsh-functions to the problem alarm or monitoring system that a great
of monitoring a power-cable. The problem number of measuring or control points
as defined by the cable producers, was have to be connected over a few common
as follows (1] : wires. The use of some form of m u 1 t i-

A system which can monitor a power p 1 e x i n g becomes imperative: it
cable (syan oil pressure seems that Walsh-fanctions are narticu-cbe(specifically anolpesr arly suited for this power-caile
cable) alongd ae lenigtheof a for- monitoring situation, because tihe trans-
500 ftn socud be delsignaed. tnfo- mission rates are very low and a whole
ration on the local surface tempe- signal-cable network can be reserved
rature of the powei-cable and a entirely for the monitoring system.

* ~~~number of possible other parameters I at h ih~ amnc i h
(such as oil leakage) is to befact, the War sh-fncthe
gathered from 50 measuring points frequency domain) of the Walsh-functions
distributed along the cable and do not become into conflict with the
transmitted to a central monitoring cvt-off frequency of the signal-cable
station (Fig. 1.). or with other transmission channels as

is the case e.g. if sequency multi-
plexing is used in telephone or radio
communications.

Measuring units The practical advantage of sequency

multiplexing for this particular
application becomes evident when one
looks into the further conditions that
are imposed on implementation:

The measuring elements and all local
electronic circuitry required for
multiplexing has to be miniaturized *p
because they will be mounted between x

the lead and the thermoplastic sheath
.: of the power cable (Fig. 2). This is

Monitoring necessary for monitoring the surface
Power-cable station temperature of the lead and to detect

any oil leakage. Any inductances or
large capacitances required for sine-

Fig. 1: Monitored power cable wave generation thus fall out of
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consideration, and preference must be
given to simple digital circuitry that
can be packed into a medium scale
Integrated Circuit.

The reliability of the measuring Wk
elements and multiplexers should be J
typically larger than that of the T fu
power cable itself, which has a mean-
time to failure of over 20 years. This
again calls for Integrated Circuitry.

monitoring

Thermoplastic Measuring cells station/ • sheath

/ Measuring Fig. 3: Structure of the System
cell Each unit therefore acts as a Walsh-

function generator. A common clock is
---Lead fed from the monitoring station to all

the peripheral units: it is used to
clock a binary counter in every unit,
the various outputs of this counter are
fed to a logic network consisting solely
of exclusive-or gates. The few variable
connexions of this logic network allow
the programming of the desired Walsh-
function.

Fig. 2: Power cable cross-section This scheme permits to transmit o n e
binary decision from every measuring cell

A large amount of disturbances (noise, to the monitoring station according to a
spikes, bursts) are expected on the simple convention: the presence of a
transmission wires of the mcnitoring particular Walsh-function means "1",
system: these could be due to short- the absence means "0".

• circuits, load changes, etc. whichcircuitst load changes eh-tc. e whThe signals of all the sending units
areprset o te ighvotaeare fed simultaneously and additively "

high-power-cable. This condition calls to te ch anel usth on itingfor sysem ith hih nose-to the channel. Thus the monitoring
immunity ard there again, a Walsh- station receives the s u m of all the

immu~it ardthee agina Wash-individual signals.
function system sjnchronized by strong
synchronization pulses from the To transmit more than one binary
uentral monitoring station has the decision from every measuring cell to
added advantage that correlation de- the central station, a s i g n a 1 -
tection at the central station is w o r d (e.g. 8 bits) is defined (Fig. 41
possible.
A time multiplexing technique could
not be used just because the re- Digital coded Alarm
quired high noise immunity would call temperature value conditions
for long transmission times for the "11--- Signal-
single measuring point to the central 4) " II word
monitoring station. This would lead
to unpermissible high cycle-times for I -nr-nr-T
the supervision of the whole cable. Transmitted

3. Description of-the System i Synchroni-

We have basically a structure with zation
a channel, a central monitoring station
and many measuring or sending cells Fig. 4: Signal-word
(Fig The signal-word contains the Gray-

To every measuring cell o n e coded information given by the tempera-
particular Waleh-function is assigned. ture-sensitive device and the oil-probe.
This Walsh-function cariies address To every bit of this signal-word,
and information of the cell at the exactly one period of the Walsh-function
same time. is assigned. If the corresponding bit is
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"1", the period is transmitted, other- calling (multiplexed corr-lator) this
wine not. time would be reduced to apprQy. 2 sec.

The required synchronization is pro-
videci by a synchronization pulse at the 4.Addtive Gaussian Noise
beginning of each signal-word. The The signal arriving at the monito-
synchronization pulse is also trans- ring station (i.e. the Walsh-function
mitred froin the central station to all we are interested in) has a certainthe peripheral units and assures the signal power S, and the unavoidable
parallelism of the signals of all the noise has a power N. The signal to
peripheral units. noise power ratio S/N at the input of

In our cane the channel consists of the detection process is therefore
a 5-vire-system. Clock, synchronization given.
pulses, signals and supply voltage are If we assume for the moment that only
carried on different lines. The signals o n e Walsh-function is present
of all the peripheral units are super- (s(t)=O) and that we have ideally low-
posed on the channel by current-addition, pass filtered Gaussian noise (Fig.5),

At the monitoring station the signals the signal to noise power ratio S'/N'
are separated by synchronous correlation at the output of the detection process,'
(Fig. 5). The correlation is extended or better, the signal to noise ratio
over many signal words, typically 32. i m p r o v e m e n t
This is possible because the information
changes very Slowly: the cable has a =S / N
thermal constant of hours and the
occurence of oil-alarm is unique: if can be calculated.
oil-alarm occurs, the operation of the
cable has to be stopped. As an addition-
al feature, the information is Gray-
coded, so that a change in temperature iWi(t)
by one quantizing step always changes aW(t % .
only one bit of the signal word. The i
uncertainty of the measurement arising f
from the "long" measuring time is there-
fore at most one quantizing step of the
temperature value.

W i E
w , - T I Correlator

CORRB- N MW3 LATOR Nft) i (O)

Fig. 6: System for noise-calculations

W a. Signal-word The output of the correlator isWiof the J-th called Rfw,(O) and is the cross-corre-

LA..A.AAA measuring unit lation-funhion of the incoming, noise-
.-AyAyA A45.44 corrupted signal and the locally gene-rrjV"- -4T' rated Walsh-funotion W1. Since the ocr-

Fig. 5: Central monitoring station ruptilng Aoise is a ran&om variable, thecorrelator output will itself be a ran-
This scheme allows the extraction of dom variable. Its value without input-

the data of any arbitrary sending unit, noise, that is with Just the function
or - with the aid of a multiple or a'Wi(t) as input, is
multiplexed correlator - groups of
sending units. The output of the oor- B [R W,(O3 a
relator is equal to the signal-word sent
by the measuring cell. It can be trans- The additive noise fives the random
formed back into an analog value for variable a variances; , which la de-
display. pendent of f (lov-pass-filter out-off

The time required to extract the frequency), the sampling frequency fa
information of all 50 units if and the correlation duration,
s e r i a 1 calling is used is about
1 1 minutes (the olook-frequenoy in the
system being 2500 He). With parallel



This variance turns out to be In the same figure values measured on a
([4], p 282) test system have been plotted.

n-1

62= an' F ic _ 2rg~ ii"i
- ~ n~ [Rgg(* f-~(tj dB dB

1 50' 40 Yk=-(n-1 O.30 l:

40. 30
is the noise power at the output 3:- - - -

of the correlator. 30. 20

Therefore the signal to noise power 20. 10
ratio at the output becomes:

2______ 10 50 100 mE 2 RfW! (o)]
St i Correlation over 1 periodN' - S

2  Correlation over I0 periods

The signal 1-n noise ratio then can be m = samples per Walsh period
rewritten: -- calculated (without low-pass filter)

--- calculated (low-pass filter)
S. measured (RC-section)

2 [Rfw!(o)]
3. Fig. 7: Signal to noise power ratio

n-1 n_-Ikl k k improvement
n2 W'W' NN

. j s - If now several Walsh-functions are

k=-(n-1) present (s(t) j 0) neither the expected
value E [(g(t)] nor the variance 0 of

From this equation S'/N' can be cal- the correlator output are affected, if

culated. The calculation is rendered an equal number of samples are taken
easier if from every time interval tr. (This

R k follows from the orthogonality of the
wW,(Ts) Walsh-functions and the linearity of
1WiW s the s.s-,er of Fig. 6). Thus, the curves

shown in Fig. 7 are valid independent
is aof the number of Walsh-functions present

RW,W.(O)=9 (worst-case) on the channel.
ii 5. Conclusiomns

Furthermore, R (~)is given by 5 ocuin
NN f Walsh-functions have shown to be

4 e sin(21Tfct) particularly well suited for a situation
RN(t) = oN 2f where a large number of binary coded

Nc signals with a low transmission rate
have to be multiplexed in a single,

fHN being the doub"e-sided power noisy channel. A Walsh system tecomes
density of the white Gaussian noise. particulnrly advantageous where mini-

e t, aturization or high reliability is re-
The calculation of P was carried quired because it can easily be im-

out, under the above worst-case condi- plemented by fully-digital MSI's.

tion, for a cut-offfrequency of the low- With a synchronous transmission and
pass-filter chosen at correlation detection over many periods,

the main problem would seem to be the
f = l/t transmission of the clock and synchro-
c rnization pulses from the central moni- [

(t = shortest pulse duration of highest toring station to the various monito-
Wafsh-function). ring points. In the situation described -i: m= .o^,,o+=a• =•... # t= =•na•in this paper, it may be assumed that i

The calculated values of the signalintspaetmybesuedhtthe central monitoring station, which is°•to noise improvement 97 are given i
to .noise improvemt ae gvn ir oat the same time the power source of the
Fig. 7, in function of the number of'4
samples per Walsh-function period where WholesyStem, secapableaof s ingdout

is obtained from S'/Nlythe equation: very strong pulses that are hardly dis-
turbed. In another situation, hcweve.-,

S N' a- . N' where the power of the pulses are limi-
-N 5' - 2fN2*f S' ted, this additional problem would have
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to be carefully studied.
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SOME CONSIDERATIONS IN SEQUENCY MULTIPLEXING SYSTI24S

Chiang Lin and Someshwar C. Gupta
Information and Control Sciences Center

SMU Institute of Technology
Dallas, Texas 75222

Abstract W[0,2(6+ -)] and W[0,2(0- -)] translate W(0,26)
to the left and right by 174. After W(l,6) is

This paper describes a Sequency Multiplexing found, W(2,6) can be generated by letting n-1,

System. First a output of a sequency low pass p-0. W(3,O).. .etc.
filter (SLPF) in the matrix form is developed Fig. (1) shox's samples of Walsh function. je
for any input by considering the first m-terms independent variable is the normalized time 6=-.
of Walsh series expansion of the input. The To is the smallest orthogonal period for WalshTO
SLPF is assumed to be composed of an integrator, functions. Since Walsh functions are pulse-type
delay elements, a sampler and a zero-order hold. waveforms with amplitude +1 or -1, it is more
The number of delay elements is dependent upon convenient to represent the subset (W(O,6),...,
m. Using a block impulse as a testing input, W(m,6)} within one orthogonal interval To by an
the sequency multiplexing system is constructed (m+l)x(2r) matrix, where r can be calculated by
using the sequency low pass filters. The output the inequality
of each channel of the system is expressed in a r-l r
closed mathematical form. The use of the pre 2 < (m+l) < 2 (3)

and post amplifier in the multiplexing structure For example:

is also discussed. Results of the cross talk m=0 = W
between the channels are obtained and theae are 0
given in a table form. The noise in the channel++
is also considered. m=2 2 = + +

Introduction+ +- +
In recent years Walsh function has become where + and - means +1 and -1 and each column

quite popular in communication applications. The represents a TO/2r interval.
advantages of Walsh functions are primarily due
to the efficiency of implementation and signal Output of An Ideal Sequency Low Pass Filter (SLPF)
manipulation. Digital networks are more accept- The Walsh series expansion of a function F(O),able to the practical applications since the in- -1/2 < 6 < 1/2, can be expressed as

vention of IC circuits. For digital networks, -- J.2

pulse type wrveform like Walsh functions are F(6) =ja(i)W(i,O) ; a(i) | F(6)W(i,B)d6more suitable than sinusoidal waveforms. The i=O "-1/2 (4)
use of Walsh functions in multiplexing systems

have been discussed in previous papers [1,2,3]. The Walsh series expansion has the same proper-
In this paper we s2lect a communication model ties as the Fourier series expansion, except
generally used in a multipl...ing bystem for de- when F(O) extends over the range of -1/2<6<1/2.
tailed investigation. The derivation of the then the Walsh se-ies expansion must be recalcu-
equations and results are stated. lated on each orthogonal interval such as 1/2_8

<3/2, 3/2<0<5/2, etc.
Reipresentation of Walsh Functions by Matrices Let F(6) pass through a sequency filter, the

Walsh functions form a complete set of ortho- general expression for the output can be written

gonal functions [4]. The Walsh function W(m,O) as b
may be defined by the difference equation Fo0 i) I a(i)K(i)W[i,6-e(i)] (5)

(-p ) ([n/2J+p) 1ni-a of+¼e-
W(2n+p,) (-I) W[n,2(+ )] The type (low pass, high pass, bandpass) of se-

+ (-l) (n+P)W[n,2(0-! )]) (1) quency filter depends on the values of a and b.
4 K(i) and e(i) determine the characters of the

where p=O or 1; n-0,1,2,...; -1/2<6<1/2; sequency filter. K(i) is called the attdnuation

Ln/ 21 defines the largest integer-less than or factor and 0(1) is called time delay.
equal to n/2. Define W(0,6) as The difference between the ideal frequency

1 for -1/2 < 0 < 1/2 and sequency filters is stated as follows. In
0. for 1/2 <6 < -1/2 the frequency sense, the ideal filter can be

With the above difference equation and W(0,0), defined by having a flat amplitude and linear

W(m,), m-1,2,..., can be generated in sequence. phase responses. However, we defined "the se-
For example, W(1,8) can be obtained by setting quency as the generalized frequency " [5] hence,

p1l and nO. From eq. (1) the "phase" is not meaningful ir a sequency sense.
-- Instead the ideal sequency filter is defined as a

W(l,0) - - W[0,2(+ W[0,2(- )] filter with a flat amplitude response and a con-4 4 stant time delay.
The function W(0,20) has the same shape as W(O,0) sTa oututie d ay.s
except It is squeezed into -1/4 < 0 < 1/4. Te output of en ideal sequency low pass fil-

ter tan be obtained by inserting the following
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values in Eq. (5): a-0, b-m; K(O)-K(l)-...-K(m)'l; are set equal to T0 /D sec. Switch P2 samples
(6) the value of the integrator at the end of each

That means the sequency low pass filter passes T0 /D sec. P1 resets the initial condition of
the first m+l terms with a unity attenuation and the integrator, then the integration for the
tme delay. Eq. (5) now becomes next T0 /D sec. starts. The switch P3 sends the
F0 (0)=a(O)W('3,8-1)+a(l)W(l,8-1)+...+a(m)W(m,e-l) sampled values to each delay element. The period

With the help of Eq. (4), the form of Eq. (")(7) for a complete full circle of switch P3 is To
sec. It is obvious that an accurate time refer-

can be rewritten as
1/2 1/2 ence for switches Pl, 22, and P3 is required.

8) - [ F(e)W(oo)de F(0)W(l,9)dO At the end of each To sec the D-2r samples values0 f-1/2 f-1/2 from P2 are available to the matrix multiplier
1/2 (0,e-) simultaneously. The output of the matrix multi-

""" . -/2F(6)W(m6)dOJJ Wi e(-1 (8) plier is a row matrix. In the time domain this
• row matrix is generated in columnwise order. The

ZOH holds each value from the matrix multiplier(mO-l)•for TO/D sec. The step function like waveform

Each element in the row matrix may be considered at the output of the ZOH is FO(G).
as tne summation of 2 r subintegrals. In each The special case for SLPF occurs when m-2r-l.
subinterval V(m,e) is a constant with value +1 In this case Wj Wm - 2rI always holds. This
Gr -1. The column matrix is a Walsh matrix with relation not only simplifies the mathematical
a unit tim. delay. It does not effect the re- manipulation but also simplifies the hardware
sults if we calculate Eq. (8) in current time, associated with a practical sequency low pass
then dealy the whole waveform by 1. filter. The modified SLPF for this case is

A more convenient form of Eq. (8) is shown in Fig. 4. It is aparent that this is
11 1 k+l the most desirable type of the SLPF.
2 2F(r) •. lultiplex System by Using Walsh Functionsf..L-+ It is often desirable to transmit severcl

F (0,0 TW( (O,O] messages on one transmission facility. The pro-
. el9 cess is called multiplexing. Multiplexing sys-

[U Wtl,0 (9)c utilize sinusoidal carrier or subcar-

- W(11.6] (mo -- rlers have been studied extensively in communica-
tion theory. The use of Walsh function as

For convenience, let D-2r carrier or subcarrier in multiplexing systems
F (8) = TW where has recently been studied by Harmuth [4] and
u0 11 m mivo-e ki Hubner [1-3]. In this section we derive the

[- 1+ output for each channel. The related topic such" " d..iF(d .. 2 as pre and post amplifier, crosstalk, etc., are
1•GJk 1 1 discussed in the following sections.

"-2 2-+D 2-D Fig. 5 shows the block diagram of a multiplex
Eq. (10) shows the most general form of the out- system which uses Walsh functions as subcarriers.
put of an ideal sequency low pass filter.. In a The set of Walsh subcarriecs is written in
real situation F(6) is divided into time section matrix form.

filter are calculated on each time base. Such = a a (11)a division does not place any restriction on 
il 12 1 i

the signal F(O). However, a synchronization
signal is required from which the beginning and WSn an1 an2 anD
end of the intervals can be derived. The results where D -2r The input signal STj is an impulse
of the first few WT-W are presented as follows
1T m m T block with amplitude 1 and duration 1. This sig-

W'W - I ; WTW = 21 ; W = 3 1 -l 1 nal is the basic "building block" for various
S 3 1 order of Walsh functions. The general pezformance

WT W 41  _1• 1 3 of the system can be roubly described by using
3 4i - i 31 a signal as an input. The signal waveforms at

when m - 2 - WT W - 2 r various stages of the system can be earily ob-
m m tamned with the help of Eq. (10) and Fig. 2.

Example: STi passes through a pre-amplifier (PRA) with on
For explanation purpose the input waveform adjustable amplification factor Ai. Therefore,

SI is picked as step, ramp and parabolic function Sli has the same shape as STi except the ampli-
in each interval. The output waveforas calculated tude times A For the special input signal STi'
from Eq. (10) with m=0,1,2,3 are plotted in Fig. 2. the output ofthe SLPF has the same waveform

Circuits for Ideal Sequency Low Pass Filter (SLPF) as the input. This fact can be easily observed
from Fig. 2. Therefore, Si l as exactly the same

The basic lay out of a SLPF according to Eq. shape as Sli except that S21 is delayed ty T0.
(10) is shown in Fig. 3. After multiplying by the Walsh matrix in Eq. (11)

The integrator integrates the input function S3 is represented in matrix form as
F(O) with time interval for integration which [a Ddepends upon the value of m. In the circuit theI 11l .1a12 .1" lal

time interval for integration is determined by 3 ail i2 a(12)
the operating speed of the switches P1 and P2. Anani Annan AanDPractically the operating speeds of P1 and P2
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Since each column dominates a TO/D interval, the At the receiver assume that the SLPF with m0,
signal S4 can be obtained by row wise summation the output of the SLPr, S7, can be calculated by
Of S3 applying Eq. (10)

n n n 2
S4  p A It a .1  A a p2... pIApapD] S.7j- [S5a-J." Ssaja°'. s5jDde1  - 1

p-Ip1 p. p1 p
nn D 14D 1D n

S4~ p h~~ h1 uOUý (13) a Xa X { A paph[is121TF c(l-)
A a_(u(-(l+hl) - . (-: )

h pl p p a-i l+a-lI h-l p-l
The actual waveform of S4 is shown in Fig. 6. D

Theoretically, we can feed the signal S4 - Si2iF(O-l-h)])dgI (18)
directly into the communication channel. Due to i c 0 D 1
the step function like waveform as shown in Fig. By memorizing the time 1 1by SLPF,

6, the wide spread of the frequency spectrum of we omit the time delay s ign tr0-1. Closed form

the signal S4 and the continually increasing integration is obtained by appling the following
demands for frequency allocations as function formula
of n provide undesirable properties for direct
transmission. An ideal frequency low pass fil- i(x)dx - xSi(x) + Cos X+ c (19)

ter (LPF), with normalized cut-off frequency
F , has been placed at the final stage of the SD equals S74 times B . 'Aterefore, the outputs
transmitter for the purposes of reducing the ofithe entirzisystem a4 e written as
bandwidth requirement for the whole multiplex B D D n
system and reducing the interference to other SRjf ' Lr 1 a- ha phla,- 2 (aIJapn
communication system. a-l h-l p P

The output signal, S5 , at the transmitter H a-h+l a-h+l a-h-l (a-h-l
may be obtained by taking the Fourier transform ' i c
of S4 and then taking the inverse transform a-h a-h
with a frequency limitation Fc. The Fourier - 2(-' D-)S 2FcF (-D
transform of an individual "step element"

h-1 t H(a~h) 1[co27F (a-h l)+cs2rF a-hýl
A a ph{u[0-(l+h-•)] - u[6(l1)]1 H2 , 2Th F c 1 D

a-his represented by the amplitude response A(f) - 2 cos 2 irFc( (20)
and phase response 0(f). F.•g. 7 shows the output of each channel (n-4).

!L f n -j 21Tf (1+=2:E;=) S is calculated by setting A -I, AP-0 if J#p,1 sin-D n A a .n i.~3is i
A(f) A a = e Bj1- with J-1,2,3,4. In Fig. A S• is obtained

D _f p( ) by letting AjBi -1 with J-1,2,3,4. Figs. 9 and
D 1 (14) 10 are similar lo Figs. 7 and 8 except that six

Taking the inverse Fourier transform of S4 with channels are used.
frequency limitation Fc yields for the output
of the LPF The Use of Pre and Post Amplifiers•f 2h-l

n -j2f(j+- ).Tf From Fig. 7, 8, 9, and 10 we observed that
f c D_ e 2  u e2D J2 f the performance of each channel is different.

h1 pi p -F - The situation becomes worse as the number ofc Dsignals increases. This is the case as in tele-

SD n h-)h phony multiplex systems when combining twelve
p -I p1 c c D channels as base-group, three base-group as super-

d (15) group, etc. The final performance of each indi-
where S (z) s t dt (6] (16) vidual channel in such systems will be far dif-

f0 ferent. This circumstance should be improved if

Assuming the communication channel is ideal which the value" of Ap in the pre-amplifier of the
means the channel introduces constant attenuation transmitter and Bj in the post-amplifier of the
and time delay to all frequenies, compensation receiver can be aajusted. In order to get the
for constant attenuation can be achieved by either same quality in each channel, we solve the fol-
the pre or the post amplifier. Detection of the lowing simultaneous linear equations
signal in the presence of variable time delay D D n
may be accomplished by sending synchronous sig- iiC - Bj . 1 1 a A a h[H(a,h)+H2 (ah)]
nals across vhe channel. This sets up the exact a1l h-i p=l j p J=l,2,...,n (21)
timing between the transmitter and receiver. In Table 1 we show the possible values of the
Hence, it is reasonable to assume that the sig- pre-amplifiers and post-amplifiers for four and
nal passes through the channel without any dis- six signal channels. The assumptions for calcu-
tortion. lation are:(1) c-l. For the case c~l the ,ralues

Multiplying S5 by the Walsh matrix WS gives of Ap z.nd Bj should change proportionally. This

S5a 5 a relation can be obviously seen from Eq. (21).
5 1 5 S 5 1D (2) When we ajust the pre-amplifiers, all the

Sl 5 ja ... S5 aD (17) post-amplifiers have value 1. The relation beingL5a Sa j .The negative values for the pre and post ampli-
5anl "'" 5sma "'" S~anD fiers can be explained as at the cut-off frequency

F. the crosstalks dominate the outpus (discussed
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in next section). In multiplex systems his is Using the criterion of Eq. (26) we show S -0.
undesirable. Therefore, we choose Fc such that By the same token the crosstalk betwee chan-
all the values of the pre and post amplifiers nels 1 and 3 can be calculated by
are positive.Discussion of Channel Crosstalks. a i

The crosstalks between channels can be obtained la][l321

directly from Eq. (20). Si
1 

is defined as the a13  a3 31  - '"- 2H(3)
crosstalk between channels i and Its value 3a14)[341
means that with an input at channel i of the
transmitter, we calculate the output at channel Therefore, S13 - 2H(1) - 2H(3). The crosstalks
J of the receiver. The symmetrical relation between other channels are shown in Table 2.
SiJ-Sji become obvious after we discuss Eq. (20) Included in the Table are crosstalks when
in detail. i-8 and J-8. Fig. 11 shows the crosstalks

From Eq. (20) we write out Sij directly between channels with values of i and j up to 6.
D D Noise Consideration in Multiplexing System

- all h-l is ihi 2 (22) In the previous sections Lne multiplex system

without medium noise was considered. When theA better way to manipulate this summation is ccmmunication channel noise is introduced some
to write out the following matrix of the equations require changes. A review of

" T a li a jlai2 . . . ajl'iD the system in Fig. 5 shows that the medium noise

"a1 a2 " a J2a, aj2ai . . . 'J a iD fication arei2 aj2 " j2ail aj2i2• • "". j2aiD, -

I- h-l

V The sumatio of E (22) h Ieq A a aSl 2teF (a-l- --) 1... . . . ... ... h~l -
its rset HD1.'.S. functions. - Si[21TF c(0--5)])+ nh] (15')

(23(a1h) a

This matrix is the multiplication of two rows T S - E{B Dn h(0
in the Walsh matrix with all the entries +n or S I a fl pp1
-cn The summation of Eq. (22) equals the summa- ah 1 + man hel p vl o x T

thon of each individual element inmatrc x times s ft

its respected Hi'S functions, Se[21tF (-1-b D ]+ n d1
Observe from Eq. (20) that HI(ah) and H2(a,h) hl

are symmetrical with respect to a and r. In (2'
addition, they are even functions of (a-r)• The S suJin E{B tha n Is t
interchange of i and J in Eq. (23) does not (0 yiel

change the result of the sun0ation• By use of "aheie E{x} means the expected value of x. TheStatSi i' s rsetd sthe aforementioned properties, it can be shown sample noise waveform in the orthogonal interval

By defining d - la-hl n n.
H(d)-H 1(a,h)+H 2(a,h) - Hl1(la-hl)+H 2(la-hj) (24) h1oh

then the summation of Eq. (22) becomes a summation Assuming that n is stationary with E~n) N,
of each element in the following matrix Eqs. (18) through (20') yield

"" 2-,1H(l) ajiai2 11(0 ) aJ2 a.,H(D-2) Rj " 5 Rj +7 aXl f a-1+.. . " " . ajaaH(a-h) . . . B
I.. a. iaih .

5 j 1M-1Di,(.) a, a 2(D.2) ... a * *DH(O J . J S•+ tN I-T
J Dai JD j R S - ijjN1(27)

(25) Ri i l
From Eq. (25) we get the "free of crosstalk"condition In the above equation we applied the basic

property of Walsh fumctions, i.e., in the Walsh
S1 -jaa h ' 0 with Ia-hind ; d=0,l,2,...,D-1 matrix the summation of each row equal to zero
is (26) except W(0,0). We sav from Eq. (27) that the

Example: Calculate the crosstalk between chan- medium noise Introduces distortion only limited
nels when i-4, J-4. to the s.rat mwsage channel which use W(0,8) as

From the Walsh matrix shown in the first sec- the carrier. This result is caused by the com-
tion, we calculate the crosstalk between channels bined use st the Walsh function and SLPF. This
1 and 2 by using Eq. (23)..,:t.'- result is not obtained in frequency multiplexing

ri systems, becaume the LPF in each message channel
l :21 '""r passes a portion of the noise whose frequencies

121I221 - J are located within the signal frequency band.
1 a2 3] This is one of the advantages in using sequency•,[ mul. ,•.,:.;: ,tiplexing syst--.
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Introduction
the multiplex ar'rangement shove optimum

In communication engineering thethmuipearngetomspia
system characteristics. The multiplexingmethods applied for multiplexing

analogue signals using Walsh functions wihi efre ycm" iia
signals with the carrier set T can, in

as carriers have proved useful in prin- general, be described by the atrix

ciple. In their performance they are
comparable to carrier frequency systems e t (1)
[1, 2]. They also allow the multiplexing 2 * CT)'(S 1 )

of digital signals. For this type of
signal, however, where the information In order to adapt the resulting
is available in a quantized form more multiplex signal S2 to the characteris-

specific methods are )cnown. All of them tics of the transmission channel it can,

can be derived from a common system in addition, be subjected to a limiting
concept as shown in Fig. 1. or signal protection process befre the

-• elements of the transmit-signal column
vector SE resulting therefrom are, one
after the other, transmitted to the
receiver input. From the signal S'H the

$6 $ 4 r• $ $4 receiver recovers the channel signals S3
vo~ ~ - by an operation which is inverse to the

( --*WV . multiplexing. For this purpose the
® ma . ®matrix equation

•Tig. 1: General concept of transmission

system (S 3 ) ( T)T. (S* (2)

According to it, source-coded digital-
signals of p channels with i binary is to be performed, it requires the
elements each reach, within a time transpose of the ccr.-rier matrix to be Z71

interval T9, a stage which, by format kn.own. Subsequently, the receiver pro-.
conversion, takes the signal vector So duces the system output signal S. by
into the system input vector S1 with n weighting of S3 in accordance with
rows and J cOlms.o This coonversion is system-iherent conditions in the stage
only necessary if the format of S does for signal detection. After signal for-
not correspond with that of S3 for which sat re-conversion S• becomes Ss arn
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contains the digital signals of the p where (w) is the orthogonal system of

input channels to be transmitted. With 2 k Walsh functions. Multi-digit column

error-free transmission channel there vectors S1 are also permissible. In this

holds case, however, only certain Walsh func-
tions may be used as cariers [5]. if

S; SM (3)
S2 is not limited, the multiplex signal

/2
SIrrecective of the above the entire SM is obtained. In the case of n chan-

transmission process will be free of nels with n 1 2 k its amplitude has

errors if (n + 1) possible levels. Here, the
frequency of occurrence of the indivi-

S4 = SI and S5= SO (4) dual amplitude levels shows a binomial

distribution and is symmetrical to zero.

The described general transmission The multiplex signal can be transmitted

concept does not only comprise multi- over any distanct on channels with rege-

plexing by means of sequency division nerative repeaters without impairment

but, as a special case, also the signal of its information content by cumulati-

combination and transmission by pure ve noise. Fr"om SM one obtains S3 accord-

time division and thus shows the close in& to equation (2) by performing the

relation between these different multi- matrix operation

plex principles. The assignment of

J-digit, binary code signals of n (S 3 ) x 2 k(W)T.(SM) (6)
channels to n time slots in the multi-
plex signal, which is common practice After passing through the signal detec-

in the case of PCM systems, and their tion stage which normally contains zero-

re-assignment can be obtained from symmetrical limiters, there hold'i
equations (1) and (2) with S2 SM if
(T) is the identity matrix. Then (T) (SO x sign [($)3) (7)
represents the system of the orthogonal
block pulses which serve as carriers in Interference signals N which, during

the case of multiplexing with pure time transmission, are superimposed on the

division, multiplex signal and are quantized by

the regenerative repeaters will remain

Methods of multiplexing ineffective as long as the interference

Multiplexing by carrier modulation D - which is calculated from

This method is rigorously based on (S 2 -k.(W)T.[(S )+N÷]•
the sequency multiplex principle for M CT)

analogue signals [3, 4]. It allows z'(S 1 )+2k(W)T.N = (S + D

binary signals to be transmitted on

Walsh carriers, which can be represen- according to equation (6) - is suppress-

ted in the time interval To by a one- ed during signal detection in accord-

digit column vector S1 of the length 2 anee with eauation (7).

with the elements * 1. The multiplexing k

process according to equation (1) is With n z 2 channels there are

described by the modulation equation (n + 1 )n different signal patterns in

the multiplex signal, only 2 n of which

(S2) (W)(SI) (S) occur in their representation by the

"input signal vector S.. Because of its
101
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multi-level amplitude, S2 contains a Hultiplexing by binary addition

high redundancy component. It-is not The disadvantage of a multi-level multi-
required for signal recovery in the re*' plex signal is avoided by a computer-

ceiver and can be partly removed by li- aided multiplex method which is based

miters in the signal limiting stage. on the multiplexing by carrier modula-

Here, the number of amplitude levels tLon but performs the calculating ope-

required for an error-free transmission rations required for multiplexing and.

depends on the number of operated chan- signal recovery in the binary number

nels and the multiplex signal-to-noise system [6, 71. It is not necessarily

ratio. For a 4- and 8-channel system confined to Walsh functions as carriers.

with the limiting degree a as parameter Any orthogonal carrier sets CT) are

Fig. 2 shows the immunity of the multi- permissible if there is the transpose

plex equipment against external noise as of CT). Because of its two-valuedness,

a function of the number n of active signal S2 which is produced by multi-

channels. Here, St is the minimum three- plexing is well suited for transmission.

hold distance occurring in the case of

all possible signal vectors S1 to S�4 If J-digit binary signals per chan-

• 4 nel form the signal input vector S.0

6 6 the multiplexing process according to
Ska equation (5) with 2 channels results

8 -42 J ,Tin (k + J)-2 binary digits for S2. The1 2 4 68 multiplex signal has a high redundancy
-- component because for a redundancy-free

6 transmission with multiplexing by time

Bdivibion only J. 2k digits are required.40
WW 0 The inevitable redundancy R rises

t ams exponentially with increasing number of
2S• channels

1W R z k-2k (9)

The ratio of the number of binary digits
2t 3 4 23o produced by the binary addition to the

-4W, f number of digi.s required for the time [
Fg . 2:S stem undivision multiplex techniques is des-

Fig. 2: System immunity iedbceibed by

For an error-free transmission the V I + (10)

multiplexing by carrier modulation in k 1

general requires a higher bit rate than It moves towards unity to such an

a pur*e time division multiplex method ext.•nt as the number of channels decreas-

and a more complex regenerative re- es with respect to the length of the

peater because the multiplex signal binary signals to be transmittedh
has more than two levels. Equations (9) and (10) illustrate the

high redundancy content which results

in an uneconmuical system design.

S10
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When considering the signal characte- per channel above the bit rate required

ristics of S2 it becomes evident that for the method applying pure time divi-

by utilization of signal symmetries the sion multiplexing.

inevitable redundancy can only unessen-

tially be reduced to It becomes obvious that the multi-
plexing with binary addition produces

R' = (k - 1).2 (11) a two-valued multiplex signal with re-

dundancy which can neither be eliminated
The division by 2k to be carried out nor be sufficiently used for error de-

according to equation (6) does not lead tection and correction. The multiplex

to any reduction in digits in the multi- method described above results in a

plex signal. procedure with non-optimum coding.

Investigations into the system be- MultiplexinE by majority decision

haviour in the case of interference in This principle is a modification of the
the multiplex signal have revealed that multiplexing by carrier modulation. It

its effect depends on the error location differs from the latter in specially

in Sm and influences all channels. Here, chosen carrier sets and enables digital
it becomes apparent that the possible signals to be transmitted free from

signal patterns of SM have unequal redundancy on a limited number of

Hamming distances between each other. channels or under certain conditions

Very often they are only separated from the utilization of system-inherent

each other by the minimum distance 1. redundancy for error detection and

The redundancy in the multiplex signal correction purposes [8, 9].

thus allows error detection and correc-
tion only in some specific cases. The input signals of n channels

which are combined to form one-digit
There is no basic change in the column vectors S1 change according to

system behaviour if not all of 2 possi- equation (1) the amplitude of the row
ble channels are active. The aultiolex vectors of (T) serving as carriers.

signal then has Ci ÷ x).2k binary digits, After summation one obtains a signal
where x is a discontinuous quantity S2 whose amplitude has (n + 1) levels.

which depends on the activity factor. It By a clipping symmetrical to zero, it

assumes the value ). even with mean is transferred into the two-valued
system loading. On the other hand, there redundancy-free signal SM

is a decrease in the number of signal

patterns of SH having the Hamming (SM) z sign[(S2 )] (12)
distance 1. In general, there are no new

symmetries in the multiplex signal, and transmitted to the recuiver input.

which can he utilised for bit rate re- Demodulation is carried out in the

duction. manner normally used in the sequency

technique, i.e. by correlation with
Only in the case of 8-channel systems subsequent threshold weighting of the

with activity factors 1 25 % symmetry detected signal. With equation (2) one

characteristics develop in the multiplex obtains

signal, the utilization.of which leads

to minimum bit rates. With two active (SO 2 sign[(S3 )] (13)

channels they are, however, still 1 bit
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The signal transmission is free from

errors if number of channels and P

carrier set meet certain conditions, 7

i.e. the number of channels and the

elements of the row vector of the

carrier matrix must be odd. Then, the

carriers form only a quasi-orthogonal 44

system since the cross-correlation be-

tween the individual functions no longer 40

is zero. The information loss increas-

ing with growing number of channels 42

due to amplitude limitation in the
multiplex signal and the errors due 0
to disturbed correlation confine the

unambiguous signal transmission to a

maximum of seven channels. Here, the2 3

carriers used either can be derived

from reduced Hadamard maitrices, which Fig. 3: System error behaviour

are obtained by removing one of the rows

and one of the columns, or they may con- this redundancy has an automatic error

sist of cyclically shifted 3- and correction effect. However, error correc-

7-digit binary pseudo-random sequences. tion only takes place in systems where

Other carries sets give rise to system 4 or 6 channels are disconnected. Other-
errors. wise, errors occur in spite of redundancy.

The effect of bit errors in the A 7-channel system with majority decision

multiplex signal occurring during corrects up to 3 errors in the multiplex

transmission varies with the degree of signal if one channel only is active.

system loading. It has become apparent With 3 channels in operation, one error

that the error distribution and correc- remains ineffective. If signals from more

tion properties are independent of the than 7 channels are to be transmitted by

carrier system used. Investigations into multiplexing with majority decision,
the behaviour of a fully loaded 7-chan-
thefully loadgroups derived from 3- and 7-charnelnel system show that the error effectn st e esystems must be used in hierarchical

MI depends on the values of the disturbed s . Hei savalt'.•l structure. Here, it is adlvisable to0
amplitude level in the multiplex signal fully load the systems of the lower

prior to clipping. If one element in groups and to assign free channels to

S is disturbed, a maximum of 4 chan- the uppermost group if there is the risk

nels are falsified. Fig. 3 illustrates of a disturbed transmission. This

the probability p (i) with which, in avoids the possibility of magnified

the case of one error in the multiplex error propagation in the case of fully

signal, i channels become faulty when loaded and cascade systems.

all of the 128 possible signal vectors

S are equally distributed. The multiplexing by majority decisionS1

turns out to be a method for the combi-
Contrary to the 1 plex signal nation of a limited, odd number of

in a fully loaded system, SM contains channels which enables the signals of a

redundancy components in a partly load- fully loaded system to be transmittad
ad system. Under certain conditions at t;:e sake bit rate as in the case of
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time division multiplexing. Its error In the receiver the multiplex signal

behaviour is poor if the system is fully can no longer be separated by means of
loaded. Only with one and three active correlation methods. The multiplexing

channels it makes optimum use of the re- process represents an unambiguous and

dundancy existing in the multiplex sig- thus reversible mapping. Recovery of
nal without requiring additional circuit- the signals is, therefore, effected by

ry for error correction. operations being inverse to @ and E.

Multiplexing by dyadic combination The dyadic combination may refer to
either one or several binary digits.

The calculating operations, addition and Withe one-digiterombination t2.

subtraction, which are required for Wt h n-ii obnto,2J
digit binary numbers each are combined

multiplexing and which, in the case of digit by digit.

the two previously described multiplex

methods, were performed in the decimal
and binary number systems are here re- A = AO)B A = (ai, aj.1 ,...aI)

placed by dyadic combinations [10, 11]. B = A(E)B A = (bj, bj1 1 ,...bI)
In this method the modulo-2-addition

corresponds to the addition and the b)a E
"Searle" operation to the subtraction. )The latter is so definied that for two .at j() bi 0 1 bi i-E)b 1 0 1

J-digit binary numbers A and B each i 1 o 1 1 0

the expressions

A 0B ; B =AGE) (14)

allow unequivocal conclusions to be This is a possibility of defining the

non-ccmmutative "Searle" operation in
drawn with respect to $ and B. This ssuh a manner that the .;.nary charac-
multiplex method permits the combination ters'A and B allow conclusions to be

of 2k channels. The multiplexing process drawn with respect to A and B. The
produces a two-valued multiplex signal separation is effected by the inverse

without additional digits. operations:

If ni is the J-digit input signal at
channel i, the multiplexing proce3s Inverse # iove@E)
accordiisg to equAtion (1) for 4 channels a0 o1i bo1 (

yields 1 0 1 0
ri 0,1<>.1 1 0

J(n, (DnO (V(n3®[C1  n) jC 3 0 N)
S 1(n, 0 n2 ) E(n 3 0 n4) (15) Even-number input signals can be com-

1 (n, E~nP@() a 0 n4) bined with the two-digit dyadic combi-

"0(in7,) - Cm3 E n4)j nation which is performed in pairs:

The "ctor 32 can be calculated step by 0 0)
step so that each of the expressions I 02 b b 2111 0 b 11(1 )

used need be dete: mined only once. w . 1111 o 2 D 011110
00 M001 1110 00 0010 0111
01 ot1001011 01 11011000

21 illi.1 11 11 1000 01 21"2'1.1 11 10 0011010 10110100 10 011100,10
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-44

With the aid of the one-digit mul-

tiplex law column vectors of the input

signal matrix S, are mapped to column

vectors of the multiplex matrix S. On
the other hand, the two-digit method 93
allocates column pairs to each other.

2.
This is a coding process. The inverse

operations required for decoding two-

digit combined signals are defined as _ .
well. 2

If during transmission errors arise ý"S

in the multiplex signal due to inter-

ference signals, the analysis ol the 3

system behaviour shows that the inter- 2.

ference effect ic largely dependent on I
tl-.e error location in Sm. The unambiguous
mapping of S1 to SM indicates that there 2 3

is a regularity. -- '

For a fully loaded 4-channel system Fig. 4: Error behaviour of the 4-channel

with multiplexing by one-digit Ayadic sysxem with one-digit dyadic

combination, the upper diagram of combination

Fig. 4 shows the number Fe of disturbed

output channels with one falsified mul- a
tiplex bit as a function of error loca-6

tion. The lower diagram represents the

maximum number Femax of disturbed

channelr if at the same time e errors 2

occur in SM. The system behaviour of

a fully loaded 8-channel systen is "6

shown in Fig. 5 in the same manner.

The channels disconnected by being

loaded with a constant zero signal6
produce redundancy in the multiplex

signal which leads to an increased

Hamming distance between the remaining

multiplex signal patterns. It depends

essentially on the position of the ------

inactive channels in the system and, in
general, is smaller than in the case of Fig. 5: Error behaviour of the 8-channel

optimum coding. Only one special multi- system with one-digit dyadic

plexing mode $,: each case allows the combination

maximum posoible redundancy utiliza-

tion. n analysis shows that in the

4-channel system optimum ccnditions

exist with disconnected channels 1 te 3

and that in the 8-channel system the
106
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Hamming distance is 8 if only the first

channel is active. Here, three errors can

be corrected and quadruple disturbances 6IS

can be detected as it is the case qitha

optimum codes.
BA

For a fully loaded 4-channel system

where the multiplexing process is perfor- 2

med by a 2-digit dyadic combination of " • • . •, • •i 2 22 32 V 2 52 62 72 il
the input signals, the upper diagram -- '--M-- U

plotted in Fig. 6 shows the number Fe AP-

of disturbed receiving channels which
occur if the sign of one digit in the I

multiplex signal is inversed. The ab- 8

scissa is the error location SM i,j6 N I
The lower diagram shows the maximum num- 2

ber Femax of disturbed output channels - 2 4 6 a . 12 u
with e simultaneously occurring errors
in the multiplex signal. Fig. 7 illus- Fig. 7: Error behaviour of the 8-channel
trates the corresponding behaviour of a sosystem with two-digit dyadic

fully loaded 8-channel system. combination

"ft
S e The investigation of the usability of

16 the redundancy that inactive channels
produce in multiplex signals formed by
2-digit dyadic combination of the input

2. signals yields optimum conditions for the

4-channel system only with an active
S-----fourth L-..annel.The other operating con-

Sft. ditions of the 4-channel system as well
as all loading possibilities of the

6. i8-channel system do not meet the stand-

ard set by the optimum codes.

2 The multiplexing by dyadic combination

"proves to be a method which enables di-
1 2 4 5 gital signals to be combined to a two-

valued multiplex signal. The multiplexing

Fig. 6: Error behaviour of the 4-channel and signal separation processes can be

syste .with two..igit dyadi. described by matrix operations. These
combination are based on formation laws which are

equivalent to the coding instructions
for linear codes. The error behaviour of

fully loaded systems is inferior in com-
parison to the transmission with pure

time division multiplexing. The same

applies also to transmission systems
having inactive channels. A few systems
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with special loading conditions are the certain minor activity factors by auto-
only exception. They enable signal pro- matic signal protection which requires
tection which is onlj possible in the additional circuitry in the case of time
case of optimum coding. division multiplex techniques. The mul-

tiplexing by dyadic combination which,
Comparison of systems owing to the dyadic operations used is

to be included in the sequency technique,
The described methods allow the trans-

is, in general, also disadvantageousmission of digital signals over a

common channel by means of multiplexing because of its poor error behaviour.
They differ in the required bit race of Here, the characteristics of a time divi-
the multiplex signal as well as in sion multiplex system are obtained only

une an dow noty speitioertigsontheir error behaviour in the case of under a few, very special operating con-ditions.transmission disturbances and do not

utilize the different redundancy compo- All in all it becomes apparere that
nents inherent in the respective system the multiplexing of digital signals in

edegree for signal protec- the sequency technique with characteris-
tion e system is fully or only tics of normal time division multiplex
partly loaded. systems can be performed only under

When using the characteristics of a very specific and very limiting con-

multiplex equipment with pure time ditions.

division as a criterion for the suita-
bility of digital communication systems, References
the multiplexing by carrier modulation
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AN ADAPTIVE DIGITAL VOICE MULTIPLEXER USING WALSH FUNCTIONS

H. E. Jones

Westinghouse Electric Corporation

Baltimore, Maryland

Introduction

The transmission efficiency of multiplex- posite. From the central limit theorem, the

ed digital voice channels can be significantly amplitude distribution of the sum of a number
improved if the distribution of the total channel of voice signals approaches a normal distribu-
capacity among the various baseband channels tion as the number becomes large, so even
is not fixzd but is varied on the basis of the in- though each channel might -'equire a peak-to-
stantaneous requirements. The reason for this mean coding range of 28 dB the peak-to-mean
is that the amplitude of a single voice signal coding range of the overall encoder may only
varies from relatively short periods of high have to be somewhat greater than the 8 dB
levels to long periods of very low levels. While needed for a normal distribution. This can
signal companding (attenuating the higher signal only be obtained if the proportioning of the
levels at the encoder input and the lower levels overaflcoding capaAity among the baseband
at the decoder output - compressing and expand- channels is not predetermined but rather is
ing) can improve the situation there still re- allowed to vary in accordance with the instan-
main the conversational pauses. Brady (1 )has taneous demands. In this way, the capacity

obtained data which indicates an activity factor released by one baseband channel during periods
of only 40% for one-way in a two-way conversa- of inactivity can be utilized for the transmission
tion. Thus a coding scheme based on an equally of information pertaining to the other channels.
spaced sample values taken on a single voice Besides having a code that permits the
signal will produce the zero-level code word total channel capacity to be proportioned among
with a probability of 0.6. This in itself leads to the individual baseband channels as needed, the
a fairly poor transmission efficiency even when encoder/multiplexer will also require some
only a small number of distinct code words are
used. means of determining what this proportioning

should be. This should, of course, be what-
An indication of the extent of this ineffi- ever is required at the time to achieve the best

ciency can be obtained from the data reported performance from the equipment, which implies
in either Brady (1) and (2)or in Sunde (3). If that the encoder/multiplexer must be capable
we establish the criterion that 99%0 of the voice of judging how badly things are going so that it
signals are to be below the maximum coding can juggle the channel capacities around to try
level at least 99% of the time, Brady's data in- to make things better. One version of this
dicates that the mean power level of a channel technique is used in multi-channel Delta modu-
must be, on the average, about 26 dB below the lation.
maximum coding power level while Sunde's data The Multi-Channel Delta Modulator
shows this to be about 28 dB. Of this, 4 dB re-

presents the 60%/ inactivity. In comparison, the A block diagram of the multi-channel
same criterion could be satisfied with an average Delta modulator is shown in Figure 1. In this
mean power level only 8 dB below the maximum device the performance of the encoding process
coding power level if the signal amplitude were is measured by comparing the input signals,

normally distributed. Tnis 18 or 20 dB is a Si(t), with what the modulator believes the de-
significant difference. If, for example, a 20, B modulator outputs to be. These estimates of
improvement in signal-to-noise ratio were ob- the recovered signals, 'g<(t), are obtained by
tainable in a linear PCM encoder, the number feeding the output binit stream inmo a model of

of bits per samnple needed could be reduced from the demodulator. The differences between
seven to four or from six to three. these signal-pairs are fed through linear

In simult.aneously encoding a number of "weighting filters, multiplied by one of a set
of Walsh functions, d(t+ T), and summed to

voice channels, these inefficierncies can be mea- fomtecm sierrsgnlWhete

surably reduced by encoding the several base-
band signals collectively. In doing this, advan- magnitude of this error signal represents a" ban signbeakn collectivel. stIss doi this, advan- measure of how badly the modulator is perform-
tage. can be taken of the statistics of the com-

/
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ing, little of this utilized in this rather simple
encoder. Rather, in a manner similar to that ,
used in Delta modulation (hence the name), the (al, = O- exp L91(t -LT)3G!,(t)aa(t)dt. (4)
modulator attempts to maximize the perfor- The output3 from a predicting filter can

mance by selecting at each clock time a pulse be obtained by convolving the input with the im-
of whichever polarity is required to drive the pulse response given in (3). Using the inner~h
composite error towards zero. product defined in (4), the output from the Kt--

filter at the end of thefi binits can be express-
The weighting filters are used to con- ed as:

struct a reasonable performance measure from
the St(t)-'-i(t) differences. The weighting i, = Os,t-i exp E-OLTJ + (0k,,BI) (5)
used is integration plus an instantaneous corn- The first term on the right represent
ponent (lead) added to obtain good rebalancing that part of the output value based on all output
behaviour. The transfer functions of these binits preceding Pa while the inner product re-
weighting filters ~are proportional to: presents that portion of the output due to the P1S( l a )

W(S) = I + C, binits. The baseband signals will be effectively
whe 3x 103(seconds) (lb) separated if the 01Is are orthogonal with res-

where - pect to this inner product. In general, (LT is

The reconstructed baseband signal esti- much less than unity, the kernel in (4) is ap-
mates are obtained by passing the output binit proximately unity and the Walsh functions are
stream, multiplied by the same Walsh functions nearly orthogonal.
delayed one clock time, through linear predict- Computational Model
ing filters. These filters are used to obtain the
minimum variance linear estimates of the base- The behaviour of the Multi-Channel Delta
band signals at each clock time based on the modulator can be computed from the discrete-
preceding muiltiplexer output. This minimum time model shown in Figure 2. In this model,
variance requirement can be achieved if the the signals at various places in the multiplexer
impulse response of the filter is proportional are represented by real-valued sequences cor-
to the autocorrelation function of voice signals responding to sample values taken on the con-
fort > 0. The filter used has a transfer func- tinuous signals at clock times. The model
tion proportional to uses only one of the N channels with the effects

1) of the remaining channels being introduced by
F(S) G S + G " the sequence {n1 3. To provide some continu-

ity with the preceding discussions, the base-
The impulse response of this filter, band input signal is represented by [sa 3. The

h exp tI-QtI for t>0h(t) =ootherwisc (3) subscript will now be used to indicate a parti-
cular member of the sequence rather than a

is a reasonably close approximation to the de- channel, which it signified in Sa(t). This is no
sired autocorrelation function which was ob- longer needed since this section is concerned
tained from the power spectrum of composite with the model of Figure 2, which has only one
speech reported by Tarnoczy (4). identifiable channel.

The set of Walsh functions are used to The recursive relationships among the
provide the variable proportioning of transmis- sequences are:
sion capacity among the several basebands.
From a geometric viewpoint, these functions c', = bo + '.A -I (6b)
can be considered as elements in an L-dimen- bn + + (60

en =e-Ken-i + xn-1 (6c)
sional linear vector space (under modulo - 2 bn =nlxn-i - h,.. I (6d)
addition), where LT is the length of the longest whereperiod of the functions and T is the clock per- K = exp [-&IT) (60)
iod. If the N functions used are linearly inde-
pendent,they span an N-dimension linear mani- Since ba = 1 1, the peak encoded power
fold of this L-space. level is, using (6b),

The output binit stream can be taken L P Max ( so (7)
binits at a time, resulting in a sequence of ele- n

ments, [o a, in the L-space (all possible am- With the number ot channels, N, suffi-
plitude transitions of the output stream and the ciently large, the amplitude distribution of the
Walsh functions occur at clock times). sum of the baseband signals is roughly normal,

in which case 99% of the channels will overload
Define the inner product: less th.,i 99%2 of the time if the varian•ze of the
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composite is at least 8 dB below P. Thus the probabilities and the procedure is repeated,
variance of [st) is taken to be converging to a solution. The transitional and

S. .15 (8) state probabilities used in obtaining the final
=(I.-K value for cl are then used to compute the auto-

Define the quantization error sequence correlation function of (xi 3. which in turn is

De, f with used to compute the power spectrum of Let 1,
or, to be more accurate, the integral of the

c=" ba - xa-i. (9) power spectrum over the band assumed for the

From equations (6) and (9): post-detection filter.

= -K - Ca (10)The results of this are shown in Figure
X - -- 3 along with actual data obtained from a five

The variance of [x, using equations channel breadboard and the theoretical linear

(9) and (10) and recalling that ([at 91-1 ) -- Ka~s, PCM curve for comparative purposes. The

"ipeak signal" was taken to be 0. 5 (.-K)".

a.' (I - K• + 02 (I la) which is the RMS value of the maximum mono-

where zAchromatic tone that can be encoded without am-
a= 2 ([bi(si - K si-0)) + Wil (llb) plitide limiting.

Thus 611 can be viewed as the sum of Concluding Remarks

tvo uncorrelated sequences, one, with variaxce As can be seen in Figure 3, the signal-
(d - Kt) e• representing the prediction error to-quantization noise is reasonably good in
and the other, with variance aj, the quantiza- spite of the simplicity of Multi-Channel Delta
tion error. modulation. The modulator also offers other

The baseband input signals are statisti- desirable features. One of these is that stand-

cally independent and because of the Walsh by channels can be readily provided since the

function multiplication, the error signals are additional circuitry needed is mininal. This

uncorrelated. So the variance of in, I is just is due partly to the Walsh function modulation

(N- I) times the variance of (xi 1. So used to separate the basebands and partly to
the adaptive behaviour. The main effect in

°0 = (N - 1) [(1 - K•) e. + e. activating stand-by channels is an increase in

For these same reasons, the elements the quantization noise.

of ini] are .ncorrelated and, in addition, (n] The spectrum of the quantization noiseis of zero mean. is very smooth with a maximum occuring at

Computation of Quantization Noise from one to three kHz depending on the clock
rate. The coloration is barely noticeable

The baseband quantization noise far var- aurally, and, in fact, most listeners take the
ious numbers of channels was computed using noise to :je white.
the computational model and a post-detection A
frequency band from Z00 Hz to 4 kHz. Since Another feature of the modilator is that

the computer program was not, at the time, the sensitivity to transmission bit errors is

capable of computing the amplitude distribu- low, with a transmission error appearing as

tion for the composite baseband signal, a nor- a single one-pulse -error on all the channels.

mal distribution was assumed even though the This also is a consequence of using Walsh

numbers of channels used were so small. In functions to separate the channels. In com-

addition, the first terry, in the quantization parison, a single transmission error in PCM/

noise of (l1b) was assumed to be negligibly TDM would hit only one channel but the effect
small. This assumption should hold reasonably on this one channel would be, on the average,

well since (s-K si- i) is small at the bit rates much greater. This would also be the case If

used and b1 is not too strongly dependent on addreas Freambles we.e used in the adaptive
(st-K si-0) because of [n1 . multiplexer, but there would also exist the

possibility of error occuring in the preamble
The computational procedure used was causing the correct code word to be directed

to assume an initial value for *•, This value to the wrong channel.
is then used in (12) to obtain On. The assump-
tion that eq = (Ls)D leads to a discrete Ma.-k- As for further improvements, our inter-

ov process and the transitional and appro.&- est at this time is directed mainly to the weight-

mate state probabilities can be obtained from ing functions. Presently, linear weighting is

On and the assumed normal distribution. A used, with the result that errors in A channel
2ew value for ci is computed from the state with a high baseband signal lei el are weighted

equally with those in a chanrtel with a low base-
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*band signal level. We intend to improve on nesota and by J. C. G. 4Carter, R. H. Donald-
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Summary The second model differs from the first,
essentially, in the inclusion of certain

Utiliaing the Rcaicher functions pro- characteristics that sake It possible for it
vided by a bistable chain, It ifctoss po chreriti s that generator fixed in t
simultaoously synthesize 20 Walsh functions, sequency by an external signal. A previous
whose normalized and non-nomalized sequence article [41 treated the theoretical aspects
can be varied. The device also provides of the synthesis of Walsh functions in elec-
comimad pulses for low-paus sequency filters tronics, while this article only considers
and an arrangement for synchronization with the practical points corresponding to the
another generator is included, development and realization of a generator

for laboratory use.
Introduction

I. Block Schematic
Upon confronting the experimental study

in the practical possibilities of utilizing In figure la the distinct sections of
Walsh functions (1, 21 in electronics, the the device are represented in a functional
first problem faced by the designer is that schematic:
of disposing of the necessary instruments.
The measurements obtained from the instru- 1. Trigger pulses section - generates
ments will make possible the comparison the pulses to trigger sections 2 and 3.
between the theoretical results and those Permits varying the non-normalized sequency
provided by the practical application with from 15 zeros per second to 16,000 zero$
its inherent natural limitations. per second. It can operate as:

The applications of the Walsh functions a. Free running oscillator.
in practical electronics is actually found
in the typical initial development stage in b. Fixed oscillator; in which case the
the laboratory. The instruments needed for normalized sequency I - 1 is fixed in
the specific measurements are not offered sequency with an external signal.
commercially, while on the other hand the
practical information given by publications 2. Sequency division section - permits
is scarce. Logically a good part of the the normalized sequency i to be divided by
available instruments in an electronics de- the factors 1, 2, 4, and 8.
VOIopment l~bo~aLory finds application when
one is working with Walsh functions, with 3. Walsh function synthesis section -

the exception of certain instruments con- generates simultaneously 10 odd functions
calved expressly for sinueoidnl signals ; for and 10 even functions with normalized

exagple, nerators and filters for these sequenct i - 1, 2, 3,....10.
functions.

4. Command pulses section - its obJec-

A experimental study plan regarding tive is to generate two pulses that will
Walsh function was startad at the Electrical permit the command of an external circuit
Engineering Institute of the Tucuman National (low-pass sequency filter).
University. The first problem that was pre-
sented was, naturally, that of disposing of To simplify the description of the device
a Walsh functions generator. In a previous it is convenient to discuss first a funda-
development a generator had been obtained mnttal model that consists only of the Walsh
that provided 20 functions mid comoand pulses function synthesis section and the oscillator
for low-pass sequency filter. With the same section (Figure lb). A later stop will con-
generator a sequency multiple for three tele- oider the aggregate of the sequency division
phone channels wa attempted (3). With the section and the command pulse generator
experience gained in that first model, the section. Therefore, that which follows will
second version of the instrument was prepared use this order for discussion.
as described in this current article.
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II. Walsh Function Synthesis Section put of the gates is equal to a positive con-T .. stant plus the product function (case b) orThe adopted [1] scheme of generation less the product function (case c).indicated in Figure 2 permits obtaining 10

odd functions, sal (i, 0), and 10 even In figure 2 are indicated in symbolic
functions, cal (i, 0), with normalized form (the circles represent the product
sequency i 1, 2,....10. operation) the operations that must be In-

plemented to obtain each function, for which
The bistable chain (bistables 3 o to B5) a unique standard circuit is utilized,

delivers sal ( 2k, 8) + A cal (0, 6) by excited just as inferred by the expression
having utilized bistables whose voltage vary (b) or (c). The utilization of one or other
between a value near zero and some positive variable is a question of practical conven-
voltage. It is convenient to note that if ience, the only detail that must be observed
one supposes that an output of one bistable in essence is the fact that the function must
(i.e. Bk) delivers one voltage A cal (0. e) appear in the series with the correct sign.

+ sal (21c, ) the complementary output Bk will
deliver the voltage A cal (0, 0) - sal (2k, e). Between the direct outputs of the hi-

stables and the gates, one has 20 Walsh-
Starting from the Rademacher functions functions. These signals are taken to

sal (2 k, 0) it is possible to synthesize the 20 separating amplifiers designed in suchWalsh functions effecting products of Rade- a form that an eventual short circuit at themacher functions. Therefore, it is necessary at the output of the amplifiers does not
to accomplish ele tronically the product produce any harm neither in the amplifiers
operation of normalized Walsh functions, of nor in the Integrated TTL circuits utilized
which sal (2k, 6) are a particular case. in the logic (bistables Texas SN5474 and

A Walsh function takes only +1 or -1 gates Texas SN5450 and SN5400).
values. The product of two functions will Prior to passing the signals through the
therefore be +1 if both are of the same separating amplifiers, the 20 Walsh functions
sign in a certain time; and if that condition are taken to a connector situated at the
is not met it will be -1. The factor func- rear panel of the device. In the front
tions as well an the product function can panel there are two keys of 10 positions
take only two well defined values, which each, Channel A and Channel B. Bach key
makes it possible to utilize binary algebra. allows to chcoee simultaneously the even
Let the product of two functions be W1 and function and the odd function for a given
W2 . For them we can make the following sequency (I - 1, 2,...10), with outputs for
truth tables: the function with the correct sign or with

(a) (b) (c) the chanked sign. In addition, the signal
-sal (1, 6) is taken to a BNC connector onWi W2 2 W8  U1 W2  b W1 W2 Wc the front panel, to be utilized as a syn-

+ + + 1 1 1 0 0 0 chronixing signal for an oscilloscope.
- - + 0 0 1 1 1 0 1ll. Triter Pulses Section
+ - - 10 0 0 1 1
- + - 0 1 0 1 0 1 Figure 3 presents the schematic of the

principlo of this section. The rectangle
Table (a) refers to the Signs of the marked (1) symbolizes an oscillator controlled

product of two Walsh functions, table (b) by voltage. It is of the LC type, utilizing
to the corresponding logic function if a a variable capacitance diode to obtain fine
+1 (Walsh function) is taken as equivalent frequency adjustment through the action of
to a logic 1, and a -1 equivalant to a a control voltage coming from the phase corn-
logic 0, while table (c) indicates the parator (4) and the low-pse filter (3). By
logic function if a -1 is taken as equivalent mans; of a variable capacitor, whose .axis Is
to a logic 1 and +1 equivalent to a logic 0. controlled from the front panel of the
For tables (b) and (c) one has: device, it is possible to vary the frequonc7

(b) lab - WV2 ÷ WlV2  of the oscillator between 480 w and 1100 Ob.
"(b) WJ2+The rircuits described permits t mo modes of

operation: a) aS a free oscillator, and
(c) Vc " V1i2 + i1t b) as an oscillator controlled by voltage.

If one desireR, it is possible to se an
These expressions are implemented with external oscillator tm a substitute.

digital gates; both varlables require dispos-
ing of the binary variable mad its complement It is conuiveint to consider first the
(nealtion). It is opportune to note that case of the froe running oscillator (or
while the (b) expresion provides the do- using an external oscillator). The signals
sired Walsh function, expression (c) a from the oscillator (internml or exteanal)
provides It, but delivers the fonction with pm through block (2) uhich Is a soarating
a changed sign. Strictly "peaking, the out- mplifier and lisiter; and furtib trigger



pule to the chain of 9 bistables (Taxae 1oop*; a subject over which there is ample
535474) indicated symbolically a 327,... bibliography. In reference [5], that subject

is discussed relative to the utillztion Of
a divider chain. In order to opeat•e usi•

The output of circuit (2) mnd the outputs a synchronizing signal, the Do signal is
if the 9 bistables a taken to a 10 position taken to a hequency close to the fundmental

rwitch LD, that pemits selectia sigmnas sequency of the external signal. This is
whose s•eqascy is smueer an the witch moves ccmplished by actuating switch LD end -the
to the bistables of the lor subscripts. variable capacitor of the oscillator to

bring the device into a synchronizing cap-
It has been stated that as a first stop turs zsue. With a small variation of the

it would be asumed that the trigger pulse variable capacitor It is possible, if one
section would be connected directly (F• b I)) desires, to obtain colncidence of-zero
to the synthesis sectlmm. Tus- mode of crossings between the synchronizing sig6al
operation prenoto itself In one of the end the wal (1, 6) signal; and also, to
epplicatioss of the devica; I.e. Ahm the obtain null tins delays between both signals.
"sequecy divisiom factor is equal to 1 ("ee Switch LD is In reality a switch with two
psragraph 5). Ia this case, between the comnutator sections, one of them for the
synthesis section (6 bistdlse) end the multiplication factor already explained, end
trigger puless section (9 bistables)ose can the other to couirtato capacitore end to vary
dispose of a total of 15 bistablee. If all the AC constant of tha low-pass filter (3).
the bistables of this lost section anr
utilised, the sequmecy of the sissal sal IV. Cosmend Pulses Section
(1, O).provided by the No bistable will
be 1/24-7 of the sequrncy of the oscillator; This part of the device has as its ob-
that is, it will be possible to vary the jectivs to control a low-pats sequency
sat (1, 0) sequency approximately between filter [11, that is en alien arrangmnt
15 eros per secoed to 33 seros per second. to the generator per so, and which needs to

be synchronized with the generator for its
Being bothersome to work with division operation in receiving comand pulses.

factors, it was chosen to assign to the os-
cinator (front panel) a nominal sequency of In succint fore the work cycle of a low-
15 to 30 zeros per second end to mark the LD pass sequency filter (Figure 5) is the
switch (front pael) with multiplication followlnj: The input signal P(O) is late-
factors 0, 20 , .... gr aaitis ehownon grated diring tine T; at the end of the

Figure 3. The sal (1, 0) signal provided by Integration Interval the output voltage of
the So bistable Is taken to a UC comnector . I' integrator is transferred to memory
locared on the rear panel, which permits capaditor C6, for which switch Ly goes
the utilization of a digital froquency-meter from position 1 (position for the Integra-
to determine (if it was necessary) the non- tion) to position 2 (transfer). Imedistely,
normalized sequency of sal (1, 1), and which the switch goso to position 3 (erased),
in conclusion, can be varied between 15 se"ro taking the integrator to its initial coo-
per second end slightly more than 16,000 ditiona to begin a new integration interval
zeros per second. If an external oscillator (switch to position 1). The comoutation of
is used, the signal from No can have as low the switch is reaUsed in actual practice
a sequency as desired, and as high as the with two command pulses.
bistables utilised will permit.

Let .1 te the pulse that determinss the
Assuming always the connection of the transfer of the Information to the memory

Figu• lb, the following will discuss the capacitor, end let B2 be the erasure pulse.
operation of the oscillator when it is sya- To minmise the error both operations asat
chrumised by ma external sigua (Fisurn 3). be performed in the lest possible tins, nd
For this operation It Is sacessay to tako 32 must appear immediately after B:.
thesynchroaesiag signal end the -sal (1, 0)

gial•lprovided by the Do bistable (syntheais The previous statements are ideal cove
section). to the -two Inputs of a bistable ditiose which mest be reconciled with those
(4iL9923) that -sts so a phase cosparator of the practical behavior of the low-pass
(4). To-be capable of triggering the bistable, filter that is to be controlled.
the signal from & o n est be previously differ-
entiated-by manms of -circuit (5); while the *In an earlier work [41 it was .stated that
external signal can ist -paos throuh a good it did not make seons to- talk about phase
li4iter-p•lifieroand then be differsom sted; diffeirnce for Walsh functios, so that for
operations which c6rrespold to block (6) of the present case it wouldb4 correct to
Figure 3. refer to a sequency-locýed loop,, and to call

ths phase compartor (bistableo) as a tins
The aggregate of trigger ploses end delay comparator.

syntbdsis sectiow operate- s a phase-locked
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The command pulses (Figure 6) ar-* BI and filters; for that operation, the switch
B2; aid both have a duration (high positive) labeled sequency division factor must Also
of t-T164, where T is the integration interval, perform the necessary c~emutitions so that
corresponding to the sal (1, 0) periodic in every ewse the, commnad pul-jes will ful-
Interval, just as It is explained further fill the specifications defined In paragraph
ahead.(paragraph 5).. The triggering of the 4.
31 pulse csn be realized for 0m-1/2 or 0-0,
selectablc by mans of switch L (front paeal). Acinowledlement
Pulse 32 Is. present Immediately after pulse
B1. Figure 6 Includes a schematic of the The present work has boen realized with
logic used (bistables Texas SN5474 and gates the economic support of the Tucuman Nation'al
Texas S35400 used ce Inverters, N). Pulses University and the National Comuission of
31 and 32 and their complements 31 and B2 Physical Studies.
and taken through separating amplifiers to

__the front panel and to the connector located I wish to thank also Texas Instruments
in the rear panel, which Is th~e sae connector Argentina, who performed en important

-~where the 20 functions from the synthesis donation upon the Electrical Engineering
section also meet. lIastitute of the Tucuman National University.

The Integrated digital circuits used in the
V. Normalized Seousncv Division Section device were obtained from this donation of

semiconductors.
In the entire discussion that preceded,

It was assumed that bistable So (synthesis Bibliography
section) corresponds to the unitary sequency,
providing sal (1, 0). Xultiplying the 1. 1. F. Harmuth, Transmission of Information
oscillator sequency (15 to 30 zeros per by orthogonal Functions, Sprinp-r-Verlsg,
second) by the multiplication factor (see 1969.
paragraph 3) one obtains the non-normalixed
sequsncy for the 3o bistiale. 2. F. Pilcher, Synthase Linearer Periodiech

Seitvariabler Filter Mit Vorgeschriebenew
It has been stated that In the low-pass Sequenzvorhalten, Archiv der Elecktrischen

"sejuscy filter the (theoretical) Inte- Ubertragung, 1968, pages 150-161.
gration Interval must correspond to the
repetition Interval T of the sal (1, 0) 3. R. Lopez de Zavalia, Z. S. M. Moro -
function. Walsh Functions,* S.,quence Filters aid Sequence

Multiples, International Conference *mnico
For the behavioral trial of a low-pass 1971, About Systems, Networks, and Computers

sequency filter It is convenient to dispose January 1971.
of signals with fractional sequency. This
is obtained by mans of the sequency div- 4. R. Lopez de Zavalia - The Walsh Functions
ision section, which is Inserted (Figure I&) and Their Generation In Electronics, to be
between the trigger pulses section sad the pudilished :in Volume No. 10 (1971) of the
synthesis section. .Electrical Engineering Institute Magazine

of the Tucuma National University.
The sequency division section simply

consists of three bistables (26 to 3S) 5. 1. A. Rivero, A. Carlina - Frequency
connected as dividers by factors of two. Multiplier Using An Oscillator Circuit
Whuen the device operates with sequency Controlled by Phase, Volume No. 9 (1970)
division factor equal to 1 those bistablas Electrical hagineering Institute Magnzine
are not used. If It Is desired to operate of TUC==a Vationa University.
with sequency division factors of 2, 4, or 8
the neoussary bistables are Inserted, by means 6. Texas Instruments Inc. - Technical
of a switch labeled sequency division factor Specifications, Solid Circuit, Semiconductor
(front panel). In this case one amst keep Network, Series 54 (Bulletin No. DL-5.6710107,
In minst that the normalixed sequency which May 1967).
are Indicated by t_ numbers located together
with the knobs of the 10 position switches
(channel A aid channel 5) described In
paragraph 2, must be related to the mentieoed
factor of sequency division. For examles
sal (7, S) will correspcad to sal (7,08) If
It is operating with sequency division factor
equal to 1, but it will be sal (7/e, 6) if
It is operating with division factor of 8.

IMe previous discussion reaily hae
physical masaing only If it Is Joined with
the command pulses for low-pass sequsacy
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A NEW WALSH GENERATOR AND ESTIMATION OF THE

TOTAL OTHOGONALITY ERROR OF THESE GENERATORS.

Reiner Nawrath
Institut fUr Elektrische Nachrichtentechnik

der Technischen Hochschule Aachen

Aachen, West Germany

1. Introduction.
The large number of papers on sequen- wot(0001,8)

cy-technics, which appeared during the

last few years, proves the increasing
importance of this subject. When rea-
lizing sequency systems, as coders or
decoders, the development of Walsh-
function generators is a special pro-
blem. Such generators must comply with
the following requirements: 0 12
To be capable of producing a large num-
ber of Walsh-functions simultanously - wOL(00018)
and to permit an expansion from m to
2i.m functions.
To effect only a small orthogonality " _
error in the system of generated func-
tions up to high clock frequencies. -- L__"L.
The binary structure of the Walsh-func- -1._r-1.
tions gives reason to develop the gene-
rator with digital IC's. To keep the -1/2 0 112
costs low, Standard TTL-IC's should be
prefered for the realization.

The orthogonality error is a crite- Fig. 1: Arrangement of Walsh-functions
rion for the efficiency of generators fcr two time bases
producing orthogonal functions. It is
brought about by three facts: 1. the 2.1 Hitherto existing
displacement between two functions Walsh-function Qenerators.
caused by propagation delays in IC's, In 1968 Harmuth [21 proposed a gene-
2. the tolerances of the propagation rator for Walsh-functions, which is re-
delay time and 3. the difference be- - ported in practical use. The idea oftween rise and fall times of most ICes. his concept is based on the multiplica-

Varying output voltages of different tion theorem of Walsh-functions.
IC's may be equalized by operational wal(i,8).wal(Je0) = wal(i(BjO)
amplifiers and therefore don't affect
the orthogonality error. ( denotes'the bit per bit mod 2 addi-

tion
2. Walsh-function generators For generating 2 n Walsh-functions he

Sand their properties, first produces n Rademacher functions
One of the possible arrangements of as output waveforms of a n-stage binary

Walsh-functions in the normalized time flip-flop counter. The remaining
interval - 1/2 < 8 < 1/2 resulting from 2n-(n+l) functions are obtained by ta-
the difference equation of Harmuth [1] king all possible mod 2 sums of the di-
is shown in figure 1. The same figure gital Rademacher functions:
shows Walsh-functions in the normalized 1 + + +.)time interval 0 < 0 < 1 (0 is the 1 2 n .
time normalized on the orthogonalizy
interval length T ). Two of the genera- The 1 denotes the Walsh-function wal
tors later discussed may be switched (O,8) and (1) specifies all possible
over from one time base to the other, combinations of i elements out of n
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without repetition. Figure 2 shows the In 1970 Lebert [31 presented a gene-
realization of the "Harmuth"-generator rator producing a large number of diffe-
with counter flip-flopsand halfadders rent sequencies. It is also possible to
for n = 4. change the time base; see figure 3.

i.*al (0001,0)-

FF3 r%~

H
H•ouFF3

FF2-H

H FF2

I H j I,

I FF1

Mi

I H FF1

1 FF
clock cuUIj

HZ L JCC vccSwol(Il0l,8) tm
Sclock tome

H

w l .wol(ijkl,0)

Fig. 2: "Harmuth"-Walsh generator (n=4)

Disadvantages of this generator are: Fig. 3: "Lebert"-Walsh generator (n=4)
The displacement of the Rademacher func- The elaborateness of digital IC's in-
tions wal(1,= ) and wal(2n-1,6) amounts creases rapidly if one wants to generate
to T1 = (n-l)Tz if an asynchronous more than one function simultanously.
counter is chosen (Tz is the propaga- For 2n Walsh-functions the whole circuit
tion delay of a counter flip-flop), except the counter, must be duplicated
Some other Walsh-functions are further 2 n- 2 times. In Leberts design the nega-
delayed up to (n-l)¶H while passing t~ve edges of the Rademacher functions
halfadders Crg propagation delay of a produce triggering pulses when passing
halfadder). I the asynchronous counter through differentiators. A particular
is replaced by a synchronous counter, amount of these pulses is combined by
the maximal time lag between two func- OR-gates and used to trigger an outputtionsate ais reduce to triggernT (nAotpu
Stions is reduced to r2=AEz+(n-l)TH (• flip-flop. The maximal time lag between
is the difference of the risetimes o.. two functions is given by T3=(n-l)Tz +
two counter flip-flops). Maximal clock ATOR+ATRC+ATNOR+ATFF or T4=Tz+ATOR +
frequencies under worst case condit.ons
are f1=/ 3 (Tz+TH)) 5 Mc for a ger'ra- ARC+A¶NOR+AFF dependent from the choo-
tor with asynchronous counter (n=4) andf2=i(•z3•H • O Mcfora gnertor sen counter (ATOR, AT•tC, TNOR AT•

10 Mc for a generator are propagation delay time di fferenies
with synchronous counter (n=4) respec- of two OR-gates, two differenuiators,
tively. two NOR-gates and two flip-flops). Fur-
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ther delays in the time base have not mined by the counter alone.
been considered. Maximal worst case
clock frequencies of the "Lebert" gene- 2.2 New Walsh-function generator
rator are f 3 - I/T 3 - 7 Mc (n=4) and using multiplexers.

f I/T 4 0 15 Mc (n=4) In this paper we outline the design

A Walsh-function generator develop- of a Walsh-function generator consist-
ped by Yuen [4] is shown in figure 4. ing only of counter flip-flops and mul-
The circuit is a modified version of tiplexers. For producirg 2n Walsh-func-
the "Lebert" generator. The differenti- tions one needs 2n-- multiplexers. Each
ators are replaced by AND-gates which of the 2n/k inputs of a multiplexer is,-
also have the task to synchronize func- switched k-times to the output in each
tion generation by clock pulses. Fur- interval T. Some input signals must be
thermore Yuen uses a special counter, changed in their logical value with tae
The maximal displacement between two frequency f 2 (v-n.f if v 4 0. Fur-
produced Walsh-functions is given by ther one needs n-v counter flip-flops
T5 m 4TNAND + TOR + TFF. It must be and P additional gates.

k=2v; v=O,l,...,n; t= -i- v > 1

F Later we shall evaluate which values
r for v are significant.

The structure of this generator is
shown in figure 5 for n=4 and v=O.

ofF th O-aemsbecluaefom Iceetnthcounter byC \(tX ac

do t uls

clock frequency-falsh~ d~clhe generated{by one multiplexer"

noted that the propagation delay time c ni 4, e . n m
of the OR-gate must be calculated from Incrementing the counter by I at each
the sum of the propagation delays of a clock pulse one multiplexer input after
NOR- and a NAND-gate, as OR-gates with the other is switched to the output.
four inputs are not available in Stan- The desired time base is obtained by
dard TTL. The generator can be driven choice of the input signals. In theSunder worst case conditions with the same manner all 2n Walsh-functions can• clock frequency f5 = 1/(2d+TFF+(n-2)TN be generated by one multiplexer inS• 12 Ac (n=4) (d is the lengthof the" chronical sequence. Attention must be
clock pulse). This frequency is deter- paid to the fact that some multiplexers
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invert the input signals . Figure 6 shows an example of solving
A simultanous generation of m < 2n = 16 this prc.blem by means of flip-flop FF4.
Walsh-functions (figure 5) is accom- When producing the function wal(1,8) in
plished by connecting in parallel m-i the normalized interval -1/2 < 8 < 1/2
multiplexers with 16 inputs. The maxi- the output signal of the multiplexer
mal time lag between two Walsh-func- must change to logical I after (2m+!j8
tions comes to T6 = (n-l)Tz+ATM when clock pulses and to logical 0 after
operating with an asynchronous counter 2m.8 clock pulses (m=O,1,...). FF4 Just
and to T7 = A¶z+ATM when operating with changes its output level in this manner
a syachronous counter (ATM is the pro- and is therefore connected directly to
pagation delay time difference of two all inputs of the multiplexer MPI. The
multiplexers). Maximal worst case clock number of multiplexers whose input sig-
frequencies are f 6 = 1/(3Tz+TM) F7.5 Mc nals must be changed is calculated as
(asynchronous counter and n=4, v=O) and follows: If the Walsh-function wal(i,O)
f7 = 1/(ATZ-TM) - 20 Mc (synchronous produced by MP i is periodic with Tn.12
counter, independent of n, v=O). (Tn is the normalized time interval)

Now the operation of the "Multiple- then the input signals of MP i remain
xer" generator is discussed for =l. unchanged, otherwise they have to be
Figure 6 shows one possible realization changed. The normalized sequency [2] of

these functions is an even number, and(n=4)" runs up to 2n-1. Therefore the input

r . .signals of b(v-l) = 2n-1 multiplexers
must be changed.
The replacement of the large multiple-
xers by smaller ones does not bring up
any disadvantages. On the contrary ad-

U- vantages are achieved: Maximal clock
frequency remains constant, costs and
occupied space decrease to 50 %.

Choosing V=2 results in the circuit
shown in figure 7 (n=4). Two of the
counter flip-flops are no longer used
directly for counting. That is indica-
ted in the figure by separating them

:F from the others by a dashed line.

FF1. S1

FI s1 =switchingpoints

H S2

clock wa o00

wal 011,o1)
wwt (I!;I,0)

Fig. 6: "Multiplexer"-Waish generator
(n=4, v=l) FF1

The 16 line co 1 line multiplexer4 are
replaced by 8 line to I line multiple-
xers.As a 3 bit binary cou. 1tex is now counterj

sufficiený_ one flip-flop may be used I l
otherwise. The counter mnst run twice wat(I I 0

from 0 to 7 to get the 16 output levels clock M,54I' IL9
for one Walsh-fmctono. Bach time the
counter has reached the decimal eight w0llllt9)
the input signals of Lome multiplexers Fig. 7: "Multiplexer"-Walsh generatormust be changed in their logical level. (n-4, v=2)
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The number of switching points where

some input signals must change its lo- l
gical values increases from two (v-1) a logical output
to four. These four switching points s counter operations gates
can't be determined by two counter flip-
flops. The requirement of one additio-
nal gate arises here. This additionaiA
gate, exactly a halfadder,causes a pro-
pagation delay time, wh.ch decreases
the maximal clock frequency. Now it Cz * EL G Z C
holds f 8 - 1/(3Zr +TM+TH) • 6 Mc (asyn-
chronous counterf and V9 = 1/(TK+T +ATz) Fig. 8: Block diagram of a Walsh gene-
s13.5 Mc (synchronous counter). The rater and orthogonality error
costs are still decreaaing by this ope- Analog to the decomposition of the ge-
ration as well as the occupied space. nerator the orthogonality error is cal-

Enhancing v to 3 will result in an culated in three parts. The first part
increasing number of additional gates is found under the assumption that the
and a not desired decrease of the clock circuit is built up out of a real coun-
frequency below 10 Mc. ter and Ideal gates (no delay) in the

Suxhmarizing we state that it is rea- second Lnd third stage. The "counter"error is reasoned in
sonable to build up the generator with a) different rise and fall times ofa factor v - 2 or v = 1. The factor counter flip-flops and tolerances of
v 2 permits to develop generators for rise and fall time of counter flap-
64 different Walsh-functions, using frops atime lag A:z);,
todays available multiplexers(IG line b) propagation delay when using an asyn-

prpaato delayihu whenausingt ewithout cascading. chronous counter (time lag (n-i)Tz).
3. Orthogonality error of The secoLd part arises from theWalsh generators. assumption, that counter flip-flops as
w we pwell as output gates are ideal and thatA well known measure to compare the real gates are taken for the logicalfeatures of different Walsh generators oeain ntescn tg.Ti

operations in the second stage. Thisis the orthogonality error of the pro- "logical" error EL is caused by theduced functions. Dealing with logical different number of gates which trigge-
levels (0 and 1) a possible definition ring signals must p4ss to produce diffe-
is: rent Walsh-functiong (time lag TL) and
,j - 144(wald(i,8)-I/2). the Oifference of rise and fall times

and its tolerances of these gates (time
(wald(jie)-/2)dO-6,,ji (4) lag ATL).

where: At lasc the third part arises frou
the assumption of an ieeal counter

wald (i,0) :=1/2 (wal (i,8) +1) stage, ideal logical operations stage
i1 i=j and real output gates. This"outputw

Si,J:= i4j error is reasoned in the differing rise
T: nand fall times and its tolerances of

(T: normalized ortogonality interval the output gates (time lag ATG).
0 : on T normalized time References.
Equ. (a*) shows, that ej jis only diE fe- [I] Harmuth, H., "A generalized concept
rent from zero if i+. .A constant di.- of frequency and some applications",
placement of all 2n functions against IEEE Trans on Information Theory Vol.the interval borders does not affect ir-14, pp. 375-382, may 1968.i! ~ ~~the orthogonality er'ror. -, -- ,.......I

th .rho at eror ...... [2] Harmuth, H., "Transmission of.infor-
Circuits of Wal.h-func.tion genera- mation by orthogonal functions', Sprin-

tors may be decomposed Into three se- -er New York, 1969
parate stages, see figure 8.
First a counter stage - or modified [3] Lebert, F.J., "Walsh function gene-
counter stage (Yuen) - second a stage rator for a million different functioxw¶
where logical operations are performed Proceedings of symposium on applica- V
and third a stage with output gates. tions of Walsh functions, Naval Res~ea. -
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Laboratory, Washir~gton DC, USA, 1970, [4] Yuen, C.K., "Now Walsh-function
pp. 58-61. generator", Electronikcs Letters Vol. 7,

pp. 605-607, Oct. 1971.
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AN ORTHOGONAL TRANSFORM APPROACH TO THE DESCRIPTION

OF BIOLOGICAL AND MEDICAL SYSTEMS

Fritz J. Seif and Donald S. Gann

Medizinieche Universitiits-Poliklinik, D74oo Tlbingen,
West Germany, and Department of Biomedical Engineering,
Johns Hopkins University, School of Meedicine,Baltimore,

Maryland, USA.

Abstract Mathematics

In biolog and medicine a systems A deterministic systems description
description in discrete form is manda- can bebin byassig discrete
tory and can be based on a Boolean variables, i.e. two-valued Boolean
algebra maintaining a quantitative and f x. (t) to the observables
determ instic relationship between the (GANN,SCHOEiFLBR). To -" qualitative
variables. In contrast to previous ap- observable - with the it order of
proaches (GANNSCHOEPPLE2),the mapping resolution - only one Boulean function
of the logic systems description into is attributed whereas quantitative
a set of orthogonal functions over a observables xtt) are quantized by the
Galois field leads to computational ad- dyadic expansion into several two-val-
vantages. The ap%.ý,cability of the ued functions x
mathematical techaique to biologicaln
systems descriptiot is demonstrated by x(t) d 2ni'xi(t). (1)
the human female reproductive cycle as im1
an example. t-m,2,3,°..,2n is the attributed state

Introduction out of.the state sequence.

In biology and medicine systems des- A complete state description in the
cription serves the purpose of summa- discrete variables x.(t),i-1,2,°..,n
rising our knowledge of a system. A at the state t is obtained by an ele-
mathematical representation can help mentary Boolean conjunction
to check a complex "~pothesis or to n
predict results by simulation. There- y(t) = iU ,(t) (2)
fore (empirical) data and (theoretical)
assumptions must be incorporated in a with iv1 ,2,...n; xi- x1 or xi and with
mathematical model. the operatorsA"AND" (usually written as

Empirical information of a system concatenation) and x as"NEGATION" of x.
can only be obtained by observablesand e rpresnte by seuenc ofThus in• system with n variables
and be represented by a senuence of maximally 2" different states can be
discorimint staoteshan w he observed forming the same number of

o oeh on w h essther hs er elementary conjunctions. The system is
memoK depttnoftne system. This repre- called to be of n-th order.
sen taton or data can be extended by
assumptions to meet a certain hypothe- The dynamic behavior of the system
sis or to fill a gap of knowledge, can be represented by a consecution of
I As we want a definite answer, states
decision, or feedback by a simulation, t 1
only deterministic systems are of x! t)
interest. By Hleisenberg's principle of 3. i )7
indeterminancy measurements yield only or by a state transition matrix, as
discrete data of finite resolution, if usually applied in the description of
we exclude any probabilistic statements. Markovian processes. The s
For the same reason only disjoint equi- ition matrix T (in general 2",12 ps
valence sets of state variables x.(t), all possible seate descriptions y(t-1)
i 1,2,3,...,n and state sequences at state t-1, represented by the vector

1- ,2,3,... are allowed. Thus the y(t-1) into all possible state descrip-
model of the system is conceived as a fien ytt) at the next state t, repre-
deterministic finite automaton or se- sented by Z(t):
auential machine.
Supported by a fellowal~ip of the Deutsche Forschun.•sgemeinschaft (F.J.S.) and by
NIH Grant AM 14952 (D.S.G.).
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or in vectorial formZn~~to Cn6t') ()Y
In other words T maps the vector space
Y of into itsilf, z PI-1 (7)

We call 4(t) anintensional vector, elementary transformation matrix
and went to distinguimh it from another P: elementar spectral vecto,
vector to be introduced later as an
extensional-or spectral vector (LF.n- S-transfo-mation:FEDLNER). . x..-x. A- .

The intensional vector Z (t) is
called to bg of n-th order Qith n re- x U 1 * xi V •
presenting [the number of discrete vari- * denotes the logic exclusive OR.
ables of the systez. The eleaents of
the vector Z,(t) amount to 2- and can GI " "
be obtained •y the ordered Cartesian G
product of all-n two-valued elementary Sl(8
vectors. OmituinS the state index t, (8)
we write: SI: elementary transformation matrix

1 •)x(2)x .x. xl: elementary extensional Bodlean
2 F The H- and P-transformation maps

(!n) from a Bo ace into the
x (4) , where -transfooraM ects

hnto-another Boolean space# which is
r n3 yields: isomorphic to a Galois field mod-2

For exampTe yes GF(2).
- (lx2x,2 3 , 1X 2'-,,x 1x2,,Xlx2, The elements of the transformation

-X x, ,x TZ, ,;l1x ). matrices of the n-th order are obtained
by the n-times Kronecker product (s) of

Equation (3) can be considered as the elementary matrices, as the latters
an overall transfer function cf the are giver, over a finite field (GROBNER)s
system. In order to obtain more in-
sight into the structure of the system Hn Ml4 a H14 *...n H. (n-times)
and the ways of information flow, it- H Vi H', (9)
would be desirable to have an explicit or in the form of the normalized Hada-
solution for the single discrete vari- mard matrix
able xi(t) in the form:
xi(t).f(x,(t.1),x2(tl) ... xn(t-1)) (5) L/dfn U 1/2n"Hni u 1/211 (Io)

xi~~mfxi~~1)x2(~i)..x~t~))The same holCz for P. and Sn
This can be achieved by three different n n
basis transformations in (3). In tha Pn en-i P (11)
intensional vector y the variables of
the elementary conjuJictions x? are 8n -n-i' (12)
substituted (DE LUOA,HPUMER) 'by the In the case of H4,H and P. the oper-
following: ations +, -,and . ae used,whereas in
H-transformation: the case of s the operations * and

An. in the finite field GF(2) with ad-
xi - 1/2(1+ri) A- . dition modulo 2, with 1.1-0, le0--01-1,
S. 1/2(-ri) V. + and 0&0-0.

or-in vecto iaformIt is easily shown that the elemen-

or in vectorial form tary matrices have the following pro-

S = 1/2 -1]1( ) H( is orthoeonal under the operations~~~~~~~~ •lHz",,H () +and o

Z I 1 2 H .1 , - ,' Z A( 6 ) / q H • H - E
H4: elementary transformation matrix '/t 1 1• ' E1  (1)
HI: elementary Hadamard matrix with2H m H•,and En is the identi-

1ý: elementary spectral Rademacher- ty matrix.
Walsh vector P1 is not orthogonal, with P, 1  P-1

ri: Rademacher famction of 1,-th order, and P;I. [1
U 0 we have

P-transfornation: I
Xi =i 1i 1ui, A-. ; v- + 1I i 1 F E

--. _ . ... . • ,- L lmmlmmmm • 1"



8 is orthogonal under the operations t)-Bn_(t-1) (24)
hSi- n ( - ea Bn PnTnP n and Tn. PnBn n (25)

8181 - B 1  (15) 8nXn(t) - TnSn_(t-1)

As the Kronecker product preserves and with (18)
the pro erties of the elementary na-
trices (GROMBER), we have: Wt) -nTn%20-1)

1/2HnHn - En (16) - %264-1)

S -1,, Cn - SnTnSn and n7C)S

sn = -n .(18) Thus we obtain among others the ex-SnSn - n.(8 plioit solutions for

¶ahe elements of the vectors rn, %, rl(t), r 2 (t),..., rnt);

and n of n-th orebtain alwo by r1(t), r2(t-e ...

the rt6sian product: For example .o"2,
En An1 n d X-(t), ' (t)t'''" xn(t);

n "n-x n which represent the structural depen-
xn) dency of one variable at t from the

xvariables at the former state t-1. How
to reach the explicit solution in X.with n - 3 we got given a solution in R or Utis depicted

with n r 3 we get rin the following diagram:
= a(1,t•tr3 ,r 2 r 2 r 3 tr 1 ,rl r3, rlrrr• 3  An

1 (x-lx 2xx.1x2,xlx 3,x19xex3,x21x~,1) Q -1
The elements of the spectral vector I ,-n.- •

f represent the Walsh functions in
• natural Walsh-Paley order written

as products of Pademacher functions, with 1/2'Pn•Hnr 1/ and
Here we replace the nonlinear Rademach- n n-r l Qrn
er products rlr 2 r°...rn by auxiliary I .- II
variables, the Walsh functions, in the Q, H

sense ot a Hamilton transformation. and f: . = 0 .

This "linearization" together with the
intrinsic properties of the Rademacher The structural dependencies in X
functions leads to the advantage of tell us a possible way of information
solving logic (Boolean) equations by flow in the system.
matrix operations despite the under- Equations (23) (25)' and (27) show
lying nonlinearities. The same is true how to solve the Inverse problem of
with and _xn. finding the state transitions given

For the intensional vector Of the structural relationship between
n-th order we thus have the the the variables. An, Bn , and We Call
basis transformations: the structure matrix of order n of the

-n" 1/2 n (19) ssystem.

SPnun (2o) So far we have silently assumed
n" n (that the state t is completely deter-

An Sn- (21) mined by the revious state t-1. In
substitution (19),(2o),and(21) reality this is seldom true;the state tin ubtttoo (3) yields:,nd21 might an well dePand on earlier states

__t-9 , •=122,e...2"-, representing the
1/- 2/HrnH (t-1 emo depth of the system. Under these

and with (16)write
In(t) - 1/2/n.nTnln•(t--1) Zn(t)-Tnth(Zn(t-1)__,x Z,(t-2) x...

a '/2'•Ar-(t-1) (22)

L~ T .1/a2nHand (23) Tu~.4gh~t') (28)
An- .Tn. an' Tn 1 ~nAn!; with h representing the order of the

n nnewly formed vector of the "previous"
Py~(t) - Tn n(t--1) states. The order h can increabe to

and with (17) n(2n-1) maximally. The number of the
-%(t) - PnlTnPn•(t-1) elements of yh(tl) and the rows of Tn,h

will then be 2n e(2n-1? and the
1n0



number of the colu-mnan The structur- simplifying we can say that the pitui-
*al relationship between the state tary gland,anatomically and function-
variables will be obtained, for example ally conneoted to the hypothalamus,
by the S-transform9,by substituting(21) produces two hormones as information
into (28) and we have: carriers, the follicle stimulating hor-

n(t) .. SnTn&h h(t ) (29) mone (FSH) and the luteinising hormone
n~ - Sn~nhn (LH), which stimulate the ovaries with

Static systems can be described by respect to follicle growth, maturation,
ovulation, and steroid (sex) hormonethe structural re-lationship prdution. n teor

production.Sn - C•-n (3o) The ovarian steroid hormones cor-

in the X domain. prise two groups of different biolog-

For a system with memory depth of ical activities, the estrogens and
one State it can easily be shown that gestagens. Both control the LH- andoFSHI.production and secretion in thethe following holds: pituitary by a negative feedback. In a

(t) (31) certain state of the system the estro-•n~t . tW )( gene elicit also a positive feedback on

with J - lt2,39tee2n-1. the pituitary, which causes the FSM-
If for some Jue, in the middle of the cycle

and is followed by the ovulation and aTOE with the rank r of T. and En considerable increase of the gestagon

production by the ovary during the sec-
prwes call Tpyclic.uIthasion gtr ne ond half of the cycle. Estrogens andr)abe inverted to (CULL): gestagens also induce proliferation and

secretion in the endometrium. At the
"Zn(t-1) -T-1( end of the cycle the hormonal decline

causes the menstrual bleeding.
With these propert~ies the system under '! ,r • l
consideration shows cyclic or periodic '
behavior with a cycle length or period,!

of e.
In case of
T 4Tn~jjT~j..Te-Te+ImT9+ 2 ...Tn n •n n n~ n+.-

we call T transient with the charact-
eristic eiponent e. The system has got
a transient length of a, i.e. startingin saae ie sytem reaches the limit-
n tfe ~t the s~inx state t+e or the state of eauif=-1

S(VON BERTALA FYW after e transii - .-
tions. We can write:

Zý(t+e) - n(t),
or generally 94V

with avO,1,2,93,...,o0 . I I

In the limiting state t+e the system ahas lost all infotmation of any pre-I "
vious state. This gives some plausi-
bility why a transient matrix is not
invertible.

There also exist systems and thus g
matrices that are cyclic and transient.
The cyclic and transient properties of
the state transition matrix T are also Pig. I
inherent in the structure matiices A,, The discrete events in the system
B., ad' Ctas the H-, P-, and S-trais- and the time dependencies of the hor-

tio preserve these properties mono levels in the blood are depicted
(GROBIR). in Fig.l. Further simplification and

abstraction to discriminatory states
Application yield Fig.2a and Fig.3a. Seven differ-

An an example out of the field of ent states (t-1t2 ... 7) can be distin-
bioly and medicine we have chosen guished and described by 8 two-valued
the female reproductive cycle variables x,,x ,...,x . The so far
or menstrual _ccle. it evolves in time known structure of th• information flow
With a period of about 28 days. In in the system can be seen in Pig.#.
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x'.,x4x'x10xP0*(1x0*) By the H-, P-, and 8-transform the
(XII" 1" intensional state description of the

6 system in the Boolean domain is p-o-
jected into other domains,where matrix
operations are possible and explicit
solutions can be obtained for the dis-
crete logic vatriables. The computation-
al simplicity is greatest in the logic
exclusive-OR domain X, lower in the

. ..Rademacher-Walsh domain R, and lowest
in U.

"In bur example of a systems descrip-
tion we have incorporated only perti-
nent information in a discrete-form.

• Thereby we have circumveited the unsur_-
mountable difficulties of a cdntinuous

X 131? description in the realm of biolgy:-

suiting from differential and integral
calculus.
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A QUANTIZED VARIABLE APPRIOACH TO DESERIPri-1 OF
BIOLOGICAL AND MEDICAL SYSTEMS

Doo~d 3. Gann, Fritz J. Self and James D. Schoeffler
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University School of Medicine, Baltimore, Maryland and
Systems Research Center, Cse Wesiern Reserve University,
Cleveland, Ohio.

Abstract-

Models of biological systems are often based tion of the real ;ystem In order to associate
onosampied data In which the values of variables certain mathcnatical objects with elements of
are associated with large variances. Under these the real system. Inevitably, ceatain features
conditions it Is traditional to ascume continu- of the real system are emphasized at the ex-
Ity In time and amplitude, 30 that time Is con- pense of others. The best models are those
tinuous and each amplitnde Is art element of the which are Isomorohic to the real system vith
real line. An alternative approach Is to utilize respect to those featurc" which ara considered
a discrete time scale with time identified by critical and which have :,,otivpted the construc-
points at which samples are obtained (sampled tion of the model i.; the first place. Several
data approach) or at which changes of state oc- Properties of biological systems,and certain
cur (discrete event approach). Furthermore, var- aspects of biology as a science, suggest the
tables may be quantized to distinguish only that validity of constructing models of biological
nusber of levels of a variable which may be dis- or medical systems which utiliz,. -" .'
tinguished statistically. This results In an or- quantized In both ampliturl- and t
dinal scale of measurement. In cur experience it
Is rcre to require more than eight levels of an Of Primary inmortance, .c mat,

experimental variable, using the above criterion. racy irroblems in suchi aroes as ph%, ai

The mathematical handling of such discrete vari- control systems and medical diag;oss Lend to
ables may be greatly simalifled by coding e~ch emphasize aspects of the connecctivity o sys-

variable into a Boolean vector. This aporcach tems. The Problem may be stated, In a complex

also ellm~nates certain problems of nonlinear- svstem In whice. all the elemeits ,nre intercon-

ity. State vartable3 which have not been ob- nected, which connectors are of c-iticP! !m-

served are distinguished In such a representa- Dortance? What Is the relative Imoortance of

tion is unknown parameters which are themselves the critical connections? If the svstem is
Boolean elements. Thes.e paramete.s can be iden- mlfunctioninq, Is a connection disturbed, or
tilled by the solution of •imuitanaous e0ooean has the relat've imaortance of the connections

equations. These equations arise by application chanoed7 Alongside these auestions, the need

of a constraint of functionailty (determinism) for precise measurement may be minimized.
whereby a -Iven input applied at a given state Fucthermore, biological systems tend to be
must lead .o a unique output. A teohnique for noisy, and measurements on them often are
solving such equations has been evolved for the associated with large variances. As Chang (1)
Boolean algebra of n-dimensional Boolean vectors, has oolnted out, there Is a natural quantiza-
conjunction and Inclusive disjunction. Smpli- tion associated with the signal/nohie ratio,
fication following parameter identification leads and with all band-limited signals. As variances
to rmpact representations. The finite cardina- become high, the number of levels into which 3
lIty of th4 models aids In identification of sinnal can be resolved becomes quite small. Li
Inconsistencies and thus of critical txp',riments, and Urauhart (2) have analyzed the secrotory
and aids In the consideration cf the relat!ve orcoerties of the adrencl qland in this way,
validity of alternative structures, A simple and have showh th-t it can be. viewed as secra-
theorem relates the disjunctive no-rmal repre- tory not contlnu~usly, but atohly eight dlf-
sentation of a Boolean sequence, in which the ferent rates. In addltio, to large variances,
elements are regarded as Integers, to the islsh certain measurements can be made only at dis-
Transform, and thus relates a logical formula- crete intervals. This Is always the-case for
tion to an (arithmetic) algebraic one. Boolean samples of body fluils or tissues which must
minterms can then be identified by solution of be submitted to biochemical antalysist it is
sitmltaneous algebriic eauations. The :-elation also the case for so-called continuous measure"-
Is of potential significance for applcations ments In which the time constant of the meas-
to large systems of the vartW described above. urement ic large with respect to the dynamic

Introduction oroperties cf 6he sfszem. The measurement of
ycardiac outout, which is based on the dilution

toModels of biological systems are formulated of an Inlected dye, In one example: since the
to summarize complicated Sets of data, to serve phenomenon of distribution must be meascr.nd
as a basis for simulation and thus for predic- over, a period of many heartbeats. Thus quanti-,
tion of the outcomes as-yet-unperformed expert- zation may be Implicit either In the system
ments, or to Increase one's understanding of the or in the arocess of measurement.
real system described by the model. The process
of modeling incvitably begins with the abstrac- The Present Paper describes a.technique for



the modeling of systems with variables quantized becomes
In amplitude and time which extends previous (rIr2 +? 1 I) (SiS 2 +*-S12) (2)
descriptions of this approach (3,4,5). it is
shown that the problem of identification of Since the statement a b is equivalent to a+b,

parameters In such a model reduces to the orob- equation (2) can be wr tten jn matrix form as

lem of the solution of simultaneous Boolean 0001 ! rl I

equations, and a new method is introduced to ac- 001i0 r I
1110 000i Si 1icomplish this. A relation of this formulation to 1101 . 0010 2 - (3)

the Walsh transform is examined. An extension L
of the present approach wriich was suqqested by
this examination, but which offers certain com- r
putational advantages, is described in an ac-
companying paper (6).

The Formulation-of-Boolean Models
Given a system to be modeled, it is first In general, for a subsystem with multiple in-

necessary to abstract the system, to define the puts and outputs, the identification problem
sets of inputs and outputs and to formulate an will then reduce to the problem of solving an

initial view of the connectivity of the system, equation of the form
The variables can be cuantized in amplitude Ax + B7 - , (4)
accordinq to Chang's method (1), or in any other where X is an n- vector of the n inputs and out-
intuitively useful way. For example, the process w ut s an B ve ctoo fean e in Ia t s and o

of measurement or the design of experiments may puts, X and 8 are Boolean mxn matrices and I
sgetappropr~ste approaches to quantization Is an in-vector aii elements of which are I.-suggest aprp~t prahst unlain A method for the solution of this class of

(3,4). Quantization in time may be based on

sampling intervals (sampled data approach, des- eauations is given below.

cribed below) or on times at which changes in Examples of static (3) and discrete event
state occur (discrete event approach (See (7)). (7) Boolean models have been presented else-
The differences between levels of the amplitude where. The static exanple Is particularly in-

variables need not be equal: only linear order- terestinq in light of the discussion above;
Ing is required. The scale of measurement for since it was shown that the initial structure
amplitude is thus ordinal. The amplitude vari- (connectivity) chosen for the system did not
ables are then coded into appropriate Boolean allow any solution to the simultaneous equations
vectors. Any code will suffice. We have in gene- for one of the subsystems. Accordingly an alter-
ral used the natural equivalent to a binary re- nate connectivity was selected which appeared
presentation of the ordinal number. On the other compatible with the experimental evidence.
hand, Brand (18) has shown that the Gray code Further experiments were conducted to test the
has certain advantages if there are ambiguities new connectivity, and this was shown to be
in the quantization. Since the mapping from or- correct (9). Thus,applicatloi of this modeling
dinal measure to Boolean vector is one-to-one, procedure led to a novel, hitherto unsuspected
the decodinq procedure is Implicit. In general and important physiological finding concerning
the model will take the format of a set of in- a hormonal action on the central nervous system.
terconnected subsystems. As a result of the The discrete-event example is interesting be-
quantization, there can be only a finite number cause it offers a Boolean model of a techno-
of inputs to the system or to any of the sub- logical process (in this case a conveyor system)
systems. One might be able, if all intermedi- and thus indicates the applicability of this
ate variables are known, to write a truth table approach to non-biological cases. Aveyard (7)
for each subsystem and for the system as a wh- showed that the discrete event approach was
ole which will list all possible outputs for dimensionally smaller and thus simpler than an
all possible inputs and times (4). In qeneral, equivalent model of the system as an automaton.
there will be one or more intermediate variables Nevertheless, there are occasions in which one
which cannot be observed. This gives rise to the may prefer the automata approach. One such
oroblem of identification! to find the values circumstance is that in which Inputs and outputs
of all unobserved variables. This procedure are sampled periodically, and one seeks a model
would be entirely arbitrarV'iT-we did not want to relate them in the absence of knowledge of
to be able to use the model for prediction, the mechanisms relating Inputs and outputs. An
Huwever, predictability implies determinism, example follows.
wvich introduces in turn the constraint of
functionallty: for a given input and state, A Sampled-Data Dynamic Boolean Model

there can be one and only one output. This The adrenal gland of many mammals secretes a
constraint, applied to each subsystem Implies hormone. cortisol, In response to the presenta-
that if In any two rows of a truth table the tion of a hormone from the pituitary gland, cor-
inputs are equal, then for these rows, the ticotrophin, or ACTH. ACTH ir released by the
outputs must also be equal (4). Thus for a pituitary In response to a variety of stimufl
subsystem with Input ri and output s; one could generally termed "stress," and cortisol plays
write a central role in the defenses of the body aga-

,ri - r .) (S - S2), (1) inst hemorrhage, injury and other stresses (10).whre - stand for imlicatiofor reasons given elsewhere (3) It seems deslr-
from the oxions of Boolean algebra, equation (1) able to model the overall system in Booleanform. Urquhart and LI (11) have described in de-

tail the dynamics of the adrenal response to
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ACTH, and have offered a continuous model to identification Proceduru outlined above. The
account for these dynamics. The adrenal dis- overall dynamic model for thob system as two
ploys a static nonlinearity so that its respon- Boo!ean enuations is relatively compact, yet
se saturates at large inputs of ACTH. There ;2 desc'ibes in full the complexity of the data
also a dynamic asymmetry such that a, over- of Fiqure 1. Furthermore, the model Is com-
shoot is present In the response to presenta- olete: simulation will oive an output for
tion of ACTH (at submaximal levels only), but any waveform of input, restricted to freauen-
there is no undershoot In response to with- cies at or below the &amolInq rate. The over-
drawal of ACTH. All of these properties can all equations are for outout at time
be displayed If cortisol secretion Is viewed In k+l, k+1 .(f ff):
four levels (2 bits), though the gland Itself k W

actually behaves as If it operates in eight f l = lZ4Fr_5 + 7 1 Z2Z5 (z3 +z4 )
levels (3 bits) (2). We offer here this simpli- + ZlIjZ 3 z• (z5 + z&)
fled model of the adrenal response to ACTH,
based on a 2-bft processor, as an illustration fl/2 - ZlZ 2 Z3 Z4(Z 5 + z6)+ Zl'i2z3z4
of a sampled-data dynamic Boolean model. (z.+"') ++'Z2(z3Z5+

The (sampled) output of secretion of cor- y 3 z 4zý +z3z•z6)
tisol In response to presentation of ACTH as
a unit pulse rnd As pulses of three different
amplitudes and longer duration is shown, after
quantization, in Fiqure I. The overshoot and
saturation are evident. For, convenience the The overall model of the adrenal can be re-
differences between levels of the outout varn- presented as a finite automation, as in Pie-
able F have been drawn as equal. In fact the ure 2. A Is a delay of one time-unit.
distance from i - 10 to F - 11 should be short-
er than that from F - 01 to F- 10.

JF1

AI

- - 4 - - -
Ak i .

OZ

C, 7 Pt r -V A. ArRI

Solution of Simultaneous Boolean Equations
A truth table was cotstrgjcted to relate a

state vector Z to the two past outputs, each of The solution of Boolean equations seems
which is a 2-ýector, to the next output, and deceptively simple. In fact, many techniques
to the past input. The constraint of functiona- are available and are effective rrovided that
lity was applied to define the state elements, the number of variables Is very small. Most
as indicated above. For a six-component state techniques depend upon enumeration of thevector Z, for thc output at time k, F j = (fl,
f 2 ) andhe output at time k-I, fLl= If 3 f) 2N possible values of N boolean variables
and aor the inout at time kak - (a f3a2 ),'the and hence are directly or Indirectly technl-state efuatlons are simply: ques for solution based on exhaustive search,

Such methods are completely Ineffective when
Zl - f27f3f4 the nurber of varlbles becomes reasonable

(qreater than 20). The objective of this sec-
+ f 2  z5  I tio- is to describe the technique which has

= abeen developed and Implemented for the solu-
Z6 - a2  tion of Book-an equwtions which a-'se In the

applications described in the previous sections.
Two criteria are evident- first, the form of
the boolean enuations and the technique used

A truth table was next constructed for the for their solution must be Pnonable to digi-
overall system relatinq the Innuts and present tal computer Implementation: and second, the
state to the present outout. The missinn ele- solution technique must not be equivalent to
ments of the truth table were derived from the enumeratinn of all possible values of the
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variables. That is, any c, which is zero causes the term
"to be identica y zero. AllI termns for whichThe efficient representation of the equations to be Idtentia r equ ro. tat ther corresondngh

In computer memory leads to the linear-Itke form Nthen reaure that the correspondingm n-term be zero. Notinq that each minterm Is
shown: 'he logical product of the xi or their nega-

A X + B X- 1 (5) tlons, it follows Immediately that negating
Here, as before, X is an N-vector of the N each simultaneous equation produces the logi-
boolean variables, A and B are 1 x N matrices cal sum of variables or their neqations, which

all of whose elements are 0 or i, is an 1- is the desired form. Hence, any arbitrary
e 0o ar 1, 1e e s a and mai Boolean equations can be expressed in theector all of whose elements are C, and matrix linear-like form which proves convenient for

etipxlcthati m multinatnsrepaed nythusua see automatic solution on a digital computer.
except that multiplication is replaced by logi- As an example, consider the problem
cal "and" and additiun by logical inclusive
"or". Thus the first of the M enuationt xs
simply t(x) - X2ý3 + xlF2X3 +'Ix2X3 0

alix1 + a 1 2 x2 + ... + alNxN + . This function becomes

b NjN - 1 XIXZX;3 -0

In the above equation, either aij or b is X]7 2 x3 = 0

zere! for otherwise the eauation is redundant, Ylx 2 x 3 = 0
since xj + xj ts Identically 1. Notice that the

storage of such linear-like eouations in me- Neqatinq each equation yields

mory is straightforward, requirina one bit per00 I 0-
variable for the storape of aij and one bit For 0 0 1 I 11 [ Ix+ 0 L.bij. It is convenient ;n the solution to groun 0 1 1

L coefficients in each computer word (where L
is the word length of the computer) to mini-
mize storaqe and to take adjantage of whole It should not be inferred from the above proof
word logical operations available in mobt that this is the easiest or most efficient
digital computers. Hence in a 36-bit machine way to generate the linear-like Boolean
and a set of 50 variables (say), two words are equations; for in fact expanding in min-terms
used for the storaqe of a row of the A-matrix, results in many extra equations, since often
and another two words for the storage of the terms can be combined and simplified. None-
corresponding row of the B-matrix with 22 bits theless, this form does lead to the solution
unused in each group of two words. The unused alqorithm discussed in the next section.
storage is less important when the number of
variables i, large and is more than made up for Solution of Simultaneous Boolean Equations
by the simplicity of logical operations that re- by Successive Elimination oý Variables
sui t.

Iti In order to satisfy the second criterion,
SIt is important to note that the form of and to avoid enumeration of the !arge number

simultaneous linear-like equations is complete- of combinations of values of the Boolean vari-
ly general: ables, a successive elim!nation scheme is

Theorem I: Any set of boolean equations in- developed. That is, one variable at a time

volving N-variables x..A .  ,xN may be ex- is chosen to be eli0iinated, resulting in a
x2, .... , new set of equations in the identical forrm but

pressed in the form of Enuation (5). with one fewer variable. if this is carried
SThe proof of this theorem follows immedlately out until only one variable remains, the solu-

from the well known result that any set of tion for that variable is trivial. Back sub-
simultaneous boolean enuations can be written stitution then permits thýi dete-mination of
in the form f(x) - 0 where the function f 0 all other variables. In the case of multiple
involves the x's and"their neaations. Moreover, solutions, it is possible to generate only

any boolean function in H variables can be one solution at a ttme.
expanded into the standard min-term form The successive elimination &lqorithm proceeds

2N
'/ ' f(x) =-E. c mi(x) = 0 as follows."wer I (step 1) Pick the variable to be eliminated

where mi W is the i-th minterm and ci is zere (called x, In this alqorithm). Let
or 1. the vector of remaining variables

In the above xpansion, the sybol 1"+" corres- be called Z. Write the equations in

Soonds to logical Inclusive "er". Since the the form
loqlcal sum is zere, each term must be zere a - A + B - 1

with the result that the equation can be writ- - I b 1 i -
I[• t ~~ten in the form ". ..

te i N Here a and b are the first columns
{mi 0 c= 1, i = 1,2 ..... 2 of the matrTces A and B, and A, and
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B are the remaining columns of A and to tne simultaneous equations exists. Notice
B. This rewriting is simply for nota- that it oroceeds by generating new sets of
tional convenience, equations, each set in the sequence having
Denote the i-th equation by one less variable until one or more variaLles

(step 2) aix] + bi3I + AI(i)Z + Bl(i)z . I can ie oetermined. Then the sets (which must
be saved) are recovered in inverse order, the

Each equation for which ai - bi - 0 known variables sub-.tituted in order to deter-
does not involve xi and hence is added mine the remaining ones. Notice the analogy
to the reduced set and eliminated from to ordinary Gauss elimination in the case of
the above set. Note that any equation linear alqebeaic equations.
for which ai - bj = I can be eliminated In order to demonstrate that the algorithm is
as redundant. correct, and that no extraneous solutions are

(step 3) generated or 'eqitimate solutions lost, it is
Each of the remdining equations :ias necessary merely to demonstrate the correct-
either ai or bi zero but not both. ness of step 3, the other steps beinq obvious.

For each pair of equations which have To this end, group the equations so that all

ai =- bj= 0, form a new equation those with just xi appear first:

) +A (j + ( +B( = si = I i ,2 ........ p

and add it to the reduced set. Note The remainder involvex]
that if there are M equations with m1  7l + s! = I j -. 1,2 ...... ,q

I Jhaving ai = I and (M-Ml) with ai 0, where si and are the remainder of the
'hat MI( N-ti) equations results. This
completes the reduced set, xl havinq equation.
been eliminated. The reduced set has
the same solution for Z as the oriq?- These can be written in alternate form by
nal set. neqatinq each equation:

(step 4) "sii = 0 i = 1,2,....p
Co to step I unless I variable remains
in the reduced set. In this case, go xJsJ = 0 = 1,2. ,q
to seep 5. If there are no equations
in the reduced set, go to step 7. Each qroup may be coqbined Into a scalar

equat ion :

(step 5) x. £ -,
The reduced set has only one equjation
which must be of the form q

axj +b 7j xIJ= s'.l 0
J. J

If a = b = 0, no solution exists. If
a = b I 1, x is arbitrary. To gene- Consider the truth table corresponding to the
rate one solation, p~ck a value for following two scalar equations:
xj ( 0 or 1) and proceed to step 6.

If a = I and b = 0, xi = 1. If a - 0 x1  A= 0
-nc" b - 1, xj =0. l B=0

In either of the last two cases, pro-
ceed to step 6 after determininq xj. AJBISoluto

(step 6)

If all N variables are determined,halt.
Otherwise, recover the previous set of 0

equations which involves one more vari-
: able than the set used in step 5. Sub-

stitute the values of ste known varu- Clearly a necessary and sufficient condition
ables. The resulting equations have for a solution for x, is that A B 0.
only one known variable. Proceed to Applyinq this result to the above scalar

step 5. equations yields

(step 7) E r_ ', - 0

This step Is reached only if the alqo- I
rithm results in no equations In the re-
duced set. This implies that all vari- Combininq'the sumations changes the form to

ables which have not been eliminated
are arbitrary. In order to generate one E I 0
solution, pick any value for these and ij

•. proceed to step 6.proced t Ste 6. ow neqate the entire equation to'get. the

The above algorithm is guaranteed to deter- aterate r m i e

mine one solution if at least one solution alternate rm|! '+'V
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IT si + s' - each equation Is logically summed with many

ij others. In practice this Is intolerable, not
only because of the extra computing time in-
volved, but more Importantly because of the

In order for the logical product of quantities extra computer main memory needed to store
to be 1, each must be I. Hence this reduces to the equations. It Is necessary to eliminate
tha set of simultaneous equations redundant equations at each stage. This may

be done with the aid of the following.
s - Js S I i-l,2,...p, J-1,2,...q Definition: Equation axx + bli - 1 is saiJ

which is exactly the set of reduced equations to imply the equation a2x + b2x - I if each

specified in step 3. element of al implies each element of a2 and
each element of bl implies each element of b 2 .

The remaining steps need no formal proof. Thus This is equivalent to saying that if xI appe-
this algorithm produces a reduced set of equa- ars in the first equation it appears In the
tions which have the same solution set as the second equation and similarly for .io Terms
original equations. may appear in the second equation which are
An example of this scheme is in order before not in the first equetion however.

its advantages and disadvantages are discussed. Theorem 2: Any equation which is Implied
Consider the following equations any other equation is redundant and may be

deleted without afferting the solution to
"xi + x 3 =1 the set of simultanecus equations. This
T. follows immediateiy by wrlti,;q one equation

l+x•2  l as A - 1 and the e-jation which is implied
7- + Z3 '=1 by this one as A+B - .. This is possible

1 + = . IFince every term in the first equation must
2 be present in the -econd equation. Ctearly

x2 + x =1 if the first equation !s satisfied, no con-
straint is added Ly the second for it Is satis-

First, elimiinate x 1 . Note that thi 'ast eq- fied for all 8. Hence :r Is redundant.
uation does not nvolve x 1 and oniy one equa- A more powerfu? reduction is provided by
tion, the fourth, involves xI. Pence the re- Tneorem 3: Consider two equations x + A
duced set is fo-med by forming the logical Theorem B -Co.iderAtimpeiesionshen+tAese
sum of the fourth equation with each of the and x + B e I, If A implles B then these
first three to get the first reduced set: two equations are equivalent to

;'2 + X3 =1x + A 1

x. + x3 = 1 The proof follows from the consideration that
x2 + 12 . I x + A - + B - 1 has a solution only If A+B -

1. Since A implies B, it follows that A+B n I

x2 + x3 -l is equivalent to 6 - 1. This is evident from
examination of the truth table for A cnd B

Note in this set that the third equation is adding the two conditions, A implies B and A
trivial and can be deleted. Next eliminate +B - 1. Hence the second cquation, 7 + B 8
the variable x 2 . All three equations involve I reduces to S - 1 ,nd the first equation is
either x 2 or its negation. Two involve the unchanqed. This complitus the oroof.
negation and one x2 Itself. Hence the second Note that the effect of this theorem is to
reduced set is the logical sum of the first dlte an equa t ol t i. thisreans
and second and the first an-i fourth equations delete an equation involvpng a. This means
to yield: in the reduction, that equation passes im-

mediately to the reduced set without being

x + x3 -I added logically to others and decreases signi-
ficantly the number of equations produced.

x e The reduction p.ocedure is now modified as

Of these two, the second is trivial. The first follows:

yields the value x 3 a I as the only solution. I. Add to step 3: Check each new equation
Substituting into the second reduced set yields to determine if it contains both a
x2 - 1 as the only solution. Finally substitu- variable and its negation. If so, delete
tinq into the first set qives x, - 0. Hence It.
v fthe uniqJe solution Is ( sip) ilch may be 2. Add to step 1: Check each equation against
Sverified by exhaustion In this simple example, the others using Theorems 2 and 3 to

Elimination of Redundant Equations eliminate redundant equations.

nh x e o tWith these changes, the number of equationsIt was observed in the example above that

was bsevedgelierated Is minimum and the solution easilythe reduction process could produce redundant generated. It should be noted that if the
equations. This will not affect the solution nerofequat isolarge it tan be tie
but plays havoc with computer memomy, In that number of equations Is large, it can be time

i•(xtr equations ctanh stgenefraeduction redndan others to check •or redundancy. Ho•-ver, theextra equations can generate mas;y redundant consuming to compare each equations with all

equations at each stage of reduction since
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computer Implumentatlop can be simplified it not.
greatly by defining the difference between two For example, given the truth table
equations to be the number of variables which
appear negated in the one equatinn but not the f xI x2other. That Is If xi appears Iq one equation
and 1 In the other, this contributes to the 1 0 0

value of the difference. If x, appears in both 0
or only in one equation, it does not contri- I I I
bute to the difference. Then note that two
equations can satisfy theorem 2 only If their one can write the table with minterms as
difference Ii zero whereas they can satisfy
theorem 3 only If their difference is 2. Add- f _T 2 3Tix 2  xI2 xlx2
ing a listf structure to the Implementation in I 1 0
memory permits the programs to keep track of 0 0 0 0
which equations differ from others by 0 or 1, 0 0 0 0 0
and 4'nly these need be checked to ellmirate 0 0 0 I
redundancy. This greatly decreases the com- 1 0 0 0 1

puter time required for solution. The Walsh transforms of the columns are found.

Relation of Boolean Functions to Walsh usirq the Hadamard matrix
Functions

The Walsh Functions are related to Boolean
expressions through the disjunctive normal + + + -

form. The fundamental theorem of Boolean alga- 2 C
bra states that any Boolean expression can be + - - -
expressed in this form. Thus for any Boolean
expression f, one can write and are

f" - EB (eI),
l W(7"`72) - 1/4 IllI

where E indicates the Boolean sum (indusive W(;jx2 ) - I/, (/,-4,l,-l)
disjunction) 3nd mi is an individual minterm. W(Xlx2 - 1/4 ll,-i,-l)
One can then form a truth table for the set
of mInterms. if one then Walsh transforms each W(xlx 2) - 1/4 (l,-l,-l,1)
minterm column and the column for the original
function f, one finds that and

W(f) EA (W(mi)), W(f)-I11 (2,0,0,2)
I fne can then write the linear equation

where WNc Is the Walsh transform of x and 1 %
EA indicates the arithmetic sum. I II c r

For example, consider the Coolean expression l1 -11 c2  0

Y .- lX 2 + X l - -2 I -I -I c 3 0
The truth table representing this function [-1: - ]t
would be Since the matrix is orthoponal one can write

y x1 x2 •1'x 2  x 172 imn-.diately

000 0 0 c1  111I1 2
1 01 1 0 c2-/ 1 1-1 1010
I110 0 1 /c1 1"0 1
0 1 1 0 0 c3

Taking the Walsh transform of the appropriate c.2
columns as indicated above yields Thus cland cj are - 1, and c 2 and c 3 are , 0,

w(-lX2) - 1/4 (I-1,-)an

W(xl7) - 1/4 (1,1,1,) f -72 + xi x2

W(y) - 1/4 (2,0,2,0) - W (xjx2 ) *+ W(xlW) This result was self-evident in the simple
"E [W(m] example but provides a simple basis for the
I A computer implementation of expansion In m ln-

terms of large truth tables by solution of

Conversely, one can reduce a Boolean truth linear arithmetic algebraic equations.

table to the disjunctive normal form in an The relation indicated above Is entirely gene-
equivalent way. This reduction Is- equivalent ral. It may be stated as the theorem
to solving the equation

f = E (cim)( W(f) - EA [ciW(mi) }'* 4"{cl " fl}

for the values of the coefficients cI, which The oroof is straightforward
will be I if mi Is an element of f and o is
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W(f) ,, l N2 n (f;), where Hn is the
Hadamard matrix.

Yhe matrix of mlitterms M Is merely the identity
matrix

Therefore HnM - Hn
Accordingly there will be a vector c such
that

1/2n H (c) - 1/2n H (f) iff c- f

that is c; - fi.

We hoped Initially that this relation would
provide a means of rapid solution of the identi-
fication problem by permitting a transformation
from simultaneous Boolean equations to simulta-
neous algebraic equations, and thus permit
solution of n equations without the expansion
to 2n. However, this proved to be a false hope
because the algebraic equations are in general
not li!near. Accordingly the Walsh trarnsfor-' oer
se does not appear particularll useful in the'
m'ntpulation of Boolean models. However, in the
course of this exploration, it was found that
a related orthogonal transform is particularly
useful. its properties and some applications
are described in the accompanying paper (6).
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MODLLRING THI COMPOUND ACTION POTTAL OF THZ NERVE

C. Bosswetter

Battelle-Institut e.V., Frankfurt/N., Germany

Abstract What we are looking for is the "nathe-
matical model of the nerve trunk as .a

In the paper the peripheral nerve is transmission system based on the known
considered from a commnications point physiological facts [Q thereby ropla-
of view as a special transmission cing the early graphical reconstruction
system having dispersion-like proper- technique Ell 21[(] by analytical con-
ties. The mathematical model of the putation.
nerve trunk turns out to be a trans-
versal filter with non-uniform distri- 2. Statement of the Problem
bution of the delay elements. It is fig. I shows simplified a peripheral
shown that the input-output relation- nerve containing many isolated indivi-
ship of this special filter may be dual fibers. At t a o a stimulatioi
described in terms of discrete cross- pulse is given. The amplitude is such
correlation rather than of discrete pulse i iven. The jimpri'te is such

convolution. The correlation matrix of that all fibers are innervoted at once.

the nerve is derived. The discrete 0
impulse response of the system is shown
to consist mainly of the fiber diameter
histogram of the nerve. It follows that
under the condition of non-overlappin&
unit discharge waveformscompund ac-
tion potential and discrete impulse
response become identical. Thus, at
least in theory the fiber diameter
histogram of a nerve usually deter-
mined by tedious electron-microscopic
procedures may be measured electroni-
cally. The discrete model of the nerve
may be used to compute the waveform of
the compound action potential for ar-
bitrary unit discharge waveforms, con-
duction distances and nerve types. The Fig. I a) Basic measurement scheme
early graphical point-by-point proce- b) Equivalent transmissionsystn
dure for reconstruction of the action
potential is thereby replaced by a Mach fiber responds with the typical
matrix algorithm well suited to be unit discharge waveform s(t) travel-
adapted to computer pogramming. ling over the tiber with a velocity

determined by the fiber diameter (and
1. Introduction the nerve type). At x the compound
Mammalian peripheral nerves consist of action potential S(xt) is recorded.
thousands of isolated individual fibers The unit discharge waveform of all
with different diameter* and different fibers has the same shape, but not the
conduction velocities. Thus, in gene- same amplitude. It depends o3 the
ral the actually recorded action.poten- fiber diameter, too. The model of the
tials are compound, that means they nerve as transuission system is a kin-
contain the activities of a lot of ear system which may be desk'ribed I*
individual neurons. Consequently it is the time domain by his Impulse response
difficult to separate the composite h(t). Xvidently, the conduction dis-
waveforms into a number of independent tance will Influence strongly the psra•
neuronal signal components. However, meters of the system. These p ai6moters
this has to be done before prostheses and the input-output relationship, of
or other external devices controlled the system are to be determined. -

by neuronal information may be devel-
oped. In [51 an excellent review of all 3. Fundamentala of the Comound
techniques currently being used is Potential Generation
given. However, practically all methods
are based on the severe restriction of All fibers of the gross nerve are
non-overlapping unit discharge wave- grouped according to their diameters
forms. As we shall see this condition falling into the discrete classes
is not met in most cases. having the mean diameter Di. This
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classification scheme is uied by histo-
logists to characterise a nerve by his Sit)
fiber diameter histogrom obtained by
electron microscopic' procedure. The
histogram may be a function of the
space variable x. However, little is
known about this effect. Thus, at a
first approximation it is neglected. T t
Fig. 2 shows the typical shape of a
fiber diameter histogram. Ni is the SM
number of fibers falling into the i-th
diameter class. The mean diameter of
the i-th class is Di = i .A with 1Cian
where A denotes the width of the classes.

to toTS t

Nil Fij. a) -Unit discharge waveform
b) Compound action 'potential

waveform

The time delay in tn-tl/n. Full reso-
lution occurs if the -4tj and (n-l)-th
waveform don't overlap. Since the time
difference is tno.-tnutj.n(n-1) we
have the condition of non-overlapping
t 1 ýT.n(n-l). Using Equ. (1) this

Fig. 2 Typical fiber diameter histogram becomes
XAko.A.T.n(n-1) (6)

The unit discharge pulses of all fibers
withir a specific class can be repre- For conduction distances larger than
sentes. by one spike whose amplitude is given by Equ. (6) n individual neuronal
prop.ortional to the diameter of the spikes may be resolvad. For real data
c" ss. The delay of thie spike is ti. usually being measured in physiology
T:.. conduction velocity of the Ni fibers ((31, saphenous nerve of the cat, Talus,
of the i-th class is vi-koDi. This v =ko.A=3,6m/s A=O,5/u and n--16) the
linear relationship is true in a wide minimum distance would be xt 8 6 cm. This
range of diameters. The delay ti is example shows that in general the com-

pound action potential is caused by
t ix/v lX/koDi MZ/ko*i.AZX/v 0i=tl/i (1) overlapping pulse trains since in many

cases the minimum distance (Equ. (6))
is much larger than the overall size of

with the upper limit of the delay the test animal.

tIx/k 0 .AWx/vO (2) 4. The Peripheral Neore as a Trans-

Thus, the influence of all fibers of versna Filter

the i-th class on the compound action Equ. (4) may be interpreted directly as
potential is given by a transversal filter (Fig. 4).

Si tM si.S i X(t- ., 1/i) (3))

where s(t) denotes the actual unit
discharge waveform of a fiber. The
compound action potential is given by SM
the superposition of all n signals -.A .,
representing the n diameter classes i

cn(bte t.Ni.ae . ).(tI te/) (e A.

Considering this equation some Seneral
statements on the output signal S(t)
can be ride MSi. 3). If the k1ber

discharge signal' has the finite ltngth
T the output waveform-begins at tatn
and ends at tat +T. Thus the output
alspal tf Squ. (4) is time limited, too,
and has the duration

TRT+ tI(ft- 1/n) (5) rg 4 Transmission model of the nerve
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The network N at the front end of the Impulse reoponse are- interchangsble..
filter transformatho quite asbitrary iqu. (11) denotes alsosa matrix opera-
wavefoisof the stimulation pulse into tion. Using the causality hj O for
the actual wave shape of the fiber A.V the convolutico matrix H becomes
discharge spike MCt). The weights of for the first onpreosion in (ii)
the filter are

hiuN( 1 0 0 0 .... 0ohei in ~ 7
h2 h 1 0 0 0

The time delays at the taps of the d- h 0 0 0
lay time are ti=t 1 /i. Thus the delay 3 h2  h1  0 .... 0elements itself are Ieti-ti or h. h, h" h .. 0 -a 1 oh 

2
'E at /i/(i+l) with lwi" (n-1) (8) .

Other than the ordinary transversal hn-1 hn 2 h-

filter this specific type has a non-
uniform time delay distribution. Inde-
pendent of the length of the filter The discrete convolution is expressed
operator the first delay elements from as S a H.1. (12)
the right are
L1._=t1/2 T=t 1 /6 .=ti2 T 4.t 1/20,., where I denotes the output signal voc-

The question is whether the input-out- n-thr andof thel convoutinl vector.ix Thesput relationship of this filter is or -hrvo h ovlto arxithe convolution type or the cross- the discrete fiiter operator {hiia. Ja-racterizad by equally spaced sr pleacorrelation type. It has proved to beresponse
useful to analyze first the common
discrete linear filter and the dis- Considering the right expression in
crete cross-correlator. The differen- Equ. (11) a different matrix notation
ces to the discrete operatio7, of the of the discrete convolution results
peripheral nerve may than eabily be
shown. S a - (13)

5. The Discrete Linear Filter The transformation matrix is now
The input-output relationship of a
linear system in the time domain is 51 0 0 0 .... 0
given by the convolution integral a a .0 0 ....0

2 1
--- -a 0• 3 s .... 0

3 2 1
with the impulse response h(t) of the
time invartant system. For causality
h(t-E)=O ftr Zot holds. If h(t) has
the effective duration T the condition n n-1 sn-2 on-3.
of causality becomes h(t-L)=O for
tdt-T. qu. (9) becomes The discrate convolution according to

t T (12) or (13) is performed by the trans-
5(t) Js),versal filter with n sections (Fig. 5).S a 5~) (Z) h h(t-T,) dE (t-Z).hM dM(1•)

t-T 0 **a PO~ p.) p.P.

Uzing th discrete va~iables ta VAt ', - a
and p = LAt with At=- we haven

n
" 5•• Mphl ) -a [ly-IL)At Fig. 5 Discrete model of convolution

I1 The discrete impulse response of the
Writing the arguments as indices filter is the operator ha(h ,h,h,. ..

n hn)• Considering a time-liimtd• put
snmignal s(V and na4 the conmplte set

_hp _h p (11) of equations determining the oiutput
S1 asignal S(NA) becomes

The ordinary convolution is a commuta.
tive operation. Input signal and
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3 1 a h1  6. The Discrete Croes-Correlator

a 2 s 1'2 * *h 1  For continuous signalm s(t) convolution

S S =sth • sahb + s8h and cross-correlation are linked b)
s3- 3th÷ + h ash 2 3 skbh CC? (0t) *h(-t)6t
Su ICross-correlation is identical to **a-s * ash+ s3•h3 + 0l•2  volution by the time-reversed filter
S a operator. Since this is true also for

6a 3b 4+ 3 discrete signals and operators the ph-,-
$7 a %h 4  sical realization of the discrete cross-

Wh (12) and (3) In mind this correlation Is *gain the transversalVith £wau. fi n 1• •mndtlstlter. However, the elements of the

set of equations may be interpreted as oper. bk=(hn, heelements he
two different matrix oper.tions. The operator r e(he, h se1, hn . h2•,h)

are located In reversed eun.time delay At of the output signal is Corresponding to chapter 5 the set of
not included, equations determining the elements of
The first notation the output vector •J may be interpreted

h 1h 0 0 & 1 S as two different matrix multiplications.
h hor thq previous example (au3) the
2 1 2 tirst operation becomes HP't x§h- ,3 h 2 h, 1 ,0 a s 3, o 3 o4 0~ 0, 0 a I's

bi , 34  h % ,I a S, (1,) h 3 ,hit 0 0 l, 2  s

0 R 4 h 3  Ri2  b b2 h 3 hN0 83 S3
O C hNh, 3 S6/,I h b 2 h 3  4 s S

0 0 0 NO4  S 7 ) Oh 1 h 2 h 3and the second 0 0 h1 Ih2 6

a 0 0 S2 and the seconda 0 0 h S -

3 2 1 • 3  00• 0 ( o o I1  5;
0. a 3 2 aI S1 S4  (1) 00 aRi8 h2  S2 *

0 * * 3 02  S Ri 0So o 4 9 3 s 6 a , , 1 : a k .I3 h 3 .| S 3
0 0 0 0 S2 4 S4

4) j2 a3 S 5

or graphically for both a, S4 0 0 60 (17)
s4 0 0 0 S7 I

The discrete cross-correlation is afl coomutative operation also, that is
0 kLj•.jAkh.. It should be noted here

~that he comautative property of con-
(h) volution and cross-correlation is not

self-explanatory but needs the con-
dition of operators be represented by

.ta SHp.1 equally spakied samples. As chapterA
(sr) lSessp) shows is not the cas for the peripher-

aI nerve.

0 7. The Poioheral Nerve As a Spciric
La Gross-Correlatot

The physical model of the transmission
Squ. (14) and (15) follow from the fact properties of t.e peripheral nerve is
that ) al d the discretecownfolution t the transversal fiiter havin non-ufi-that also the discrete convolution form time delay distibution (Fig. 4).
forms a commutative operation, that is The system responds tko a unit impulse
&'a.iv.. It con be seen that the at tuO after the time delay tantl/n
transformation matrices * or of the with h o(ha, hn_5, hba..l ... h) .where
discrete filter realisable as trans- the time Interval betvcen two sapples
versal filter are rectangular ones. hi and bi-o Is tbetwen-1) toths2apen.
Thus, only in the special case of ?ied --square matrices th orrespondin in- The duration of the Impulse response.

T nt1 (i-I/n) approaches t for na o-
verse discrete filter is roalinable. (F:L. 6). Xvidoutly the he-.reveod

fiber histogram (Sim. (7) and ti.-2)146



is inaccessible. The only input experi-
mental accessible is the input of the

._ pulse forming network N. Nevertheless
l / "-it may be possible to determine the

fiber histogram of a nerve from the
compound action potential S4VAt), that

- -#• is the output of the model for unit
discharge input s(t), if the condition
(6) for non-overlapping spikes is met.
Beyond this limit compound action poten-
tial and discrete impulse responseI0 L become identical. For the example of

04 i 2 * Fig. 7 the limit of resolution is given
by X&3,6 .lmsO3010 cm. With this

Fig. 6 Duration of the discrete minimum conduction distance n-6 separa-
impulse response ted spike waveforms may be observed.

multiplied with the wights i plays Dividing tbi discrete amplitudes by
the role ow the discrete impulse re- i=1,2 ... 6 yields the fiber histogram.
tponse. For the simple case of uniform This new technique just briefly men-
distribution NeF const. the weights of tioned here has still to be verified

distibuionNiuonat th weght of experimentally.
the filter hi have a triangular shape. Evidently, the .ransmission properties

Since the relationship between delay ofitenerve th e desc ribed tis s

and index i is non-linear the resul- of the nerve way be described as a

tant impulse response is represented specific cros--correlator rather than

by non-equally spaced samples (Fig. 7). as operation of the convolution type
The maimum delay t is a function of since the impulse response of the system
the conduction distance x f tqu. 2). is the time-reversed filter operator.
Thusthe onductio istalnerche n sle 2).Additionally, it is easy to see that
Thus there is a linear change in scale the transmission behavior of the nerve
and the shape of the impulse response cannot be formulated as a matrix opera-
is not affected ation like Squ. (16). That is why there

exists no shifting increment for opera-
1 - tors defined by unequally spaced sam-

ples such that a notation like Equ. (16)
would be possible. Therefore, the nota-
tion of Equ. (17) must be used. In the
following the cross-correlation matrix

in general shall be derived.

8. The Cross-Correlation. Matrix of
Sthe Nerve Trunk

With the maximum time delay component
ti=x/voum-At and eliminating the mini-
mum delay component t,=(m/n).,t we ob-
tain from Equ. (4) with t-V6At

n
SE(V-m/n)Atla 7•-i-i.i -

"Using the abbreviation for the shifting
increment r •(-i)(

litI I it follows

n
Fig. 7 Discrete inpulSnreons* of S h 0.--

the nerve model nu ohiS- (1z9)
n -I=

It would follow from this that it must In general the shifting parameter r
be possible to measure the fiber dia- in non inter er. The elements sipr i
meter histogram of a nerve bundle is teger the element
electronically by stimulating the nerve are the samples of the unitdischarge waveform taken at the times
with Dirac impulses and recording the ta C-ri)At. If the unit spike &Mt) of
impulse response thereby eliminating the fiber* has the time duration
the time consuming electron-microscopic Tap-At the time length of the compound
techniques. However, all fibers of a potential S(V At) bleotes (tqu. omun
nerve bundle are able only tc propagate
the typical unit discharge waveforms Teep+m(L)] At. Z-At (20)
a(t), usually called "spike". This is t
equivalent to the fact that the input
of the real transversal filter (Fig. 4)
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The number or rows of the correlation The construction pioceduro of the cor-
matrix will therefore be z+1 or [z] relation matrix shall be explained by a
dopending on whcther z takes intzeger simle exaeple.
valtis or rot. [sdeanotes in the latter Exeanoe: pz3, n&4, ma6
case the next integer number following from Equ. (20)z-7,5 thus fa]&8
a. It is usefi, to consider the corre- from Squ. (18) we obtain the shifting
lation matrix column by column. We ob- parameters
tain the y-th element of the i-th co- r-,1 : ' r-
lumn vector s(-rj)4&t r 2 ,- 2 2 ReSardnt Equ. (21)

( [ -+ t rrm (21) r 3O-4 the complete matrix
8 ri+J)At • rWk0 may be constructedWtfor r 1 dri r o -o

10 for 0 (rp 10 0 0 2 0
0 for 0 VE -ri -1 rO 0 s

with J=0,1,2 ... p. The upper row is 0 a1/2*3/2 *2
valid for non-integer valves of ri, 0 *3/2s5/2 ¶3 -
the lower for integer values. Thus the ' k
i-th columm vector of the matrix Ak 0 a5/20 0

has the following structure: a1/2 0 0 0

r non integer r 1 integer s3/2 0 0 0

0 0 5/ 0 0 C _

* n >rr The simple example shows the unequally
spaced samples of a(t) forming the rows
of the matrix. The vector of the coa-

O 0 pound action potential represented by
equally spaced samples S(O) is than
obtained by the matrix operation Sij~k

iJ "0 whare h denotes as earlier the filter
a Cr• -ri+1 ' operator representing the fiber diameter

L histogram multiplied by the weights i.
"(rj -ri+2 2 It may easily be shown that compound

P action potential S and impulse response
Sij -ri+3 3 ap.= h O(h4, h3,h2,hi) become identical xf the

conduction distance is beyond the limit
given by Equ. (6). If x increases than
the number of the rows [z] or zel in-

"s creases, too. For the example the limit
[r ri +P-1 ap-1 for non-overlapping spikes would be

o a m It pn(n-l)=12 for pal and z=10.
Choosing m=l= yields z=12,25-[z]=13

O 0 The shifting increments are in this
0 case:

Sr• 1 ,25 -2
0 0 r 2 = :,74,-

The complete cross-correlaticn matrix r 25 -0 r The correlation

has than the form: r becomes

i0 0 0 O 0 0 0
* , * 0 0 0 ;0 0000

0 2 3 0 0 1 0
0 0 0 0 0 0 0
0 21/1,0 0 0 1 0 0
0 0 0 0 0 0 0 0

V 0 0 0 0.0 00 0 ak
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ci0 0 0 0 0 00 0
0 0 0 0 0 00 0

or . 3/4 0 0 0 k1 0 0 0

Multiplying the matrix by the filter
operator h yields the discrete impulse
response h9k being represented by the
four unequally spaced samples h 4 ,h3,h 2 ,

.-. . and h 1 .
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AN APPLICATION OF WALSH FUNCTIONS TO THE MONITORING
OF ELECTROCARDIOGRAPH SIGNALS
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Kansas State University, Manhattan, Kansas 66502
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Abstract measured using a lead system, which is a pa':-
ticular placement o.' measurement electrodes

A plausible method for classification on the surface of V'ie body. The shape and
of electrocardiograph data as comi..g from a frequency of this fignal provides the cardiolo-
normal or ah &anormal subject using the Walsh- gist with information pertaining to the phys-
Hadamard Transform is demonstrated. Several ical well-being ol the heart. The computer
typew of ECC signals were obtained from re- can then be used. to distinguish between normal
search canines. These signals were declared and abnormal ECG signals. It is used most
normal or abnormal by the veterinary cardtol- commonly for mass screening and for patient
ogist at Kansas State University's Dykstra monitoring. In mass screening the goal is to
Veterinary Hospital. The Walsh-Hadamard automatically detect abnormalities in large
power spectruw of these signals was then ob- populations. In individual monitoring a
tained and four of these spectral points were single patient is monitored and any future
tused to train a specific pattern classifier, changes in his ECC can then be detected.
The results of using the classifier show per-
fect classification of the normal and ab- Past work has emphasized the time domain
normal signals from a given subject. In the approach [1, 21. With this approach the para-
case of signals from a mixed populatlon, a meters a cardiologist looks for in the time
population consisting of samples from all sub- domain are measured and compared to a range
jects, ten spec -in points were used to train of known characteristics for normal. This
the classifier ,hich pvoved to be eighty-nine method has probably been the most popular
per cent correct. since the parameters it uses are those the

cardiologist ordinarily examines.
The results suggest that the Walsh-

Iladamard power spectrum could prove useful in Frequency analysis, however, can be an
charncterizing ECC's for the purpose of auto- important tool when used with the computer.
mdtic classification. Thus, recommendations Past work has shown that in many cases abnor-
for future work along these lines are in- malities are accoupa-ied by an increase in the
cluded. Several applIcations of these re- high-frequency content of the ECC. on& such
sults are suggested. frequency analysis is the method using the

Walsh-Hadawprd Transform (WiT),[3].
Introduction

Fundimentals of Electrocardiography
Many applications of the principles of

engineering to medicine have been made in re- The electrocardiogram is a measure of
cent years. One such application is the use the electricil activity o9 the heart. This
of the digital computer to process the vast electrical signal is generated during the
amounts of medical data available (1, 2]. cardiac cyc.e by the depolarization and re-
The use of the computer to aid in diagnosis polarization of the heart muscle cells during
comes as a result of its ability to handle their process of contraction and relaxazton.
this data. The actual potential measured across the cell

membrane is due to an ionic gradient. The
One of the signals available for proc- changes in this ionic gradient occur with the

easing is the electrocardiograph signal (ECC). muscle action of the heart and these changes
This signal is ge'ierated by the heart muscle in the ionic potential are recorded as the
during the cardiac cycle. The signal is ECG. (See Fig. 1).
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The heart is a cyclic pump. The cArdiac The Walsh-Hadamard Transform
cycle includes pumping blood from the ventri-
cles to the body and to the lungs as well as The Walsh-Hadamard Transform (WHT) or
the return of blood from the body and the lungs Bifore (jincry Fourier Representation) is aa
to the heart. The right and left ventricles orthogonal transformation in which square waves
are the pumping chambers of the heart with the form the basis set. These square waves are
right sending oxygen deficient blood to the analogous to the sine waves of the Fourier
lungs and the left sending oxygen-laden blood Transform. The one dimensional Walsh-Hadamard
to the body. Transform is defined as

The atria are the receiving chambers of Jfx(n)0 - [m. (n) 3 (1)
the heart with the left receiving oxygen-laden L N In

blood from the lungs and tie right receiving where n - log2 N
oxygen deficient blood from the body. e

jB (n)3 is an (NXl) vector whose compo-
The ECG under most circumstances may be nents Lx(k), k - 0, 1, ... , (N-1) are the

assumed to be periodic since it is generated transform coefficients,
during the cardiac cycle. The sino-atrial
node initiates the stimulus for the conteaction (H(n)] is an N x N Hadaward matrix,
of the heart muscle. The stimulus travels
across the atria causing them to contract ,X(n)3 represents the sampled values of an
and then after a short delay !n passing through ECG 'n the form of an (NXl) vector.
the atrio-ventricular node it passes down the
aeptum and on through the ventricles which The power spectrum corresponding to the
then contract. The depolarizations of the above components is defined as [3]
atria and of the ventricles are evidenced by 2
the P wave and the QRS complex respectively P - B (0) (2)
as shown in Figure 1. After these muscle cells 0 x

contract they return to their initial state s
through the process of repolarization. The 2- 1 2p B• •(k)

repolarization of the atria is masked by the P (
QES complex while the repolarization of the k -2
ventricles produces the T wave of the ECG,

The ECG's waveform is dependent upon the n - log2N.
recording electrodes' placement on the body. lg
This arrangement is called a lead system. the This power spectrum possesses two useful
lead system used in this study was the McFee properties. (1). The spectral points Pi, i-0,
orthogonal lead system. It consisted of 10 1...... log2 N are invaiant to shifts of

leads and a ground. This lead system theore- sampled ECG signal X(m); and (2). They alsotically measures the ECG along 3 mutually cr- represent the distribution of power in the ECG.

thogonal axes as illustrated in Figure 2.
The WHT used for the case of two channelsThe ECG isaomoratajnc sdb

The EGG is an important adjunct used by of ECG data as shown in Figure 3 is defined as
the cardiologist in diagnosing heart ailments, follows:
It gives information used in the diagnosing of
such conditions as myocaydial infarction, and [B(n 1
many systemic diseases affecting the heart. NInn2)] N2 [1(N)] [X(n 19n2)] [1(N2)]
Any aid to the interpretation of the EGG is (3)
thus an aid to the prevention of death from
heart disease. nI - log2 N11

As previously suggested, most past efforts n 2 - log2 N2
in automating the interpretation of the ECG
have focused on the time domain approach. [B (nln) is an (N x N2 ransform matrix
This is perhaps due to the fact that cardiolo- 2  1  2
gists are familiar with and can attach sig- [X(nl,n 2 )] is an ( H1 x N2 ) data matrix i
nificance to the time domain signal. The
frequency characteriscics of the ECG have been and [H(k)] is a (2k x 2k) Hadamard matrix.
used mainly for specifying the recording and,
monitoring equipment necessary for time domain In the application of iaterest (see Fig- 3),
analysis. In this study the frequency approach N1 - 2 and N2 - 32. Thus the two-dimensional
appeared to be valuable also in distinguishing WHT in (3) can be expressed in ters of the
between normal and abnormal ECG's. one-dimensional WHlT of the "sum" and "differ-.

ence" channels defined by X(k) + Y(k), k - 0,
1,..., 31 and X(k) -'T(k) k - , 1,

31 respectively.
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The WIlT power spectrum is r,•lJteo( to the P(0,0) P(0,1) .... P(0,5)
(iJscrete Fourier piwer spectrum In the follow- P)(1,O) P(l,l) .... P(I,5)
Inug maniner.

2 Classification Considerationsp = Cx2(0)

2 A training algorithm which uses a least-
p1  C 2 squares mapping technique was used (5, 6].The basic idea used was to map (in the least

2o-2-1 2 squares sense) the training samples of a class
P' - 2 r Cx-[2n-"(2k + 1)] (4) k, k - 1, 2 . . ., K into a unit vector V k in

k - 0 a K-dimensional decision space. All the com-
ponents of Vk are zero except for the Kth one
which is unity. The corresponding mapping2, 3, . n matrix is obtained during the training process.

n l log2N Then, the trained classifier assigns an in-
coming pattern to class io if the pattern is

and C (i), 1 0, 1. . . . N are the mapped closest to the unit vector V in the
x decision space. 0

discrete Fourier Transform power spectrum
points. Discussion of Results

ECC Ditt Ac<l•ition Figure 5 shows the results obtained using

different numbers of components of the power
The titent of this study was to demon- spectrum. These results were obtained using

strate the feuribility of automatically e lassi- three clarses for training; normal, abnormal
fying ECO's using the foaT. The experimental and questionable. The abnormal and question-
data was obtained from a group of laboratory able classes were then combined Into one class
canines. The canine was chosen because of the and the efficiency was calculated using these
similarity of its heart and ECO to that of the two classes. For this case the signals from
human. This similarity would then allow the

extension of the techniques developed to the the canines studied were mixed. As can be

human. seen, the efficiency of classification in-
creases to 89Z when 10 components are used.
Fig. 6 shows the groupings used from 4-10

The signals were recorded at Kansas State WilT power spectrum points.
University's Dykstra Veterinary Ilospital with
the system shown in Figure 4. The procedure A related measure of the success of
used in recording thle data included anesthe- classification involves the measurement of the
tLzing the canine, rccording its normal ECG number of abnormal signals classed as normal.
and then inducing various cardiac abnormali- When this type of error occurs the individual
ties while continuing to record its ECC. The in question might not receive the medical
resulting signals were then itnterpreted by a care he should have. Figure 7 shows the fre-
veterinary cardiologist and classed as normal, quency of this type of error versus the number
abnormal or questionable. of components used to classify. As can be

One segment of thle ECO signal was chosen seen the best results are obtained for theOnesegen oftheEC sinalwa chse case of 10 components. The other type of
upnwhich to distinguish the classes of ECC's. cs f1 opnns h te yeo

pon w. error, that of a normal classed as abnormal,
This segment w3s the QRS segment which, as is not as serious, since the individual would
stated earlier, corresponds to the depolariza- ordinarily seek further medical care and other
tion and contraction of the ventricles. Figure tests would show him to be normal.
3 shows the two channels of the sampled QRS
segment used. Not all abnormalities can be The classification process was then ap-
detected in this segment but it was felt that plied to detect variations from normal within
enough of them could be to warrant using itas afirt stp i thi stdya given canine. The power spectrum points of
as a ftrst step in this study. the canine's normal were compared with that

cf its induced abnormals using a two class
The sampling of the ECG began with the version of the classifier mentioned abcve.

start of the QRS complex and ended 80 millisec- With four components used the classifier
onds later after having recorded 32 samples. was 100% efficient.
Consequently, the corresponding frequency anal-
aysis applies to the frequency interval of Concluding Remarks
0 < F < 200 11 . The X and Y leads of thez
Mcece orthogonal lead system were sampled The results of this study suggest three
sImultaneously to obtain a (2 x 32) matrix of plausible uses for the techniques developed.
data points which was then used to compuLe First, in patient monitoring a normal or ac-
the two-dimensional WIlT power spectrum. The ceptable signal would be obtained from the
resulting spectrum consisted of 12 MIT points individual being monitored. Then variations
as follows! from this normal could be detected and could
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alarm the appropriate medical personnel to X

the change in the patient's condition. This
application is strongly supported by the suc-
cess in separating normal from abnormal within
a given canine.

A second, related, application would be - x
for use in serial electrocardiography. In
serial elec~rocardiography an individual's 1

normal IXG is recorded for comparison with Fig. R The Electrocardiograph Signal as

one recorded at a later time. AnyRecorded on Lead X.

detected would again be called to the atten-
tion of appropriate medical personnel.

Mass screening if the third application. t

In this case large numbers of normal and ab-
normal ECG's wouid be collected for the train- A
Ing of the classifier. The resulting classi- X
fier would then be used to detect abnorral
ECG's in large populations. The success of
the classifier in 3eparating normal as shown .--

in figure 5 and abnormal in the mixed popula- [ "
ticn supports this application. X X

This study has shown the feasibility of

using the Walsh-Hadamard Transform approach Xx
to detect cardiac disease.
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4 Components: P(0,4), P(0,5)P(1,4), P(1,5)

5 Components: P(6,3) P(0,4) P(0,5)

6 Components: P(0,3) P(0,4) P(0.5)
P(1,3) 1(1,4) P(1,5)

7 Components: P(0,2) P(0,3) P(0,4) P(0,5)
1(1,3) P(1,4) P(1,5)

Fig. 4 The Data Acquisition System Used for

Electrocardiograph Classification. 8 Components: P(0,2) P(0,3) P(0,4) P(0,5)
P(1,2) P(1,3) P(1,4) P(1,5)

9 Components: P(0,1) P(0,2) P(0,3) P(0,4)
P(0,5) P(1,2) P(1,3) P(1,4)
P(1,5)

10 Components: P(0,1) P(0,2) P(C,3) P(0,4)
P(0,5) P(1,1) P(1,2) Ptl,3)P(1,4) P(1,5)

Fig. 6 The Grouping of Componets Used to
Clcssify ECO Signals.

to

ta90"

010

Nutmber of Components Used ý4 10'

0aUu

Fig. 5 The Success of the Classifier Shown

as a Function of the Number of WHT 0o
Power Spectrum Points Used.5

Nrumber of Coomfponents Used

FigT 7 The Per Cent Abnormal Classed Sos
Normal as a Function of the aumber
of WHT Power Points Used. This is

5 1"the More Serious Type of Error.
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HEART RATE REPRESENTATION USING WALSH FUNCTIONS

C. W. Thomas & A. 1. Welch

The University of Texas at Austin

Introduction A representation we wish to consider in

The common interpretation of the term "heart detail is a sequence of impulses, The time of
rate" is the number of heart beats per minute occurrence of each impulse corresponds to the

time of the heartbeat (R wave -peak of the elec-measured by feeling the pulse within an artery, trocardiogram). That is, the occurrence of
listening to heart sounds or looking at an elec-
trocardiogram. In each cas6, the heartbeats
are counted for a minute and that number is I = •(t - T) (1)
called the heart rate or pulse rate. Although where T is the time of occurrence of the heart
heart rate is considered a relatively stable mea- beat.I
surement, there is a large variation in the times b
between heart beats. The interval between Definition of Heart Rate Using Walsh Transform
beats may be determined from the electrocardlo- In the above representation of heart rate,
gram as shown in Figure 1 (a). The reciprocal tIe time of ocurrence on eatoo heartbeat is

of this interval is designated as instantaneous martied by an ioc urse. If I s the input to a

heart rate. In this paper, we view heart rate as flpkep theice wo a
a piecewise, continuous function whose value flip-flop, the output of the dievice would be a
at any time is the instantaneous heart rate two-level signal which may be mathematically

at ay tme i th intantneos hert aterepresented by a sequence of unit step func-
(See Figure I (b)). The average value of the con- tions as:

tinuous heart rate function over one minute is
the classical heart rate. This general interpre- H = -1 + 2 E rg(t-T (t-T (2)
tation of heart rate is necessary if we are In- I - 2 1) (

terested in the dynamic effects of body temper- The instantaneous heart rate is determined
ature, respiration, emotional state, etc., upon from the time between zero crossing. The rate
the beating of the heart, of heart beats is represented by the rate of

zero crossings of the heart rataplaa functionVariations of the heart intervals are more dfndb qain2
defined by equation 2.

medically and physiologically significant f:
the mean heart rate or even the wave shape _t If the heart rate is constant, the gene-
the electrocardiogram. This is obviously true rated time function will be a square wave. If
in abnormal heart conditions in which extra the heart rate varies, the zero crossings of the
beats or missing beats are common symptoms. square wave will vary and the instantaneous
in the normal human, a large variation of heart heart rate is the instantaneous rate of zero
intervals with respiration is usually indicative crossings of the heart rataplan function.
of good health. Therefore, a more general rep- To repre3ent the rate of zero crossings, we
resentation of heart rate than the one minute periodically sample the heart rataplan function
averages may be clinically useful. In many
clinical situations, especially intensive care (or the state of the flip-flop) for the desired
or oronary care units, most medical and ph-f the
soric alrysaren, mos medical and - sampled function. The seqi ency coefficients
siog, researcand en routine from the Walsh Transform represent the heart

• . toting, the electrocardiogram is routinelyS~rat:e function.
monitored and the times of occurrence of heart
beats are available for analysis. There\are several advantages to this repre-

Reresentatin of Hrt Rate sentation of heart rate. First, the time func-
tion, i.e. the heart rataplan function, is

Womack (1) has attempted to extract respira- simple to generate with e computer or with a
tion information from instantaneous heart rate flip-flop. Second, it can be sampled uniformly
by frequency analysis procedures. In order to allowing flexibility in the choice of time period
work with a bandlimited system, the discrete and the number of samples in that period.
level heart rate function of Figure 1 (b) was Third it allows straightforward computation of
represented as a continuous function as shown the Walsh Transform coefficients which repre-
in Figure 1 (c). This is a convenient represen- sent heart rate.
tation even thouqh it is not directly measurable.
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ELerimental Data terval was 5/6 seconds which corresponds to a
rate of ? 2 beats per minute. One minute seg-

In the normal human and many other animals, ments were used to construct the heart rataplan
the moist prominent heart rate variation is the function which was sampled at 1024 per minute.
sinus arrhythmia, i.e. the variation in heart
rate with respiration as described by Richardson The Walsh Transform of the sampled function
et al (2). In this paper we use four sets of data from the square wave variation was calculated
in which the sinus arrhythmia is clearly present. for each one minute segment and the Walsh
The first two sets are simulations of square Transform coefficients plotted in Figure 2. As
wave and sine wave variations in heart inter- in frequency modulation of sinusoids, increased
vals. The third set is data taken from a sub- modulation amplitude M, resulted in an :ncrease
ject who was breathing sinusoldally as des- in number of major coefficients around the funmu-
cribed in Womack (1). In the fourth set of date, mental.
the respiration is unknown, but the stage of The effect of increasing the frequency of the
sleep is known from other considerations as modulation, i.e. increasing the simulated res-
described by Welch (3). piration rate, is not so easily described and

In the two sets of simulated data a constant appears to be frequency dependent. The trans-
rate of 72 beats per minute (intervals of 5/6 form has fewer major coefficients for rates of 8
second) is modulated according to and 12 than for the other rates. However the

coefficients obviously vary with the modulation
Ti = Ti 1 + 5/6 + (M/72) sign Q (3) frequency.

and The Walsh Transform of the simulated sinu-

T = Ti_ 1 + 5/6 + Q (4) soidally vaiying heart intervals are shown in
Z ii Figure 3. Again the number of significant co-

where Q = sin (-r- Ti) efficients varies with both amplitude and fre-
-j~ T~. 1)quency of the sinusoidal modulation.

M = amplitude of the interval modulation Then datof the hu modulatbrti
The data from the hum- subject breathing

and R = respiration rate in breaths per minute sinusoidally was used t,, estruct one minute
segments of heart ratap'_, functions whose

In equation 3 the sinus arheythmia is simu- Walsh Transforms are shown in Figure 4. The
lated as a square wave modulation of the heart frequency of the sinusoids are the same as in
ino irvcls, while equation 4 simulates a sinu- the simulated data in Figure 3. However, the
soidel sonus arrhythmia. In both cases, the simulation was sinusoidally varying heart Inter-
nmplitude of the sinus a,'rhythmia is represented vals while the data from the humean subject was
by M. When M = 0, the heart rate is constant, sinusoidal respiration.
i.e., our heart rataplan function is a square
wave. For non-zero values of M, the heart The Welsh Tranbform of the human data in
interval in equation 4 vary sinusoidally between Figure 4 is similar to both sets of simulated
5/6 - M/72 and 5/6 + M/72 or the heart rate data in Figure 2 and 3. The human data is
varies between better correlated with the simulated data with

72 72 the larger modulation amplitude. The plots in
1 + M/60 and 1 - M/60 Womack (1) show a heart rate variation of about

15 beats per minute. The simulated data with
Notice that the variation in heartt M = 8 has about the same heart rate variation.

exactly sinusoidal since the mapping from heart Therefore, t.he correlation with the human data

intervals to heart rate is nonlinear. We have should be higher than for M -- 4.

assumed that sinusoidal sinus arrt;Ythmia means

sinusoidal variation of heart intervals not sinu- The fourth set of d&ta was obtained during a
soidal variation of heart rate. normal night of sleep. Respiration in the sleep-

ing human is not sinusoidal and its amplitudeIn equation 3, non-zero values of• M yield a and rate vary with sleep stage.

square wave modulation of heart intervals.

While this type of sinus arrhythmia is not ex- The heart rataplan function was constructed,
perimentaliy possible, it does furnish a cam- sampled, and Walsh Transformed for the sleep
parison with the sinusoidal case which can be data as in the previous sets of data. The he.!rt
closely approximated in the laboratory. rate functions plotted in Figure 5 obviously

change with sleep stage, but the respiration
Simulated data was obtained using equations rates cannot be determined by visual comparison3 and 4with M ,4aend 3 nd R =4, 6, 8, 10, with Figures 2 and 3.

12, and 14 breaths per minute. The mean in-
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This is not surprising since the variation In I •TWT'
heart Intervals is certainly not sinusoidal or M - 4 M=8
square wave, and as shown in Figures 2 and 3, R -4 R -4
the number of significant coefficients varies .
with modulating frequency. The non-sinusoidal
non-symmetric modulation of the heart intervals
during sleep soma to Increase the complexityof the heart rate function...,_..._.._.._..

To compare the W alsh Transform of the wo"" !. . .I . .

hcart rataplan function with the Fourier Trans- M 4 M=8

form of the same function, both transforms of

the sleep data are shown in. Figure 6.* First the A
coefficients from both transforms are pl otted,

then the square root of the sum of the squares
of the two coefficients at each sequency and . ... A ....... -*.. I . . I....
frequency are plotted. 901 .... I.. I

The latter plots represent power at bands of M - 4 M-8
sequency and frequency. in other words, they R.=8 R -8
are the amplitude spe-t•ra as defined by Har- _.J•, • . -LA-A
muth (4).1

Conclusions

The representation of heart rate using the __......._._

Walsh Transform has been presented. The data
shows that variations in heart rate are repre- i M =4 i M 8
sented by several coefficients In the transform. [R R-10 fl R -10
The number of significant coefficients depends jJ ..
on the amplitude, period, and complexity of A , -
the modulating function. r.- r 1 -

We have not solved any problem, but we .. I .... ..I.. I- 1 ... 1 =....

have demonstrated a tool which may be useful " .... V --- 1 7 - 1 - l- - . .
in problems involving the use of heart rate and a 4 Mme
especially variance of heart rate. We have R
used only one time period and one sampling I
rate, but these two parameters may be chosen I_
to fit a particular problem. Such flexibility and .
the computational speed make this technique
potentially useful.Re e .... s .... L.. L I .... L ...
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Figure 1.* Deflnitoio of heart rate from the
electroca.iliogram.
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Introduction.

Brain wave (EEG) analysis is a very limpor- is char-acutrized by ot-wave activity (8 - 12 Hz
tant tool in mmiy research and clinical appli- nearly sinusoidal activity), and stage 1 by a
cations. The clinical diagnosis of epilepsy and relatively low voltage, mixed frequency (2 - 7
sleep research are two areas which owe their Hz) EEG. Stage 2 is defined by presence of
developmet almst entirely to the discovery of phasic activities of approximately 1 second
the EEG. Mmee studies always entail the pro- duration (sleep spindles md/or K-cwplexes)
cessing of large amounits of data, and have superlimposed on a background of relatively low
prompted many investigators to try automated voltage, mixed frepquec EEG activity [3).
techniques to assist in the data analysis and Stage 3 and 4 contain moderate and large Moniuts
in attemts to discover now knowledge about the .in time) of high amplitude, .5-2.5 Hz activity

MG. respectively. 1TM sleep - thought to coincide
with periods of dreaming - has an EEG similar

Fourier spectral analysis is the technique to sleep stage oae, but is distinguished by
most widely applied. Applications include the rapid eye movements and or the attenuiation of
analysis of EEG data collected from astronnits the electromyogram.
11] and the discrimination among states of con-
sciousness (sleep and wakefulness) [2]. Ihe w.thodlo
utilization of the BEG to classify sleep into
several stages [3] has led to the development of Three hnm sleep EEG's were recorded on
automated systems for the corputer classifi- magnetic tape and then processed off-line. All
cation of sleep stages [2, 4, 5]. the data was obtained fron the frontal position

(Fl-F7) of the skull, except for the awake data
This study was carried out to determine if (stage W) which was obtained from the occipital

the Walsh Transform could be utilized in dis- regiom (03-OZPZ). The data presented here were
criminating between sleep stages and to comare obtained from a single night's reading of a 22
Walsh wAd frequency EEG spectra. year old male with a relatively low amplitude

EEG.
The huima sleep EEG, as shown in Figure 1,

consists of six sleep stages (stage W, 1, 2, 3, The EEG data was filtered by a low pass
4, and fFM4. The sleep stage W (wakefulness) filter with an upper cut-off frequency of 25 Hz

(b)

(C)

(d)

Figr 1. HIun sleep BEG
(a) stage W (b) stagel 1Cc) stage 2
(d) stage 3 (e) stage 4.
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and then converted to digital data and pro- fewer cmputing operations. The instructions
cessed weth a PIP-SI couter. 113 sm.lif needed for the tranfom tIon ocouy only about
period was 32 seconds and the smpling rate vs 100 amory locations and con be applied to any
32 sm~ples/sec., giving a sdmu sequency of aumber of input data points which are of two's
16. This NX• limit is close to the upper pawr. The transformed Walsh coefficlent Wyre

-mfrequec limit of interest in sleop ]G data. squared and smed pairse for each sequency.
The spectra were converted to a logarithmic

The input data was transformed into a scale and displayed on a storage oscilloqcope,
series of Walsh functions (6] using the Fast from hich the Walsh Spectr. plo9ts have been ob-
Bifore Transform to solve the equation tained.

XHxhe sa epochs were analyzed with a Gen-
where x and X are 1024 elment coium vectors oral Radio 1921 Real Time Analyzer to chtain
representing the input Md transfcmeed -data res- Fourier power spectra estimates. The wnalyzer
pectively, and H a matrix generated by u perf_- consists of 4S filters, spaced 1/3 octave apart,
odic smpling of Walsh fumctions [7]. covering the frequency spectram 3.S Hz to &Ok

Hz. The A•alyzer smples the outputs from the
•.• Figure 2(a) shows the computation al- filters to ertimato the Fourier powr spectra.

goriti. employed to obtain the, Walsh Transform. 11w EEG was reproue at 32 times real speed,
The data processing differs from Pratt et al's given mi equivaleat filter banLddth of 3.5/32
method [8] in that the nmber of blocks, each Hz to 2.Sk Hz. An integration time of 1 seconi
indicated by a rectangle, ad the nmber of was employed - corresponding to S2 seconds real
data points in each block on a level are first time. 19 spectral estimates in the frequency
calculated to obtain terminal conditions for range (.3-19.7 Hz) have bee. plotted.
the loops used in computation of intermediate
data on next level. All the intermediate data Results and Disonsion
on the next level are then processed throgh
a nested loop and the resuts stored in separ- Figure 3 shows ty-pical Thnier spectra and
ate memory locations. The loop for computation Walsh speitra of each ±leep stage. It is ob-
of intermediate data in odd blocks has, as a served, in gaenal, that the Walsh powr spac-
unit operation, only the addition of two data tra is mor difluse throughout the seeqety
while the loop for even blocks consists of two range than the ccrrespoxding Fourier power
operations as shown in Figure 2(b). For inter- spectra. The better waveform discrimination of
mediate data storage an additional 1024 remry Fourier power spectra for EEG activity of near-
locations are allocated. This computation al- ly sinusoidal form is illustrated in Figures
gerith. has the dvantaoge that the Walsh co- 3(AO) and 3(BO). The aMTpoxdmately 10 Hz alphn
efficients are obtained in sequency order with activit is obeerved in the Walsh spectra 3(AU),•_•k•_ but sobhamonics ane more prominmt Uhm- in the

car, , din Farrier spectra. Aliassi is not
S• 0 , sbelieved to contributo to the observed sequency

IM diffusio as the Forier power spectra shows
_ elatively low EEG activity above 16 Hz. Al-

XM -.. -so, t secods epochs (approximately 100 sam-
XQ) O€, -- j IR) ples/sec.) shomod the same Irequency diffusion.

(3) .A comp arison of the plots for the other sleep
stages shou that the activities present in the

"x(4)) frequency plots are also evident. in the sequency
plots. Hoteve the peaks are more pronounced in

)(s) the freqncy plots, uwntotedly due to the
Sinasoidal like characteristics of all sleep

I -M . stages except 1 and 1-1R4.

I-bin et al [21 have described the ina-
-() bility frequency spectra to discriminate betwmen

sleep stages using stepwise multiple regression.
The same pFblem exists if Walsh spectra are
used. Figure 4 illustrates the probl'o by show-

_ W__ - ing the similarity in the Walsh spectra of a
sleep s 2 rid asleep stage 3. Lare emand•:-- o-o-"_ .. .. •m•Walter [4]reporte 'that a multiple disc-riminant

S.function anlysis of frqec spectra could=• -, discriminate between sleep stages if an adequmte
0 - •"training sample was ,zsed. Such tedmiques would

probably be es effective using Walsh spectra.
(b)

Similar csJricteristics were observed in
the comparison. of the spectral of the other two

Figurm 2. DIata Processing Algorirhm. subjects.
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SPEECH PROCESSING WITH WALSH FUNCTIONS
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Introduction

A main topic in data transmission especially

for speech exists in pointingbout optinmal source

and channel coding [1,2]. The basic block dia-

gram is shown in figure 1.

Date

d cFigure 2. Source coding and decoding

Because speech signals exist one part of nearly

periodic waveforms, the voiced vowels, and

on the other hand of the more unregular un-

voiced parts optimal coding must refer to these

characteristics in speech. This segmentation

sce will causc. difficulties-especially the pitch de-

tection problem-and first we make no difference

between voiced and unvoiced signals.

Figure 1. Basic communication system Linear orthogonal transformation offers a me-

thod for data compression by means of coding
The redundancy of the sot'rce si• 1s sup- the spectral coefficients. The spectral distri-

pressed in the source coder and the reduced bution is exploited by different quantir .

binary data is protected against noise and dis- schpmes. These speech processing sys .. a

turbance in the channel coder. The channel co- are also known as orthogonal transform voco-

ding and decoding may be separately solved ders [3).

and we now consider a subsystem as shown in

figure 2.
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l . . .n .... A_• , •• • •

•iri

Linear Transformation Pl P2 .... PN-1
P I P " N-2

A time-continuous frequency limited signal x(t) 2 p p .. N-2

can be represented with respect to the aampling Coy(2_= C2 P2 P1 PN-3
theorem as a discrete series of samples x(kit).
The discrete signal samples are written in fi- .4

nite intervals as column vectors Pn ........ 1

-- O)= I (x )' k = r (0) is the variance of the process.

xc(1) = (xN XN+1.XNk..xN)' The LoXe-Karhunen transform diagonali.-sN-the covariance matrix [6]

x(z) = (xN,xtN+I*....c(**X+I)N-1 )K K Cov(x) K- 1 
= DRag (XL)

and eliminates the correlation of the process
and transformed with any regular matrix G in the transform domain. For wide-sense
with the elements g. k on a generalized spec- stationary processes and N--o, co the covariance-
tral domain matrix is diagonalized by the discrete Fourier

matrix. But for finite N and non-stationary
2(v = G x(v) signals as short speech sample blocks the

optimal finite Loeve-Karhunen transforms are
Y.(v) is the spectral vector of the v--h interval given by

and has the elements K(V) Coy (x(V)) = Diap(X(V))

0 1 . N-1 and will be different in each interval. For each
The time dependent coefficients may be regar- interval the Eigenvalues and Eigenvectors must
ded as samples of convolution functions between be determined which requires a large compu-
signal and the rows of the transform matrix[4],. ration time and it is nearly impossible to per-

The inverse transform onto the original domain form real-time processirng of the signal. There
is given by are other methods [7,8] based on a mean

Karhunen-Lolve expansion where the signal is

x(p) =-G -(v) treated as a stationary process.
On the otherhand discrete Walsh transformation

There is a one-to-one corresprrndance betweeni offers new methods for real-time signal pro-
signal and transform domain and no errors aremadeby inea trnsfrmaton 5],cessing and digital hardware imp)-,mentation.
made by linear transformation [5]. There exist fast transform algoriJims and no
Most signals are correlated because they are multiplications are required in Walrh transforms
output-functions of convolution type systems. except sign changes. The correlation is not
Tnerefore the optimum linear transformation is completely removed in the transform domain
given by the Lobve-Karhunen expansion because because there are non-vanishing elements out-
the correlation between the signal sampler Is side the diagonal of the following transform
eliminated in the trapsform domain.

The statistics of the signal are given in terms N - A
of correlation coefficients Pi defined ab

rx (i) If the covariance matrix is a dyadic convo-
p1  -• lution-type matrix the process is a wide-sense

r (0) dyadic-stationary procezs and the correlation
of the process x is eliminated by linear Walsh

and r denotes 'he auto.morrelation of the transformation T91.
xxstationary prccess. The covariance mesrin of Because there are not many non-vanishing ele-

the process is of Toeplitz form and giver, by ments outside the diagonal we derive our moti-
vation for an application of the Walsh transform.
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The discrete Walr% transform of the finite in- The transform and inverse transform subsys-
tervals with the tength N = 2n is defined as tems are showr. in figure 4.

_2(0 = W_ x(v) !

xP*) -E- .•- 4d(
with the inverse transform

W is the N-th order Walsh-matrix and the ele-
meris w(j,k) take only the values +1 and -1. OW

SThe matrix is orthonormal [(0,1!]-- r',o [ 1 1ft-.

W nW b c n Figure 4.Block diagram of the transform units

Data compression is achieved when the vari- Any arbitrary waveform is frequency limited
ances ir the spectral domain of the special in a low-pass frequency filter with respect to
-:ignal to be processed are known.This can be th afies tS• dne y cmputr smultio [12. Acoring the sampling theorem. The discrete va.•es at

doneby ompaer imultio [12. Acordng rimes k-4t are conc-erted into binary words with
to the mean energy distribution G.Robinso hashere

derived the bit-assignment for the spectral co- ninput qulntization errcr. The transform

good system w.h N=16 and proved of the binary input signal yields N spectral co-

For the real-time sisnal processing with high efficients. If the word-length is p+n no additio-

order systems (Na- 16 - 1024) as required for nal errors are made in the transformation pro-
oerxsystems (n -6 image proc sing weqirled for cess. The original binary signal word is given
example .in imege processing we d..vwlopped by the inverse transform which is th. same as
a transform pluecessor based on Walsh functions, the transform. The binary word is shifted to
other two- .alued aaid also three-valued functions. th Igtadhumliped ih /Thdathe right and thus multiplied with 1/N.The d/a
Analog ha dware imple ,entations heve already converteris producing an analog signal which
been discussed [13,14].But using modern inte- is the same as the quantized input sic al whxc-
grated MSI rxn i LSI circuits the system may be
implemenie. ,ih minimized expense and cept a time delay of N ct or N samples'. .

highrs', flexibility. In the followinq chapter the pass filtering yields a time continuous i eqt

implemeiitation 's discussed in detail. cy limited signal.
The total number of required operations in a
matrix multiplication is N2. There e)tst fast

Digital Hardware Implementation algoritnms called Fast Walsh Transform zW1')
reducing the- reqired operations to NldN=nN

Figure 3. shows the basic diagra-. of a trans- [15,16]. A transform oato sequez.-y order, d
spectra reqIires additional storage and the com.-

form processor. plete input vector &(v). A transform onto se-

reduceJdoto quency order however will be useful for corr-

SI paring the results trom the well inown Fourier

spectrum direct with the Walsh spectrum be-
_- - , - ause there !s a first order one-to-one corres-
Tr.Lw_ Andexce betweer. sequency and frequency ( 17].

L . _______ t..J Tb,-refere and because of more flexibility am
ordlinary matrix multiplication processor has

Figure 3. Basic diagram of a transform-pro- been vorked out instead )f a fast transformer.

cessor. The matrix mQultiplicoa .'.n is computed i N2

steps and thc tranzien vector is givon by N
The subsysteit called spectral code-. can also ant h• trans en• parti .ll stsbsums
be refaced by other uwits for linear sn non- "

linear filte•riog. With a aogarithir) nit the sys-
tern .,Ilows the double sp(ecrun; analysis -n •( ,) =x(v) = - _ ()
the Wvalsh oromain.
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where wk are the columns of the Walsh matrix clock frequency. Aftar N(N-1) operations the

input word xN is multiplied with the last

W+acolumn of thelals- matrix ,added to the sums"0-0 1 1 k "XN-lWN-1 .(N-2) and at the output of the adder the Walsh

c~efficients appear serially. In the feedback
x0,x 1 ... x are the elements of the v-th between shiftregister and adder there are AND-
signal vector. gates for the multiplication with zero.This is

A k-th partial sum of the transformation vec- required at the beginning of each interval and
tor is given by also useful for the multiplication with the

three-valued functions {-1,0,+1}.

-k L) = y 1•iI Jwk] k '(lkk to lf

x 0 w 0 , 0 . ' wk x 0

x I .. k I x , sL"ft register

0 No......

x,0" i,k kv

" Transform

The Matrix operations consist of N2 sign changes

and addit-ins. N operations are computed seri- Pt"
ally in each sampling interval at. With parallel
binary arithmetic the clock frequency of the
machine is given by i,, ,Pm., Xk

N fo.L J i :

Tclock =Nf = Nft,

The logic ( TTL and MOS) is limiting the clo.n
to f so that tLe upper signdl band limitScmax
is Figure 5. Block diagram of the arithmetic

fcmax units of the processor
up 2N During the last sampling interval (N-1)jt

th.- coefficients ,. appearing at the output
The implemented p-ocessor has a clock o h
quency of 2MHzand the u~per signal bc', of the transform uni are read into the shift

limi is15.k~z t N4. hereis o lmit register of the inverse transform unit. This
• limit is 15.6kHz at N=64. There is no limit register has an intern recirculation logic. In
for low fre4uencies and long intervals, each sampling interval the register content is

Figuse 5. shows the block diagra; of the shifted cyclically to the right and at the output
transform and inverse transform units. For of the last stage the N Walsh-coefficients will
the binary representation we use the two's appear. The multiplication with the correspon-
complement because there existb a simple rale ding row of the Walsh matrix and summation
for the multiplication with +1 and -1. yield the original signal word x.. The word
The arithme -" unit contains parallel exor-gates is now shifted n-times to the right accor,'ing
adders and sliftregisters. We regard now !he to the multiplication with 1/N. Because of the
state k at the tiaic- kAt . The bina, y input word symmetry of the Walsh-matrix the signs for
is multiplied N-times with the column vector transform aid inverse transform are the same
.±k of t.e Walsh mdtrix. At w. k=-l-L the word and only one Walsh-generet'•r is needed. We
is inverted and an L is added 1ý the last signi- have used a proposal of Peterson [18].
ficant bit. The N products are added to the The arithmetic units as shown above r n be:• N foregoir , partial sums which are stored in•i the Ž7-stage shift-register. The new sumns •k

malso used as digital Walsh-filters simply

are readintothe fir.-t stage of t&e sh-ft reqister m the register c
and shifted cyclically U tne right with the

-6
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q. is the number of bits for the quantization
Sectral Coding oie each coefficient. The quotient between in-

put bit-rate (8-bit PCM) and spectrum rate
"lhe first investigations with the tran.fcrm pro- thus is given as reduction factor of
cessor have shown energy distributions as 64kb/s

•iown in figure 6.
in r= 1,455

44kb/sC
and there was no difference and loss in quality

between input and outputs'ignal. Experiments
have also been done with higher reduction up

-utvA to 22kb/s and there was no loss in intellegibili-
ty and only a small amount of increasing quan-

tization aoist- especially in the unvoiced parts.
But this is also clear because the distribution
of the voiced parts was taken. Further improve-.

ment will be achieved if voiced and unvoiced
parts are coded with different schemes.

Figure 6. Qualitative energy distribution of Pitch-synchronous Walsh Transform
German speech in the Walsh-spectrum

High data compression however is only possible
Because the absolute spectral distribution is if the speech significant characteristics are
constant, the short time spectrum is differing turned out bzttpr. Thus, the bit-rate of the
very much at changes of the transform inter- voiced quzsiperiodic vowels can be reduced far-
vals from short duration as 2ms to long one reaching using pitch-synchropous adaptive Walsh
as 8ms. But the total energy of the signal is transformation.The main problem is the pitch
always constant in the spectral domain because detection, which must be determined exactly
Parseval's theorem holds true; the areas under for reducing the variances in the several spec-
the curves are the same. The distribution will tra. Figure 8. shows the basic diagram of an
also be different for voiced and unvoiced parts, orthogonal Walsh-vocoder.
The distribution of figure 6. is nearly the same
as in the Fourier case. The voiced vowels have
their maximum at the absolute sequencies t, ,' ~r ý = IT'lkzps (kilo zero crossinqs per se,-..

which is equivalent to lkHz in the frequency
spectrum. The unvoiced parts have their maxi- &fr Wet

mum at higher sequencies ( 3-6 kzps) c
ding to 3-6kHz in the Fourier spectrum.

DoIay a Amgrzw

For N=64 and T =8ms the energy distributon Y
0

of the voiced parts has been quantized as
shown in figure 7. 4

Figure8. Basic diagram of an orthogonal adap-
qttive Walsh-vo~oder

The pitch frequency is multiplied by N and the
/l delayed speech signal is sampled adaptive so

that e~ich period consists of N samples. The
,isample frequency -i also controlling the Walsh
Sj0 generator and the arithmetic unit .Pich and

coifficients could be coded effectively w'th
,1 3 '8 6 differential PCM. The estimated bit-rate might

be 1-2kb/s. Th-, 1ý other systems allow highow.
Figure 7. Bit Assignment in the Walsh-spectrum data cor-press t2 i1J the advantage of the
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WORD RECOGNITION BY MEANS OF WALSH TRANSFORM3

by

Moyett T. Clark, Dept. of Defense, Ft. Meade, Md.
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Abstract Walsh Spectral Analysis of Speech

An experiment is described in If a segment of a speech signal
which word re-)gnition is based on f(t) is represented by a sequence of
comparing thi Ish sequency components N samples, f(nT), OncN-l, the discrete
of spoken we. dith those of a stored Walsh Fourier or H&Aaiard transform
library of words. A Walsh transform can be defined as 121
computer program is used to ocslulatt N-1
the sequency components of successive W(k) - z f(nT)wal(k,n),k-G,l,...,N-l
segments of spoken words. The n-O (1)
components for each word to be recog-
nized are arranged into an amplitude - where T is the sampling 4-terval.
sequency - time matrix and correlated Similarly, the inverse Wa•.\ transform
against a set of known test matrices, is
A test matrix is generated for each 1 N-1
word by averaging six matrices of the f(nT) ; I W(k)wal(n,k),n-0,1,..,,N-i
word. By using the highest correlation Nk-0 (2)
coefficient to determine which word
is 3poken, recognition scores between where N is an integral power of two.
89.9% and 100% are achieved for a ten The first two discrete Walsh
word vocabulary spoken by four speakers. functions are defined as

Introduction wal(0,n)-l, for n-0,1,2,...N-1 (3)

In the recognition technique (1, fcr n-0,1,2,... N/2-1
des-,.ý.' -n this paper, amplitude - wal (1,n)n (4)A
sec,.ency* - time matrices for ten l,for n-N/2, N/2+l,...,N-1
spoken wo.:..s are prepared for four
speakers, and these matrices are The remainder of the set of Walsh
compared by means of a decision rule. functions can be generated by the

A Walsh transform comprter program following iterative equation:
calculates the sequency components for v'al(k,n)-wal([k/2]1,2n)wal(k-2,lk/2],n)
successive sections of each spoken
word. After the discrete Walsh sequen- .- re [k/2] indicates the integer part
cy components of a spoken word are if k/2.
determined, a computer program arranges
the components into a matrix of In this paper the discrete Walsh
identifying numbers. By correlating transform of f(nT), 04.ntN-I is computed
the matrices with those of a storid on an ZBM 360/85 by an algorithm
library of words, the spoken word is developed by Ulman (31. The algorithm
identified by the largest correlation provides the components W(k), 0.kSN-l,
coefficient. in orier of sequency.

The objective of the pilot exper- If the even and odd discrete Wslsh
iment is to recognize a limited components in (1) are combined, avocabulary of words and to take advan- power spectrum can be comioutd as
tage of the speed of thr WaiLih trans- follows 11,41:
form which requires only real time
additions and subtractions. (W2(0) ,kn0

P (k)- (5)

*Haimuth [I] has defined sequency The computazons in (1) and (5)
to be one half the average number of provide only" one spectral section, that
zero crossings per second of a function is, the sequency components at a time
and has ab'!reviated sequency as "zps" t-IN-l)T. To obtain a short-time
in analogy to cycles per second. spe-.tral analysis, we compute (1) awd

(5) at successive instcnts of time and
eusentially deterraine a runnizig W1alsh
spectrum for each spoken word.
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Hence For each utterance, a test matrix
is generated by averaging six matrices

N-I of the same word. Thus there are ten
Wr(k)= z f(nT+rMT)val(k,n)A-0,... N-1 test matrices for each speaker. The

n 0 words to he recognized for a particular
and (6) speaker are compared with each of the

rW (0) k=0speaker's test matrices.] St(k) ' (7)
(W2 (2k)+W2(2k-l),k-l,2,.. ,N/2-1 matrix cell

The two sets of numbers Wr(k) and '4
S M)represent the discrete Walsh
4ansform and power spectrum, *

respectively, of a section of a 44
speech signal starting at tarMT and
ending at t-rMT+(N-I)T. Successive * •
sections are spaced in time by 0

A normalized spectrum, Qr(k), is
calculated from (7) for each word 2
bir finding the m& imum value of Sr(k) 0
for each utterance and modifying
(7) as U -

Qr(k) ogr'x ,k-0,1,...N/2-1 F
Sr(k) •8)

0 MT 2NT 3XT.
All values of Q (k) below -30db are
set equal to -36db. Hence Tim

-30db if 0r (k)s-30db Figure 1. Example of the coordinates
Pr ik) (9) of the amplitude - sequency

%Pr (k) if Qr(kX-304b - time matrix

Each word is represented by an Let C(i,j) represent a matrix
amplitude - sequency - time matrix cell in a word to be recognized, where
whose values are between 0 and -30db. i is the index for the sequency compo-

nents and j is the index for successiveGeneral Procedure time sections. A correlation coefficient
can be generated for the two matricesThe spoken digits, one through as follows [7] :

ten are low-pass filtered to 4kHz,
sampled at 10kHz by a 12 bit PCX N/2 L
coder, and recorded on a digital
tape. The digital tape is edited Z C c(i,j) D(i,j)
so as to p roduce -ix records, each i(l jl.
containing 124 sample data points, P L N L
or 6xl024in6l44 Nape orec
spoken word. s e fij) E D (ij)

The utterances on the digital N/2 is the number of components in
tape are processed by the Walsh

tape analyzerodes s ribed by (6) tthe Walsh power spectrum and L is%-.ectrux analyzer described by (6) to
•). The -ts of numbers Pr~k) for the total number of successiva time

segments. By generating a correlationsuccessive retions of each word are coefficient between the unknown word
arranged in the computer as a data and each of the test matrices, amatrix with the format shown in adec ftets arcs
maturie 1iThecolumnsof the matnin decision can be made on the basis of
Figure 1. The columns of the matrix the best correlation coefficient.
correspond to successive segments of

a word, where each segment starts at eiments! Procedure
time t-rM and ends at time t-rMT
+(n-l)T. The rows are the sequency Three experiments were performed.
components Pr 1k), O•_kCN/2-1, which For the first and second experiments,correspond to each word segment, the parameter N in (6) to (10) wassuch a matrix may be regarded as ach s n a 12 . Ti me st at epdigital spctoga 1528. Ths7as tspdigital spectrogram 15,6*. aration between successive spectral

samples was 78.125 zps (Sp3 is one-
half the average number of zero

1'10
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Recognition Scores Approximate
Computer Time

First Second Third Female Generation Corre-
male male male speaker of spectral lation
sreaker speaker speaker components

First Experimenl-
No. of sequency components=N/2-64 96.6% 94.9% 100.0% 93.3% 80 sec 34
No. of spectral sectionsmL-48 sec

Seco I Experiment
Lower order components used
No. of sequency componentswN/4-32 93.3% 93.3% 96.6% 91.6% 80 sec 21
No. of spectral sections-L=48 sec

Third Experiment
No. of sequency components-N/2-32 96.6% 94.9% 100.0% 89.9% 112 sec 42
No. of spectral sections-L-96 -sec

Table 1. Recognition scores for four speakers and approximate computer time
required to generate, correlate, and recognize words.

crossings per second [1]). The para- sets were used to form the test matrices.
meter M was chosen as 128 in (6) to (9). Matrices for the second six sets were
With the sampling interval T-6.1 ms, compared againat the test sets. The
M-128 corresponds to obtaining recognition rates which varied from
spectral sections every MTw12.8 ms. 89.9% to 100% are shown in Table 1.
sincc each utterance consists of 6144 Table 1 also shows the approximate
sample data points, there were 48 computer time necessary to generate
spectral sections for each spoken and correlate the spectral components
word. Hence L in (10) was 48. for each experiment.

In the first experiment the In the second experiment an
successive spectral sections, Pr (k), attempt was made to reduce the computer
0WkSN/2-1, contained 64 components. computation time and storage requirement
Each word to be recognized was repre- by using the lower order sequency
sented by a 64x48 amplitude - sequency components. Since the results do not
- time matrix and correlated against vary significantly f.om those of the
each of the 64x48 test matrices, first experiment, it appears that we

were able to achieve data reduction.In the second experiment only This is similar to the results obtained
the lower order sequency components, by Pratt, Kane, and Andrews [81 who
P (k), 0-_k*31, were used. Each word were able to achieve bandwidth redlaction
wis represented by a 32x48 matrix by ignoring the higher order sequency
and correlated against each of the components.
32x48 test matrices. The results
of the first and second experiments In experiment number three the
are shown in Table 1. sequency components were further aý art.

The recognition scores of the first and
For the third experiment the third experiments were similar except

parameter N in (6) to (10) was chosen for the female speaker, but more
as 64, and the separation betwaen computer time was required for the third
sequency samples was 356.25 zps. experiment. Therefore, the first
By choosing M-64, ve obtained 96 expreriment produced satisfactory
spectral sections, where the sections overall results.
were separated by MT-6.4 ms. The
successive spectral sections, Pr(k), Discussion
05.kSN/2-1, contained 32 components.
Each word was represented by a 32x96 Because the Walsh transform
matrix and correlated against each requires less computer time than the
of the 32x96 test matrices. The Fourier transform, the Walsh transform
results of the third experiment are was chosen for the recognition
also shown in Table 1. experiments. The Walsh transl ra

requires only real additions and subl-
Experimental Results tractions whereas the Fourier transform

requires complex multiplicatJ,.ns,
Twelve sets of the numbers one additions, and subtractions.. Pratt,

to ten were spoken by three male and Kane, and Andrews [8) were 'ble to
one female speaker. The first six realize a reduction in time b P a
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factor of 6.6 by using the Walsh
transform.

Hence the objective of this
experiment was to recognize words with
a minimim amount of computer time and
storage by correlating Walsh spectrums.
It required approximately 80 to 112
"seconds of computer time on an IBM
360/85 to generate matrices for twelve
sets of 10 spoken words. It also
required approximately 21 to 42
seconds to generate the test matrices
and perform the recognition procedurt.

The kajor disadvantage of the
system was its inability to cope
with the variations of the duration
of the spectral events which constitute
words. This problem was p3rtially
sclved by using test matrices which
were the average of six matricee.
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A PROGRAMMBI WALSH FUNCTION SBURTORt AND ITS tBIN
A HIGH SMDi D==EI THRAIFURN APPARA!1

Dr. A. R. IlliOtt hrs. So Mikhail
Departnent of Electrical Zngineering and
The Communications Research Laboratory af

McMaster University,

Hamilton, Ontario, Canada.

Abstract during the period B, and exact Mowedp of the

A novel circuit for generating the first 64 beginoli1 of the t4* period S, selug • ith high
Walsh functions with-no timng error, hasard- frequency operation, and a simple clijuit are
free, and jnchrcnising pulses for the time required. The circuit prid hem acoee-
period B is exj•-,A•d. The circuit requires a 5&1 themS aimi and Is also procl•e.
ainiam, m- art of hardware, and eam be operated The input of a standard binary code for the
at high speeds. Its use in an Inverse W alshmalsh N (1 0 as d 6() will determine
Transform apperatus for displaying video data is Oblch f-okoti is meratad. Boom" of the
coed relationap beebe the SAL and CAL funmtiume,

and the Valsk fuactioms (WL) the circuit cam
introduction also generate these.

The project outlined he was undertaken when T selected Wash functio n is pmeted for
an interest was ohm in using Walsh flnctions the entire period 9. A 0•I0 palsm is pro-
for Image transformtion by some authors (1,2). dued at the beginaing or end of the time period
The possibility of tramittting the ima in the B. The circuit in sow in Fig. 1.
transform domain, and then reconstructing it at
the rectiver offered the possibility of a lower
bit-rate transfer of data, and hene the pessi-
bility of bandeidth reduction. In order to use
this transform economically, Ins2"nsive hard-
ware had to be developed which would work at the - -

high speeds demanded by video processing for -

real-time applications. The reslts outlind Va.--

below are the result of an initial investigation w,
into such hardware.

The typical Walsh function generator uses
exclusive-or (3,4,45) or exclusive-nor gates (6),
to produce the appropriate Walsh functions.
Generally these am based on cosibination of
bAmacher fumctions. One design requires the
use of diacte resistor-capeitor omponents
(7) to produce the f=nal function output. A
recent circuit (8) has the advantage of being Fig. 1: A 6-bin t in grnerato alr h
easl to detuimine the exact value of the Walsh F~tO1Gnrtr
function at s point i% the time interval B.
Swept ror the cinit o (8) thbseazdm T Wa l are entered using th
""Mrator podc a Variable tie in gen- anl 1 the W input lines. For sx-
Satin t~e. higer s y faati , sinme the mple, WAL(9,O) woul be ebftined by enteringgeoeratin t k se stion t the folling bina 7 code:

pwaticu of at hWih frequ eni. This binary oode in gatsd by AU gates eompled

anto 6-bit b r don oeeter, and th clock
see yi t. y usi a narrow clock pWlse, tto citod

trimoe sorythig ful fro sthrWals domain c0 ca 1rdc a pus tri 1eedigo h

M see of tineret te ie s used state of the e. In effect, tceimeie
in ge-ati th fAt . These hat ar- cro n of the Radomwnh g ermioran are etet-
meet sntabl- whe, genertizg fimotici using to and t appro,.te cma i ed t eemlusive-oc~~inut gate asin arvoui generate cl~ckim t poutlti theair-

team. In orxur to produce a better circuit for f a me r ement (the final flip-flep), ts
geeating thes fU~tions, the probls of
hasasi accurate tiuig of the io- sn Patent applied for, Janua, 1970.
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output state is beld at a fixed level unil tthe Who
next olock pulse is permitted to togs the ao S f(e)ds
m•oay. Accoodingly, transitions within the 0
circut do not anon at the out1pt, and the
""Fa'd* problm is he ome. Becaus the out-. S f(")CAL(i)dput is tied to the coc~k f"oq-.oW, chne of t; 0i. . ~)A~~)
the output a• occur at "c1,Ac!" tiame, and0

• hne th•er no rippling through of th final
anuer. The circuit was also designed to be bi S f(e)SAL(ie)d
fn ittrtie.-t, (i.e. each stage In the main 0
circuit is idnrMoal. a8 ting for a 31mW The first few Walsh functions and their re-

on or d t of stages depeding on the lation to the SAL and CAL functions are shown in
b Of Waich n required). Iterative

Asig ho•ww , does out down on the speed Fig. 2.
operatio of the circuit. If a fully qnchuo-
oUn circuit m.od the counter, very
high speed could be built. With standard logic .

moddles (series 54 or 74 TTL logic), the circuit .• 0.) '1
would work up to 10M.

The circuit *Als ganmates a "S!NCO pulse at. MI 1.0 SAL 1.1)__
the beginning of the tim penrlo: 0 wic.h is .4 O.
effectirey sed in the high speed transform CAL( 1.4)
apparatus described later to transfer data from V 3.6)
a buffer register (coupled to a computer or SA() 2.4)

mantal switches) tothe reitrholding the M( 4.0)CL 2.0)-....Ai

presented on the W lines of Fig. I is held eor wit 6.0)*
the aetire tim period 0, aM is only uplates
-at the tegin g of the period. The buffer = *, (34)

register can be eas* y loaded while the main
geeatris producing theB actual functions, ::_ :_: _: :

AMy periodic function f(t) can be expanded i
a series of the orthogonal sWotan of Walsh func- WAL( 9.0) `rFJ 1_LJ1J1F1____LSL 5. 0)

tions WAL(N't) in the interval of orthogonality L
Aliued, and the expansion of f(G) wil-. be giv=en
as: -,,,J.,1FLFL fLF

f(e) 95~ AN~AL(i,o) 1)MAL(rOM) :)1yL _IJ__F1Jjj J CAL 6.1)

for 0 <_ 9 < 1Ff,

W0.(4.0) '1..IJL J 1.JL Jj1 1J CAL( 7.6)
T coefficients of the series expansioncan be obaie by • .. lpl; ,,•.tioW (1) 7 MA,,,.0, *,I-F L .FF-L'-LFL •LTLT sA,, ,.,

• i WAL(J,Q), and integrating the products over the

peidof orthogonmaity u 'ig th ithogo"Ulty Fg2tThe first 16 Walsh Functions.

WA(,)AU,~9(2) ~ iu sSausing an walsh-Fourier !Alsism'
NJ heSMAmPIIi theore Of Fourier ManeLys0st~ss that a signal bend limited to B Hs is

ompletey 6detarinad by 2B amplitude saMplss
NJ 1 orNper second. This thoory is also trmu for Walsh-

Fourier analysi.41NJ 14t0o~ Xeausigns'lf(t), benctlimited to B Hz.$ berepresented by amplitude sMples taken at a rate

Hen*e the Ih coefficient Is given by equal to 2B samples per seoond. If the periodfor the tim base is taken a3 T such that 2BT
A7 a ifo(0)WAL(:ie)d (3) a t) ), a m e. t/f, th th e-

0. pesion of the s•al f(t) in a normalized Walsh

The sories expansion of f(s) can be oipreused in 1. • be:
+eraw of the eve and odd Walsh functions CAL(i,0)fs).aW Li)0 L ()
and SLAL~,) as fe ~'A~9

f(e) mao 4 !ZaiCAI(i,0) + b.SAUI,,Q)) (4) The coefficients win1 be given by equation (3).
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Yrom Ut skew gyutry property of Walsh fune- generated continuously across the oscyon. The
to.• Walsh-'.`uretr ooffioiente a ror i time period 0 was taken a or the screen
3 will vanish. Thin means that the axLUir trace time.
sasqincy contained in the uIgnal f(t) in the in-
trval ? is (2MT-1). This will be the upper
limit in the sma~tiun of equation (5), and the C,
discrate transform becomes:

N-1 WALi

(e). - %iWAL(L,Q) (6)

In other words, the maximu sequency of the WAL

signal f(t) is B zero crossings per second. y Cp
representing £(o) by N samplea in the interval
0 , A < 1, the integration of equation (3) for WALp
determining the coefficients can be changed to
a suation by dividing the period 0 into N nub- C -
intervals of length l/N. Then the coefficients WAL4MT
are Civen by:DRV

N-1
Z Xf(O)WAL(i,g) (7) WAL.,0_

i =O,,..,NI.WAL [ IIDLEO0

These equationa can be implemented to perform C, I - R-
the Fast Waluh Transform, and the coefficients a
obtained. WAL,

The Instrment Desian cy R

The fundamental limitation of the Walsh Func- WAL 0

tion generator de3cribed earlier to be program-
irLls to obtain the first 64 coefficients limits Fig. 3: Inverse Trjuisform Basic Circuit.
the anmber of samples N to 64. The instrument
waa designed to operate with dominant term syn-
thosis, and a celection of the dominant 16 terms
from the field of 64 is used in the final design.

The instrument was designed to perform the
inverse transform (effectively equation (6)) but
only using dominant terms. The nain objective
of the circuit was to directly drive a television
screen to display video data being generated in
the Walsh domain. The "oug term objective of the
work was to investigate bandwidth reduction
schemes by transforming an original image to the
Walsh domain, transmitting significant terms,
and then reconstructing the image at the receiv-
or.

The general circuit for the hardware implesan-
tation is shown in Fig. 3, where only eight
terus are ehown being generated. The circuit in
dupllcated and sumnmd in the final adder in order
to obtain the 16 term synthesis described. The
final circuitry was analog in nature in order to
maintain speeds around I to 10 MJ, and used
IC analog multipliers to parform the arithmetic.
The coefficients a a& s comerted to analog form
by D/A convsrte'a * and the output of the Walsh
function gonerator directly drives the othor 0.
terinal of the =ultiplier. The output of eaoh w
mltipULr ii, in effect, an amplitude modulated

Walsh function. The outputs of the multiplier
are added using a standard operational amplifier
adder, and the final output drives a CRr intes..
,dty grid,

A Vachronizing pulse is used to lock the
horizontal wep ,generator to the standard Fig. 4s Test Apparatus and Inverao Trr.nsform
video fran syn. Fig. 4 shows the test circuit
apparatus, with a manually preset signal being Instrument,



Result, andOomoivaioms 3. Mamthp Ho of in Uoni by
The Wetest ba been constructed snd tested YOI vapringer-Verlag, Bar-

for manual iqt of data. Line traces of a •J• Yor 1,9.
typical televisn dePlq have b"n analysd 4o. .A. Davidsan, The Us of Walsh Funtions
to obtain the Walsh ooeffioizits a , and thes for Ntpleatng S8.10 s, Proo. Syup. Appi.
bave been iamptetd on the jlimsts ntn Walsh FwAtions, Wa.ngton, 2970, pp. 23-.
order to measure exxore. 25.

Sa tentativem rem s;l on usin more bits 5. N.Hi. Slamsm, R. Kitai, "Dgital Was-
to spcf th doint coefficients, and -swr Fourier Analysi of Periodic Wavefomis,

w*l as dominant tram s selection have sb 31mute, IX-18,1o 4#, pp * 316-321p Iva* 1969 o
tt bit-rt" of 2.2 to 3 bit/ooefficient,

(tow npdaten of 16 coefficients each) prodac Peoo. MS Vol. 59, No. 1, pp. 93.94, jan.
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and heane the need for a progpamable Walsh WO, pp. 3# Feb* 2972.
ftwtion generator that will work at thee high
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COMIPUTATION OF TIE FAST ADAIMARD TRANSFORM

Y.Y. Shum A.R. Elliott
Department of Electrical Engineering and
the Communications Research Laboratory

Hflaster University
Hamilton, Ontario, Canada

Abstract Generation of Hadamard Functions

The sequenre of +1's and -l's of any Had- Each row of a Hadamard matrix corresponds
amard function can be deduced from its binary to a hadamard ftoction had (J ,k), for
index. The factorization of a fladamard matrix j 0,1,2 ..... N-. It is well known that
is derived similarly. An "in place" Fortran these functions may be generated through the
subroutine to compute the Hadamard transform first Y Rademacher function [1]. For example,
of a real signal is developed, with N a ý3, the values of the Rademachar

functions, namely r , r and r for k=O,l,2..
iladamard Matrices .... 7, are as illus~ratid in Fig. 1.

The Hadamard matrix is a square array of k 0 1 2 3 4 S 6 7
plus and minus ones, whose rows and coluwms
are orthogonal to each other (i.e., the product ro 1 1 1 1 - - *
of the matrix and its transpose is the identity
matrix times a constant N). N is the order r 1 1 1 - 1 1 -

of the matrix, and the lowest value it may
assume is two, thus giving the lowest ordered r 2 1 1 -I 1 -

fladamard matrix as
Fig. 1: Rademacher Functions

1 * "(l) For this example, j can be expressed in a
2 binary notation as

]ladamard matrices of higher order, for N j = 4b 4 * 2b2 + bI (5)
a power of two, may be generated by a Kron-
ecker product operation, such that for bi a 0 or 1,

I [INi - 1, 2, 4l2N (2 "

I Fig. 2 shows all the possible values of J.

For example, J b 4  b2  bI

2 2.0 0 0 0

114 2 0 0 1

2 0 1 0

3 0 1 1

I114 H!4  61 1 0

H4  4 114 7 1 1 1
Fig. 2: Binary Equivalent of j

1 -The correct combination of re, rI and r 2 , toI I produce had (J,k) is given by the binary l'sS1 -1(4--) under coli~mes b4, b2 and bI respectively, as

1 1 I. . (4) shown in Fig. 2. for bi - 0, the correspond-- 1 - - I - Iing Rademacher function i-- not involved as aI 1 1 dercoultiplymngs fctor and, i n its place, for all

1 -- 1- 1 -values of k, a value of I is assumed.

From the binary equivalent of j, the entire
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sequence of +I's and -l's for any Hadamard The inverse Hadamard transform is given by
function had(j,k) can be deduced [2]. The ini- N-I
'tial value of this sequence is .1 as had(j,O)is f(k) - I F(j)- had(k,j) (7)
equal to 1. The length of the sequence is j=0
determined by the number of bina,-y digit- in j
such that, for every bi, the sequence is to be Since the hadamard matrix Is orthogonal,
extended to the right by i bits. The binary
nature of this system means that this extension had(j,k) = had(k,j) (8)
can be achieved simply by doubling its oziginal
length. Accordingly, the bits to be examined Equations (6) and (7) are analogous. except
successively are bl, b2 , bi .. . b/ 2 . for the factor N. Consequently the procedure

to compute the Hadamard transform --nd the
As mentioned earlier, if bi = 0, a multi- inverse process are basically the same.

plying factor of +1 is assumed. Consequently,
the original string of +1's and -l's is to be 9quation (6) may be expressed in an iter-
copied once more to the right. On the other ative form, thereby improving computational
hand, if b- = I, the corresponding Rademacher efficiency. For simplicity of explanation,
function is involved in the product. Its value consider the case when N=8. Then j and k may
is equal to +1 for k = 0,1,..., i-I, but -1 be represented by the following binary equiv-
for k = i, i÷1 ..... , 2i-I. Hence the sequence alents:
is to be exranded by adding on the complement
of the existing string of +1's and -l's. The j 4j4 + 2J2 . (9)
formulation of had(j,k), where j = 101 in
binary form, is illustrated in Fig. 3. This k = 4k 4 + 2k 2 + k1 (10)
simple technique to generat any Hladamard
function through its binary indexing is valid w 're Jir k. = 0 or 1.
as long as the length of the sequence is a power
of two. The :Ialmard function may be completely

fact,-?'^ -ed [3,4] into
Hadamard function had(j.k) of length N=21  k k
Let j a b 2b 2 . ..... ib . .. hd(jk) =(-)ll (-I)j2k2 (-Ilj4k4 (11)

where b.i 0 or 1, Equation (6) mpy now be rewritten in an itera-
tive form [3,4]

i 1,2,4 . .N2. 1 )llSF(j4',• ,•) (-I jlk (_l° k7k

For every b., extend the sequence of k = 8 l-
+I's and -11s to twice its length by
adding the sequence on the right under I
the following rules: I (-I)k 4 j 4 f(k 4 ,k 2 ,k ) (12)

1) the same sequence if bi = 0, 4 .

2) t),e complement of the sequence The array from (-I)k4J4 f(k4,k2,kl) becomes
if bi = .k4 20

Foriexaple, with N=8, the data array for the next stage of computation
j -or e , + th 2b +4each of which requires N/2 additions and N/2

F "b 2b2  'b4  subtractions. Eventually the Hadanard coeffi-

had(S,k) =ha,1(l01,k) k f(h) *-cwm""s dW*tta FJ

Sequence 0 0

1 initial value
1- b 1a =I
S1-1-b 2 .=

Fig. 3: Generation of a fladamard Function ••,

Through Binary Indexing
F .Hada ard Transform of a Real Signal 

-

The Hadamard transfor ,f a real signal
may be defined as

F(j) f(k) . had(j.k) (6)
k=O

where F(j) * jth normalized tladamard coefficient,

Fig. 4: Signal Flow Graph for Fast
f(k) u discrete samples of the signal, eadamard Transform

had(j,k) 2 jth Hadamard function.
178
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cients will be produced in their correct order For example, with i a 4:
without any shuffling [4]. The signal flow
graph corresponding to equation (12) is shown d, = 1/2(d 0 + d4 ), d 4 a do - 4
in Fig. 4.

Computation of the Fast Hadamard Transform d. S I/2(d1 ÷ ds),ds ad 1 "ds

The fast Iladamard transform may also be d 2 = 1/2(d, + d6 ), d 6 = - d6
derived from the binary notation ef J, where j
is the index of the Iladamard coefficient. With d3 - 1/2(d 3 * d d 7 = d d 7
N=8, Fig. 2 and Fig. 4 can be referenced again.
As will be shown, the locations (j,hi) under
columns b 4 , b , b1 in Fig. 2, are related to The next two stages of computation, for ix2,1,
the corresponding nodes on the signal flow may be similarly developed. The general steps
graph of Fig. 4. to implement the fast Hadamard transform based

on binary notation correspond to the signal
From the graph, it may be apparent that the flow graph of Fig. 4, except for the necessary

terms (any term apnearin; in the flow graph will modification mentioned earlier.
be given the general symbol d) concurring at
any node differ in their indexing by i. The SUBROUTINE -FHT2 (MR,N,MI)
same result can be obtained by noting where DIMENSION MR(N)
asymmetry occurs under column bi, as indicated C IIADMARD TRANSFORM OF A REAL SIGNAL
by the horizontal lines in Fig. 2. The math- C MR = SAMPLED DATA
ematical operator associated with these two C N = NO. OF DATA
terms is determined by (-i)jbl or [1-2x(j,b.)]. C 2**M = NO. OF COEFF. PER TIME INTERVAL
If (j,b.) = 0, the two terms di and d,+i are L = N
summed. 1 On the other hand, ift(j,b..) = 1, a K = 1
subtraction should take place. From Fig. 4, DO 3 NM = II
the correct formulation is dj.i - dj. I = 0

L = L/2 DO 2 NL= 1,L
Any two terms that are summed are also DO I NK = 1,K

involved in a subsequent subtraction, and the I a I + 1
results can be stored in the sane memory J = I + K
locations, such that 4 MR(I) = (QR(I)41R(J))/2

1 MIR(J) = !.lR(I)-MR(J)
.i d. dk (13) 211
.k 3 K a K*2

dk=d. dk (14) RETURNk - 3 END
where di, d = sampled data, intermiate results For the inverse Hadamaid transform, the lines

or Hadamard coefficients, with the same statement numbers are to be
replaced:

k =j +2
4 MR(l) a MR(I) ÷ MR(J)

i = 0,1,2,..., m-1, 1 MR(J) - MR(I) - MR(J) - M4R(J)

j = 0,1,2,..., N-I, Conclusions
excluding those of k.

The entire sequence of l's and -l's of
For a general-purpose computer, comnutations a Hadamard function can be deduced from its
are done in a serial fashion. Consequently, binary indexing. A fast Hladamard transform
"in place" arithmetic requiresthe modification algorithm, using "in place" computations, is
of equation (14) to similarly developed. The same algorithm can

be modified to compute the inverse transform.
dkd. -dk -k
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In computing the Hadamard transform, the up. 50-52, February, 1964.

normalization factor of I/N (N=2m) may be in-
corporated into each of the m stages of compu- [2] D.A. Swick , "Walsh Function Generation",
tation as a factor of 1/2, thereby preventing IEEE Trans. Information Theory, Vol. IT-IS,
the possibility of an "overflow" in integer No. 1, n. 167, January, 1969.
arithmetic. Accordingly, the basic equations
for the Hadamard transform are [3] T.L. Shanks, "Computation of the Fast

Walsh-Fourier Transform", IEEE Trans. Computers,
dj 1 /2(d + dk) (16) Vol. C-18, pp. 457-459, May, 1969.

dk dj - dk (17)
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[4] k.W. Henderson, "Comment on 'Computýation [5] L.J. Ulman, "Computation of the fladamardof the Fa.S Walsh-Fourier Transform-', IEE Transform and the R- Transform in Ordered Form",Trans. Computers, Vol. C-19, p. 850, September, IEEE Trans. Computers, Vol. C-19, pp. 3S9-360,1970. 
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A PAPALLEL ARRAY HARDWARE IMPLM•ENTATION
OF THE FAST HADAMARD AND WALSH TRANSFORMS

A.R. Elliott Y.Y. Shum
Department of Electrical Engineering and
the Communications Resca.ch Laboratory

Ilcdaster University
Hamilton , Ontario, Canada

Abstract

The design of a relatively simple, but veryrl .
fast, digital circuit that can generate both . I : .the Hladanard or W'alsh coefficients is explained. .. ... ...

A slight modification to the circuit allows the G . .. . . . (6)inverse transform to be performed as well. A 1 . 1 .j

useful communication application is described.i

A previous paper (1] has described an al-
gorithm for implementing thc fast Hadainard
transform of an N-length data array, where
N - 2 m, using "in place" computation. A
hardware implementation of the algorithm G = (7)
illustrateA by Fig.4 of 11J requires m adders 2 1..... j
for each coefficient when working in a par- . . . .
allel mode of operation. If m a 1, the hard-
ware cost per coefficient is minimized. This
can be achieved by recycling the output from
the adders into the same storage registers m
times. The loss in speed with such an arrange- 1 1
mont is immaterial for most practical appli-.. 1 1 I "
cations. . . . . I I

Factorization of the Hadamard Matrix I -
It is well known that an efficient way to .. . . I

implement the Hadamard transform of an N- . .
length (N=2m) real signal is to decompose the
transform matrix into m factors that have many
zero elements, thereby reducing the number of .. . I
arithmetic operations. For examnle, . -.

(9)

1181
tM8 a (1)

Each factor Gi, where i •0. 1, 2, is an
- orthogonal matrix. Multiplication of Gi and

a column matrix requires only additions and
G G G (2) subtractions and the arithmetic may be done

0  1"in place". A fast Hadamard transform algor-
P • P . P (3) ith)A has been implemented [1] based on the

concept of equation (2).
Q. Q Q (4)

Matrix Q is the transpose of P, zr vice
1 .. . . ... versa. Consequently the characteristics of
1 - . . . .... both are analogous. It may be sufficient to
S. 1 1 . . . . dscribe the properties of P, and deduce those

wh•re G .: - . 1 of Q on similar guidelines.whr .o ... . .I5

Computation of the Fast Iladamard Transform

S.... .1 -it may be observed from equation (8) that

Y- the product of matrix P and a one-dimensional
array involves merely additions and subtractions
of data that are adjacent, and the storing of
the results in memory registers that are N/2
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locations ap..rt. In the typical computer, liadamard coefficients in their correct order.
mathematical calculations are done in a serial A preliminary design shows that it is possible
fashion. Hence, in software simulation, at to use complement arithmetic along with M.S.I.
least one other array is required as a buffer, adder packages available, and D-type flip-flops
as illustrated by the array LR in the Fortran arranged as registers for the sampled data as
subroutine PHTR2 shown below. Each factor P well as the coefficient values.
correspond to one stage of computation. After
m stages, the HadamaxJ coefficients are located A general rule for recycling of the results
in the original data array. from the output of the adders, based on equation

SUBROUTINE PHTR2 (JR,LRN,M) - (8), is thus given by:
DIMENSION JR(N) ,NR(N)

C HADAARD TRANSFORI OF A REAL SIGNAL d. - h(dk + d k+l) (10)
C JR - DATA ARRAY k
C LR - BUFFER ARRAY d ((dk - dk+l) (11)
C N = 2**lI ; NO. OF DATA j+N/2

NH - N/2 where j = 0,1,2 ...... , (N/2-1),
LF- I
Ml = ANDQM,I) for k = 0,2,4 ...... , N-2.
IF (Ml.hE.O) GO TO 20
, M4 = N Fig. 1 demonstrates a proposed digital
K NH circuit that will implement the fast Hadamard
GO TO 22 transform for the determination of 8 coefficients.

20 MI = M-I The expansion to a circuit that will obtain theK - N11/2 first 64 coefficients is straightforward and

22 LL - K will have the same general structure as the
30 JF - LF÷I circuit of Fig. 1. Under the assumption that

IN = I a 7-bit coefficient value is sufficient, with
DO 4 1 = 1,M4 the eighth bit handling transient arithmetic
J = JF overflow, the cost per coefficient, with off-
IF (IN.LT.O) GO TO 2 the-shelf components, would be approximately
DO I L = LF,LL $12.00.

S LR(L) = (JR(J-I).JR(J))/2 6
6 LR(L+K)= LR(L)-JR(J) For N = 2 , (i.e, 64 coefficients) the

1 J = J+2 circuit need only be clocked 6 times, with
GO TO 4 adequate time between clock pulses to allow

2 DO 3 L a LF,LL the output of the adders to settle. With
7 JR(L) - (LR(J-I)+LR(J))/2 modern IC's this should be accomplished in
8 JR(L+K)a JR(L)-LR(J) less than 200 nanoseconds. A circuit for

3 J x.J+2 obtaining 128 coefficients would take about
4 IN w -IN 250 nanoseconds.

IF (.II.EQ.0) RETURN
IF (MI.LT.0) GO TO 40 The Hadamard coefficients may be rearranged
MI = -1 to obtain the Walsh ordering. In a hardware
LF x LF+NN implementation to obtain the Walsh coefficients,
LL • LL+NN a straightforward approach would be to add a
GO TO 30 new set of registers at the output of the adders

40 DO 9 I - 1,Nil to hold the Walsh coefficients. This is illu-
J a I.Nl strated in Fig. 1.

10 JR(I) - (JR(I)+JR(J))/2
9 JR(J) a JR(l)-JR(J) Note that the forward and the inverse trans-

SRETURN forms differ only by a simple factor of 2(1].
END Accordingly, a shifting of the bit lines return-

ing to the storage registers by one bit will
To perform the inverse Hadamard transform, the allow the inverse transform to be performed by
lines with the same statement numbers are to the same hardware.

!i be replaced by the following:
Aberplace Ry t fol -low : Application of the Parallel Hardware Array
5 LRCL) a JR(J-I)+JR(J)

6 LR(L+K) - JR(J-l)-JR(J) A possible communication system using this
7 JR(L) a LR(J-I)+LR(J) novel hardware design is shown in Fig. 2. This
8 JR(L+K) a LR(J-I)-LR(J) is a combination transmitter-receiver assumed

10 JR(I) - JR(I)+JR(J) to be used in a mobile communication system
9 JR(J) - JR(I)-JR(J)-JR(J) (e.g. an aircraft) in such a way that the bit-

rate of transmission is lower than standard

Hardware Implementation of the PCM systems. Others [3,4,5 ] have demonstrated
Fast Nadaard and Walsh Transforms the feasibility of this approach. The circuit

proposed here is a tentative design for a
In a parallel-operating system, the same speech communications system. It determines

memory elements may be utilized to hold the and transmits the eight dominant coefficients
original sampled data, Intermediate results, out of a field of 64 in either the Hladamard or
and eventually, aftt.- m operations, the required Walsh domains. Similarly, it can receive
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"Idomianant" cceffic~ents and reconst~ruct thc References

necessary waveform. Consequently, for such a
communication system the relevant data are [1]) Y.Y. Shum and A.R. Elliott, "Computation

formatted as thc amplitude of the coeffCicient of the Fast Iladamard Transform", Proc. Symp.

and the corresponding coefficient number. Appi. of Walsh Functio~is, Washington, 1972.

These data words arc transmitted over standard

data links to similar trirsmitter-receivers. [2) It.C. Andrews and K.L. Caspari, "A General-

It is estimated that a total package of this ized Technique for Spectral Analysis", IEEE

type would cost about $3,000 - $S,000. Future Trans. Computers, Vol. C-19, No. 1, pp. 16-25,

research will be aimed at constructing such a Jan. 1970.

Z package and comparing its operation with other

forms of digital transmission of speech. [3) C. Bo~wetter, "Analog Sequency Analysis
and Synthesis of Voice Signals", Proc. Symp.

Conclusion Appl. of Walsh Functions; Washington, 1970,
pp. 220-229.

It is shown that the decomposition of a

fladamard matrix into identical factors leads [4] S.J. Campanella and G.S. Robinson, "Digital

to the implementation of a feasible Software Sequency Decomposition of Voice Signals", Proc.

subroutine and a high-speed hardware design Symp. Appi. of Walsh Functions, Washington,

for the fast Iladamard transform. The same 1970, pp. 230-237.

hardware can be modified for the fast Walsh

transform, and for the inverse transform as [5] Y.Y. Shum and A.R. Elliott, "Speech

well. A tentative design of a digital trans- Analysis and Synthesis Using the fladamard Trans-

mitter-receiver system is Proposed. form", Proc. Symp. AppI. of Walsh Functions,
Washington, 1972.
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SPEECH ANALYSIS AND SYNTHESIS USING THE HADAMARD TRANSFORM

Y.Y. Shum A.R. Elliott
Department of Electrical Engineering and
the Communications Research Laboratory

McMaster University
Hamilton, Ontario, Canada

Abstract

An efficient algorithm is used to obtain coefficients were selected through another
64 Hadamard coefficients for every 8 milli- software algorithm. Synthesis was performed by
seconds of speech. Using only 8 or 4 of these using the dominant coefficients, their corre-
coefficients, it is possible to reconstruct sponding coefficient numbers, and the inverse
intelligible speech on a CDC-1700 computer Hadamard transform. The results were stored on
zystem. The results of this investigation the disk, destroying the original data file.
into speech analysis and synthesis in the A final D/A conversion through a low-pass filter
Hadamard domain are presented. produced the resultant analog signal that was

recorded on tape.
Introduction

Format and Bit-rate of Test Results
Several previous papers [1,2,3] have de-

monstrated the feasibility of using the The tape recording presents the results as
discrete Hadamard or Walsh transform in image first, the "original"speech. This is simplyor speech processing with promising results, the original digital samples sent directly
The immediate objective of this research is through the D/A converter to demonstrate the
to evaluate the usefulness of transforming degradation of the speech waveform due to the
speech to the Hadamard domain, retaining operating system. The bit-rate of data trnsfer
several dominant coefficients per specific is equivalent to 112,000 bits/seconds. Scaling
time interval, and then reconstructing the the 14 bit words to 6 or 7 bits (about 481000
original signal from these coefficients. The bits/second ) shows little change.
long-range goal is to reduce the bit-rate
necessary for speech communication over data The second recording was speech reconstructed
links for those applications r..quiring intel- from the dominant eight coefficients of an
ligibility rather than high quality, and analysed 64 coefficients, updated ever 8 milli-
simultaneously to reduce the memory require- seconds. To specify the coefficient number, 6
ment of any associated hardware. bits are required. The coefficient amplitude

values are of 7 bits (including sign). In
Computer Facility and Implementation effect, this corresponds to an average bit-rate

of reconstruction of 13,000 bits/second.
A block diagram of the CDC-1700 computer

system and the apparatus used to perform this The final recording was made using the four
experiment is illustrated in Fig. 1. The most dominant coefficients in the same 8 milli-
present configuration of the system is such second time interval. The reconstructed si gnal
that the I/0 bus can only handle A/D or D/A corresponds to a bit-rate of 6,500 bits/second.
conversion one at a time, in a buffered mode.
Consequently, real-time operation is not The tentative results presented here are
possible, although the algorithms used are the beginning of a project to determine an
sufficiently fast that real-time operation effective digital scheme for minimizing the
(actually a 16 asec. delay) can be contem- bit-rate of data transfer for intelligible
plated in the future, speech communication. For this purpose, the

algorithms used in the research are made suf-
,The original sentences for analysis and ficiently flexible such that changes may be

synthesis wexetaken from a master tape made on the sampling rate, the update time in-
supplied by the 1972 International Conference terval, and the number of dominant coefficients"on Speech Communication and Processing. The for synthesizing speech. A possible outcome

spe',ch waveform was sampled at an 8KHz. rate, of this approach is the production of an
and the data were formatted into 14-bit words inexpensive audio voice response unit for a
by the A/D converter. These digital saiples computer that will require a minimum of memory

• were stored on a disk capable of holding 1.S storage. To this end, future research is aimed
million words. Only 12 cylinders out of a at analysing phonemes and diphones, with' an
total of 99 wvex used, which correspond to attempt to create a digital vocabulary for
approximately 23 seconds of speech being voice synthesis.
handled on one pass. A fast Hadamard transform
algorithm [4] was used to transform every Acknowledgements
group of 64 data words into the first 64
coefficients in the Hadamard domain. For The authors wish to thank Dr. S.S. Haykim,
the sampling rate used, the update time inter- Director of the Communications .esearch Labor-
val was thus 8 milliseconds. The dominant atory at Ne•aster University, who made computer
(in terms of largest absolute value) 8 (or 4) facility available, and to C.M. Thorsteinson
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DIGITAL SIMULATION OF A LC.S RESONANT FILTER FOR WALSH FLNCTIONS

Joe P. Golden
U.S. Naval Research Laboratory

Code 5712
Washington, D.C., U.S.A.

Introduction 0t)

An analog LCS serial resonant filter for q So s

Walsh functions is presented. Difference equa-. jŽ() _.1)
tions describing the lossless resonant filter -c
were programmed on a general purpose com-
puter to simulate the jilter as a digital reso- T T2cnance filter [1-3]. The direct programming
form for digital simulation was modified by
using time variable coefficients to simulate the Fig. 1. Serial LCS

time vatlable switch necessary for tuning the Resonance Filter.

filter to a discrete sequency. The steady state
difference equations necessary for digital ,• ....
simulation of a lossy analog LCS resonant 2

filter are also given. 3 '

Fundamentals 4 A"

The serial resonanco filter for Walsh func- " ' --
tions as shown in Fig. I is basically the same 16 .. ..

as for sinusoidal functions except that it has a S

switch S which is used to tune the resonant 8

filter. To illustrate the properties of this cir- v
cult, let switch S be closed, switch So be : . " -T12

open, vl(O) = V1 , v2(O) = V2 and C1 = C2 = C.
The current and voltages yield the following Fig. 2. Time Diagram for a
equations: LCS Resonance Filter Tuned

to the Forcing .Function.

i(t) = EYE(VI -V2) sin "&t () switchSo. The sampled function sal(4, )
must be in the form of a charge source if volt-

V1 - " (V1 -V2) (1 -cos wt) age is to be added accumulatively to C1 . Let
vl(t) vl(t+T/2) = v2 (t+T/2) = 0 and suppose

q = +VIC is applied to C1 at time t = -7T/16

v2(t) = V2 I+- (V1 -V2) (I -cosB t) as shown in line 2 of Fig. 2 which gives

vl(t-7T/16) = V1  (3)

where w = 4-27M. At time t = iaiw, the cur- v2(t -7T/16) 0.
rent goes to zero and the voltages are

According to the results of equations (1) and (2), =
vl(vlw) V2  (2) the voltages will interchange in the next time

v2 (/w) _- V 1 . interval ol At - T/8 which gives
!vl'(t-5T/6) - 0 (4t)

The important point is that the capacitor v" •1 0
Svoltages at t - 0 and t = rl(o have interchanged v2 (t - 5T/16). = VI

values. To make use of this property, assume
that the sampled Walsh function sal(4,8) as as shown in line 4 of Fig. 2. The charge
shown in line .1 of Fig. 2 is applied to capacitor q -VC is then applied to C1 at time t
C1 by instantaneously closing and opening -5T/lI according to the sampled Walsh function
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sal(4,0). Again the voltages interchange and this ,M(,,t/T)
building up process continues until steady state
is reached. It should be noted that switch S is
closed throughout this discussion, thus, tuning 2 "
the filter to the forcing function sal(4,O). It is L..J LJL JL..
noted that the voltage v2(t) is the complement ,dOI/-)4 ICJ,t/T)
of the forcing function sal(4,O) which implies 1
the desired condition for resonance. 3 --

Consider sal(3,O) as shown in line 5 of
Fig. 2 with all initial conditions set to zero. 4 l I I
The charge q = -V1 C is applied to C1 at
time t = -7T/16 and the 'roltages are then al-
lowed to interchange. The charge q - +VIC is ,./

applied at t = -5T/16, however, the voltages
are not allowed to interchange this time. • '-V
Switch S is opened at t = -5T/16 and It re-
mains open for the duration t = T/8 as shown
in line 8 of Fig. 2. The switch S could be Fig. 4. Time Diagrams Illustrating
opened at that time since the current is zero. Separation properties for LCS Res-
At time t = -3T/16 switch S is closed and the onance Filter for Sum of Two Walsh
charge q +VIC is applied to C1 . The volt- Functions.
ages are allowed to interchange as before. If
this process is continued with the switch S shown in line 6 of Fig. 4. Note that v2 clcarly
being opened (whitec'--) and closed (blacks) indicates the resonance condition.
as shown in line 7 of Fig. 2, the voltages will
build up with time which implies that the circuit Since the voltages vl(t) and v2(t) are only
is a serial resonant LCS filter for time sam- of interest at certain time points tn = nr/4w +
pled Walsh functions. The switching character- T/16 where n = 0, 1, ±2, ... according to
istics of switch S is the determining factor Fig. 2, difference equations may be used for
necessary for resonance to occur. the analysio of the circuit of Fig. 1. Denote

v 1 (t) )by vl(r) and v2(tn) by v 2 (n) with switch
Fig. 3 shows what will happen if the forcing S always closed and So always open. Accord-

function sal(3,0) is applied to the circuit that ing to equation (2) the voltages v1 (n) and v2 (n)
is tuned to sal(4,O) an)! vice versa. The volt- are related by the following two difference
ages do not build up with time which implies equations of first order:
that the circuit is not tuned for resonance.

vl(n+l) =v 2 (n), v2 (n+l) =vl(n). (5)
soIO3,. ' T)

--- L - If the switch So is momentarily closed at the
___. _______,___,__ ...... time tn, the applied charge qn - Cvl'(n) in-

3 creases the voltage across C1 from vl(n) to
4 f..t, r .. <. vl(n) + vl'(n). Equations (5) will assume the

_ __.:-i ... following form
,!4)/ T) ...

6 1 1 ..L... vl(n+l) - v2 (n), v2 (n+1) - vl(n) +vl'(n). (6)

. ......... Separation of the variables yields two differ-
v(?)-j__J i•VZV ence equations of second order:

T/2 0 T/2 vl(n +2) - vl(n) - v 1 '(n), (7)

Fig. 3. Time Diagram for a vin+2)- v2(n) = Vln+1).
LCS Resonance Filter NHt
Tuned to the Forcing Function. It would be instructive to carry the differ-

ence equation technique one step further by con-
sidering aal(3,O) as applied to Figs. I and 2

The separation of the sum of two Walsh [4]. In analogy to (6) the following sets of equa-
functions is illustrated in Fig. 4. If the input tions are derived from Fig. 1 and line 8 of
signal is sal(1,G) + sal(3,O) as shown on line 3 Fig. 2:
with the filter tuned to eal(3,$) an ndicated by
line 5, the rxtput voltages v1 and v2 a'e vl(n+l) a v2 (n) (8) (Cont.)
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vl(n+2) = vl(n+1) + vl'(u+l) (8) aa shown in Fig. 5 wheoe A indic. tes a time
(Cont.) delay of one unit time. Figure 6 6hows the re--

vp~n+3) = 2(n +2) sulls when the input foyclng function V1V
4 -sal(4,G) with the fllt•m tuned to sal(4,G). Note

vl(n+, =v 2 (n+3) that thG filter resonant co•dlldo has been met
as prevously deGnvud. If another Walsh func-

.(n+1) a vl(n) + vj1 (n) tion were applied as the inp'rt, resonance would
not occur as simulated by rig. 7 whore V1V =

v2 (n.,2) = v2 (n +1) srl(3,6). The voltages Vi and V2 .were limited
to a * value, This limiting process "s neces-

v2 (n+3) = vl(n+2) + v1
0(n-;2) sary since the digital simlation Is unstable and

the output .oltages would continue tW increzse
-,,2 (n+4) = r,,(n+3) + vl'(n+3) as long as the input is applied. Th7s wnu•d, of

ccurse, be .xpected for a resonance circuit
where n = 04, 4, 12,..., 41, .... Separation when applying an input At the samse sequency as
of the variables yielks: the 4irer is tWned. This t direc!ly ..;,tloqous

to ".he res)npvce filterm in the frequency domain.

vl(:+2) = vl'(n+l) + v1 (n+1)

vl(n+3) = vý'(n) + v1(n; E £

vl(n+4) = vj'(n+2) + v1 (n+2)

v2(n+ 1) = vl 1(n) +v4n -1)

v2 (n+ 2) = V2 (n + 1)
Fig. 5. Simulated Block Diagram

v2 (n+3) = vl'(n+l) + vl'(n+ 2) + v2 (n) of Dlglal FPlti Resonance Tuned
• ~to srU(4,O).

i f2(n+4' = vl'(n+÷3 + v2 (n+2t

Swere n i41, =,.1. 3"

The ideal dgital 2,CS resonant filter canr
be simulated on a general purpooe dftlts ,J
computer by pro~vamming ths dlffersulce eqta-
ticns which deaws-4b the particulo resowace

i.i The sirmuiz.tlon of th* digital zesa•da VAV
filter tuned to ,.1(4,9) can be accomplished. by
rearranging equatons (7) by shtting back two
time wilts which gives

el(n.! vl'(n-.2) + vl(n- 2) (10)

Let the fokIuwtng changes Ln notation be TIM .
made to aid ia pogramml4 the variables
n -. J, v -- W, vZ -- V2 ancd Y 1' " V. Fig.6. Filter Tuned to sal
Equ.ation (10) now becomes (4,0) with VIV - sal(4,9).

VlýJ• , ViV(J - 2) + VljJ-2 ) (11) The simulation of the digital filter shown
in Fig. 5 which used the direct prograinu.ýlng

VS(J) = VIV'J•. . ) + VI3) -2). form Wad eonstant coefficients of eitLir pa
jne or zero in the feedasck and feed lorward

ftuatica (11) can be almrIted in blck d•-a loops. The conetint time invariant coefficients
gmra form uerlg the fL-ect farm of prcramming provided a rather simple simulation. Suppose

18s



[ v1()=v(J-2) +VI(J-2)1
6 1.5i7,j | . (15)

A A ALV2(J) V Vt j-l) + V2(J-2)J

"Fig. 8. Miumulated Block Diagram
o{f Digital Resonance Filter Tuned

, to sal(3, 0).

Fig. 7. Fflter Tuned to sal Figure 9 shows the digital ximulaflon of

(4,e) vith V!V Tesaldto). the resoaanxe filter 2uned to saltS,0) with
sal(3,0) appeted as the foreing function. The
steady state condition is simulated the same

t'.e same type (direct) of programming form be as dlhsssed earlier. The non-resonance
used to simulate a i• AlgA filter tuned to condition is seen in Fig. 10 where the forcing
sal(3,O). This would i-.•quire the coefficients function is sal(4,0).
W be time voricblo with valueh of plus cue or
zero depending ce the time neoessary to cause
resonlace. The M~mulated bWock dli'4zam of the
digital filter tuned to sal(3,0) is shmwn in AA i A
Fig. 8 where the Kreuecker Delta is

61+4,j =f1 If1 I+4 =

--i if 1+4 J.

Figure 8 in die sir..uiatim, COf Nation (9) where \ I
tWe followfag notation& have 4wen changed to -

facilitate programming Vie •qu•iions 41 + I -
I +4, 41--I, m- Z, 1-V1V, v1 -- V,
v2 -- V2. Equrt•o (C; cim be "e ri e C.i
the Kronecker Dolta nataittxi as !olkows:

L.Vj(J)_= VAT I•V#- J 1 (JT2) N - r

(12)

_W )=VIVJ-i) +V2(J-J1 fS .(7 J1 1) 71

S()l VeV(J-l) + V3(J-1 Fig. 9. Filter Tuned1 ~to sal(3,O) with VIV
~I+.J j(13) val(3,O).

IV.2j) T%-1)The separationi property of the digital
filter canberam In Fig. 11 wbere VIV a

FV1(J) aVV(J-31 + VI(a4) sal(1,6) + sai(3,O). The output voltage V2 is
clearly sPJ(3,O) which has been geparated from

+I+(,=3j its smm with sal(1,0). This result Is analogous
V2(J).VIv(a2)+ •vJ.1. + -) o the sum of frequencies being separated by a

resonance filter in ihe frequency domain.
(14) The difference Is thm frequency, resonance
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simulating this type of digital filter should
make their future very promising.

AA ADerivation of Steady State
Difference Equaations

ý:"IV v v o,,,o-oo.
The digitul simulation of the theoretical

model of the LCS serial resonance fi'ter hastbeen presented. The difference equations
which were simulated assumed perfect ele-

-; inents with no losses. The simulation of an
actual analog model would require that lossy
elements be considered in the derivation of the

"I', difference equatibns. To do this, assume that
switch S of Fig. 1 when closed has a resistance
R and that the initial voltages across the ca-
pacitors are vl(0) = V1 and v2 (0) = V2 . Solve

>' -for i(t), v1 (t) and v2(t) for C1  Cn = C with

"iS SOopen if S is closed at t = 0. The integro-
differenati on for the circuit in Fig. is

1it u 1  ( 1 - 2

!]Mf

Fig. 10. Fiter Tuned -V2  L it)to sal(3,A) with VIV we C C2 = C d ) i/t) d R/Rifand
sal(4,),e). (16)

reoac l te oThe current and voltages yield the following
c esu yequations:

ietq= C (VT -V2) v-2t sinwt (17)

these ver Th e e Ve - V1 - V2 )

, v2(t) =V2+ M(V-2)

SFig. 11. Filter Tuned2
to saL(3,O) with VIV =where C1 = C2 =C, coo = 2iLC, a = R/2L and

t ~sal(1,0) + zall3,e).

• " fi~lers pros a band of frequencies; whereas, the
iseq -'•e ixy reson ai~ce gilter passes only a dis-Th fo l w n re a i s a e ob i ed t t e
ic~eee sequoncy, time t =r~ ( /h,

D ZgitaC resonance filters tuned to other i(Vr/W) 0 (20)
I ~Walth f-ictions can be developed using these A IV V)
Stechniquea, The simplest version sal(4,O) and Vl(7t/w) = -:ý Vt+V2.

the meat difficult sal(3,O) were illustrated 2

here. The diftfcuhvy of the others lies between v(/0 -
these tro extremes. The relative ease of v2aw 21(V 2
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where Vl(J) Vl(J- 1) + 0.5 VlV(J-1)
1 -a/•514,1i (22)

K (V1 -V2) C 1 1)1 (22

IV2(j) v2(J -1) + 0.5 V1lV(J- 1)_
K must be a positive real number for any
physical realizable circuit if V1 > V2 . The F
voltages across the capacitors at t = 0 and Vl(J) = Vl(J-1) + VIV(J-I)
t = ir1w no longer interchange as for the ideal J
circuit. If R = 500 $1, f = 400 Hz, L = 0.21 Hy 6 1+5'J (23)
and C = 1.5 gF [2], the constant K becomes

K = 0.115(V 1 - V2 ). V2(j) = V2(J-1)

Let the initial voltages be V1 = 1. and V2 = 0. V()=VJ-)
The voltages at t = -/,w become

vl(r1w) = 0.5 - 0.115 = 0.385 
6I+6,J = V2(j (24)

v2 (2T/w) = 0.5 + 0.115 = 0.615. LV 2J + V1V(;-1)j

For this value of K, the voltages would [11(J) = Vl(J-1) + 0.5 VlV(J-1)]slowly build up as time increases. Since K1115

varies exponentially with the amount of rcsist- I+7j 25
ance, an i rease in R would decrease the
constant K substantially. For example, sup- LV2(J) = V2(J-1) + 0.5 VIV(J-1).
pose R = 1000 9; then K would equal 0.052 as
compared to 0.115 for R = 500 fl. This implies
that as the series resistance of the circuit ap- For steady state digital simulation the equations
proaches infinity the constant K approaches (22) - (25) would replace the equations (12) -
zero. Under this condition, the voltages will (15).
not build with time but will remain at a steadySstate value as long as an input signal as the Conclusion
proper sequency is applied. Upon removal of

the input signal the output will damp out very The LCS resonant filter for Walsh functions
quickly. The point is that an analog LCS serial was successfully simulated on a general pur-
resonance filter contains a considerable pose ccmputer. The digital sinulation of the
amount of series resistance. The effect of the resonatnce filter was based on a set of differ-
series resistance is to prevent the continual ence equations which described the lossJess
building up as predicted by the lossless circuit, theoretical model. Therefore, the simulated
This would imply that K is small enough to be output had to be limited to an arbitrary value
considered as zero. to mimic the steady state condition of an analog

filter. The steady state difference equation for
The difference equations for this condition the lossy analog circuit was derived.

can be derived similar to equations (11) which
are The resonance condition is clearly indi-

cated by the filter if and only if the forcing
V1(J) = VI(J -1) + 0.5 VIV(J -1) (21) function is at the same sequency as the filter

is tuned.
V2(J) = V2(J-1)+ 0.5 V1V(J-1).

With the advent of integrated circuits ana-
The digital simulation under the steady state log or continuous Walsh functions may easily
condition for the filter tuned to sal(4,O) can be 1 . generated and used for carriers in multi-
obtained by simply substituting equations (21) plexing or coding systems. Discrete Walsh
for the equations (11). functions can easily be generated by special

purpose or general purpose computers which
The difference equations for the steady could alvo be used for multiplexing or coding.

state condition with the filter tuned to sal(3,9)
can be derived similar to equations (12) - (15)
are
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RESONANT SEQUENCY FILTERS IN THE Z-DOMAIN

H. Troy Nagle, Jr.
Assistant Professor of Electrical Engineering

Auburn University
Auburn, Alabama USA

Abstract If we define w, - 2wfs W 2t/T, then the s-
plane may be divided into "strips" as shown

In this paper, the characteristics of a in Figure 1. One can show that the primary
resonant sequency filter proposed by Harmuth [1] strip in Figure 1 maps into the unit circle of
and constructed by Golden 12] are examined in the z-plane of Figure 2. Futhermore, one can
the z-domain as a digital filter. Special- show that the region of stability in the s-plane
purpose digital hardware is proposed to realize is the left-half plane; in the z-plane, inside
resonant sequency filters and a BASIC simu- the unit circle. An important point to note is
lation is used to verify the scheme. that the origin (a-O) in the s-plane maps to

unity (z-l) in the z-plane.
Introduction

LCS Resonant Filter
A digital filter is a discrete-time device

which transforms an input data stream into an The LCS resonant filter proposed by
output data stream by an algebraic process Harmuth [1] and implemented by GoldOn [2) used
vescribed by constant coefficient difference a switching scheme to transfer charge between
equations. The transfer function D(z) may be two capacitors. If the voltagen on the capac-
conveniently defined in the z-domain (z-1 = itors Are label x(t) and y(t), the difference
e-Ts, T is the sampling period, and s the equations for the filter tuned to Sa1(3,0) are
Laplace variable),

x(n) - i(n-2) + x(n-2)

D(z) - a0a1_ + + an x(n+l) i(n) + x(n)

C' 1 + b + ..- + bnz-n x(n+2) = i(n-l) + x(n-l)

x(n+-3) i(n+l) + x(n+l)

where ai and bi are real coefficients. y(n) - i(n-l) + x(n-2)
y(n) - i(n-1) + y(n-2)

The digital filter specificied by a z- y(n+l) - y(n)
domain transfer function may be physically
realized in several ways; general-purpose
computers, special-purpose computers [3,4], or
hybrid devices (5]. The digital transfer
function D(z) may be programmed in ieveral y(ni-3) - i(n+2) + y(n+l)
difference equation forms (6,7]. One of the
most common forms is the direct form shown n - 1, 5, 9,""

Sbelow: where i(n) is the input signal. The initial

conditions are specified by defining values

e0 (kT) = a 0ei(kT) + alei(kT-T) + ... for:

+ anei(kT-nT) - bleo(kT-T) .... i(-l) - 0

- bneo(kT-nT) i(0) = 0

x(-l) -0

where k 13 an integer, ei(kT) is the filter x(O) = 0
input, and e0 (kT) 's toe filter output. 1he
sampling period T is usually omitted to sim- y(-l) - 0
plify the notation. y(0) =0

Now let us consider the poles and zeroqs of
D(z). The z-plane is defined as a mapping of
the s-plane according to the rule

z - eTs
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The difference equations for x(t) may be Transient Response. At this point the
transformed into the z-domain to yield the input signal has been properly conditioned for
following transfer functions: use in regisLers Al and A2. The resonant

filter has Al - A2 = 0 which causes a transient
rnsponse as the input signal is applied. The

D(z) - t T, 5T, 9T, filter is allowed one cycle over the eight
(z-l)(z+l) input values to allow the transient response

to die.

D~)- 1
z-z11 t = 2T, 6T, 10T, Sign Detection. Once ti~e transient

response has died, the filter runs one more
cycle over the eight input values while the

1 Ign bits of regster Al and A2 are used to
D(z) - (z-l)(z+.5+J.866)(z+.5-J.8Y6) fill the sign register. At the completion of

S- 3T, 7T, lIT, "'" this cycle, the match signal goes to "one" if
the tuned Walsh function was present in the
input signal.

D(z) - (z-l)(z+l) t - 4T, 8T, 12T, Theor" of operation

The principle upon which the filter is

An important point to note is that each D(z) has based follows: if the tuning bit is zero:
a pole at z - 1. This pole corresponds to
integration in the s-domain. Hence, a resonant x(n) - x(n-l) + i(n) - A0
sequency filter's input signal must have a zero
average value. y(n) - y(V-l);

Special-Purpose Hardware if the tuning bit is one:

The analog LCS resonant sequency filter x(n) - y(n-l)

by Harmuth [1] suggests the digital imple- y(n) - x(n-l) + i(n) - AO.
mentation shown in Figure 3. The input signal
is sampled by an A/D convert.:r. There are Rather than switch the values of x(n) and y(n)
three accumulators (AO, Al, mna A2), a scratch- back and forth between Al and A2, the input
pad memory,, data rouing logic, a sign rcgister, samples i(n) are switched to either Al or A2 as
Sa tuning register, and a match register. required. The sign of x(n) luay be used for

detection as will be shown in the following
Operation simulation.

The operation of the diGital resonant BASIC Simulation
filter followa thesq four phases:

,) Setup sA imulation of the digital resonant
(2) Samplg sequency filter of Figure 3 has been written
(2) Sampling in BASIC and is shown in Table 2. The simu-
(3) Transient Rebponse lation uses the tuning words listed in Table I.
(4) Sign Detectioa. Four example runs of the simulation with the

Setup. lhe setup phase consists ot filter tuned to Cal(1,e) are shown to verify

clearing AO, Al, and A2; loading a four-bit the theory of operation.

tuning word into the tuning register; and Case 1. Input: Cai(1,6), Tunedt caI(,e)
loading an eight-bit word into the matching C
register. The tuning and matching woids are n i(n) x(n)
shown in Table 1. Also, the sampling rate of 1 -1 -1
the A/D should be set properly. 2 -1 0 |

Sampling. During the sampling phase, the 4 1 2 Transient
start signal is given and the A/D (analog-to- 4 1 2 1Response
digital converter) takes eight samplas of the 6 1 -2 Phase
input signal i(t); These eight samples are 7 -1 -3
stored In the scratchpad memory and are accu- 8 -1 -4
mulated in register AO. After all eight 9 -1 -5
values have been added to AO, the register Is 10 -1 4
shifted three places (divide by 8); register 11 1 5 ign
AO may now be used to remove the average value 12 1 6 Detection
component (Wal(0,e)) from the input signal. 13 1 7 Phase

14 1 -6/

15 -1 -
16 -1 -8
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Case 2. Input: Cal(2,O), Tuned: Cal(1,e) References

n i(n) x(n) [1] H. P. Harmuth, Survey of Analog Sequency
8 1 -Filters Band on Walsh Functions, Work-
9 11 shop on Applications of Walsh Functions,
10 -1 0 Sign NRL, Washington, D. C., March-April, 1970.
11 -1 -l Detection AD-707431.
12 1 0 Phase
13 1 1 [2] J. P. Golden and S. N. James, Implemen-
14 -1 0 tation of a Walsh Function Resonant
15 -1 -1 Filter, IEEETE, August, 1971.16 1 0

[3] H. T. Nagle, Jr., and C. C. Carroll,
Case 3. Input: 2Sal(2,O) + 3Sal(3,0), Organizing a Special-Purpose Computer to

Tuned: Cal(1,e) Realize Digital Filters for Sampled-Data
Systems, IEEETAE, September, 1968,

n i(n) x(n) p. 398-412.

8 1 O [4] J. W. Jones, Jr., and C. C. Carroll, A
9 -1 -i Time-Shar.d Digital Filter Realization,
10 5 0 Sign IEEETC, November, 1969, p. 1027-1030.
11 1 1 Detection
12 -5 -4 Phase [5] H. T. Nagle, C. C. Carroll, and J. W.
13 5 1 Jones, A Hybrid Realization for Sampled-
14 -1 4 Data Controllers, IEEETE, July, 1970,
15 -5 -1 p. 31-37.
16 1 0

[6] H. T. Nagle, and C. C. Cerroll, Memory
6 Sizing for Digital Filters, IFIP Congress

Case 4. Input: • Wal(i,e), 71, Ljubljana, Yugoslavia, Aubust, 1971.
i-1

Tuned: Cal(1,0) [7] H. T. Nagle, Jr., Computer Aided Design of
Digital Filters, submitted to IEEETAE,

n i(n) x(n) March, 1972, 72 typed pages.
8 0 -7
9 -2 -6
10 0 4 Sign
11 -2 2 Detection
12 0 2 Phase
13 6 8
14 0 -6
15 -2 -8
16 0 -8

Cases 1 and 4 have inputs containing
Cal(l,e) and the vign detection phase shows
that a match does indeed occur. However, in
cases 2 and 3 Cal(1,e) is not present in the
input signal so a match dues not occur.

Conclusion

This paper has presented a special-purpose
digital implementation of a resonant sequency
filter. The design has been verified through
simulation using the BASIC language. The filter
implementation may be used to detect the pres-
ence of a Welsh function in sequence of eight
contiguous sumples of the input signal to the
A/D. The design may be easily extended to
handle Walsh functions of higher-order.
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Tnble 1. Tuning and Matching Words

Walsh Tuning Matching
Function Word Words

1234 12345678
Wal(O,6) 0 0 0 0 0 0 0 0 0 0 0 0
Sal(l,e) 0 0 0 1 1 1 1 1 0 0 0 0
Cal(1,e) 0 1 0 0 1 1 0 0 0 0 1 1
Sal(2,e) 0 1 0 1 0 0 1 1 0 0 1 1
Cal(2,O) 1 0 1 0 0 1 1 0 0 1 1 0
Sal(3,8) 1 0 1 1 1 0 0 1 0 1 1 0
Cal(3,e) 1 1 1 0 1 0 1 0 0 1 0 1
Sal(4,e) 1 1 1 1 0 1 0 1 0 1 0 1

Table 2. BASIC Simulation

10 REM SEQUENCY FILTER SIMULATION
20 REM CALl THERU CAL4 FILTERS
30 REM S(1) THUN S(8) ARE TUNING CONSTANTS
40 REM I(1) THUN I(8) ARE INPUT SIGNAL

VALUES
50 DIM S(8),I(8)
60 PRINT "FILTER CASE ";

70 INPUT C
90 PRINT "INPUT 4 TUNING BITS"

100 FOR N-1 TO 4
110 INPUT S(N)
115 S(4)-S(N)
120 NEXT N
130 PRINT
135 T-0
140 PRINT "TYPE 8 INPUT SIGNALS"
150 FOR N-1 TO 8
160 INPUT I(N)
165 T-T+I (N)
170 NEXT N
180 T=T/8
200 Yt-O
205 PRINT
206 PRINT
210 Xl-0
220 PRINT "SIMULATION BEGINS"
230 PRINT
280 PRINT " N I X Y"
290 PRINT
300 FOR M-i TO 2
310 FOR N-1 TO 8
320 IF S(N)-O THEN 350
330 X-Yl
335 Y-XI+I(N)-T
340 GO TO 360
350 X-Xl+I (N)-T
355 Y-Y1
360 PRINT N;I(N);X;Y
365 Y1-Y
370 Xl-X
380 Ha? N
410 NEXTM
420 GO TO 135
999 EmD
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FREQUENCY DOMAIN DESIGN OF SEQUENCY FILTERS

A. E. Kahveci and E. L. Hall

Department of Electrical Engineering

University of Missouri-Columbia

Columbia, Missouri

Abstract

It is well known that the fast Hadamard In the next section, equivalent Hadamard
transform is computationally advantageous over transform filtering is described. Then computa-
the fast Fourier transform for filtering opera- tional problems are considered.
tions; however, more design information is avail-
able for the frequency domain than for the rel- The block diagram of a Fourier filterinq
atively recent sequency domain. To take aSvan- system is shown in Fig. 1. For a one-dimension-
tage of both the simple design techniques of the al system, the input column vector, s, is first
fast Fourier transform and the decreased computa- discrete Fourier (DFT) transformed, producing
tion time of the fast Hadamard transform, the the OFT of s. Next, a point-by-point multipli-
following problem is considered: Given the dis- cation in the frequency domain is performed.
crete Fourier transform of a desired filter, de- Finally, the inverse Fourier transform of the
rive an equivalent Hadamard sequency filter. filtered input transform is computed to produce
This problem is solved for one dimensional fil- the output column vector, r. Thus, in matrix
ters. form: r1 = F-lG1Fs (1)

The solution consists of deriving a rela- where r 1 and s are N length column vectors,
tion between the frequency and sequency domain .41
filters and then showing that the equivalent F.Wnk] W = e F
sequence filters may actually be implemented F , F"1 = F*, N (2)
with the fast Hadamard transform. and G, is an N x N filter matrix whose terms are

the filter weights. If only the diagonal terms
Examples of equivalent filtering of signals of G are non-zero the filter is called a scalor

are given. The cost of the equivalence filter- filt~ r [l). If at least one off diagonal term
ing is that the normal scalor multiplication may is non-zero, the operation is referred to as
be increased to vector multiplication; howevwr, vector filtering. For most cases a real scalor
it is possible to maintain an efficient computa- filter is desired thus G1 must be conjugate
tion for certain cases. sytmmetric, i.e., if go, gl, ... 9N-1 are the

Introduction diagonal elements of Gl then gi = 9 N-1 for i 1,Intrducion...(?N/2.l1).

It is well-known that the fast Hcdamard Now consider the problem of determining a
transform is computationally advantageous over Hadamard transform filter, G2, which performs an
the fast Fourier transform. However, the equivalent operation as the Fourier transform
Hadamard transform filters are not as easy to filter, G1 .
design as simple frequency domain fast Fourier
transform filters. To take advantage of both Equivalent Hadamard Filter
the simple design techniques of the fast Fourier
transform and the decreased computation time of A large amount of filter design information
the Hadamard transform or recursive filter, the for filtering signal via the fast Fourier trans-
following problem is considered: given the dis- fori is available; [2,3]; however, Hadamard
crete Fourier transform of a desired spatial trinsfotin sequency filtering is relatively new,
filter', derive an equivalent Hadamard sequency (4,5). Therefore, implementing a frequency do-filter. [,] hrfripeetn rqec o

rjin filter via a sequency domain computation is

Pratt [1l has shown that discrete Weiner economical in both design and computation time.
Filtering may be implemented by any unitary The block diagram of a filtering system
transformation, rather than just the Fourier using the Hadamard transform is shown in Fig. 2.
transform.

Again for the one-dimensional case, s and r are
The purpose of this paper is to describe N x 1 c~ lomn vectors and

methods for designing Hadamard transform filters r 2 = H v'G2Hs
given the equl-spaced discrete frequency domain where [1]
specifications. This solution allows one to use H = HN PH~l .
the fast Fourier transform for experimentation r

enhancement, then implement the filter with a 2/ -1

faster computational %,nthod.
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1 H H N/ has a large number of zero elements, an effi-
H = [ N /2  2 cient computation is possible.N H -HH/2 Figure 4 shows an 8 point exar-le. In

N/2  this example a unity filter was used. As it
N 2 2m can be seen, the result of filtering in both

domains is equal. The slight difference be-

wi re P is a row permutation matrix and G is tween the numbers is the roundoff error. In

an N x N filter matrix. For scalar filte~ing Fig. 5 a band reject filter was used. A

the diagonal terms are the filter weights and signal ,f(nT) = sin 2ir3nt + sin 2ir4nT, n-O,....1the off diagonal terms are zero. 15 and T=1/16 was filtered of its 3 and 4 Hzcomnonents.

If equivalent outputs are to be produced
by both the Fourier and Hadamard systems, then Figure 6 is the printout of the Fourier

r r2or:domain filter. Figure 7 shows the Walshr1 = r 2 or: filter matrix. Fig. 8 is the time domain re-

F-IG1Fs HI1 presentation of f(nT).

1G FsH GHs Figure 9 is the result of filtering in the

I G2Hs = G2Hs Fourier domain. As it can be noticed, the
amplitude of the filtered signal is very low.

Therefore: It is not completely zero due to Gibbs
phenomena. Fig. 10 is the Walsh domain

HF'IG1F = G2H filtered signal. It is exactly equal t, the
signal in Fig. 9.

or
G = HF.1 _ Figure 11 shows another example where the

G2 G1=~ = HF*G1 FH input was a series of impulses. Figure 12
shows the low pass filter used. Fig. 13 shows

Clearly the two filtering results are the the Fourier filter terms and Fig. 14 shows the
same, i.e. corresponding Walsh filter terms. Figure 15 is

H.1HF1G1 the Fourier domain filter signal of Fig. 11.
r 2 = H-G2H = HHFGIFH = FG 1F r Fig. 16 is the Walsh domain filtered signal.

As it can be seen again, Fig. 15 and Fig. 16

It is interesting to investigate the are exactly the same.
conditions previously imposed on G2, i.e., that
it be a real, diagonal matrix for scalar filter- References
ing.

[l] W.K. Pratt, "Generalized Wiener Filtering
An example of the equivalent Hadamard fil- Computation Techniques," Proceedings of

ter computation for N=4 is shown in Fig. 3 and the UNC Two Dimensional Digital Signal
illustrates that the G2 matrix is not neces- Processing Conference, Oct. 1971, pp. 1-1-
sarily diagonal. In the example G2 may be 1, 1-1-10.
transformed into a diagonal matrix simply by
row or column transformations. [2) B. Gold and C.M. Rader, Digital Sianal Pro-

cessing, McGraw-Hill, New York, 1969,
In general, G2,is always diagonalizable p173-181.

which may be seen from the following argument.
1 or [3 H.C. Andrews, Computer Techniques in Image

Let = -- Processn, Acadeic, New YorK, 1970,
pp. 105-131.

then since F is a non-singular matrix, P and GI
are similar [3]. t.ow since Gl is a diagonal [4) 3.L. Walsh, "Remarks on the History of
matrice, the characteristic roots are simply Walsh Functions," Proceedings of the
the diagonal elements. Furthermore, since P Walsh Function Symposium, Washington, D.C.,
and Gt are sim.ar, they have the same charac- April, 1970.teristtc roots.

N G= HP 1 and since His non singular, [5) W.K. Pratt, "Linear and Non-Linear Filter-
Now G2 =ing in the Walsh Domain", Symposium on the

G2 arid P are similar. Thus, G1 and G2 have the Applications of Walsh Functions, Washingtoq,
same characteristic roots. Finally, since G2  D.C., April, 1971.
is similar to a diagonal matrix it is diagonali-
zable.

Note that if G2 is not a real, diagonal
matrix, then the speed of computation may be
greatly affected. For example, the point by
point multiplication ot N points may have to be
replaced by an NxN matrix computation. On the
other hand, if G2 is not a diagonal matrix but
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Fig. 1. Filtering via the fast Fourier
transfom (FFT).

G2

HH

Fig. 2. Filtering via the fast Hadmard
transform (FAT).
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Fig. 3. Example of equivalent filter coaputitcn for Nw4.
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91 = g3* a a÷jb then (jg -•3) "b ,,hh Is re~1 so that P Is real, s~n-e both go and 92 are also

i real. Under the sy~wetr c conjugate condition on g, P reduces to
b+ b L b3J93b93 J 93

96+9- 1 bWb93 b21-2-S 9 g-g1+ 2-93 0(gl-6+g3}

:2Ž3 b1 where b3 0+o- +2+93)

and all b1 era real.
te alsothatfourgvalues ptoduce on1yJ four b1 va s.re aluso inlly, note that
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'1-7 r - _ _ _ _ _ _ _ _ _ _

bO+bl4b 2e " 4b3

bo+bl-b 2-b 3 = 4q2
bo0,bhi+b 2-b 3 - FiI ( 1-jl)+293(I+,J 1)

bo-t 1-b 2+b3 . 2g 1(1+J)+29 3 (l-J)

Now let us compute G2  HPH, i .e.

I I ~b 0  )3 b'j 2 1111

1 -z -I 1 1 b, b, 1 -1 1-G2 T6b~ b0  b3
I1-1 -1 Lb b. Ib1 -1 -1

L4 -1 1 -1] +b3  :+bl-b 2 .- bl-b 2 .- b +b2

Li -1 -1 1 bob 1 : b.-b 0 : b2+b0 : b2-b

+b2÷b3 *+b3.-b1  -b 3-b1 .- b3+b,

b .bob1 • -b 2 . bI+b2 * b.-b
+b2 "b3 .+bo-b 3 .•,bo-b 3 .- bo+b3

1 4+•+b3 *+b2 -b0 .- b2-bo -b?+10

[ 2g 1 (1+j) + 2g;(1-J)

I II 49 . 42 .+29 3 (1-J) + 293(l+J)

-I -1 iJ ........................... ;.....
T61I 1 -1 -3 4gU . 2 492g1j)+g 3 +

I -2g 1 (1-J) - 2gl(1-.J)
0 .•4g f .-293('+J) - 293 ('+j)

Finally[4 Ll lA L 2g1(l-J) . 29114+1) V
4go *-4g2  -2g3 (1+j) + 2g 3 ('-J)

Fnally 
2g(2j) 2 1(2j)

I6g +293(-2J) +23'2j
2gl(-2j,0 6g2" 4jgl"4'JS3"+23(2j)G .. ........... .....

0 0 +493(2+.,!', .- 293(2.J)I

L 4Jgl-4J93i+g(2J

Now if v1 r+Jb n g3*, g1+g3  2a, g1-g3  j2b

So 4J(g 1-g3 ) 8b

491(2-J) + 4a(2+j) a 4(4a+b)

202



Th.erefome

[16% 0 -8t -8b 1
G0 16g2  -8b 3b[0 0 -8b+,, 4(4a+b)J

Thus, G is not diagonal. However, if b-O,
G2is d3agorpal.

APIBITPARY IrIPrL'S TO TIhE rI'AEr:

FOUPIEP OU oiiri ILTEP IIETONTS

00n1 10n0 0fn
0 0 010 000n

EQ~iAIYLEtJT IIALS1I DOI'P-IN FILTEl !!EIGHITS (0lO00)

15.62 0.0 0.P 0.0 9.n I*0 0.0 0.10
0.0 15.62 flaOS 0j .0 0.0 0.n n.fl
0.0 0.0 15.62 0.0 0.0 0.0 0.0 0).n
0.0 0.0 0.0 15.62 0.0 1.r6 0.0 0.0
0.0 0.0 0.0 0.0 15.62 0.0 0.n 0,0-.

4-000 0.0 0.0 010~ 0.0 15.61 (r.n 0.0
0.0 0.0 0.0 0.0 0.0 0.0 15.62 0,0n
0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.r2

U~S'JLT or rILTERVIrI in rOuRIEP 00f/'MI

rOUT=(,'1.0....,10b05 n*5 .n*.)

P.ESLLT OF FILTERVIG 1.11 VIALSH DOr'AIIJ

Fig. 4. Eight point filtering with unity
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MAVNA1UC

I I/

0.0 - • • .. , A • IFR-'TUENCY

0 4 3 12 15

Fig. 5. Sixteen point filter function.

FOURIER DOMAIN FILTER WEIGHTS

SIO000000000000000
0l00000000000000i 0O00000000000000

OO00000000000000
0O000100000000000

I 00000100000000000 1 0000001000000000
S0 0000000100000000
0•- 0000000 1000 0o0

•, O0000010OOOlO 0 OS0 0000009000100000

[• I 0000000000000000
I O000000000000000O

0 0 00 00 0 10 00 00 00 01

I• !F~g. 6. Fourier domain filter weghts.1 204000100L



EQUIVALENT WALSH DOMAIN FILTER WEIGHTS (xlOOO)

3.91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 3.62 0.0 0.0 0.0 -. 69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 3.62 0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 2.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 2.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -. 69 0.0 0.0 0.0
0.0 -. 69 0.0 0.0 0.0 2.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.69 0.0 0.0 0.0 2.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 '0.0 0.0 0.0 0.0 0.0 0.0 1.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 .0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0" 0.0 0.0 2.24 0.0 0.0 0.0 0.69 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.24 0.0 0.0 0.0 -. 69 0.0
0.0 0.0 0.0 0.69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.62 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -. 69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.62 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.69 0.0 0.0 0.0 3.62 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -. 69 0.0 0.0 0.0 3.62 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9)

Fig. 7. Equivalent Walsh domain filter
w 4ghts (xlO00).

MAGNiTUDE
1.92

.707

.61

0.0

.1.0

-1.3P

TIME
-I1.92 ,

0 4 8 12 15

Fig. 8. Input signal to the filter shown
in Fig. 5.
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MAGNITUDE

.00002059

.0000012
0.0

-.0000031

-.oOfo247

TIME

0 4 a 12 15

Fig. 9. Fourier domain filtered signal of
Fig. 8.

MAGNITUDE

dIs

.0000198

.0000041

0.0

-• ~ -. 0000059

-. 0000137

-. 00002i;

0 4 8 12 15

Fig. 10. Walsh domain filtered signal of
Fig. 8.
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MAGNITUDE

1.0

0. 
TIME

0 4 8 12 15

Fig. A T. Input values to the filter shown
in Fig. 12.

MAGNITUDE

*1.

,A A A A A rREEQUENCY

0 4 12 15

Fig. 12. Sixteen point filter function.
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F .RI + . -.

FOURIER DOMAIN FILTER WEIGHTS

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
010 00000 00 00 0 0 000
00 10000000000000

0001000000000000
0000100000000000
0000000000O00000
0000000000000000
0000000000000000
00000000000100000

00000 0000 00 010000
0000000000010010000 00 00 00 0 0 0 0 0 0 0

00 00 00 00 00 00 001 00

Fig.13Foredo nfte wgh.

EQUIVALENT 0ALSH DOMAIN FILTER WEIGHTS (xl 00)

3.91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0

0.0 3.78 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 -. 26 0.0 0.0 0.0 -. 64 0. 0.0

0.0 0.0 3.78 0.0 0.0 0 0 0 0.0 0.0 0.0 -. 26 0.0 0.0 0.0 .64 0.0

0.0 0.0 0.0 3.33 0.0 0.0 0.0 0. 0 0.0 0.0 0.0-1.38 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 3.33 0.0 0.0 0 0 .0 0.0 0.0 0.0 0.0 1.38 0.0 0.0 0.0

0.0 0.05 0.0 0.0 0.0 3.88 0.0 0.0 0.0 0.11 0.0 0.0 0.0 0.26 0.0 0.0

0.0 0.0 0.05 0.0 0.0 0.0 3.88 0.0 0.0 0.0 -.11 0.0 0.0 0.0 0.26 0.0

21 0 0.0 00.0 0.0 0.0 0.0 0.0 3.91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.91 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 -. 26 0.0 0.0 0.0 0.11 0.0 0.0 0.0 3.36 0.0 0.0 0.0 -1.33 0.0 0.0

0.0 0.0 -. 27 0.0 0.0 0.0 -. 11 0.0 0.0 0.0 3.36 0.0 0.0 0.0 1.33 0.0

0.0 0.0 0.0 -. 38 0.0 0.04 0.*0 0.0 0.0 0.0 0.0 0.57 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.38 0.0 0,o 0.0 0.0 0.0 0.0 0.0 0.57 0.0 0.0 0.0

0.0 -. 64 0.0 0.0 0.0 0.26 0.0 0.0 0.0 -1.33 0.0 0.0 0.0 0.7 0.0 0.0

0.0 0.0 0.64 0.0 0.0 0.0 0.26 0.0 0.0 0.0 1.33 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 14. Equti'alent. Walsh domain filter
, weights (xl00O).
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MAGNITUDE

I

.5000060

.5000022

.499999

A999965

TEK
.4999944

0 4 6 It LB

Fig. M5. Fourier domain filtered signal
of Fig. 11.

MANITUDE

.6000044

.4999986

.4999411.499994171. ,

0 4 6 12 to

Fig. 16. Walsh domain filtered signal
of Fig. 11.
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WAVEFORM ANALYSIS OF IMAGE SIGNALS BY ORTHOGONAL TRANSFORMATION

Kosho Shibata
KDD Research Laboratory

Tokyo, Japan

Abstract - By a computer simulation, properties of where,

block waveforms for sampled video signals were examined m =
by the use of an orthogonal transformation, and possibility E ai 1, 2- bi= 1,in compressing frequency bandwidth was examined. As a ial J, ha.

result, it was found that most of finely divided portions of m t
an image are comparatively simple, number of types is E af agi = 0, bfh bgh 0
limited, and that they appear on particular waveforms
frequently. In ithe case of a 16th order ortho3onal where
transformation in a 2-dimensional array, when block wave- h1-2
forms of an ir.age are expressed ir. approximately 1030 xhi: Element of input signal data R, m matrix (i=l-_
types, Sp-p/Nr.m.s is approximately 33 dB, a..' coding is xt Element of transpose matrix Of Xhi; x i.=X
considered possible at an average of 1.5 bit/sample. of hi X X

Introduction ykj: Element of orthogonal transformation% output 2, in
.k=l~£

Various studies to process images by the use of an matrix (j=lI -m
orthogonal transformation have been reported. 1)2)4) It
seems that the people concerned have used individual aji: Element of mth order orthogonal matrix

statistical properties of transformation outputs to properly bkh: Element of Ith order orthogonal matrix;bh- =bhk
quantize orthogonal transformation output.

In this paper, however, examination was made by using Now, when 4th order slant orthogonal matrix MH2S is

relation among individual transformation outputs. Waveforms used for the orthogonal matrix to indicate 2-dimensionalof f'ne blocks of a transormaionaweexpsedna orthogonal transform, it is indicated as equat,.on (3).
of fne bocksof avideo signal were expressed ina

normalized waveform pattern by the use of an orthogonal ' i! ! l xl x 32 X 4 1 -t
transformation and !he normalized waveform patterns were ± 1 ). 1 2 X2 X32 X4l2 (ll .1x)
examined by a computer simulation. As the result, it is Yj 4 .- 3 (3)understood that type• of these patterns are limited and they 13 X3 4 X3 X4
tend to appear frequently on limited number of particular L(I '-i)J1X:4 X24 X34 X44•,(1 ;
waveforms. It is expected t.at these properties of waveform
pattern may be used effectively in coding video signals Fig. I shows waveforms lined up in the sequence of
efficiently a. well as the various properties for video signal this transform after extending the 2.dimensional method to
such as correlation between picture elements, prediction I-line method.

error of previous value or linear prediction error level Among these wave forms, hol, h02 ,ho ,hos, and hog
distribution, and frequency spectrum distribution. respectively indicate DC component, inclination toward

In the following, t!hc orthogonal transformation, nor- vertical direction, inclination toward horizontal direction,
malized waveform pattern for block signal waveform, method horizontal line and vertical line. In the case of a 16th order
of computer simulation, the results and discussions therefore 2.dimenional Hadamard transform, positive and negative
are described, ones in the Fig. I may respectively be expressed in I and

Orthogonal TransformI3)4) -!. Moreover, equation (4) indicates relation betwe-n 4th
order lHadamard transformation output Yoj and slant

2-dimensional orthogonal transform of a sample data orthogonal transformation output yj.
Xhi (hul-R, i=l-m) is expressed as equation (I). In the
case of a )-dimensional transform, however, it may be ex- Y2 ' -(2yo0 + y4)
pressed as equation (2) because a transformation output isV (4)
generally used in the form of a transpose. Y4 ' (-y 2 + 2yo,)

inm Hence, a slant orthogonal transform can be obtained
Y = .•..•. bh1 Xhi a1i (1) easily from Hadamard transformation output. Equation (5)

" in * t- shows an 8th order I-line slant ortholonal matrix MHI,
Yjk = hl if a11 xhi bkh (2) and equation (6) indicates relation bet.ween transformation

output y of this MHI and 8th order Hadamard transform-
210 ation output yoJ.
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output of orthogonal transform. Thus, input signal wave-
"tll tlS2 x3 x 14 x2 tx22 x 23x 24 13 1x32 X33x3 4t41x42t43X44 form is regulated depending upon a relation among the

hot _transformation outputs. Now, in the case of an nth order
hO orhgoa tasomyt out of n transformation outputs

represents DC component of the input simple waveform.
Hence, waveform components exduding the DC component

are indicated by yj other than yt. Therefore, when one
absolute value of which is maximum is expressed Yin, the

$ y'-• y is normalized with the Ym to obtain Yj/Ym and yj/ym in
quantity of (n-1) are treated as one, relation amongtran-sformation outputs can be regulated. This is conadered

47 J as a normalized waveform, Quantized waveform pattern can
be obtained by quantizing this normalized waveform at

61 -- proper levels such as 0, ±1/3, t2/3 and ±1. This means that

, •input block waveform is expressed in the form of a
normalized pattern. Hereinafter, this pattern is called
waveform pattern. This waveform pattern corresponds to

Sinput signal waveform in one to one. Thus, input signal can-FL-JL J J be recovered from this waveform pattern. To oe more
s ispcifically, input signal can be obtained by multiplying ym
(quantized Ym) to normalized pattern to obtain each y'

b.-F .. ........ (quantized y-) and by conducting inverse orthogonal trans-

form on it after adding yj (quantized yl).

Computer Simulation

h-6-" Method of simulation
--• L J- • L .-'L L_' - In order to examine properties of block waveforms of

a video sigial, various examinations were made by obtain-
Fig. 1 Waveformsof 16th erda.- 2..endonal ing waveform patterns on waveforms of three types ofslant transform matrix input signal data block I x 8, 2 x 4 and 4 x 4 arranged on

a straight line and plane. For the orthogonal transformatfon
matrices, 2nd, 4th and 8th order Hadamard matrices HI,

(. H4 and HI and 4th order slant matrix MH2S and 8th order

(3slant matrix MHI were used.

:3J.( 1 • " * -"T !For the input video signals, three types of signal data
hi 17 ( .9 A, B and C obtained from three types of SMPTE slides; (A)(1 - -1 -1 -1 1 1) close-up, (B) medium and (C) fine picture were used. The

(1 • . , *• - .~ dynamic range is from 0 to 63, quantizing in 64 levels. For
the data A, numbers of blocks for 8th and 16th orders are

-. respectively 2464 and 1232, for the data B, 3315 and

- T T- ' - 1536, and for data C, 3087 and 1440.

First of all, orthogonal transform was conducted on
each block of input data by the use of H, MHI for the 8th

Y= (4yG2 + 2 y6 + ys) order straight arrangement to obtain maximum value Ym of
transformation uutput other than DC component and ratio

Y3  (2y*3 +ye., of (ylJym), waveform pattern (yj/ym)' (-2-8) was ob-
tained by quantizing it; and thus, types and appearance

y4 = (-5yoz + 8 y04 + 4yo5 ) (6) frequency were obtained. Amplitude distribution of ym,

"ratio ym/yj and frequency on each y, of yr were also

Y7 - (-yo3 + 2YE7 ) obtained. A degree of waveform distortion due to quantiz-
45 ing was examined by obtaining quantizing noise. For the

ya --L (y 4 +2y0 5  quantizing noise, y;, obtained by quantizing ym was
multiplied to the waveform pattern to obtain yj &j2-n);

Y= ye, y 5 Ys , Y6 ,y* 56 yj obtained by quantizing yj was added to it to conduct in-
verse orthogonal transform, recovery signal x' was thus ob-

tained; mean square error of quantization was obtained with
difference between the recovery signal x! and input signal
xi; and thus, Sp-p/Nxr.y.s " obtained. In addtion, linear

The orthogonal transform may be considered as a sort prediction error axi . -- I xi+l "xi of input data xi was
of waveform analysis. Input signal waveform is analyzed by obtained, and Sp-p/Nr.m.s oT the quantizing error aainst
orthogonal waveforms, and it is expressed in the form of an the value of 9xi was obtained. For the case of 8th order,
output of the waveform components, In other words, as an Yt and ym were respectively quantized by 7 and S bits,

2n1



and YjIYm was quantized with 0, *1/3, 12/3 and ±1 after that values are reater in the order of B and C dta. As for
making yj zero under the following provisions: percentage of Ym on cach transformation output, y2

appears most frequently (approximately 40%) for all A, B
For Y2 "y4: Yj< I and C data, yx is approximately 10%, and for other yj, it
Fory- y: yj < 2 rapidly reduces as j increases. This means that, as far as

picture is concerned, component which frequently fluctu-
In the case of 16th order, y, and ym were quantized ates is very minor. Fig. 4 and 5 respectively show level

with eight and six bits, and as for Y2 '-Y2 ,, Yj was made to distribution of overall Ym, and level distribution of ym
zero when yj<l; and thus, yJIYm was quantized in the where ym is separated to each yj. In the Fig. 4, levels are
same mann as the case of 8h order. As for 24ine array higher in the order of A, B and C. In the Fig. 5, amplitude
data of 8th order, when transformation matrix is a level of .YM reduces as j of y. increases; frequency at low
Hadamard matrix, (H4  H12 ) was examined, and MH2 level is remarkable forA;and b andCaremutually imilar.
(?H2S, !I) was examined in the case of 24ine inclination, As it is expressed in the Fig. 3, y. does not appear so
both in the approximately same manner as the case of frequently where j is great; amplitude is small; and also for
1-line array. In addition, for 16th order 4-line array data, the matter of frequency, component is extremely high.
(1H4, H') was examined when transforcntion matrix is Thus, it may be disregarded in processing video Signal.
Hladamard, and (dMH2S, MH2S) was examined in the case of
plane inclination for the sae matters. to

Result of simulation and discussion Ik\MH 1.

(1) Result of simulation on H, MHI
For video data A B, and C under linear array, 8th S^

order slant orthogonal transform MHI was examined. Fig. 2
shows relative level distribution of ratio Ym/y, between
block DC component y, and maximum change component
Ym, and Fig. 3 shows percentge of Ym appearance . 20

frequency on each yj. Distributions of ym/ya for three data
are mutually similar. In the case of A (dose-up), however, 10

zero appears remarkably frequently, the overall value is
smailer than thatof B and C data, and it reveals a tendency -s.

I Mw-M ,,,, -'o0

" ............ Fig. 4 Level distribution of ym
(Horizontal axis: Probabilitydensity, XIG')

-1. Fig. 6 shows Sp-p/Nrm s against linear prediction
error on H and MHI, together with the orWinary
Sp-p/Nran s. When linear prediction error is zero, MHI is

Fig. 2 Distribution of ratio ym/yi approximately 1.5 dD better than H, it is approximately
(Horizontal axis: Probability 4.5 dB better than ordinary ones, and it indicates that
density, X102) quantizing noise is small where fluctuation is minor.

Moreover, this indicates that inclination component can be
easily expressed by udng slant orthogonal matrix. Signal-

Ma gda I b. to-noise ratio is considerably worsened at a par where

H: A -. linear prediction error is large, and it is considered that this
A - may not be regarded because of the visual characteristics.

o a ...... However, care should be exercised on error in edge1C poddfon.

2• (2) Property of waveform pattern

For H and MHI of 8th order I-ine array, H and MH2
of 8th order 2-line array and H and MH02S of 16th order
44ine array, Table I shows number of appeared waveform

YU- i2 VS ,4 YS 7, 77 Y, patterns, Sp-p/Nr.m.s and number of input blocks for A,4
and C, and the grand total. The value of Sp-p/Nr.tms is

Fg 3 Pecentage of appearance frequency applicable for the case in which signal is reproduced to the
of ym on each yj original sn by using appeared waveform pattern.
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When the H of the 8th order W-line array is compared

A to the Mii of the same based cn the Table 1, pattern

Is- M I&*............ 4 appear, leas frequently for the MHii tbroughout the data A,
•• tc C Band Cand the MHlI is sightly better than the H in

Sp-p/Nr.m s for the data A and B, but for the data C (fine
picture), the H is slightly better than the MilI. As long as
number of patterns is concerned, the MH12 is slightly lesst• : •o-than the H also for the caw of 24;ne array, and

signal-to-noise ratio is also improved slightly. As for there- ~compansion between l-line arrmy and 2-line &mry, number

Of• of waveform patterns considerably reduces and signal-
s -- 0 0o o s b -to-nois ratio is slightly improved.

leve Y3 kwd

Table I Number of types of waveform pattern and SIN

A a C

40 4' StGKd I L~ W UJ d WNrPm - "futeI Nr.. O~W

3int 30 Moofcks 24"4 33t5 3087 a

MW " 1 209 33.0 447 32.1 365 32.1 1021
30. 2--

to . No,,o "o t _ 4 3315 307_a "

daabbdis

o4 th Ys e I 160 ML34i3 o 298 orde 229 34.2 6H 2
No of inlmt 1 232 !536 144P 42C

s oo 44in H 23f" E.:3 4s2 3 4SI 133"6 1179

so sod~ s H234 33•.6 1488 13371 485 33.8 1207

4 40 4e0 For the H and MHil of 8th order .14ine, H and MH2

of 8th order 2-line array, and H and MH2S of 16th order
2-dimensional array on the data A, accumulation percen-
tages were obtained in order of higher waveform pattern

Sooappearing frequency. Fig. 7 shows the accumulation percen-
1 10 0otages for the number of waveform patterns obtained as

above.
l 'For all caes, it is common that the pattern appears

00 5 o - o s most frequently when input (waveform (hj/hm)' of which is
Y6 Y? Ys zero) is flat. In the l-line array, flat ones are only 40%, but

it increases to approximately 60% under 2-dimensIonal
Fig. 5 Level distribution of y on each y. array. Moreover, for both the 2-line and 4-line irrayb,

(Vertical axis: Probabllity denS!ty, xl0-2) Hadamard matrix is almost similar to slant matrix for the

Si •d I ", matter of accumulated percentage of pattern is concerned.
However, in the I-line army, the slant matrix is highly

I a, . ..............

.4 HA jA - S

/ Sihar. 1311A, H
II ... SIIAMNC•, W A4.mA.H ......

' h lsg .A.H ..

V 8 C 11" mA.MH42 Al.o

20 dmft2s.
I 2 4i l 2 644128 254 512 1024

-if -10 0 -i0 aembWateW

FiS. 7 Accumulated appearance frequency of
Fig. 6 Sp-p/Nr.m.s for linear prediction error of xi pattern for number of patterns
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.,'oncentrated, in comparison with Hadamard matrix, at a Table 2
lortion where number of patterns is small. For the data A,
16 patterns having higher appearance frequency were 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
selected from those on the Sth order l-line MHil. Fig. 8 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

shows the patterns and waveforms selected in order of 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

higher appearance frequency. According to the petterns 4 0 0 2/3 0 0 0 1 0 0 0 0 0 0 0 0

shown on the Fig. 8, ys/ym through yj/ymareallzero, S 0 0 0 0 0 0 0 1 0 0 0o0 0o 0 0
and throughout the patterns, number of zeros is extremely 6 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0

many. Majoritj ofwaveform patterns carry zerosintheir 7 1 0 2/30 0 0 0 0 0 0 0 0 0 0 0

last two or three -positions. When observing each pattern, 1 0 0 2/30 0 0 1 7/3 0 0 0 0 0 0 0

appearance frequency of pattern (0,0,0,0,0,0,0) occupies 9 0 0 1/3 0 0 0 I 0 0 0 0 0 0 0 0

42.3%, slant portion (1,0,0,0,0,0,0) is 21.4%, and generally 10 0 0 2/3 0 0 0 1 -2/3 0 0 0 0 0 0 0

speaking, it may be said that 4through 16 express rising 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
and lowering edges. Moreover, (0,0,0,0,0,0,0), 12 1 0 0 0 0 0 .2/3 0 0 0 0 0 0 0 0

13 -2/3 0 0 0 0 0 I 0 0 0 0 0 0 0 o

14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
"%1 1X3• sx4 6 X7X8 15 1 0 113 '0 0 0 0 00 0 0 0 0 0

a 0 0 0 00 0 . 16 0 0 2/3 0 00 1 0 0 0 0 0 0 0 0
, I o o00•0•0

3 0 1 0 0 0 0 0

4 1 1/3 0 0 0 0 0 (1,0,,0,0,0,0,0), (0,1,0,0,0,0,0) and (0,0,1,0.0,0,0) which
correspond to waveforms of row vectors of transform

1.3/3• 000• 0 0 matrix appear frequently in order of 1, 2, 3 and 9, and
these four take large percentages.

* t .2/3 0 0 0 0 0 •Fig. 9 shows accumulated appearance frequencies for

7 213 0 0 0 0 0 numbe of patterns on the data A, B, and C for.the 16th
order MH2S in the same manner as the Fig. 7, and

a 1 0 .1/30 0 0 0 frequencies of H and MH2S on total of the data A, 8 and
9 00 0 0 0 0 0 C. According to the Fig. "9, appeirance frequency of flat

ones fluctuate from 40 to 60% depending upon types of
3o0 0 0 0 0 o o -,-j . input d&ta, and others indicate approximately similar

tendency wherein they do not indicate remarkable fluctua-
33 0.3 0 0 0 0 o . tion. The totals are res :tively 988 and 917, which

2 02/3 00 0 0 indicate that the MH2S is slightly less than H, and when
examining the grand totals 1179 and 1207 each shown on

13 .213 1 0 0 0 0 0 • the Table 1, it indicates reverse symptom. It appears evenly
in portions where number of patterns is minor, these

14 1 .1/31/3 0 0 0 o •_T- patterns are mutually common, and it is assumed that when

Is 2/3 o 0 0 o 0 S number of patterns increases, number of types of pattern
increases because they appear independently. Table 2 shows

36 1 1/3.1/3 0 0 0 0 16 patterns which appear in order of higher appearance

frequency for total of data A, B and C. According to the
Table 2, those of higher appearance frequency are

Fig. 8 Waveform patterns and their waveforms extremely simple, in which all of them have three or less
quantizing levels other than zero; ho and bh. (Fig. 1)
which express horizontal and vertical inclination com-

Is ponents are in (2) and (3), and hog and h03 which indicate
vertical and horizontal lines are in (5) and (14). Most of
others include horizontal or vertical inclination com-
ponents. According to the Table I, H does not differ from

- • ^ . .the MH2S as long as noisewto-signal YTtio is concerned,
S- ............ however, it may be expected that the 2-line linear. predic-

•,s -- tion error may be improved slightly.
A + 9+ C---

H A+B+C (3) Application to video signal coding
2o 4 5 26 32 4 325 256 5i 02 It was found that fine block waveform of video signal

-2 can be expressed in a limited number within a range in
numb Paer ttm which error is aot remarkable. Now, for example in the

case of 16th order orthogonal transform, number of types

Fig. 9 Accumulateo appearance frequency of .of waveform pattern is limited to within 1000, if they
pattern for number of patterns are coded at 10 bits, and y, and ym are quantized
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respectively at 8 and 6 bits, total number of bits is 24, and Finally, thanks are due to Prof. Enomoto of Tokyo
thus, 1.5 bit/picture elemetit _,oding may be possible. Institute of Technology who provided valuable advice,

Quantizings to obtain waveform patterns were n•de and personnels of KDD Research Laboratory who suppoi1.Ud
evenly for all, and it is expected that signal-to-noise raWio in proceeding !his research.
will be improved by examining each one of YJI/Ym distribu-
tion finely and by suiting them to the lrdividual quzntiz- Refer-nces
ings. Moreover, in the quantizing, various waveforms pos- I. W.K. Pratt, J. Kaae, and H.C. Andrews, "Hadamard
sibly appear dependiP3 upon input data, and therefore, Transform Image Coding," Proc. IEEE 57, No.l,
clustering should be made adequately to prevent deteriora- 58-68, Jan. 1969.
tion of output image. 2. A. Habibi, and P.A. Wintz, "Image Coding by Unear

Conclusion Transformation and Block Quantization," IEEE Trans.
Communication Technology, COM-19, 50-62 (1971).

Block waveforms of three types of video signals were 3. H.F. Harmuth, Innsmission of Enformation by Or-
examined under the normalized waveform method with thogonal Functions, Springer Verlag, New York 1969.
orthogonal transform. As the result, it was insured that 4. H. Enomoto, and K. Shibata, "Orthogonal Transform
number of types of appearing waveform pattern is con- Coding System for Television Signals," IEEE Trans.
siderably limited and that flat and slant portions occupy a Electromagnetic Compatibility, Special Issue on Walsh
large percentage. In this study, mainly number of waveform Function; Symposium 1971, EMC-13, 11-17, 1971.
patterns was examined. It is considered, however, that 5. H. Enomoto, and K. Shibata, "Features of a
waveform patterns which express features of block wave- Hadamard Transformed Television Signals," 1965 Na-
forms of video signals can be selected more precisely by tional Conference of the I.E.C.E. of Japan 881.
making quantization in response to distribution of ratio of 6. H. Enomoto and K. Shibata, "Television Signal Coding
each transformation output against the maximum value and Method by Orthogonal Trnasformations," 1966 Joint
thus, video signal can be coded efficiently. In this study, Convention of the I.E.C.E. of Japan, 1430.
reproduced picture was evaluated in Sp-p/Nr.m s. H.wever,
it should be experimentally insured to prevent deterioration
of quality of picture.
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WALSH FUNCTIONS FOR IMAGE ENHANCE.MIff

by
R. L. Richardson, F. R. Reich, and B. P. Hildebrand

Battelle Pacific Northwest Laboratories

Richland, Washington
Introduction the computer world, however, we would like to

work with binary functions rather than continu-

There are a number of important photographic ous function. If we can marry the two worlds,
measurement techniques that must rely on shadow we my be abne to perfom computer processing
imaging. These techniques involve non-optical of images with simple matrix multiplications in
radiation such as X-rays, y-ruys and neutrons; place of thee rd complicated FFT algorcthr at
radiation for which lenses are not availablee a savings in time and cost.
Images of this type are never sharply focused
and hence some for of edge sharpening st In this paper we attempt a first step tin
desirable in order to be able to make reliable this direction whble tpdrfssinq ourselves to ameasurements from the photographs. Such en- real problem. In the nuclear industry a major

hancement has been performed with coherent problem ns the damage to fuel rods caused by
toptical system and with computers [1f2o p Te thee intense radioactivity n the reactor core.
optbcal system are, in a sense, more natural The w dy in which this aamge bs studied ps by
since they are u n themoelves Image forming. X-ray or self radiation imaging. Since lenses
SHowever, they are restrictfd to linear opera- cannot be used. and point sources of X-say are
tIons, whereas computers are not. not available, sharp shadows or edges are not

well defined cn the tiplge. dha we wbsh to do
Computers, despite the fact that they are not then tis to sharpen or enhance such an image.

restricted to linear processing, have for the
most part been used o n a linear mode samply s e- OptIcal Filtervna of Extela .ded
cause imaging systemS operate linearly. Untl Source Shadow in gres
the rediscovery of the Fast Fourier Transfom•
" algorithm, picture processing was impractical It is well known that coherent optical sys-
because of the long processing times required tems can be used tc. perform Fourier transform
[3]. Only recently has attention been turned operations on two-dimensiondl input data [I].
to transforms other than Fourier for picture These systems are based upon the observation
processing [43. Even so, no real application that a picture placed in the front focal plane

2,of these transforms to picture processing has of a lens will have its two-dimensional Fourier
•-been made; it has only been demonstrated that transform displiyed in the back focal plane.

they c.an be used to transform an image and re- A mask, varying in trans,iission and/or thick-
cover it by the inverse transform. ness, placed in the back focal plane can there-

fore be used to modify the data in some pre-
In the real world of photographic recording scribed manner. That is, the Fourier transform

we are still restricted to the sine-cosine of the data can be multiplied by a filter
functions. That is, the physics of wave propa- function as is customary in electronic systems.
gattnn restricts us to Fourier analysis rather A second lens can then be used to take a,i
the:,. say, Walsh or Haar function analysis. In inverse transform to yield a modified image.

Such a system is shown in Figure 1.

POA4ROID COLLIMATINGfH1 ITERIAL Lm ENS I!LHI
STTR 'A LESLENS #1 LENIS 02

Fe FeLF F J
AND SPATIAL INPUT PLAN FOURIER OUTPUT PLANE

FILTER (LIQUID GATE) TRANSFORM (FILM OR DETECTOR
PLANE PLANE)

(DESWRRING PLANE)Fii .jFF[TV]}j ,T % ,0

fLURRED DEMURRED
PHOTOGRAPH PHOTOGRAPH

FIGURE L COHERMT OPTICAL PROCESSING SYSTEM FOR PICTURE PROCESSING
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Neutron and X-ray imaging systems form their to the image plane, w(B) and I(x) are the
images by shadow casting an energy absorbing source intensity distribution and object inten-
object with incoherent illumination. The size sity transmission. The Fourier transform of
of the image will depend on the source-to- Equation (1) indicates that the spatial frequen-
object and object-to-recording plane distance cy content of Ie(X) will be less than or equal
ratio. If the illuminating source dimensions to the true point source shadow image I(x) for
approach or appear to project from a true geo- all spatial frequency conponents.
metrical point, a perfect shadow of the absorb-
ing object will be obtained (Figure 2-a) with F e(X - CF (4 F l(x F f(x (2)
a large intensity gradient along the edges.
If, however, the source appears to emanate from To demonstrate this, consider an incoherent
a large area composed of a multiple of true line source of dimension t and a source-to-
point sources, the image edges will contain a object, object-to-film plane ratio d. From
penumbra or unsharpness with small intensity Equation (1), the resultant iage spatial fre-
gradients along the edges (Figure 2-b). A one- quency content from the Fourier transform
dimensional analysis of the shadow image inten- operator will be
sity shows that the image obtained from an
extended sou:,.e is the convolution of the F - sin FI 1(
extended source w(o) with the image that would F Ie(X) = K F (x (3)
be obtained from a true point source 1(x) [1].

where K is a constant of the imaging geometry
Au and a is 27rdtf whore f is spatial frequency.

Ie (X) - C () I(x-o) do (1) The function (Figure 3-a) shows zero points
A at some spatial frequencies and regions of

contrast reversal (regions of sin(x)/x that
where A, A' ..re the source dimensions projected are below the zero axis).

POINT SOURCE EXTENDED SOURCE

OBJECT

FILM LANE-,-

INTENSITY I

I'zI

I o

SFIGUK2 . ?IUMfi*"• OR •'t;NHARPNESS OF EXTENDED SOURCE[ SHADOW IMAGES
(a) SHOWS THE[ SHAPE OF THE DE'NS ITY FUNCTION PRODUCED ON FILM

WHEN A POIN'T SOURCE IS USED AND (b) WHEN AN EXMtNMf
SOURC(E IS USED

• ETC.

-- X'- ETC. -- X--_

FIGURE 3. (4) INDICATES THE SPATIAL FREQUJENCY DISTORTION CAUSED BY AN EITENDE) SOURCE
FOR SHADOW IMAGING

(b) SHOWS THE AMPLITUDE OF 1THE FILTER FUNCTION REQUIRED TO COUNTERACT THIS
DISTORTION
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In a coherent imaging system (Figure 1), we
can make corrections for the extended source
frequency weighting by placing the proper
filter in the Fourier transform or focal plane.. .
The exact correction filter may not be physi-
cally realizable, as is the case for the . -•
sin(x)/x frequency distortion. However, we can o A
make a good approximation to this filter and
still enhance the shadow images. An approxima-
tion to the inverse filter for sin(x)/x is
shown in Figure 3-b. Figure 4 shows the actual ,
photographic filter used in our experiments. • '
No phase shift compensation is included in the
filter and the transmission range extends over -l -;.
a physically realizable range of zero to 100%
instead of the idealized zero to infinite
transnission range. Figure 4 also shows two A1
exposures of the Fourier transform of a line-
source shadow image. The Ix/sin(x)l filter fb)
was designed to correct for this line-source :
distortion. Filter regions of 100% trans-
mission correspond to the severely attenuated
fiequency regions of the object.

FILTERD I[AGE

FI0M 5. (a) IS'A PHOTOGRAPN OF THE TEST PATIERVNAS IMA(ED BY
-~" AEXMEMELINE SOURCE'S... "'•"•-•"• " "•' "•:'- - .... M{bSHOW THIS TEST PAITERNAIrER SHARPENING NTHE'

- ~OPTICAL PROCESSOR -

jiuvlOO

"Walsh Filtering of Extended
"Source Shadow Images

The initial problem in digital enhancement
of shadow images is to evaluate the Walsh co--4 ,eff'cients [5,6] in the Walsh series representa-
tion of x/sin(x). These coefficients are relat-
ed to the thickness of plates containing Walsh
furction patterns which when assembled would
provide the attenuation proportional tn x/sin(x)
yielding the needed optical filter. The devel-
opment of sin(x)/x in a Walsh series offered

SII no difficulty. The results are indicated in
Figure 6 where increasing the number of terms

- "gives a closer approximation. However, the
function is discontinuous beyond the range of

FICIJE&.MWIMS I MEAMM•ITUKOFlFOUR~IElRt TNAM the Walsh fun-,tion definition, o I x < 1. Con-
MIM AYK B M IaN sequently, ax replaced x in the development,. ALUNESOURCL. (0 SHO THE AAULmtTUK( OF THE I LTER

R- CTI•aI~r4OW TAT c being used to obtain the nee"ad orders. Even
though the program converged rapidly, Figure 7
shows that greater precision is needed for large
v,(>20) for convergence when x is near 1. Figure
7 also shows that the inclusion of higher

The filter approximating the idealized line sequency terms yields stability for greater
extended-source correction filter produced values of x.
improved image quality (Figure 5-b). Since
the filter was one-dimensional, edge sharpening The evaluation of x/sln(x) offered serious
appears only for vertical lines. As indicated, problems in that the function is not square
the greatest edge sharpening and contrast en- integrable. Anticipating this difficulty, a
hancement occurred at the higher spatial fre- series expansion was developed for the integral
quencies, which correspond to the highly atten- of x/sin(x) using Cauchy principle values when
uated frequen'les of sin(x)/x. Note that a the limits spanned poles of the integrand. The
significant sharpening occurs in all vetical subsequent series was found to have two limit
lines. points. Using three iterations of Cesaro
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sumnability, we found poor convergence. This
difficulty was overcome by analytically extract-
ing the Cesaro summable part and substituting -
its limit. Additional speed in summation was
had by extracting another summable niece and - -
substituting its limit. The remaining series
converged inversely with the fourth power
of the summation index. The resulting series
representation of ax/sin(ax) is illustrated in
Figure 8 for a = 10. Figure 9 shows ax/sin(ax)
for a = 20. Note that the type of instability 0
encountered ire sin(20x)/2ýx (Figure 7) does -

not occur.

0 0 1

FIGURE & WALSH SERIES EXPANSIONOF IOXISIN(IOXI

0

FIGURE 6. WALSH SERIES EXPANSION 0• SIN(IOX)IIOX "00

0

FIGR 6.FIG9. WWASH SERIESE XPANSO 01OE 2XISIN(OX,

modulate the light according to ctx/sin(cx)
M "which w4ll mimic the process used in optical

filtering. However, the construction of Walsh
masks is costly and appropriate for only one
filter. A more general treatment of the prob-
lem is needed. The development of algorithms

0which perform the counterpart of optical filter-
ing within the computer would allow flexibility
in the construction of filters for a wider

________ _ , class of image enhancement problems. Although
0 1 we have demonstrated the fitting to arbitrary

precision of a filter function with Walsh
FIGF- . WALSHFW.CIIFONEXPANSIONOFSIN(20M20X series, the limitations of this technique are

unknown. Further, Walsh transforms of con-
voluted images may not yield proiucts of the

-: Conclusions transforms of the images as does Fourier inte-
grals of convoluted images. A deeper investi-

The Walsh coefficients give the atenuation gation of these problems is essential to the
values needed for each Walsh pattern. The successful digital computation of filter func-
superposition of these patterns will then tions and computerized image enhancement.
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APPENDIX

Analytical development of Walsh series C. The partition of integrals of Walsh
Expansions function.

i.Theau ond t WThe integrals to be evaluated in (ii),
A. The evaluation ar and br the Walsh (iii), (v), and (vi) are of the form

series representation of
" A(s) k Xk~ (s)

ox arCal(rx) + bSal(r,x) (i)f g(x)dx, (vii)
r__ O s =o Xk(S)

where 0 < x I, a > O. where the {x (s)} are the x's for which the
Walsh functihn are discontinuous. This set of

Taking the product :f (i) with Cal(sx) x's is evaluated from the given sequency s in a
and integrating over x, sequence of arithmetic operations. The number

of values (+I or -1) the given function takes
1 S lns 0 . for 0 < x <1 is evaluated.

a5= ~ Cal (s,x)dx, s =0,1,2,.. (ii)fs 1foCa(sx'Oas f .2s + I for Cal Is,x)}

In (1i), use has been made of the orthog- k .2s for Sal(s,x) .(viii)
onality conditions for Walsh functions:

The Walsh function index is evaluated from k by
the following:f Cal(r,x)Cal(s,x)dx = 6 rs

0 1 Let k2  k -1;

Sal(r,x)Cal(s,x)dx - 0 II Let k2 -Y C12
1 where CijC{,O)

0 1=0
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III The Walsh function index is N where fXi+1 g(x)dx = G(Xj+l) - G'x+)1 if g~~dx G~xj,) ~x (vii) becomes:

N = 2 [k2/2] C12 C2i

f.21  jG(xj+,) -G(xj)j, X. 0 and xN l1l
= C + C 1~)2Z di2jj=
T-0 1=0

n I f - -G(O) +C2 ()+(x)+ (-I)NG(l)(ix)
In III, d1  otherwise j t i2

dyadic addition (f*). The non-zero d in the The function in (i) and (iii) is the Sin
evaluation of N have indices i which denote the integral. The values of G(x) are evaluated
Rademacher functions which are factors of the through the use of an infinite series expansion
Walsh function W (x) which corresponds to the of Sln(ax). Here,
given function hgving k constant values. The
value of each factor Rademacher function is
found with the following algorithm: Gv) v f Sin( ), dx_ k (ax)2k+l

Given the set of l's for which d 1  O 0, "a ax (2k+l)(2k+l)l

IV Let M = [2i+lx] where I ] denotes the
largest Integer contained in. (x)

fM is even Ri(x)=f I The function in (v) and (vi) is not defined.Vf is odd R(x) -J. The values of G(x) are determined through the
i d x following procedure:

The value of WN(x) is found from the product of
the values of the Ri(x) for which di 0 0. )x x Q__ (xi)

~~Sinctr -SinZ(i
However, we seek the set of x's at which Wj(x)
is discontinuous. These are evaluated by We can obtain a Mittag-Leffler expansion of
determining the maximum nunber of intervals the integrand in terms of its simple isolated
from the di 0 0. poles.

VI Let M - max(icd), thn WN(X) contais no .
more than 2M+l valSes. Z Wk cnaso

Sin=Z0,2. (xii)
These are XMj- /2 0,, 2M+, k$O

let , fJ = tij / 2 4+lJ, .'. i taken from where Ck lim (Z-k-r)Z/SinZ: (.l)kKf.

-the di Z-kn

j = 0,1,2,...., 21+l Suppose we seek a definite integral of (xii)
over an interval containing a pole:Ignoring the first entry in each set, the

surviving set of x 's are those elements of a < Z <u, a < z w < uii
; } which aaie an odd number of Let I u 4 dZ = akk dZ

occurrences for fixed i. k$O

D. Evaluation of the integrals.

The ewa uation of as or b proceeds with (-1)'k, u

the evaluation of the integrals in (ii), (iii), to a
(v) , and (vi). The appropriate coefficient may k=-=
be chosen for C and the appropriate function
for g(x) in (vi). Denoting
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+ Pi k, fu dZiaking out the second sum

-O a + _(.)'ir y G(v) **- -~ ~~)k. k(2av/kir) + 1!.~

+ 1im( lS'L r-f dZ +u dZ} *kir~l nj(1.cv/kiw)/(1 + or,/kw)J + 2av/kirl}
t cy--1rkl 1 k

I ' _ k r u - T) -ln (a -ki i}' l12 i~ i }
0 -~k nln(l - csv/kff)/(l + ctv'k-i)I + a/

The first series has partial sum
+ kk~r n{l,0,l,-Olnl,..J. The nth Cesaro sum

Wn-0ra) Gn (n/2)/n + 1/2 a., n -'.Replacing the sum

k=9.t+

+ lm -) tkIT[l a' - -)by its Cesaro limit, G()M v

C-*O Y i- a /+~ ý(_l)k kilnjl (I- av/kir)/(1 + civlkw)I

Ri-" + C- + 2ov/k~r.(v

= (1k kitn - ij- 00) ik However. (xv) still converges like 1/k2 for

k-, k=0 large k andi is too slow fczr our purpose. We
may extract another teT, by the above method.

S3ince I has the fo~rm G(u) - Gla), we may choose This term is ? (av/kr)-/3.
to evaluate (xi) ds follows:'-41

W G~~~~(v) v + ,u '(1
k k

G(v) = Q (-1) kTilnjav - kinj (xiii)

$0 .ktlnl(l - av/kir)/(l + agv/kin)l

Equation (xiii) may be put in the form + 2cNv/kir + 2(ov/kir)3/3 - 2a/~)/j

ak)/l+aki)i¶(-I)k k2(ouv/kir)/+ .

G6(v) = L3(-I)kk Inu4-..k)( +a/kr

I k=l
(xiv) + i (1 kklnr

In (xiv) convergence is still slow. Using the a '~

series expansion +a/i)+2s/i (/kn

iniIl - x)I(l + x)I = -2 x' kl/(2k-1) The init~ial sum .'educes to

23
for I x Il as amodel, we may add and sub- 2 0, v ~(l)k~l Q~2_3/8 l ence
tract the term. 2cgWkir within thle sunwntion.

ir.) L c(1 k k(n: 1avk!( + czv/kin)I
G(v) v + +! \'/18)+

+ 2av/kir 2 av/kw1  Wu
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•kfln (I- av/ki)/(l + ov/kn) )

+ 2ov/kn + 2(av/kr)3/3}. (xv)

The sum converges as l/k4 and yields ade-
quate numerical performance.

Consequences of the foregoing expansions.

Consider the product

Sin x C (xvii)

for x, cg in 1 0ýx <1, a>0.

Let m z k+ x, then we can evaluate k - m 1 t.
Here, the symbol 2 refers to dvadic "differ-
ence: and is defined to yield the sets {m},(k), and fit)which obey the first eqt'ationr We

make usc of the relation W k(x)Wk(x) -W (x) andwrite {xvtt) equivalent to its reducedm
left hand side:

.V m(x) .C DP =lI ; x.= in I. (xvlii)

m.

Since the Walsh functions {W.(x)} form an
orthonormal basis on I,

c o otherwisej. (xix)

we may now use (xix) to evaluate the D given
the Ck, thus avoiding the series expanion
given in (xvi).
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A WIRED-IN RESISTOR CIRCUIT REALIZATION OF THE TWO-DIMENSIONAL
HADAMARD-TRANSFORMATION OF BROADBAND TELEVISION SIGNALS

UWE KRAUS

INSTITUT FOR TECHNISCHE ELEKTRONIK DER RWTH AACHEN, GERMANY

Introduction Experimental set for performing the two-

In recent years the transmission of dimensional Hadamard Transformation in

broadband TV-signals by PCM-system could sub-frames
be realized. In PCM-technique signal re-
generation without decrease of the S/N- Size of the sub-frames
ratio can easily be done. The disadvan-
tage is the great demand for frequency The size of the adjacent sub-frames was
band-width. fixed, so that on an average for a lot

Therefore, in many papers (1) sugges- of TV-pictures only a few correlation

tions have been discussed to reduce should exist between picture elements
TV-signal band-width. All these tech- lying on opposite edges.
niqubs try to decrease the bit-rate by
redundancy reduction and a suitable re- D
duction of irrelevant information. 11nu

The transformation method is one of '9 M I
these techniques. An orthogonal trans- fit) 0O 1 2 .....formation is appliad to the sampled pic- ., 1- I,ture elements. The coefficients are de- 0- ---- '. R v
correlated and represent the redundancy
reduced picture information. A reduction D: Detoy-line,T:l0,ls, M: Multiplier,
of irrelevant information is possible by 1: Integrator, RCIs, V. Voltmeter
spatial filtering. This can be done by Fig.I Block diagram of auto-carrelator
suppression of some coefficients and
quantization of the other. The picture By means of the experimentbl set shown
is reconstructed by transforming back in Fig. 1 the autocorrelation functions

into the original domain, of a lot of diapositives scanned in CCIR-
The transformation by means of the Ha- standard are measured. The set performs
damard matrix can easily be performed the function
because the elements of the matrix have r
only the values +1 and -1. The results 4xI) iim 1ft)-tit-t) dt (II
of computer simulations have shown that 7-2T0
a high data cnmpression can be achieved The delay-line is adjustable to steps of
especially by the use of the two-dimen- 0,1 us. The integration is carried out
sional Hadamard transformation, with a time-constant of 1 s, so the aver-

The matrix multiplication of the Hada- age value of many TV-frames is achieved.

mard transformation can be performed on Some of the measured functions are shown
a digital computer as well as by means in Fig. 2.
of an analogous technique using resis-tor and amplifier networks. This will , __now be discussed with respect to real

time operation of moving pictures in fu-
ture.

At first, an experimental set is descri- 22 2
bed that transforms TV-pictures scanned
in CCIR-standard in sub-frames into the
two-dimensional Hadamard domain and back
again. After this some considerations of• possibilities of realization of real ti-me operation are made.

Fig. 2 Measured auto-correlation functions of
TV-signals
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One can see that the rather different Fig. 4 shows the block diagram of the
looking curves still have a relative big whole set. An amplifier feeds the ana-
value at -c 0,5 ps. Therefore a sub- logous video signal of the picture source
frame size o! 8x8 picture elements was (e.g. a flying spot scanner) simultane-
provided. But because of costs a sub- ously in the inputs of 16 sample and
frame size of 4x4 picture elements was hold circuits. The logic circuit I de-
realized. rives 16 sequential triggerpulses from

the 12 MHz master clock and the synchro-
Principle of operation of the experimen- nizing pulses H and V. The trigger pul-

tai set ses open the sample and hold circuits
for a time of 0,08 Ms using the scheme

Scanning scheme shown in Fig. 3.

To perform the transformation it is ne- A matrix circuit HM transforms the sto-cessary that the samples of the sub- red signals into the Hadamard domain. A

frame to be transformed are all present second circuit of the same kind performs
at the same time. As the picture ele- the transformation back into the origi-
ments are scanned sequentially line by nal domain. Short samples of 0,08 ps du-
line, the elements belonging to one sub- ration are taken sequentially from the
frame are stored in sample and hold retransformed signals by means of an ana-
circuits, logue multiplexer and led to a TV-moni-

F,(x,y) F2(xy) F3 (xy) F Ixy) tor which is also synchronized by the

i -aw-b-c-d- * - -- pulses H and V.

2 -.-f-g-h ............... The logic circuit 11 controls the multi-
3 j-k-! - .- plexer in a way that the retransformed
4 -picture elements are written on the mo-

--- - ' nitor screen in the same succession as
*-* ; : :the original elements. The reproduced

*6 -- --.- - - - -•-.. sub-frame appears on the screen in the
7 .- . -original position. The rest of the screen

,-..I .-- I T--.-, ITis dark.

17 Storing and reproducing of one sub-frame
Sub-frame T-line takes a time of four TV-frames. All sub-

frames are processed in half an hour. As
Fig.3 Division of the TV-frame into the monitor screen is photographed du-

sub-frames ring this time the complete reconstruc-
Fig. 3 shows the partition of the TV- ted picture is stored on the film.
frame into sub-frames. During the first The spatial filtering can be done be-
lV-lina the picture elements a, b, c, d tween the matrix circuits by supression,
of the sub-frame F1 (x,y) are stored
each in one sample and hold circuit. Du- thresholding and quantization.
ring the next TV-line - this is the
third because of interlace system - the Realization of the matrix circuit:; : picture elements i, j, k, I are stored.
picuThe elements of the second and fourth To perform the transformation of the sub-line must be the seond sucsind fofrthe frame into the two dimensional Hadamardi•line must be stored on succession of the domain the matrix circuit has to realize
next frame. After having transformed the dqutin t itz
stored picture elements the elements of
sub-frame F2 (x,y) are stored and so on. [Ak(k,m)] [H(km)]JF(xyl)'IH(k,m)] (2)

The whole TV-picture is subdivided into with
168 sub-frames in horizontal 4nd 145 in A(k,m): matrix of coefficients
vertical direction. H(km): Hadamard matrix

Block diagrao of the set F x,y 3: matri of picture elements of
a sub-frame

in detail

f d

b' +

' The transformation is performed in two
steps.

tAt first the elements of the matrix (u~vi
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$ $aSJ a b c d * Possibilities for real time-operation
it i. - • -f , , Further considerations have led to con-

S|i j k lI" * " | " ceptions of transmission of moving TV-
m n o pJa L * - J pictures in the two-dimensional Hadamard

domain. But using the usual line by line
The transformation circuit shown in Fig. scanning scheme the samples of a sub-fra-
5 works with the principle of current me can be present at the same time not

addition. The signal voltages e.g. re- before the second TV-frame,as shown.
presenting the picture elements a, b, c,
d of the first row of the sub-frame con- FI~x~y) F2txy) F3(xy) FI(xy _

trol the current sources consisting of
the transistors T1, T3, TS, T7 and their
emitter resistors R. The coilector cur-
rents are added in another transistorT9 the collector voltage of which repro-

sents the coefficient Soo with negative
sign. The circuit is completed by the
transistors T2, T4, T6, T8, TIO, and
Tl1. The transistor pairs T1 T2, T3 T4,
TS T6, and T7 T8 represent differential
amplifiers fed by the common constant
current source T1l. The collector vol-
tage of TIO represents the coefficient Fig.6 Scanning scheme for refl-time

0Soo. operation

A signal voltage fed into the base of an This difficulty can be avoided by em-
even numbered transistor of a differen-
tial amplifier with the base of the odd ploying the modified scanning scheme of

numbered transistor is grounded makes a Fig. 6. Each sub-frame is scanned column
negative contribution to the sum. In by column. All sub-frames can be scannedn~g~ive ontibuton t th sum ]nwithin the time of;40 ms using the usual
this way the signal voltages can be va-
lued according to the sign of Hadamard electron beam velocity.
matrix elements. Fig. 7 illustrates the block diagram of

In the second step of transformation a transform apparatus working ir real
the equation (5) time. The picture source e.g. running an

electrostatically deflected idicon uses
[A(k,m)] = [Hk,m)I[S(u,v)] (5) the scanning scheme shown i- ig. 6. The

is carried out by the right part of the transformation circuit consists of two

circuit diagram shown in Fig. 5. The identical parts I and II working in pa-
crcuitdgra shon T n a . .their emitter rallel. Each part possesses an array of
transistos T12 to T27 and h16 sample and hold circuits, a transfor-resistors are current sources controlled mation circuit shown in Fig. 5, and aby the coefficient voltages +Soy or -Soy
according to the Hadamard coefficients, parallel-serial-converter. A synchron
apulse generator controls the set in or-Changes of signal polarity in the tran- -frames F1 (xmy),sistors T28 to T31 must be taken into0 der that e.g. the sub-fae I(~)

csF3 (x,y) F2nl(x,y) are processed
of these transistors represent the co- F2 thYcirit part I and the sub-frames
efficients Aom. part I I.
The whole transformation circuit is

built on four printed cards each of parti store I y) transmit (km)
which produces four column coefficients partl :tansm.Ajnk,m) store F2. (x, y)
of the matrix (A (km . As the trans- position
formation circuit consists of semicon- otritchS: I1
ductors and resistors only an integra-
ted technique realization seems to be The coefficients are transmitted in PCN-
possible. system.
Another four cards built and wired as Sub-frame transformation in real-time
described transform the coefficients can be carried out in digital technique
back into the original domain. iquation too (Fie c ). The picture source also(6) s ralizd.works wih the scanning scheme of Fig.6.

[F(x.,)] = -. H(km)][A(k,m) IN(k.,tn) 6) First of all the analogous video signal
N'" M: -" - is converted to straight PCf. The trans-

with N: order of matrix formation circuit consists of two Iden-
The gains of the matrix circuits are tical parts I and I1 again. A demulti-
adjusted so teat the reconstructed sig- plexer leads the code words of the first
nals have the same value of voltage sub-frame column'tb four adders 1 to 4
like the input signals. operating in parallel, the data of the
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second column to the adders 5 to 8 etc. Conclusion
The adders are porme nodrtasuccessive cre wogrdared in order that An experimental set was described thatsrctessiecordinwords are added or sub- transforms TV-pictures into the two-di-
tracted according tx the Hadamard ma- mensional Hadamard domain and vice ver-

thex a rsa. Compression ratio and picture qua-
The adders I to 16 nerform the fitst lity are similar to the results of com-
step, the one-dimensional transformation. puter simulations. Further more is was
The adders 17 to 12 constructed and pro- shown that real-time transmission of
grammed in the same way compute the two- TV-signals in the two-dimensional Hada-
dimensional Hadtmard coefficients. Rea- mard domain is possible by means of ana-
lization in TTL-technique seems to be logous as well as digital circuits. A
possible because in worst case an adder modified -anning scheme and CCIR stan-
must add a new code word every 0,1 Vs. dard can be used. Some problems e.g.

Controlled by the synchron pulse gene- dealing with interl3ce still must be

rator the circuit parts I and II work solved. Further technical and financial

together in the same way as shown in considerations must decide what sort of

Fig. 7. system will bo realized.

A real-time transmission of CCIR-stan-
dard scanned pictures in the two-dimen- References
sional Hadamard domain is possible if 1 Proc. IEEE, Vol. 55 No. 3 (March 1967)
the picture elements of four TV-lines 2. Harmuth, H.5.
are written into a store and red out Sequenzfilter mit zwei Raumvariablen
in such a sequence that picture elements und LCS-Filter
belonging to a sub-feame appear succes- Nachrichtentechnische Zeitschrift
sively at the store output. 23 Heft 8 August 1970, S. 377-383
Such a store can be realized by means 3. Pratt, W.K., Kane, J., Andrews, H.C.
of random access read/write memories. Hadamard Transform Image Coding
At first the video signal is analogue/ Proc. IEEE Vol. 57 No. 1 (Janbary 69)
digital converted. The code words of 4. Andrews, H.C.
four TV-lines are stored with a definite Computer Techniques In Image Proces-
succession of addresses. They are red sing
out with a different succession of ad- Academic Press 1970
dresses so that the code words of a 5. Landau, H.J., Slepian, D.
sub-frame appear successively. They can Some Computer Experiments in Picture
be processed in a digital transformation Processing for Bandwidth Reduction
circuit as shown in Fiq. 8. During the The Bell System Technical Journal
read out the picture elements of the Vol. 50 No. 5 May - June 1971

I next four TV-lines are stored in a se- 6. Viebahn, H.
cnnd digital store. Entwurf und Aufbau einer Apparatur

Another realization of such a scanning zur blockweisen Realisierung einer

Anotheme covrtea is possible. Consider zweidimensionalen Transformation von
scheme converter sseriell anfallenden Abtastdatena long digital shift register that sto- Oiplomarbeit DA 626/Ks am Institut
res all code words of four TV-lines. fUr Techntische Elektronik der RWTH
This shift register consists of sub re- Aachen, 1971
gisters in series arrangement with the
capacity to store the bits of one sub-
frame row. After the data of four TV-
lines have been red in, the shift re-
gister is reorganized by gates in order
that a new long shift register is formed
with the sub-registers of the sub-frames
in series arrangement. Liading out the
new shift register the code words leave
in the wanted succession.
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SLANT TRANSFORMS FOR IMAGE CODING*

William K. Pratt
Lloyd R. Welch

Wen-hsiung Chen
Department of Electrical Engineering

University of Southern California
Los Angeles. California

Introduction Shibata and Enomoto have introduced
orthogonal transforrn.tions containing a

In 1968 the concept of coding and trans- "slant" basis vector for data of vector lengths
.mitting the two dimensional Fourier transform of four and eight [6]. The slant vector is a
of an Image. computed by a fast compatational discrete sawtooth waveform decreasing in
algorithm, rather than the image itself.: was uniform steps over its length, and is suitable
introduced [1, 2]. This war followed shortly for efficiently representing gradual brightness
thereafter by the discovery that the Walsh- changes in an image line. Their work gives
Hadamard transform could be utilized in place no indication of a construction for larger.
of the Fourier transform with a considerable data vectors, nor exhibits the use of a far
decrease in computational requirements [3). computational algorithm. In order to achieve
Investigations then began into the application of a high degree of image coding compression
the Karhunen-Loeve [4] and the Haar [5] trans- with transform coding techniques, it is
forms for image coding. The Karhunen-Loeve necessary to perform the transformation in
transform provides minimum mean square er- two dimensions over block sizes of 16 x 16
ror coding performance but does not poseess a picture elements or greater [7. For large
fast computational algorithm. On the other block sizes, computation is ujually not feas-
hand the Haar transform has the attribute of an ible unless a fast algorithm is employed.
extremely efficient computational algorithm,
but results in r, relatively large coding error. With this background an investigation was
None of the transforms mentioned above, how- undertaken to develop an image coding slant
ever, has been expressly tailored to the char- transform matrix possessing the following
acteristics of an image. properties •

A desirable property for an Imag. coding 1. orthogonal set of basis vectors.
transform is that the transfortn compact the 2. constant basis vector.
image energy to as few of the transform do- 3. slant basis vectors.
main samples as possible. Qualitatively speak- 4. sequency property.
ing, a, high degree of energy compaction will 5. variable size transformation.
result if the basis vectors of the transform- 6. fast computational algorithm.
ation matrix "rescmble" typical horizontal or 7. high energy compacotion.
vertical lines of an image. If one examines the
lines of a typical monochrome image, it is The following sections describe the conctruc-
found that a large number of the lines are of tion of the slant transformation, matrix, pre-
nearly constant grey level over a considerable sent a fast computational algorithm for its
length. The Fourier, Hadamard, and Haar computation, discu.is its image coding per-
transforms possess a constant valued basis formance, and provide examples of its use
vector that provides an ufficient representation for coding monochrome and color images.
for constant grey lovel image lines, while the
Karhunep-Loeve transform has a nearly cons- Slant Transform Construction
tant basis vector suitable for this representa-
tion. An.•ther type of typical image line is the For a vector length of N = 2 the slant
line that linearly increases or decreases in transform is identical to the Hadamard trans-
brightness over the length. None of the data form of order 2. Thus,
transforms previously mentioned posseas a * 1 1
basis vector that efficiently represents such [s 2 ] = 1 [ 1)
image lines.

eThis work was supported by the Advanced Research Projects Agency of the Defense and was moni-
tored by the Air Force Eastern Test Rauge under Contract No. F08606-77-C-0008.
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The slant transform matrix for N = 4 can be
written as F:00 1 '2 070 01

+b a-b -a~b I 0 0 0 0 1 0 1 1

ES] I (2S4 1 - 1- 1 (2) 0s0407 0 0 o 0 1 1 o 1
L± -b -z-b a fb a b0 0 o 3 o0 0.I -

where a and b are real constante to be deter..
rained subject to the conditions that S4 must be

orthogonal and that the step size of the slant If S4 iq 3ost multiplied by a column data vector,

basis vector must be the sa-.e throughout its the first computational pass requires 4 addi-

length. The step size between the first two tions, the second pass requires 2 multiplica-

elemento of the slant vector is tions (the two elements 1/3) and the final pass
requires 4 multiplications including the norm-

(a+b) - (a-b) = 2b (3) alizing factor of 1/J1. The total computational
requirements are 8 adds and 6 multiples. For

and the step size between the second and third purposes of comparison a fourth order Hada-

eluments is mard transform requires 8 adds and 4 multi-

Z2b (4) ples. Figure 1 contains a flow chart of the
Hence (a-b) - (-a~b) -b ) computational operations for S4 .

Hence,

a = Zb 1ooo 1001

The slant mntrix of order four may then be 10 / -

reformed as

4 =1 3b b -b -3b (31LI -
[b -3h 3b -b

-. fco01  01-10 j- I-I-l f (
By the orthogonallty condition f(4)o -T C--S (4)

L3b b -b -3b] 7 [3b b .b 3 b]T I -

it is found that Figure 1. Slant transform of order 4-comou-it isfound thattatioral flowchart.

b a An extension of the slant matrix to its next

Thus, the slant matrix becomes size incremnt 8is given by

0 0 - 7]-0 I -$0 . .: .0 3

[S (6) Cell 00 1"00

4 7 1 -1 -1 A 2------

I -3 3 -I " " 1$ 0 ,, , 0 .

0 C. 0 0 0 J, •3 3 0 -It is easily shown that S4 is urthonormal. ( 7 --

Further note that S4 possesses *he sequency where a 8 and b8 are constants to be determin-

property; each row has an increasing number ed to satisfy the slant and sequency properties.

of sign reversals from 0 to 3. The fast comp- In S8 the slant vector is obtained by a simple

ut.tional pyoperty of S is apparent from the scaling operation o., 34. The remaining tetms

matrix decomposition in eq. (8) are introduced to obtain the sequen-

cy and orthogonality properties.

Equation (8) can be generalized to gi-ve
the slant matrix of order N in terms of the
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slant matrix of order NI/ by the following con- that many of the mid-sequency basis vectors
struction. are identical for the two transforms.

-- : SEOUENCYS0

.. .. .. ...-.. •i.... ..,•

I•,1I

where I represents a 2 l 2 identity matrix. To

ceeds as follows: The first row is a constant -J •_. 3

gonal to the first row. It must therefore be of
the form

S N(2, i) = x N(N+1-2i)

Now, by the recursion indicated in eq. (9), for .-
i :9N 6

SZN(2, i) = a2NSN(1, i) + 1 b NSN(., i)

or?
1 XN

X2 N(ZN+I-2i) a•.a2N +b ZN • (N+l-Zi)

From this one obtains I L i L i i
xx 2N b ZN __j L

X2N = N 3jZ ••21 j

and by induction a' 2b]I]1fl[flFU rF 0
2N • N N

Since SNPl, ) and SN(Z2 -) are orthogonal unit F1 1 11 1
vectors in N dimensions and SZN(2, ) is a unit
vector in 2N dimensions, the above recursion .2implies.J'_1

1 IISZN(2. )II = aN + bN

These two relations can bi used to obtain the 13

coefficients, (aN, bN) recursively:

a1 =1 14

bZN = /14N

a 2N =2b aN a'N

Figure 2 contains a superimposed plot of
the Walsh-Hadamard and Slant basis vectors Figure 2 Comparison of Walsh-Hadamard
for a vector length of .4ixtcen for the con- and Slant basis vectors of length
atruction of eq. (9). It is interesting to note 16.
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its'• • '•'__ slant t7ansform o t e b th r io .;

Slant Transform Properties the best energy compaction for the Markov
source.

Let [fl be a column data vector and [F]
its slant transform obtained by the operation l

IFl = [SNiS f] (10)

Consider [f] to be a sample of a vector ran-
dom process with known mean [f1 and with a
known covariance matrix

[Cf! = ([f] - UI)[f]* - [fl*) (1)

where the overbar indicates a statistical aver- b

age. The covariance matrix of the Slant trans- S.FOURIER
form [F1 is found to be [81 U. LNZ~ SLANT

[CF =[N[fsl
T  (1)*HADAMARD

Equation (12) can be considered a two dimen- 0.1

sional Slant transformation of the data covar-
iance matrix for purposes of computation.
Figure 3 contains a perspective view of the "".E-"'"

KARHUNEN-LOEVE-/-:

Cx•X 1 X21 (0.95) X XI l2

0.010 2 4 6 8 10 12 14

TRANSFORM DOMAIN VARIABLE,/i

Figure 4. Transform domain variance, vector
length :16, element correlation

Slant Transform Image Coding

Let [f(x, yl represent the brightness
_' "samples of an N by N element image. The two

dimensional Slant transform of the image is
given by

[F(u,v)J = [SNI[f(xy)][sNIT

Figure 3. Perspective view of Slant trans- In effect, the pre-multiplication of [f(x,y)] by
form covariance matrix-Markov [SNl performs a one dimensional slant trans-
process data vector, p = C. 95, form of each column of the imafe matrix, and
N = 256. the post-multiplication by [SN] performs a

one dimensional transform of the rows of the

Slant transform of a data vector of length N = image. Figure 5 contains a photograph of a
256 with a Markov process covariance of the Z56 by 256 element image with 64 grey levels

form and its two dimensional Slant transform.

[Cf] = plI xi'xj A bandwidth reduction can be obtained
with the Slant transform by efficiently quantiz-

where p is the correlation of adjacent ele- ing each transform domain sample. There
ments [f4 Figure 4 is a plot of the variance are two basic strategies for the quantizatioi
of the Slant transform samples as a function process - zonal and threshold quantization.
of sequency. The variance functions for the In the former, various zones are established
Walsh-Hadamard, Fourier, Haar, and Kar- in the transform domain, and each sample in
hunen-Loeve transforms are included for the zone is coded with the same number of
comparison. It is seen that the variance func- bits set proportional to the expected variance
tion for the Slant transform is reasonably of the samples within the zone. With thres-

close to the variance function of the Karhanen- hold quantization a threshold level is establish-
Loeve transform, which is known to provide ed and only those transform domain samples
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whose magnitude are greater than the threu-
hold are coded.

\ MAXIMUM VARIANCE
ZONAL rILTER
4:1 SAMPLE REDUCTION

4%

0

(a) U)Z2-

OURIER TRANSFORM

HAAR .RANSFORM

SHAIAMARD TRAI.SFOR

K-L TRANSFORM
(correl. ,)eff. - .95)

SLANT TRANSFORM

0 1 1 1 i-12x2 4x4 8&8 16xi6 32x32 6 2-84 256;256
S' " r VALUE 128xl28

(b) Figure 6. Mean square error performance
of image transforms as a function
of block size for low pass zonal

Figure 5. Slant transform of an image:(a) quantization.
original; (b) transform threshold
display. but the Slant transform results in only a

slightly greater error. Also to be noted :a
Figure 6 presents a statistical evaluation that the rate of decrease in mean squar- error

of the coding performance of the Walsh-Hada- for larger block sizes becomes quite s.-all
mard, Karhunen-Loeve, and Slant transforms after a block size of 32 by 32 elements.
Zor a form of zonal quantization in which the
transform domain samples in a zone are cod- Several computer simulations have been
ed with six bits per simple and samples out- performed to evaluate the Slant transform for
side the zone are discarded. ThL zone is de- image coding. Figure 7 showb image recou-
fined to contain the transform domain samples structiors for the Walsh-Hadamard, KIrhunen-
with the larges' expected variance, and is Loeve, and Slant transforms for zonal quanti-
adjusted to include 257 of the total number of zation employing eight zones and coding with
transform domain samples. Images coded an average of only 1. 5 bits per element. Sub-
with this system require an average coding of ject.vely, the Slant transform results in much
1. 5 bits per element. Figure 6 plots the less degradation than the Walsh-Hadaniard
mean square error resulting from this quanti- transform and only slightly more than the Kar-
zation process as a function of the size of the hunen-Loeve trar.sform. Similar experiments
image block transformed. From the figure it have been pertormed for color images, and it
is seen that the Karhunen-Loeve trans' rni has been found that a color image can be cod-
provides the minimum mean square error, ed with about 2. 0 bits per element with
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form.ncgligible degradation ue ing the Slant trans - Summary

A new orthogonal image transform with a
basis vector matched to gradual brightness
changes along image lines has been developed.

The transfcrm car be computed using a fast
computational algorithm, and requires only a
few more operations than the Walsh-Hadamard
transform. A statistical analysis indicates
that the Slant transform provides a smaller
mean square error for image coding than the
Walsh-Hadamard transform and a slightly
greater error than the Karhunen..Loeve trans-
form, The analytic image coding nerformance
predictions are verified by computer simula-

u tions of image coding processes for mono-
Schrome and color images.
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MODIFIED TRANSFORMS IN IMAGERY ANALYSIS
G. Graham Murray

Consultant
Data/Ware Development
La Jolla, Calif.92037

Introduction be entered as a series of lines into an
array of aUl-eemAconductor processors,

Since detailed apprehension of the where processing would occuz imoedia-
physical world depends critically upon tely. Almost at the conclusion of thbe
vision, it is not surprising that in- scan, the PET spectral components would
vestigators from many fields are cur- be available for manipulation either for
rently exploring image processing. Ap- compression or image enhaaoement. In
plications include radiography, earth contrast, were the regular 2-D MET of
resources data gathered by satellitps, the image to be formed, two scans of the
spectrum analyzers, reconnaissance pic- picture would be required -- one hori-
turee, facsimile, remotely piloted vehi- zontally and one vertically. Thus for
cles, and others. The objectives are an image with 1,000 horizontal and vort-
typically data compressior. or image en- ical elements, one million locations of
hancement. Use of the Walsh and Fourier storage are implied. In turn, this sug-
transforme is a promising new tool, but gests some type of bulk storage. innedi-
to date this has entailed either large- ately degrading overall speed.
scale digital computers or relatively
long processing times. Partitioning of the picturo has been

proposed (2, 3) as a method of ovarcom-
Sinc¢e the feasibility of these tech- ing the memory requirement. The image

niques has already been demonstrated, is broken up into a number of pieces of
there ia considerable emphasis upon ob- size perhaps 16x16 elements and the tran-
ttining practical implementations in the sform taken, An alternative described
form of low-cost, high-speed special (1) is to work with narrow strips of the
hardware. A previous paper (1) suggost- original picture extending from the left
ed that it was advantageous to apply 1-D border to the right border. This would
(one dimensional) transforms to imag•.s be consistent with conventional scanning
There are in existence special process- methods and also is more suitable for
ors which can form the 1-D Fas- Walsh some 1I-D processor designs, in particu-
and Fourier Transforms (FMT and FF¶T). lar the cascade. Justification for ap-
Furthermore, a 1-D transform processor plying the 1--D FPT follows from
affords a better fit with current image
scanning devices. Consider for instance T s Let f(i,j) represent the in-
TV sensing devices whieh provide a retd- tensity samples of an image with N i
out one line at a time. Ideally this elements in each dimension and M - N2 in
data would be entered into a FMT or FT all. Then the Walsh Transform (WT) can
processor as it is generated and pro- be calculated equivalently from
ceased on-line. F(uv) - HNf(i#J)HN or

In ordor to avoid the requirement for F(uv)* - H~f(i,)'.
extremely large memories, it is conveni-
ent to partition the picture. It will where Hi and H are Hadamard matricos
be shown that applying the 1-D FWT to and F(utv)' an• f(iJ)' are column vec-
each of the partitions is actually *qui- tors formed from the rows of the corres-
valent to taking the 2-D rT. In addi- ponding matrices and with the elements
tion this can be carried out in an adap- orders.' as shown in Fig. 7.
tive, iterstive wanner which provides in-
sig•'t into the mechanism of compression. D,
The extent to which this also artplies to Hadamard matrices and their use in the
the ?-T will be indicated. computation of the WT are dicussed in

(4). The Kronecken or direct product of
ne-DiMensional FX matrices can be illustrated as followas

Thcre are three motivations tor use of H .2

the 1-D FMT in ima~ery analys Is -
(1) Compatibility with existing pic- +:+1 +1 +1

ture scamnnirg equipment,
(2) Reduction in the amount. of high- +1 -i +1 -1

spied x.mory required, and H4 .i.1 -
(3) On-iLne procesesig of the image.

By means of the l-D FWT the imkg6 would
235
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whek H4 = H2 xH2 , the diract preduot. AIa&t"v Lm~e ItrtitionL10,

[4H +*Partitioning a given image into a set
4[2 "21of cmerfler squares in order~ to take the
L+HZ _! tresforA ir of Interest both because of

Procee4ing inductii'eY70 hardware sinplifioation and ereater com-
S+ "•, ÷ pzsion ratios (2,*), Although the em-

S+H4 -H14 +H4 -H4 forms, it ic Lnctructive to examine at
H16 -÷H +H4 +K4 4 -Hg first the use st cquare subr'gions . It

H4 -has beev claimed that this preceduro iL

'+R4 H4 - +H4in a owe*s adaptive, meaning that ObasyOL- regions are represented by wore spectral

An an Illustration of tho tlieoreat eon- coponente than rather simple regions.AS a ilustatin o th•%het'•l, on- In that folUowe it will be shown that it
aide*: the image is passible to use pmrtit esiug in a trul

• [•O~f~•'P~O•ly adative v• in the sense that the
FOO:Glf~ f ub es t p s e of the sub rogio nz in estab-

f 10 fll:'12fl31 liehed by the n•ontont, of the pic~hwe.

f 3 20 f f 3 1 f 322f23  
An rl ,ithm .an bo establishedsL30 313,! 31.hea it to not necesssary to choose in, ad-

Then the WT. can be computed either as Vhe .et exactes ofnthe hubregiTon.
Thne method invlse building the Mr up-

F(uv) NvHi J)%(4 •H or vard and outward. The i"arting point is

F~u HlEI(ii)'O [ k]-1  a-b- .

K-~~~~~~~~ ctro o d~ o bdwef týt ~~[M~b-c-d a-.b-c-
The method of pr.ooZ is by explicit wnich is the 4-point traesfori . Pr2-

correapondence between trz of ths t%* ceeding by inductioný consie~d -tow tho
reprceentations. Consider a Nigie te.M WT cf a partition measrtring MNU is ta
F(m~n) fom the motrix V(uv). In drdar be formeds
to evaluate it, firet ft',)y is form-
ed. Its nth oolumi can bp writtenPoo oi~o-+o? LJ ,2'L J

lO +f ll-fl2"'fl• But H2N =N*- so that the above Lw

w.r3 , has beeon chosen equal to 2. It j
is important to note that the sign pat- T first term of the ren matrix Is

oern is repetitive. If the operation is
now completed by the matrix multiplica- P'NjoHN4 +Yl1 N+ HNP2HN÷ H9 2H
tion by H in front, essentially the
mth row oý H is multiplied term by term with the other terms being similar except
with the abo~e column to yield (m = 1) for the sign pattern, which is one of

+I+!, +-+-, ++--, or +--+. Hence the al-
+(+fo0+f01-f02-fo,)-(flo+fll-fl2-fl3) gorithm can be stated that starting with

the transforms of NxN regions,
• 20 f21- 22-f 2 3 )3 0 3 1 f3 2 f 33POHN HNP' 1 N

Thus the term F(m,n) can be identified L.
as a collection of all the terms of the •Y 2HN HNP3,N
matrix f(i.J) grouped by rows. The sign the transform of the 2Nx2N region is car-
pattern before each rn w th tpat of wth ried out by combining corresponding termsth row of o and the sign pattern with- from the four quadrants exactly as in the;n each row ts that of the n -- above.
i.oting that H4 is symtric.

Next H f(i,3)' is to be evaluated, This procedure is illustrated in Fig.

and in pagicular its (m,n)th teru • i. Th¢ IFT mts calculated by first co -
Now if H is expressed as above as the bining elements eeaaatd a distance 1,
direct ptiduct of H with Itself, it is then a distance 2, then 4, etc. The ad-
immediately apparent that the sign pat- vantage of this torwAlation is that the

tern of the Lixm + nth row is exactly pmt~st corrolation is expected between
the same as that of %if(iJ)Xj This is adjacant olosentný A* the process contin-
sufficient to prove tte eiwzencs. l% ucs, more distant r~glonw are combina4.
should be remarkhc. that the theorem is But the provedurf can be holted when it

also valid for rectangular image*. no givs effective ooMroion.
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Sinco a is its amn inverse except for a

1 6 8 faotor of 2,
5~ 6 6 6 6 P .0 - 21.

7 I 6___ 5 tH e (Pc)% - cc n I.
11 20 9 8 7 55 Sinoo Hm is its ovm inverso except for
13 11 10 8 7 5 42the fac~o0 N, it follows that

Fig. la Original Piotura The affect of on a veoter can be
10l -2 '16 -2 a2- 2 2 illustritad for the casse r-
-4_0 O 0 Ol 0,,2,3r4 ,5, 6 ,7 becomes 0,22t 0 _ 2A sod plioation yields
F, Of-2. o0o 0 2 0 OPlo,,6,7- The serial implemonU-
38 2130 2 22 t16-2 t old be

-40- C 0 0 2 0 -j~F~!ITR---.
52 438 2 10_

.~~-4 0 12 0 0012 0
Fig.lb Mx W ___________

72 -4 -4 0 96 -4 -4 0 Fig.2 Serial M
12 0-4 0 4 0 -4 0
20 .-4 -8 0 4 -4 -8 0 AAS indicates an edder/subtraster, and
_0 0 0 0 0 0 0 0 the Shift Registers hold the eaMples.
58 12 22 0 72 12 20 0 The bite MinX up each sample can be
V1-I4 0 -2 0 -A0 , 0tored in p0slle SROs which are shifted

-22 -4-6 4 A.4-8 01 uimultaneoutsly. In nsteps with the data
V2 0 2 01 0 0 0 01 bming moved back and forth tho MW is

taken. 0nly the onnections for movingFig. l 4x4 M from the upper SR to the lower are shown.
, 9 8 1 6 3 4 0 6 2 0 2 0 1 0 t o -o l g
-18 0-14 0-34 0 2 0 A22lioa ton 0 me•3-1-6-30 0-50 0 2 0

-2 0 2 0 -2 0 2 0 Use of the 1-D FT n•aeyanalysis
-62-32-5•0 0-110 0 -2 0 will. now be br:!ofl~rdotsd Assum

2 0 -2 0 2 0 -2 0 the i=Ws asures 102%.1i024 ellments.
2 0 -2 0 2 0 -2 0It can ooe partitioned into stripe hori-
2 0 -2 0 2 0 -2 0 sontally measuring 1024x8, say. Assum-

.. .. ing 8-bit words and an WSI chip size oa-
Fig. ld W PV pablo of storing 4096 bite, 16 WLI chips

are required for each SR of Fig. 2. For
Sl 1ach section of the picturs, the FT is

taken and the spectral components ore
Based upon resmlts of M.C. Poise, manipulated either for purposes of data

Rushforth (5) proposed a 1-D factorize- compression or image enhancement. For
tion of the FWT which wee uvilized in the fo.'mer a threshold So esoablished so
(1) In an implemention. It will now that the weaker components are set equal
be shoen how this factorization can be to zero and the others run-length enood-
mdifi~d in analogy with the results of 4. For image enhancement certain me-the prooedig sec•tion to athieve build- quenoies are amplified and others atton-
ing the FWT outw4*d from adacont san- uated. See Fig. 3 for 8x8 iwege.
ples. Thic Is in contrast wih the nor-
mal method of computn1g the ?" where the U][ 1
first step involves ocoabining samples
separated by a distanne N/2. The purpose N NWUM M
once afain is to permit adaptive proced-
UrXes respect to subregion selectiont MO

Pease expr~ssed H1 as follows;

*N C(pCp-1)(ArC2) ... A-lC#P(n-) 9

where 0's effect upon a vector ia to re-
place successive pairs of components by
.,he sun and differenco respectively and
P is the perfect shuffle. PA for example
operating n• 0,i,2,3,4,5,6,7 Hyelds
0,4o1,5#296#3,7 As in shuffling cards.

It is desired to replace P by P. Pifg 3 Waleh Sequencies
This can be justified as follows# 237
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Working with the l-D PMT these rows relationchiv tt•ween dimensionality and
should be visualised placed one after an- ths formulations of the PMT. He explor-
other. Using the number of sign ohanges the equivalency of expressions of the
as equiwalent to sequency. the following form
sequencies can bo assigned the pSaterns Ap V aw and

0 15 16 31 32 7 863
1 l# 17 30 33 146 49 62 As wrltV'282
2 13 9 18 29 hs45 50 61 Au r r 2

12 19 28 35 51 60 If the variables with subscript 1 range
11U 20 27 36 #3 52 59 from 0 to ti-i and those with subscript10 21 2from tot 2 - wheret-tit and

9 8 2 5 38 41 57 tI and t 2 are relatively prime, tien the
7 8 23 2 39 40 55 expressions are equal. w, wit w2 are

Pig. 4 Sequenoies the corresponding principal roots of un-
After application of the PVT the so- ity.

quenciss occur in bit-revezsed orders In order to prove this relationship
32 16 465 R 47 U 63 Good made use of the Chinese resindcr
36 To- 52 143 27 59 theorem to establish the relationship
314 ]A 50 ] 1452 61 between s and the sb . In the two-dimen-
38 22 51 9 41 25 57 sional caae illustrated, r is given by

AL331 9-2 58 r - t2 r1 + tr 2 (mad t).

.2 3 12 1 Ji4 60Thus if t, - 3 and t• - 8, r is shown

Fig. 5 Bit-Reverced Order 0 1 2 3 14 5 6 7
08 36 12 15 18 21

The sequences uaderl in ig Fif- 5 Ir 8 11 1 n 1 i 23 2 5are those of the upper left quadrant of 2i 16 19 22 1b 7 10 13Fias 3 and i . These are the steplenais o
which are uiualea the etronge* A). The Pig. 6 Good Relattonship
reason for this can be seen from the al-

orithe defonetrated in Far. 1. if Two reasons for not usin t this fori-
thar Is eredisdncyon crelati re, then ulatton tan be given. The frle t iy the
ao in ei.e n to the ae nt on Iev- derpit th the samples are taken
to four interleaved ing.e which are and the second is that the voduli mustthereafter separately processed. But of be relatively prizae. In other words,
the four one tendse to be far stronger hardware considerations suggest that It
when there is strong correlation from is bettor to use the Cooley-Tukey form
one, element to the adjacent one. If ey- despite the *twiddle" factor that makes
ery other point of Fig. is is chosen and the 1-D and 2-D versions different. The

the PMT formed,, then after scaling the method of scanning samples then becomes
result is quite comparable to selecting
every other point of Fig. ld. Hence, in 0 1 2 3 14 5 6 ?
a very meaningful way# data compression 8 9 10 31 12 13 14 15
by threshold sampling the PMT is related 16 17 18 19 20 21 22 23
to redundancy reduction. The advan e 224 25 26 27 28 29 30 31
of the adaptive procedures recomended
"Mere is that they adjust to different a- Fig- 7 Proposed sca
mounts of redundancy automatically. Having made the decision to use the

I-D FFT, the question arises as to whe-
ther it will permit the ease flewdbility

The extent to which the above general- manipulation as the 2-D FPIT. In
hes to thenIt is wof nthert a Howeverai- particular, it is worth lookinf at dataises to the FFT in of interest. However o~rsin em hti • h

it is not true that the I-D and 2-D MOs compression. Assume that in P eg. ? she
are equivalent. Despite this it is still second, third, and fourth rws tre high-
propesed to use the 1-D MpT in working Iy correlated with the first, i.e. they
with amps for the reasons stated at the are almost Identical. The Jimplications

eginning of this report. Spaedal put- can be seen from the flow graph for the
pose hard e is much more effective l• corresponding to Decimation in Fre-
than general purpese computers in com- quenoy. During the first stege samples
puting the FPT. To date those special 0 and 16 will be added and subtracted,protessors have been desthned to take then 1 and 17, etc. This will set to
phessor h e i t sero half the spectral components. Dur-

ing the second stage, half the remainder
Interesting enough, there is a form will also be set to zere. Honce there

of the ?FT in which the l-D and 2-TD PIT results a 4&1 compression. Depending up-arthe equIvalent whis wor was carri 2on the correlation of samples along theout bquivaeont. This work p as out=Ltd first row. it is possible that addition-out by Good (697) who pointed out the al compression can be obtained.
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in a recent paper (8) the M ws corn- talent. Algorithms for partitioming
l-•ined with partitioning of the image in pictures adaptively for purposes of
order to achieve picture bandwidth con- data compression and image manipulation
pression. After som experimentation were described and illustrated. It
subregions of miss 16x16 were explored was possible to demonstrate the method
in further depth, and actual Computer 'y which threshold sampling of Mf2

-simalation ua conducted. For each sub- spectral components removes reoutdanoy
regicn the standard deviation, L. of from a picture. 4

the picture samples was computed to with-
in a constant and far that region the For the FnT it is nov true that the
nraber of Fourier upectral components 1-D and 2-D transform are the same when
selected was proportional to L. In this using the Cooley-Tukey algorithm. Al-
sense the procedure was adaptive. though they are identical in the Good

formulation of the FM, it was concluded
A problem identified with partition- that it would be better to utilise the

ing wa edge effects. Because the Four- former. From the flow chart for Decima-
ier transform is equivalent to a Fourier tion in Frequency it can be shown that
series expansion, differences in bright- the 1-D FMT applied to an i and fol-
ness between opposite edges act like a lowed by threshold "npling will 'result
discontinuity requiring a substantial in a good compression ratio. The. re-
number of spectral components to repre- lative efficiencies of l-D and 2-D FFT's
snt it. A possible solution proposed were briefly discussed, but it does not
wa to add ar extra row and column in seem possible to resolve this question
order to permit interpolation, but It without a careful simulation study.
was noted that this would not be consis-
tent with the FFT algorithm.

Although the use of a 1-D FiT wa i- (1) *urmy, G.G., Digital Walsh Filter
dentified in (8) an Permitting substan- 1 urY .. DgtlWlhFle
tiahadware simplifications, it was Design, Proceedings of the Symposium on
nial hardware aplfntions, ital the Applications of Walsh Fnmotions,noted that along an entire horisontalA-7 00*p.0-05Ari.11

Lbeo there would surely be a larger va- A(2)27 000, pp. lOJ-lOF , April, 1971
lue f L ths reuirng ore pecral (2) Clairo,N.J., Farber,S.M., Green$

lus of L. thus reoquseri more spectral R.R.. Practical Techniques for Transform
-omponents to represent it, as compared Data Comprossion/Imagoe Coding. ibid.
with arranging the same number of vam- 2-6
ples into a more square-shaped region. M3 Kenimdy J.D.0 Walsh Function 1mg-

Neverheless, the hardware consider&- ery Analysis, ibid, pp. 7-10
tions -erviously discussed make a strong (4) PrattoVK9 Kane AJ. reved,ew .
camp 'r the 1-D MiT. For example, with Hadamard Transform Img. Coding, Pro-

ryspe*. ; to edge effects, it would be () Rush oIth, C. D., M*,at Fourier-

•ossible to replace the right column of

the picture with an interpolated Column Hadamard Decoding of Orthogonal Codes,

whereas this cannot be done in the con- Informtion and Control, vol. 1.4,
ter of a picture. This step in itself •p. 33-37? July. 1969

could possibly co ensate for the dis- () Good, I.J.* The Interaction Algo-
ad-antae pofl w eoringwith a stfrip cod- rithi and Practical Fourier Analysis,padrantae of workine with a strip com- Journal of the Royal Statistical Soc.,
pae to.Vol.20,no.2, pp. 361-372. 1958

(7) 1 The Relationship Between
Two astlFouker Transformgo I= Trans.

to aon Computers, Vol. C-20, no.3.Hardware Simplifications Can be ob- on 310-31?7, March. 1971Stained through applying 1-D rather than APP.on G1-37 Saehp Huag#Te1
2-DFWI~Tt~niqu; I8) Anderson. •. B., ftaang, T.S...

2-DM a nd M technique s In io• mageryPiecewise Fourier Transformation for Pio-Sanalysis. The goal is to permit on- ture Bandwidth Compresion, I= Trans.
cessors. For the VT tho m-D method and nouniation Technol Vol.1 Ca-19.
linrhe i-g map t 1' spec iprip• 1l971
the 2-D method are shown to beo qui- n'2pp 33-&0A 1
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QUANTIZATION NOISE CONSIDERATIONS IN
WALSH TRANSFORM IMAGE PROCESSING

Guner S. Robinson
Member of Technical Staff

COMSAT Laboratories
Clarksburg, Md. 20734, USA

Introduction In this paper, the application of
*• Walsh transform processing has been

The use of conventional pulse-code investigated by using a flying spot
modulation techniques to transmit tele- scanner and a general-purpose computer.
vision signals requires a very wideband A full image frame of 512 x 512 elements
transmission medium. Therefore, new has been subdivided into 1024 16 x 16
bandwidth compression (or, equivalently, blocks, which are processed by the two-
bit-rate reduction) techniques have dimensional Walsh transformation. To
been explored for digital transmission minimize the mean-square error caused
of television signals. by quantization, the bit distribution in

the transform domain is made in accor-
Reduction of the bit rate required dance with the variances of the coeffici-

Sfor the transmission of a television ents, with the constraint that the total
Schannel is possible if the coefficients number of bits should not exceed a given
"obtained from a suitable orthogonal maximum. This maximum is determined by
transform of the television signal are considering PCM transmission of the same
properly coded. The advantage of using image. The error caused by intensity
an orthogonal transformation depends quantization has been computed by con-
on the suitability of the transformation paring the input and output intensity
for the representation of the signal and values for each line of the entire frame.
the simplicity of the implementation. For the Walsh transform the error caused
The overall performance can then be by quantization of the coefficients has
judged by using conventional PCM as a been computed by comparing the input
reference. and output intensity values over each

block of the entire frame. A reduction
With the development of high-speed in the quantizing noise has been verified

Sdigital computers, various transformations by using transform domain processing
have recently been explored by computer instead of spatial domain processing.
simulation for possible bit-rate reduc-
tion. The well-known Fourier transform, Applications of the two-dimensional
which can be computed very rapidly, is discrete rourier and Karhunen-Lobve
typical of the orthogonal transforms transformations have also been investiga-
which are being studied. Although the ted by using the same block size of N = 16
FFT algorithm i3 very efficient, its samples. The Karhunen-Loave transformation
implementation is not simple. However, is most effective in reducing the contours
the Fourier transform of an image can resulting from quantizing noise, but its
be practically zIetermined by using a implementation is most complex. The
coherent optical c' stem. Walbh-Hadamard transformation is the

simplest to implement and significantly
Another transformation which can be reduces the contours at low bit rates.

* computed very rapidly is the discrete
Walsh or Hadamard transformation which Two-Dimensional Discrete Walsh
does not require any multiplication Transformation
opet.tions. Alternatively, the tele-
vision b•_rnal may be considered as a Let f(x,y) represent a two-dimensional
random process and the eigenvectors square array of values obtained by
derived from the covariance matrix sampling the brightness of an image at
of the process may be used to represert N x N points. (The value used for N is
the signal. This transform is known % 16.) Assume that F(j,k) ic the two-
as the Karhunen-Loave transform. dimensional WaliTh-Hadamard transform

of f(X,y). Mathematically, such a two-
The application of linear transforma- dimensional'discrete Walsh transform

tion and block quantization to image pair is defined a&
bandwidth reduction problems has been 1 N-1 N-1
studied by several researchers. A F(j,k) = E £ f(x,y) wal(j,x) wal(k,y)
partial bibliography pertaining to Walsh- N x=0 y=0
Hadamard processing is given at the end
of this paper. J, k = 0, 1, . . ., N - 1 (1)
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N-i N-i
f(x,y) t Z F(j,k) wal(j,x) wal(k,y) of image in the Walsh domain, are quan-

J-0 k-0 tized _y using a certain bit distribution,
and the processed image is reconstructed

x - , i, . .. , N - 1 (2) as two consecutive one-dimensional trans-
forms, first in the k direction and then

where wal(j,x) and wal(k,y) represent the in the j direction.
one-dimensional Walsh functions in the x Quantization of the Walsh Coefficients
and y directions, and j and k are the
numbers of zero crossings of the Walsh Thresholding magnitudes of the coeffi-
functions in the x and y directions, cients in the transform domain makes
respectivelyd The coefficient correspon- bit-rate reduction possible. *That is,ding to j -k =0, che coefficient is transmitted if its

N-i N-1 energy is above the threshold and not

F(0,0) - r - f(x,y) transmitted if its energy is below the

N x-O y-0 threshold.

For high-quality image transmission

yieldA the average brightness of the N x every coefficient must be considered

N block and is identical to the zero in terms of its importance in image recon-

spatial frequency term in the two-dimen- struction. Since the amount of informa-

sional discrete Fourier domain. tion contained in each coefficient is
proportional to its energy, bit distri-

The application of the two-dimensional bution and hence allotment of the quan-
Walsh trwvsform can be visualized as a tization levels should be made in accor-

comparison of the brightness pattern of dance with the variances of the coeffi-

each 16 x 16 image block with the various cients. This procedure also minimizes

two-dimensional Walsh basis patterns the rms error at any given bit rate.L

for N - 16. Walsh basis patterns for The total quantizing noise caused by
N - 8 are shown in Figure 1. The coe-
fficient corresponding to the basis quantized transmission of the N x N
wal(l,x) wal(0,y) represents a comparison block of image is

of the brightness of the left and right N -1 a
halves of the N x N block. The coeffi- I i

ci~ent corresponding to the basis wal(O,x) N 2
wal(l,y) represents a comparison of the
brightness of the lower and upper halves where Ki is a constant depending on the
of the image block. Finally, the coeffi- quantizer structure used for quantizing
cient corresponding to the wal(14 - l,x). the ith coefficient, 09 is the variance

C wal(N - l,y) basis represents a =omparison of the ith coefficient, and ni is the
of the image block with an N x N checker- number of bits assigned to the ith

board design, as shown in the upper coefficient.
right corner of Figure 1. This coefficient,

I Bits are distributed in the transform

I, N) N-I N-i domain so that the total quantizing
F (-I)xy f(xy) noise given by equation (3) is minimized.

N x=0 yO0 The average number of bits,

is identical to the spatial folding 2
frequency term in two-dimensional dis- n Z-1 (4)
crete Fourier transform processing. N--y i-O

Since the transformation kernel,
is determined by considering PCM trans-

wal(j,x) wal(k,y) mission of the N x N block of image.

is separable, the transform can be In PCM transmission of an image,
applied =n two consecutive one-dimen- the spatial domain samples are quantized
sional transforms. Therefore, trans- by using M bits per sample. The total
formation coefficients of each block are number of bits required to transmit
computed by applying the one-dimensional an N x N block of frame is then
Walsh transform, first in the x direction
to every line, and then in the y direction B - N 2M (5)
to every colum! of the first transfor-
mation. If the Hadamard transform in
natural ordor is used in the x direction, Typical values chosen for M are seven,
the coefficients should be sequency- four, and two bits per sample; thus
ordered before it is applied in the y the total numbers of bits used for N -

direction. The resulting N x N coeffi- 16 are B - 1792, 1024, .'•nd 512, respec-
cients, which represent an N x N block tively. In order to evaluate the
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signal-to-quantization noise performance error caused by quantization of the
of orthogonal transform processing on the coefficients is computed by comparing the
same image, the coefficients are assigned input and output intensity values over
bits according to their variances and the each block of the entire frame. PCM is
constraint that the total numbers of bits used as a basis of comparison to compute
are 1792, 1024, and 512, resulting in the resulting reduction in the quantizing
averages of seven, four, and two bits per noise ratio, S/N . For the three cases
picture element, respectively, considered, the RINQ was reduced b7 7.9,

3.1 and 1.6 dB, respectively. It was
Ex'erimental Results observed that the choice of the quantizer

parameters is critical in obtaining a
A moonscape slide has been scanned high improvement in S/NQ.

by a flying spot scanner to produce an
array of L x L (L = 512) uniformly spaced In order to obtain the maximum signal-
samples of image brightness. Next, a to-quantizinq noise ratio, the
general-purpose computer has been used amplitude loading factor of the uniZorm
to perform spatial domain or transform quantizer in the transform dcmain should
domain processing on this array of data. be dependent on the number of bits assi-
Then, the processed image has been gned to the coefficients. If a? is the
reconstructed bf the flying spot scanner, variance of the ith coefficient, the

quantizer spread (defined as the distance
The moonscape image has been processed between minimum and maximum levels of the

by PCM at three different bit rates: quantizer) is given by
M = 7, 4, and 2 bits per sample. Figures
2a, 2b, and 2c are the resulting pictures QS ct Si (6)
fox each of these cases. Uniform quanti-
zing with a mid-riser hae been employed
in each case, since this prevents the loss where aj is the amplitude loading factor
of one quantizing step. The quantizing of the ith quantizer. Table 4 gives the
step size has been referenced to the S/N 0 improvement when a constant
full black-to-white range observed at amplitude loading factor is used for every
the flying spot scanner output. coefficient.

Walsh transformation processing has An alternative method of processirng
been accomplished on small N x N (N = 16) at an average rate of four bits per
blocks. Thus there are p = (512 x 512)/ sample was also investigated. This
(16 x 16) = 1024 such blocks. The Walsh method, which consisted of assigning new
transform of each block has been computed optimum values of ai (given in the
to obtain the coefficients which repr3- appendix) for each of the bit assign-
sent the image in the transform domain. ments, resulted in an S/NQ improvement
At the receiving side, the spatial domain of 4.1 dB, which is 1.0 dB higher than
samples are reconstructed from the the improvement obtained for a = 4.
quantized coefficients by using an inverse
transformation. Summary and Conclusions

Bit distribution in the Walsh domain Image processing using two-dimensional
is determined by coefficient variances discrete Walsh, Fourier, and Karhunen-
which are computed by ensemble averaging Lobve transformations is performed on
over the total number of blocks. Three a moonscape slide at bit rates averaging
different values are assigned to --i- 7, seven, four, and two bits per picture
4, and 2. The bit distributions for element. At all bit rates, a reduction
these three values are given in Tables 1, in the quantizing noise is verified
2, and 3, and the revulting images are by using transform domain processing
shown in Figures 3a, 3b, and 3c. The instead of spatial domain processing.
zero spatial sequency (or frequency) term, A very important property of transform
F(0,0), has the highest variance. Therefore, processing that is not revealed in S/N 0
it is assigned the highest number of improvement is the subjective effect of
quantization levels in order to prevent contouring. It is basically true of
the appearance of block structure in the all of the orthog-inal transformation
reconstructed image. The number of bits processing methods that at low bit rates
assigned to F(0,0) appears in the upper the effect of contouring is reduced
left corner of each table. For the three because each picture element in the
cases considered, the numbers of bits transformed image is a weighted average
assigned to F(0,0) are 14, 11, and 9 of N two-dimenaional orthogonal functions.
bits, respectively. Ap~.endix

In PCM processing, the error caused
by intensity quantization is computed by The range of a quantizer (referred to
comparing the input and output intensity as the quantizer spread) has been given
values for each line of the entire frame. by equation (6). If the ith Walsh
For the discrete Walsh transform, the transform coefficient is assigned Pi

bits, then the step size
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Qs Equations A-4. A-5, and A-6 are
E0 = used to compute N0io/ and the signal-0 2 ni to-quantizing noise ratio

of a uniform quantizer is

S2ca.o. (S/INQ)i 10 logl0.E0 = i . (A-i)
E 2 ni

for various ni- Figure A-I shows the
If there is a large number of steps (S/NQ) values versus pi for various

then the mean-square quantizing noise ni. -Te optimum ai, which maximizes the
error is one-tyelfth of the square of signal-to-quantizing noise ratio deter-
the step size. That is, mined from these curves, is given in

Table A-i.
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Table 2. Optimum Bit
Ditribution in Two-Dimen-
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Walsh-Hadamard Basis for N-8. 2 6 s s 4 4 312 2 2 3 1 3 3 2

Black areas represent +11N2 13 6 5 4 4 4 4 3 212 2 2 2 3 2 2,

and white areas represent 14 6 5 4 4 3 3 3 32 2 2 2 2 2
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Table 3. Optimum Bit Distri-
Table 1. Optimum Bit Vistri- bution in Two-Dimensional
bution in Two-Dimensional Walsh-Hadamard Domain.
Walsh-Hladamard Domain (average two bits per sample)
(average seven bits per
sample).
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SPATIAL SUBSAMPLING FOR THE TRANSFORM CODING OF IMAGES*

Clifford Readei
Univeirsity of -outhern California

Depa:-zment of Electrical Engineering
Los Angeles, California

Introduction

The implementation of orthogonal trans- squarec of interest.
formation over images composed of a large
array ot pixels is an arduous task. Earlier (i) 12 3 4 (ii) 1 2 3 4
wo,:k [1 ) has showt, that, if a degree of error 2 1 4 3 4 3 2 1
may be tolerated then the image may be 3 4 1 2 2 1 4 3
divided inco blocks each oi which may be 4 3 2 1 3 4 1 2

separately transformed. Typically for an
image of 256 x 256 pixels, blocks may be Application of these will of course lead to
,selced of siz.e 16 x 16 pixels. The problem four images, but the inter-element correla-
which arises is that for high orders of redun- tior, of each of those irnags v:ill be much
dancy reduction, the edges e the blocks ant; reduced. le basic scheme may be modified
the low sequency reconstructicn patterns by selecting the elements in sub-blocks of
become visible. The object of this study was m x m elements (m = 1, 2, 4, 8). This has
to minimize this spurious block pattern and the advantage that the inter-element correla-
checkering effect, tion will be high across the sub-block but

the edges of these sub-blocks will appear
Subsampling Patterns just as those of the larger blocks. An

investigation N..as made to determine the
The desired effect of blurring the edges statistics of the Latin squares and hence

of the blocks may be attained by spatialy choose those most likely to be of use.
sub-sampling the image prior t o dividing it
into the blocks. Preferably (from the stand- Latin Square Correlation Ad covariance
point of blurring the edges), this should be matrices
done in as random a way as possible. How-
ever, the redundancy reduction properties of The assumption was made that the image
the transform derive from exploitation of the may be modelled as a first order Markov
inter-element correlations and any sub- process with inter-element correlation:
sampling scheme is bound to reduce the
correlation between samples in the rearranged C.. P ri 4 j r integer.
array. Thus, there will be a trade-off 13

between the reduction of image quality due to

this effect and any improvement due to the For sub-sampling according to a 4 x 4
elimination of discrete errors. The pattern Latin square, the row correlation matrix
choser for evaluation was formed from a becomes:
Latin square.

A Latin square is an n x n array of the 1 4 p8 p12 . 6_
integers I to n such that each integer appears 448 "
once and only once in each row and column P 1 p p
of the array. The simplist non-trivial example p 8 P4 1 4
is the 2 x 2 Latin square:

•'60 .. . . 1

1 2 -- - -
21

To model the column correlation matrin
Repeated over a large array this is equivalent a further assumption must be made - that the

pethed oveeralare pat-terry Thus ths euivalen correlation be' tween elements of a different
to the checkerbuard pattern. Thus the image row and column is the multiple of the correla-
coulid be eeparated into two images according tions along the rows and down the columns

to the pattern and the 16 x 16 blocks selected btinween the samples. For sub-sampliumg

from the resultant arr..y. Two examples are between the Latin suare:

shown out of the 24 possible 4 x 4 Latin ac.)rding to the Latin square-

*This research was supported by the .'ýdvaaced Research Projects Agency of the Defense and was
monitored by the Air Force Eastern Test Range under Contract No. FO 8606-72-C-0008.
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lZ34
2143

3421
4312

the column correlation matrices of the samples X 4--VKUI

selected in the pattern of the "ones" is then:* S UtS

Z 5 5 4 9 1 *9

PI ... . 4&4 LATIN SQUARS

5 3 Z 5
J 2l2 LATIN SU;-PTS

Software was written to calculate these 0.15 LATIN SQUARE P

matrices, their tranrforms and hence the
variances of the transformed reordered sam-
ples. Estimations of m-an uquared error
made for various zonal filtering operations
on the Hadamard transform domain are
summarized in graph I.

Graph II. Estimated mean squared error
for various Latin squares.

The Latin square number (i) is the one with
least mean squared error, number (ii) the

8:1 SAMPLE REDUCTION one with greatest. This is apparent if

o0 diagonally adjacent elements are marked to

w •• 8:S LATIN SQUARE indicate high correlation:
4x4 LATIN SQUARE Nil)

04z4 LATIN S JAR E(5) (i) 1 2 3 4 (ii) 1 2 3 4
\ X X X

22LATIN SQUARE 2 1 4 3 4 3 2 1
X X

2 3 4 1 2143

4 3 2 1 3 412

n 0Even so, the difference in expected mean

2 4 e6 squared error appears small enough to leave
SUB-BLOCK SiZE

j freedom to choose the Latin square most
suited to reordering the data.

Graph I. Estimated mean squared error Experimental Results
i versus sub-block size.

u sResults were obtained for sub-sampling

As wculd be expected there is little according to the checkerboard pattern and the

difference between the different Latin squares two Latin square patterns (i) & (ii) for various

except for small sub-block sizes where the sub-block sizes. The transform domains

average inter-element correlation begins to were quantized by an optimised scheme to

decrease, it was found that a sub-block size give a bandwidth reduction of 8:1 for the

of 4 x 4 will give a moderately worsened Hadamard transforms; 12:I for the

mean square error, while for the 4 x 4 Latin Karhunen - Loeve transforms. The quanti-

square offering a suitably random pattern. zation -cheme used allocated bits to samples

Graph II shows the variation uf estimated in the transform domain according to the

mean squared error against the Latin square variances of those samples. Two bit alloc-

patterns for a sub-bloch size 4 x 4 and a 4:1 ation schemes are shown in Figure 1 which

sample reduction, illustrate the effect of spatial sub-sampling
! 249
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an the statistics of the transform domain. (a) Hadamard transform; mean squared

err,, = 0.161%
Figure 1. Bit allocatior schemes for trans-

form domain qiantization.

o P~ r' A P -A A tA 'A ;x '

2 -A C 4 QA tA , 'A '4 .4 rA x 'A

ex o CA p S 'A 0£40'0 'A 5AI -'

'> 0 .0 -A P 'A ' at U V1 V 01 9 eA (b) Karhunen-Loeve transform; mean squared

1 0 ?, A 0 0 0 2 0 0 2 •error = 0. 186%

The checking effect is pronounced and the
(a) Hadamard domain, no sub-sampling, block edgus are Visible over part of the

a 'a7R 3 3 3 P 9 2 2 2 2image which -was transformed with the

a A 1 0 N Karhunen-Loeve transform. Figure 3 sh,-ws

0 P MA 0 7 the results of checkerboard sub-sampling

4 A 4 4 6 9 7 '2 0 A A : 0 R wi',hthe Hadarnard transform.

9 7 v 2 0" 0 P * 0 0 Fiqure 3. Effect of checkerboard sub-
7 e A M 0 0 A• 0 9 P. M sampling.

0 'A V , 14 ' , 'A MA A MA q~ £4

(b) Hadamrrd domain, sub-sampling with
Latin square (i); sub-block size 4 x 4.

Sub-sampling inherently reduces sample corr-
elations and leads to a lesser degree of energy
compaction around the origin of the trans-
form domain.

(a) Hadamard transform, sub-block size
Figure Z (a) shows the result of band- 1 x 1; mean squared error 0. 28%

width raduction without spatial sub-sampling.

Figure 2. Images processed without sub-
sampling.

(b) Hadamard transform, sub-block size
8 x 8; meai. squared error 4. 1860/c.

/*



I
If the sub-block size is I x I - a single pixel-
then the image is degraded. This ie due to
the severe reduction of inter-element correl-
ation which the quantization scheme cannot
accummodate. However, for an 8 x 8 sub-
block size the discrete checking effect,
apparent in the image which was not sub-
sampled, has been reduced while overall
image clarity has diminished a little. Figure
3 (c) shows the effect of checkerboard sub-
sampling with the Kar.hunen-Loeve transform.

(b) Latin square (ii), sub-block size 8 x 8;
mean squared error 0.182%.

(z) Karhuren-Loeve transform, sub-block
size Z x 2; mean squared error = 0. 312%.

It was fouind that use of 8 x 8 sub-blocks
resulted in the visibility of those blocks and
for a 2 x 2 sub-block size the image is
noticeably degraded. This is a reflection (c) Latin sq'tre (ii), sub-block r __e 4 x 4;
of the ' ighly optimized nature of the trans- mean square esbor =.0 2081 4
form; any reduction of correlation in the mean squared error 0.208%
original image results in a poorer quality Similiar to the results for checkerboard sub-
output image. The effect of sub-sampling sampling. these results indicate the variation

" with Latin squares is shown in Figure 4. in the size of the checkering pattern for

Figure 4. Effect of 4 x 4 Latin square sub- different sub-sampling patterns.

sampling with the Hadamard Conclusion
transform.

There ic a modest improvement in sub-
jective image quality when spatial sub-

sampling is used hi conjunction with the
Hadamard transform owing to minimization
of the checkering effect. The v'vibility of
that nffect may be controlled by the choice
of sub-sampling pattern. Application of

sub-sampling schemes to the K•hunen-Loeve
transform coding of images leads only to a
reduction of image quality. Use of a large
sub-block size results in visibility of those
sub-blocks and use of a small sub-block size

%k .reduces the effective inter-elemcnt correla-
S(a) Latin square (i), sub-block size 8 x 8; tionsufficiently to Impair 1he efficiency of

mean squared error = 0.189% the transform. It is expected that there

for th! sub-optimum Fouzier and Slant
transforms.

"2"1
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GENERALIZED SAMPLING INTERPRETATION OF HADAMARD AND HAAR TRANSFORMS

Heinz H. Schreiber
Grumman Aerosr: orpor.lioU
Bethpage. New Yokt 11714

Introduction Its power density spectru# is assumed to be band-
limited in the sense that:i

The use of Hadamard and Haar transformations
in cignal processing applications such as image cod- R(T})4*8o) = 0 , I > WO (2)*
ing. '1J voice transmission, [2,s3 and data reduction,
C4,5) is discussed and analyzed in extant literature.Usually, in these analyses the original signal is The sampling theorem allows an expansion of i (t)
assumed to have been sampled and be in a vector using sin x/x basis functiono If the saplig
form suitable for transformation by computer pro- interval T is less than 1/w 0" This expa.eon con-
ceasing. Fast digital computers make it conceivable verges L6) uniformly in the mean-square sense:
to perform this generalized spectral analysis in real-time. However, additional insight Into this sigmal Na pr-I sinw0(t-nT) i 210( =T

processing may be obtained If the computer opera- liN E (t) - x(nT) w2 =0 (3)
tions are related to more familiar concepts such as n = -N

frequency filtering.
A block of N samples shall be denoted using

This paper relates linear transformations to vector notation:
generalized sampling [6) and shows that the computer
operations in Hadamard and Haar transformations X(t) = [x(t -(N-i) T) ... , x(t - T), x(t)] (4)
have an ec.-ivalent linear system interpretation. The
transformed quantities correspond to sample values A system for deriving this vector signal is shown in
of tne signal at the output of linear filters that have Figure 1. N delayed versions of x (t), each sampled
the amplitude and phase responses of Walsh filters once per NT secomds, are used to obtain the block
C.71 A generalized sampling expansion can be found of N samples. This sampling technique is usually
that uses these sample values in an expansion that assumed to precede any transformation processing.
refers the original signal to the output of an arbi-
trary linear filter.

Generalized Sampling Theory for Stochastic
Processes LA0

(N-I)T ~ O
It is well knoiwn that any bgpd-limited function

can be expressed in terms of ts sample values pro-
vided they are taken at a rate that exceeds twice the
bandwidth. Such a sampling expansion uses sin x/x D
basis functions, and converges in the mean-square ELAY xE(T)
sense for band-limited stochastic processes.

The band-limited deterministic signal is known
to have a generalized sampling expansion[6J. It may a(t) 0
use sample values as well as linear functionals of the
signal; as a result, the sampling interval can be in-
creased. It will be shown that this expansion con- e
verges in the mean-squarn sense for band-limited,
stationary stochastic processes by bounding the trun- x((N.1)T)
cation error.!

Sampling Theorem
SAMPLE AT
NT SEC _ILTLet x(t) be a real, wide-senae, stationary sto- INTERVALS

chastic process with autocorrelation function denoted I(r).W-Sia) -0, I> w0
by the expectation

Fig. 1 System for Providing a Vector Signal, X, With
R(") = E ( x(t + I) x(t)J (1) Elements That are Sample Values of the Proces X(t)

• Fourier transform pairs are denoted by a double headed areow (4-*).
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GWOneralie amW Theory

Consider the syastemh of Figure 2. 7Ui transfer iy')oa~i jT (7)

functions H(), . . ... %HN() are defin•d for n

I w I <0" Let Z(w) be the matrix of these transfer Th cfficients of this expansion, functia of the
functions with thenentrygivenbyHIn [w+ (n-l)cl, veiable r, have been shown to be the set of basis

where n, m = 1 .. ., N and c = 2ab/N. ff Z(4 Is functions for the generalized sampling expansion (5).

non-singular for - w < W <- 0 + c, then Ppoeulist6] Thir computation Is discussed In the next section.
0tor stochastic processes it will be shown that (5)

shows that the response of H(4 to a band-limited holds In the mean-square sense by establiehing
deterministic signal x(t), has a generalized sampl- bounds on the truncation error
Ing expansion In terms of the sampled values of the
responses of HI, .. ., H N (w) to x(t): M N

nd =T = N ( (8)
90t+ 7)' D IO,( + nM) am(r), n=-M 1=1

(5) Let x(t), defined by (1) and (2), be the input to
NT =Nl//o0  the systems of Figure 2. With hi(t)4-4*HI(tq the re-

sponses are stochastic processes given by the
convoh, ttons

g(t) = Xlt) * h(t) (9)
ZW H~ca)and

g()= x(t) * hi(t). i = 1, 2. . ... N (30)

Formal substitution into (5) yields the output g(t) in
terms of the sampled values gi(nT) of the responses

(t) o To show that (5) now converges In the mean-
HIM• .,.;t square sense, bounds will be estab~lshed on the trun-

cation error (8), which Is now also a stochastic

process. Viewing r as a constant, 0M(t + -'r) Is in-

terpreted as the output of a linear system with input
x(t) and transfer function

W(tI M N

T(w, -r) = H(w) eJWa Vr 7a ( W)H eiwnT
*• n=-M i (11)

0 The power spectrum of the truncation error is given

* by S(w)JT(w. T) P; therefore, the mean-square
truncation error is given by

HN() 9) 00

E [e2(t+ r')) = S(w)IT(w, 7)12 dw (12)
Fig. 2 Generalized Sampling Equivalent Systems "2 0

_W00

The basis functions used in this axpansion are deter- Substituting (6) into (11) yields
mined from H(w), HI(w), ... , and HN((w). For

Z(w) non-singular, a set of functions Is(w)I exists N

that allows an expansion of the transfer function: T(w, r ) H W) W1® an( e (13)

1=1 n-M

H(w)ewt =E H i(W)V()o.W.I< . 0 (6) The term in the bracket equals the error in approx-

I=1 =imting 0i1(w) by a truncated Fourier series. If the

The 0 (w) are periodic in w with period c, and are %Q(w) satisfy known conditions, it follows from the
I theory of Fourier series that T(w, r) approaches

fuxctions of r. They can be expanded in a Fourier 2
series zero as M -4; hence lim Ee(t + 7 )=0, M".
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It follows that (5) holds in the mean-square sense for The generalized sampling expansion (5) can be writ-

stationary stohbastic processes. ten as:

Comtation of the Reconstruction Functions o N

The functions used for reconstruction of g(t + 1r) g ) o -In)(t +nT) (21)

in (5) are the coefficients of the Fourier seris for n=-- 1=1
i(w); they are given by

Comment-0+

a( 0 -jnTw d (14) The importance of generalizr--d sampling theory
ni =• • lies in the simplicity of reconstruction, i.e., that a_0 set of functions [a 0i(r.)) can be found that allows a

sampling expansion which uses sample values that are
A matrix formalism will be given for the eolutioi of linear functionals of the original procesa. For H(w)=

the• a.(r"). The 0i(w) are determined by solving I the reconstructed process Is the original procvas,
M ~x(t). If the samplesE gi(nT) are qu-mtized, introducing

the system of equations quantization error q(T) into each sample used to

N construct the estimate of x(t), then the quantization

j(werror in the generalized sampling expansion takes the
-HI(w + kc) i(w) H(n+ kc) (15) form (21)

1=1 SN

fork=0, 1, ... N-1, and-t 0 <W<- 00 +c. e (t+ 1)= aoi(1--nTý)qi(t+nT) (22)

The matrix of transfer functions Z(w) has been de- n=-.. i=1
fined. Define a diagonal weighting matrix, W(w),
the ii entry of which is given by the filter transfer The ao') are obtained from (19) with W(w) the
ftnction, H(w), evaluated for - n0 + (i-1) c !9 T 'a
-n0 + ic: identity matrix.

0i- some cases, a more meaningful moeasure of
w= H(w + (i - 1) c) (16) error results if (22) is weighted, i.e., observed at

the output of a linear filter with impulse response
All off-diagonal terms are zero. h(t)4--*H(w) (Note H(w) is now Lot necessarily 1, as

Define column vectors of 0 (w) and exponentials by above). The weighted error is then given by the con-
volution eq (t + 7') * h(1r). This Is equivalent to having

C- = I1(04 . ... 0N!t (17) used the generalized sampling expansion to construt
h(t) * X (t), rather than X (t), with the samples

and g (nO). The functions a0 i(1r) now obtained from (19)

B(') = [1, e , . .. ej- will include the weighting of the diagonal matrix
Then(15 canbe olvd inmatix orm or w):W(w•), whose entries are obtained from H(w). If
Th en (15 ca besol ed n ma rixfo r fo •i •):he sam ples are quantized, the generalized sampl-

1ng expansion for the error again tkes the form

= ejWZ(w)W(w) B() (18) (22); however, this expression now refers the quan-
tization error to the output of the weighting filter.

Exp(jwr) is a common factor to each 0 i(). In Generalized SaMrplin Interpretation

addition, expojkcr) = exp (kc(T - nT)), because of Linear Transformaticns

01 Linear transformation of blocks of samples (4,)
Let the column vector of a 01(r) be defined by has an equivalent linear system and generalized

A (r) = (a0 (1Cr), .... A0W'r))t , then sanipling interpretation. That equivalence is pre-
sented and applied to Hadomard and Haar trans-

formationn.
-W +c

( r) ZI(.) W(.) ej'u ndw B(1r), (19) Linear Transformation of Blocks of SamplesA0(1, - c

J
-0 Let the block of N samples (4) of the process x(t)

be transformed by the N x N matrix 11 yielding the

and the vector of a 1(1) is given by vector

Y = HX (23)

A (T)=A (7-nT) (20) The elements of Y are given by
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N The system of Figure 3 represents a generalized
4 sampling system if the matrix of transfer functions,

Z(w), is non-singular. To show that H alone deter-'Iff=1 mines this condition, consider the matrix E(w)
defined as having for its am entry

w h e r e k 2 ,1 2 , . , N , a n d h k i a r e th e e le m e dse x ( J w + n - ) ) N m T 2 8
Fe itet=gb em p(-J(+ (nl)c)N-m)T) (28)of H. Equation (24.) has the following hutsrea-ting am

interpretation. Nf where a. mn = 1, 2, ... N. This Is the matrix of

N transfer functions that corresponds to conventional
block sairpling (Figure 1). 1. can be sLown that the

9 (t) •. h., x(t - NT + iT) (25) matrix E(w)/M• is unitary; hence, the determinant£k(t)
of E(w) cannot vanish. The inverse of E(w) is given

then by (11N) E*(to) (the asterisk blgnifies matrix adjoint).

Yk =• (T)(26) From (27) and (28), It can be seen that the

k =k (NT) (26) matrix of transfer functions Z(tu) is given by the

That is, Yk is the sample value, taken every NT product

seconds, of the response to x (t) of the filter with Z(w) = E(w) Ht (29)
transfer function

Its determinant is the product of the determinants of
N E(w) and H. The detcrminate of E(w) cannot vanish;

=W h. I-j (w (N-i)T (27) therefore, the non-singularity of Z(w) is deterLiined
-k ) i by H. If H is non-singular, a set of N functions

=1 a0 1 (1") can be found that allows a sampling expansion

A block diagram for this intorpretation is shown in (21) using the transformed samplesyk.

Figure 3. Each transfer function is the sum of. The functions used in the generalized sampling
weighted delays of X (t), and obviously has the period expansion (21) can be determined from (19) and (29):
2w 0; however, since X(t) is band limited, each Hk(w)

may be truncaitd for Iwi > W 0 . "- 0 c

A 0(7) = (Ht)"J E*(w) W(w) ej "' d- B(7)
o R - (30)

W(w) (see (16)) is independent of the transformation
H~IM} Zi H and of the IfI(w); It represents a filtering or

weighting applied to the signal. As a result, the
generalized sampling expansion (21) is the sampled
process referred to weighting filter output as dis-
cussed in the previous section. if the samples are

H2(w) Y2 quantized the weighted quantiz~ton error can be
obtained from the sampling expansion directly.

Y Application to Hadamard Transforw

XW:} •When the transformation in (23) it a 1ladamard
* •matrix, normalized so that each entry is + 111N, the

filter responses of (27) are those of Walsh :llters[71
• The transfer functions for N = 2, 4, and 8, are given

in Table 1 and sketched in Figures 4, 5, and 6.
W vFIgure 4 shows that processing with N = 2 Ia equiva-

N lent to low- and high-pass filtering of x(t). The filter
responses for N = 4 are sketched in Figure 5. In
addition to low- aud high-pass filtering, there is now
also some band-pass filtering. For N = 8, the filter
responses are shown iW Figure 6.

P LE Comprrison of Figures 4, 5, and 6 shows how the
NT SEC - band-pass characteristics of each equivalent filter
INTERVAL.S changes as the block sample size in tho processing is

increased. Each transformed variable still derIves
its energy from the total slgnal spectrura; hawever,

Fig. 3 Generalized Sampling Equivalent to the there appears to be increasing frequucy selection.
Linear Transformation Y-HX As a result, sequency filtering, i.e., settingyi = 0,
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0 00

N2(w~' J• 1IH41•j)I •

7

!H3Iw)I1

IH2() 1IHs(w) I

Fig. 4 Frequency Response of Walsh Filters for N-2.
These Have Been Cut-off at the Limit of the Process
(WO)

SEoUENCY )o

0 6

H7 h,

2

IH2(w) 1 3 181w) I I

0 00 Fig. v Frequency response of Walsh Filters for N-8

can cause a d!sproporticnate loss of energy in a
S1particular part of the signal apectrum.•, iH3 (wiI[

Equation (30) has been solved for Hadamard
OL WOtransform and no weighting, i.e., W(w) = 1N. The

Hadamard matrix is symmetric and orthogonal;

therefore, (H t)-I = H. It follows that the functions
(30) used in the generalized sampling expansion (21)
are linear combinations of the original sin x/x basis
functions:

" 144(w12 AOr) = H lin W0 1(7+ (N-1T)1/(-"- (N-I)T).,

sin w0 r/Wo•0 ] (t1)

Wo As a trivial example. (31) has been solved for

Fig. 5 Frequency Response Af Walsh Filters for N-4 N 2. X(t) bas the generalized sampling expansion
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ZO (2n. [sin w0 (t'2n"T) For n = 2, the Haar matrix is given by

[ 0 1 1 1 1 1 1 1

1 1 1 1 1 -1 -1 -1 -Ii
s1n O(t-(2An-1) T 1  12 f2 -/2 -v'2 0 0 0 0

W0 (t-(2f-l) T J F C 0 0 0 12 12 -/2 -V2

Y I(2nT) [sin W 0 (t-(2n-1) T) sin w 0(t- 2nT)1 2 -2 0 0 0 0 0 0l
L [W (t-(2n) T) - w0 (t-2nT) -j 0 0 2 -2 0 0 0 0

0 0 0 0 2 -2 0 i
which can be shown to be identical to the sampling 0 0 0 0 0 0 2 -
expansion. Thus, a new set of basis ftinctions has

been found mat consists of linear combinations of These transfer functions are again obtained using
the original sin Y/x basis. previous equations. The first two are the same ab

for Hadamard transform of order 8, sequency 0 and 1
Application to Haar Transform respectively.

An orthogonal sequence of functions, defined by H (w) = 2/2 cos wT/2 cos wT cos 2w T e -J(7wT/2)Htaar in 1909 is given by: 1I(7'2) =
H2((w) = 2/2 cos wT/2 cos wT sin 2wT e-J(7wT/2+V/2)

X ,(0)(0) 

2

0 These transfer functions are shown in Figures 6 and
2 k-1 < k-/27. The next two transfer functions are obtainedS2 n/2, ! from Hadamard of order 4, but with 0 and T both

2- n2increased by a Letor of 2 and each suitably delayed:

nk M--~ 2  n/ It~ W cs T/2 snnd -J(IlwT/2 + 17/2)
2
a16 2/, n ••k2 H3 (wl) = 2 cos uiT/2 sin ufT e-llT/

-J3 / + 9r/2)

0 all other 0 in [0, 1], H4 ((w) = 2 cos •1T/2 sin wT e-f 3 wT/2 + 77/2)

These transfer functionb are shown in Figure 5.
for 0 0 < 1, n z 0 and I - k :a 2. These functions The last four transfer functions (m =5, 6, 7, 8) are
are discussed by Nagy(81 and Andrews[91, The dis- obtained from Hadamard of order 2:
crete Haar functions are obtained by sampling con-
tinuous Haar functions and are used to write the Haar Hm(w) = 12 sin wT/2 e-j(W'1/2 + 2(8-m) w T + 17/2)
matrix. The Haar matrix for n = 0 3s the Hadamard H

matrix of order 2. Its equivalent filter transfer These tr.Lnsfer functions are shown in Figure 4.
functions are listed in Table I (under N = 2) and shown Figure 7 shows all the equivalent Haar filter he-

in Figure 4. quency respoi.ses for n = 2 and N = 8. There is
For n = I the Haar matrix ie considerable overlapping of the filter pass-bands.

1 1 .1 The Haar matrix as defined above has the prop-

t (n +1)
F1 -1 - erty F Ft =N1.0 where N=2 . For the

[ -/2 0 special case of no weighting, W(w) = 1N, the basis

0 /2 functions for the generalized sampling expansion (21)
are given by

The equivalent filter transfer functiona are obtained

using results for Hadamard filters of order 4 and 2. 1 t "

The first two filters (sequence of 0 and 1) are the A M Ft rin w0 (T + (N-i) T)/w (7" + (N-1) T),...,

same as those for Hadarnard transform of order 4.
The remaining filters correspord to the high-pass sin WO/w0r/
filter (suitably delayed) of the N = 2 Hadamard trans- 0

form. The transfer functions are:

Hl(w) = 2 cos wT/2 cos w T 2-3 3w T/2 
Conclusions

I "+ fh/2) te generalized sampling expansion was shown

H 2 (w) = 2 cos oT/2 sin wT e to converge in the mean-square sense. It was shown

S2 /2)that linear transformation of blocks of sampled data
H3 (w ) =/2 ain wT/2 e- 2 has an equivalent linear system and generalized

-j (wT/2 + 1r/2) sampling interpretation. If the transformed samples
H 4 (w ) /2AnT/2 e are quantized, the generalized unmpling expansion
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TABLE 1 HADAMARD FILTER TRANSFER FUNCTIONS

Sequency N = 2 N = 4 N = 8

/2 cos w T/2 2 cos w T/2 cos w T 2/2 cos wT/2 cos w T cos 2wT
9(w) = -w T/2 V(w) = -3w T/2 0(w) = -7wT/2

/2 sin w T/2 2 cos w T/2 sin wT 2/2 cos ur/2 cos wT sin 2wT
9(w) -(w T/2 + ff/2) O(w) = -3w T/2 - n/2 Y(w) = -7wT/2- -/2

2 sin wT/2 sin w T 2/ 2 cos wT/2 sin w T sin 2w T

2(w) = -3w T/2 - 0 O(w) = -7w T/2 + f

2 sin w T/2 cos wT 2/2 cos wT/2 sin wT cos 2w T

V(w) -3w T/2 - 1/2 O(w) = -7 Wr/2 - 17/2

2,/2 sin w T/2 sin wT cos 2wT

4(w) = -7wT/2 + i

2/2 sin wT/2 sin wT sin 2wT

5(w) = -7wT/2 + ff/2

2/2 sin wT/2 cos w T sin 2w T
6 O(w) = -7wT/2 + n

2./2 sin ±fr/2 cos wT cos 2w T
7(() =-7w T/2 + v/2
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WALSH FUNCTIONS AND THE SAMPLING PRINCIPLE

By

Mohammad Haqusi
Electrical Engineering Department

New Mexico State University
Las Cruces, Nev Mexico

ABSTRACT

W[f(x)] =F(z) - f(x) t•(z,x) dx (5)
This paper deals with the derivation of =

the sampling principle using the Walsh analysis 0

techniques. A result analogous Lo that Lsing And the inverse transform is subsequently given
Fourier analysis Is the consequence. Fitst a
generalization of Walsh functions and transforms by:
along with a summary of their useful properties -
is presented. Then a definition of a delta W- [F(z)] - f(x)- F(z) '(z,x) dz (6)
functioa to suit the Walsh analysis is estab-
lished. iinalI/, the derivation of the sampling 0

principle ULJ!Izing Walsh functions is treated. The parameter z is usually referred to as

I. GENERALIZED WALSH FUNCTIONS sequency and has units of zeros per second (zps)
as it denotes the average number of zero cros-

Assume that the non-negative real numbers sings of the function P(z,x) in a unit interval.

x and z have the dyadic representations: Properties of the Transform: Some useful prop-
erties -f the Walsh functions and transforms

x = • 2- 2-i are stated briefly:x 2: xi, z I I i i
i -N (1). Orthonormality Principle: the Walsh

twhere xi and z E0o,1}. functions P(n,x) form a complete

Define the addition nd multaplnczron ®R orthonormal set with the property:
operations respectively by:

-- 2 I (n,!) '(s,x) dx = Wp(nDs,x) dx

u Z -N 0 0

Sf q~~, if x, + ,i is even ff ns(Koeersdta
: u = (2)

i , if xi + zi is odd 1,' if n s

S1 (7), 0, if n a

;i=-N The p•arameters n and 3 are integers.

Sif (2) Pars~val's Theorem: for two arbi-

K4ý.i Jý K crary functions f(x) and g(x), the

if' i3) 4oilowing relation holds:

3f() 
g(x) dx 11(z) G(z) dz (8)

The notation I denotes a sum ovet all pos- f d
K+Ji 0 0Ssib' K and J. K - -N,-N+l,...; J - N,-+1 ,... *;I'*re F(z) - Wtf(%)], and G(z) -such that the condition K+J-i is fulfilled.

Utilizing eefinitions (2) and (3), the general-
ized Walsh functions are defined as: 3). -.:ting Theorem: if f(xý ie Walsh-

S(z,x) - p(l,x xz), for all z > 0 (4) transforioed Into P(z), th'en the
dysdlcally-translated funncion

wý,!:e P(-,x) denctes the first Walsh function- f(xet)_a) is transformed ts:

Gene.a'ized Transfotm: A generalized Walsi Wjf(x-a)] -j (z,) ?(z. (9)

ttansform io definLd with the aid of the 1.(.c- (4). Convolhtion The-rem: if f(x) one
tions ý(z,x) for e function f(x) (f(x) is (4). onltion llh-convo()cd i
assumed to be square-integrable) as: g(x) ar. dyadicslly-corvolved, i.e.
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h(x) - f(x) ()g(x) (t0) ISf(t) 6(tD Ca) dt
or 0

CO

h(x) f f(t) g(t(D x) dt (11) C 00

0 j f(t)(J P(t,x) '(a,x) dx] dt (17a)
0 0

where the operator® denotes dyadic
convolution and is defined by (11); Interchanging the order of integration
then (i.e. iptegrating w.r. to t first) gives

H(z) F(z) G(z) (12) W 00

(5). Symmetry: from the definition of J 4,(a,x)[f f(t) '(t,x) dt] dx
the functions ,p(z,x) it follows that 0 0
the functions ý(z,x) are symmetric
in the sense that the parameters z
and x are completely interchangeable f a F'' d
in any relation involving Walsh func- V(x) Fx) x =
tions or transforms, i.e. 0

N(z,x) - (x,z) (13) From the theorm it is easily seen that

II. DEL"'. FUNCTION 00

A delta fur.etion is now defined for Walsh J 6(tL a) dt = 1 (18)
functions as: 0

Relations (17) and (18) ascribe an inter-
6(z) f w(z.x) dx (14) pretation to the delta functicn as it is used

0 in Fourier analysis.

i.e. the following transform pairs are obtained III. SAMPLING PRINCIPL%.

f(x) = I 4-- 6(z) (15a) heorem I: Assume tiat f(t) is a se-
quency bandlimtted signal, wish bandwidth 2B zps

F(z) 1i '-'- 6(x) (15b) in the sequency domain. If f(t) is sampled at
intervals of i/2B see., then it is posoible to

w'here the two-edged arrow denotes a compatible reconstruct f(t) from the knowledge of :hese
transform pair. samples.

The delta function as defined by (14) is Proof.. With f(t) restricted as in the
easily extended to the geneoral case of 6(z ® k) theorem, the following constraint Is obtained
by rewriting (14) as: F(k) = 0, for all K < 0 and K > 2B (19)

And F(k) can be extended to yield a periodic
6(zDk) - J z(zjk, x) dx function of period 2B. This periodic function

f can subsequently be expanded ia a Walsh series
as:

= (,,x) i(k,x) dx (16) F(k) 0 • A(n) ý(n,k), 0 < k < 2B (20)j n=0

0
where the expansion coefficients A(n) are eval-

The sampling property of this function is uated by,
iven in the following theorem. 2B

T~qprem I: If f(t) is continuous at a, A(n) F(k) -(nk) L& (21)then 2BI

f fkt) 6(t•a) dt - f(a) (17) Now, 2B
00

0 f(x) = F(k) lJ(k,x) dk (22)

Ptcof: Let f(t) and F(z) be a Walsh trans- 0
form pair. From (16) the lvft-hand side of (17)
can be written as Using the symmetr'c property of Walsh fur

tions, i.e.
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p(k,x) = I(x,k) Fine discussed a similar integral defined as

gives 2B x

f(x) = F(k) ý(x,k) dk /,23) J(mx) - I(m,t) dt, m=0,1,2 ....
0 0 (32a)

Evaluating f(x) at the sampling instants The result for a general index m is given
X = n/2B yields ty

2B J(m,x) -2- (n+2) [*(m',x)

,-2 - Fk') dk (24)

0 - 1 2 -r J( 2 n+r + m,x)] (32b)

or r-l
nf(X) - 2B A(n/2B) (25)

where f r m > l, m can be written as m 2
T- , it is ccticluded from (25) that the expan- +m ad 0 < m' <

, coefficients A(n) can be derived from the
va•.es of f((x) at the sampling instants x = 0,
1/23, 2/2B, 3/2B.... And, F(k) can be deter- B
mined uniquely by the values of the sampled D(k,B) = 6f " •C•,x)dx k Is real, (33)
ordin,,tes as follows:

Using the definition of generalized Walsh
oofunctions a

F(k) = X A(n) 9P(n,k), 0 < K < 2B (26a) as

n-0 0 (k,x)= (10 1x) O (x0 ,k) (34)

or
wnere k and x denote the greatest integers

F(k) f( n) V(n,k) (26b) 4n k andx respectively.
n0 2 2B

Thus,
Hence, knowledge of F(k) eniables the deteimina-

*B
tion of f(x) for all possible x, i.e. D(kB) = 0 (k 0X) (o0 (k x , (x0 ,k)dx (35)

2B Two cases concerning (15) are analyzed sep-
f(x) = J F(k) iP(k,x) dk (27a) arately.

0 1) B <1 .0

or 2B This yields

f(x) f( (- n,k)] ( (k,x) dk B ,k
f 2B ~ • 2b D(k,B) = f 01 (k 'c)dx
0 (27b)

which in terms of Fine's Integral is evaluated
Interchanging the order of integration and sum-

mation I., (27b) gives as

SD(k, B) =k 0 () (37)

f 1 (kn ff(x) () (n,k) '(k,x) dk 2) B > 1.0

0 (28)
In thi6 care the result of (35) is simplified

Let the integral in (28) be designated as: y dividing the (0,B) interval into !ntegc-al sub-

't,'-vals of unit length.
2B

'Jx Henn.e, in the (p,p+l) subinterval' l(m,B) = (n,k) ý(k,x) dk, m - n(E•x,

S(29) 0 =p P x < p+l (33)

Using the symmetric property of Walsh functions Thus B
as,0 P

•,(k,x) - )(x,k) (3,,) p=O -jP 0

yields +$ (B0  IOU r, (k, ,x)Jx) ;39W

I(m,E) - i i(.,k) i(x,k) dk - J ý(m,k) dk,

C 0 (31)
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n
x =R, whicn is the cunclu7ion of the samp-

n 2B
ling principle.

IV. CONCLUSION

The desired result of sampling principle
is manifested in (43). This result formulates
the principle in the x-domain, and a .,traspond-
ing result can be obtained in the sequency (z-)
domain by following onalogous steps of deriva-
tion.

The derivation of (43) for Walsh analysis
is secn to parallel :he derivation of sampling
principle In the cla'sical Fourier analy-'is.
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Introduction

The problem of sampling expansion in The set (*(k,x)) where
the case of continuous functions has been n-I
studied rece;.tly !11. But digital trans- '(k,x) r exp iyi A k (3)
mission, hign speed digital computer r=O
image processing and pattern recognition
techniques deal with large sets of finite is called the discrete Walsh-Paley func-
and discrete signals ' "tead of classical tions 121, and is identical with the
continuous and infini unctions. There- rows in the natural ordering of the
fore, it is desirable Lo review the above Hadamard matrix. The one-to-one corres-
problem in the case of discrete and oondence between u and k such that
finite functions. %al(u,x) - Ok,x) has been given in 131.

Section II studies some p..operties of The WF transform of a function f(x)truncated Walsh-Fourier (WF) finite se- and its inverse transform are defined
ries. Characteristics of partial sums and respectively as follows:
their transforms are pointed out. Ortho-
gonality of WF kernel is proved. Inter- F(u}) N"1 N-I
pretation of dyadic derivative is given x=u
in terms of Fdjer sum. In Section III,
the concepts of "M-sequency band-limited* N-1
signal, (MBL), and "M-sequency band-pass" f(x) = £ F(u) wal(u,x). (5)
signal, (MBP) are introduced. From these u=O
concepts, sampling expansion theorens are
shown. It is proved that a MBL or a ME? Truncated Walsh Finite Series
signal can be recovered only by M = 2m and F ; SIm
of their values, properly chosen. In
Section IV, various boupdisinvolving the Truncated Walsh Finite Series
MBL signals are estimated using the
technique based on maximt!m response of Let def.na the partial sum
linear dyadic system. P-i

f(W - E F(u) wal(u,x). (6)
Definitions and Notacions u=O

The functions to be considered in this Substituting Eq.4 into Eq.6, and in-
paper are defined on a domain Bn, the set verting the summation order lead to
of non negative intqgers less taan N - 2n, .- i p-I
where n in turn ir a positive integer. . (x) Z wal(u,jox)f(j), (7)
Each elemen*Z x of Bn has a unique oxpan- j=O u=O
sion

n-i Let the WF kernel be
x x2 (1) p-i

r=O d (xW = E wal(u,x). (8)

with n coefficients in (0,1i. uwO

The discrete Walsh-Kaczmarz fuictions Substituting Eq.8 into Eq.7
of order n 3re defined as in 121 -1 N-1

n-i = N Z dp(x•j)f(J)

wal(u,x) w exp vi [ 9 '•u *u_ _ l)x_)(2)

%her4 the operatorsG@and I derote dya±il = x) * f(x) (9)

addition, and u a 0. The variable u is where # enýotes the logical convolution.
used for denotifig the number of zero Eq,9 nroves that ? (n) is ýhe wighted
crossings iii the range 0 ( x < N. The avarage of f(x) wih the I rnalr.es
sequency of wallu,xý may be defined as weighting function.
integer part of the half cf u+l 121, but Consider now the case W-:ere p-M=2 M
in the paper the term sequoncy is nsed
instead of zero-crossing, if no otherwise It is esy to verify that
specified.
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d, R-1 It is incidently noted that similar
.4(x)= M 6 (x • r) (10) results for Hadamard transforms hava

r=0 been also obtained 141, using different

where R = NM- (10.a) approach.

and the discrete delta function 131 Orthogonality of the Walsh-Fourier
6 W = XO' 10b) kernel . .

x,0. (10.b) It is maintained that

The right handside of Eq. lC.b is the V Statement 2
Kronecker notation. Using Eq.9 and Eq.10, a.{fd(x +pR); p =0,l,..,M-lI and
a simple manipulation gives

=7 - fxb.{fd(xeq2R), dM(x q(2R-l) tq2R);![ •(X) = -1 Z fx N r) . (11) q = 0,1,..,M-!}

r=0

Now let are two uncomplete orthogonal sets.V

x = pRes (12) Proof It is first noted that the trans-
form of a WF kernel dm(x) is

where p=0,1,..,M-I and s-0,l,..,R-l -M-1
Using Eq.12, Eq.ll can be rearranged as Dm(u) (u 41 j)
follows j=0

M R-1 Z ER-l R-s Applying the Parseval's theorem
= Z. £ {f (pR es r)

p=0 s=0 r=0 6(xepR ts). N-1Z d. (x 9 pR) dM (x ýD qR)
Applying the invariance lemma 121, A-he xpq
last expression becomes

M-1 -l R-1 = N E D2 (u)wal(u,pR)wal(u,qR) ;
f M {(R-I fipR f, r)3 u=0

p=0 r=0I M-l
R-1 = N Z wal(u,pR) wal(u,qR); from Eq.8,

Z 6(x pR Os)1. (13) u=0
s=0 fMxis = N dM( (p 4) q) R) ; f rom Eq. 10,

Investigating Eq.13 shows that M W is
Lomposed of M trains of impulses, each NM for (peq)R=0,..,R-1, ie, p=q
of these trains is formed by R impulses fo, otherwise. (16)
of which the amplitudes are equal to the
mean of .R corresponding values of the Pence the statement 2a. is proven.
original signal f(x). The proof of the statement 2b. can be

It is easy to verify that the trans- obtained as a replica of the above nroof,
fozm of fMWx) can be obtained as then omitted.

M-1 F~jer Sum and Dyadic Derivative
FM(u) = F(u) E 6(u S j). (14)Sj =0 Let the Fdjer sum and the F~jer kernel

Frm j=0an q1 tisse ht be defined, respectively as the follows

From Eq.13 and Eq.14 it is seen that:S ta tem en t 1 -lxa t vqed f n d e p c i e y a h o l w
a Wx q- E f Wx, (17)

a. The set of M mutually exclusive and q p=l P
exhautive subsums

R-Il x q-i q
-1 K ( q E d (x). (18)

R E f(pR 0 r); p = 0,1,. ,M-1 q p=l P
r=0

and the set of M first components Substituting Eq.9 into Eq.17 results:

F(u) ; u = 0,1,..,M-1 a (x) - 1 N-I

form a M-Walsh-Fourier transforms pair. qj07 Kq(j ;x) fqj)

b. By duality, the set of M mutually (x9)
exclusive and exhautive subsums Kq(W) f(x). (19)

R-1 Thus, aq(x) equals the weighted average
R Z F~pR e r) ; p = 0,1,..,M-1 of f(x) with F6jer kernel as weight.

r=0
Furthermore, from Fqs 6 & 17, by a

and the set of M first values simple calculation
•jf(x) ; z = 0,1,..,M-I q-1

form a 1M-Walsh-Fourier transforms pair.V q u=(
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Let now q =N, Eq.20 can be written as -1 IM-1N-1 + P1=M-N-i 14 f (p2R9(2R-I))

Z uF(u)wal(u,x) =N f()- f (x)- . (21) p=0 dM(x(2R-.l)(p2R) (26)Vu=0
The left hand side of Eq.21 is the lo- Investigating Eqs.24,25&26 the fol-

gicil derivative of the second kind, lowing comments can be obtained.

ftll(x) as defined in 131. 'hen, Eq.25 is a general form of Eq.24. Ap-
V Statement 3 plications of Eq.25 could be useful in

signal multiplexing.
f1l}(x) = N(f(x)-aN(Y.)], (22) Using Eqs.24 and/or 25 the M sampling

points are equidistantly spaced on the
in words, at every point x - 0,1,.dN-v x-axis, while for Eq.26 the sets of M
the value of the logicas derivative of sampling points is divided into two
the second kind is equal to N times the groups, each of these groups is formed
error in the appro imation of f(x) by by IM sampling points regularly distri-
the F~jer sum aN(X). V buted on the x-axis. These different

Finally, combin!ng Eq.19 with q = N results are obvious in the light of
and Er- 12. and noting 131 Statement 2. The sampling points are il-

6 ) f~r) = (l) lustrated in Fig.1 with N=16 and M=4.
N6{l}(x) W (x) The proof of Statement 4 is based upon

lead to the following lemma.

K N(x) - N6(x) - (. (23) V Lemma
R-1 IM-1

Eq.23 expres3es the F~jer Kernel in terms Z wal(pM,x) = R Z 6(xGp2R) (27)
of delta function and its dyadic deriva- p=O p=O
tive.

Sampling Expa-sions +( 2R

~r-~+ R E 6(xO(2R-l)Qp2R).V
Let C n 2c and M a 2m and C, C+M < N p=0

and R be determined by Eq.10a. Proof of this lemma is given else-

V Definition 1 where 151.
A function f(x) is said M-sequency Proof of Statement 4. The following

band-limited signal, (MBL), if its WF proof uses the cornvolution technique.
transform F(u) is zero for u >, M. V Let consider the impulse train
V Definition 2 M-1

A function f(x) is said M-sequency h (x)= NR Z 6 (x 0 pR). (28)
band-pass signal, (MBP), if its WF trans- P.0

form F(u) is zero outside C 4 u < C+M. Its WF transform is
More specifically f(x) is said to be

* a narrow band-pass signal, if C >M M-1
* a wide band-pass signal, if C<M. H(u) = R E wal(pR,u). (29)

The value M is called sequency band- p0

width of f(x). C is the cutotf low Applying the above lemma, with x, M
sequency, C+M is the cutoff high replaced respectively by u, R,
sequency. V JR-1
Various Porms of Sampling Expansions for H (ul - N . 6 (u 4 p2M)HBU-9signals p=0

It is maintained that if f(x) is a MBL JR-I
signal then f(x) can be reconstructed + N E 6(uO(2M-l)Op2M). (30)
completely from its M values: p=O

V Statement 4 Let F(u) be the WF transform of an
-1 M-1 arbitrary MBL signal f(x). Consider the

f(x) = 1 E f(pR) d,(x 4k pR). (24)V logical convolution F(u)*d(u), with H(u)
p=O given by Eq.30:

V Statement 5 &R-I
M-1 F(u)OH(u) Z ?(uop2M)

f(x) = M- E f(pRea) d4(x~pRoa) (25)
p=0 JR-I

where a is an arbitrary integer in B. V + E F(uO(2.M-1)Op2M). (31)

V Statement 6 p
71i - Eq.31 is illust;:ated in Fig.2b for N-16

f(x)M-I I f(p2R) d.(xep2R) and M=4. Investigating Fig.2b suggests
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that to regain F(u) it is sufficient to Let define
multiply F(u)*H(u) by the function W(u)
shown in the Fig.2c: a(x) = f(x) wal(C,x) (39)

F(u) z {F(u) * H(u)).W(u). (32) or
f(x) 0 a(x) wal(C,x). (40)

Eq.32 can be obtained from Eq.31 by
noting that, for p=O and u=0,1..,H-1, the From Eq.38, it is easy to see that
second member of Eq.31 is exactly equal the WF transform of a(x) is
to F(u). M-1

The inverse transform of Eq.32 is A(u) - F(ueC) = E F(r+C)b(uir).
N-1 r=0

f(x) -lf(x).h(x)} (x). (33)a(x) is then a MBL signal. Applying

Substituting Eq.28 into Eq.33, and by Eq.24 to a(x), and using Eqs. 39 & 40 a
some manipulations simple calculation gives Eq.37, hence

f -M-1 Statement 7.

f(x) E f(pR) w(x OpR). (34) To derive a sampling expansion for a
p=O wide band-pass signal f(x) the following

definition is first introduced.From Eq.15, it is clear that
V Definition 3 The i-th signal of the

w(x) = dM(x). (35) set of S - MC-1 CBL signals associated
with f (x) is defined by

Hence Eq.24 is proved by substituting f(x) i f eained b(

Eq.35 into Eq.34. fi(x) = f(x)wal(iC,x) s dc(x), (41)

Proof of Statement 5. Proof of this i - 1,2,...,S. V

statement is straightforward by applying The set of CBL signals associated
Eq.24 to f(x * a) which is a MBL signal, with f(x) can be generated by the dyadic
and replacing xea by x in the sampling system shown in Fig.3.
expansion of f(x 0 a). it is maintained that

Proof of Statement 6. Proof of this V Statement 8 If f(x) is a wide band-
statement is very similar to that of p state ten
Statement 4. The only difference is to pass signal then
start with the following function instead S C-1
of Eq.28. f(x)2C Z E fi(pT)wal(iC,x)dc(x~pT)

IM-l i=l p=0 (42)

h(x) = NR Z {6(xGpR)+6(xO(2R-l)ep2R)} where T = NC- V
p=0

Proof For C < M, Eq.36 becomes
whose WF transform is

S C-1
R-1 F(u) = Z E F(rziC)6(ufrtiCI. (43)

H(u) =-N E 6(u e pM). i=1 r=0
P=O

Investigating Eq.43 shows that F(u) can
To seve space other details of calcu- be considered as the sum of S narrow

lation are omitted, band-pass signals ai(x) of bandwidth C.

Sampling Expansions for MBP Signals C-i

The WF transform of a MBP signal f(x) Ai(u) = Z F(reiC)S(ufreiC) (44)
of cutoff low sequency C is given by r=0

C+M-l where i I 1,2,..,S.
F(U) E£ .?(J) 6(u 0 J). (36) From Eqs.41 & 44 it is easy to see

J=C that the transform F (u) of the i-th CBL

It is maintained that signal associated wih f(x) satisfies

V Statement 7 If f(x) is a narrow band- Ai(u) = Fi(u q iC). (45)

pass signal then Substituting Eq.45 into Eq.43, then
S-1 M-1 taking the inverse transform givesS' ~~f(x) =M f (pR)d (x~pR) wal (C,x~pR).

P. (3) S
Sp=0 (37)V f(x) E f,(x) wal(iC,x). (46)

Proof ixl

If C H M then J-C = JVC for Applying Eq.24 for each CBL signal
J=C,..,C+M-I . Thus E-.36 becomes fi(x), and replacing the results into

'14-1 Eq.46 give Eq.42. Hence Stntement 8.

F(u) E F(rOC) 6 (u er eC). (38)
rt*0
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Sampling Expansion for Some Specific C1
Spectrum SoSneeScf f (x) C- Z E fC l (p)(iCx)dH(xpXO)

In the at itatements it has been i* p
proved that .'(x) is MBL or MBP signal where
then f(x) can be regained from only M H
samples, properly chosen. Consider a f.(x) = f~x) j (iC,x) & d (x)
function f(x) whose Walsh spectrum has %

only M components, but it cannot be con- is the i-th signal in the set of S = MC- 1

sidered neither as a MBL nor as a MBP Hadanard CBL signals associated with
signal. The following q, .stion could be f(x). V
asked. 'ow one can regain this signal
from only H properly chosen samples?" Proofs of Statements 9-12 can be ob-
A partial but useful answer can be ob- tained by use the same techniques given
tained as follows in the case where the in the foregoing analysis, hence omitted.
Walsh spectrum has some specific patterns. it is interesting to note that the WF
It is known that there exits a one-to-one kernel can be considered as member of a
correspondance between Walsh and Hadamard set of interpolation operators, while
functions 131. Let define three new clas- the Hadamard kernel defined by Eq. 47 as
ses of signals whose Walsh spectrum member of a set of extrapolation opera-
components are "MBL or MBP" components tora.in the Hadamard eomain. Then this above
problem could be cc isidered as solved Various Bounds
for these new classes of signals, if Involving MBL Signals
sampling expansions using Hadanward func-
tions are known. Fig.4 illustrates this Bounds involving MBL signals can be
technique for a signal whose Waleh spec- estimated by using the concept of maximum
trum components are transformatle into response 161 of dyadic linear systems.
MBL components in Hadamard domain, for Applying the well-known Schwarz'inequal-
N- 16 and M - 4. ity, the following results are easy to

The above technique can be generalized be obtained.
to cover other specific signals whose Maximum response of Dyadic Linear Systems
Walsh spectrum is transformable into a Let f(x) be a MEL signal with bounded
MBL or MBP spectrum in other domains
(provided that there exists a one-to-one energy E:

mapping between these domains and Walsh N-1
domain). E - Z f 2 (x). (52)

In the following, the sampling expan- x-0
sions using Hadamard functions are con- If f(x) is the input to a dyadic line-
sidered. ar system defined by its response h(x) to

Let the Hadamard kernel be defined as: the impulse N6 (x) or by its system func-tion H(u) then the system output g(x) is
M-I upper boundedHd.(x) = F *(k,x). (47) M- 1k=0 Ig(x)I EN_ 1  h(2 N) (53)

It is claimed that: u=0

V Statement 9 This bound is attained at a predeter-

The set mined value x0 only if the input is givenas follows :

Id (x @ p) ; p = f 0 (x) = ah(x q x 0) dM(x).(

is uncomplete orthogonal one. 7 where the constant a is determined in
V Statement 10 If f(x) is a Hadamard such a way that the energy of f 0 (x) be
MBL signal then f(x) can be regained equal to E.
without error using its M first values. In the case where M = N

f x -1 M-1 H 1(n=a-1if0N+X(5
f(x) = M Z f(p) dý(xep). (48)V 0(x) = (x 4 x0 ) (55)

V1s is called dyadic matched filter for f 0 (x).VStatement 11 12 uix) is a Hadamard

narrow band-pas signal with cutoff pare, Signal bound From Eq.53 it is easy to
meters C and C+M then thatEf? H(u) 1

f -) 1 M-1 4) If(x)I E EIR- . (56)
f(x) = M F f B)"

= dM(x+p)flC,x!p). (4) Dyadic Derivative Bound Applying Eq.23
V Statement 12 If f(x) is a Hadamard with H(u) - u gives
wide bandpass signal with cutoff para- f{l (M-l) (214-1I
meters C and CIM then I (x)1 I j-[E J ° (57)
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Functions, pp.260- 2 74, Washington D C.,

M-1 (1970)
fa(x) = M Z f(pR) dM(x S pR). 4.Mobarir,P.S. & Sarma,K.R., Prasada,B.,

p=0 "Amplitude bounds and Quantization Sche-'

The error in this approximation me in W~alsh-Fourier Domain", Proc. Walsh
Function Symposium 1971, pp. 142-150,

ea(X) =f(x) - fa(x) (58) Washington DC., (1971).

is called aliasing error. It has been 5.LeDinh,C.T., Le,P., Coulet,R., "Sampling
proved 151 that ea(x) is upper bounded Expansions in Discrete and Finite •F

Analysis", Research Report No.72 DTG-l,
lea(X) -< BEwal(M,x)-wal(M-l,x)j (59) Dept. of Electrical Engineering, Univer-

sity of Sherbrooke, Sherbrooke, Que.,

N-1 Canada.
where B = IF(u)l 6.Papoulis,A., "Limits on Band-limited

u=M Signals", IEEE Proc., pp.1677-1686,
It is incidently noted that for (October 1967).

Hadamard K•L signal approximation, the
Iresulted er'ror is similarMR

Ied(x)I < ap(Mx)-ll (60)

where B. = N-I j
k=M 0 4 8 12 15

Investigating Eq.59 (or Eq.60) shows
that the approximation of f(x) by fa(x)
is exact at IN points x such that
the expression in the absolute siln of
Eq.59 is zero. At the rema.ning N
points the error is upper bounded by 2B. I

Conclusion 0 7 8 15
Fig.I a-PERIODIC SAMPLING POINTS USING EO 24

The well-known concept of partial sum, b-SAMPLING POINTS USING EO. 26
Fourier kerne, Fjer sum and FFjer ker-(u)
nel in Fourier analysis, are generalized
into Walsh dcmain for investigating dis- LL _
crete and finite functions. The Fdjer sum ,.
in Walsh domain leads to an iaterpretation 1 2 3 IS
of the dyadic derivative of the second
kind. The WF kernel is proved to be use- F(u)eH(u)
ful in investigating of truncated Walsh
finite series. Its orthogonality proper-
ties yield various sampling expansions.
Using these sampling expansions MBL End _____ I__
MB; signals can le recovered without 0 34 7 8 1112 15
error using H properly chosen samples.
The introduction of the Fourier-Hadame-d iw(.)
kernel leads to similar results. Further-
more, it enlarges the class of signals that .,
can be recovered without error from its 0 2 3 Is
1M properly chosen samples to include those Fig 2 PROOF OF STATEMENT 4
for which the Hadamard spectrum is either o- ORIGINAL SPECTRUM
MDL or MBP components. Various bounds b-SPECTPUM OF SAMFLEO SIGNAL

a involving discrete and finite signals are c- SPECTRUM OF FILTERINGKERNEL
estimated. These bounds are useful in
signal processing and in approximating
a given signal by a MBL signal. 270
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FAST "IN PLACE" COMPUTATION OF THE DISCRETE

WALSH TRANSFORM IN SEQUEaCY ORDER

Gunter Berauer

Institut fUr Elektrische Nachrichtentechnik

der Technischen Hochschule Aachen
Aachen, West Germany

1. Introduction < k,u>

Walsh transforms have become a very YU(k) = (-1) (5)
imporxant instrument in science and with
technique during the recent years. Es- N-i
pecially in filter theory [1,8,9], pic- <k,u> = Z ki u (6)
ture processing (4] and pattern recog- i=O
nition [10] it's application increased k = (k. k) (7)
rapidly. Sequency theory leads to a N-1kN-2 0 2
generalisation of filter concepts, and and
in signal processing the possibility of U U (8)
redundancy reduction by means of Walsh u N N-2 . 0 2
transforms is a main topic. are the binary representations of k and

Caused by the nigh data rates of u respectivel,,.
natural signals (as sreech or image The transform
sigjnals) computer aided methods must M-1
use fast and storage saving algorithms. D (u) = y yu(k)x(k) E A (9)
Fast "in place" algorithms to perform k=O
the Walsh transform in unordered form for all uE B.q, and for each xE A, may
are well known (5.61. But especially in be called Bunordered Walsh transform.

filter technique the order of sequency The basis functions YW are discfete

related to the Walsh coefficients is Wash functions.

important. Until now a fast "in place" Walsh functions.

algorithm to compute the Walsh coeffi- Let LN be a one-to-one function,
cients ii; order of sequency has not LN _ BN - BN, with the property, that
been published. In (11] Ulman even for u := LN(u) holds:
asserts, that such an in place algorithm
cannot exist, and oae has to spend atN for i = 0()
least 2-M storage locations for M input Ni UN_ 1 ; for iE {1,....
samples. On the contrary this paper N-i)
describes a fast in-place algorithm to
perform the ordezed discrete Walsh 0 denotes mod 2 addition.
transform using oaly a few more storage The Walsh coefficients D (u) of function
locations than input samples. x in order of sequency aSe computed by

means of
2. Discrete Walsh Transforms DX(u) = D xU) = D (L N(u))

Let ZI be tne set of complex numbers, M-1
and A be the set of discrete functions = Z y-(r)x(k) (11)
xE A with the following properties: kO u

x(k)E ZI for all kE BN := {O,...,M-l) The basis functions y- can be written

(1) in the form

M =2; N > 0; N integer; N < (2) ),>
M-i 12 y<(k = (-1) = walu (k) (12)JJXll Z= j x(k) (3)
k=O The eight discrete Walsh functions

SIn A the set walu(k) in sequency order with respect
to M = 8 are shown in figure 1. Equa-

E :- {yIu E BN) (4) tion (11) may be called W3lsh trans-

form a complete orthogonal set, if form in sequency order.
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yj(k) = u(W) (15)

wato (k) -k,u 6 BN

k D) LN(O) = 0 for all integer N _> 0 (16)

wall (k) - I E) There exists one and only one
l k- 0 + ko (N)E BN, with

wat 2 (k) - LN(ko(N)) - k (N) (17)
k if and only if

WJ13 (k) - | I _ N = 3s+l for all integer s > 0 , (18)

having the value
WQ•4 (k) I k ko() = 3r N-1 (19)

4. lworitskand IssoItin
"wal5 (k) The indices ko(N) and O(zero) shall beScalled "fix points" with respect to LN.

| | | k4. Fast Algorithms and Assorting
Problem

W1 (Past algorithms co compute the un-
Sk ordered Walsh coefficients "in place"

are well known [5,61. Having computed
the coefficients in unordered form,
they can be assorted into order of se-

Fig. 1: Discrete Walsh Functions in quency (decimation in sequency). On
Order of Sequency. N = 3, M =8. the other hand it is possible to assort

the input values x(k), k( BN in such a
_3. Special Propertes of the Function way, that the unordered transformL LN applied to this shuffled input sequence

yields coefficients in order of seyue,-
whichcy (decimation in time).,tThe following properties of LN, which c dcmto ntm)

Scan be proved easily, are helpful in the The assortment is simply done by use
later discussions. of a second memory field (Ox or R):
A) A) Decimation in Sequency

L N(u) BRN(U $ SRu)) (13) Following equation (1W) the assor-
BR ting algorithm is:

:D M --a D (LN MU) (20)
uEBN N

SR :shift ight one bit (left zero u E DxU-BN(LiU)(0
filled) u•B

S: bit per bit mod 2 addition B) Decimation in Time

u E 8v Inserting equation (15) into (11)
_ yields

B) Inverse function LN 1 (e:yed S(Def:M-1
k D (U) = Yu(LN(k))x(k) (21-

O =k=O
N-1 or M-l

Lroxu) R cu)) (14) D(u) Z y (kl)x(L 1(kl))
kl=O

bit per bit mod 2 summuation M-I=

r M- 1
SR shift right r bit (left zero = Z Y (k)Z(k) = DR(U) (22)

filled) k=O
.I E BN Hence the assorting algorithm is

C) Let u = LN(u) and k = LN(k) , then V : x(k) ---- x(LN(k)) (23)
k E BN
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5. "In Place" Solution of the x(7) ÷ Hi l "A
Assorting Problem. <H2> 6 7

Assorting "in place" is a problem, (Hi> - H2
* because in generalSStop: <H2> - 1

L2(k) := LN(+l(k)) + k (24)
That' whyIn the example N=-3 the whole input

That's why assrrting can't be done only field x is assorted in one "cycle" be-
by multiple exchanging of two input ginning and ending at an available
samples or coefficients (like "bit re- ginn and en taavlb
versal" assorting in FFT algorithms). k1 C B3 -{O1 (here: kt=1).

For N = 4 there exist two cycles:But with respect to the function LN,
defined in (10) or (13) a "subsequent"s (4)
"in place" assorting using two further I
memory locjtions (HI and H2) is possi- (4) 212'5'14'9'I1'7
ble. 2

Example: The total i ,put field is assorted by
running throut A both cycles starting atLet N = 3, M = 8 then: available entr" points klE F1 4 ) and

L3 (1)=4, L3 (4)=3, L3 (3)=2, L3 (2)=6, k2EFJ4 ). Beccz,-e 0 and 13 are fix
L3 L5, 3L(5)=7, L3Mpoints, x(C) and x(13) remain unchanged.L3(6)=5, L35)7 L3(7 Introducing fix points (index 0 and

or: perhaps one more fix point ko(N)) to
L131)=4 L23(1)-3' 7 be cyclos of length 1, these cycles

3 3 ' 3 form a partition of BN defined by the

Figure 2 shows the necessary cyclic function LN.
shuffling for decimation in time. A general formulation of this fact

is as follows-
For each N>i, integer, and M=2N

exists a set C(N)=[I,2 r(N)} and a
partition {F(N) iE c(N)} of BN with the

)--* • * * property:

k 25 6 7 3N)
k(1) u(i)E {1,...,M-1} kEF F

u(i)a) LU (k) = k and (25)
N

b) V V
u(i)+1 sE {1 ... u(i)-l}

Fig. 2: Assorting "In Place" in the : LN(k) + k (26)

Case N = 3
Starting the "in place" assorting at Now let G(N) = kiliE c(N).

index 1, decimation in time is per- kiE Fi(N)} be a set of entry points be-
formed by the following steps (<Hl>de- longing to the cycles FN). Deci.mation
notes "content of memory location with longing to then cyc es F e
symbolic address Hi"): in time is then performed by

Start: x(l) - H2 : x(ki) - P--•x(Lk(ki))--- ...

(4)> H' k:E G(N) H1,H2 H1,H2
<H2> 4 1

<Hi> H2 --- ( (ki)) = x(ki) , (27)

k H1,H2
x(L 3 (1)) - H- and decimation in sequency by

3Hi - 1H2
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D Dx(ki)----Dx (LN (ki))---- data field).

k.6 G(N) H1,H2 H1,H2 We also wrote a Walsh subroutine
1i using a second field into which the in-

x(L N (ki)) = Dx(ki) (28) put data is schuffled (no "in place"
H1,H2 method). This subroutine has a total

length of 1491 memory locations (ex-
6. Realization in a Computer Program cluding the tw8 data fields).

Until now we didn't find an explicit Therefore the "in place" algorithm
expression to compute a set of entry is memory saving for all N > 7.
points of the cycles for arbitrary The computation times of both sub-
choice of N. Therefore entry points for routines are nearly the same.
all 1 < N < 14 were computed in a se-
parate search program. References.

For N = 1,2,3,5,6,9,11,14 the number
of cycles is r(N) = 2, i.g. C(N) = {2), [I] Harmuth, H.F., "Sequenzfilter fdr

B -(N)= ( . Because Signale mit zwei Raumvariablen und LCS-
and N (N) Filter", Nachrichtentechn. Z. 23 (1970),

0 is a fix point only F(N) is of inte- No. 8, pp. 377-383.
rest. An arbitrary entry point J2 Ahmed, N., Bates, R.M., Rao, X.R.,
k E F(N) = BN-{O} can be chosen (we "Multidimensional Bifore Transform",
cAoseIK = 1. Electronic Letters Vol. 6, No. 8, 16th

For N = 4;7,8,10,12,13 is r(N) > 2. April 1970, pp. 237-238.

Table 1 shows the computed entry points [3] Ahmed, N., Rao, K.R., "Discrete
(except the fix point zero). Fourier and Hadamard Transforms", Elec-

tronic letters Vol. 6, No. 7, 2nd April
N 4 7 8 10 12 13 1970, pp. 221-224.

[4] Pratt, W.K., Kane, J., Andrews, H.
1 1 1 1 1 1 C., "Hadamard Transform Image Coding".
2 2 2 2 4 2 Proc. IEEE Vol. 57 (1969), No. 1, pp.

13 4 4 7 19 7 58-68.
(fix) 7 7 8 26 11

11 8 11 1585 13 [5] Shanks, J.L.,"Computation of the
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14 13 16 19 Trans.Comp. May 1969, pp. 457-459.
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(fix) 26 35 38
28 38 41 [7) Ahmed, N., Rao, K.R., Abdussattar,
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59 91 700 [8] Berauer, G., "Eine Methode zur Ana-
59 190 769 lyse und Synthese diskreter Walsh-Fil-
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117 877 7021 No. 11, pp. 569-571.
(fix) (fix) [9] Berauer, G., "Eine allgemeine Theo-

Table 1: Entry Points in the Case of rie diskreter Filter", AEU 25 (1971),
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INTRODUCTION where,( B(0)J [B(0)3 a land each of the (?mx
2') matrices [W(m)), m 1,2,.-.(n-1) is ortho-

The Walsh-Hadamard or BIFORE (BInary FOuier gonal.

L~presentation) transform and related spectra
[I] have found several applications in pattern SPECTRAL MODES OF THE WHT

recognition problems [2,1 ;3. Recently Ohnsbrg
[4] defined additional s.•- tral codes for the The shift matrixW rA(n)] in (3) yields the

Walsh-Hadamard transform (WHT) which could also familiar WHT power spectrum in a straightforward

find applications in pattern recognition problems. manner [l]. However, two additional modes, name-

These spectral modes are (i) the quadratic spectrum ly the WHT quadratic and optimum quadratic

and (ii) the optimum quadratic spectrum. However, spectra [5], have also been developed.

it is a laborious task to compute these spectra. (i) The WHT quadratic spectrum: This spectrum

Tc this end, the main objecl'"e of this paper is is defined as

to present efficent algo. .,. which enable Q0 = X02

rapid computation of the WHi quadratic and optimum
quadratic spectra. Qm,q = (Xk}m B(m-) {Xk m (5)

WALSH-HADAMARD TRANSFORM (WHT) 2m-l < k <2 m, OSq<2m- 2 , O<mln
where

Consider a real-valued N-periodic data {Xk) {X 1 X

sequence {x(n)} x{ x, x.... x , n=log N.

If the vector representation of "{xn)} is degot- In what follows, the WriT quadratic spectrum will

ed by {x(n)), then be referred to as the Q-spectrum. It can be
shown that [53 the Q-spectrumn is invariant to

{i1n)}'= XNNl} cyclic shift of the data sequence (x(n)).
For example, consider the case N=8. Then,

where {2(n)}' denotes the transpose of {x_(n)). (5) yields
The WHT of {x(n)) is defined as [l] Q0 = X0

2

1

{W0(n)} = C HI(n) {_x(n)) (1) Q -,O X 2

where {X(n))'= {X0 X .".. XNl I is the WHT vector, Q2 ,0  X22 + X32

an [H(n) is the (N)N) Hadamard matrix. Let
{(V W)(n} denote the sequence obtained by shift- Q3,0 = X2 + X5 + X62 + X7

ing {x(n)} by I positions to the left. 'That is, 2 2 2 _ X7
2  _ 2X4X7 +

{x( )(n))'= {x I +.. X,_,}, £ = 1,2,..N-l) (6)
2(X) V6 W (2)

If {{ .(n).' - X X I('} denotes the From (6) it follows that in general, (5) yields
WHT vector of {x(i)(n), then hPcan be shown a set of (N + 1) shift invariants each of which

that [1) is a quadr~tic form. Thus, as N increasesthe
storage requirements and computational time in-

{X(£)(n)} (A(n)) {X(n)) (3) creases rapidly. Consequently alternate methods

where 1 which allieviate both these problems are desir-
[A(n)] -- [H(n)] EM(n)] [H(n)], able. In this paper, three such methods are

presented and their performance is compared,

[A(n)3 1 is EA(n)] raised to the power L,
and (ii) The WHT optimum quadratic spectrum: Consi-

[M(n)] is the ( 2 nx 2n) identity matrig, whose der the case N=a. Then the WHT optimum
columns are shifted cyclically to the right by quadratic spectrum corresponding to (6) is

one place. given by E53,

The matrix CA(nW' is called the WHT "shift matrix" Jo = QO
since it relates the WHT of the shifted sequence
to that of the original sequence. It has a Jo Ql,O
"block diagonal" structure since it is of the
fore Q

[00]) [9(0)] (D [B(0)3 C EB(l)J ... E B(n-l)3,(4 ) 2,0
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L33,lJ ETlY Q3:0.l [2el k/2h(.'kP. -2 k/2 I
waere, IT(1)] fl 

k 0= 1 - with [D(o)) 1
or', X2 +262]XX

o 3,0 = X 4+ XX 6 The transform coefficients Fk, k = 0, 1,'-

J3,1 = X5 + X72+ X4X7 - XsX6" (7) .. ,(N-1)
in (9) can be computed rapidly as shown inshon i

From (7) it follows that the squared terms in Fig. 1 /for the case N=8.
J3 0 and 5, represent the individ01 sequencies X0  0

represent the group of sequencies 1 a3 3. In

general it can be shown that each Jm represents X
a single se-uency in its squared teri besides
being shift invariant. Henoe the name "Optimum"
quadratic spectrum. For convenienze, this spec-
trum will be referred to as the J-spectrumr. x 2

From (7) it is clear, that in general, the 2
c.omputation of the 3-spectrum is tedious,2
s ince it involves both the development and sub-
sequant invet'sion of the transformation matrix
[T(m)] whose order increases with N. The gener- x/
al procedure to develop ET(m)•, which is present- 3
ed in [5), requires the computation of poaers of
the submatrices [B(m)] in (4), which is a labor-
ious task. However, in this paper it is shown
that the J-spectrum can be rapidly computed x4 2/a
using an alternate approach. '_4

In what follows, methods to compute the
Q-spectrum and the J-spectrum are presented and 2/8
compared. In order to be brief, details pertain- x5
ing to the derivations of the related algorithms
are avoided.

COMPUTATION OF THE Q-SPECTRUMx

Three methods can be used to compute the Q-
spectrum.
Method I: From (3) and (4) it followa that (5) -/
can be witten as x7L A28oý

00 = XA" Fig. 1. Signal flow graph for the modified
Qm,q = {Xk) £Xkq) WlHT for N=8.

It can be shown that the Q-spectrum can be
2ml f k <2 m, 0 f q< 2m-2, 0< m . n expressed in terms of Fkt k = 0, 1, ... ,(N-l)

where as follows:
(Xk (q)}m = V( ,q X (q) (q) F

.'T-i 2m-l+l 2m.1  Q0 m
The Q-spectrum as defined in (8) do not raquire Qm, 0 r k 2 O<m•-n
that the matrices [B(m)) be stored, as is the case k12m'l Ik
in (5). Again, the {[xq))can be computed by 2m-l-q q-l
successively applying he fast Walsh-Hadmard I rkF - Z F F (
transform (FWIIT) q times to {x(n)) shif-ced cycll- q kzm q 2-l+j 2m+j-q o)
cally to the left, q times.
Method II: Consider tbt, modified BT or modified <k<2m, 0<q<.-R,_-
Mh? which is defined as (6]

1 The Q-spectrum as defired in (10) can be comput-{W(n)} jjD [0(n)] (i(n)}, (9) ed extremely rapidly since it involves success-
ive cyclic shifts, sign changes and dot products

where {x(n)) is the data sequence, and ( P(n)} which is best illustrated by an example. Coasider
is the transform vector such that, N=16. Then (10) yields,

0 0{F(n)) - ro F1 .  F.. ).i} Qo :

and [D(n)] ý.s defined k ecurrence relavion Q1 ,0  r 1
2
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F 2 2 where
2 32 2 2 A J A A A A

3 F F 5 +F 6  + F. (Q(r)) Q Q Q , 0 Q 2 , 1  Q,2nl
=Q0 4F5 F 6F withA 0

QF 4 F + F 56 F7 Q O = ' 10 = Q',OQ3,1 r F FT-F 4 -FTr4 r = 2-(m-l)/2n for 2-c~n,

5 6 7 7m. 4m

Q4,0 = F 2 + F92 + .. .+ Fis and I-.
2I

Q F8 r9 ....... F14 r1s { (n)} = {r0 r r N} 1 is the autocorre-

wlation vector hose elements are the cyclic
F9 F1  1 5-a autocorrelation cefintofthe data sequenm

14 {x(n)}. The transformation matrix (D(n)] is
E F -FF defined in (9).

k=8 FkFk+l 8 15 From (14) it is clear that the Q-spectrum
FFr F can be rapidly computed as follows:

F8 14 ... 5.Compute rk, k=0,1,*-., (N-1) using theQ4,2 FoF9 .- F. F fast Courier transform (FFT) technique.
10 11 2.Compute , as in (1u) using the modified
13 WHT defined in (9).
r - kF F - (F8Flu+ F F )

k=8 2 9 1.5 SUMMARY OF COMPUTATIONAL RESULTS FOR THE
Q-SPECTRUM

Q 4 F8 F9 ........ -FI3 F14, F15

Q, F9 lO.....F8 -9 -10 times to compute the Q-spectru using Methods

Q 12 I-Ill discussed above. An IBM 360/50 digital
= F F - (r8FI3 + F9FI 4 rF~o~) computer was used.

k = 8 k k + 39 1 4 0 1 5
WI) Execution time in minutes

Method III: Consider the following modification

of the Q.spectrum as defined in (5): N Method I Method II Method III
232 < 0.12 < 0.12 < 0.12

Q0 = 2 64 < 0.12 < 0.12 < 0.12S0 ]q128 0.18 c 0.12 < 0.12

Rm q = {Xk~m [B(m-1)] (k}m (12) 256 0.42 <0._2 0.18
512 I. 80 0.24 0.•36

2m-l,,k<2m , 0•.q<2m-1, O<mjno IL024 7.62 0-5_4 0.78

For example when N=8, (12) yields, Table I. CLaparison of the execution times for

Q = X02 computation of the Q-spectr'a.
Me0 E Fr Table I it follows that Method II is the
SX1 most efficient with respect to execution timeQIO = 12 2for the values of N considered. Memory re-

X22 + 2 qu~rements for the three methods are approximate-
Q2,0 2 X3 ly the same. Also, Methods II which uses the

Q21=0 modified WHlT has an additional advantage over
Q 2Method III in that it requires only real number

Q2,2 = "Q2,0 arithmetic.

Q3,a = X2 + X52 + X6 2 + X72 . COMPUTATION OF THE J-SPECTRUM

I {X 2 - + X2 _ X2 -2X X Froz (7) it follows that the J-spectrun is
Q3,1 2 4 5 8 7 4 obtained frco the Q-spectrum by means of a linea

+ 2X X transformation. The general form of the trans-
56 form is as follows (5]

Q 3,2 = o JO = QO
I J =Q

Q - Q 3 1 . (13) 1lOQ 1,0
3,3 Q * 8 2,0 Q2,0

Inspection of (13) shows that N=8 yielda 5 a(- 1 (5
+1) independent Q-spectiun points name.,y QO, 2 {js)q z [T(s-2)] {3slq (15)
S, Q2 , Q and Q which agiee With those s-2

In' 126).n' gegral, (121 yields (" + l) inde- 0 S q< 2 , 3 s n
2; pendent Q-spectrnn points which a4 idntical where

to those defined by C5). {Osfq = { Jo Js,2s-2-1}
The definition of the Q-spectr•m in (12)

yields the following WHT au-,corrlativu theorom: (9}q { QO,0 Qs, . Q9, 2 s-2_1}

(A. - j r D.) ( ")) (1i and [T(n-2)] is a ( 2 s-2 x 28-2) matrix whose
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q-th row is equal to the upper half diongonal of economical feasibility studies in pattern re-
the (B(s-l ]q where EB(s-1)] is defined in (4). cognition problems. The WilT or BIFORE power

Let [i(n)] denote a shifted version of spectrum [I] which is also a WHT spectral mode
(I(n)] with the all zeros in the first column, has already found several applications in the
such that general area of pattern recognition [2-41.
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k = 0, 1 ..... ,(n-3). (17)

The recurrence relation in (17) provides the key
to an efficient algorithm. For example, consider
N=32. Then the recurrence relation is used thrice
with s=3,4 and 5. As an illustratinn, the sequ-
ence of computations for s=5 are shown in Fig. 2.
Since [W(s-2)] is a (8x8) matrix when s=5, there
are 3 iterations. In general, for a given s,
36s.n there are log2(s-2) iterations. From Fig.
2 it follows that in general, the number of ari-
thmetic operations and storage location, re-
quired is proportional to N, as in the case with
the FWHT and the FFT. In this sense, the above
J-spectrum algorithm is optimum. The execution
times associated with this algorithm for various
values of N are siumarized in Table II. A 360/
50 ILM digital computer was used.

I N 132 164 1128 1256 512 1n02
rxecution tim <0.18 018 0.24 0.36 0.6 1.62

in minutes ,

Table 2. Execution time for computation of the
J-spectrum.

CONCLUSIONS

The methods presented in this paper for
computing the WHT quadratic and optimum quadratic
spectra can be used for the purposes of corducting
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Iteration 1 Iteration 2 Iteration 3

Q 50Y(o)--*Y(a)+2Y(4)-0 Y 1(0)-+Y1 (O)92Y1 (2)-0 Y(O)-4Y2 (0)+Y2 (i) xY 3 (0)-"EJ 5 ,0

Q5 2=Y(2)- Y(2)+2Y(Ri)-Y(6)=Y.1(2)--*Y1 (2)-2Y,(2)-0 =Y (2)--Y (2)+Y (3)= Y (2)-U. J
2 2 2 35,2

Q5,4=Y(4)-4Y(0)-2Y(4)-O=Y1(4) -4Y 1(4)+2Y.1(6)-0 Y2 (4)---Y (4 hY 2(5)=Y3 (4) .1/4 a+

Q7 Y(5)---.Y(3)-2Y(7)-Y(5)=Y1 (5) --*Y1(5)-2Y,(7)-Y.1(7VWY (5)--..Y (6)-y2 (6)=Y (5) i

Fig. 2 Signal flowgraph associated with (17) for s=5.
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ANALYSIS OF THE LOGICAL WALSH TrJ1SFOBM POR N 16

William A. Parkyn, Jr.
Gordon E. Cash

Mathematical Sciences Department
McDonnell Douglas Astronautics Company

Huntington Beach, Cala.fornia

Abstract

Searle's Logical Walsh Transform, presented in 1970, is invettigated in
detail for gequenceE of longer length than the 4-bit sequznces (N " 14)
considered by Searle. This transform is attractive f'r processing biniry
data because, unlike the conventional Walsh transform, a logizal transform
contains no more bits than the original signal. The original goal of the
investigation was the discovery of a fast Boolear. rlgorithm for this trans-
form which would require little intermediate storage. In searching for
properties of the transform on which such an algorithm might be baoed,
however, it was found that very simple properties ani relationships which
hold for N w 4 become messy and cccplex for sequences of longer largth. :n
fact, transform reversibility even breaks down for N > 16. A detailed enaly-
sis of the behavior and reasons for the breakdown is presentei, 2ncluding a
simple rule for determining the "singular points" of the transform.

Introduction Those bits {Xk) are dafined by the operation
of thresholding:

Searle (1970) introduced a "logical" Walsh I fN X A Xtransform, which eliminates redundancy result- Xk k1 if i4 , (1)

ing from the application of the conventional A (

Walsh trar3form to binary data. In the general k 0 if (k,i) Wk (x) <
case, if tho input data to the conventional
Walsh trensform have a dynamic range D, the where WAL (k,i) is the kth Walsh funntion in

transform coefficients that are the output data the Kronecker or periodicity (Parkyn, 1970)

have a dynamic range of ND, where N is the ordering, that of the fast Welsh transform

"length" of the transform (i.e., the number of algorithm. The convention that 0 in the Walsh

data points input to the trannform). Original transform is associated with the negative
data that are quantized to m bits wer data rather than the positive integers may ett first

point will require mN bits per data point for appear arbitraw7. Under the convention that

complete representation in the transform domain, the first bit of the sequence is 1, this asso-
ciation is necessary for transform invertibil-

Searle noted that if a binary data string ity. In fact, the transform is its own inverse

(m a 1) o! length N a 4 were input to the Walsh LWAL [LWAIL (x)] - LWAL (X) 0 x.
trausform, and if the first bit is 1, only the
sign bits of the transform output are necessary Searle sugested that the transform be extended

Furthermore, it turned out that these sign bits complementetion procedure. For 0 _ x ' 2 -1
need Dnly be input to the Walsn transform and dafine

the sign bits of the output data yere identical LWAI (x)
to the original binary data. Tha set of where X - LWALT (9). The caret (^) ic used to

ordered sign bits is called the logical Walsh denorte the complementation mapping X+-(-1 -x).
transform. The integer x corresponds to the
set of N input oats {xi, xz, ... , x.) accord- In the rest of this paper, hodecimal (base
ing to N 16) numerals will often be ufea for conven-

XaInce. Tahle 1 gives these amerNs., their
jbinary representation, thc 14-bit 1Joicol trans-

while the integer X corresponds to the bits of form, and the modulo-2 sun oa each number and
tht logi.al tzansform (xi, X2, -1 XN) its logical transform.

N p n-kX( Ek• Xk

ftis work was spansorea by the A:r Force .Iffice
of Scientific Research (Air Force Systems
Comand) under Contract F44620-71-C-O052.
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Table 1 in Table 1. If this simplicity occurs in the

8-bit case, i' should be looked at more ilose-
x xl X2 X 3 X4 X xOX ly. Table 2 gives the complete 8-bit case, and

patterns in the function AeX are more complex
0 0 0 than in the 4-bit zase.

1 00 0 1 0
2 00 0 o4 6

3 0 0 1 1 5 6 Table_2
4 0 1 0 0 2 6

Hexadecimal Logical Walsh Transform

5 0 1 0 1 3 6 For 8-Bit Case

6 0110 6 0

7 0 1 1 1 0 7 x X x#X x X x81 x X x*X
8 1 0 0 0 F 7 80 FF 7F 90 99 9 Ao CC 6c

9 1001 9 0 81 96 17 91 9F E Al DE 7F
A 1010 C 6 82 C3 4.1 92 DB 4A A2 C? 6D
B 1 0 1 1 D 6 83 DT 54 = A3 C6 6D
C 1 i0 0 A 6

1 6 84 A5 21 94 BD 29 Al El) 59
85 B7 32 A5 81 29E 1 1 1 0 E 01 1 8 0 86 ET 61 S6 81 17 A6 C5 6A

F 87 8 A7 C7 60

When this investigation began, it was hoped 88 FO 78 98 P9 61 A8 PC 54
that this transform would have broad applica-
tion in binary image processing. First a fast 89 F6 7F 99 90 9 A9 Dl 7D
algorithm was needed. This is the subject of BA F3 71) 9A D1 4B AA CO 6A
Section 1. This search soon revealed that the
transform has hidden complexity: its "neat" 8B D2 59 9B D3 48 AB D6 71)
behavior for Nil becomes "messy" with No8, and 8C F5 79 9C ll 2D AC EA 46
vith Nu16, reversibility is no longer complete.
Section 2 gives the results of work on an 8D B4 39 9D B5 AD A 59
exhaustive enumeration of the N-16 case (32,768 8E El 6F 9E v, 6P AE E5 4B3
integers). It was discovered that 896 special 7
numbers, here called seed integers, act as 8F FT 78 9e 91 E AF CL 6b

singular points of the logical Walsh transform.
Section 3 analyz~es these integers and gives the
reasons for their number and distribution.
Thus instead of a nice easy-to-use transform, Bo DO 6D CO AA 6A DO BB 6B

we have some very interesting and -totally
unexpected complexities. Bl 9C 2D C1 BE TF i 9A 4

B2 C9 7B C2 EB 29 D2 8B 59
Section 1 A Fast Alxorithm?

B3 De" 6. C3 82 4D D3 9B 48
The conventional fast Walsh transform algo- B4 8D 39 Cl Ai? 6B D4 A9 71D

rithm operates only on len•the that are powers
of 2, vi~le calculation of the Walsh transform B5 9D 28 C5 A6 6A D5 BF 6A
for othe: lengths requires multiplication by B6 CD 7B C6 A3 6D D6 AB 7D
the appropriate Hadamard matrix (this "slow"
way uses N2 scalar multiplications, versus R7 85 32 c7 AT 60 D7 83 54

N log2 N the "fast" way). Either way increases B8 D8 70 C8 FA 32 D8 B8 70
the storage requirement to N bits per input
data point. What is desired is an algorithm B9 DC 65 C9 B2 7B D9 LA 63

that only requires 1 bit per input data point BA D9 63 CA E2 28 DA FB 26
(i.e., a "Boolean" algorithm), with only
moderate intermediate storage, Moreover, prac- B3 DO 6B CB F2 39 DB 92 4A

tical use of the logical transform, such as for BC FD l1 CC AO 6C DC 39 65
binary images, requires such an algorithm to be
fast (i.e., required operations per data point BD 94 29 CD B6 7B DD Bo •6D

proportional to log2n rather than N). BE Cl 7F CE E3 2D DE Al 7V

It was originally hoped that soma simple BF D5 6A CF A2 6D DF B3 6c
patterns in the behavior of the logical trans-
form would provide hints for the search for a
fast algorithm, For example, the Boolean
function x*X (0 is addition modulo-2) is shown
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x X x*X x X x*X A44D DBB2 B58C CA73

E0 EE E F0 88 78 A55E DATl B858 C7A3

El 8E 6F Fl 9E 6F A581 DAYB B5eD CA72
A854 D7AB B85D C7A2

E2 (-A 28 F2 CB 39 A7C4 D83B 3700 0632
E3 .- 2D2 F3 8A T9 ACT4 D38B BC7D C382

E4 "5 D83A BCCC C33A 5

E5 AE 4B F5 8C T95 D8A B0CC C22
E6 ~ 9 P 9AC75 D38A BDD14 C22BE6 BF 9 F6 89 Tr

E7 86 61 F7 8? 7e A more direct search for a Boolean function

58 F8 utilizes the Quine algorithm (Harrison, 196 5).
7 Fhe 2N possible N-bit integers map onto the

E. FE 17 P9 9C 61 vertIces of the unit hyparcube in the vector
1E. FA C8 32 space of N dimensions, which is where the Walsh

transfc'm operates. Each of the N bitsXk of
EB C2 .9 FB DA 26 the lUgical transform is '4reated as a Peparate

_ FC ýj 5h Boolean ftnetion Xidr) and its value, 0 or 1,
is put on all the 2n vertices. All those hay-

.D 4L 19 FD BC 41 ing the value 1 art coniected, and if theSE FE F9 17 resultant figure is appropriately simplc, we
.6 9 : 80 T can expect to find a Boolean algorithm. The

F4-bit case is shown in Figure 1, which givec
the functions X2 (x), X3(x), and X 4 (x). Here
the resultant figures consist. of 3 mutually

Another pattern does stay zimple it the 8- perpeadicular planes Intersecting in a line.
bit case: the distribution of integers that llll 001i
rcre their own transforms. There are 2 in the

)it case, 8 in the 8-bit case (boxed in
Ta.,le 2), but 84 in the 16-bit case. These
last are jiven in Table 3, arranged tz show 0010110 1011
asymetri±s. Again there is increasing comn- ,
plexity when transform length is doubled. silo 010 W 1

Table 3 10 O 10

16-Sit Integers For Which LWAL(zx )000 1001

Paired By Partial Complementation 1111. 101l1

807F FF80 9009 EFF6 1003 0000

870F F8FO 911E HEEl 1110: 1 011
82141 FI)BE 92149 EDB 11011~

81421 FEDE 91429 EBD61011

8356 rCA9 9333 tXCc W2 (x) 0 1

8536 FAC9 935F ECAO 1100010 00
8661 r99E 953F EACO

8777 F888 9555 EAM 10A ,A0l
9781 E6000

9871 E75E 11 i0? Oi10 '1011 )011
9796 E869 011011

9976 E689 W W(x).
9990 E66F Moo. 30
9BDO Ek2F 1 DOM
9DB0 E24F

9]9BD. HE E2E_S9DBE E24E

9FF1 EGOE Fimr Quite Algorithm For Nw4

Logical Walrh Transform
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I"M
"Dat in the 8-bit case, we do uot find such each "column" are the same. Thits to list all
sluple patterns as, for example, 7 six-diae4n- the seed integers, ve need only lict t)%e 8
sional hypernlanes inter-ecting in a line or byt;ý-paira of each row and the 8 byte-pairs of

even ii a plane, but 15 three-dimension&l and each cc'l,=n. The 64 possible combinationn are
6 four-dimensicaal hyperplanes, all unconnect- the seed integers. Thesa 14 sets of byte-
ed. Again, doubling the transform length pairs are given in Table 4, where a richi struo-
uakes a simple pattern beco•- meviy, further ture of reciprocities and correspcndances is
clouding the search for a fast algorithm. readily apparent.
i;hen the breakdcwn of transform invertibility
va discovered for the N=16 .- ne, a fast algo- Table 4
rithm "ws no longer of conce-n; an irreversi-
ble transform lestroys information and, so has The Seed Integers
little ciance of pra-tical applicat'on.

Resi~ts From Na16 Enumeration A G % 8 % U Q N W * M UN

After the efforts '9scribal in the preced-
ing setticn, It vas decided to print out by 0 2 IN 0 0 CM M ' 0

cowuter tUl logical trqngform functn for
the entze set of l-1hit iategerx {..- 32,768 M -2 CM m !Z • 00 0
:x 2-1 - 65,535). This d1,i not require C G C 0
an excessive amount of,,~lputer pAiacout, Un-

lke t~he Na32 cl^as (2 -2,1147,.483,6148 inte- CU~ U 0 t- COMPr r k .

gers). Direct visual inspection imediately o
proved fruitful: (1) the logica•.•transform is CS 04 r N L- M M _V M G 4 0C 00• C

no longer rrertible; (2) tIhe irreversibiulity -7 \ V0 V\ .* Vt .0 _ M U

takes the 5'orm of macnp to-one mappings, where-
by a %t, of 16 integers %21 have the same logi- a 4 a A C ' • '0 ; - to Co.
chl transform; (1) there t~re 696 such sets of

;6 integers. for only one of which tc the 3og- M \ '9 H OJ N V '0 '

!itcal t lsform revernble; (4) there are 896 UH -4 '4 0 0 0 0

such special inz:.gers, palred by the logical
tran.form fuucticn; (5) thi other 15 mcmbers
i of each set are dsri-ved fro3 tl special inte-

Sgers ty alteriir &ny cat of Ito bilus sx"eyt
• !t h e f i r r• . B e a s e o f t h ' li p - o p r t . t r• P N P . r k r 4 Q

896 num.'•rs &r* ealled "ieed Integers". rote
th-t thrt are Lot 20t8 seed integerr, ehich M \ s%0 M p V Go -n V\ (n
vorud erco- s the enao re bit 6 case, oe even
102t, but 396 a 160e8. The reason for this isset eut In dtnil in_1-tion 3, ad its tot-t Q? j 42g. ,

essense liet in that tal•sh transform theshold-Sing procedure (1) , Th e 15 derivative integers C 1 0 C Q -r C 4 \ 0 V

•!othat are generated t'i each seed inteot all ht U o 0 C 0 I. U . Q U
have the saw r l c no transform X. Since t hey
differ -= the ).:tcd integes by onif oc 'it, 4 P 2 - 2 V M R ,
the Uslsh transform 1 eficti ents i k tach
dmifer frth tae uand.vaondin coefficients Oe - V Co

A4t sed iategei iW±, while the corre•road- wt tC ir tr
ing lowical transform bital yk are tLe ssme.
Thus it ntdt bo that the Walsh trof8 for, co CCO V M the r Slt fo on n • to th g

Sefficient s of t4te tri c integer are 8uth that
Scha of 41 s r elt e rU note ake it iros, C% of \ s each fo
_th threshold - i.e., go frs 0 to 1 or f to 0. ota D Th t Co es CO be en -C

SOt~rtn-sily thi-e is possible only if r

S•Wk 0 ~ 3,1 x= 2t..... 13- (2)

This set of 15 **strictions entirely detqT-
[_.mines the alisar and value& of the seedl. ate-

gets, as we v~tl", show =n Section 3. Ot~ier relationships bergeen the seed into-
ge?-s become visible when they are plotted On

At athe sagnnlm r,wetela the o96 sjd gaA, with the first two bi,es on the orii-
integers vwr &irely called out by compnler nate, the second twu cn the abscissa. FiPure 2

and printed out Ir 112 rows of 8, vheuce ill shb.-- the result for one quadirant of the graph

veA quickly dete.Mued that they readily fall (the cther quadrants are **rely reflections of

ýzto 14 sets of o" r-m each. When these 8 this one). Instee. of a random scatter, 28

row of $t seed idtegr~s each are put in hexa- set4 of 8 integers each form Vrriously shaped

de-iial notation, tho first two bytes of eacl octa•s. The straight lV.-es Wu be seen a

row ae,- the same, wh'&,e the last tvo -,)ytn of octagons riewcd an edge.
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P-rmutation Grouxý of Weiicht-6 and Weight-1l

,3ted Integer;; Peired by the Logical Transform

.. to -i-g-c. .T-:- , o
D222 :CBM ~ 824.? E357

'0 Elll 9ZEE 828D F714B

1CThree-Membbr Group~s 8148B :72'

78 T.1 ?7Z7 90)35 : IB
/8722: C7B7 9031 D93F

N87T44 ATlDr 905C :B95F
" .,_ 87T38 : 7787 90AC : FDIB

to. E411 : ."ED A036 C"DTE
' .. "4B422: CD3D A039 DC6F

Bk. bI-ti,>FD8D A06C Rc5F

JL~ ~ ~ r i ND211 :9BEB A09C :FD14E

N 21414 APB C056 ABTE
D288 FBDB C059 ;BA6F
P-22 ý: EBF COA6 :E3AF

-4 -~ 1n44 AED-v CQA9 M 2E

r-88 n: BEE128 DC9F

to a 812B3:D63F E2148 : EAC

FIRST BYTE-PAIR
Table 6

One more pattern of classifying seed inte- PruainIop fWih: edItgr
* ~~gers will be presented to give a transition to Peuatio red p bthLofgWical T eeda ntsform

Section 3. The weight of an integer is definedPardbthLoilTanom
as the number of i-bits in its binary retpresen- One-Member Group 8C56 A17
tation. Seed integer~s fali into four weight FM~ : F888 8C59 :B065
classes: 168 with weight 6, 280 with weight 7,___________________________________
280 with weight 10, 168 with weight 11. The Three-Member Groups 8c6A :E335

'ireight -7 and weight -10 classes are closed 911E :911E 8C9A :F122 .
with respect to the logicai transform. Each
weight class can be further subdivided into 922E :C11B 9781 9781
"Ipermutation sets", which are sets of seed 9442E A11iD 912D :9141B
integers having the same numerals, in differ-
ent orderings, for the second, third, and 988E :Fl18 928B :D309
foirth bytes of their hexadecimal representa-A2D c498D B0
tion. Each group may have 1, 3, or 6 members, 2D:C1398 50
depending on what thso numerals are. The logi- AhA4D :A141D B06A :C81D
cal Walsh transfarm maps an entire group onto A88D F1448 B09A :D90C

~ I anothez. Table 5 gives the permutation groups
of tne t-eight -6 seed integers, paired with C22B C 22B C28E :E30A

Athe corresponding weight -11 group by the log'- c88B F 228 ECAO :ECAO
cal transform. Within a group, exchanging the

-fsecond and third bytes causes the io~ical Six-Mc'Aber Groups A12E :ChiE
transemoxi to exchange its third and fourth836 35A1B:Do

bye.For ezeam.la, 8123 itt the logical trans-836:36AlB:60
form of AV3 (and vise versa). Then 8213 is 8359 :92147 A214B : C214D
the transform of D6F3, sad 81B2 is the trans- 836A C 217 A2T8 :08147fora of D36?.

839A D3o6 A148E : E50C
Table 6 gives the groups for weight -7, ana

Table 7 the groupt for weight -10 seed inte-
gers. Within thets groups, excharging the
second and third bytes of a seed5 integer doet
the sawe to the logical transform, while ex-
changing the aecond and fMarth canuses the third
and fourth bytes of thr logical transform to be
exc:hanged.28
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Table 7 Weight 2 If both 1-bits are in the tirst half

Permutation Groups of the Weight-10 Seed of the binary number, or both in the second
Integers Paired by the Logical Transform half, there will be 4 Walsh coefficients that

zero out because the two 1-bits are weighted by
One-Member Group B78B D78D +1 and -1. If there is one in each half, then

8777 : 8777 BIBE DDIE W8(x) a 0. We will call these reasons Rule A
and Rule B, respectively.

Three-Member Groups B2BD DB4B
8RS7 DT727ME E MWeight :4 if all 4 1-bits are in either half of

the binary number, Rule A applies. If there
8DDT7 D772 935F 935F arp 2 l-bits in either half, Rule B applies.
8EE7 :E771 9C5F : 7D If -e divide the bit-configuration Into fourquarters and designat, a configuration by their
BBB14 DDD2 C95F B27E weights, the remaining weight-4 cases are

BDD14 BDD4 93AF D71B (2,1,1,0), (2,1,0,1), (1,0,2,1), (1,0,1,2),
(0,1,2,1) and (0,1,1,2) (collectively designat-

BEE14 EDDI A39F D714E ed by [2,1,1,0)) and (3,0,1,O), (0,3,1,0),

DBB2 DBB2 AC9F F56C (3,0,0,1), (0,3,1,0), (1,0,3,0),(O,1,3,0),
(10,0,3), and (0,1,0,3) (collectively desig-DEE2 EBB1 9CAF F539 nated by [3,1,0,01). The cases (2,1,1,0] are

EEEl EEE1 C9AF F63A eliminated by at least one Walsh coefficient
for which the weight-2 quarter contributes zero

Six-Member Groups A36F c65F and the other two weight-1 quarters contribute

8BDE F356 AC6F E47D +1 and -1, for a zero total. This is called
Rule C. The cases (3,1,0,0] are eliminated byB8DE F95C CA6F E2TB at least one Walsh coefficient for which the

weight-3 quarter contributes l1, and the
weight-3 quarter contributes anl.

D8BE F93A FCA9 FCA9
Wei t 8 Rule A eliminates all integers with
the 1-bits in either half of the binary

Section 3 number. Rule B eliminates all those with 4
1-bits in both halves. Rule C eliminates the

Analysis of the Seed Integers cases [4,3,1,0], [4,2,2,01 and [3,2,2,1]. That
is, ther. is at least one Walsh coefficient

In this section we will show how the defin- that zeros out the even weight quarters, and
ing property of a seed integer, given by (2), canaels the remaining two odd-weight quarters.
generates the configurationu of Tables 5, 6, For the cases [4,2,1,1] and [3,3,2,0] at least
and 7. two of the even Walsh coefficients are zero.

In [4,2,1,1], the weight-4 and weight-2 quar-
We will give an analytic enumeration of all ters will zero out and the two weight-1 quar-

the possible bit-configurations. But first ters will make opposite contributions. Simi-
there are two equivalences which reduce the larly, in [3,3,2,01 the two weight-3 quarters
amoant of enumeration. These are partial and will make opposite contributions and the
full complementation. Complementation changes weight-2 quarter wll zero out. This is Rule D.
1-bitr to 0 and 0-bits to 1. it is partial
if the first 1-bit Is unchanged. We will prove weioit 6 Rule A eliminates all integers with
that the parcial and full complements of a seed the 6 1-bits in either half. Rule B eliminates
integer also fulfill (2). all th~se with 3 1-bits in both halves. RuleC

eliminates the cases (3,2,1,01 and [1,44,,O].
For partin! complementation, take the Walsh This leaves the cases [2,2,2,0] and [3.1,1.11transform vectors of an integer x and of its some of which can be seed integers. Fn'om these

partial complement F Their vector sum has the all the seed integers car be derived.
r W(x) + W() 1First the simpler case, (2,2,2,0]. Each

Thus if W(x) doets not equal 0 or 1, neither quarter Li has a 14-coponent Walsh transform
does W(M). Thus it is only necessary to enu- vectcr: W(Li) = (wl,v32 ,w3 4 ), where each
merate the integers with n even number of 1- component weights the 1 bits of Li acccrdingly:
bits, and their partial complements will corer '1 , 44+•; w2 , +-+-; w3 , ++--; V4, ÷--÷. Table
the entirety of the integers with an odd number 8 gives the weight-2 hexadeci,,al numerals,
of 1-bits. When a seed integer has an even num- paired by complementation, their bit-configuru-
ber of i-bits, its full complement fulfills (2), tions, and their length- 4 Walsh transform co-
as we see from forming the vector sum efficients. Nov the length-16 Walsh transform

is formed by the concatenation four 4-component

vectors, each of which is a combination of the
If W(x) consists entirely of even nor iero length-4 Walsh transforms of the four quarters
integers, so does W(k). Thus we ne'd only of x:
check integers with 2, 4, 6, or 8 .- bits, with W(xP' (W(LI) + W(L2) + W(L + W(L);
the previous restriction of xl= 1 removed, and 3 )
all the other bit configurations are generated W(L1 ) - l(L2) + W(L 3 ) - W(Lh);
by partial or full complementation. W(L,') + W(L2) - W(L3 ) -W(Lh) (3)

W(L:•) - W(L) - W(L 3 ) + W( 1,01).
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Table 8 (4,0,0,0) gives Wk(X) - 0 for some k. Thus the
bit configuration with tiu ti, t = ti generates
seed integers and ti= tj, tk ticannot. Taese

x x1 x 2 X3 x 4  w1 v 2 w 3 w 4  seed integers enumerate as follows: the weight
-3 quarter may be in any of 4 places, and may

3 0 0 1 1 2 0 -2 0 be any of 4 numerals; this numeral determines
the numeral of the same type, which may be inC 1 1 0 0 2 0 2 0
any of 3 places; the remaining two quarte?,s are

5 0 1 0 1 2 -2 0 0 the same, and may be occupiad by any of the 3
remp.inine weight-1 numerals. When all three

A 1 0 1 0 2 2 0 0 weight-1 quarters are the rume, there are 16
6 0 1 1 0 2 0 0 -2 more combinations. The tral is 14.4.3.3 + 4.4
9 1= 160. Under the constraint xI - 1, the total

1 0 0 1 2 0 0 2 is3.l0+3.h+3.6 = 60. These fall into the
166 weight-6 seed integers of Table 5, while

Applying this to Table 8, we see that for their partial complements fall into the 168
weight-il seed integers of Table 5. The re-

the coefficients W,(x), W6(x), Wl0(X), saining 160-60 1 100 with x1 = 0 are fully com-
W1 4(x) to be non-zero, we must have either plemented and included in the 260 weight-10
5 or A and not both, in one of the quarters. seed integers of Table 7. Thc~,e 100 weight-10For the coefficients W3 (x), W7 (x), Wll(x), seed integers are in turn partially complement-
W13(x) to be non-zero, we must have either ed and included in the 280 weight-7 seed mnte-
3 or C, and not both, in another of the quar-

ters. Finally, for the coefficients W4(x), gers of Table 7.

W8(x), W12 (x), W1 3(x), either 6 or 9, not Table 9both, in the other weight-2 quarter. The
total ntzber of integers satisfying these Weight-1 and Weight-3 Hexadecimal Numerals
conditions is calculated as fol.ows: the
zero may go in an! of the 4 quarters, any of x x x2 x w wV w2 w.
the 6 weight-2 numerals may go in another 11
quarter, any of the 4 remaining in the next 1 0 0 0 1 1 -1 -1 1
quarter, and either of the last 2 in the E 1 1 1 0 3 1 1 -1
Sfnal quarter; 4.6.- - 192. Under the con-
straint x -1, the totas. is 3.3.4.2 a 72. 2 0 0 1 0 1 1 -i -I
These fall into the 166 weight-6 seed inte-
gers of Table 5. Their partial complements D 1 1 0 1 3 -1 1 1
fall into the 168 weight-ll seed integers of
Table 5. The remaining 192-72 - 120 integers 4 0 1 0 0 1 -i 1 -1
with xl=0 are fully complemented, and fall E ! 0 1 1 3 1 -1 1
into the 280 weight-10 seed integers or
Table 7. These 120 weight-7 seed integers 8 1 0 0 0 i 1 1
&,:e in trn partially complemented and placed 8
with the 280 weight-7 seed integers of Table 7 0 1 1 1 3 -1 -1 -1
6.

Next the more complex [3,1,1,1] case. Finally, we examine the case (3,1,1,1] bit
Table 9 gives the weight-1 and wreight-3 hexa- configurations with the initial constraint of
decimal numerals, paired by complementation, ti 0 t3 . We slready know that tk 0 tj, since
their bit configuration, and their length-4 the tk u ti case is the mirror or ti at,
Walsh transforms. The members of each pair tk 0 tL which as we have sho'm above fails to
are designated by type ti according to the produce seed integers. Thus all four quarters
bit-position where the 1 or 0 is placed. The are of different type. Consider the Walsh co-
subscript i indicates which of the four quar- efficients W5 (x), W (x), W!3(=). Applying (3)
ters of x the particular n%neral is placed. to Table 9, we see ?hat these coefficients all
There are two different possibilities: two have the values W((3 + 1) - (I + 1)) x±2. All
quarters have the same type, or bave differ- the other coefficients (except of course for
ent types. For the former, assume one of W (x)) have the form -(l + 1 + 1 - 1) - 12.
these quarters is the weight.-2 quarter. TRus W (x) 0 0 for all k. These enumerate as
Then in (3), the contribution of this pair follows: the weight-3 quarter may be any one
to W(x) is (4,0,0,0) when their length-4 of 4 numerals, placed in any one of 4 places;
Walsh coefficients W(Li) and w(Lj) are added, the remaining weight-1 quarters are selected in
and it is (t2, ±2, ±2, t2) when they are sub- 3.2.1 possible combinations. The total is
tracted. Now look at the remaining two quar- 4.4.3.2 v 96. Under the crnstraint x1 a 1, the
ters, 1LI and Li, both of weight 1. When tku total is 3.3.2 + 3.3.2 w 36. These and their
ti, then contributions to W(x) are partial complemints fall into Table 5, for a
(±2, ±2, 12, ±2) when added and (0 0,0,0) grand total of 72 + 60 + 36 168. The re-
when subtracted. Thus the 4-component vec- maining 96-36 a 60 with x, = 0 are fully com-
tors concatenated into W(x) all have the form plemented, then partially complemented, to
(6 or 14, i2, ±2, ±2) or "±2, ±2, ±2, ±2), so ccmplete the enumeration of the weight-10 and
that Wk(x)O 0 for all k. However, when weight-7 seed integers, respectively. Their
tk# t%, their contributions to W(x) contiin grand total is 120 + 100 + 60 - 280, which
at least one 0, and when combined vith agrees with the computerized enumeration.
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Conclusion References

The last section aaowed hav the 4-bit Walsh Searle, N. H., "A Logical Walsh Transform",
transform coes into ',ha determination of the Procedings of the 1970 Symposium on Walsh
seed integers. Thus t.he seeming simplicity of Functions.
the Nu4 case actually contributes to the com-
plexity of the N-16 case. That is, the pro-
perties of the 4-bit care are the reasons Parkyn, W. A., "Digital Image Processing
there are only 896 seed integers, instead of a Asp3cts of the Walsh Transform" ibid.
much "neater" 1024 or 2048. Thus as transform
reversibility breaks down, it does so in a co-
herent manner, but with gaps, so to speak, in Farrison, M. A., Introduction to Switching
the coherence: the blank squares in Figure 2 and Automata Theory, HcGraw Hill 1965
attest to this. This fits right in with the
results of Section 1, which shoved that doubl-
ing the transform length greatly increases the
"messiness" of the transform. A random samp-
ling of the Nw32 case shove a continuation ofiT this trend: a high percentage of the integers
are irreversible, and the transform can be
done many times without it "settling down" to
a reversible integer. Furthermore, the analy-
sis derivation of seed integers is beset with
difficulties: (1) there are 31 simultaneous
inequalities, (2) sometimes more than one bit
can be taried without changing the logical
transform.

Besides the N=32 case, research can be con-
tinued in other direciions: (1) defining a
logical transform for Hadaatrd matrices other
that 2 n; (2) defining other transforms by
altering the geometry of Figure 2 (remember
that the analysis of Sention 3 gives no reaLon
for these octagons); (3) using a different
procedure to derive X from W , in an attempt
to restore reversibilicy. While only the last
proposal can hMe any practical application in
binary data processiag, the other two are of
general interest in Walsb-function research and
Boolean algebra. The increasing "messiness"
of the logical transform may have interest in
the philosophy of mathematics, which is usually
occupied with "well-behaved" phenomena.
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APPROXIMATION HIdlORS OF A WALSH SERIES

C.K. Yuen, Ph.D. student
ihsser Delartment of Computer Science
University of Sydney, Sydney, Austrulia

Function representation by Walsh series In selectiab Walsh functions by their
is a profitable excercise only when it is degrees, a term is retained in the series if
both accurate and economical. By accuracy we it has the appropriftte degrees, regdrdless
mean that the seriea must satisfy some error of its magnitude. Thus, a data compression
criterion. If the function being represented scheme bdsed on degrees does not always
is a random signal the accuracy is usually choose terms of largest magnitudes. However,
measured by the mean square deviation while though our selection scheme is different
numerical applications would require that from threshold sampling, the performances
the maximum absolute errcr be below some of the two tend to be very similar, for
upper limit. economy demands that the Walsh numerical applications at least. Thus, pred-
series contains less terms thun the amount ictLon of the performance of a Walsh series
of data necessary to specify the original whose terms were welected by their degrees
junction. Thus the amount of information is also a good prediction for the accuracy
contained in the original function is compr- of a series whose terms were selected by
essed into a smaller sat of numbers, threshold sa-upling.

The common technique for choosing the To derive upper bounds on approximation
terms to be retained in Walsh serieses is errors we could use an "integration by
threshold sampling: any Walsh function whose parts" technique which have been employed in
coefficient is less than some threshold is a previous worK[ l studying upper bounds on
dropped from the series, or equivalently, single Walsh trp.;eslurn. in zome ragai
assigned coefficient zero. This xesults in upper bounds can. be derived by direct manip-
the retention of terms with l rgest coeffic- ulation of certain integrals. To avoid copy-
ients and gives an approximation that is ing tedious mathematical arguments only the
optimal in the least square sense, main results will be shown. Detailed proofs

There are, however, two disadvantages. way be found in C13 and in a subsequent
One is thAt it is impossible to know before- papero!. We shall also give several nuaer-
hand which terms will be retained. This is ical examples. Finally, extending the error
an extremely aericusproblem for information analysis technique to information transmis-
transminsion Vroblems. For example, to use sion problems will be discussed.
Walsh functions int picture trunsmiscion it
is necessary to compute all the Walsh trans- Matnematical Introduction
forms, select those with largest magnitudes
and send these values over the channel with Let us have
their indices since the receiving end has no
knowledge which Walah transforms would be t - (O.t t 2 ... t ... )2fo,)
selected. This results in an increase in I k 2''
required bandwidth partially defeating the
purpose of using Walsh transforms. The i ik ... i 2 i 1 )2
second is the difficulty of error analysis,
since threshold s$:!pking is similar to round The kth Rademacher function is
ing by setting to zero any number that is
smaller than some limit. When a large number Rk(t) . (_t)tk
of terms are dropped, the theoretical upper

bound on the total error is simply the and the ith Walsh-Paley function
number of terms times the threshold. This O i
gives an enormous upper bound which is pal(it) - j1T k(t))•otally unrealistic.•k-1

The lack of theoretical nalysis of The degree of pal(i,t) is defined to be
errors is no headache fo• information trans- the position of the first 1 in i
mission applications since trial and error
experimentation is considered quite respect- d(i) - =in (k: 2 k>i)
able and has indeed produced many interest-
ing results. Nevertheless it is interesting and its subdegree position of the &econd 1:
to knoy that it is in fact quite easy to
derive fairly realistic upper bounds on the d'(i) - min(k:2k>i-2dl1
approximation eirors ol Walsh serieses if we
group Walsh functions by their degrees, to The total number of l's in i is called the
be defined balow, When we neglect a group of rank of pal(it):
terms with the same degree, the errors are G

related and do not accumulate like rounding r(i) = E ik
errors. k.1
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and its negligibility is defined as For each i in the above expression IN+.,
CD 1 so we havep(i) - 'Z i k + r(i) .

k- k )pal(i,t) - N+N(t)pal(j,t)
Given a function t(t) we define its Walsh wit
transform as with O<J<2 . Thus1 

1

F. f(t)pal(i,t)dt e(N) RN÷lt) S + i(T)IN(tT)f(T)dT?

o 0

We proved elsewhere that for all klr(i) As the '.ntogrand in non-zero only between
Ili t 1 tN and tN+÷ and since RN1  is 1 for

F 4 f(k)(t) kPal(i,tk)dtC.• first half of the interval ana -1 in
S... i k...~ second half, we get

o oo tN+tN++dt dt M (i) Ie(N)I .12HtN f(T)dT - 2 N + f(T)dTI

.1$, JtN+That is, in computing Fi we ean diiferent- tN+ T
f(t) up to r(i) times and simultaneously
integrate pal (i,t) the same number of .1M tN N f,(T,)dTl
times, as in integration by parts. This T+ 2-N-Tgives the following upper bound on magnitude
of Ffi[]: .&,If,(t)I,__•

IF) < .,(r)(t)127-p(i) (2) We first observe that each of the 2 X
terms dropped haw degree N+l . We thenThsi lnote that the first term among them, P2 NThus if p(i) is large then F has small has upper bound

magnitude no can be neglected. This is the
reason for the name "negligibility". IA t 2

Truncation errors
according to (2). Thus the upper bound onPolyak and Schreider proved that [31: error caused by dkopping 2N terns is the

-1 8same as the bound on one term. We see thatZ pal(i,t)pal(i,T) . Bn(tT) errors do not accumulate if we neglect ai-o group of terms with a common degree.

n( Truncating the aeries at 2 causes
where Bn tT) m 0 except when L'j . L2tj , error
in which case

n to be Iej e(NA + Ie (N~l A +..B'(t,T) . fixed.2mxlf(t js +.

W e shall consider t to be fixed. Then '
Bn(t,T) is zero if T is less than It may be observed that truncation at 2"27n 2 nj or greater than 2 7n Int+d and amo-ints to neglecting all F with degreeis conatant in between. It is thus a block larger than N . Note also that truncationpulse of height 2n and width 27n. For error occurs only when we choose 2N to beconvenience we shall denote 2-nL2ntj by tu, less than the number of input data. For

2-nL2 nt+.J by tin ad by example, if the argument t is given as ant+ bba bit number, then there are oUly 2 a diftnee ferent values it can take on, hence there
are only 2n input numbers. If we use aWe can now derive an upper bound on the 2 n term Walsh series the reprecentation is

error caused by dropping teruc exact and there is no truncation error.

FN to F2N+1_1 Data compr4ession errors

The truncated Walsh series containsfrom the Walsh series. We have 
2 N terms, which can be Egathered into N+e

Go groups, each with a different degree. Thusf(t) Y , Fipal(i,.L) the group
F2 d-1 to F dNeglecting 2e terms causes error

N+1_1 contains all terms with degree d.
A Suppose we take the group with degreee(N) v L pal(i,t)j pal(i,T)f(T)dT d+l and choose to neglect all terms in iti.2N 0 that have subdegrees greater than d', the
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error caused is not hard to see why. Eqaation (2) indicates
2d+1 1 that, unless f(t) has large high order de-

e(d,d') = pal(it)3pal(i,T)f(T) rivatives F1  is small if its rank is
o 'large, so it is unlikely to be chosen in

12d÷+2d' 0 dT. threshold sampling. On the other hand selec-
tion by degrees tends to choose terms of

This can be put into small second degrees, which generally means
1 that i contains few l's so its rank is
I usually small. So both schemes tend to sel-

Rd~l(t) [dt,T)-Bd'(t,T) Ud+l(T)f(T)dT ect low rank terms, and so have similar
0 perlormance.

and has upper bound Examples

27d-d;-3,( - 1. We first give an example to illustrate
le (d, d'A jCmax f *(t) 2 ~ - )th* misicesalai r=lto one gets by Applying'tralghtfor•ard error analysis to threshold

We may note that the first term among the sampling.
group of terms neglected is F2d+2d, which
obeys To be useful a Walsh ceries must cont-

+d -- d'd- aia ouly a small number of terms. To obtain
Imhx f(t) 2 such a series we can either choose a amall

N, compute a truncated serien of 2 N terms
Thus the error caused by neglecting terms and drop a small part of them; or we choose

F tsthan twice a large N and neglect a major proportion of
the ?I terms. According to straightforward

the upper bound on one term, showipg again analysis the error caused by dropping terms
that errors do not accumulate. is proportional to the number of terms negl-

The above argument shows that we can ected, so the second alternative would give
select terms to be retained in a Walsh enormous deta compressien error. This wasseec tthe tocaii rebhe reaie inya an Whre-

series according to their degrees and sub- the conclusion reached by Polyak and Schre-

degrees. Any term with degree above some iderf5] in their study on lunction approx-

pre-set limit is neglected (truncation). imation using Walsh series, hence they

Then each term with the correct degree but truncated their examples at 2N,6 and used

a subdegree exceeding some numbrr, which may data compresaion ratio of around 504 , A,
be dependent on the degree, is dropped to a result their Walsh series approximations

achieve data compression. That is, for each are little better than tabulation. Their

of the N.'l groups we specify a maximum series for f(t) - sin(ýXt) contains 25

subdegree. The error caused by neglecting terms and has error about 0.008.

tne sot of terms in each group can be estim- We chose, instead, N=8 and dropped
ated by examining its upper bound, and the F
total approximation error estimated by sum- 2d+2 d' to F2 d+l_l for the followiug pairs

ming all the upper brunds. The total number of (d,d'):

of terms kept in the serien can also be cal-
culated immediately. We can thus decide (d,d') - (7,1),(6,I),(5,2)v(4,2),(3,2).
whether the Walsh series is sufficiently
accurate and economical witnout having to Total number of terms kept is 24, the truu-
actually compute it. cation error is bounded by .0016 and data

compression error by .0040. The computed
Two qiestions nust be answered. First, errors are a little less, while the error

do the upper bounds give accurate estimates of Z4 term series selected by threshold
of actual errors? Second, is the oerformance sampling is slightly smaller yet. If t is
of this scheme for selecting terms as good given to 8 bits only then truncation error
as threshold sampling? We noze that, for two is eliminated and the approximation is accu-
serie4 with the same number of terms, the rate to _,8 .
one chosen by threihold sampling gives less
mean square error, while its abaolute error 2. We took f(t) - txp(-t), N-12, and

may be unevenly spread over the function dropped terms for pairs of (d,d'):
domain so that the maximum error may not be
less, though for practical eases it is not
far from the maximum of the best series. Wo
shall see later that the error upper bound
we derived is a good though far from perfect as well as terms F 1O10 to F 11111
indicator of the real error. We shalt also iith total data compression error bounded by
see that, if the function being approximated 0.017. The actual error was computed to be
has sizable high order derivatives then a 0.U0156. The number of terms kept is 48. For
series selected by threshold sampling cont- the same function a series of 49 terms, sel-
ains many high rank terms that would not acted by neglecting all terms with absolute
normally be selected if selection by degrees values less thau 0.00005, has maximum error
is used. If size of derivatives does not of 0.410101. 43 terms are common to both ser-
increase rapidly with each differentiation ieses but 6 terms with magnitudes twice or
then threshold sampling and selection by three times of threshold are not included in
degrees tend to choose the same teran. It ie
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the first series. *et with polynomial approximation as the

0 see that, in above two examples thre. latter requ'res far less data storae, zon-

shold sampling performs better than selecti- ory access during evaluation and total

on by degrees, though error bounds of the computing time. However, the hardware impil-

latter still provides a rough indication as since the ovaluation of a Walsh series needs
to the aecuracy of the former. If we had Only fixed point idditions. The oserations
treated error caused by threshold sampling iny fived, fetch and add reneatedlyo are
as rounding error, we wouid have derived an imple and add rpeatedly are
upper 'ouud by multiplying the threshold by simple and can be speeded up at little cost.
the number of terms dropped, which would ie finally mention that it is also pos-
give, for example 2, sible to estimate the signal power loss due

to bandwidth compressionk if we assume that
!errorl ý 0.2 Walsh transforms are selected by their degr-

ees. Givon random variable x(t) with auto-
which i& quite unrealistic, correlation function V(t) we have the ith

3. The functioa xz has an infinitc second Walsh power spectra! element

derivative at the origin. As the error bound X. .||(pa(iT)pal(iT,)V(T-T)
for selection by degrees scheme dvi-nds on x
the second derivative, we would expect a dT dT
Walsh series approximation to yerform poorly. 2d+l÷ 2
Also, because the lunction has very large
high order derivatives, its high rank Walsh And e4 (d,d') = Xi
transforms would be sizable, hence would be i=2d +2d
selected by threshold sampling. Indeed, wefound that, even it -so set. the threshold as do[ T , •T• R

high as 0.0002 the number of terms xs still (Rd TA ( dT1T B (d TT2 .1I(2)
no less than 131, while the error at t-0 i ad+ 1d
0.05. (maxisauw error for I t 1 is 0.00132)

it owtver, we may note that re tan restr- t1 2
ict the argument to between f &ud Isinca any other value can be treated by -dofnal east

shifting it right or left two bits at a time
since fj nt). 2 nf(t). So.plthough the Walsh d-2( d'-d)ý21R d

series is defined for tf j,l) its error
for t between 0 and t is immateral. _27d

This fact is taken advantage of by us- The reader is cuutionad that the above upper
ing the following function bound is unlikely to be as goo! as those on

truncation and data comprogsion errors of a
f(t) = 0.5+t 0 t< 0.25 smooth function. Also, it is possible that

= ti 0.25 St 1 . selection by degrees, whose error is a wei-
ghted integral of the tunction being approx-

For we have f"(t) = 0 between 0 sad i, mated, causes a typr of distortion unacci-
so that ptable for random signals. Only experiments

malf"l - jf"(*)I - 2 w.,uld give final answers.

We conclude by saying that, althoughand the error would fall within acceptable Walsh functions are discs'ete and binary,

limits. N was chosen to be 12 andWasfucinardsreead vry
lsthematical analysis of Walsh series errors

are at least possible and trial-and-error
(dd') = (11,1),(l0,±),(9,1),(&,1), experimentation, though still necessary, is

(7,1),(b,3),(5,3). not the only thing to do.

Total number of terms kept is 58, and maxim- References
um error is 0.00119. A second series found
using threshold sampling has the same number 1 . C.K. Yuen, "Upper bounds on Walsh tran-
of terms with error 0.011o6. The two serie.- sforms", Basser Computing Department Tech.
sea contain 51 common terms. Report No. 6b, University of Sydney, Sept.71

While the error upper bound, in this 2.. C.K. Yuen, "Approximation errors of a
instance, gave'a poor estimate (0.003), the Walsh series", to appear.
knowledge that it depends on the second der- 3. J.T. PoLyak and Y.4, Schreider, "The
ivative greatly assisted in finding a way application of Walsh functions in approxin-
around the difficulty we would have encount- rte calculations", problems in Theorl of
ered if we had attempted a straightforward Mathematical Machines, Collection 11,
Walsh series expansion. uizaatijz, moscow, 19b6, Lp. 176-19U.
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ABSTRACT

N
The papcr summarizes results of our investi- I Foy

gation into the merit of Fourier and Walsh pro- K 1l

cessing of randow. signals. It has been often where F(') is a convex function.
conjectured that the popularity of Fourier pro-

cessing stems from the fact that the Fourier 4.W 1,hen using a unitary transform U other than
the Karhunen-Lo~ve, the optimal performance

coefficients of stationary signals are uicorre-

lated and that the Walsh coefficients are "al- that can be achieved is given by

most" uncoirclated. Our results demonstrate N

" that the Fourier coefficients are "almost" un- u i (
correlated while the Walsh coefficients are i=1

"rarely" uncorrelated. By the word "almost" we where "a " ( -1 2.N) are the varian-

mean that as the data-block size (N) increases ces of the spectral coefficients (or the

the coefficients become uncorrelated and the de- diagonal elements of the covariance matrix

gradation in performance due to residual corre- in the U representation).

lation goes to zero. The word 5. Thus, the degradation in performance due

"rarely" states that the performance degradation to incomplete decorrelation is given by:

does not vanish for very large N, except in very N

few pathological cases (white noise, perfect AR = I [FOi) - F(Oa)] (3)

correlation, etc.). i1

SUMMARY OF PREVIOUS RESULTS SUMMARY OF CURRENT RESULTS

In earlier papers (see references 1, 2, 3) we I- Rather than calculating equation (3) for

have established the following results: every possible covariance matrix and for

1. By the words "spectral signal processing" we every performance function F we attempted

invariably imply that after the spectral to find a condition that would guarantee

representation of a signal is computed its lim AR = 0 (4)

components are to be handled independently N -*d

of each other in the next processing stage. for all weakly stationary signals. Such

2. In Filtering and Coding applications, and condition can be given in terms of the

under a mean-square-error fidelity criterion Hilbert-Schmidt norm

the optimal spectral representation is the

Karhunen-Lo~ve expansion (renderinR the A2 1 lA 12

spectral components uncorrelated). i

3. If [)LI I = 1,2,...N are the eigenvalues of 2. If TN is a Toeplitz covariance matrix and

the input covariance matrix, then the per- C4 is a circulant approximation of T ob-
ZN N

formance of the Karhunen-Loave processing is tained by ignoring all off-diagonal elements

given in the form in its Fourier representation, then



l ITS -s C 2 
= 0 (6) (3) Pearl, J., Andrews, H. C., and Pratt, W.K.,

N - w "Perfornance Measures for Transform Data

(See reference 4 for proof.) Coding", to be published in IEEE Transac-
tions in Co•munication Technology, JuneSI3. If (6) is satisfied and T• is bounded then

1972.
(4) is guaranteed (ref. 5). This implies

that Fourier processing is asymptotically (4) Pearl, J., "On the Finite Fourier Trans-

form of Stationary Time Series", to beoptimal for stationary signals.

For large N 6R is proportional to I . published.

in both Coding cnd Filtering (ref. 4). (5) Gray, R. H., "Toeplitz and Circulant Ma-

5. For finite order Markcv processes, ITNCHI trices: A Review", Stanford University

approaches zero like I/.IT (rf4)6. proThelst twro ltaterInt (ref. 4). Report SU-SEL-71-O32, June, 1971.

6. The last two statemecnts imply that the per-

formance achievable by Fourier Processing

approaches the optimal like l/lg. .6
7. The Walsh transform is not asymptotically

optimal for stationary signals. The per- £ I
formance difference between Walsh and Kar-

hunen-Lo~ve processinp, does not vanish ex- .4 (wA LSH)

cept in a few rare cases. This can be es- D

tablished by observing the behavior of .3 T,-C'I

1ý - D bere is the dyadic approxima-

tion of. (obtained by Ignoring the off- .2

diagonal elements of W T W' ). In most

cases IT- DNI reaches a non-zero asymp-

totic value for large N, as exemplified by

the moving-average process in figure 1. Z 4 9 16 31 654 12 256

CONCLUSIONS FIGURE 1. fILBERT SCHMIDT NORM FOR
In signal processing applications of sta-S~FOURIERt (C ) AND WALSH (D. ) TRANSFORMS

tion a ry in pu ts (o r a sync ro nou s inpu ts ) the O F A MOV NG- VER GE TROC SS.

Fourier Transform offers a definite advantage

over the Walsh Transforms. The Fourier Trans-
foThis work was supported by the Office ofSform is asymptotically optimal for all weakly Naval Research, Mathematical and Information
stationary signals, while the Walsh Transform Science Division, Contract No. N00014-71-

remains suboptimal even for very long blocks. 0200-4038.
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WALSH SERIES TO FOURIER SERIES CONVERSION
K.H. Siemens and R. Kitai

Department of Electrical Engineering
Mcfaster University

Hamilton, Ontario, Canada

Abstract providei that M!N. Thus, inatrtaents that
yield a finite number of Walsh coefficients can

The coefficients of the Walsh series of a be used fer the precise avaluatioa of the
function car be used to derive the corresponding Fourier coefficients of band-limited signals.
Fourier series. The conversion equation for Furthermore, a substantial easing of hardware
each Fourier coefficient is in the form of an requirements in a special-purpose Walsh to
infinite summation of products of constants and Fourier ýieries converter (or of softwaie
the Walsh coefficients. Truncdt-on of tne requirement3 in a general-purpose .omputer
conversion equation generally gives rise t( conversion) is achieved if one pu,:s M•a 2* ,
errors. It is shown that precise evaluation of where x is an integer. Thus, in , , design of
the Fourier coefficients in terms of WlIsh Walsh spectral analysers for use on frequency-
coefficients is r ssible if the signn, is either )imited inrut signals. the highest sequency
sequencv-limited or frequency-limited A dual component to be measured is best chosen to be
relationship holds for Fourier series to Walsh a Rademacher function of order x. A dual
series conversion, relationship holds For signals in category 3.

Introduction Series Conversion

Instruments that are simpler and faster Let - fmnction f(6) be represented by a
than Fourier analysers have been developed to sequency-ordered Walsh series;
yield a finite nixsber of Walsh series coeffi-
cients of a signal [1,2]. In many instances
the Walsh !r~ectrem of a signal is as meaningful m B sal~m,O)] (1)
as the Fourier spectrum, and sometimes it 4s II=l

preferable.: nevertheless, Secause of bandwidth The coefficients Am %nd B of the even and odd
restrictions of transmission channels, the Walsh functions, respectively, are defined by
Fourier spectrum curresnonJing to a given Walsh ra
soec.rum would often be required. Am f(O) cal(me)dO (2)

Given the Walsh coefficients of a signal,
the corresponding Fourier coefficients may be
evalaated by either a general-purpose or a ' 6 f(6) sal(m,O)dO (3)
snecial-purpose computer, using established m 0
conversion formulae [3]. In practical
conversion systems, two forms of truncation tihere m is the normalized sequency end 0 is the
error may arise. First, the word lengths in normalized time. The same function f(e. has
the system hardware may be inadejuate. Such the corzesponding Fourier series
roundoff errors are hcre considered to be
negligible. Since, in general, the conversion arg -e) ' COS2mi + bnsin2nnij (4)equation for each Fourier coefficient is an -2 n ol n
infinite sum of products of constants and the n I
given Walsh coefficients, a second and more where
important source of error is htruncation of the rl

infinite series since the number of Walsh an f(9)cos2wn6 dO (5)
coefficients will always be finite. (O

Signals fall into four spectral catcgories, f (6)1. Infinite Walsh series with .nfinite. Fourier in that fhsve ot i t)
series,

2. Finite W(,Ish series with finite Fourier and where n is the orfalized frequer..sy or
series, harornic number. It is desired to use the ralsh

3. Finite Walsh serios with infinite Fourier cowm ticlents Am and Bm in oaser to derive an and
series, bn. We first consider a cignals in r ate orf l ,

4. Infinite nalsh series with finite Fourin i.e., that hdve both inpfinite Walsh sptctra msd
series. infinite Fourier spectra,

For instrueItation parlposes, the last The even teros an of the Fourier series ofcategory is of T;articular interest;. It is a signal are functions only of the even terms
shown below chat If' a band-lim~ted signal with Am o.1 The corresponding Walsh ser~e-z.
a highest normali.:!d frequtncy component Similarly bn terms dep•,nd only in Sm terms.
(harmonic) N4 is applied to- Walsh analyser Only the efon terms are considered• below;
whoze highest normalized sequency component similar derivations apply foar the odd vnars.
readout is M., then all N Fourier harmonics of

the signal can be determined without trror,
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The Walsh to Fourier series conversion FrquMency-Limited Fu.ctions
relation is derived by equating the terms of
each series: Functions, other than constants, which have

finite Fourier spectra, necessarily haveL• aCOSWnO "L• Acal~~e)(7) infinite Wal~h spectra. If a function /f(O) is

ancos2wn-m (7) band-limited to become ?(e) with a limited
numiber, of harmonics N, and if ?(0) is apnlied to

The cal functions are expanded into sets of a Walsh spectrum analyzer (see Fig. 1) to yield
equivalent Fourier series expressions whose the first M Walsh coefficients, then the Nterms have coefficients an,m, whAre Fourier coefficients of f(e) can be determined

1 precisely from the MI measured Walsh coefficients,

an,' = 2 cal(m,e) cos2irp ds (8) provided that M > N.

is the nth Fourier coefficient of cal(m,O . The
i=n matrix of the set (an m) i- denotedTF. In
the expansion of the right-hand side of Eq. (7),

terms containing cos2rne are grouped, yielding Walsh A0
an values given by fde FpetrD

- ~~~LOW-pas SAn~alyser () I1[ _a W
an al n , m Am ( 9 ) 0a .
If a represents the nIl matrix of the set (an [ A,
as n;, and A represents the mxl matrix of the
se{A asm a , then

a. -rA (10)[J

However, if only a finite number M of Walsh

coefficients are known, then an can only be
approximated as an, where

a a a..An 1Ln "n-i n,u A (1±)
Figure 1. Walsh sp-ctrum mtplysi; of frequency-

The coefficients in can be considered a3 the licited function.
Fourier coefficients of a sequency-limited
Function. The mean-squared error introduced by
the approximation is Wriping

11- 0 1-,3)
Ila -i III II an'. 0 (12) ,, a cos2,m8 (3)

Thus approximation errors in the conversion are thei,
dependent on the Walsh series coefficients o0'
the signals. As M increases, errors tend to 1 cal(m~9)d6 (14)
decrease, but not necessarily in a uniform Am 0 f(O )
manner.

N ~
Since a number of the constants an are . [ cos2wr, cal(m,e)dJ]a,

zero, special ca,'es urise fo" functions'with n-I f0
infinite Walsh spectra and infinite Fourier
spectra where there is no error due t.
truncation of Eq. (9) )rc.ided that m > n. Orse A

such case is a sawtooth wave which is periodic i n- Aw, •n 3n-Ofor nN (nS)
over the interval (u,i); it hbs Walsh series

coefficients that are non-zero only for m-2x where Aw n is the nth Wlsh coeffi.ci#nt of
where x is an integer, so the conversion co-!rn8, In matrix form Eq. (IS) is written-
equation for each an has only 'ne non-zero term.

i - W A(16)
!qcouency- Li'dted Functions

Since
Signals with snectr" in c.mtegories 2 and 3

are sequency-limited, with Wslsh to Fourier A - a (0)
serie: ccnversion equations of the form of Eq. m,. *,m
(9). If AO0 for m > M, the meen-squaad " FT (18)
conversion error term of Eq. (12) is zero K T

provided that at lerst H Walsh coefficients Pre
used to evaluate an. One can solve for a in tam- of A o.
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S FT 1 (19) of a [2x x Ix] matrix F and the 2x diagonal

elements of K need be ;tored. Peripherals

FA = ½ F a K a say, (20) about the RO's are used to program each of the
converosion equations. Thus, one digital

so that processor can perforn the Walsh to Fourier, or
the Fourier to Walsh series conversion.

P - K F A (21) Conclusion

if K is non-singular. The set tan) can be solved As a general procedure for Walsh series
by a system of N linear indenendent equations. and Fouriev series analysis using a Walsh
Thus, m mut equal or exceed N. It can be shown spectrum analyzer, the gollowing procedure is
that • is indeed non-singular fhr M > N. Thus, adopted. If the first N Fourier coefficients
the first N Fcurier coefficients can be re- of a signai are to be evaluated,
covwred witft no truncatInn error. As 11-, K
berombs thR identity matrix and Iq. (21) reduces a) The signal is passtd through a luw-pavs
to Eq. (it). filter to obtain a functioi with 2 X o.

fewer harmonics, i.e.. the set a.
Dtil Relationship

b) The function is anaiyzed using a Walsh
A dual' relatj.n permits the determination spectrum analyzer to obtain the fir'st 2x

of Walsh coeffieitnt:s in terms of Fourier Waish coefficient3, i.e., the set A.
coefflcicnrs. Eq. (19) can be lisod to find the
Walsh *-jefflcienvs of a banl-livited function. c) fMe set A is used in a converter that is
7Thi M Walsh coefficients of a sequenncy-Iimited programmed to solve Eq, (21) li order to
function are derived from the first 1 Fourier evaluate a. !f onl17 the Walsh coefficients
hari•ciics, provided thst M > M. From Eq. (10) of the orIginsi signal art to be measured,

I. F- the lowpass filter is by-passid.FTa =FT F A '22)
Similarly, a Fourier spectrum analyzer and

sezies convercer can be used for orecise
' A F] .T a (23) 6valu,-ticn of the Falsh coefficients, provided

the signal is scjuwrncy filtered before analysis.
if [Fr F] is non-§ing~iar. For N-Al; i.,b., iobe
squari matrix F t0ax can be . verted, Acknowledgeients

A r- ½ F I a (24) The auth,,rs w-sh to thank ". DeIudi snd
E. horca for many tu~afrl suggestions.

It is seen that the aLovr equation i3 similar to

Eq. (19) for the band-livited case. As H--, 1;-I Refereatces
becomes an identity mvae.ix.

[1] C.A. Pass (Editor), Prtc. 1970 Symposiun:
Instrumentatio.i and Workshop on Applications of Walsh

Functions, We Y~ngton, D.C., Ap.•il 1970.
Digital hardvzre requirm.,.atz; for a s"&cial-

puz.vose ýouvicr to Welsh or Wash to Ilour'ev [2] R.W. Zeek and AE. Showal.er (Editors),

converter (cr 3oftwcre requiremmits for Proc. 1971 Symposium cp Applications of
cc-nu~ers -v i'chieve 6tese 'enus) are eased by WAlsh Fur.ctions, Special Issue, IEEE
using an 1,mportant ptoperty of the matrix K, It Tm-ans. Electyomagnetic Compa~ibility,
can be shown that for K,2-, w:icre x is cn integer, Vo2. EMC-13, AugtL-t 1971.
SdiAgons•lize z with diagonal b _ewents

,x (3] K.H. Siemens, Digital Walsh-Fourier

K I (a 2 (25, Analyser for Periodic Waveforms. M.Eng.
n ,n Thesis, McMaster University, Hunilton,

Ontario, Canada, 1969.

sinc'fn/2xl) , r. 2x

2sinz 2rr22 x2l) 2:

This property can be established by showing that
the vows -if F are mutualy o•toganal If
M - 2: > N.

The mrtricen F aid K recu, in each of the
canversion equations (VO)I (19. (21) anc (24)
for band-limited or sequency-ltlited finccions.
By tekinig ad,,antage ov' the diagt.ializinp.
nroperty of K, a minimum rmt of consraiut can be
stored Jn reac-on'r xemcries (RO.0,9 of a Jigitai
converter if M-1N2X. (fny thu non-zero riemerts
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DISCRETE WALSH AND FOURIER POWER SPECTRA

Guner S. Robinson
Member of the Technical Staff

COMSAT Laboratories
Clarksburg, Maryland

Introduction of a discrete random process. The logi-
cal convolution (or correlation*) func-

The Walsh powe'r spectrum of a se- tion based on th- mth window is defined
quence of randori samples is defined as asl, 2

the Walsh or sequency-ordered Hadamard
transform of the logical autocorrelation 1 x k j
functiun of the random sequence. The L(m)(k) = - x(jDk) no) (1)
"logical, autocorrelation function is N=0
defined in a form similar to the "arith-
metic" autocorrelation function. The k = 0, 1, . .. , N - 1
Fourier power spectrum, which is defined
as the Fourier t':ansform of the arith- where j D k denotes the modulo 2 sam of
metic autocorrelation function, can be the integers j and k.
obtained from the Walsh power spectrum
by a linear transformation. The chain In Equation (1) j and k are non-
of transformations can be s,'mmarized as negative i:ntegors less than 2 n - 1. If

F Gn = O1, 2, -, - 11
ijFourier ArithmeticPowrier Autchreti nrepresents the set of such integers,

Power Autocorrelation then every element of this set can be
expressed in binary notat4.on with n co-

Spectrumn Function efficients which are either zero or one.SF-1 Ti xt

TL-A TA -L
n-iW J = E Jizi

Walsn Logical i-O

Power Autoco'.relation n-1
Sk = F ki21

Spectrum Function i-G
W-I

Th.r the uperation in Equation (1)
The top half of this chain is known as meanr,
the Wiener-Khintchine theorem, while the
bottom half is known as the "logical" n-I
Wiener-Rhintchine theorem. Foz a giver j( k = j (jJiK) 21 (2)
process with computed or modeled auto- i=0
correlation function, the Fourier and
Walsh power spectra are computed by where Ji± ki reresents the modulo 2
n uing fast Fourier and Walsh transforms, addition ji.e., binaiy addition without
respectively. Examples arc given from iarry) opuration. That is,
speech and imagery data. =+ 0 = ! = 0

ýoaical Convolution*

Corsitler the following randomi se-

quence of lengtb N = 2', where n is an Table I shows the modulo 2 addition
integer: matrix fur the get G, =to, I, . . .,7 ,

where j indicateE the columns and k in-
x(jl, i -- C. If 2, . .,N- - 1 dicates the rows of the table. The

Sac" a sequence can bc assumed tc repro- 'DF f-M-convolution and correlation are
aent v window ýer a block of N samples) identin,ý] because modulo 2 addition and

substz'action are identical operations.
W'A.s-o 8di•.Led dyadic ucn1,oltL.ion.
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first row and column are all of the in- has a certain structure; I•.e., for any
tegers in the set G, in increasing n, if the matrix of Tahle II is divided
order, since che modulo 2 sum of an in- into two 2n'*1 by 2n matrices, then the
teger and zero does not alter the inte- elements of these matrices have odd sym-
ger. It should be noted that, for a metry proptrties for any k. This is
certain n, if the matrix is divided into equivalent to saying that, for any n,
four 2n/2 by 2 n/2 matrices, then each thi. right hall of the ahift n,atrix is
matrix is symmetrical with respect tc the mirror image of the left half. The
both diagonalE. Thus Table I can be particular symmetxy properties of the
generalized and extended tor n > 3 by shift matrix are the basis of the re-inspection, cursive relationship between the logical

and arithmetic autocorrelation functions
Table I. Modulo 2 addition, given which will be derived next.

by j ( k, for integers j and
between 0 and 7 Logical Aucecorrelation Functionj The logical autocorrelation function

0 1 2 3 4 5 6 7 is defined as the expected value of the.. . local logical autocorrelation function0 0 1 12 3 4 5 | 6 7 of Equdtion (1):

1 1 0 3 2 1 5 4 1 7 6 L(k) = E L m(k)l (4)

T ,d where the expectation opFrator E denotes
u o the a ensemble average of m logical auto-

de r co-relation functions; i.e.,
4 4 5 6 7 0 1 2 3

u5 5 4 7 6 i. e 3 2 the
6 0, 1. . . ., N -1

Si 3 2 The relationship between L(k) and theTa_ L "arithmetic" autocorrelation functican
Table er, whia h is derived from R ik) w gll be established next. For a

Table I, shows that computation of the btationary process the arithmetic auto-
dyadic autocorreiation function requires correlation function is even and a funo-

\varying amonts of time shifts for vaJi- tion of the time difference only:
0ous k. Time shift k*, defined eny theSrelationship Elx(j + k*) x(j)j = R,(k*)

j + k* = j' TDk (3) R(-kt ) = R(k*) (6)

Table I1. Time shift k*, given For a logical autoccrrelation function,by k* = lj(3kl, - j, for in- if Equation (1) is written in matrix
teý-era i and k between forr using the indices of Table I, one

0 and 7 obtains a linear combination of R(k) for

-2k-l each L(k). This relationship can be ob-JT_ tained recursively for any n.

0 1 2 3 1 5 6 7-_-"_-I--I Thn R(k) - L(k) transformation ntay be0 0 0 : 0 0 10 0 9 01 easily obtained by examining Table II.

The first row, which corresponds toSii I 1• l i 1-I !-iL(0), yields the correlation of N sam-
"- - pl~s for zero tkine shift; thus Equa-

2 2 2-2 - 2 2 -2 -2 tion (1) yields L(0) = R(C). TI.e second
I row, which corresponds to V'(1), yields

3 11 -1 -3l 3 1 -1 -3 the expected value of N/2 samples__ 4 - - - sa- shifted one element to the right and N/2

4 4 '4 C - -4 samples shifted one element to the r a ft.
Since R(-l) = R(1), the second row re-

5 5 3 5 3 1-3 -5 -3 -5 sults in L(1) = R(l). The Nth row gives
all of the odd shifts up to N - 1, both6 C 6 ; 2 -2 -2 -6 -6 to the right and to the left. The re-

I- 3ults are shown in Table III, where Lk
7 7 5 3 1 1- -3 -5 -71
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and Rk denote L(k) and R(k), respec- l 21 Pp
tively. It should be noted that

•. Lk/I, a 2- 11 CA P"O (9b)
I~k/P2 I I Pz 1 1 ,

which is similar to
S03 P2 P1

where CL is a dyadic matrix and CA is a
RBot]% logical and arithmetic autocor- Toeplitz aatrix. The discrete Fourier

relation functions can be isormalized by transform matrix F, whose elements are
R0 , since R0 , L0  02 jq the variance defined as
of the random signal. 1haz is,

E = Lk/a 2  (7a) {FJj,') 1 e-i (2/N) jk (10)

Pk = Rk/u' (7b) j,k = 0, 1, . •., N - 1i Table III. The relationslhip between i
logical and arithmietic autocor-

relation functions fc,- time does not diagonalize either ol tnese
shifts 1etween 0 and 15 matries.* The dyadic matrix of Equa-

tion (ga) can be diegenalied by a Walsh

Arthetc to Logica Logical to ritmc transform matrix W, whose rows are the
normalized discrete Walsh functions in

LO - r. A - L order of increasing number of sign
S" 'changes along each rcw. For example,

L 2' A2 - for N = 4,•iL3 - (R,*R 1/2 A3 " 2L, - Li

14 ' 14 L .L. .

LS - (R3.÷R5)/2 2L5 -2L3 *Z L -

L.6 * 2.0"6/2-L 2

Le ,R 1.

L9 " (P*Rg0)/2 R9 2, 2L04L"s2L +* +

i1,0 " (%÷•+•10 /2 PL 21•,'1zN'.2zm where denotes ±i1.

L,2 . ý,4+RIP/ " 21.'LnA•:4 dby Niscrete Fourier transform
LI:" (R÷*÷ý,a÷z"1/" :LL:": L:1-2L9_•-• I matrix diagonalizes a circulant matrix

•" ,.R,.R*R0l4•/ Oh'• whichi is defined as

C, = P[k - J) mod N]

Logical Covariance Matrix
i.e., each row is obtained by a circu-

Logical and arithmetic amtocovariance lar right shift of the preceding row,

matrices are formed as and thus the elements of the first row
Ssufficient to determine uhe matrix.

JCL~j k =a'Z(j 0+k) (8a) Vor example, for N = 4,

S-;)(j - k) (Sb) [
cc = C12 1P3 1 PI P2

For eyarple, !o p 2, pC2 j 1 P1

1 Z3 Z2 £P1 P

CL C2 I 3 £7 (9a) 2Pi2 k3 i t• ) 3l = - = o-.0I

Z2 £ 2 I i = 0, 1, 2, 3
L' 3 2
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Diagonalization of the Covariance XKL 02 +, +L
IMatrices =2 + 2- +

Let the matrix equation+4(• - )2+ (P 1 + P)p2

Y = TX (ll) (I P)

represent a linear orthonormal transform L=
of the input random process X. The co-
variance matrix of the output vector (p P, Iprocess ib, by definition, + _a +(,_•

FCy, = EI(Y - ý)(Y - ý)*J (12) XKL 02 +p 1 +p 3

where E is the expectation operator,
Y is the mean value of Y, and the _ ___ p,)2_+
superscript * denotes the conjugate (Pý + P2)
transpose.

Equations (11) and (12) result in 3 aL l p p

Cy-TCxT* (13) P32+_ _ + (p, - I•
where C, is the covariance matrix of the
input vector. If T in a Walsh transform
matrix, Equation (13) yields In the case of a circulant matrix,

Equation (13) results in a diagonal
Cy = WCLW (14a) matrix given by

since W* = W. The matrix C is diagonal Cy = FCC F* (14c)and the diagonal e7,rents are the Walsh
transform coefficients of the vector The diagonal elements are the discrete
4L 0 , L1, . . ., LN;1. (The prime de- Fouzier transform of the vector IP0, P 1 ,
notes the transpose.) For N = 4 it can P2 , P,1'. For exar.ple, for N = 4,
be checked that the elements ef the di-
agonal matrix Cy are given as X = G2(1 + PI + P2 + PO

a~l k2+£ + k1l I 2 l p - P2 + iP3)

0211. + k £X £ = a2(1 _ p1  2  3

- £o -- £- + ~XF = 02(1 + ip1 - p2 - ip3)

X .= C21l _ ZI + Z - Z3 The Relationshie Between Fourier and
Walsh Transforms of a Vector

If Cx in Equaticn (13) is the
Toeplitz form defined by Equation (9b), Given an input vector X of size N,
the linear transform matrix that di- the Fourier and Walsh transform. coeffi-
agonalizes CA is the Kachunen-Lobve cient vectors are defined by
transform matrix K, whose rows are the

iegenvectors of CA. For a zeal random YF = FX
process X, K is real but not.symmetric.
Therefore Equaticn (11) zesults in Yw = WX

Cy =- CAK' (14b) Then

where the prime den.tes the transpose. YF = BYW
Cy is diagonal and the diagonal elements
are given by the eigerkvalues of CA. For Yw = B 'YF
example, for N = 4: the eigenvalues of
CA of Equation (9b) have been obtained where B = FW is a complex matrix. Since
by using the decomposition approach F and W are unitary matrices, B is also
given by Ray and Driver. 3  If P3 < P2 unitary; i.e., B-1 = B*. The relation-
< p .< 1, then the eigenvalue3, in de- ship between the Walsh and Fourier
creasing magnitude, are
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coefficients is a one-to-one linear where PF and Pw are the Fourier and
transformation. Walsh power spectra, and F(j,k) and

W(j,k) are the discrete Fourier and
Arithmetic and Logical Wiener- Walsh transform matrices, respectively.

Khintchine Theorems
This chain of transformations gives

Let Y(k) be the Walsh transform of the linear relationship between the
the sequence x(j) representing the mth power spectra in the Fourier and Walsh
window of the time function. Then the domains; the left half of this chain is
energy spectrum of the window is defined known as the Wiener-Khintchine theorem,
as SM(k) = jY(k)jI for k = 0, 1, . . , while the right half is known as the
N - 1. The Walsh power spectrum Pw is logical Wiener-Knintchine theorem.
defined as the mean of M local energy
spectra: Recursive Relationships Between

Logical and Arithmetic Auto-
1 correlation Functions

w) = S,(k) (15)
m=1 The transformation given on the left

half of Table III can be written in
Gibbs' has shown that Pw(k) is the Walsh matrix form as4

transform of L(j) (the logical Wiener-
Khintchine theorem); i.e., TAL = DNTN (16)

Pw(k) -y L(j) where DN is an N by N Oiagonal matrix

whose elements are given by
This transform pair is defined explic- whselmnsaegvnb

itly as d(j,j) = mj,

Pw~k) U-1 j+6,O

Ik E L(j) wal (k,j,N) m(j" = 2 Vj-1+6(j'0) (17)
j=0

j =0, ,2,.. .,N - 1
k =0, i,.1 , N - 1

In Equation (17) V. represents the
N-1 number of l's in the ginary representa-

L(j) =, Pw(k) wal (k,j,N) tion of j, 6(j,0) is the kronecker delta
k=0 function, and mj is shown in Table IV

for 4ntegers between 0 and 15. In Equa-
j = 0, , , N - I tion (16), TN is an N by N matrix which

where wal (k,j,N) is the discrete Walsh Table IV. Elements mj of the
function of length N defined over the inverse diagonal matrix DN1

normalized interval from 0 to 1, k is for integers between
the independent variable taking N = 2P 0 and 15
discrete values, and j is the number of
sign changes over the unit interval. N J_ _ _

The power spectrum of a random pro- (n)I Decimal Binary j mj

cess is the Fourier transform of its
autocorrelation function. That is, 0 0000 0 1

1 000i 1 1
PF(k) F>_ R(j) 2 0010 1 1

3 0011 2 2
If the linear transformation shown in 4 0100 1 1
Table III is denoted as TA.L (transfor- 5 0101 2 2
mation from arithmetic to logical), 16 6 0110 2 2
then, for a given random sequence X(j), 7 0111 3 4
the power spectra in the Fourier and (4) 8 1000 1 1
Walsh domains are related as 9 1001 2 2

10 1010 2 2
F(j,k) TA.L W(j,k) 11 1011 3 4

-- - ---- 12 1100 2 2
PF(k) Rj) L(j) Pw(k) 13 1101 3 4P M 14 1110 3 4

F-' (j,k) TLA W-'(j,k) 15 1111 4 8
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can be generated recursively. (The re- 1I ................
cursive nature cf TN is essentially out-
lined by Pichler. 4 The use of the shuf- .1. ..... ..............
fling matrix introduced in this paper . . . .. .............
clarifies the recursive algorithm for
TA-L and its inverse.) TN can be gen- .1 .. .............
erated from TN/2 as .... . . ...........

TN/ 0/ • . 1. 1. 1.............

T N,= (18)... .•.....1.........
)N/2 S . 1.. 1... T N..........

N =1, 2, 4, 8. ..... .. .1... 1 .......
N 2n.1.......

A... .. 1•.l.........
n = 0, 1, 2, 3, . . . 1 . 1 . 1 . 1 .

where the shuffling matrix SN/2 is an .... 1. ....... 1 .
N/2 by N/2 matrix whose elements are all
zero except those unity elements which

are one element off to the right of the * .1... 1.. .1... 1
SW-NE diagonal. For example, . 1 . 1. 1 . 1 . 1 . 1 . 1 . 1

S, =0

.1 ........ ...............

K.- 1 . . . . . . . . . . . . . .

1..-... . . . ............

:1.- . .- . . .. ........

S4 * ..-..1.... .. .. .. ...

where each dot denotes a zero.
. 1. .. 1 .- i . 1.........

The inverse of TN is . 1.. .- i . . .1......S~~~[ T•) 2  0 ] .1.1.i...i.1. .

TT -' T - (19) ....- . .........1...

S. / N2 ..-N./..

and the recursion starts with Tj' = 1. . .- i........-i . . . 1 .
As an example, TN and TR 1 are shown next .- i........-i . . .-l . 1
for N = 16:
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The linear transformation TLA, which imagery data, there is a high correla-

gives the relationship between the logi- tion between consecutive samples. A
cal and arithmetic autocorrelation func- typical value of the correlation coeffi-
tions, is the inverse of TA.L of Equa- cient is p - 0.9.
tion (16). That is,

The discrete Fourier power spectrum
TL.A = Tj1D-1  (20) is the Fourier transform of the sample

autocovariance function multiplied by a
where DVj is an N by N diagonal matrix suitable weighting function. The
whose elements are given by mj, j = 0, weighting function used is the Parzen
1,.. ., N - 1, of Equation (17). kernel:

The simple transformation between the I - 6 + 6N-1-
arithmetic and logical autocorrelation
functions suggests a more efficient way
to compute R(k), k = 0, 1, . .. , N - 1. for Ikl <
Computation of L(k) requires the Walsh
transform of the sequence and the Walsh 1k 3
power spectrum of Equation (15) obtained h(k) =2( kby averaging over overlapping windows. 2 1

Then a second Walsh transform (the in-
verse Walsh tra.tnsform, which is identi- f 2 IkN - N
cal to forward Walsh transform) yields -- --
L(k).

The fast Walsh transform can also be for Iki > N - 1

used for computing the crclic convolu- For N = 32 and p = 0.9, R(k), h(k), and
tion of two time series. This approach their product are shown in Figure 1.
requires less multiplication than the This figure also shows the unweighted
FFT technique for sequences shorter than case for p = 0.5. Figure 2 shows the
N = 1024. logical autocorrelation functions ob-

tained from unweighted and weighted R(k)
Examples by using the relationships given in

Table III. The discrete values on the
First-Order Markov Process curves are joined by straight lines to

show several cases on one curve.
Experimental evidence indicates that,

for most imagery data, 6 ' 7 the ' rst- Figures 3 and 4 show the Fourier and
order Markov process is a reasonable Walsh power spectra computed from un-
model for the one-dimensional auto- weighted R(k) and L(k) by means of fast
correlation function. For sampled Fourier and fast Walsh transforms. Fig-

"images, the autocorrelation sequence is ures 5 and 6 are the same as Figures 3
and 4, except that N is equal to 16.

R(k) = R(0) plkJ One should note the similarity of the
Fourier and Walsh spectra to the spec-

k = 0, 1, 2, 3, . . . tral representation of the first-order
Markov process in terms of the first

where R(0) = a2 is the variance of the 16 eigenvalues of the covariance matrix
signal sequence. For an image frame of (Figure 7).
L by L samples (L is typically equal to
512), the biased sample autocovariance Speech
function has been computed (for N lags)
for each line of the frame Continuous speech of 30 seconds dura-

tion was sampled at 8000 kHz. The
L-k speech material consisted of five test

1k x(i) x(i + J sentences read by a male and female
R ) = talker.0 For N = 32 lags, eigure 8

shows the computed autocorrelation func-
k = 0, 1, . .. , N - 1 tion for the male talker, unweighted and

weighted by the Parzen kernel. Figure 9
and averaged over the total number of shows the weighted logical autocorrela-
lines. It is seen that, for most tion function [obtained from h(k) R(k)]
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and the unweighted logical autocorrela- 2. J. E. Gibbs and F. R. Pichler, "Com-
tion function for the male talker. Fig- ments on Transformation of Fourier
ures 10 and 11 show the Fouriet and Power Spectra into Walsh Power Spec-,
Walsh power spectra computed from R(k) tra," Proceedings of the 197] Sympo-
and L(k) by means of fast Fourier and sium on Applications of Walsh Func-
Walsh transforms. Figures 12 and 13 tions, Washington, D.C., April 1971,
show the Fourier and Walsh power spectra pp. 51-54.
for N - 16 for both talkers.

3. D. W. Ray and R. M. Driver, "Further
Figure 14 shows the spectral repre- Decomposition of the Karhunen-Lobve

sentaticn of the speech process (consid- Series Representation of a Station-
ered to be stationary for a 15-second ary Random Process," IEE? Trans-
duration) in terms of the eigenvalues of actions on Information Theory,
the covariance matrix. One should note Vol. IT-16, No. 6, November 1970,
the appearance of a more complex for- pp. 663-668.
mant structure in the Walsh powez spec-
tra (Figures 11 and 13) if no weighting 4. F. R. Pichler, "Some Aspects of a
is used; the first "spurious" formant Theory of Correlation with Respect
appears at an odd (namely third) multi- to Walsh Harmonic Anal7sis," Tech-
ple of the first formant.9 Hence, the nical Research Report R-70-11,
effect of weighting is to reduce the ef- Department of Electrical E:agineer-
fect of high-order Walsh coefficients. ing, University of Maryland, College

Park, Md., August 1970.Summary
5. D. A. Pitassi, "Fast Convolution

The recursive relationship between Using the Walsh Transform," Proceed-
arithmetic and logical autocorrelation ings of the 1971 Symposium o-nthe-
functions of a stationary process is de- Applications of Walsh Functions,
rived. The Fouriez (Walsh) power spec- Washington, D.C., April 1971,
tra are computed from the weighted pp. 130-133.
arithmetic (logical) autocorrelation
function by means of fast Fourier 6. E. R. Kretzmer, "Statistics of Tele-
(Walsh) transforms. Examples from vision Signals," Bell System Techi-
speech and imagery data show that the nical Journal, Vol. 31, July 1952t
discrete Fourier and Walsh spectra pp. 761-763.
closely resemble the spectral represen-
tation of these processes in terms of 7, L. E. Franks, "A Model for the Ran-
eigenvalues and eigenvectors of the co- dom Video Television Sygnals," Bell
variance matrix. System Technical Journal, Vol.

April 1966, pp. 60-6307
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MUTUAL MAPPING OF GENERALIZED CONVOLUTION SYSTEMS

by

H. Gethbffer

Technische Hochschule Darmstadt

Fachbereich Nachrichtentechnik

Darmstadt, West-Cormnny

Introduction mensional space the standard bmsis is defined
in the usual way

The theory of linear continuous time systems,the dynamic differential systems, is well known E = ego1t
and advanced [1,2,3,4]. The name system thee- _e .-[0 • ...... -2ýn1

ry has been first introduced by K(lpfmUller in
his famous book on system theory in communmi- where e . .e2, denote the wnity vectocs. The
cation [1]. in recent years Cie system theory first unl•y vector e^ is also called discrete

has been generalized to a mathematical concept unit impulse J and %t"•s is closely related to the
for abstract relations between input-and output- Dirac's function ii. contirnious sysltems.

spaces even for non-physical systems. The
map in time-differential systems is given by 1
the Fourier- and Laplace-transform because the c0=6(0
frequency domain description is usually clearer 0
than the time domain representation. Modern

an increasing If the inputsignal is a unit vmpulse the orut

manner by numerical methods, digital computer function is called system response or system

simulations and system synthesis by digital function. With respect to the defirition of t.he
hardware circuitries[ [5, 6]. Therefore the theo- standard base the discrete si,3nals are written
ry of generalized linear discrete systems must a o- etr

be advanced. Using suitable generalized samp-
d rling theorems the transition from the continuous ,Y f t holto the discrete domain will be possible[7]. yx0 1,Y

Folowin inpumt-ouaticlpuoreaiont The mairi Hiea is cale sytmtrxadi

crate system theory is linear algebra and o- = [on-
venient matrix notations are used in this paper.--k 3First a short introduction to discrete generali- lyn- •Yn • |•n_/
zed convolution theory will be given. 12-2-i 1

and the matrix notation of the convclutior. ks

Generalized Convolution given as

• v = H x= h*x

,Many discrete linear systems are described by
,the following input-output-relation The matrix H is called system matrix and in

2an1 the special case of convolution the matriz H is
generated by a general li ear operator called

y(v) =E h(v,k) x(k) trnlto (0
transatio operatorY

k=0

with the integers Vik i N (n) = 10, 1 2 ... 2n-1) Hi = [hJV)ly III2)hi..4V(k)W ... (2'U )

The equation above represents a generalized W () () (rIconvolution system. In the finite linear 2n-di- H-[ih1[h2•Il~).. •(n.)
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IThe translation matrix V (0) is the u~nity matrix nuous time-clif~ferenLial svsteni and the ec:;nera-
E and the cnolumns of the convolution matrix~ H lized discrete spectral transirrm G by the La-
are gtven as place transform we ~ot the well known convo-

h~) ht x(t) -Xe Y(p)=H~p)X(?)

Iftn b~se c alledi i aoregulatrx or ma x2in

mtrix ofithe2 ienuectrs-.4,a dn transform equires
thie diceterm ctonvolutheneigenapleesbandhe ieni-

ecitor týansc giv ntby the followngl equationste

det(.L6-1~ = 0iqki

Thus .3e ienauso the convolutionthoe isefnda

trixI tofs gthrlie systemsos the tranfnsforqire
thei dependingio on the convolution opnato ande

1 ~~~~ ~~~convolution systemsteeisaoct-neor

Using ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i thdoain fPcir1]addfnn espondence beoen the eovouignoenratue r andth

a componentwise multiplication * the theorem system function givent as
reads as =GA05

G h = xGh

and the determination of th6 eigenvalues and
with the following notations eigenvectors is ruduced to a linear transform.

The convolution theorem now reads as
=G X 

Y

0~ and the system configuration of figure 1. is

.=1:1 simplified to that oi figure2.

and the point-wise multiplication of the vector
entries

1 A i .

We call the diagonal matrix of the eigenvalues
spectr3l matrix and the vector of elgenvalues - 2
spectral function of the system. A basic block
diagram is presented in figure 1.

If we replace the discrete system by a cont'.- Figure 2. Spectral representatilon of special
convolution systems
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For a physical rev'isation Zask tho following In both eystems the input function must be the

theorems must be sitisfied same. There exist three basic mutual mappings

Causality: The system Is non-anticip-ative, between the two systems and we define

if &e rystem matrix is a lower 1) mutual input mapping

tri gngular m atrix. "(a : a (b) : a (a)

witJh the defi.nition of causality
h (v, k) = 0 for v< k•(b ý x (b) -•. ( b) YHbS= (b)

the system matrix is given by 2) mutual output mapping

h0') Y Y(a-',b) Y (a)'t Y(b)h (1,0 0 for 0

h• :, h, : h yE(b-a) : -(b)' X.(a)

hu, o V'1 h, .

h 2R 1,0 h.,n_ 1, 2 n- 1 3) mmutual system mapping

Shift invariance: A linear discrete system (4b) (b) ' Ya)

is shift invarint iffeach AG(b--a) x (a)' 2 (a) Y(b)
shift matrix V commu-
tes with the system matrix.Preof whFigure 3. is illustrating the three basic maps

Pro'of:
(k) (k) H k)-l (k) between the two linear discrete systems.

= V V(k)_

Blesides this invariant shift matlices must sa-"-0" --

tsyhefollowing theorem: * /• -

The first column of the k-th shift matrix
is identical with the k-tb unity-vector. •0j 1

Proof: (kW(k) (k)-1 Sm nsform

=() y.k v k) e0 Figure 3. Block diagram of the three basic

(k)(k

-JI, = _()e0=He mappings between two linear systems

Convenient matrix descriptions of the basic

Mutual Mappings mappings are presented as follows:

Two arbitrary systems with different matri- X(a) = X(a)X •(b) = X(b) x

tices are distinguished by the index (a) and (b).
Using the matrix notations of the foregoing The input mapping is done by a linear trans-
Schapte ntw write formation ha , X,,,• representing also

discrete systet ns deYrifed as

•(a) JJ--±() x •-(b) = H b)t -1 x -(a) ( ((b) H(a), (--(b) = _S(a)tm(b)

(k) F e B d

2k mappings between ........ linear sys.... tems..... .........



The two inplý. transform systems are mutually The convolution theorem now reads as
inverse

_(a) b ((b)a) (a'b)(b)

_Ga (hb• ~x)(b = -H b CaGQ~~

The mutual output transform defines the rela- -(a) -(b)' (b) h(b-a)(a)

tions between the outpvt-tunctions of the dis- The transformation onto the spectrd domain of
crete systems also representing an output-trans- the other system is shown in figure 4. Thisform system wit.'i the system matricesthotesyemisow inigr4.Ts

map will allow a comparison between two ar-

= H -1  bitrary convolution systems in the spectral do-
Y(i) =--(a--b) Y-(a) -(b) -(a) 1(a) main. By means of mapping high sophisticated

convolution systems onto the spectral domain
X( = a) Yb-a) 2-(b) H (la) h 1(b) of well known systems as for example onto thediscrete frequency or Fourier domain this also

will help us to have a better understanding of
and also the output-transforms are inverse to

new convolution operations.each other

L(a'u) = _(b-#a)

For a spectr3l representation of the two systems S tomwe use the spectral-output-transform defined as System - . -

1(b) -- •(a-b) !(a) = G(b) Y-(b)

2(a) = (b-4a) 2() ~a .5]lk .)H
1

7 Diaci(X ).9 C 1 Diaq(ý-)
WOW (b) (b) 'ýj ) ia)

1 Figure 4. Mutual system mapping2( -a= DiagQi~a)) G aG~;Diac(d-' )a i(a -(- G. Because calculations operating in the spectral

i(b) dorain with the spectral functions are often
and and are the spectral outputs of easier than the convolution operation in the ori-
a n ms. --(b) ginal domain we now derive matrix notations

tesym. using the spectral functions

We are now interested in developing matrix no-
tations for the mutual system marping.Tne two A _(. -1
convolution systems are mapped by the two H(a--b) - (b) 1a)i(a)-(A)-- (b)
similarity-transforms onto the diagonal spectral
matrices G -1

miAgar c ) G H ( - -( b -*a ) - - ( a ) G( b ) D i -( A i( b ) )-G -( b ) - -( a )
DirqX(a)) -_(a) --(a) G(a)

_H whereRGab) G -1
i(b) = -(b) -(b) (b) (b) _(a) (a..4b)

If the two considered systems are different -- ) )G'b"-' T'b-a"
the following transform yields no diagonal spec-
tral matrices and we call the matrices T mutual spectral

IHtransform with the following relation

-(a.+b) -(b) -(a) =(bI I

-G HI (a-4b) -(b-#a)

(b-ta) 2 (a) -- (b) G-(a)
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In the special case of integral transforms in The matrix is symmetric and orthogonal
linear continuous systems there werc given in
[10] three-dimensional representations for the
inutual spectral transformatooa of Walsh- and 2 n- F-

trigonometric functions. The cyclic coihvolution theoxem is defined as

Cyclic and uyadic systems F (h x) = * ^

In the foregoing chapters we have derived some The basic rules of dyadic convolution theory
general matrix notations and now we want to were first introduced by Pichler [12,13,14]
apply this on two systems: circular and dyadic and Gibbs [15,lu].A short introduction shall be
convolution systems. given here.

The circular or cyclic convolution is well known With
and that becatuse of the sLrong physical back- h(vk) := h(v,•k)
ground. The differential-systems are replaced
by the difference-systems and the input-output the dyadic convolution is written as a special
relation is given by case of the generalized convolution

2n - 2n- 1

y(v) = , h(v-k)x(k) y(v) = Z h(vck) x(K)
k=O k=0

v, k c N(n) = [0, 1,.2 ..... 2in s The dyadic shift operator may be defined as[15]

The relation to the generalized convolution is(k) = e

h(vk) h(v-k)mod 2n
The dyadic convolution is written in matrix

If we have notation using the dyadic convolution matrix

h(v,k) htk-v)nOd 2 n
= h2 x = Dyad(h ) x

we call this system a circular correlation sys-
tem. The shift operator is represented by a because of the commutative operation 0D the
unity matrix with permutad columns defined as dyadic convolution matrix is symmetric and

dyadic convolutic-. and correlation are the same.
(k) The dyadic convolution theorem is given as

The convolution matrix is a circular matrix W (h ® x) = h 0 x =

and the cyclic convolution reads as
with the Walsh-similarity transform

S= h-* x = Cycl(h ) x WDyad(h ) W- = Diao ( .2)

The similarity transform is given by [ill where W is the real Walsh matrix and h ,

are the Walsh transforms

F Cycl(h )F = Iiaa(h.)
W =W'= 2 W-

F is the complex Fourier-matrix defined as
A Ah^=Wh X^ Wx Y WA

F = {exp ( -j21rik/2")}
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Dyadic systems have net the same physical and in this special case only two entries out-
interpretation as cyclic systems and this is side the diagonal will exist. A block diagram
why not all applications are based on dyadic of the dyadic filter in the Fourier domain
system theory. But the d ,adic system theory is presented in figure 5. FFr and iFFT perform
is a very young theory and there exist already the transformation and inverse transformation
interesting applications. The main reason there- with fast algorithms. The linear transform
fore is given by the Walsi matrix and its ex- and the non-diagonal spectral multiplication
cellent properties. There exist fast transform scheme represent the proper system transfor-
algorithms reducing the required operations mation. In cyclic convolution the block named
from 2 2n to n2n and in Walsh transformations linear transform is replaced by the Fourier-
only additions and subtractions are required, transform and the multiplication scheme is

We are now interested in the mvtual system completely diagonal. We see now, how dyadic

transformation of dyadic convolution onto cyclic systems are to be described in the Fourier

Fourier systems. This will help us to have a domain: additional linear combinations are re-

bettei- understanding of the dyadic operations quired between spectral components.

by means of explaining dyadic systems in the
discrete Fourier domain. The mutual system
mapping is given by o- -

-1 -1 -. '-

Yy = -- Dvad (h)F FF. E.r iF

-dyad - V

wi the system transform 4
H ~ -•c) = F Dvad(h ) F- 1

U(d~c) - h h0 h, hA

Hd -- F Dyad(h) -- ' Linear
-dc _ Transform

2 t t

Generally the system transformation is not dia- hc h, h, h3

gonal because dyadic convolution matrices are
only diagonalized by Walsh-transform and not
by Fourier-transform. Because of the symmetry Figure 5. Dyadic convolution in the discrete
of the matrices the mutual system transform Fourier domain
is symmetric Using the Walsh spectral function given by

H(d-1c) (d4#) W___ h

where h is the dyadic system response theThe mutual system transformation H (d-c) has where of the dyadic system re adsonl 2 dffrigdleens)ndmapping of the dyadic convolution system reads
only 2 n differing elements and

(2-22n-1)13 zero entries. 1

For n=2 the transform is given using the sys-- = "(d-)--F-WDi-- h(i )--

tem response enries h 0 ,hlh 2 ,h 4 by 2

h0+h1+h>+h4) 0 0 0 The transform of the circular convolution onto
0 - h4 the Walsh domain is written as

'dA 0 .-j!2(h -h ) 0 1/2(h -h9
(d-c) 0 0 (ho-hl+h3 -h) 0 .Xcycl nW--C-cl(h) WW xc 0 1/2(h -h 2) 0 j/2(h -h 3)

with the mutual system mapping

The entries of the transform are themselves A I

linear combinations of the system function h HT W C-c-O. W
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The transform of a circular matrix yields no transform and the diagonal multiplication of the

diagonal spectral matrix, but only vector components the system turns to a dyadic
convolution system.

(2 2n +2)/3

entries are differing from zero and also 2n

aeonly different. If the system response is y
areal function the systern transform is also Y

a real matrix and no complex operations are Fwr
required as in the Fourier mapping. Using fast _
Welsh transforms FWT the total number of ope-
rations consisting only of additions and sub- 3 5 -
tractions is redluced to n2n. An algorithm for
this transform has already been given [17] ho 1, h 3i

and the so-called cyclic fast Walsh convolution
works even fastei than the fast Fourier convo- Linar

lution.

For a system with n=2 the mutual system trans-

form is written as % h, h2 N3

(h0ohhh2.h3) 0 0 0 Figure 6. Cyclic convolution in the Walsh
0123 domain

0 1/2(ho-h2) 1/2(h1-h3) 0

-(cdFd 0 -1/2(h h ) 1/2(h -h ) 0 Conclusion
1 3 0 2 Concusio

0 0 0o(h-hl+h-h 3
0 1 h2 Dyadic and cyclic convolution systems are only

special systems under a generalized theory.
where h 0 1 hlhh 2 ,h 3 are the elements of the sys- In linear systems there exist close relations
tem response. between different systems and three basic map-
Fourier convolution systems are ofteii described pings are presented here. This will help us to
by the spectral function defined as understand new systems by well known ones if

ue map the new systems onto classical domains.

P =F h The mutual mapping will also give us new
-F - methods for the realization of classical tasks

in a new system.

The mutual system transform using the spec-

tral representation of the cyclic system is Acknowledgement
then written as

The author wishes to thank Prof. W. Klein
H = W FDia(h _ 3y for stimulating this work.

(c--d)= - - W- i~h. FW
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A CLASS OF EFFICIENT CONVOLUTION ALGORITHMS

Warren F. Davis
Max-Planck-Institut fUr Radioastronomie

53 Bonn, West Germany

Introduction

Pitassi [(] has described an effi-
cient algorithm for forming the cyclic
convolution (or correlation) of sample

sequences of length N = 2n. Each iter-
ation of his algorithm requires three
sub-convolutions of sequences of length
one-half the starting length for that
level of iteration. The total number of
multiplications is thereby reduced from

the classical value of N2 to 2 . 3 n-l
Successive halvings at each level of b"
iteration are accomDlishei by pari- L
section [2] of the input and output se- !
quences. This techniqe is remarkably
similar to one of two distiact methods
employed in the dezivation of the FFT, l|
decimation-in-timo [3J. The other FFT
method, decimation-in-frequency, in-
wolves successive halvings by bisec-
tion.

By analogy witl the two FFT methods, Figure 1. The general. form of one iter-
efficient cyclic (periodic) and linear ation of the algorithms in
(aneriodic) convolution algorithms can the class. The flow in the A,
be fiund by the methods of parisection B, and C-planes is specific
and bisection. Thus Pitassi's algorithm to the kind of convolution
is a member of a more general class, and the method of derivation.
All algorithms in the class are charac-
terized by three sub-convolutions of
half-length sequences at each leve' of Operators and Notation
iteration. Moreover, these algorithms
are more efficient than 2FT convolution Sequences to be convolved are as-
methods when suitably short uartial sumed to be of length N = 2 n. hey will
resultsare required. be represented by column vectors, de-

noted by overbar, with element indices
Figure 1 is a schematic representa- in the range 0,1,.. .- 1. For example,

tion of the ý,ennral form taken by one
iteration of ary of -he algorithms in
the class. input vector I enters plane xO
A, vc.ctor 7 plane B, and the output F is x
taken from plane C. The three character-
istic sub-convolutions are represented X x 2
by the boxes a, b, and c at the junction
of the A, B, and C-plenes.

The complete algorithm for the gener- LN-1J

al case N - 2n is obtained by itera-
tively substituting a form similar to Te cyclic convolution of two se-
Figure 1, but of half-length, intu each quences 3 and 7 will be denoted by@_
sub-convolution bcx. The algorithm is If Y @ 7, then
complete when convolutions o' length
one are finally required. We shall spe- N-i
cify, in the derivations which follow, r =k x Y)
the specific flow which must comprise op 0 (p+k)mod NP
planes A, B, and C for each technique.

(k=O,l,...N-1)
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Linear convolution will be denoted by .
If ••'•i*, then 0 + (4)

N-1-R All three convolutions are distributive
r. x (2) over addition and are sensitive to the

k p Yp+k ordeL of factors. In general i 0 y 77 *, O®7 0 7@19 and 7 0V@
(k=,l,. . .N-1) The operators 0, E, L, and U (Odd,

A third convolution, which we shall call Even, Lower, and Rpper) are defined by

the complementary convolution, will be (E-•) Xk ( X ,denoted byj . If =F -3 , then k A kL'-- k

(5)ro= 0)(OX-)k= X2k+l , (Uk ' XN/2+k

k-1
rk Coxp+N-k Yp (k=O,l,...N/2-1)

These are illustrated below for the
(kinl2,...N1)case N = 8.

Fiaure 2 illustrates these three con- x - T
volutions for the casi X = 4. It is01

clear fiom thte figur, and can be ver- x2 x3
ified f-.om (1), (2), and 3), that ER x4 x5

YO '.X It x.
" .3 1 1 , 4-

Y'3 X3 3K2 'I 0eXXI

r0 r, r. r 3

Cyvclic Conv•Iution;

Y XO Method of Bisection•
¥! x x

(b) 1 ' I ? - The input tequenccs W and 7 and the
Y2 12 M1 10 output seqqence*F in the cyclic convo-
Y3 LX2 1 xO lotion ' = 3 7 can be partitioned

into upper and lower parts.
ro "$ •'2 r3

Vr Lx~ * Ly + UR * Dy + LR 0*Uy7

YO 0 3 X2 'I + U ' r 6
Y 0 x3 X2 U? - LX * 9 + UR * Lg+ Lyj. 1 ?()Y 2 1 0 3  + U

The oria~n of each term of (6) is
ro r, r 2 :-3 cloarly asiociated with one of the tri-

invular areas shoa* ip the example of
Figure 3. Each term may be formally
ver fied from the definitions (l)-(5).- Figure 2. Cyclic (a.-, lirneaz (b), and In the su•bsequent de•ivrat:uns we shallSco~mlementary (c) cor.volu- again us6 only the oxerator notation

Ftions of gR an Y for N = 4. gnd visual term ideni'iication provided

The i-rch 2lentent uf the t- by a •artitioned diagr&m such as FigureSsult F is the suzi of products 3. in every cace the validity of the
" between the elzmentu of "f and operator equal, )n can be vel'ifiea for
horizontall..y opposed elerre,'te &13 positive r: from the fo.mal defini-

-- " !oi ill the i-th colummi, tions.



than one way to decompose the original
convolution into three sub-convolutions.
Each decomposition leads to a distinctr Yo Xo .6SX x INX3 '2 X1 algorithm.

S N % Figure 4 illustrates one iteration
Y2 X2 1 -xIC•17 X 6 x5 X4 %'3 in the A, B, and C-planes according toX X X X

Y3  3 x2 0,J 7  6 x5 x•

Y O, 14% r3 12 Ii r4oN X 7 36 X 5 Yo
Ys 5 1 4 '-X3 X2 1~ .0%,0 7 X6

Y6  X6 Is IZ%\13 j2 X1 1 S'%XO%7

Y7 X7 X6 IX 54 1ý 3 X2 Ii X0\ X2 Y

ro r,1 r 2 r 3 r 4 r5 6 r7t'M\/ N\ V

Figure 3. Decomposition of cyclic con-
volution F - 5 by bisec-
thon for the case N - 8.

If the operator identity (4) is used x& Y,
to eliminate ýhe complementary convolu-tions [@in (6),

LF = (LY - UR) * (Ly - UY)
+ L.X@V +(7) - A---D -- b-

UF - -(LE - UK) * (LY - UY7)

+ L®@L7 + U@Uy-

Relations (7) can be expressed in terms V2- ro
of three sub-convolutions of sequences I. \r
of length N/2. Let 1 1Yr

9 - L5 + UR) @ (LY + UY) , a 2A / //
-= (L - ) @ CIY- ( L Y ),_ / '

then =*

LF - E + 1/2 ( - b),
uF = -6+ 1/2 (T +S). (9),•,v

Alternutively, (4, can be used to
eliminate the linear convolutions * in r,
(6) and sub-convolutions defined, \ .

S(LX, + US) @ (Ly + UY), rG

S- (LK - Ux-) s (LY - U'), (10) _7

so that

S1/2 (1/ + U) - ,
• 1/2 ( +Figure 4. One iteration of the algorithm

"UF - 1 + for cyclic convolution by bi-
section acco.'ding to (8) and

Results (9) and (10) illustrate that for (9) for F o 8. Broken lines
each convolution type, cyclic or linear, indicate dlegation. The scale
and each derivational method, bisection factor 1/2, shown adjacent to
or parisection, there is generally more the appro~riate lines, can be

-320 accomplished by shifting.
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(8) and (9) for the case N - 8. To iter-
ate further we must employ the linear
convolution alcorithm derived below.
Figure 5 illistrates the complete A, B, X0
and C-planes of the algorithm for N - 8. X,
Bit-reversal of th. order of sequences
must be introduced in the complete al-
gorithm at the transitions between X3 N - r-.
cyclic sub-convolutions by bisection
and linear sub-convolutions by pari- 3.
section. There is no algorithm within
the class for linear convolution by bi-
section. Hence the algorithm shown in
Figure 5 is an hybrid of the bi- and
parisection methods. x- 2M

Method of Parisection )M

The input and output sequences of the
cyclic convolution F - R• ® V may like-
wise be Partitioned into equal croups
accordina to the index Parity of the
elements of the sequences.

E - EZ () y +OR()0
(12)

O~inO~®(EV 3X~O Y1

This is illustrated in Figure 6. The
prime denotes a cyclic shift of the el- -,
ements of the sequence. If V is of 3
length M and - (V)', then

Zk V (k+l)mod M (13)

3M

For the case 11 ef8,

My,) Y4

(E•)' 8 Y6

Boxes labelled 2M and 3M have two out-

puts each to the C-plane and perform,.. -- ••~'•••/

two and three multiplications, re- I, /i
spectively. 3

Io j-o fI obe I-o b,)/

Figure 5. Cyclic convolution by bisec-
tion for the case N - 8. The - "
basic iteratiop is from (8)
and (9), tut the algorithm
for linear convolution by
parisection must be intro-
duced to complete the flow.
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Y0  X%\ x
I ? -%% in (14) to rewrite U.

" Y2 x2 XO, NXoN6 1 4 XI" '7 x5 '
Y4X4' ,,, 1 .7 X5 U= (03F g) E-'y) OF (O)E!? . (16)

Y 6 x6 x x2 X o • 5 x3 x 1 " ,x 7¥i7 j- %o0 K? 1 4 32 This is simply the slipping algorithm

YJ XI'N7 X5 '3,.• xO6 N x2 • .apnlied tc. O1 j EY. Figures 9 and 10
Xil-istrate one iteration and the com-

7 5  3 1 6 4 14 2 0

Figure 6. Decomposition of cyclic con-
volution P = R 0 7 by pari-
section for N = 8.

If we choose the sub-convolutions

S(ER' + OF) ®@ ( + OY),
WE 1 - OR) (j (E" - oy) , (14) x1, ----- •-- y,

then
EY• - 1/2 115) ),• Y
OF' - 1/2 (S"- ' + F'. X?5 b,, --- - ,

Figure 7 illustrates one iteration ac-

cordinq to (14) and (15), and Figure 8
the complete alaorithm, for N - 8. Pari-
section results in bit-reversed input
and output sequences in the complete ro
algorithm. We shall call. the operations r
which can be identified with (EV)' - Eyr
in c at each level of iteration a "slip-
ping" algorithm. It is seen clearly at
the input to F on plane B of Figure 7. a V2 -6
Bit-reversed sequences in the complete

algorithm necessitate performing the
slipping algorithms at all levels of
iteration in bit-reversed order. Though
the flow of the bit-reversed slipping
algorithm appears unacceptably complex,
it in fact can be perforwed simpl,' and
in-place as described in Appendix A.

The corrections 6 are not required
for cyclic convolution of sequences ofSlength 2 and hence they do not appear in rthe inputs to the multipliers 2M in Fig-

ure 8. Matters are further simplified at
the final level of iteration because the
slipping algorithm (V)' - V is degener- b
ate for length-2 sequences. Consequently j---- -
the mid-multipliez of each croup of
three in Figure 8 is of the type IM.

An alternate algorithm Zor cyclic Figure 7. One iteration of the algorithm
convolu.ion by parisection is derived for cyclic convolution by
using the identity parisection according to (14)

and (15) for N - 8.
322
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plete algorithm for N 8 based on 3 and
b from (14; and 6 from (16).

L This algorithm is in fact that chosen
IM by Pitassi for illustration. As he

showed, it has the advantage that the
2M outputs of the A and B-planes can be

simply related to the Walsh transforms
2M of R and 7 with commensurate savings of

storage.

Linear Convolution
Method of Parisection

X5 2Figure 11 illustrates the linear con-
IM volution F = R * Y by parisection for

N = 8. The corresponding relations are
X3 

2
EF = E* E? + OR * 0Y
Or-=OR (iy)'+ES*07

Double prime denotes a shift of the el-

2- -- N YO ements of a sequence, with zero filling
the vacated position. If V is of length
M and M = (u)", then

2M __ _ Y Y2  Zk = vk+l , (k=O,l,...M-2)
Y6

ZMl1 = 0

For the case N = 8,

S• • Y7
LB _We may choose sub-convolutions enal-

B- - oqous to (14) by replacing by % and
' by ".

2M V2 ro 'S= (ER +OR) * (Ey-+ 07) ,
/i 7r. " = (ER- 0R) * (E7 - 07), (18)

2M 2

Boxes labelled 1M have two outputs to
the C-Dlane and perform one multipli-
pation.

-_ r7 Figure 8. Cyclic convolution by pari-

'I section. Complete A, B, and
C-plane flow using (14) and
(15) fo- the case N = 8.
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Power of 3 in all of the algorithms.
There can be as many iterations as the
number of times the input sequences canoXoobe halved. If N - 2 n, 3 n-1 sub-convolu-

72 x2 Xo xi 0 tions of length 2 are required in theO x x 0 completed algorithm. One, two, or three4 N b2generally complex, multiplications are
Y6 x6 X4 x2 required by each such sub-convolution.
-- ---" --- The multiplications will be real if the
¥i x, I lo sequences to be convolved are real.

Y3 x3 x, 2 Xo The final sub-convolutions for linear

Y5 5 3 1 4 x2 Xo convolution by parisection all require
x3•3 multiplications (Figure 12), so that

_7 _7 the total number of multiplications is

rO r2 r 4 r 6  r, r 3 r5 r 7

ETOr X¢, 3

Figure 11. Decomposition of linear con- 3

volution F = 3 e7 by pari- X2
section for N = 8. X6

Or, we may use the identity

* (7)" = (R• )

to rewrite x,

c' = (o3 * ED)" -o Ey. (19)
X3 3

In either case, (15) applies. Y -

The form (V)" - V is a slipping al- A
gorithm with the main (logically for-
ward) diagonal removed. Hence, one-iter-
ation diagrams analogcus to Figures 7
and 9 apply, but with® replace~d by * -- Y
and the slipping algorithm main diagonal Y&
removed. Figure 12 illustrates the com- -X
plete algorithm based on (15) and (18)
for N - 8. Note that three multiplica-
tions are req,,ired Der linear sub-convo- 3M Y2

lution of length two and that the modi- Y6
fLied slipping aloorithm in the final 3M
stage of iteration does not simplify as
for cyclic convolution.

Method of Bisection 3M

Figure 13 illustrates the partition- 3_ Y1
ing of the linear convolution F = R * 3; Ys
by bisection. The relevant equations are 3M

L = Lx * y + ME ] uF + USE * uY , (2 )3M--- -- Y
(20) •Y

F = L' *tp

Evidently these equations can not be re-
duqed to simple combinations of three Fsgure 12. Linear convolution by panr-sub-convolutions. section. Complete A and B-

plane flow using (15) and

Number of Multiplications (18) for the case N - 8.
Plane C is as shown in Figure

Each level of iteration increases the 8 for cyclic convolution, but
total number of sub-convolutions by a with all multipliers of the

3253M type.
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linear convolution using (15) and (18)
is superior.

0 Partial ConvolutionSY J x 1 X 0

. fThe algorithms by parisection are ad-

Y2  X2 X1 Xo I vantageous when only a segment of the
Y3 '3 X X X I complete convolution is required, if the

-- L slipping algorithms are not in the C-
Y •4  X 3 x2 x1 g o plane. Let us assume that the first

FY5  ' 5 x\4Nx 3 x' x1 x0  M = 2 points of the convolution are to
UY be evaluated (m < n). Inspection of Fig-

u 6 x6 x5 '\43 x2 x1 xo ures 7 and 8 reveals that sub-convolu-

X • 7 x? 6 x5 x ' A3 x2 X1 Xo tions yielding the first 2m- points are
required at the first level of itera-rO r, r2 r3 1 r4 r. r6 r7 tion. At the k-th level of iteration,

Err up_ 3 sub-convolutions of sequences of

length 2n-k are required yielding 2m-k

Figure 13. Decomposition of linear con- points. When k = m, each sub-convolution
volution F = 3 * 7 by bisec- must yield only its first point. If each
tion for the case N = 8. point required at the k-th iteration

level is evaluated in the straightfor-

3n. Cyclic ward way, N(3/2) multiplications arecconvolution by parisection involved. This number is less than that
can be performed in two ways. If the required for full convolution by pan-
slipping algorithms are in the C-plane, section, except for u clc convolution
all final sub-convolutions require 2 using (14) and (15) q no excep-
multiplications (Figure 10). The total tion if m < n 1.

number is therefore 2.3 -. If the slip-
ping algorithms are in the B-plane (Fig- Thus parti,- cycli inear convo-
ure 8), the mid-convolution in each lutions based on eqr~atior5 s (14), (15),
group of three will require only one and (18), using al~orithms tailored as
multiplication, so the total number is described above, all require N( 3 / 2 )Im
reduced to 5 . 3n2 multiplications. Partial cyclic and lin-

ear convolutions using the FFT technique
At each level of the hybrid algorithm can be evaluated in approximately

for cyclic convolution by bisection 2N(n+m+4) - 4M and 4N(n+mi-5) - 4M real
(Figure 5), the number of sub-convolif- multiplications respectively (m < n).
tions of the cyclic type increases by a These estimates can be improved slightly
power of 2. In the complete algorithm with careful Programming. It is assumed

n- " that each stage of the inverse transformthere are 2n-l cyclic sub-convolutions leading to the partial convolution is
of length 2, each requiring 2 multipli- evaluated only to the extent required

cat.ions. The remaining 3 n- - 2 n- sub- for Partial results. Linear convolution
convolutions are of the linear type re- by the FFT method is assumed to be ac-
quiring 3 multiplications. The total complished by a full doubling of the in-
number of multiplications is therefore put sequences by zero-padding, though

-n These less would suffice for partial results,3 2 These results are summarized because one can not otherwise easily
in Table 1 below. predi.ct the prime factors of the new

Linear convolution can be effected sequence length.
via a double-length cyclic convolution The al~orithms described here for
padded With zeros. Table 1 reveals that partial cyclic and linear convolution

Conyrequire fewer multiplications than the
FFT technique for suitable combinations

Cony. Mult. Method Relevant Eq. of m and n. Table 2 lists, using the
c-2 above estimates, some partial convolu-
cyc 5.3 parisect (14),(15) tion lengths M and the corresponding in-

_ _2_3_t (14),(13),(16) put seauence lengths N for which partial.
Scyc 2 " 3n-l parisect (_4),(5),(6_ convolution can be evaluated more effi-

3 n_ 2 n-l ciently, in terms of real multiplica-
cyo 32 bisect (8),(9) tions, than with the FFT. It is assumed

I that the input sequences are real soSfin 3n varisect (15) .(18) "

that the new alqorithms require N(3/2)m
real multiplications.

Table 1. Summary of convolution algor-
ithms. 326
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M N the corresponding nodes in the output of

k+l the A and B-planes. Super * indicates
2 2k2 , (k59 cyclic conv.) that the corresponding column vector is

(k:5l, linear conv.) to be placed in bit-reversed order,

2 215, cyclic cony. If the flow associated with 7 at all
levels of iteration is eliminated, the

211 229 , cyclic conv. A and B-planes reduce to the flow pat-
"-12 49 tern of Shanks' algorithm. The input se-

22 2 , cyclic conv. quence is in natural order for convolu-
16 tion algorithms proceeding by bisection,

22 linear conv. and in bit-reversed order for those by
parisection. The latter is equivalent to
the canonical form of Shanks' algorithm

Table 2. Some trade-off values for par- discussed in Appendix B.
tial convolution using the new
algorithms. See text for expla- Shanks' algorithm yields, in bit-
nation. reversed order, the Walsh coefficients

of a naturally ordered input sequence.
The new algorithms are particularly

advantageous in applications which re- S9 - (W6)
quire convolution (or correlation) of
very long sequences, but in which only
the first relatively few terms of the where W is the Walsh transform operator.
convolution are required. One such ap- In Appendix B we show that Shanks' al-
plication is the estimation of the gorithm applied to a bit-reversed se-
power-density spectrum of noise frem its quence yields the Walsh coefficients in
autocorrelation. natural order.

Relation to Walsh Transform S6 = WB = (SS)

Inspection of the complete A and B-
plane diagrams for all algorithms in the The nodes in the output associated
class reveals four basic flow patterns, horizontally with 7 at any level of it-
The slipping algorithms, whi, ippear in eration can be derived from the much
the derivations by parisectior, can al- smaller set of nodal values produced by
ways be transferred fron the B to the C- Shanks' algorithm applied to the input
plane as previously shown and so are not sequence. Hence the convolution algor-
considered here. ithms can be implemented with great

savings of storage. For parisection (see
The rectangles in Figure 14 signify Figure 14)

that the associated nodal variables are,
in general, column vectors of length a + -
areater than one. S is Shanks' algorithm
"[4] of the appropriate order for compu- from which
ting the Walsh transform. The arrows =>
indicate the transformations which are
applied to the nodal variables to yield 1/2(6 - =h, S 1 /2(S3 - S),

(21)
T 1/2(1 + T), ST = 1/2(Sa + SB).

For bisection we need only

S$SB = (SB) , S3 = (SF) (22)

(a(b) SS and SB are available as sub-sequences
of the N nodal values produced by

* ass; Shanks' algorithm. S7, ST, SB and SE
can be computed from S5 and S8 as needed

_________using (21) and (22).

A-s _ - sAppendix A

{cJ {d) Bit-reversed Slipping Algorithm

Figure 14. Basic A-plane (a,b) and B- The slipping algorithm can be per-
plane (c,d) flow patterns formed in bit-reversed order in-place
occurring in the derivations and without an extra storage array. For
by oarisection (a,c) and by the case N = 8 the steps are
bisection (b,d).
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0 Vo V- V o VO-V 7

VI 1 VýZV7- 3  N-i N-i n-im m 0kV2 m=; mWn- . a i (-1) n-i-i i
V3  VI'= V5 - VI (B2)

V4  V4  VVl - V6  (k=O,1,. .N-1)

V5  V4 Viz~ V6-V2
V6  ý-- VV6  V V2 -V4  Wl is the mk-th element of the matrix

T.
V7  V; V V4 -VO representing the Walsh transform. m

and ki are the i-th digits of the n-bit

Figure Al. Slipping algorithm in bit- binary representations of m and k.
reversed order for the case
N = 8. m n-I +n-2 . +2m I+mO

m = n nl~ inn_2 .... +m

The first step is simply v =v7 if the (B3)
slipping is applied to a linear convolu- k 2n-lkn +2 n- 2 k + ..... +2k +k
tion. If the steps are performed in the - 0
order indicated, only one word is re-
quired to temporarily store the previous With super * representing bit-reversed
contents of the register just over- order, it is clear that
written. The required indices are just
the bit-reversed integers in reverse N-I n-i mi ki
order. They can be generated as follows. 8k =I am* H (-1) (B4)

Integers are represented by an n-bit 0 i=0

word. Becin with an n-bit word of l's
(N - 1). This is the first required in- and also that
dex. The next index is found by:

a) l's complementing the left-most
1 in thp n-bit word. 060 no

" l's toumpiementing any zeros which C2
may have existed to the left of
the bit position complemented in
a). CC4

Subseauent indices are generated by ap- 66 n3
plying steps a) and b) to the most re-
cent index. The process is repeated un-
til zero retiults. This procedure is par- (a)
ticularly convenient in machines with
normalizing and arithmetic shift in-
structions. o

Appendix B e2

Shanks' alcorithm applied to a bit- OC3 1")6
reversed sequence yields the Walsh coef- 4 n ,
ficients of the sequence in natural O5 - n5
order. To show this we first show that
the Walsh transform of a bit-reversed
sequence is the Walsh transform in bit- &7 -A_ n7
reversed order. Let the Walsh transform (b)
of • be 8.

(BI)
Figure Bi. a) Shanks' algorithm S for

Walsh coefficients when
N = 8.

b) Canonical form of Shanks'
algorithm S' for N = 8.

328

_--•



associated nodes are to remain so. There
F-i n-1 mik n-l-i will result

8k mI ar 11 -'-1 (85)
=O i=O S.U ý WE* Sa (B9)

Introduce the change of variable p
S' is the canonical form of Shanks' al-
gorithm which bears a relation to S

N- n-i m k similar to that between the canonical
i TI (-I) n-i-p p (B6) forms of the FFT (3].

MO0 p=O References

Hence I. D. A. Pitassi, "Fast Convolution
Using the Walsh Transform", Applica-

8N = wa" = (WE)• (B7) tions of Walsh Functions, 1971 Pro-
ceedings, pp. 130-133, April 1971.

Shanks' algorithm applied to a natu- 2. In this paper hisection denotes se-
rally ordered sequence yields the Walsh paration of a sequence into two
coefficiencs in bit-reversed order (4]. groups according to the value of the

position index relative to the mid-
SE = = W=a point of the sequenc;e. I.e., into

groups of high and low indlex. Pari-
section denotes separation into two

If we replace S by * , groups according to che parity of the
position index. i.e., iuto groups of

Sail = WE = (SE)* (BB) odd and even index.

3. W. '. Cochran, J. W. Cooley, D. L.
as was to De snown. Favin, H. D. Helms, R. A. Kaenel, W.

W. Lang, G. C. Maling, Jr., D. E.
Relation (B8) .mplie. a canonical Nelson, C. M. Rader, and P. T). Welnh,

form of Shanks' algorithm (see Figure "What is the Fast Fourier Tratis-
Bl). Let S be applied to the sequence a form7", Proc. IEEE, vol. 5', pq.
and let the input sequence then be put 1664-1574, October 1467.
into natural order without detaching any
arrows in the flow diagram. Horizontally 4. J. L. Shanks, "Computation c.f the

Fast Walsh-Fourier Tzansform", IEEE
Trans. Compaters, vol. C-iS, pp.
457-459, May 1969.
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LINEAR MINIMUM MEAN-SQUARE ERROR CODES

G. R. Redinbo
Department of Electrical Engineering

University of Wisconsin
Madison, Wisconsin

Lks tract A model of the system which we will consider
is shown in the figure. The source alphabet

We consider the use of (n,k) binary group -ill be taken as the set of the '"rst 2 k non-
codas over a channel from the viewpoint of a negative intergers, i.e., S=1 0 ,,..., 2k-l]. The
mean-square error criterion. It is assumed that purpose of this choice of a source set Is to
the transitions probabilities or the channel give real-valued random variables for use in
satisfy an additive property. The elements of a the mean-square error criterioni The encoder
generic code are labeled by the first 2 k nonneg- mechanizes the mapping ruil XG" (*he meaning

ative integers, 0,1, ... , 2k-l, so as to obtain of the subscript and superscript will be clear
integer-valued tandoo variables at the input and shortly) and transforms the message (an integer
output. Optioum performance is Jud'ed by the from S) into a member of an n-dimensional binary
mean-square of the overall error betweee input vector space V. Since we are seeking a linear
and output. 3ased upon this criterion the opti- code, every member of S is carried onto a mem-
mum linear encoding and decoding rule- as well ber cf some k-dimensional subspace G of V. At
as the optimum group code are determined -imul- this point we may only hypothe-ize the existence
taneously. of such a code C; its exact specification is t

be determined below. Clearly this mapping X_.
Our analysis and synthesis uter the Wa'ah must be in a one-to-one fashion for otherwise

transforms of che channel traniiri)n probabl~i- the decoder which reverses this operation would
ties. it is shown that the optimum rules And be cunfronted with ambiguities. The inverse of
code are completely specified by k linearly In- the encoding rule is a rule XG which is one-Lo-
dependent 1!lsh functions defined on the binary one from the subspace G onto 9.
n-dimensional vector space. Unfortunately the
most significant part of this resclt is that ehe The statistical effects of the channel can
optimum ru!e3 are always projection mappings, transform a symbol from G into a member of V
i.e., rules which use nont ot the Perity-t-heck which is not in the subspace G. Therefore the
positions. decoder involves a rule A which maps from V

back into the source set '. Sincý the decoder
introduction must reverse the action of the encoder, the mail-

ping X - must be the inverse ot the decoder
'Chi, paper presents the develcpment of .,ule X\ when it is restricted to act only or. the

classes of algebraic codes using the Walsh anaL- subspace G. The purpose of the subscript and
ysis of the atatistics of the system in which superscript in AG"l is now clear.
they are to be employ..d. This approach adds to
the algeiraic onr the dimension of Fourier anal- Thus the problem is to find the mapping X
ysis. As in the recent articles by Cr2immins, such that a minimim mean-square error _s
et. -. , [1] and Crimmins and Horwitz (2] we achieved. in twrn, the mapping X defines the
will use the mean-square of the overall error subspace G, Eha linear block code. Our approach
as a critbrion of goodness. However unlike will use Lhe Foueier transforms OF the channel
eithez 3f these papers the minimization of thia transition probabilities. However the charactcr
criterion will also dictate the linear code -s group of the binary vector space V. i.e., the
well as the linear encoding and decoding ru es kernels for the tzansforms, are exactly the
to implement it. Our results have a negative first 2n Waleh functions suitably defined on V.
aspect to them in that the optimum rulev are Therefore the abstract Fourier transforms be-
just projection mappings. This is undesi.rable core the Walah transforms.
for coding purposes iince pinjection mappings
are eouivalent to rsles which do net use the Preliminaries
oarity-check positions in a code.

SOURCE CODE CHANNEL SOURCE

S G V S

COzOMUNICATION S7STEM MODEL
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ýiny of the well known properties of -he The main resulu is contained in the follow-
Transforms will be used throughout this ing theorem

p2fr. Also since the subject of Abstract
Fourier Analysis is well covered in several Theorem: The necessary and sufficient conditions
books [3-61, we will use standard notation and for a linear mapping A:V-S which is an isomor-
terminology without specific reference. phism on a k-dimen3ional subspace G to achieve

a minimim mean-square error over all possible
We will iitroduce several additional svm- choices of such mappings and k-dimensiongl sub-

bols. The set S which was defined as, spaces are given as:
S = {0,1,..., 2 k-)} will also be endowed with an
additive operation +0 which is dyadic addition There is a set of linearly indp~endent
(component-wise modulo 2 addition - no carries;. characturs (Xl}i satisfying the aonditions,

V is an n-dimensional binary vector space with
character group V* G is a k-.dimensional sub- n

stace of V with annihilator A*, i.e., i) = n (Kerx (5)
A - (XcV :x(g) = 1 for all geG). If f(v) is a j=k+l
complex valued function cn V, its transform is:

Si (×) - ve F(V) X ('r) ; Xrv* (i) i)X• 2k-- Ul xi) (6)

The sum is over all 2r elements of V. The ia-
verae transform is: iii) 2 P(Xi) P(B) (7)

f(v) f(x) X(v) ; vei (2) for all 3 x.1 , .. .. X
2 n XEV*

This sum is over all 2 n elements of V* - = 1,2,..., k.
The minimum mean-square error is:

We will assume that the prubahility dis-
tribution of the sotrce is uniform, i e., 2 4 k_-I 2k-1 k ()

p(S) 1 -- for .ll scS. We will further ass-e- r.1 6 r r
2 K

that the channel transition probabilities are Tbe p~uof of this results is also .ontained
the claim as oite wthi theultptisu mapp ~oting.give n and that: in the appendix. Note thera is no uniqueness

P(vlg)=P(v-glO) &zG, vcV, 0 = identity (11) claim associated with the optirum mapping.

The following lemma gives a characteriza- Comments

tion of the class of mapping rules of the de- The significant part of this result is that
sired type. In this lemma we also :istinguish The o imumfrules ar t ojetio meppis.
the subclass of projection mappin&s, i.e., the optimum rules are just projection ma(pings.
linear mappings which always take some basis This may be seen by combining Equation (6) weth

* elements of V intu zero. A projection malpping the last part of the lemma. Henc in effect
available parily-check positions in a code. members and the choice of G as a subspa;:e areSis equivalent to a rule which does n.ct use all meer anthcoieoCasaubpeae

effected by the MSE criterion. However if this

is the desired result, the sufficient conditions
of the theoeem are easy to apply. One must com-

hece ts a line-ar mappinZ X1:7 - S whose re- pate a finite number of transforms, order them,

strietion to a suberoup G, %G, is an )somorphlism and extract the characters according to in-
ia olis *-* equality (7). These determine the rule X and

it is possible to invert it and thus find the
{XJj =_ and a basis for A {X )n and binary encoding rule y-. We can also determine the

constýits aij - 0, 1, where . < i < k, and code G and compute the operating meen-square

k+l < J I n such thar error if we wish.

a a i3 What allows us t,' bridge the sometimes
k ] i ×j | large gap between theory and true implemetationSA = 1 2 k- ---- T---- - (4) is the fact that V* cor'responds to suitably de-

i-l I l fined Walsh functions. Hence the abstract trans-

For a given G, this r.presentation is unique. forms are the wel3 known Fine zransforms (7]

Furthermore X ',a also a projec-ioa mapping tak- which employ Walsh functions in their kernels.

ing m basis elements of V into zero if and onlyThextnaueotetrsfmmtesIif' rthere are A indices, J1 jroeio Jmapn fo htaatntreo h s-m atr

ifh are. m indices all 1 . 1, "' _ o little if we are designing a fixed system be-
• which a.. =0 f or all i , ,tz ... , k.___ ________

Tit, pro. of ts l a is oKer v. is the kernel of the homomorphism X.STih proof of this lerma is offered in the 2 ^

append'x. The symbol (X1. ... , Xm] denotes the subspace

The Result of V* spanned by these characters.

.~ - --... -- - - - ~ .- ~~.-.r ~ a.t~h~ sra,~- -331 -



:ause the processing time for the transforms is i = 0,1,.... 2 n-1, we make the observation that
not critical. However one posiible use of these p r-pi(pq- • for n-1. So if wo
codes is in an adaptive system. Since the Walsh 1+2S
transfores of the channe3 statistics determine have P constructed ia the first 2S position, the

the coding rules, the equipment required for the next 2 can be obtained from the first by multi-

real-time processing in an adaptive receiver is plying by (pq-l) and linearly translating. Cou-

pling thit. with the symmetry in H, the vectornot only feasible but praclical. If ye were H P can be obtained by suaming the rows of a

using a one-way channel a processor at the re- matHrix Q which is defined by the following ma-

ceiver could alter the decodtag rulc X qe as to trix Qroduct.

sustain optimum or near optimum MZE perfoemance trix product.
under the constraint that the encodiag rule re- rq n pqn-i FI-1  +l+pq

main fixed. Hcvever if a noiseless feedback [ (

path were elso &vailable both rules and the code n-1 •1I 13)

could be varied. qn pq L +
1 

-pq

The Trans fsrm. The symbol ( denotes the Kronecker matrix pro-

duct whereas the symbol 0 means Kronecker me-
We note the following properey. trix product (o-l) times. Here oZ course n>

2 .

Therefore the vector of the transforU, P satis-
Property 7, character group V" is isomorphic fies:
with the i .,t 2 n W,.IsI' functions. - Ql (14)

ThV proof is obvious once a suitable ie- 1 is the column vector with 2n sues. It easily
finition of the Walsh function on 11 is given. follows that
Suppose ucV is represented as u -
(u0, Ul, ... , U_) and let m, an integer be- (q

tween 0 and 2n-1 have a dyadic expansion as:

ta-mr2
0
+m 21+ .... +mn 2I where mi - 0,1. A z is the number of zeros in the dyadic expansion

n- of the indey m
definition compatible with Fine's [7] is:

Since we have an analytic expression for the
n-i transforas we will apply the theorem to the gen-

i :Iui (9) era2 casa of an (n,k) binary code. The linearly
wm(U) - independent Walsh functions as determined by

part (iii) of tha theorem are those with indices
Thi3 transform may also be displayed using which are powers of twc. Cbviously the cboices

matrix and vector notation. It will be con- are not unique. The MKSE is easily computed to
venient to index each member of V by it- equiv- be
slent radix 2 representation, i.e., vi where c2 A(4kl) (16)•02n-i1
J~v 20+vI 21+...+vn1 2 coresponds to the

-p 1  ne wOur second example concerns a compound
n-tuple (Vo,Vl,..., Ivn.l) We will define the channel, i.e., a channel with both bit and

two column vectors 2 and P as: burut errors. At this time there ip no knowvn

analytic expression for the transforms of its
ET.(P(v 010),P(vI10) ........ P(v n 10)) (10a) transition probabilities. The ctut-stica± des-

-1 cription for this example is described as fol-
lows. The probability of no errors in a word

"T-M(P(wo),P(wI) ....... P(Wn)) (lob) of length n is co while the probability of a

-1 single bit being in error is cl. We assume that

We form the matrix H by defininq each of its he one error in equally likely in any position.

rows m as the vector representation of w (v). Hence P(OI0).c 0 and P(viO)- -.-n where v has only

Hence each element hm, of P is wm(v) ard it is one nonzero component in its n-tuple representa-

easy to show that H i a 2nth order Hadamard tion. If there is more than one error we assume
matrix. So the transforms can be obtained from that ib is the result of a burst error contained

I' H P (11) wholely within the received word and thac each
burst is equally likely for all possible confiC-
urations. Thus the distribution of the b,'rst

Fxam.-ieA length b is linear and may be descrioed by tne

We will present two ex.mples. In the first ea- following expression.

ample we will consider a Binary Symmetzic P(b)= 1c• (n+l-b) 2 <b<n (17)
Channel (BSC) with bri error probability p - -
Let q = l-p, and assume that q > p. For this Hence the channel transition probabilities for
case P is of the !oliowing form: vectors v which have a single burst of length b

T n n-1 n-l 2 n-2 n-1 2 qn-2 2 n-2 in them are given by
P-=(q ,pq ,Pq ,P q ,Pq ,p q ,p q ,

3...3qp'(viO)= P(b) 2'zb<n enh )
p3 q n-3....... pn-l q,pn) (12) 25-2(n-b+l) v-has burst length

If %ye denote the elements of P by o. where For this channel model with n-7, C =0 950 and

33?
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t.-0.025 we havL computed the itee6ssar- trans- ( hi n b a
fou-ms. For a (7,4) cc•a one choice U che op- k 1-(1) ( A-I)
t,mum code in terms of the theore, is given by: X(0) 1 2 k-i

X- '64n -3'32- cnd X-,'w 2 . Tha mtnn- l 2

saurre error is 0.926. However for a (7,3) code i (_i) j
we (-n "wke t,te C•:lloaing choices: X, 1w: X2 -w6 , X( ) 2 K-i, ,-kL 1(A3b)

and X -w32 . In tiis n.a"e the MSZ is 0.229.I-1 2
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will demou:szrate the above by iiduetion on m.
Suppove m - 0. Then by m•-ans of a truth -cable

n we have:

This app.-dix c.4ntainvi the' detsily of the -i b

this paper 2U ' 0 [.2i - 21 1 ) (A5)

Proof ol L•,a. Now qupposz that tA4l is true ior m----2. The

some truth table shows that Zhe following is
Suppose tbat u and v are in V. We vish to Plco Lz-ue.

shew that ý(u+v) - X(u) (ý) X(v). Towards this

basend we will need a basis for V_ But since Th ye b a z r a

basis (Xk of V* is the basis {e )n of V.,
•- o=1L y.tz. Ja. ýb +C )1 (06)

G while ie$} complet the basos of V.•i-k+l Therefore (A4) Is val•.d for m-n-k~l. Take any
Specifically we associete the basis with the reS. 6e iday expres3 t[:ia as:

given characters by:

X -I if r'ur 1;r r2 1 -...... r K2 (A7)X• (v)= vi'vwhe e Vle+ .. v +Va (AD)

+1 if vt.O I n easy to 31hoW that if we spe.ify vcV by

1-1,2,..., o + k.kA8LetVVel+""+Ve

n v|

%I b hiei (A2a) where (-1) -l-2rit i1,2.. k. (A8)
nthen X() - r dnt' vcG. Therefore X is from G
n onto 3. Since tt sets S and C are finite and

"i-i cie (A2b) of equal si,'e, the restrict~on X is atn isomor-

Thus phiam.
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Suppose A is a homomorvh~lm whose restric- space of squsre-summable functions defined on V.
tion is an isomorphism. (2,2 ... , 2 k-1) is a
basis for S over thekbinary field. Hence tteie Suppose X is also a orojecticn mapping tak-
is basis for G, {e(ia)k, such that A (ei)-2-. rq the m basis elements of V,fv ,..., V,), in-

tit9 ze'-- Since A is an is~moiphism on G, we

Define a set of characters as: may replace - of the basis elements labeled
kek+.,... e above by v1 ,v, .. , v through

X (ej)(_)ii il,2,.. (A9) use of the •xchange Theorem [6]. For the sake
of definiteness we may assume that the first

j Kronecker Delta z e 's are replaced. Hence, since X(v,)-G, we
hav; from equation (Al.) that a,. 0k+i " for

The set of characters in V*/A*, defined as all i - 1,2,..., k.

{xiA*}k is a basis for V•/A*.

i.1 Now suppose that in the representation of
The basi- f'r G may be expanded inmo one A by equatinn (4) that there are r2 indices,

for V by addthat %e vctors {e}n Define. m where k+l < j < n,£i-,2,..., m,n-k+l - 0 for-al 1,2,k.... .
-another set of characters {Xj~ in terms of

SSelect the corresponding linearly independent

he.characters Xit and basis elements ei associated
with them aczording to equation (A,). It in-

i M(AO) mei'idiatly follows from equacien (AI) and equa-
tion (4) that A(e. ) - 0 Zor any Z - 1,2, ... ,m.

The X 's are lirearly independent gnd are
co-lstant OA G;uo they are a basis for A . If a

n Proof of Theorem:generic maember of V is v - I bie4 , then slnce
Anis a homomorp ism v i el The mean square error is given asX is a homomorphism:

n b2 iE{X W )(0))2-
A(v) - i A(Ci) (All)

=k n " (AG R)-X(v)) P(gv) (AFT)

b1 b2k- L b A(e1) (A12) geG veV
i-. j-k+l I ' 2

From a truth table it is obvious :hat 1 ( Ak

b 1,2,..., n (A13) By expanding and collecting terms we must con-
s.der three terms. Since AX is an isomorphism,

Further each A(ej) may be expressed: the "list of these termsIs:

X(e )- a 2k-m ._k+,.. (A14) I ,W-(g)I. . 6(2 1)'(2k+1 (Q.18)
3 .amj .. gzG 0 6

The second tern is expressed using tiansforms.
Thus combining (A12) and (A13) with (A14), we
find I I X2(v) P(v-g !0)

X k 2k-I l X gG vrV

a Xii2 (Als 1 n Gacu* BEV Y'V

SAW(a) OkPy) Y(-g) • a(v)O(v)y(v) (A19)

By an induction argument similar to the one V

given previously it is easy to show the follow- Th.e following identItieA are easy to show.
Ing indeatity 12n if OBY-×O

a-X J Q(v)S(v)/Y(v)=j(20
2 O a j " V 0 otherwije

J-k+l I(X0 is the identity in V*)
n a 4j (A16) eniy V1 - Xi I Xi Akl-k+l 2k if X A

2 j ((g)-21)

The uniqueness for a given G follows frgm the gC 1 3 if X i A*
linear Irdependence of the members of V in the So thE second term becomes:
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2 V2n-2 k_ 2
X 2(v)P(v-g O) - X(a)X()P(B)-2 (2 -1) P(XO)

geG wV (aSVCA*

kk n a(A29)
* (WO~() Mea) (A22) 22n+2k-2 k I nl a rj)

2 2n(t8)CA +2L r "P r a j
r-1 4 J=k+l

The third term in the expansion of (A17) is:

I I G(g) X(v) P(v-gIO) So the mean-square error becomes:

g2G vcV 2k-lkn a X i

2 -1 -(X Xr (A30)
c 6 r1l 4 Jrk+l j

2 xCV- Be YCV
Suppose that X is an optimum mapping of the

gequlred type and that G is tfe subgroup, A ib
XCa) M( ) a~g)y(g) 1 s(v)y(v)) (A23) its anrihilator, and that the independent char-acters {X ) and the constants a, are its

-a1 characcerizaion in terms of the le'ma. Speci-
2n-k fically let f, In be the basis for Aý and2 (aB)CA J-k4l * *

Xa A ... ,×A * e the one frt VA. Now sup-
Finally we have an zpression for the mean- p1Ae Xka be a he o ne or IA o suk-
square error. pose that r. i5 any other mapping of the same

t~pe but with subgroup H and its annihilator

2 (2 k_ 1 )(2k+l-1 ) B . Let the basis for B be denoted asS6 ... n while the basis for V*/B* be denoted as

€ew1: •2B ...abekBrs Further let the b sj'S

2 2n B)hA (A24) be the constants in the formula for the char-
acterization of 4.

2 ,Because of the optimality assumptions we
22n (rS)A find a necessary condition to be:

Thed nsummationtw iat~ndexed by (aB)cA* may be express-rik •I ^(k Hn rj)>

-d intwo arts.ril r rJfk+l

Ia)• * •A . A I* +k n b
(a)Aa and (A25) br- (A

SA* r'l 1r 1-k+l

The lemma gives an expressign for X. It is easy A fact that we will use shortly is:
to show that the transform X of such a mapping
has the following properties P( a

(( a- k
S v(v)=2n- (2 -l) if a-X0  Jfk+l -

jvcV n a
2 n+k 1_n a

iwO If X aj ir(x+i n al .X, k-l (A32)

2 fr r k~l -kl j
0 otherwise (A26) For tie may make the followiag choice for the

other mapping rul- 4. x - X for all j
Combining equations (A25) and (A26) allows us to 1,2,... ,n, ercept @i+l Xi ad = +
evaluate one of the terms in equation (A24) i

Also take a11 a. b1 excep'. bi .i4 a tor
Sall j and 1 , - a1 1 for all J. Then since X

2 2n-2 is optimal we must have hy inequality (A31):
-(2n (2 -1))+ 3-i-- (2 -1) (A27)

_ (x n a ij)+-I n aiil.j
Thus jP ( R X i )+iT P()( +i H

2 (2k-l)(2k+l-l) 4 j-=k+l 4 -Jk+l (A33)= 2(A33)jr).n

_2. P l xji+i'l) .L" P( n a ij)

- -- a )X()4A-1---B) ,i2 (A28) - ik .. J-k+l J

2 (a2)cA
It also easily follows from the obvious choices

Also using (A26) of elements In inequality (A31) that
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P(Xk 1 )(j)> P(X ),s-k+l,..., n (A34) P(Xk H X a )>P(e) for all 8c
-J-k+l • J.I,+l (A37)

Another consequence of optimality is: [Xk+l,..., xn]

i(8) for all (A35) Coupling this result with inequality (A32) we

[',•2,* .. 1.xl,×k+ 1 ,...xn]. establish the following strengthened version of
inequality (A35).

n a i
where J with l<i<k P('Oi) > P(6) for all 6a[P 1 ... (A38)

J-k+l

To demonstrate this we first note that there n aii
must be an m, with i<m<k such that where 01-X• R Xa with I-1,2,..., k.

...• l, +l, .. Pk) is a linearly in- J- k+l "- 1~ k
dependent set by virtue of the Exchange Theorem Since the {(,Pk as defined above are also
[6]. Next we construct another mapping rule C
by choosing =j - Xi for all j except m and in linearly independent characters, we may relabel

n a them so as to obtain part ili of the theorem.
that case weset _-s 1I X. MJ. Also'we take

t as we sj m An application of the iemma gives equction

binary constants a .=+l for all r and J in- (6) while equation (5) follows from the duality
dices in the proper sets. Then after cancella- of subgroups and quotient groups (6].
tion we have: Suppose that the rule X is determined by

inequality (7). Further suppose that & is
I ml) 1 ((3) another homomorphism of the required type and
Il 1s that its characterization by the lemmA is interms of linearly independent characters

But since m is between i and k, an application fi)n , binary constants bij, .a ihilator B
of the inequality (A32) completes the subproof iI.
of inequality (A35). and corresponding subgroup H. From equation(A30) it suffices to show that

If oc[Xk+l,..., Xn], there is some 1, k 1 n brj)]

k+l < Z < n such that {Xk+I ..... XE_1 1  -1- 4 ) -P( 14 r) 0 (A39)

8,t+1..., xn) is equivalent to the original set

of linearly independent characters. But each of the linearly independent characters
Xr for r - 1,2,..., k were chosen in order and

By choosing *k=-, and bkj - 0 for J = in a maximal fashion according to incquality

k+l,..., n but all i 0 k, taking 0, = X and (7). Therefore each term in the sum of the
desired inequality (A39) is nonnegative and

aij- bij we have from inequality (A31): thus the inequality is true. Hence we have
demonstrated the sufficiency part of the theorem
as well.

336

7 -7/



ON ORDERING OF A CLASS OF GENERALIZED WALSH FUNCTIONS

by
Sze-Hou Chang

Department of Electrical Engineering
.!.ertheastern University, Boston, Massachusetts 02115and

Thomas Joseph
Department :' Mathematics

Northeastern University, Boston, '!cqac,.usetts 02115

Abstract which was defined by Chrestenbcn ?s productsof generalized Rademacher functions.

H.E. Chrestenson (4) defines a class of

Generalized Walsh functions using the concept In the generalized Walsh functions the
of Generalized Rademacher functions. But this binary element; {O,11 are extended to k-aryis ordered neither according to symmetry nor (Z an integer) elements 1 =10I2 .. ),
according to sequency. Here a generalized con- considered as the phase angles in units of
cept of symmetry is introduced and an ordering 27 which are mapped to the Lth roots of unity:
of the above class of generalized Walsh func- , h
tions is presented in terms of it. A measure (2n/y)i = i
of oriented phase shift, which is a generalized i e2
concept of sequency, is introduced and an or- The orthogonality and ccmpleteness are preserved
dering in terms of this is given. Two differ- in the extension (4).

ence equations satisfied by this class of gen-

eralzed Walsh functions, one ordering accor-ding to symme-try and the other ordering accor-TesrPoutadenrSm
ding to sequency are presented. The symmetry The generalized Walsh functions of order I
index leads naturally to the treeare expressible as generalized Hadamard

s group structure, matrices as follows,
Introduction rrYo Y yo .... yo

The Walsh functions form a complete set of ! U 1 2orthonormal sequences with elements (I,-1}. Hi1)....

Higher order Walsh functions are most conveni- yo 42 ... X-20
ently generated by successive tensor products
of the first order Walsh functions, This pro- ..........
cess is further simplified by mapping the ele-
ments {l,-l} to {O,l) and replacing tensor pro- Y° y-y-.... yy
ducts bv tensor sums. It is known that there
are 2k Walsh functions of order k which may be H(k) = H(IH()ordered according to sequency, a term derived IS""90 H) ..- Hi])
from frequency signifying the number of zero- where the tensor product of two matrices A and

t!-ossings in the waveform representing the B is given by
* functions pr sequence (8). Also it is known B

that the 2  iequences can be generated and
arranged in terms of odd and even symmetry (9). ` a1lB a12B . . . alnB
A difference equation defining the Walsh func-
tions in an ordering according to sequency is a21B a2 B . . . a2 B
Siven by Iarmuth (8). A2 B ,..

Generalized Hadamard Matrices

A Hadamard matrix is an orthogonal square nl n2  nn

m3trix whos2 elements are +1 and -1. Two types Both of these matrices H(l) and H(k) are ortho-
of generatlizations of Hadamard matrices have normal over the field of complex numbers. .hese
been studied. (I) Orthogonal square matrix matrices ca' be obtained from tIhe map 1 Y+ of
H1(Z,h) of order h with 9Z > 2 distinct integers each element if the matrices 01l) and h(k)
as elements (7,;0). (it) Urthogonal square
umtrix H(l,h) of order h all of whose elements gvnb

are kth roots of unity (5). A subset of the
J llatter tyde of generalized Hadamard matrices

forms a class of generalized Walsh functions
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"0 0 0 0 0 0 If we denote 01 = (0 1 2 ... I - 1), the k-ary
symmetry of index a is given by

o 1 2 3 . Ul = (0c a +l ... -a) where

h(I) = 0 2 4 6 8 k-2 a = O, . .

" A set of k basis vectGrs for h(k) can be obtain
0 9-I Z-2 1. .. ed in terms of the 9-component vectors

U = (000 .. 0) and Ui = (012 .. Z - 1) as

h(k)= h(1')+] h(l)[+] h(1 )[+3 ... [+] h(l) f8llows
U100 .. 0 =U1[+3 Uo[N Uo[+] ... E+]Uo

where the tensor sum of two matrices A and B is
given by U 0 = UO+. Ul[+] UO[+] ... 1+1Uo

all+B al2+B . . . aln+•

a 21+B a 22+B . . . a 2n+B 0000 .. 1 = U0 +] UO[+] UOE+] ... [+]U,

The general row of h(k) considered as a vector
anl+B an2+B . . . a +B with indexc=(a•oal ... ak-1), referred as sub-

script, is obtained by linear combination of the
basis vectors. Each basis vector is multiplied

where the sum a + B indicates the matr!x ob- by tne corresponding component of the index and
tained by adding a to every element of B, the the addition is digit by digit, modulo L. Con-(k)
addition being taken rwdulo I. It is to be sider an elenent Utailc belonging to h ?
noted that h(M) is no longer orthonormal. It 0 1
represents a vector space of dimension k over This vecLor has lk digits. The symmetry index
the ring of integers modulo X (according to the oal . ak- implies that the digits are re-
definition of vector space given in Van Der lated by symmletry ckl (or its cyclic permu-

Waerdern) (11). tation) inside each subblock of 9 digits, and
the subblocks of i digits are related by sym-

Symmetry Index for Generalized Walsh Functions metry a (or its cyclic permuation) inside
each cR of X digits and so on. Lastly, all

The Z rows of the matrix h(1 ) define Z dlf- the P. digits are related in blocks of Zk-I by
ferent symmetries among the components of the symmetry ao. Thus given the synaetry index, a
row vertors, called "Z-ary syrmetries". Equiva- vector can be written witMpVt referring to any
lenty in the mapped case the corresponding rows other member of the set h K)r Also the Z-ary
of H$') define 9. different "9-ary symmetries". symmetry of the Walsh functions shows that they
For example tle ternary symmetries are given by can be generated as a tree code. This is illus-
the rows of h(1) when Z = 3 namely, (0 0 0) trated by examples I and 2.
(0 1 2) and (0 2 1) or equivalently for H() t
(yO YO yO) or equivalently (yo yl y2 ) and Example 1
( yo y,) which can be represented as in Fig.i. Consider z = 3, k = 2.

._Yo 0 o o[0 0 O0
-- -- - Y 2 h(l) 0 1 2]2~ ~ 000 1

(a) (b) Y (c) L l

Fig. i. Ternary symmetries (a) with index 0;
(b) with index 1; (c) with index 2. O+h(1) O+h(1) O+h('lh(2 h(1)[+] h(1)= O+h(l) l+h(l) 2+hli

This concept of ternary symmetry was used in 0+h( 1 ) 2+h4 1 ) 1+h( 1')
representing 3-phase unbalanced power systems by
symmetrical components. Any cyclic permutation
of a symmetry is considered as belonging to the
same symmetry with a certain initial phase.
Thus (0 1 2) and (1 2 0) are the same symmetry
with initial phase 0 and I respectively.
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0 0 0 0 0 0 0 0 0 A set of basi3 vectors of h12) for symmetry in-
0 1 2 0 1 2 0 12 dexing is given by

0 2 1 0 2 1 0 2 1 U10 = d1 [+1 U0 = 0000111122223333

0 0 0 111 2221 U
0 012120201 1 U0 = U0 1+1 U1 = 0123012301230123

021 102210 A vector of symmetry index, say, 32 Is obtained
0I thus0002221111 U 2 3 0

10 122031 120 1 2U0 1  0232313120201313.

0 2 1 2 1 0 1 0 2 j Clearly the symetry inside every subblock of 4

The basis vectors for h(2) are digits is of type 2 and the symmetry between the
4 subblocks J, of type 3. Tree code represen-

U 0  r+U][ U (0  0 1 1 1 2 2 2) tation of h(2) is given in Fig. iii.

UO I U0 [+1 U, (0 1 2 0 1 2 0 1 2) Index Code Vectors

A vector of symmetr index, say, 21 is obtained • _

0 0 000000000000
U21 = 2Uo 0 UO 1 (0 1 2 2 0 1 1 2 0) 1 0 111122223333

where the addition is digit by digit modulo 3. 2 0 0 00 0 1222200002222
Clearly the symmetry inside every subblock of 3 3 0 333322221111
digits is of type I and the symmetry between the
3 subblocks is of type 2. Representing as a 0 1 012301230123
tree code, Fig. ii, we note that the first
branching is determined by the symmetry index 1 1 1 3 13023013012
110, and the next branching is specified by the 2 1 " 1 2 3 230101232301

symmetry index 1  , and so on.S'3 1 301223011230

Index Vector Code Vector 2 2 032020202020202

ý0 2 2 202002022020

0 0 0 0 0 0 0 0 3 2 313120201M3

001 1 1 2 2 2 0 3 032103710321

2 0 2 2 2 111 1 3 103221033210
23 3 32l1

121312001231202010 0 1 2 0 1 2

1 1 1 0 1 2 1 20 20 133

42 1 201120
Fig. iii. Tree code formed by the 42 pre-

0 2 0 2 1 0 2 1 mapped Walsh functions.

1 2 2 2 11 1 0 2 2 1 0 Phase Index and Generalized Sequency

22 2 1 0 1 0 2
Selecting the ýasis vectors properly, as

Fjg. ii. Tree code representation of the given below, the 2' vectors can be ordered in
3• pre-mapped Walsh functions. terms of phase number or sequency number a

ranging from 0 to k - 1 in the increment of 1,
Example 2. Consider Z = 4, k = 2, then It can be shown that this number 8 is equal to

the amount of oriented angular phase shifts in
j0 00 0 the units of 2T(.t - 1)/Z. of the vector

hi1) 1 2V• 3 V 3081 -- Bk-l where, =o~ l - Ok-l
S0 2 is called the phase or sequency index and

k-li
8 = z 8i2l the phase or sequency number.

i=o
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A set of basis vectors of h (k) for the A general row of h(k) considered as a vectorwit inde 66 8ai ve r is obtine for the

phase indexlng is obtained from the X component with 0ndex,= 8o~l . k-l is obtained by the
vectors V0 = (0 0 0 ... 0) and linear combination of the above basis vectors,

V, = (0 1 2 ... z - 1) as follows: thus

VoBl6 ... Rk-I = BoVlno0 . 0
Vlooo .. 0 V1 +] Vol+] Vo+ .... [+3Vo
V 01  .. 0 = (2,-l)Vl[+] VI[+] Vo[+] .... [+JVo + 8V 01  .. 0 + a BkVo00..

VoolO .. 0 = Vo+ (-I)VI[+] V11+] .... [+]Vo where

V0000  I Vo[+1 Vol+J v0 W .. [+J(Le-l)vd+ 1vf~,2 ,-1

S........ ..... .... .

Example 3 Let 2, = 3, k = 3, then the basis vectors for phase indexing is given by-,

Vlo0 V, [+] V0 [+] V0

-0000000001 1 1 1111 222222222
(1) (1)

Volo = 2V1 [+J V1 If] Vo
-O000111l222222000111111222000

V001 = V [+] 2V1 [+1 V1
=0 1 2 2 0 1 1 2 00 1 2 2 0 1 1 2 0 0 1 2 2 0 1 1 2 0

Any vector of h(3) with index, say, 211 can be ootained thus

V21 1 = 2V100 + IVo0 0 + IV001

=0 12 0 1 2 0 1 2 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1

The numbers inside the parentheses are the phase .,,a. one zan be obtained ýrcm the other very
shifts in the units of 2n/3 occurred between easily. Let the symmetry index and the phase
certain successive digits. The total shifts index of an element of the set of ik vectors
occurred in V2 11 is 28(2n/3) which upon division bea= a .. a a and = B B ... B
by 2(k - l)/.Z = 2ir(2/3) is 14. The sequency respecti~ely. Then they are r4lted by
number cor espond ng to the index 211 is k-i
2.30 + 1.3 + 1.3i = 2 + 3 + 9 = 14, as expected. Si = k Ij , i = 0,1,2, ... , k - 1

It is to be noted that the phase increments ior
for the th,*ee basis vectors are properly distri- (*)
buted. By properly we mean that (a) their B -B and =
locations are nonoverlapping, (b) they are uni- j- 1j+l k-l k-i
formly distributed to fill all positions, (c) where
the number of units of phase shifts are commen-
surate with the index positions of the three = 0,1 , 2.
vectors '.e., V1OO, V010, VO0 1 have respectively
2.30, 2.312.3.3 urlts of phase shifts. This Thus when the sequency number of a waveform

of course is the reason f(.r the above choice of belonging to the set of kk vectors is given,
the basis vectors, the corresponding sequency index and sym-

metry index can be obtained and the vector can
We observe that the symmetry index and the be written from left to right using symmetry

phase index are in one-to-one correspondence and indey, without referring to any other member of
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the set. The symmetry index of the tensor sum Pi = 0, if pi+I t 0, 1 0,1,.... k -
of two vectors with symmetry indices is the
direct sum of the separate itidices. This alonq and
with the relations (*) is useful in obtaining
sequency indices and sequency numbers of higher P 1 = 1 if PI = P2 Pk = 0,
order vectors from lower order ones in an itera-
tive form. where (x,y) is the greatest common divisor of x

and y. See example 4. For the binary case, a
Sy=mmetry Index and Period 'similar result has been reported (12).

Let U , an element of h(k) with symmetry Difference Equations

Ve= . k-le represented Generalized Walsh functions can be defined
by by either of the following difference equations.

a = (ao,aI . . . . . . . . .. ai . . . . . . ..ak ) (a) A difference equation which orders
2 - 1 the Walsh functions in terms of a number called

where symmetry number which we denote by c. As is k
given in example 4, representing the set of X

a. = {0,,. , 2 - 1}. Walsh functions of order k as £ -component vec-

( o e e i k tors, the vector W(u,e) has symmetry number a
Then the period p of the corresponding t and symmetry index •aoa ... ak-1 where
component discrete Walsh function is the smallest
number for which a (k) = am where the addition k-I
is modulo ip) Le P• = ol""P e the i-o

2.-ary expression of p(k) where We write the difference equation for the
k generalized Walsh functions in the following

p(k) P p. form:
1-o W(tn+q, 0) = W(n. 2.) + y°W(n, 2. - 1)

that is, corresponding to ( ok" - .... + y(2'l)q(n 20 -
we have p (k)=poP . . . Pk- The following re- where

sult shows that the period p(k)can be obtained
"from the symmetry index. The converse is not n = 0,1,2 ...... t 1;
true as there is n6 one-to-one correspondence
between period and syrnetry index. q = 0,1,2 ...... - 1;

(i) 2. is a prime numberky 
= e2j- / ; W(Oe) =yo, 0 -< < l;10 if o•=0

Pk-i = and the exponent of y is taken modulo 2.

1 if ai f 0 See Example 4 on next page.

and Pi = 0, if Pi+l t 0, i 0,1 ...... k-1,

and Po = 1 if PI = P2 = ... Pk =O

(ii) k is not a prime number

Pk-'
and

;n ir •i/XD n = •

Pk-i-1

m if ai%£, m =

and
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Example 4. Let k - 3 and k =2

n q ao•] W(a,O) W(a,O) as 32-component vector Period PoPl P2S0 0 0 0O 0 yO yO yO yO

0 0 0 0 W(0;0) y Y y Y Y0 0 0

0 1 10 W(1,0)Y 0  T0 T0 TY I T 1 2 o2 Y 9 0 01

0 2 2 0 W(2,e) yO y y3 Y 2 Y 2 2 yT Iy 1 y T 9 0 0 1

1 0 0 1 W(3,t) y 2 y2 y y2 3 0 1 0

1 111 W(4, ) 0  T1  T2  1 2 0 2 T0  T1  9 0 0 1

1 2 2 0 W(5,2) yO y y2 y2 y 0 y y2 y0 9 0 0 1

2 0 0 2 W(6,O) YO y2 y 10 y2 y1 I y0 2 y1 3 0 1 0

2 1 1 2 W(7,0) y y2 y1 1 0 y y2 y2 y2 I 1 0 0 1

2 2 2 2 W(8,O) y  y2 y y2 y y y1 0y2 9 0 0 1

ai(b) Walsh functions ordered according to sequency number a may be defined in a similar manner
as in (a) by the following difference ýquation

W(9.n + q,O) = W(n,kO) ý yq m(n,9 01 - 1) +. ... + w(n, - 1)

where m = (. - 1) kn+q ; [x] denotes the greatest integer less than or equal to x, W(0,0) =yO

0 < 0 < 1; and the exponent of is taken modulo Z.

Example 5 Let k = 3 and k = 2.

Sn q m .. W(Bao) W(63,0) as 32-component vector000 W(O,O) YO yO 0 O YO O Y O O y 0Y0 0 yOY

0 0 0 W(0,6) YO y yO y i yT y2 y2 y2

0 2 0 W(2,o) y 0 y y2 y2 y2 y T T y

1 0 2 W(3,o) yT 0 Y2 y2 Y,0 y T y T 2 y

1 0 2 W(4,O) y T y2 y 0 y2 y T T Y 2

1 2 2 W(5,o) yO y1 y2 y y2 y 0y2 y 0y

2 0 4 W(6,O) y y2 y I y y2 y2 y T y T

2 1 4 W(7,6) yO y2 y y2 y T y T y y2

2 2 4 W(8,O) y 0 y2 y 1 y2 y 2 y10 2 y1
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Discussions ccsets. The group operation is digit by digit
addition modulo 6. Note that the listing of

Thc ordering of the class of generalized example 7 is a reoresentation by symmetry in-
Valsh functions in terms of their symmetry in- dices of the following tensor sums
dex a or phase inL! is pertinsnt in the
following applications. (U U2 U 4 U0  U2 U4

(a) In the generation and detection of + U U
Walsh waveforms, the impleinantation is simpli- -U U1  U3 U5
fied by the structure of indexing.

(b) The selection of appropriate Welsh While this paper emphasizes primarily in
fu,•ctions for the anilysis and synthesib of introducing two indices 6 and 6 it also serves

si lwaveforms may be facilitated if the wave- the purpose of obtaining period p in terms of a
form can be attributed to a set oF salient com- and of relating three recurrence methods
ponents with specified symmetries or phase (i) difference equation (ii) tensor product
shifts, and (iii) tensor sum, the last being easilyhandled especially in terms of the indices.

(c) Combination and decombination of
Walsh functions of various orders are much References
facilitated by means of the indices. (1) J.L. Walsh "A Closed Set of Orthogonal
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addition mod,:lo 2. In addition to the examples Lab., Washington, D.C.
cited before, let's consider the case that 2 is
a composite number, (examples 6 and 7) then the (3) S.W. Golomb "Digital Communications with
numbers modulo X can be listed as subgroups to- Space Applications". Prantice-Hall, (1964).
gether with their cosets. This is also true (4) H.E. Chrestenson "A Class of Generalized
for the number ZK. The listing of Walsh func- Walsh Functions". Pacific Jour. of Math.
tins in subgroups and cosets leads to further Vol.5, pp. 17-31 (1955).

mplifications and insights. (5) A.T. Butson "Generalized hadamard Matrices"

Subgroup 0 2 4 (6) J.J. Stiffler "Theory of Synchronous Com-
munications". Prentice-Hall (1971).

Coset 1 3 6 (7) S.H. Chang "A Note on Non-binary Orthogoiial
Codes" Digest of Technical Papers, IEEE

In other words, since Z = 3 x 2, a compo- Iiternational Communications Conference
site number, the entire set of 6 Walsh functions (1966) p. 278.
may be listed as a subgroup ot 3 functions
(possessing 3 different symmetries) plus a coset. (8) H.F. Hartiuth "A Generalized Concept of Fre-
It is also possible to list them as a subgroup quency and some Applications" IEEE Trans-
of order 2 and 2 cosets. actions on Information Theory, Vol.IT-14,fr. 375-382, (1968).

Subgroup 0 3 () D.A. Swick "Walsh Functinr Generation" IEEE
Transactions on Information Theory, Vol. 11

Coset 1 4 15, No.1, January 1969, p. 167.
Coset 2 5 (10) J.A. Chang "Ternary Sequency with Zero

Correlations" Proc. of the IEEE July 1967,
Example 7 Let £ = 6, k =" 2. pp. 1211-1213.

(11) B.L. van der Waerden "Modern Algebra,' Vol.1
Subgroup 00 02 04 20 ý2 24 40 42 44 Translated by F. Blum and T.J. Qecac,Frederick Ungar Publishing Lo., NewY York

Coset 01 03 05 21 23 25 41 43 45 (1950).

"10 12 14 30 32 34 50 52 54 (12) N.A. Alexandris "Relations Among Sequency,Axis Symmetry, Period of Walsh Functiors"
11 13 15 3i 33 35 51 53 5 IEEE Inforation Theory, Vol.17,

pp. 495-497 (1971).
Here Zk = 62 =32 . 22' the entire set is listed
as a subgroup of order 32 pluse (22 - 1) = 3
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POSITIVE REAL FUNCTIONS FROM ORTEOGONAL. !1NCTIONS

N. K. Bose
Department of Electrical Engineering

University of Pittsbzurgh

Introduction for Hr nCs) is (for A>O

The properties and applications of H n+2 (s) - 2s H n C s) +(2n+2)Hn~)O
orthogonal functions like Bessel func- nlf
tions trignometricfunytions, spherical with H0C(s) =1, and H iCs) = 2a.
functions, orthogonal polynomials, 2  jH(s
Haar functi~ons and Walsh functions in Evidently, H0C)- 1 is a L.C driving
vario~us engineering applications is well Hil(jS)
known. Besides the popular trigonomet-1
ric functions, more general ý:asses of point function. From the recurrence~
complete systems of orthogonal functions formula,
have bý:Pn used for theoreticai investi- Hn+2 js) jH (is)
gations as well. as equipment design in2 2 n (2n+2)ree, prces in Hjs 14s (reetyears. Particular' areas in which lnl
complete sets of orthogoncil functions Th~,if jHnCs * Craials
have been applied are as..d~erse as H )-sL raials
coding and multiplexing,4'" signal 4 24
processing~and `.eneral 6applicationý,' also are Hn+2C(js) and its reciprocal,1
vocoding, filtering, radiatior,*T

~.ng, and spectroscopy. Different sets
of orthogonal tunctions have some under- JH n~1Cj))
lying common properties. For example, ii s
most of the generally used systems ofn2

orhgnlfntosaedefined bV' Though the principle of mathe-
linear differential or difference equa- mat cal induction can be used wi.th
tions of second degree. facility, an alternate approach will be

In 1967, Reza and Bose, 11made use adpe to rveToem2
of an interesting mathematical pro3perty- Theorem 2. The real rational function,
interlacing of zeros of successivc. j pn (j,)
polynomials in a set of orthogonal Z (-.s) n is drivin -oint
polynomials like Hertmite's, Legendre's, LO Fn 1 (j gp,
Laguerre's, etc.- to generate two ele- reac~ance funiction, where P n(s) is the
ment kind Rqsitive real functions. A. t
M. Solimen extended the foregoing L~egendre polynomial of n~t order.
idea Lo seine other orthogonal fun~ctions.

*In view of the overriding influence of Proof: T'he Legendre polynomial.s, P ")
or~ogoalfunctions in various branches n =0,1221.. as defined15 b odius

*of science, it :is deemed fit to make formula, are
available the results to date on this 2
aspect of the subject to the interested P Cs)s 1 . ! 1~s~
readers. n 2nn dn

Proofs For Some Generated P. R. F.'s it is readily seen that Pmn s) has n real
roots, all lying between s =+ 1. Con-

The Droo:fs for the generated posi- sequently, P n Cjs) =0 has n imiaginary
tive real fun~ction's can be given by us- roots, all lying between s =+ j. For
ing t%,e principle of mathematical induc- odd values of n,2,n
tion or otherwise. Theorem 1 spoe j j) 1 dls+1
using the induction principle. n) P1 fs n

2 n.! dsn
Theorem 1. The real rational function,

jH n js) where H Is) is the Hermite -Pn+1Cs) I -+1H n+l.ýl) d n~l

* ~polynomial of nth order, is a LC driv~ing
point fun~ction. -1 dncs( 2 +J n,
Proof: The recurrence reato nai
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whence - [Pn+l(is)) + [-j Pn •NS)a mTable

I d ns+l)(s? +1) n clearly, -Pn(is) gName of Ortho- Generateddn[s~)(?+~n cealy -n+l() gonal Function P•F'

2n! dsn 1. Legendre poly- j P (js)
and -j Pn (js), are, for odd n, the even nomials, Pn(S). n
and odd parts of a real Hurwitz poly- ns
nomial. An analogous procedure is
adopted for even n to arrive at a simi- 2. Associated .

lar result. This implies that Legendre spherical I P n(s)
_ a ratn harmonic of the pmn2 s is a reactance function. first kind, n+l js)

P n+1 (js) pm(s).E n
Ort-hogona2 Functions and Network Types mThe table gives the generated posi- 3. Gegenbauer or j Cn (Js)

tive real functions (p.r.f's) from modified ultra- -

corresponding orthogonal functions, and spherical poly- Cl(
includes for completion, those reported nomials, Cm (S).

earlier by Reza and Bose. It is seen n
that a wide variety of networks are
characterized by the generated p.r.f's. 4. Tschebyscheff .

polynomial of the j T n (js
in the table,the first eleven first kind, i)(js)

driiing-point functions char.acterize T(1)(S). Tn+i(

lumped networks, and the remaining n
characterize, in general, lumped- 5. Tschebyscheff (2)
distributed networks. In particular, polynomial of the j n
the first seven sets of generated second kind, T( 2 )
funwtions characterize LC networks, the T(2)( Tn'l ]s)
eighth characterizes a RLC netwo thk, and n S).
the ninth, terth and eleventh correspond
to the driving point impedances of RC 6. Her-nite poly- j n (js)
networks. It is interesting to note n ___

that, though, Lhe Tschebyscheff poly- n
nomials, Gegenbaucr nclynomials, and the

Ltgendre polynomials, which are all 7. Parabolic j Dn (js)
special cases of the hypergeometric Cylinder function, n
nolynomials of Jacobi, can be used to D (s). Dn+l IsT
generate p.r.f's in the manner just
indicated, the Jacobi polynomials, in 8. Bessel poly- s 3 (s)
general, cannot be so used. This fol- nomial, R (S). n-l
lows from the fact that the location of n " BRs)
the roots of the Jacobi po]ynomials are 9. Laguerre poly- L (-s)
not symmetric with respect tc the or'- nomial, L (S). n
gin. Interestingly enough, the twelfth n n+ 1
generated function is a positive real
function of several variables, which arc 10. Uspensky 1 1  U (S)
being used more and more in the sylh6 polynomial, U (S). n
sis of lumped-distributed networks.' n UnT-li
The lasc three generated functions, n+l'

obviously characterize distributed net- 11. Second-ordgr Q (2)(S)
works. The results concerning the Walch Q-polynomial, n
functions can be obtained using the (2) n()
differernce equations defining them. Qn (S).+l

12. n-v~iate *H (n) C-x( -j
It must be borne in mind, that Hermite 1--n 1 (n)n

other p.r.f's can be generated from the po yn mi l H(n+-) - .

given orthogonal functions, with equal polynomial, Hln+l x Xn+l

facilýjy. The procedures for genera- H(n) °x x

tion, among those available in the 1 2 3 4 ( lX 2 9X3 '--Xn
literature, will depend upon the desired 13. Bessel's func- j Jn(Js)
types of aplications to which the geis- tiormn J (s. )()
erated functions are to be put. It n Jn(is)
appears that many useful properties of 14. Fourier trans-

Sorthogonal functions can be quickly forms Walsh - (C (n, jf)
proved by constructing suitable network pulses- S(n+l, jf)
models using the generated functions, as jS(n f) C(n,f)
suggested by Reza and Bose, earlier, and n n
also more r2eqjly discussed by a couple
of authors.
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1.,C(n+l, f) 9. J.A. Decker and M. Harwit,
"Experirmental operation of a Hadamard
spectrometer," Applied Optics, vol. 8,

Conolusions no. 12, December 1969, pp. 2552-2554.

It has been shown, that 'Ising the 10. H. F. Harmuth, "A generalized con-
principle of mathematical inuuction or cept of frequency and some applica-
otherwise, it Is possible to generate tiors," IEES Trans. on Information
positive real functionL from successive Theory, vol. 14, May 1968, pp. 375-382.
functions in 6ets of orthogonal func-
tions. The procedure for generation 11. F. M. Reza and N. K. Bose, "Some
emphasized here dependb upon the inter- links between tneory of equations and
lacing property of zeros of the rele- realizability theory," Proceedings of
vant functions. Other methods of Tenth Midwest Symposium on Circuit
generation are also possible using Theory, Maý 1967, pp. v-2-1 to v-2-11.
classical techniques, depending upon
the nature of application of the gener- 12. A. M. Solim.n, "Theory of multi-
ated functions. In view of the very variable positive in distributed net-
widespread present day use of ortho- work synthesis," Ph.D. DWssertation,
gonal functions like2•a•, Uademacher, dniversity of Pixtsburgh, June 1970,
and Walsh functions, it might be pp. 30-33.
useful to study these functions using
network models obtained from their 13. W. Magnus and F. Oberhettirger,
generated functions. "Formulas Qnd theorems for the functions
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2EJIVALEVT SERS OF 2' TWO iEVEL ORTHOGONAL FUNCTIONS

Gusta.vuS J. Simmons
Sandia Laboratories

Albuquerque. New Mexico U.S.A.

Introduction symbol into the square to its right, e*c., until

th the 2 x 2 upper left square is filled. The 2 x 2
The n order Kronecker product square to the right is then filled in the same

1 = ( n manner, etc., until the pattern is complete; 4 .e.,
=X = xx 2x3x4x5x6 xTx8 xpxloXllX1 2x.3x14X15X16

is a pn 2 n matrix whose rows (columns) are becomes
the Rads ehaer-Wr;.sh functions. Much of the x' x2 x5  X6
utility of these functions lies in the fact
that tney are a complete orthonc 'mel set-- x 3 x4  X7 X 8
properties which are preserved in the equiva- x9  x14 X3 Xl4lence class determined by the oierations of: l 12 x15 X 3 6

1. multiplying each row (co.umn) by the ________

sane binary cads Group properties of Rn
2. pienutinp rovs (columns) Many of the combinatorial properties of the

i.e.. A j Rn if end only if therA exisI ,erraita. arrays Rn are a consequence of the fact that
tion matrices P an' Q, Ahose nonzero entries the rows are also elements of a multiplicative
may be either +!, such that A= n One involutcryv group cf order 2 n,
might suspect that all 21' x 2n orthoi-onal
arrays would be equi - lent slice there is only Since there is no possibility of confusion,
one equivalence class FOr n = 1, 2 or 3 [1,2]. we shall represent both the array and the group

eowever, this Is not the case as is illustrated ly R.. The group multipliceticn is defined by
Dy the fcllowing 16 x 16 array w.ich differs an eleme;.t by element composition in GF(2) which
fram R conly in the lasi four rows but which can 'be replaced by an equivalent operation on
cannot be transformed Irto F1 , by any sequenoc the literals u ana v in 'hose cases in which the
of the oparations (1) and 12) product is Iet•meen ro-ws of' Rn i-,ich are

depiated by products of u and v. For example,
1 1 1 i 1 1 1 1 1 1 1 1 1 l 1 1 (uTv• (ultzv) = uvu", etc, un is the Identity

1 -1 1 -1 1 -1 1 -1. 1 -1 -1 for hn. Ob-iouely, every element, ri h'- "in, is
1 -1 -I1 1 -1 -1 1 1 -I -1 its own znverne

1 4! ! -i -! 1 -i 1 1 -! 1 -! -I 1 -i 1 I.e., all elnerets except the Identity are ofi i-i i i - !i iI - -!.- .]. i order two," whIch i3 the definit-ion of ar.

1 -I -l 1 -I 1 1 -4 1 -! -I 1 - 1 1 -i inolutory group. AlU invol'utory fro.Ips are
1 1 1 1 1 1 1 "- --- l- l3-.-I-1 necessarily nbelian.

11-1-1:1-1-1-1-111-1- 1 Since every eliment ri of R. (ri un) is of
!-1-1 1 -!-! 1-!11 1-1-i1 1-1 order two;

ri r R 1

1 -l -i -1 -1 1 l1 - ! 1 1 3 -3 -l -!- is a rut j'roup of Rn of order two. There are
21-1. such subgroups. If Gi is extended by any

Since the Invariants of two dimensional pat- other elenent rj, ri ý r 4 , the new cubfroup is
terns under plare transformations are dependent of order 4, an"d the number of subgroaps of
on the coordinate system in which the pattern order h is
is represented, the determination of inequiva-
lent bases of 2n two 3evel functions is impor- n 2
tant in many applicatio.,-s especi.ally in pattern # 3 * 4 ii - (
reco~nition studies. This paper develops a
theoretical basis for constructing theza bases. This method of penerating subgroups cun be

generlized to all orders Oct, C < n. If a
The indexing syctem used in this paper to re- independent generators are to be-selected, the

late a linear vector to a two-dimensional pat- firet can be selected in 2n-1 ways, the second
tern was selected so that 'tuncation of the in 2 n 2 ways, e@c. But the ordering of the a
vector would :esult in a lower order patterr, generators -an be effected in (2•l) ways for
The leftmost symbol of the vector is mappea into the first, (•a-2) ior the second. etc. The
the upper left vorner of the pattern, the next number of sabgroups of ord,'r 2L in Pn is
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therefore given by the well-known formula [31: Theorem 2.

The pattern P. is orthogonal to [R - [S])
# (O.) = a-l (3) and is not orthogonal to any element Yn [S],(2 C'-))( 2 ' 2 )(2 -)'"(2 a•'l) for ISI > 1.

where IG1. 20L Proof: From Equation (4) we sc? that P, can be
= expressed as a linear combination (uniquely

since Rn is complete) of terms in Rn in the
The vectors with norm 1, i.e., points on the form:
surface of tne unit hypersphPre, we call figures. 2N-1 - n
If they are also a vertex of the unit hypercube Ps= -1 +centered at the origin with edges parallel to 2i 2 I i+S
the coordinate axes we call tht ±gure a .i(S iES

pattern, i.e., a pattern is one of the 2n rS

oinary vectors. i•j

All of the suogroups of Rn are necessarily ... + (l)IN'1rir.r
direct products of subgroups of order two, i.e., !
if ri j rj (6)

(l,ri) X (l,r) = (l,ri,rj,rirj) The proof of Theorem 2 follows immediately from

Equation (6) by noting that
since Rn is an Involutory group. We define a 2N-11
vector function P5 on the elements of a set S (PUn =NU • 0 for N > 1
of rows from Rn:

=1 - 21-1 H - Every element in IS] is a product of elements
-. _I• ! u: S, however every such product appears in ther. .S aracketed expression of Equation (6). Rememiber-

where ing that the rows ri are elements of Rn, and as

ISI = N such are orthogoral by pairs we get finally:

In particular Equation (4) reduces to the r e (S] r A un

following for the jth element of the vector; implier

fJ r(i)(P ,r) C fo1-yN
P,(j) = I - 2 1-N H (I - r,(-)) (C) (Prr)ny N.r foS InN

r.ES

Theorem 1. Similarly, if r E [R. - [S]), then (Ps,r) = 0
since all of the inner products under the

Fs, as defined by Equation (4), is a patter:. sunrmation signs in Equation (6) are identically

Proof: If any ri has a +1 entry at the jth
position, the corresponding 'actor (1 - ri(j)) P --trtitions Rn into those elements
in Equation (5) is zero and consequently the orthogc-. A to P, and those which are not; i.e.,
jth entrý in P. is a +1. If all r entries in the subgroup [S) generated by' S. We wish to
the jth position are -1, the troduct in strengthen this construction.
Equiation (5) is 21!, and the j h entry in P. is
a -1. But any vector with only ±1 entries is a Lemma: If th6 subset S contains any two elements
pattern.E r and r4 and their product then Ps is

iienticaily un. rir, n
Corollary 1.

Obviously, Ps has a -1 entry if and only if Proof: By Corollary 1 to Theorem 1, P. has a
Obviusl, P ha a 13 ntr ifandonl if -l entry if and onl~y if all of the factors inall of the corresponding positions in the ri-1etyi n onyfalofteacrsi

all of. tEquation (5) are -1, however, it is impossible
for ri, rj and rij to be simultaneously -1.

Corollary 2. Therefore P. is +1 in all positions if the
product of any two elements in S is also in S.0If ISI = 1, P5 = ri where S = fri].

If P5 = un, the construction given above does
Corollary C shows that the set S must contain not lead to any elements not in S a!.ready--

more than one element if Ps is to be a pattern which was the reason for introducing P. in the
not already in S. first place. We can complete the development

by plaeing appropriate constraints on the sub-
*Professor D. R. Moi-rison of the University set S. Since IS] is a subgroup of Rn, we know

of New Mexico has -,•aggested that this be called that l[SII = 2L where a > 1 when IS1 > i.

a generalized circle function because of its Furthermore, since Rn is an involutory group it

similarity to the classical relation among the is possible to sele" a generators for IS] from

nth roots of unity. IS]. In fact there ate Q sets of generators

Q = ( 2 '-1)(_c'a2 )( 2 a- 2 2)...(20ý.2•-1)
349
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for S.-

Given any subgroup G C R we define a
generator set S' with loge GI elements in it.
P is the vector function Ps-, given by Equation

,ýJ% PG has the following properties, where Subgroup G

1. Pis a pattern Theorem 1 and let S = fvu2 v and u2 vu), then PG is the
.G vector

2. If g E G, 1 1i-i 1 1 1-1 li-i li-i

(PGg) A 0 Theorem 2 or the pattern:

3. IfhE[n-G} G

(PG,h) = 0 Theorem 2

4 V P n.•Rn with the spectrum (in En):

Point (4) follows since P G biRn - G, and PG=Y(01l0,000,0O-1,00 )

(PG'u n) = 2lT - n u The coset gPG; g E G is shown by the following
figure:

ana if g E G, g A /
"(PG'g) = -=> PG A g

i.e., PG J G.  PG (vu2 v)pG (u2 vu)PG (vuv 2 )PG

Theorem 3. 'PG

The- inner product commutes with the vector It is easily verified that these patterns are

produic'. if there is a common factor: mutually orthogonal.

(xyzy) = (xz)(y,y) = (xz) If

Theorem 3 is useful primarily because it IGI = 2"

leads to the following corollary concerning PG- the number of cosets of G is 2 n-a. The cosets

Corollary 3. of G possess a very useful property, summarized
"in the following theorem.

If G is a subgroup of P,, IGI > 4, and if
g,h E G, g A h, then; Theorem 4.

(gPG,hPG) = 0 Let x E (Rn - G), and Gx be the coset formed
by x on G. Similarly, GPG is the coset formed

and further if g E G, and h E [Rn - GI by PG" The set of patterns xGPG have the
(gGh) = 0following properties

Proof: The first part of the corollary follows 1. If g,h E xCPG g A h

by letting y = PG in Theorem 3. The second
part is a simple consequence of Theorem 2 and
the fact that G is a group. Theorem 2 showed
(in its proof) that PG could be expressed as a 2. If g E xGP" and h E - Gxj
linear expinsion in terms of the elements in G,
and hence then (g,h) = 0

(PG,h) = 0 Proof: First, it is obvious that xGPG consists
of patterns, and not figures, bince the product

if h ( (Rn - G). But &PG is still a linear of patterns is a pattern. If g and h are
expression in terms of the elements of G, and elements of xGPG, they must be of 'he form
therefore

(gPG,h) = 0 g " x PG g g '1 2 EG

if g E G and h E (Rn - Gj.M h xg2P g

The preceding corollary is fundamental to and therefore

much of the following developnent, so we shall
digress for a moment to illustrate the con-
struction. Let G = (u 4 ,vu2v,u2vu,vuv2l
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(g,h) = (xgl1PGX&2pG) set of orthonormal pattern vectors xGPG and
still have a complete orthonormal basis. This

= (glXPGg2xPG) result is true in general since no restriction
was made on which coset Gx was to be selected

= (gl'gý) by Theorem 3 except to insist that it be a proper coset--
Gx A G. This guarantees that the procedure just

. 0 described will generate new bases, however,

since G C Rn and g, A g2 . The second part of these may be equivalent so we require finer

the proof is somewhat more difficult. Again techniques to deal with the problem of generating

since g E xGPG, we have inequivelent bases.

g = xglP G ; g9 E G We digress from the main development for a
moment to give some results which help explain

and since h E (Rn - Gx] the construction of Theorem 4. We noted
h = ri earlier in connection with the development for

Theorem 3 that P% has 2n-a -l's in it where

There are two cases to be considered; h • Ga = ISI and S was any one of the generating

(which is possible since G n Gx = 0 when sets for G. We now note a suprising result.
x E (Rn- G)) and h E yG where y E (Rn -Corolary

(O U Gx)]. If

G U Gx = R In spite of the fact that PG has only 2n-a
n -l's, all of the replacement vectors (for Gx)

in xGPG have 2 n-1 +I's and 2 n-1 -l's.
i.e., if IG! - 2n-l, then theee cannot be an h
of the second type. Proof: We coald prove this directly, however,

we have already proven in Theorem 4 that any
Case I h E G element of xGPG is orthogonal to any element of

(h~xgP , G, and hence to un in particular. But un
G (G consists of 2 n +l's, and any vector orthogonal

where gl, g2 E G, since G is a subgroup. By to it consists of half +1's and half -l's.I

Theorem 3 The example which we used earlier was
(h,xg 1 PG) = (92,xPG) = (xxg2"x.G ) 4  2 2

S= fuV'U V vuvuv
using the fact that the group is involutory. which has three proper cosets
Therefore, 22 = three proper 24

(h,xglPG) = (xg 2 ,P) = (r.,P.) C1 = (UVU ,v uvuv u,v IG U 2=IV3 U3 2 2
where ri = xg2 E Gx, i.e., ri E (Rn - G). But C2 = vu3,u v'vuvuu v I
we have already proven in the corollary to 2 2 u 3- , ,uvuv,v u,uv3

Theorem 3 that this last inner product is 0; C3 - P2

therefore, Consider coset C1 and the associated set of

(h,xgPG 0 replacement vectors, say (uvu-)GPG;

Case II h E (Rn - (G U Gx)I E I 1•
(h,xglP ) = (ygl,xg1 P0 ) v2 uv

where g1 E G and y E (R,, - (G U Gx)} C1

(hxg1P0 ) = (xhg 1 PG)

We must show that xh G 0, i.e., that
xh E (Rn - G). !3ut we know by construction

h ( (Rn - (G U Gx) (uv)P 0  (vuv)PG (uvi)PG (v 4 )PG

therefore (uvu 2 )GPG

xh E Rn - (G U Gx)) C fRn - GI (uvu 2 )G0P exhibits all of the properties which

since x = ri E Rn. And finally oy use of the we have derived for the replacement sets.
corollary to Theorem 3 again we find However, we selected C1 as our example becauserP it contains uvu2 which is the third row in the

block normalized Rn array. We wish to determine
whether the new arra,ý obtained by replacing C1

Theorem 4 is the essential result needed to by (uvu9)GPG can also be put in block niormal
construct inequivalent bases for the pattern form. The following arrey exhibits r1 and r2 ,
space. The theorem says that we can take any rh and r 5 and (uvu2)GP0 to illustrate the pro-
subgroup G, of Rn, fona the set of patterns GPG cedure for constructing the permutation which
and then replace the coset Gx of Rn with a new will return the array to block normal form.
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1 1 1 11 11 ] 1 1 11 1 Case UI

1 1 1 ! 1 1 1 1 -1 -1 -1 -! - i -1 -1 If G ccntains a term (or terms) which involve
1 1 -1-1 1 1 -1-i1 i -i -i 1 i -i -i

b as a factor, we must use a different argument.
First, we illustrate this case with an example.

1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 As before let
1 -1 1 14- 1 -. -1 -1 1 1 I 1 i -1 G=(bb~b5bb~bb5)

however, form the coset Gb2

Since xGPG is to be substituted for xG, (uvu 2 )PG Gb2 = (b 2 ,b 5 ,b 2 b 4 ,b'b4)
is in the new array. The other rows of xGPG
could be ased equally well however the method In this case both b2 -.nl b5 are removed from
is valid in general irrespective of which coset the array in forming Q(Gx) since both are in
is replaced. If columns 4 and 8 are interchanged the coset Gb2. Therefore PG is not a linear
and columns 11 and 15 the rows rl, r 2 , r4 and combination (,f terms of B remaininZ in Q(Gx)
r5 will be unaffected and the row labeled and no permutation is possible on bGPG to
u'U2 pG will have been transformed co be uvu2 , return Q(Gx) to block normal form. Instead, we
i.e., by bringing the permuted row v0 to row use the following procedure. If IGI < 2n-l,
three we have returned the array to block tbhn C and Gb did not exhaust Rn and there is
normal form. In the ne.it theorem we shall at least one bi E B which does not appear in
prove that this was not a coincidental property either G or Gb2. The products bibjj!. bibjjbJ2 ...
of the construction, but rather a consequence where the b. are the elemcnts of B -hich appearof including a row from the first n+1 rows of in Gb2 are therefore in the set (Rn - G U Gb2j C_

the block normal form in G. Q(Gx). But these terms can be simultaneously
permuted to recover the b without affecting

In the following discussion we shall the rows of B n Q(Gx) in he same manner as was
frequently wish to refer to the block of n+l done with PG in Case I.E
rows at the top of a block normalized array.
Since these rows have a fixed form--independent In the example given in the discussion of
of the structure of the array in which they Case II in proving Theore., 5 we haO
occ'Lr--we can properly refer to the block Bn B n Q(Gx) = b lb 3 ,b4
as the first n+l rows in the block normal
ordering. Also since most of the remcaining with b and b as elements in the coset° We
discussion is concerned with the orthonormal with 2 ade as e emen tin the thiWset. of vectors generated by replacing the derive the no~malizing permutation for thi•
coset Gx in Rr with the set of vectors g e pGP cnse to illustrate the rethod. b2 b3 = u

2 v2we ne an R. forh thiset ary vectos and b2 b 3b 5 = vuv2 are both in Q(Gx). The firstthree rows of the following array are b], b3Q(Gx) = Rn U xGPG - Gx and b4 and the last two are b2 b 3 ond ½b2 b 5 .

which is a complete specification of the array 1 1 1
since both xGPG and Gx depend only on the Eubsct 1 1 -I-i i - -i I --
G and on some element x from the coset. 1 1 21-1 -l -l-l 1 1 ± 1 -1 -1 -1

r- l 11-l 1 1 -l-l- 1 ,-

The main theorem which restricts the cosets 1-7 -l l

so that the Q are inequivalent bases can now be 1

given. The columi permute.tion to convert b2 b b5 to b 5

Theorem 5. and b2 b 3 to b 2 simuleaneously, while leaviný g
bl, b 3 and b4 unchanged is

If the coset Gx which is replaced with the (1)(2,1.O,9)(3,12,4)(5)(6,14,13)(ii)(7,16,8)(15).
vector set xGPG to form Q(Gx) includes an
element b E En, then Q(Gx) can be put in block This permutation is com~lttely determined by the
normal form by an appropriate permutation of choice of elements in Q(Cb) which are to be
its rows and columns. reordered. We could have equally well. selected

b b5 or b 2 b3 b 5 , but we could rot select b 2 bh
Proof: since it was an element of Gb2 and therefore not

Case I in Q(Gb).

If G does not contain a term involving b, then Theorem 5 defines the problem: to detcrmine
PG is a linear combination of terms not involving those arrays Q(Gx) generated by the replacement
b and which can therefore be permuted in any way of cosets for which
which does not affect (B-b). One of these B n ox = .(7)
permutations represents each term in bGPG, and

therefore .re can return Q(Gx) to block normal Cosets for which
form.* B f Ox y

As was shown in the preceding example any of we shall call denied, in the sense that the
th? elements (uvu 2 )PG, (vý2 uv)PG, (uv'u)PG or arrays which they generate can be reduced to
(v)PG could have been permuted to return Q(Gx) some other olock normal form, i.e. they cannot
to block normal form. be inequivalent block normal arrays.
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Subgroup structure of Rn Subgroups of R4 of order 4

Theorem 5 of the precedirg section showed Subgroup Composition T_
that only cosets Gx for which 4 3 2 22

B n Gx=• (8) 1 (u uv, ,uv)

need be considered in the search for inequiva- G2 (u ,u v,uvu ,uvuv) I
lent bases. In this section we shall develop G u ,uv,vu3,vu-v)necessary and sufficient conditions for 3• (4 2 2 2

G(u, U VU,UVU 'uv U)

Equation (8) to be satisfied, and enumerate the 4 2  u
resulting bases for E16. 05 (uu,u vuvu ,vuvu)

Theorem 6. r- (u uvuvuu

The only bases for E2 , E4 , E8 and E16 which G (u ,uv,uuv uuv3) II
are also groups are in the equivalence classes 7 4 3 2
of R1 , R12 , R3 and R4, respectively. G8 u u vvuvuvuv

G 4 u3 22 2

Proof: The conclusion is trivial for E2 , E4 09.(u ,u r,v u ,v uv) IIand E8 since the only bases in those cases are GO (u ,u vu,uvuv,uv3 )

equivalent to Rl, R2 andR In the casL of (U ,u 2vuvu 2vvuv 2 I2
El6, we have proven that I bases are equiia- 11( u vuv 2 ,2 ,vu2 I
lent to some normal array, i.e., an array which G12 II
includes B. However G (u4 ,UVU2U2v2 uv3)

=13 4 2 2 2,n G14 u ,uvu ,vu V,v uv) II

and the theorem follows. G0 (u ,uvu ,vuvu,v 3 u)

Corollary 1. OG6 (u ,vu3,u v ,vuv) II

If the subgroup G of P, is of order 2 nl, its 017 (u4 ,vu ,uvu,vuv) II

cosets cannot ',atisfy Equation (8), i.e., they G18 (U vu uv uIv
cannot be disjoint from B.

Proof: B B G, for if it were G would be Rn by 019 ,u4 2 u2v 4
Theorem 6. Therefore the only coset, Gx J G, G20 (u ,u vuv uv,v ) III
has a non-empty intersection with B G4l (u 2 24 III

Gx n B/,., 0 (u,vu4,uv,v I4)

Corollary 2. G 4 22 U 2 I

E16 is the smallest space which could have 023,(u ,u v ,u2uv,uv u) IV

an equivalent pair of bases. G24 (u ,U v ,vu v,vuvu) IV
(u4 2 2 2, I

Proof: F-om Corollary 2 to Theorem 1, we know G25 (,uvuvvu v4v u ) IV
that G must be of order four or greater if the G26 (U ,uv uvuvuv u IV
method of generating new bases descri.bed by
Theorem 4 is to lead to a new base. But (u 22 v2' u v4)
Corollary I says that the cosets of a subgroup G27( ,uvv,vuv,) V
of order 4 cannot have a member which is dis- G28 (u ,uvuv'vuv'v V

joint from B unless n > 4, i.e,, for £16 or 0 (u ,uv u1vu 2vv 4 V
larger spanes. -29

The important point of the preceding argument G30 (Vu2v2,2uv,v3u) VII

is that we need only consider the subgroups of G (u ,uvuv,vuv ,v 3u) VII
R4 of order 4 in constructing inequivalent bases 31 42 22

for E1 6 . Equation (3) gave the number of such G32 (u uv u2vuv ,v uw) VII
subgroups to be 35. These are tabulated in 4 3 • 3II

"'able 1. 33 u4 ,uv3 2
3B4 (1 vvv~ vVII

The meaning of the subgroup types can best be (u ,uv ,vuv ,v u ) VII
illustrated by examples. Consider first, the G35

subgroup G, and its cosets: Table 1

4 43' 2vu 2 2GI (U ,Uvu vu u v)
Tn( intcr.-'' ,-_ 31 these cosets with B are

,1 (u (uvu2 , uvav'uV-uuvu ) given by the following expressions, in which

W3) 3,2 2 the coset leader for cosets 2 and 3, happens to

GI(VU3) = (vu ,vuv,vuvuvuv2) also be the intersection.

G1(v2u2 ) =(v
2u2 ,v~uvv

3uw

W1,



o n B.u4,u3v 2 vu) Consider a general subgroup G of order 4:
f B G = (lab,ab) (8)

0l(uvu ) n B = (uvU ) where for notational convenience we have let 1
3 represent u4 , and a, b and ab represent the

SGI( .u3) n B = (vu 3 ) other elements of Rn appearing in G. A detailed
22 examination of the example with GI9 would have

Gl(V U ) nl B = shown an apparent pairing of denie? elements by
members of a subgoup; for example, uv 3 and

Therefore only the last coset can generate a vuv2 both deny u&v2 as an element for a coset
non-equiv-lent base for E16. which •s to be disjoint with B and both also

deny v4 . This is no coincidence as the follow-
On the other hand consi der the subgroup G.9 ing theorem shows:

and its cosets:
3G4 = (u4, Theorem 7.

1 u , ,v uv ) If two e-ements, a and b, of a subgroup G,
n 2 2c.(uveU) = (uw/uvu VVvuv v ) when multiplied by a common factor x, both give

2 3products which are in B

G19 (vu
3) = ( 2v,uv uuv ) ax BG1 (2 vu) " av 2nd Ii

22 = v 2u 2v uv,u vuu v 2 . bx E B

The intersections of these cosets with B are then there exists another factor x' (which we
shall call the conjugate of x) which also

G n B = (uN ,u3v) satisfies Equation (9)

0 (uvu2) n B = (uvu) and

3 bx' E B.
9 B = (vu) Proof: First we note that the elements of B Pre

Gl(v?2u) 2 B = (2vu) either un or else of the form un-ivui-l. There-

1 9  fore if & F B an' bx E B, there are two possi-
hence G19 cannot be used to generete new non- bilities.

equivalent bases for E16. Thus there exist
subgroups of order 4 which lead to new bases Case I
and others which do not. The products differ in two factors:

The reason for the different behavior of G1 ax = uu...(vo.-(u).-.uu (10)
and G]9 is that their cosets span 12 and 16 bx = uu... ui... v ... uuI
elements of R4 respectively. For example, if where i • j since a • b. Equation (10) shows
uvuv is in Gi, then any coset which includes whet a a b s in Exa t wo fatorsu~vuvu, uuvuv3or vuv illhav a on-that a and b must differ in exactly two factors
u3v, uvu2 , uvuv, uv3 or v2uv will have a non- (u and v), and that consequently ab differs fromempty intersection with B and hence by Theorem 5 ax and bx in one position for each case, and
could not lead to a new base for E1 6. In the that ab has two v's in it
case of G1 all elements other than v2 u2 , v2 uv,
v 3 u and v4 are dernied as coset members; but ab = uu...(v)i.. .(v)j... uu (11)
these four are themselves a coset of G1 which
can be replaced by xGPG to form a new basis. Furthermore, x *nust differ from a in the i-th
On the other hand G19 spans all clements of R4 position, and from b in the J-th position;* i.e.,
and no such coset is -ossible. if x is given by:

Every element in G has n+l factors which it x = Zl" 2 ... ai .b. n-l-n
denies as members of cosets, since thjX product then a and b are of the form:
would be in B. The elements u and v each deny
5 elements as terms in cosets, il the cosets are a = zlZ.. b'z
to be disjoint from B, but none of the five 1 2 n-1 (12)
terms denied by p are included in the set of b z lz...a...... n
five denied by v 4 . On the other hand, u4 and 1 2 i
11

3 v together deny only eight terms. It is this Let x' be defined to be the element:
overlapping of denied elements which makes it 1 =. ZZ2 ... ai. ... Zn
possible for the four terms in some subgroups to - n-l
deny only twelve factors, as was the case for then
Gl, and hence to leave a coset disjoint from B. ax' = uu. . .. fyi uu
On the other hand for a space of suitably high uu
dimension, it is nossible for a subgroup of bx' = uu .. \v.i.. u ... uu
order 4 tc deny as many as 4 (n+l) factors. This
cag bc achieved in E64, where the subgroup which proves the existence of the conjugate, x',
( u v .,v3u3,v 6 ) does deny 28 elements (out of by construction.
64). Our method of study for this problem will ,
be to determine how many deniud elem'ents can be In this case means u replaced by v or v
shared by a pair of generators from a subgroup. replaced by u; not the usual complement.
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Case II differ between a and b. For example, if a = u2 v
The products differ in only one factor: and b = uvu, d(ab) = 2. It is easy 'o 3how
Th ror in ol othat d(a,b) is a distance function.

bx = uun.•- vI" ... uU (13) Theorem 8.If a,b E G, G C Rn, and d(a,b) = k, then for
then a and b differ in only the i-th position, any x E G
and we have by the same construction used above d(ax,bx) = k

ab = u u........u u Proof: Theorem 8 is a consequence of u and v

X = Z Z•..b •...znZ being elements of a group so that if ir. the i-th
i 2position a and b were alike (unlike) then ax and

a = zlZ•-..b...nlzn o1 ab are also alike (unlike) in the sasae positiou.I

b = z Iz 2 b ... z -zn There can only be 2a-1 independent distances

in a subgroup of Rn with a generators in view of

The conjugate •n this case is Theorem 8. For example, in G = f1,a.b,ab]

x' = ZZ ... b ... znriZn d(aab) = d(lb)
d(v.,b) d(l,ah)

and we have the pair of identities d(b,ab) d(la)

ax = bx' The vertex 1, i.e., u4, will be chosen as the
bx = ax reference point because It must be present in

x =all subgroups.

which proves the theorem. M
Theorem 9.SThere are sc ?ral corollav'tee based on theI There exists an element x E G, such that

argument used in proof of 'heorem 7. These form d(l,x) = 1 if and only .f the other two elements
the basis of the next several theorems.

y and xy satiafy the pair of identities:

Ccrouary 1. d(l,') -k (16)

If and b are both elements of B, a / b, then di"_xy) : k+16

ab ý B. This follows from Case I above sincr Proof: Since d(lx) = 1, x E (B-un], i.e.,
ab must hwve two vts in it, and hence is not 'n x = un-ivui-J. The-efore if

B. Y=z 1 z2  i n-1n (17)

Corollary 2. then

If aand bare neither in B, It is st~ll xy =z1 .Z' n(8
* possible foz ab E B. Case II gives the necesrary I i n-lZn

condition for tbis to be true, i.e., that a and If zi = u, then d(l,xy) = d(ly)+l, since xy
b differ in exactly one position. An example will differ in une more position than x fro's un.
would be Similarly, if zi = v then d(i,xy) = d(l,y)-l

2 which can be put in proper form by selecting
a uv u ý B the term with u in the i-th posiiion to be y.

b = uv3 ý B On the other hand if y and xy are of the form

ab 0 v E B given in Equations (17) rnd (18) then x = y(xy)
Corollary 3. will have all factors a except the i-th factor,

It is possible 'or nonc of a, b, or ab to bo and hence x E (B-un1 and d(l,x) = 1.U

in B. An example is Corollary 1.

a uv If ab E G and P,b ; B, then ab ý B. This
b = uvuv was proven earlier but is trivially apparent

ab from the result of Theorem 9. Tn narticular,u•I ab~l• b)-2.

Corollary 4.

It is not possible for a and b, a j b, to Theorem 10.

share more than a single pair of denied elements. Ther: exists an element x E G: sacb
This follows immediately from the Equation (12) d(l,x) = 2 < d(lg) for all. g C G, if only
and (14) which specify a and b. if the other two elements y and xy satit-y one

of t¢c two pair• vf identites
We define a distance function on the membebs d(l,y) = k

of R similar to the Hamming distance. The C(lXy) k (19)
Hamming distance [4] between two binary code or
words is defined to be the number of positions
in which the code -words differ. Since all of d(ly) = k()
the elements cf Rn can be represented as Kroneeker d(l,xy) = k+2 .

pr.d)ictb of factors u and v, we define d(a,b) Proof: Since d(l,x) -z 2, we know that x has
whcre a,b E Rn, to be the number of factors which exactly two v factors in it:



X un'J-i.vuJ'ivu il pair of the unoccupied positions can be used for

the v entries in b, therefore the number of such

Therefore if subgroups is:
Y=ZZ3~2 .. . .. . . ..z * Z (21 n(2n_,\(25

i+j .zi . n.iZn (21) N2 = 2 2 (25)

xye Z1Z2o.z +j. z Z (22) Case ITT d(l,a) = I

d(l,b) = k
There are two possibilities: either 4+j and d(l,ab) = k+l
ziar. both u, or one is u and one is v. First where k > 2. The number of subgruips which
assume they are both u, then belong to Case III is:

d(l,xy) = d(l,y) + 2 N = -n( 2nl•( 2 n-l 1 ) (26)

and Equations (20) are proven. If one is u and we cansince select an element of tB-un} in 2n
one is v, then ways and we can then select an element with two

d(l,xy) = d(l,y) v's in it, neither of which coincides in position
with the fo in a, in (2nl-b)(2n-l) ways.and Equations (19) are proven. By the same

argument used in Theorem 9 we must select theproper term to be called y for the above to be Cs Vdla

true. If y and xy are of the form given in d(1,b) = 2
Equations (21) and (22), irrespective of whether d(l-ab) = I
zi and zi+j are u or v, the product is of the Corollary 1 to Theorem 10 shows that the number
desired form for x.0 of subgroups of this type is just the number of

ways in which three pesitions can be selected,
Corollary 1. i.e.,

There are subgroups G = (l,a,b,ab) such that N = 2 n(27)

d(l,a) = d(l,b) = d(1,a) = 2 (23)

Discussion: Case V d(l,a) = 2

Equation (23) is true by Theorem 10 for all d(l,b) = 2

n > 3, however it is also possible to define d(l,ab) = 4

the precise form 'hich the vectors a,b and ab Theorem 10 shcrued that z, and zi in Equations
must have for Equation (23) to be satisfied. (21) and (22) must both be u in I.is case,
If y and xy are to each be at a distance of two therefore:
from un, then x,y and xy are each made up of lI2n\/2n-2(
factors of u in all bu. three positions in which N5 = 2(228)
the factors are

a ui...v ... vk Case VI d(l,a) = 2i d(1,b) k

b vi... vj... d(l,ab) = k-2

where k > 2ab vi........v 
2 n

All of the cases of interest are tabulated h 2A' E ( 2n-•:
below, as determined from Theorems 9 and 10 and N = \2) .. - (29)
simple combinatorial considerations. r-3

Case I d(l,a) = 1 Case VII d(la, = 2

d(l,b) = 1 d(l,b) = k
d(l,ab) = 2 d(l,ab) = k

The number of such subgroups is: where k > 2

2 2 (2 (24) N7  (2n)E ( 2 n'k) (30)

Case II d(l,a) = 1 k-3
d(l,b) 2

d(l,ab) = 3 Case VinI d(l,a) = d1
By Theorem 8 d(lb) = 2 implies that d(a,ab) = 2. d(l,b) = d
But d(1,a) = 1, therefore d(l,ab) = d

a = uu...Ui...uJ...k... where

and

b = uu ... vi...vJ U k ... uu i

ab = uu .... v ... V k .. uu If n < 6, there are no examples of Case VIII.
i j The smallest such example is-.

The vector a can be selected in 2 n ways and any
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a = UuUVVV In view of Theorem 11 only .he subgroups of
b = vvvarn Types I, II, IV and V can possxbly have cusets

ab = vvvYv, disjoint from Bn in R4. Since the eliminatior

The simplest way to express the number of sub- procedure which we have develuped in the Die-
groups 'belonging to Case VIII is ceding pages actually eliminated coset images,

each of the sets of four ýndenied el aents (fo'
1 n = 74) is itself a cosct. The corresponding

2 N8 = 
1  - • Ni (1) -replacement vectors, generated 4lng Theorem 4,
3 are shown in Figure 1 each of which generates a

non-equivalent (to tn) basis.
The classification of the subgroups of Rn of

order 4 into the eight cases given above may Conclusion
appear arbitrary, but is based on how the
elements within the subgroups share the elements A general technique, dependent on the sub-
denied for usc ... the constr, tion of cosets group structure of Rn considered au a multi-
disjoint from B. We can now say just hor many plicative involutory group, has been developed
elements an arbitrary Lubgr ,ip (of order 4) whiich can be used to construct inequiva3ent

denies. bases for E2 n. The theory was applied in the
second half of the paper to a complete
enumeration of the bases obta.iable in this

Lemma.: If a E .8 then a and I jcintly deny manrkir for El6. The method is applicable to
2 n elements. all 1\" n > t. Limitations of space precluded

a discussion of the transformation grcuns o:SProof: Theorem 7 applies since aa = 1, and the the various bases, however, it should be noted"number of denied positions is that the invariants of patterns are in general

2(n+l) - 2 = 2n .E changed by the coordinate transformations given

Theorem 11. here.

If G is a subgroup of type i, then the References

number of elements de[ied by G is ni [1] Marshall Hall, Combinatorial Theory,

i n Blaisdell Publishing. Co., 1967, pp. 204-
i 222.

I 4 (n-l)
Ii 4(n-l) [2] vun Hans Dieter LUke, Lineare
III 4n SignalverknUpfung in der.Multiplextechnik,
IV ;(n-l) Archiv der Elektrischen Ubertragur,.,
V 4(n-.l) o.Lume 24, No. 2, February 1970, pp. 57-65.
VI 4n
VII 

4
n [3) R. D. Carmichael, Introduction to the

VIII 
4
(n+l) Theory of Groups of Finite Order, Dcver

Publications Inc., New York, 1956,
Proof: Each case is proven by forming, the Chapter IV.
mutltiplication for G with Rn to deter,,ine the
shared denied elements using the results of the [4) R. W. Hamming, Error Detecting and Error
last feT theorems.I Correcting Codes, Bell System T^hnical

Journal, Volume 29, 1950, pp. 147-160.

r r(u
3

v) r(u 2
vu) r"u

2
v

2
) .u r(u 2 ) r( )

rkuX) rluv,.i r(3 vuv) rr(ruvu)

( )-rv' r r(vu3 )

,-acem,:nit v r



r r~u~v) rr ur(vu) ruvuv) r(vuv*)

rrv u)r r(vu3) r(uv~u) r(v3-a)

r r(u3v) r(v2ue) r(v2uv) r r(u2v2) r(uvuv) r(uv U)

rr(u 2vuj r(uvuv) r(uv ) r(uv) r(vu2 v) r(vuvu)

G

r ~ u~v) ~vuv) r(vuv2 ) r r(uvuv) r(vu2 v) rvu)

r r(u2 vu) r(v~u2 j v))1 ~ ~ u rv1 2

r r(u~vu) r(vu2v) r(av3u) r r(u"v) vau rvu2

r r(uvuo2 ) r(uv~2 ) r(vUV3, r r(u~vuv 2 v) r(, 4

r ruu) r(vu~v) vuv u-v vuarv4

rr(vuv.ji r~u

riepJ .cement vectors ir R
Figure 1



A NEW METHOD FOR REPRESENTING WALSH FUNCTIONS

Ira Ross

John J. Kelly
Associate Professor of Electrical Engineering

New York University
Bronx, New York lOh53

U.S.A.

Abstract

A closed form representation for the set of is-1 = is-2 = ... = io = 0. Then by direct sub-
Walsh functions is presented, in terms of the stitutioa in (2) and combining terms
sign of a product expansion of sines an( cosines. s+l n (cos 2 k+ k
This provides a clear picture of the Walsh func- sal(i,x)vsign[(sin2 rx)
ti is and their relationship to trigonometric k=s+l
f-ictions. Trigonometry identities show the Equations (2), (3), and (4) completely define the
relationships between the Walsh functions and a Walsh functions, ordered by sequency, orthogonal
simple procedure gives the Walsh function of any in the interval - 4 <xc< 4 and also periodically
argument. continued from this interval over the real axis.

Introduction Example
As an example consider the construction of

A complete set of orthogonal function, sa xml osde h osrcino
tAi omplethe valuse of ort o ?resenctionbthe function wal (9,x) = sal (5,x). In binary

takin• only the values ± were ?resented by

Walshf in 1923. The functions can be defined form j = 9 = 1001 1 = 5 = 101. Then

iteratively or as products of the Rtdemacher wal (9,x) = sh! (5,x)=sign~sin 2imx cos 8uxj
functions, a subset of the Walsh functions. which is illustrated in Figure 1.
Herein ir presented a general closed form rep-
resentation of Walsh functions in terms of the The general exrression given in (2) is
sign of a product expansion of sines and cosine.• proved by wathematical induction using Ha•-muth's•
The product form present d mares periodic con- iterative difference equation for the Walsh

:tinluation if t),e Wal ji,otiers easy to visu- ranct'ons. This isalize, graph, and manipulate. wal(2.i+p,x)=(-l)iJ/2]+P{wal[j,2(x+

Trigonometric Expression of Walsh Functions +(-i)J+P wal[J,2(x- pr))} (5)
Consider the set of Walsh functions, where p = 0 or 1 j = 0,1,2.... [J/M= integer

{wal(J,'c)), where j indicates the Walsh fur-!ticn value and wal(o,x) = 1 for -ix< 4
index and x is the argument. They form a com- wai(o,x) = 0 for x<- x>
plete set, orthogonal in the interval -j<_x< 2
and zero elsewhere. This normalized interval Equation (51 is separated into two parts,
can be converted to the general interval -T12, one valid f,'r - ~-_~'and the other for
x<T/2 with x replaced by x/T, as required. The O<x< 4 . The proof en:,ails four separate cases,
general expression for wal(j,x) is based on bi- corresponding to p=0,1 and Jo= 0,1, as stated.
nary representation of the index J, i.e., Direct substitutio., of (2) into (5) under the

j = 2 n+ 2n-l+ + Jl21+jo20 (1) above cooiIitions proves that
Jn +n21 p n k+l ii-j (6)

nn-i 1 0wal(2j+p,x)=sign[(Siri2mx) E (cos2 ix
where ji = 0 or 1, so that k=o

j, n k i•xJk( which is t1, required result for the induction
wal(jx) = signC(sin27x) N (cos2 X) (2) proof

k=lS~Aaolieatio••
The sign function is similar to the sigiun func-

tion except that it takes the value zero only Some basic properties of the Walsh func-
when the limit fron. the right is not equal to tions are evidnrt from (2), such as wal(j,x) is
the limit from ' he left. an even ,nction of x when j is even (equal to

The cvýn and odd Walsh functions of ca cal(H/2,x), and an odd function of x when j is

(i,x) and sel(i,x) are easily found from (2: odd (equal to sal( i+1 x)). Also the reta-

using the relations cal(i,x)=wal(2,x) and sa- ionships between th1 evwn and odd Walch f-i.c-

(i,x)=wal(21-l,x) and writing the indices 2i and t~ons are
2i-l as binary numbers as ir (1). We note that val(2i+l,x) = walti,x); x>o

n k+l k .,- a.(2-,x) ; x<C
cal(i,x) = sign([k 0(cos2 7x) 1 (3)

To express sal (i,x) in terms of index i and sal(i+l,x) --a! x>.

we must specify the binary represewation of i - cal(l,x); x<o
as fo•lows. Let the lowest binary coefficient The valte of. satisfying the following
of i, not equal to Lero, be is, so that is = l. periodi' relationships of the Walsh fanrtion,
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can easily be found from (3) and (i). From (2) we obtain

cal(i,x+xO) = sal(i,x) (8a) wal(J,x)wal(h,x)

sal(i,x+xo) = cal(i,x) (8b) = sign[(sinx)Jo (co5 2 ksx) Jk]

cal(i,x+xI) = - cal(i,x) (8c) k=l
h n k hksal(i,x+::I) = - sal(i,x) (8d) "sign[(sin2rx) 0 H (cos2 kIx)h] (15)

cal(i,x+x2 ) = cal(i,x) (8e) k=l

sal(i,x+x) = sal(i,x) (8f) where n>n'.
Now we may combine the right hand side

For example consider relation (8a) when the and ootain
lowest binary coefficient of i not equal to zero
is is. For this value of i substituted into (3) wa-(J,x)wal(h,Y)
we obtain jo+h° n (cos2k x) ] (16)

cal~i~x~jx =sign[sin2 x) H1(o2xcal(i,x! Ix.ol)
sin{ 'When j. 0 h. the term in the product expansionsignj [eos2 ~(x±Ixo) (9 1

k=s 0is raised to the first power and remains. When
J. = h. = 1 the term is squared and is always
We 1i

We must determine the sign and magnitude of xo, positive so that it can be removed from the
which depends on s, so that (9) becomes expansion. This operation is equivalent to the

modulo 2 addition of j and h so that the product
cal(1,x) rule is demonstrated.

= sign[(sin2S+lwx) 1 (cos2k+l)k]( Another apication of tne results present-
k=s+l ed Leads to a Walsh function •enerator similar

to the one proposed by Davies but using theThis can be done by equating the product expan- kWalsh functions
sions in (9) and (10) term by term. Equating suboet wal(2k'x) to generate the

the first terms, i.e. k=s in (9) and sin 2s i7x instead of the subset wal(2k+l-l,x) (the

shows thearirst ter, 2- is the smallest Ix I sat- Rademacher functions). Examination of (2) showsshow tha I~l= 2s-2is te sallet I~l st- that the Wa.Lsh functions wal(2 ,x), k=0,1,....

isfying the equality and is enalagous to ?he tat te Waishntin xy
principle value in trigonometric functions. can be rep'esented by
Substituting this value of xo into (9) yields wal(2 0 ,x) = sign[sin2lTxj, k = 0
the equation (17)

cal(i,x±IxoI) wal(2, x) sign(cos2 sxJk V 0
Ssign ((1)(si'n2 ~ITx)(-l) This set of functions can bc g,.,erated as easily

n (cos2k+l x)] Ik) as th.e set of Rademacher functions

k=s~l wal(2k+l-l,x) = Rk(W = sign[sin2k+l.x]. (lb)
To make (10) and (11) equal 4e see that the sign
of x must be chosen according to the value of The individual functions used to generate a

0s+!, i.e., if particular Walsh func'ior. are fount Ureetly
from the binary representation of the index j

.x =+2-s-2 without resorting to the Gray code transforma-
s+l 0 (12) tion of j as in Davies' scheme. Thus

Si4=0, then x =-2- 2  n aS= 0 wal(Jx) =ko q [wai(2kx)]Jk ((19)

This relationship is equivalent to the one des-
cribed by Harmuth. 2  A similar development for The advantage of using (19) is not significant
(8b) yields the relationshlps when zero crossings are not considered. i.e.,

f -l th , -2-s-2 when Walsh functions are generated digitally.
s+l, en 0 However, when the continuous Walsh functions are

S(13) needed in analog form the use of the Rademacher
and if i 0, then x = +2-- functions to generate them pesents & problem.

0 This problem will always arise when any product
For (8c) to (Sf), the relations are of odd Walsh functions is used to generate an

S-- n x -s even Walsh function. The odd Walsh functions
1 1 2= 2 " have zero crossings at points where the even

oz>,neral, any d~s red periodic relationship functions do not. This is evident at x=O where
for tht d-i!sh fn,-tor. cat be found using the all the odd functions have a zero crossing and
,-r • pansion d,,-. ed in tne paper. the even functions are always positive one. The

product rt, for multiol-,crtlon of set (wal(2k,x)) of (19) generates the functions
aL• •rte using (2). without error.

r,i, Conclusions

Sx•,lx= •(j• .•) (i) The representation of the Walsh functionzs
in terms of the sign of a product ecr.anason of

3L0



sines and cosines provides a convenient closed
form for the Walsh functions. Many basic prop-
erties of the functions are cleErly evident from
the prod t expansion. This spproach also sim-
plifies computttion of the Walsh junctions. It + + +
was shown that the subse-t of Walsh functions,
wal(2k,x)- can be easily generated and used to
generate the complete set of Walsh functions
without zero crossing error.
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Abstract Assuming that the input x(t) is of a
specific fo~m x (t), we wish to seek an equiv-

Important ele-ments in dealing with linear alent set of g~fns which yields:
control systems are staL~ility and performatice
and there are many methods to evaluate these ya (r) -NT(x 5)x 9(t) (2)
factor3. Nonlinear systems are more difficult
to handle. Stabi~ity can be looked at by meansi where the equivalent gain column matrix N is
of analytical methods without rescrictions o~a chosen such "o to minimize the mean-squared
the input signal. Performance for design error between the actual cutput f(x ) and the
purpoaes can be handled using approximatlons on approximate output y 8(t). Thus if-,'with fig.l:
the input signal.

The classical method to study nonlinear a~Žfx -N (xx3
systems for system design is the describing te ~ st ecoe uha omnmz
function method. It requires that the form of thn-~ is t ecoe uha omnmz

the input signal to derive this function
approximates the actual signal at the nonline- e
arity input. This input signal is taken to beir2 (4
a sinusoid. 2-rI - i IetId

rThe present paper studies the describing f 2  T 2 NTx T)2

function using a Walsh func-tion input, which - _8 -- 5x
may take the form of a single function up to a Th i i i ai nof 7 ih X et t a

smof several inputs. After the definition of TheB. miimzaio odwg~s tt a
sumas ecibn ucin sm udmna be carried out by setting BT acI I~ equa ito
remarks are give, based on the properties ofzeo Thsyld
Walsh functions. Next, particu~ar attention is N x x -fx for J-1,2,... (5)
given to a special class of nonlinearitiesý - k 8 k a

the odd nonlinearity, after which a generalk- k i

formula is set up for a finite sum describing

Finally, the describing function is YZq

evaluated for a set cf common nonlinearities,
which makes it useful for ready computation.
It is also pointed out that the advantages due
to Walsh functions disappear for nonlinearities
with memory, because of the multiple valued
definition. N

It is concluded that the Walsh describing
functions are extremely useful in the study of Fig. I - Block Diagram Represencation of The
syatesds, which mainly consist of nonline- Dsrbn ucinadTeOtu
arities especially of the relay type, and that DEsribnrFnoinadrh.Otu
its iery nature may yield a better means for Err
identification cf such nonlinear elements for2.Oenpt-ne utt
modelling purposes.

INTRDUCTON tor this case, the expression (5) beicomes

N - fx 2- (6)
1. Formulation of t~he Dercribina Function 9

Metod or eroiemryNonLinariy !~ e now conelder x to be a Walsh function input,

Conctvder a single memorr'less nonlinear (notationi as in [12])

elements of the following form: x 8(t)- a- $k,t/T) ; k-0,lv2, ... (7)

=f(x) (1) re T- nA rime pro (or the finite
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In order to evaluate N from (6), we have relatLively easy with and without a computer
n 2n because the discretenens of Walsh functions:f- (a/2 %)fO f[a#(k, tIT)]#(k,tIT)dt

x aFrom 
(10) and (12) we have

By substituing v- t/A the latter formula 2n_l
becomes N(a) - (1/2na) I f[awai(k,u) wal(!.,u) (14)

fxs (a/2n)f2nf ta 4(k,v2-n)](k,v2 -n)dv. 'i-d

2n_

But the function *(k, v2-n) is constant in each Ni(al .... ,aM) - (1/2a I)u• f[xl-..... m
interval n < v < u+l wherc u=-0,1,2,..., 2n-l. U-0

2n-l 
wal(kiu) (15)

f--a2'n f[aO(k,u2-)]*(k,u2-). (8) where i ,
S u-0 n-l

On the other hand: ki I ki r2r ; k rC{0,11 (16)
- r-0 i-U irX2 2 a2-n) 2n ,2(kv-n~d
X ( (kv2 )dn wal(ki,u) - O(kiu2-n)

" a2 2 -n 1 0 2(k,u2-n) - a2  (9) and (31 wal(ki,u) - -1S (17)
n-0

Finally, the describing function (6), for a with S = (k u (kn k r
single Walsh function input, is i,n-lU0 r-l ",n-r in-r-l) U

2 n_, where 0 means the dyadic sum and * logical sam.

N(a) - (1!2a) u0 f[ao(ku2 n) (kun) (10) 1. Theorem 1 - Sequency-independent WIDF
u-U

Later we will show that the second member of The second member of (14) is independent
(10) is independent of k. of k 0 0, and

3. Hultiple Input - One Output N(a) - (l/2a) if(a) - f(-a)] (18)

Proof: Consider the summation in (14).
A generalization of the single input case

is one wherc we may have a combination of two n-1 k l 0, we have

or more inputs, which are a Walsh function, and 2 reruns f(a) corresponding to was(k,u) - I
where one observes one output. and

2 terms (f(-a) corresponding to wal(k,u) --I.
Let the input be x of the period T (ordeie o ):-s So the suamnation is independent of Ic, and

defined for O<t<T): (18) is evident. QED.

i1 Remarks 1:

x X 2 where x"i ai (kilt/T). The following conclusions can be drawn

IZm . ki kj (ji J) from the last formula:
Rl-l.No computation is necessary for the one

while v - f(x1 , x2 , . x;) input case.

ys . [Nl N2 ... NXs. (11) Rl-2.1f f(x) is even, N(a) - 0 for k 4 0
N2  RI-3.If f(x) is odd,

We remark that xi and x are two orthogonal N(s) - (l/a)f(a)
functions, y, 0 for~i - J, and from (5)

i -__and particularly for this case the approxima-

N x / 2; 1,2,..., m (12) tion error c (3) is identically zero. This is
i if xi not true for the slinusoidal DF.

The mean-squared error is so equal to
In fact from (3) and (19) we get

II 2 1 . f 2 
- I N x1 . (13) c - f[awal(k,u)] f(a) wal(k,u)

i,,1 = f(a) - f(a) if wal(k,u) - 1

FUNDANENTAL REMARKS FOR COMPUTATION OF "f(-a) + f(a) i if wal(k,u) - -1

WALSH DESCRIBING FUNCTIONS Hence c - 0 (20)

'! The computation of the Walsh input RI-4.N(a) is always real.
describing functions (WIDF) (10) and/or (12) is S363



Ri-5. For an unbalanced non hnearity (18) The latter formula is still valid if one
gives a constant error; but it is not or more a((JOi) are equal to zero.
difficult to get this bias term.

Note that N (a1 ,a ), independent of kl,...,
2. Theorem 2 - Seguency Independent TWIDF k, is also independent of the 3et wal(kiu);

(Two WIDF) i-l,... m 4 n.

*If the zero-mean Input is R2-2. By the same token if one has a DC term

T and m zero mean terms (m4 n); one gets:
x(u) - [alwal(k,,u) a2 wal(k 2 ,u) ;kl,k 2  0 1 r

- --L m f[ao,(-l) a(21)~ ~ N0(a .... a-02a

then the second member of (15) is idependent.J-1,...,,
of kI and k 2 : ... (-l) rm (29)

N1(alLa2)--L [f(ala2 +f(al;-a if(-al'a2) 1 r r

--a (2) 2 ai rj-0f(- 1,...2
N2(al,a2- N1 (a 2, a1) (23) rM(a,] (30)

*If the input contains a DC term, i.e. where i- 2,...,m4n and a ts the vmplitude ofthe DC term. 0

Tx(u) = fa 0 wal(O,u) alwal(kl,u)] ; k 1 0 0 (24) Nore again that (29) and (30) are indepen-Sdent o,' tbe a-t (wal(ki,u); in-1,2,...,m< n).
then the second member of (15) is indcpendent
of k1 : R2-3. Ni(a), i-0,1...are always real.

N0 (a0 ,aN ) -(1/2ao)[f(a 0 ,aI) + f(a 0 ,-al)] (25) If m is asall these formulas (28)(19)(30)
are handy for rapid computation. On the other

N1 (ao,aI) -(I/2a 1 )[fta0 ,al) - f(ao,-al)] (26) hand, for large values of m, the evaluation is
easy with a computer program.

Proof: Consider the susatation of (15).
LINEARLZATION SEPARABILITY

By the orthogonality of the discrete
functions wal(k ,u) and wal(k 2u) it is clear For this section we will consider rhe
that: for all kI 0 0 and for all k 2 I 0 we input x(u) in thr following form:
have

-2 m
2 terms corresponding to x(u) = 7 ai wal(kiu) (31)

wi;l(k 1,u) = 1 , wal(k 2,u) = + I ili

1 , -1 where 0<k <k,<...<k anda 00 fori-l,..m.
-1, 1

Consequently, -1 1. Definition 1: Strictly Linearization
SeparabilityN 2(a,,a2,) (1/4a 2) [f(a,.a2) + f(-al,a 2) Let the input be (31). The output

- f(-al,-a2 ) - f(al,-a 2 )j (27) y(u) :(x(u)) of a nonlinearity is called
strict3y separable of order m if

The comparison between the latter expression n
and (22) fields (23). y(x(u)= I Ni(aI ... ,am)ai wal(ki,u) (32)

Remarkcs
i.e., C(u)- y(x(u)) -Y (u) = 0 for all u. (33)

R2-1. (18) is a particular case of (22) with
a2 - 0. On the other hand it is not 2. Theorem 3 - Linearization Separabillty
difficult to generalize (22). For exemple, of Order 2
if one has m zero mean inputs (m, n, of
course; we will consider the case m- n In *The output of an arbitrary nonlinearity is
more detail in section 4) then: strictly separable into DC 2nd AC Walsh compo-

nents, i.e. if the input is
1 ri r

Ni(aI,.....a) 2i 1 (I)i f[(-l)ri al. x(u) - %0 + alwal(k,u), k 0 0 (34)I.a r i=Oal

j , . the n
(-I) rm (28) y(u) - a= N(a 0 al) + a1 Nl(aO,al)wal(k,u) (35)

where i -1,2,...,m< n, and 2n is the period of *Any odd nonlinearity is strictly sepa-
the ret iwal(ki,u). . rable up to order 2:. i.e. m 1 and m - 2
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Proof: PARALLEL COMBINATION

*Let the input be (34). From (25) and Consider q nolinearitias fl, w2' "''.q(26) we have for any nonlinearity (not neces-Coidrqnnneitsf 1 f2

sarily odd) in parallel such that the output y(x) isq

2a 0 No(a 0 ,al) - f(ao+al) + f(a 0 -a ) (36) y(X) -(36)y~x)= ) f.(x).
±(ao0'a 1) - f(ao+al) -- f(a.-a,)J1

It then follows that the WIDF for the composite
.- !iO,u) is always constant and equal to 1. nonlinearity is given by:
T h u s f r o m ( 3 6 ) w e h a v e t h e t a b l e 1. N a j a o w l k u ,( 2In comparing the two last columns we see 1(a) -Z 1N:(a o

coprn tofrx awal(k,u), (42)

that (u) - 0. and

*We have shown the theorem for m = 1 (see N (aa 2 ) N a(ala
Rl-3). i j-1

For m = 2, the ist part of this theoreu for x aiwal(ki,u) (43)
has shown the separability between DC and AC i-l
Walsh components. Let the input now be where N (a 1 ,a 2 ) is the Walsh DF for the

x(u) - awal(kl,u) + a wal(k2 ,O (37) th i~a1 2 j-) nonlinearity corresponding to the input

The nonlinearity is odd, f(x) = f(-x). Thus compoment aiwal(ki,u).

tha set :f equations (22) and (23) must be
written as SERIES ODMBINATION [4)
2 aN(ar•) - f(a+ a2 ) + f(a1- a 2 ) 2 1 For simplicity, consider 2 nonlinearities

2a2N (a2 a -f(a 1 + a2 ) + f(a 1  a 2 ). (39) fl f 2 in series such that the composite output2a2 2(a2,) - a+a2+fa+a2). 39 is

f(x) is odd, so (39) is equal to y(x)- f 2 [(fl(x)]

2a2 N2 (al, a 2 ) - f(a" + a2 ) - f(al-a2 ). (40) If the input x(u) is x(u) - awal(k,u) then
the output z(u) of the 1st nonlinearity fl is

From (38) and (40) consider the table 2. equal to

i.e. c(u) - 7(t:) - ys (u) - 0 QED z(u) = fI[x(u)] - aNI(a)wal(k,u). (45)

Remarks Let z(u) - a zwal(k,u). (46)

R3-1. The separability notion introduced hare Then, it follows that
is in so-ae sense, a definition of the y(u) - f

linearization exactness. The output of a non- 2[z(u)J
linearity, which is not strictly separable - aZ N A )wal(k,u). (47)
from order m on, gives harmonic components
other than the m inputs. For exemple, the From (47), (46) and (45) the WIMF fur the
sinusoidal input case is not separable for the composite nonlineErity is siven by
first order (except the linearity); if
f(x) - x3 and x - smnwt then f(x) - (1/4) N(a) = a zN2 (a )Ia
(3 smut - sin3wt), the output contains a -aN (a)N2,aN W)ia
component sin3wt.

R3-2. For an odd nonlinearity the Walsh descri- N(a) - NI(a)N2 (aN1 (a)) . -48)
bing method is not strictly separable, in

general, from the o~der 3 on. For example, i.f If the Input is nou x(u) - alwal(k ,u) +
f(x) = x 3 and x - E a wal(k ,u) then f(x) + a2wal(k2,u) then in a similar manner, we get
contains a ilIdistorsion term 6aIa2a3 wal(kI1 + k 2 + kyu). Ia (alpa2 ai A2 N (laI 1 ,a 1a,

We will con: ider the case in more detail in aN 2(3.a 2 (9
section 4, a.l,a 2• 2

R3-3. The first part of the theorem 3 may be for i - 1,2.
important for the study of unbalanced This reeults (48) and (49) could be

nonlinearity cases. generalized for q nonlinearijtes in series.
On the other hand the linearization Using (42,48) or (4,49) we would have c

separability of Walsh functions input suggests
a synthesin If a group of nonlinearities whose composite parallel-series coabinatlov.j parallel, as well as, series combine ion has
the identical input-output characteristics.
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TABLE 1

wal(k,u) 2a0(6fo,al) 2alNl(a 0al)wal(ku) ys(u) y(u)
I f(aoeal)+f(ao-al) f (ao+a,)-f (aO-al) f (aotal) f(ao+al,,

-1 f (a0+al)+f (aO-al) -f(a 0+al)+f(a0 -al) f(aO-al) f(ao-al)

TABLE 2

wal(klu) wal(k2,u) 2alNlWal(k1,u) 2a 2 N2wal(k 2 9u) Ys y

1 1 f(a 1+a 2 )+f(a 1 -a 2 ) f(al+a2 ) -f(al-a 2 ) f(al+a2 ) f(al+a2 )

1 -1 f(al+a2)+f(a -a2 ) -f(al+a2 )+f(a -a 2 ) f(a -a 2 ) f(a -a 2 )

-1 1 -f(a +a2)-f(al-a2 ) f(al+a2 ) -f(al-a 2 ) -f(al-a2 ) f(-al+a2 )

-1 -1 -f(a +a2)-f(a -a2 ) -f(a1 +a2 )+f(al-a2 ) -f(a1 +a2) f(-al-a2 )

DESCRIBING FUNCTION FOR FINITE-SUM Now if the input to the nonlinearity is
ARBITRARY INPUT (AIDF) x(t) (50) then the approximate output is ys(t),

and by means of (11), it may be written as
We know that {wal(k,u); k,u = 0,1,..,2n-l) P-1

is a complete orthogonal function set [3], and, Ys(u), I skNk(aO,...ap l)Wvl(k,u). (51)
in general, an arbitrary function can be k0O
expressed as a sum of an infinite number of
Walsh functions [2]The problem is still fndin the set

l Nk(aO,.... ,P_ 1 ) or, precisely, the set

1. Generality ifa.k(aO,... a 1), because
if some ak in (50) is equal to zero, writing Nk

Consider now the case where the input alone is then meaningless.
x(u) is a flnite s=. We denote that the number m of zero mean

2n-x~u) ak"alfku) (50) inputs is equal to m - 2n-l>V. So, we cannotSi k=0 apply the results of (29) and (30). In order
to avoid this difficulty, considet a more

where all ak are not necessarily different from general formula:
zero.akk akaO...al)()

The reason for choosing the expression ak 1 .. . ,aP-I) (52)

(50) is because it minimized the mean squared and P-1
error Ixin(u) - X(u)1 2 when ak is the finite f(u) * f( I -vual(ku) (53)
Walsh Fourier transformation of xin(u). xin is k""
an arbitrary input and P-7n is fixed. This
fact is well known and may be illustrated by Thus, from (15) and (50) we have
the figure 2. Of course, the bigger P, the P-1
smaller the mean-squared error. akNk - (l/P) I f(u)wal(ku)

n-0 f(o)

I- [wal(kO) wal(k,l)... wal(k,P-J)] f(l)

or. ! If(°)

[aN]: iN - W] f(), (54)
ýN f(-l)

""~ p
X~n ',

where [W ] is the 2'x2n Walsh matrix.
p

But, in matrix notation, (53) means

- (.)dt

f(u)- f{[wal(O,u) ... wal(P-l,u))] (55)

Transform Block
By the symmetry of Walsh matrix, so let us
define
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If(o) r
f I k j such that wal(k,u) - h n(J,u) (66)

.f{Wp[- .- _f(l) [ (56) r-i

f(P-)l In comparing (17) and (64) we see that
whore [a] [aa...ap_ (57) r : 10 . kr._. ,r kn-rakn1 ý.. (67)

Thus (54) becomes and the inverse r k =r j.0Js
[aN(a 0 ,.... _1 (iP[p][[p][]1. 58

The mapping r permutes the set {ak; k-O,...,

2. Linearization Separability P-I) into {b ;J-O,...,P-l). In order to show(63), from (A6), it is thus sufficient to show
Theorem 4: Closeness of Nonlinearity J-P/2,..,P-l or Jn-l- 1 .

Output Components The condition 4 (k+lA.2p+l,
(p:positive integer) (68)

*Let the input be (50) a linear combination nay b, written as follows:

of a complete orthogonal set {wal(k,u);k,u - od,1,...,P-11 where all akTare not necessarily k - {4lfo kod (69)
different from zero. e output of any zero- 4p+2 for k even
memory nonlinearity f(x) may be written as: nP-l But k - 0,1,2,..... 2-1, so (69) gives

ylx(u)] - ys(U) w all (a Nok)Wal(k,u) (59) p - 0,t,2f.....c2n-t, o.e.,
n3 r n-i

0 p = 1 with rni n2~C (70)where the set ((0001)}s given by (54) or (58). p 0pr2_r0r2rwihp n-I Pn-2 C(0

*Let the input be (50). If ak - 0 for k Let us write
such that the greatest integer part [(k+l)/2] - ' 0 ' 0 'pn-3' n-4'"-0) (71)
is even, and if f(x) is odd, then

P-l From (69) it then follows thaty[x(u)] = Ys(U) - 4. (ak~k) w al(k,u) (60) P0 1 fo k od
k(0 i {k(n-3 Pn-4'' "Po1 0 'l) for k odd (72)

for (k+l)/2 odd (Pn-3' Pn-4- .. Po'I1 0 ) for k even
Equations (59) and (60) each represent P
expressions [u-O,l,... ,P-l]. From (67), (72) inplies

Proof: *Let the column matrix [y (U)] be 
1n-l k0 + k I 1 , i.e.

[ys(u)] = [Ys(O) ... ys(P-l)]T . (61) j - P/2, (P/2) + 1, ... , P-1.

From (51) and (54), it then follows that (b) In matrix notation, (63) means

[y5 (u)] -[W ][aN] x(0) 0

" (1/P) 1!I[WN I['u)] I
p p x(P12-) 'm/ 1 P/2I0[ [f(u)]. x -. ) 2 (73)

*The second part of this theorem will 1 1P/2 / P/ 2

be shown in two steps:

(a) Express P-1
x(u) - • aKwal(k,u) (62) where Hp/2 is the ( 2n-l x 211-1) Hadamard

k-0 matrix [hn_l.(j,u)]. 1hus, it is clear that for

where (k+l)/2 is odd u-O, 1, ... , P/2-1
P-1 F/2--l

in a linear combination of Hadamard (Walsh- x(u) - I b h (J,u) I b p2hn-(j u)
Paley) functions hn(j,u) such that J-P/2 "2 n J0

"P-i
x(u) = b h (Ju) (63) and for u.P/21 .... P-I

J.P/P/J n
'h r 3  Li ~x(u):•~n- xP)-• b/2+jhn-l(0,u)

where [3] rr ()S0j rU1 n Ii~ and (64)

n-lr, n-l r x(u + F/2) - - x(u), for u - 0,1,..,P/2-1 (74)
u Lr ur2r ; Jr ruC(0,l) (65) Moreover, the nonlinearity f(x) is supposed

==0 odd. It then follows that
(b) From (63) apply the result of the firat f[x(u+P/2)] - -fix(u)]; u=O,1,..,P/2-1 (75)

part of the thenrem.

Let us del following bijection The approximate output
r (one-to-cne man,
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P-I R4-2. The theorem 4 may yield a better means
ye(u) £ (&kNk)wal(ku), for identilication and/or synthesis of zero-

k-0 memory nonlinearity elements.

k+-| odd For example, consider 2 nonlineariLies
fl, f2 in series (44). It is easy to

with the mapping r(k) J j, becomes generalize (49) for an arbitrary input of the
P-I form (50):ys(U) " • (bjM )hn(J~u) (7h
J-P/2 ( (76) The composite output amplitude if the k-h

where bM j - akNk Walsh component will be

P-1 akNk(aNo.....-_) " aNl,k(a0' .. ap-l)
". (1/P) I f[x(u)]wal(k,u); from (66)

P-0 N 2,k(ao0Nl1'o .... 'aP-INIP-I)

P-1
"- (liP) ftx(u)]hn(j,u); from (75) (81)

u-0

b ýij . Pf 2-1
bihj - (2/P) 0 flx(u)lh n 1 (i,u)

umO

for j - P/2, ... , P-I. (77) CONCLUSION

From (76) it is not difficult to see that An attempt has been made to study non-
ys(u) is also rotational symmetric: linearities using a Walsh function input. It

has been established that the resulting
y (u + P/2) - - Y(u); u * O,l,...,P/2-1 (78) describing function is always a real function,

and that it is separable up to order •wo.
Consider then u from 0 to P/2-1: This linearisation separability permits the

In matrix notation synthesis of a group of nonlinearities (series
or parallel combination) in an easy fashion by

tys(u)) " (HP/21bM] (79) means of a relatively simple closed form
expression. An arbitrary input can be handled

where [bMj, from ý77), is equal to in a similar manner, but the ma-ipulations are

[bM] - (2/0) (4 p/2][f(u)] (80) more complex.

with f(u) 2 f±x(u)]. REFERENCES
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linearity is strictly P-separable. And March-April 1970.
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APPLICATIONS OF WALSH FUNCTIOPS TO NUMBER THEORY

R. Binkin and E. L. Hall

University of Missouri - Columbia

Abstract

Results are presented in this paper of the binary funct;ons that will be generated.
digital pictorial representations of various The series that were investigated were simple
number sequences and their respective Walsh point patterns, geometrics series, Fibonacci
transforms. Fibonacci, prime nunmc., and si- series, and prime number series. Each one was
mple geonv-tric sequences and point patterns redefined intG a two-dimensional function and
are generated as square binary arrays. The the Walsh transforms were then generated.
array elements are set equal to 1 if the sum
of its coordinates is equal to a number in the The Sequency Ordered Walsh Function
particular sequence. All other array elements
are set equal to 0. The Walsh transforms are
then computed. These pictorial representations The Walsh transform [2] is being used in-
reveal certain patterns which are not obvious creasingly in image processing [3].
without the pictorial representations and the
Walsh transforms of the arrays. These results The forward Walsh transform is given by
indicate a method in which digital image pro- [4]
cessing methods and the Walsh transforms may N-1 N-1
be applied to describe and develop patterns F(u,v) =x=O f(x,y) a(x,y,u,v)

related to number theory.

Introduction where a(x,y,u,v) is the forward transformation
kernel. For our use, we will express the two
dimensional transform in matrix notation. For

The use of pictures to study number theory a transform kernel that is separable symmetric
is not new. In fact over 2000 years ago Pytho- let
gorous used pictures to develop certain prop-
erties. For example, starting with a single [f] = image matrix
dot, how many dots can be added to form a tri- [F] = transformed image matrix
angle? The answer shown in Fig. 1 leads to a [A] = transform matrix
simple development of the tormula for the sum
of Lhe first n consecutive integers. Then by matrix multiplication

n [F] = [A] [f] [A]
0 [A] is an N x N sequency ordered Walsh matrix

[5]. An example of a 4 x 4 Walsh m~trix is

Similarly, starting with a single dot, how [] 411

many dots can be added to form a square? This - 11
answer is shown in Fig. 2 and again leads to a W = 1 1
formula which states -I - 1

n n2  and has the following properties:

1. The matrices are square with dimension

that the sum of the first n consecutive odd in- 2
tegers is a perfect square. 2. The dot product of any two rows is

Manfred Schroeder [1] expanded on this zero.
concept of using pictures to study number theory 3. W = WT, since the transforn, 4 mi-by using computer image processing techniques to tary.display both graphic representations of number
functions and their Fourier transform in order
to attempt to reveal inte-esting geometric 4. The rows are ordered by increasing
patterns. tne number of sign changes.

In this paper we will further Schroeder's Prime Numbers
work by graphically displayirg various number
series but instead of computinq the Fourier
transform, we compute the sequency ordered A 4 x 4 array can repre..ent d rime number

Walsh transform since it is better suited for series if we define the array f(x,y) as

M - *M -i



transform when N equals a binary number as
(i compared to Walsh transforms when N equals a

f(x,y) f if N=x+4y and is a prime number non-binary number. If the array is a point--o if N=x+4y and is a non-prime pattern, N > 1 and M > 1, the Walsh transform
numberappears to be equal f(u,v) = g(u,l) x h(l,v),

F. 3where g(x,y) is the Walsh transform of a set_ Fig. 3 is a pictorial representation of ofvria ie n I~)i h as

this array. Fig. 4 shows how the sequency of vertical lines and h(x,y) is the Walshtransform of horizontal lines. Figs. 33 and
ordered Walsh is calculated. Fig. 5 and 6 34 illustrate this with a point pattern =rray
show digitally processed images of both the whe r and t wi3 a it Walsh fuctionwhere N = 4 and M = 3 and its Walsh function.
original image and its Walsh transform. In
order to implement the ordered Walsh transform
with differently sized arrays, the n x n array Power Series
will expand out to a 128 x 128 array by addi-
tion of zeros (see Fig. 7). This 128 x 128 Another interesting set of series to study
expanded matrix was operated on by a 128 x 128 with image analysis is the power series. The
ordered Walsh matrix to generate the Walsh two dimensional array can be defined as
t- transforms. (1 when x + (128Y.y) = PI where P
"I0 equals an arbitrary constant and

In prime number arrays of size (N x N), f(x,y) I equals any integer.
when N equals non-prime numbers, vertical bands
tend to stand out as in the cases where N = 30, 10 for all others
40 and 4,2, shown in Figs. 8-10. When N equals
a prime number, diagonal bands become more In these arrays there are no evident patterns
apparent as with N = 31,43, Lhown in Figs. 11 except in the cases where 128 is a multiple of
and 12. P. 'n this case, the first row and the last

column "f ech array are equal and all other
The Walsh transforms of these (N x N) elemen,!. of tOe array are equal to zero.

prime number arrays fall into one of two cate-
gories, either high contrast and low contrasted The Walsh transform of the power series
array elements; no pattern is apparent between have similar characteristics between them.
the categnry of the Walsh transform ard the They all tend to have vertical bands of differ-
value of N, but many of these transform arrays ing textures. When I is odd, there is definite
have some interesting patterns that can moqt oscillating in the texture. When I equals an
effectively be observed when displayed graph- even number, the texture tends to be more even.
ically as in Figs. 13-20. Figs. 35-38 are illustrations of array repre-

sentations of the power series for I = 2 and 3
Points Patterns and Line Patterns and thr.Re Walsh transforms. As P becomes

larger, th• vertical bands become more obscure.

The sequency ordered Walsh transform of Fibonacci Series
point and line patterns with definite geometric Tha Fibonacci series is enerated by the
patterns also contain definite geometric fo.mul. r(N) = F(N-l) + F(N-2) where F(1) -patterns. To illustrate this, 128 x 128 arrays and F(2) = 2. This can be put .ito a two
were generated where dimensional array by setting I = X ý 128y and

1 wler. x = iN
y = jM f(xy) = l, when I is a Fibonacci number

f(x,y) = where ij = 1,2,... 0, otherwise
S....for all others

0 This array is pictured in Fig. 39 and its Walsh
For each of these arrays, the 11alsh transforms transform is pictured in Fig. 40.
were calculated. Conclusion

It becomes obvious that the Walsh trans- In this paper we have considered various
form of point patterns with any x and y fre- number series. Each series was redefined into
quercies can b2 defined in terms of the super- a two dimension array and the ordered Walsh
position of the Walsh transform of vertical transform was computed. The hope was to findlines of N fie-quency and horizontal lines of tasomwscmue.Tehp a ofnlM frequency. geometric patterns in either tne two dimension-

al array representation or their Walsh trans-

The Walsh transform of ? set of lines forms. in the case of point patterns definite
is an array of all zeros excel. in the first patterns were found. In the other cases defin-
row or column perpendicular to the set of ite patterns were obscured yet some general
lines. Examples of sets of line patterns patterns were still discovered. Further work
with M = 1 and N = 1-5 and their Walsh trans- in this area could possibly prove to yield
forms are shown in Figs. 21-30. By rotating some interesting discoveries in number theory
the set of lines h~ 900 the Walsh transform is and if nothing else would improve one's intui-rotated also by 90 as illustrated in Figs. tive feel for the Walsh transform and its appli-
31-32. Notice the simple patterns of the Walsh cations with respect to pattern recognition.
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1 + 3 + 5 + 7 = 42
(2n1 ) = n 2

Fig. 2. Rectangular numbers
5"6

, i = n+

i=O 2

Fig. 1. Triangular numbers

Fig. 3. Prime numbers indicated on a 4 x 4
array
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001 1 010 00 0. . .0
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Fig. 4. Ordered Walsh transform computation. . . . . .

for4 xj4array000000 0

Fig. 7. Expanded 4 x 4 array

Fig9. 5. 4 x 4 array of prime numbers 
Fig. 8. 30 x 30 array of prime numbers
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Fig. 12. 431 x 431 array of prime numbers Fig. 14. Wals t1aransor of Frige 13mer
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Fig. 16. Walsh transform of Fig. 15 Fig. 19. 42 x 42 array of prime numbers
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Fig. 17. 36 x 36 array of prime numbers Fig. 20. Walsh transform of Fig. 19

Fig. 18. Walsh transform of Fig. 17 Fig. 21. Point pattern N I and M I
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Fig. 22. Walsh transform of Fig. 21 -Fig. 25. Point pattern h 3 and M
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Fig. 23. Point pattern N =2 and M I Fig. 26. Walsh transform of Fig. 25
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Fig. 24. Walsh transform of Fig. 23 Fig. 27. Point pattern N 4 and M
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Fig. 28. Walsh tra~nsform of Fig. 27' Fig. 31. Point pattern N =1, M =2

vvlfx- I _ t'T

~03-

1~14
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Fg30WastrnfrofFig. 29Fi.3. Point pattern N 4 5n an -4=1Fg 2 as rnfr fFg 31
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Fig. 34. Walsh transform of Fig. 33 Fig. 37. Power series, 1 3

IFig. 35. Power series, TL= 2 Fig. 38. Waisth transform of Fig. 37

Fig. 36. h1ash transform of Fig. 35
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Subhh5h C. Y~k
JOnirtr~ent of E2',Ictrlcnl Enrirnoering ~ ,,o

Irdiipn Institute of Technology '*'S

Y~ew Delhi-4x), Idi a

re~rntive 1'rec'uerni ifs clho'n it. occlir.
1-.e-isures to chsr-eterize rcndomress lip.vc"'e of' ,nd not Ir s'-ite or,. tiep

in finite hine~ry sequences have been l r ire l-ritv (or rr-oorQpsO'n t'-p
tnronosei by venrous Puthors. Amnongst rlotq semler'ce. Thirtlnie 41be st-'4 1.11v n~
these ner the one's obteined through t~he rel-tl'e frequencyv is c he to tbs nir-
computntionpl comrlexity Anpro-ch Pnd ro-ch to 'Intq -'n' rot -ccmr,11nP to some~
the integrPl trensform Pnpropch. The :' of' r-.tire. `orsP~rirt*1v it ~nn"rprs
letter met~sure whi~ch is given by the tlu't ni),u'rert st-'.hlitv in '`-enrercv
r'-.tio of thle nvumber of non-7sero I-.Tlsh carrot hip iserl C'or ex1-r-roi-t ion rP'
coefficients of the sequerce to its 1 1~e'te
length, I s urnamiguous Pnd readily cnl-
culnted. ~'Arther thits Procedure seems to Anotbir ennroe-th -b'hih lv',s ""qen
give results slilni'r to those obitnined erinoye~l in tl-' rePre,1ervt-,ttIc or' 1 ~ri~e
through the comnutptionnel coninlexity binary seqi"(-rces uses ortn r~omfl 4%,r-
eipnro-ch. This pener Is en %,ttannt Ftt ctlons 18] , [q] . '"Ms Yprv strnet~t-
exrplining the efficecy of the Welsh for"-qrd uorocedure irn'olves the -enre-
trprsform meqqure. sentetion of the given seeuencee In n

w-ei shted sum of Wn'esh 1 'unrtions. 'The
¶Jh( result on the rusher of long~ numb~er of ' such tenss require'l nqr

rnndom hinqry sequences Is further nnn- sequence digit Is then q meemi~re of' thme
lyzed. Themnesure is also generalized renilornness of' the sem-u't 1 _. I ' ¶rYs rry%-
to c *over other trnr'sforms. This is IlI- ro3'ch seemsg to vi elr, rprn~its vniie simi
ustroted using discrete Legendre trnns- Inr to the comvtutqt~nr-comolex~tY Pnrr
f'ormotion. It Is shown th'nt for thl~s the "oqcb. "he '4 olsh 1'Unction exroension
procedure becomes cumborsome -tnd the rrocerlure -ISO lcefAS to tha result thmrt
results less qmenable to meneningful most seqieripq %re rtr~mn -nd therpe'rp
Introrpretntion. seems to suggest the sqie oehin

As *listed In the rrece,11 ~re rnrh,.qb

Tht~~~fl Ivestifritirg the -iip-4-ert siml-r-"
!ti.es 01' the twqo 4rrro-tclles seernn t VP'l

R~ecently there hps been A corsIrler- A wortl'whIle rrohl~l. The comr'vtntlon
Able Interest In the computntionnl - crnnlexipxty qn-nronclh 1'as Its ronts Irip th
complexity qppronch to the definition 1-jork of Churci 1D.) who usel the cnrcert
of P 'Inlte random seqlence pioneci'ei of e'f'e,,ctlve conwiutnbi.itv to Aefine
by Solomonoff (11 Kolmogorov (21 , (33 Inifinite rP(lom sewelteces. "o-ever tb~s
-tnd Chnitin [41 , (5] . Instead of testi- definition turns ort to Ike lif#'P' eret
ng a given sequence for regulenitv f'rom thet obtpin.od ir the 'ortner, beirr
throuigh sub-sequence generition, the Inrect, olily A. cl~ri4 9ci-tion of' the
Penproqch Involves directly Asking if notion of the kolleltiv or von ?41ses
the sequence Is irregulor or complex. E1) . The Vonlleltiv is "tr 4r-irit~.iv
The notion of comnlexity Is tpken to lorig rpndom secquence ir -Mobc linits of'
correspond to the length of the short- rpl etI e frerruenci e- exi ;t alvA there 1%
est nrogrm~ cepable of generpting the no scheme o~' rrelilcting oN~tccte Yn o"
sequence on 9 certain osymntotoe~lly trio-3 r given 1crowlefte of X,, .,*
oyntimnl mnehire. On the bests of' this
definition those elements of A finite xr1, t'not yields irfinite .sc'~e
Dopul -ti.on wbo P, cnmrlfexitY 1s M XIM Al. hevInR reletive Irerninejlese tlip't teI 1'1'"
,re collel random. It hnns been show~n from those of 'he originn] sem'ierce. '""he
thmt most sequences In P nopijletion are iden of sirbscouence rener4tiop -ms -1-
random. Per V'crtin-Lbf LP hns Also tp'ken 'in by Y,%ri !'ornfr V1 'ANo hom-\eVoer
showr that the nhovo definition le~d9 f 'elt that A morIA sati s1 'e-tory o-tn-ropec
to sil conceiveble statIstcenl proper- to the definition of nr, infinlte rarcmi
ties of' rsflomrlwess. F'or Infinite rprdom sequence should ho - Penerqlr-ticrt (#
ht~niry serruerces, the ron-rnrdan seq- Pk rprndom finite secriene.. Tr m loose
uences lhove been sho'.r to fas OR mcxi- fashion, tte 'mutors onrroetch[. ef'
real constructive null. set. i'Pine L71 has reorenertinF the riven sequeprre thvrw'h
elaborsated these Conclusions for flnito m Walsh f-unction exprrrsiry, '-ncs If-m
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the rc~tlori of~-rre~r ~to.g f' + (pIt -] so (ir-w~s 'ron, the c n;nt ti-,r0c'dk-11
nlexity qnrro"', ir heirg, nr Ptteymt Tr -1-mt %'o~fNs +Ihe "-'s ^vct
pt comr,-Assinp I-~to (cc dlm,ýrslon co'n- ~ ~ ~r ih~ ~ h ~v-
t r-ctir o'-iprirc' or VPP s~om-rcy 'rn.

4n imortirtq~eslor 'nn nrips he-p"ore --e wou'l i rot -"4 fr-rtiota
~n i~or~trt qtestor §v~t~r~esbetween them. nrd YeP'or to Othsor of'r~cv Is wbhv sv)'u.A flip Wq1sh trrirsfo"Ii.. +hemi -S W Wt

Ption be ~onfor dkinvrsion contrpct- k
4 or In Prefrm.-c to' other tr%?r's~'ojs.
'*he ':vsh Purc-tonc cnrr~b.)rd tt- nr1.y -'or sft), qr nr-0tr.-mvv ½,rded.
one ol-t of -_Pre-t mnry -oos-ihle vector 4Nrrct op or %, t1 'e rli-'i'te -~r-Tter t,
b~ses P'or 2ý - dim~psirlon~ ~~c rdf h *'ý11 t-"rs~v
each bc~ste wol'd yielQ a at? rent s (*' W sdC~e ~
me~.,re of r.,idomn,.ss ns n g'eperp) 4 znt_
lon -f this ne'rsure. lliere'o-e P rpt-
inn-o mrnst be 17 uro 4or tie eri'icvcv S ') r i* t)s) f)
of W-4) sni N'nci iors, or this me~sure t;k
eere7-3i~ad in some mprnnor to lrclvdle Thio i-pp'rse trorslrennot4or is4 P
,I) hosps. In ouir view t~he fompr ~ny- -I3
-'rs more 1Iilelv. In this nnper or~ ?tt-

emynt hos bpý-r -inde to ý-vsttflr this Sf)M '~~ (t) s(T-) )
'ielief. hei inst-nce, ul-ere the rnepsaire k 1'
of r-rdnmness using I'P')sh tr-r.,fovms
is eý,tendad to !n'uide discrete Iezen- Giver P hMr-rv s~!ri s(t). -.e *4rct
cdre tr-ns~offs is o) so st',died. It Is find~ Its '"'" sh tr-rsf(-m s*'(t, Pf
s1'o-r how the -zjpP1-sis hecomes irvolved t-hen nbtairn rotlier s-w-roce _ (il
for thi s c-4se. V~orhte"ol-r -ediS

Let ~ ~ ~ ~ ~ he~p thet renreserg th rbds 0

crc-te "olsh `1rstio of , 2. r kar

t nr e ro n -n o rr 't i. v e i n t e g e ,r s m t~ l l e rT h n t e m - u - l r n q n r Y
t hon 'ý . ~1xso Ilet (,, the se-vqr'ce sWt is 'lpfirne lv.

WJecirIPi. (k k k i%( s) -1 23Z C-)r, (7)
k s

.m&d w~here IMk is m r .rits lone ero

deCirim 1 S- - n2* 0 bir~r -40"n r-rnyknoness nem e wre5

thvi- the ",Ilhh function set i.'s defined r,(s) r

t'l roil eh

re-, (1) kk t

'?or i-4rur -1 ot-dered '-,oi sb functions Thi s leiito is the c-me Ps

k given In 18) , excent tbnt the meirees
bos been riefinel -using the -41screte

wbil-, Sor aoqwency ordeverl f'unrt4or~she t thrnsough ther- nrto No! s heenrs-on
g (1c) Is -qro ,Ifired through the Ohem or-oeg sthep vrpmeom costr~res

iO1~G4IW 'J~ttos~ ror~ding to the binprv sequence.

g ~,) =If Sft) I s :1 0i ) seteuence, t'he
rrmber of Pon- zero u lic) wolij j for

Y + k certoAi saquences be 1srgF.,' by one
D. -2 comroi~ed to -'hen3 9(t) Iz s% _1,A.

g~k +ksequenlce. This is lheam'ise trnr's.'r-
kf + mption ti-rousb , ~(t) r~ves t'he sver.,Re

vn~~e f ho sequeii~e. Ti~rther the
* ~rnmabel- of indepepnrteit vnlues or the

trAnnIOMSd belt 'lI-eS1e '.nU14 Ile 1ASS
if s)is I-e!:,;rei -j (1. ser4 es.
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bestaaa copy.
ýor exnmtle the whlsh tr'nsfonii of 1. '. The reqsor for thle Nr-1c-)v oP theI. I V 1. . s E -20C 2 C 2V wh'ile '"2sh trqrs.fom in the ebrect-i",ntiortlnt of 1 1 11-1 -1. tis 40C-4 C4 o' '!ri te hin-rv spnrerces stt,,s PromiC 4 V t~le 'ol'owi.rg. Vie spt r*.- all hipri"v

secrrercpes of lprpth 1>1 "om r A1,04orwe rqw ii )s-~ t he result, riveP ,'s 7ror wltlh -',itior me-Avlo 5! -s the")-enree . In i L-8 t ,,qs el alrned t 0 voroe-to.terfi-lhssfor seciverces of a2er:th 21' , tý%e ore' s arl~ P rrto.~h ~,")hss%-kv Y - 11-narsiorn' 1 ector sr-ce co~r-w't Pi r( s) < 21v Pre less tvhn 2" ir Psrordlprv to this Prni'ý is t~he set of$1rvrnber. '-ere v rpr ,!so relnaqort tlip 'hlshn Artns "'oh $%urctions rnor 1? he
rriaTier oP rov,-,-aro %Iolsh cnminorert s of -lo~r4 ve1` 'rcOi TP 0'--~~Ter Provr o" thethe sewierc'm. 71his,-s -s vOrted ort, 11-3'4c erni-. 71hrevo-r- rrafererce ^orAlso me-2rs that riost seoi'erces nC~ 2eretb 0 11~s- rct'ons 4r "e-4"rIp -rp r'm

2 k hve the r-rdc-irrass mpsu'lrp close to ress n1e~sr-e seems 4"st'''e0¶. "no rvi-mhpriurity. it -,ill Ia sliown th't : 1,eor-'n P '~rr~r 
1 ~C-ortrts, c5vpQ t~of 12 Isv~1d orv Ine rt'~h';~rivribcr of 14_,p~'t'ons ir t'~Is covo,'ir-toThi fF2Is v%1-us j~.ra oI f Issr svsten ii' -.hich '1-. zerweree hasccpm-.

tlv true for :; certair cl.,ss of seque- limerslrts snthe It c-r~ ohe deue ti-tr.-es or!-.,, -ýnd becnivse! forP finite mot oiI'n 2' eirsior~ls-eltcnh 4 edv ieeltrnoprl-tior~ only afinite r-tn.ber of-1 rost oie ts I'l er~ o- Vimerol )chev.ýiles of r(s) wil' be -Attnlred. 'all tot i tths.so~ h ~4
The total ,ierof speA'erces of LCteorere Trnrsý'o~n ("a-Ar~tý

?enrth 2ý is 2 *. T-t the m"-ihar of
(1.,Cseaverceq tritth i zeros be n,, Tlhe( 'Isc-pte I-rerlra t rasf'orm[~

1,er ( nk is ore of' the morpw -I'screte ortbngornlK I seq-erces sets. it lic baee sipgJerl
j \j~)ort !'or discusslor sir,!e, iinlil'e some

othier orthongorct) sets, it has rot h'eer

2 2k sernirces.Tt ýIp 'h-9 the --lortatp o-'2 = n1  (9) ortboszornlltv over -rv rn'niher of ro4rte.
A Ml4 crete I eeeprer rl-non~pl set

it C,ýr also be sho%-r ea-silY that .for td (t,L)l o' ler'rýth L. -r~ -ieree 4d r&, the rn'-dornress ma-svre I r O'wlws I I
vritv. Cr the rximber of semor.'rps with with t -s the rar-Ar-eter (t r -I'g .
rf s"' = 1 1 1-1) is Aeflned :

f-itor-ilfirctior. of or'ler 1r:
on thtlf of. the ony-

ato tsqpcsof (n Cre! rgh ad Is the hnomOA3 cý'e'" 4 c4 ert1 s corinletely rqrdom."ov=2-1()
7ivps Lis the rnrzlber of seaovrcp~s that lfrllv

rerot cqr-e~f2v r-Ardom -rd t1-'is 011- fre hy
v -IQ 2 2 k.1ý- T1heorpm -of CF] , whM ch X!\ (IA
-g~rees vit~hovrrresu~lt. r*evertheless flA

SIsor.e vqri.-tlon x'ron, tho '.:orrd 2v. :bus The Polo-I~.ng nro,-ertieq cor rn"
for v = 2, the theorem g-ves ibe rvrmher be eos'3Y ver 4 fi qd:
of ,evch senquerces as 4. "lowever, sluch
seqr~r~cos ýý*ld be Pt lepst 2k Ir ri-,ih- d(*)P (~) r i.or, b~eirR the -,jj fm'j.ctions of' thpt 7 dtT)d(t) C,4

~er~t. ThsLin rn ex-ctly 11-)?f the t
sequ-encesae coirn3et6lY rprdovr', d- ()!if d4  t)

of 1 [P have r(.) close to 7.ero. The t =C
co'll-c)"sor tlh-ýt zrist of the serr'erces
hn~ve 4 "esr r~rdornress no-sure close to ( 1 1
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and 
OY

L-1di scrot e Iegerdre rolvromj ,41s cors st s(ii) jff(t;k) di(t,L)=C 01' the !ollovlrg: ('ht-r the Leper ret~rrnsf'Oxed searerce v(i) %rniwt
t=O~V (v SW s given belovr:DIt

where f'(t-,k) is any poiynom.ial of' degree ,J 2,4
k. 

YQ ,() <
kny sequence s(t), of length L, car,-

be written. In tanns of' the di scortte 
, s an 'ro-"ý te)v chos rlegndr r~ynmi~s:corstp'rt. ThP,.. 1, colij. he t*Ve ,

ecrVA, to I. - her the -r~anness Tvelsl"e5(t) ~ i) 1  ( , ) (. viq tbe Leger'ire tr,-s 4onr. r,( )is

r1(s) = L 1v (*) I ) ( )

And umm ng ver t P ter b~r l~g the10 )i s~i~ t S .uith t l ong ser uert on +tse
ordter oefsummtion, (w2) For 8 e us e ±th or

thus obi For 8t ore Intrx o wh01 Pchsoreis:) dn (17) v1) r)b hs 4~ gv' hee coni-4 re
Th seuec y. Is 1ne t. 11eroe Thr rromc1ize vs~n) Le 1/ ('suitete Leg ndre r--nsfrr. o the squenc tr- rsf r is nince ctmbr s o-mv ~e s tom eredSM 

t/o/ /717t the orepn~ usimlng 4es torectlormsic

diety or otherwi. .~ ivse ALgr e n ix ol otlrogonr'la ndro ~ om-ýtbnior.
In or th give secutireoren, 

snte~e gives mh 1allywtoi osrit os te7eerr 7rnfre 7epne ohe thewen lerth cf-nherea "r tne P1 -13 ... mari ma b3 1-ITitedonui coevuer usigceT01t f'rapso the 3e'rence7gtedfrto 1) o 7 7 7, 7e 7 mst b nof ther setrIIneuthus btni Pn Sb orer mariothercI2 17 In -15) 
v1 23 (ore)l to ,- cn o'he sis vetrsd1 1 eo fort sronlie hv0< the Oe~r svetf\'rc ionrvsince Pr n'siomn iess mlesre

1 5/ 3/ " /s -17,/ -5*-1rfuctior o-11 the no strthe 1-* P.hore
I~ -: - tovrs L rei ex- s~btr-rs1oto .1 7 21 73 75 - 7 ? 1¶ ee'r. I t rI.e~ i n o' m ~ ur5 a-b- ztlorne of th is~ trlnvecrn I mose

:13s 9n exwpi the Leenr tr:,rsf'or- Cnclvsior teseyec -7 7 d sv c o* Ths. no oter his nr setension 01 the1 L L7 1 C orkresnorltod erirb h uhrPj§o -15-17 23ct 'rv oi' tbe nsrv vectoercs
Iso 'be stepace hsrabeennhInv tohoe theger

8/7 9 -5- - isn uncriorit of' the merthod 1e . -boin~4 "!achoice 4'y~ to P o-thextntI tcnr~trýT 1%Ll -7 1 -3535 -2 7C-1*heteon. Irer-eotlegr the wnepureP. I usiri ed through tr ts" is tuerns-tormI m(ve
wrow A :8 24/7,r 2Js4/7,t~o 2Cslne8/7 rs1fts sulm3J to tbWhe c-tnls'htransormM/7,'26,34332

kI ___ 
_xi~eteLgnr rrfr kr~2ir-



comnlexity nnpropc11, Since t)-e Ocannut- ? th.prer tie 'n-ot cor-p'~-p
atlon-comrnlexity apr'ronch, furt le r, Is rce of' rel'tive 1Pe¶.wpr~cv -~re Its
hosed on the Inforniptior contert of a ~ niVc-tiors". TIF'M, T-rs.Trf'ov-ot-
sequerce, our mensure 'l so I ends Itself nr' Theory 'o.'-'fz. 19 *

to A si~milpr interpretotir'r. 1'v 107P.

'~efcre'ces 'ir~-ny secuer'ces iusirfy Wn~Jb-"er-4ter

1 .J.Solo'qo-noff, "I formal theory r~etic "o.W-'u

of Inductive Irferen cell, Ifor-not ion 7A-77, A L,- st 1071*
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matixcaled thebcrculn matrixTt P ic

led disenussesy iTis pro pertpres.Tent el()enll=
ve elators of the bacc-irculant aixhe

nrow ocathed bitrhle mat~rix ith mthex

vectorsc ftvla ~ i-elnt matrce hveus beven arx3 sr nblw
benalyzed. to bn thee discrt a jls (11) bt
muntrions Thi could havpes arelic't~ons t bbj + 1,.,b 2
statistics. the scla Dodtnct of hlirn-y
rowt mftrhes to rcpth meuatrixwt thr~eet-b b h
vaqror's ofls astrct daicn.Sm groups ul haaple A foithoe 4 ,rul
alicln .tie qe-lso been disci 4 s svesed.w

matixwhih oud b:veAplictin to b b .22
statistics. T ew-Hadamtard, ofcirculat4-2 1

and back-circulant matrices have been
discussed by various Puthorstil - ()An eighth-orAer '-Iclrcvlart matrix 9IP
An Hadpmrkrd matrix H = (his) is a will similarly be:

mckt'ix of order n, all of whose elemen- 
'I

HIRT = nI. I Is the identity matrix. 8' s$3
This means for an !4adnm-,rd matrix 8 4 B' 4
the row and the column vectors are whr 4, an 1r ,* , tPr-
oithogonal. An '1Adanard matrix H*--1+ re bic4 rchqrat matrices.
Is called A skew-P'ademard if oro=er

A~~~ se ofeinsD j x1 X2 ,...xkl We notice thnt a "icirctvlart
will e s-d toenerte Acirclartmatrix Is symmetrical oboiit hoth of t

w1,ll be idto~ geert A crclt diagorols. %irther, sucn A matrix car
(L,-) marix ij =be shown to be connst-uctel-1Prom secor'4-.

order sulb-mntrices wahlc, Are All svmm-

~j- I when ~J-i+lFCD (all rumbers etrical 4bout 'loth 'A~qgnrs. TI'4s 0v

modulo k) gan' -1 otherwise. A 'rp6-- US a simpnle rroce-lure to orrangze the
circulqnt m,,trlx A (aii) of order 11 elemrnats of' such a matrix. In otf'er

ha~s Ei= a 1 ,, 11 j wlhere 1+i Pnd i-j words:

are reduced modvlo k. 2aI

Tr this paamer -*e define A rel~ative 'Let 111(1Ij Si =1,*,v4t~ V

the corditions on bi~ In tMP nlkolr
of the bqck-clrculnr~t inatrix which we1,
christen the bicirculqnt matrix. The eiiin 4rtrlttj 'Nme-z
eigenvectors of this matrix turr out ei'to 'thrlt'3
to be the discrete Walsh fý\tctlons. be bi lcrcul ar't m-At rica s oP o rder Y~., t han
VnrIOUS Tromertiss and some Dosslble 3 (911 ) IS also a 1"'ciaC111=nt matrix
ADDIC-tions are also discussed. o re M
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Ifum B oldccr )ivaiteticsrts oi' Lpenir w e str-ighta..sy vma'e
If B-ndC ar ti~rcuortm~trces the trarsition to the fol'ov~ing result:

of the sm~e orders, so 's their product Theorepi 5
BC. Generalizing any BnO' %'ovd -also be 9 is Mi orallzel 'Ithi 'be T1(4%f a bicirculant m-trix. mard matrix as the mor'al matr'lx. VMpthe-

Proof: Since the elemerts of A b'circu- M at I C 91y:
Dint m%4tiix circulate in roIs -Md Pre I (1F
sen'netri c about both tbe mhIin d! ogcriols, =D
t~he tiroduct matrix -ill retair these"heeDi edignie.(secr'
rromerties. 1lso it foljovs that matrix and FV the'o~rler of v~ an4 S.
Theorem 'Remar1': 1e assume that the FR4anare

Bicirculant ma-trices communte. Or ma4trices being used] above are symmetric.
3C= 3.Since .4.(.~Is the mo-la1 matr .ix, Its
LeMMA columns wouli be t~he eipenvectors of 9.The tnrodrct mntrix BF. where H Is How.ever the colimns of Tý q-e the dis-.An !{adarnrd m-trix, has orthogonsil col- crete WAlsh function~s ir at racturst

umns. On the other hand the matrix 14 ordering. Therefore tie blcirculont
has orthogoral rows. ofodrmatrlx 8 has the 14alsh "unctions as its

mpr su--otrcesorlower orders. TheseTh teirveo",>4i
sb..motrices h-etesnee sign alter- Teihegnaieo*B ji

a-io s -s wud be obtained in a HAdn- given by-
mord matrix of th-it order. Thius If' H ish
A Vadainard matrix of order 32: b,~:~ b jftedi

Li Fn HN ' Proof': The rro,'uict matrix 73.T eqtuzts
Nk bnik. On pre-mr~tirilcat 4 or Aitb the

_ H 3 . F~ l -H I m o, d a l M A t r i x L ( P. ) = A 1 t ri

-H IH Or the eIgerva>,)es of 9 -re t1he

scaler products of the first rot, of' Bwhere IS s another L'cdonqrd matrix of with various c-lvinns of' 1. Thuns If' tve
order S. Or FIis seen to be a Yrorecker elements of the first rov of 3 are Ii,,
(or direct) p~roduct of tvo `-dtnmard b 9 b0, bte"u i~nau ae
matrices of orders, 8 and 4. Thi s is
generally expressed -'s the rem~t thatb+b+ b+b
the Yronecker Droduct of two Endam;;rd b + 2  "A~ h4

X m-trices of' orders !,' ard Y is another
Fdmeard m atrix of' order .T-. Therefore, b I- b + b -b

using l~emma 1 , the -nroduct BH could X2 2 31 4
be expressed Rs: = ~ b

1lB2 83"4 11,H il Hi I' b1 2 b 4

52134% 1-FIH 1-H X42 1 4

35 B H H H-H This imniles tiat t~he e'penvalres
3 'B 1 52 1 1 1 1 i-" of 3worldbe nor-zero onlv 4f

I3 B 3 B H -H __1 F b ijh j 1 for nlli.

where tha bicirculant m.-trix 3 has also tlemnrk: 7et the searerce 'n e corver..
beenexoessd a beig b~i~ ou ~*ted Into !,n arnaor %-'ve4'otj'4 1 theseen exrcesse Asbigbil u ~ following manner ý.1i . '-or P sequercesbarcsBj'. Carrying out the n v.-its long, divide the Interval

above multinlication, and remeptine the [-+, -; ) into n erroal Parts. L~et the
procedure for each element of the ma gnitude at the first nrrt. i.e.,
rroduct 314, sbows the co-rqctness of' (,(2-.r)/2n) , 'Iql bl, that of
the first nsart of I.emia 1. T'he second the second b, and so on. The remit'Jtre
part Is proved simila-rly. stenneP" ',avettrnnIs -4a"ine'ias thl

Cobnhinne the reswIlts of the two comj meary analoe vnve (A14)hb(t).
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The above result can be expressed alter- elements of G and cert-in matrices o4 I.
natively as: -uch that the Pro-uct of the matrices

preserves the ereiin overotIon.ThM.. V:

The elgenvalues of B are non-,ero if
the Walsh-Fourier transfom of b (t) is a1 0n

non-zero over the sequercy spread.2n-I wnl]•here the element a, maps Into the
,P-ln , where 2P Is the order matrix !(aj) in L, then

of B.

!3icirr nt Matrices and Remplar M(aI) "(00) =M(%)
Rep resetagtlon

One Import-nt iepreeent-tior of An

We study some particular bicirculpnt Abelian grout Is the regtllr rerrecer-
matrioes which have applications to the tntion. This Is Aefirne as the set o4
theory of dyadIc groups and their rep- matrices of real numhers tjhich co-'es-
resentation in linear spaces, pond to the elements of G such that the

nroduct of t,'o such matrices cor'esron;s
A bicirculant matrix of order 2P will to the element of G River by the erour

lead to 2n Independent (1,0) mstrices multitlicatinn. In short, it rerreqertsIf bi = ij with 1,92. =1 in A homomorbh an ofe an a-strqct grorr irto
1 . in a groun of reel matrices.

turn. Thus for A fourth order matrix we
aet the fobr independent matrices as: 1?nite dyai.c gro•p• have ,k eements.

1~ ~ si-mvle bstrqct A4c Proirpprosltsof t'wo elements I o.pd A whe.re d --.

0 1 o 00 0 4 real,.zition of primary iimpnortpnce for
such groups Is the Mn'rF r-turlets

0 1 0 0 taking on the values P oAp I at each
0 0 1 P 0 1 position of n-turletm '-th the gromi

pneratior being -Mition molulo P. Tn
Rosenhlocm tI[l it hts beer shon that

o 0 1 0 0C0 1 the regtilqr rep~resentation for V a rr
n-thrlet realization of -htr-ct -,--'i1c

0 0 th 1 drouns are the mctroces V sthe b tohe
begrnninn of thts section, I.e., motrhi1 • 0 a ces- obtained bv ruttine bi = 6i.1 in

1 0 0.1, 0 0 0t~urn for .j = n9 1.1 .... , D-1 in 33. 11o",

Further since all these matrices satisfy bnses "or A 9n- .14mersiorl vector

the conditons of Theorem 6i their sprte correspopding to h i e reert
eigervalues Rre non-zero, and they have 4be]ian group -,,ith resu thon to1hio 2 As
Walsh functions as ;heir eigenvector., the grout) operqtlor, they turn ort to
It will now be sboun that these reatrices be the oe gervectors of' the Rbove-mert-
are extremely Important in the represen- Joned retgul~r represert-ot-on. Tr this
t~tion of dyadic gro-ops. Paper, usirg the rro~ert- ofe lhc~rcrlar

• ~mntrices, this result has been oih+a•red:

Ar kbelian ( or commutative) group other".4se.
can also be renresented as a matrix set
in a linear space. Let G be an kbellan The grovu nronart7 of the ren)a-r
group of n elements representation will 'he ex")citc v stated

Let 1 = 0,l,....,n-1 be the re.ular
represeptqtlon In a n-elnersloral -vector....a2  g .. n., matrix RI is ohtalne.4 by

with grou- operation 0 . Then P in the general hi-

ci rcul nar matr4_x B. Thus

a 0 a 0a
--1 2- /Z r r,

2 Pl P' n
One can now construct an n-dimensional1/
vector space L ,ith a1 as the basis .1

vectors. A representtion of the group We cRn now epsllv -ri te the following
G in the linear vector space L is a result.
correspondence between the group
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Thegrm ? sed to Analyze iOatA. vPow.ever any fmicb
?o r efine As aove nr,'si s way)"I be e(,mivAlent to axnarrl~-
Per l" efied a abve rg th l~tn In A -P.iphteA series of

nxl~ WAlsh t'unctiors.

le feren cep
where I S 3 represents addition modulo
S after I. and 3 have beer put In a asalPl r,~hnt~
bina~ry rer~resentotion. I eors. WaltFall Tr.,s.omhlnntoijnj

3x~nple s. 106-7

1JRR 4 2 ~.~l~ ,"'Jdamaaw'"s 'etemln-
0 3 nann t~heorem an'A the sumn of foiir

since 0 0 0 1 1 = 1 1 s .5-res, 1V Mth44 ol"

ii) -R 43 tE .A.C.Palev, "Or orthogonal matrices
iI ces"9 ,Mab hy. vol.12, u..l

since for nny i addition modu'lo 2 yields 2,193
a seqiuence of zeros. Thus 4 W.K.Prntt, T.Yqne -nd FC. Irrre-s,

1 C' 0 1 1 1 0 i~t AdmuArd t-qna1 ornn Imagecoin
Proceedings M-M. vol1.;7, rr.5 P-

1i 0 0 1 1 1 0 6S, Janturv 1.069

00 0 0 0 0 0 5 Jenrifer "'Allis, "(,,)cor'igv-
4 4 4 rations PA~~ TadnmarO matrices",

:i 3 2 ~,.fjtr q~n i-suth.Soc.,vol.11,3 2 -np.29?-qPQ, *tr7f%

-tp~licqtions 11. Stochastic 1!!trIces 6 Jenrl fer Walli s, 11 Some (1,--I)

In case ~b1  1., the bicirculpr vo:l.10, ¶u.1-'1., vehr,¶ry1v I7

ma;trix 13 can be vsed As astochAstic ? 3,Fdmr(1 11 lesolutlon d'nxue
matrix. Fuirther If all b 13 * 0 . 3 mould question reiative atix Ieterniinants"l,
represent the transition matrix of a Bull. SOO! ~tb,, ser."D, vol*.'7*
regular finite Markov chain (t2] t.. pp.24P-2446, V1PQ
39cause of its structure It wouild rerre-
sent R perfectly symmetrical finite 8 F.J.' yser, CcrmnlYnntorI-l YPathfnvtIcs.
state schems. Therefore the limiting !'ewVor1r: '41le-7,'QFS
distribution vouJd contain Identical
entries. If 3 is the transition matrix 9 Lo.V.'elebh1  1.1'Jsih 4NInctions and
corresconding to A n-state cabin then HT~u)Amrd matrices", Procepf"tings
esch entry in the limiting distribiftion SymposivM on 4rr~icatlons of' 1-alsh
would be 1/n. "mcinkn.~l.~ nril 107P'

The~r-eM 8 So.CJek, 11 ClAssif~cation of ranAom
Tf -i nd bte binary seanuences -vsirg IN30-PYo,.rier

# ~i 0 n b -1 te nlvsis", I rogeetIings svmrnsitm'o
3 13 Aumhiolications of Wa hF'ntin

li B r -L , pp.74-??, A&rill 1971.
n1 1u J.7.9loserbloom, 11 Physical Inter-

nretcftion of the Avn-jAIC Rrovr"

where I is a nxn matrix with all Froceedirfgs S-mnoslixa on rlet
* bijj 1 of W4Alsh nncin~n1P15Au

1971

2jqsir-n o9Uj 12 F.S.Dynkin, Mnrlrov Proceases 'Vols.T
a9nd IT, Yev von.,.: ýCAOca!ICO(C-

* IIn this paner we define And studyv
blctrculant mqtrices. Their irtimate

* relationshiin with the regular rep~re-
sentation of Pbstroct dyadic groups
Is discussed in addition to Dossible
applications aS stocbastlc matrices.

91circulant mptrices can Also be
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APPROXIMATION BY WALSH POLYNOMIALS
AND THE CONCEPT OF A DERIVATIVE

P.L. Butzer and H.J. Wagner
Technological University of Aachen

Aachen: Germany

1. Introduction

In a recent paper the authors [3] X does not have a single-valued inverse
aefined a derivative for functions f since the dyadic rationals (=D.R.) have

given on the dyadic group G. This deri- two representations in G. We shall

vative turned out to be a linear, agree to take the finite expansion in

closed operator, its inverse operator that case. If p is the inverse of A,

or integral was introduced,and the then, according to N.J. Fine [ 1 ] , one

fundamental theorem of the calculus was has for all real x

fo.und %o hold for these two concepts.
This enabled one to obtain first results A(p(x)) = x - [x ],
on the approximation of f by the partial
sums of the Walsh-Fourier series of f. [x] denoting the greatest integer 1 x.

The purpose of this paper is to present Moreover, p(A(i)) = 7 for all x c U

the definition of the derivativelthis provided A(R) 9 D.R. Denoting

time in its setting on the unit inter- A(p(x) 11(y)) in short by x 0 y, then

val 10,1]•,as well as to give a new Fine [ 4 ] showed .hat

application, namely to establish the 1
fundamental theorem on best approxima- °jf f(x 0 y)dx f f(x)dx0
tion (in the version of [1,21 for
functions f defined on [ 0,1] by Walsh for every fixed y provided that f is

polynomials. Lebesgue integrable on [0,11. Further-
more, for each fixed y and for all x
outside a certain denumerable set

2. Preliminary results (depending on y), one has

Defining the Rademacher functions by (2.2) Tn (x * y) = T n(x) 'n(y).

1-1, O2x<1/2 More generally, (2.2) is also valid for
°()-[-1,11/2ex<1 , ýo(%l)= ýo(X) ' all (x,y) £ [0,1] X [10, 1 ) outside a

denumerable set.

*n(x)= , 0 (2nx) (neV {1,2,...)), A finite linear combination

then the Walsh functions are given by n c Yk (x) (c being complex numbers)
thial~ed a Walsh polynomial of deGree

(2.1) T o(x):1,'n(X):n (x).. W n (x) n, the set of such polynomials of degree
0 n n I n.n being denoted by Pn" If Pm £ P2n'

nI ni h c [0, 2 -n), then, outside the above
n=2 +...+2 ,n 1 > ... ni > 0, n being denumerable set,
integers. Let G be the dyadic group

consisting of all sequences R ={x )n (2.3) Pm(x h) = Pm(x).
such that x :0 or 1, the operation of 0
being additdon modulo 2 (notation ;).
G is related to the unit interval by Denoting by LP(0,1), 1<p<-, the set
the mapping A: G0[ 0,1 1 of all functions f of period I which are

pth power integrable With norm 3 f=
A(i) = :1 2 -n xn" Ifp :{J 1 f(x)lPdx }"P, it is known
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that tne Walsh-system {T (x)}) is 3. The Derivative and its properties
closed with respect to the space LP(0,1),
i.e., Definition

If fcr feLP(0,1) there exists
(2.4) f^(k)=O, keP,-•> f(x)=O a.e., gcLP(0,1) such that

Ivm .
(3. ) lin •'jT 2 [f('4 f(. Q 2-J1j-g( )] •(•

the Walsh-Fourier coefficients of f

being
then g is called tJe strong derivative
of f, denoted by D•&jf. For r=2,3,...

f-(k)= fif(u),k(U)du (kEP={0,1,2,...}). the rth strong derivative of fe LP(O,1)
0 is defined successively by

By (2.2) for each real y and k & P D~r~f = D1]1 D~r-1]f.

(25 fIfyD)kud k(y)f^(k) .Note that this definition differs
from that given by J.E. Gibbs [15 ]

essentially in the sense that the factor
Defining the convolution of 23 is replaced by 2 -J; however, Gibbs'

fe LP(0,i) and g rL1 (0,1) by definition is taken in the pointwise
sense.

(f~g)(x) f- fS~(x • u)g(u)du
D[0 D r] is a linear operator with the

g property
0 f(u)g(x * U)du, Proposition •.

it is also known that fs g exists for (3.2) jr].n = nrn (n c P,rc I).
almost all real x, f*g LP(0,1) and

Using (2.2), the proof for r=1 follows
(2.6) If*gI p < 0 fpug!1 • readily from the identity (n c P)

Moreover, it is obvious that for (3.3) r " 2j[1-Tn(2J- 1 )] 2f C L (0, 1)-jon

If-(k)I < Hff (k £ P), To prove (3.3), note that for m,j c P
ýM(2"-j' = €o0( 2m 2-J-1) = -1 for m~j,

and the convolution theorem states that '1 for mO j. Then apply (2.1).
for f,g c LI(0,i)

Hence Walsh polynomials are arbitra-
(2.7) (f~g)Y(k)=f•(k) . g'(k) (k s F). rily uften differentiable. Furthermore,

(3.3) together with (2.8) implies that
Finally, if fn,f £LP(0,1), netl, then' ~for allR £ €p

[Dtrlf-(k) = krf-(k) (k c P)

(2.8) limifn-fl = O=;lim fi(k) f^(k)
n* nunder the existence of J f £ LP(0,1).

It is obvious that the strong derivati-
ve of a constant vanishes and, converse-
ly, D• 1 1 f = 0 implies f = const. in
view of (2.5), (3.3), (2.8) and (2.4).
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Of importance is the function W r(x) 4. Applications to Approximation
defined by (see Watari [71) by Walsh Polynomials

In the notation of G.W. Morgenthaler

1 , k =0[6 1 define for fcLP(0,1),ot > 0

r lk r , k cr N Lip a(W)= ff;I f( -)-f( -Q h) U = O (ha)lhlo

Having the theory developed in
Butzer-Wagner (31 at our disposalit wW(f;6)= supllf(-)-f(- a h)l

can be shown by parallel methods that

Wr(x) LI(oI1). Moreover, if En(f) = inf hf - Pn 0'
f,gcLP(0,1) such that krf^(k)=g^(k), Pn£Pn
k c P, r c IN, then the latter quantity being called best

approximation of f by Walsh polynomials
f = Wr g + f'(O), of degree n in LP(o,1)-space. It is

Wr known that there exists a Walsh polyno-

mial p* (=pn(f)) of best approximation
Theorem 3.1 to fe LP(0,1) for which En(f)=f-P .

Let f e LP(0,1) such that f^(O)
= fI f(x)dy = 0. According to Morgenthaler and Watari

a) If there exists D r]f LP(O,1) for 18] it is known that for 6 - 0

some r c N, then
(Wr Af=f (4.1) fsLip a(W)•4=ww(f;6)= 0( 6),

(4.2) E nWf . ww(f;1)j) < 2 En(f),
b) [r(wr r) = f 2 2 2

respectively. Analogous to [31 we haveSThis theorem may be regarded as the

fundamental theorem of the calculus for
our concept of a derivative. In this Proposition 4.1
sense, our operator of integration I is If D[r] f exists and belongs to
given by LP(0,1), then

1 2f 2 nr _L 1 (Ir
if -(W 1 * f) = 01f(x Q u)W,(u)du . 2n 2-r f'2 P

Of fundamental importance are the
It is obvious that I is linear and con- Bernstein and Jackson-type inequalities
tinuous. Or the other hand, it can be given by
shown that the operator L r] of diffe-
rentiation is closed on LP(O,i). Propos tion 4.2

a) P'or pn c Pn one has
All of the results established in

Butzer-Wagner [31, including the IE9r] nO AnrflPnhi (n n F,r c H).
applications, carry over from the b' If • r} f exists and belongs to
dyadic group G to the interval [0,11. LP(o,1), then
The following new applications are
proved in detail. En(f) < Bn-r I r]f j.

Here A and B are constants independent
of n, Pn, f.
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Proof To prove (iii)-(iv) first note
that (iii) implies UII U AI 2 -k(O[ +r)]

If n has the representation (2.1),
then Pne -Pnm+1* By (2.3) one haswhere U= " p k-1' k_2,3,...

I pi ,k=1

InD[ 1 ]Pnil Therefore by Prop. 4.2 a) for k e IN

A 1 n1n jo *JPn(P)-Pn(c 3)1 (4-3) 110 2[V91  ..l 2 k(v-acr)

S11.n 1o 1 2-n 2 lipnl. Now the sum cnmg innm t ~o " ~~ k converges in
LP(0,1)-norm to f. Since vor ( - v < r

The proof of a) now follows by induc-
tion. * 1 ~1 kml <) Cjkm1 2k(v-a-r)

and~~1 Prp.J11
Under the hypotheses of b) the

assertion of b) follows immediately by there exist functions g. e LP(0,1) with
(4.2) and Prop. 4.1.

The following, which is the funda.• lim 1I •km I , v]I

mental theorem on best approximation by nr0 1- k

Walsh polynomials, shows the usefulness SV]of or drivtiveconept Dv] f = gv for 0 < v < r. By (4.3) we
have

Theorem 4.1

If f c LP(o,1), the following state- l1D[](f -pID[DI v)Tk
ments are equivalent:

< 11 k~~ Df A] U k,1 0 1O 2m(I- a-r) ] .

(i) Dar)f c Lip t(W) (a > 0), kom+I k

(ii) •W(D Irj f; .1) = 0(n-"), m+
n Now for 2 m < n < 2 m+1 one has by (4.3)

(iii) En(f) On-r), 11D[I v (pn-p m) 1 = O(nv-c-r). Combining

(iv) Dv] f • LP(o,1), O• v , the two inequalities yields (iv).

! I D[ v] f-D[ vi Pnl = 0(n+V--r) (iv)•(ii) by (4.2). It remains to

show that (iii)4=; (v). This follows
(v) RDlpni1 = O(nl-a-r) (O<a+r<l). along standard lines, compare Butzer-

O Scherer [ i,p.118 f, or 2 1 .

Proof In contrast to the situation 2or

classical Fourier series, the assertion
The equivalence (i)€(ii) follows by (ii) need only be formulated for the mo-

Morgenthaler [61 (who considered case dulus of continuity of the first diffe-
r = 0; see (4.1)).The implication rence.
(ii) =(iii) follows by (4.2) and Prop.-
4.1.
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A Mh' EYE ON %£.AL.3! FUNCTIONS

by

Claiude CARDOT
Senior Ergineer

CIT-ALCATEL - Marcoussis(90).FRAUICE

Abstract Tri~onometric rehrepentation

We inzroduce two new algebraic reprisqn- The 2ý first Walsh funct.icns be.ing
tations for Walsh functions. The sign of a eequency ovdcred from N = 0 to N = 2 k -1, and
trigonome~rical product allows to comate their' sign beivg normalized jo that
Fouriir spectrum and to classify Walsh ftulc- ( + 0,x, - + i for all N, we have :
tions into diaphonic equivalence classes. A W(i, x). W(j,x) - W(i 4 i,x), ij inteders.(1)
polynomial representation gives +ke key to

the convolution products of any two Walsh The operation * definec an Abelian groui
functions. theoretical consequance is the on the k binary digits intagers.
fact that A distinct convolution products
only exist in a class concaining 21 Walph Int.egers with onr. single I -rA (k - )
functions. Practical conoequencea are formu- zeroes constitute a sim.le generators jet f'•
lau for the influence of limited bandwidth, thie group. If no generatcr ir repeated in a
additive noise and synchronization error in wam, dires t sum is identical to norzal addi-
the operation of a Walsh carrier multiplex. tion for this set.

Notations These integors are powers of 2. So that
if we operate the dyadic decomposition of N

The definition interval for Walsh func- (I) N Z a.. 2j1 a. = 0,1 and j=1,2,.Y.,
tions will be ; (-V'• 411). a ..

will be the independant variable, we shall have
Compared to usual notations, we shall
have x 21TMO. W(N,=) = '. W(2J' 1 ,x) the product beirg

W(N,x) (N integer) will be the value of the for all j such t~at aJ = I.
Walsh function of rank N if the Walsh
functions are eaen oered and Now, W(1,x) is the first Radnmacher
numbered from 0 to2Fe-a. function, and we have

W(N,i) (N,i integers) will be the constant W(1,x) = W(20 ,x)=sga (ain x)=sgn(cos(x.. qY2)1
valus (± i) of W(N,x) on the interval W(2,x) is the siae function cycli.ýelly
number i of its definition period. shifted and wo have

i 0 j will denote the direct sum of integers
it J. W(21, xi = egn(cos x), and

i + J will denote thG CZsu of two binary W(2 2, x) = sgn(coz 2 x)
numbers with k digits, the reaul.
being a k-digit ternaKX number with ........ ).. .(cos 2 k.2x)
the rules : W(2k-1, x) = gn o

c all these functions being c.vyc]tcally shifted
0 + 0 1- even Rademacher functioans, with orders from

1•0 0 + I = 0 1 to k-1.

The word simple will keep its standard English Tne operation "sgl.' commutes with multi-
meaning and the words : spectrum, Fourier plication, so that any Walsh function can be
series, their classical trigonomatrical sense. obtained as the sign of a triFo.ometrical

roduct, defined as follows by the bits I in
A Walsh carrier is an indefinitely repes- N

, ted Walsh function.t- the lirst bit from right, if 1, gi',es a fec.

The word dL~Pton" is used here as ark equiv- toz sin x,
alent to "crosstalk".
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- the second bit from right, if 1, gives a odd N case
factor : cos x, n= at

- the third bit from right, if 1, gives a ui(x)= - sin nx [cos-2 n(i-1)
factor : cos 2 x 2

- the bit of rank k from right, if 1, gives - cos - n
, a factcr : cos 2k-2x. and, reporting this in (4), we derive

With the ai defined in (i), we have :

W(NX)=Sgn nos a1Ie('1T/2)W cos (a 2 ) Even case (N = 2 s)
1=2) W(sx n=00 co i i=2 k-1I

(2) W(2s2 i).
This formula allows to compute the 2k= (co nx) Z; W(2si).

Lirst Walsh function with k+1 storage regis- n= --

ters only, on any computer with a cosine Fs •i fn(i-1 )•
subroutine. k registers are needed to storeFin si -(5)
the a. and one more to effect the trigonome- f 21 .2

tricai product.

To implement this formula, x shall be Q~d case (N = 2s 0':
rebtricted to the mid-interval values, so
that the sign extracting sequenco cannot fail n= 2 ik-
on a zero. Satting : x = (2i-)qr/2k ; (- 2
i = (I-2k-1).... 2 k-1, the preceeding formula W(2s--,x) = L (sin nx)

becomes: i=

W(N,i)=sgn cos(a 1 (2i-,)Ir/2k- MI2 . Ilc n(i-1) _ 'wni ]

j=2 cthe coefficients W(N,i) in (5. and (6) being
(3) computed from (3).

Tripaometric series for a Walsh carrier SP-ectra classification

Theorem 1. If ko is the rank of the first
If we write a Walsh carrier under the non-zero bit-fro•_right hn the sequency, then

Walsh carriers with this sequency shall have
form : i=2k1 sAectral lines on odd multiples of 2eSW(N,x) -= W(N'i). u i(x) (4)

i~ 1 |Proof : sgn.cos z and sgn.sin z have spectral

k-1 lines on odd multiples of z.
i = 1, 2... 2  describing the right

half of the perio6 and the u(x) being 2K-1 Now, let, in binary notation
orthogorvi functions obtainea by infinite re- s =ysl z being any binary digits
pet~tion of : ((k^ = 2 in this case)

- a function equal to + I on intervals + i 2s = xyz1OO ; W(2s,x) = sgn[Y(x).cos2' xi
and (i-i) nf fundamental period, if N is by (2)
even, and zero elsewhere, ko-2

- a function equal to + I on interval + i 2s-1=xyz011 W(2s-l,x) = sgnLY (x) .sin 2 x.

and to - 1 on interval (1-i) if N is odd, kO-n
anid zero olsewhere. x In

Applying k 0 timas from right to the last
The trigonometric series for ui(x) is : expression the identity : sgn (sinx.cos x) =

e a00 2 Sgn sin 2x, we see that :.even 11 case : u i(x) 2 k- (2 - ,) -1 ( ) i

In W(2s-1,X) =sgn[Y(x). sinn .8x J
Cos nI in -• ni - sin M n (i-I Y(x) containing only cosines of higher

s 2 2J frequencies, the theorem results. The cal
* function contains coines of odd multiples of
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2 ko-Ix nd the sal functioi. sines of the same
frequencies.

A result from this theorem is that if ily Xos
any two Walsh carriers share one Fourier com-
pcnent, they share them all, so that sharing ,
one Fourier component is an equivalence X R

relation.

The equivalence classes thus obtained ...... F

can be labeled by k 0 and, for each value of W -, I
ko0 , there will be two classes : one for even, s.N, 8X-,
aud one for odd functions.

Inside each class, the functions can be
sequency ordered by the bits at left of the Fig. 2 Walsh multiplex

first non-zero bit in a. Obtained rank will
be named the diaphonic eouivalence number,e. .Ne suppose here that

It is easy to see that there arp 2 k - the a. are constant during a period of the

classes in the group formed by the 24 first Walshlcar-iers,
Nalsh functions. - there is neither synchrovization error nor

Table fig. I shows these 10 classes for additive nolse (t) 0);

the 32 first Walsh functions, with the cor- - the line is a rectanAgular low-pass filter,
responding e-ordering. cutting off all spectral components with

n n and having no effect on the lowercouponemn s.

ank Even equency k Odd RankN unetions 8 k e f,,notion N The demodulated samples, s'., are bound

_ _ . to the si by the linear system :3

" 0 Ca 0, X ) 0 -i_ _
I i=N-1

2 Cal l, Z) I- 0001 1 Sal(1,x Z) 16 Cal(3, x) 3 0011 1 Sal(3, x) I s' D 1 D. .
10 cal (5, z) 5 0101 2 ul (5. x) 1 9 = 0 1 1

14 cal (7. x) 7 01 11l 3 sl (7. z) 13
1I cal (9. z) 9 1ol001 4 Sal (9, z) 17
22 cal (11, X) It 0l1l 5 Sal (11, Z) 21 When low-pass filtering is present, the
26 cat (13. x) 13 . 1101 6 sal (13, x) 25
30 Cal (15. z) is 1111 7 Sal (15, X) 29 D. terms are functions of n , the cutoff

Cal(2,x) 2.. 0010 2 0 sat 2,z) frequency of the filter.
12 cal ( 6, z) 6 0110 1 Sal ( 8X x) It
20 Cal (10 x) 10 . 10o0 2 $at (10, X) 19 When there is no filtering (a = 00 ),
2. Cal 1,• 4: x 14 - I!! -3 il (14. 4 27 the D.. matrix is unitary, because cf the

8 1l( 4, x) 4 0100 3 0 tal ( 4. x) 7 orthoA1rmality of the Walsh functions set.
24 cul (12. x) 12 I10 I Sal (12.: x 23

16 18. !2 8 11000 0 Sal (8S. Xi15 For all practical purposes, the sign of
16 loo10000 .5 0 sa (16. : - 1 the D coefficients is unimportant, so that.i j....-. we sh4l neglect it in the sequel.

Fig. 1 Equivalence classes for the 32 first When a D. .(n ) coefficient is identi-3.j max

Walsh functions. Heavy lines separate dis- cally zero, we say that corresponding Walsh
tinct classes. carriers (N = i and N = J) are absolutely

orthogonal (orthogonal for any filtering).
Orthogonality and diaphoery This is the case either if i and j have

not the same parity (The Pourier series are
Consider now the Walsh multiplex fig. 2 made of cosines for one of theo and of sines

where N = 2k analogical samples ao, ... sN-1 for the other) or if the k values are not
are transmitted through a line, each of the same (The spectral lings are not on the
them modulating a Walsh carrier W(N,x) and same frequencies).
demodulation being effected by N integrate-
and-dump circuits, IT , fed by the corres- When two Walsh functions are not absolu-
ponding Walsh carrierg. tely orthogonal, we have
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DijMax= fn f (7) course, th. *•.merical values of the matrixn 1 nii nj coefficients shall no longer be given by the

simple expressions (7) and (8), but by sum-
for the oxrpession of the filtering-induced mations taking into account the phase and
diaphony between th- csrriers W(ý,x) and amplitude characteristics of the filter actu-
W(j,x); as a particala5. case ally used.

n---nDi( ) fn (8) Influence of Noise in a Walzh aultiplex

ii (8) _______________

Suppuse now that, in fiG 2, an additive
ezxpesset ch' filtering-induced diaphony for noise aource N(t) is present, delivering white
the carrier W(i,x), if : gausgian noise witli spectral power density N

;= 00 froa zerA frequency to F.
I(ix) xcos

n=1 ni sin The noise appearing in the demodulated
channel s'. will be the product of the pass-
band of this channel by the noise density

=If c around zero-frequency in the demodulated output
W0j,7) .nj sin nx s9', because the integrate-and-dump circuit

n=1 acsas a lowpass filter.

Demodulated noise before t~e integrate and
Unigersal diaphony Matrix dump circuit will be the power addttion of

all componente obtained by =ltiplication of

Inproceeding formulas, i and are incident noise with each of the Focrier com-

supposed to correspond bo Walsh functions in ponent'of W(jx)
the same oquivalence clasq. In that ease, k0  n
being the index of that class, i and j can N'(t) = N(t) x fn 2co n t/T
be expressed as functions of kI and of equi- n=
valence numbers : e,e' of W(i:i), W(jx)
respectively. We can denote the D. (n ) (T period)coefficient as Ic ij iax

D a (nmax). Noise density of this product at zero frequen-
e,e' cy is

It results from Theorem 1 that classeswith different values of kn correspond one In----N f2 Dj(FT). N

to anothar by a modif at~n of the frequency 2 n 1 n1 =
scale by the factor 2• , In particular,
we have because spectral lines with n>. FT give trans-

2o k -1 posed noise bands without component at zero
) = D (n] 2 0 frequency.

ee' mx ee We see that noise density on the j th

output is attenuated with the filtering atte-
That is to say, all.diaphoWy classes are nuation coefficient corresponding to the upper

isomorphic and are described by the same ma- noise frequency F, and to the j th Walsh
trix, with a suitable multiplication of the function.
frequency scale. An even class being eviden-
tly isomorphic to the odd class with the same This results intuitively from the fact
kc , we see that in case of rectangular filte- that the insertion of a low-"ss filter with
___, all dimphonic coefficients between cutoff frequency F will not modify the effect
Walsh carriers are given by an universal ma- of the noise.
trix D ,(n) whose coefficients are functions
of n, e the lowpass cutoff frequency. The attenuation for the noise density being

the same as the attenuation for the corres-
Moreover, in the case of another tvye ponding signal, we see tnat if the noise is

of filter, the same general properties hold, white in the band•ps of the-line, the signal
since they rely on the spectra patterns of to noise power ratio will be unaffected by
the Walsh functions before filtoring. Of the multiplex transmission.
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Diaphony and convolution then the product : Q(y)=P(y).P'(1/y),mod(y 2 -)
has for coefficients the successive values of

If we compu Ate the functions D ,(n) the convolution product 97 at the beginning
S e es of each interval where Walsh func'ions are

in the universal diaphony matrix, w4 state constant.
that this matrix is evidently symmatrical,
but moreover, some terms from different 2+c .+C 2k-
Walsh functions pairs are found equal. The If Q(Y) =00+Op9+c2y 2+. k .+ y

convolution theorem statos that tne terms then :
in the sum (7) are the Fourier coefficients Ik
of the convolution product Q ij (m '/2 ) = c (m integer from 0 to 2 )

W. W() (This theorem is easily proved by consi-
Qjj(x) = W~i~u). W(j,u-x) du dering the triangular elementary convolution

0 product of two functions equal to + 1 on apoctotwfucineuato+Iosingle interval and to zero elsewhere, repre-

Next section will be devoted to compute sented by single powers of y, and using then

how many distinct convolution products exist, the bilinear character of the antegral (9)

to within sign, in an equivalence class for combining these building blocks into I
containing 2•' Walsh function. Walsh functions).

The convolution product Q..(x) being
a succession of straight segmeni, ic ic cor-

Polynomial representation pletely defined by its values just obtained
on interval separative points.

In the sequel, we change sign normaliza- We now prove the
tion of Walsh functions so that

Theorem 4 - The convolution product of any
W(N, - I'+ 0) = + I for all N. two Walsh functions belonging to the same

diaphonic equivalence class is uniquely defi-
We represent Walsh carriers in the ring ned, to within sign, by the C-sum : e + e' of

of polynomials in y, mod(y2 -I), with cceffi- their equivalence numbers written in Gray code.
cients in the real numbers field without
restriction.. As a corollary:

I n reference (I), we give in extenso In a diaphonic equivalence class containing
the proofs of following theorems :2 -functions, the C-sum is a k-dig.it ternary

number, so that 31 distinct convolution pro-
Theorem 2 - Any Walsh function can be fac- ducts exist.
torized under the form :

S2)(+ + 2 k-i Proof If we factorize both polynomials P(y)
P(Y) = I y)(1• y -y ) and P'(I/y) under the form (10) and effect

(10) the multiplication of corresponding parenthe-
ses, we find that, to within sign, the pro-

duct of parentheses with degree 2P can takeIf~~~~~~ weascae1+1t n 11t21 only 3 4ýorms and not 4, before the reduction
the choice of signs in these k factors gives mod (y2ý-I) is effected :
the rank N of the function in Gray code. is effected

+ y2)+ /y )= 2 + y +form)
(This theorem is etablished by provingthat y 2

2 orthogonal functions are so generated, and 2 p 25_ 2 2 p 2 p 2 p
that if the number of zero-crossing of the (i+y )(1-1/y)=-(1-y X+I/y ) -1/y
function on the open definition interval
increases by one, one sign onl:y can change (.0" form)
in (,1)).

Theorem 3 - If two Walsh functions are repre- 0 - 2 fa,)

sented by the polynomials : As a consequence from theorem 2, the

P(y) = W (i,x) equivalence number in Gray code in a equiva-
lence class defines the signs in th- expression

P'(y) = W (j,x) (10) for the functions in that class and
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announced result follows, interval r «< T/ 2 k (this means that
synchronization is acceptable)

2) relativeovariation of tne s. over one pe-
Convolution classes riod can be neglected (this' approximation

is tantamount to evaluating the main part
If two Walsh functions are in diaphonic only in the error).

equivalence classes with different values of Denote by W'(N,t) the Walsh functions at
ko, the convolution product vanishes identi- receiving endcally : q(x) = 0 for all x. rcing = :

If two Walsh functions are in diaphonic Received signals will be
equivalence classes with the same index ko, T
their convolution product does not vanish, i=2 -1
even if the functions have not the same pa- s? 1 f! O W(i,t/.W'(j,t) dt
rity and are absolutely orthogonal for this j=T " = d =
reason. (In all cases : Qij(0)=O if i / j). = 0

We see that having a non-zero convolu- 1 i=2 k-1 T
tion product is an equivalenL.• relation for T f. W(jt-r) dt
Walsh functions. Equivalence classes for t.his . = 0 0
relation are the union of two classes with
same k 0 and opposite parities. or s k

i=2 -1
Finally, then : there are k+1 coivolution s' = X, P. (r)

classes in the group of the 2k first Walsh 0 i=
functions.

All these classes are isomorphic as a if P.(r) is the normalized convolution
consequence of Theorem i. product

Having in mind that any even WalshT
function is equal to the proceeding odd func- P (r)= W(i,t).W(j,t-r)dt (P(o='
tion cyclically shifted, we can recapitulate ij f4
following results 

0

As a result of hypothesis 1, we have
- in a diaphonic equivalence class containing

2 k Walsh functions (e from 0 to 2ki-), dP..(o' dP0
there are, to within sign, 3k different k 0 )

convolution products (Th. 4) and, then 3 P r if i , and drdistinct diaphonic characteristics D.jnmx
aic and we study hereafter the absolute values

- in a convolution class containing 2 k+1 K of the slopes at origin of convolution
Walsh functions, and resulting from the prducts. These coefficients K.. are the in-
union of two diapho~ic classes with same fluence coefficients of synchrlization error,
ko, there are : 4.3 different convolution which will produce on channel nr.i
products to within sign, but only 3k diffe- - an attenuation P.(i)= 1-
rent convolution products to within a 1
cyclical shift (Each product is repeated - a dia1i~nny from j th.channel :
4 times with different cyclical shifts). Pij(r) = rIKijt

with r> 0.

Synchronization Error effect Slopes at origin of convolution prcducts

Suppose noe that in the m2.tiplex fig. 1, Thu complete (and rather tedious) proofs
there is neither line filtering nor additive of following facts are exposba-in exteriso in'
noise, but that a time lag r exists between ref. 2
the clocks generating the Walsh carriers in
transmission and reception ends. Let I be the
period. Theorem 5 - S-opes at origin K are integer

multiples of the smallest one.'O Inside a
We suppose also that convolution class, they are odd integer mul-

tiples of it.
1) r is small with regard to an elementary
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(This is a conse uence of the c in theorem Figure 4 gives the k. matrix, allowing
3 being integers). to compute the synchronizdtion effect for the

16 first Walsh Functions group.

Theorem 6 - Slope at orion K of an auto-
convolution product is proporttSnal to the se- 4 N I 5 6 9 10 Is 14
quency of the function.

K.= 4 s/T ! 1 1 1 / / / '

(Each zero crossing in the function has a
,-contribution 2 r/T in the decrease of the a i I / i I / / /

normalized autoconvolution product).
5 / / 3 / / 3 1 /

Theorem 1 - We have : Ki j inf (Kii,K.j) 3

9 1 ,' 1/ 5 , ; I*l

Unijversal Matrix for Synchronization error 5
coefficients |10 / , 3 / / 5 , ,

A consequence of preceeding results is 13 ! ; / / ; /
that we can construct an universal symmetri- - -

cal matrix with integer terms : k =K.T/4
for the normalized influence cneffiieni of 1/ 4 /

synchronization error. All diagonal term-
will be equal to t~he bequency of the corres-
ponding Walsh function. Fig. 4 The matrixk 3

If we restrict this matrix to the first
convolution class, k = I it will comprise
only odd integers. Re k.. matrix for a class Conclusions
with k0 / 1 .ill be obtained by multiplying

k0_1 From an algebraic study of Walsh functions
it by 2 (by theorem i). we have derived practical formulas to compute

the effects of limiled passband,noise and syn-
Following recursiveiconstructiongives chronization errors in a Walsh carrier multi-

the k matrix of rank 2 , let it be plex. The consideration of equivalence classes
when the k matrix of rank 2P is -known le.ds to the conclusions that from the group
(cf. 2 forPcomplete justification). o'the 2k first Walsh functions we can extract

2k carriers such that a multiplex with these
tkI be divided into quares carriers shall have no interchannel diaphony

(fig.3). F•Upper left square isE . Upper induced by the limited nassband of the line,
rignt square is Sk obtained from•- by colum and k+1 carriers such that a multiplex with
reversal. Lower let square is p , obtaie these carriers shall have no interchannel dia-
ned from'__ by line reversal, Lowe- right phony induced by the synchronization error.
square is ý

_+ 2P. T (7being the unitary matrix with These results are of practical meaning.

. rankp Our initial non recursive generation al-

Starting matrix k l is easily seen to be gorithm has analogies with the definition pro-
fo the .posed by LACKEY and MELTZER (3) and justifiedJ 1 for the two functions of unit sequency, i~� extenso by DAVIES (4). But the choice, as a

basis, of even (cyclically shifted) Rademacher
functions instead of odd Rademacher functions
opens the way, by . oorem 1, to a synthetic

Ip p view of the spectral properties of Walsh
k P = P4... . r1 functions.

Fig. 3 Recursive construction of matrix kp+I
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SEQUENCY UNION

A Specialist Working Group of the IEEE Electromagnetic Compatibility Group

Since the beginning of the Walsh Functions Sym- functions are used now, there would be as little
posiums in Washington, D.C. in 1969, there need for a group promoting nonsinusoidal func-

have been repeated suggestions that a scientific tions as there is now for a group promoting
group should be organized for those working on sinusoidal functions.
applications of Walsh functions and other com- At the first meeting of the Sequency Union in
plete systems o! nonsinusoidal functions. In December 1971, it was agreed to seek affiliation
September 1971 H.C. Andrews of the Univer- with the IEEE Electromagnetic Compatibility
sity of Southern California, H. F. Harmuth of Group. This Group had supported the Walsh
Catholic University of America, G.S.Robinson Functions Symposium in spring of 1971. Fur-
of Comsat Laboratories and 3. L. Walsh of the thermore. the one problem common to all
University of Maryland took the initiative and ahlctons of one probl ction in allinvited all those whio had helped organize the applications of nonsinusoidal functions in all

fields of communications is that of compatibility
symposiums or had presented papers to form a with rules, methods and equipment intended for
Founding Committee for such a group. The fol- sinusoidal functions. Mr. L. W. Thomas negot-
lowing 47 scientiste became members of this iated affiliation with the EMC-Group. A formal
Founding Committee of the Sequency Union: invitation to join as a Specialist Working Group

N. Ahrmed (USA), H. C. Andrews (USA), R. Bar- was extended by Mr. R. M. Showers, Chairman
rett (England), J. W. Bayless (USA), C. Boess- of the Technical Advisory Committee of the
wetter (Germany), E. Briganti (Italy), V. D. EMC-Group. This invitation was accepted at
Brown (USA), E. C. Claire (USA), R. B. Critten- the meeting af the Founding Committee of the
den (USA), I. Davidson (Canada), A.R. Elliott Sequency Union at Catholic University on 28
(Canada), T. H. Frank (USA), J. E. Gibbs (Eng- March 1972.
land), J.P.Golden (USA), J.A.Gordon (Fngland), It is hoped that the IEEE EMC-Group will
H. F. Harmuth (USA), H. A. Helm (USA), H. Hueb- become the center for scientists interested in
ner (Germany), T. Ito (Japan), P.C. Jain (USA). the use of complete, orthogonal systems of non-
S. C. Kak (India), J. Kane (Canada), J. D. Lee sinusoidal functions. The IEEE Transactions on
(USA), R .Lopez de Zavalia (Argentina), P. V. Electromagnetic Compatibility are dedicated to
Murrayi (USA),P. SS. Murthy (India), G. Pearl problems of compatibility and interference.

Murray (USA). S. S.R. Murthy (India), J. Pearl There are few uses of nonsinusoidal functions
(USA), K. R. Rao (USA). G. R. Redinbo (USA), for which compatibility and interference are not
G.S. Robinson (USA), J.FH. Rosenbloom (USA), problems, and this makes the IEEE Transac-
Schmid (Switzerland), R.O. Schmidt (USA). H. tions on EMC a proper journal for the publica-

.Schmeid(Switzerla), .. Schmbit (Japan), G.J. tion of papers on Walsh and other nonsinusoidal
I. Schreiber (USA), X.Shibata functions. General information on the activities
Simmons (USA), W.Steenaart (Canada), L.W. oa the Sequency Union will be published in the

s(USA), H. Ueberall (USA), J. L. Walsh Newsletter of the EMC-Group, which in published
(USA), J. H. Whelchel (USA), P. A. Wintz (USA), quarterly and sent to all members of the Group.
C. K. Yuen (Australia).

The objectives of the Sequency Union are to ad-
vance understanding in the uoes of nonsinusoidal,
complete, orthogonal sets of functions; to diffuse
the knowledge of these uses; and to assist the Henning F. Harmuth
members in these activities. This group should Chairman, Sequency Union
only exist until the use of nonsinusoidal functions Department of Electrical Engineering
is widely understood. If and when nonsinusoidal The Catholic University of America
fuc.Lions are used as routinely as sinusoidal Washington, D.C. 20017
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