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DESCRIPTION AND THEORETICAL ANALYSIS (USING SCHEMATA) OF
PLANNER:

A LANGUAGE FOR PROVING THEOREMS AND
MANIPULATING MODELS IN A ROBOT*

Abstract

PLANNER is a formalism for proving theorems and manipulating models
in a robot. The formalism is built out of a number of problem-solving
primitives together with a hierarchical multiprocess backtrack control
structure. Statements can be asserted and perhaps later withdrawn as
the state of the world changes. Under BACKTRACK control structure, the
hierarchy of activations of functions previously executed is maintained
so that it is possible to revert to any previous state. Thus programs
can easily manipulate elaborate hypothetical tentative states. In addi-
tion PLANNER uses multiprocessing so that there can be multiple loci of
control over the problem-solving. Conclusions can be drawn from the various
changes in state. Goals can be established and dismissed when they are
satisfied. The deductive system of PLANNER is subordinate to the hier-
archical control structure in order to maintain the desired degree of
control. The use of a general-purpose matching language as the basis
of the deductive system increases the flexibility of the system. Instead
of explicitly naming procedures in calls, procedures can be invoked im-
plicitly by patterns of what the procedure is supposed to accomplish.
The language is being applied to solve problems faced by a robot, to
write special purpose routines from goal oriented language, to express
and prove properties of procedures, to abstract procedures from proto-
cols of their actions, and as a semantic base for English.

Thesis Supervisor: Seymour Papert, Professor of Mathematics

This report reproduces a thesis of the same title submitted to the
Department of Mathematics, Massachusetts Institute of Technology,
on January 29, 1971 in partial fuifillment of the requires-•zts for
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redication

This paper is deeicated

to the ideas embodied in the language

LISP



0. page 9

AC KNOWLEDGEMENTS

The following is a report on scae of the work that I have done

as a graduate student at Project MAC. Reproduction in full or in part

is permitted for any purpose of the United States government. Most of

the ideas described herein are not original with the author. Many are

simple extensions and modiEications of current ideas in the computer

culture. others have been suggested by people in conversations. I

have tried to explicitly acknowledge all the cases that I can

remember By apoligies to any one who has been omitted. Still other

ideas have emerged in the course of debate and discu.sion with the

people listed below. I would like to thank the various systeT

"hackers" that have wade this work possible: D. Eastlake, R.

Greenblatt, J. Holloway, T. Knight, G. mitchell, S. Nelson, and 3.

White. I had several useful discussions with H. V. McIntosh and A.

Guzman on the subject of pattern matching. S. Papert, T. Winograd,

and A. Paterson zade suggestions for improving the presentation of the

material in this thesis. T. Winograd, P. Winston, and G. Sussman made

suggestions for improving PLANNER. Alan May, Jeff Rulifson, Nick

Pippinger, Eugene Charniak, John McCarthy, Nils Wilson, Richard Pikes,

Richard Waldinger, Julian Davies, Bruce Anderson, Jack Dennis, Bob

Yates, Danny Bobrow, Warren leitleman, Richard Stallma-, Peter Deutch,

and Bob Balzer provided illuminating discussions on some of the fine

points. Peter Bishop, Dave Reed, Gary Peskin, Gordon Benedict, Al



0. page 10

Solish, Chris Beeve, Gerald Sussman, Bruce Daniels, Dreiw BcDermott,

Jeff Hill, and Dave Cressey have worked on implementations. Ira

Goldstein, Peter Bishop, Richard Vong, Steve Zilles, Bruce Daniels,

Dave Peed, Gary Peskin, Julian Davies, Gordon Benedict, and Jeff Hill

helped me to find nugs in previous versions of this document. I would

like to thank the members of my thesis committee (Seymour Papert,

Marvin Kinsky, and Bike Paterson) for their help and advice. This

report represents my current imperfect state of knowldege. The above

people are in no way responsible for the kludges, errors, and

misunderstandings that remain. Please send comments, criticism, and

errata to:

Carl Hewitt
B. I. T. Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Bass.
U. S. A.



0. page 11

Note to the Header

This paper is organized in what purports to be a logical

systeaatic fashion. The organization aakes it difficult to get a

quick overview. The reader should not try to read the paper in a

linear fashion from cover to cover. If he gets stuck he should "pop

up" one level and continue.

"IOU HAVE BEEN WARNED"

There is an index of prmimitives at the end. There is an index to the

syntax after the function REID. The following guide is provided for

those readers who are not interested in reading the whole paper.

Chapter 1 is a "hack". Chapter 2 gives the epistesological

foundations for our approach to problem solving. Chapter 3 is a

discursive overview of the rest of the thesis using examples of some

features of the problem solving language PLANNER. Many of the

important ideas in the thesis are touched on somewhere in the chapter.

In chapter 4 we find a detailed explanation of the structural pattern

matching language MATCHLESS. Readers who are only peripbhrally

interested in pattern matching need read only sections 4.1, 4.2, 4.3,

and 4.4. Chapter 5 begins the systematic explanation of PLIANER. It

introduces the primitives, data structure, and control structure of

the language. In contrast to the quantificational calculus, the
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semantics %f PLANNER are expressed in terms of the properties of the

procedures which define the formalism. In chapter 7 we explain how

properties of PLANNER procedures can be expressel and proved in the

formalism itself. Also we attack the problem of bow it is possible to

teach a problem solver new knowledge. Ve explain how schemata give

the beginning of a theory on the comparative problem solving power of

various computational models in chapter 6.
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1. What Achilles Said To The Tortoise

Lewis Carroll

Achilles had overtaken the Tortoise, and had seated himself

comfortably on its back.

"So you've gct to the end of our race-course?" said the

Tortoise. "Even though it does consist of an infinite series of

distances? I thought some wiseacre or other had Froved that the

thing coldnlt be Jose?"

"It can be done," said Achilles. "It has teen done! Solvitur

ambulando. You see the distances were constantly diminishing: and so-

--w

"But if they had been constantly increasing?" the Tortoise

interrupted. "How then?*

"Then I shouldn't be here," Achilles modestly replied: "and

you would have got several times round the world, by this time!"

"You flatter me-- flatten, I mean," said the Tortoise; "For

you are a heavy weight, and no mistake! Well now, would you like to

hear of a race-course, that most people fancy they can got to the end

of in two or three steFs, while it really consists of an infinite

number of distances, each "ne longer than the previous one?*

"Very such indeed!" said the Grecian warrior, as he drew from

his helmet (few Grecian warriors possessed pockets in those days) an

enormous note-book and a pencil. OProceed! And speak slowly, please!
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Short-hand isn't invented yet!"

"That beautiful First Proposition of Euclid!" the Tortoise

murmured dreamily. "Ycu admire Euclid?"

"Pass;icnately! So far, at least, as one can admire a treatise

that won't be published for some centuries tc come!"

"Well, now, let's take a little bit of the argument in that

First Proposition--just two steps, and the conclusion drawn from them.

Kindly enter them in your note-book. And, in order to refer to them

conveniently, let's call them A, B, and Z:

(A) Things that are equal to the same are equal to each other.

(B) The two sides of this Triangle are thirgs that are equal
to the same.

(Z) The two sides of this Triangle are equal to each other.

"Readers of Euclid will grant, I suppose, that Z follows

logically from A and B, so that any one who accepts A and B as true,

must accept Z as true?"

"Undouttedly! Ihe ycungest child in a High School-- as soon as

High Schools ate invented, which will nct be till scme two thousand

years later--will grant that."

"And if some reader had not yet accepted A and E as true, he

aight still accept the Sequence as a valid one, I suppose?"

"No doubt such a reader might exist. He might say 'I accept

as true the Hypothetical Proposition that, if A and B be true, Z must

be true; but I don't accept A and B as true.' Such a reader would do

wisely in abandoning Euclid, and taking to football."
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"And might there not also be scee reader who would say 'I

accept A and B as true, but I don't accept the Hypothetical'?"

"Certainly there might. He, also, had better take to

foottall."

"And neither of these readers," the TortoiEe continued, "is as

yet under any logical necessity to accept Z as true?"

"Quite so," Achilles assented.

"-ell, now, I want you to consider me as a reader of the

second kind, and to force me, logically, to accept Z as true."

"A tortoise playing football would be--" Achilles vas

beginning.

"--an anomaly, of course," the Tortoise hastily interrupted.

"don't wander from the point. Letfs have Z first, and football

afterwards!"

"I'm to force you to accept Z, am I?" Achilles said musingly.

"And your present position is that you accept A and B, but you don't

accept the Hypothetical--"

"Let's call it C," said the Tortoise.

"--but you don't accept:

(C) If A and P are true, Z must be true."

"That is my present positom," said the Tortoise.

"Then I must ask you to accept C."

"0I1ll do so," said the Tortoise, "as soon as you've entered it
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in that note-book of yours. What else have you got in it?"

"Only a few memoranda," said Achilles, nervously flutteiing

the leaves: "a few sezoranda of---of the battles in which I have

distinguished myself!"

"Plenty of blank leaves, I seel" the Tortoise cheerily

remarked. "We shall need them all!" (Achilles shuddered.) "Now write

as I dictate:

(A) Things that are equal to the same are equal each other.

(B) The two sides of this triangle are things that are egual

to the same.

(C) If A and B are true, Z must be true.

(Z) The two sides of this Triangle are equal to each other."

"You should call it D, not Z," said Achilles. "It comes next

to the other three. If you accept A and B and C, you Dust accept Z."

"Lnd why must I?"

"Because it follows logically from them. If A and B and C are

true, Z must be true. You don't dispute that, I imagine?"

"If A and B and C are true, Z must be true," the Tortoise

thoughtfully repeated. "That's another Hypothetical isn't it? And,

if I failed to see its truth, I might accept A and B and C, and still

not accept Z, mightn't I?"

"You eight," the candid hero admitted; "though such obtuseness

would certainly be phenomenal. Still, the event is possible. So 1

must ask you to grant one more Hypothetical."

"Very good. I'm quite willing to grant Z, as soon as you've
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written it down. We will call it

(D) If A and B and C are true, Z must be true.

"Have you entered that in your note-book?"

"I have!" Achilles joyfully exclaimed, as be ran the pencil

into its sheath. "And at last we've got to the end of this ideal

race-course! Now that you accept A and B and C and D, of course you

accept Z."

"Do I?" said the Tortoise innocently. "let's make that quite

c]ear. I accept A and B and C and D. Suppose I still refuse to

accept Z?"

"Then Logic would take you by the throat, and force you to do

it!" Achilles triumphantly replied. "Logic would tell you can't help

yourself. Nov that you've accepted A and 8 and C and D, you must

accept Z11 So you've no choice, you see."

"Whatever Logic is good enough to tell me is worth writing

down," said the Tortoise. "So enter it in your book, please. .e will

call it

(E) If A and B and C and D are true, Z must be true.

"Intil T've granted that, of course, I needn't grant ., So

it's quite a necessary step, you see?"

"I see," said Achilles; and there was a touch of sadness in
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his tone.
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2. The Structural Foundations of Problen Solving

We would like to develop a foundation for problem solving

analogous in scme rays to the currently existing foundations for

mathekatics. Thus we need to •aalyze the structure of foundations

for zathenatics. A foundation for mathematics must provide a

definitioDal formalisu in which mathematical objects can be defined

and their existence proved. For example set theory as a foundation

provides that objects must be built out of sets. Then theze must be a

deductive formalism in which fundamental truths can be stated and the

mean-s provided to deduce additicnal truths from those already

established. Current mathematical foundations such as set theory

seem guite natural and adequate for the vast body of classical

aathematics° Tbe objects and reasoning of aost mathematical domains

such as analysis and algebra can he easily founded on 3et theory. The

existence of certain astroncuically large cardinals poses sone

problems for set theoretic foundations. However, the probless posed

seem to be of practical importance only to certaih category theorists.

Foundations of mathesatics have devoted a great deal of atte&tiav to

the problems of consisteucy and compluteness. The prcbles of

consistency is important sisce if the foundations are iacossistent

then any formula whatsoever say be deduced, thus trivialUziag the

fo~pnations. Semantics for foundations of mathematics are deflad
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model theoretically in terms of the notion of satisfiability. The

problem of completeness, is that for a foundation of mathematics to be

intuitively satisfactory all the true formulas should be proveable

since a foundation for mathematics aims to be a theory of mathematical

truth.

Similar fundamental questions must be faced by a foundation

for problem solving. However there are some important differences

sirnce a foundaticn for problem solving aims more to be a theory of

actions and purposes than a theory of mathematical truth. A

foundation for problem solving must spccify a goal-oriented formalism

,'i which prnblems can be stated. Purthermore there must be a

formalism for specifying the allowable wethods of solution. As part

of the definition of the formalisms, the following elements must be

defined: the data structure, the control structure, and the

primitive procedures. Being a theory of actions, a foundation for

problem solving must confront the problem of change: How can account

be taken of the changing situation in the world? In order for there

to be problem solving, there must be an active agent called a problem

solver. & foundation for problea solving must consider how much

knowledge and what kiud of knoyledge problem solvers can have about

thewselves. In contrast to the foundation of mathematics, the

semantics for a foundation for problem solving should be defined in

terms of properties of procedures. Ve would like to see mathematical

investigations on the adequacy of the foundations for problem solving

provided by PLANNER. In chapter 8 we have beg'zn one kind of such an
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investigation.

To be more specific, a foundation for problem solving must

concern itself with the following complex of topics:

PROCEDURAL EMBEDDING: How can "real world" knowledge be
effectively embedded in procedures. What are good ways to express
problem solution methods and how can plans for the solution of
problems be formulated?

GENERALIZED COMPILATION: What are good methods for transforming
high level goal-oriented language into efficient algorithms.

VERIFICATION: How can it be verified that a procedure does what
is intended.

PROCEDURAL ABSTRACTION: What are good methods for abstracting
general procedures from special cases.

one formulation of a foundation for problev solving regquires

that there should be two distinct formalisms:

1: A METHCDS formalism which specifies the allowable methods of

solution

2: A PROBLEM SPECIFICATICN formalism in which to pose prcblems.

The problem solver is expected to fignre out how to combine its

available methods in order to produce a s- ution which satisfies the

problem specification. One of the aims of the above formulation of

problem solving is to clearly separate the methods of sclution from

the problems posed so that it is impossible to "cheat" and give the

problem solver the methods for solving the problem along with the

statement of the problem. we propose to bridge the chasm between the

methods formalism and the problem formalism. Consider more carefully

the two extremes in the specification of processing:
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A: Explicit processing (e.g. methods) is the ability to specify
and control actions down to the finest details.

B: Implicit processing (e.q. problems) is the ability to specify
the end result desired and not to say much about how it should be
achieved.

PLANNER attempts to provide a formalism in which a prcblem solver can

bridge the continuum between explicit and implicit processing. We aim

for a maximum of flexibility so that whatever knowledge is available

can be incorporated, even if it is fragmentary and heuristic.

PLANNER is a high level, goal-oriented formalism in which one

can specify to a large degree what one wants done rather than how to

do it. Many -, ., primitives in PLANNER are concerned with

manipulating a data base in a pattern directed fashion. Most of the

prJmitives have been developed as extensions to the formalism when we

have found problems that could not otherwise be solved in a natural

way. Of course the trick is to incorporate the new primitive as a

genuine extension of wide applicability. Others have suggested

themselves as adjuncts in crder to obtain useful closure properties in

the formalism. we would be grateful to any reader who could suggest

problems that would seem to require fcrther extensions or

modifications to the formalism.

There are many ways in which one can approach a description of

PLANNER. In this section we will describe PLANNER from an Information

Processing Viewpoint. To do this we will describe the data structure

and the control structure of the formalism.

- I
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CATA SIRUCTURE:

GRAPH MEMORY fcrms the basis for PLANNER's data s ace which
consistz of directed graphs with labeled arcs. T e operation
of PUTTING and GETTING the components of data objects have
been generalized to apply to any data type whatscever. For
example to PUT the value CANONICAL on the expression <+ I Y <*
X Z>> under the indicator SIMPLIFIED is one way to record that
<+ I Y <* I Z>> has been canonically simplified. Then the
degree to which an expression is simplified can be determined
by GETTING the value under the indicator SIMPLIFIED of the
expression. 1he operations of PUT and GET can be implemented
efficiently using hash coding. Lists and vectors have been
introduced to gain more efficiency for common special purpose
structures. The graph memory is useful to PLANNER in many
ways. Monitoring gives PLANNER the capability of trapping
all read, write, and execute references to a particular data
object. The ponitor 1which is found under the indicator
MCNITOR) of the data object can then take any action that it
sees fit in order to handle the situation. The graph memory
can be used to retrieve the value of an identifier i of a
process p by GETTING the i component of p. Code can be
cQuzented by simply PUTTING the actual comment under the
indicator COMMENT. Also graph memory enables unique copies of
structures to be efficiently and conveniently stored.

DATk BASE: What is most distinctive about the way in which
PLANNER uses data is that it has a data base in which data can
be inserted and removed. For example inserting [AT BI P2]
into the data base might signify that block Bi is at the place
P2. A coordinate of an expression is defined to be an atom in
some position. An expression is detc.mined by its
coordinates. Assertions are stored in buckets by their
coordinates using the graph memory in order to provide
efficient retrieval. In addition a total ordering is imposed
on the assertions so that the buckets can be scrted.
Imperatives as well as declaratives can be stored in the data
base. We might assert that whenever an expression of the
form [AT objectl placel] is removed from the data base, then
any expression in the data base of the form [CM objectl
object2] should also be removed from the data base. The data
base can be tree structured so that it is possible to
simultaneously have several local data bases which are
incompatible. Furthermore assertions in the data base can
have varying scopes so that some will last the duration of a
process while cthers are temporary to a subroutine.

CONTROL SIRUCTURE: PLANNER uses a pattern directed muitiprocess
backtrack control structuJre to tit the operation of its primitives
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together.

BACKTRACKING: PLANNER processes have the capability of
tacktracking tc previous states. A process can backtrack into
a procedure activation (i.e. a specific instance of an
invocation of a procedure) which has already returned with a
result. Using the theory of comparative schematology, we
have proved in chapter 8 that the use of backtrack control
enables us to achieve effects that a language (such as LISP)
which is limited to recursive control cannot achieve.
Backtracking preserves the nesting of the subroutine structure
of PLANNER while allowing the cunsequences of elaborate
tentative hypotheses to be explored without losing the
capability of rejecting the hypotheses and all of their
consequences. A choice can be made on the basis of the
available knowledge and if it doesn't work, a better choice
can be made using the new information discovered while
investigating the first choice. Also backtrack control makes
PLANNER procedures easier to debug since they can be ru.
backwards as well as forwards enabling a problem sclver to
"zero i%' on bugs.

MULTIPEOCESSING gives PLANNER the capability of having more'
than one locus of control in problem solving. By using
multiple processes, arbitrary patterns of investigation
through a conceptual problem space can be carried out.
Processes can have the power to create, read, write,
interrupt, resume, single step, and fork other processes. The
ability to single-step or to interrupt processes allows the
definition of 1rocedures which are NOT monotone in the sense
of lattice theory. Potentially the failure of monotonicit:y is
a serious flaw in the lattice theoretic approach towards a
mathematical foundation for effective procedures.

PATTfRN DIRECTION combines aspects of control and data strut-ure.
The fundamental principle of pattern directed computation is that
a procedure should be a pattern of what the procedure is intended
to accomplish. In other words a procedure should hot only do the
right thing but it shculd appear to do the right thing as well!
PLANNED uses pattern direction for the following operations:

CONSTRUCTION of structured data objects is accomplished by
templates. We can construct a list whose first element is
the value of x and whose second element is the value of y by
the procedure (x y). If x has the value i and y has the value
(A B) then (x y) will evaluate to (3 (A B)).

DECONPOSITION is accomplished by matching the data object
against a structured pattern. If the pattern (xl x2) is
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matched against the data object ((3 4) A) then xl will be
given the value (3 4) and x2 will be given the value A.

RETRIEVAL: An assertion is retrieved from the data base by
specifying a pattern which the assertion must match and
thereby bind the identifiers in the pattern. For example we
can determine if there is anything in the data base of the
"form [CN x A]. If [ON B A] is the only item in the data base,
then x is bound to B. If there is more than one item in the
data base which matches a retrieval pattern, then an arbitrary
choice is made. The fact that a choice was made is remembered
so that if a simple failnre backtracks to the decision,
another choice can be made.

INVOCATION: Procedures can be invoked by patterns of what
they are supposed to accomplish. Surpose that we have a
stopped sink. One way we could try to solve the problem would
be to know the name of a plumber whom we could call. An
alternative which is mcre analogous to pattern directed
invocation is to advertise the fact that we have a stopped
sink and the qualifications needed to fix it. In PLANNER this
is accomplished by making the advertisement (i.e. a pattern
which represents what i: desired) into a goal. The procedure
invoked by the pattern might or might not succeed in achieving
the goal depending on the environment in which it was called.
The procedure invoked can be required t' undo all the actions
that it took to try to achieve the goal. For exanple if we
were unhappy with the way in which a plumber fixed cur sink,
we could require that he restore the situation to its previous
state. Since many theorems might match a goal, a
recommendation is allowed as to which of the candidate
theorems might be useful. The recommendation is a pattern
which a candidate theorem must match.

One basic idea behind PLANNER is to exploit the duality that

we find between certain imperative and declarative sentences.

Consider the statement (implies A B5. The statement is a perfectly

good declarative. In addition, it can also have certain imperative

uses for PLANNER. It can say that we might set up a procedure which

will note whether A is ever asserted and if so to consider the wisdom

of asserting B in turn. [note: it is not always wise! Suppose we

assert <integer 0> and (implies <integer n> <integer (* n 1)>1].
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Furthermore it permits us to set up a procedure that will vatch to see

if it is ever our goal to try to deduce B and if so whether A should

be made a subgoal. Exactly the same observations can be made about

the contrapositive of the statement (implies A B) which is [implies

(not B) (not A)). Statements with universal quantifiers,

conjunctions, disjunctions, etc. can also have both declarative and

imperative uses. PLANNER theorems are used as imperatives when

executed and as declaratives when used as data. The imperative

analogues have the advantage that they can more easily express any

procedural knowledge that we might have such as "Don't use this

theorem twicen.

Our work on PLANNER has been an investigation in PROCEDURAL

EPISTEHOLOGT, the study of how knowledge can be embedded in

procedures. The THESIS OF PROCEDURAL INBEDDING is that intellectual

structures should be analyzed through their PROCEDURAL ANALOGUES. He

will try to show what we mean through examples:

DESCRIPTIOES are procedaures which recognize how well some
candidate fits the descriptiom.

PATTERNS are dEscriptions which match configurations of ata.
For example (either 4 <atomic»> is a procedure which will
recognize something which is either 4 or is atomic.

DATA TYPES are patterns used in decjaratlins of the allowable
range and domain of procedures and ideatilers. nore
generally, data types have analogues in the form of procedures
which create, destroy, recognize, and transform data.

GRANNaRS: The PROGRAASR language of Terry linograd angther
step towards one kind of procedural analogue for matura1
language grammar.

/1
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SCHEMATIC DRAWINGS have as their procedural analogue methods
for recognizing when particular figures fit within the
scbemata.

PROOFs correspond to plans for recognizing and expanding valid
chains of deductions. Indeed many proofs can fruitfully be
considered to define procedures which are proved to have
certain properties. For example a proof by mathematical
induction of a effective formula p[n] can "e considered to be
a proof that the following function always returns "TRUE":

p[n] := if p[01 then *?RUE" else p[n-1]

Conversely, proofs by execution induction cf properties uf
procedures can be used to demonstrate mathematical facts. For
example proofs by execution induction can imitate proofs by
mathematical induction:

<f n> := <repeat out.f[i 9])
;-inillalize i to C"
Intent: p[i]
<cond

[<is? .i .n>
;"if .i is equal to .n then

exit with the value

<.out .n>]>
< -:i <+ .i 1>>

;"else increment i aid repeat">

Proving the intention pCi] bi execution induction will
establish that for all n we have p[nJ. Proofs by execntion
induction enable global properties (such as convergence and
equivalence) to be proved by purely local analrsis.

MODELS are collections of procedures for simulating the
behavior of the system being modeled. MODELS of PROQRAMS are
procedures for defining propertiex of procedures and
attempting to verify the properties so defined. Models of
prograum can be defined by procedures which state the
relaticus that must hold as contxol passes through the
program.

PLANS are general, goal oriented procedures for attempting to
carry out some task.

THEORENS of the QUANTIPICATIONAL CALCULUS have as their
analogues procedures for carrying out the deductions which are
justified by the theorems. For example, consider a theorem of
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the form (IMPLIES x Y). One procedural analogue of the
theorem is to consider whether x should be made a subjoal in
order to try to prove something of the form y.

CRAWINGS: The procedural analogue of a drawinq.is a procedure
for making the draving. Rather sophisticated display
processors have been constructed for making drawings on
cathode ray tubes.

RECOMMENDATICNS: PLANBER has primitives which allow
recommendations as to how disparate secticns of goal oriented
language should be linked together in order to accomplish some
particular task.

GCAL TREES are represented by a snapshot of the instantaneous

configuration of problem solving processes.

One corollary of the thesis of procedural embedding is that

learning entails the learning of the procedures in which the knowledge

to be learned is embedded. Another aspect of the thesis of procedural

embedding is that the Frocess of going from general gcal "otionted

language which is capable of accomplishing scme task to a special

purpose, efficient, algorithms especially designed for the task should

itself be mechanized. By expressing the properties of the special

purpose algorithm in terms of their procedural analogues, we can use

the analogues to establish that the special purpose routine does in

fact do what it is intended.

From the above observations, we have constructed a formalism

that permits both the imperative and declarative aspects of statements

to be easily manipulated. PLANNER uses a pattern-directed information

retrieval system. The data base is interrogated by specifying a

pattern of what is to be retrieved. Instead cf having to explicitly

name procedures which are to be called, they can be invoked implicitly
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by a pattern (this important concept is called PATTERN-DIRECTED

INVOCATICN). When a statement is asserted, recommendations determine

what conclusions vii! te drawn from the assertion. Procedures can

make recommendations as to which theorems should be used in trying to

dray conclusions from an assertion, and they can recommend the order

in which the theorems should be applied. Goals can De created and

automatically dismissed when they are satisfied. Objects can be found

from schematic or partial descriptions. Provision is made for the

fact that statements that were once true in a model may no longer be

true at some later time and that consequences must be drawn from the

fact that the state of the model has changed. Assertions and goals

created within a procedure can be dynamically protected against

idterfetence from other procedures. "Un11ke some otfiertorvia17sms such

as GPS, PLANEIB has no explicit goal tree. Instead the computation

itself can be thought to be investigating some conceptual problem

space. Primitives for a multiprocess backtrack control structure

give flexibility to the ways in which the conceptual problem space can

be investigated. Procedures written in the formalism are extendable

in that they can make use of new knowledge whether it be primarily

declarative or imperative in nature. Hypotheses can be established and

later discharged. PLANNER has been used to write a block control

language in which we specify how blocks can be moved around by a

robot. Ve would like to write a structure building formalism in

which we could provide descriptions of structures (such as houses and

bridges) and let PLANNER figure out how to build them. The logical
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deductive system used by PLANNER is subordinate to the hierarchical

control structure of the language. PLANNER theorems operate within a

context consisting of return addresses, goals, assertions, bindings,

and local changes of state that have been made to the global data

base. Through the use of this context se can guide the computation

and avoid doing basically the same work over and over again. For

example, once we determine that we are working within a group (in the

mathematical sense) we can restrict our attention to theorems for

working on groups since we have direct control over what theorems will

be used. PLANNER has a sophisticated deductive system in order to

give us greater power over the direction of the computation. Of

course procedures written in PLANNER are not intrinsically efficient.

A great deal of thought-and effort must be put'into writing efficient

procedures. ELANNER does provide some basic mechanisms and

primitives in which to express problem solving procedures. The

control structure can still be used when we limit ourselves to using

resolution as the sole rule of inference. A uniform proof procedure

gives very little control over how or when a theorem is used. The

problem is one of the level of the interpreter that is used. I

digital computer by itself will only interpret the hardware

instructions of the machine. a higher level i-terpeter such as LISP

will interpret assignments and recursive functios calls. At a still

higher level an interpreter such as HATCHLESS will interpret patterns

for constructing and decosposing structured data. PLANNER cam

interpret assertions, find statements, and goals. It goes without
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saying that code can be compiled for any of the higher level

interpeters so that it actually runs under a lower level interpreter.

In g-.neral higher level interpreters have greater choice in the

actions that they can take since instructions are phrased more in

terms of goals to be achieved rather than in terms of explicit

elementary actions. The problem that ve face is to raise the level of

the interpreter while at the same time keeping the actions taken by it

under control. Due to its extreme hierarchical control and its

ability to make use cf new imperative as well as declarative

knowledge, it is feasible to carry out very long chains of inference

in PLANNER without extreme inefficiency.

We are concerned as to how a theorem prover can unify

-. structural problem solving methods with domain dependent algorithms

and data into a coherent prcblem solving process. By structural

methods we mean those that are concerned with the formal structure of

the argument rather than with the semantics of its domain dependent

content.

An example of a structural method is the "consequences of the

consequent" heuristic. By the CONSEQUENCES CF THE CCNSECUENT

heuristic, we mean that a problem solver should lock at the

consequences of the goal that is being attempted in order to get an

idea of some of the statements that could be useful in establishing or

rejecting the goal.

We need to discover more powerful structural methods. PLANNER

is intended to provide a computational basis for expressing structural
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methods. One of the sest important ideas in PLANNER is that it brings

some of the structural methods of Froblem solving out into the open

where they can be analyzed and geteralized. There are a few basic

patterns of looping and recursion that are in constant use among

programmers. Examples are recursion ca binary trees as in LISP and

the FIND statement of PLAINER. The primitive FIND will construct a

list of the objects with certain properties. For example we can find

five things which are on something which is green -y evaluating

<FIND 5 x
<GOAL [ON x y]>
<GOAL [GREEN y 3>>

which reads "find 5 x's such tkat x is ON y and y is GREEN.

The patterns cf looping and recursion represent common

structural methods used in programs. They specify how ccmsands can be

cepeated iteratively and recursively. Cue if the main problems in

getting computers to write programs is how to use these structural

patterns uith the particular dcmain dependent commands that are

available. It is difficult to decide which if any of the basic

patterns is appropriate in any given problem. The problem of

synthesizing programs out of canned loops is formally identical to the

problem of finding proofs using mathematical induction. Ue have

approached the Iroblem of constructing procedures out of goal oriented

language from two directions. The first is to use canned loops (such

as t ie FIND statement) where we assume a-priori the kind of control

structure that is needed. The second approach is to try to abstract

the procedure from protocols of its action in particular cases.
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Another structural method is FROGRESSIVE REFINEMENT. The way

problems are solved by progressive refinement is by repeated

evaluation. Instead of trying to do a complete investigation of the

problem space all at once, repeated refinements are made. Far example

in a game like chess the same part of the game tree might be looked at

several times. Each time certain path. are more deeply explored in

the light of what other investigations have revealed to be the key

features of the position. Problems in design seem to be particularly

suitable for the use of progressive refinement since proposed designs

are often amenable to successive refinement. The way in which

progressive refinement typically is done in FLANNEE is by repeated

evaluation. Thus the expression which is evaluated to solve the

-problem will itself produce as its value an expression.t9 be -

evaluated.

The task of artificial intelligence is to program inaninate

machines to perform tasks that require intelligence. Over the past

decade several different approaches toward A. I. have developed.

Although very pure forms of these approaches will seldom be met in

practice, we find that it is useful for purposes of discussion to

consider these conceptual extremes. One approach (called results mode

by S. Papert) has been to choose some specific intellectual task that

humans can perform with facility and write a prograh to perform it.

Several very fine programs have been written following this approach.

One of the first was the Logic Theorist which attempted to prove

theorems in the propositional calculus using the deductive system



PROGRESSIVE REFINEMENT

YES SOLUTION
FINISHED P STATE

ATTAI NED

NO

IX4-.-<EVALX>

31_ _ _



2. page 34

developed in Principia Mathenatica. The importance of the Logic

Theorist is that it developed a body of techniques which when cleaned

up and generalized have proved to be fundamental tc furthering our

understanding o! A. I. The results mode approach offers the

potentiality of maximum efficiency in solving particular classes of

problems. On the other hand, there have been a number of programs

written from the results mode approach which have not advanced our

understanding although the programs achieved slightly better results

than had been achieved before. These programs have been large,

clumsy, brute force pieces of machinery. There is a clear danger that

the results mode approach can degenerate into trying to achieve A. I.

ia the "hairy kludge a month plan". The problems with "hairy

kludges" are well known. It is impossible to get such programs to

communicate with each other in a natural and intixate way. They are

difficult to understand, extend, and modify because of the ad hoc way

in wiich they are constructed.

Another approach to A. I. that has been prcminent in the last

decade is that of the uniform proof procedure. Proponents of the

approach Prite programs which accept declarative descriptions of

combinatorial problems and then attempt to solve them. In its most

pure form the approach does not permit the machine to be given any

information as to how it might solve its problems. The character

table approach to A. I. is a modification of the uniform procedure

approach in which the program is also given a finite state table of

cunnections between goals and methods. The uniform procedure approach

_____________________
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offers a great deal of elegance and a taximum of a certain kind of

generality. Current programs that implement the uniform procedure

approach suffer from extreme inefficiency. we believe that the

inefficiency is intrinsic in the approach.

PLANHEB is not neccessarily general in the same sense that a

uniform proof procedure is general. PLANNER is intended to be a

natural computational basis for methods of solving problems in a

domain. A cosplete proof procedure for a quantificational calculus

is general in the sense that if one can force the vroblep into the

form of the input language and is prepared to wait eons if necessary,

then the computer is guaranteed to find a solution if there is one.

The approach taken in PLANNIB is to subordinate the deductive system

to an elaborate hierarchical control structure. Although PLANNER

itself is domain independent, procedures written in it have differing

overlapping degrees of domain independence. Proponents of the uniform

procedure approach are apt to say that PLANNER "cheats" because

through the use of its hierarchical control structure, it is possible

to tell the program hov to try to solve its problems. In order to

prevent this kind of "cheating", they would restrict the input to

consist entirely of declaratives. But surely, it is to the credit of

a program that it is able to accept new imperative intormation and

make use of it. A probles solver needs a high level language for

expressing problem solving methods oven if the language is only used

by the problem solver to expLess its problem solving methols to

itself. PLAINER serves both as the language in which problems are
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posed to the problem solver and the language in which methods of

solution are formulated. PLANNER is not intended to be a solution to

the problem of finding general methods for reducing the combinatorial

search involved to test whether a given proposition is valid or not.

It is intended to be a general formalism in which knowledge cf a

domain can be combined and integrated. Realistic Froblem solving

programs will need vast amounts of knowledge. We consider all methods

of solving prcblems to be legitimate. If a program should happen to

already know the answer to the problem that it is asked to solve# then

it is perfectly reasonable for the prcblem to be solved by table look-

up. We should use the criterion that the 1roblem solving power of a

program should increase much faster than in direct proportion to the

number of things that it is told. The important factors in judging a

program are its power, elegance, generality, and efficiency.

- - _________________ - - - - -/
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3. Discursive Overview

This chapter contains an explanation of some of the ideas in

PLANNER in essay form. It is partially based orn a draft -ritten by T.

Winograd for tihe course 6.545. If the reader would like to see a core

systematic presentation, he can consult the subsequent chartez.

The easiest way to understand PLANNER is to watch how it

works, so in this section we will present a few simple examples and

explain the use of some of its most elementary features. These

examples are not intended to represent TOY PROBLEMS to serve as test

cases for "general problem solvers". The toy problem paradiga is

misleading because toy problems can be solved without anj real

knowledge of the domain in which the toy problem is posed. Indeed, it

seems gauche to use any thing as powerful as real knowledge on such

simple problems. In ccntrast we believe that real world problems

require vast amounts of procedural knowledge for their solution. We

see it as part of our task to provide the intellectual capabilities

needed for effective problem solving. Ve would like to see the toy

problem paradigm replaced with an INTELLECTUAL CAPABILITY Paradigm

where the object is to illustrate the intellectual capabilities needed

so that knowledge can be effectively embedded in procedures.

first we will take the most venerable of traditional

deduct ions:
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luring is a human
All humans are fallible

so
Turing is fallible.

It is easy enough to see how this could be expressed in the

usual logical notaticn and handled by a uniform proof proceCure.

Instead, let us express it in one possible way to PLANNER by saying:

<ASSERT (HUMAN TURING]>

<ASSERT <DEFINE THEOREM1
<CONSEQUENI [Y) [FALLIBLE ?Y]

<GOAL [HUMAN ?Y¥>>>>

Function calls are enclosed between "<" and ">". The proof

would be generated by asking PLANNED to evaluate the expression:

<GCAL [FALLIBLE TURING]>

The example illustrates several points about PLANNER. First,

there are at least two different kinds of information stored in the

data base- declaratives and imperatives. Notice that for complex

sentences containing quantifiers or logical connectives we have a

choice wiether to express the sentence by declaratives or by

imperatives.

Second, one of the mcst important points about ELANNER is that

it ia ar evaluator for statements. It accepts input in the form of

expressious written in the PLANNER language and evaluates them,

producing a value and side effects. ASSERT is a function which, when

evaluated, stores its argument in the data base of assertions. In
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this example we have defined a theorem of the CONSEQUENT type [we will

see other types later]. This states that if we ever want to establish

a goal of the form (FALLIBLE ?1], we can do this by accomplishing tha

goal [HUMAN ?T], where Y is an identifier. The strange prefix

character "?N is part of PLANNER's pattern matching capabilities

(which are extensive and make use of the pattern-matching language

MATCHLESS which is explained in chapter 4 of the dissertation]. If we

ask PLANNER to prove a goal of the form [A I], there is no obvious way

of knowing whether A and Y are constants (like TURING and HUNAN in the

example] or identifiers. LISP solves this problem by using the

function QUOTE to indicat.e constants. In pattern matching this is

inconvenient and makes most patterns such bulkier and more difficult

to read. Instead, PLANNER uses the opposite convention -- a constant

is represented by the atom itself, while an identifier must be

indicated by adding an appropriate prefix. This prefix differs

according to the exact use of the identifier in the pattern, but for

the time being let us just accept "?" as a prefix indicating an

identifier. The definition of the theorem indicates that it has one

identifier, Y by the [1] following CONSEQUENT.

.. .a The third-Atatement illustratb" the function GLIL, which

tries to prove an assertion. This can function in several ways. If

we had asked PLANNER tc evaluate <GOAL [HUNAN TURING]> it would have

found the requested assertion immediately in the data base and

succeeded [returning as its value some indicator that it had

succeededj. However, [FALLIBLE TURING] has not been asserted, so we
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must resort to theorems to prove it. Later we will see that a GOAL

statement can give PLANNER various kirads of advice on which theorems

are applicable to the goal and should be tried. For the moment, take

the default case, in which the evaluator tries all theorems whose

consequent is of a form which matches the goal [i.e. a theorem with a

consequent [?Z TURING] would be tried, but one of the form [HAPPY ?Z]

or [FALLIBLE ?Y ?Z] would not]. assertions can have an arbitrary list

structure for their format -- they are not limited to two-member lists

or three-member lists as in these examples. The theorem we have just

defined would be found, and in trying it, the match of the comsequence

to the goal would cause the identifier I to be bound to the constant

TURING. Therefnre, the theorem sets up a new goal [HUMAN TURING] and

this succeeds immediately since it is in the data base. In general,

the success of a theorem will depend on evaluating a PLANNEE program

of arbitrary complexity. In this case it contains only a single GOAL

statement, so its success causes the entire theorem to succeed, and

the goal [FALLIBLE TURING] is proved. The following is the protocol

of the evaluation:

<GOAL [FALLIBLE TURING]> [FALLIBLE TURING] is not in the data base
so attempt to inyoke .a theorem to esablish the goal

enter THEOREMI
Y becomes TURING
<GOAL [HORAN TURING]> is satisfied since tke goal is in the
data base

return [FALLIBLE TURING]

The way in which identifiers are bound by matching is of key

importance to ELANDNI. Consider the question "Is anything fallible?',

o~r in logic [EXISTS I [FALLIBLE 1]], This '.ould be expressed in

_ -f
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PLANNER as:

<PROG [X] <GOAL [(ALLIBLE ?X]>>

Notice that PROG [PLANNER's eguivalent of a LISP PROG) in this

case acts as an existential quantifier. It provides a binding-place

for the identifier X, tut does not initialize it -- it leaves it in a

state particularly marked as unassigned. To answer the guestion, we

ask PLANNER to evaluate the entire PROG expression above. To do this

it starts by evaluating the GOAL expression. This searchen the data

base for an assertion of the form [FALLIBLE ?X] and fails. It then

looks for a theorem with a ccnsequent of that form, and finds the

theorem we defined abcve. Ncw when the theorem is called, the

identifier Y in the theorem is linked to the identifier X in the goal,

but since X has no value yet, Y does not receive a value. The theorem

then sets up the goal [HUMAN ?Y1 with Y as an identifier. The PLANNER

primitive GOAL uses the data-base retrieval mechanism t lcok for any

assertion which matches that pattern [i.e. an instantiation], and

finds the assertion [HUMAN TURING]. This causes Y [and therefore X]

to be bound to the constant TURING, and the theorea succeeds,

completing the proof and returning the value [FALLIBLE TOBING].

There seems to. be-something missing.- So far, the data tase

has contained only the relevant objects, and therefore PLANNER has

found the right assertions immediately. Consider the problem ve would

get if we added new information by evaluating the statements:

<ASSERT [HUMAN SOCRATESI>
<ASSERT [GREEK :.OCBAIfS]>
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Our data Ease ncw contains the assertions:

HUMAN TURING]
HUMAN SOCRATES]

(GREEK SOCRATES]

and theorem1:

<CONSEQUENT [TI [FALLIBLE ?Y]
<GOAL [UBMA ?Y]>>

What if we new ask, "Is there a fallible Greek?" In PLANNER we

would do this by evaluating the expression:

<PROG [X]
<GOAL [FALLIELE ?X]>
<GOAL [GREEK ?1]>>

If PLANNER runs into a failure trying to evaluate an expression, then

it backtracks to the last decision that was made and dumps the

responsibility of hcw to proceed on the procedure which made the

decision. Notice what might happen. The first GOAL may be satisfied

by exactly the same deducticn as before, since we have not removed

information. If the data-base retriever happens to run into TUBING

before it finds SOCRITES, the goal [HUMAN ?Y] will succeed, binding Y

and thus I to TURING. After [FALLIBLE ?X] succeeds, the PROG will

then establish the new goal [GREEK TURING], which is doomed to fail

since it has not been asserted, and there are no a~plicable theorems.

If we think in LISP terms, this is a serious problem, since the

evaluation of the first GOAL has been completed before the second one

is called, and the "stack" now contains only the return aidress for

PROG and the identifier 1. If we try to go back to the beginning and

start over, it will again find TURING and so on, ad infinitum.
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One of the mcst important features of the PLANNER language is

that backtracking in case of failure is always possible, and moreover

this backtracking can go to the last place where a decision of any

sort was made. Here, the decision was to pick a particular assertion

from the data base to match a goal. Another kind of decision is tht

choice of a theorem to try to achieve a goal. PLANNER keeps enough

information to change any decision and send evaluation back down a no

path.

In our example the decision was made inside the theorem for

FALLIBLE, when the goal [HUMAN ?Y] was matched co the assertion [HUBAN

TURING]. PLANNER will retrace its steps, try to find a different

assertion which matches the goal, find [HUMAN SOCRATES], and continue

with the proof. The theorem will succeed with the value [FALLIBLE

SOCRATES], and the PROG will proceed to the next expression, <COAL

[GREEK ?X]>. Since I has been bound to SOCRATES, this will set up the

goal [GREEK SOCRATES] which will succeed immediately by finding the

corresponding assertion in the data base. Since there are no more

expressions in the PROG, it will succeed, returning as its value the

value of the last expression, [GREEK SOCRATES]. The whole course of

the deduction process depends on the failure mechanism for

backtracking and trying things over [this Is actually the procens of

trying different branches down the conceptual goal tree.] ThiA then is

the PLANNER executive which establishes and manipulates subqoals in

looking for a proof.

we would nov like to give a somewhat more formal description
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of the behavior of PLANNER o the above problem. If we intoduce

suitable notation our Froblem solving protoccls can be made such more

succinct and their structure made visible. Also b7 formalizing che

notions, we can make PLANNER construct and analyze protocols. This

provides one kind of tool by which PLANNER can understand its own

behavior and sake generalizations on how to proceed.

In this case the protocol is:

1: enter PROG
2: X is rebound but not initialized
3: <GOAL [FALLIBLE ?X]> will attempt a pattern directed
invocation since nothing in the data base matches [PALLIBLE ?Xj.

4: enter THEOREMI
5: match [FALLIBLE ?Y] with [FALLIBLE ?I] thus linkin-
the situation Is shown in snapshot number I

6: <GOAL [HUMAN ?']> finds [HUMAN TU9ING] in the da÷
base

7: Y gets the value TURING thus giving X the va.
TURING

8: return [HUOAN TURING]
9: THECREMi returns [FALLIBLE TURING]

10: <GOAL [GRELK TURING]> fails since it is not in the data base
and there are no matching consequents

Thus PLANNER must backtrack to step 7 and try again. The situation is

shown iv snapshot number 2. For the convenience uf the reader, we

will repe&t the first six steps from above and then continue the

protocol.

1: enter PROG
2: X is rebouid but not initialized
3: <GOAL [PALLIBLE ?X]>

4: enter THEORE81
5: match (FALLIBLE ?T] with [FALLIBLE ?X] thus linking I to I

68: <GOAL [HUAAW ?Y]> finds [HUMAN SOCRATIS] in the data
base

11: Y gets the value SCCRATIS thus giving I the value
SOCRAT ES

12: return [ FALLIBLE SOCRATES]
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13: ThEOREMI returns [FALLIBLE SOCRATES]
14: <GOAL (GREEK SOCRATES]>

15: return [GREEK SOCRATES] at the top level value

The situation is shown in snapshot number 3.

So far we have seen that although PLANVER is written as an

evaluator, it differs in several critical ways from anything which is

normally considered a programming langua.e. First, it is goal-

directed. Theorems can be thought of as subroutines, but they can be

called by specifying the goal which is to be satisfied. This is like

having the abilitiy to say "Call a subroutine which will achieve the

desired result at this point." Second, the evaluator has the

mechanism of success and failure to handle the exploration of the

conceptual goal tree. In PLANNER there is no explicit goal tree. The

conceptual goal tree is represented by a SNAPSHOT of a CONFIGURATION

of PROCESSES. Thus PLANNER has powerful control structure primitives

to allow the conceptional goal structure to be easily and natnrally

reflected in the execution of PLANNER processes. Cther evaluators,

such as LISP, with a basic recursive e~dluatcr have no way to do this.

One of our current areas of research is to increase the richness of

the machinery provided by PLANNER to guide the movement to the gz-.

Third, PLANNER contains a large set of prinitive commands for matching

patterns and manipulating a data base, and for handliLg that data base

efficiently.

On the other side, we can ask how it differs from other

theorem provers. What is gained by writing theorets in the form of

programs, and giving them power to call other prograss wnich
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manipulate data? The Wey is in the form of the data the theorem-

prover can accept. Eost systems take declarative informatiin, as in

predicate calculus. This is in the form of expressions which

represent "facts" about the world. These are manipulated by the

theorem-prover according to some fixed uniform process set by the

system. PLANNER can make use of imperative information, tclling it

how to go about proving a subgoal, or to make use of an assertion.

This produces what is called HIERARCHICAL control structure. That is,

any theorem cýan indicate what the theorem prover is supposed to do as

it continues the procf. It has the full power to evaluate expressions

which can depend on both the data base and the subgoal tree, and to

use its results to control the further proof by making assertions,

deciding what theorems are to be used, and specifying a sequence of

steps to be followed. Vhat does this mean in practical terms? In

uhat way does it make a "better" theorem prover? Ve will give several

examples of areas where the approach is important.

First, consider the basic problem of deciding what subgoals to

try in attempting to satisfy a goal. Very often, knowledge of the

subject matter will teli us that certain methods are very likely to

succeed, others say be useful if certain other conditions are presaPt,

while others may be possibly valuable, but not likely. Ve would like

to have the ability to use heuristic programs to determine these facts

and direct the theorem prover accordingly. It should be able to

direct the search for goals and solutions in the best way possible,

and be able to bring as much intelligence as possible to bear on the
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iecision. In PLANNEP this is done by adding to our GOAL statement a

recommendation list which can specify that ONLY certain theorems are

to be tried, or that certain ones are to be tried FIRST in a specified

order. Since theorems are programs, subroutines of any type can be

called to help make this decision before establishing a new GOAL.

Each theorem has a name [in our definition on page 1, the theorem was

given the name THEORENI], to facilitate referring to then explicitly.

Another important problem is that of maintaining a data base with

a reasonable amcunt of material. Consider the first example above.

The statement that all humans are fallible, while unambiguous in a

declarative sense is actually ambiguous in its imperative sense [i.e.

the way it is to be used by the theorem prover]. The first way is to

sizaply use it wheneyer we are faced with the need to prove [FALLIBLE

?X]. Another w.-.y might be to watch for a statement of the form

[HUMAN ?Xj te be asserted, and to immediately assert [FALLIBLE ?I] as

well. There is no abstra't logical difference, but the impact on the

data base is tremendous. The more conclusions we draw when

information is asserted, the easier proofs will be, since they will

not have to make the additional steps to deduce tkese consequences

over and over again. However since we don't have infinite speed and

size, it is clearly folly to think of deducing and asserting

everything possible [or even everything interesting] about the data

when it is entered. If we mere vorking with totally abstract

meaningless theorems and axioms [an assumption which would not be

incompatible with mavy theorem-proving schemes], this would be an
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insoluble dilesma. But PLANNER is designed to work in the real world,

where our knowledge is much more structured than a set of axioms and

rules of inference. We may very well, when we assert [LIKES ?X

POETRY] want to deduce and assert [HUBAN ?X], since in deducing things

about an object, it will very often be relevant whether that object is

humar, and we shouldn't need to deduce it each time. On the other

hand, it would be silly to assert [HAS-AS-PART ?X SPLEEN], since there

is a horde of facts equally important and equally limited in use.

Part of the knowledge which PLANNER should have of a subject, then, is

what facts are important, and when to draw consequences of an

assertion. This is done by having theorems of an antecedent type:

<ASSERT <DEFINE THEOREM2
<ANTECEDENT [X Y) [LIKES ?X ?Y]

<ASSERT [HUMAN ?X]>>>>

This says that when we assert that X likes something, we

should also assert [HUMAN ?X]. Of course, such theorems do not have to

be so simple. A fully general PLANNER program can be activated by an

ANTECEDENT theorem, doing an arbitrary [that is, the programmer

whether he be man or machine has free choice] amount of deduction,

assertion, etc. Knowledge of what we are doing in a particular

problem may indicate that it is sometimes a good idea to do this kind

of deduction, and other times not. As with the CONSEQUENT theorems,

PLANNER has the full capacity when something is asserted, to evaluate

the current state of the data and proof, and specifically decide which

ANTECEDENT tbeorem: shculd be called.

PLANNEL therefore allows deductions to use all sorts of
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knowledge about the subject matter which go far beyond the set of

axioms and basic deductive rules. PLANNER itself is subject-

independent, but its power is such that the deduction pxocess never

needs to operate on such a level of ignorance. The programmer can put

in as mu.ch heuristic knowledge as he wants to about the subject, just

as a good teacher would help a class to understand a mathematical

theory, rather than just telling chem the axioms and then giving

theorems to prove.

Another advantage in representing knowledge in an imperative

form is the use of a theorem prover in dealing with processes

involving a sequeuce of events. Consider the case of a robot

manipulating blocks on a table. It might have data of the form,

"blockl is on block2," "blcck2 is behind block3", and "if x is on y

and you put it on z, then x is on z, and is no longer on y unless y is

the same as z". Many examples in papers on theorem provers are of

this form [for example the classic "monkey and bananas" problem]. The

problem is that a declarative theorem prover cannot accept a statement

like [ON BI B2) at face value. It clearly is not an axicm of the

system, since its validity will clange as the process goes on. It

usually is put in a form [OR BI B2 SO] where SO is a symbol for an

initial state of the world. The third statement night be expressed

as:

[FOR-ALL TOPBLOCK NE-SOPPORT CLDSUPPORT S
[AND

(ON TOPBLOCK NE.SUPPOIT [PUT TORBLCCK NEzsUPPONT s]]
[0o

[EQUAL NEVSUPPCRT OLDSUPPOIT]
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[NOT [CN
TOPBLCCK
OLDSUPEORT
[PUT TCPBLOCK NEWSUPPORI SI]]]]

In this representaticn, [PUT X Y S] is the state which results

from putting X on Y when the previous state was S, We run into a

problem when we try to ask [CN Z W [PUT X Y S]) i.e. is block Z on

block W after we put X on Y? A human knows that if we haven't touched

Z or W we could just ask [ON Z W S] but in general it may take a

complex deduction to decide whether: we have actually moved them, and

even if we haven't, it will take a whole chain of deductions [tracing

back through the time sequence] to prove they haven't been moved. In

PLANNER, where we specify a process directly, this whole type of

problem can be handled in an intuitively more satisfactory way by

using the primitive function ERASE.

Evaluating <ERASE [CN ?X ?Y)> removes the assertion [ON ?X ?Y]

from the data base. If we think of theorem provers as working with a

set of axioms, it seems strange to have function whose purpose is to

erase axioms. If instead we think of the data base as the "state of

the world" and the operation of the prover as manipulating that state,

it allows us tc make great simplificaticns. Now we can simply assert

[ON B1 B2] without any explicit mention of states. We can express the

necessary theorem as:

<ASSERT <DEFINE THEOREM3
<CCNSEQUENT rTCPBLOCK NEUSUPPCR'I OLDSUPPOB¶]

(PUT ?TOPELOCN ?NEWSUPPORT]
<GOAL [ON ?TOPBLOCK ?CLDSUPPCRT]>
<ERASE [ON ?TOPBLOCK ?CLDSUPPORT]>
<ASSERI [ON ?TCPBLOCK ?NEWSUFPORT]>>>>
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This says that whenever we want to satisfy a goal of the form

[PUT ?TOPBLOCK ?NEWSUPPORT], we should first find out what thing

CLDSUPPORT the thing TCPBLOCK is sitting on, erase the fact that it is

sitting on OLDSUPPORT, and assert that it is sitting on NEWSUPPORT.

We could also do a number of other things, such as proving that it is

indeed possible to put TOPELCCK on NEWSUPPORT, or adding a list of

specific instructions to a movement plan for an arm to actually

execute the goal. In a more complex case, other interactions might be

involved. For ex ple, if we are keeping assertions of the form

[ABOVE ?X ?YJ we would need to delete those assertions which became

false when we erased [CN ?X ?Zj and add those which became true when

we added [ON ?X ?Y]. ANTECEDENT theorems would be called by the

assertion [ON ?X ?Y] to take care of that part, and a similar group

called ERASING theorems can be called in an exactly analogous way when

an assertion is erased, to derive consequences of the erasure. Again

we emphasize that which of such theorems would be called is dependent

on the way the data base is structured, and is determined by knowledge

of the subject matter. In this example, we would have to decide

whether it was worth adding all of the ABOVE relations to the data

base, with the resultant need to check them whenever something is

moved, or instead to cmit them and take time to deduce them frcm the

ON relation each time they are needed.

Thus in PLANNER, the changing state of the world can be

mirrored in the changing state of the data base, avoiding any need to

make explicit mention of states, with the requisite o-4rhesd of
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deductions. This is possible since the information is given in an

imperative form, specifying theorems as a series of specific steps to

be executed. PLANNER also allows the construction of local data bases

called states uhich are variants of the global data base. Evaluation

of PLANNER expressions is carried cut relative to a local state. Thus

simultaneous consideration can be given to two inccpatible states of

the world by explicitly calling the evaluator to evaluate statements

in the two states.

If we look back to the distinction between assertions and

theorems made at the beginning of this chapter, it would seem that we

have established that the base of assertions is the "current state of

the world", while the base of theorems is our permanent knowledge of

how to deduce things from that state. This is not exactly true, and

one of the most exciting possibilities in PLANNER is the capability

for the program itself to create and modify the PLANNEr functions

which make up the theorem base. Rather than simply making assertions,

a particular PLANNER function might he written to put together a new

theorem or make changes to an existing theorem, in a way dependent on

the data and current knowledge. It seems likely that meaningful

"tVeaching" invclvez this type of behavior rather than simply modifying

parameters or adding more individual facts [assertions) to a

declarative data bage.

For example suppose we are given the following protocols for d

function f. An expression such as "new [5 * 4]" means that we are

introducing a new identifier which is 5 * 4 = 20.
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<f C> : 0=0 IS TRUE SO 1
Thus <f 0> = 1

The above expression reads, "to compute <f 0> you test 0-0
which is true sc the amswer is 1".

<f 1> : 1=0 IS FALSE SO
1 * new [1-1] 0=0 IS TSUE SO I

Thus <f 1> = 1

The above expression reads, "to compute <f 1> you test 1=0
which is false so the answer is 1 times the quantity which is computed
by first computing the intermediate result 1-1 then testing if 0=0
which is true so the guantity is 1."

<f 2> : 2=0 IS FALSE SO
2 * new [2-1] 1=0 IS FALSE SO

1 * new [1-1] 0=0 IS TRUE So 1
Thus <i 2> = 2 * 1 * 1 = 2

<f 3> : 3=0 IS FALSE 5O
3 * new [3-1] 2=0 IS FALSE SO

2 * new [2-1) 1=0 IS FALSE SC
1 * new [1-1] 0=0 IS TRUE So 1

Thus <f 3> = 3 * 2 * 1 * 1 = 6

By the process of "variab Uization", we conclude that the

above protocols are compatible with the following program which is in

the form of a tree [which we shall call the protocol tree].

<f xO> = if xC=0 then 1
else zO * new [[xO-lzxl] if xl=0 then 1

else xl * new [[x1-1]=x2] if x2=0 then I
else x2 * new [[x2-1]=x3]

if x3=0 then 1
else...

Nov by identifying indistinguishable nodes on the protocol tree, we

obtain:

<f x> = if x=0 then I
else x *<f Ix-l]>



3. page 54

The reader will note that f is the factorial function, PLANNER

procedures and theorems can be taught in precisely the same fashion

[which we call procedural abstraction]. For example, the computer can

be taught to build a wall or recognize a tower from examples. The

reader is cautioned that although we shall speak of the couputer being

"taught", we do not assume that anything like what has been

classically described as "learning" is taking place. We assume that

the teacher has a good working model of the student that is being

taught and that he honest3y attempts to convey a certain body of

knowledge to the student. of course the student will be told anything

which might help him to understand the material faster.

Procedural abstraction is one wa; ir, which a special purpose

routine can be constructed from general goal oriented language. Ve

would like to express the intended properties of the special purpose

routine so that we can establish that the routine really does what it

is supposed to do. For example we night be interested in establishing

that the function divide defined below satisfies its intentions.

<define divide (function idiiide
;"let idivide be name of this activation%[n d]
;*the f.znction divide is a function of two argtaents m and d"
repea,~ [(r .&] (q 0]]

;Winitialize r to n and q to zero'
;"we are in a repeat loop which will repeatedly

execute the following expressions"
<cond

[<is? <less .d> .r>
;*if or is less than .d then"<. idivide oq .0>
;"exit the activation named

idivide with .q and .r"]>
<assign :r <- .r .4>>
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;ffassign r the value of r minus d"
<assign :q <+ .q 1>>
;"assign g the value of q plus 1"
;"now go back and do the body of the repeat

loop all over again">>>

We shall express the intentions of the function DIVIDE in a

goal oriented formalism called INTENDER. INTENDER enables us to enDed

the intentions for a program in the text of the program. The easiest

way to understand INTEEDER is to watch bow it works. In order to

show how it works we must first define some intentions. INTENDER

intrcduces two new primitives CVERALL and INTENT to express intentions

in code. The priative OVERALL expresses the overall intention of a

function or loop whereas IHTEhT asserts that the intended situation

really holds within the body of the function or loop. The meaning of

the intentions embedded in the function DIVIDE are explained below.

INTENDER is a giant sledge hammer to use to sguash such a tiny

problem. The reader can see this sledge hammer used on harder

problems in chapter 7. INTENDER needs to be able to talk about

function calls :n a Fattern directed way. we will use !' to suppress

procedural invocations. Thus whereas <* 3 5> evaluates to the NUMBER

8, the expression !*<. 3 5> will evaluate to the CALL <+ 3 5>.

Assertions which contain calls constitute a still higher level

assertion than the two which we have introduced thus far. The

semantics of 1' assertions are determined in part by the body of the

procedure wh,,, i led. For example the assertion that !9<= I$<+ 1

2> I$<+ 2 1> can i• established from the DEFINITICN of *. Similarly

in a very incestuous way, we can make assertions about PLANNER
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procedures whose intentions are tI~emselves written in PLINNER and at

any given time constitute the model that PLANNER has of itself! By

using intentions expressed in PLANNER, there is nothing that in

principle PLANNER cannot be made to understand about itself.

<define divide <functio4 idivide [n d]
<overall []J

<intention E]
<and

<goal 18<is !'<greater 0) .n>>
<goal !8<is !'<greater 0> d»>>

<and
<assert !'<is !'<greater 0> n>>
<assert !1<is !'(greater 0> .d>>»

<repeat [Er .n] [g 0])
! ;<intention

<goal I*<= *n !*<4 .r I'<* .4 .q>>>>
(assert I'<= .n 1'0 *r I'<* Ad q>»>>>

<cond
[<is? <less .d> .r>

<.idivide .g r>]>
(assign :r <- .r .d>>
(assign :q <f .q 1)>>

<function [Q R)
(intention )

<and
(assert I'<= .n I'<+ HR !C* *d Q>>>>
<assert 14<1.s? !*<less A>) .>»>

<and
<goal I'<= n 10<+. I*<* .d .Q>>>
<goal !'<is? !'<less .d> .XE>>>>>>

The overall intention for the function DIVIDE is that it return two

values Q and R which we assert will have the property that

'<=.f I'<+ .R I'<* Ad Q>>>

The inside intent of the function DIVIDE is the goal that DIVIDE will

return two 7alues Q and R which will have the property that

30 <a-fl !'. .R I'<* .d Q0>>
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The body of DIVIDE is a REPEAT loop with two locals r and q which are

respectively initialized to 0 and n. The overall intention of the

REPEAT loop is the goal

I'<= an I'<+ r 10<* ,d .q>>>

The REPEAT loop has an intent that asserts that

!'<=.n !'<+ .r ?'<* .d .q>>>

at the top of the loop.

The intentions for DIVIDE are proved by running them in

INTENDER. The intections are verified abstractly. Thus they must be

true independent of what the actual arguments to the function are. We

shall use he notation xn for the nth value of the identifier z with

x_ being an abbreviation for the initial value of x. The actions of

.NTENDER on the intentions of DIVIDE are as follows:

Froa the overall all intentiion of the function we have:
<assert !*<is 31<greater 0> n_>>
<assert I'<is !'<greater 0> d->>

The folloving assertions come from the decIarations of the
" epet loop

<assert I<- r_ a->>
<assert I<= q- 0>>

The intention of the repeat statement on first entry is

<goal ! <=
n
3o<+

I#<* d_ q->>>>

We inductively assume for the repeat loop
<assert 10<=

n
t,;<+



3. page 58

r 1
I'<* d_ q_1>>>>

enter intenticna of CCND
There are two c;*ses fnr the conditional:

Case 1:
<assert !*<is?

!'<less d_>
rl>>

From the overall intention we have:
Q becomes q_1
R becocomes t 1
<goal !'<=

n

r_1
1,<* d- qi_>>>>

<goal !1<is? !0<less d_> r_1>>

Case2:
<assert !'<is?

I1<greater= d_>
rl>>

From <assign :r <- .r .d>> we get:
<assert I'<=

r 2
I';<- r_1 d_>>>

From <assiqn :g <+ .q >> we get:<assert !'<=
q_2
!'0+ q_1 1>>>

The recursive goal is satisfied by simplification:
<goal !01=

1'<,

r2!o<, d- q_2>>>>
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4. THE PATTERN BATCHIRG LANGUAGE MATCtLESS

MAICHLESS is a pattern directed language that is used in the

implementation of PLANNER. MATCHLESS is used both in the internal

workings of PLANNER and as a tool in the deductive system itself.

MATCHLESS i5 similar in certain respects to other structural pattern

matching languages such as CCNVERT and SNOBOL. It has been designed

with the following ccnsideraticns in mind:

0. The language must obey the Fundamental Principle of Pattern

Directed Ccmputaticn: the procedure body should be a pattern that

describes the purpose cf the procedure. The principle has been

developed even further in PLANNER where procedures are invoked on the

basis of their intent.

1. The language should be very powerful yet simple constructs

should be efficiently compiled. By incorporating more knowledge into

a program, it must be possible to increase its efficiency up to the

limits imposed by the machine on which it runs.

2. Functions must be able to be separately compiled.

3. It should not require parsing for efficient

interpretation. Procedures should be naturally and efficiently

constructed and edited by riher procedures.

L,. The language must interface with PLANNER in a natural way

sinc• it is used as a bazic part of the deductive system. Effective
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problem solving requires a sophisticated programmable matcher.

5. The language should treat strings, listb, vectors, tuples,

and nodes symmetrically so that for the most part the same prograx

will run whether the structures are made up of vectors, tuples, nodes,

or lists. Declaration& detersive whic-b form is actually used.

6. The language should have no automatic ccercion. Any

procedures which wish to coerce their arguments should be able to do

so easily.

7. The language should have only one mode of evaluation for

value. Locatives should alsays be generated explicitly in the same

way.

8. klu the loops of the language should be guararteed to be

properly nested.
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4.1 The Syntay. of Identifiers and Expressions

HATCHLESS attempts to obey the Fundamental Principle of

Pattern Dizected Computation: the procedure body should be a pattern

of what the procedure is supposed to accomplish. For example it

allows the list (a b c) to be produced by simply evaluating (a b c).

In attempting to realize the principle we have been led to develop a

certain amount of syntax which (unfortunately!) must be described.

4.1.1 Prefix Operators for Identifiers

As is usual in pattern matching languages we shall allow

constants like 3, a, (a b), and (e (f g)) to match only themselves.

An identifier is indicated by a prefix operator which tells how the

identifier is to be used. For example .x is the element value of the

identifier x.. It x has the value (a 3) then .x will only 7ch (a 3).

We need to be able to change the value of an identifier in a pattern

match. Suppose that x has the value 3. If we match _x [the

tentative value of x] against (a b), then x is given .he value (a b).

The identifier x will keep tVe value (a b) if the remainder of the-

pattern matches. Otherwise the value of x will revert to 3. Againr

suppose that x has tLn value 3. If we match :x [the altered ralue of

x] against la b), then x is given the value (a b). Bomever the value

of x will remain (a b) whether or not the remainder of the pattern
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matches.

The above prefix operators are actually defined in terms of

procedure calls. We are not enamored with the syntax of the prefix

operators but they are easier to type than the procedures listed

below.

A small meta syntax is needed in order to give explauaticns of

the primitives of the language. We shall use l to delimit

metasyntatic variables which are elements and - to delimit those which

are sequences.

The following table explains the prefix operators which yield

element values:

.JxJ = <VALUE jxj> the element value of the identifier lxi

,lxJ = <GLOBAL lxi> the element global value of jxI

The following table explains the prefix operators which match

elements:

?Jxj = <GIVEN lxi> will give lx| the value of the matching

element if Jxj does not already have a value; otherwise ?ixl will only

match the value of lxi.

:jxj = <ALTER!-PEBSI-IENT jlx> will alter the value of x to be

the matching element even if jxi already has a value.

_jxl = <ALTERI-TENTAIVE Ix|> will tentatively alter the value

of jxj to be tle satching element but if a failure backs up then the

old valas of jxj will be restored.
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If x has the value (a 1) then (b .x 4) will evaluate tto) (b (a

1) 4). The character I is the esca character. We will use f.x to

denote the sc.gment value of the identifier x. For example (b 14x 4)

will evaluate to (b a 1 4). In each case preceding the prefix'

operator for an identifier will result in the segment prefix operator

for that identifier. If we match the pattern (c !:x d) against the

value (c 3 a d) then x will be given (3 a) as its value.

The following table explains the prefix operators which yield

segment values:

1.1%] = (VALUE jx|) the segment value of the identifier Jll

, jxJ = (GLOBAL lxj) the segment glotal value of |xJ

The following table explains the prefix operators which satch

segments:

1?Jxj = (GIVEN x) will give x the value of the matching

segment if x does not already have a value; otherwise lx will only

match the value of x.

I:x = [ALTERI-PERSISTENT x) will alter the value of x to be

the matching segment even if x already has a value.

I_|xl = (ALTERB-TEHIATIVE lx}) will tentatively alter the

value of Jxj to be the matching segment buit if a failure backs up then

the old vzlue of lxi will be restored.

Gerry Sussqan and I have developed the following scheme for

looking up the values of identifiers in interpreted code. On the
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identifier stack when an identifier is bound the following information

is stored:

1. the name of the identifier

2. the current value of the identifier

3. the place on the stack where the identifier was previously
bound

Associated with each binding environment and identifier we have the

place on the identifier •*•ack where the identifier was last bound.

4. 1.2 Syntax of Expressions

HATCHLESS uses Polish prefix nctation for function calls with

the actual call delimited by < and >. Of course we use the characters

( and ) to deliuit lists. Ve use the characters [ and ] to delimit

vectors. For example <+ 2 3> evaluates to 5. If y has the v&lue 4,

then <* .y 1> will only match 5. The value of (.y) is (4) an! the

value of (<4 .° 1> (4 a) oy) is (5 (4 a) 4). If the functiom call is

to denote a segment then it is delimited by ( and 1. The function

REST will return the rest of the list that it is given as an argument.

For example <rest (a b c)> evaluates to (b c). But (1 (rest (a b c))

e f) evaluates to (I b c e f). Furthermore, (a b (rest (I (e f) q))

k) will only match (a b (e f) g k). The components of lists, vectors,

and nodes can be selected bj subscripting. For example <2 (a b c)>

evaluates to b and <3 [(a) e 5]> evaluates to 5, The expression <get

Iij ixl> mill return the location of the filth component of the
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structure |xj. Other values are computed from patterns. The value of

[.y (a b) .y] is L4 (a b) 4]. Tuples are stored in the stack whereas

the vectors are garbage collected. Lexically the scope of a tuple is

the smallest enclosing pair of < and > or [ and J. Otherwise vectors

and tuples are indistinguishable. An argument of a function may be

computed in parallel with the other arguments by delimiting the

argument with j< and > instead of < and >. For example 7+3 could be

computed in parallel with 2+4 in the expression <* J<+ 7 3> <+ 2 4>>.

An argument of a function MG31 be able to be computed iL parallel if

it is delimitted by !j< and >% In other words, if one branch becomes

blocked the otter must be able to continue execution.
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4.2 Types

The type hierarchy is:

<?> for the universal type.

<WORD> for primitve types which are not pointers.

FALSE for the logical type false. All other, data are
considered to be true in conditional expressions. The null
function call <> will evaluate to #FALSE.

CHARACTER for a character such as 1"a or !"U. Again we are
using I as an escape character. The I converts into the
quote for a single character.

<NUMBEB> for numbers.

<FIXED> for fixed point number.
FIX for a small fixed point number.

BIG for a big fixed point number.

FLCAT for floating point number.

<POINTER> for pointers.

ATOM for atoms. The following are all atoms: a, foo, and
hello

<STRUCTURE> fox structured data. The operations of takiqg the
REST of a structure and selecting the nth element are dertned
on all structures including tuples, vectors, lists, and nodes.
For some structures the operations are more efficient because
of special hardware.

TUELE for a tuple of elements. Tuples are allocated ffom
the stack cf a process and are deleted on procedure exit.
Tuples occupy contiguous blocks of memcry. Once a tuple
has been created its structure cannot be changed and its
length can not be increased.

VECTOR for a vector. Vectors are allocated contiquons
blocks of storage which are garbage collected when no
longer pcinted at. Although the structure of a vector

"f i "2 ! - ,-"--"- _ " T'-'•
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cannot he changed, its length can be increased at the cost
of a garbage collection. Otherwise vectors are identical
to tuples.

STRING for a string. This is just a vector of characters.
For example "ba", 030, and "a b" are strings

LIST for a list. Lists have the advantage over vectors
that their structure can be changed after they have been
created. They have the disadvantage that it takes a time
proportional to n to get the nth element.

NODE for a node which has properties. Nodes are the most
general form of structured data in the language. The
others are included for reasons of efficiency for
specialized structures. The components of a node are
obtained oy subscripting which is currently implemented by
hash coding. A vector is approximately one third the size
of its correspondin. representation as a node.

The following types will not be explained here. They are

included only fcr comlleteness. The complicated types and their

abbreviations are:

JUNCTICN for junction

ACTIVATION for activation.

STATE for state.

ARC for a node arc.

BIND for bindings.

<LOCATIVE> for a locative or generalized location.

VECTOR-LOCATIVE for a locative to an element of a vectot.

TOPLE-LOCATIVE for a locative to an element of a tupleo

SIIDIIG-LOCATIYE for a loactive to the value of an identifier
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LIST-LOCATIVE for a locative to an element of a list.

LIST-REST-LOC17IVE for a locative to the rest of a list.

NODE-LCCATIVE for a locative to an element of a mode.

LABEL for a label functioc.

PROCESS for process.

STACK for a stack

BING for a ring

ELEMENT-CALL for a element call.

SEGMENT-CALL for a segment call.

SEGMENT-VALUE-CALL for a segment value call.

/
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4.3 Simple Examples of Matching

The idea of structural matching is fundamental to the

MATCILESS processor. -By means of the primitive function <IS?

Ipattern| lexpressionl> we can determine if ]patterni matches

jexpressioni. The function IS has the value true if the match

succeeds and <> (which is FALSE) otherwise. Pattern matching takes

place through the use of side effects to change the values of

identifiers to be those of the objects which they match. The

assignment statement in MATCHLESS is a variant of the primitive IS.

The expression <_ |patterni Jexpressionl> is well defined only if

Ipatterni matches jexpression|. The 7alue of the function _ is the

value of lexpressioni. Below we give some examples of matching where

the values of identifiers are listed after assignment statements have

been executed. Ve use the character - to delimit segments. For

example the list (a b c) has subsegments:

-- , -a-, -a b-, -a b c-, -b c-, -b-, and -c-.

The characters < and > are used to delimit function calls.

<prog [a [I=atcm h] c]
;"This is a comment.

He are inside a program in which we have
declared a, declared h to be of type atom,
and declared c"

;"in the test below
the function IS will return true
since the pattern La k _h !_c) matches
the value ((l) k b o a)"
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<is? (_a k _h !_c) {{1) k b o a)>>
a gets the value (1)
h gets tie value b
c gets the value (o a)

The value of the program is true which is the value of the IS
statement.

<prog [c r!.=atcm hi a]
;"h is of type atom"
<is? i;_c _h k _a) (a j b k q)>>
c gets the value (a j)
h gets the value b
a gets the value q

<prog [first last diddle1
<is? (-first !.m iddle -last) (a b c d)>>
first gets the value a
middle- gets the value (b c)
last ge;.s the ralue d

<prog [a b]
<is? (_a b) (d)>> fails because there is only one

element in (d).

<prog [[I=atcu a]
;"a is of •Yre atom"
<is? _a (o t)>> fai!s because (o tV is rict an atom.

An ex,,ression that consists of the prefix operator "." followed by a

identifier will only match an object equal to the value of the

identifier.

<:rog [a]
<is? (Ia !.a) (a b t a b c;>>
a gets the value (a b c)

<proq [a h)
<Os? IYa x !.a 1_t! (a b x d x a b z d q)>>
a gets tLe value it b)
a fail-re occurs hecause (1.a 4_b) will not ,natch (d x

a b x d q)
a gets the value (a b x d)
b gets tke value (q)

AD expression that consists oi the prte.ix operator ? [the value given]

followed by an iden.'ifier matches the value of the identifier if it

-- - - ------- -- --
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has one, otherwise the identifier is assigned - valuc,

<prog [a]
<is? ?a t>>
a gets the value t

<prog [I!=fix [a 5]
<is? ?a 4>
a is declared tL be of type fix and initialized to 5

on entrance to the prog. Consequently the assignment statement fails.

<prog (a( as? (!_a !?a) (a h c c t a)>> fails because once a is
assigned a value, a can only match a segment that is equal to the
value of a.

The function MATCH? is somewhat Lore powerful than the
function IS? because it can match patterns against pattezns.

<prog [x Y]
<match ?x ?y>
;"link x Fnd y by matching them t- each other"
<match ?x 3>
;"let x have the value 3 and th,,is set I to 3"
.Y
;"the value of y is the value of the prog"> evaluates

to 3

Restrictions cn the value -if an identifier can be acquired as

the result of a match.

<prog [1x]
<match ?x <less 5>>
;"x will only match numbers less than 5"
<match 6 ?x>> fails since 6 is not less than 5

Side effects can pi. ,,-,gate through structures:

<prog [x y z]
<match ?x LIZ !?z]>
<match (a b c) ?x>
;"y gets the value a and z gets the value (b c)">
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4.4 Definitions of Procedures

4.4.1 Functional Procedures

<?UNCTICR

+checker+ *activation-cnam+ f-function-declarations-]

-expressions-> where *activation-name4 and t-checker+ are optional,

w.1 evaluate to a function which will, when it is called,, bind the

formal paramettrs in the jfunction-deciaraticnsl to the actual

parameters, evaluate the -expressions- returning the value of the last

one as the value ot the function. The #checker+ must be of the form

<Iprocedurel -arguments-> for one value or (11jrocedurej -arguments-)

for multiple values. Ihe +checker+ is treated as a pattern that the

values returned must match. The match is dione so that any side

effects are persistent. The 1-f unction-declarations-) is of one of

the following forms:

larguments-specificationi which my be one of the ,f~llovpig:
C-formal-tarameter-specificatins-] where each orm 1-
parameter-specification is of one of the following forms:

levaluaticn- .ecificationj where each jevall.ak.ton-
specificationi aust be one of the following:

Olidentifierl mean that the jidenti~ierl _-, to be
bound to the write rotected UNEVALUATED corresponding
actual parameter.

jidentifierl means that trhe lidentifierl is to be
bound to the VALUE of the corresponding actual
earameter
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[lattribute-specificationi jevaluation-specificationl 3
where the ]attribute-specificati~aj must be one of the
following:

lattributel

[-attributes-)

where each attribute must be on eof the follocin g:
.,"SPECIAL" means that- the ient tfier *&I be useq
free in other modules. The eyabol. -vOSPECIAL" is a
caique string.

<Iprocedurel -arguaents-> neaps that the
identifier mast always be either UDASSigned or
bound to an obJect which matches the pattern
<Iprocedurel -arguments->. The constraint is
enforced by PLANNES. Any side effects of matching
tLe pattern against the new value of an i~deatifier
axe persistect.

f-formal-paraseter-specifications- -'"OPTIOSLALO -optionlal-
formal-parameter-specifications-)

where an j optional-formal-- arameter-specificatiox'i I
either a Iforma1-raraseter-specificationI cr [jat,..rib~ute-
specificationj f jevaluation-specificationi I initial-
valuell". The -u"CPTIONAL" construct is due to Chris
Reeve. It alows for optional arguments and specifies how
the identifier is to be initialize,' if the ac'ual
paramater is not present.

[-formal- parameter-s ectfications- -"REST" jidentifier-
specification)) which will bind the identifier in lidentifi~er-
specificaticnj to the tuple of the rest of tiae arguments
evaluate.4..

(-forsial-parameter-specification's- -"REST" 'jider'tifier-
specificat~ionj) which will bind the identifier in lidenti1fier-
sppcificationi to the write protected vector of tne rest. of
the unevaluated arguments. The 9 variant is due to Garv
Peskrin.

(-OBIND" jidentif~ier-specificationI !arguments-specifcation I
declaratiL As-] is usaA' to first bind the identifier in
lidentifier-specifkictiorl to tbe bindinigs in effect vhen the
function ir invoked. In almost all cases ws. of -,"BIND" can
be avoidea by reading the function into a local syntactic
block so that no ,.deatifier cocfl*i-cts can cccrr.
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[-."PtTTERN" Icalling-patterni larguments-specifcation i)
defines a calling pattern for pattern directed invocaticus.
'.be calling pattern is of the form [-declarations- ipatterai)
which declares identifiers for 1patterni.

For example:

«<fuiiction [-'"rest" z] <2 x>> 11 21 33> evaluates to 21
since <2 C(11 21 33)]> is 21

(<function [-"nrest" *xJ .x>
a
<+ 3 4>
c> evaluates to [a <+ 3 4) cJ

«<function i> 3> evaluates to 3

«<fanction (xj .x> a) evaluates to a

<<function k=fix ([!-fiy x]] .x> <+ 2 2»> evaluates to 4 where
!=fix is <OF-TYPE fi >

«<function !=fix [[!=fix x]] <+ .x 1»> 2> evalnates to 3

<Ifunction I=fix [[(lzfix x) [I~fix y)] <+ -x .7)> 2 3)
evaluates to 5

«<function (z -"'optional" [1 3]) <+ zx y>> 4> evaluates to 7

9(<function [I R'optional" [y 31) <+ z .y>> 4 5> evaluates to,

<<function ((!=fix Ix]] .x> 3> -waluates to 3

<<function [Ox] x2> a> cevaluatt- to a

«tfur-ction (6z] Y> <+ 2 2;o> evaluates to <+ 2 2>

We would like to give a simple example of pattern directed

inivc'.atian. Suppose that we have a sink s which we nee~d unstopped.

The classical solution is to know the name of a plumber which could be

applied to the sink. Thus for example w~e night evaluate <piumber-
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Peilman s>. The way we shall actually proceed is to advertise that we

need a sink unstopped. Of ccuse we won't let just anyone work on our

sink; he must come well reccmended. For example he should be cheap

and speedy. We will evaluate

<c alli l [<[unstop s] $5>
<speedy>]>

to offer to let some oie unstop our sink for $5 provindiag he is

speedy. Now suppose that there are a few plumbers around:

<define plumber-Greentlatt
<function

[-,"pattern"
[[sink] [unstop ?sink)]
fee]

<cond
[<is <less $4> .fee>

<fail>]>
;"if the fee is less than $4

thea fail"
<Roto-Rooter .sink>
;"otherwise apply Roto-Rooter

to the sink">>

<define plumser-Perlman
<function

[,'"pattern"
[[sink] [unstop ?sink]]
fee]

<pour Drano .sink>
;"pour Drano in the sink"
<send-bill <times 2 fee>>
;"send a bill for twice the originally

agreed fee">>

To try to get our sick unstopped ve might evaluate:

<prog [I
<call

[<[unstop s) S5>
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<speedy> '>
;"advertise for a speedy plumber to

unstop sink s for $5"
<cond

[<stopped-up? s>
<fail>)]>

;"if the sink is still stopped up
then try again">

Suppose that both plumter-Greenblatt and plumber-Perlaan are

classifi-" as speedy. Thus PLANNER will chose one or the other to

invoke sjuze both have patterns which match the calling pai4*Rrn

[unstop s]. If either one fails then the other will be tried. If one

returns but the sink is still unstopped when he gets back then the

mess the first created will be undone and the other tried.

We can define the function reverse which returns a newly

constructed reverse of its argument as follows:

<define reverse <function [x]
<rule [] .x

r <empty>
.x]

[<structure>
<4storage .x> (reverse <rest .x>j <1 .x>>J

,"else"
<error>>>>

Thus <reverse (a [b c] 4]> is [4 [b c. a].

Functions with an ariitrary number of arguments are

accommodated by passing a tuple which contains the evaluated

arguments. Suppose that we already have a function PLUS which will

add two numbers together.
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<define + <function pl
;"let the name of the current activation be pl"
[-"rest" x]
;"we will receive a variable number of

arguments in the tuple x"
<for

[[result 0) n]
;"initialize the identifier result to O"

[[-"'test"
<is? [ ] .x>
<.pl .result>
;"exit .pl with .result"

;"each time before executing
the loop test to see
if x is a null tuple and if so then
return the result"]

[-"step" <chop x>]
;"after each pass through the loop chop x by

assigning x to the rest of x")
< :result <plus <1 .x> .result>>
;"the body of the loop is to add the first element of

x into the result">>>

<0 3 [rest (4 £ 6)) 7> evaluates to 21

<( 3 2 4> evaluates to 9

"ACTCE-FUNCTICE

[Jobjecti Itaill Jiocativel Ichoicel -functiom-

declarations-] -body-> is exactly like the function FUNCTION except

for the folowing:

It is treated as an actor in pattern matching.

The first argument lobjectl is the matching object.

The second argument Itaill is a tail of the matchinq object or (>
for an elevent call.
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The third argument Ilocativel is a locative to Jobjecti or <> if
none such exists.

1b, "ourth argument |choicel is not false only if the actor-
f J.ion gets its choice how much to match.

The value of the actor-function is the rest of the object yet

to be matched. Actor functions are useful as in internal interface

between actors and functions.

4.4.2 Macro Procedures

Macros are expanded by the interpreter and by the compiler.

The results are respectively interpreted and compiled. Macro

procedures look like

<IIACBC

Ifcrral-parameters| -expressions-> The expansion of

the macro is tle value of the last expression. The character 1' is

used to suppress invocations. For example whereas <+ 2 2> evaluates

to the NMJMBER 4, !'<+ 2 2> evaluates to the function call <÷ 2 2>.

<define choploc <macro ['x]
!'< utloc

.oX
1'<rest !'<in .x>>>>>

The macro choploc will take a location as its argument and cause the

contents of that location to be changed to contain the rest of the

previous contents.

<choploc <at y)> expands to <putloc <at y> <rest <in <at y>>>>
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We could have defined the function + as a macro as follows:

<define + <macro (-"rest" ,Ix
;"let x be the vector of unevaluated arguments"
- :ule .x

[<empty>
;"if x-is <4> then the answer is 0"
0)

#declare
[ffirst rest]

;"declare identifiers first and rest"
[:first !:rest]
;"otherwise let first be the first argument and

rest be the rest of the arguments"
1'<plus .first I'<+ !.rest>>
;"the answer is written out using

binary plus instead of +")>>>

Thus

<+ 3 2 4> expands to <plus 3 <plus 2 <plus 4 0>>>

4.4. J Actor Procedures

Actors are used in patterns to match values. The primary

difference between functions and actors is that functions produce

values while actors natch them. Actors and functions take their

arguments in an exactly analogous fashion. Examples of actors are

found in section 4.5 below.

<ACTOR

+checker+ +activation-name+ Ifunction-declarations| -

patterns->, where +activation-name+ and +checker+ are optional,

evaluates to an actor which when it is invoked, matches an object

wuich matches all of the -patterns- after the identifiers in the

p[h .. - - .......--- -- --- . .. . .. . ... ..--- -- - - --
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Ifunction-declarationsi are bound. The Ifunction-declarationsi is

interpreted EXACTLY as in FUNCTION.

<<actor [-"rest" x] <2 .x>> 1 a 3> matches only a

<<actor [-"rest" 'x) <2 x>> a <+ 3 4> c> satches only <+ 3 4>

<<actor [x] .x) 3> matches only 3

<<actor [x] .x> a> matches only a
<<actor !-fi.x [[!=fix x]) .x> <÷ 2 2>> matches cnly 4 where

!=fix is <OF-TIPE fjx>.

<<actor t=fix [[!=fix x]) < .x 1>> 2> matches cnly 3

<<actor !=fix [[(=fix x] [!=fix y]] <+ .x .y>> 2 3> matches
only 5

<<actor [[ I=fix x]) .x> 3> matches only 3

<<actor f'x x> a> matches only a

<<actor ['x] .x> <+ 2 2>> matches only <÷ 2 2>

4.o .4 Type Procedures

Type procedures are used to define new types. New types can

be defined by the union, direct product, and direct sun of already

defined types. Types can alEo be defined as procedures by patterns.

<define empty <either 1) [ )>>

Define empty to be either an empty list () or an empty vector

[)].

______
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<define monadic <either <number> !=atou <empty>>>

Define the type monadic to be a number or atomic. or an empty

structuce.

<define property-list <actor <list> []
<star (!=atom <?>)>>>

A property list is a list of two elemaet lists whose first eleventts

are atomic. The actor STAR is the K-:.ene star of regular expressfons.

For example the following are property lists: (, ((a (3))), and ((pl

4) (hello (r 3))).

4.4.4.1 Union of Types

<EITHEE

-alternative-types-> is a type which must be one of

the alternative types. For example we can define the type <number> to

be the either <fixed) rr the type of float. A disjunction of types

expresses a constraint on what can be considered to be of the new

class.

<define number <either <fixed> I=float>>

<prog [[<number> [I 3"y]
;"x is declar~d to be of type <number) and

initialized to 3"
<cond

[<is? lfix .X>
yes]>>

evaluates to yes since x is really the of type fix

IN
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4.4.4.2 Product of Types

<PBODUCT

Itype-namel 1kindl iformal-pacameters| -projection-

specifications-> will, create a type vith name Itype-namel made out of

Ikind| storage with !fcrmal-parametersl as for functicns and -

projection-specifications-. Each |projection-specificationi mnst be

of the following form:

[lapparent-projector-namesi [linitiall Ipat|] +checker+

]actual-projectorl] The |apparent-projectors-names| is either

a single projector nave or [|identifierl Ilist-of-projector-

namesi ] where lidentifierl ranges over Ilist-of-projector-

namesi. If +checker+ is present then only objects which

match +checker+ can be stored in the component. then an

instance is constructed, the elements are given the value

Jinitiall. then an instance is decomposed, the patterh jpatj

is used in matching. If only |initiall is givcn then IpatJ is

assumed to be the same as linitial|. If the actual projector

is not specified then the next unused integer projector will

be used. An actual projector which is a procedure call gives

rise to a VIRTUAL projector storage for which is not

necessarily physically present in the data structure. A

product type can bn RETRACTED to the Jkindi of storNge out of

which it was constructel. The function 3CDOUCT grew out of

some discussions that I had with Nick Pippinger.
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<define complex
<product cc&Flex vector [r i]

[real [.r] <nuater>]
[imaginary [.i] <number>]>>

The type complex tfor complex number) is the direct product of type

<nuamber> with projectoz real and type <number> with projector

imaginary. Tke object complex is actually two procedures: a

function which is the constiuctor and an actor which is the

decomposer. Constructor-decomposers isplement the overlap of

functions and actors.

<complex 3 4> evaluates to #complex [3 4)] vhere # is the type

marker

<retract <cosplex 3 4>> is [ -' 1J].

<getc real <complex 3 4>> (which computes the real component
of the complex number 3+4i) evaluates to 3

<getc imaginary <ci,..-lex 3 4>> evaluatE, to 4

<prog ((-,number> a bi)
;"This a ccat nt. We are

inside a program. The identifiers a ani b are
declared to be numbers"

;"in the assignmert statement below
the patfern <complex _a b> ,; match-d
agdin. zhe expression #complex [3 4]"

< <complc' a _b> <complex 3 4>>>
a gets the value 3
b gets the value L*

<getc real

<%.omplex <replace 7> 4>
<ccmplex 3 4>>> evaluates to 7

<prog [[!=complex [c <complex 1 2>])]]
<getc real .c>) evaluates to

We need to be ai;!e to get at the locations of the components of a
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product. The <getc lIroJectcxl Istructure)> is used for this

purpose. The expression (PUTLOC Ili lxI> sets the location IlI to

the value Ixj and return the value Ixj.

<prog [(x <complex 4 4>11
;"x is initialildd to Icouplex [3 4]"

<putloc
<getc real .x>
2>

;"x now has the value #complex [2 4]">

We can define a lower triangular matrix initialized with zeros

as follows:

<define trianqular <product triangular vector [n]

[i <thru 1 .n>]

<ivectcr .i <function IJ] 0>>
;"each component is initialized to
a zero vector of length i"]

<ivector .i>
;"each component must be a vector

of length i"]>

<triangular 1> evaluates to *triangular [
<triangular 2> evaluates to #triangular [[CJ][O 0])
<2 <triangular 2>> evaluate to [0 0)

We can define the -qpe PDP-10 instruction as follows:

<define instruction <product instruction fix
[op acc indir index addr]

[opcode f.op] !sfix <bits 9 27>]
[accumulator [.acc] !=fix <bits 4 23>]
[icdirect [.indir] I=fix <bits 1 22>]
[index (.index] !=fix <bits 4 18>)
(address [.addr] I=fix <bits 18 0>]>>

A PDP-10 instruction has 9 bits of opcode which are 27 bits from the

right end of the word, 4 bits for accumulator number, 1 bit to

,. 2-' h -" - -"
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indicate indirection, 4 bits for index register number, and 18 bits

for an address. An instruction with opcode 172 and 4 in the

accumulator field causes the machine to halt. We can construct such

an instruction with <instruction 172 4 0 0 0> which evaluates to

#instruction 25440U000000 in octal.

The next example illustrates the use -f virtual components.

<define aobjn-ptr
<product aobjn-ptr fix

[I a]
[length

[.1]
!=fix
<signed-bits 18 18>]

[ address
[.aJ
I=fix
<bits 18 0>]>>

On a PDP-10 an aobjn pointer is is word whose left half

contains the negative of the length of the rest of a vector and whose

right half is the address of the element of the vector pointed at.

The trailer is a virtual component which lies just after the vector.

It can be defined as follows:

<define trailer <function [x]
<get

<getc address .x)
<- <getc length x>>
1>

<getc iddress .x>>>>

<TIP E-VECTOR

-element-specitications-> construct: a type-vector

where each element specification is of the form [Itypel Ivaluel] which

I
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initializes the apparent component Jqypej to |valuej.

<getc fix
<type-vector

[float "above")
[fix "below")>> evaluates to "below"

<CHARACTER-VECIOR

-element-specifications-> construct a character-vector

where each element-specification is of the form [|characteri jvaluej]

which initializes the apparent componeut Icharacter| to Ivalue|.

<putc
<character-vector

[!"a beginning]
[I"z end]>

S1"a very-beginning]>
evaluates to
#character-vector [[!"a very-beginning] [P'z end)]

4.4.4.3 Extension of Types

We need to be able to extend the types of values without

otherwise altering them. For example 3 oraages are net the same as

the fixed point number 3.

<EXTENSION

Itype-naael Imade-ofi> will create a new type Itype-

namel which is an extension of Imade-of|. We can define the type

oranges by

<define oranges <extension oranges fix>>
Now <oranges 3> evaluates to #oranges 3.

<UNEXTIND

I

I
I
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Itype-namej> returns the name of the type of which

Itype-namej is an extension. 1hus <unextend oranges> evaluates to

fix.

Individual elements cf a given type can be tetracted by the

function RETRACT.

<retract <oranges 3>> evaluates to the fixed point number 3

Similarly we can define apples by

<define apples <extension appl fix>>

Then we can define fruit as the union of apples and oranges.

<define fruit <either !=oranges !=apples>>

<oranges 3> evaluates to #oranges 3 which is a <fruit>

<+ <oranges 3> <apples 4>> is an error because you can't add
apples and oranges! To a apples and oranges the function + must be
redefined in a local lexical block.

<is? <fruit> <oranges 3>> is true

<is? <fruit> 3> is <> (which is FALSE)

The actor <AS [pattern| linjectorl> will be defined to match
an object JobjI only it fobjI is of the type of the range of
linjectorl and Ipatterni matches <RETRACT Jobji>.

<prog [(=fiz org]
<is? <as :org oranges> <oranges 3>>>
org gets the value 3

(is? <as 4 apples> <oranges 4>> is <> (which is FALSE)

4.4.4,4 Direct Sums

NOW"
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The direct suE of types can be constructed as the disjunction

of the extensieps of the types.

14.4.4.5 Homogeneous TyFes

<HONOGEN EO US

Inl lstructurel Itypel> will define Inj to be a

homogeneous IstructureJ of Itypel.

<homogeneous string vector character> defines the type
string to be a homogeneous vector of characters.

<homo eneous b~ixvector fix>mdefine the type big to be
a homogeneous vector 2f sa f d nt s th tp b nuo ers.

4.4.5 External Interrrupts

The two kinds of external interrupts that are recognized are

ATTENTION and ALMS! interrupts. The current form of external

interrupts is due -o Peter Bishop. The attention handler is governed

by the global value of the identifier HANDLERI-ATTENTIOU which Lust

have the apparent components -*"PROCESS" and -"HANDLER". If the

.,"PROCESS" component is <> then a running process will be interrupted.

The initial attention handler is

!%(block (<oblist attention!-> <oblist>)>

<repeat out
[,%"labels"

[ ."Special"
[dismiss

<function [) <.out>>
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;"the Iabo) function dismiss will
lizaiss the interrupt"]]]

<print <eval <re>>>>

! <end-block>

The global value of the identifier ALARKSI-TIHE is a write-

protected list of alarm specifications. Each interrupt specification

has the following apparent components:

-,"TIME" is the time after which the interrupt will occur. The

interrupts specifications are stored in order cf increasing time.

.'"IDERTIFICATION" is an object which identifies the alarm,

.,"HANDLER" is evaluated when the alarm goes off.

-,"PROCESS" is the Erocess which is to b? interrupted. If the
component is <> then a running process •s interrupted.

The global value of the identifier TINERSI-RONTIME is a write-

protected list cf timer specifications for all the PLANNER processes.

The -"TIMERS" apparent component of each process is a similar Yrite-

protected list of timers for the for the runtime accumulated by that

process. Each interrupt spezificaticn has the following apparent

components:

.'"TIMEA is the time after which the interrupt will cccur. The

interrupts specifications are stored in crder of increasing time.

,"IDENTIFICATION" is an object which identifies the alarm.

.,"HANDLER" is evaluated vken the alarm goes off.

.%"PROCESS" is the process which is to b istterrupted• If the
component is <> then a running process is aI•trr pte&.

The above dAta structures can be modified using the following

-~ -- -
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functions:

<SET-ALARO
lidentificat ion I
Itivel
ihandler I
I process-to-be-int-errupted I>

will. set an alarm with lidentificationi which will go off after Itiael

interrupting Iprocess-to-be-interrupted) with Ihandleai.

<UVSET-ALAHNf
1patt(3rn- for-identificationj
I pattern-for-time I>

unsets all alarms whose identificatioii matches ipattern-for-

identification) and whose time matches ipattern-for-tinel.

<SET-TIBERE
1process I
5identificationj
I runtine I
1handler I
I process-to--be-interrupted I>

sets a timer for Iprocessi with jidentificationi which will go off

after Iruzztinel interrupting jprocezz-to-be-intervuptedj with

1hlandler I. If Sprocessl is <> then the timer counts the time used

for all processes.

(U SIT -TIE ER
I process I
i pattern-for--identif ication I
ipattern-for-runtine I>

unsets all the timers for Iprocessi whose identification matches

ipatters-tor-identificatioml and ihose runtime matches Ipatterm-for-

ruintimej.
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4.5 Functions in Expressions

4.5.1 , -'.itions of Functions

Examples of the ral:,cs of various expressions are given be±ov:

a evaluates to a

(a b c) evaluates a, a b c)

<+ 1 2> evaluates to 4

[3 (rest (a c)) j evaluates t c)

(a b <+ 2 3D) evaluates tc (a b 5)

(a b (quote (a b))) evaluates to (a b a b)

If a has the value 3, then ([(.a)) b) evaluates to ([(3)] h5

4.5.1.1 Control Functions

'.5.1.1.1 Conditional

<URLSE

Ixj> is the value of IzI if it is not false and fails

otkervise.|

<define unfalse
<function Ix]

<cond
1.11
E-"else* <fail)]>)>
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<OB?

-disjuncts-> evaluates each of the disjuncts in turn

until one of thee is not false in which case it is returned as the

value of the function ORI?. Otherwise the value of the function OR? is

false.

1%(blcck (<oblist or!-> (oblist>)>

<define or? <funcion alt [-,"rest" 'a]reeat [v <>']
<cond

L<empty? .a>
<.out .v>]>

< :v <eval <1 .a>)>
<cond

[.v
<.out ,V>]>

<chop a>>>>

3W<end-block>

<OR

-disjuncts-> is exactly like OR? except that if none

of -disjuncts- is not false then a simple failure is generated.

!%<block (<oblist orl-> <oblist>)>

<define or
<function [-"rest CZ)

<unfalse <or? I.a))>>

I W<end-block>

<AID?

-conjuncts-> evaluates each of the ccnjuncts in turn

unless one of then is false in which case it returns the value false.

Othervi, it raturns the value of the lost conjunct.
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!%<block (<(blist and!-> <oblist>)>

<define aad? <function out [-"rest" 'a]
<repeat [[v -"true"]]

<cond
[<empty? .a>

<.out .V>I>

< :v <eval <1 .a>>>
<cond

[<not? .v>
<.out <>>]>

<chop a>>>>

! %<end-block>

<AND

-conjuncts-> is exactly like AND? except that if one

of the -conjuncts- is false then a simple failure is generated.

!%<block (<oblist andl-> <oblist>)>

<define and
<function [-"rest" 'a]

<unfalse <and? !.a)>>>

1S<end-block>

<lOT?

lxj> is true if lxi is false and othervise IxI.

<define not?
<function [x]

<cond
(.1 <>3
[-,"else" -"true"]>>>

<NOT

jxr> is true if jix is false and fails othervise.

<define not
<function [x)

<unfalse <nbt? x>>>>

Y
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<COND

+checker+ *activation-name+ -clauses-> is the

conditional statement of the language. Each clause is of the form

rpredicate -body-] or cf the form #DECLARE [[-declarations-] predica\te

-body-). The predicate of each clause is evaluated in turn until one

of them is not false. Then the rest of the elements of the clause are

evaluated in turn with the value of the last element being the value

of the function COND. If all the predicates are false then the value

of the function CCND is false. The function COND is due to John

McCart hy.

<cond [<> 5]> evaluates to <>

<cond [<> 5] [-"else" 6]> evaluates to 6

If the operator I is used in fron of a clause then the predicate of

the clause may be evaluated before or after the predicate of the next

clause or in parallel uith it. The first predicate to converqe to

anything other than false wins the race. There are obvious timing

errors in the indiscrininate use of I for clauses

<cond 1[3 a) [4 b]> evaluates to either a or b

<CATCH
+activation-name+
[-declarations-]
1xI
[Ik| -s"TUPLE" lvil
-body->

establishes a catchpoint and then attempts to evaluate il. If the

evaluation of lx comes back uitb an abnormal exit then the catchpnint

is removed, Jk] is bound to the type of exit and -body- is evaluated.

If control runs off the end of -body- then the abnormal exit is
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restarted. The abnormal returns which are currently defined are of

the folloving argument tuples:

"r-"RESICBE" jactivationj -values-) for a "'estoration of the
ailpoint lactivationi with -values-.

"L-"EXIT-.CALL" |fl {aiguments 1.for a non local exit call of ifi.
7he expressions If! may be eifher an activation or a junction.

"a "EXIT" jactivaticn| IvaluesiJ] for a non local exit t,.
activationj with -values-.

"AGAIN" lactivationf J for a non local reiteration of
activation I.

[-,"TERMINATE"] fer a termination of the process
ror example

<prog [(]

<prog foo[ (
<catch b ]

<.foo 3 a>
;"exit .foo with 3 and a"
[k -,"rest" vJ
<cond

[<is? k -,"exit">
<.bar

<print
(caught
exiting
with

4>
prints (caught exiting vw.tth [3 a)) and then evaluates to 4

<catch (3
4

[k -,"rest" v]
<cond

Z<is? .k -"fail">
<priat "you can't get herel">]>>

<print 5>
<fail>>

prints I S d ten fails without printing anything more.

l i _ _ •
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<catch [3
<+ <print 4> <fail>>
[k -,"rest" v]
<cond

[<is? .k -"fail">
<print (caught failure)>]>>

will print 4, print (caught failure), and then continue failing.

<FAILPOINT
+checker+
+activation- name+
[-declarations- ]
lexprl
[(messag+ +activation+]
-body->

establishes a failpoint and then evaluates lexpri. If the evaluation

does not produce a failure then the value of the function FAILPOINT is

the value of lexprl. If the evaluation of lexprl or some s'bsequent

evaluation ultimately fails back to the failroint then the failpoint

is disestabilsbed, the identifier Imessagel is bound to the failure

message, the identifier jactivationj is bound to true if the failure

is to a higher level activation, and -body- is evaluated.

<failpcint [] <fail> [a a]
<print hello>>
prints hello and then restarts failing

<f aiI pqnt[] 3[S a)<print 45> eialuates to 3 but if a failure

ever backtracks to here
then 4 will be printed.

<prog foo
<failpoint [ 9 [a a]

<.foo a>
;"exit .foo with a*>

<fail)> evaluates to a

<R ESTOBE

lactivationI -values-> will restore the failpoint
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named by jactivationi and exit it with -valies-. It is an error if

|activationj is not the activation of a failpoint. The function

RESTORE is due to Drew McDermott.

<prog way-oat [[a 3]]
<print

<failpoint out [ ] .a [a a]<cond
[<is .a 5>

<.way-cut .a>]
[-"else"

<restore .out .a>]>>>
<inci-persistent a>
<fail>> initializes a to 3, prints 3,

increments a to 4, fails back into the failpoint, restores the
fail~oint, prints 4, increments a to 5, fails back into the failpoint,
and finally exits .way-out with the value 5. The following function
does not represent good programming practice and is not original, but
it dces illustrate the use of RESTORE. The function <CHANCES
]identifier| |exceeded|> will decrement the value cf |identifier] each
time a failure propagates through it until the value of |identifier)
becomes less than or equal to zero at which point lexceededl will be
evaluated.

!%<block (<oblist chances!-> <oblist>)>

<define chances
<function ['i -. "optional" [Oe '<error>]]

<failpoint f [] <> [-."optional"]
<4_ :oi <- .. i 1>>

<cond
[<is <less= 0> .. i>

<eval .e>]
(--"else"

<restore .f .. i>]>>>>

IS<endblock>

<RULE

+checker+ +activa.tion-name+ [-declarations-] Jul -

clauses- -- "ELSE"- -nct-foend-> where the +activation-naze+ and

+checker* are optional gives a rule for the expression lx|. Each
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clause is of the form [Ipatternl -body-] or of the form $DECLARE [[-

declarations-] ipatterni -body-]. The value of jxj is vatched against

the pattern of each clause until a match is found. If there is only

one element in the clause then the value of the function BULE is <>

which is false. Otherwise the value is the value of the last element

of the clause. If ncne of the patterns match then the value of the

fun-ztion RULE is the value of -not-found- if it exists or is <> (which

is FALSE). If a clause is preceded by I then the Ipattern] of the

clause may be matched against |x) before or after the pattern of the

next clause or in parallel with it. If more than one ipatteraJ

matches then the first one to match wins the race.

<rule [] 3 [ =fiz]> evaluates to <> which is false
<rule [x] a (_x (.x .x)]> evaluates to (a a)
<rule [] c [d e]> evaluates to <>
<rule h] [ (1 a] [h b] [3 c]> evaluates to b
<rule [] <- 3 1> [1 b] [<+ 1 1> c] -,"else" 5>

evaluates to c
<rule [] a [b 3] -*"else" 7> evaluates to 7
<rule [ a [b 3]> evaluates to <> whicx -: false
<rule [] 5 1[<greater 3> "big"] [<less 7> "small")>

could evaluate to either "big" or "small".

4.5.1.1.2 Block

<DECLARE

-declarations-> declares new top leve'. local

identifiers within the process which calls DECLARE. It returns a list

of the identifiers declared.
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<ACTCE-CALLER

lobjectl

Itaill

Ilocativel

Ichoice 1

Ipatterui

lbindings-for-pa ttern I>

enables functions to call the pattern matcher to match Ipattern|

against objects efficiently in special cases.

<CALL
I junction-name I
[<If -send-args-> Istate-path-for-fl Irecomnendation-

for-fl ]
Igl>

binds the identifier I junction-nazel to the junction defined by CALL

and then calls Ifl mith. the specified arguments. The expression Ifl

nay be any of the following:

"a label functicn which will be invoked.

"a process which will be resumed.

"a function which will be invoked.

"a port in which -send-args- will be queued.

an activation which will be exited.

"a junction which will be invoked.

"a pattern which will attempt a pattern directed invocation

The recommendation must be of one of the following forms:

E-."USE" -pats-] says that function which matches one of the
patterns -pats- BUST! be used.

4
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[-%"TRY" -pats-] sas that the functions which match the
pattterns -pats- are be tried.

[-"FILTER" Jhj] syas that the functions

<CINDILATES FUNCTION Ilf istate-path-for-fl>>

are all to be 'invoked (possibley in parallel).

An ordinary function call <5ff -args-> is eguivalent to

<CALL
<If! -args->
<FUNCTION [y] .y>>

where y is arbitrary iAentifier. The form of the argument lg| as a

function is due to Jerry Sussnan. However, if jgj is of the form

]J1functionl Istate-path] then it allows for a pattern 4irected

resumption through Istate-pathl. We can define a function idivide of

a and d which returns the quotient and remainder of the integer

division of n by d.

<define idivide <function idivide [n d]
<repeat ][r .hi [q 0)]

<cond
[<is? <less .n> or>

<.idivide .q .r>
;"exit .idivide with .q and .ruj>

< zr <- .0 r>>
(inc q>>>>

Now if we evaluate

[a I lidivide 7 31) b] evaluates to [a 2 1 b]

<call <idivide 7 3>
<function [a b]

<print .a>
<print .b>>> prints 2 and then prints

1i

i
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<CALL
ijunction-namel
<Ifi -arguaents->
Igj
Istate-pathl>

vhere If l is a label procedure exits tc the level where the label

function jfJ is defined and then invokes jfi with the specified -

arguments-. The expression <Ifl -arguments-> is an abbreviation for

<CALL
<Ilf -arguments->
<FUNCTION OUT [-"TUPLE I] <.OUT 1.1>>>

Label procedures and junctions are generalizations of labels. Label

procedures are defined using the -mLABILS" construct in block

declarations. See the example under P3OG. The function jgj is

applied to the values received if the process which calls CALL is

resumed. Executing <.Ijunction-navel -send-args-> will exit to the

level where Ijunction-naael was defined and then invoke <IgI -send-

&rgs->. If the optional argument JgJ is not present and Ifl is

defined in another process then the process which calls CALL is

terminated.

<TERPORARY

liJunction-samel <Il -arguments> |gl> makes a CALL to

Ifl such that all the tentative side effects within the scope from the

point of the call to the exit of Ifi are undone.

<prog [[x 0)]
<temporary

<<function [ ]
<... -x ,*>

;tentatively set x to 4">>>
;"x is restored to 0 because the

*- -



4.5 page 102

call was temporary"
.r> evaluates to 0

<TEMPORIZE

jactivationj -values-> exits |activation| with-

values- undoing all the tentative side effects within the scope of

jactivationl.

<prog [[x 0]]
<prog out []

< x 0)
;"tentatively set x to 4"
(temporize .out>
;"exit the activation .out undoing all

the tenative actions In
the scope of the activation">

.X> evaluates to 0

<prog U[ 0

,"labels"
[f <function [] .x>]
;"define f to be a label

function of no
arguments that returns the
value of x]

<_ _x 0>
;"tentatively set x to 4"
<temporize .f>
;"invoke the label functiom .f

undoing every thing which
is tentative that has been dome since

was defined"> evaluates to 0

r <call out

<f'unction (w]
<_ X . >
(tenporize .out .x>>

4>
<function [y]

<print .x>
<print .j>)>> will print 0
and then print 4
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<STRAIGHTEN

<if -arguucts>> Sakes a CALL to ifl such that a

simple failure will not be caught within the scope from the point of

the call to the ex t of If e. The function STRAIGHTEN grew out of

discussions that I had with Jeff Hill and Terry Vinograd. A very

similar concept is called ufast back" in parsing granmars. The

expression Isiform| is an abbreviatioz for <STRAIGBTEN Iformn>.

<prog [[a 3] b3

<vel a b>
4>

<print .a>
<cond

[<is? *a 4>
<fail> ]>

.b> assigns a the value 4, prints 4. failsback inside vel, restores a to have the value 3. assigns b the value
4, prints 3, and then finally evaluates to 4.

<prog [[a 3] b]

<vel -a _b>
4>

<print .a>
<cand

(<is? .a 4>
<fail>]>

.b> assigns a the value 4, prints 4, falls
back through _ since it has been straightened but restores a to have
the value 3 in the process* and thus the whole prog fails.

<STRKIUHTEN-UP

lactivationi> straightens the investigation by setting

up a failpoint which will convert a simple failure into <PAIL

| actavation I >.
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<define straighten-up <function (activation]
<failpoint .activation

[message activa]
<cond

[<not? <or? .message ,activa>>
<fail <> .activabion>j>>>>

<PERSISTENT

Ijjnction-name| <ifl -arguments> lgl> makea a CALL to

)f) such that all changees vithin the scope from the point of the call

to the exit of |fj are persistent. That is they will not go away

automatically by backtracking. The expression lpiformi is an

abbreviation for <PERSISTENT Iforsl>.

<prog out [[a 3] b]
<failpoint ( ] <> [a a]

<cond
[<is? .a 3>

<.out "via">]
(-"else"

<print [a changed to .a]
<,out "lose">]>

< <vel a b> 4>
(print .a>
<fail>> initializes a to 3, tentativell alters

a to 4, prints 4, fails back inside vel, restores a to 3, tentontavely
alters b to 4, print 3, fails back to the faiJpoint, notes that a is
still 3 and so exits the activation .out with W"via".

<prog cut a 3jab ([ a<failon 1 01 taa
<cond

[<is? .a 3>
<.n.ut qelnW>1

<print [a changed to .a]>
<.out "lose1">>>

lpý_ <vel _a b> 4>
<print .•>

<fail>> initialized a to 3, alters a to 4,
prints 4, fails back into the failpoint, notes tkat a is no loager 4,
and so sexits the activation .out witk "loaaO.
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<IS?

,patternj lexpressioul lis-tablel jis-apply-table|> is

true only if 1patternl matches the value of lexpression). The jis-

tablel must be a TYPE-VECTOR and so must the lis-apply-tablel. The

function IS matains tic Iccal identifiers TABLEI-IS and APPLY-TASLE!-

IS which are respectively bound to lis-tablel and |is-apply-tablel.

<IS

1pattern[ lexpressionl Jis-table[ jis-apply-tablel) is

true if |patterni matches the value of lexpressionj and generates a

simple failure otherwise.

ipatterni lexpressionl> is an assignment statement.

The value of the function - is the value of |expressioni.

<block ((oblist assignl-> <oblist>)>

<define
tfunctio- r'nattern value]

<eval 20<is .pattern 4-value>>
.value>>

<endblcck>

<MATCH?

1patteý.nl| jpattern2j> is true if ipatternli matches

IpatteLfnl and is false otherwise,

<BATCH

|pattern|l |pattern21> is true if |pattern1| matches

1pattera2l and generates a simple failure otherwise.

(EVIL

-x - -~-- -. ~-
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|xI )bi fapply-tabie|> evaluates |x! using the

bindings ibi to look up the values of identifiers and Iapfly-table| to

apply objects according to their types. The lapply-tablel must be a

TYPE-VECTOR. The function IVAL maintains local identifiers TABLEI-

ETAL and ARPLY-TABLE•-kVAL to bold the current leval-tableJ and

|apply-tableI respectively.

<QUOT2

lxi> is lxi. We may abbreviate <QUOTE lxl> as lxi.

For example <prog [[% .1]] I<* o 5>> evalutes to <+ .x 5>. Iotice

that according to the following definition QUOTE write protects its

argument.

<dofine quote <function ('0] .>>

<SUPPRBSS

|xj> suppresses evaluation of the form Ixf. We may

abbreviate <SUPPEZSS JxJ> as !'1x|. For example <prog [(x I]] 0<+ .X

5>> evaluates to <# 1 5>.

<PROG

.checker* +activation-naae+ Ideclaration-

specification! -body-> where the +activation-name* and eckecker* are

optional is a nam,,4 program block. The Ideclaration-speciticatioal is

of the forr

[-ordinary-de•clacations-
i'LABILS" -23.nbel-deciarationz
,m IMTN'TILLSr, -internal-declarations- ]

I _ _ _ _ _ _ _ _ _ _ _
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where LABELS and INTERNALS are optional.

Each linternal-declaraticnI is of the following form:

[if <FNTION Lformal-parametersl od- the identifier If I
is ecared to Le an inernal function. Al such it has t

which it is internal. The identifier Ifj s ay not have its
value ch~anged. The following constructs are 7ery efficieut
within the procedure which delares If I to be itternal:

Ifif -arguments-!)

Internal functioas provide a rapid means of common

subexpression evaluation. The current form of internal

functions is due to Feter Bishop and Dave seed.

Each fordinary-declaratical is of the following form:

flattribute-specificaitioni -b~indings-] causes the identifers
in the bindings to be rebound with the appropriat6 jattribute-
specif icat ion I

where each binding must be one of the following tvc forms:

jidentifier I irdicating that the identifier is rebound and
not as signsd a value

[fidentifier3 j value I) which reb~ids the lidentifierl with
an initial It ue I

where jattribute-specification: must be one of the

lattributel where each lattribut: ýmust be 'one of the

following:

g~ atteral in dicating that the value of the
entifier must match Ipatteral. A common pattern

in (OF-TYPE Itype-aamel> (abbreviated I=Itype-
namel) which indicates that the value of the
identifier must be of type Itype-naael.

Z!-
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I"SPECIAL" indicating that each of the identifiers
is special meaning that it can be used as a free
identifier in other procedures

i-attributes--)

Each Ilabel-declarationl is of the form

[Ilf Ifunction so that execution <Jf) - w
cause ccntrcl 1j exit to the point where |f[ was declared and
Ifunctionj to ke applied to the evaluated -argunents-.

If control falls through the bctton of the function PROG then it takes

as its value the value of the last statement of the body. If called

as a procedure a label exits to the activation in which the label was

bound.

<prog foo [Lx 1]
-%"labels"

[nonfatal
<function [zj

<print (non-fatal .z)>
< :x a>
<again .foo>>]

(fatal
<function [z]

<print (fatal .z)>
<.foo lose>
;"exit .foo with

lose">]]
;"ve have two label Frocsdures

nonfatal and fatal"
<prog bar f[y .z] [x 1]]

<cond
[<is? .y 1>

<.nonfatal first-time>]
-,"else"

<.fatal second-time> ]>>>

evaluate's as follows:

foo is entered
x i3 imitialized to I
the labels fatal and nanfatal are bound

bar is entered

AV, 7r.4
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y is initialized to 1
x is initialized to 1
<.nonfatal first-tire> is invoked

causing us to
exit EAR

(ion-fata", first-time) is printed
x is changed to a

bar is entered
y is initialized to a
x is initialized to 1
<.fatal second-time> is invoked

causing us to exit FOO
(fatal second-time) is printed
foo is exited with the value lose

<BLOCK BIND
+checker+ +activation-name+ [-declarations-]
[-"BINI" )block-bindingsi

Irelative-bindings I
Iblock-name l

.. Iblock-declarationsi
jagainerl]

-bod y->
is exactly like PROG except that before the -body- is executed a name

]block-name] and a set o. block style (e.g. PROG, FOR, etc.) bindings

Jblock-declarationsl are established using irelative-bindingsi to look

up the values of any free identifiers. The resulting binding

environment is bound to the identifier Iblock-bindingsi. If <AGAINI' !rck-namej> is called, then |againer| is invoked. The functioa

BLOCKBIND is useful for writing interpreters. Ve could define REPEAT

as follows:

<define repeat
<funct ion F2

[U-"bind" bl ['name 'decs -."rest" "bd]]
;"let bl be the bindings before p2 was entered

and let name be the name of the repeat,
decs be its declarations,
and bd be its body"

AA-
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<blockbind pl [liter .bdj]

;"let iter be the rest of the body
to be evaluated"

[-•"bind* b2
.bl

* name
.decs
<prog [I

< :iter .bd>
;;if <again .name>

is executed,
then reinitialize
iter"

<again .pl>>]
<ccnd

[<empty? *iter>
;"if the body .Jter is empty"

< :iter .bW>
;"set iter to be the whole body"
<again *pl>]>

<eval <1 .iter> *b2>
<chop iter>
.;"set the body iter to the rest of itgelf"
<again .p1>>>>

<PROCBIVD
+checker+ *activztuo-naae+ [-declarations-]
[-"BINL" j procedure-bindings I

irelative-bindings i
I procedure-name I
l procedurt-declarationsi ]

-body-> is exactly like BLOCKBIND except that it takes
procedure stile declarations (e.g. FUNCTION and ACTOR) instead of PROG
style declarations.

4. 5.1.1.3 Escape

<CALL
i junction- name I
<lactivation f -values->
IM'
istate-path I>

leaves the activation jactivation| with the given values. The

expression <lactivatiou| -values-> is an abbreviation for
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<CALL
<lactivation I-values->
<FUNCTION [X; .I>>

where I is an arbitrary identifier. The function If l is applied to

the values received if the process wbich calls CALL is resumed. If

the optional argument fj Iis not present and ÷activation--name* is

defined in another process, then the process wbich called CALL is

terminated.

<AGAIN

ijunctiou-namel Iactivationl Ef]> reiterates the

jactivationf. If |activation, is an activation in another process,

then the process which calls IGAIN will apply the function If to the

values with which it is resumed. If the optional argument |f is not

present and jactivatioan is defined in another process, then the

process which called AGAIN is terminated. It is illegal to execute

<AGAIN lactivationj> until all the declarations of |activation| have

been processed.

<proq too [3
<print 1>
<again .foo>> prints I and then prints

lprints 1, etc.

<prog bar [[a,<ajaiP b•ar>] [b 3 1j><p ba ( ou canot ge he)> causes an error

<FAIL> generates a simple failare in the match.

<?AIL imessagel> causes a failure with a |messagel to be

reported above. A failure with a mcsage can be caught only by the

function E." CINT which is explained above.
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<YAII

lmessagej |placel Ili> generates a failure to tplacel

and then a failure with a |messagel from there. The |placel may be

either a process or an activation. The function |f) is applied to any

arguments received by being resumed by another process. For example

down inside a function whose activation is Lai and which has been

called with a pattern directed invocation executing <fail -"caller"-

jal> will signal that none of the other alternative functions should

be tried.

4.5.1.1.4 Repetition

<REPEAI

*checker+ ,activation-name, [-declarations-] -body->

vwere the +activation-name* and +checker+ are opticnal executes the

Pody repeatedly until the body is exited by calling one of the

functions CILL or AGIUN. Iterative programming in terms of repeats

has the advantage that all loops are necessarily tested. The repeat

loop may be exited with the value x by <.,activation-name* x> there

+activation-name, is the ncne of the repeat loop. Executing (AGAIN

.*activation-name,> after -declarations- have been processed transfers

control to the first element of -body-.

<FOR
*checker+ ,activation-same+ [-declarations-][ [-"INITIAL* -initia 1-action-]
[-%"STEP" -step-action-]
[-*"TEST" predicatel -test-action-]]
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-body->

where the +activation-name+ and +checker+ are optional is defined to

be an abbreviation for the iolloving:

<PROG #checker4 +activation-name+ [-declarations-]
-intial-action-
<REPEAT []

<COND
[ predicate|

-test-action-
<.*activation-name+ <>>
;"exit .+activation-naae+ with <>"]>

-body-
-step-action->>

The FOR loop may be exited with the value jxi by <.+activation-name+

lx|> where +activaticn-name+ is the name of the FOB loop. Executing

<AGAIN +activation-name+> jumps to the point labeled AGIU-in'the'

expansion above. Alternatively, we have

<FOB +checker+ +activati n-name+ [-declarations-]

[["a"TST" |predicatel -test-action- ]
[1"LIST" litenj -"IF" IconditionJ]
[,%"STEP" -step-action-]]
-body-)

vhere the +activation-naze+ and +checker+ are optional is like the FOR

loop previously described except that the value of the for statement

is the list of all the items such that the condition is true. It Is

equivalent to the following although it is implemented much more

efficiently because it only does one cons for eaca item in the value.

vrý WW :W wp
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<FOR
+checker+
* activa tion- na me+
[-declarations-

[COLLECTED 0))
;"declare COLLECTED to be initialized to ("
f f-•"IIITIAL" -initial-action-]
-,"TEST"

I predicate I
-test-action-
<.* activatioa-namne* COLLECTZD>
;"exit ,,activation-nasee

with .collected"]
[('"tSTE pt

<COND
[IconditionI

;"add liteml onto the end of
COLLECTED if condition
is met"

: CCLLECTED
(I .COLLECTED
iitemi) >])

-step-action-. ] ]
-body->

In addition to being able to list the elements produced we can append

or concatenate then,

<FOB *checker, +activation-name+ [-declarations-]
-boy- [[-0010 patteral I valuel -final-action- ]]

-b od y-)

where the *activation-name+ and *checker- are optional executes the

body of the loop oace for cach tine that pattern matches value, (REST

value>, <RBST value 2>, etc. until <REST value n> becomes empty.

<FOR• ckoecker* *activation-name+

[-declarations- [I Ivalue)]]
[(['"TEST"

<IS? <(RPT> .X>
;"if I is empty then quit"

2 L • • • •
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-final-actions- ]
[-*STEPE

;"set I to the rest of X"
<CHOP X>]]

<CCID
[<IS? |patterni *X>

-body-
;"if |patterni matches I

execute -body-"]>>

<FOR +checker+ +activation-name+ (-declarations-]
[[y"I>" Ipatterni Ivaluel -final-action-]]

-body->

where the +activation-name+ and +checker+ are optional executes the

body of the loop once for each time that pattern matches <1 Ivaluel>,

<1 <REST Ivaluel>>, <1 <REST Ivaluel 2>>, etc. until <BEST Ivaluel n>

becomes empty. The -"IN" variant of a FOR loop was invented for LISP

II. The above expression is equivalent to:

<FOR +checker+ +activation-name+
[-declarations- [I |valuel]]

[[-"TEST"
<IS? <EMPTY> .1>
;"if I is empty then quit"
ifinal-actionsi]

[-,"STEP"
;"set I to the rest of 1"
<CHOP x>]]

<CORD
[<IS? Ipatternl <i oX>>

-body-
;"if Ipatterni matches the

first element of I
then exucute -body-w]>>

For example we can define a function vhich returns the reverse of a

list as follows:

<define reverse <function rev [I]
<for [first [aamaer ()]]

[[-%"in" :flrst .Z]
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[ -"final"

<.rev .answer>
;"exit .rev with .answer"]]

: answer

(.first I.answer)>>>>

Thus <reverse (a b c)> is (c b a) The following function returns a

list of the fixed point humbers in its argument:

<define numbers <function [xJ
<for [[-!fix first)]

[((-"in" :first x]
['"list" .x]]>>>

Thus <numbers (4 a (3 4) 5.0 6 [3))> is (4 6).

<FOR +checker+ *activation-name+ [-declarations-]
[[-"INC" JIiJ -"BY" Iii -"UNTIL" Ipredicatej]]
-body-> is equivalent to

<FOB +checker* +activation-name+ (-declarations-]
[[-"TEST" |predicatel]
[-"STEP" <INC IJI Ili>I]

-body->

<FOR +checker+ *activation-name( [-declarations-)[[,%"INC" JIJ -"BY" Iil -"THRU" Iliniti])
-body-> is eguivalent to

<FOR *checker+ *activation-name+
[-declarations-

(S <ABS Iil>]
[L Iliuiti]]

;"S is the absolute value of the step
size which is frozen on entrance
to the FOR loop"

;"the limit L is also frozen
on entrance to the FOB loop"

,[-*INC" JI -"•'Y" .s
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-'"UNTIL"
<IS? <GREATER .1> Jjj>)]

-body->

<FOR +checker-, +activation-naae+ [-declaratiogs-]
[[-,"DEC" IJI -'"BY" I i -"'UNTIL" Ipredicatel]
-body-> is equivalent to

<FOB +checker+ +activation-name+ [-declarations-]
[[-"TEST" ipredicatel ][,"STEP" <DEC |Ij| i|>]]

-body->

<FOR +checker+ +activation-nane+ [-declarations-]
[[f-"DEC" ljI -"BY" jil -"THRU" IlinitI]]
-body-> is equivalent to

<FOR +checker+ +activation-naae+
[- declarations-

[S <ABS |ii>)[L Ilisitl]]
[[-"DEC" |ji -"BY" .S -"UNTIL" <IS? <LESS .L>

-body->

<FOR +checker+ +activation-name+ [-declarations-]
[[-,"THBU" Illiitl]]

-body-> is equivalent to:

<FOR +checker+ +activation-name+ [-declarations- [I

[(-"INC" I -i"THRU" <ABS Ilimitl>]]
-body->

4.5.1.1.5 Multi-Process

/
____________
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Often it is convenient and more efficent to have more than one

MATCHLESS process in existence at one time. By a process we mean a

program counter together with a stack. Pcimitives are needed for the

following functions:

1. Creating processes

2. Causing then to run

3. Terminating processes

4. Interrupting processes

5. Single stepping Frocesses

<STEP

<Jpj nj icondition|> executes the process Ipi for Jul

...elementary step*. unless %he jconditiga| is met in .vhicb. case it

returns immediately. The value of the function STEP is the number of

elementary steps actually ex.ecuted in the process Ipl. The existence

of the function STEP means that PLANNER functions are not necessarily

ONOONE in the sense of lattice theory. A function f will be said to

be CONTAINED in a function g if whenever <f x> converges then <g x>

converges and furthermore <f x> = <g x>. A function h will be said to

be SCYOTCNE if whenever x is contained in y then, <f x> is contained

in <f y>.

<INV OKE

ijunction-same| jpJ In] |condition[ Iff> executes the

process Ipf through Inj complete procedure invocations unless the

Sconditionj is met in which case the valie is the number of
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.invocations completed. In this case Iconditionj is a function which

is applied to the values returned by the invccation. After the

invocations of IpI are complete control returns to the original

process where Ijf is applied to the values returned by the last

iuvocation in Ipi.

<PROCESS

IfI Itcp-activationl Ischedulerl> creates a new

process which begins execution with the |fl. The expression <PBOCESS>

returns the name of the process in which it is executed. Pv.ocesses

enable us to have multiple lcci of control. We can hold our place in

the problem solving prccess in some of the processes while advancing

others. If Ifi is a function then the process expects to be resumed

with arguments for jfJ the first time that it is entered. If Jf! is

of the form [LgI Iportil then it will hang on Iport[ and apply the the

function IgI to the container of values that it extracts from IportI.

The Itop-activationl siecifies how much of an existing process must be

copied to start off the new process. Copying a process enalbles us to

preserve its current state and still allow it to ccntinue exectuon.

The process is scheduled by the process Ischeduler|. The value of the

function PROCESS is the name of the created process. The garbage

collector will terminate a process before it collects the storage for

the process. If a process returns or fails off its top then it is

terminated. The function If, can handle normal returns and failures

as it pleases. A process has the following apparant components:
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-0"STATUS" is the status of the process. The status is be one
of the following:

"'"RESUMEALE" -"STOPPED' -"RUNABLE" -"RUNNING"
"'"TERMINATID"

-%"SCHEDULER" is the scheduler cf the process

""•"U1,TIME" is the runtime charged to the rroness.

-."TIMrBS"is a list of timers fqr the process. The structure
of a timer is explained above in the section cn iaterrupts.

<CALL
I Junction- name I
<Ipi -send-args->
Ifunctionj
|state-pathl>

resumes execution of the process |pI with the arguments -send-args-

from the point that control last left it and suspend execution of the

calling process. when the process which was suspended by the CALL

statement is itself later resumed then the arguments received are

passed as parameters to Ifunctioni. If the optional argument

Ifunction| is not present then the process which called CALL is

terminated. 7he expression <|pi -send-args-> is an abbreviation for

<CALL
<|pl -send-args->
<FUNCTON OUT [-"TUPLE" X] <.OUT I.X>>>.

Yo.. example <<process foo> 2 a> causes <foo 2 a> to be executed in a

new process.

An example of the use of more than one process is in computing

the fringe of an expression. The fringe of an expressio4 is defined

to be the expression with all interior parentheses removed. For

example t.he fringe of (a (b) c) is (a b c) and the fringe of ((a (((b)

_____ _____
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c)))) is (a b c). We conjecture that the problem cannot be solved in

pure LISP without the use of the primitives CONS, LABEL, or FUNCTION.

we would like to write an efficient program to test whether two s-

expressions have the same fringe. The problem is analogous to testing

whether two derivation trees for a context free grammar ý Ave generated

the same string. The function fringe? is not intrinsically

interesting. Its importance lies in that fact that very similar

control problems arise wben a problem solver is trying to extract

information frcm two different areas of investigation at once. We

would like to be able to hold our place in one of the investigation

spaces vhile we resume computation in the other. MultiFle processes

give us the capability which we need. The following symmetric form of

the definition of fringe? is due to Bob Frankston.

<define fringe?
-'function cut [x y]

<prog
[[px

<process trec-walk>
;"create a process which begins execution

with the function tree-walk")
[py <process tree-walk>)]

<.px .x <process>>
<.py .y <process>>
<repeat [temporary)

<cond
[<==? <_ :temporary <.px>> <.py>>

<cond
[<is? .temporary )><. out -,"true"> ]

[-,"else" <.out <>>]>>>>>

<define tree-walk
<function [x p)<.p>

;"the first thing to do is to resume
the main process with no arguments"

i
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<tree-ualkl .x .p>
;"after doing the complete

tree walk resume the
main process with the
special value )"

<. p () >>>

<define tree-walk 1
<function [ix p]

<cond
[<empty? .x>

;"if the structure is
empty then return
and try to find another atom"]

[<is? !=atom .x>
;"resume the main process with the

atom we have found"
<.p .X>]

[-I"else"
<tree-walkl <1 .x>>
;"find the atoms in the

first element of .x"
<tree-valkl <rest .x>>
;"find the atoms in the rest

of .x and then
r~turn "td fi'nfding atodms* bn
the remaining branches")»]>>>

<PCRT>

creates a structure which contains two componteuts:

EXPORTS!-PORT is a ring which holds a queue of coqtainers of
exports waiting in the port.

IMPORTERSI-PORI is a ring which bolds a queue of processes

waiting to take containers out of the port.

At any time either or both rings may be empty. Our concept of a port

is derived from Rudy Irutar, Bob Balzer, and innumerable operating

systems. The idea is that the part acts as a channel through which

commerce may be transacted with some processes exporting through it

and others importing what the others export. The commerce is
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completely containerized. In expression <CALL <lportl -values->> will

place -values- in a contaiver in Ivortl. Jhen a process imports from

a port it will get one container of values to apply to a function.

Espty containers are allowed in which case the function of the

importer will be passed no arguments.

Another example of the use of multiple processes occurs where

there are t;o line printers and a number of processes vhich would like

to get expressions printed. Suppose that <PORT-TO-PRINTERS> is the

port to whick things to be printed are exported. Furtermore let

<PRINT-CHANNELD> and <PRIN7-CaANNEL2> be the channels for printer1 and

printer2 restpectively.

<define printer
<function [print-channel ]

<repeat []
;"remove the nex*t element

frow the print-port,
print it
on the print channel,
and repeat"

<call

<function [x]
<print

.print-
channel>>

<port-to-printers>]>>>>

<define setip-printers <function [3

<<process printer>
;"create a process for driving

the first printer and paes it
its print channel"
<print-channel 1>>

I )>
<call
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<<process printer>
<print-channel2>>[ p>>>

After <setup-printers> has been called, then <<port-to-

printers> IxI> will cause |xj to be queued and printed in its turn by

one of the printers.

Now we would like to show how to do fringe? using Forts

instead oi resumes.

<define fringe?
<function out fx y]

<prog
[[port-x <port>]
[port-y <port>]
[px

<process [tree-walk .port-x]>
;"create a process which begins execution

hanging on .port-x
with the function tree-walk")

;"at this point an activation of .px is vaiting
in .Fort-x"

[py <process [tree-walk .port-y'>]
;"at this point an activation of .py is waiting

in .port-y"]
<call

<.port-x .x .port-x>
;"export .x .port-x to

the port .port-x"
[.port-x]
;"wait for a container of values

from *port-x">
;"at this point an activation. of

.px is waiting
in .port-z"

<call <.port-y .y .port-y> [.port-y]>
;"at this point an activation

of .py is waiting
in .port-y"

<repeat [tempora:y J
<cond

J<_ :temporary
<call

<.port-x>
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[ .port-x]>>
;"the I allows the two

arguments of ==? to be computed iu parallel and thus allows thts
processes .px and .py to run in parallel to find the next atems in .x
and .y"

<call
<.port-y>
;"export
an empty container

to .port-y"
[.port-y]

.;"wait for a container
on .port-y">>

<cond
[<is? .temporary ()>

<.cut -'"true">]>]
[-,"else" <.cut <>>]>>>>>

<define tree-walk
<function [x p]

<call
<.p>
;"export an empty container of values

to the port .p"
S.p]
;"wait for a container of values

on the port p">
<tree-walkl .x .p>
;*after doing the complete tree walk

export (" on the port .p"
<call

<.p ()>
;"insert () in the port .p"
S.p]
;"wait for a container of values in

the port .p">>>

<define tree-walk 1
<function Ex p)

<cond
[<empty? .x>

"•if the struct:Are is
empty then return
and try to find aneo er aton"]

[<is? I-atom .x>

;"resume the maiD process with the
atom we have found"

<call
<.p .1>
;*insert .x in the port .p"

If--
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;"wait for a contriner
of values
in the port .p">]

( -"else"
<tree-ualkl <1 x>>
;"find the atoms in the first

element of zx"
<tree-valkl <rest .x>>
;*find the atons in the rest of

.x and then
return to finding atoms on
the remaining branches"]>>>

<WAIT-CALL

<IpI -send-args-> Ifunctionj> is exactly like CALL

except that it is willing to wait until Ipl becomes reauneable.

I< Ip -args-> might create a new process in which to evaluate

<|pI -args-> in parallel with the normal order evaluation of the

original process. The first I in the previous sentence is not

metalinguistic. For example <* |<foo 3 4> <bar 3 5> 1<+ .x 7> <g 2

2>> initiates evaluation of <foo 3 0> and possibl7 in para lel

evaluates <bar 3 5>. After (bar 3 5> has been evaluated, it initiates

evaluation of <+ .x 7> and possibly in parallel evaluates <g 2 2>.

When all of the values have been computed, the function * is entered.

11<lpI -args-> is exactly like j<Jp| -args-> except that if

one branch beconcs blocked tne other is guaranteed to be able to try

to continue execution.

<prog fco f J

! | (stop>
<.foe 3>
;"exit .foo with 3">> evaluate& to I

Alf
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<FCBK

<|pi -args->> resumes execution of the suspended

process IpI from the point that control last left it with the

arguments -args- and in parallel continue execution of the calling

process. It is an abbreviation for

<CALL <IpI -args-> []>

For example <fork <<prccess foo> <bar> a>> causes <foo <bar> a> to be

executed in a new process in parallel with the calling process. The

value of the function FORK is Ip|. The list of runnable processes is

kept in the global value of the identifier HUNNABlE!-SCHZDULER. The

initial scheduler is driven by the following handler for RUNTIME

interrupts when a certain amount of runtime has elapsed:

!'<block (<oblist scheduler!-> <oblist>)>

<function L] <grog twiddle
[victel ["global" runnable deserving)]

;"the processes that are still deserving to
be run are kept in
the identifier $deserving$"

<locker [ ]<getc lock schedule-queue>
;"lock the schedule variables while

they are being changed"
<cond

[<empty? .des;rvin4> "
< :deserving .rumnable>
<again .twiddle>]>

< o(-icten ,:deserving) .deserving>
(co!n1

[<is?
<getc -"status" .victem>
-,"runnable">
;"if the status is

runnable then
change it to running"

<putc
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.victen
[-"status"

-"running" ]> ]
--"else"

<again .twiddle>]>
;"this scheduler is strictly first in

first out"
<continue .victem>

<locker [] <getc lock schedule-gueue>
<putc

.victem
[status -"runnable"]>>>>>

! X<end-block>

<TERMINATE

-processes-> causes -processes- to be stopped, their

stacks unwound, their timers and alarms to be unset, and then put into

a state such that they cannot later be resumed, interrupted, or

continued. A process is automatically terminated when it returns or

fails to its top level.

<STOP

Ip|> stops the process ipi in such a way that it can

later be continued or interrupted.

<CONTI NUE

Pjp> causes the process IpI to continue executicn from

where it was stopped.

<SUSPEND

ijunction-namel If'unction|> suspends execution of the

process which calls it. It is an abbreviation for

<CALL ijunction-namel [)] function|>.

If the process is later resumed it begins execution by applying

- -, •
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Ifunctionj to the arguments received.

<I NTEBDUPT

ijunction-namel jpJ <Ifl -arguments-> |g|> will

interrupt the process Ip) to evaluate the function If] applied to -

arguments- IN THE PEOCESS Ip|. If Ifl returns normally then its

values are given as arguments to igj. Otherwise Ig, will be applied

to the arguments with which it is resumed. The primitive INTERRUPT

allows the definition of functions which are not HCNOTCNE in the sense

of lattice theory.

4.5.1.2 Data Functions

4.5. 1.2.1 Specialists

4.5.1.2.1.1 Structure Functions

<STRUCTURE?

jxj> is true only if Jxl is of storage type vectir,

list, stack, ring, or node.

<define structure?
<function [x]

<rule (] <storage .x>
[<either

vector
list
stack
ring
node>

/

- 'I
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-"true"]
-~"else"

<EMPTY?

lxi> is true only if lxj is an empty structure.

<define empty?
<function [x]

<and?
<structure? .x>
<==? <length .x> 0>>>>

<MONAD?

Jxj> is true only if 'xj is not decomposable. In

other words lx| is nct a structure or it is empty.

<define monad?
<function [x]

<or?
<not? <structure? .x>>
<empty? .x>>>>

<CLOSUBE

Iprocedurel ifree-variatlesi> returns the closure of

the 1procedurel with the free variables bound to their values at the

time when the closure is constructed. The CLOSURE primitive allows

procEdures to to have cwn variables. They enable us to easily

construct generators such as those of GPS.

The function twice will take a function f as an argument and return a
function which applies f to its argument twice.

<define twice <function gIf
<closure <functi n~x] <.f <.f .x>>> f>>>
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<<prog [x 3)
<<closure <function [] .x> x>>>> evaluates to

3

(prog [a<[b:ai closure <function [] ob> b>>

<* :b 2>
<.a>> evaluates to 1

<pro9 [x 4ý
4prog

[y <closure <function [] .x> x>]
Ix 011

<.y>>> evaluates to 4

Suppose that we wanted to define a generator ifj to be

<elements lxJ> such that each time that <If > is evaluated it returns

a new element of IxI.

<define elements <function [x]
<closure

<function El)
<prog [[next <1 .x>]]

<chop x>
.next>>

x>>>

Now if we evaluate:

<prog [[f <elements (a b c)>]]
<print <.f>>
;*a is printed*
<print <.f>>
;"b is printed">

<REST
•...• . ~ -- "..

Ixi i +not-found+> returns the result of taking the

rest of JxJ jnj times., If the rest of |x| cannot be taken J91 times

then *not-found+ is evaluated.

<rest (a 4 d f ] 2> evaluates to (d fJ
<1 <rest <node [I a] [2 bh>)> is b
<rest <rest (a 4 d f] 2> -1> is "* d f]

/__________________________
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If Inl is positive then, <rest <rest xI mnl> <- Inl> is an error or

is identical to lxi. The function REST with a negative Ing may be

applied only to tuple pointers, vector pointers, and node pointers.

it may not be applied to list pointers.

<GET

lindicator| jobjectl +not-found+> returns the valae

under lindicatorl for the |objectl if such exists. Otherwise it

returns the value of nat-found. Integer indicators have special

properties so that strdctures can be made out of lists, vectors, and

nodes almost interchangeably. The expression <lintegerl jobjectl

+not-found0> is an abbreviation for <GET Jintegerl jobjectl +not-

found+>.

<3 (a b c)> evaluates to c

<-1 <rest [a b c d] 3»> is b

<2 <rest <node [foo 1] [3 a] [2 b]>>> is a

<2 [a (b c) d]> evaluates to (b c).

<get f co <node [foo 1] [4 a»>> evaluates to 1

<GET!-NO-monitor

jindicatorl lobjecti *not-fouidi> "is ;iacdtly like get.

except that monitors for the location under lobjectl with arc name

lindicatorl will not be triggered.

<WAIT-GET

lindicatorl lobjectl> is like GET except that if

jobject| does not yet have anything under lindicatorl then the process

I l I• 'III
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is suspended until lobjectl has something PUT under lindicatorl.

<AT

Jil 1o0 +not-found+> returns the cocation of the value

under the indicator |i| of the object Jol.

<putloc <at 2 [a 4]> 8> evaluates to [a 8]

<AT 1o0> is the locative to the value of the identifer ioi if

1o| is an atoa and a locative to the rest of 1o0 if |o0 is a list.

<ABC

1n1 lindicatorl ÷not-found+> is the arc from the

object 101 vith name |indicatorl if there is one. Otherwise +not-

found. is evaluated.

<INITIAL

lol *not-found4> is the initial node arc for the

object Jol if it has one. Otherviwe it returns the value of +not-

found+.

<NEXT

Iix *nct-found.> returns the next arc after lzi for

the object lo|, if there is one. Otherwise it returns the value of

+not-found+.

<END? lo1> is true only if I0ol is an end node with no leaves

leaving it.

<LAST?

lxl> is true only if ti| is the last arc of the node.

<I NDIC ITOH

lxl> is the indicator for the arc lxl.

WS '
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<indicator <initial <node [a 3) [4 "r")>>> is a

<8EAD

|xJ> is the object at the head of the arc JxJ.

<head <arc <put 3 [larger 2) -smaller 4]> smaller>> is

3

<TAIL

lx|> is the object at the tail of the arc lxi.

<tail <arc <node [a 3 [4I "r" ]> a>> is 3

<LOCAIIVE

-xi> is the location which holds the object at the end

of the arc lox.

<COPY

|xi> will completely copy 1xi.

lx| lyl> is true only if lxi and 1y7 are identically

the same object.

lxi Jy7> is true only if |xi and IJy print the same as

structures.

<define =? <function equal [x y]
<eguall .x .y .egual>>>

<define equall <function equall [x y equal]
<cond

[<or? <monadic? .x> <vonadic? .y>>
<cond

[<==? .x .Y>
-"true"]

2? -- _ _ _ _ _ _ _
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[-"else"
<.equal <>>]>J

[<==? <type x> <type .y>>
<repeat [)

<cond
[<empty? .x>

<cond
[<empty? .y>

<.equall -"true">]
[-•"else"

<.equal <>)j>]
[<empty? .y>

<.equal<>>
<prog out []

<equall
<1

.2

<cond
[<has? 1 .y>

<.equal <>>
[-,"else"

<.out>]>>
<1

.y
<.equal <>>>

., qual>>
<chop x>
<chop y>>]

[-,"else"
<.equal <>>]>>>

<SIMILAR?

Jx3 jyl> is true only if Ixi and lyI have similar

values under their respective Fositive indicators. For example (3

"aW" [1"a]) is similar to [3 (!"a I"4) "a"].

(define similar? <function six Ex y]
<silarl .x .y .si>>>

<define sinilar1 <function siml EX y sib]
<cond

[<or? <monadic? .x> <aonadic? .y>>
<cond

[<a? .x .7>
-"'true"]

[,"else"



41.5 page 136

<.sin <>>'I>
[.,"else"

<repeat (
<cond

[<empty? .x>
<cond

(<empty? Y1>

"("else "
<.sin <»>>P

[<empty? .Y>
<.Sin <>>]>

<prog out [I3
<similari

<1

(cond
[<has? 1 .y>

<.sin <>>I
[""Uelse"

<.out) p>
<1

.7
<.six <>»

.six>>
<chop X>
<chop "J>

<ISONORP HIC?

lIz gyl> is true onlY if lxi and jyj are isomorphic as

graphs.

<define isomorphic? <function iso [X Y1
<isol eX ZY iso»>>

<define isol <function EX Y iso]
<cond -

[<==? (type .0> <type .7>>
<prog out [I

<sub-iso 1
<initial

e1
<.out>
."if zx has no arcs then exit

.out">

iso>>
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<prog out (J
<sub-isol

<initial
.y
<.out>>

.iso>>
•"true" ]

[.,"else"
<.isol1 <>>]>>"

<define sub-isol <functior sub-iso-n [x-arc y iso]
<repeat []

<isol
<tail •x-arc>
<get <iaidicator .x-arc>

.y
<.iso <>>
;"f .y uoes not have a arc vith

<indicator .x-arc> then,
exit .iso with <>">

.iso>

. x-arc
<next

. x-arc
<.sub-iso-n>
;"exit .sub-iso-n if there are no

more z-arcs">>>>>

<PUT I- PERSISTENT

Jobjectl -properties-> ptuts the properties on the

Jobject). A property of the form [|indicatcri JYJ] puts the value

Jvf under the lindicatorl. A property of the form (|indicatorl'i

leletes the lindicatorl from the object. Integer indicators have

special properties so that str-ctures can be made out of listse

vectors, and nodes almost interchangeably.

<put <node [a 4) (3.5 c]> (a b] [3.5] f(ti 9]>

evaluates to #node [[a b] [[e] 9]]

<put (a 4) [1 NcJ]> evaluates to ("C" 4)

/
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Properties can be put on ANY of the data types of MATCHLESS. For

example <put 3 [size small]> puts the value small undcr the indicator

size for the fixed point number 3. The ability to associate any piece

of data with any othet piece is very useful. For example Gerry

Sussman has pointed out that comments can be implemented in this way.

The degree to vhich an expression has been simplified can be recorded.

For example we mi'At <put '<4 3 4> [simplified canonically]> to

indicate that '9< 3 4> has been simplified canonically.

<PUT!-TENTATIVE

lobjectl -properties-> is exactly like PUT except that

the properties of jobject| are restored on backtracking.

<PUTI-NO-MObITOR

jobjectl -properties-> is exactly like PUT!-PEPSITENT

except that the monitors for the locations are not triggered.

<PUTREST !-PERSISTEBT

|xt ly| |nj +not-found÷> changes the REST of the list

<rest ix| jna> to be |ly where |yj must be a list. If <rest lxi <4

jai 1> is not a list then .nct-found. is evaluated.

<putrest (3 a) (4 5)> evaluates to (3 4 5)

<PUTREST,-TENTATITVE

|il Jy| Inj enct-found+> is exactly like PUTHEST

except that xj. is restored on backtracking.

<define putrestl-tentative <functicn
[x -"optional"[7 0)]
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[n 0)
[not-found l,<error>']

<failpoint [[save <rest ,x .n>]]
<putrest ,x .y ,n .not-found>
[-"Ioptional" j
<putrest ,x .save n>>>>

<CHOP! -PERSISTENT

lxI In! 4not-found+> assigns the identific- IxI the

rest taken In! times of its current value. The function CHOP was

invented for a variant of LISP at MITRE.

!%<block (<oblist chop!-> <oblist))>
<define chop

<function
['x

-'"optional"

[n 1)j
('not-found '<error>]]

,x
<rest

.. X

.D

.nct-found>>>>
!%<end-block>

<prog [[v (1 2)1]

<chop v>> evaluates to (2)

<CHOP I-TENTAIIVE

Ixj In! +not-found+> is li ia CHOP except that its

results are not undcne on backtracking.

!.<block (<oblist chcpl-> <oblist>)>
<detine chop

<function
['x

-'"optional"
(n 1]
[Onot-fcund '<error>]]

<_ .x <rest .. x .n ,not-found>>>>
!%<end-block>
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<LBRGTH

3xl> returnc the length of the value of lij.

<length (a b c)> evaluates to 3

<define length <function In Ix]
<for [In O]j

(["..Wj, <?> x]

;"exit .In witZh a#,]

<inc n>]>>>

<INDZX

lxl> returns the rest index of lxj. The function

INDEX is only defined for vectoLs and nodes.

<index <rest <rest [a e 1"e e f g] 2> 3>> is 5

<TOP

jxl Jnu *not-found+> is <REST lx| <- In| <INDEX Ixl>>

+not-found+>

<BOTTON

jxj jui tnot-found+> is <REST txj <- <LENGTH |lx> Jnl>

+not-found+>

<'INIQUIZE

Ivalue|> returns a pointer to the unigue copy of

Ivaluel. The function UNIQOIZZ can be used to save space and tize in

computations. The expression <UNIQUUZE Ivaluel> nay be abbreviated as

Iuv&1ne|. The function UNIQUIZE is due to Peter Bishop.
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<uniquize "efg"> is -"efg"

<uniguize (a 1"b ("e" 3])> is -(a 1"b -,[-e" 3])

<proeg [[x [a b c]]]

<uniquize .x>
<uniquize <copy x>>>> is true.

<UNIQUFL?

lxi> is true only if lxi is a uniquely created copy of

Ix| i.e. to be <=--=? |ix <UNIQUIZE lxl>>.

<INCREaSING'a

-elements-> is true only if -elements- are arranged in

incroaszing order in the the total ordering on unique expressions.

<SUBSTITUTE

|x] Ipatterzj |zl> substitute the ialue of Ixl for all

expressions in 1zi that match |patterni.

<substitute a !=atom (1 (x z))> evaluates to (a (a a))

t%<block (<oblist substitute!-> <oblist>)>

<deiine substitute <function
wx Op z]

<subst
.1X

<eval !'<actor [J .p>>.z>>>

<define subst <function [x p z]
<rale I] z[<.P>

.x]3
[<monadic>

.z]
[<linear 17)>

<<type .z>
<subst .1 .p <1 .z>>

(subst .x .p <rest .z>)>]
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.z ]>>>

!%<end-block>

<MEMBEB?

Ipati Istrucl> is the tail of Istrucl whose first

eleaent matches Ipati if there is one and otherwise is <>.

<member? !=atom [3 4.5 (a) b 6 c]) evaluates to [b 6

c]

!U<block (<cblist member?> <cblist>)>

<define member!
<function ['p s]

<memberl

<eval 1'<actor [ .p>>
.s>>>

<define memberl
<function out [p s]

<repeat ) ]
<cond

[<is <empty> .s>
<.out <>>]

[<is <.p> <1 .s>>
<.out .s>]>

<chop s>>>>

:<endblock>

4.5.1.2.1.1.1 List

<LIsr:--CONSTRUCTOR

-values-> ccnstructs a list of -values-. It is

equivalent to (-values-).
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4.5.1.2.1.1.2 Vector

An7 expression enclosed within "," and U) evaluates to a

list. Any expression enclosed within "[- and "]- evaluates to a

vector.

<IVECTOR

InD rfcnl> creates an implicit vector of length the

value of Int with entry i initialized to <Jfcn5 i>.

<define ivector <product vector vector [n f]
[[i <thru 1 .n>] [<.f .A>]>>

<ivector
3
<function [i] .i>>

evaluates to [1 2 3].

<ITUPLE

]nj |fcn|> creates a definite tuple of length the

value of Jul with entry i initialized to <jfcnj i>. A definite tuple

can only be created as the initial value of an identifier in a

declaration, as an element of a definite tuple, or as an argument to a

function.

<INDEFINITE
type [-declarations-]
[-for-specifications-
[,%"EXIT" lout-namel ]
f•"ADJCIN" lexpression!]]
-body->

creates an indefinite tuple by setting up a for loop in vhich the

elements of the tuple are generated element by element such that
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condition is met. in indefinite tuple can only be created as the

initial value of an identifier in a declaration, as an element of a

definite tuple, or as an argument to a function. An indefininte tuple

is a good way to pass arguments which are generated incrementally at

run time. No tuples may be declared in -declarations-. Evaluating

<.jout-namel> will cause INDEFINITE to return with the tuple

generated.

<indefinite
;"declare i to be a fixed point

number initialized to 1"[ [-"inc" i -"thruw a.]
;"increment i thru .n"
[,"adjoin" oi]
;"each time through the loop adjoin the value.----

of i to the tuple"]
;"the body of the loop is empty">

evaluates to

[1 2 3 4] if the identifier n has the value 4

<UNSHARE

JxJ Itail-of-xp> creates a copy of the value of Jxi at

the top level. The value of |tail-of-xi must be obtainable from the

value of lxl by repeatedly applying the function REST. The value of

the function UNSHARE is equal to its argument but it is not identical.

<unshare [I x (y 2.0)]> evaluates to [1 x (y 2.0)]

<prog [[!=vector [z [a (4)]]]]

<is? <- <2 .x>> <2 <unshare *x>>>> evaluates

to true.

<VECTOR I-CONSTBUCTOR

/

2~J I
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-values-> constructs a vector of -values-. It is

equivalent to [-values-i.

4.5.1.2.1.1.3 String

<STRIG I -CCISTRUCTOR

-values-> constructs a string of the -values-.

<string
"NRun"
"W

"Dick"

"run"
I".>

evaluates to "Run Dick run."

4.5.1.2.1.1.4 Graph

<NODE I-COISTRUCTOR

-properties-> constructs a node with -properties-.

<SHARE

Inodel ]indicatorl ilocativel> will cause Inodel to

share the location under lindicatorl with the location |locativel.

The function SHARE is due to Peter Bishop.

4.5.1.2.1.1.5 Class

<CLASS I-CONSTRUCTOR

-elements-> will construct a class with -elementz-.

4.5.1.2.1.2 atom
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<ATOM!-CONSTEUCTOR istringl> is the atom on the toot oblist

with print name Istringi.

<ATOM! -CONSTRUCTOR

Istringl Ipath', +uot-found+> is the atom with the

print name Istringi in the lIathl of oblists. If the optional

argument +not-found+ is not present and there is not atcm on Ipathl

with print name Istringi ther a new atcm is created in <1 Ipathl>.

<PNAME

latoml> is the print name of jatomi which is a uninque

string.

<pname hello!-dolly!-> is -fthello"

4.5.1.2.1.3 lord and Number Functions

<BITS

Isl Ilp> defines a field of Isl bits that is Ipl bits

from the right end of the word.

<SIGNED-BITS

|sl jpj> defines a signed field of Isl bits that is

pI bits from the right end of the word.

<BYTE

IjF| Jpj lei> returns a byte pointer to the byte of Is|

bits that is IpI bits from the right end of the word Fointed to by

lei.

<I NCI-PERSISTEiT
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Ivari Ideltal> increments the value of the identifier

Ivarl by Ideltal and stcre the result in Ivarl. The body of INC will

be in a separate lexical bluck so that identifier collisions

cannu ,*ccur.

!%<block (<oblist inc:-> <oblist>)>

<defire inc <function ['x]
< :.x <+ .. x 1>>>>

1 %<end-block>

<INC !-TENTATIVE

Ivarl Ideltal> is like LEC except that Ivarl is

restored in backtracting.

!:<block (<oblist inc!-> <oblist>)>
<define inc!-tentative <function ['x]

<_ _.x <+ .. x 1>>>>
! U<end-block>

<DEC !-PERSISTENT

Ivarl Ideltal> decrements the value of the identifier

Ivarl by Ideltal and store the result in Jvarl.

!U<block (<oblist dec!-> <oblist>)>

<define dec <function ['x]
< :.x <- .. x 1>>>>

.I<end-block>

<DEC I-TENTATI VE

Ivarl Ideltal> is like DEC except that Ivarl is

restored in backtracting.

!%<blcck (<oblist decl-> <oblist>) >

<define decl-tentative <function ['x)
<_ . <- .. x 1>>>>



4.5 page 148

!<end-block>

<ASCENDING?

-elements-> is true onll if -elements- are in

asc.inding order. The function ASCENDING? is due to Gordon Benedict.

<define ascending? <function out [-"rest" x]
<cond

[<is? <empty> .z>
<.out -"true">]

[O*else"
<repeat [

<c"nd
[<is? <empty> <rest .x>>

<.out -"true">]
[<not? <is?

<greater <1 x>>
<2 . t>>>

<.out <>>]>
<chop x>>]>>>

<DESCENDING?

-elements-> is true only if -elements- are in

descending order.

<IDIVIDE

Idividendl -divisors-> computes the Iguotientl and

Iremainderl of the Idivideril divided by the -divisors-.

[a ! (idivide 7 31) 69) evaluates to [a 2 1 69]

<call
<idivide 11 4>
<function [q r]

<print .q>
<print .r>>>

;"prints 2 and then prints 3"

-numbers-> is the sum of -numbers-.
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<+ 3 4 -5> is 2

-numbers-> is the product of -numbers-.

<* 5 6> is 30

<ABS

jnj> it the absolute value of Inl.

<abs -3> is 3

<EXPT

lbasel lexponentl> is exponentiation.

<expt 2 3> is 8

Isubtrahend! -subtractors-> is Isubtrahndl less -

"subtractors-.

<- 3 2> is I

<- -5> is 5

<- 3 9> is -6

</

Idivideadl -divisors-> is the floating point number

Idividendl divided by -divisors-.

</ 4> is .5

</ 12 3> is 4.0

</ 3 2> is 1.5

</ 30 2 5> is 3.0
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< AX

-values-> is the maximum of -values-.

<max -3 <+ 4 .1> 40 is 4.1

<MI U

-values-> is the minimum of -values-.

4.5.1.2.1.4 Algebraic

<0+

-terms-> constructs the sum of the terms.

<1+
$<* <expt x 2> 3>
3
'<* 2 x>
3<* 4 A>
4
'<expt x 2>> evaluates to

<+
7
<* 6 x>
<* 4 <expt x 2>>>

<0*

-iactors-> constructs the product if the factors.

<!* 3 <14 x 2> <(1 x -2> x> evaluates to
<+

<* 3 <expt x 3>
<0 -12 x>>
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4.5.1.2.1.5 L-.-•'ive

<IN

Ilocation)> returns the contents of glecation) as its

value.

<prog [Ix 1)] (in <at x>>> evalutates tc 1

<GEK&jCC

jxl> generates a new location (which is not on the

stack) holdig the location of Jxg.

<in <genloc ->> evaluates to 3

<PUTLOC !-PER SI STENT

|location| JYvluep> stores the Ivaluel in the

Ilocationi and return the Ivaluel. It is equivalent to <_ <smash

jlocationj> Ivalue|>.

<prog [r] <putloc <at x> 1>> assigns x the value 1

<PUTLOC ! -TENT&TITE

S. "ation| Ivaluel> is exactly like PUTLCC except that

Ilocation5 is ri, red on backtrackinq.

<defik, putlocl-tentative <function [location value)
"failpoint

[[save <in .location>]J]
<putloc .location .value>
[ -- optional" ]
<put3.oc .location .save>>>>

<ViLUE

Ithetai Jbiunings|> is the value of the identifier

which is the value of |thetal.
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<value *y»> eva at& s t5 1

4.5.1.2.1.6 Stack

Stacks obey a last in first out storage discipline.

<STACK

+checker+> returns the name of a newly created stack

to store elements of the appropriate +checker+.

<PUSH

Istackl -values-> pushs the -values- onto the Istackl.

The value of PUSH is Istackl.

<POP

Istacki [number| +not-founde.> pops Inumber[ elements

off jstack[. and returns them as the values of POE. The elements

come off in the opposite order they vent on.

(1 !(pop
<push <stack> a b c d>
ell) evaluates to (1 d c b).

4.5. 1.2. 1.1 Ring

Elments can be inserted and removed from either end of a ring.

<RING

+checker+> returns the name of a newly created ring to

store elements of the appropriate type.

<FBONT
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Iringi Inumberl +not-found+> returns the front

Inumber| elements of Jrinan.

<REAR

Iringi jnuaberl +not-found+> returns the rear Inumberl

elments of Iringi.

<INSERT-FEON!

Iringi -values-> inserts -values- into the front of

Iringi.

<I NSEBT-REAR

jringI -values> inserts -values- in the rear of

jritg j.

<D LETE-FRCNT

Iringl Inumberl +not-found+> deletes Inumberi elements

from the front of Iringl and returns them.

(a .'delete--front <insert-rear <ring> 1 2 3> 211 b] is
[a 1 2 b]

(a ! (delete-rear <insert-rear <ring> 1 2 3> 21) b] is
[a 3 2b]).

<DELETE-REAR

Iringi Jnumberl +not-±ound+> deletes Inumberl elements

from the rear of |ringl and returns tbew.

4.5.1.2.1.8 Character
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<CHARACTER>

matches any character.

<LOWER>

matches any of the twenty six lower case alphabetic characters.

<UPPER>

matches any of the tunety six upper case alphabetic characters.

<DIGIT>

matches any character which is a digit.

<AlPHA2ETIC>

matches any alphabetic character.

<define alphabetic
<actor [)

<either <lower> <upper>>>>

4.5.1.2.1.8 Input-output

Input-output is transacted through channels. The atomic names

read in are looked up in directories called obli-ts.

<CH&NNEL

|directionj |placel iplace-dependent|> returns a

communication channel in the Idirectioni specified to the |placel

named. The |directionj say be either -*REAt" or -"PRINT".

<CLOSE

-channels-> terminates transactions on tae named-

channels-.
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<RESET

_channel-> resets Ichannell.

<PRINC

1st ichannelsl> prints Ist (which must be a string or

charater) literally. It does not put. quotes around it or otherwise

translate Is[.

<PRBN"

jIx [-channels-] 1pathl iprint-tablel Imacro-tablel>

prints the value of lxi on the output channels relative to Ipathi and

returns it as the value of thie function PRINT. The various types are

printed according to the print functions which are defimed in Iprint-

tablet. The function PRINT maintains three special identifiers:

PIT!!f-PRLE-A, TA1BLEI-PRINT, BACROSI-PRIIT, and CHAINELS!-PRINT. The

Iprint-tablel must be a TYPE-VICTOR. The Imacro-tablel must be a

CHARACTER-VECTOR which has eatries -,"NEVER", -enDEGININGm, or

-'"LLWAYS".

Eblock (<oblist print.!-> <oblist))>
<define prinl

<function [x -"optional*
[.,"Special" [channels .channels]]
[-,"special" [path .patkl]
[,i"special" (table* table]]
[-%"special* [macros .macros]]]

((getc <type x>) table> *1»>>
I %end-block>

The print function f cr vectors is:

<function out [y)
(cond

(<empty? .Y>
<princ 0[1">
<.Out .y>1
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[ -,"else"
<princ !"[

;"print the open bracket which
will be closed by )">

<repeat [[I .y]]
<prinl <1 .x>>
<chop x>
<cond

[<empty? .x>
<princ

;"close the ["
I" ]>

<.out .y>]>
<princ !" >
;"print a space">]>>

<PRINT

lxi |pathi )print-tablel Ichannelsl> prints a carriage

return line feed, prints Inx and then prints a space. The [print-

tablel must be a TYPE-VECTOR.

<define print
<function [x �,"optional"

[-"special" [path .path]]
[--"special" [table .table]]
[,wspecial" [channels .channels)]]

<princ " ">
<prinl .x>
<princ " ">>>

<OBLIST> is the root cblist.

<OBLIST

Itrailerl +not-found+> is the oblist with the

specified Itrailerl. If the optional argument +not-found+ is not

present and there is no oblist with Itrailerl then one is created.

<TRAILER

iatosll is the name of the oblist on which latoa|
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exists. The trailer of an atom on the root oblist is <>.

<( 0

Istringi lpatL.> returns the first oblist in |pathl on

which an atom with print name lstringl exists if there is one.

Otherwise it returns <.

<LINK

latoul Ipath| Istringl> creates link cn the first

element of |path| with print name Istringl. It is an error if there

is an atom with print name istringi already on |path|. Both Ipathl

and Istringl are optional.

<prog []
<link

top! -middle! -botto n
(<oblist tse!->)
"tmb">

tmb!-ae> evaluates to top!-middle!-bottom

<BLOCK

ipathl> begins a new lexical block where atoms are

looked up on Ipath|. The function BLOCK is due to Jerry Sussman,

<END-BLOCK>

closes the current lexical block restoring PATHI-READ to its previous

value.

<REIDCH

Ichannell +not-foun4.> removes the next character frou

lchannell. If there are none, then 4not-found÷ is evaluated.

<MEXTCB

Ichannel| +not-found)> is the next character in
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Ichannell. The channel is not modified by NEXTCH. If there are none

then *not-found+ is evaluatet

<READ

Ichannell Ipath| +not-found+ Imacros| Isyntaxl>

returns the next expression from the input Ichannell with atoms which

are qot on jpath| created in the first element of Jpathi. The macro

characters are as defined by functions of one argument in Imacrosi

which must be of type VECTOR-OP-CHARACTERS. The argument of the

function is the macro character which triggered it. The lexical

syntactic class of each character is defined by Isyntaxi which also

must be a CHARACTER-VECTOH. The idea for the read tables is due to

John White If there are no more expressions on the channel, then +not-

found+ is evaluated. The function READ maintains special local

identifiers CHANNELI-READ, PATH!-READ, NCT-FOUNDI-READ, MACROSI-READ,

and SINTAXI-BEID. from which it obtains the appropriate information.

The definition of REID is:

I%<block (<oblist read!-> <oblist>)>

<define read
<fumction [-,"optional"

[-"special" [channel .channel]]
[V"special" [path °path])
[.,"special"

[unot-found
$<error -,"end-of-file-

reached">]]
[-,"special" (table .table]]
[(-"special" [syntax .syntax]]]

<prog loop [character]
<_ :character <nextch>>
;"let character be next charaacter

about
to be read3
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<cond
[<is? <getc .character .syntax>

-'"ignore"> <again .loop>]>

<<getc <readch> otable> .character>>
;"execute the read procedure

associa ted
with the first character">>

!W<end-block>

The following are the macro characters which are predefin~d for the

reader:

#Itypel Jobjec' reads |objecti then tries to
convert it to be a Itypel.
For example tcomplex [3 4] will attempt to convert [3 4] to
type complex.

IIFALSE is the unique object FALSE.

I#NODE +rest-index* [-properties-I where each
Ipropertyl is of the form [liniditorl Ivaluel] is a node.

I#PROPEETIES Jobjecti [-properties-] where e..:h
Ipropertyl is of the form ( lidicatorl Ivaluel]
is an object with properties.

I#ARC [jobject| lindicatorJ] is a arc from Jobjectl
with name Iindicatorl.

ILcharacterl is read as a single character.
The I serves as an escape for characters
which cannot be input directly.

!1 is the exclamation character.
This is the only way to get in the character I.

Siforaf.reads Iforml evaluate it and use the value as the
expression read.
The 5 macro is due to Chris Reeve.

Ijforml reads Jforml evaluate it and tten pretend that
what vas actually read was the nul string.
The IS macro is due to Chris Reeve.
The macro chacacter 1% enables us to have side efrects while
reading.
For example:
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!%<block |pathl> causes the reader to read the
subsequent

ite3s into Ipathl until the matching IM<end-block> is
encountered.

$ terminates ccmmands.

"[stringl" is a character string.

!"Icharacterl is a single character.

eIcharacter| reads Icharacterj as though it
were not a special character.
In other words ¢|characterl is an ordinary
alphabetic character to
the literal reader as though <getc [characterl Isyntaxl> were
-*"alphabetic".

--elements-) is a list.
he read function for !'( is:

<function [ac
;"the value will be a list"
<list

(indefinite Cx]
;"construct a tuple of indefinite size

made out of the values of x"
((-"adjoin" .1x
[(,"exit" out]]

<call
<read>
<function [-"rest" t]

<cond
[<is? <length .t> 2>

;"read has returned with
tw.- values"

<rule (] <1 .t>
[;"first of .t matches ("
I")

;"the first value is
a right paren"

<.out>]
,"else"

<error
"mismatched

left">>]
[(-"else"

<_ :x <1 .t>>]>>>)>>

21! - ~
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The read function for !") is:

<function out cc]
;"exit with two values so that any

function which
calls this one will know
something is fishy"

<.out
;"this should match C"
, ,,)

[-elements-] is a vector.

l[-elements-!] is a homogeneous vector.

The notation is due to Cgris Reeve and Gerry Sussman.

<-elements-> As an element form.

[-elements-) is a segment form.

!(-elements-!] is a multiple value segment form.

Ilforml is #ALLOW-PARALLEL |formj.

|jiforal is #ESSENTIAL-PARALLEL Iforal.

|atomi!- forces |atomj to be rtad into the rOOT oblist.

1 atoll!-jtrailerl reads latom| into the oblist with Itraileri.
f the following is typed in:

<prog ( ]foo!-thesisl-

bar !-preface!-thess!-,
I <block (<oblist preface!-thesis!->

<oblist thesis!->)>
(mumble hello!- foo bar 3 thesis preface)
?<end-block>>

then it will evaluate to
(mumble ! -preface I-thesis
hello
fool - thesis
bar!-preface!-thesis
3
thesis
preface! -thesis)
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(-expressions- jelementi ; Jcomaentl -aore-expressions-)
The read function for I"; is:

<function out [character] <.out 1"; <read>>>

(-expressions- jelementl I; )intentj -more-expressions-)
he read function for 1"1; is:

<function out [character] <.out I"!; <read>>>

The following prefix macro characters are predefined.

'|expressioni is <QUOTE le'pressionl>.
The I macro is due to John White.
The read function for the character 0 is:

<function [character] !'<guote <read>>>

I'jforzJ is <SUPPRESS Iforsl> which suppresses invocation
of ]forsi.
The read function foa 1"19 is :

<function [character] !9<suppress <read>>>

-Jvalue| is a unique copy 9f Jvalne|.
The read function for I " is:

<function [character] <uniquize <read>>>

2-*Ivaluel is <UUIQUIZE jvalue|>.
The read function for !. 1 is:

<function [character] !t<uniquize <read>>>

!=jatoul is <O-TYPE latomi>.

91form! is (GAIE Iforml>

It<-elements-> is <TIEPORARY <-elements->>

It (-elements-) is MMTEECRADY <-elements->)

Is<--eiements-> is <S7RAIGHTE3 <-elements->>

Isf-elements-" is (STR&IGHTEN <-eJement.ý->}

1p<-elements-> is <PERSISTENT <-elements->>
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!p(--elements-] is (PERSISTENT <-elements->)
The macro characters it Is, and Ip are de
to Peter Bishor.

.lidentifierl is <VA•UE |identifierj>.

I.|identifierl is (VALUE Jidentifierl).

,jidentifierj is <GLCBAL lidentifier>.

!,lidentifierl is {G1OEAL Jidentifier).

_Jidentifier| is <ALTER!-TENTATIVE lidentifier|>.

IJidentifierl is (ALTERI-TENTATIVE lidentifierl).

:Iidentifieri is <ALTERI-PERSISTENT lidentifier|>.

!: identifieri is (ALTERI-PERSISTENT lidentifierl ).

?Iidentifierl is <GIVEN lidentifieri>)

I?|identifierl is (GIVEN |identifier}).

4.5.1.2.2 Protection

<UNPECTECT

|xJ Jul> allows access to the object x according to

the use Jul which say be:

"-write" for write

-,"execul?" for execute

Restricting the access of a piece of data ensures that it can not be

used for a purpose which was not intended. For example it can be used

to insure that checking routines do not modify the data which they are

supposed to inspect for errors.

<PROTECT

It
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IxI lul> restricts the uses to which ixi may be put by

not allowing the use Jul which way be -"READ'", -"PUT", or -"WRITE.

The use -"PUT" protects agaiDst putting on non-numerical indicators

whereas -"WRITE" p.:otects the numerical indicators.

<put
<2 <protect (a (3 4)) -"write">>
[1 a]> causes a write protectior error

<rest <protect (a 2 b) -"write">> returns (2 b) with
write protect

<PROTECTION

|xi> returns a vector of the protection modes of

access for |xi.

<protection <rest <protect (a 2 b) -"write">>> is

[-"write]

4.5.1.2.3 Monitoring

<MONITOR

Ill If| Jul> monitors the location Ill with the

function Jf| for the use Jul. The use say Le a list of ,ny of the

following:

'"READ" for read
-"EXECUTE" for execute
-'"WRIE- for write

If a process attempts to used a monitored location then <f Ill Jul

|xI> is evaluated. If a write operation is being attempted, then x is

the value which is being stored. If a execute operation is beWig
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completed for a funct'cn, then x is the tuple of values being

returned. If an execute operation -is being c-apleted for an actor,

then x is the object that was matched. Monitoring is implemented in a

way that is logically equivalent to creating a arc from the location

Iil to the list of monitors for the ..ocation Ill under the indicator

MONITOES. Dave Reed invented the more efficient method that is

actually used. Monitc.s are useful for implementing various kinds of

procedural data. For example they are used to implement break points

in the language. The following procedure will make a list (called

history-of-x) of all the values that are stored into the special

identifier x.

<monitcr
<at x>
<function [1 u v]

< :history-of-x (.v !.history-of-x)>>
-ý"write">

Next we would like to describe how monitors can be used to

iaplement an idea due to Peter Landlin which he calls a stream. The

idea is that the element. of a list should he able to be dynamically

computed instead of all of them having to be computed at mnce. ?or

example in debugging the elements of a list might be computed

incr(.mentally as they are aeedee by being input from a teletypewriter.

We could construct such a list |I| .: follows:

<monitor
(0)
;"the 0 is a dusmy rhi'ch wiU-

be replaced with the first
element read"

,f
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-%"read">

Were we define f by:

<defi~e f<function [i u Y]
<monitor

<rest

(-%replace <read>>
(replace (0)1)

;"monitor the rest of the list with f"
-"read">>>

Now <1 I11> is the first expression read, <2 Ili> is the second, etc.

<UNNONITOR

Il| ipatl> unmonitors the location Ill by all

functions that match Ipat|.

4.5.1.2.4 Type

<RETBACT

Ix|> returns the value Ijz retracted to the type in

which it was defined. The function RETRACT is the identity function

on objects of primitive type.

,',STOUAGE

|XI> returns the primitive storage allocation type of

IzI. The primitive storage types are LIST, VICTOB, STRING,

HOBOGENOUS-VECTCR, STACK, RING, ATOR, ACTIVATION, JONCTUCI, LABEL,

PROCESS, and NODE.

<TTPZ
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Ixi> returns the dynamic type of lxi.

<EECLARED

Jxi> returns the declared attributes of |xj. The

function DECLARED is useful in deciding how to expand macros.

<G ETC

japparent-indicatorl jobject; +not-found+> gets the

japparent-indicatorl component of Jobject[ according t¢ the structure

definition for <TY jobject[>.

<ATC

lapparent-indicatorl jobjecti +not-found+> returns a

locative to the lapparent-indicatorl ccmponent of jobject! according

to the stiucture definition for <TYPE lobject|>.

<PUTC! -PERSISTENT

lobjecti -properties-> puts -properties- on jobjecti

according to the structure definition for <TYPE lobjectl>.

<PDTC !-TENTATIVE

Jobject] -properties-> is exactly like PUTC except

that the properties of jobject[ are restored on bac racking.

4.5. 1.2.5 Synchronization
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<LOC K

-lock-specifications-> attempts to satisfy the -lock-

specifications- where each lock-specification must be cne of the

following:

Ilocation| means that Ilocationi is to be locked if it is rot
already locked.

"F "RELOCK" jlocation|)] &-ans that IlocatioDi is to be relocked
yen if it is already locked.

[-"UNLOCKED" |locatii'liI means that |locationj must be

unlocked.

The process which calls the function LOCK is suspended until all the -

lock-specifications- are satisfied. Suppose that we have a data base

that sometimes is momentarily in aD inconsiz~ent state while it is

being modified. Ve would like to set up locks so that arbitrarily

many processes can be reading the data base at one time but only one

process can modify it at a time. Suppose that each data base has R

READIOCK and a WRITELOCK component in addtion to a CONTENT component.

<define read-data-base <function rdb [data-base"
(prog [current-content]

<1( :k
"[ .munlockedr

<atc writelock .data-base>]
[f-"relock"

<atc readlock .data-base>]>
;"in order to read the data base

the writelock &ust
be ofZ and the readlock
must be relocked"

< :current-c-ntent <getc corteant .data-base>>
<unlock <atc readlock .data-base>>
;"is done after the process stops reading"
<. rdb current-content>
;Naxit .rdb with .current-contcnt">>>

-- ....- - - A " ~ ~ "'
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<define write-data-base
<function (data-ba~e new-content)

<lock <atc writelock .data-base>>
<lock (atc readlock diata-base>>
;"in ordeL to write the data base the

writelock
musz. be locked and
then readlock must be locked"

(putc .dalza-base [content .nev-content]>
<u i cc k

<atc writelock .data-base>
<atc readlock .data-base>>

;"is done after the process stops writing"»>

<L CC KER

+checker+ +activation-name+ f-lock-specifications-]-

body-> where the +activation-name+ a *checker+ are optional attempts

to achieve -lock-specifations- execute the -body- and then unlock any

locations that were locked by -lock-specifications-. The function

LOCKER makes use of CATCH to insure that the locks are unlocked when

4activation-naiae+ is exited. Ve can do the above example a& follows:

<define read-data-base <function [data-tase]
<lecker ()

[[-m"unlocked"
<atc writelock .data-base>]

(-"'relock"
<atc readlock .data-base>]]

<getc content .data-base>>>>

<defize vr ite-data-bast
<function [data-base new-content]
<locker []

[<atc writelock .data-bare>]
<locker []

(C~atc readlock ~Iata-base>]
<Putc -bs

.data-bs
(content anew-comteat])>>>>

<LOCKED?

-locations-> at',,#pts to lock the locations which are
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arguments. If the locations cannot be locked then the function

LOCKED? returns <>.

<UILOCK

-locations-> unlocks the locations.

4.5.1.3 Debugging

<ERROR

Inessaget> will type out the message and go into an

error loop.

1%<block (<oblist error!-> <oblist>)>

<deicine error <function
[-'"optional" [message -'"none"]]
<print (-%"error-message:" .message) *console>
;"print the message on the console channel"
<repeat (-,"special" loop)

((old-out .out]
;"save the old value of out in old-out"
[-"special" [culprit (frame 3>1]]
;"the culprit activation is the one three frames back"
-,"labels"
[-'"special" [cot <function [-"optional" [n 1)]]

;"the label procedure out haidles
exits from error loops"

<cond
[<is? <less 1> On>

<again .loop>]
[-,"else"

<.old-out <- an 1>>]>>J]
<print <eval (read»»»>>

tWend-block>

<DEBUG

Istatusj> will set the state of the debug state to

Istatus;. Tbe status way be --%on" or -%"off".
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<BINDINGS

IPI> is the current set of bindings for the process

pIl.

<FRAME> is the current activation frame of the process which

calls it.

<FRME Iplacel> '4, the last activation of Iplacel if Iplacel

is a process and is lplacel if Iplacel is an activation.

<FRAME

1placel Jnl> is the activation frame which is Inl

frames back frce Iplacel.

<PROCEDURE

|framel> is the procedure of fframei.

<NAME

Iprocedure|> is the came of Iprocedurel if it has one

and <> otherwise.

<PBOCNIAE

Iframel> is the name of the procedure for |framel. It

is equivalent to <NAME <PROCIDORE |franel>>.

<ARGS

Ifranel> is the tuple of arguments of lfrateI.

4.5. 1.4 identifier

<ASSIGNED?

lIari Ib> is truf onlj if the identifier Ivarl has
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been assigned a value within the bindings Ibl.

<UNASSIGN

Ivarl Ib]> makes Ivarl unassigned within the bindings

Ibl.

<BOUND?

Ivarl Ibi> is true only if the identifier Ivarl is

bound within tle bindings Jbi.

4.5.2 Eramples of the Use of Functions

The function factorial is defined below in order to illustrate

the syntax of functiors that produce values. On entrance to REPEAT,

temp is immediately bound to 1.

<define factorial
<function factorial (n) <repeat [[temp 1],

<cond
[<is? <less 1> .n>

<.factorial .temp>
;"exit .factorial with •tesp"]>

<_ :tezp <* .n .temp>>
<dec n>>>>

Using a for statement, we can define factorial as follows:

<define factorial
<function fact (n]

<for
[temp 1)]

[[(;Idec" n -i"thru" 1]
[%"final"

<.fact .teap>
;exit .fact with .temp"]]

<_ :temp <* .n .temp>>>>>

t
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Thus the value cf <factorial 3> is 6; and the value of <factorial <+

2 2>> is 24

- - - --
_____ ____ ____ ____
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4.6 Actors in Patterns

Examples of actors are VEL for disjunction, NCN for negation,

ALL for conjunction, atd STAR for Kleene star in general regular

expressions. We use the characters ( and I to de]imit actor calls

that are to match as segments.

<prog [a b c]
;"we are inside a program. we have declared the

identifiers a b and c.
In the assignment stateient below the pattern
(k (all _a _b) c) is matched against
(k x y z).
The patterD fall _a _b) matches ap expression
only if bof.j -a and _b match the expression."

<is? (k .-. a _b _c) (k x y z)>>
a gets the :aloe (iy)
b gets the value (x y)
c gets the value z

<prog [I c]
<is? (Ix (either (th) (tv)) I c) (a o tw th)>>
x gets the value (a o)
c gets the value (th)

<prog [xis? ((star a) x) (a a a a)>>

x gets the value a

The argument of the actor WHEN is a list of clauses. If the object

that the actor WHEN is trying to match has the property taat it

matches the first element of one of the clauses then it must match the

rest of the el3ments in that clause.

<prog [[(Ifix x1]
<is? <when [<?> x]> 3>>
x gets the value 3 since 3 is a fixed point number.

-Y -. -..- -. . .. . .____ -m
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In the expression below <all -a _b> matches 3 only if both -a

and _b match 3. Thus both a and b are set to 3.

<prog [a b]
<is? <all -a _b> 3>

A number of actors are defined below.

A palindrome is defined to be a list that reads the sa;me

backwards aDd forwards. Thus (a (b) (b) a), (), and ((a b) (a b)) are

palindromes. Mcre formally in MATCHLESS, a palindrome can defined as

an actor of no arguments:

<define palindrome
<actor [)

;"palindrome is a actoz of no arguments"
<either

<empty>
";"a palindrome is either empty or"
<declaration [x]

;"declare a new local x"
<list _x (palindrome) .x>
;"let x be the first element of the

linear str-Isture.
Also x must
bd the last element
with a palindrome
in between">>>>

For example

<is? <palindrome> (a 1 1 a)> is true.

The form ACTOR is like the function of LISP except that it is used in

actors instead of in fvnctions. The above definition reads: a

palindrome is a list or vector such that it is empty or it is a list

or vector which begins and ends with x with a palindrome in between.

The actor SANE causes the identifier x to be rebound every time that

palindrome is called. The actor '-NVERS1 is defined to bc such that
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<is? <reverse .x> .y> is true only if the value of x is the reverse of

the value of y. The definition of reverse is

<define reverse
<actor [x]

<when
(<monadic>

;"if the object being matched is monadic
then it must I"n equal to x"

ex)
[<declaration [first rest]

;"othervise let first
be the first elenent
of the matching object
and rest
be the segment of the rest of
the elements of the
matching object."

<linear -first I-rest>
;"when <linear (reverse .rest) .first>

matches .x we are done"
<be <is?

<linear
(reve:se .rest)
.first>• x>>> ]>>>

For example

<is? <reverse (z y z)> (z y x)> is true

Many of the ideas for the actors come from Post productions*

BIF, general regular expressions, ELlIST (Slaglels algebraic pattern

matcher), SNOBCL, CONVERT, and LISP. We give examples of the use of

these actors aftervard.

4.6.1 Definitions of Ictors

2re
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14.6.1.1 Control Actors

4.6.1.1.1 Conditional Actors

JxJ> matches an object only if the value of JxJ is

identical to the object.

<NON

Ipattern|> matches an object only if ipatterni does

not match the object. Thus <non c> matches a, but <non a> does not

match a.

<VEL

-patterns-> matches an object only if scee pattern in

turn matches the object. If a simple failure backs up to the actor

VEL, then the next alternative pattern in turn is tried. If all the

alternatives are exhausted, then VEL itself propagates a simple

failure backward. For exampie

<prog [[a 3]3
(. (<vel 4 -a> <4 .a 1>) (4 5)>>

a is initialized to 3
4 is matched with 4
<* 3 1> fails to match 5.
a is matched against 4 giving a the value 4

<4 4 1> matches 5

<prog [a b]

(<vel :a ?b> ?a)
(3 4)>>

a gets the value 3
3 does not match 4 so a simple failure is generated
a gets the value #nnassigued
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b gets the value 3
a gets the vilue

The following example shows -ui EL is different from EITHER:
<prog (i b]

<is?

<either ?a 7N>
?a)

(3 4)>>

evaluates to vhich J., false jince EITHER does not try matching ?b

with 3 becauv o su"es . matched 3.

<ALL

-pptterns-> matches an object only if each pattern in

turn matches tte object.

<IS-ACTOR

Ipattern|> will match an object .aly if the object

matches tle value of |Fatterq|.

<BE

|predicatel> matches an object only if the !predicatei

is not false. In other words the actor BE ignores the object that it

is supposed to match and considers culy the valr.e of predicate.

<be <is? 3 3>> matches anything

<be <>> does not match anything siaze <> is false.

<MATCHING

[Jobject| Itaill Ilocl] ipredicatel> is exactly like

the actor BE except that the identifier |objecti is bound to the

object being matched, Itaill ia bound to its tail if it has one , and

Iloci is bound to a locative to JabjectJ if there is one,

•f -"2 r --- •-.• m '' :--•--' - . ..
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<WHEN

+checker+ -clauses-> where each clause is of the form

[jpatternl -aore-patterns-] or of the form #DECLARE [[-declarations-]

ipatternl -more-patterns-] matches an object if the first element of

some clause in turn matchies the object and then the rest of the

ele~ents in that clause match the object.

<prog [x y]
<is?

<when [<number> x] [_y]>
foo>>

;"y gets the value foo since foo is nct a number"

<prog [[I=fix [y 1] x]]
<is?

<when
[<be <is? _x <+ .y I>>>
<+ .x 2>]>

4>>
;"x qets the value 4"

4.6.1.1.2 Block Structuring

<DECLA ATION

[-declarations-] -patterns-> matches an object only if

each pattern in turn matches the object after -declarations- are

bound.

<_ tdeclaratio[[x ] _x] >

x gets the value $

<ACTIVE

<jproceduriel -args-> |placel> matches the pattern

|procedurel against all the currently active procedures within
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Iplacel. If the match succeeds then -args- are matched against the

procedures arguments. The lplacel may either be a process or of the

form [-,"BETWEEN" Inaveli lrane2J] where Inamel! and Iname2l are the

names of blocks for a Frocess.

4.6. 1.2 Data Actors

4.6.1,2.1 Specialists

4.6.1.2.1.1 Structure Actors

Any expression delimited by "(" and ")" matches a list. Any

exp:.ession delimited by "[" and "J" matches a vector or a tuple.

<?> matches anything.

Inl> matches an object ODly if the object has length

the value of Inl. For example the following are true:

<is? <?> (b a c)> is true.
<is? ((?)) ()> is true.
<is? (a A?)) (a)> is true.
<is? (a (?)) (a b)> is true.

Something of the form '|xi matches only those objects which

are equal to 1xi. For examfle '.a matches .a anO "a matches a.

Jul Ipatternl> will match anything of lengtk Jul which

in turn matches Ipatterni.
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<prog [ four-characters )
<is?

[<? 3> <? 4 :four-elements> <?>]
[a b c d e f g 1i i]>

;"four-elements has the value (d e f gj]>

<STAR

-patterns-> matches an object only if the object

consists of a sequence (including the null sequence) of elements that

match patterns. For example <star 3> matches (3 3 3) and (a (star b

c) e) matcbes (a b c b c e).

<DAGGER

-patterns-> matches an object only if the object

consists of at least one sequence of elements that match patterns.

For example <dagger 3> matches (3) and 13 3) but does not match ).

<OPTIO NS

-patterns-> matches a sequence of elements vhich match

a subsequence of the patterns from left to right. For example

<options a I=fix !=atom> matches (a 3).

<HAS

-properties-> matches any object vith the appropriate

properties where each property is of one of the following forms:

[lindicatorl <FAIL>] fails if there is an object under
jindicatot 1.

present [lindicatorjl removes the value under the iindicatorl if it is

.. . [ I .indic tor it 2 scys that the oblect has under the
Jlmaacatorl a piece at which matches thl pattera Ipat|.

I -~ -~--- -.-- ----- ~ -----------------
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The actor HAS allous MATCHLESS to do pattern matching cn arbitrary

graph structures. The example of the syntax of LISP given below shows

how ve can write gramnars over graphs. The idea of developing pattern

structures over graphs has been generalized and extended in PLANNER.

<has ["x" 3] [4] [c <replace 5>]>

<node [c [4)] [4 5] ["x" '1>>

evaluates to

#node (["x" 3] [c 5])

<SELECT

ipat) lother5> matches any structue such that one of

the elements of tho structure matches patj and the remainder of the

structure matches |otherl..

<prog [r]
<select 3 _r> <class 4 3 5>
;"r gets the value <class 4 5>">

<OF

Ipat| |collectl jotheri> matches any structure such

that the list of all the elements of the structure that match Ipatl

matches the pattern icoliecti and the rest match the pattern lotheri.

For example

<prog [integers others]

<of t=fix integers _others>
[a 3 b 5 9]>>

integers gets tke value (3 5 9)
others gets the value (a b)

<STR UCTU RV>

- - - --
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matches any list, vector, or node.

<EMPTY>

matches any empty stracture.

<MCNAD>

matches any object which cannot be decomposed.

<LINEAR

-patterns-> matches any list, vector, or tuple whose

elements match the patterns in order. For example <linear 3 4>

matches (3 4) and it also matches [3 4].

<ELEMEIT

lxi> matches any object such that the object is an

element of |xi.

<CONTAINS

|pat|> matches any structure which contains an object

that matches |pat|.

l<block (<otlist containsl-> <oblist>)>

<define contains
<actor

<container
<eval !'<actor () .y>>>>>

<define container <actor [x]
<when

;"if the actor x matches
the Patching object
then we are done"]

[<monadic>
;*if the matching object is

monadic then fail"
<fail>]

[<linear <container .x>.(?))
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;"if the first element iu the
matching object contains x
then we are done")

;"else the rest of the matching object
must contain x"

<linear <?> (container ozJ>]>>'I

WS<end-block>

<REPLACI

Jlx> matches any object. As a side effect the object

which is matched is replaced with the value of |xi.

<prog [y]
<is?

<all

- 7
(<replace a> (replace (b)))>

(c d e)>>
y gets the value (a b)

Ve can define an actor rev which changes any list which it matches to

the reverse of that list.

<define rev <actor [J
<either

<empty>
<linear <?>>
<declaration [first last]

<linear : first (?j : last>
<linear

<replace .last>
frev)
<replace . first>)>>>>

low if evaiuate

<-:c (of t )>
<- <rev> .cV

then c mysteriously haq the value (g f e) because the actor rev
destroys the initial list to sake tRe reverse.

<PRECEDES
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lxi> will match any expression which precedes jxj in

the total ordering on expressions. For example <precedes rc"> will

match "a" since "a" prcedes "c".

<FOLLOWS

]x|> vwil match any expression which follows lx! in

the total ordering on expressions.

4.6.1.2.1.1.1 List

<LIST! -DECOMPOSER

-patterns-> matches lists whose elements match -

patterns-. It is equivalent to (-patterns-).

4.6.1.2.1.1.2 Vector

<VECTOR! -DECCEPOSER

-patterns-> matches vectors whose elements match -

patterns-. It is equivalent to [-patterns-].

4.6.1.2.1.1.3 String

<SRING I-DECORPOSER

-patterns-> matches strings whose substrings match -

patterns--.

<prog [first rest]

<string ljfirst Irest>
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"see tke boy">>
first gets the value "see"
rest gets the value "the boy"

<prog [root]
<_ (striag ! oot nsn> "cats">>

root gets the value "cat"

4.6.1.2. 1. 1.4 Graph

<IODBII-ECOPOSER

-properties-> is equivalent to <ALL I=NODE <HAS -

properties->>.

4.6.1.2.1.2 Atom

<ATOB! -DECOSPOSER

s1 101> will match an atom whose print name is the

string Isi and which is on the oblist named 3ol.

4.6.1.2.1.3 Vord and Number Actors

<1UEBER > matches an object only if the object is a number.

For example <number> matches 3.

<LESS

Ill> matches any number less than the value of jil.

<LESS-

jai> matches any number less than or equal to the

value of Inl.

<GRIAT!I

- - -- - .~. 2V-
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jln> matches any number greater than the value of Jnl.

<GREATEB=

jnl> matches any number greater than or equal to the

value of Jul.

<FIELDS

-specifications-> matches any fixed point number which

meet each specification of a field in turn. A fixed point number x

meets a specification cf the form [(bitsl Ipatterni] only if the

number which is the byte of x def.ined ty Ibits| matche. |patternlo

The expression <bits |sl |pl> deE•lz a byte Is| bits wide which is

|Pi bits from the right end of the word.

<fields [<bits 3 O> 4) [<bits 1 35> 1]> matches a

fixed point number whose lover 3 bits are 4 and whose sign bit is on.

4.6.1.2.1.4 Algebraic Actors

The motivaticn for providing algebraic actors is to enable

pattern directed algebraic simplification to be easily accomplished.

Cften it is not clear which simplified form is most useful. Using the

hierarchical tacktrack control structure of PLANNER one form can be

tried as a hypothesis and then in the light of this experience perhaps

another more suitable one.

-patterns- |rest-of-summands|> matches a sum such that

each pattern matches a summand and the rest of the summands match the

2 r~
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pattern jrest-of-susmandsi.

<is?
<!+ a b <?>>
'<+ c b a>> is true.

<prog [y z r]
<is?

<1+ <all <non c> _z> _y _x>
'<+ c b a>>>

z gets the value b
y gets the value c
x gets the value a

<prog [y;
<is?7

'<+ 1 c b d>>>
y gets the value 1
x gets the value <+ d c>

<SUN-OF

Ipat] Iterms-that-match-patl Irest-of-summandsl>

matches any sun such that the sun of the summands that match Ipatl in

turn match the pattern Iteres-that-match-pat| and the rest of the

summands match the pattern #rest-of-susaandsi.

<prog [y]
<is?

<sum-of <1* x <?>> _y <7>>
'<+ <* 3 x> <* y a>>>>

y gets the value <+ <* 3 x>>

-patterns- irest-of-factorsi> matches a product of

factors such that each pattern match-s a factor in the product and the

rest of the factors match the pattern Irest-of-factorsi.

<is? <1* 5 b c> *<* c b 5>> is true.

--1 : --.. .
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<prog [x y]
<is?

<(* <all <number> _x> _y<?> »
'<* <+ 2 a> 3 a>>>

x gets the value 3
y gets the value <* 2 a>

<prog [z L? <1* 3 _x I> 0>>

x gets the value 0

<PRODUCT-OF

Ipatl ifactors-that-match-pat| Irest-of-factorsl>

matches any product of factors such that the product of the factors

that match pat in turn match Ifactors-that-match-pati and the rest of

the factors match the pattern Ire..-of-factorsl.

<prog [x y]
<is?

<product-of <non <number>> x _y>
I$<* a 3 b 5.0>>>

x gets the value <* a b>
y gets the value <* 3 5.0>

<POWER

jbasel |exponeatl> matches an exponential.

<prog [x y]
<is? <power _x _j> '<expt y 2>>>

x gets the value y
y gets the value 2

<prog Ex< ]? <power _X _7> 0>>

x gets the value 0

<EXTRICT

Ipat I Iterns-wuith-pat-extractedi I rest-of-ternsl>

matches a sun of terms such that the sun of the terms which contain a

-actot which matches Ipatl matches Iterms-with-pat-extractedl and the
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sum of the rest of the terns matches the pattern Irest-of-ternsi. The

actor EXTRACT is due to V. Bledsoe.

<is?
<extract x <14 3 a O y>
V'<+ I'<* a x> i I$<* x 3>>> is true

Joel Moses invented the example of defining a quadratic in x

using patterns.

<define quadratic
<actor

[x a b c]
<extract

<pover .x 2>
<all <non 0> <non <contains .x>> <.a>>)
<extract

. x
<all <non <contains .x>> <.b)>>
<all <non <contains .x>> <.c>>>>

Thus if
<prog [["special" al bl cl)]

<is?
<quadratic

y
<actor [ _al>
<actor [ _b)>
<actor [ c1>>

<0+
a
<0* 3 7>
<0* z *<expt y 2> 0>
<0* c y>>>>

then

al gets the value <* z 0>
bI gets the value <+ 3 c>
cl gets the value a

- 1. 2. •. Locative

~ -. r- -
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4.6.1.2.2 Type

<OF-TYPE

latonl> matches an object jo0 only if <==? <TYPE |o0>

latoml> i.e. only if Joa is of the type latomi. The expression <OF-

TYPE latoml> may be abbreviated as ?1!1atcal.

<AS

Ipati lin|J> matches an object x only if x is of the

type of the range of the injection linji and <RETRACT x> matches the

pattern Ipati.

4.6. 1.3 Identitier

<GIVEN

lthetaj -bindings-> acts like <VALUE Jthetal -

bindings-> if the identifier |theta" has a value. Othervise <GIVEN

Ithetal -bindings-> matches an object x only if the identifier Ithetal

matches x.

?Ithetal is an abbreviation for <GIVEN Ithetal>

1?Ithetal is an abbreviation for (GIVEN jthetaj}

<ALTER I-PERSIST ENT

Ithetal -bindings-> matches any expression x which

matches the identifier ithetal and gives Ithetal the value 1.

:jthetaj - an abbreviation for <ILTER Ithetal>

--- n
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!:jthetal is an abbreviation for (ALTER Ithetall

<ALTER !-TENTAIIVE

Ithetaj -bindings-> matches any expression x which can

match the identifier [thetal. The identifier Ithetal is given the

value x. However, if a failure backtrac s to ALTEBI-TENTATIVE, then

|thetal is restored to its previous value.

_|thetal is an abbreviation for <ALTERI-TENTATIIE

Ithetal>

!_|thetal is an abbreviation for {ALTERI-TENTATTVE

Jthetal)

4.6.2 Examples of the Use of Actors

The rest of our examples of the use of actors come from giving

a rigorous definition of the syntax of LISP in MATCHLESS. Those

readers who are not interested in the details of the syntax of LISP

should not read section 4.6.2 The following graammar accounts for

essentially all the context dependent features of the LISP syntax. It

specifies that a function call must have the right number of

arguments. An explicit cro muzt have a tag to which it can go. The

syntax specifics that some identifi-~rs are free and others are bound.

<defiAe top-function <actor [J
<declaration

[("special" [tags () [boundvars 0 ]
(fuuction <varlist> <form))>>>
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Thus for example <top-function> matches (function 0 O)- The actor

top-function introduces the pattern identifiers tags and boundvars and

bW ds them to - - which i• the null segment.

<define varlist <actor [3
<star

<declaration
[[I=aton curvar]]
_curvar
<be <is? _boundvars (.curvar !.boundvars)>>>>>>

The actor varlist checks each identifier in turn to make sure that it

is an atom ind then puts the identifier in boundavars.

<define
form <actor [
<when

[<monadic>
<either <constant> <var>>]

(
(1=atom (?))
<Vhen

[ (prog M?)
<progform>]

t(cond (?))
<condform>]

[ (sets• [?)
(<?> <var> <form>)]

[(go 1?))
<gofors> ]

[ (<has [subr <?> ]> 1?1)
(<?> [star <form>))]

E (<has [expr <i>]> ]1))
<exprfarm>]

[ (<has [fxpsr <?> > (1))<?> ]
[((<has [fsubr <?> ]> (]))

<?>]

[(<has [Isubr <7>]> (?)
(<?> (star ,.form>))]

[(<has [lexpr <?>]> (?))
(<?> (star <form>))][<?>
<matching

[expc -"optional, ]

• _ -
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<print (oexpr undefined)>>]>'
[((function (?)) (?)

<function-function>]
[<?>

(<form> (star <form>) ]>>>

The above definition says that if a form is a monad then it must be a

constant or an identifier; if its first element is an atom then if it

begiLs with the atom prog, then it must be a progform etc.; if it

begins with "((function .. ) .. )" then it must be a function-function;

otherwise it must be a form followed by a foralist.

<define constant <actor < • (either t () <number>>>>

The only constants are t, ), and numbers.

<define va.; <actor I=atom ]
<e Lther

<element , boundvars>
<unbound>>>>

An identifier is either in boundvars or it is unbound.

<define condform <actor [I (cond (dagger ((star <form>))))>>
<define

progform <actor [)
<declaration

["special"
[tags otags)
[localtags ()]
[boindvars oboundvarsj]]

(pxog
<varlist>

(all
<collect-tags>
<be <is? _tags (!.localtags Itags)>>
<staz <either I=atom <form>>>})>>>
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On entrance to progform tags and boundvars are rebound to their

previous values. The Frog identifiers of the prog are put in

boundvars, the tags in the prog are put in tags by collect-tags, and

the body of the prog is checked to see if it is well formed.

<define
collect-tags <actor []

<star
<either

<declaration [
[!=atom curtag]
["special" localtags]]

_curtag
<be <is?

_localtags
(.curtag !.localtags)>>

<when £<element .localtags>
<error "multiple defined tag">]

<define
exprform <actor []
<declaratior

(args functicnvar]
(

<has [expr (function _functionvar {?})]>
[all <3tar <form>> _argsi)

<be <==? <length .functionvar> <length .args>>>>>>

An exptforn is a call to an expr with the correct number of arguments.

Note that immediately inside the actor exprform the identifierss args

and functionvar are rebound but remain unassigned.

<define goform <actor []
(go

<vwen
[(Iatom

<either
<element .tags>
<print (.curtag undefined tag)>>]

[<form>]>)>>
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A goform is either an explicit call to go to a tag which must be in

4• .tags or a computed go.

<define
function-function <actor [ ]
<declarat ion

[args functicnvar)(
<declaration

["special" (boundvars (.boundvars) ]]]
(function

<all <varlist> _functionvar>
<form>)>

[all <star <form>> args))
<be <==? <length .functicnvaL .args>>>>>>

In a function-function the bound identifiers of the function must be

added to bouhnvars and the function-function must have the proper

aumber of arguments.

The above syntax could easily be extended in several

directions. For example we ctmrld easily modify it so that it would

accept type declaraticns and do type checking. The syntax of

MATCHLESS could easily be defized in BkTCHLESS.
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4.7 BUBBLE

Section 4.7 is logically completely separate from the rest of

this report. it i-s no't necessary to read this section to understand

the rest of the document.

Ve are interested in exploring good ways to implement systems

like PLAINER on machines. One way is to embed the system in a

language like LISP or PL-I. The problem with embedding is that the

host language has its cwn conventions for calling sequences and saving

temporaries. The conwentions night not be ccmpatible with the system

which.is.being implemented. Another approach IT to try to develop 'a

formalism which is sufficiently flexible so that it can adapt to the

higher level system conventions but still is efficient enough so that

it is feasible to use as an implementation language. The applicative

sublanguage of HATCBLESS seems to be at approximately the right level

with the restriction that the data are no longer have types associated

with then at run time. Thus all the type information must be able to

be processed at compile time. The general type definition formalism

remains although the definitions must be processed at compile time.
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4.8 The Editor

<EDIT

lxl> enables editing the structure ]xJi The editor

maintains a special identifier CURSOR!-EDIT which represents the

position of the editor within the structure. a command may be

abbreviated by the first letter in its name. The editor sakes use of

the tentative versions of the structure modifying commands so that the

results of a series of edits can be undone by backtracking. Gregory

Phister made suggestions and implemented an editor.

<BENEATH! Icu:.sorj> is the expression beneath Icursorl or <> if

there is none.

I <C.0VTAIVS" Icursor|> .is..the structure which contains Icursor|

or is <> if there is none.

<ABC lcursorl[ is the indicator under which <BEIATU Icursorl'

is fcund under <CONTAINS icursorl> or is <> if <CONTAINS Icursori> is

<>. That is if <CONTAINS Icursorl> is not <> then:

<get
<contains jcursor|>
<arc Icursor3>> is <beneath Icursorl>

<GO InJ IcursorP> moves Icursor| Inl positions to the right if

in| iz positive and :nj positions to the left if Jnj is negative.

<WALK in| |cursorj> walks Icursor| inJ positions around the

tree.

<UP mnJ icursori> rises through ji| levels of structure from

Ic .sor I.

<DOWN lnl lcursori> descends through jai levels of structure
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from Icursorl. If hjn is positive the cursor is moved down to the

right otherwise to the left.

<SEARCB ipattern] Inj lcursorj> searches for the InIth

occurence of an object that matches 1patterni. If Inj is positive the

search is to the right, otherwise to the left.

<FIND ipattern] in] ]cursorl> will conduct the search only in

the object under lcurscr].

<REPLACE Ipatternilxl lInJl Icursorl> replaces Jul occurences

of objects that match Ipatternl with the value of ixl. If Jul is

positive the search is to the right, otherwise to the left.

<CHANGE lpatternl 1xi Inj Icurs-.rl> changes Inl occurences of

objects that match |pattern] with the value of lxi on the structure

which is under icursorl.

<INSERT -expressions- Icursorl> inserts -expressions- into the

rtruct ure.

<KILL In) Icursorl> deletes the expression under the cursor

and <- |nj 1> expressions following it.

L/
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5. PLANNER

The PLANNER formalism incorporates a unified set of problem

solving primitives that run under a multiprocess backtrack control

strocture. The formalism itself is independent of any pirticular

problem solving domain. The primitives of the formalism take default

decisions in the course of a ccmputation in those cases where the

information supplied does not specify exactly what is to be done.

However, as a matter of principle each primitive allows a continuum of

expression from no preference at all down to the specification of

exactly one choice. The formalism is intended to be used as a matrix

in which the necessary domain dependent kziio'ledge can be embedded.

Sany of the primitives rely or side effects to accomplish their

purpose. Although the use of side effects is in oppositicn to some

theories of good language design, their use in PLANNER has worked out

well. The formalism encourages modular prograriming through the use

of specialized routines to satisfy goals and make, deductions.

The name PLANNER comes from the desire tj create a formalism

in which it is easy to express plans of action. To construct a plan

in the formalism is the same az constructing a PLAINER theorem.

Mfixing planning and deduction is guite easy. Conditional plans are

explicitly provided for as is the ability to bicktrack in case of

failure.

Consider a statement that matches the pattern [IPLUS tJ!
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1Yl]. The statement has several imperative uses.

sti: if we can deduce |xi, then we can deduce jyl.

In PLANNER the statement stl would be expressed as <ANTECEDENT [ ]xi

<ASSERT Jy»>> which means that jxj is declared to te the antecedent of

a theorem such that if |x| is ever asserted in such a way as to allow

the theorem to become activated then [yj is asserted.

st2: if we want to deduce lyJ,
then establish a subgoal to first deduce Jxi.

In PLAANER the statement st2 would be expressed as

<CONSEQUENT [j 1y7
<GOAL Ix'>
<ASSERT lly>>

which means that jyl is declare1 to be the consequent of a theorem

such that if the subgoal il can be established using any theorem them

the consequent 1y7 is asserted.

Ve could also assert <CLAUSE [] [NOT 1'J] 1y7> which is a

clause which says that [not lx]] or 1y7 is the case. PLANNER has goal

oriented primitives ior using and manipolating all of the above

variants. For certain purposes any one of the variants can he sore

useful than the others. Imperativa information and heuristics can

more easily be expressea in the procedural variants. For example

heuristic information as to when we should create a subgoal x in order

to achieve y can more easily be incorporated into a CONSEQVIXT

theoxes. [On the other hand we can more..easily deduce <(LW2S [11-.c
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d> from <CLAUSE [3 x [NOT y] c d>] Of course the distinction is not

sharp since the tvo kinds of assertions can be combined by making

assertions about the actions of imperatives.

I -. __--
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5. 1 PLANNER Forms

5.1.1 Hierarchical Backtrack Control Structure

PLANNER uses a control structure in which the hierarchy of

calls is preserved so that a computaticn can backtrack to an

activation from which it has already returned. Backtracking preserves

the nesting of block structure. It simply traverses the statements

executed in reverse order. The primitive functions FAIL and FAILPOINT

enable the backtrack process to be controlled. The form <FAIL>

generates a simple failure which backtracks to the most recently

executed form

<FAILPOINT +activation-name+ [-declarations-)
i expression I
(Imessagel Iactivationj ]
-body->

Where Imessagel is bound to the message of the failure and the

predicates are evaluated to try to find one which is true. For

example

<prog [[x 3)]

<prog foo f]
<failpoint []

.1
[,"optional")
<.foo <_ :x 4>>
;"exit .foo with 4">>
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;"the first time through the above expression
has .x as its value"

<cond
[<is? 3 .x>

<fail>]
[-,'else"

5]>>>

evaluates to <+ 4 5> which is 9.

The identifier x is declared to be a fixed point integer which is

initialized to 3. The value of <failpoint [] .x [-"optional"] < :x

4>> is 3. When the second argument of the call to 0+" is evaluted the

conditional detects that x is bound to 3 and so generates a simple

failure. The failure backtracks to the call to PAILPOINT with the

message <> which is PALSE. the identifier x is assigned the value 4

and the rest of the computation proceeds normally.

ThIe'top level function of PUiNVIR is a read, evaiuate, print

loop. When tte expression read is successfully evaluated then the

uhole hierarchy of calls is forgotten, the value is printed, and the

process repeats.

One of the most straight forward ways to implement

hierarchical backtrack control structure is through the use of a

backtrack stack on which backtrack information is stored. Th, only

tricky point cones in the exdcuton of an exit where the tea~oraries

mast be pushed onto the backtrack stack before doing the exit. The

other straight forward method of implementation is not to have a stack

at all but rather to keep all the activation frames in garbage

collected storage. The stac'k implementation has the advantages that

it keeps a snaller working set and doesn't cause garbage collection.
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The swamp implementation has the advantages that it is conceptually

cleaner and is more flexible. The ideal implementation is to be able

to run either mode. In stack mode the acivation records are simply

tuples on the stack.

The use of backtrack control structure has the important

fringe benefit that it allows us to debug more easily. We have

available the following control prmitives.

<STEP jPI In, Iconditionj> executes the process piJ for |nj

elementary steps unless the 1conditionJ is met in which case it

returns the number of elementary steps completed, If |n| is negative

then the process is executed BACKWARDS1 This enables us to zero in on

bugs by running forwards and backwards ,intil the bug is found.

<IMVGKE 1p; Jnu lconditioni> executes-the process |pI for Jnl

procedure invocations unless the Icondit;ion} is met in which case it

stops and returns the number of procedural invocations which have been

completed. Igain if mnl is negative then the process is run

backwards.

5. 1.2 PLANNER Functional Forms

The functional forms in PLANNER are FUNCTIC5 and ACTOR. The

sole change in the semantics is that the functional forms of PLANNER

can handle pattern directed invocations.

The following example illustrates the syntax of functional

forms. The function ANONG which is defined below is a generally

, F .- -



5.1 page 205

useful PLANNEB function. What AMONG does is to successively return

the elements of the structure given as its argument. For example

<among [E A]> returns E as its value. But if a simple failure

backtracks to it then it returns A as its value and continues the

computation. But if still another simple failure backtracks then it

allows the failure to continue to propagate through the function

AMONG. The particular way in which the function AMONG is used here

does not accomplish anything that cannot be done easily in LISP. We

give this example because it is simple enough to be easily understood.

One way to assign to the identifier x the value which is the first

element of .list that is greater than 5 would be

<is
((?) .<all .<greater 5> :x> {?J)
.list>

Inother way would be <is _x <larger 5 <among .list>>> where

<define amopg <functicn m nqr [list] <prog [first)
<f1aipoint forwara M[

;"establish a failpoint and return <>"
[m a?]

;"on backtracking let m be the message and a? be true
if

the failure will propagate through"
<cond

[<not? <is? *a <)>>
;4if the message is not <>

then restart the failure"]
[<is? .m <>>

;"the message is <>"
<restore * formard>
;"start going forward agai

with the failpoint restored"]>>
<cond

[<empty? .list>
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;"if 1j'it is empty generate a
simple failure out of among"

<fail <> .nunger>]
[•"else"

< <linear :first !:Iist> .list>
;"set first to the first of .list and

list to the rest of .list"
<.°unger .first>
;"exit .munger with .first"]>>>>

<define larger <function [a b]
<cond

[<is? <greaier .b> .a>
;"if a is Sreater than b then return a"
.a I

[-"else"
;"otherwise generate a failure with the message <>"
<fail <>>]>>>

Thus the value of <larger <among (2 4 6)> 5> is 6.

5.1o3 PL&NNEB Theorems

PLANNEi allows proceadures to be invoked by a pattern which

states what the procedure is supposed to accomplish.

There are four kinds of theorems which are presently defined

in the language for satisfying requests nade in the body of

procedures:

1. Consequent theorems for satisfying goals. Consequent

theorems are the most fundamental in the sense that they can easily be

used to simulate the other two kinds of theorems.

2. Antecedent theorems for deducing the conclusions of
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assertions

3. Erasing theorems for deducing conclusions from the fact

that some assertion is no longer true

4. Simplifying theorems are for simplyfying expressions.

5. 1.3.1 Conseguent

<CCNS! GUENT
-type- +activation-name+
Ideclaration-specification J
Iconsequent- pattern)
-body->

evaluates to a procedure which declares that Iconsequent-patterni is

the consequent of a theorem which can be used to try to establish

goals that match the pattern )consequent-patternl. Vhether or not the

theorem actually succeeds in establishing the goal depends on the

body. Typically the first action that a theorem of type conseguent

takes is to try to reject the goal. Ve cannot emphasize too strongly

the importance of analyzing the consequences of goals in order to

reject the ones which cannot be achieved. Even if no absurdity is

detected, the consequences are often just the statements that are

needed to establish the goal. The only way that a theorem that begins

pith the atom consequent can be called is by the pattern directed

call:

<C ALL
[<[GOAL I goal-pattern I ]>

Irecommendation I
Istate-pathl ]>
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which attempts to satisfy the goal 1goai-pattern| where Iconsequent-

patterni matches |goal-patterni and the consequent theorem is in the

data base specified by Istate--pathl, The function CONSEQUENT is

defined to be:

<PUNCTION +checker+ *activation-name+
[-""PATTERN"

(ideclarations| [GOAL Iconsequent-patterni)]]-body-)

The folloeing theorem says that it it is our goal to prove x and we

have proved that w implies x then we should make it our goal to prove

w.

<consequent [x w] ?x
<current [implies ?w ?x]>
<goal .w0>

The following theorem says that two things ake equal if they are

identical.

<consequent [x) [= ?x ?x]>

With this consequent theorem, evaluating the following causes:

<prog [a]
;"declare an identifier a"
<goal [= ?a 3]>
;"a gets the value 3 since a is linked to the

identifier x in the consequent theorem">

<prog [a c
;"declarýq a and c"
<prog E•I 1

;Odeclare b"
<goal [= ?a ?b]>
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;"a is linked to b"
<goal [- ?b ?c]>
;"b is linked to c">

<goal [= 71 31>
;"a gets the value 3 and so

therefore c gets the value 3">

5.1.3.2 Antecedent

<ANTECEDENT
+checker+
I declaration-specification I
I antecedent-pattern I
-body->

evaluates to a theorem which declares that lantecedent-patternl is the

antecedent of a theorem from which conclusions may be drawn by the

body. Tho,; theorem can be used to try to deduce consequences from the

fact that a statement that matches the antecedent has been asserted.

The only way that a theorem that begins with the atop antecedent can

be called is by the pattern directed call:

<CALL
[<[ASSERT jassert-patterni)>

I reconmendation)
istate-path I 1>

which draws conclusions frcm iausert-pattorni Yhere :assert-pattecnl

matches. jantecedent-patterni the aatecadndent theorem statisfies

Irecommendation) and the aptecedent theoren is in the data base

specified by Istate-path[. The function ANTECEDENT is defined to be:

<FUNCTION +checker+ *activati,,)n-naue+
[- NPATTER31

[Ideclarationel [ASSENT lantecedent-
patter-J b]]]-body->

*5k-c ~ ~ a. .-

_________
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The following theorem says that if we assert something of the form

[not [implies I Y]] then we should deduce X.

<aatecedent [x y) [not [implies _x _y]] <assert .x>>

The following th-?orem says that if something of the form rmarry [xl

y7?) is asserted then (bachelor [xj] should be erased.

<antecedent Ix y]
[marry _x _y]
<erase [bachelor .x]>>

5.1.3.3 Erasing

<ERASING
- type-
I declaration-specification i
I erasing- pattern i
-body->

can be used to try to deduce consequences fro& the fact that a

statement that matches the patt'.'n |erasing-pattern[ has been erased.

The only way that a function of kind erasing can be called is by the

expression

<CALL
[<[ERASE lerase-patternJ]>

I recolahendation |
tstate-patbh ]>

which expresses the fac' that there hvs been a change in the world

affecting lerase- ,atterni where lerase-patterni manzches |erasing-

patterni. The function ERASING is defined to be:

<FUNCTION *checker+ *actiTatiov-naae+
[,%"PATTERS"

[ decltrationsf [JZASE lerasing-patter| J]]]
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-body->

The following theorem says that if something of the form [alive x) is

erased then [dead x) should be asserted.

<erasing [x]
[alive _x)
<assert [dead .x]>>
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5.2 PLANNER Functions

5.2.1 Data Primitives

Some of the functions in PLANNER are given below together with

brief explanations of their purpose Examples of their use are be given

immediately after the definiticn of the primitives below. The

primitives probably cannot be understood without trying to understand

the examples since the language is highly recursive. In general

PLANNER remembers everything that it is doing on all levels unless

commanded to forget some part of this infor:mation. The default

response of the language when a simple failure occurs is to backtrack

to the last decision that it made and to make another choice.

<CAN DIDATES

jkindl Ipattern| Istate-pathi> aLe the Ikindi

candidates that have the same coordinates as |patterni and are in the

local data base defined by Istate-path|. CANDIDATES is the basic

retrieval function for the data base. The candidates can be generated

incrementall if" it- i's not. desired to cdnstruc "them all at once at

the beginning. The kind of data retrieved may be:

CURRENT for assertions
FUNCTICN for functions
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5.2.1.1 Assertions

<A SSERTi-TEN I&AI VE

Istatement! Uec! [(-"PATH Istate-path ] [-"ALREADY"

]already-currentl]> puts Jstatementl in the data base defined by

Istate-pathi ar. tries to draw conclusions according to the

recommendation Ireci. Recommendations are optional; the defau.-4

recommendation is [-,"TU"] which says not to try any theorems. If the

statement is already in the data base then lalready-currentl is

evaluated. If the value of ]already-currenti is -"I'EASSERT" then the

IstatementJ is asserted in the first element of Istate-pathl. The

-O"reassert" feature is due to Drew McDermott. Otherwise, the finction

ASSERT causes the statement statement with properties to he inserted

in the data base which is the first element of Istate-pathl. Then

<CALL
[<[ISSERT Istatementl ]>

Istate-pathl
Irecl ]>

is evaluated to draw conclusions from statement. If the call to DRAW

ultiaately fails then J*tatementl is removed from the data base. The

argument lalready-current| is due to Peter Bishop. The. recommendation

is optional. The value of the function aSSERT is the arc from the

state which contains the assertion having as indicator the assertion.

<assert
<put

[subset a bh
(difficulty trivial ]>>
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asserts that the set a is a subset of the set b and put the value

trivial under the indicator difficulty.

<ASSERT! -PERSISTENT

Istatement| |recj [-"PATH Istate-pathl] [-N"ALREACY"

Ialready-curzentl]> is exactly like ASSERTI-TENTATIVE except that

jstatementi is not witbdravn from Istate-pathi on backtracking.

Expressions of the form <CLAUSE [declarations] -alternatives->

denotes an assertion with variables declared followed by logical

alterna• ives. For example

<assert
<claus,' [[<set> x y z]j

[not [subset ?x ?y])
[not [subset ?y ?z]]
[subset ?x ?)]>>

asserts in declarative form that the subset relation is transitive for

set-. In other words it is equivalent to

<assert
<clause [[<set> x y z]]

[implies
[and

(subset ?x ?y1
[subset ?y ?z]]

[subset ?x ?z]]>>

-Anothec kind of assertion is one whicb has variatMls which are

consnmed by being bound For example if we translate the assertion

that John is somewhere as <assert <closure <clause [] [at John ?x]>

x>>, then <goal [at John store]> causes x to be bound to the atom

store. Thereafter <goal [at JIhn hobe]> fails since the identifier x

was consutmed in being bound to the atom store. The above problem was
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suggested by Gene Charniak.

W. Bledsoe suggested trying the problem of showing that [all a

[some b [p b a)]] follows from [some x [all y [p x y]]].

<assert <clause [y] [p [xO] ?y]>>
<prog [b)

<goal <clause [p ?b [aO]]>>>
b gets the value [xO]

The expression <clause [y] [p [xO] ?y]> is the assertion Skolem form

of the assertion [some x [all y [p x y]]] where xO i:. the Skolem

function for x. The exfressions <clause [p ?b [aO.]> is the goal

Skolem form of [all a [some b [p b a])] where aO is the Skolem

function for a. On the other hand if we were to try to derive [some x

[all y [p x y]'] from [all a [some b [p b a])] we would fail:

<assert <clause [a] (p [bO ?a] ?a]>>
<prog [x]

<goal <clause [p ?x [yO ?x])>>>

The identifier x cannot be be bound. The many-sorted omega order

quantificational calculus of PLANNER allows for the possibility of

null domains. For example it does not follow that there is a god

uhich is a deity if we assume that all gods are deities. That is

[some [in g god] [deity g]] does not follow from [all [in g god]

[deity g]]. Thus we cannot prove the existence of a god so easily.

However [some [in g god] [deity g]] does follow from [scme [in g god]

(mythical g)] and [all [in g god) [implies [mythical g] [deity g]]].

<assert [mythical [gU])>
<assert

<clause [[<god> g)]
[not [mythical ?g]]
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[deity ?g]>>
<prog [[<god> z])

<temprog []
<assert <clause [ ( (not [deity ?x]]>>
;"assert that there are no gods which

have the property of being deities"
<prog (literall literal2]

<current
<clause

<all
[deity (2>]
_literal2>

<current
<clause

<all
[not [deity <?>]]
literal 1>

<box>>>
<assert

<resolve
* literal 1
.literal2>>>

;"resolve a clause which contains an element
which matches [deity <7>] and
a singleton clause
whose element matches
[not [deity <?>]] producing
<clause (] [not [mythical ?x]]> which
is then asserted"

<prog [literall literal2]
<current

<cla use
<all

[mythical <?>]
_literall>

<box>>>
<current

<clause
<all*

[not [mythical <?>]]
_literal2>

<box>>>
<assert

<resolve
.1iterall
.literal2>»>

.'-resolve two singleton clauses;
one containing
a positive instance of mythical and
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one a negative iustance.
this binds x to [gO] and produce a

clause which is written <box>"
<current <box>>
;"thus we have derived the null clause which

is a contradiction">
<assert <clause [) [ deity .x]>>>
;"assert [deity [gO]]"

5.2. 1.2 Erasures

<ERASE !-TENTAYi1VE

Istatement| |rec| [-"PATHO Istate-pathi| [-"NOT-FOUND"

jnot-foundij> tries to find an assertion lal in Istate-pathi in the

data base that matches |statementi. If such an assertion lal is found

then it is erased and

<C ALL
[<[ERASE at ]>

ireconmendation I
i state-path I J>

is evaluated to assay the implications of the change. If no such

assertion is found then |act-foundl is evaluated. If the change

statement fails or if a failure backtracks to the function ERAS2, then

|a|..is reigserted in, the data base and the whole process repeats with

another statement from the data base. The value of the function ERASE

is an arc from an element of Istate-path| with indicator a stateqent

which matches lpatternl. The reader should be careful not to confuse

what happens vhen the functicn ERASE is called to remove something

from the data base with what happens when an aSSERTION fails and thus
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removes what was asserted from the data base. The function SEASE may

attempt to do pattern directed invocation to deduce consequences of

the deletion whereas ASSERT will not. The argument Inot-foundl is due

to Peter Bishop.

<erase [GA-top-of brick1 brick2|> erases the fact that brickl is on

top of brick2.

<ERASE I-PERSISTENT

Istatement) Irec [-,"PATH" Estate-pathl] [ ("NOT-POUND"

|not-foundl]> is exactly like the function ERASEI-TNUTATIVE except

that the assertion deleted from Estate-path| is not re-inserted on

backtracking.

5.2.1.3 Goals

<CURRENT?

Ipatteral istate-pathi> tests to see if a statement

that matches |pattern| currently is in Istate-pathl. If there is such

a statement, then the identifiers in Ipatterni are bound to the

appropr 4 .ate values. If there is no such statement, then CUnRENT?

zeturn.s false. .If a simple fal.ure backtracks to the function

CURRENT, then the identifiers that were bound are unbound, Then the

whole process repeats with another statement in the data base.

PLANNER is designed so that the time that it takes to

determine whether a statement that matches pattern is in the data base

or not is essentially independent of the namber of irrelevant
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statements that have already been asserted. A qoordinate of a

structure is defined by some atom, number, or string being in some

position of the structure. Vhen an s- -xpression is asserted PLANNER

remembers every coordinate that occurs in the s-expression. Two

expressions are similar on retrieval only to the extent that they have

the same coordinates. The function <MERGE vi li> will merge Iwi

iato the list ill. Consider the simple assertion

<assert .z [-"path" (.sl)]> where sl is bound to a state and z

is bound to -,[a [b c)] causes the folloving changes:

<put <position 1 current>

[a
<merge

.2

<get a
<position 1 current>
(0)
;Nif the bucket is empty then,

initialize it with
an empty list">>]>

<put <position I <position 2 current>>

[b
<merge

OZ

<get b
<position

1
<position 2 current>>jO) >> 1>

<put <position 2 <position 2 current>>

[c
<merge

<qet c
<position
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2
<position 2 current>>

(0)»]>

<put 1s r.z -"asserted"]>

Classes are storeh in buckets under the position -"class". Thus the

assertion <assert .w [-"path" I.sl))> where w is bound to [no,1empt7

<class e f>] would result in:

<put
<position 1 current>

[ncnempty
<merge

<get nonempty
<position 1 current>
(0)
;"if the bucket is empty then,

initialize it with
an empty list">>]>

<pu <position -"class" <position 2 current>)

[e
(serge

<get e
<position

."class"
<position 2 current>>

(0) >> p

<put <position -,"class" <position 2 current>>

[f
<merge

<get f
<position

-"class"
<positicn 2 current>>

(0) >>

<pot .sl [.w -,"asserted"]>

CLuses are classes at their top level. For example the clause
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<clause (] [not [on a b]] [on a c]> vould be stcred under the

coordinates for [not [on a b]] and [on a c]. Variables in expressions

are ignored on indexiag. Thus two expressions which are the same

except for change of variables are considered equivalent. When the

bucket under s.:me coordinate exceeds a threshold then the bucket could

be sub-divided by takin( the cuordinates by pairs. The only reason

that we don't store statements under all the possible ccmbinations of

coordinates is that we can not afford to use that much space. Storing

the most recent assertion at the front of a bucket also tends to speed

retrieval. If a total ordering is imposed en the assertions, then the

buckets can be sorted. Richard Greenblatt has constcucted a clever

total ordering on the assertions which also has the advantage of

storing new assertions at the front of the buckets. The total

ordering is constructed incrementally as assertions are made. If

MATCELESS had an efficient parallel processing capability then the

retrieval could be even faster since we would do the look-ups on

coordinates in parallel. We miyht imagine a machinc with multiple

program counters each of which is capable of interrupting the

execution of the others. However, with the current technolcgy it

appears *ore economical to timeshare a few very fast physical

processors. Clauses are stored in a special way for efficiency. The

value of the expression <CURRENT |patterni tstate-patht> is an arc

from the state in Istate-pathI which contains the assek-tion vith

iadicator name being an assertion that zatches jpatterni.
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<current?
[subset a b]
[-"use" <has [difficulty trivial]>)>

is true only if it has been proved that a is a subset of b with the

value trivial under the indicator difficulty. We shall use the prefix

operator ?z for <GIVEN x> to denote variables of the quantificational

calculus. The concept of a variable is different from that of an

identifier in that variables have glokal scope.

given:

<assert
<put

<clause [[<object> x] [<set> y z])
[subset [f ?x] 7y]
(subset ?y ?z]>

[difficulty bard]>>

The above statenent says that for all objects x and sets y z that [

x) is a subset of y cr y is a subset of z. evaluate:

<prog [[<set> w u] J
<current

<clause [subset _v _u) <7>>>>
evaluates

to <clause
[[<object> x]]

[subset rf ?xl [f ?x]]>
v gets the value If ?x)
u gets the value If ?x]

<CURRENT

:patterni istate-pathl> is exactly like CaRRENT?

except that if it runs out of objects that are currently in jstate-

path] which match 1patterni then it generates a simple failure instead

of returning false. The value of CURRENT is the node which is the
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property list if an aszertiin in Istate-path| which mntches Ipatteral

<GOAL

Igoal-patternl Irecl (-"PATH" Istate-pathl])> tries to

achieve the Jgoal-patterni according to a recommendation Ireci.

Recommendations are optioral; the default recom.endation is (-"US?,"

-."CURn-ST" <?>] vhich means the data base is searched to see if there

is something already proved vhich matches Igoal-patterni then us' it

otherwise try any consequent theorem whose consequent &atches Igoal-

patterni. The recommendation Ireci must be of one of the following

two forms:

1: U-"ESE"
.'"CUBRBINT"
-pats-- is equivalent to

<CO N D
[<CURRENT? igoal-patrertl lstate-patb I>]
|-OELSI"

<CALL
[<[GOAL t9oal-patterol ]>

["USEt '- -pats-]
Istate-pathl 3>]>

2: [E-"USE10'-CORRINT"

-pats-] is equivalent to

<COND
[<CURRENT? Igoal-patteral Iistate-pathl>]

<CALL
[<[GOAL Igoai-patter| 1]>

[,%"USBE -pats-]
Istate-path I> )>

The -,"US1l" recommendation is due to Pat Uinston. Alan Kay has

suggested th4t the syntax of PLANNER could be easily changed so that

every ezpressicn is a goal. Thus instead of Priting <GOAL z> we would
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simply write x. Ilan's suqgestion has the merit that it simplifies the

language. One reason that ve do not do this is that pattern directed

invocations are somewhat more inefficient than straightforward calls

in which the name of the called func'ticn is explicit. Anyone who

prefers the other syntax can easily expand all function calls <f args>

into <ft argsJ> by a trivial macro.

Suppose that we know that zero -I an integer and that it n is

an integer then ni-1 is an integer. We would like to find an integer j

which is not zero.

<assert [integer G ,'

<assert <ccnseaueat [n][integdr [+ aDI]
<gornl [integer ?n*>>>

<prog [[-ýnon 0> ji]
<goal [inf4ger ?J])>>

J qets the -alue [( 0 1U

<GOAL?

|goal-pattecni Irec| [-"PATH" Istate-pathIl]> is

exactly lieke GOAL except that it returns <> instead of backtracking

if it runs out of alternatives.

<GCALS>

returns as its value a list cf the specifications of the currently

active goals.

<SUBGOAL

-clauses-> attemptý, to match the first element of each

clause in turn to the elements of the list of currently active goals.
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If the first element of a clause matches then execution continues with

the remaining elements of that clause.

5.2.2 Control Primitives

<SWITCH

Inew-state-pathl lexpressioni> evaluates lexpressioni

using the 3nev-state-pathi to do retrievals from the data base. At

any Siven time PLAINNER expressions are being evaluated in a state

path. a top level process begins by using the primary data base as

its state, It can seitch intc a local state by using the the function

SVITCH. Tree structures of local states can be created by using the

function STATEPROG. States ,-'an be conceptualized as a linear list of

changes to the data base. Thus there can be several inconpatible

states of the world siwultaneously under consideration. Although the

tree structure of the local states can be conceptualized as a linear

list of changes, it is actually implemented sore efficiently so that

the retrieval time for assertions is essentially independent of the

size and number of local states. The assertions in the data base are

tagged as tc which states they are in.

<STATE>

returus as its value a new local state.

<PRIMARY>

is the ptinary state of the system.

<UPDATE
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Istatell Sstate2j> updates Ista'cell into Istate2i. if

the second argument is missing the global data bzse is assumed.

<GAT?

lIII) is the value of !x) unless lIz fails simply in

which case it is (>. the expression 51ix is an abbreviation for (GATE

Wblock (<oblist gate!-> <oblist>)>
<define gate <function out j'xJ

<failpoint [I, <>
[message activation?]3

<cond
[<not <or maessage .activation?>>

;"neither the message nor
activation are on*

f(.Out <>>
;"exit gate with false"]>>

(eval .x>
;*the value of gate is the value of .x unless

the evaluation of I fails>>
I Wend-block>

<cond [-,"else" <fail>]> fails with the message <>.
(Cond [<fail> 3] (~~e 3 7]> fails
(cond [&<fail> 3) [-,*else* 7]> evaluates to 7.
<cond I<> 3]> evaluates to <>,
<cond [<> 3] [(,Oeise1 4]> evaluates to *4.
<cond (-m"elso" <fail>' [-'"else* 5)) fails.
<cond [9&,Oelse" <fail>] [-' 4 else* 5)> evaluates to 5.

(U !hPDOG

+checker+ *activatio#-naame+ [-declarations-] -body->

is like the function PROG except all assertions and erasures that are

made within the scope of the fanction TZKPRQG are undone when the

function TIMPROG returns. The function 'TEZIPIOG is useful for dealing

with hypotheticals. Suppose that we wanted to estaiblish (all I [p xL]]



"HITLER WOULD HAVE BEEN CRAZY
TO INVADE ENGLAND"

GLOBAL DATA
BASE

[NOT [INVADE HITLER ENGLAND]]

STATE S STATE Sl
<ERASE [ NOT CINVADE HITLER ENGLAND]]>

<ASSERT [INVADE HITLER ENGLAND]>

<ASSERT [CRAZY HITLER)>

c2- 7-6'

t . . . .. .
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b matheiatical inducticn.

<goal [p 0)>
;"first try to prove [p 0]"
<texpror3 [k <arbitrary <integer>>]

;"let k be an azbitrary integer"
<assert [p .k]>
;"assert that p holds for k"
<goal [p I'<+ .k 1>]>
;"try to prove that p holds for k+1">

<SWITCH

Istate-path| lExpressionl> causes lexpressioni to be

evaluated with Istate-Fathh as its current local state path. The

value of PATH!-STATE is the current state path. Local states are

useful for handling contra-to-factual conditionals and tor

simultaneously manipulating inconsistent states of the world.

Assertions affect only the state which is the first element of the

state path in which the assertion is evaluated. The following assigns

the identfier sl the value which is a local state path in which Hitler

invaded England.

<switch
<_ :sl [<state> !.path!-state]>
<assert [invade Hitler England]>>

We further suppose that Hitler is crazy. This could be expressed by

doing the assertion within sl and assigning the result to s2:

<switch
< - :s2 [<state> 1.sl>
<assert [crazy Hitler]>>

Now if we ask if Hitler is cra2y in the state path sl, the answer is

that he is not; but he is crazy in the state path s2.
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<switch .sl <current [crazy Hitler»>> fails
<switch .s2 <current Lcrazy Hitler]>> is trie
<switch .s2 <current [invade Hitler England»>> is true
<switch

[<1 .s2>]
<current (invade Hitler England]>> fails

<switch
[(<1 .s2>]
<current [crazy Hitler»>> is true

<switch
[<2 .s2> <1 .s2>]
<current r-razy Hitler»>> is true

Erasures affect the first local state of the state path in which they

are evaluated. Ifter

<switch .sl <erase [invade Hitler England]>> we have

<switch .sl <current [invade Hitler England]>> fails

<switch .s2 <current [invade Hitler England]>> fails

If we know that a formula of the form [or IlI |y]] is true and

we want to establish a goal of the form |gl then we could write:

<PROG [
<TEMPBOG []

<ASSERI lxI>
<GOIL 1g»>>

<TEMPBOG []
<IssRRT I>
<GOAL Ig9>>

<ASSERT JgJ>>

The above form of disjunction elimination is often used when y is of

the for& [NOT IxI]. Goalh of the form [or JxI III) can be established

as follows:

<POG (]
<TERPEOG ( ]

<ASSERT [NOT II I]>
<GOAL y>>

<ASSRET <CLAMSE (J IxI 171>>>

4f
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5.2.2.1 Failure Primitives

<UNIQUE> fails if the current goal is not unique among all the

goals that are currently active.

<UNIQUE

<jpJ -args-> |1laceJ> fails if the procedure IpJ with

arguments -args- is not unique among all the procedures that are

active in :placel. The Iplace| can be a process or it can be [BETWEEN

Inamell Iname21] in which case only the procedures between Jnamell and

Iname2l are be examined.

<RETRY

lactivationl> causes failure to jactivationi whici'

must include the call to RETRY within its scope. Execution resumes

with the beginning of the named block.

<p-og here [a)
< a 3>
<p-.-og there [3

<cond
[<is? 4 .a>

<.here .a>
;"exit .here with .a"]>

< :a 4>
<retry .there>>> evaluates to 4

5.2.2.2 Finalize primitives
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<FINALIZE

*activation-i•aue+> causes all actions that have been

taken in the block +activation-name+ to be finalized and then returns

the value of +activaticn-naue,. Thus <<FINkLLIZE +activation--naae*> -

values-> will finalize all the actions that have been taken in the

scope of +activation-name+ and then exit +activation-name+ with -

values'-. Actions which are finalized are not undone if a failure

backs up. Finalization can be use, to save storage for actions which

should not be automatically reverted in case of failure. For example,

robot thinking for a given task is often divided into tuo phases: a

planning phase and an action nhase. In PLANNER this is typically done

by having the planning phase return as its value a PROCEDURE vnich is

to be executed in the action phase. AsseL 'ions which record events

which have taken place in the "real world" should be finalized in the

action phase as they happen.

5.2.2.3 Repetition Primitives

<FOR
+checker+ +activation-name+ [-declarations-]
[-for-specifications-
(-,"CUSEENT" |pattern| Istate-pathi]]
-body->

is the for statement of PLANNER. For each aspertlon in the data base

that matches |pattera| the -body- is executed. For example the

following statement places all the bricks on brick1 in the blue box.

<for
[[<brick> x)]
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[[-,"current" (on-top-of _x bricki]])
<Pick-up .x>
<place-in <9 (blue box]»>>

<PERIST checker+ *acti'vation-naze+ (-declarations-)

(-'"TESTR Itesti -test-action-]
[-'"LIST" jitemi condition]
(""SIEP" -step-action-]
(-'"FINAL" -final-])
-body->

where +activation-name+ and #checker+ are optional is equivalent to

-the following:

(PROG +checker. +activation-same+
[- declarations-
[CCLLECTED ()]]
;"initialize COLLECTED to [
<P1ILPOI I!

[MESSAGE ACTIVATION]J
<C OND,

[<NOT? <ORl?
.MESSAGE
* ACTI VATIO N>)

-final-
<.*activation-sa me+

* CCXLECTBD>
;"exit it~ctivation-naze# with

-body-.collec ted"]»>

(I test I
-te t-ac tion-
<.*activation-naae* .COLLECTED>
""exit t activation--name*

with .collectod") >
<C OND

(1condition)
;Oif the condition in met

then add item
to the end of COLLECTED"
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< 4CCLLECTED (I.CCLLECTED item)>]>
-step- action-
<FAIL>
;"generate a simple failure">

"Are all the blocks in boxl green?" translates to

<persist bl ,[[•block> bý
<pesis[[-" inai" <.bl]• ;"exit .bl with t*]]

<goal [in _b box!]>
;"find a block in boxib
<coH4

(&<goal [green .bJ>
;"if the block is green then

continue with the loop")
[-"else"

<fail <> .bl>
;"othetwise generate a failure out of

the. persist loop"]>>

+activation- nase+
[-declarations-)
r

[-"QUANTITY |quantityl]
[-"LESS" |lower-boundi -fewer--]
[-"GREATER" jupper-boundi -more-I]]

litemi
-body->

constructs a list of betveen 1loverl and lupperl jitenjs according to

the |bodyl. The FIND function is eguivalent to the

following:

<STRAIGHTEN <PROG *activation-name*
[-declarations- [NSUBER 0] [COLLECTED ()]
<failpoint [ ] <> [I A]

<COND
[<NOT? <OR? .R .1>>
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<COND
[<NOT? <IS?

|quantityI
"V"iiL L">>

<FAIL>]>
;"if the quantity sought

is not all
then backtrack"

<COND
[<IS?

<LESS Ilower-boundI>
. NUMBEB>
-less- ]>

<.+activation-name+
. CCLLECTED>

;"return with the items
collected"»]>>

-body-
< .CCLLECTED (I.COLLECTED Jitemj)>
<INC I-PERSISTENT NUMBER>
<COND

[<IS? Iquantityl .NUMBER>
<.+activation-name+ .COLLBCTED>
;"if have found the quantity

desired then return them"]>
<CCND

[<IS? <GREATER jupper-boundl> JNU5BER>
-more-]>

<FAIL>>>

"*Find three boxes that contain green blocks.",

translates to:

<find [[<box> x] [<block> bli [[-"QUANTITY" 3]] .x
<goal [box _x]>
<goal [cortains . _b]>
<goal [green .b)>>

5.2.2.4 Multi-Process Primitives

In more complicated situations, we find that it is convenient

to be able to have more than one PLANNER process.
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<FAIL

Imessagel iplacel Ifunctioni> generates a failure with

jae:ýsagej to tte iplacel at the last Ecint that execution left

iplacel. If the process which called FArL is ever resumed with

arguments, then it begins by applying Ifunctionj to the arguments.

<EXHAUST
+checker+ +activation-name+ j-declaraticns-]
[[-,"INITIAL" -initial-action-]
[-."TEST" Itesti -test-action-]
[-,"ACMION" -action-]
[- 'LIST" litem|i Icondition J]
[-."STEP" -step-action-]
[-"FINAL" Ifinal|)]
-body->

attempts to executc -body- once for each time that -action- is

successfully evaluated. Every time that the body it executed the

function EXHAUST sends a simple failure to the action to see if it has

any alternatives. An EXHAUST loop is very much like a PERSIST loop

which is defined above. Both loops are driven by the failure

mechanism. Ike main difference is that the effects of xzpcuting the

body , PERSIST loop are not preserved because a failure must

prop,. e through the body before it can be executed again. In an

EXHAUST loo separate process is created for the action so that the

effects of t. ug the body can be preserved. The function ZXHADST

is equivalen; to che fcllowing expression:

<PROG +checkeL* +activation-name+

[COLE-:CTE 0)]
£ <proc>

[ACTION-PROCESS <PROCESS ,ACTIOR-PUNCTICN>]
[(AL-PROC <. ACTION-PROCESS <PROCESS>>» ]j
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;"declare COLLECTED to be initialized to [ ]"
;"ACTICE-PROCESS is the naie of the

process which is t- be exhausted by failure"
;"start the PLANNER proces:; .ACTION-PROCESS in

which the action is executed with
the name of this process
as an argument so that it can later resume
this process"

;"we expect one value to be returned
which we shall call VAL-PROC"

<REPEAT [])
<COND

[<IS? EXHAUSTED .VAL-PROC>
-final-
<.b .CCLLECTED>
;"exit .b with .collected""

[ I test
-test-action-
;"if the test is met

then execute the test-actionh
<.b oCCLLECTED>]>

-body-
<COND

[Icondition I
<_ :COLLECTED (I.COLLECTED jitemi)>]>

;"if the condition is act then add the item to the end
of the list of collected items"

<FAIL

.ACTIC N- PBOCESS
<FUNCTION [Y] <_ ,VAI-PROC .Y>>>

;"suspend
execution of the current process
and begin failing from the point within
the action prccess
where execution last left off">>

The following functicn is defined so that we can start off the
evaluation of the action process.

<DEFINE ACTION-FUNCTION
[FUNCTION [[<proc> MAIN]]

<FAILING? [<0> <.MAIN EXHAUSTED>]>
;"when the action finally is exhauseted

resume the process .MAIN with the value EXHAUSTED and
terminate the action piocess"

-action-
<.2IAIN SUCCESS>
;"resume the main process with the value SUCCESS")>
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Suppose that we want tc disjrove a proposition .p using likely

counterezamples. Furthermore we vould like to work on each

counterexample in parallel as i% is found.

<exhaust disprove [c]
<goal (likely-counter-example _c .p]>

"I <ccnd
[&<goal .c>

<ter porize
.disprove>
-"'foun d-coun ter-examp le"»>>]»

-. - - -- - -. --.--- ~--~-
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5.3 Clauses in PLANNEB

We would like to explore the potentialities for using PLANNER

to control a resolution based deductive system. Since the question

whether or uot a given formula is a theorem or not is undecidable, a

complete proof procedure using resolution for the first order

quantificational calcilus must in general be rather inefficient. In

fact any uniform proof .procedare for the first order quantificational

calculus can be sped up by an arbitrary recursive functiop for almost

all profs. The result on the necessary inefficiency of a complete

proof procedure should be sharpened up. New theoretical tonls must be

developed in order to make any substantial advance on the problem.

The importance of resolution as a prchlem solving technique does not

lie in the fact that it appears to be the fastest known uniforp proof

procedure for first order loqic. Rather, resolution provides one

technique for dealing with the logic of di-lunction and instantiation.

l•omain dependent procedures must provide mot of the direction in the

computation to attempt to prove a theorem. We shall in..zoducc aev

actors to matcb clauses:

<CLAUSE

-patterns- lrest-of-disjunctsl> matches a clause only

if it has disjuncts which match -vatterns- and the rest of the

disjuncti match the pattern Irest-of-disjuncts .
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<prog [y]
-- ( .<- <clause [subset a y]>

<clause [x] [subset ?x b»>>>
y gets the value b
x gets the value a

<CLA USE-OF

Jkati |disjuncts-that-match-pat) Irest-of-disjunctsl>

matches a clause such that the clause of the disjurcts that match

1pat] in turn match the pattern jdisjuncts-that-match-patl andthe

clause of the the rest of the disjuncts match irest-of-disjunctsl.

The following functions are used to manipulate clauses.

<CLAUSE

[-declarations-] -disjuncts-> returns a copy of a

clause with the variables declared.

<VARIABLES

1clausel> returns the variables in the clause.

<I NSTANTIATE

iclausej> returns a copy of the clause with all of its

variables instantiated with unique constants of the appropriate type.

<RESOLVE

-clause-specifications-> resultz in resolving the

clauses represented by the clause specifications together to yield a

clause which is returned as the value of the function resolve. A

clause specification is the literal of the clause which is to be

unified.

4, ~ -- ----- '.-,'
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<FOR-RESOL VENT
+checker+ +activation-name+ [-declaratiions-]
[([-"CLAUSES" -clause-specifications-]
[("RESOLVENT" |resolventi J
-for-loop-specifications-]
-body->

attempts to execute the body of the for statement once for each result

of resolving clauses that meet the clause specifications to produce a

clause which matches the pattern resolvent.

It is Focsible for PLANNER to run out of things to evaluate

before it has deduced the null clause. A conplete proof procedure

could be called to try to finish off the proof. If in the course of

its operation, the complete procedure generates a clause that matches

the antecedent of a theorem then PLANNER can be re-invoked. The

complete procedure could be run in parallel with PLANNER. Thus using

7LA1NER we could implement a complete proof procedure. The point is

that implementing any "reasonable" proof procedure should be easy in

PLANNER. However, we should not rely on a uniform proof procedure to

solve our problems for us.
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5.4 A Simple Example

5.4.1 Using a Consequent Theorem

Suppose that we know that [subset a b], [subset a d], [subset

b c], and [all [functicn <bcole> [[<set> x] [<set> y] [<set> z]]

(implies [and [subset ?x ?y] (subset ?y ?z]] [subset ?x ?z']]] are

true. How can we get PLANNER to prove that [subset a c] holds? We

would give tthe system the following theorems.

given:

(subset a b]
[subset a d]
[subset b c)

<assert <define backward
<consequent [[<set> x y z]) [subset ?x ?z]

<unique>
;"the current goal must be unique"
<goal

(subset ?z ?y]
[-"use" -"current" backward <?>]>

<goal
[subset .y ?z]
[-"use" -,"current" backward]>

<assert [subset .x .z] [-"t-y" <7>]>>>>

Now if we ask FLANNEP to evaluate <goal [subset a c]> then we obtain

the following protocl:

,r- --
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<goal [subset a c]>
<current [subset a c]>
fail
<achieve [subset a c]>
enter lackward
x becomes a
z becoues c
<unique>
<goal (subset a ?y]>

<current [subset a ?y]>
node 1,9

y becomes d
<goal [subset d c]>

<current [subset d c]>
fail
<achieve [subset d c]>
enter backward
x becomes d
z beccaes c
<unique>
<goal [subset d ?y]>

<current Lsubset d ?y]>
fail
<achieve [subset d ?y]>
enter backward
x becomes d
z becomes ?y
<unique>
fail

fail
node 1,9 ;note that this ncde appears above

y becomes b
<goal [subset b c]>

<current [subset b c]>
<assert [subset a c]>
succeed

After the evalLation the data base contains:
(subset a b]
[subset a d]
[su' et b c)
[st et a c]

in other words the first thing that PLANNER does is to lck for a

theorem that it can activate to work on the goal. It finds backward

and binds x to a an,• z to c. Then it makes [subset a ?y] a subgoal

with the recoziiendation that backward should be used first to try to
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achieve the subgoal. 7he systu notices that y might be d, so it

binds y to d. Next [subset d c] is made a subgoal with the

recommendation that only backward be used to try to achieve it. Thus

backward is called recursively, x is bound to d, and z is bound to c.

The subgoal [subset d ?y] is established causing backward to again be

called recursively with x bcund to d and z determined to be the same

as what the old value of y t.ver turns out to be. But now the systF-m

finds that it is in trouble because the new subgoal [subset d ?yj is

the same as a subgoal on which it is already working. So it d.cides

that it was a tistake to try to prove [subset d c] in the first place.

Thus y is bound to b instead of d. Now the system sets up the subgoal

[subset b c] which is established immediately. We use the above

example only to show bow the rules of the language work in a trivial

case. If we were seriously interested in proving theorems ii. PLANNER

about the lattice of sets, then we would construct a finite l attice as

a model and use it to guide us in finding the proof.

5.4.2 Using 4n Antecedent Theorea

Suppose we give PLANNER only the following theoreurs.

given: [subs" a b]

[subset c d]

<assert <define forward-riqht
<antecedent [[<set x: y z-] [(subset _y _z]

<goal [subset ?x .yJ>
<assert
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(subset .x .z]
[-"try" forward-right forward-left)>>>>

<assert <define forward-left
<antecedent [[<set> x y z]] [subset _x _y]

<goal [subset ?y .z]>
<assert

[subset .x .z]
[-"try" forward-right forward-left]>>>>

Now if PLARNEB is asked to the theorem evaluate <assert 'subset b c]

[-"try" <?>]>, we ottain the following protocol:

<assert [subset b c]>
<draw [subset. b c]>
enter forward-right
y beccmes b
z becomes c
<goal (subset ?x b]>

<current [subset ?x b]>
x becomes a
<assert [subset a cI>

<draw [subset a c]>
enter forward-right
y becomes a
z beccoes c
<goal [subset ?x a]>

<current [subset ?x a]>
fail

enter forward-left
x becomes a
z becomes c
<goal (subset c ?z]>

<proved [subset c ?z]>
7 becomes d
,'cssert [subset a d]>

<draw [subset a d]>
enter forward-right
y becomes a
z becomes d
<goal [subset ?x a]>

<current [subset ?x a]>
fail

enter forward-left
x becomes a
y becomes d
<goal [subset d ?z]>

<current [subset d ?z]>
fail
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fail
succeed

After the evaluation the data tase contains:
[subset a b]
[subset c d)
[subset a d]
[subset b c]
(subset a c]

Theorems in PLANNER can be proved in much the same way used

for ordinary theorems. For example suppose that we had the following

two theorems:

<assert <define th4 <conseguent [[<set> a c)] [subset ?a ?c]
<goal [set ?a]>
<temprog [[<object> [x <arbitrary <object>>]]]

<assert [element .x .a] <?>>
<goal [element .x ?c]>>

<assert [subset .a .c] <?>>>>>

The function ABBITRARY generates a unique symbol which has the type of

its argurent. On entrance to the function TEMPROG the identifier 1 is

bound to a freshly created symbol. The above theorem is a

constructive analogue of

[all [function <boole>[[<set> a] [<set> c)]
[ implies

(all [ functio2
<boole>
[[<object>o' x]]
[implies [element ?x ?a][element ?x ?c]]]

[subset ?a ?c]])]]

Going in the opposite direction, wc have

<assert <define th4-5 <antecedent
[[<set> a b)]
[subset a b]
<assert

<a ntecedent
[[<element> x]]
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(element ?x ?a]
<assert [element ?x ?b] <?>> a>>>>>

<assert <define th4-6 <antecedent
[[<s,,.t> a b]]
[zub--et a b]
<assert

<consequent
[[<element> xJ]
[eleaent ?x ?b]

<goal [element ?x ?a]> b>>>>>

<assert <define
th3
<consequent [[<object> x][<set> z s]]

[element ?x ?s]
<goal [element ?x ?r]>
<goal (subset :z ?s]>
<assert [element .x .s] <?>>>>>

The above theorea is a constructive analogue for

[all [function
<boule>
[[<object> x] [<set> s]]
[implies

[some [function
<(oole>
[[<set> r]]
[and [element ?x ?r] [subset ?r ?s]]]

[eleaen, ?x ?s)]]]]

Pro& th3 and tb3 ve can p ove the folloving theorem:

<cneuent [[<rA> a b ci (subset7ac<goal [subset ?a
<goal [subset .b ?c]>
<assert [subset ,a oc] <?>>>

The above theorem is a ccnstructive analoque for

[ all [ functiom
<boole>
[[<set> a] [<set> b) [(set> c)J[ implies

[and [subset ?a ?b, [subset Th ?c]]
Is.b•et ?a ?c]]1]
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Often we treat the statemebt of a theorem simply as an abbreviation

for the proof of the theorem.

We would like to examine the previous problem from the pOiDt

of view of resolution based deductive system. The actor '!LAUSE matchs

clauses. It uses tie fact that disjunction is commutative and

associative. We have:

1. <clause ([<set> a bJ [<object> x]]
[not [subset ?a ?7]]
[not [element ?x ?a]]
[element ?x ?b"'>

2. <clause [[<set> a b]
[elemeat [element-of-difference ?a ?b] ?a]
[subset ?a ?b]>

3. <clause I[<set> a i]]
[not [element [element-of-difference ?a ?b] ?bh]
[subset ?a ?b]>

<assert <define necessary
<antecedent

[literall literal2 ]
<clause <aMl [subset 1?) ] literall> <?>>

(

<cla use
<all

[not rsubset ?]
literaX2>

<clause [(<smt> a n] ([objcct> x)][noi "'nbset ., .bJ]]
no' , element ?x .a]

[eleuent ?x .b ]>
<assert <resolve .literall .literal2>>>>>

The above theorem says that we shonld eliminate all positive instances

of the predicate subset from clauses. It is a special case of

theoreml which hal been partially cospiled.
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"~a.ert <define sufficient
<d.ntecEdent

[[<sat> a b) literall'
<clause <all [not [subset _a _b]] literall> <?>>
<prog (literal2)

<clause <all [subset (?)] _literal2> <?>>
<clause [[<set> a b)]

[subset .a .b]
[ element

[element-of-differeace .a .b]
.a]>>

<assert <resolve .literall .literal2>>
<prog [literal2]

<clause <all (subset (?)] literef12> <?>>
<clause [[<set> a b]]

[subset .a .b]
[not [element

[elesent-of-difference .a .b)
.bJ)>)

<assert <resolve ..literal .literal2>>>.)>

The above theorem says that we should eliminate all negative instances

of the predicate subset from clauses.

5.4.3 Using Resolution

We shall assume that the resolutien roptines autouatically

detect contradictory pairs of clauses when they are generated. The

theorem [implies [aad [subset a b] [subset b c]] (subset a c]] can oe

proved as follows:

<prog [j
<temprog [[<set>

[a <arbitrary <set>>]
[b <arbitrary <set>>'

[..<arbitervr <Set>>]]]

<assert <clause [( (subset .a .bi> [-"try" <?>]>
<assert <clause (] [subset b .c> [,"try" e?>]>
<assert <clause [ J [not [subset .k .c']> [-0try" <?>]>
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<goal <clause>>>
<assert <clause [[<set> x y z])

[not [subset ?x ?y]]
[not [subset ?y ?z)]
[subset ?x ?z]>>>

The proof is:

4. <clause[]
[subset a b]>

5. <clause [<selement ] a"j [element ?7 b]> by I. and I4.

6. <clause [ I
[subset b c">

7- <clause [(<set> x]]
[not [element ?x [ (element ?x c]> by 1. and 6.

8, <clause r )
[nnot [subset a c]]>

9. <clause [ ]
[element [element-of-difference a c) a]> by 8. and 2.

10. <clause ( )
[element [element-of-difference a c] b]> bY 8. ant 3.

11. <clause [1
(not [element [eleRent-of-difference a c] c]]> by 10. and 7.

12. <clause [1
[not [element [elevent-of-difference a c] b]]> by 9. and 5.

13. <clause [ ]> by 12. and 10.

- '-- a r-cr--! - - - -



5.5 page 250

5.5 Myths about PLABNER

5. 5.1 Conseguent 'hecrems Are Used Only for Working Backwards

We would like to give an example to show that the computation

tree that ELMZNER defines as it executes theorems does not necessarily

correspond to the tree of the intuitive solution space whichi is being

investigated. The example 'hich we use is the farmer, goat, cabbage,

and wolf problem. We worked out the following solution with Jeff

Rulifson. The problem begins with a farmer on the side of a stream

with a boat, a wolf, a goat, and cabbage. The farmer wants to

transport them all across the stream in the boat. The boat can only

hold one of them 'besides the farmer. The wolf will eat the goat and

the goat will eat the cabbage if the farmer is not there to izterfere.

How can the farmer get them all across the st-eam? We begin by

evaluating <goal (frcs t r- t t]> which means to set up a goal to make

a move from the postion where all four objects - s on the same side of

the tank.

<assert <define make-move <consequent make
[wolf goat cabbage farmer)

[from ?wolf ?goat ?cabbage ?f'%rw•r]
<goal [safe .wolf .goat .cabbage .farmer]>
;nmake sure the current situation is safem
<cond

[<and?
<is? <> .wolt>
<is? <> .goat>
<is? <> .cabbage>
<i-? <> .tarxer>>
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<.make t>
;"eyi* .sake with t"]>

;"if they are all safely ov the other
side of the river returq t"

<cond
[<current? (looked-at

.wolf

.goat

.cabbage

.farmer ]>
(.make <>>
;"exit .make with <>")>

;rif we have already looked at this situation
return <> which is false"

<assert [looked-at .wolt .goat .cabbage .farmer]>
<0oT

&<cond
[<is? .farmer .goat>

;"if the faraer is on the same side
as the goat,
then he can carry the goat with
him to the other side"

<goal [from
.wolf
<not? .goat>
.cabbage
<not? .farmer> ]; ]>

S<goal [from
.volt
.goat
. catbage
<not? .farmer>]>

&<cond
r<is? .farmer .wolf>

;"sixilarlr if the farner is on the same side
as the wolf"

<goal !from
<not? *wolf>
.goat
.cabbage
<not? .farmer>]>]>

e<cond
[<is? *farmer .cattage>

<goal [from
.wolf
.goat
"not? .cabbage>
<not7 .farmer>]>]>>

;"the function OR tries the
possibilities in order>>>
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<assert <define safety-check <consequent safety-check
[wolf goat cabbage farmer]

[safe ?wolf ?goat ?cabbage ?farmer)
<cond

[<or?
<and?

<is? .wolf <not? .farmer>>
<is? .wolf .goat>>

<and?
<is? .goat <not? .farmer>>
<is? .goat .cabbage>>>

;"the situation is not safe if either
the wolf is on the opposite side
from tho farmer
but on the same side as the goat or
the g9at is on the opposite side from the
farmer but on the same side as the cabbage"

<fail <> .safety-check>]>>>>
Thi protocol of the solution is:

<goal [froz t t t t]>
<goal [from t '> t <>]> goat

<goal [from t t t t]> goat
<goal [from t <> t t]> himself

<goal [from t e, t <>]> himself
<goal jfrcx <> <> t <>]> V, If

<goal [from <> t t t]> goat
<goal [frcm <> <> t <>]> goat
<goal [from <> t t <>]> himself

<9oal [fro.u <> t t tJ> himself
<goal [from t t t t]> wolf

<goal rfrcm <> t <> <>]> cabbage
<goal [from <> t <> t]> himself

<goal [from <> <> <> <>]> goat

Note that there are several things wrong with the above procedure.

For one thing the problem selver should work forwards and backwards

simultaneously trying to find necessary conditions for a solution as

well as sufficient condtions. The procedure is not very smart in the

way that it goes about looking for a solution. These ills can be

cured in rarious ways. The reader might find it instructive to

consider some o! the possibilities.

-: -5- - - -Ii _ _ _ _ _ _ _ _ _ _



5.5 page 253

5.5.2 PLANNER Does only Depth First Search

PLANNER runs under a backtrack control structure. Because of

the control structu.e the execution tree of a process locks like a

depth first investigation. However, by creating more processes the

growth of the set of execution trees can be quite arbitrary. As an

example we can convert the above solution to the Zarmer, goat,

cabbage, and wolf problem to breadth first investigation by evaluating

the arguments to OR in parallel instead of sequentially in the theorem

MAKE-MOVE.

5.5.3 Use of Failure Implics Inefficient Search

The failure primitive in PLANNER is a method of transferring

control. The concept does not have any necessary relation to program

errors such as dividing by zero. Often a proof by contradiction is

conpleted by generating a failure back to an label function with a

message like "happiness" when the contra4iction is detected. The

message is caught when it propagates back to the pcint where the proof

by contradiction was set up. The effect of the failurc is to get rid

of all the garbage that is generated in the proof by contradiction.

In a similar vein the failure mechanism is often used as a summarizing

mechanism. At certain points along the computation, certain

conclusions are derived from the process of investigation. These

- ---.- -- ./_ _ _ _ _ _ _
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conclusions can be lifted cut of the details that were used to derive

then by failing , with values which summarize what has been

learned. Then the computation can continue with a cleaner slate.

For zxanple in a chess progran, exploration of the possible moves

might reveal that our queen is pinnel against our king threatening the

loss of the queen. Information to that effect would be passed back

with the failur2.

5.5.4 PLANNER Dc-as Only What It Is Told

in a str.ict sense PLANNER does only what it is told to do.

There is no random element or independent coDsciousness built into the

primitives. However, because of the goal oriented nature of the

formalism it is very difficult to predict what a large body of PLANNER

theorems will do. In fact one of the more obnoxious things that can

happen is that some theorems find a nonobvior ; way to accomplish a

trivial goal. Usually this happens because there is a bug in the code

for the obvious way to a'hieve the goal.
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6. More on PLANNER

6.1 PLANNER EXAAPLES

6.1.1 London's Bridge

Most of the time we decide which statements we want to erase

on the basis of the "-utifications of the statements. If we erase

statement a, .: statement b depends on statement a because a is part

of the justification of b, then we probably want to erase statement b.

Sometimes a decision is made on the basis of other criteria. For

exanple suppose that we carefully remove the bottom brick from a

column of bricks. We shall suppose that each brick is of unit length.

The statement (at Ibrickj Iplacel Iheight| ] will be defined to mean

that brick IbrickI is at place iplacel at the height 1height!.

Suppose that have the following theorems:

fat bricki here 01
at brick2 here 1]

[at btick3 here 2]

<define london's-bridge
<erasing

[
[<brick> brick other-brick]
(<place> place]
[<integer> height])

[at _brick _pJ-ce _height)
<erase

- -- ~ - - -~--* '...........- - - -
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[at _other-brick

* place
<addl .height>]luse-, <?>]>

;"erase the fact that there is another brick
in the place above brick"

<assert
[at other-brick .place .height]>

;"assert that it is where
brick used to be">>

Thus after <erase [at brickl here 0]> we will have [at brief.2 herA 0]

and [at brick3 here 1). The upper bricks in -%he tower have all fallen

down one level. The above examFle comes from a suggestion made by S.

Papert.

6.1..2 Analogies

6.1.2.1 Simple Analogies

our next example illstrates the usefulness of the pattern

directed deductive system that PLANNER uses compared with the

auantificational calculus of order ose~a. We are interested in simple

analogies such as those exilored by Tom Evans. Given that object al

has some reiation to object a2 and that o4ject ci has the same

relation to object c2, the problem is to deduce that at is analogous

to -1. Ve use the predicate test-aualogons within the theorem pair to

record that we think two objects might be analoqous and that we would

like to check it out. Suppose thAt we give PLANNER the following

theorems:



6.1 page 257

[inside al a2]
[inside ci c2]
[a-object al]
[a-object a2]
tv-object ci]
[c-object c2]

<define pair <consequent pair

[<object> a c]
[<funtor> predicate]
[(?) argsal argsa2 argscl argsc2]]

[analogous ?a ?c ?predicate)
<unique>
;"the current goal must be unique"
<cond

[<current? [test-analogous ?a ?c]>
;"if a and c are test-analogous then

we are done"
<.pair done>
;"exit .pair with done"]>

<current [a-object ?a]>
<current [c-object ?c)>
;"find an a-object and a c-object"
<assert [test-analogous .a .c ?predicate]>
<current [?predicate !_argsal .a !_argsa2]>
<current [.predicate !.argscl .c I_argsc2]>
;"find a predicate in which both a and

c are arguments"
<conl

[<is? <non []> .argsal>
<gCal ( corresponding-analogous

.argsa 1

.argscl

. predi.cate J>]>
<cond

[<is? <non [ ]> *argsa2>
<gcal [corresponding-analogous

.argsa2

.argsc2

.predicate]>]>
;"show that tCe other arguments are analogous"
<assert [analogous .a .c .predicate]>>>

<define chop-off-another <conseguent

[<objec4.> a b)
[(?) aa bb)

-I----- -- - - ------ _ _ _ _
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[<functor <?> <?>> predicate]]
[corresponding-znalogous [?a ??aa) [?c ??cc] ?predicate)

<cond
[<current? (test-&nalogous ?a ?c ?predicate]>

;!;if a and c are currently test-analogous then
we only have to lnok at
the rest of the elements"]

[-"else"
<current [analogous ?a ?c ?predicate]>]>

<ccnd
[<is? <non [ ]> .aa>

<current (corresponding-analogcus
?aa
?cc
?predicate ]> J>>>

Thus if we ask PLANNER to evaluate <goal [analogous al ?x inside]>

then x will be bound to ci in accordance with the fcllowing protocol:

<goal [analogous al ?x inside]>
enter -air
a gets the value al
c gets the valne ?z
predicate gets the value inside
<unique>

<current (test-analogous al ?c iuside]>
FAIL

<current [a-object al]>
<current [c-cbject ?c)>

node 1
c gets the value c2

x gets the value c2
<temporary (test-analogous al c2 inside]>
<current [inside al a2'>
<current [inside ci c2]>
<goal (co-responding-analogous [a2] [ ] inside1>

enter chop-off-another
FAIL

FAIL
node 1; note that this node appears above

c gets the value ci
x gets the value ci

<temporary [test-analogous al ci inside]>
<current [inside ci c2]>
<goal (corresponding-analogous [a2] [c2] inside]>

enter chop-off-aunther

-- ~~. - ~ --- s -



6.1 page 259

a gets the value a2
c gets the value c2

<current [test-analogous
a2
c2
inside ]>

FAIL
<current [analogous a2 c2]>

enter pair
a gei.s the value a2
c gets the value c2
<unique>

<current [test-analo.%us
a2
c2
inside]>

FAIL
<current [a-object a2]>
<current [c-object c2]>
<temporary [test-analogous a2 c2 inside ]>
<current [inside al a2]>
<current [inside ci c2]>
<goal CcorrespoindLng-anaaogous

[cl]
jnside]>

enter chop-off-another
a gets the value al
c gets the value cl
<current [test-analogous al cl]>
succeed

In the process of carrying out the evaluatioD the following additional

facts will be established: [analogous al ci inside] and [analogou- a2

c2 inside). The reader might find it amusing to try to formulate the

above problem in the first order quan"•ficational calculus.

6.1.2.2 Structural Ana1agies

The process of findiag analogous proofs and methods plays a

vert important role in theorem proving. For example the proofs of the
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unigueness of the identity element and inverses in semi-groups are

closely related. The definitions are:

(equivalent [identity e] (equal [* a e] [* e a) a)]

[isplies [identity e) [oquivalent (inverse bl b] [equa. [* bl b] [* b

bl] e]]j If e and e' are identities, then we have [equal e [* e e')

eJ). If al and al' are inverses of a, then we have [equal al [* al'

a al] al). The general form of the analogy is [equal w string w'j

where .string algebraicly simplifies to w and w'. In many cases

analogies are found by construction. That is the problem solver looks

around for problems that might be solved with an analogous technique.

In other words we will have a method of solution in search of a

problem that it can solve! Vow that we have found a technique for

proving that various kinds of elements are unique, let us look around

for a similar problek to which our technique applies. We find that

zeros in semi-groups are defined as follows:

[equivalent [zero z] [equal [* a z] [* z a] zj] Supposing that z and

z' are zeros we find that [equal z [* 2 z4) z']. Cue major problem iv

the effective use of analogies in order to solve problems is that it

is very difficult to decide when and at what level of detail to try

for an analogy. Another problem is that often the analogy holds only

at a quite abstract level and it must nut be pushed too far. Consider

the following two algoritkas:

<define number-of-atoms
[function [x]

<cond

- --- - . ... -- .- - - -_ ____ _ -
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[ <,Imwpty? .X>

01
[<is? l=atcm .x>

1]
[-'else"

<number-of-atoms <1 .x>>
(number-of-atoms <r st .x>>>]>]>

<define list-of-atous
[function [Z]

<cond
[<empty? .x>

(1)
[<is? !=dtom .x>

f.x))
[(-"else"

<append
<list-of-atoms <1 x>>
<list-of-atoms <rest .x>>>]>]>

The ftunctions number-of-atoms and list-of-atcms are precisely

analogous. In most cases two functions will not be nearly so

similar. Very few of the ideas of one "ill be used in the other.

Structural analogies may also be constructed by procedural abstraction

[see chapter 7]. Bledsoe has suggested that still another example of

analogous proofs is found in the Schwartz inequality:

<nondecreasing
<expt

<* <x 1> <y 1>>
<* <x 2> <y 2>>>

2>
<<,

<expt <x 1> 2>
<- <x 2> 2>>

<4.

<9 <y 0> 2>
<-% <y 2> 2>>>>
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<nod cleas ing
<e xpt <s ig m

1
n
<function

[i]
<erpt <* <x .i> <y .i>> 2>>>

2>

<sig!

n
<function

(i]
"(expt <x .i> 2>>>

<signa

n
<function

(i]
<expt <y .i> 2>>>>>

<nondecreasing
<expt <integral <* x y)> 2>

<integral <expt f 2>>
<integral <- g 2>>>>

6.1.3 8otheaatical Induction

We can formulate the principle of nathesatical induction for

the integers in the Zollowizg vay:

<define induction <consequent [p]
[for-all _p]

<teaFrog [[n <arbitrary <integer.,>]
<goal i'<.p 0>>
<assert !'<.p .n>>
<goal 1 0<.p I'< .a 1>>>>

<assert [for-all .p]>>>
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If we are given the facts = <+ 0 0> 0] and

<clause (x y]
[=I

<* ?y <+ ?X 1>>

<+ <+ ?y ?x> 1>]>

then we can establish

[for-all <function [n] [= <+ 0 ?n> ?n]>].

The following theore3 will do induction on s-expressions:

<define expr-induction
<consequent

[p]
(for-all _p]

<temprog
[[a <arbitary <atom>>))

<goal 19<.p .a>>>
<teaprog

[car <arbitrary <expr>>]
[cdr <arbitrary <expr>>))

<assert 1'<.p .car>>
<assert !<.p .cdr>>
<goal !8<.p l'<cons .car .cdr>>>>

<assert (for-all .p]>>>

We would like to try to do without existential quantifiers. We can

eliminate them in favor of Skolem functions in assertions and in favor

of PLANNIE identifiers in goals. The problem of finding proofs by

induction is formally identical to the problem of syntesizing programs

out of "canned loops". The process of procedural abstraction [which

is explained in chapter 7] has an analogue wbich is "induction

abstraction" [findiag proofs by induction from example proofs written

Z
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out in full without induction].

6.1.4 Descriptions

6. 1.q. 1 Structural Descriptions

PLANNEE can be used to find objects from partial or schematic

descriptions. The statement (perpendicular (line _a b] [line _c

_d)) will be defined tc mean that the lines [line .a .b] and [line .c

.d] are perpendicular. The MATCHLESS function <ASSIGNED? arg> tests

to see if the identifier arg has a value. We shall adopt the

convention that [glued a bh means that bzicks a and b are glued

together and forthogonal [line jal Ib)] [line [cl Idi]) means that the

lines between the centers of bricks Jal and Jbi is orthoganal to the

line between tte centers of bricks |cl and Idl. A three-corner is

defined to be a group of three bricks joined together such that two of

them are diagonal to each other. A three-corner is shown in figure 1.

In other :lords the fclloving is a description of a three-corner:

<define find-three-corner
<consequent

[[<brick> a z c]]
[three-corner ?a ?b ?c]

<goal [glued ?a ?b]>
<prog again []

<goal [glued
am

<all <non .b> ?c>]>
<goal [orthogonal [line .a .b] [line *a .cl]>
<cond

[<or?
&<goal [glued



A Three- Corner:
(cube I1 Eglued I 2]
(cube 2] (glued 2 3)
[cube 31

A STICK:
[cube 4) [glued 4 5)

[cube 5) [glued 5 6]
[cube 6) [glued 6 7]
[cube 7)

ANOTHER STICK:

(cube 8) [glued 8 9]
[cube 9] [glued 9 10]
[cube 10]
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,a

<all <non .b> <non .c>>]>
&<goal [glued .b <non .a>]>
&<goal [glued .c <non .a>]>>

<fail <> again>]>>>>

The description can be used in the obvious way to find three-corners.

The statement [stick -a _b) is defined to mean that .a and .b are end

bricks of a line of bricks and [between a b c] is defined to mean

that briAk .b is between bricks .a and .c. Examples of sticks are

shown are shown in figure 1.

<define find-stick
<consequent

[[<brick> a b) [I=fix n)]
[stick ?a ?b _n]

<current [brick ?a]>
<current (brick ?b]>
<goal [stick-segment .a .b <- *n 2>]>
<assert [stick oa .b .n]>>>

<define find-stick-segsent
<consequent find
[[<brick> x y w][!=fix n]]
[stick-segment ?x ?y _nh

<cond
[<is? <neg> .n>

<fail>]
[&<goal [glued ?w ?)]>

<goal [orthogonal
[line .x .w]
[line .X ?Y]1>

<fail>]
[&<goal [glned ?x ?y]>

<cond
[<and?

<goal. [glued ?v ?y]>
<goal (orthogonal

[line .y .w]
(line .y .x]]>>

<fail>'>
<.find t>
;"exit .find with t"]>

<goal [glued ?w .x]>

/I
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<goal [between .x .w .y]>
(goal [stick-segment .w .y <- .n 1>)

[,use, find-stick-segment <?>J>>>

6.1.0.2 Constructing Examples of Descriptions

Given a description of a structure [such as a stick] we would

like to be able to derive a geDeral method for building the structure.

The problem of deriving such general constructiot. methods f-om

descriptions is very difficult. In this case we we can construct a

stick of length n with ends x and y using the functions <GLUE facel

face2> which glues tht value of facel to the value of face2 and the

function new-brick which produces a new brick.

<define make-stick <consequent make
[[<brick> x y w] [!=fix n])
[make-stick x _y _n]

<cond
[<is? <less 3> .n>

<glue [bottom .x) [top .y]>
<.make t>
;"exit .make with t")>

<is v <new-brick>>
<(cue [bottom .x] (top .Y]>
<goal rmake-stick _w _y C- h 1>]>>>

6.1.4.3 Descriptions of Scenes

S. Papert has sugge3ted that theorem proving techniques might

be applied to the problem of analyzing 2-dimensional ,rojections of 3-

dimensional bricks. In this section we vill give a formal definition

of the problem. Idolpbo Guzma3 has developed a program [called SEE)
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which tries to solve such probleas 2any humans solve such problems

by mentally constructiing a symbolic 3-dimensional scene which

uf ,ally projects back to the given 2-dimensional input. le define a

brick to be a connected oren opague region of '-space bounded by a

finite number of pla,- sux t0-at if tio planes intersect then they

must be orthogonal. -Ctiesmorf the complement of a brick is

required to be connect s. ; >.i ks are allowed to have holes in

thee. A 3-dimensional scene - 4n arrangement of bricks such that no

two of them intersect. A 2-dimensional scene is a collection of

straight lines in a plane. A 2-dimensional projection is the optical

projection of a 3-dimensional scene onto a plane. A statemeavx p about

3-dimensional scenes t•ill be said to be valid for a 2-dimensional

scene r if for all 3-dimensicnal scenes t such that t projects to r it

is the case that p is true for t. A two dimensional scene rO will be

said to be ambiguous fcr a langua"•. I if it is the projection of two

3-dimensional scenes tl and t2 such that there is a sentence pO in 1

with pO true in tI and false in t2. There are a number of primitive

predicates that should be included in a langaage for sceae analysis:

[parallel x y] means that x and y are parallel.

[coplanar x y] means that x and r are coplanar.

[normal planel directed-linesegment] means that the normal of

plamel is in tte direction of the directed-linesegment.

[restricted planel ptl pt2 pt3] means that the normal to

planel is restricted to the angle ptl pt2 pt3.

[sape-brick region1 region2] means that regionl and region2
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are part of -he same brick.

[adjacent regionl region2] means that regicnl and region2 are

regions of the same brick that intersect at right angles.

(convex region1 region2] means that regioni and region2 are

regions of the same brick that intersect at right angles to make a

convex body.

[concave regionI region2] means that regionl and region2 are

regions of the same brick that intersect at right angles to make a

concave body.

[element x y) means that x is an element of y.

[in-frcnt-of brickl brick2] means that brickl is in front of

brick2.

(resting-on brickl brick2l means that brickl is resting on

brick2.

[on-top-of brickl brick2] means that brick1 is on top of

brick2.

[subset x y] means that x is a subset of y.

[coordinates pointl coordl J mcns that point l has 3-

dimensional coordinates coordl.

The following statements about example1 are valid as cAn be seen by

considering vhere the normals of the planes might lie and deducing

consequences until contradictions are found.

[norma± a Ldirection 7 13)]
[normal b [direction 12 13]]
(convex a b]
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[convex a c)
[convex b C)
[normal c [direction 10 13]]
[normal d [direction 7 4]]
[normal e (direction 2 4]]
[convex d e]
[normal f [direction 3 4]]
[convex d f]
[convex e f)
[norzal h [direction 16 18]]
[normal g [direction 15 16]]
[convex g hl]

The following statement about example 1 satisfiable-

[and
[resting-on [brick a b c] [brick e f d]]
[resting-on [brick a b c] [brick g h]]]

The following statements about example 2 are valid:

[convex a c)
convex a b

[convex b c]
[normal a [direction 12 14)]
[normal c [direction 3 141]
[convex g h)
[normal g [direction 5 6]]
(normal h [direction 8 6))
[not (adjacent c d]]
[not [adjacent b d]]
[convex 1 e]
[convex e f]
[convex d f]
[normal e [direction 4 13])
[normal d [direction 9 13]]
[normal f [direction 11 13]]

The following statement about example 2 is satisfiable:

[and
[same-region c g]
[same-region b h]
[same-brick a b c g h]]
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The three dimensional coordinates of points are obtained by

using more than one camer.a to Tiew the scene or using a focus map. In

the case where we have coordinates as a primitive pzedicate, the

definitior of a pro3ection of a 3-dimensional scene must be modified

to include the 3-dimensional coordinates of all the projected

vertices. In the case where we have the three dimensional co-

orainates of the projected verti.-es, we can deduce that two planes are

part of the Rate brick if they intersect at an acute rigbt angle.

Since the. object that is being viewed might be so far aray that

accurate coordinates cannot be obtained, a deductive system shou.d be

developed which does not use coordinates. At the very minimum a hard

core deductive system for the analysis of 2-dimensional projections

should be consistent and every valid statement should be proveabie.

That is every theorem cf the system snould be satisfiable (theft. is ai

least one interpretation that satisfies tCe theoresj. Inteiest in

que-stioas of satisfiability comes from the fact that some

interpretations aze far tore ]ikely than others in the real world.

Statements that are to 1-e tested for satisfiability most be made as

strong as possible in order to provide a meaningful cest. Althouqh

the linking rules aj'e mathematically very elegant, in their preseut

form they do not adequately represent the semantics of the optical

projection rules. The value of the prcgram by Guzman is that it

provides c ijectures about which regions are satisfiable in the

relation saýe--brick. Howev,:r, the program suffers because it does not

have az.y explicit knowledge of optics. Ve would advocate an approach

1 ÷ _ _ _ _ __ _
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that makes gr-ater use of deduction to test the validity or

satisfiability of a sentence. Questions of satisfiability and

validity of sentences with respect to any given projection are

decidable si.jce the theory of real clcsed fields is decidable.

Efficient algorithems should be developed to test whether a given

sentence is valid or satisfiable in a projection.

6.1.4.4 Power Set of Intersection of Two Sets Is the Intersection of

Their Power Sets

The following example was proposed by W. Bledsoe. Prove that

the poser r-,t of the intersection of two sets is the intersection of

their power sets. We shall mse cap as a synonym for intersection.

<define extensionality-conse <consequent [[<set> x yr]
[= ?I ?y)
<goal [subset ?x ?yj>
<goal (subset ?y ?x]>
<assert. [= .x .y>>>

<define element-power-conse <consequent [[<set> x aJ]
[element ?i [power ?a]]
<goal [subset ?x ?a]>
<assert (element .x [power .a]]>>>

<define element-pover-ant <antecedent [[<set> x a)]
[element ?x [power ?a]]
<assert (subset ?x ?a]>>>

<define subset-cap-ccnse <cozsequent [[<set> a b cJ)
(subset ?c [cap ?a ?b]]
<goal [subset ?c ?a]>
<goal [sutset ?c ?b]>
<assert [subset *c [cap .a .b)]>>>

<define subset-cap-ant <antecedent [[<set> a b c]3
[subset _c [cap a b)]
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<assert (subset .c .a]>
<assert (subset .c .b]>>>

<define subset-cap-conse <consequent [[<set> a b c']
[subset ?c [cap ?a ?b]]
<goal [subset ?c ?a]>
<goal [subset ?c ?b]>
<assert [subset .c [-cap .a .b]]>>>

<define element-cap-ant <antecedent [x [<set> a b])
[element _x [.ap a _b]]
<assert [element .x .a]>
<assert (element .x .b]>>>

<define element-cap-conse <consequent [z [<set> a t)]
[element ?x [cap ?a ?b]3
<goal [element ?x ?a]>
<goal [element ?a ?b]>
<assert [element ?x [cap ?a ?b]]>>>

<define subset-conse <consequent [[<set> a b)]
(subset _a 7b]
<temprog [x <arbitrary <?>>]

<assert [element .x .a]>
<goal [element .x .b]>>

<assert [subset .a b]>>>

We can now set up our goal to prove the theorem:

<goal [(=
[cap (power al] [power a2]]
[power [cap al a2]]]>

The goal will produce the following protocol:

enter extensionality-conse
x becomes [cap [power al] (power a2]]
y becoases [power [cap al a2]3
<goal [subset [cap [power al] [power a2]][power [cap al a2]]]>
enter subset-conse

a becoaes [cap [power a!) [power a2l]
b becoses Lpoc-_-r [caf al a23]
x becomes g9
<assert

[element

(cap [power al) [power a2)]]>
enter element-cap-ant

z becomes gI

- ------.. ---.--- - - -
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a beccues (pcwer a l]
b becomes [power a2]
<assert [element gl [power al]]>
enter element-power-ant

<assert [subset gl al]>
<assert [element gl (power a2l]>
enter element-power-ant

<assert [subset gl a2]>
<goal [element gI [power [cap al a2]]]>
enter elenent-power-conse

x becomes gI
a becomes (cap al a2]
<goal (subset gl [cap al a2]]>
enter subset-cap-conse

c becomes gl
a becomes al
b becomes a2
<goal [subset gl al]>
<goal [subset gl a2]>
<assert

[subset
gl
[cap al a2]]>

<assert
(element

gl
(power [cap ai a2]!]>

<assert
[subset

[cap [power al) [power a2],
[power [cap al a2]]]>

<goal
[subset

[power [cap al a2]]
[cap [power al] [power a2]]]>

enter subset-conse
a becomes [power [cap al a2]]
b becomes [car (power al] (power a2]]
x becomes g2
<assert [element g2 [power [cap al a2]li>
enter element-power-ant

x becomes g2
a becomes [cap al a2J
<assert [subset g2 (cap al a2]1>
enter subset-cap ant

x become. g2
a becomes al
b becomes a2
<assert (subset g2 aI]>
<assert (subset q2 a2]>
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<goal
[element

g2
[cap [power all [power a2]]]>

-qnter element-cap-conse
x becomes g2
a becomes (power all
b becomes [power a2]
<goal [element g2 [power al]]>
enter element-power-conse

x becomes g2
a becomes al
<goal [subset g2 all>

<goal [element g2 [power a2]J]>
enter element-power-couse

z becomes g2
a becomes al
<goal [subset g2al]>

<assert
(element

g2
(cap [power all [power a2]]]>

<assert
[subset

[power [cap al a2)]
[cap [power al] [power a2]])>

<assert

(power (cap al a2]]
(cap [power all (power a2]]]>

6.1.5 Semantics of Natural Language

1Ithough problems for PLANNER are typically phrased in a

perfetitly formal, precise, unambiguous syntax, we will usually not

find the semantics as well defined. If we say [[very happy] John]

inatead of "John is very happy." we will not thereby have made th'tI

concept of happiness any less nebulous for the machine. Nevertbeless

it is convenient for a problem solver to have such concepts although

they are not rigorously defined. Problems of semantic ambiguity and

-
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clarificaton can require arbitrary amounts of computation in order to

be adequately resolved. For example consider the following simple

example of how semantic ambiguities car be eliminated with the aid of

"real-world" knowledge:

<assert [is-smaller-than hand (pig pen]]>

<assert
<define examrle-of-bar-hillel

<antecedent [[<object> x y,"
[in _x _y)
<cond

[<is? pen .x>
<goal [is-smaller-than ?y [pig Fen:]>
<assert [in [fountain pen] .y])]>)>>>

Now if we assert [in pen hand", PLANNER will conclude that [in

[fountain pen] hand] is true since a hand is smaller than a pig pen.

One cf the important difficulties that have plagued most of the

programs that have been written to answer questions in English is that

they are trying to solve two very hard problems at the same time.

First they must make sense of English syntax and second they need a

powerful problem solving capability to answer the question once they

have "understood" it. Ambiguous cases shculd be resolved on the basis

of deduction ard not on the basis of scoe linking scheme such as

"semantic memory". As it stands PLANNER provides sophisticated

mechanisms for solving problems in formal languages. A program could

be written [perhaps in PLANNER?] to translate English into PLANNER

theorems for problem solving. Conversely we could try to translate

PLANNER theorems into simple natural language. Surprisingly

translation into natural language can te very awkward because natural



THE PONS ASINORUM

A

B C

GIVEN : AB=AC
PROVE :-ABC = ACB



DIAGRAMS FOR GEOMETRY THEOREMS

SIDE- ANGLE- SIDE

xl

X2 Y2

[CONGRUENT [X 1 X2 X3] [y3 Y2 yl]

EQUAL-ANGLE

P1
P 3

P2

[EQUAL [ANGLE p1 P2 P3] [ANGLE P3P2P,]]

2/ --- - _ _ _ _
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language lacks many of the descriptive and procedural prinitives of

PLANNER.

6.1.6 The Pons Asinoruz

We would like to show how the "bewilderingly simple" proof of

the pons asinorum [1. e., base angles of an isoscles triangle are

equal] can be done very simply in PLANNER. The following notation

will be used:

[length jplj [F2 1] for the length frcm point IplJ to jp2j

anplien ||i zIJ for the angle jxJ jyi IzI which has theSpoint yý at it ;xvertle~x~

Four PLANNER theorems are used. They are procedural analogues of

axioms in Flane Euclidean gecmetry.

<define side-angle-side
<consequent [xl x2 x3 yl y2 y3j

(congruent [?xl ?x2 ?x3] [?yl ?y2 ?y3]]
<unique>
<goal [= [length ?zl ?x2] [leuyth ?yl ?y2))>
<goal [= [angle ?xl ?x2 ?x3] (angle ?yl ?y2 ?y3]]>
<goal [= [length ?x2 ?x3] [lengtb ?y2 ?y3']>>>

<define equal-angle
<consequent (pl F2 p3 w]

[ [angle ?pl ?p2 ?p3j ?v]
<unique>
<goal [= [rargle ?p3 ?p2 ?pl] ?w)>>>

<define equal
<consequent [z y]

[- ??y I
<unique>
<or

<match ?x ?y>
<goal [= ?y ?x]>>>>

V
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<define angles-by-congruence
<consequent [p1 p2 p3 gI q2 q3]

[= [angle ?pl ?p2 ?p3] [angle 791 ?q2 ?g3))
<unique>
<goal

[congruent
[?pl ?p2 ?p3]
[?ql ?q2 ?q3)]>>>

Suppose that we have an isosceles triangle ABC with the length of AB

equal to the length of AC. Ve can input this as:

<assert [= (length A B) [length A C]]>

The goal is to prove that angle ABC is equal to angle ACB:

<goal [= [angle A B C] [angle k C B]]>

One protocol for establishing the goal is:
enter angle-by-congruerce
pl becomes A
p2 becomes B
p3 becomes C
qI becomes 1
q2 becomes C
q3 becomes B
<goal [congruent [A B C] [A C B]]>

enter side-angle-side
p1 becomes A
p2 becomes B
p3 becomes C
q1 becomes A
q2 becomes C
q3 becomes B
<goal [= (length A B) [length A C]]> is easy since it is in

the 4ata base
<goal [, (angle B I C] (angle C I B]]>

enter equal-augle
p1 becomes B
p2 becomes A
p3 becomes C
w becomes [angle C t B]
<goal [= [angle C I d] " ogle C A B]]>

enter equal
x becomes [angle C A B]
I becomes [angle C A 3]

- /a
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<goal [= [length A C] [length A B]]>
enter equal
x becomes [length I C]
y becomes [length A B]

<goal [= [length A B] [length A C])> succeeds by
looking in the data base

Ira Goldstein bas implemented a Gerlernter-like geo3etry

theorem prover.

1f
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6.2 Current Problems and Future Work

PLANNEF would benefit greatly from an efficient parallel

processing capability. The system would run faster if it coull work

on its goals ii parallel. Quite often a goal will fail arter a short

computation alcng its path. The use of parailelism would enable us to

get many goals to -ail so that we could adopt more of a progressive

refinement strategy. We would like to carry out computations to try

to reject a proposed subgoal at the same time that we are trying to

satisfy it. Many computations can be carried out much faster in

parallel than in serial. For example we can determine whether a graph

with n nodes is connected or not in a time proportional to <* <log n>

<log n>>. It has been knuwn for a lonq t.ýme that LISP ccmputations

using parallel evaluation of arguments are determinate if the

functions r-laca, rplacd, and setq are prohibited. We could impose a

similar set of restrictions on PLANNER. Another approach is to

introduce explicit parallelism into the control structure. We have

"I<" and ">" delimit parallel calls for e'.ements and "I (" and "Pt

delimit parallel calls for segements. A parallel function call will

act as a fork in which one process is created to do tae junction call

and the other proceeds with normal nrder evaluation. For example in

<+ I<* 3 4> <* 7 8>> we could compute 3*4 in parallel iith 7+8. The

cop; function could be sped up by a factor proportional to the nuaber

of ptocessors:

SZ.Yo
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<define copy [function [xJ
<cond

[<is? <mcnadic> .x>
.x]

[-"'else"
([<copy <1 .x>> (copy <rest .x>)]>]>

However, we would still haveý problems coamunicatinm between the

branches of the computation proceeding in parallel. Partly this a

problem of sharing an indexed global data base between parallel

processes. Ve would need the standard lock and unlock primitives and

unlimited use of assigmment in order to keep the computations

synchronized. But if we allowed the use of lock and unlock and

unlimited use of assigament, the programs might become indeterminate.

One of the most important properties that can be proved about a

program is that it is determinate.

PLANNEB logic is a kind of hybrid between the classical logics

[su~ch as the guantificational calculus and intuitionistic logic], and

the recursive functicns [as represented by the lambda calculus and

Post productions). The semantics of PLANNER logic is most naturally

defined dynamically by the properties of procedures. The semantics of

the quantificational calculus can be defined by set theoretic models

of possible worlds. The logic of the quantikicational calculus is

CONSERVATIVE in the sense that if a sentence S follows from a sat of

sentences a then S will follow from any superset of a. Do to its

ability to have conditional expressions that test the state of the

world, PLANNER logic is NOT conservative. This causes consternation
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among classical logicians because many elegant thecress for classical

logic do aot hold for PLANNER logic. The restriction of having to be

conservative is quite severe in problem solving. Suppose that there

are three cubes A, a, and C sitting on a table. Suppose that it is

d"sired to build a tower two cubes bigh at place F. The plan

constructed might be to pick up A, set it down at P, and then place B-

on top of it. If in the process of constructing the plan we deduced

that cube A was glued to the table with liquid iron, we would want to

change our plan to use cubes B and C to make the tower. But by the

conservative properties of ordinary logic the original plan must

remain v.alid. The only way around this would appear to be introduce

some special kind of internal state into the deductive machinery of

the quantificational calculus. Recommendations are another source of

nonconservative behavior in PLANNER. For example we night not allow

Zorn's Lemma to be used more than once in a proof. Both PLANNER logic

and quantificational logiz are COMPACT in the sense that a computation

[proof] depends Gn c ily a finite number of expressions. In comparison

with the quantificational calculus PLANNER would appear to be more

powerful in the following areas:

control structure
pattern matching
erasure
local states ot world

There are interesting parallels between theorem proving and

algebraic manipulation. The two fields face similar problems on the

issues of simplification, equivalence of expressions, intermediate
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expression bulge, and man-machine interaction. The parallel extends

to the trade off betweei domain dependent knowledge and efficiency.

In any particular casc, the theorems need not allow PLANNER to lapse

into its default conditions. It will sometimes happen that the

heuristics for a problem are very geod and that the proof proceeds

smoothly until almost the very end. Then the progam gets stuck and

lapses into default conditions to try to push through the proof. On

the other hand the program might grope for a while trying to get

started and then latch onto a theorem that knows how to polish off the

problem in a lengthy but fool proof computation. PLANNER is designed

for use where one has great number of interrelated procedures

[theorems] that might be of use in solving some prcblem along with a-

general plan for the silution of the problem. The language hel.ps to

select procedures to refine the plan and to sequence throiigh these

procedures in a flexible way in case everything does not go exactly

according to the plan. The fact that PLARNE!E is phrased in the form

of a language forces us to think more systematically about the

priuitives needed for problem solving. Ve do not believe that

computers will be able to prove deep mathematical theorems without the

use of a powerful control structure. Nor do we believe that cýmputers

can solve difficult problems where their domain dependent knowledge is

limited to finite-state difffrence tables of connections between goals

and methods. Difference tables can be trivially simulated by

conditional expressions in PLANNER.

-.-s----.t ~ -- _____
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Difficult Iroblems for PLANNER

we would be grateful to an.- reader who could suggest types of problems

which night be difficult to encompass naturally within the present

formalism. PLANNEB is intended to be a good language for the

creation and description of problem solving strategies. Currently it

operates within the restriction of generalized stack discipline. By

relaxing this restriction we could make the language coulletely

restartable at the considerable cost in efficieucy of haying to

garbage collect the stack.

Speed: PLANNER runs best on a fast.general purpose computer.

However two special kinds uf hardware would be useful. Alan Kay has

pointed out that special hash code hardware could sake the functions

GET and PUT as fast for nodes as indexing hardware does for vectors.

Second if we had a load thru mask instruction, then we could speed up

monitoring. 7he instruction would interrupt if the appropriate

monitor bits were on. Both of the above kinds of instructions should

probably be micro-coded.

Remory: There is never enough fast random access storage.

Furthermore the eighteen bit address space of the PDP-1O is

inadequate. Ve need a bigger address space for the following

purposes:
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Garbage collection

stacks) Breathing space between data spaces [erpecially

Backtracking

Dynamic linking

Exploding definitions: We cannot afford to replace every term

by its definition in trying tc prove theorems. However, in the proof

of almost every theorem it is necessary to replace some terms by their

definitions. Domain dependent methods must be developed to make the

decision in each case.

Creating PLANNER theorems: We need to determine when it is

desireable to ccnstruct PLANNER theorems as opposed to dynamically

linking th'ea toethere at r'un tim6.''At th'e present we' have only a few

examples of nontrivial constructed theorems. We can generate some

from the functional abstraction of protocols and from attempts to

construct schematic prcofs of theorems. Others are generated as the

answers to simjle problems. For example if we ask the ccmputer how it

would put all the small green and yellow bricks in the red box, then

it might answer:

<for [(<face> facel face2] [<brick> brick]]
[[-,"cu:rent" [small-brick _brick]]]

<current [face _facel .brick]>
<current [color ,facel green]>
<current [face _face2 .brick]>
<current [color .face2 yellow)>
<pi, -up .brick>
<cariy-to [above [red box]]>
<drop>>
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Terry Winograd has developed a program to translate English into

PLANNER theorems. An interesting expreriment that could be atteapted

would be to modify a chess porgram so that it would return a PLANNER

program as well as the symbolic description of a position. The idea

is that the PLANNER prcgram would represent the plan of action that

would be taken in case of the various moves that the opponenz might

take. William Henneman has investigated some of the possibilites for

doing planning in king and pawn end games. The problem seems to be

very difficult but not impossible given the present state of the art-

Arbitrary Constraints: Using procedures as a semantic base

requires us to solve the problem of making procedural formalisms more

goal-oriented. The quantificational calculus is very goal orieuted

but suffers growing pains trying to introduce procedural knowledge.

Manipulation of PLANNER theoress: PLANNER provides a flexible

computational base for mani~ulating theorems that can be put in

disjunctive normal form. We need to deepen our understanding so that

we can carry out similar maniFulations on PLANNER theorems with the

same facility.

Progressive refinemeat: Ve need to make more use of the style

of reasoning in which we construct a plv, tor the solution of a

problem from necessary conditions that the solution must have, attempt

to execute the Elan, find out why it does not work, and then try

again. The style is often used in chess where very much the iame

game tree is gone over several times; each time with a deeper

understanding of what factors are relevant to the solution.

Ir. - .
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Garbage collection of assertions: Statements which have been

asserted should go away automatically when they can no lcnger be of

use. Unfortunately, because Cf some lcgical problems and becuause of

the retrieval system of PLANNER, me have difficulty in achieving

completely autcmatic garbage collection. The erase primitive of the

language provides one way to get rid of unwanted statements. If the

asserted statement appears in the local state of some process instead

of in the global date base then it will disappear automatically.

Simultaneous goals: We often find that we need to satisfy

several goals simultaneously. We usually try to accomplish this by

choosing one of the goals to try to achieve first. However, when

working on the goal, we should keep in mind the other constraints that

the goal must satisfy. One solution is to pass the goal to be worked

on as a list whose first element is the goal aad whose succeeding

elements are the other goals which must be simultaneously satisfied.

Nonconstructive proofs: The most natural way to do a proof by

contradicticn is to try tn calculate in advance the statement which

ultimately will prodnce the contradiction. The method is to find a

statement S such that S is provable and [not S] is provable. gore

precisely, we compute a statement S, make S a goal, and then make (not

S] a goal. Bob Boyer has pointed out that in mathematics if the goal

is tc prove S, then if at any point in the proof the main goal reduces

to the subgoal to prove [not S), then a proof by contradiction cam be

completed.

Nodels of Domaims: Suppose that a is model for the set of
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hypotheses H with consequent C. Using constructive logic a subgoal S

of the goal C would be rejected if it could be shown that it was

unsatisfiable by M. Often rejections are made on the basis of a model.

For example in the ictuitive model of Zermelo-Fraenkel set theory all

the descending element chains are finite and terminate in the null

set. Furthermore every set has an ordinal rank. Thus the ordinals

form the lack bone of the set theory. The intuitive meaning of [* A

B) [where A and B are ordinals] is the concatenation of A with B. The

intuitive meaning of [* A B] is the concatenation of A with itself B

times. If two ordinals have the same crder type then they are equal.

Thus intuitively we would expect that [= [+ 1 omega] omega] is true.

Every well developed mathematical domain is built around a complex of
3 - . . . . . . . •

intuitive models and simple examples and procedures. Axiom sets are

constructed to attempt to rigorously capture and delineate various

parts of the coiplex. One of the most important criteria for judging

the importance of a theorem is the extent to which it sheds light on

the complex of the dcmain. These complexes iast be mechanized. Ve

conclude that it is unlikely thit deep mathematical theorems can be

proved solely from axicas and definitions by a uniform proof

procedure. A uniform proof procedure based on model resolution does

not provide the means for mechanizing the complex of a dcmain. model

resolution is a strategy for deciding which clauses to resolve. There

is a great deal more tc mechanizing the complex of a domain than

simply pruning proof trees. Furthermore, clauses are often false iu a

model even though they are irrelevant to the proof that is being
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sought. One way that is often used to try to find a counterexample

to a false statement abou.t ordinals is to attempt to construct the

counterexample from well knowD ordinals. Some well known ordinals are

1, 2, 3, omega, the least uncountable ordinal, etc. Thus in seeking a

counter example to the statement that there are only finitely many

limit ordinals less than a given ordinal we need go no further than L*

omega omega].

9i
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7. Models of Procedures and the Teazhing of Procedures

7.1 Models of Procedures

7.1.1 Models of Expressions: Intentions in INTEUDER

A problem solver needs to have some way to knca the properties

of the procedures which it uses to solve problems. It can use thp

knowledge which it has as a partial model of itself. In order to be

able to model procedures, it needs:

1: a way to express properties of procedures.

2: A way to establish that the properties do in fact hold for

the procedures.

INTENDER is a goal-oriented formalism for expressionq so4els

of procedures. The models are expressed in terms of intentions of

what the procedure should accomplish. The primitives of INTENDER are

concerned with expressing intentions in procedural terms. Thus the

intentions are capable of themselves havinq intentions. INTEIDBP

mechanizes the knowledge needed to do execution inductiov on

procedures. It calls on PLANNER to satisfy goals and uses PLIBIER

theorems to hold the substantive knowledge (suct as facts about

integers) which are needed to prove properties of procedures.
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INTENDER has three main uses for PLANNER:

1: It enables PLANNER to verify that its Frocedures
do what is intended.

2: host knowledge in PLANNER is embedded in
pL.•cedures. INTENDER helps PLANNER understand these
procedures and thus to have some knowledge of its own
problem solving behaviour.

3: IN TIENDER enables PLANNER to verify that its plans
(procedures) are valid relative to its piccedural
model cf the world.

We shall express the properties of an expression x by the

following function.

<INTENT

[-declaraticns-] |predecessorl lxi Ifunctioni -

successors-> is tr~ie if jpredecessorl evaluates to true, the function

applied to the value of lx| is true, and the -successors- all evaluate

to true. The value of the function intent is the value of Jxj. The

function intent is used to state a model for an expressicn x. As might

be expected the models are stated in PLANNER. The intentions are

established by INTENDER which is the language in which intentions are

stated. The proof is by induction on the activations of the

procedure. Thus for the control structure of LISP, the proof is by

recursion induction. To avoid confusion we shall write the intention

variables in upper case. Also we shall use 1' to suppress

invocations. Thus <+ 2 3> evaluates to the number 5 while !'<+ 2 3>

evaluates to <, 2 3>. For example the intentions in the prog below

are all true.
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<prog foo [[a 1] [b 2]]
!;<intent [] <goal !'<= 1 .a>>>
;"Yes the identifier a was

indeed initialized to 1. Will wonders never cease?"
!;<intent [ <goal I$<= .b '<+ .a 1>>>>
! ;<intent ( ]

<goal !'<= .b 2>>
< :b <+ .b 1>>
<function [X1 <goal !*<= .X 3>>>
<goal l'<=.b 3>>>

;"We have just verified that an assignment statement
can change the value of the identifier b from 2 to 3"

<ofoo .b>
;"exit .foo with .b">

The following Frotoccl for INTENDER verifies that the

intentions in the above program do in fact hold. We shall use the

notation jidentifierJjnj for the |nlth value of lidentifierl and

lidenifierl_ for the initial value.

<assert !*<= 1 a >>
<assert I'<- 2 b»>>
<goal !$<= 1 a»>>
<goal !'<= b !'<+ a- 1>>>
<goal I$<= 2 b»>>
<assert !'<= b_1 <+ b 1>>>
<goal I'<= <+ b 1> 3>>
<goal !'<= b_1 3>>

The essential idea for intentions comes frcm the break

function introduced into LISP by V. Martin. A. intention is not

allowed to assign a value to a non-intention identifier and ordinary

code is not allcwed to reference intention identifiers. We shall

distinguish intention identifiers from ordinary identifiers by putting

them in all caps. The intention

<INTEND

[-declaratioLs-] |predecessorl lexpression

[function|> is exactly like the function intent except that intention

____________________________ ___
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variables can be decl,)red in the declaration. In additicn we need a

function

<OVEHALL

r-declarations-] Jpredecessori |exFressionJ

ctionp> which is exactly like the function INTEND except that it

is used to state the overall intention of a procedure. If

|expressioni is a junction then the overall input output intentions of

the junction are given by |predecessorl and Ifunctionj. Thus INTENDER

does computational induction across process boundaries. All the

intentions in the function fact are true where

<define fact <function fact (n]
<overall [ )

<intention [ ]
<goal !'<.s? !'<non-neg> .a>>
<assert !'<is? !'<non-neg> .n>>)

<repeat [[tenp 11 Ji 01)
I -<inteition og

<prog (I
<goal !'<is? !'<non-neg> .i>>
<goal It<= .temp 1'<factorial .i>>>>

<prog []
<assert !'<is? !'<non-neg> .i>>
<assert !'<= .temp <faccorial .i>>>>>

<cond
[<is? .n .i>

<.fact .tenp>
;"exit .fact with .teap")>

<_ :i <4 .i 1>>
<_ :tesp <* .i .te-p>>>

<fusiction EX)
<intention [ ]

<assert I'<= .X !<factorial n>>>
<goal !0<= .1 !'<factorial .n>>>>>)>>

where

<define factorial <function [n]
<overall [ )

<intention [)

- - - -- a --.
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<goal !'<is? !'<non-neq> .n>>
<assert !'<is? !*<non-neg> .n>>>

<cond
[<is? C .n>

1]
[-"else"

<* .n <factorial <- .n 1>>>]>
<function [X]

<intention [2
<proj ( J

<cond
[&<goal !<= .n 0>>

<assert !'<= ,X 1>>]
[<goal !'<not !'<= n 0>>>

<assert

!'<* .n !'<fact !'<- en 1>>>>>]>
<assert !(<= .X !'<combinations en 0>>>
<assert !'<= .X !'<fact .n>>>>

<prog []
<cond

[($<goal !'<= en 0>>
<goal !'<= .X 1>>]

[&<goal !'<not I'<= .n 0>>>
<goal !'<= .X !'<* .n !'<fact !'<- n 1>>>>>j>

<goal !'<= .X !'<combinations .n 0)>>
<goal I'<= .X !'<fact .n>>>>>>>>>

The following is a protocol of the action of INTENDER on the

iptentions of fact:

<assert !'<is? !'<non-neg> n_>>
enter intentions of repeat

Case 1: initial entry
<assert !'<= 1 tezp_>»
<assert !'<= 0 i_>>

<goal !'<is? !'(<on-neg> i >>
<goal !'<= 1 !'<factorial 0>>>

enter intevti-ns of factorial
n becomes 0
X beccmos I
<goal !'<is? !'<non-neg> 1>>
<goal !'<= 1 1>>
<assert !'<= 1 !'<factorial 0>>>
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Case 2: inductively assume
<assert !c<is? !'<non-neg> i_>>
<assert !'<= temr_ !'<factorial i_>>>
enter conditional

Case 1:
<assert !'<= n i >>

<goal !'<= terns !'<factorial n >>>

Case2:
<assert !'<not !'<= n i >>>

<assert !I<= i 1 i'<+ i_ 1>>>
<assert !'<=

temp_1
!'<* i_ 1 temF_>>>

<goal !'<= temp_1 !'<factorial i_1>>>
enter intentions of factorial

n becomes i I
X becomes temp 1
<goal !'<is? !'<non-neg> ii>>
<gcal !'<= 0 i_1>>
FAIL
<gcal !'<=

i 1 . .

!7<factorial !'I<- i_1 1>>>
temp_l>>

On the other band if INTENDER analyzes the intentions of

factorial we get:

<assert l'<is? !*<non-neg> n_>>
enter conditional

Caze 1:
<assert !'<= 0 n_>>

<goal !'<= 1 !'<fact C>>>
enter intentions of fact

n beccoes 0
X becomes 1
<goal !'<= 0 0>>
<goal !'<= I 1>>

Case2:
<assert !'<not I'*< 0 n->>>

<assert !'<=
1'<±actorial I@<- n, 1>>
!'<fact !I<- n 1>>5>
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<goal !'<=
to<*

n-
!*<factorial I'<- n 1>>

!'<fact n_>>>>
enter intentions of fact

n becomes n_
X b'comes

11<factorial I'<- n- 1>>>
<goal I' <=

n-!'<factorial I'<- n 1>>>

t'<combinations n 0>>,
<goal !'<=

n-!<factorial "'<- n 1»>>

n-

!'<fact !'<- n 1>>>>>

The intentions fur the function fctrL defined below are not so-

easy to establish.

<define fctrl <function fctrl [n]
<ov,':all [[AEG .n]]

::intention []
<goal l'<is? !'<non-neg> .>>
<assert !(<is? !'<con-neg> .n>>>

<repeat [[temp 1]]
!;<intention []

<goal !'<= .temp 1'<coubinations .ABG .n>>>
<assert !'<= .temp !'<combinations .ARG .n>>>>

<cond
[<is? 0 .D>

<.fctrl .temp>
;"exit .fctrl with .temp"]>

< :temp <* .temp .n>>
< :n <- .n 1>>>

<function [X]
<intention (]

<assert !9<= .X 1'<factorial .LRG>>>
<goal !'<= . 1<factorial .ARG>>>>>>>>

-
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We need to define an auxillary function in order to do the proof:

<define combinations <functicn [n r]
<overall (]

<intention
<and

&<goal P'<is? '*<non-neg> .n>>
&<goal 1'<is? !'<non-neg> .r>>
&<goal !'<is? fI<greater .r> .n>>>

<a~D
&<assezt !'<is? !'<pon-neg> n>>
&<assert !'<is? !'<non-neg> .r>>
&<assert !.'<is? I'<greater= .r> n>>>>

<cond
[<is? .n .r>

1]
[(-"ese"

<* .n <ccmbinations <- .n 1> .r>>]>
<function [X]

<intention ( ]
<prog ( ]

<cond
[&<goal !'<= .n .r>>

<assert !'<= 1 AX>>]
[&<goal I'<= .r 0>>

<assert !'<= .X !'<factorial .n>>>]>
<assert

cx
!'*

!'<combinations !'<- en 1> .r>
.n>>>>

<prog [J
<cond

[&<goal !<= .n .r>>
<goal 0<= 1 .X>>]

[<goal If<= .r 0>>
<goal !,<= .X !'<factorial .n>>>]>
<goal

! '<
.X

1t<combinatiois P"<- .n I> .r>
.n>>>>>>>>>

IbTENDER yields the following protocol. for the intentions of

fctrl:
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<assert I!<is? !'<ncn-ineg> n >>
enter intentions ot repeat

Case 1: initial entiy
<assert. !'<= 1 temp_>>

<goal !'<= 1 !'<combinations n_ n >>>
enter intentions of combinations

n becomes n_
r becomes n
<goal !'<is? !'<non-neg> n_>>
<goi7l !'<is? :'<non-neg> n -->>

<goal 1'<is? !'<greater= n_> n_>>
<goal I'<= n_ n_>>
<goal !'<= 1 1)>

rase 2: inductively assume
<assert

temp_
!t<combinations n_ n_>>>

enter conditional

Case 1:
<assert !'<= 0 n_1>>

<goal !'<= temp_ !I<factorial n >>)
enter intenticns of factorial

n becomes n_
X becomes temp_
<gcal

temp_
!'<ccmbinations n_ 0>>>

Case2-
<assert !'<not !'<= 0 ni»>>>

<assert

temp_1
!.,<* temp_ n_1>>>

<dssert !'<= n_2 !'<- n_1 1> >>
<goal !'<=

temp_1
!'<combinations n_ u-2>>>

enter interticns of ccmbinations
n becomes n_
r becomes n_2
X becomes temp_1
<goal !'<is? !'<non-neg> n»>>
<goal !'<is? !'<non-neg> n_2>>
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<goal !'<is? !'<greater= n_2> n_>>
<gcal !'<=

ter p_1

!' <ccmbinations
n_
n I>

n-41>>>

We can use the same techniques for showing that a procedure

will converge if its arguments satisfy certain conditions. The idea

is tc define a partial order with no infinite descending chains and

then prove that every time control goes through the same Foint in the

program that it has descended in the partial order. The ordering we

shall use is that [SMALLER [fal Ibi #cj] [Idl lei If]j] is true if one

of the following three conditions holds:

tal is less than Idi

lal=Jel and jbj is less than lei

JasJ=JeJ and lhj=le] and Icl is less than 'fl For example

consider Ackerman's functicn as defined below:

<define ackerman <function [z x y
<overall ( )

<intention [ ]
<prog [ ]

<goal !'<is? !'.aon-neg> .z>>
<goal !'<is? !'<non-neg> x>>
<goal !'<is? !'<,on-neg> .y>>>

<prog [(
<assert lt<is? !*<non-ne9> .z>>
<assert !'<is? !'<non-neg> .x>>

<assert !'<is? !'<non-neg> .y>>>
smaller>

<cond
[<is? 0 .x>

<rule ) z
[0 .,]
[1 0)
[<greater 1- 1)>]
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[<is? 0 .z>
<4

<ackerman 0 <- .x 1> .y>
1>]

[-"else"
<ackerman

<- .z 1>
<ackerman .z <- .x I> .y>.y>]>

<functiou [w]
<intention [ ]

<assert !'<is? !'<non-neg> .w>>
<goal !'<is? I'<non-neg> .w>>>>>>>

<define show-smaller <cons2quent [a b c d e f]
[smaller [?a ?b ?c] [?a ?e ?f]]
<cond

[&<goal !'<is? !'<less ?d> ?a>>]
J&<goal !'<= ?a ?d>>

<cond
[S<goal !'<is? I'<less ?e> ?b>>]
[&<goal Is<= ?b ?e>>

<gual I'<is? 1l6<ess ?f> ?c>>»
[•Selser <fail>]>]

[-Oelse-" <fail> ]>>>

The protocol for PLANNER on acY.erman's function is:

<assert !8<is? 1'<non-neg> z >>
<assert !'<is? !'<non-neg> x_>>
<assert !'<is? ![<non-neg> y»>>
enter conditional

Case I:
<assert 1 = 0 x_>>

<assert !1<is? !'<greater O> x»>>

Case 2.:
<assert !'<= 0 z->>

<goal [smalie
t0 I'<- X_ I> y)]
[0 x_ y_]1>

enter show-smaller
a becomes 0
h becomes !'<- x_ 1>
c becomes T_
4 Lecomes 0
Q becomes x_

r~.--- -.---.- . _____________________
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f becomes y<goal 10<,s 1'<1ess O> 0>>

FAIL
<goal !'<= 0 0>>
<gcal !'<less x_> !'<- X 1>>

<assert !'<is? !'<greater 0> z>>

Case 3:
<goal [smaller

[Z I*<- X 1> y_][z_ I. y_])>
<goal (smaller

[I'<- z_ 1> <acKernan z_ !'<- x_ 1> y_> y_>]
[z_ x_ )f]>

We would like to show that if we reverse a list twice then we

get the original list.

<define reverse <function rev (i]
<overall [(

t
<repeat ([u .1) [v [v

! ; <inteDtion [3
<goal 10<is?. .v !'<reverse IU<sub .u)>>>
<assert !<is? .v '<.:everse !0<sub .1 .u>>>>>

<cond
[<empty? u>

<.rev .v>
;"exit .rev with .v"]>

<_- :V (<1 .U> 2.o)>
< :u <rest .u>>>

<function [X]
<intention [ )

<and
"<cond

[<is? () .1>
<assert '<- .X ()>>]>

<assert !'<is? .1 16<rev .1>>>
<assert !'<is? .1 !'<reverse .X>>>>

<prog [ ]
<cond

[<is? 0) .1>
S<goal '<= .X ()>>]>

&<goal !'<is? .X 1°<rev .1>>>
&<goal ('<is? .1 E'<reverse .I>>>>>>>>>
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We would like to show that for all Ill that <reverse <reverse Ill>> is
Ill. Again we will need a helping functicn to express our intentions.
We stall define <SUB lxi Jy|> to be |xJ subtract jyI as lists.

<define last <function [z]
<cond

[<empty? <rest .x>>
<1 .x>1

[-"else"
<last <rest .x)>]>>>

<define butlast <function Lx!
<cond

[<empty? <rest .x>>
() I

[-"else"
(<1 .x> <butlast <rest .x>>]>>>

<define sub <function [x y]
<overall (2

t
<cond

[<is? .x .y>
0 1

[-'"else"
(<1 .x> (sub <rest .01> .y) ]>

<function [Z]
<intention [ ]

<cond
[S<g3al !'<is? .y 0>>

<assert !'<is? .Z .x>>]
[&<goal I I<not I!'<is? . y () >>>

<assert !<=
!'<last !'<sub .x !:<rest .y>>>

'1<1 .y>>>
<assert !<=

.Z
!'<butlast !'<sub .x !1<rest .y>>>>>]>

<cond
[&<goal !'<is? .y ()>>

<goal !'<is? .Z .x>>]
[&<goal !'<not I'<is? .y ()>>>

<goal I'<=
!'<last ]'<sub .x !<rest .Y>>>
1'<1 y>>>

<goal !'<=
.Z
!'<butlast !C<sub .x !'<rest

.y>>)>>]>>>>>>
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<define rev <function [list]
<overall (

t
<cond

(<monad? .list>
.listj

(<last .list> (rev <butlast .list>)) ]>
<function (X]

<intention[
(prog

<assert !'<is? .X !'<reverse .list»>>
<assert !'<is? .list !'<reverse .X>>>

<prog []
<goal !'<is? .X !'(reverse .list>>>
<goal !'<is? .list !'<reverse .X>>»»»>>>

The protocol of INTENDER on EBEVLERSE is:
enter intenticts of repeat

Case 1: initial entry
<assert !=u- 1_)>>
<assert v_<=()>>

<goal !I<i~s? () !'<reverse !*<sub I- 1_)>>>
enter intentions of sub~

x becomes
y beccines (
<assert I'<= () !'<sub I- 1»)>

enter intentions of reverse
1 becomes ()
<assert I$<= () !*<reverse (>)>>

Case 2: inductive hypothesis
<assert !'<is v- !'<reverse !*<sub 1- u_»»>

enter coinditional

Case 1:
<assert !'<= () u»>

enter overall consequent.
X becomes v_

<goal 17<is v- !'<reverse 1l>>

<assert 1'(not I'<= (I u_>>

Case 2:#
<assert I$<= Yvi ('10 u_> 16 (value v))>>
<assert I$<= ul1 1'<rest u»>>
<goal !'<is

U(
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!'(reverse !'<sub 1 u_>))
! '<reverse

!' <sub

!'<rest u»>>>>>

Allowing shared side effects in structured data considerably

complicates the process of proving intentions.

7.1.2 Models in Patterns: Aims

Aims are like intentions except that they are actors and accur

in patterns.

<AIM predecesscr pattern down up successors> is the form for a

call to the actor aim. An aim vill be said to be attained when the

following conditions are satisfied:

[1] Its predecessor evaluates to true

[2] We apply the function down with two arguments. The first

is the expression to be matched. The second is <> if and cnly if

pattern doesn't match.

(3] We apply the function up with two arguments. The first

is <> if and only if the rest of the pattern doesn't match. The

second is <> if and cnly if pattern fails.

.[.4.] The successors evaluate to true.

The function down expresses the intent of the downward action of the

pattern and the functicn up expresses tha upuard gcing action. The

actor <AIMING (declarationb] predecess,;r pattern down up successors>

is exactly like the actor AIM except that intention variables may be

declared., For example the aim in the folowing expression is
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attained:

<aiming ý[OLD-F .f]

f
(function (X Y)

<assert !'<eq .f .X>>
<assert !'<is? .y t>>>

<function [X Y]
<cond

[&<goal !'<is? .X <>>>
<assert !'<eq .f .OLD-F>>
<assert !*<is? Y [»]

[&<goal !'<is? .X t>>
<assert !<eg .f .X>>
<assert !'<is? .v t>>]>>>

The value of f changes only if the rest of the match succeeds. The

actor <ENTIRE [declarations] predecessor pattern down up successors>

is exactly like the actor AIMING except that it is used to express the

entire intent of the pattern. For example for the actor ATOMIC which

takes no arguments and matches only atoms can be characterized bl:

<define atomic <actor [3

<entire j)

<atomic>
<function [I YJ

<coDd
(&<goal 1'<atom .X>>"" ' <asser t: !I< is? .¥Y t>>]

[&<goal !'<not !'<atom .X>>>
<assert !'<is? .Y <>>>]>>

<function IX Y"
<assert !1<is? .X .Y>>>>>>

7.1.3 Models of PLANNER Theorems
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We shall construct mccels for ELANNEB theorems in much the

same manner as for MATCHLESS patterns.

<THINTENT predecessor i down up successors> is true if the

following conditions are met:

[1] the predecessor is true.

[21 We apply the function down with two arguments: The first

argument is <> if and cnly if the evaluation of x fails. If the lirst

argument is not <> then the value of the second argument is the value

of x.

[3] We apply the function up with four argunents. The first

is <> if and only if the rest of the computation fails. If the first

argument is <> then the second argument is the message of the failure.

The third argument is <> if and only if the evaluation of x fails. If

the third argument is not <> then the fourth argument is the value of

I.

The function THINTENr is exactly like the function THINTENT

except that a declaration of intention variables must be the first

argument. For example the folliwng intention is always satistied:

Recall that the function ASSERT! will assert a statement if has not

already been prcved. .

<thintend [[already-proved <>)]
t
<assertl [subset a bi>
<function [X Y)

<cond
[&<goal [proved [subset a bl]>

<assert !'<is? .X <>>>
<_ :already-proved t>
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<assert !'<is? .Y <>>>]
[&<goal !'<not (proved [subset a bj]>>

<assert [proved [subset a b]]>
<assert I1<is? .X t>>
<assert !*<is? .Y [subset a b]>>]>>

<function [X Y U V]
<cond

[<is? ; .already-proved>
<cond

[S<goal !'<is? .1 <>>>
<erase [proved [subset a b])>]>]>

<assert !'<is? A .X>>
<assert !'<is? .V .Y>>>>
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7.2 Teaching Prccedures

Crucial to our understanding of the phenomenon of teaching is

the teaching of procedtres. Understanding the teaching cf procedures

is crucial because of the central role played by the structrual

analysis of procedures in the foundations of problem solving. How can

procedures such as multiplication, algetraic simplification, and

verbal analogy problem solving be taught efficiently? Once these

procedures have been taught, how can most effective use of them be

made to teach other procedures? In addition to being incorporated

directly as a black box, a procedure which has already been taught can

be used as a model for teaching other procedures with an analogous

structure. One of the most important methods of teaching procedures

is telling. For example one can be told the algorithm for doing

symbolic integration. Telling should be done in a high level goal-

oriented language. PLANNEB goes a certain distance toward raising the

level of the language in which we can express a procedure to a

computer. The language haz primitives which implement fundamental

problem solving abiLlities. Teaching procedures is intimately tied to

what superficially dprears to be the rpecial case of teaching

procedures which write procedures. The process of teaching a

procedure should not be confused with the process of trying to get

the one being taught to guess what some black boz procedure really

does [as is the case in in sequence eztrapolation for example]. The
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teacher is duty bound to tell anything that sight help the one being

taught to understand the properties and structure of the procedure.

We assume that the teacher has a good model of how the student thinks.

Also, just because we speak of "teaching", we do not thereby assume

that anything like what classically has been called learning is taking

place in the student. However, this dces not exclude the rossiblity

that the easiest way tc teach many procedures is through examples. We

can give protocols of the action of the procedure for various inputs

and enviroments. By "variablization" [the introduction of identifiers

for the constants of the examples] the protocols can be formed into a

tree. Then a recursive procedure can be generated by identifying

indistinguishable nodes on the tree. We call the above procedure for

constructing procedures from examples the procedural abstraction of

protocols. ..ocedural abstraction can be used to teach oneself a

procedure.

7. 2. 2 By Procedural Abstraction

7.2.2.4 Examples of Procedural Abstraction

7.2.2.4. 1 Building a Wall

We shall explain procedural abstraction in more detail using

the example of building a wall. We define <brick-at jw| ihj> to mean

that there is a brick at the location with width |lv and height Jhi
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BUILDING WALLS

[WALL I 2]
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[WALL 2 I1

NOTE: THE NUMBERS IN THE BOXES REPRESENT
THE COORDINATES OF THE BRICKS.
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and defipe the stateient [wall iwi IhJ] to mean that there is a wall

of width w and height h using the definition

<define wall <function [v h]
<conjunction ([Ww 0]]

[-"inc" ww -"by" 1 ,"thru" .w]
<conjurction [fhh .h]]

[-,"dec" hh -"by" 1 -1"thru" 0]
<brick-at .ww .bh>>>>>

Thus <wall 1 2> means

<and
<and

<brick-at 0 2>
<brick-at 0 1>
<brick-at 0 0>>

<and
<brick-at 1 2>
<brick-at 1 1>
(brick-at 1 0>>>.

Notice that the syntactic definition of a wall runs orthogonal to the

way in which a wall has to be constructed. !hus we could not use

purely syntax directed methods to construrt walls. The predicate

<ASSIGNED? var> is true only if the identifier var has been assigned a

value.

<define build-tower
<consequent build

[[!=fix w h] [actions []]]
[brick-at ?v ?h]

<cond
[<not? <assigned? h>>

<_ .h o>)>
<cond

[<current? [brick-at ?w ?h]>
<.build ()>
;"exit .build with () ]>

[<is? .h O>
<.build (!'<pat-brick-at ?w ?h>)>]>

<_ :actions <gcal (bricL-at ?w <- .h 1>]>>

- ..- - r t- .f
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<goal [put-brick-at ?w ?h]>
<goal [check-brick-at .w .h]>
<assert [brick-at .w .h]>
<.build (!.actions 1'<put-brick-at .w .h>)>>

If we give PLANNER the task cf constructing a [wall 1 2], then the
actions that will be taken are:

<put-brick-at C 0>
<put-brick-at C 1>
<put-brick-at 0 2>

If the goal is rwal' 2 1] then the actions are:
<put-brick-at C >
<put-brick-at 0 1>
<put-bri.-k-at 1 O>
<put-brick-at 1 1>

We shall use tte expression new 5 to tean that a new identifier is

bound and initialized to 5. We shall use the expression <value 9> to

mean a reference to an identifier whose value is 9; the expression

<?lter 3 7> means that an identifier with value 3 is altered to be the

value 7. More precisely, the Frotoccl for [wall 1 2] is

<new 12]
<new [UNASSIGNED UN?.SSIGNED]
< <alter UNASSIGNED C) O>
<is? <value 0> <value 1>» IS FALSE
So
< <alter UNASSIGNED C> 0>
<Is? <value 0> <value 2>> IS FALSE

<put-brick-at <value O> <value 0>>
< <altcr 0 1> <+ <value 0> 1>>
<is? <'7alue 1> <value 2>> IS FALSE

SO

<put-brick-at <value 0> <value 1>>
< <alter 1 2> <4 <value 1> 1>>
<is? <value 2> <value 2>> IS TRUE

So
<_ <alter 0 1> <C <value 0> 1>>
<is? <value 1> <value 1>> IS TBUE

SO [: ]>»
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The protocol for [wall 2 1] is
<new [2 1]
Kne [(UNASSIGNED UNASIGNED)
< <alter UNASSIGNED 0> 0;,
(is? <value O> <value 2>> IS FALSE

So
<_ <alter UNASSIGNED O> 0> <is? <value Q> <value »> IS FALSE

So
<put-brick-at <value 0> <value 0»
<- <alter 0 1> <+ (value O> 1>
(is? <value 1> <value 1>> IS IRUE

SC
<_ alter 0 1> <( <value O> 1»
(is? <value 1> <value 2W> IS FALSE

SC
<- <alter 1 0> O>
Qis? <value O> 1>IS FALSE

so
<put-brick-at <value 1> <value 0">
< <alter 0 1> <+ <value 0> 1>)
(is? <value 1> <value 1>> IS TRUE

Sc

<alter 1 2>
(V <value W> W>

Qis?
<value 2>
<value 2>> IS TRUE

SO [ )>>

The protocol for (wall 2 2] is
"new [2 1]

<new [UNASSIGNED UNASSIGNED]
< <alter UNASSIGNED 0> 0>
<is? <value C> <value 2>> IS FALSE
so
<_ <alter UNASSIGNED O> 0>
(is? <value 0> <value 2» IS FALSE
So
<put-brick-at <value 0> <value 0»
< <alter 0 Q> <t <value O> W»
<is? <value 1> <value 2» IS FALSE
so
<put-brick-at <value 0> <value 1»
V <alter 1 2> <+ <value 1> W>
<is? <value 2> <value 2» IS TRUE
So
< <alter 0 W> <( <value 0> IW
Ais? <value 1> <value 2>> IS FALSE
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So
< <alter 2 C> 0>
<is? <value 0> <value 2>> IS FALSE
so
<put-brick-at 1 0>
< <alter 0 1> <4 <value O> 1>>
<is? <value 1> <value 2>> IS FALSE
-0

<put-brick-at <value 1> <value 1>>
< <alter 1 2> <( <value > 1>>

_ <alter 1 2> <+ <value 1> 1>>
<is? <value 2> <value 2>> IS TPUE
so
[ »>>

By introducing identifiers fcr the constants and by tracing the
bindings of the identifiers of BUILD-TCWER the protocols can be
arranged in a tree as follows:

new [w h
new ww=JNASSIGNED; hh=UNASSIGNED]
< :ww C>
if <is? .ww .w>
then[I
else < :hth O> if <is? .hh .h>

then
< :ww <+ .ww 1>>
if <is? .ww .w>

then
[1

else
< :hh U>
if <is? .hh O>

then
<_ :wW <+ .ww 1>>

if <is? .ww .w>
then

1)
else.. .

else...
else

<put-brick-at .ww .hh>
< :hh <+ .hh 1>>
if <is? .hh .h>

the4
< :wV <+ WV 1>>

if <is? .ww 1>
then[1
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else
< .hh 0>
if <is? .hh .h>

then
<put-brick-at .ww .hh>
< :hh <+ .hh 1>>

if <is? .hh .h>
then

< :ww <+ .ww 1>>
il <is? .ww .w>

then [ ]
..else...

else...
else...

else

< :hh <+ .hh 1>>
if <is? .hh .h>

then
< :ww <+ .ww 1>>
if <is? .ww .w>

then [ ]
else.,...

else...

We define the protocol of an evaluation to be a list of the

events aisd the places in the program where they happen that occur when

the evaluation is being carried out. By ekamining the protocols of

the system as it tries to build a wall we find that it always uses the

same procedure. of course it will not always be the case that the

protocols from the sclutions of the instances of a goal can be

combined into a procedure. The basic idea is to combine the set of

protocols into a tree and then consider any two nodes of t.ýe tree

which cannot be distinguished on the tasis of the protoccls to be

identical. In cther words it is necessary to compute a minimal or

almost minimal homomorphic image of the set of available protocols.

Unfortunately it is often difficult to extract the information needed
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to do procedural abstraction from the protocols produced by PLANNER

theorems as they solve problems. The procedure that the theorem is in

fact using can he expressed as follows:

<define compile-build <function [w h]
<overall [)

I; "tin'.ention[J
<aad

(goal !*<is? !'<non-neg> ,w>>
(goal !'<is? !'<non--neg> h>>>>

<and
(assert !'<is? !'(non-neg) w>>
<assert !'<is? !'<non-neg)ý h>>>>

<repeat column
[[ww G,)
!;<intention [

<goal [wall .ww .h]>
<assert [ wall .ww h]>>

(cond
[<is? wW .W>

<intent <wall w, h>>
<.column>

(repeat height [[hh 0))
!;<intenticn []

<goal (column .ww .hb]>
<assert [column .ww hh>

(cond
[<is? .hh .h>

<.height>
;"exit .height with <>"]>

!;<intent <goal (support-for .ww .hhj>>
<put-brick-at wwv hh>
!;<intent <goal [brick-at vww .hh]>>
<_ :hh <+ .hh 1»>>

<_ :WW <+ ww 1»>>
<function [X]

<assert [val2 .wb>
<goal [wall .w, hj>>»r>

<define check-wall
<consequent

check-wall
[WO W h, h]
[wall U11 7?h"]
<cond

[<or?
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&<goal !'<is? Wh' 0>>
&<goal !'<is? ?w' 0>>>]

[<is? !'<+ ?h 1> .h'>

<(oal [wall ?w' .b]>
<goal [column ?wl ?h']>]

[<is? !'<+ ?w 1> .wl>

<goal [wall ?w .h']>
<goal [column ?w' ?h' )>]

[-"else"
<fail <> .check-wall>]>>>

<define check-column
<consequent

check-column
[w h h')
[coluun ?w ?h']
<cond

[&<goal !'<is? ?h' 0>>]
[<is? !'<+ ?h 1> ,h'>

<goal [column ?w ?h]>]

<fail <> .check-column>]>>>

<define check-support
<consequent

check-support
[w h]
[support-for ?w ?h]
<cond

[&<goal !I<is? ?h 0>>]
[<goal (cclumn .wy .hh)>]

[-%"else"
<fail <> .check-support>]>>>

<define put-brick-at
<function [w h]

<overall [ ]
<goal [support-for .w .h]>
<put-brick-at .w .h>
<assert [brick-at .w .h>>>>

The INTENDER protocol for the verification of the inte,.tions

of compile-build is:

<assert 1'<is? 11<non-neg> vw>>
<assert !'<is? 11<non-neg> h»>>
enter interticvs of repeat
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Case 1: initial entry
<assert 1'<is? 0 ww >>

<goal (wall 0 h]>
enter intenticns of check-wall

wO becomes 0
h' bccomes h
<goal !P<is? h_ 0>>
FAIL
<goal !'<is? 0 0>>

Case 2: Inductively assume
<assert [wall ww_ h_U>
enter conditional

Case 1:
<assert 10<is? w_ ww_>>

<goal [wall w h-]>

Case 2:
<assert !'<not !'<is? w ww >

enter interticns of repeat

Case 1: initial entr
<assert !'<is? 0 hh >_

<goal [column ww* hh J>
enter intentions of check-column
w becomes ww
h' bccomes hh
<goal !'<is? 0 hh_>>

Case 2: inductively assume
<assert [cclumn ww hh_)>
enter conditional

Case 1:
<assert ['<is? hh_ h_>>

<assert !'<is? ww1 I'<+ ww_ 1>>>
<goal [wall ww_ I h_]>
enter intentions of check-wall

wv becomes ww_1
h' becomes h
<goal !'<is? !'<+ ?h 1> h_1>>
w becomes w
<goal [wall ww_ h_]>

Case 2:
<assert 1'<not !'<is? hh h»>>>

<goal (support-for ww hh_1>
enter intentions of check-suport

w becomes ww_
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h becomes hh
<goal [column vw hh_]>

<assert !'<is? hh_1 !'<+ hh_ 1>>>
<goal [column ww_ hhl)>
enter intentions of check-column

w becomes ww
h' beccoes hh 1
<goal !*<is? If<+ ?h 1> hhl>>
h becomes hh_ 1
<goal [column ww_ hh_l]>

Note that the above proof tnat CCMPILE-BUILD meets its

intentions is relative to the PROCEDURAL MODEL that we have

constructed. The prccedural model is constructed out of procedures

such as PUT-BRICK-AT. The procedural model is connected to our goal

oriented language by CORRESPONDENCE RULES such as CHECK-SUPPORT.

The structure of the abstracted procedure must at least

reflect the structure of the PLANNER theorems from which it has been

abstracted. Thus the abstraction of a for-proved loop will generate

a recursive equation which might be simplified to a loop. Some of the

recursion in abstracted funJticns is primarily generated by the

structure of the data cf the problem. If we consider thL tags column

and height to define functicns, then the proot is essentially by

recursion induction. In the above procedure .w is the width of the

wall to be built, .ww is a running index over the width, .h is the

heipht, and .bh is a running index over the height. Using the

intentions in the above procedure as subgoals we can easily spe that

the procedure does build walls. Notice that we can use the protocols

of the procedure [in a process that we call "protocol rejection"] to

reject false subgoals in much the same way that Gelerater used

diagrams in his geometry theorem prover. For example we might
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evaluate <compile-build 1 2>, <compile-build 2 1>, and <ccupile-build

3 2> remembering the krotoccls of the evaluations. Thus when

considering the case where the intention

<intent
<or

<is? .'4w 0>
<wall <subl .vw> .hh>>>

is evaluated immediately after <end column> is evaluated, it will be

the case that <is? .ww 0> is false and so cannot possibly be a

provable subgoal eves though it implies the intention. The subgoal

will be to prove [implies <not <is? .w 0>> <wall <subl .ww> .hh>). Of

course using protocols for the purpose of rejecting false subgoals

does not help us to eliminate those that are true but unprovable.

7.2.2.4.2 Bever ing a List at All Levels

Consider the following protocols for a procedure r:

<new [a)
<is? (monadic> <value a>>> IS TRUE
SO <value a>

thus <r a> is a

<new [[n]]
<is? <monadic> <value [n]>> IS FALSE

so
[
(new [<rest <value In]>>]
<is? <uncadic> <value [ J>> IS TRUE

SO <value [
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<new [<<value [n]> 1>]
<is? <monadic> <value n>> IS TIRUE

SC <value n>>]>

thus <r [n)> is [n]

<new [[a b]]
<is? <monadic> <value [a b]>> IS FALSE

So [
[new [<rest <value [a b]>>)
<is? <monadic> <value [b]>> IS FALSE

so
[
f<new [<rest <value [b]>>]
<is? <monadic> <value [ ]>> IS TRUE

SC <value [»]>>
<new [<<value [b]> 1>]
<is? <monadic> <value b>> IS TRUE

SC <value b>>])
<new [<<value [a b]> 1>)
<is? <monadic> <value a>> IS TRUE

SC <value a>>]>

thus <r [a b]> is [b a]

<new [[[a]]]
<is? <monadic> <value [[a]]>> IS FALSE

so
[
[<new [(<rest <value [(a]]>>]
<is? <mcnadic> <value [ ]>> IS TRUE

so [ ]>p
<new [<<value [[a]]> 1>)
<is? <mcnadic> <value [a]>> IS FALSE

SO

J<new [<rest "value [a]>>]
<is? <monadic> <value [ ]>> IS TRUE

Sc [ ]>]
<new [<<value [a]> 1>]
<is? <monadic> <value a>> IS TRUE

SC <value a>>]>]>

thus <r [[a]]> is [[a]]

We ottain the following prctoccl tree:
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<new fxl]
if <is? <monadic> .xl>

then .xI
elseI

(new [x2 <rest .xl>]
if <is? <monadic> .x2>

tien .x2
elseI

[new [x3 <rest .x2>]
if <is? <monadic) .x3>

then .x3
else...)

<new Cx4 <1 .x2>]
if <is? <monadic> .x4>

then .x4
else.,.. > ]!

<new [x5 <1 .xl>]
if <is? <monadic> .x5>

then .x5
else

I
(new [x6 <rest .x5>]
if <is? <mcnadic> .x6>

then .x6
else...)

<new [x7 <1 .x5>]
if <is? <monadic> .x7>

then .xi
else. .. > ]> ]>

By identifying indistinguishable nodes we obtain:

<define super-reverse <function (x]
<cond

[<is? <monadic> .x>
.x]

[-,'else"[
(super-reverse <rest .x>)
<super-reverse <1 .x>>]>>>

7.2.2.4.3 Finding the Description of a Stick

"J 7 -
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Suppose that we have the following data base:

[block a]

[block b)

[glued a b]

The above data base represents a stick on the the basis of the

following protocol:

<goal [stick a b >
<new [UNASSIGNED UNASSIGNED UNASSIGNED]

;"we have three new identifiers that do not have
values"

consequent: [stick <given UNASSIGNED a> <given UNASSIGNED b>]
cond

<current [gl'zed <given a> <given b>)>
<return t»>

Now suppose that the data basz is:
[block a)
[block b)
[block c)
[glued a b]
[glued b c)
[between a b c]

We obtain the following prctocol:

<goal [stick a cA>
[new UNASSIGNED UNASSI', S SIGNED]
consequent: [stick <9z, iven c>]
cond

<current [glued <gx.yx, a> <given c>]>
fail

<curreat [block <given a>]>
<goal [glued <value a> <_ UNASSIGNED b>]>
<current [between <value a> <value b> <given c>]>
<goal [stick <value b> <value c>]>

[new UN&SSIGNE) UNASSIGNED UNASSIG3ED]
consequent: [stick <given b> <given c>]
cond

<proved [glued <given b> <given c>]>
<return t>
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By variabalization we obtain the following protocol tree:

<goal (sti..k a v >
[nev x y z]
consequent ci: [stick ?x ?z]
<cond

(&<goal [glued Ix ?z]>
<.cl t>
;.exit *cl with t"]>

<current (block ?x]>
<goal [glued .z y]>
<current [between .x .y ?zj>
<goal (stick .y .z]>

[new xl yl zV
consequent c2: [stick ?xl ?zl]
<cond

[&<goal [glued ?xl ?zl]>
<.c2 t>
";"exit .c2 with t"]>

<cuirent (blcck ?xl)>
<goal [glued .xl _yl]>
<current [between ,xl .yl ?zl)>
<goal [stick .yl .zl]>

By identifying indistinguishable nodes ve obtain the following

consequent theorem which is the description of a stick.

<define stick-des ýtion <ccnsequent c
Lx y z][stitk ?7,ý ?z)

"(cond
-<goal [glued 2x ?z]>

A Ux, t.c with t"]>
<curren;- "c... ?x]>
"<goal [g.X. : X. _yJ]>
<currert [between . .y ?z]>
<goal [sti %- . .s]>>>

7.2.2.4.4 Finding the Fibonocci aumbers Iteratively

-- ~ - ~ - _____________________ -
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Sometimes it is possible to improve the efficiency of a

procedure by procedural abstraction. For example consider the

protocols of the schema f defined below.

(define f <function [n]
<cond

[<or <P .n> <P <S .a>>>
<ONE>]

[-,"else"
<1 <f <S .n>> <f <S <S .n>>>>>>>

We shall used the abbreviation that <f-O x> is x and <f-n+1 x> is <f
<f-en x>> where f is a function. Thus <f-2 x> is <f <f x>>. The
protocol for the above schema is:

if <or <P <S-'O n>> <P <S-,1 n>>>
then <ONE>
else

<A
if <or <P <S--1 n>> <P <S-,2 n>>>

then <ONE>
else

<A
if <or <P <S-.2 n>> <P <S-3 n>>>

then <CNE>
else...

if <or <P <S-,3 n>> <P <S-%4 n>>>
then <ONE>
else...>

if <or <P <S-2 n>> <P <S-3 n>>>
then <CNE>
else

<A
if <or <P <S-,3 n>> <P <S-%4 n>>>

then <ONE>
else...

if <or <P <SA n.A <P <S-5 n>>>
tl.en <ONE>
else.,,>>

By procedural abstraction we can obtain a function fl wvich is

equivalent to f. -he functiLon is obtained by identifying some or tke

nodes that are not on the same branch of the proticol tree.

2~."- ... . .. . . . ...... . .. . . .... . .- - -
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<define f <function out [n]
<cond

[<or <P .n0 <P <S .n>>>
<.out <ONE> <ONE>>]

"[ "else"
<call

<f <S .n>>
<function (doMnl down2]

<.out
<A .downl .down2>
•down >>>)>>>

Another approach is to use scee of the theory of recursive schemas.

The function f defined above is schematically equivalent to the

function ff defined below

<define ff <function ff [I]
<for [Ix 0] [y 0]]

[[-"test" <P .n> <.ff .x> ;"exit .ff with .x"]
[-"ustep" < :n <S .n>>."]

_ [:x :y] <tuple <A .z .y .x>>
;'the previoas statement is just a tricky uay to

simultaneously accomplish <_ :x <A .x .y>>
and <_ :y .x>">>'

Note that <fib n> the nth Fibonacci nu2ber can be defined as follows

<define fib <function [n]
<cond

[<or <is? 1 .n> <is? 2 .n>>
1]

[-"else"
<+ <fib <- .n 1>> <- .n 2>>]>>>

Using the interFretation that <ONE> is 1, <P x> tests to see if x is

1, and A is add, we see that the function fib can be rewritten

iteratively.

The process of procedural abstraction is very nuch like
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generalized form of ccFilation. The relationship between the

compiled version and the interpreted versior can be very subtle. In

alassical compilers the relationship is much more straightforward.

Every time that the interpreter for the language changes the compiler

aust change. In fact the interpreter and compiler are two moaes of

what is essentially cne program: an interpreter-compiler. In cnqpile

mode it would actually produce the compiled code for the source code;

in interpret mode it would take the actions corresponding to the

compiled code that would be produced in compile mode. The

interpreter-compiler can be written it MATCHLESS so that in compile

mode the MATCHLESS skeletons have as value the compiled code. One

problem with interpreter-compilers is that they suffer from the

inefficiency of double interpretation- Instead of directly

interpeting the expressions, in interpret mode the interpeter-coqpiler

interprets the skeletons that would produce the code in ccmpiie mode.

The problem can be solved by compiling the interp -Ler-compiler for

interpret mode. We would like to try to extend this idea to PLANNER

in a more nontrivial wa, so that joals would be created to produce the

compiled code.

7.2.2.4.5 Defining a Data Type

We can do procedural abstraction of protocols along the same

lines for actors. For example if we obtain the following actor

protocol

0 I I I II | ___" |____,__.. . . -__
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[ <when

[<atomic>]
(<when If])

[<atomic>]
[<when

[<atomic>]> ]{w[hen [[2)
[<atomic>]
[<when [[])

( <atomic>]
[<when

(when U1>
[[3]
[<atomic>]) ]>11 ]>P

Then by identifying equivalent nodes we obtain the actor expr where

<define expr (actor [J
<when

(<atomic>]
([<expr> (expr}j']>>>

Goodstein han many inductive proofs of the the properties of

recursive programs. John McCarthy was one of the first to popularize

the use of recursion induction for proving the properties of programs.

The easiest way to do recursion induction is to provide at least one

predicate for each recursive equation. Robert Floyd has proposed that

predicates in the first order quantificational calculus be attached to

the edges of flow charts in order to provide subgoals for proofs of

properties of programs. En general we would prefer to proceed more

constructively and to write intentions iD PLANNER rather than in a

" - - t- , - r-
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form of the quantificational calculus. Finding a4 intuitionistic

proof of a sentence in first ozder logic is the same Froblem as

finding a recursive furcticn that realize the the formula. Sipce the

logistic system of PLANNER is very constructive, a proof of a PLANNER

theorem entails being able to -rite the procedures vhich compute the

values that identifiers in goa"': take cn as a zesult of the goal being

estatlished. Ittentions are a first step toward constructing models

of the environment in which a process executes. We need to develop

good ways to increase the expressive oower cf intentions. Currently

the model of ibe computation must be expressed by intentions within

the process being executed which makes it difficult to Set a global

viev of tne model of the execution of the process. The application of

intentions in which we are most interested is their use to provide

subgoals to enable u's to deduce PLANNER theorems with loops in them.

We shall say that an intenticn i characterizes a function f if

whenever <f x> converges then <equal <f x> y> if and cnly if <i x y>

is true. A lcng time ago Johu Mccarthy and others proposed that tne

debugging problem be solved by proving that the procedure is correct

once and for all. Using ihauction McCarthy and his students have

proved that certain compilers are correct. The most important

practical difficulty to the realization of the proposal is that for

many functions f written in higher level languages it seems that all

the intentions that characterize f are at least as long as f because

the only way to tell whether the value of <f x> is correct or not is

to do an equivalent computation all over again. A good example of
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such a functioL is eval in LISP. 'The function eval is an extreme

example of a function that has no simple declarative input ouput

characterizaticn. A real challenge in automatic program writing is

to develop a symbolic inetegration routine from the crite,,ia that the

derivative of the answer must be equivalent to the input. One

approach toward constructing such a routine would be to make use of

some results of Risch am what must be the form of the integrand as a

function of the form of the integraud. In the case of the factorial

function there are two obvious ways to compute the function: using

recursion or using a lcop. In other cases it is not so obvious how to

find a sufficiently different equivalent program. Ve shall say that

an intention i is iellied by a function f if whenever <f x> converges

then if (equal <f x> y>, then <i z y> is true. Implied intentions are

useful when we are only interested in some property of the function

and don't care to try to characterize it completely. For example we

might not care whether a function that determines how to stack cubos

always puts red cubes on the bottom of the tower that it is trying to

build. Or we might be interested in proving that a scheduler for a

time sharing system passes soue test for fairness in its distribution

of time to users. Another potential use for implied intentions is to

provid, subgoals to prove that a given function that uses lock and

unlock and unlimited use of assignment in parallel computations is

indeed determinate.

A mora serious problem is that often ye cannot develop

reasonable implied overall intentions. Consider trying to write
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intentions for a chess program. we could require that the program

play LEGAL chess but this is the least of considerations. How can we

write intentions to the effect that the program should play GOOD

chess? There i'; a completely trivial program which will play PERFECT

chess given sufficient time and storage. However, the amount of time

and storage required are wildly impractical. One zight believe that

the problem of writing overall intentions afflicts OLly game playing

programs. However, the same problem arises in trying to write

overall intentions for a robot. we can specify in detail a certain

finite number of eletertary procedures uhich the robot should be able

to perform. In a given situation there may be some obscure way for

the procedures to interract to provide a solution for a problem.

However, it is not fair to blame the robot fcr not solving a very

difficult problem. Thus we again have a problem writing realistic

overall inteDtions.

7.2.3 Teaching Procedures by Deducing the Bodies of Canned Loops

If the type of control structure is known a priori, then the

rest of the function can often be deduced. Often the ccntrol

structure needed is a very commonly used loop such as the FOR ioop in

SATCHLESS, recursion on the tree structure of lists, or one of the

loops in PLANVER such as TRY, FIND, or EXHAUST. We shall call loops

such as the above "canaed" lcops since we will often pull then out and

use them whole when we are in need of a control structure for a



7.2 page 333

routine. The approach of using canned loops is the one used by

Kieene for constructive realization functions for intuitionistic

logic. Suppose that we know the following theorem about the

predicate [REVERSE? x y] which means that y is the reverse of x. For

example [reverse? aa aa] and [reverse? [1 2 [3 4)] [[3 4) 2 1)] are

true. As before ' is used to suppress invocations, and a monad is

defined to be an atom, . number, [ ], or [ ]. The function IDENTITY

uhich is used below is the identity function.

<define th69 <consequent
[a b c]
[reverse? ?a ?b]
<cond

[<hasval? a>
<cond

[S<goal !'<monad? .a>>
;"if a is a monad then b should be equal to a"
<goal !'<is? .a ?b>>]

[-""else"
<goa? V.<not 11<aonad? .a>>>
<goal [reverse? !'<rest .a> _c]>
;"otherwise let c be the rever~.e of the rest

of a"
<goal 11<is? ['(identity .c) !'<1 .a>] ?b>>]>]

(-,"else" <fail>]>>>

We would like to find a function reverse such that [reverse? x

[reverse x]) is always true. The theorem above suggests that we try

to use linear induction on lists as the control stzucture. The schema

for Ainear induction applied to the function reverse is:

<define reverse <function [x]
! '<cond

[1!<sonad? .x>
<teuQprog [Y]

<asscrt !'(<onad? .x>>
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<goal [reverse? .x _Y]>
!;"find a ! which is the reverse of the monad

x and return it as value"•D>]
E-welse"

<temprcg [1]
<assert !'<not !'<zonad? .x>>>
<assert [reverse?

!$<rest .x>
1!<reverse !'<rest .x>>]>

<goal (reverse? .x Y]>SY > ]>>>

The above expression evaluates to the following definition:

<define reverse <function [x]
<cond

[<monad? .x>
.x)

[-,"else"
[(identity <reverse <rest .x>>)
<1 .X>]]>>>

7.2.4. Couparison of the Metbods

Superficially considered, there is not much to be said about

teaching procedures by tclling. It is not always clear whether the

procedure should be taught from the top down or the primitives should

be taught first. However, the basics of the method are simple and

direct. Unfortunal¢:ly the teacher will not always Lnow the code for

the procedure which is to be taught. Be might Abe engaged iD wishful

thinking hoping to find a procedure with certain properties. The

method of canned loops is often applicable to such cases. Trying to

use the method of canned loops has the problem that the control

structure must be supposed. Often it is very difficult to guess the

I-=. •Pw M
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kind of control structure which will pzove appropriate. Also the

method of canned loops works on the problem in the abstract as opposed

to specific examples where the identifiers are bound to actual values.

The advantage of the abstract approach is that if it succeeds then the

procedure wxll be known by its construction to have certain

properties. On the other hand it is often easier to see what to do

on concrete cases. Often it is easier to show someone how to do

something than to tell him how to do it. Partly this is because the

descriptive language necessary has not been adequately developed and

so we use "body language". The approach of procedural abstraction is

to -ombine together several concrete cases into one supposed general

procedure. Properties of the general procedure must then be

established by separate argument. If the protocols of the examples

are produced by a goal-oriented lauguae such as PLANNER, then there

will be points along the protocols where certain predicates arc known

to be true. The predicates express the fact that some goal was

established as true at that point. Often it is possible to show by

mathematical induction that the corresponding properties in the

abstracted procedure are always true wben the procedure passes through

the points. In thir ay a problem solver can have a partial model of

his problem solving procedures. The models can be expressed naturally

in PLANNER. Also the sethod of procedural abstraction has the

%dyantage that the control structure doeb not have to be suppused in

advance. Often a problem solver will have the basic problem solving

ability to solve any one of a certain ciass of problems. But he will
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not know that he has the capability. Writing a procedure which can be

shown to solve the class enables the problem solver to bootstrap on

his prenious work. Procedural abstraction itself is further evidence

for the Principle of Procedural Embedding. To implement the principle

as a research program requires a high level goal-oriented formalism.

PLANNER and sove embellishments that u have made to the language are

first steps toward realizing the Principle of procedural Embedding.
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7.3 Current Problems and Future W:)rk

Currently we have mechanisms to handle the following kinds of

"bugs" or "local changes" in programs:

MISIDENTIFICA1ION of NODES: If two nodes of a protocol have

been mistakenly identified as being the same then the mistake can be

corrected from new protocols which distinguish the nodes.

VARIABALIZATION: Procedures can be made more general by

changing some of their constants into variables.

PATCHES: Existing routines can sometimes be converted into

the desired procedure hy introducing new intentions into them. The

patch is produced by the code generated by the new intentioD as it is

evaluated by INTENDER in the environment in which it was placed. Of

course a bug is suspected at the point where an ordinary intention

cannot be verified.

We need to find ways to itprove the existing mechanisms and to

find ways to handle other kinds of bugs and local changes. Also

procedural abstraction must be generalized to accept higher level

protocols and to make better use of existing procedural knowledge in

doing the abstractioz.

&I
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8. More Comparative Schematology

Abstract

Schemata are programs in which some of the function symbols

are uninterpreted. In thiz chapter we compare classes of schemata in

which various kinds cf constraints are imposed on some of the function

symbols. Amoug the classes of schemata compared are program,

recursive, backtrack, and parallel.
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8.1. Analytic Theory

8.1.1 Classes of Schemata

8.1.1.1 Recirsi-e Schenati

The following is an informal progress report of some work that

I have done with Mike Paterson. John t. Zhite maJe important

suggestions and corrections. The result that recursive schemata are

more powerful than program schema was obtained as a term project in

the spring of 1969. Rigorous proots are not given here but just an

indication of how a Frcof would go. Program schemata are nonrecursive

procedures that Lave uniaterpreted function s;abols and predicate

symbols, We shall use capital letters to dernote uninterpreted

symbols. We assume that within each computing d.omain that there is a

distinguished element denote by false anA that all other elements of

the computing domain are regarded as true in condit.onal eipressions.

SThus we do not need to distiuguish between predicates and other

function¶,. iteration within ýTograa scheaata is performed by REPEAT

loops. Repeats are defined so that (repeat <body>) will repeatedly

execute <body> uLil a (return <values>) statemen-: is ene.ountered at

which point control is transfezed out of thn sa.clent en-'osing block

with th" indicatted values. Blocks can be g1ven nudes and the function

(exit <name> <values,) will cause control t- leave the .amoi block

with the appropriate values. It is esy to see that any program
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schema in the sense uf Patterscn can he written using REPEAT and EXIT

with out the use of GO. Writing iterative ccmputations using REPEAT

and EXIT has the advantage that all the loops are cf necessity nested.

We shall allow schemata to use a finite number of distinguished

objects vhich can be tested by the binary predicate IS. For example

(is x "hello") is true only if x is the distinguished constant

".aello"'. Functions evaluate their argunents from left to right.

The following is an example of a program s.:hema:

(g x) = (repeat (y <--. x))
;"y is a a register cf the program schema g which is

initialized to the value oi the argument x"
(if (or (P x) (is x "dolly")) then (return yj)
(x <- (L yj )
(y (- (E (R Y))

The BNF syntax for pLDgram Zchemat& is as fcllows:

rogram ::= <term>ezm ::= <hlcck> I

<repedt> i
<again>
<(xik>
(if <term> the:? <teras> else <f,-,,.ss>) I
<aszignmePt> I
false I
<literal-string> I
<identiZier> I
<function-call>

block ::= (block <boiy>)
assignment ::= (<identifier> "<-x <tera.o)
reieat ::= (repeat <body>)
function-cdll ::= (< .,interpreted-furction> <arguments>) |

(is <tetm> <term'>) I
,call

(<¶3nint,--cpreted-function> <arguments>)
<function.'-)

again ::= (again) I (again <naAe>)
eilt ::= jerit <names. <terms>) I (ret-irn <terms>)
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body ::= <name> <declaration> <terms> I
<declaration> <terms>

terms ::= <term> I <term> <terms>
declaration ::= (<identifiers>)
arguments ::= < (terms>
ideptif-ers ::= I <identifier> <identifiers>

A recursive schema is a program schema that is allowed to call

itself or other recursive schemata recursively. The following is an

example of a recursive schema k which is defined by a set of recursive

equdtions:

(I Z) = (if (P z) then x
else (C jk x) (m (R x)))

(a 7) = (if (P (R Y) l then (L y)else (C (m 1 y) (k (k x))

Fnr any recursive schvma defined by a set of rý,uursive equations we

can ccastcuct an equivalent rpcursive schena with cnly one equation

and one additional argument to tell which equation Is being simulated.

This is possible because we allow recursive schemata to use a finite

number of distin9uished constants and predicates to test for these

constants. The following is an example of a recursive schema that

uses the interpreteO constant fymbol'x true and false.

(f x) = (if (P x)then

(if (9 x)
then true
else false)

elseif (f (L x))
then true

else (f (R x)))

ANN
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8.1.1.1.1 Comparison with Program Schemata

In fact the abcve recursive schema is not equivalent to any program

schema. By equivalent we mean that the t,., schenata must both fail

to terminate or both must return t.s same value for all

interpretations of the functions P, 2, L, and R. Cften we will take

the set of unincerpreted terms as our domain of interpretation. In

the above case the domain ot interpretation is x (L x), (R x), (L (L

x)), (L (R x)), (R (L x)), etc. The function letters L and B are

interpreted as 1 and r where:

(1 y) is defirted to be the term (L y)

(r y) is the term (H y)

Thus (1 (, (L x))) is the term (L (R (L x))). Two schemata are

equivalent if and only if they define the same function on the domain

of terms.

Theorem:

The function f defined above is not equivalent to any program schema.

Proof: Consider the fcllo,,ing class of interpretations (I n) where n

is a non-negative integer:

The domain of interpretation is the set Jf terms that can be

constructed trom the indeterminate x and the predicate letters L and

R. The predicate Q is interpreted as a functioD g with raage (true

false). The predicate P is interpreted as the function p:

(p (h//C ... (h// x)---)) . true fcr a = n
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= false otherwise

where each h//i ("h subscripted by i") is the interpretation for R or

the interpretation for L and there is at most one path such that

(q (h//O...(h//n x)...)) - true

The domain of I n) is the set of all terms that can be constructed

from the indeterminate x and the functions L and R. Ve are going to

prove that fo any program schema P we can find an integer t such that

P does not define, the same function as the recursive schema f on at

least one member of the class IT n). In the the iLterpretation [I 3),

we have the following F-B trae (where each node is a term in the

domain of (1 3)):

( (L x)
{(L (L x))

[(L (L (L x))))
((R (L (L x)))))

[(( (L z))
I(L (R (L x)))j
((B (R (L x))))))

((R x)
J(L (R x).

([L (L (B x)))1
I(it (L R1 x))))]

((E (R x))
((L (B (R x))))
((H (B (B X)))})}}

The functioa p is true only oi the right-most (i.e. bottom) ncdes and

q is Lrue on at most one of the right-baost (bottom) aodes. We shall

define the state of a program schema P at a point in its computation

to be the contents of the registers of P together with the statez,-t

of P that will be executed next. Two states SI and S2 of P under the

laterpretion L will be saii to be ZQUIVALENT if p oxecutes exactly the
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same sequence of instructions when started from S! as when started

from S2. We shall define the number of statements of a program schema

to be the total number of left parentheses in the text of the program

schema. Suppose we ha-_ a program schema P with s statements and k

registers. In the inte.pretation (I n), the program schema P has at

most s*((n.2),k) equivalence classes of states where - is the

exponential function. (Intuitively the only thing the schema -an do

is tc count down each of its k registers to the bottom of the L-R tree

and test each of them to see if it has reached the bottom.) However, a

program schema needs at least 2-n steps in order to :heck if q is true

on each of the nodes at level n. But after 2-n steps, P must be in an

infinite loop since it will have arrived at two distinct nodes of the

L R tree in the same equivalence class of states. To see the matter

somewhat differently icok at the sequence of equivalence classes of

states. If the sequence repeats then the program schema is in aD

infinite loop. But the program schema must seek and test all 2-n

terminal nodes and then halt. Therefore the program schema needs at

least 2-n equivalence classes.

The Single Instance Theorem:

I sinale recursive schematic egiiation that defines a function form f

can be transformed into an equivilent program schema if the form f

appears only once in the definition uZ the function.

-e
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Proof:

Define (F-n x) to be F applied n times to some argument x.

(F-O x) = x

(F-(n41) X) = {F (F-mn x))

For example jF-1 x) is (F x) and (F-2 x) is (F (F x)).

Suppose the definition of f is of the form

(f k) = if (alpha k)

then [beta k)

else (qamma jf (delta k) ) k]

where (alpha k) is the expression that is evaluated before the

recursive call to f, ( beta k) is the expression that is evaluated if

there is no recursive call to f, and (gamma (t [delta k}) k) is the

value for a recursive call to f. The reader may or may not want to

examin the following tree which shows f partially expanded:

(if [alpha [delta-O k))

then
(beta (delta-O k))

else
(gamma

(if (alpha [delta-t k))
then

(beta Idelta-1 k))
else

(gamma
(if (alpha (delta-t2 k}j

then
(beta [delta-2 k)]

else

(delta-i , )
[delta-tO k))]
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The function f can be re-written as follows:

(f k) = (block ((3 <- k) n i j)
;"m, a, i, and j are registers of the program schema f; a is

initialized to the value of k"
(repeat ()

(if [alpha m" then (Leturn))
(m <- [delta M)))

(i <- k)
(n <- (beta mJ)
(repeat ((i <- k) (n <- k)

(if [alpha ij
then

(exit f n))
(i <- idelta i,))

(repeat ((j <- i) (m <- k))
(if (alpha j) then ireturn))
(j <- (delta j))
(m <- (delta ml))

(n <- (gamma n a)) )

He would like to repeat the iterative definition of f giving comments.

An expression that appears within [ and ] is an intention that is

expected to be true whenever ccntrol passes through the expression.

It is not necessary to understand the intentions in o: •er to

understand the schema f. In fact many readers might prefer not to read

the intentions. The intention functions fa, fc, and fd are intended

to express what goes cr in loops a, c, and d respectively.

(f k) = (block (ja <- k) n i j)
;"m, n, x, and j are registers of the program schema f; a is

initialized to the value of k"
(repeat a ()

(if [alpha m) then (exit a)
(! <- (delta mal)

rdefine ifa x) - if [alpha mn then a else (delta a']
[(a = (fa k)) ;"It is our intent that m be equal to (ta k) at

this point. It can be shown by induction that this intention is
always realized."1.

(i <- k)
(n <- (beta m))
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(repeat c k( -I) (n <- k))
(if (alpha ij

t hen
[ (f kc) = (fc (delta (fakI)) I) = n]
(exit f n))

[n = (f i) ]
[define (fd n m j) =if [alpha j) then [gamma n m)

else (f d ni [delta n) (delta j) ) ]
[define- (fc n i) = if (allpha i) then n else (fc (fd n

kc i) (delta i) ) ]
[ni = (fd (beta (fa k)) kc i) )
(i <- [delta ij)
(repeat d ((j <- i) (m <- kc))

(if (alpha j) then (exit d))
~j<- (delta j))

(z <- (delta a]f))
(n <- (gamma D mn))
[n m f*i)])

8. 1. 1. 1. 2 Compilation

We cdli look at program schemata and recursive schemata as

autoimata that operate cn the universe of terms as a data space. A

f~aite state schema automaton operates under a finite state control

structure using a finite number of registers each of which can hold

one term. As a primitive operation the autcoat-on is allowed to create

a term by applying a function to termns stored in its registers and

then to store the result back in a register. In addition the

automaton is allowed a finite number of primitive predicates to test

the contents of its r~gisters. The class of finite state schema

automata is equivalent to the class of program schemata in the obvious

way. Prograa schemata can be regirded as being executed by a finite

state schema aut~omaton after a suitable compilation. A pushdown

schema autom~aton is defined to be a finite sta~te schema autonatin w.Lth

R11 =-17-.=te..--
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a pushdown stack. In addition a pmshdown schema automaton is al~lowed

a finite number of distinguished con~stants as terns together with

predicates that test for the distinguished constants. We vill

investigate the relationship between these machines and schemata. The

appropriate kind of equival~ence is one in which side effects are

allowed. Tvt- schemata will be said to be side-effect equivalen~t if

they are the same functicn for all interpretations 4.ncluding those

which involve side effects. An uninterpreted function may change the

definition of any of the unintepreted functions as a side effect of

being evaluated. For example the schemata J1 and J2 below are not

side-effect equivalent.

(j1 x) = if (P x) then x

else (JI (p1 (G x) (G x)))

(p1 x Y) = x

(J2 x) = if (P z) then x
else (J2 (G x))

The free interpretatioas for side effect schemata are the ones in

which each uninterpreted function symb~ol is interpreted is the

function which evaluates to the list of all th~e primitive terms that

have been previously evaluated in the computation. For example the

side-effect protocol tree for J2 is

if (P X)
then (x *(P x))
else

if (P IG x))
then [(G x) *'(G x) -(P x))
else
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if (P (G-,2 x))
then ((G-a2 x) + (P (G-'2 x~) (G-w2 x) - (P (G x)) (G

x) -(P X)l
else...

on the other band the side-effect protocol teee of j1 is:

if (P x)
then (X +(P x)J
else

if (1? (G x))
then f(G x) +(P (C x)) (G x) (G x) -(P x))
else

if (P (G-..2 x))
then f (G-'2 x) + (P (G-'2 x)) (G-'2 x) (G-t2 x) - (P (G

x) ) (G x) (G x) - (P X)})
else...

Thus J1 and j2 are nct side-effect equivalent.

Theorem.: Side-effect equivalence ir decidable for program

schema ta.

Proof: The Frcof is by tree expansion. Two program schemata

are side effect equivalent, if and only it~ for every execution path of

one schema there is an execution path for the othex with the

uninterpreted functions called in exactly the same order. Given a

cycle in one schema it is decidable whether the cycle can be ecbedded

in the other.

conjecture: side-effect equivalence is decidable by tree

expansion for recursive schematai.

If this coDJec' ire As correct then we can attach a post processor to a

compiler 0t decides whetner or not, th2 compiled code is side-effect

ENRON 111
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equivalent with the source code.

The BNF syntax for program schema automata is as follows:

program ::= <ccmmand>
command ::= <block> I

<repeat> |
<again> I
<exit> i
<push> !
<pop> I
<conditional. I
<-_-unctiCn-call>

value :: false I identifier I <literal-string>
values ::= <value> I <value> <values>
pop ::1 |pop) I (pop <identifier>)
exit::= (exit <name> <values>) I (return <values>)
conditional ::= (iftrue <conmands> else <ccmmands>)

(ifematy <comaands> else <commands>)
again ::s (again) I (again <name>)
push : := (push) I (push <value>)
block ::2 (block <body>)
repeat ::= (repeat <body>)
function-call ::=

(call
<number-of-args>
<uninterpreted-function>)

(call
<number-of-ar qs>
<uninterpreted-function>
(<idest fiers>)
<commands>) !

(call 2 is)
identifiers :: I <i.dentifier> <identifiers>
body ::- <name> <declaration> <commands> I

<declaration> <commands>
declaration ::= (declarers)
declarers ::= - (<identifier> cvalue2) <declarers>

There are a few non-cbvious constructs in the above syntax.

The expression (pop <identifier>) removes the top element from the

stack and makes it the new ,alue of the identifier. arguments to

function are passed on the stack and the results are returned on the

stack.
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The Compilation Theoree:

For every recursive schema there is a side-effect equivalent pushdown

schema autcmatcn.

Proof:

ve shall show haw to compile the schema f defined below:

(f x) = block ((y <- (H x)))
; 7 is a new lecal uhich is initialized to (H x)"
(if (P X)

then (K x y)
elseif (and y (P (f x)))

then (K y 1)
else (G (K y x) y)))

The compiled fcru is

(f x) (block ((y false))
Ipush x)
(call H)
(pop y)
(push x)
(call I P)
(iftrue

(pop)
(push x)
(push y)
(oaLll 2 K'
(return 1)

else
(pop)
(push 7)
(iftzue

(pop)

(push 2)
(call 1 f)
(call I p)
(if t(ue

(pop)
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(push y)
(push 1)
(call 2 k)
(return 1)

else
(pop))

else
(push y)
(push X)
(call 2 K)
(push)
(push 1)
(call 2 G)
(return 1))))

8. 1. 1. 1.3 Schemata with Resets

Tags cau be thought of as identifiers which are bound at each

activation level. By passing the activation as a parameter the level

of activation can be inmediately reset by executing a transfer ot

control through the activation. in order to obtain an eguivalent

machine, we can extend the instructions of the push down schema

automaton by allowing them tc store a pointer to the top element of

the stack into one of the registers. The resulting class of machines

is callel the reset Fush down schema automata. If the stack is ever

popped back past a location that is pointed to by a register then the

automaton halts with an error. We found discussions with Mike

Fischer helpful in analyzing schemata with resets.

The Beset Theorem:

The class of reset push down schema automata is eguivalent to the

class of ordinary push down schema automata.

We shall show how we can translate a reset push down schema
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into au e~uivaleat ordinar, push down schera. An ordinary function

call (f x//i ... x//n) will be translated into (call (f x//1 ... x//n)

(y y//1 ... y//1) body) where we will explain the body below. The

idea is that if the function f wants to execute a non local transfer

of control through zrgument x//i we can simulate this by returning the

corresponding y//i as "e: t" or "again" depending on whether the block

x//i is to be exited or reiterated respectivey. Then the procedure

which makes the call tc f can test the values of the y//i and take the

appropriate action dependinj how the name was generated. Consider the

following example:

(try x) (repeat l ()
(if (Q x)

then
(x <- (F x))

elseif (P x)
tten

(X <- (harder (F x) t1))
;"the name tl is an identifier"
(if (not x)

then (return false))
else (ret-irn false)))

(harder il tag) = (repeat ()(if{ x 4)

then
(x <- (F xl)) ;"set the global x to (F xl)"
(again Nq) ;"reiterate the repeat loop named tag"

elseif (P x)
then

(xl <- (harder (F xl) tag))
(if (not xl)

then (return false))
else (return false))

We can rewrite try and haLder as try* and harder' respectivelly so

that resets are eliminated.
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(try' x) = (repeat tl ()
(if (Q x)

t L~en(x (- (F x•)))
elseif (P x)

then
(x <- (call fharder' (f x) t1) (y yl y2)

(if
(is y2 "again")

then
(again t1)

elseif
(is y2 "exit")

then
(exit ti)

else y)))
(if (nct x)

then (return false))
else (return false)))

(harder' (l tag) = (repeat 4)
(if (Q X,)

then(x (- (F xl))
(exit harder' false false "again")
";-"reiterate the loop named tag"

elseif (P xl)
then

(xl <- (call
(harder (F xl) tag)
(y yl y2)
(if

(is y2 "exit")
then

(exit harder' false false
"exit")

elseif
(is y2 "again")

then
(exit harder' false false

"again")
else y)))

(if (rot xl)
then (return false))

else (return false)))

-,--.-
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'3. 1. 1. 1. 4 Decompilation

The Decompilation Theorem:

For every push down schema autcmaton we can effectively construct a

side-effect equivalent recursive schema.

Proof:

TChe only difficult constructs to translate are the push and

pop commands. Re shail translate (push <value>) as (<function>

<value> tags false) where <function> 4S a unique function name

distinct from all others. The function is defined to be have two

argumetts x and y and have a body which is the code that fcllcws the

push commaLd which is heing translated. The command (pop) is

translated as (GO <tag>) <tag>: where <tag> is a unique tag distinct

from all others, whereas (pop <identifier>) is translated as

,<idEntifier> "<-" x) (GO <tag>) <tag>:. The idea is that there must

be a tag for every instance of a call to pop so that control can get

back to the proper place.

Consider the fcllcwing push down schema automaton:

(f y) block ()
Ipush)
(call 1 g)
(return 1))

(g y9 = (repeat ()
Ipush)

(call 1 P)
(iftrue

(pop)
(push)
(call 1 Q)
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(iftrue
(pop)
(repeat ()

(ifempty
(terminate "t"))

(pop)))
else

(pop)
(pop)
(ifempty

(terminate false))
else

(call 1 F)
else

(FOP)
(push)
(call 1 L)))

The schema f can be decoapiled as follows:

(f x) = (block outer 1•alsef
(fo 1 false false false "t")x

(fO x n1 n2 n3 n4 u5 n6 empty) = (repeat ()
(fl x tl t2 t3 t4 t5 t6 false)
(x <- (P I))
(if

x
then

(go nM)
t1:

(f2 x tI t2 t-3 tu t5 t6 false)

Ur <- (Q x))
(i f

then
(go n2)

t2:
(repeat ()

(if
empty

then
(exit outer it'))

(go n3)
t3:

else
(go n4)
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igo n5)
ti:

(if
empty

then
(exit outer false)

else
(x <- (R x),))

else
(go n6))

t6:
(f3 x tl t2 t3 t4 t5 t6 false)
(x <- (L x)))

(f 1 x n1 n2 n3 n4 n5 n6 empty) (block 4)
(if

X
then

(go n1)
else

(go n2)))

(f2 x nl n2 n3 n4 n5 n6 empty) = (block O
(if

x
then

(go v3)
else

(go n4)))

(f3 z n1 n2 z3 n4 n5 n6 empty) = (block )
(x <- (L x))
(fO z n1 n2 n3 n4 n5 n6 empty))

8.1.1.1.5 Primitive Recursive Schemata

Definition a recursive schema f will be said to be PRIMITIVE

RECURSIVE iu the the uninterpreted function symbols U if f can be

defined recursively as (f z//1 ... x//n) = phi[x//1 ... t//n] where

each instance (f t//1 ... t//n) of a call to f within phi[x//1 ...

xi/nj has t//1 of the form (h x//1) wbere h is in the set U and the

only other functions in the defiaition are either uninterpreted or are
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thesselves primitive recursive in U.

For example thE following schema is primitive recursive in [L

(f x) = if (P x)
then %Q x)
else (C ( % 'L x)) (f (R x)

The following schema is not primitve recursive in (3):

(ackiErman v x y) =
(i f (Z X)

then
if (Z w)

tLen y
elseif (0 v)

then (ZERO)
else {ONE)

elseif (Z w)
then

(P
(ackerman (ZEaG) (S x 1) y)
(ONE))

else
(a- "erzau

(S w 1) y
(ackerman w (S x 1) y)
y))
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8.1.1.2 Schemata with Counters

we would like to present another example of a function that

can be computed by a recursive schema but not by any program schema.

Define (F-n x) as in the proof of the Single Instance Theorem. Thus

((F-n+}) x) 1 (y (p-,n x)). Suppose that we successively compute (F

x), (F (F x)), Etc. As we successively compute the quantity (F-'i x)

for some integer i we shall keep a running count of the number of

times that (P (F-j x)) has been true for j less than i, minus the

number of times that (P (FP-j x)) has been false for j less than i. If

this count ever goes negative then we shall return false as the value

of the function (zerc x), otherwise the function (zero x) will run

forever.

The Counting Conjecture for Program Schemata

The recursive schema 'zero' defined below is not schemati'.ally

equivalent to any program schema.

(zero x) = (repeatfa(if |• x}

then
(Z <- (positive (F x)))
(if I

then
(again a))

else
(return false)

else
(return false))

end
The schema 'zero' uses the schema Opositive' to keep track of the
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count by the depth of recursion of the schema 'positive'.

(positive x) (repeat a ()
(it (P x)

then
(x <.- (positive (F X))
(if x

then
(again a))

else
(return false)

else
(return (F x)))

end

Using the technique of loop eliminatiou we can convert the above

functions into purely recursive schemata. We shall define a schema

zerol which is equivalent to zero and a schema positivel which is

equivalent to positive.

(zerol x)= (if (P x)
then

(if (positivel (F x)))
then

(zerol (positivel (F x)))
else

false)
else

false)

(positivel x)=
(if (P !)

then
(It (rcsitivel (F x),

ti en
(positive'. (positivel (F x)))

else
false)

else
(T x))

The protocol tree foi the scnema z'ro is
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'if (P 4F-,O x))
then

then
(if (P (F-2 x))

then

else
(if (P (F-3 x))

then

else
(if (P (f-4 x))

then

else
false) ))

else
(if (P (F-,2 x))

then
(if (P (F-a3 x))

then
else

'if (P (F?-4 x))
then
else

else
false))

else
false)
However a progrd- schema can solve the problem if we give it a

counter. We postulate the functions "*", "-", and zero? whi'Ih

respectively add, suttzact, and test for zero. The following program

schema is schematically equivalent the the function zero:

(zerol x) = (block (n) (return (zero2 x)))
(zero2 x) = (repeat ()

(V (P X)
then

<K - (F x))
(n <- n * 1)

else
(if (zero? n) then (return false})
Ln <- n-i)))
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By allowing recursive schemata to use a counter, Ye can construct a

functiona 'reczero' that is not equivalent to any ordinary recursive

schema. the function reczero counts the number of nodez alcng the

bottom of the L-R tree that have the property P minus the ones that do

not have the property P. The function returns the vlue false if the

count ever goes negative. We assume that arguments are evaluated from

left to right.

The Counting Conjecture for Recursive Schemata:

The schema (with counters) reczero defined below is not equivalent to

any ordinary recursive schema.

(reczeco x) = (blcck In) (return (reczerol x)))

(reczero ix)

then
(if (P x)

then
(n <- n+1)
true

else
(if (zero? n) then (return false))
(n <- n- i)
trne)

else
(if (nct (reczerol (L x))) then (return false))
(if (not (reczerol (R x))) then (return false))
(return true))

The reason that recze-c is not equivalent to any recursive schema is

very similar to the reason that no recursive schema can search the

branches of the L-H tree in parallel. If a recursive schema is
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equivalent to reczero then it is constrained to search the tree in

essentially the same order that reczero searches the tree. Otherwise

it could be made to fall into an infinite loop on an interpretation

where reczero cozverges. We conjecture that constrained in this

fashion a recursive schema has only a finite number of states in which

to try to keep the count. The recursive schema cannot succeed for. the

same reason that we conjecture that no Frogram schema is equivalent to

the function zero defined above.

Conjecture: the following function is not

schematically equivalent to any purely schematic recursive system of

equations. TlE function even is surposed to test whether the number

of bottom nodes of a L-R tree that are true for thp predicate P is the

same as the number that are false for the predicate P. The schema

'even' differs from the sr1heza 'reczero' in the crucial respect that

'even' always looks at all the bottom nodes before it ccoes to any

conclusions. Thus a recursive schema that tries to imitate the

schema even has a lot m-re room in which to maneuver. We conjecture

that no recursive schena can have enough internal states to be

equivalent to the function even defiued below.

(even x) = (block (n)
(evenl x)
(return (zero? n )))

(even 1 x)
(if (BOTTCI? x)

then
(if (P x)

"then
(n (- n+1)
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X)
else

(n <- n-1)
I)

else
(even JL x))
(even (R x)))
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e. 1. 1.3 Parallel Schemata

We introduce the delimiters "I(" and ")" to delimit quantities

that are to be computed in parallel. Whenever a process executes an

expression like I(x) it divides into two processes. One process

executes x and the other attemFts to continue normal execution. For

example in the expression |(2+3) *(4*5), the product 4*5 is computed in

parallel with the sum 2+3. Thus the expression "(block | (return x)

(return y))" is defined to be the value of x or y depending on which

evaluates first in scme particular but unspecified parallel

computation. Processes can coordinate their actions through locks.

any expression x can be locked by (lock x) provided that the

expression is not already locked. If x is already locked then any

process which executes (lock x) will be blocked until x is unlocked by

the primitive (unlock x). However a process can execute (locked? x)

which will return true is x is locked but will lock x if it is

unlocked. The kind of call delimited by "I(" and ")" can be

implemented using the following primitives:

(create f) will create a new processvhich will begin execution

with a call to f and will return the name of the created process as

the Talue of the function create.

(resume (p send-args) f) will suspend execution of the procens

that calls resume and will resume execution of the process named p

with arguments send-args. If the process p is already running then
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the process which called resuume will le blocked until p becomes

suspended. If the process which called resume is itself ever resumed

then it will invoke f with the arguments received.

(fork (p send-args)) will resume exeuction of the process p

with arguments send-args and in parallel return the name of the

process forked as the value of the function fork.

(interrupt p x) will interrupt the execution of the process p

and then begin execution of x IN THE PECCESS p.

(step p) will steF the process p through one step.

By adding the above primitives we obtain ýhe class of Parallel

Schemata. It is our thesis that the class of Parallel Schemata is in

fact UNIVERsAL for the class of all effective schemata. By this we

mean that for any effective schema there is a timing side-effect

equivalent parallel schema. Tio automat a and b will be said to be

timing side-effect equivalent if for every ccmputation of a there is a

side-effect equivalent computation .f '. where the timings of the

control primitives of h are allowed to be arbitrarily adjusted and

vice-versa.

We define the following function using parallel processing:

(f x)=(if (P x)
then x
else

begin
I(return (f (L x)))
ireturn (f (H x)))

end)
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The above function is determinate ti.-. halts and has the same value

independent of the relative speed at which the sub-processes run) on

infinite binary trees in which the predicate P is true cn only cne

node.

The Parallel £valuation Theorem!

The function f defined is nct equivalent to any recursive schema.

Proof: Suppose a set of recursive eguations {f//C, f//1, ... , f//n)

is schematically equivalent to f with 1n//t, equivalent to f. That is

for all interpretations of the uninterpieted function symbols, the

schemata f and f//O are the sare function. Suppose that we start up

f//O on input x and make the predicate P false for every node to which

it is applied as f//0 computes along. If the computaticn converges

then f//O does not lcck at some node which is a contradiction of the

supposition that f//C is eguivalant to f. Therefore the computation

runs forever and the sequence of statements through which the control

passes is ultimately periodic. Consider the sequence of arguments to

one of the functions (call it f//i for "f subscripted by i") as the

control passes through one cycle. Suppose that f//i is a function of

j arguments: a//1,...,a//J. The arguments with which f//i will be

called after the control has passed through one cycle are terms

definable from a//1,...,a//J. Let us call them a/n1-1....,a//j-1.

The situation can be diagramzed as follows:

(f//i a//1....,a//J); the beginning of the cycle in the
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control structure

(f//i a//I-I, ... ,a//j-l) ; We pass throuqh the same point of

the cycle ii the contrcl structure

If none of a//I1-i, ... ,a//j-) is the same as one of a//1,...,a//i

then we are done since the arguments of the recursive eguations are

tracing j paths down an exFontentially growing tree which mean- that

some node is not looked at. if we set the interpretaticn so that P is

true for the node then we have a contradiction. We conclude that the

fact that one of a//1-,1, ... ,a//j-1 might be same as one of

a//1,...,a//j is a nuisance. Let us call the argugents to f//i after

we have gone through the cycle k times a//1-k,...a//J-k. Observe that

if we go through the cycle j1 times then there will be some i such

that i is less than J! and a//l-i,...,//J-i has the property that it

is an epicycle. By this "e mean that soae a//qi is the same as one

of a//1,...,a//j if and only if it is the same as a//q. All such a//q

do nct contribute to the number of nodes examined since they are

repeats of nodes preiicusly examined in exactly the same way. The

situation can be diagrammed as follows:
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(f//i a//1-k, •...,a//j-k); the beginning of the epicycle in
the control structure

(f//i a//I-(2*k), ... ,a//j-(2*k)); we pass through the same

point in the epicycle

Threrefore we can complete our proof by applying tc epicycles the

above argument that we used for cycles.

) -, -
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8.1.1.4 Locative Schemata

The Locative Tleoren:

If locations of identifiers are an allowed data type, then the control

structure of recursive schemata can compute any partial recursive

function.

Proof:

Let (at x) dencte the location of the identifier x.

Furthermore- suppose that we have a function in of cne argument which

will return the contents of its argument. The procf will be phrased

in terms of pushdown schema machines. We can define a counter using a

register as fcllows:

(block ((ci false))
(initialize-counteri) =(block ((v false))

(push (at w))
(pop c I) )

(couint-upl) = (bloc]: ((y false))
(push ci)
(pop y)
(push (at y))
(pop cM))

(count-downl) = (block ()
(push ci)
(call I in)
(pop ci))

(zero-test1) = (blcck ()
(push cI)
(call 1 in)
(iftrue (push "t")) else (push false))))

Marvin Minsky proved that two counters are universal. Q.E.D.
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8.1.1.5 Scheimata with Selectors and Beplacement

Another way in which we can proceed is to impose data types on

the computing domain. Storage off the stack can be established by

pos•,vlating a constructor c and selectors sl and s2 such that for all

x and y In the computing dcmain we have:

(s1 (c x y)) = x

(s2 (c x y)) y

in the domain of intexpretaticn. Classically we would postulate that

every call to the ccnstructcr must return a new element of the

computing domain.
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6.1.1.6 Schemata with Free Variatles

(c I y) (block (z)
(z <- (sl free-storage-list))
(free-storage-list <- (s2 free-storage-list))
;"free-storage-list is free in c"
(:-eturn (CCNSIRUCIOH x y z))

The point is that in general (c x y) will not be the same as (c x y)

because of use of assignment on the free varialbe free-storage-list.

Other than in this fairly trivial way, schemata do not add any ýower

to recursive schemata.
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8. 1. 1.7 Schemata with iquality

Schemata with equality are allowed to make use oL a s,-ecial

predicate (= x y) whose interpretation is that x anu y are the same

element of the lomain cf inteLrretaticn. Universal domains of

intei:ýretatiozn for schemata wL,_n equality are the Herbrand universe

with a congruence relation theta such that:

1: theta is an equivalence -elaticn

2: if x/1 theta y/1, ... , and x/n theta y/n then for each
uninterprcted function f and predicate p:

(f x/1... x/n) theta (f y/1 ... y/z,) and
(p x/1 ... x/n) if an only if (p y/1 ... y/n)

In other words the elements of the doeain of interpretation are the

equivalence classes of theta.

I..
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8.1.1.8 Hierarchical Backtrack Schemata

PLANNEB uses a more powerful control structure than that of

the recursive function call. A BACKTRACK CONTROL STRUCTURE is used

which means that at any point a process can fail which will cause it

to back up to some previous state and then continue. The primitive

function (FAIL) iill generate a simpie failure. The primitive

function (FAILPGINT try lose) will evaluaLe the expression try. if

the evaluation succeeds then the value of the function FAILPOINT is

the value of try. Otherwise the value of the function FAILPOINT is

the value of lcse. For example the vale of

(+.

(fail•cint (x <- 2) (x <- 3))

(if x=2 then (fail) else 4))

is 7 since x first gets the value 2 but then is given the value 3 when

a failure backs up to the function FAILPOINT.

8.1.1.8.1 ComEarisoz! with Recursive Schemata

We shall give an example tc show that backtrack control

structure is more powerfui than recursive control structure.

Backtrack Schemata Are More Powerful than Recursive Schemata
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The backtrack -Echema g defined below is nct equivalent to any

recursive schema. What the schema g does is to search the following

tree for x looking for d node on which P is true:

x
I ~~(Lil x)(L2)

(L-x2 x)
(L-'3
(R-1 (L-2 x))

(L-4 x)
(R-u (L-4 x))

(R-, 1 x)

(H-2 x)
(R-3 x)

We have shown in the section on parallel schemata that no recursive

schema can do the search°

(g x# = (h (f x))

th z) = (if z

"true"
else

(fail))

(f x)
(fail?

(P x)
(block (y)

;"y is a new local"
(y <- x)
(k

(2 (L x)f
(if (P 7)

then true
else (y <- (B y) false)))))

The reasoz that we make the function k defined below into a separate
function i:. so that BOIh argusents will be evaluated.
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(k S t) = if s
then

"true"
else t

Proof: The procf is sizilaE to the proof of the parallel

evaluation theorem. Suppose a set of recursive equations [f//O, f//1,

f//n) is schematicaly equivalent to f with f//O equivalent to f.

Suppose that we start up x//O cn input x and make the prdicate p true

for every node to which it i& applied as f//O computes along. If the

computation convereges then f//O does not lock at some node which is a

contradiction cf the supposition that f//O is eguivalent to f.

Therefore the computation runs forever and the sequence of statements

therough which the control passes is ultimately periodic.

8.1.1.8.2 Comparison with Multiprocess ScheEata

The method by which multiprocess schemata can simulate

hierachical backtrack schemata is messy but straight forvar?,

Multipzocess schemata are more powerful than backtrack

schemata. One example which may show this is the one used to show

-hat parallel schemata are more powerful than recursive schemata.

Unfortunately we have not yet been able to prove that backtrack

schemata caDnot search the full L-B tree-. So we shall resort to brute

for-e techniques.

We would like to deflate the P-leAgth of an expression x as the

namber of times which D can be applied to x before (P x) is true.

.. - - - - C ' -r



PROGRAM SCHEMATA

R R2 - - - - - - - - -- R k

k REGISTERS EACH OF WHICH CAN HOLD
AN INTEGER UP TO n

X s STATEMENTS

HAS AT MOST snk STATES

j u



8.1, 1.8 page 377

Thus (P-length x) (if (P x) then 0 else 1+ (P-length ID x))) Now we

would like to define a schema expt such that

(expt X y) = (I- (2-(P-length x)) 7)

Suppose that (P-length x) = 2. Then !expt z y) = (I-[2-2) y) =

Y) = Ur (I (I (I Y)) ) ).

(expt x y) = (if (P x)
then

(I y)
else

(expt (D r) y (expt (D x) y)))

Now we claim that theze is no program schera which is

equivalent to expt. Suppose to the coDtrary that there is a program

schema with k registers and s statements which is equivalent to expt.

Such a program schema has at most only s * k-(P-length x) equivalence

classes of statss. Thus if it runs for more than s * k-%P-length x)

steps it must be in a loop. Therefore it cannot possibly produce the

output (I-(2-(P-length x)) y) since s * k-(P-length x) is less than

2-(P-length x) for large values of (P-length x). This is a

contradiction.

In an exactly analogous fashion we can prove that there is no

recursive schema expt2 such that

(expt2 x y) = (I-(2-(2-|P-length x))) y)

Suppose that there is a recursive schema with k registers and s

statements uhich is equivalent to expt2. Such a recursive schema has

at acst only

- S .'o~ - -~w -. -~ - - -
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J= s (P-length x) Ak (P-length x) -(s * (P-length x)- k)

equivalence classes ct states. The same state counting argument shows

the contraadiction. The above argument has been independently

discovered by Robin Milner.

Theorem: Multiprocess schemata are more powerful than hacktrack

schemata

Proof: We will apply cur brute force technique. There is no

backtrack schema expt3 such tnat

(expt3 x y) = (I- (2- (2- (2- (P-lngth x)))) y)

Suppose that tUere is a backtrack schema with k registers and s

statements which is equivalent to expt3. -et J be as defined above.

The recursive schema has at most J-J equivalence classes of states.

Thus if it runs for more than J-j steps it must be in a loop.

Therefure it cannot possibly produce tle output (I-(2-2-2-(P-length

x)) y) since J-,J is less than -2-2-(P-length x) for large values of

(P-lEngth x). This is d contradiction.
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8.2. Synthetic Theory

8.2.1 Realizations

8.2.1.1 Realizations for the Quantificational Calculus

We would like to show how we can use scheiata to express

procedurally tte neaning of certain constructive logically valid

sentences in the predicate calculus. Classically, intuitionistic

logic has been used to prove constructive sentences. However, the

connection between this language and push down schema automata is

somewhat indirect. We need to define the notion of a schema g

realizing a formula phi. Roughly speaking g realizes phi if it tells

how to compute the value of phi from the subformulas of phi depending

on the logical connectives of phi. Kleene's notion of "g realizes

phi" is defined by irducticn -;n the structure of phi:

For (terms). g realizes phi where phi is a term if g is true

if and only if phi is true. For example (P (F w) z) realizes (P (F w)

z).

For (and...). g realizes phi = (and theta psi) if (g 0)

realizes theta and (g 1) realizes psi. Note that g really is two

functions in disguise.

For (or...). g realizes phi = (or theta psi) if whenever (g 0)

is false then (g 1) realizes psi and whenever (g 0) is not false then



8.2.1 page 380

(g 1) realizes theta.

For (implies...). g realizes phi = (implies theta psi) if

whenever h realizes theta then (g h) realizes psi.

For (not...j. g realizes phi = (not theta) if for no h is it

the case that (g h) realizes theta.

For (all...). g realizes phi = (all x [theta x]) if for all x

it is the case that (g x) realizes [theta x].

For [some...). g realizes phi = (some x (theta xJ) if (g 1)

realizes [theta (g 0)).1

Consider the following formula which we shall call phi:

(implies
(some x

(implies (A x) (B x)))
(implies (all x (A x)) -some x (B x))))

We claim the function g defined below realizes phi.

g = (lambda E Ilambda k (lambda s
(if s = 0

tken (h 0)
else ((h 1) (k (h 0)))))))

Suppose that b realizes (some x (implies (A x) (B x)))
(h 1) realizes (implies (A (h 0)) (B (h 0)))

suppose that k realizes (all x (A x))
(k (b C)) realizes (A (h 0))
((h 1) (k (h 0))) realizes (B (h 0))
(((g h) k) 1) realizes (B (((g h) k) 0))
((g h) k) realizes (some x 4B x))

(g h) realizes (implies (all x (A x)) (some x (B x)))
g realizes phi
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We are interested in knowing when a formula can be realized

constructively.

Realization Thecrem for Recursive Schemata with Functional Arguments.

If phi is prcveable in intuitionistic logic, then phi is

realizable by a recursive schema with functional arguments. The

Realization Tbecrem re.resents one approach toward a constructive

theory of computation. From a description of the kind of object that

we would like to have given the description of certain other objects

as input, we derive a program for computing our goal. Actually we

shall prove that for intuitionistic logic the realization function can

be made pri.mitive recursive. The proof is a slight modification of

the standard proof for the integers. It is a warm up fot the

analogous procf for the deductive system of PLANNEE. However, in

PLANNER we require the full power of the recursive functions for our

constructive realizations.

Proof: The following proof is by induction on the structure of

intuitionistic proofs using natural deduction. It goes by

straightforwardly winding and unwinding of definitions. With a little

work we could get PLANNER to create the proof.

(and introduction}
theta realized by say g
psi realized by say h

(and theta psi) realized by (lambda s (if (s = 0) then g else
h))
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[and eliminaticn}
(and theta psi) realized by say g

theta realized by (g 0)
psi realized by (g 1)

[or intro)
psi realized by say 9

(or theta psi) realized by (lambda t (if t=O then false else
g))
for (or psi theta) realized by (labda t (if t= then true else

(or theta psi) realized by say g
theta hypothesis; suppose that theta is realized by h

eventually deduce say cmega which is realized by (m h)
for some recursive m using the inductive hypothesis

psi hypothesis; suppose the psi is realize,. by k

eventually deduce omega which is realized by (1 k) for
some recursive 1 using the inductive hypothesis

omega which is realized by (if (g 0) then (a (g 1)) else (I (g
1)))

(implies intro) omega hypothesis; suppcse omega is realized by h

eventually deduce say psi which is realized by (g h)

for some recursive g using the inductive hypothesis.

(implies omega psi) redlized by (lambda h (g h))

(implies elial
(implies omega psi) realized by say g

omega realized by say h

psi realised by (g h)
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(neg intro4
omega hypothesis; suppose that omega is realize6 by h

eventually dtduce say (not psi) which is realized by
(g 1) for some recursive g using the incu&~i'e hypothesis

eventually deduce psi uhich is realized by (k h) tor
some recursive k using the inductive hypothesis.

(not omega) which is realized by any functioa since it is
impossible for both (net psi) to be realized by (g h) and for psi to
be realized by (k h).

(all intro)
x1

leventually deduce say [omega x] which is Lealized by
(g x) for some recursive q using the inducti-7e hypothesis

(all x [omega x]) realized by (lambda x (g x))

fall elim](all x [omega x]) realized by say g

[omega t] for some term t; realized by (g t)

[exist intro)
[omega t] is realized by say g where t is a term

(exist x [omega x]) is realized by (lambda s (if (s 0) then
t else g))

ýexist elia)
(some x [omega x]) realized by say g

xt[omega x] realized by (g 1)

leventually deduce say psy which does not contain x
free; psy is realized by (a (g 0) (g 1)) for some recursive m using
the inductive hypothesis.

) • o , - -
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PS Y

Thus we have ccapleted the inductive proof.

Intuitionistic lapleuentxticn Theorem

For every recursive schema P, we can effectively find a first

ordec formula [theta x y] such that P is total if and only if (all x

(some y [theta % y]l)) is proveable in intuitionistic logic.

Flirtbermore, the program P on input x conveLges to the value y if and

only it [theta x y] is proveable in intuitionistic logic. We assume

that all uninterpreted function symbols in schemata are total.

We shall give an example of how to construct tho formula theta

for the fclI:wing program which is due to Paterson:

(g x) =(if (T (F xthen (P x (F X))
else x)

(h x y)= (i.: f I (F (F y)))
then x

elseif (T (F x))
ýben (h (F x) {F (F y)))

else (g (F x! )

We can obtain the formula that we require by doing a straight forward

translation of the recursive equations itto the quantificational

calculus. These fcrmulas are similar in intent to those of Manna,

however we need use only intuitionistic logic to obtain the result we

require. The formula [theta x y] to be constructed is the

conjunction of the following three formulas where miff" is an
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abbreviation fCr "if and only if":

(iff
(PG x y)
(or

(,3nd (I (F x)) (PH x (F x) y))
(and (not (T (i x)) (y = x)))))

(all xl 2X2y tiff(PH x x2 y)

for
(and (I (F (F x2))) (y = xl))
(and

(not (I (F (F x2))))
(T (F xl))
(PH (F Y l) (F (F x2)) y))

(and
(not (I (F (F x2))))
(not (T IF xl)))
(PG (F xl) y)))))

(all x (or (T x) (not (T xy))) )"

The last statement comes frcm the fact that we are assuming that all

uninterpreted functions are total. The schema g is indeed total.

Even after adding selectcrs and constructorz the realiiation

theorem can still be proved in the standard way. We introduce the

predicate atom which tests to see if its argument is atomic and thus

cannot be broken down using the selectors. The following rule is

added to intuitionistic logic:

(al.' x (implies (atom x) [thetd x])) realized by say g
xyl[theta x) hypothesis; suppose [thetp x) is

realized by fe x)
I(thteta y] hypothesis; [theta y] is rpali7ed by (m

y)

V - ---.. ~--- -~------
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leventually deduce Ltheta (c x y)] realized by say
(h m x y) using the inductive bypothesis

(all x [l)heta x]j realized by
(k x) = (if (atom x)

t~en (g x)

else (h k (sl z) (s2 z)))

Sometiwes an increase in efficiency can be obtained from

replacpment operators rl and r2 such that

if x : (sl z) and y = (s2 z) then after (rl z w) we have 'sl
z) = w, and (s2 z) = y

if x = (sl z) and y = (s2 z) then after (r2 z w) we have (sl
z) = x, and (s2 z) : w.

We shall call schemata thgt allow the use of selectors and replacement

operators list structure schemata. Two schemata will said to be

equi-.alent as list structure schemata if for all interpretati(ns of

the uninterpreted function symbols they are the same function. For

schemata that do not explicitly contain sl, s2, rl, or r2 list

structure equivalence is the same as side-effect equivalence. we have

showr. above how to ccnstruct a universe of terms so that two schemata

are side-effect equivalent iff they are equivalent over the domain of

terms. It is impossitle to use the universe of terms as a universal

domain of interpretation when the use of replacement operators is

allow'd.
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8.3. Current Prcblems and Future Work

How can we characterize more precisely the difference between

functions that need to use a recursive or parallel contrcl structure

as opposed to those that only need a simple iterative proqram

structure? Tte problem of deciding uhether auy given recursive

schema can be rewritten as a prcgram schema is of course undecidaDle.

We would like to find general criteria of independent interest which

would be suff.icient to guclrantee that a recursive schema could not be

rewritten as a program schema.

There is general agreement thdt the theory of computation is

currently not in good 9hage. The three major areas (autcmata theory,

recursive function thecry, and special case hacks) are not applicable

to practical programs. We can contrast our plight with the situation

in applied physics. An applied physicist finds that it is essential

to understand fundamental physical laws both in designing his

experiments and in interpreting their results. No such fundamental

laws and principles are kncwn in prograuming. Recursive function

theory sets the very outer limits of what is possible. Few theories

are more elegant. However, the fact that classical recursige function

theory deals with the indices of the partial recursive functions and

not with tht meaning of the programs has been a fundamental

linitiation on the applicability of the theory. For example the

recursion theorem says that fixed points exist for any acceptable
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Goedel nuwberunG. Almost all the classical theorems of recursive

function theory can be derived using only the Godel axicms for indices

of partial recursive functions, Similarly, the complexity theory of

the recursive functions can be derived from Blum's axicts for indices.

Automata theorists have been able to discover some of the structure of

various limited classes of automata such as finite state machines,

push down machi.nes, and space and tixe bounded machiues. However,

csince the theory deveicped has been mostly concerned with closure and

complexi*-Y properties of the special machines considered as acceptors,

it has had limited applicability to real computer programs. Most

programs are not structured in the vay required to fall into one of

the special classes of machines. Some theorists hope that by studying

enouqh eydnplec of very narrow domains of algorithms where we have a

lot of domain dependent knowledge that we can induct a theory of

cosputation in a Bacoiian fashion. Deep studies have been made on

guestions such as how fast integers can be multiplied and how fast

matrices can be multiplied. Studies in the theory of searching and

sorting appear to be more r. levaiit for constructing a unified theory

of computation since they are concerned with basic computational

abilities.

Studying the properties of programs schematically offers

several advantages. Schemata can be programied in a realistic

fashion. They mirror the structure of prograss that are ased in

applications. Using them we can preciseiy defiui structural

properties. Properties of the structunal classes caD be
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demonstrated. Schemata give us a tool by which we can rigorously

formulate and prove statements that every programmer intuitively

knows. We have used schemata to make a kind of distinction between

semantic and syntactic extensions to programming languageF. The

intent of the £estriction that functions be uninterpreted is to try to

preerent our mathematics frcm falling into vhat Perlis likes to call

the 'Turing Machine Tar Pit." By using uninterpretod function symbols

we can prove both analytic and constructive thieorems about classes of

programs. In the analytic theory the mathematical properties of the

structural classes is expounded. In the constructive theory the

process by which schemata can be constructed from goal oriented

language such as FLANNER. The intention is only partiazly realized

and we must search for cther ,atural mathcmatical structures to impose

oi, our schemata in order to obtain a more realistic theoey of semantic

extensions to progra-ming languages. Re dre continuing to investigate

what gains in efficiency can be obtained ftom the fcllowing extensions

to programming languages;

recursion

tacktracx coptrcl structure

PLANNEF primitives

Locaticns as a type

resets

free identifiers

parallel evaluation

replaceaent operators for constructors.
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identity test as a FLimitive
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tabs are 8 spaces
! 'i$%& 1 ()
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10. Index of Procedures

The type hieraichy is given at the beginning of chapter 4.

The syntax prinitives are given after the function BEAD. The page

number gives the explanation of the procedure.

Index of Procedures

397

188

150

1+ 150

1+ 187

"149

+ 149

149

/ 149

177

134
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134

180

180
ABS 149

ACTIVE
179

ACTOR 
79

ACTOR-CALLER 
99

ACTOR-FUNCTION 
77

AGAIN 
111

AL L .7 f

ALPHABETIC 
154

ALTERI-PERSISTENT 
191

ALTER!-TENTATIVE 
192

AND 
93

AND?
92

ANTECEDENT 
210

ARC 
133

ARGS 
171

AS

ASCENDING? 148

ASSERT !-PERSISTENT 
215

ASSERTI-TENTATIVE 
214

ASSIGNED? 
171

AT 
133

ATC 
167
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ATOM !-CONSTFUCtOR 146

ATOM I-DECCMPCSER 18u

BE 178

BINDINGS 171

BITS 146

BLOC K 157

BLOCIBIND 109

BOTTOM 140

BOUND? 172

BYTE 146

CALL ,i

CALL

CALL ,20

CAiLL 101

CANDIDATES 213

CATCH 94

CHANNEL 154

CHARACTZER 154

CHARACTER-VECTOR 86

CHOP!-PERSISTEN'T . . 9

CHOP!-TENTATIVE 139

CLAUSE 239

CLAUSE 238

CLAUSE-OF 239

CLOSE 154
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CLOSURE 130

COND 94

CONSEQUENT 208

COBTAINS 183

CONTINUE 128

COPY 134

CURRENT 223

CURRENT? 219

DAGGER 181

DEBUG 170

DEC!-PERSISTENI 147

DECI-TENTATI YE 147

DECLARATION 179

DECLARE 99

DECLARED 167

DELETE-FRONT 153

DELETE-REAR 153

DESCENDING? 148

DIGIT 154

EDIT 198

EITHER 81

ELEMENT 183

EMPTY 183

EMPTY? 130

EBD-BLOCK 157
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ERASE!-PER SISTENT 219

ERASE!-TENTATIVE 218

ERASING 21.

ERROR 170

EVAL 106

EXHAUST 235

EXPT 149

EXTENSION 86

EXTRACT 189

FAIL 112

FAIL 235

FAILECINT 96

vIELDS 187

FINAlIZE 231

FIND 233

FOLLCWS 185

FOR 113

FOR 231

FOR-RESOLV ENT 240

FORK 127

FRAME 171

FRONT 152

FUNCTION 72

GATE 227

GENLOC 151
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GE~T
132

GET!-NO-monitor 
132

G TC 167

GIVEN 191

GuAL? 225
GOALS 

225

GREATER
3.87

GREATER=
187

HAS
181

HEAD
134

HOMOOGENECOUS 8

IDIVIDE 
148

IN 
151

INC!-PERSIST ENT 
147

INC!-TENTTI VE 
147

INCREASING? 
141

INDEFINITE 
13

INDEX 140
INDICATOR 

134

INITIM. 
13

INSEbT-FBCMT 
153

INSERT,-REAR 
153

I dSTINT] ATE 
239

INTEND 
293

IN TE N T 
292
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INTERRRUPT 129

INVOKE 118

Is 105

IS-ACTOR 178

IS? 105

ISOMORPHIC? 136

ITUPIE 143

IVECTOR 143

LAST? 133

LENGTH 140

LESS 186

LESS= 186

LI••AR 183

LIN• 157

LIST :-COE SIR UCTOR 142

LIST !-DECOPOSEB 185

LOCATIVE 13M'-

LOCK 168

LOCKED? 169

LOCKER 169

LONEE 154

.ACRO 78

SWTCH 106

1AWCH? 105

HATCHI NG 178
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MAX 
150

MEMBEr? 
142

MIN 
150

dONA D 183
MONAD? 

130

MONITOR 
164

NA ME 
171

NEXT 
133

AUXTCH 
157

NODEi-CONSTRUCIOR 
145

NODE!- DECoPOsER 166

NON 
177

NOT? 
93

HOUMBER 
186

C)BLIST 
156

OF 
132

Ci -%.PE t191

ON 
157

OPTIONS 
181

OR 
92

O.R? 
92

OVERALL 
29'j

PERSIST 
232

PERSISTENT 104

PNAM E 
146
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LC) P 152

P OR T122

POPED1 189

PRh'C ; DES 184

PRIMARY 22-6

PR LNd1 155

PRI14C 15$

PilINT156

PRGjCB.I NZ 110

PROCEDURE 171

PROCESS 119

PROCN~AIIE 171

PRODUCT 82

PRODUCT-OF 189

PR OG 106

PROTECT 163

2EOTECTICN 164

P u 13H 152

PUT. -NiC- CITOJR 138

PUT!-PERSISTENT 137

PU'T!-TENTATIVE 138

PUT¶C f-PERuSISTENT 167

PU'TC -TbNTATIL'VE 167

PUTLCCE-PESIS'IENT 151

P0TLCC!- TENTA*PlVF. 151
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PUTREST i-PERSIST ENT 138

PUTREST!-TENTATIVE 138

QUOTE lob

READ 158

READCH 157

HEAR 153

REPEAT 112

REPLACE 184

RESOLVE 239

REFST 131

RESTORE 97

RETRACT 166

RETRY 230

RING 152

RULE 98

SELECT 182

SET-ALARM 9c

SET-TIMER 90

SHARE 145

SIGNED-BITS 146

SIMILAR? 135

STACK 152

STAR 181

STATE 226

STEP 1 ,6
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STOP 128

STORAGE 166

STRAIGHTEN 103

STRAIGHTEN-UP 104

STRING !-CONSTRUCTOR 145

STRI NG!-DECOMECSER 185

STRUCTURE 182

STRUCTURE? 129

SUBGOAL 225

SUBS'TITUTE 141

SUM-OF 188

SUPPRESS 106

SUSPEND 128

SWITCH 228

SWITCH 226

TAIL 134

TEMPCRARY 101

TESPORIZZ 102

TEMPECG 227

TERRINATE 128

TOP 140

TRAILER 156

TYPE 166

TYPE-VECTOR 85

UNASSIGN 172
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UNEXIEND 
86

UFPALSE 
91

UNIQUE 
230

UNIQUELY? 
141

UNIQUIZE 
140

UNLCCK 
170

UNMONITOR 
166

USPECTECT 
163

UNSET-ALARM 
90

UNSET-TI MER 
90

UNSHARE 
144

UPDATE 
226

UPPER 
154

VALUE 
151

VARIABLES 
239

VECTO !-CONSTRUCTOR 
145

.ECTOh I- DECOMECSER 
185

VEL 
177

WAIT-C.LL 
126

WAIT-GET 
132

179

105


