Ad 1¢Y4¢ 620

.

DESCRIPTION AND THEORETICAL ANALYSIS (USING SCHEMATA) OF
PLANNER:
A LANGUAGE FOR PROVING THEOREMS AND
* MANIPULATING MODELS IN A ROBOT

Carl Hewitt

April 1972

ARTIFICIAL INTELLIGENCE LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts

02139

- Best
Available
Copy

UNGLASSIEIED

—

Security Classification

DOCUMENT CORTROL DATA - R&D

{Socurity cleastficotiun of title, body of sdairact and indexing annviation muel Bo & Wud whon e svarall roport 13 clessified)

. QRIGINATING ACTIVITY (Corporate suthor)

Massachusetts Institute of Tockaclogy

Artificial Intelligesnce Laboratory . cRaue

2. REPORY SECURITY CLASSIFICATION

UNCLASSIETE

None

REPORT TITLE

Description and Theoretical Ana:ysis (using Schemata) of PLANNER: A Language

fo— Proving Theorems and Manipulating Models in a Robot

OESCRIPTIVE NOTES (Type of report and inctuslve dates)
Ph.D. Thesis, Department of Mathematics

AUTHGRL{S) {Laa! name, firat neme, initlal)
Hewitt, Carl

REPJRY DATE

January 1971

76, KO. OF REFS

54

b,

Cs

d.

. CONTRACT OR GRANT WO, 2, ORIGINATGOR'S REPORT NUMBERI(S)

N00014-79-A~0362-0003

PROJECT MO Al TR-ZS58

85, OTHER REPORT NOi$) (Any other numbezs that xry be
asefpned thie rezeet)

10,

AVAILABILITY/LIMITATION NOTICES

Distvibution of this document is unlimited.

PRICES SUBJECT 1o (HaAkes

.

SURFLIMENT ADY MDTHL c = -) -) IFLRLOR NG ﬂlLi?fJY AQTIVITY

-Advanced Research Projects Agency

None .) 3D~200 Pentagon

13,

{so

The formalism is built out o
hierarghical mulitiprocess backtrack control structure,
perhaps iater withdrawn as the .staté of the woxld‘cbanges.
structure, the hierarchy ofuactlvat

ABETRACY

Washington, D.C.__ 20301

FLANNER is a formalism for prGV1ng theorsms and man1pu&at~ng,models in a2 rohot.

s

a rusber of problem-solving primitives together with a
Statements can be asserted and

Under BACFTRACK control

ns of functions previously executed is waintained
; thad. it is possible o revasst to any previoits stzte. Thus programs can easily wani-
jpulate elaborate<h;pothet1cal tentative states.
' sxng so that there .can ve multﬁp1e§lo¢1 of control over the problem-solving.
| sions can be drawn from the verious changes dn state,
.j dismissed when they are. satlgfxe&‘ The. deductlme system of PLANNER is subordinate to
,.the bxerarchzcal contrql,strvc;uxe in o:déz tgnmalntazn.th desired degrec of control.
:jThe,use of a. .general-purpose. matgh;ng lgnguaggyas the b351s of the deductive system in-
- i creaces. the £1§gxh111ty>o£ the system% xnstead of ‘éxplicitly raging procedures in call;
,"pxocedures caivhe

‘;>accomprms e

In addition PLANMER uses multiproces-

_nypked 1mp; ieigly by azté:ns o‘}ﬁhat the proce&nre is suppored to

Conclu-
Goals can be established and

SR N :,:” _

"Axg;ficzai Inxelxxgencp
$ema3tihs ~

T

N O T 1 C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

Work reported herein was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Naval Research under
Contract Number N00014-70-A-0362-0003.

The views and conclusions contained in this document are those of the
author's and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.

DESCRIPTION AND THEORETICAL ANALYSIS (USING SCHEMATA) OF
PLANNER:
A LANGUAGE FOR PROVING THEOREMS AND
MANIPULATING MODELS IN A ROBOT*

Abstract

PLANNER is a formaiism for proving theorems and manipuiating models
in a robot. The formalism is built out of a number of problem-solving
primitives together with a hierarchical multiprocess backtrack control
structure. Statements can be asserted and perhaps later withdrawn as
the state of the world changes. Under BACKTRACK control structure, the
hierarchy of activations of functions previously executed is maintained
so that it is possible to revert to any previous state. Thus programs
can easily manipulate elaborate hypothetical tentative states. In addi-
tion PLANNER uses multiprocessing sc that there can be multiple loci of
control over the problem-solving. Conclusions can be drawn from the various
changes in state. Goals can be established and dismisscd when they are
satisfied. The deductive system of PLANNER is subordinate to the hier-
archical control structure in order to maintain the desired degree of
control. The use of a general-purpose matching language as the basis
of the deductive system increases the flexibility of the system. Instezd
of explicitly naming procedures in calls, procedures can be invoked im-
plicitly by patterns of what the procedure is supposed to accomplish.
The language is being applied to solve problems faced by a robot, to
write special purpose routines from goal oriented language, to express
and prove properties of procedures, to abstract procedures from proto-
cols of their actions, and as a semantic base for English.

Thesis Supervisor: Seymour Papert, Professor of Mathematics

*This report reproduces a thesis of the same title submitted to the
Department of Msthematics, Massachusetts Institute of Technology,
on Janusry 29, 1971 in partial fuifillment of the requiremeuts for
the degree of Doctor of Philosophy.

0.

3.

CCHTENZS

Contents

A Pable on a Declarative Use of Imperatives

Cn the Structural Fcundations of Problem Solving
Discursive Overviey of PLANRER

The Pattern Batchirg Language MATCELESS

4.1 s¥ntax of Identifjers and Exgressions
#4,%.1 Prefix QOperators for Identifiers

8,%.2 Expressious

§.2 Types
4.3 Simple examples of Ratching

4.4 Definitior c¢f Procedures
4.4,1 Punctional

RB.8.2 Bzcro
8.48.3 ictor
4.4.% 1ype
8.8.8.1 OUpion
§.4.48.2 PFroduct
£.8.8.3 ZExtensionr
4.8.8.48 Sunm
§.4.4.5 Homogenous
4.4.5 [Rxternal Intesrupts

4.5 Punctions ip Exjiressions
4.5.1 Definiticns of Punctions

8,5.1,1 <Control Prunctions
4.5.1. 3.1 Cenditicnal
4.5.1.1.2 Bilock
5.5.1.1.3 2scape
4.5.1.1.5§ Repetition
8.5.%. 1.5 HNAglti-Process

§.5.1.2 Data Punctions

0. page 3

4.5.1.2.1 Specialists
4.5.%1.2.1.1 Structural
4.5.1.2.1.1.1 List
4.9%.1.2.1.1.2 Vector
4.5.1.2.1.1.3 String
4.5,1.2.1.1.4 Graph
8.5.1.2.% 1.5 Class
4.5.%7,1,2 Atonm
4.5.1.2. 1.3 ¥%ord and Number
4.5.1.2.1.4 Algebraic
4.5.1.2.1.5 Locative
8.5.1.2.1.6 Stack
4.5.1.2.1,7 Ring
4.5.1.2.1.8 Input-output
4.5.1.2.2 Protection
4.5.1.2.3 MNonitoring
8.5,1. 2.4 Type
4.5.1.2.5 Synchronization
$.5.1.3 Identifier
4.5.1.4 Debuggang
4.5.2 RBxamples of the Use of Punctions

4.6 Actors in Patterns
4.6.1 Definitions of Actors

4.6.1.1 Control Actors
4.6.1.1.1 Conditional
4.6.1'.1 2 Block

#.6.1.2 Da‘a Actors
4.6.1.4.1 Specialists

4.6.1.2.1.1 Structural
£.6.%.2.1.,1,1 List
8.6.%.2.1.1.2 Vector
4.6.1.2.1.1.3 String
§.6.1,2.1.1.4 Graph
B.6.1.2,1.2 Atonm
4.€6.1.2.1.3 8%orC and MNumber
4.6.1.2.1.84 Algebraic
4.6.1.2.1.5 lLocative
R.6.1.2.1.6 Stack
8.,6.1.2.1.7 3aing
§.6.,1.2.1.8 Character
3.6.1.2.2 Type

§.6.1.3 Idertifijier
3.6.2 BExamples of th2 Use of Actors

4.7 The Irpliementaticn Language BUBBLRE

8.8 The Rditor

0. page 4

Lo
5 ven

5.

6.

The

5.5

Theores Proving Forsmalisa PLANNER
PLASNER Procedures
5.1.1 PHierarchical Backtrack Coatrol Structure
5.1.2 PFunctional Prc-edures
5¢ 1.3 Iheor#nu
5.1.3. Cn -srgquent
5.1.3.2 An:. cedent
5.1.3. Erasing
PLAMNER FPunctions

R.2.!' Data Functi. as
5.2.1.1 Assertions
5.2.1.2 Erasures
£f.2.1.2 Goals

" «:2 <Jonirol Puncticns
5,2 2.1 Tailure
".2. 7.2 PFinalization
Je2. 2,7 Ya-_ltiticn

Clauses i* ; .ANNER

A Sirple Exaamtle
5.4.1 Hs;ng a Conseguent Theorea

S.4.2 .sing an Antecedent theorea
5.4.3 Usinq Resolution

Hgths about PLANKER .
5.1 Consequent Theoreas Used Only for Working

Backvaxds

PLANNEF Does Only Depth Pirst Search

Use of Failore Implies Inefficient Search
ELANNRBR Does Only What It is Told to Do

vy w
L]

(S RV NV,]

[]

& N

Bore on PLANNKER

6.1

Sznple Bzxaaples iun PLANNER
6.1.' Londons's Bridge

6.1.2 Analogies
6.1.2.1 Simple Lnalogies
6.1.2.2 Structural Analogies
6.1.3 HMathematical Indaction
6.1.4 Descriptions
6.1.%.7 Structural Descriptions
6.1.4.2 Constructing Bxaaples of Descriptions
6.1.4.3 Descriptions of Visual Scenes
6.1.4.8 Pover Set of Intersection of Two Seis
Is the Intersection of Their Power Sets
6.1.5 Semantics of Natural Language

0. page 5

3.

L~

6.1.6 Tne Pcns Asinorunm

€.2 Current Problexs and Future Work

Models of Frocedures and the Teaching of Procedures

7.1 >dels of Procedures)
/1«1.1 Models 1in EXF[G»SLODS‘ Intentions

7.1.2 Fodels in pPatterns: Aliegs
7.1.5 Models of PLANNER Tbeo:ens

7.2 Teachlnq grocedureb
7.2.1 elling
7.2.2 Ey Abstracting Protoccls of Procedures
7.2.2 Protoccls
7.2+.2.2 Variatalization and Formation

of Prctocol Tree
7.2.2.3 Identificaticn of Indistinguishable

Nodes
7.2.2.4 Examples
7.2.2.4.1 Building a wall
7.2.2.4.2 Reversinag a List
7.2.2.4,3 ¥inding the Description
of a Stick
7.2.2.4.,4 Finding Fibonacci Numbers
Iteratively

7.2.2.4.5 Defining a Lata Type
3 Py Deducing the Bodies of Canned Locps
.4 Comparison of the Methods

7.3 Current Problems and Future %Work

Theoretical Foundations

€.1. Analytic Thecr
B8.1.1 Classes ol Schenata

8.1.1.1 Reocursive Schenata
Comparison with Progras Schenata
Ccmgilation
Schemata with Resets
Pecompilation
Primitive Recursive Schemata
pata vith Ccunters
parallel Schemata
Locative Schemata
Schemata vith Selectors and
Replaceaent
8.1.1.6 Schemata vith Pree Variables

[]

L]

sy

L]
e * o & 4 o o o
s * s 0
- ad d b b
Ty s o ® o o
T NE WN

..o«A-‘N-a..a—a..a.—A
[

wa:co..ma;mmm
- b b

t 8 (Nt s s s ¢
N E WO adcd e ad ol

3

0.

page 6

o — A . WL PR TV P) T

10.

1.

12.

7 Schemata with Fquality
8 Hierarchical Backtrack Schemata
1.1.8.1 Conmgariscn with Recursive

Schemata
€.1.7.8.2 Compatison with Parallel
Schemata
€.%.1.8.3 PLANNER Schemata
8.1.2 Intentiocns
8.1.2.1 Definiticn of Intentions
8.1.2.2 Ccampleteness of Intenticnal Analysis

8.2. Syntbetic Theory
8.2.1 Realizations
8.2.1.1 Realizations for the Quantificational
Calculus

8.2.1.2 Realizaticns cf FLANNER Tneoreas

8.2.2 Construction of Schemata
B8.2.2.1 Ccnmnpleteness of Procedural Abstraction
8.2.2.2 Ccapleteness of Method of Canred Lcops

8.3. CcCurrent Prcitlems and Future Work

Fcrmal Definition cf PLANNER

Index of Erocediures

Bibliograghy

Biogcaphy

0.

page 7

This paper is decdicated

to the ideas emdodied in the language

Cedication

LISP

0. page 8

0. page 9

ACKNOVWLEDGEMENTS

The following is a report on scme of the work that I have done
as a graduate student at Project MAC. Reproduction in full or in part
is permitted for any purpose of the United States government. Nost of
the ideas described herein are not origina® with the author. MNany are
sinple extensions and modifications of current ideas in the comjuter
culture, Others have been suggested by people in conversations. I
have tried to explicitly acknowledge all the cases that I can
reaenber Ny apoligies to any one wvho has been omitted. Still other
ideas have emerged in the course of debate and discuission with the
people listed below, I would like to thank the various systen
"hackers™ that have made this work possible: D. Eastlake, R.
Greenblatt, J. Holloway, T. Knight, 6. Bitchell, S. Nelson, and J.
white, I had several useful discussions with H. V. HcIntosh and A.
Guzaan on the subject of pattern matching. S. Papert, T. HWinograd,
and M. Paterson rade suggestioas for improving the presentation of the
material in this thesis. 7T, ¥inograd, P. Wincton, and G. Sussaan made
suggestions for improving PLANNER. Alan Xay, Jeff Rulifson, Nick
Pippinger, Bugene Charniak, John KcCarthy, Bils Nilson, Richard rikes,
Bichard Waldinger, Julian Davies, Bruce Andersom, Jack Dennis, Bob
Yates, Danny Bobrow, Harren Teitleazan, Richard Stallmsan, Peter Deutch,
and Bob Balzer provided illuninating discussions on somse of the fine

points. Peter Bishop, Dave Reed, Gary Peskin, Gordon Beiedict, Al

0. page 10

Sclish, Chris Reeve, Gerald Sussman, Bruce Daniels, Drew McDermott,

Jeff Hill, and Dave Cressey have worked on isplementations. Ira
Goldstein, Peter Bishop, BRichard Wong, Steve Zilles, Bruce Daniels,
Dave BPeed, Gary Peskin, Julian Davies, Gordon Benedict, and Jeff Hill
helped me to find bugs in grevious versions of this document. I would
like to thank the menbers of ay thesis coamittee (Seymour Papert,
Marvin Rinsky, and H#ike Paterson) for their help apd advice. This
report represents my current iaperfect state of knowldege. The above
people are in no way responsible for the kludges, errors, aad
nisunderstandings that remain. Please send comments, criticisa, and

errata to:

carl Hevitt

B. I. T. artificial Intelligeace Laboratory
545 Technolegy Square

Cambridge, B#ass.

U. S. A.

0. page 11

Note to the Reader

This paper is crganized in what purports to be a logical
systeaatic fasbion. The organization makes it difficult to get a
guick overview. The reader should not try to read the paper in a
linear fashion from cover to cover. If he gets stuck he should “pop

up" one level and continue.

*YOU HAVE BEEN WARNED™

There is an index of prmimitives at the end. There is an index to the
syntax after the function READ. The folloving guide is provided for
those readers who are not interested in reading the wvhole paper.
Chapter 1 is a "hack". Chapter 2 gives the epistexological
foundations for cur approach to problem solving. Chapter 3 is a
discursive overview of the rest of the thesis using exaaples of some
features of the problem solving lamguage PLANNER. HMany of the
important ideas in the thesis are touched on somewhere in the chapter.
In chapter 4 ve find a detailed explanation of the structural pattern
matching language NATCHLESS. Readers vho are only peripherally
interested in pattern matching need read only sections 8.1, 8.2, 4.3,
and 4.8. Chapter S begins the systesatic explanation of PLANNER., It
introduces tbe primitives, data structure, and control structure of

the language. In contrast to the gquantificational calculus, the

0. page 12

semantics of PLANNER are expressed in teras of the propeirties of the

procedures which define the forsalisz. In chapter 7 ve explain how
properties of ELANNER procedures can be expressed and proved in the
formalism itself. Also ve attack the problem of hov it is possible to
teach a problem solver nevw knowledge., We explain hov schemata give
the beginning of a theory on the comparative proble» solving power of

various computational models in chapter 8.

1. page 13

1. What Achillies Said To The Tortoise

Levis Carrcll

Achilles had overtaken the Tortoise, and had seated hismself
comiortably on its back.

®So you've gct to the end of our race-course?® said the
Tortoise. "Bven though it does consist of an infinite series of
distances? I thought some viseacre or other had proved that the
thing cozldn®*t be dcue?®

%It can be done,™ said Achilles. "It has leen dope! Solvitur
ambulando. You see the distances were coastantly dieinishing: and so-
—n

“But if they had been constantly increasing?" the 7Tortoise
interrupted. "“Hov then?*

"Then I shouldn't be here,™ Achilles modestly replied: ™and
you would have got several times round the vorld, by this time!"

"You flatter me-- flatten, I mean,®™ said the Tortoise; “Por
you are a deavy wveight, and no mistake! Well now, would you like to
hear of a race-course, that sost people fancy they can get to the end
of in tywo or three steps, vhile it really coasists of an infinite
nusber of distances, each upe longer than the previous one?*

“yery much indeedi® said the Grecian warrior, as he drewv froa
his helmet (fev Grecian warriors possessed pockets in those days) an

enoraous note-book and a pencil. ®Proceed! And speak slowly, please!

1. page 14

Short-hand isn't invented yet!"™

“"That heautiful First Froposition of Euclid!" the Tortoise
aurnvred dreamily. "Ycu adwire Euclid?”

"passicnately! So far, at least, as one can admire a treatise
that won't be published for some centuries tc come!"

"Yell, now, let's take a little bit of the argument in that
First Proposition--just tvwo steps, and the conclusion drawn from thea.
Kindly enter thkes in your note-book. And, in order to refer to thes

conveniently, let's call them A, B, and Z:

{(A) Things that are equal to the same are equal to each other.

{(B) The tvo sides of this Triangle are thirngs that are equal
to the sasme.

(Z) The tvo sides of this Triangle are equal to each other.

"Readers of Euclid will grant, I suppose, that Z fcllows
logically from A and B, so that any one who accepts A and B as true,
nust accept Z as true?"”

"Undouttedly! The ycungest child in a High School-- as soon as
High Schools are invented, which will nct be till scme ¢wo thousand
years later—--vwill grant that."

"And if some reader had not yet accepted A and B as true, he
aight still accept the Sequence as a valid one, I sufpose?"

"No doubt such a reader might exist. He might say 'I accept
as true the Hypothetical Proposition that, if A and B be true, Z must
be true; but I don't accept A and B as true.' Such a reader would do

visely in abandoning Buclid, and taking to football."

1. page 15

"And aight there not also be scame reader who would say °*I

accept A and B as true, but I don't accept the Hypothetical®?w

"Certainly there aight. He, also, had better take to
footlrall.”

"And neither of these readers,™ the Tortoise continued, "is as
yet under any logical necessity to accept Z as true?”

®Quite so," Achilles assented.

ngell, now, I vant you to consider me as a reader of the
second kind, and to force me, logically, to accept Z as true."

") tortoise playing football would be--" Achilles wvas
begipning.

®-—-an anomaly, of course,”™ the Tortoise hastily interrupted.
"don't vander froam the point. Let's bhave Z first, and football
aftervardsi®

“I'a to force you to accept Z, as I?" Achilles said musingly.
"And your present position is that you accept A and B, but you don't
accept the Hypothetical--*

"Let's call it C," said the Tortoise.

*--but you don®t accept:

(C) If A aad B are true, Z aust be true.®™

"That is ay present positoa,” said the Tortoise.

"Then I must ask you to accept C."

®1°11 do so,"™ sajid the Tortoise, "as soon as you've entered it

1. page 16

in that note-book of yours. §hat clse have you got in it2"®

"Only a few sexoranda," said Achilles, nervously flutteiing
the leaves: "a few seroranda of--of the battles in which I have
distinguished ayself!"

"Plenty of blank leaves, I seel"™ the Tortoise cheerily
remarked. nye shall need them all!"™ {(Achilles shuddered.) "Now write

as I dictate:

(A) Things that are equal to the same are equal each cother.

{B) The twou sides of this triangle are thirgs that are =2gqual
to tke same.

(C) If A and B are true, Z aust be true,

(2) The tvwo sides of this Triangle are egqual to each other."™

"You should call it D, not Z," said Achilles. "It comes next
to the other three. If you accept A and B and C, you must accept Z."

"ind wvhy must 1I2?"%

"Because it foilows logically from them, If A4 and B and C are
true, Z must be true. You don't dispute that, I imagine?"

"If A and B and C are true, Z must be true,® the Tortoise
thoughtfully repeated. ®"That's another Hypothetical ismn't it? And,
if I failed to see its truth, I might accept A and B and C, and still
not. accept Z, mightn't I?™

"You aight,™ the candid hero adaitted; *"though such cbtuseness
would certainly be phenosenal. Still, the event is possible. So I
aust ask you tou grant one more Hypothetical."”

"Very good. I'm quite willing to grant 2z, as scon as you've

1. page 17

vritten it down. We will call it

(D) I¥ A and B and C are true, Z must be true.

"Have you entered that in your note-book?*

"I have!® Achilles joyfully exclaimed, as he ran the pencil
into its sheath. "And at last we've got to the end of this ideal
race-course! Now tkat you accept A and B and C and D, cf course you
accept 2."

"Do I?” said the Tortoise 1nnocently., "Llet's make that quite
clear. I accept A and B and C and D. Suppose I still rzefuse to
accept 27"

"Then Logic would take you by the throat, and force you to do
itt"® Achilles triumphantly replied. ®Logic would tell you cac't help
yourself, Row that you've accepted A and B8 and C and D, you must
accept 2!' So you'’ve no choice, you see.™

"Wyhatever Logic is good encugh to tell me iz worth writiag
down,"™ said the Tortcise., "So enter it in your book, please. ¥We will

call it

(E) If 2 and B and C and D are tiue, Z must be true,

*"Cntil T've granted that, of course, I needn't grant 2, So

it's gquite a necessary step, you see?"

*] see,” said Achilles; and there vas a touch of sadness in

o AR, YO TRy Lm0 e e e

ey

%is tone.

T TS T g v e e e e e o

1.

pagje 18

2, page 19

2. The Structaral Poundations of Problea Solving

%#e would like to develop a fouvndatiocn for froblem solving
analogous in scme vays to the currently existing foundations for
mathemsatics. Thus ve need to aJsalyzZe the structure of foupndations
for machematics. A foundation for mathematics must provide »
definitionai formalisam in which mathesatical cbjects can be defined
and their existence proved. Por example set theory as a foundation
provides that clhjects sust be built out of sets. Then therse must be a
deductive forsalisms in which fundamental truths can be stated and the
peans provided to deduce additicnal truths from those already
established. Current mathematical foundations such as set theory
seem quite natural and adeguate for the vast body of classical
aathenmatics. 7he objects and reasoning of xost mathematical dosains
such 3s analysis and algebra can he easily founded on set theory. The
axistence of certain astroncmically large carginals poses sore
probiess for set theoretic foundations. Howvever, the prcobleas posed
seem to be of practical importance only to certain category theorists.
Poundations of sathesatics have devoted a great deal of attestioce to
the probleas of coasistepcy and cospleteness., The prchlem of
consistency is importan:t simce if the foandations are iucoasistent
then any foraula rhatsoever may be deduced, thus trivializiag tke

fovnéations, Semantics for foundations of snathematics are defined

model theoretically in terms of the nction of satisfiability. The

problem of corgleteness, is that for a foundation of mathematics to be
intuitively satisfactory all the true formulas should be proveable
since a foundation for mathematics aias to be a theory of mathematical
truth.

Similar fundamental questions must be faced by a foundation
for problem solving. However there are somse important differenmnces
since a foundaticn for problem solving aims more tc be a theory of
actions and purposes than a theory of smathematical truth. &
foundation for problem solving aust specify a goal-oriented formalisa
23 which probless can be stated. Purthermore there must be a
formalism for specifyiny the allovable rethods of solution. As part
of the definition of the formsalisas, the following elements must be
defined: the data structure, the contrzol structure, ard the
primitive procedures. Being a theory of actions, a foundation for
probler solving aust ccnfront the protlzs of change: Hov can account
be taken of the changing situation in the world? In order for there
to be pioblea solving, there must be an active agent called a prchlen
solver. A foundation for problea solving must consider howv much
knovledge and what kiud of knorledge problem solvers can have about
thamselves. Ir contrast to the foundation of mathematics, the
semantics for a fourndatiom for problem solving should be defined in
texns of properties c¢f procedures. #WHe would like to see mathematical
iavestigations on the adeguacy of the foundaticns for problem solving

provided by PLANMER. In chapter 8 ve have lLegun ope kind of such an

T TR, S~ wwtmeere— - e e o - e T
e — e

2. page 21

investigation.

To be more specific, a foundation for problem sclving sust

concern itself with the following complex of topics:

PROCEDURAL EFMBEDDING: How can "real world"™ knowledge be
effectively embedded in precedures. What are good ways to express
probles solution methods and how can plans for the sclution of
problems be formulated?

GENERALIZED COMPILATION: _¥hat are good methods for transforuing
high level goal-oriented language into efficient algorithes.

VERIFICATION: How can it be verified that a procedure does what
is intended.

PROCEDURAL ABSTRACIION: W®hat are good methods for abstracting
general procedures from special cases.

One formulation of a foundation for problerx solving requires

that there should be two distinct forzalisms:

1: A BETHCDS formalisam which specifies the allowable methods of
soluticn

2: A PROBLEM SPECIFICATICN formaliss in which to pose prcdleams.
The problem solver is expected to fignre out how to combine its
available methods in order to produce a sc ‘ution which satisfies the
problea specification. One of the aims of the above forsulation of
problea solving is to clearly separate the methcds of sclution froa
the problems pcsed so that it is impossible to "cheat® and give the
problea solver the methods for solving the problem along nith the
statement of the problea, #We propose to bridge the chasm betveen the
methods formalisam and the probles formalisa. <Consider more carefully

the two extremes in the specification ot processing:

-]

2. page 22

A: Bxplicit processing (e.g. methods) is the ability to specify
and control acticns down to the finest details.

B: Implicit grocessing {e.q. problems) is the ability to speci

€ec
the end result desired and not to say much about how 1t should
achieved.

£
PLANNER attempts to provide a formalis® in which a prchlems solver can
bridge the continuum ketveen explicit and implicit processing. We ain
for a maxirum of flexitility so that whatever knovledge is available
can be incorporated, even if it is fragmentary and bheuristic,

PLANNER is a aigh level, goal-oriented@ formalisa in which one
can specify to a large deg-ee what one wants done rather thaa how to
do it, Many oI the primitives in PLANNER are concerned with
sanipulating a data base in a pattern directed fashion. ¥ost of the
primitives have been develcred as extensions to the formalism when ve
have found problems that could not otherwise be solved in a natural
vay. Of course the tiick is tu incorporate the new primitive as a
genuine extensicn of wide applicability. Others have suggested
theaselves as adjuncts in crder to obhtain useful closure properties in
the formalism, We would be grateful to any reader wvho could suggest
probless that would seem to require firther extensions or
modific:tions to the formalisa.

There are many ways in which one can approach a description of
PLANMER, 1In this section ve will describe PLANNER from an Information
Processing Viewpoint, To do this we will describe the data structure

and the control structure of the formalisn.

5?/2(‘/" 22

GLOBAL DATA BASE

[ABOVE ABI is not in the global
data base

State 1
{ABOVE ABJ is in the data

base of statel

N stote 2
State 3 ate

PLANNER ALLOWS FOR THE SIMULTANEOUS
EXISTENCE OF INCOMPATIBLE LOCAL STATES
IN MODELS.

2, page 23

CATA STIBUCTURE:

GRAPH BEMORY fcrms the basis for PLANNER's data space wvhich
consistc of directed dgraphs with labeled arcs. The operation

of PUTTING and GETTING the components of data objects have
been generalized to apply to any data type whatscever. For
example to PUT the value CANORICAL on the expression <+ X Y <*
X 2>> under the indicator SINPLIFIED is one way to recerd tkat
<+ X Y <* X 2>> has been canonically sismplified. Then the
degree to which an expression is simplified can be determined
by GETTING the value under the indicator SINPLIFIED of the
expression. The operations of P2UT and GET can be implemented
efficiently using hash coding. Lists and vectors have been
introduced to gain more efficiency for conmaon special purpose
structures. The graph memory is useful to PLANNER in many
vays. Monitoring gives PLANNER the capability of trapping
all read, write, and execute references to a particular data
object. The' ponitor fwvhich is found under the indicator
MCNITOB) of the data object can then take any action that it
sees fit in order to handle the situation. The graph memory
can be used to retrieve the value of an identifier i of a
process p by GETTING the i component of p. Code can be
cqnzented by simply PUTITIRG the actual comament under the
indicator COMMENT. Also graph memory enables urnique copies of
structures to be efficiently and conveniently stored.

DATA BASE: What is most distinctive about the uag in whkich
PLANNER uses data is that it has a data base in vhich data can

be inserted and removed. For example inserting [AT BT P2]
into the data base ®ight signify that block B1 is at the place
P2. A coordinate of an expression is defined to be an atom in
some position. An expression is dete.mined by its
coordinates, Assertions are stored in buckets by their
coordinates using the graph memory in order to provide
efficient retrieval. In addition a total ordering is imposed
on the assertions so that the buckets can be scrted.
Imperatives as well as declaratives can be stored in the data
base. We aight assert that whenever an expression of the
form [AT object1 placel] is removed from the data base, then
any expression in the data base of the forz [CN object1l
object2) should also be removed from the data base. The data
base can be irze structured so that it is possible to
simultaneously have several local data bases which are
incoapatible. Purthermore assertions in the data base can
have varying scopes so that some will last the duration of a
process while cthers are temporary to a subroutine.

CONTEOL STRUCTURE: PLANNER uses a pattern directed muitiprocess
backtrack control structuire to tie the operation of its primitives

2. page 24

together.

BACKTRACKING: PLANKER processes have the capabilit{ of .
tacktracking tc previocus states., A process can bachtrack into

a procedure activation (i.e. a specific instance of an
invocation of a procedure) which has already returned with a
result. Using the theory of comparative schematology, we
have proved in chapter 8 that the use of backtrack control
enables us to achieve effects that a language (such as LISP)
vhich is limited to recursive control cannot achieve,
Backtracking greserves the nesting of the subroutine structure
of PLAKNER while allowing the cunsequences of elabcrate
tentative hypotheses to be explored without losing the
capability of rejecting the hypotheses and all of their
consegquences. A choice can be made on the basis of the
available knovledge and if it doesn't work, a better choice
can be made using the new information discovered while
investigating the first choice. Also backtrack control makes
PLANNER procedures easier to debug since they can be ruu
backwards as well as forwvards enabling a problea sclver to
*2ero i:¢ on bugs,

MULTIPROCESSING gives PLAENER the capability of having more
than one locus of control in problee solving. By using
sultiple processes, arbitrary patterns of investigation
through a conceptual problem space can be carried out.
Processes can have the power to create, read, vwrite,
interrupt, resume, single step, and fork other prucesses. The
ability to single-step or to interrupt processes allows che
definition of grocedures vhich are NCT monotore in the sencse
of lattice theory. Potentially the failure of monotoniciuy is
a serious flav in the lattice theoretic approach towards a
mathenatical foundation for effective procedures,

PATTIRN DIRECTION combines aspects of control and data structure.
The fundamental gprinciple of pattern directed coaputation is taat

a procedure should be a pattern of vhat the procedure is intended
to accoaplish. 1In other words a procedure should not oanly do the
right thing but it shculd appear to do the right thing as well!
PLANNER uses pattern direction for the following opexations:

CONSTRUCTION of structured data objects is accomplishad b{
teaplates. We can construct a list vhose first element 1s

the value of x and whose second element 3s the value of y by
the procedure (x y). If x has the value 3} and y has the value
(A B) then (x y) will evaluyate to (3 (A B)).

DECONPOSITION is accomplished b{ latching the data object
against a structured pattern. f the pattern (x1 x2) is

2. page 25

matched against the data object ((3 4) A) ther x1 will be
given the value (3 4) and x2 will be given the value A,

RETRIEVAL: An assertion is retrieved from the data base by
specifying a pattern which the assertion must match and

thereby bind the identifiers in the pattern. PFor example ve
can determine if there is anything in the data base of the
Sorm [CN x A). If [(OF B A] is the only item in the data base,
then x is bound to B. If there is more than one item in the
data base wvhich matches a retrieval pattern, them an arbitrary
choice is made. The fact that a choice wvas made is remembered
so that if a simple failnre backtracks to the decision,
another choice can be made.

INVOCATION: Procedures can_be invoked hy patterns of what
they are supposed to accomplish. Svrpose that we have a

stopped sink. One way ve could try to solve the problem would
be to knov the name of a plusber whom we cculd call. An
alternative which is mcre analogous to pattern directed
invocation is to advertise the fact tkat ve have a stopped
sink and the qualifications needed to fix it. In PLANNER this
is accomplished by making the advertisesent (i.e. a pattern
which represents what i: desired) into a goal. The procedure
invoked by the pattern might or might not succeed in achieving
the goal depending on the environmsent in which it was callead.
The procedure invoked can be required t~» undo all the actions
that it took tc try to achieve the goal. For example if ve
vere unhappy vith the way in which a plumber fixed cur sink,
we could require that he restore the situation to its previous
state. Since many theorems might match a goal, a
recoamendation is allowed as to which of the candidate
theorens might be useful. The recommendation is a pattern
wvhich a candidate theorea must match.

One basic idea behind PLANNER is to exploit the duality that
ve find between certain imperative and declarative sentences.
Consider the statement (iaplies A B}). The statement is a perfectly
good declarative. In addition, it can also have certain imperative
uses for PLANNER. It can say that ve might set up a procedure shich
vill note vhether A is ever asserted and if so to consider the wisdonm
of asserting B in tuxrn. [Note: it is not alvays wise! Suppose we

assert <integer 0> and {iaplies <integer n> <integer (¢+ n 1)>}].

——— ey e e e g —
~, e] T R Y R IO

2. page 26

Purtheraore it permits us to set up a procedure that will watch to see

if it is ever our goal to try to deduce B and if so whether A sidould
be made a subgoal., PExactly the same observations can be made about
the contraepositive of the statement {implies A B} which is {implies
{fnot B} {(not A)}}. Statements vith universal guantifiers,
conjunctions, disjunctions, etc. can also have both declarative and
imperative uses. PLANNER theorems are used as imperatives when
executed and as declaratives vhen used as data. The iaperative
analogues have the advantage that they can more easily express any
procedural knowledge that we aight have such as "Don't use this
theorea twice®.

Our work on PLANNER has been an investigation in PBOCEDUBAL
-z;fstzuoLOG!, the study of hov knovledge can be emsbedded in
procedures. The THESIS OF PROCEDURAL BNBEDDING is that intellectual
structures should be analyzed through their PROCEDUBAL ANALOGUBES. ¥WNe

will try to show what we nean through exaaples:

DESCRIPTIORS are procedures shich recognize how well some
candidate fits the descriptioa.

PATTBRES are d¢scriptions which satch configurations of gata.
Por example <either & <atomicd>> is a procedure which wil

recognize something which is either & or is atomic.

DATA TYIPES are patterns used is deciatatigns of the allowable
raage and domain of procedures ard ideatifiers. Hore

generally, data types have analogwes in the foras of procedures
vhich create, destroy, recognize, and traasfora data.

GRAREARS: The PROGRANEBAR language of Terry ¥inograd angther
step towards oae kind of procedural analogue for natura

language graasar.

2. page 27

SCHEMATIC DBRANINGS have as their procedural analogue methods
for recognizing when particular figures fit within the
schenata.

PRGJFS correspond to plans for recognizing and expanding valid
chains of deductions. 1Indeed many proofs can fruitfully be

considered to defipe procedures which are proved to have
certain properties. FPor example a proof by mathematical
induction of a effective foramula p[n] can Le considered to be
a proof that the following function always returns “TRUE":

p[n] 2= if p[0] then “TIRUE" else p[n-1]

Conversely, prsofs by execution induction cf E;operties of
procedures can be used to demonstrate mathematical facts. For

example proofs by execution induction can imitate proofs by
mathematical induction:

<f n> := <1 i
epeat 2iritiadifdd i o oo
Intent: p[i]
<cond
[<is? .i .nm>
;"if .1 is equal to .n then
st exit with the value
.a"
<.out .n>]>
<_ i <+ o1 1D
;:"else increment i ard repeat™>

Proving the intentiocn (i) bg execution induction will
establish that for all n ve have p[a]. Proofs by execation

induction enable global properties (such as convergeace ard
eguivalence) to be proved by purely local analrsis.

NODELS are collections of procedures for sinulating the
behavior of the system being modeled. MNODELS of PROGRANS are

procedures for defining propertie= of procedures and
attesppting to verify the properties so defined. Bodels of
prograss can be defined by procedures which state the
relaticns that must hold as control passes through the
prograa.

PLANS are general, goal oriented procedures for atteapting to
carry out sose task.

THEOREAS of the QUANTIPICATIONAL CALCULUS have as their
analogues procedures for carrying out the deduactions which are

justified by the theorems. Por exaaple, consider a thevres of

et e e —————— e O e A T A

2. page 28

the form (IMPLIES x y}. One procedural analogue of the
theorea is to consider whether x should be made a subjoal in
order to try to prove something of the fors Y.

CRAWINGS: The gtocgdnral apnalogue of a_draving,is a precedure
for making the draving. Rather sophisticated display

processors have been constructed for making drawings on
cathode ray tutes.

RECOMMENDATICNS: PLANKER has primitives which alloy
reconmendations as to how disparate secticns of goal oriented

language should be linked together in order to accomplish soze
particular task.

GCAL TREES are represented by a snapshot of the instantaneous
configuration of problem solving processes.

One corollary of the thesis of procedural embedding is that
learning entails the learning of the procedures in which the kaowledge
to be learned is embedded. Another aspect of the thesis of procedural
embedding is that the frocess of going from general gcal oriented
language which is capabtle of accomplishing scme task to a special
purpose, efficient, algorithas especially designed for the task should
itself be mechanized. By expressing the properties of the speclial
purpose algorithm in teras of their procedural amalogues, we cam use
the analogues to establish that the special purpose routine does in
fact do what it is intended.

From the above observations, we have constructed a forsalisa
that peramits both tbhe imperative and declarative aspects of statements
to be easily manipulated. PLANRER uses a pattern-directed information
retrieval systea. The data base is interrogated by specifyiag a
pattern of what is to be retrieved. Instead cf having to explicitly

nase procedures vhich are to be called, they can be invoked implicitly

2. page 29

by a pattern (this important concept is called PATTERH-DIRECTED

INVOCATICN). When a statement is asserted, recomamzndations determine
vhat conclusions will! te drawn from the assertion., Procedures can
make reccomsendations as to which theoreams should be used in trying to
dray conclusions from an assertion, and they can recoamend the order
in vhich the theoreamas should be applied. Goals can pe created and
automatically disamissed vhen they are satisfied. Objects can be found
fror schematic or partial descriptions. Provisioa is made for the
fact that statesents that were once true in a model may no longer be
true at some later time and that consequences must be drawn from the
fact that the state of the model has changed. Assertions and goals
created vithin a procedure can be dynamically protected againmst
liaterfeterce from other procedures. " Unlike some other "ftormalisms such
as GPS, PLANMNEE has no explicit goal tiee, Instead the coaputation
itself can be thought to be investigating some conceptual problea
space, Primitives for a sultiprocess backtrack coatrol structure
give flexibility to the vays in which the conceptual problem space can
be investigated. Procedures uritten in the formaliss are extendable
in that they can make use of new knowledge vhether it be primarily
declarative or isperative in nature, Hypotheses can be established and
latexr discharged. PLANNER has been used to write a blcck coatrol
language in which wve specify how blocks can be moved around by a
robot. ¥e would like to write a structure building forsalisa in

uhich ¥e could provide descriptions of structures (such as houses and

bridges) and let PLANRER figure out how to build then. The logical

2. page 30

deductive system used bty PLANNER is subordinate to the hierarchical

control structure of the language. PLANKER theoreams operate within a
context consisting of return addresses, goals, assertions, bindings,
and local changes of state that have Leen made to the global data
base. Through the use of this context wve can guide the computation
and avoid doing basically the same vork cover and over again. Por
exaaple, once vwe determine that ve are working within a group (in the
mathematical sense) ve can restrict our attention to theoreas for
vorking or groups since ve have direct control over what theoreas vill
be used. PLANNER has a sophisticated deductive system in order to
give us greater power over the direction of the cosputatioz. Of

course procedures written in PLANEER are not intrinsically efficient.

A great deal of thought-and 2ffort must be put-into writing efficient

procedures. ELANNEE does provide some basic mechanisss and
primitives in which to express problea solving procedures. The
control structure canm still be used when we limit ourselves to using
resolution as the sole rule of inferemce. A unifora proof procedure
gives very little control over how or vhen a theorea is used. The
problem is one of the level of the interpreter that is used. 1
digital cosputer by itself will only interpret the hardware
iastructions of the machine. A higher level interpeter such as LISP
will interpret assigusents and recursive functioa calls. At a still
higher level an ipterpreter such as BATCHLESS will interpret patteras
for constructing and decomposing structured data. PLANEER cana

interpret assertions, find statesents, and goals. It goes without

- ® e.

2. page 31

saying that code can be compiled for any of the higher level

interpeters so that it actuvally runs under a lover level interpreter.
In gsneral higher level interpreters have greater choice in the
actions that tkey can take since instructions are phrased more in
terms of goals to be achieved rather than in terms of explicit
eleaentary actions. The problem that we face is to raise the level of
the interpreter while at the same time keeping the actions taken by it
under control. Due to its extreme hierarchical control and its
ability to make use cf nev imperative as well as declarative
knowledge, it is feasible to carry out very long chains of inference
in PLANNER without extreme inefficiency.

We are concerned as to how a theorem prover can unify
struciural problem solving methods with domain dependent algorithas
and data into a coherent prc¢blem solving process. By structural
methods we mean those that are concerned with the formal structure of
the argument rather than with the semantics of its domain dependent
content.

An example of a structural method is the "consequences of the
consequent®™ heuristic. By the CONSECUENCES CF THE CCRSECUENT
heuristic, ve mean that a problem solver should lock at the
consequences of the goal that is being attempted in order to get an
idea of sowe of the statements that could be useful in establishing or
rejecting the goal.

We need to discover more powerful structural methods. PLANNER

is inteaded to provide a computational basis for expressing structural

2. page 32

sethods. One of the mcst important ideas in PLANNER is that it brings

some of the structural sethods of frotlem solving out into the open
vhere they can be analyzed and gereralized. There are a fev basic
patt<rns of looping and recursion that are in constant use among
prograssers. Exaaples are recursion cn binary trees as in LISP and
the FIND statesent of PLANNER. The priaitive PIND will construct a
list of the objects with certain properties. Por example ve can find

five things vhich are on something which is green ty evaluating

<FIND S5 x
<GOAL [OX x Y]>
<GOAL [GREEE y]>>

vhich reads "find 5 x's such tkat x is ON y and y is GREEN.

The patterns cf locoging and recursiop-tgptgseqt_qo!!pn
structural sethods used in prograss. They specify hcv ccepmands can be
repeated iteratively and recursively. Cne 2f the main problems in
getting coaputers to write programs is hov to use these structural
patterns sith the particular dcmain dependent coamands that are
available. It is difficult tc decide which if any of the basic
patterns is appropriate inm any given problem. The problea of
synthesizing programs out of canned loops is formally identical to the
probles of finding proofs using mathematical induction. We have
approached tbhe froblem of constructing procedures ocut of goal oriented
language from tvwo directions. The first is to use canned loops (such
as tle FIND statement) vhere ve assume a-priori the kind of cont;ol
structure that is needed. The second approach ;s to try to abstract

the procedure fros protocols of its action in particular cases.

o ANTECEDENTS (WHAT
IS ALREADY KNOWN)

O o)
o)

CONSEQUENCES OF
ANTECEDENTS

CONSEQUENT (OUR ULTIMATE GOAL)

CONSEQUENCES OF

CONSEQUENT

2. page 33

Another structural method is EBOGBESSIVE REFIKEMENT. The way

problems are solved by progressive refinement is by repeated
evaluation. Instead of trying to do a complete investigation of the
problem space all at once, repeated refineaents are made. For example
in a game like chess the same part of the game tree might be looked at
several times. Each time certain path.. are more deeply explured in
the light of what other investigations have revealed tc be the hey
features of the positicn. Problems in design seem to be particularly
suitable for the use of progressive refinemeat sirce fprorosed des.gns
are often amenable tc successive refinement. The way in vhich
progressive refinement typically is dome in ELANNEF is by repecated
evaluation. Thus the expression which is evaluated to solve the
problem will jitself produce as its value an expression_to bdbe .
evaluated.

The task of artificial intelligence is to progras inazimate
machines to perfora tasks that require intelligence. Over the past
decade several different approaches tovard A. I. have developed.
Although very pure forss of these approaches will seldoa be met in
practice, we find that it is useful for purposes of discussicn to
consider these conceptual extremes. One approach (called results mode
by S. Papert) has been to choose some specific intellectual task that
humans can perform with facility and vrite a program to perfors it.
Several very fine programs have been written following this approach.
One of the first was the Logic Theorist which attespted to prove

theorems in the propositional calculus using the deductive systes

PROGRESSIVE REFINEMENT

SOLUTION
STATE
ATTAINED

ASHED?

NO

X +— <EVAL X >

2. page 34

developed in Principia Matheratica. The importance of the logic

Theorist is that it developed A body of techniques which when cleaned
up and generalized have proved to be fundamental tc furthering oar
understanding of A, I. The results mode approach offers the
potentiality of maximum efficiency in solving particular classes of
problens, On the other hand, there have been a nuaber of prograss
written from the results mode approach which have not advanced our
understanding although the programs achieved slightly better results
than had been achieved before, These rrograms have been large,
clumsy, brute force pieces of machinery. There is a clear danger that
the results mode approach can degenerate into trying to achieve A, I.
Jia the "hairy kludge a month plan". The probleas with “hairy
kludges™ are well kncwn, It is iapossible to get such programs to
comaunicate with each other in a natural amd intizate way. They are
difficult to understand, extend, and modify because of the ad hoc way
in vaich they are constructed,

Another zpproach to A. I. that has been prcamineant in the last
decade is that of the unifors proof procedure. Proponents of the
approach rrite programs which accept declarative descriptions of
combinatoxrial problems and thenm attempt to solve thea. 1In its most
pure form the approach does not permit the machine to be given any
information as to hov it might solve its prcobless. The character
table approach to A. I, is a modification of the unifora procedure
approach in which the frograa is also given a finite state table of

cuonnections betveen goals and methods. The unifora procedure approach

Mcaas o L T ad oy £ oI X iniihaiiandchand

2. page 35

offers a gyreat deal of elegance and a raximum of a certain kind of

generality. Current prograss that implement the uniform procedure
approach suffer from extrese inefficiency. We believe that the
inefficiency is intrinsic in the approach.

ELANNEE is not neccessarily general in the same sense that a
unifors proof procedure is gepneral. PLANNER is intended to be a
natural computational basis for methods of sclving problems in a
dosain. A coaplete proof procedure for a quantificational calculus
is general in the sense that if one can force the probler into the
form of the input larguage and is prepared to wait eons if necessary,
then the coaputer is gnaranteed to find a solution if there is onme.
The 2pproach takes in PLANNER is to subordinate the deductive systena
to an elaborate hierarchical control structure. Although PLANNER
itself is domain independent, procedures written in it have differing
overlapping degrees of domain independence. Proponents of the unifora
procedure approach are apt to say that PLANNER ®"cheats" because
through the use of its hierarchical control structure, it is possible
to tell the program ho¥ to try ta solve its probleas. 1In order to
prevent th}s %ind gf "ckgating“, they would restrict the input to
consist entirely of declaratives. But surely, it is to the credit of
a program that it is able to accept new isperative inrormatiom and
make use of it. A probles solver needs a high level language for
expressing problea solving methods even if the language is only used
by the problem soiver to express its problem solving methelds to

itself. PLAERNER serves both as the lanqguage in -which probleas are

2. page 36

posed to the problea sclver and the language in which methods of

solution are formulated. PLANNER is not intended to be a solution to
the problem of finding general methods for reducing the cosmbinatorial
search involved to test whether a given propositiocn is valid or not.
It is intended to be a general formalism in which knovledge cf a
domain can be combined and integrated. Realistic probles solving
prograns will need vast amounts of knowladge. ¥e consider all methods
of solving prchblems to be legitimate, If a program should happen to
already knovw the ansver to the problem that it is asked to solve, then
it is perfectly reascnable for the prcblem to be solved by table look-
up. We should use the criterion that the jroblem solving powver of a
program should increase much faster than in direct proportion to the
number of things that it is told. The important factors in judging a

program are its power, elegance, generality, and efficiency,

3. page 137

J. Discursive Overview

This chapter contains an explanation of scme of the ideas in
PLANNER in essay form. It is partially based on a draft written by T.
Winograd for the course 6.545. If the reader would like to see a gore
systematic presentation, he can consult the subsequent chaftecs.

The easiest way to understand PLANKER is to wvatch hov it
vorks, so in this section we vill preseat a few simple examples and
explain the use of somse of its most elesmentary features. These
examples are not intended to represent T0Y PEOBLENS to serve a&s test
cases for "general proklem solvers*. The toy problem paradiga is
misleading because tcy probleas can be solved witihoux any real
knovwledge of the domain in which the toy problea is posed. Indeed, it
seens gauche to use ary thing as powerful as real knowledge ol such
sisple probleas. 1In ccntrast we believe that real vorld probless
require vast amounts of procedural knowledge for their sclution. #e
see it as part of our task to provide the intellectual capabilities
needed for effective problem solving. We would like to sée'the.to}
problem paradigs replaced with an INTELLECTUAL CAPABILITY paradigm
vhere the object is to illustrate the intellectual capabilities necded
so that knowledge can be effectively embedded in procedures.

Pirst we will take the sost venerable of traditiosmal

dedactions:

3. page 38

Turing is a human
All humans are fallible
SO

Turing is fallible.

It is easy enough to see how this could be expressed in the

usual logical notaticn and handled by a uniform proof fprocecure.

Instead, let us express it in one possible way to PLANNER by saying:s

<ASSERT [HUMAN TURING]>

CASSERT <DEFINE THEOREM1
CCONSECUENT {Y] [FALLIBLE 2Y]

<GCAL [HUMAN 2Y]>>>>

Function calls are enclosed betueen "<"™ and "*>", The proof

would be generated by asking PLANNER to evaluate the expression:

<GCAL [FAILIBLE TURING]>

The exasple illustrates several points about PLANNER. Pirst,
there are at least two differept kinds of information stored in the
data base: declaratives and imperatives. ©Notice that for comsplex
sentences containing quantifiexrs or logical connectives ve have a
choice wiether to express the sentence by declaratives or by
imperatives.

Second, one of the mcst isportant points about ELANNER is that
it is ar evaluator for statements. It accepts input in the form of
expressions written in the PLANNER language and evaluates thenm,
producing a value and side effects. ASSERT is a function which, when

evaloated, stores its argument in the data dase of assertions. 1In

3. page 39

this exanple we have defined a theorem of the CONSEQUENT type [we will

see other types later]. This states that if we ever want to establish
a goal of the form [FALLIBLE ?Y], we can do this by accomplishing tha
goal [HUBAN ?Y], wvhere Y is an identifier. The strange prefix
character “?% is part of PLANNER's pattern matching capabilities
[vhich are extensive and make use of the pattern-matching language
MATCHLESS vhich is explained in-zhapter 4 of the dissertation]. If we
ask PLANNER to prove a goal of the form [A Y], there is no obvious wvay
of knoving wvhether A and Y are constants {like TURING and HUNAN in the
exangle] or identifiers. LISP solves this problea by using the
function QUOTE to indicate constants. 1In pattern matching this is
inconvenient and makes m=ost patterns much bulkier and more difficult
to read. Instead, PLANNER uses the opposite convention -- a conmstant
is represented by the atom itself, while an identifier must be
indicated by adding an appropriate prefix. This prefix differs
according to the exact use of the identifier in the pattern, but for
the time being let us just accept "?% as a prefix indicating an
identifier. the definition of the theorem indicates that it has one
identifier, Y by the {Y] following CONSEQUENT.

"+ - e o Phe third-statement illustrates the function GC2L, wvhich
tries to prove an assertion. This can function in several ways. 1If
we had asked PLANNER tc evaluate <GOAL [HUMAN TURING }> it would have
found the requested assertion iamediately in the Jata base and
succeeded [returning as its value some indicator that it had

succeeded]. Hovever, [PALLIBLE TURING] has not been asserted, 8o ve

3. page 40

must resort to theorems to prove it. Later we vill see that a GUAL

statement can give PLANNER various kinds of advice on which theoreas
are applicable to the goal and should ke tried. Por the moment, take
the default case, in which the evaluator tries all theorems whose
consequent is of a form which aatches the goal [i.e. a theorea with a
consequent [2Z TURING] would be tried, but one of the form [HAPPY 2Z)
or [FALLIBLE ?Y 22] would not)]. Assertions can have apn arbitrary list
structure for their format -- they are not limited to tvo-meaber lists
or three-meaber lists as in these exasples. The theorea we have just
defined would be found, and in trying it, the match of the comsequence
to the goal vould cause the identifier Y to be bound to the conmstant
TURLEG. Therefnre, the theorems sets up a new goal [HUNAN TOUORING] and
this succeeds immediately since it is in the data buse. In general,
the success of a thecrem will depend on evaluating a PLANNEE progranm
of arbitrary ccaplexity. In this case it contains only a single GOAL
statement, so its success causes the entire theorea to succeed, and
the goal [FALLIBLE TURING] is proved. The following is the protocol

of the evaluation:

<GOAL [PALLIBLE TUBING }> [FALLIBLE TURING)] is not in the data base
so attempt to inyoke a theoream to esablish the goal .
enter THEOREN1
Y becomes TURING
<GOAL [HUBAN TURING]> is satisfied since thke goal is in the
data base
return [PALLIBLE TURING]

The vay in vhich identifiers are bound by matching is of key
importance to ELANNEBR., Consider the guestion "Is anything falliblez*,

cr in logic [BXISTS X [PALLIBLE X])]. This —ould be expressed in

3. page 41

PLANKER as:

<PROG [X] <GOAL [FALLIBLE 2X}>>

Notice that PRCG [PLANNER's equivalent of a LISF PROG] in this
case acts as an existential guantifier. It provides a binding-fglace
for the identifier X, ftut dces not initialize it -- it leaves it in a
state particularly marked as unassigned. To ansvwer the questicn, wve
ask PLANNER to evaluate the entire PRCG expression above. To do this
it starts by evaluating the GOAL expression. This searcher the data
base for an assertion of the form [FALLIBLE ?X] and fails. It then
looks for a theorem with a ccnsequent of that form, and finds the
theoren we defined abcve. Ncw when the theorem is called, the
identifier Y in the theorem is linked to the identifier X im the goal,
but since X has nc value yet, Y does nct receive a value. The theoren
then sets up the goal [HUMAN 2?Y] with Y as an identifier. The PLANNER
primitive GOAL uses the data-base retrieval mechaniss t 1lcok for any
assertion which matches that pattern [i.e. an instantiation], and
finds the assertion [HUMAN TURING]). This causes Y [and therefore X]
to be bound to the constant TURING, and the theorer succeeds,
completing the proof apd returning the value [FALLIBLE TUEING].

There seens to. be-something missing.° So far, the data tase
has contained only the relevant objects, and therefore PLANNER has
found the right assertions ismediately., Consider the problem ve would
get if we added nev information by evaluating the statesments:

<ASSERT [HOMAN SOCBATES >
<ASSEET | GREEK SOCBATES >

3. page 42

Our data tase ncw contains the assertions:

HUMAN SOCBAT
{ GREEK SOCRATES]

{HUBAN IURINGgs]

and theorenl:

<CONSEQUENT [Y] [FALLIBLE 21]
<GOAL [HUEAN 2Y]>>

What if we ncw ask, "Is there a fallible Greek?" In PLANNER vwe

vould do this by evaluating the expression:

<PROG [X]
<GOAL [PALLIBLE 2X]>
<GOAL [GREEK ?2X]>>

If PLANNER runs into a failure trying to evaluate an expression, then
it Lacktracks to the last decision that sas made and dumps the
responsibility of hcw to proceed on the procedure which made the
decision. Notice what might happen. The first GOAL may be satisfied
by exactly the same deducticn as before, since we have not removed
information. If the data-base retriever happens to rum into TURING
before it finds SOCRATES, the goal [HUMAN 2?Y] will succeed, binding Y
and thus X to TURING. After [FALLIBLE 2X] succeeds, the PROG will
then establish the nev goal [GRREK TURING], which is doomed to fail
since it has not been asserted, and there are no agplicable theoreas.
If ve thipk in LISP terms, this is a serious problem, since the
evaluation of the first GOAL has been coampleted before the second one
is called, and the "stack® nov contains only the return aldress for
PBROG and the identifier X. If we try to go back to the beginning and

start over, it will again find TGRING and so on, ad infinitusm,

.....

3. page 43

One of the mcst important features of the PLANNER language is

that backtracking in case of failure is always possible, and moreover
this backtracking can go to the last place vbere a decision of any
sort vas made. Here, the decision was to pick a particular assertion
froa the data base to match a goal. Another kind of decision is the
choice of a theorem to try to achieve a goal. PLANNER keeps enough
information to change any decision and send evaluation back down a n¢
path.

In our example the decision was made inside the theores for
PALLIBLRE, wvhen the goal [HUMAN 2Y] vas matched co the assertion [HUNAN
TURING]. PLANNER will retrace its steps, try to find a differemt
assertion which matches the goal, find [HUNAN SOCRATES], and continue
with the proof. The theorem will succeed with the value [FALLIBLE
SOCRATES], and the PROG will proceed to the next expression, <GOAL
[GREEK 2X]>. Since X has been bound to SOCRATES, this will sa2t up the
goal [GREBK SOCRATES] which uwill succeed immediately by finding the
corresponding asserticn in the data base. Since there are no mora
expressions in the PROG, it will succeed, returning as its value the
value of the last expression, [GREEK SOCRATBES]. The whole course of
tye deduct}gy process depends on the failure mechanisa for
backtracking and trying things over [this is actually the procesas of
tryiang different branches down the comceptual goal tree.] Thix then is
the PLANNERR execuiive which establishes and manipulates subgoals in
looking for a proof.

e vould nov like to give a somevhat amore formal description

3. page 44

of the behavior of PLAKNER og the above problea. If ve intoduce

suitable notation our fproblem solving protoccls can be made much more
succinct and their structure made visible. Also by forsaliziag che
notions, vwe can make PLARNER construct and analyze protocols. This
provides one kind of tool by which PLANMER can understand its own
bebavior arnd make generalizations on hov to proceed.

In this case the protocol is:

1: enter PROG
2: X is rebound but not initialized
3: <GOAL [FALLIBLE 2X)]> will attempt a pattern directed

invocation since nothing in the data base matches [FALLIBLE 2X].
L: enter THEOREN1

5: @=atch [FALLIBLE ?Y] with [FALLIBLE ?X] thus linkin-
the situation is shown in snapshot number *?

6: <GOAL [HUNMAN ?Y]}> £finds [BUMAN TURING] in the da’
base

7: Y gets the value TURING thus giving X the va.
TUBRIXG
8: return [HUMAN TURING]
9: THECREM! returns [PALLIBLE TURING]

10: <GOAL [GRELK TURING]> fails since it is not iam the data base
and there are 20 matching <onsequents

Thus PLANRER must backtrack to step 7 and try again. The situation is
shovn ip snapshot number 2. Por the convenience uf the reader, we

will repeat the first six steps from above and then continue the
protocol.

P

1: enter PRIOG
2: X is reboovad but not initialized
3: <GOAL [PALLIBLE 2X]>
4: enter THROREN1
S: match [PALLIBLE 2?Y] with [PALLIBLE ?X) thus linking Y to X

6': <GOAL [HUZAY ?2Y]> finds [HUMAN SOCRATES] im the data
base

112 Y gets the value SCCRATES this giviag X the value
SOCRATES

12: geturn [PALLIBLE SOCRAIERS)

e e TN T LSRG Y T PR

r FORMAT OF FUNCTION ACTIVATIONS
IN SNAPSHOTS

IDENTIF!ER‘- BINDINGS

RETURN-CONTROL

EXPRESSION
BEING EVALUATED

VALUE OF BACK
EXPRESSION T N
| NEW |
| IDENTIFIER ,
| . BINDINGS |
b e e e e e e e - — A

NOTE : THE |IDENTIFIER -BINDINGS AND
RETURN - CONTROL POINTERS OF AN
ACTIVATION ARE USUALLY THE SAME
AND THUS ARE COMBINED INTO A
DOUBLE POINTER LIKE THIS ==

SNAPSHOT OF EVALUATION OF
<+\ <%(— 3 4> 5>
i \
7
/
12 5
\
3 4 R
THUS <+ <% 3 4> 5> EVALUATES TO I7.

a7,

3. 44 ¢

<IAENYWNHI V09 > =4
[Ad 37181MV4d]
[A] LN3NO3ISNOD> ==
[S3LVHO0S %3349]
[S31vH00S NVWNH]
[ONINNL NVINNH]

3svg vivd

K[X d ¥3349] V09>

<[Xd 3181MV4 1 Iv0O>

[X] 904d>

L

‘'ON LOHSdVNS

:)".'/—)4/‘:1 ‘/‘/(/f

<IAdNYWAHIIVOO > <«

[A¢ 31817V]

[AJLIN3NDISNOD > %

[SIALVHINS M3349]

[S31vH800S NVYWNH]

[ONIYNL NVWWNH]
e c———————

e ——— - - — —— . —— —— —

jsve vivda

K[X ¢ N23IH9T VOO > g

<[Xd 3191MIv4] Iv0o9>

[X] 904d > -

¢ ON LOHSJVNS

Q.P.&ff {4 e

KIAINVYWNH]1V09 > =

LA 318IMVS]

[A]LN3ND3ISNOD> ~m—

[S31VHO0S %3349] =

[S31VHO0S NVWNH]

/’A\L

[ONIYNL NVWNH]

3sv8 viva

K [X d M¥IFY9] V09 > ~—

<[X d 38ITV4] V09 >

[X] 904d> e

¢ ON LOHSJVNS

3. page 45

13: THEOREM! returns [PALLIBLE SOCRATES]
14: <GOAL [GREEK SOCRATES]>
15: return [GREEK SCCRATES] as the top level value

The situation is shown in snagshot nuaber 3,

So far we have seen that although PLANMER is wvwritten as an
evaluator, it differs in several critical vays from anything which is
normally considered a programering langua re. FPirst, it is goal-
directed. Theorems can be thought of as subroutines, but they can be
called by specitying the goal which is to be satisfied. This is like
having the abilitiy to say "Call a subroutine which will achieve the
desired result at this point." Second, the evaluator has the
mechanism of success and failure to handie the exploration of the
conceptual goal tree. In PLAKKRER there 1is no explicit goal tree. The
conceptual goal tree iz rerresented by a SNAPSHOT of a CONPIGURATION
of PROCESSES. Thus PLANNER has pouwerful control structure primitives
to allow the conceptional goal structure to be easily and natnrally
reflected in the execution of PLANNER rrocesses. Cther evaluators,
such as LISP, with a basic recursive evaluatcr have no wvay to do this.
One of our current areas of research is to increase the richness of
the machinery provided by PLANNER to guide the mcvement to the grai.
Third, PLANNER coatains a large set of prinitive comsands for maiching
patterns and manipulating a data base, and for baadliig that data base
efficiently.

On the other side, we can ask how it differs from other
theoren provers. What is gained by writing theoregs in the fors of

programss, and giving them pover to call other prograss wnich

3. page u4é

manipulate data? The key is in the form of the data the theoren-

prover can accept. Most systeas take declarative inforsation, as in
predicate calculus., This is in the fora of expressions vhich
represent “facis" about the morld. These are manipulated by the
theorem-prover according to some fixed uniform process set by the
systeam. PLANNER can make use of imperative inforsation, telling it
hov to go about proving a subgoal, or to make use of an assertion.
This produces what is called HIERARCHICAL control structure. That is,
any theorem czn indicate vhat the theores prover is suppcsed to do as
it continues tle procf. It has the full power to evaluate expressions
vhich can depend on both the data base and the subgoal tree, amd to
use its results to control the further proof by making assertioss,
decidiag wvhat theorems are to be used, and specifying a sequence of
steps to be folloved. What does this m»ean in practical teras? 1In
vhat way does it zake a "better" theorem prover? We ¥ill give several
exariles of areas wvhere the approach is important.

Pirst, consider the basic probles of deciding what subgoals to
try in atteapting to satisfy a goal. Very often, krovledge of the
subject matter will teili us that certain methods are very likely to
succeed, others may be useful if certaia other conditions are presont,
vhile others may be possibiy valuable, but not likely. #We would like
to have the ability to use heuristic programs to determine these facts
and direct the theoream prover accordingliy. It should be able to
direct the search for goals &ad solutions in the best way possible,

and be able to bring as much intelligence as possible to bear on the

3. page 47

decision. In FLANNER this is done by adding to our GOAL statesent a

recoamendation list vhich can specify that ONLY certain theoress are
to be tried, or that certain ones are to be tried FIRST in a specified
order. Since theoreams are programs, subroutines of any type can be
called to help make this decision before establishing a new GOAL.
Each theorex has a name {in our defirition on pagé 1, the theorea was
given the name THEOREN1], to facilitate referring to them explicitly.
Another important problem is that of maintaining a data base with
a reasonadble aacunt of material. Consider the first example above.
The stateaent that all humans are fallible, while unambiguous in a
declarative sense is actually ambiguous im its imperative sense {i.e.
the way it is to be used by the theores prover]. The first way is to
sinpiy use it whenever ve are faced with the need to prove [PALLIBLE
X]. Another w~y might be to watch for a statesent of the form
[RUBAM 22X) tc be asserted, and to immediately assert [PALLIBLE ?X] as
well, There is no abstrast logical difference, but the impact on the
data base is tremendous., The more conclusions we draw when
inforsation is asserted, the easier proofs vill be, since they will
not have to make tke additional steps to deduce trzese consequences
over aund over agaim. BRowvever since ve don't have infinite speed and
size, it is clearly folly to think of deducing and asserting
everything pussible [or even everything interesting] adbcut the data
vhen it is entered. If we were woiking with totally abstract
meaningless theoreas and axjoss [an assumption vhich vould not be

incompatible wita mary theorem-proving schemes], this would be an

3. page U8

insoluble dilemma. But PLAMNER is designed to work in the real world,

where our kaowledge is much more structured than a set of axioms and
rules of inference. We may very well, when ve assert [LIKES 2X
POETRY] want to deduce and assert [HUMAN 2X), since in deducing things
about an object, it vill very cften be relevant vhether that object is
humar, and we shouldn't need to deduce it each time. On the other
hand, it would be silly to assert [HAS-AS-PART 2?X SPLEEN], since there
is a horde of facts equally important and equally limited in use.

Part of the knowledge which PLANNER should have of a subject, then, is
vhat facts are important, and shen to draw consequences of an

assertion. This is dcne by having theoreas of an antecedent type:

CASSERT <DEFINE THEOREN2
CANTECEDENT [X Y] [LIKES 2X 2Y)
<ASSERT [HUNAN 2X]>>>>

This says that when we assert that X likes something, ve
should also assert [HUBAN ?X]. Of course, such theoress Go not have to
be so simple. 1A fully general PLANNER program can be activated by an
ANTECEDENT theoresm, doing ap arbitrary [that is, the programmer
vhether he be man or machine has free choice] amount of deduction,
assertion, etc. Knowledge of what we are doing in a particular
problea mzy indicate that it is sometimes a good idea to do this kind
of dedvction, and other times not. As with the CONSEQUENT theoreas,
PLANNER has the full capacity vhen sosething is asserted, to evaluate
the current state cf the data and proof, and specifically decide which
ANTECEDENT theorear skculd he called.

PLABNEL therefore allows deductions to use all sorts of

3. page 49

knowledge about the sukject matter which go far beyond the set of

axioms and basic deductive rules., PLANNER itself is subject-
independent, but its power is such that the deduction process never
needs to operate on such a level of ignorance. The programmer can put
in as auch heuristic knowledge as he wants to about the subject, just
as a good teacher would help a class to understand a mathematical
theory, rather thanm just telling chem the axioms and then giving
theoreas to prove.

Another advantage in representing knowledge in an imperative
form is the use of a theoremr prover in dealing with processes
involving a sequence of events. Consider the case of a robot
manipulating blocks on a table. It might have data of the fora,
“block1l is on block2,"™ “blcck2 is behind block3", and "if x is on y
and you put it on 2z, then x is on 2z, and is no longer on y unless y is
tae same as 2", Many examples in papers on theores provers are of
this form [for example the classic "monkey and bananas™ problem]. The
problea is that a declarative theorem prover cannot accept a statement
like [OX B1 B2] at face value. It clearly is not an axica of the
system, since its validiity will clange as the process goes on. It
usually is put in a form [ON B1 B2 SO] whkere SO is a sysbol for an
initial state of the vorld. The third statesent aight be expressed

as:

[FOR-ALL TOPBLOCK KEWSUPPORT CLDSUPPORT S
[AND
[ON TOPBLOCK NEWSUPPORT [PUT TOPBLCCK NENSUPPORT S]]
{os
[EQUAL NEWSGPPCRT OLDSUPPOET]

e T

3. page 50

[NOGT [CN
TOPBLCCK
OLDSUPEQRT
[2UT TCPBLOCK NEWSUPPORT S1]]]]1]

In this representaticn, [PUT X Y S] is the state which results
from putting X on Y when the previous state was S. We run into a
problen whea we try to ask [CN 2 W [PUT X Y £)] i.e. is block Z on
block W after we put X on ¥? A human kanows that if we haven*t touched
Z or W vwe could just ask [ON Z W S] kut in general it may take a
conplex deducticn tc decide whether we have actually moved them, and
even if we haven't, it will take a whole chain of deductions [tracing
back through the time sequence] to prove they haven't been moved. 1In
PLANNER, where we specify a frrocess directly, this whole type of
problem can be handled in an intuitivei& more satisfactory way by
using the primitive function ERASE.

Bvaluating <ERASE [CN 2?X ?Y]> removes the assertion [OR ?X 2Y)
from the data tase. If we think of theorem provers as working with a
set of axioms, it seems strange to have function whose purpose is to
erase axioms, If instead we think of the data base as the "state of
the world"” and the operation of the prover as manipulating that state,
it allovws us tc make great sisgplificaticns. Now vwe can simply assert
[ON B1 BZ]) without any explicit mention of states. We can express the

necessary theorea as:

<ASSEBT <DEFINE THEOREN3]
<CCNSECUENT f TCPBLOCK NE®SUPPCRT OLDSUPPORT]
[PUT ?TOPELOCK ?NEWSUPPORT)

<GOAL [ON ?TOPBLOCK 2CLDSUPPCRT }>
<ERASE [ON ?TOPBLOCK 2CLDSUPPORT J>
<ASSERT [ON 2?TCPBLOCK ZINEWSUFPORT]>>>>

3. page 51

This says that vhenever we want to satisfy a goal of the fcra

[PUT ?TOPBLOCK ?NEWSUPPORT], vwe should first find out what thing
CLDSUPPORT the thing TCPBLOCK is sitting on, erase the Zact that it is
sitting on OLDSUPPORT, and assert that it is sitting cn NEWSUPPORT.
We could also do a numkter cf cther things, such as proving that it is
indeed possible to put TOPBLCCK on NEWSUPPORT, or adding a list of
specific instructions to a movement plan for an ars to actually
execute the goal. In a more complex case, other interactions might be
involved. For ex: .ple, if we are keering assertions of the fora
[ABOVE 2?X ?Y] vwe would need to delete those asserticns shich becanme
false when we erased [CN 2X 22 ; and add those which becase true when
ve added [ON ?X ?Y]. ANTECEDEHRT theorems would be called by the
assertion [ON 2X 2Y] to take care of that part, and a similar group
called ERASING theorems can be called in an exactly analogous way when
an assertiopn is erased, to derive covsequences of the erasure. Again
ve emphasize that vhich of such theorems would be called is dependent
on the way the data base is structured, and is detersined by knowvledge
of the subject matter. In this exanple, we would have to decide
wvhether it was worth adding all of the ABOVE relations to the data
base, with the resultant need to check them whenever sowsething is
moved, or instead to cesit them and take time to deduce them frca the
ON relation each tise they are needed.

Thus in PLANNEE, the changing state of the world can be
airrored in the changing state of the data base, avoiding any need to

make explicit sention of states, with the requicite ovoerhead of

3. page 52

deductioas. This is possible since che information is given in an

imperative form, specifying theorems as a series of specific steps to
be executed. PLANNEB also allows the comstruction of local data bases
called states vhich are variants of the global data base. Evalgation
of PLANNER expressions is carried cut relative to a local state. Thus
simultaneous consideration can be given to two inccmpatible states of
the world by explicitly calling the evaluator to evaluate statements
in the twe states.

If we look back to the distinctiop between assertions and
theorens made at the beginning of this chapter, it would seea that ve
have established that the base of assertions is the "current state of
the vorld", vhile tae base of theorems is our permanent knowledge of
hs; to deduce things from that state. This is not exactly true, and
one of the most excitismg possibilities in PLANNER is the capability
for the program itself to create and modify the PLANNES functions
which make up the theorem basc. Rather than siaply making assertions,
a particular PLANNER fuynction might te written to put together a new
theorem or make changes to an existing theorem, in a way depezdent on
the data and current knowledge. It seems likely that smeaningful
"teaching" invclves this type of behavior rather than simply modifying
paraueters or adding more individual facts [assertions] to a
declarative data base.

For example suppose we are given the following protocols for a
function £. An expression such as "new [S * 4]" means that ve are

introducing a nev identifier which is 5 * § = 20,

3. page 53

<f C>

: 0=0 IS TRUE SO 1
Thus <f 0> = 1

> =

. . The above expression reads, "to compute <f 0> you test 0=0
which is true sc the answer is 1",

<f 1> : 1=0 IS FALSE
1 * nevw [1-1]

Taus <f 1> = 1

S0
0=0 IS TBUE SO t

. . The above expression reads,_ "tc coapute <f 1> Zgu test 1=0
vhich is false so the answer is 1 times the quantity which is coaputed

by first coaputing the intermediate result 1-1 then testing i< 0=0
which is true so the quantity is 1."

<f 2> 3 2=0 IS FALSE SO
2 % nev [2-1] 1=0 IS FALSE SO
1 # nev [1-1] 0=0 IS TRUE SO 1
Thus <X 2> = 2 *# 1 * 1 = 2

<f 3> : 3=0 IS FALSE SO
3 * new [3-1] 2=0 IS FALSE SO
2 * nevw [2-1] 1=0 IS FALSE SC
1 * nev [1-1] 0=0 IS TRUE SO 1

Taus <£ 3> =3 * 2 % 1 * 1 = ¢
By the process of "“variad lizatioa", we ccnclude that the
above protocols are compatible with the following program shich is in

the form of a tree [which we shall call the protocol tree].

<f x0> = if xC=0 then 1
else x0 * nevw [[x0-1]}=x1] if x1=0 then 1
else x1 * pev [[x1-1)=x2] if x2=0 then 1
else x2 * nev [[x2-1]=x2]
if x3=0 then 1
else...

Mov by identifying indistianguishable nodes on the protocol tree, ve
obtain:

<f x> = if x=0 then 1
else x »<f [x-1P

3. page 5&

The reader will note that £ is the factorizl function. PLAXXER

procedures and theoreas can be tanght in precisely the same fashion

{ vhich ve call procedural abstraction]. For examsple, the coaputer can
be taught to build a wall or recognize a tower froa exaaples. The
reader is cautioned that although we shall speak of the couputer being
“taught", we do not assume that arything like what has been
classically described as "learning®™ is taking place. ¥We assume that
the teacher has a good working model of the student that is being
taught and that he honestly atteapts to convey a certain body of
knowledge to the studeat. Of course the student will be told anything
which might help him toc understand the material faster.

Procedural abstraction is one va; in which a special purpose
routine can be comstructed from general goal oriented language. ¥We
vould like to express the intended properties of the special purpose
routine so that we can establish that the routine really does what it
is supposed to do. Por example we might be interested in establishing

that the function divide defined below satisfies its intentioas.

<define divide <function idivide
:"let idivide be name of this activation*
(n da]
:"the f:nction divide is s function of two argiments a and 4"
<repes’ [{zr .n) [q 0]]
. s%initialize r to n and q to zero"
;:"ve are in z repeat loop which wiil repeatedly
execute the following expressions®
<cond
[<is? <less .d> .I>
:"if .r is less than .d then"
<.idivide .q .x>
s¥exit the activation vaned
idivide with .g and ")P
<assign :r <- .r 4>

3. page 55

;¥assign r the value of r minus 4"

assign :gq <+ .q 1>

y"assign q the value cf q plus 1"

:"nov go back aand do the body of the repeat
loop all over again">>>

We shall express the intentions of the function DIVIDE in a
goal oriented forsilism called INTENDER. INTENDER enables us to embed
the intentions for a program in the text of the program. The easiest
way to understand INTERDBER 1is to watch how it works. 1In order to
show how it works we must first define some intentions. INTENDER
intrcduces two new primitives CVERALL and INTENT to express intentions
in code. The primtive OVERALL exprecsses the overall iantention of a
function or loop whereas INTENT asserts that the intended situation
really holds within the body of the function or loop. The meaning of
the intentions embedded in the function DIYIDE are explained below.
INTENDER is a giant sledge hammer to use to squash such a tiny
problen, The reader can see this sledge haamer used on hacder
problems in chapter 7. IKRTENDER needs to be able to talk about
function callis In a pattern directed way. He will use !' to suppress
procedural invocations. Thus whereas <¢+ 3 5> evaluates to the NUNBER
8, the expression !'<+ 3 5> will evaluate to the CALL <+ 3 5>,
Assertions which contain calls constitute a still higher level
assertion than the tvo which we have introduced thus far. The
semantics of ? assertions are determined in part by the body of the
procedure wh:. r led. Pror example the assertion that 1'<= 1'<+ 1
2> 1<+ 2 D> cap e established froam the DEFINITICN of ¢. Similariy

in a very incestuous way, we can make assertions about PLANKER

3. .age 56

procedures whose intentions are thenselves written in PLANNER and at

any given time constitute the model that PLANKER has of itself! By
using intentions expressed in PLANRER, there is notking that in

principle PLANKER cannct be rade to understand about itself.

<define divide <functiow idivide [n 4)
<overall []
<inteation []
<and
<goal 1'<is 1?<greater 0> .n>>
<goal !'<is !%<greater 0> .d>>»
<and
<assert 1'<is !'<greater 0> .n>>
<assert 1'<is !%<greater 0> .d>>>>
<repeat [[r .n] [qg 0]]
f:<intention
<goal 1'<= .n £'<¢ . 1°<% A .@>>>>
<assert !1°%<= .n 1'<¢ ,r 1<% .4 .gO>>>>
<cond
[<is? <less .d> .r>
<.idivide .q .r>)]>
<assign :r <- .r .4d>>
<assign :q <% .g >
<function [C R])
<intention []
<and
<assert 1% = ,n 1%+ R 1%<s .4 . QO>>>
<assert !'<is? !'<less 4> .B>>>
<and
<goal !'<= .n 1°%<+ 0 1%<* .4 .Q>>>>
<goal !'<is? !*'<less .d> .R>2D5>>>>

the overall intention for the function DIVIDE is that it return two

values Q and B which ve assert will have the property that

1'%C=.n 1'<¢ R I'<* .4 .QO>>
The inside intent of the function DIVIDE is the goal that DIVIDE will

return tvo values Q and R which will have the property that

1'<=.n 1'<¢ R 1'<* 4 .QO>>

3. page 57

The bocdy of DIVIDE is a REPEAT loop with two locals r and g vhich are

respectively initialized to 0 and n. The overall intentica of the

REPEAT loop is the goal

1'<= .0 1'<+ . 1°<* 4 .@>>>

The REPEAT loop has an intent that asserts that

1'%C{=,n 1'%+ r 1'<* . d .g>>>
at the top of the loop.

The intentions for DIVIDE are proved hy running them in
INTENDER. The intentions are verified abstractly. Thus they must Le
true independent of what the actual arguments to the function are. FWe
shall use .be notation x_n for the nth value of the identifier x wvith
X_ being an abbreviation for the initial value of x. The actions of

INTENDER on the intentions of DIVIDE are as follows:

Froa the over2z1l all intentiion of the function we have:
<assert !1'<{is 1'<{greatex 0> p_>>
<assert 1'<is 1'<greater 0> 4_>>

The following assertions come from the deriarations of the
"apeut loop

<assert ‘<= r_ pn_>>
agsert '<= q_ 0>

. Ehe intention of the repeat statemeat on first entry is
g8 - iied:
<goal 1°t<=

n.
19¢e
t-
17¢* a_ q_o»>»

¥e imductively assume for the repeat loop
<assert 1°<=

n-
1e<+

3. page

r_1
17<* d_ q_1O>>

enter intenticn< of CUND L
There are two cises fnr the conditional:

Casel: .

<assert !'<is?
tt<less d_>
r_1>

Prom the overall intention we have:
¢ becomes ¢q_1

R becocomes t_1
<goal !'«=
n—
1<+
r_1
1'<* da_ g_1O>>>
<goal !'<is? 1*<less d_> r_1>>

Case2: .
<assert !'<is?

1'<greater= d_>
r_1>

Prom <assign :r <~ .r .d>> ve get:
<assert !'<&=

r_2
1°<-r_1 45>

From <assign :q <+ .g 13> we get:

<assert !'<=
g-z . .
194+ g_1 D>

The recursive goal is satisfied by simplification:
<goal !t*<=
n.-
1<+

s P4

* d_ g _2>>>

58

4. page 59

4. THE PATTERN BATCHIRG LANGUAGE MATCILILESS

BEATICHLESS is a pattern directed language that is used in the
implementation of PLANFER., MATCHLESS is used both in the internal
workings of PLANNER and as a tool in the deductive system itself.
MATCHLESS i< similar inm certain respects to other structyrai pattern
satching languages such as <CONVERT and SNOBOL. It has been designed
with the following consideraticns in mind:

0. The language must obey the Fundamental Princigple of Pattern
Directed Ccmputaticn: the procedure Lkody should be a patteran that
describes the purpose cf the procedure. The principle has been
developed even further in PLANNER where procedures are invoked on the
basis of their intent.

1. The language should be very powerful yet simple constructs
should be efficiently comriled. By inccrporating more knovledge into
a program, it rust be possible to increase its efficiency up to the
limits imposed by the machine on which it rums.

2. Functions must be able to be separately compiled.

3. It should not require parsing for efficient
interpretation. Proceduress should t€ naturally and efficiently
constructed and edited by cther procedures.

t, The language must interface with PLANNPR in a natural way

sinc2 it is used as a basiec part of the deductive systea, Effective

i - ~ - r—— — >z . ey r o~ ke I AR e o A — e ———— ——
'y L et

4. pzge 60

problea solving requires a sophisticated programmable matcher.

5. The language should treat strings, lists, vectors, tuples,
and nodes syametrically so that for the rost part the sase prograsz
vill run whether the structures are sade 8p of vectors, tuples, nodes,
or lists. Declarations doteraire which forx is actually used.

6. The language should have no automatic ccercioca. Any
procedures which wish to coerce their arguments should be able to 2o
so easily.

7. The language should have only one mode of evaluation for
value. Locatives should alsays be generated explicitly in the same
vay.

8. A1l the locps of the language should be guararteed to be

properly nested.

4.1 page 61

4.1 The Syntary of Identifiers and Expressions

EATCHLESS attempts to obey the Pundamental Principle of
Pattern Pizected Computation: the procedure body should be a pattera
of what the proceduare is supposed to accosplish. Por exaaple it
allors the list (2@ b c) to be produced by sisply evaluating (a b c).
In atteapting %o realize the principle we have been led to develop a

certain azcunt of syptax vhich (unfortunately!) must be described.

4.1.1 Prefix Cperators for Identifiers

As is usual in pattern matching languages we shall allow
constants like 3, a, (a b), and (e (£ g)) to match only theamselves.
An identifier is indicated by a prefix operator which tells how the
identifier is to be used. Pror exasple .x is the element value of the
identifier x. It x has the value (a 3) then .x will oaly tch (a 3).
¥e need toc be able to change the value of an identifier im a pattern
match. Suppose that x has the valne 3. If ve match _x [the
tentative value of x] against (a b), then x is given the value (a b).
The identifier x will keep the value (a b) if the remainder of the-
pattern satches., Othervise the value of x will revert to 3. 1gain
suppose that x baz tL" value 3., If we satch :x [the altered t2lue of
x] against fa b), then x is given the value (a b). Howaver the value

of x will remain {a b) whether or not the reszinder of the pattern

4.1 page 62

ma tches.

The above prefix ofperators are actually defined in terms of
procedure calls., We are not enamored with the syntax of the prefix
operators but they are easier to type than the procedores listed
below.

A small meta syntax is pneeded in order to give explanaticns of
the primitives of the language., We shall use | to deliait
metasyntatic variables which are elements and - to delimit those which
are sequences.

The following table explains the prefix operators which yield
elepent values:

«}X] = <VALUE |x|> the element value of the identifier x|

,1x] = <GLOBAL |x]}> the element glokal value of ix|

The following table exglains the prefix operators which match
elexzents:

?2§x] = <GIVEK]x|> will give]x] the value of the matching
element if |x| does not already have a value; otherwise ?jx| will only
match the value of |x].

2}x] = <ALTER!-PERSISTENT |Xx|> will alter the valne of x to be
the matching elesent evern if (x| already has a value.

_Ix] = <ALTER!{-TENTATIVE }x]> vill tentatively alter the value
of |x} to be tle matching element but if a failure backs up then the

old valuz of }x| will be restored.

{
4,1 iage 63

If x has the value (a 1) then (b .x 4) will evaluate to, {b {(a
t

1) 4). The character ! is the esca character. W%e vill use f.x to
denote the s~gaent value of the identifier x. For exaaple (b !gx 4)
vill evaluate to (b a 1 4). In each case preceding the ptefixi
operator for an identifier ¥ill result in the segment prefix operator
for that identifier., If we match the pattern (¢ !:x d) against the
value (c 3 a d) then x will be given (3 a) as its value.

The followiug table explains the prefirx operators which yield
segrent values:

1.]x] = {VALUE |x|} the segment value of the identifier |x|

t,1x] = [GLOBAL {x{} the sagment glotal value of |x]

The folloving table explains the prefix operators which match
segments:

12jx] = {GIVEN x} will give x the value of the matching
segment if x does not already have a value; otherwise !?x will only
satch the value of x.

1:2x = {ALTER!-PERSISTENT x} will alter the value of x to be
the matching segment even if x already has a value,

!_|x) = (ALTER!-TENTATIVE §x})} will tentatively alter the
value of §x] to be the matching segment but if a failure backs up then
the 0ld velue of |x] vill be restored.

Gerry Sussman and I have developed the following scheme for

iooking up the values of identifiers in inlerpreted ccode. On the

L{r\ ‘:\M)xf b3

MECHANISM OF IDENTIFIER LOOKUP

| PROCESS| STACK

() IBINDING - STATE |

| IDENTIFIER |
PREVIOUS

p—

|PREVIOUS- VALUE|

[IDENTIFIER |

PREVIOUS

| CURRENT - VALUE |

| iDENTIFIER |

GROW

4,7 page 64

identifier stack vhen an identifier is bound the following information

is stored:

1. the name of the ildentifijer

2. the current value of the identifier

g. ghe place on the stack vhere the identifier was previonsly
oun

Associated with each binding environment and identifier we have the

place on the identifier Ztack where the identifier wvas last bound.
4.1.2 Syntax of Expressions

MATCHLESS uses Polish prefix nctation for function czlls wvith
the actual call delimited by < and >, Of course ve use the chargacters
(and) to delinmit lists. We use the characters [and] to delinit
vectors. Por example <¢ 2 3> evaluates to 5. IZ y has the vzlue &,
then <¢ .y 1> vwill only match 5., The value of (.y) is (4) anZ the
value of (<¢ .y 1> (& a) .y) is (S5 (&4 a) 4. If the function call is
to denote a segsent then it is delisited by (and }. <The fumction
REST will return the rest of the list that it is givea as an argusent.
For example <rest (a b c)> evaluates tc (b c). But (1 f{rest (a b c)])
e f) evaluates to (1 b c e £f)., Purthersore, (a b {rest (1 (e £f) q)}
k) will omly match (a b (e £) g k). The components of lists, vectors,
and nodes can be selected by subacripting. Por exaample <2 (a b ¢c)>
evaloates to b and <3 [(a) e 5S> evaluates to S, The expression <get

i} \x}> will return the location of the {(ijth cosponent of the

4.1 page 65

structure]Jx}. Other values are computed frcm patterns. The value of

[-Y (@ b) .y) is [4 (a b) 4]. Tuples are stored in the stack whereas
the vectors are garbage collected., Lexically the scope aof a tuple is
the smallest enclosing pair of < and > or { and }. Otberwise vectors
and tuples are indistirguishable. An argument of a function may be
coaputed in parallel with the other arguaents by delimiting the
arguaent with < and > instead of < and >, For example 7+3 could be
computed in parallel with 2+4 in the expression <* [<+ 7 3> <+ 2 W>>,
An argument of a function MU3T be able to be computed in parallel if
it is delimitted by !}< and >. 1In other words, if ome branch becores

blocked the otter must be able to continue executior.

r |

4.2 page 66

4.2 Types

The type hierarchy is:

<?> for the universal type.

<WOBD> for priamitve types which are not pointers.

PALSE for the logical type false., All other data are
considered to be true in conditional expressions. The null

function call <> will evaluate to #FALSE.

CHARACTER for a character such as_!"a or !"U, Aaain VE are
using ! as an escape character. The ! converts into the

quote for a single character,

<NUMBER> for numbers.

<FIXED> for fixed point nusber.
FIX for a spall fixed point number.

BI5 for a big fixed point nuaber.
FLCAT for floating point nuaber.
<POINTER> for fpointers.

gtgg for atoss. The following are all atoms: a, foo, and
ello

" {STRUCTURE> fox structured data. The ogeraticns of takigg the
REST of a structere and selecting the nth element are detined

on all structures including tufples, vectors, lists, and nodes.
For some structures the operations are more efficient because
of special hardware.

TUELE for a tuple of elements. Tuples are allccated from
the stack cf a process and are deleted on procedure exit.

Tugles occupy contiguous blocks of memcry. Once a tuple
has been created its structure cannot be changed and its
length can not be increased.

VECTOR for a vector. Vectors are allocated contiguons
blocks of storage which are garbage collected whea no

longer pcinted at. Although the structure of a vector

> ~ - T e o o . i

4.2 page 67

cannot he changed, its length can be increased at the cost
of & garbage collection. Otherwise vectors are identical
to zuples.

STRIRG for a string. This is just a vector of characters.
For exasmple "ba%", ®3%", and "“a b" are strings

LIST for a list. lists have the advantage over vectors
that their structure cam be changed after they have been
created. They have the disadvantage that it takes a time
proportional to n to get the anth element.

RODE for a node which has progergies. Jodes are the most
general form of structured data in the language. ?The

others are included for reasons of efficiency for
specializnd structures. The comsponents of a node are
obtained oy subscripting wvhich is currently implemented by
bash coding. A vector is approximately ome third the size
of its correspoadinoc representation as a rode.

The following types will not be explained here. They are

included only fcr completeness, The cosmplicated types and their

abbreviations are:

JUNCTICN for jupction
ACTIVATION for activatiom.
STATE for state.

ARC for a node arc.

BIED for bindings.

<LOCATIVE> for a locative or gemeralized locatioa.
YECTOR-LOCATIYE for a locative to an element of a vector.
TOPLE-LOCATIVE for a locative to an element of a tuple,

BINDING-LOCATIVE for a loactive to the value of aa identifier

P B e N s e~ R - —— me st

4.2 page 68

LIST-LOCATIVE for a locative to an element of a l1list.

LIST-REST-LOCATIVE for a locative to the rest of a list.

NODE~-LCCATIVE for a locative to an element of a node.

IABEL for & label function.

PROCESS for process,

STACK for a stack

RING for a ring

ELENENT-CALL for a element call.
SEGMENT-CALL for a segment call,

SEGMENT-VALUE-CALL for a segaent value call.

4.3 page 69

4,3 Simple Examples of Matching

The idea of structural matching is fundamental to the
MATCYLESS processor. By means of the primitive function <IS?
|patternf jexpression|> we can determine if jpattern| matches
|jexpression]. The functicn IS has the value true if the match
succeeds and <> (which is FALSE) otherwise. Pattern matching takes
place through the use of side effects to change the values of
identifiers to be those of the objects which they match. The
assignment statement in MATCHLESS is a variant of the priamitive IS.
The expression <_ {pattern) jexpression}]> is well defined only if
|pattern) matches |expression{. The 7value of the function _ is the
value of Jexpression|. Belov #e give some examples of matching where
the values of identifiers are listed after assignment statements have
been executed. We use the character - to delimit segments. Por
examnple the list (a b ¢} has subsegaents:

~-~, -a~, -a b-, -a b ¢-, -b c-, -b-, and -c-.

The characters < and > are used to delimit function calls.

<prog [a [t=atcm h] ¢]

:"This is a comrent.
He are inside a program in which wve have
declared a, declared h to be of type atonm,
and declared c"

:"in the test below
the function IS will return true
since the pattern (_a k _h !_c) matches
the value {{(1) Xk b o a)"

ST T ——y e S AL Y R I e i - - - - B

PO O, W S S - SRy S N

«
(o

4.3 page 70

<is? (_a k _h !'_c¢) {(1) kK b o a)>>

a gets the value (1)

h gets tte value b

c gets the valur (o 2)
The value of the program is true which is the value of the IS
staterent.

1=
<prog [c L a;cn hgype B
<1s’ ti_c _h k _a) (a j bk g)>
c gets the value (a j)
h gets the value b
2 gets the value g

<proyg [f‘rst last u1dd 2
is? (_first !_middle _last) (a b ¢ d)>>

flrst gets the value a
middle. gets the value (b c)
last gevs the Talue 4

<prog [a b] .
<1is8? (_a _b) (d)>> fails because there is only one

elezent in (4).

{pre 1=atcn
preg [E "a is of gype aton"

<is? _a (o t)>> fails because (o t! is nct an atom.

An ex ressios that cconsists cof the prefix operator "." followed by a

identifier will only match an object egual to the value of the

identifier.
<.roq [a]
<is? (!_a t.3) (a b ¢t abc;>
a gets the value (a b ¢)
<pro a b
Prod la bl 1 axtat®™m (abhxdxabzdqd
a gets the vslua (1 b)
a fail -re occurs hecause (l.a !_b) will not ratch (¢ x
abx ado

a gets the valua (a b x d)
b gets the value (q)

Ap expressicn that consists 0. the preiix operator 7 [the value given]

follovwed hy an idenlifier matches the value of the identifier if it

- ————— —— . —

L RE L ar— — ——— © e o ——— ——— -

4.3 page 71

has one, otherwise {he identifier is assigned - value,

<prog [a]
<is? ?a t>>
a gets the valve t

<{pro 1=fix 5
prog [[<is% 7£au>;]]

a is declared tc be of type fix and initializeu tc 5
on entrance to the prog. Consequently the assignment stateaent faiis.

<prog [ag; . .
is? (!_a !?a) (2 h c c t a)>> fails because once a is
assigned a value, a can only match a segment that is equal to the
value of a.
The function MATCH? is somewhat kora powerful than the
function IS? because it can match patterns against patterns.

{pro b {
prog [<zgtch ?2x ?y>

:"link x apd y by matching them t~ each other"

<match 7?x 3>

i¥let x have the value 3 and th.us set y to 3¢

24

i"the value of y is the value of the prog"> evaluates
to 3

Restrictions cn the value ~f an identifier can be acquired as

the result of a match.

<prog [x]
<match ?x <less 5>>
+"x will only match numbers less than 5"
<match 6 ?x>> fails since 6 is not less than S

Side effects can p:r. .agate through structures:

<prog [x y z]
<match ?x [?y 1?2z)]>
<{match {(a b c) ?2x>
3"Y gets the value a and 2 geis the value (b c)"™>

R i R e - - -

o

(24

4.4 page 72

4.4 pefinitions of Procedures

4.4.1 Punctional Procedures

<PURCTICR

schecker+ ¢tactivation-name+ [-function-declarations-]
-expressions-> where ¢activation-name¢+ and ¢checker+ are optional,
¥ .1 evaluate to a function which wvwill, when it is called, bind the
formal paramcters in the |function-deciaraticnsy to the actnal
parameters, evaluate the -expressions- returning the value of the last
one as the value ot the function. The tchecker+ must e of the form
<fjprocedure| -arqguments-> for opne value or {}procedurej -arguments-}
for multiple values. The +checker+ is treated as a pattern that the
values returned pust match. The match is done so that any side
effects are persistent. The |-function-declarations-} is of one of

the following forms:

argusents-gpecification| which n be one of tbhe fqllowjing:
! g[—foraalg;araneter*séecificatigns-] vhere eackhk go:lai—g

paraseter—-specification is of one cf the following forms:

levaluaticn-.pecification| where each jeval.ation-
specification] msust be one of the followirg:

‘{identifier} mean that the |identi.!ier} .5 to be
bound to the write =rotected UNEVALUATED corresponding
actual paraseter.

Lidentifietl means that the Jidentifjery is to bde
ound to the VALUE of the correspondirg actual

raraneter

- .- ————— = ———r SERIATTT Y RV NP P TR Mt —— v—— - o . - . ————— e = e — .

4.4 page 173

[lattribute-specificationy jevaluation-specification]]
vhere the jattribute-specificaticnj aust be one of the
fcllowing:

lattritute}
[-attributes-]

vhere each attribute must be ogg of the follouing:
~"SPECIAL"™ nmeans tnat the identifier may be Usea

free in other amaodules. The syrbol =~%SPECIAL" is a
vuique striag.

gé;toqe@ntel -arguzents~> meaps that the
identifier must alvays be either upassigned or

bound to an object vhich matches the pattern
<}procedure| —-argumepts->. The constraint is
enforced by PLABNEE. Any side effects of matching
tle pattern against the new value of an identifier
are persistent.

-forszl-parameter-specifications- ~"OPTIDYAL® -opticaai~
ormal-paraseter-specificationz- }

where an joptional~forsal-gparameter-specificatiori 18
either a |formal-paraseter~specification} cr [jat.ribute-

specification| [jevaluation-specification} jiritial-~
valuef 11, The ~"CPTIONAL®™ construct is due to Chiis
Reeve, It alows for optional arguaente and specifies how
the identifier is to be initialize® if the ac*ual
parasater is not present.

[-fo;lal-garaneter-sgecifications- ~"EEST" |identifier-)
specification}) which will bind tke identifier in (identifier-

specificaticn} to the tuple of the rest of tae argusents
evaluate .

{~formal- graletet-sgec;ticagions- ~"REST" ?}identifier-
specification}] which uill bind the identifier in fideptifier-

specification| to the write protected vector cf tne rest of
tke unevaluated axgamenis. The ' variaant is due to Garv
Peskin.

[~"BINL" jidentifier—-specification] !arguments-specifcatioa} -
declarati. .s-) is usRA to first bird the identifier in
jidentifier-specificatior} to tbe binlings in effect vhen the
function irs invoked. 1In almost all cases use of ~"BISD® can
be avoidea by reading the function irtc a lecal symtactic
block so that no rdentifier conflicts can ccerr.

I TN AT T TR T T Tl T AW - -

[~"PATTERE"™ |calling-pattern]
defines a4 calling pattern for pattern directed invocaticas.
The calling pattern is of the fors [-declarations- |pattern|]
vhich declares identifiers for }pattern;.

For example:

4.4 page 74

larguaents-specifcation|]

<<fuuction [~"rest®™ 1] <2 .x>> 11 21 33> wvaluates tc 21

since <2 [11 21 33> is 21

<<function [-~"rest"™ 'x] .x>
a

<+ 3 4

c> evaluates to [a <+ 3 4> c]

<<function . =x> 3> evaluates to 3

<<function [x]j x> ad> evaluates to a

<<functiop i=fix [[!=firy x]] .x> <+ 2 2>> evaluates to & where

t=fix is <OF-TYPE fix>

<<function !=fix [[?=fix x]] <+ .x >

<“function !=fix [[!-fix x] {!=fix y]}

evaluates to 5

<<function {x -~"opticnal” [y 3]] <+ .x

<<function { x -~"optional™ [y 3]] <+ .x

2> evalaates to 3

<+ X 70> 2 D

-¥>> 4> evaluates to 7

.¥>> 4 5> evaluates to

<<function ([!=fix *x]] x> 3> evaluates to 3

<<function {'x] .x> a> evaluate. to a

<<{furction [*x] .x> <+ 2 2> evaluates to <+ 2 2>

#e would like to give a simple example of pattern directed

inw¥csation, Suppose that ve have a sink s which ve necd unstopped.

The classical sclution is tc knov the nase of a plumber which could be

appiied to the sink. tThus for exasple ve might evaluate <plumber-

4.4 page 75

Pecrlwan s>. The way we shall actually proceed is to advertise that ve

need a sink unstopped. Of ccuse we won't let just anyone work on our
sink; he must come well reccmmended. For example he should be cheap

and speedy. We will evaluate

<call
[<{ unstop s] 85>
<speedy> >

to offer to let some oie unstop our sink for $5 provinding he is

speedy. ¥ow suppose that there are a few plumbers around:

<define plumber-Greenklatt
<function
[~"pattern"®
[[sink] [unstop 2?sink]]
fee]
<cond
[{is <less $4> .fee>
<fail>]>
:"if the fee is less than $4
then fail®
<Roto-Rooter .sink>
;"othervise apply Roto-Rooter
to the sink">>

<define plumbeg-Perlman
<function

[~"pattern®

[[sink] {unstop ?sink]]
fee]

<pour Dramo .sink>

s"pour Drano im the sink”

<send~-bill <times 2 _feed>>

;"send a bill for twice the originally
agreed fee">>

To try to get our sipk unstopped we might evaluate:

<pzog [)
<call
[<[unstop s] $5>

4.4 page 76

<speedy> >

;"advertise for a speedy plumber to
unstop sink s for $5"

<coad

[<stopped-up? s>
<fail> >
s"if the sink is still stopped up

then try again'™>
Suppose that both pluzmkter-Greenblatt and piumber-Perlaan are
classifir~ as speedy. Thus PLANNER will chose one or the other to
invoke siuce both have patterns which match the calling pai*ern
[unstop s]. If either one fails then the other will be tried. If one
returns but the sink is still unstopped when he gets back then the
pess the first created will be undone and the other tried.

¥e can define the function reverse which returns a newly

constructed reverse of its argument as follows:

<define reverse <function [x]
<rule [] .x
|[<emnpty>
+X]
[<structure>

<<storage .x> {reverse <rest .x>} <1 .x>>]
~"else"

<error>>>>
Thus <reverse [{a [b c] 41> is [4 [b c] a].
Functions with an artitrary number of argusments are
accoamodated by passing a tuple which contains the evaluated

arguments. Suppose that we already have a functiou PLUS which will

add tvo numbers together.

- ————— e TR =g NP Tt RO L A——— ———— —

4.4 page 77

<define + <function pl
:"let the name of the current activation be pl"
[~"rest" x]
;"we will receive a variable numker of
argurents in the tuple x"
<for

[{result 0] n])
s"jnitialize the identifier result to 0"

[[~"test"®
<is? [] x>
<.pl .result>
;"exit .pl with .result®
;"each time before executing
the loop test to see
if x is a null tuple and if so then
return the result")
[~"step™ <chop x>]
;"after each pass through the loop chop x by
assigning x to the rest of x"]

<_ :result “plus <1 .x> .resultd>>
;"the boly of the loop is to add the first element of
x into the resuvlt">>>

<+ 3 {rest (4 ¢ 6)} 7> evaluates to 21

<+ 3 2 4> evaluates to 9

“ACTCGE-FUNCTICK

[iobject] jtail] |locative] jchoice] -functiom-

declarations-] -body-> is exactly like the function PUNCTION except

for the folowing:

It is treated as arn actor in pattern amatching.
The first argument |Jobject]| is the matching obZect.

1he second arguaent |tail) is a tail of the matching object or O
for an elesent call.

4.4 page 78

The third argument |locative] is a locative to jobject| or <> if
none such exists.

Tb« €ourth argument |choice| is not false only if the actor-
f .iop gets its choice hcw much to match.

The value of the actor-function is the rest of the object yet
to be matched, Actor functions are useful as in internal irterface

Letveen actors and functions.

4.4.2 Macro Proceldures

Macros are expanded by the interpreter and by the cosmpiler.
The results are respectively interpreted and compiled. Macro
procedures look like
<MACRC
jfcraal-parameters} -exrressions-> The expaansion of
the macro is tte value of the last expression. The character !' is
used to suppress invocations. For exacfple vhereas <+ 2 2> evaluates

to the NIJMBER 4, !1'<+ 2 2> evaluates to the function call <+ 2 2>.

utloc
o X
t'Crest 1'<in .x>>>>>

<define choploc <macroc ['x]
Pv2h

The macro choploc vill take a location as its argusent and cause the
contents of that location ta be changed to <ontain the rest of the
previous contents.

<choploc <at y>> extands to <putloc <at y> <rest <in <at y>>>>

rr,

4.4 paje 79

¥e could have defipned the function + as a macro as follows:

<define ¢ <macro {-~"rest" 'x
;"let x te the vector of unevaluated arguments"
~lule .x
[<enapty>
;"if x-is <¢> then tke ansver is 0"
0]
#declare
[(ficrst rest])
;"declare identifiers first and rest"
[:first !:rest]
;"othervise let first be the first argument and
rest be the rest of the arquments"
1'<ples .first 1'<s !,.restd>>
i"the answver is written out using
binary plus instead of +"}>>>

Thus

<+ 3 2 4> exrands to <plus 3 <plus 2 <plus 4 0>>>

4. 4.3 Actor Procedures

Actors are used in patterns to match values. The prisary
difference between functions and actors is that functions produce
values while actors match them, Actors and Zunctions take their
arguments in an exactly analogous fashion. Examples of actors are
found in section 4.5 below.

<ACTOR

schecker+ ¢activation-name+ |function-declarations) -
patterns->, wvhere ¢activatica-pame+ and +checker+ are optional,
evaluates to an actor vhich when it is invoked, matches an object

vuich matches all cf the ~patterns- after the identifiers in the

4.4 page 80

|Ifunction-declarations] are bound. The j(function-declarationsj is

interpreted EXACTLY as in FUNCTION.

<Cactor [-~"rest"™ x] <2 .x>> 1 a 3> matches only a

<<actor [-~"rest" 'x] <2 .x>> a <+ 3 &> c> ratches only <+ 3 4>
<<actor [x] .x> 3> matches only 3
<<Lactor [x] .x> a> patches only a

<<a

.. ct
1=fix is <OF-

or !=fix [(!=fix x]] «x> <+ 2 2>> matches cnly 4 where
TIPE f1x>,

<<actor !=fix [[f!=fix x]] <¢ .x 1>> 2> patches cply 3

<<actor !=fix [[!=fixz x] [!=fix y]] <+ .x .y>> 2 3> matches
only 5

<<actor [[!=fix *'x]] .x> 3> matche= only 3
<<actor ['x]) .x> a> matches only a
<Cactor {'x] .x> <+ 2 2>> matches only <+ 2 2>

4.4.4 Type Procedures

Type procedures are used to define nev types. New types can
be defined by the union, direct product, and difect sum of already

defined types. Types can also be defined as frocedures by patterns.

{define eppty <either () [J>>

Define eapty to be either an esmpty list () or an eapty vector

().

20

4.4 page 81

<lefine monadic <either <number> !=atoua <eapty>>>

Define the type monriadic to be a number or atomi« or an empty

structute.

<define property-list <actor <1list> []
{star (!=atom <?>)>>>
A property list is a list of tvwo element lists whose first elewents

are atomic. The actor STAEK is the K.:.ene star of regular expressionms.
Por example the following are property lists: (), ({(a (3)})), and ((p?

4) (bello (r 3))).
4.4.4.1 Uaion of Types

<EITHEE
-alterpative-types-> is a type whicn xust be one of
the alternative types. Por example we can define the type <number> to
be the either <fixed> c¢r the type of float., A disjunction of types
expresses a copnstraimt on what can be considered to be of the new

classe.

<define number <either <fixed> !=floatd>>

<pro <pumber2> [x 3]}
pros [[;'x is de%larld]to be of type <number> and

initialized to 3"
<cord
[<is? 1=fix .x>
yes >
evaluates to yes since x is really the of type fix

4.4 page 82

4.8.4,2 Product of Types

<PEODUCT

{type-namej (kind} jforsmal-parameters| -projection-

specificatious-> will create a type with name [type-name| made out of

lkind}{ storage with Jfcrmal-parameters| as for functicns and -

projection-specifications-. Pach jprojection-specification] must be

of the following fors:

[lapparent-projector-nases} [{initial| {pat}] ¢+checker+

Jactual-prcjector|] The japparent-projectors-nases| is either
a single projector nase or [}identifier} [list-of-projector-
names|] vhere |identifier] ranges over |list- of-grojector-
nasesj. If echecker+ is present then only objects which
match ¢checker+ can be stored in the component. When an
instance is coastructed, the elements are given the value
jinitial]. When an instance is decomposed, the pattern |pat)
is used in matching. If ornly j(initialf is given then jpat| is
assused to be the same as jinitial}. If the actual projectorx
is not specified then the next unused integer projector will
be used., An actual projector which is a procedure call gives
rise to a VIRTUAL projector storage for which is not
necessarily physically preseat in the data structpre. A
product type can be RETBACTED to the jkind| of stoyvye out of
which it vas constructel. <The function PRCDUCT grex out of

some discussions that I had with ¥ick pPippinger,

4.4 page 83

<define coaplex .
<product ccrflex vector [r i]

[real [.r] <numker>]
[isaginary [.i] <number>]>>

The type complexr {for comjplex number) is the direct product of type
<number> with projector real and type <number> with projector
imaginary. Tke object cosmplex is actually two procedures: a
function which is the constiuvctor and an actor which is the
decoaposer. Constructor-decosposers isplement the overlap of

functions and actors.

<complex 3 4> evzluates to #comglex [3 4] where ¢ is the type
marker

<retract <cosplex 3 &>> is [. 4].

<getc real <complex 3 4>> (vhicn computes the real component
of the corplex number 3+4i) eve2luates to 3

<getc imaginary <cus.; lex 3 4>> evaluate to &

<pro ~numkter> a b
Prog [[;"This a ccnggnt. ¥e are

inside a program. The identifiers a anl b are
declared to be pumbers™
s"in the assignmert statement below
the pattern <complex _a _b> i5 natchad
again:e che expression #cosplex [3 4]"
<_ <complex _a _bk> <ccmplex 3 4>>>
a geis the value 3
b gets the value &

<getc tegl

<.osplex <ceplace 7> 4>
<ccmplex 3 4>>> evalvuvates to 7

<pro t=complex {c <coamplex 1 2>
pros [[<getcpteal‘.c>> esaluates 33]1

We need to be ai;le tc get at the locaticns of the components of a

S e e—

4.4 page 84

product. The <getc |rrodiectcr] |structurel> is used for this

purpose. The expression <PUTLCC |1l]]Jx}> sets the location |1] to

the value jx| and return the value jxj.

<prog [{§”§cgggigitiagigéd to dcowplex [3 4]"
<putloc
<getc real x>
2>
;"2 no¥ has the value #complex [2 4]">

de cap define a lower triangular matrix initialized with zeros

as follovs:

<define E:ianqulat <{product triangular vector [n]

[i <thru 1 .n>]

{
<ivectcr .i <function [j] 0>>
;"each component is initialized to

a zero vector of length i"]
<ivector .i>

1"each comsponent aust be a vector
of length i" >

<triangular 1> evaluates to #triangular E[O}]
<triangqular 2> evaluates to f#triangular C3J°[0 0]]
<2 <triangular 2>> evaluate to {0 0]

We can define the .ype PDP-10 instruction as follows:

<define instruction <product instruction fix
[op acc indir index addr]
[opcode [.op] I=fix <bits 9 27>]
{accuatlator [.acc] t=fix <bits 4 23>)
[irdirect [.indir] !=fix <bits 1 22>]
[index {.index] !=fix <bits 4§ 18>]
{address [.a3ddr] 3=fix <bits 18 0>]>>

A PDP-10 instruction has 9 bits of opcode which are 27 bits froa the

right end of the word, 4 bits for accusulator nusber, 1 bit to

Shasr et Wi oI AT T v e

4.4 page 85

indicate indirection, 4 bits for index register nasber, and 18 bits

for an address. An instruction ¥ith opcode 172 and 4 in the

accumulator field causes the machine to halt. #We can coanstruct such

ap instruction vwith <instruction 172 4 C 0 0> which evaluates to

tinstruction 254403000000 in octal.

The next example illustrates the use -f virtual components.

<define aobjn-ptr
<product aobjm-ptr fix

[address

[.a]
t=fix
<bits 18 0>)]>>

On a PDP-10 an aobjn pointer is is word whose left half
contains the negative of the length ot the rest of a vector and whose

tight half is the address of the element of the vector pointed at.

The trailer is a virtual component which lies just after the vector.

It can be defined as follows:

<define trailer <function [x]
<get
<+
<getc address .x>
<~ <getc length .x>>
»
<getc address .I1>>>>

<TIPE-VECTOR

~element-specitications~> construct: a type-vector

wkere each element specification is of the fors [|type! |valuef] which

R Y ST
- B

NW Jd b AR 7

4.4 page 86
initializes the apparent corponent |} c¢ype] to |valuej.

<getc fix
<type-vector
[float "above"]
[f£ix "kelow"]>> evaluates to "below"

<CHARACTER-VECIOR
-element-specifications-> construct a character-vector
vhere each element-specificaticn is of the form [jcharacter| !value}]

vhich initializes the apparent component }character} to |valuej.

<putc
<character-vector
[!"a beginning]
[I1"z end D
[i”a very-beginning]>
evaluates to
#character-vector [[!"a very-beginning] [!%"z end]]

§.4.4.3 Bxtension of Types

fie need to be able to exterd the types of values without
othervise altering thes. Por example 3 oraziages are nct the same as
the fixed point nuaber 3.

<EXTENSIORN
jtype-nane! |made-of]> vill create a newv type |type-

name| which is an extension of |made-of|. We car define the type

oranges by

<define oranges <extension oranges £ix>>
Eow <oranges 3> evaluates to #oranges 3.

<UBEXTEED

Y e - 4 WE LIy "W R AT T

l*“'q' Pu}L Rba.

DIRECT PRODUCT CONSTRUCTION

<COMPLEX >

<NUM>
<NUM >

DIRECT SUM CONSTRUCTION

<FRUIT>
(2 (o)
& G
& %
< &
<FIXD> <FIX >

P Y T T = P AP 1 2=
t = -

R

4.4 page 87

jtype-pname}> returns the name of the type of which
jtype-namej is an extension. Thus <unextend oranges> evaluates to
fix,
Individual elements cf a given type can be retracted by the

function RETRACT.

<retract <oranges 3>> evaluates to the fixed point number 3

Similarly we can define apples by
<define apples <extension appi fix>>

Then ve can define fruit as the union of apples and oranges.

<define¢ fruit <either !=oranges !=apples>>

<oranges 3> evaluates to foranges 3 which is a <fruit>

<+ <oranges 3> <apples 4>> is an error because zou can't add
apples and oranges! To a apples and oranges the function + must be

redefined in a local lexical block.,

<is? <fruit> <oranges 35> is true
<is? <fruit> 3> is <> (vhich is FALSE)

The actor <AS épattetni {injector|> will be defined to match
an object jobj} only if jobj} is of the type of the range of

jinjector} and jpattern] matches <RETRACT j}obji{>.

<prog [!=f1x org]
<is? <as :org oranges> <oraages 3>>>
org gets the value 3

<is? <as & apples> <oranges 4>> is <> (which is PFALSE)

4.8.8,% Direct Sums

-
i — [qp—

“ TR Y T XN

4.4 page 88

The direct sum of types can be constructed as the disjunction

of the extensicps of the types.
4.4.4.5 Homogeneous Tyges

<HCHOGENEOUS
in} |structere| jtype}> will define |nj to be a

homogeneous |structurej of {|typel.

<homageneous string vector character> defines the :type
string to be a homogeneous vector of characters.

<honogeneous bj vecto fix> define the t big to be
a homogeneous vector gf small %gxed po nt numbers. Tpe S

4.4.5 BExternal Interrrupts

The two kinds cf external interrupts that are recognized are
ATTENTION and ALARHM interrupts. The current form of external
interrupts is due to Peter Bishop. The attention handler is governed
by the global value of the identifier HANDLER!-ATTENTIOR which aust
have the apparent cosponents —-"PROCESS® and -"HANDLEBEK". If the
~"PROCESS™ component is <> then a running process ¥ill be interrupted.

The initial attention handler is

t1%<block (<oblist attention!-> <oblistd>)>

<repeat out
[~"labels"

[~"special"
[disaiss
<function [] <.out>>

Al g b BN e el L

4.4 page 89

;"the lahei function disamiss will
1izmiss the interrapt®]])
<print <eval <rs&d»>>>

1X<end-block>

The global valus of the identifier ALARMS!-TIHER is a write-
protected list of alarm specifications. PEach interrupt specificatioa

has the folluwing apgfarent ccmponents:

-"TINE" is the time after which the interrupt will occur. 7The
interrupts specifications are stored in order cf increasing tirge.

-®IDENTIFICATION® is an object which identifies the alars.
~"HANDLER" is evaluated when the alara goes off.

~"PRGCESS" is the frocess which is to b§ interrupted, If the
coreponent is <> then a running process is interrupted.

The global value of the identifier TIMERS!-RUNTINE is a write-
protected liist cf tiaser specitications for all the PLAKRER processes.
The ~"TIMERS"™ apparent component of each process is a sisilar w¥rite-
protected list of timers for the for the runtime accuaulated by that

process. Each interrupt specificaticn has the following apparent

cumponents:

-"TINMEW is the tise after shich thke interrupt will cccur. The
interrupts specifications are stored in crder of increasing time.

~“IDENTIPICATION" is an object which identifies the alars.
~"HANDLEB®™ is evaluated when the alarm goes off.

~"PROCESS™ is the frocess which is to bg igtezru ted If the
cosponent is <> then a running process is interr pteé.

The above data structures can be modified using the following

[A e

[ALAEN

4.4 page 90
functions:
<SET-ALARHN . o .
jidentification|
jtime]
|handler|

|process-to—-be-interrupted >
vill set an alarm vith (identification] which will go off after {tiae]

interrupting |process—to-be-interrupted| with jhzandler;.

CUNSET-ALARS . L)
jpattern- for-identification|
jpattern~for-tinmej}d>

unsets all alaras whose identification matches |pattern-for-

identification] and vhose time matches |pattern-for-time}.

<SET-TINER
|process|

jidentification]
iruntise|
fhandler|
|process-to-be-iaterrupted}>
sets a tiger for |process| wvith jidentification| which will go off

after |runtimse| interrupting Jprocess-to-be-intertupted] with

jbandler}. If jorocess| is <> then the timer counts the time used

for all processes.

<URSET-TINEER
{process|

jpattern-for-identification|
ipattern-for-runtine|>
unsets all the tisers for {process| whose identification satches

ipattern-for-identification] and whose runtise matches jpatteca-for~

rantimel.

4.5 page 91

4.5 Functions in Expressions

4.5.1 - "imitions of Punctions

Exanples of the valics of various expressions are givem beiow:
a evaluates to a

(a b c) evaluates :. a b cj

<+ 1 2> evaluates to 3

[3 {rest (a c)}] evaluates t , . c]

(a b <+ 2 3>) evaluates tc (a b 5)

(@ b {quote (a b)}) evaluates to {(a Lt a b)

If a has the value 3, then ([(.a)] b) evaluates to ([(3)] k)

4.5.1.1 Control Punctions

4.5.1.1.1 Conditional

<URPALSE
x> is the value of jx} if it is pot false and fails

i
»

otheryise.

<define unfalse
<functiop [x]
<cond
[-x)
[~"else” <faild}>>>

4.5 page 92
<0B?

-disjupcts-> evaluates each of the disjuncts in turn
until one of ther is rot false in which case it is returned as the

value of the function CR?, Othervise the value of the function OR? is

faise.

1%<blicck (<oblist oril-> <oblistd)>

Cdefine or? <function oyt [~"rest™ *a]
<repeat f v <>]3

<cond
{<empty? .a>
<.out v>]
<, v <eval <1 .a>>>
<cond
[.v
<.out ,v>J>
<chop a>>>>

1¥<epd-block>
<CH
~disjuncts~> is exactly like OR? except that if none

of -disjuncts~ is not false ther a siaple failure is generated.

tR<block (<oblist oril-> <oblistd)>

<{define or .
<function [~"rest® °g]

<unfalse €Oor?7 1.a>»d>>»

1%<end~block>

<anp?

-conjuncts~> evaluates each of the cchnjuacts in tura
unless one of thkex is false in which case it returns the value false.

Otherwiss it returns the wvalus of the last conjunct.

skt

et

<AND

4.5 page 93

1%<blaock (<cblist and!-> <oblist>)>

<defipe aad? <function out [-~"rest" 'a]
<repeat [[v ~%“true"

<cond
[<empty? .a>
<.out .v>J]>
<_ :v <eval <1 .ad>>>
<cond
[<not? .v>
<.out OG>
<chop ad>>>>

1%<end-block>

-conjuncts-> is exactly like AND? except that if one

of the -conjuncts- is false then a simple failure is generated.

<ROT?

<R0T

WY

1%<block {<oblist andl!-> <oblistd>)>

<define and .
<function [~"rest" ‘a]

<unfalse <and? !.a>>>>

{%<end-block>

jx}> is true if x| is false and otherwise |x|.

<define not?
<function [x]
<cond
[.x O]
[~"else™ -"tzue" }>>>

j1x}> is true if }x| is false and fails othervise.

<define not
<function [x]
<unfalse <not? ,x>>>>

LY WRVRORY A e

EI=NL m”.‘,ﬂ"n‘u A

\:‘;ﬁl{' WAt

Yoo
3

1

N *
g
,‘ N\,(PR L

4.5 page 94

<COND

schecker+ ¢activation-namet -clauses-> is the
conditional statement of the language. Each clause is of the fornm
fpredicate -body-] or c¢f the form #DECLARE {[-declarations~] predicate
~body-). The predicate of each clause is evaluated in turn until one
of them is not false. Then the rest of the elements of the clause are
evaluated in turn with the value of the last element being the value
of the function COND. If all the predicates are false then the value
of the function CCND is false. The function COND is due to John
Mclarthy.

<cond [<> S$]> evaluates to <>

<cond [<> §] [~"else" 6]> evaluates to 6
If the operater | is used in fron of a clause then the predicate of
the clause may be evaluated before or after the predicate of the next
clause or in parallel with it. The first predicate to converge to
anything other than false wins the race, There are obvious tiasing
errors in the indiscriminate use of | for clauses

<cond j[3 a] [4 b)> evaluates to either a or b

<CATCH
tactivation—~nane+
[-declarations-]
ix}
[1k] ~"TUPLE"™ |v]|]
~body->
establishes a catchpoint and then attempts to evaluate |x). If the

evaluation of (x| comes back witl: an abnormal exit then the catchpaint
is removed, (k| is bound to the type of exit and -body- is evaluated.

If control runz off the end of -body- then the abnormsal eoxit is

4.5 page 95

restarted. The abnormal returns shich are currently defined are of

the following argument tuples:

&~?8381CBE" jactivation| -values~-] for a restoration of the
ailpoint Jactivation| with -valyes-,

[~"EXIT-CALL" 1fl Iaxgunentsl for a non_local exit call of |f].
the expressions |f| may be either an activation or a junction.

~"EXIT" jactivaticn| |values|] for a non local exit to
activation} with ~values-.

E*"AGAIN? jactivation}]] for a non local reiteration of
activation!.

[~"TERNINATE"] fcr a teramination of the process
For exanple

<preg []
<prog foo []
<catch []
<.foo 3 a>
:"exit .foo with 3 and a"
{k ~"rest®" v]
<cond
[€<is? .k ~"exit™
<.bar
<print
{caught
exiting
with
«VIXD PO
4>
prigts (caught exiting with {3 a]) and then evaluates to 4
<+
<catch []
4
[k ~"cest" V]
<cond
{<is? .k ~"fail">
<priat "you can't get herel™> D>
<print 5>
<fail>>

pcints § :d tlen fails without printing anything more.

. YOI NG ST SN R T T

4.5 page 96

<catch []
<+ <print 4> <faild>>
[k ~"rest" v]
<cond
[<is? .k -"fail">
<print {caught failure)>]>>
will print 4, print (caaught failure), and then continue failing.

<FAILPQINT
+checker+

+activation-nane+
[-declarations-)
jexpr|
[+messag+ +activation+]
-body->
establishes a failpoint and then evaluates Jexpr|. If the evaluation

does not produce a failure then the value of the function FAILPOINT is
the value of jexpry. If the evaluation of Jexpr| or some subsequent
evaluation ultimately fails back to the failpoint then the failpoint
is disestablished, the identifier |message] is bound to the failure
pessage, the identifier Jactivationi is bound to true if the failure

is to a higher level activatioa, a2nd -Lbody- is evaluated.

<failpcint [] <fail> [m a)
<print hello>>
prints hellc and then restarts failing

<failpcint E; 3 £l aj)
<print > evaluates to 3 but if a failure

ever backtracks to here
then 4 vill be printed.

<prog foo .
<failpoint [] 9 [= a]
<.foo a>
:v"egxit ,foo ¢ith a">
<fail>> eovaluates to a

<RESTORE

jactivation] ~values-> will restore the failpoint

Lot te s

4.5 page 97

named by jactivation| and exit it with -valnes-, It is an error if

lactivation] is not tbe activation of a failpoint. The function

RESTORE is due to Drew McDeramctt.

<prog vay-oat {{a 3]]
<print
<failpcint out [] .a [a aj
<cond
[<is .a 5>
<.vay-cut .a>]
[~“else"
<restore .out .a> P>>
<{inc!-persistent a>
<faild>> initializes a to 3, prints 3,
increments a to 4, fails back irto the failpcint, restores the
failpoint, prints &4, irncrements a to 5, fails back into the failpoint,
and finally exits .way-out with the value 5. The following function
does not represent good programmirg practice and is not origimal, but
it dces illustrate the use of RESTORE. The function <CHANCBES
jidentifier| jexceeded|» will decrement the value cf jidentifier} each
time a failure propagates through it until the value of jidentifier]
becomes less than or egual to zero at vhich point |exceededj will be
evaluated,

1%<block (<odlist chancesi-> <oblist>)>

<define chances
<£unction ['i -~"optional" [‘'e *'<error>]]
<failpoint £ [] <> [~"optional"]
<_ :.-i <~ ooi 1>
<cond
[<is <less= 0> ..1i>
<eval .e>]
[~"else"
<restare .f ..i>P>>>

1%<endblock>

<BRULE
+checker+ tactivation-name+ [-declarations-] §x{ -
clauses- —--~"ELSE"- -nct-fournd-> where the +activation-nasze+ and

*checkert+ are optional gives a rule for the expression |x{. Bach

s | e AR

4.5 page 98

clause is of the form [|pattern| ~body-] or of the form #DECLARE ([-

declarations-] |pattern| -body-). The value of IX] is matched against
tlke pattern of each clause until a match is found. If there is only
one e€lement in the clause then the value of the function BOLE is <O
which is false. Otherwise the value is the value of the last element
of the clause. If ncne of the patterns match then the value of the
function BULE is the value of -not-found- if it exists or is <> (which
is FALSE). If a clause is preceded by | then the |pattern] of the
clause may be matched against x| before or after the pattern of the
next clause or in parallel with it. If more than cne ipattern]

matches then the first one to match wins the race,

<rule [] 3 {!=Fix]> evaluates to <> which is false

<rule [x] a [_x (.X .x) }> evaluates to (a a)

<tule [] c [{d e]> evaluates to <

<rule {1 h [1a] [b b] [3 c]> evaluates to b

<rule [] <~ 3 D [1b][<+ 1 1> c] ~"else” 5>
evaluates to ¢

<rule [] a [b 3] ~%else™ 7> evaluates to 7

<rule [] a {b 3]> evaluates to <> which :: false

<rule [] 5 |[<greater 3> "big"] [<less 7> *small* D
could evaluate to either ™big"™ or “ssall*™.

4.5.1.1.2 Block

<DECLARE
~declarations-> declares new top lev2°. local

identifiers within the process which calls DECLARE. It retarns a list

of the identifiers declared.

4.5 page 99

<ACTCE-CALLER

jobject]
jtail)
jlocative]
jchoicei
jpattern]
{bindings—for-pattern}>
enables functions to call the pattern satcher to match |pattern|
against objects efficiently in special cases.
<cALL |{junction-nase|

[<}f) -send-args~> |state-path-for-f] |recosmendation-

igi>
binds the identifier) junction-nama] to the junction definedé by CALL

for-f1)

and then calls |f]| witk the specified arguments. The expression |f]

may be any of the folloving:

a label functicn vhich will be invoked.

a process vhich will be resused.

a function which vill be invoked.

a port in vhich -send-args- will be queued.

an activation which will be exited.

a junction wvhich will be invoked.

a pattern wvhich will atteampt a pacttern directed iavocation

The recommendation must be of one of the foilowing foras:

[~"USE® -pats-] says that function vhich matches one of the
patterns -pats- BUST be used.

LA acaie o g VRN P

PR SRR LT SR e]

4.5 page 100

[~"TRY" -pats-] sas that the functions which match the
pattterns -pats- are be tried.

[~"PILTER® Jh|) syas that the functions

<jh
IRl <CARDILATES FUMNCTIION |f] |state-path-for-£f|>>

are all to be ‘invoked {(possibley in parallel).

An ordinary function call <{f} ~args-> is eguivalent to

<CAlLL
<jf) -args->
{PUNCTIOR ([y] .y>>

vhere y is arbitrary identiffer. The form of the argument |g| as a
function is due tc Jerry Sussman. However, if |g| is of the fora
[Jfunction] |state-path] then it allows for a pattern directed
resusption through }state-path). We can define a function idivide of
n and d which returns the quotient and remainder of the integer

division of n by 4.

<define idivide <function idivide [n 4]

<repeat
({r .0} {q0]]
<cond

[<is? <less .n> .r>
<.idivide .q .r>
;"exit .idivide with .q and .r"* P
<__ 3T <= D I
<inc g>>>>

Now if we evaluate

{a !{idivide 7 31} b] evaluates to [a 2 1 b]

<call
<idivide 7 3>

<function [a b]
<priat .ad>
<priant .b>>> prints 2 and then priants

L oo

w—" .

——— _——u’\'

4.5 page 101

<CALL . .
|junction-nanme]

<1f} ~arqumnents->

il
jstate-path|>
vhere |f| is a label rrocedure exits tc the level where the label .

function |f}] is defined and then invokes jf| vwith the specified -

arguments-, The expression <}f] -arguments~> is an abbreviation fcr

<CALL
<1f| -argusents->
<PUNCTION OUT [~"TUPLE* X] <.00T §.X>>>

Label) procedures and junctions are generalizations of labels. Label
procedures are defined using tke ~"LABELS"™ coanstruct in block
declarations, See the example uader PROG. The function §gf is
applied to the values received if the process which calls CALL is
resuned. Bxecuting <.)junction-pame| -send-args-> will exit to the
level wvhere |junction-name] was defined and then invoke <|g| -seand-
args->. If the optiomal argument |gf is not present and {f| is
defined in another process then the rrocess which calls CALL is
terminated.
<TEMPORARY

{junction-namej <{f| -arguments> |g|> sakes a CALL to

If1 such that all the tentative side effects within the scope froa the

point of the call to the exit of |f] are undone.

<prog [[x 0]]
{temporary
<<functioa []
< _x &

:"tentatively set x to &4">>>
:"x is restored to 0 because the

T T R T TR

4.5 page 102

call vas temporary"
«r> evaluates to 0

<TEHPORIZR
jactivation] -values-> exits jactivatiom] with -
values- undoing all the tentative side effects wvithin the scope of

jactivation].

<prog [[x 0]]
<prog out [}

<_ _x W

:"tentatively set x to &"

<temporize .out>

:"exit the activation .out undoing all
the tenative actions in
the scope of the activatioa">

«X> evaluates to 0

<prog ([x 0]
~"labels*
[£f <fuaction [] .x>]
:"define £ to be a label
function of no
arguments that returns the
value of x]
<_ _x &
;"tentatively set x to 4"
<temgorize .f£>
:"invoke the late) function .f
undoing every thing which
is tentative that has been dome since

vas defined”)> evaluates to 0

<prog [[ﬁcgf} ouat
<

<fanction [w]
<L _X W
<{teaporize .out .x>>
(54
<function [y]
<primt .x>
<print .y>>>> will print 0
and then print &

TV T DY SRS

4.5 page 103

<STRAIGHTEN

<{f| -argumcats>> sakes a CALL to Jf! such that a
simple failure vwill not be caught withia the scope fros the poiat of
the call to the ex ¢ of |fl., <tThe function STRAIGHTIRN grey out of
discussions that I had with Jeff Hill and Terry Winograd. A very
similar concept is called "fast back"™ in parsing gramsars. The

expression !s{fora| is an abbreviation for <STRAIGHTEN {foraj>.

<prog {[a 3] b]
<
<vel _a _b>
8>
<priant .a>
<cond
[<is? .a &
<fail>]
-b> assigns a the value 4, prists 4, fails
back inside vel, restores a to have the value 3, assigns b the value
4, prints 3, and then finally evaluoates to §.

<prog [[?333 b)

<vel _a _b>
4>
<primt .a>
<cend
[<is? .a @
<faild>)]

.b> assigns a the value 4, prints &4, fails
back through _ since it has beea straightened but restores a tc have
the value 3 in the process, and thus the whole prog fails.

<STRAICHTEN-UP
lactivation|> straightens the investigation by setting

up a failpoint which will ccavert a siaple failure into <PFAIL

lactavation)>.

4.5 page 104

<define straighten-up <function {activation]}
<failpoint .activation
[message aciiva]
<cond
[<not? <or? .message ,activad>
<fail <> .activation> P>>>>

<PERSISTENT
j|jenction~nanme§ <jf] ~arqumentsd> |g}|> make3z a CALL to
}£} such that all changees within the scope from the point of the call
to the exit of |f| are persistent. That is taey wvill not go avay
automatically by backtracking., The expression ipjformj is an

abbreviatiocn for <PERSISTENT |fora}>.

<prog out [[a 3] b]
<failpeint [] <> [a» a]
<cond
[<is? .a 3>
<.out "wia®">]
{~"else"
<print [a changed to .a]
<,out "lose"> >
<_ <vel _a _b> &>
<print .a>
<fail>> initializes a to 3, tentatively zliters
a to 4, prints 4, fails back inside w11, restores a to 3, tententavely
alters b to 4, print 3, fails back to the failpoint, notes that a is
still 3 and so exits the activation .out with "win",

<praog cut a 3}b
prog (fg lpognt][] <> [n aj
<cond
[<is? .a 3>
<.nut “win®">]
[~"else"
<print [a changed to .a P
.0t "lome™> P>
ip<_ <vel _a _b> %
<print .2>
<£aild> initialized a vo 2, altexs a to &,
prints &, fails back isto the failpnint, actas that a is nec loager &,
and so 3exiis the activation .ost witk “"lose”.

TS ST TR T e —

4.5 page 105

£IS?
tpatterni jexpression] |is-table| |is-apply-table]> is
true only if }pattern| matches the value of Jexpression]. The (is-
table] must be a TYPE-VECTOR and so must the |is-apply-tablej. The
function IS matains twc lccal identifiers TABLE!-IS and APPLY-TABLE!-
IS which are respectively bound to]is-table] ané iis-apply-tablej}.
<1S
|pattern} lexpression| jis-table} |is-apply-table|> is
true if jpattern| matches the value of jexpression} and generates a
simple failure othervise.

<

|pattern| |expression]> is an assignment statement.

The value of the function _ is the value of jexpressionj.

<block (<oblist assigni-> <cblist>)>

<define .
} Tfunction [?pnattern value]
<eval 1'<is .pattern ‘.valued>
.valued>>
r
<endblcck>

<HATCH?
fpatte=zni) jpattern2}> is true if jpatterni} satches
jpatternzj and is false othexuvise.
<EATCH
jpatterni} jpattern2}> is true if |patterniy sacches
jpatiecnz]| and gemerates a siaple failure otherwise.

<EYAL

4.9 page 106

§ix} jbi tapply-tablie|> evaluates (x| using the
bindings)b} to look up the values of identifiers and japply-table| *o
apply objects accordirg to their types. The japply-table} must be a
TYPE-YECTOR. The fuaction BVAJL naintains local identifiers TABLR!-
EVAL and ARPLY -TABLE!-8VAL to hold the current jJeval-table| and
japply-tabie| respectively.

<Quoz2

{x]> is |xj. We may abbreviate <QUOTE x> as *}|x|.
Yor example <prog [[x 1]] *<+ .x 55> evalutes to <+ .x 5>, MNotice
that according to the following definition QUOTE write protects its

arqument.

<define gqguote <function [*'x] .x>>
<SUPPBR2SS
iXi> suppresses evaluation of the form {x}. We zay

abbreviate <35UPPRRS3S |x|> as !'{x]. Pror example <prog [{x 1]] 1'<+ .x

52> evaluvates teo <+ 1 S,

<PROG
+checker+ e¢astivation-name+ Jdeciaration-
specification) -body-> where the tactivation-same+ and ¢clecker+ are

optional is a namd program block. The jdeclaration-specificatioa)] is
of tie fore
[-ordinary~declatations-~

Y LABRLS® -inhel~deciarationc
~"INTURMALSY -iaternal-declarations-]

-

e ——— T, TP T G T PRI AW tv ——

4.5 page 107

vhere LABELS and INTERBALS are optional.

Each jinternal-declaraticn] iz of the following form:

[sf& <FUNCTICN |formal-parameters| 'body->; the identifier f]
is declared to be an internal function.” A$ such it has

special access to the local identifiers of the procedure to
vhich it is internal. The identifier |f]| say not have its
vaiue changed. The folloving constructs are very efficieut
vithin the procedure vwhich delares |f| to Le irternal:

<!£l ~a2rqQquments->
{1f}| -argurents-}
1{}f} ~argyments—1}
Internal functions provide a rapid means of comaor
subexpression evaluation. The curreat fors of internal

functions is due to Feter Bishop and Pave BReed.

Rach jordinacry—declaration] is of the following fore:

{ {attribnte~-specificaticn] -bindings-) causes the identifers
in the bindings to he rebound with the appropriate jattribute-~
specification]

where each binding auvst be one vf the following twc foras:

|identifieré irdicating that the identifier is rebourd and
not assigned a value

[tidentifier) lvalne]] which rebiads the jidentifier| with
an initial fvalae)

vhere lattribnta-specification: rust be one of the
followkng:

jaltribute} where e@ach jattribute! must be one of the
following:

1gatte:n1 indicating that the value of the
entifier must matCh jpatteraj. A common pattern

is <OFP-TYPR [type-nane|> (abbreviated I=jtype-
nase}) vhich indicates that the value of the
identifier nvst be of type jtype-naael.

B Caan “ o yyw"a-:——-:ﬂ‘.w

4.5 page 108

~"SPECIAL"® indicating that each of the identifiers
is special meaning that it can be used as a free
identifier in other procedures

[-attributes-]

Each |label-~declaration| is of the forn

[1£] gfuactionlg so_that execution <Jf}] -arguaments-> vil%
cause ccntrcl exit to the point where 1f? was declared and

jfunction] to te applied to the evaluated -arguments-,
If ceontrol falls through the bcttow of the function PROG then it takes

as its value the value of the last statement of the body. If cailed

as a procedure a label exits to the activation in which the label was

hound.

<prog foo [[x 1]

~"labels"
{ nonfatal
<function {z]
<print {aon-fatal .z)>
<_ ix a>
<again .food>>)]
[fatal

<function [z]
<print (fatal .z)>
<.f00 lose>
;"exit .foo with
lose®>]]
;#ve have two label procsdures
ronfatal and fatcl®
<prog bar [[Y .x] [x 1]]
<cond
[<is? .y D
<.nonfatal first-tised>]
[~"else"™
{.fatal second-tise> P>>

evaluatss as fcllows:

f00 i3 entered

X i3 ipitialized to 1§

the lakels fatal and nonfatal are bound
hbar iz eatered

t,
Magiait ey s

4.5 page 1C9

Yy is initialized to 1
x is initjalized to 1
<.ponfatal first-time> is invoked
causing us to
exit BAR
(non-fata’ first-time) is printed
X is changed to a
bar is entered
Yy is initialized to a
x is initialized to 1
<,fatal second-time> is invoked
causing us to exit FOO
{fatal second-~time) is printed
fno is exited with the value lose

<BLOCKBIND i . .
+checker+ tactivation-name+ [-declarations-]

[~"BINI™]block-bindingsj|
jrelative-bindings}
{block-nane}

.. Iblock-declarations]| . . - .
Jagainer})]

-

-body->
is exactly like PROG except that before the -body- is executed a name

iblock-nare] and a set o. blcck style (e.g. PROG, FOR, etc.) bindings
§{block-declaraticns| are established using |relative-bindings| to look
up the values of any free identifiers. The resulting kinding
environment is bound to the identifier {block-bindings|. If <AGAIN
jpilock-nanel> is called, then Jagainer) is invoked. The functioa
BLOCKBIND is useful for writing interpreters. #e could define REPEAT

as follows:

<define repeat
<functlicn 2

[~"bind"™ b1 [*name *decs -~"rest"™ "kd]]

:*let b1 be the bindings before p2 was entered
and jet name be the name of the repeat,
decs be its declarations, -
and bd be its body"

<blockbind »% [[iter .bd]]

;"let iter be the rest of the body

to be evaluated"
[~*bind"™ b2

«b1

.hame

. decs

<prog []
<_ ziter .bd>

"if <again .name>

4.5 page 130

is executed,
then reinitialize

iter"
<again .p1>>]
<ccnd
[<empty? .iter>

;"if the bedy .jter is eapty®

<_ :iter .had

;"set iter to be the whole body”

<again .pt1> P
<eval €1 .itexr> .2
<chop iter>

:"set the body iter to the rest of itgelf® .

<again .p1>>>>

<PROCBIND . .
+checker+ tactivition-name+ [-declarations-]

[~"BIKI" |procedure-bindings}|
frelative-bindings)
|procedure-nane|
{procedure-declarationsj]

-body-> is exactly like BLOCKBIND except that it takes

procedure style declarationms (e.g. FUNCTION and ACTOR} iastead of PROG
style declarations.

4.5.1.1.3 Escape

<CALL

j Junction- nanej
<jactivation! -values->
1£1

§state-pathj>

leaves the activation jactivation] with the given values,

expression <jactivatjon| -~values-> is an abbreviation for

The

4.5 page 111

<CALL .
<lactivation| ‘-values->

<PUNCTION [X] .I>>

vhere X is an arbitrary identifier. <The function |f| is applied to
the values received if the process which calls CALL is resumed. If
the optional argument [f] is not present and +activation--name+ is
defined in another process, then the process shich called CALL is
terainated.
<AGAINM

{junction-name| jactivation! }£f{> reiterates the
Jactivation|. If Jactivation’ is an activation in another process,
then the process swhich calls AGAIN will apply the function |f] to the
values with which it is resumed. 1If the optional arguament {f]| is not
present and Jactivation] is defined in another process, then the
process which called AGAIH¥ is texminated., It is illegal to execute
<AGAI¥ Jactivation]> until all the declarations of jJactivatioa{ have
been processed.

<prog foo [}

<priat 1>

<again .foo>> prints 1 and tben priamts
1.prints 1, etc.

< b . bar> 3
prog °5P£52t<? 3§°C.E9E geibhaég)>> causes an error

<FAIL> generates a simpie failare in the smatch.

<7AIL jmessage]l> causes a failure with a |msessage| to be
reported above. A failure with a msessage can be caught only by the
function FA. CINT which is explained above.

e ———

— — T . A e T

4.5 page 112
<rail

Imessagel |place| |f{> generates a failure to {place]
and then a failure with a fmessagej from there., The jplace} may be
either a process or an activatiun., The function |£f] is applied to any
arguments received by being resused by another process. For example
down inside a function whose activation is {a| and which has been
called with a pattern directed invocation executing <fail -~"caller®
ja{> will signal that none of the other altermative functioas should

be tried.

4.5.1.1.4 Repetition

<REPEAT

+checker+ ractivation-npame+ [-declarations-] -body->
waere the +activation-name+ and ¢checker+ are opticnal executes the
body =epeatedlj until the body is exited by calling one of the
functions CALL or AGAIN. Iterative programsming in terss of repeats
has the advantage that all lcops are necessarily nested. The repeat
loop may be exited with the value x by <.tactivatioa-namse+ x> where
tactivation-nase+ is the nzne of the repeat loop. ZExecuting <AGAIN
.tactivation—-name+> after —-3eclarations~ have been processed tramnsfers

control to the first elemeant of -body-.

<PFOR
schecker+ +activation-game+ [-declarations-]
[{~"INXTIAL" -ipitial-action~]
[~"STEP>® ~-step-action-]
[~"TEST" |predicate| —test-action-]]

o~ A rwm

4.5 page 113
~body->

vhere the tactivation-name+ and ¢checkert+ are optional is defined to

be an abbreviation for the c<ollowiag:

<PROG ¢checker+ tactivation-name¢ [-declaraticns-])
-irtial-acticn-

<REPEAT []
<COND
[ipredicate]
-test-action-
<. +activation—-name+ <>>

:"exit .+activation-name+ with <O"]>
-body-

-step~action->>

The FOR loop may be exited with the value [x| by <.+tactivation-name+

ix]> where tactivaticn-name+ is the name of the FOR loop. Executing

<AGAIN ¢actavaticn-name+> jumps to the point labeled AGAIN-in® tae*

expansion above. Alternatively, ve have

<POR +checker+ tsactivation-name+ {-declarations-]
[[~"INITIAL" -initial-actlca-]

[~"TRST" |predicate| -test-action-]
[~®LIST" jitem] ~"IP" |condition}]
{~"STEP" -step-action-]]

~body~>

vhece the tactivation-pame¢ and +checker+ are optional is like the FOR
loop previously descridbed except that the value of the for statement
is the list of all the itess such that the condition is srue. It is
equivalent to the following although it is isplemented much sore

efficiently because it only does one cons for each ites in the value.

PRI T Y N T

Logand "SI VT

L

4.5 page 114

<roR

+checker+
tactivation-nanme+
[~declarations-
[COLLECTED ())]
:"declare COLLECTED to be initialized to ()"
[[~"IRITIAL® -initial-action-]
[~"TEST"
jpredicate]
~test—-action-~
<.tactivsation—nane+ ,COLLECTEDD>
:"exit .tactivation-nase+
uwith .collected™]
[~"STEP*
<CO¥D
[jcondition}
;"add jites| oato the emd of
COLLECTED if condition

is met®
(-
$CCLLEC?ZED
(t .COLLECTED
jitem])>P
. ~step-action-]] . . e e R
~body->

In addition to being able to list the elements produced we can append

or concateaate then,

<POR ¢checker+ s+activation-nanet [-declatatigas-}
([~"O0E" jpatterm| {(value] ~fimal-action-]j]
~bod y->

shere the tactivation-pase+ and ¢checkere are optional executes the

body of the loop ciace for <2uich time that pattern matches value, <REST

value>, <REST value 2>, etc. until <REST value n> becoaes sspty.

OR
< ‘+ckeckeres tactivation-name+
[-declarations- [X |value}]]
[[~"1BS2*
<1S? <EAPTI> .X>
- e e ;"if 2 is eapty then quit®

4.5 page 115

~final-actions-]

[<®SIEE"
:"set X to the rest of X"
<CROP X>]]
<CCHD
[<IS? |pattern| .X>
-body-

;"if |pattern| matches X
execute -body-" 1>>

<POR #*checker+ t+activation—-name+ [-declarations-]

[[~"IN" |pattern] |valuej -final-action-]]
-bedy->

vhere the tactivation-name+ and +checker+ are optional executes the

body of the loop once for each time that pattern aatches <1 |valuel>,
<1 <REST jvalue|>>, <1 <BEST jvalue] 2>>, etc. until <BEST jvalue| n>
becomes empty. The -"IN" variant of a FPOR loop vas invented for LISP

I1. the above expression is egquivalent to:

<FOR ¢checker¢ tactivation-name+
[-declarations~ [X |value}]]

{[-~"TEST"
<IS? <BENPTY> .XD
:%if X is eapty then quit®”
jfinal-actionsi]
[~"sTEP"
1"set X to the rest of I"
<CHOP X>])
<COND
[<IS? |jpattera] <1 .X>>
-body-

:+"if |pattern|] matches the
first eleament of X
then exucate -body-*]>>

Por example vwe can define a function which returns the reverse of a

list as follows:

<define reverse <function rev [x]
<for [tirst {aaswver ()])
[[(~%"in" :first .x]

[~"final"®
<.rev .aansver>
sMexit .rev with .ansver"])

sansver
(.first !.answer)>>>>

Thus <reverse (a b c)> is (c b a) The following function returns a

list of the fixed point nusbers in its arqument:

<define nuabers <function [x]
<for [[!=fix first]]
[[~%in"® :first .x]
[~%"list" . x]]>>>

Thus <nusbers (4 a (3 4) 5.0 6 [3])> is (4 6).

<FOR ¢checker+ +activation-name+¢ E-dcclaratiogs-é
([~"INC"™ }j} ~"BY" (i} ~"DNTIL" |predicate]]]
-body-> is equivalent to

<FOR ¢checker+ ¢activatjion-name+ [-declarations-]
[[~"TEST" |predicate])

[~"STBP"™ <INC 13I 1i})>]]
=body-~->

<FOR tchecker+ ¢activation-name+ [-declarations-]
([~"TINC® |J] ~"BY" i} ~"THRU® jlimit{])
~body-> is equivalent to

<POR ¢checker¢ tactivation-nane+
[-declarations-

[S <ABS]i]>)
[L 1}inaity)]
+"S is the absolute value of the step
size mhich is frozen on entrance
to the POR loop"
+"the liait L is also frozen
on entrance to the PFOR loop"™
[[~%"INC" |3j] -~"PRY" .S

4.5 page 116

4.5 page 17

~"ONTIL"
<IS? <GREATER .L> 1ji>}]
~body~->

<FOR +checker* #+activation-name+ -declatatioqs-g
[[~"DEC®" jj} -"BY" ji} -~"DUNTIL™ |predicate} }]

~-body-> is equivalent to

<POBR +checker+ ¢activation-name+ [-~declarations-]
[[~"TEST" jpredicate]]

[~"STEP" <DEC {3ji 1i}1>]]
-body~>

<POR +checker+ t+activation-name+ &-declargtions-]
[[~"DEC" j} ="BY" ji} ~"THRU™ Jlimit|]]
-body-> is equivalent to

e o & @e.

<FOR ¢checker+ +activation-name+
[-declarations-

[S <ABS }i}>]
(L jlimit]])
[[~"DEC" |j] ~"BY" .S ~"UNTIL" <IS? <LESS .L>

131>])
~body->
<FOR +checker+ +activation-namet+ [-declarations-]
[[~"THRU" }limit]]]
-body-> is equivalent to:
113 <FOR +checker+ +activation-name+ [-declarations- [I

{[~"INC" I -~"THRU"™ <ABS |limit|>]]
~body->

“050 10 1. 5 Bnlt 1'PIOCQSS

4.5 page 118

Often it is convenicnt and more efficent to have more than one

BATCHLESS process in existence at one time, By a process we meanl a
program counter together vith a stack. Primitives are needed for the
following functions:

1. Creating processes

2. Causing them to run
3. Terzinating processes

G. Interrupting processes

S. Single stegping frocesses

<STEP
ip! In}] jcondition|> executes the process |pi{ for |nl
..elementary steps unless the jconditigp) is met in .which. case it PO
re turns inmediately. 7The value of the funmctica STEP is the number of
elementary steps actually ezecuted in the process |p|j. The existence
of the function STEP means that PLANNER functions are not necessarily
MONOTONE in the sense of lattice theory. A function f will be said to
be COMTAINED ir a fumnction g if wherever <f x> converges thea <g x>
converges and furthermore <f x> = <g x>. A function h will be said to
be BCWCGTCNZ if whenever x is contained in y then, <f x> is contained
in <f y>.
<IBVOKE
{ junction-nase] jp} In] jcondition] |£}> executes the
process {p}{ through jn| complete procedure invocations unless the

jcondition] is met in which case the valee is the number of

e

4.5 page 119

.invocations completed. In this case |condition] is a function which

is applied to the values returned by the invccation. After the
invocations of |pj are coamplete control returns to the criginal
process where |f| is applied to the values returned by the last
iuvocation in |p}.
<PROCESS

1f] ftcp-activation] jscheduler|> creates a new
process which begins execution with the |f}. The expression <PROCESS>
returns the name of the process in which it is executed. Processes
enable us to have multiple lcci of control. We can hold our place in
the problea solving prccess in scme of the processes while advancing
others. If |f] is a function then the process expects tc be resumed
with argueents for jfj| the first time that it is entered. If [f! is
of the form [|g} Jport]] then it will hang on |port} and apply the the
function §g| to the container of values that it extracts from |fportj.
The |top-activation] specifies hov much of an existing process aust be
copied to start off the new process. Copying a process enalbles us to
preserve its current state and still allow it to ccntinue exectuon,
The process is schesduled by the process |scheduler}. The value of the
function PROCESS is the name of the created process. The garbage
collector will terminate a process before it collects the storage for
the process. If a process returns or fails off its top them it is
tersinated. The function }f; can handle norsal returns and failures

as it pleases. A process has the followving apparant cosponents:

Y, s e e Y T P AT T RIS T Y

4.5 page 120

-WSTATUS" is the status of the process. The status is be orne
of the following:

*"RESUEEA
-

BLE™ -"STOPPED® ~"2RUNABLE" -~"RUNNING"
~"TERMINATED

~"SCHEDULER™ is the scheduler c¢f the fprocess
<“"RUNTIME®™ is the runtime charged to the trocess.

~"TIMERSP®is a list of timers for the process. The structure
of a timer is explained above in the sSecticn c¢n 1interrupts.

<CALL
{ jupction~name|
<ipi ~send-args->
|function]
jstate-path|>
resuges execution of the process |p| with the arguments -send-arys-

from the point that control last left it and suspend execution of the
calliag process. When the process which vas suspended by the CALL
statement is itself later resumed then the érguients teceived.ére
passed as paramseters tc {functionj. If the optional argument
jfunction| is not present then the process which called CALL is

tersinated. The expression <]p]| -send-args-> is an abbreviation for

<CALL
<}pl -send-args->
<FUNCTON OUT [-"TUPLE®" X] <.0UT 1.X>>).

Yo. example <<process foo> 2 a> causes <foo 2 a> to be executed in a
new process.

An example of the use c¢f more than one process is in computing
the fringe of an expression. The fringe of an expression is defined
to be the expression with all interior parentheses removed. For

example the fringe of (a (b) <) is (a b c) and the fringe of ((a (((b)

Cragend

4.5 page 121

c)))) is (a b ¢). HWe conjecture that the problem cannot be solved in

pure LISP without the use of the primitives CONS, LABEL, oc FUNCTION.
e would like to write an efficient program to test whether twvo s-
expressions have the same fringe. The proktlex is analogous to testing
vhether two derivaticn trees for a context free gramear ' .ive generated
the same string. The functicn fringe? is not intrinsically
interesting. Its importance lies in that fact that very similar
contraol problems arise when a problem solver is trying to extract
information frcm two different areas of investigation at once. We
vould like to be able to hold our place in one of the investigation
spaces vhile we resume computation in the other. Multiple processes
give us the capability which we need. The following symmetric fora of

the definition of fringe? is due to Bot Frankstonm,

<define fringe?
“function cut [x y)
<prog
[[Ex
<process trec-walk>
;"create a process which begins execution
with the function tree-walk"]
[pY <process tree-walkd>]]
<.pX .x <process>>
<.pPY .Y <process>>
<repeat [teaporary)
<cond
[(<==?7 {_ :temporary <.px>> <.py>>
<cond
{<is? .temporary ()>
<.out ~"true™> }>]
[~"else" <.out <O>I>5>>>

<define tree-walk
<function [x p]

<.p>
;"the first thing to do is to resume
the main process with no arguments™

-

TYCTT e TP TIY E v

4.5 page 122

<tree-walkt .x .p>

;"after doing the complete
tree vwalk resume the
main process with the
special valua ()"

<oF () 2>>

<define tree-walk?
<function {x p]
<cond
[€empty? x>
+"if the structure is
eapty then return
and try to find another atoa"]
[<is? !=atom .x>
s"resume the main process with the
atom we have found®
<ep «XD]
[~"else"
<tree-walk1l <1 .x>>
;"find the atoas in the
first element of .x"
<tree-valk1l <rest .x>>
:®find the atoas in the rest
of .x and then
e o - e oot e) réturn ‘td finding atoms ¢n
the remaining bramches" >>>

<PCRT>

creates a structure which contains two componteats:

EXPORTS!-PORT is a ring which holds a queue of containers of
exports waiting in the port.

INPORTERS!-PORT is a ring which bolds a queue of processes
waiting to take containers out o%f the port.

At any time either or both rings may Le empty. Our concept of a port
is derived fros Rudy Krutar, Bob Balzer, and innumerable operating
systeas, The idea is that the port acts as a channel through which
conmerce may be transacted with some frrocesses exporting through it

and others importing what the others export. The comaerce is

TN Jope e e

.:/T-' —~r TV TSR Y B G a2
-

= / e : ~

4.5 page 123

coxpletely containerized. An expression <CALL <|port| -values->> will

place -values- in a contairer in Iport}. Jhen a process imports from
a port it will get one container of values to apply to a function.
Eapty containers are allowed in which case the function of the
importer will be passed no arquments.

Another example of the use of multiple processes occurs where
there are *vo line printers and a nusber of processes which wonld like
to get expressions printed. Suppose that <PORT-TO-PRINTERSY> is the
port to whick things tc be piinted are exported. Purterasre let
SPRINT-CHANNEL 1> and <PRINT-CHANNEL2> be the channels for printer1 and
printer2 restpectively.

<define printer
<function [prirt-channel]
<repeat []
:"resove the next eleaent
froe the priat-port,
print it

on the print chanmpel,
and repeat"

<call
il
[
<fuanction {x]
<prinmnt
) X
*- B .priant-

channel>>
<port-to-printers> }>>>>

<define 3etnf~ptintets <functioa []
<cal

<<process printer>
s"create a process for driving
the first priater and pass it
its print channel®
<print-channel1>>
(9 >
<call

4.5 page 124

<<prccess printer>
<print-chaanel2d>>
[P>

After <setup-printers> has been called, then <<port-to-
printers> [x]> will cause |x} to be gueued and printed in its tuxn by

one of the printers.

Now ve would like to show how to do fringe? using ports

instead oi resuses.

<define fringe?
<functioa out {x y)
<prog
[[port~-x <portd]
[port~y <portd>]
{px
<process [tree-walk .port-x}>
s"create a process vhich begins execution
hanging on .port-x
with the function tree~walk®]
s"at this point an activation of .px is vaiting
in .port-x"
{ pYy <process {tree-walk .port-y;>]}
;"at this pcint an activation of .py is waiting
in .port-y"]
<call
<.port-x .x .port—-x>
:1"export .x .port-x te
the port .port-x"%
[.port-x]
;®"vwait for a container of valges
from .port-xv>
. "at this poiat an activatien of . T T P
-px is waiting
in .port-x©
<call <.port-y .y .port-y> { .port-yJ>
;¥at this point an activatioa
of .py is waiting
in .port-y"
{repeat [tempora-y]
<cond
{<==7?
1<_ :teaporary
<call
<.port-x>

w ';T. rer—— = - TEEY Y R ORI TS N Baacac i

4.5 page 125

[.port-x>>
:"the | allows the two
arguments of ==? to be computed iu parallel and thus allows the
processes .px aud .py to rum in parallel to find the next atems in .x
and .y"
<call
<. port-y>
;"export
an eapty container
to .port-y"
[.port-y])
" s"wait for a container
an .port-y">>
<cond
[<is? .temporary ()>
<.cut -~"true">1]>]
[~"else" <.,cut <O>]>>>>>

<define tree-valk
<function {x p]

<call
<,p>
;"export an empty container of values
to the port .p"
t-pl
;®vait for a container of values
on the port p™
<tree-valkl .x .p>
:®after doing the compliete tree walk
export (* on the port .p®
<call
<.p (2>
s"insert () in the port .p"
[.pr]
:"wait for a ccentainer of values in
the port .p">>>

<define tree-walk?
<function {x p]

<cond
[<empty? .X>
*»if the structure is
eapty then returm
and try to find amcorler atoa"]}
[<is? !=atom .x>
;"resume the maip process with the
atos we have found”
<call
P oX>
;¥insert .x in the port .p"

b aindadnd TR KW IR L T oot —

T Y TR T PR R L b ey ~

4.5 page 126

[P]
;*"wait for a costzinper
of values
in the port .p">]
[~%else"
{trez-valk1l <1 .x>>
:nfind the atoms in the first
element of .x"
<tree-valkl <rast .x>>
s"find the atoss in the rest of
-X and then
return to finding atoss on
the remaining branches?P>>

<VAIT-CALL
<ip{ —send-args-> |[function|> is exactly like CALL

except that it is willing to wait until {pl becomes resumeable.

i<ipl -args-> might create a new process in which to avaluate
<jp] —args-> in parallel vith the norsal order evaluation of the
original process. The first | ia the previous sentencs £{s not
setalinguistic, Por example <* [<foo 3 4> <bar 3 5> <¢ .1 1> <g 2
2>> initiates evaluation of <foo 3 4> and possibly im para’lel
evaluates <bar 3 5>. After <bar 3 5> has been evaluated, it ipitiates
evaluation of <+ .x 7> and possibly in parzllel evaluates <g 2 2>.
when all of the values have been computed, the function * is entered.

1i<ip} ~args-> is exactly like j<|pi -arés-) exéépt that if
one branck becosss blocked tne other is guaraanteed %o de able te try

ko coatinue execution,

<prog fco []
<+

1i<stop>
<.foa
;"exit .foo with 3") evaluates to 3

}{ TV e - b TR R P Soge e o Siniee ApvT g
&

4.5 page 127

<FCRK
<jp| —-args->> resumes execution of the suspended
process |p{ from the point that contrcl last left it with the
argurents -args- and in parallel continue execution of the calling

process, It is an abtreviation for

<CALL <{p} -args=> [P

Por example <fork <<prccess foo> <bar> ad>> causes <foo <bar> a> to be
executed in a new process in parallel with the calling process. The

value of the function FORK is {p|. The iist of runnable processes is
kept in the global value of the identifier RUNNABIE!-SCHEDULER. The

initial scheduler is driven by the followiag handler for RUNTINE

interrupts when a certain amcunt of ruuntime has elapsed:

!%<block (<oblist scheduier!-> <oblistd>)>

<function L] <prog tviddle .
[victead "[~%g1lobal®™ rumnnable deserving]]

:"the processes that are still deserving to
be run are kept in
the identifier *deserving'™
<locker [] <getc lock schedule-queue>
:"lock the schedule variables xhile
they are being changed®
<cond
[<empty? .deserving>
<_ :deserving .runnable>
<again .twiddle>]>
<_ (:victea !:deserving) .deserving>

<cond
[<is?
<getc ~"status" .victea>
~"runnable">

+"if the status is

runnable then

change it to runping®
<putc

e T - -

4.5 page 124

.victen
[~-"status®

~"runaing" >]

[~"else"
<again .twiddle> D>
;:"this scheduler is strictly first in
first out"
<continue .victenm>
<locker [] <getc lock schedule-queue>
<putc
.victen
[status ~"runnable" }>>>>>

tX<end-block>
<TERBIRATE
~processes-> causes -processes- to be stopped, their
stacks unwound, their timers and alaras to be unset, and then put into
a state such that they cannot later be resumed, interrupted, or
continned. A process is automatically terminated vwhen it returns or
fails to its top level.
<STOP
Ipl> stops the process }p| in such a way that it can
later be continued or interrupted.
<CONTINUR
Ipl> causes the process |}p] to continue executicn from
where it was stopped.
<SUSPEND
{junction-nare} |function}> suspends execution of the

process which calls it. It is an abbreviation for

<CALL {junction-name| [] Ifunction}>.

If the process is later resused it begins execution by applying

- o coam .&'\.‘-‘- o et~

o JERRNS

o

¥

4.5 page 129

{function{ to the arguments received.

<IKTERRBRUPT
jjunction-nane] |pJ <|f| —-arguments-> |g]> will
interrupt the process |p] to evaluate the function |f] applied to -
arquments- IN THE PEOCESS |jpj. If |f]| returns normally then its
values are given as arquments to |gj. Otherwise {g| will be applied
to the arguments with which it is resumed. The primitive INTERRUPT
allows the definiticn of functions which are not HCNOTCNE in the sense

of lattice theory.

4.5.%7.2 Data Functions
4.5.1.2.1 Specialists
4.5.1.2. 1.1 Structure Functions

<STRUCTURE?
{X{> is true only if x| is of storage type vector,

list, stack, ring, or mode,

<define structure?
<function [x]
<rule [] <storage .x>
[<either :
vector
list
stack
ring
node>

WY TP Y R ST

¥ .

<EMPTY?

[x]1> is true only if |x

<define emfpty?
<function [x]
<and?

<MONAD?
|x{> is true only if !x

cther vords |x} is nct a structure or i

<define monad?
<function [x]
<or?

<CLCSUBRE
|procedure| jfree-varia
the |procedure} with the free variables
time when the closure is constructed,
procedures to to have cwn variables, T

conpstruct generators such as those of G

The function twvice will take a function
function which applies f to its arguamen

<define twice <function
<closure <funct

| is an empty structure.

<{structure? .x>
<==? <length .x> 0>>>>

| is not decomposable. 1In

t is enmpty.

<not? <structure? .x>>
<eampty? .x>>>>

tles|> returns the closure of

bound to their values at the
The CLOSURE primitive allovs
hey enable us to easily

PS.

f as an argument and return a

t twvice.

isufz][x] < f < E LI

P g mmemim s P i w— T ~rv o

E— —r . —

4.5 page 131

<<prog [x 3]
<<closure <function [] .x> x>>>> evaluates to

<pro af[b 1

prog [<£ :algclosnre <function [] .b> b>>
<_ b 2>
<.a>> evaluates to 1

<prog [x &
prog

[y <closure <function [] .x> x>]

[x 9])
<.y>>> evaluates to 4

Suppose that we wanted to define a generxator |f] to be
<elements jx|> such that each time that <¢jf}> is evaluated it returns

a nev element c¢f [xi.

<define elements <functiom [x]
<closure
<function [}
<prog [[next <1 .x>]]
<{chop x>
.nextd>>
xX>>>

Nov if ve evaluate:

<pro £ <elements (a b ¢)>
Prog [[<print <.£>>(1>1]

;%"a is printead®™
<print <.f>>
+"b is printed™

<REST

1x] in}] ¢not-found+> returns the result of taking the
rest of |x] |n| times, If the rest of jx| cannot De taken |n| times

then ¢not-found+ is evaluated.

<gest [a 4§ 4 £] 2> evaloates to {d f]
<1 <rest <node (i a]l] [2b]>> i8 b
<rest <rest {a 8 A £] 2> -1 is (4 4 £

r' ~

VT TSNS YT

PR L — — T T, T

4.5 page 132

If |n] is positive then, <rest <rest |x] Jn{> <~ {ni|>> is an error or
is identical to {|x}. The function REST vwith a negative |n| may be
applied only to tuple pointers, vector pointers, and node pointers.
it may not be applied to list pointers.
<GET

jindicator| jJobject| +not-found+> returns the valage
under Jindicator| for the jobject| if such exists. Otherwvise it
raeturns the value of not-found. 1Integer indicators have special
praoperties so that strictures can be made out of iists, vectors, and
nodes almost interchangeably. The expregssion <|integer| |object|}

+not-found+> is an abbreviation for <GET jinteger] jobject] e¢not-

found+>,
<3 (a b c)> evaluates to c
<~1 <rest [a bc d] > is b
<2 <rest <node ffoo 1] [3 a] [2 b]>»> is a
<2 [a (b c) 4d]> evaluates to (b ¢).
<get feo ode [foo 1] f4 a1>> evaluates to 1
<GEY!-NO-monitor

lindicator| jobject| +not-found+> is exactly like get
except that monitors for the location under jobject] with arc name
{indicator| will not be triggered.
<WAIT-GET
lindicator{ Jobject|{> is like GET except that if

jobject} does not yet have anything under jindicator| then the process

is suspended until jobject] has something PUT under jindicator],
<AT
§i1 Jo) +not-found+> returns the lccation of the value
under the indicator i} of the object jo}.
<putloc <at 2 [a 4]> 8> evaluates to [a 8]
<AT jo|> is the locative to the value of the identifer |o} if
joj} is an atoa and a locative to the rest of {oj if fo} is a list.
<ARC
jo} tindicator| ¢not-found+> is the arc froa the
object Joj with name jindicator| if there is one. Otherwsise +not-
found+ is evaluated.
<IBITIAL
fo] +not-found+> is the initial node arc for the
object jo} if it has one. Otherwise it returns the value of ¢not-
found+.
<NEXT
jx] enct-found+> returns the next arc after (x|} for
the odject o}, if there is ome., Othervise it returns the value of
+not-found+,
<BED? Jo]> is true only if jo] i{s an end nodg.pith no leaves
leaving it.
<LASZT?
{x1> is truve only if {x| is the last arc of the node.
<I¥DICATOR

Ix1> is the fipdicator for the arc |x}.

4.5 page 133

4.5 page 134

<indicator <initial <node [a 3] [4 " 1>>> is a

<HEAD
Ix]> is the object at the head of the arc Ix}].
<head <arc <put 3 [larger 2] smaller 41> smaller>> is
3
<TAIL
IX}1> is the object at the tail of the arc Ix|.
<tail <arc <node [a 3] [4 "r"]> ad>> is 3
<LOCATIVE

1x}> is the location vhich hclds the object at the end
of the arc |x}.
<CoPY

Ix{> will completely ccpy |x|.

Ix} 1yl> is true only if |xj and |y| are identically

the same object.

Ix! yl> is true only if |x} and]y} print the same as

structures.

<define =? <function equal [x y]
<equall .x .y .equald>>>

<define equall <function equal?l [x y €qual]
<cond

[<or? <monadic? .x> <ronadic? .y>>
<cond
[<==2 .x .7>
~"trye"]

4.5 page 135

[~"else"
<.equal <O>P>]
[<==? <type .x> <type .¥y>>
{repeat []
<cond
[<empty? .x>
<cond
[<empty? .y>
<.equall ~"true®>]
[~%"else"
<.egual <32>)>]
[<empty? .y>
<.equal OG>
<prog out []

<equal1l
<1
X
<cond
[<has? 1 .y>
<.equal <>>]
[~"else"
<.out> P>
<1
-y
<.equal <>>>
.r.qual>>
<chop x>
<chop y>>]

[~"else"
<.equal <>>P>>

<SIBILAR?
I1x§ jyl1> is true only if |x] and jy| have similar
values under their resgective fositive indicators. For exaaple (3

way® [t*3]) is similar to [3 (!"a Im4) "av].

<define similar? <function sia [x y]
<simlazrl .X .y .simddd>

<define sinilar1 <{function siml [Xx y sinm]

<cond
[<or? <monadic? .x> <aonadic? .y>>
<cond
[<=2 .x .7
~"true"]
[~"elge"”

3;,, = Y, re——— sae o T BT K mm

4.5 page 136

<.sim O>P)

[~"else"
<repeat []
<cond
[<eapty? x>
<cond
[<empty? .¥y>
<.sin?l ~"true®>]
[-"else"
<.sin O>P]
[<empty? .¥y>
<.5im <O>P
<prog out []
<similar1
<1
X
<cond
[{<has? 1 .Yy>
.s5im <>]
[~%else"
<.o0ut> }>>
<1
34
<.s5im <O>>
«Simd>>
<chop x>
<chop > >>>
<ISOMORBRPHIC?

I1X] 1yi> is true only if x} and |yl are isomorphic as
graphs.

<define isomorphic? <function iso [x ¥y]
<is01 .x .¥ .is0>>>

<define iso?l <functiocn {x y iso)
<cond . . o o

[<==? <tyfe x> <{type .y>>
<prog out []
<sub-iso1l
<initial
oX
<.out>
:"if .x has no arcs then exit
0ut">
Y
+ig0>

sctan o o

2 i o S

-ﬂa._v. o e Y

4.5 page 13~

<prog out []
<sub-iso1l
<injtial

<.0utd>>
X
«i150>>
~"true"]
[~"else"
<. isn1 O> P>

<iefine sub-isol1 <functior sub-iso-n [x-arc y isc)]

<repeat []
<iso1
<tail .x~arc>
<get <iadicator .x-arc>
oy
<.is0 <>
:"f .y does pot have a arc with
<indicator .x-arc> then,
exit .iso with <>
«iso>
<.-
«X—arcC
<next
. X-arc
<,sub-iso-n>
s"exit .sub-iso-n if there are o
ROre X—-arcsfdoi>>>
XPUT !-PERSISTENT

lohiect]| -fproperties-> puts the properties on the
Jobject]. A property of the fora [jindicatcr§ jvi] puts the valune
{v] under the }jindicator]. A property of the forsa {tind’catori]}
leletes the |indicator} from the object. Integer indicators kave
special properties so that str.ctures casz be made out of lists,
vectors, and nodes almost interchangeably.

<put <node [a 8] [3.5c] {a b] [3.5]) [[e] 3>
evaluates to #ncde [[a b] [[e] 9]]

<put (a 8) {1 "c"]> evaluates to {(®c™ ¥)

—— - ERR AT TR NI T

4.9 page 138

Properties can be put on ANY of the data types of NATCHLESS. For

example <puot 3 [size small }> puts the value small under the indicator
size for the fixed point number 3. The ability tu associate any piece
of data with any other piece is very useful., For exaample Gerry
sussman has pointed out that comments can be implemented in this way.
The degree to whi~h an expression has heen simplified can be recorded.
For example ve xpi_at <put °<+ 3 4> I'sisplified canonically]> to
indicate that *'<+ 3 4> has been simplified canonically.
<PUT!-TENTATIVE
jobject] -fproperties-> is exactly like FUT except that
the properties of jobject}] are restored on backtracking. o
<PUT!-NO-MONITOR
lobject| -properties-> is exactly like PUT!-PERSITENT
except that the monitors for the locations are not triggered.
<FUTREST!-PERSISTENT
jx¢ 1yl in} +not-found+> changes the REST of the list
<rest |x] §n}> to be)y} where §y) must be a list. If <rest jx| <+
ja] > is not a list then ¢nct-found+ is evaluated.
<putrest (3 a) (4 5)> evaluates to (3 4 5)
<PUTREST!-TENTATIVE
x| Jy! In} 4nct-found*> is exactly like PUTREST

except that Jx] is restored on backtracking.

<define putrestl!-tentative <functicn
{x ~"optional"
(y 0]

4.5 page 139

[n 0]

{not-found t'<errord>;]
<failpoint [[save <rest .x .n>]]

<putrest .x .y .n .not-found>

[~"optional"]

<{putrest .x .save ,nd>>>»

<CHOE!-FEESISTENT
Ixj In] +not-found+> assigns the identifie- }x| the
rest taken |n| times of its current value. The function CHOP was

invented for a variant of LISP at MITRE.

!¥<block (<oblist chop!=<> <oblistd>)>
<define chop

<function
['x
~"cptignal"®
[n 1]
[*not-fcund '<error>]]
<
TeX
<rest
eeX
.1

nct-foundd>>>>
!%<end-block>

<pro v {1 2
prog [[<céop L;; evaluates to {2)

<CHOP!-TENTATIVE
Ixt In} ¢not-found+> is 1lil 2 CHOP except that its

results are not undcae on tacktracking.

t%<block {<oblist chcpl-> <cblistd)>
<getine chop
<function
['x

~"opticnal"®

{n1]

[*not-fcund '<error>)]

<. _+X <rest ..x .n .not-foundd>>>>

t%<end-block>

~, e Bl oo Sl L e — N e S

§.5 page 140

<LEBNGTH

jx|> returng the length cf the value of jxj.

<length {(a b c)> evaluates to 3

<define length <function 1n [x]
<for [[(n C]]

[[~"in" <2> .x]
[=~"final"™ <.1ln .B>
;"exit .Jn with .a%)
<ipnc n> P>>

<IXD2X
§1X{> returns the rest index of §xj. The functioa
INDEX is only defined for vectors and nodes.

<index <rest <rest [a = {"e e £ g] 2> 3>> is 5

<TCP
ix] In] ¢not-found+> is <BEST |x} <~ jn{ <IXDEX [x}{>>

+not-fornd+>

<BOTTON
ixt in}] tnot-founde> is <BEST §x}j < <LENGTH [x{> {inj}>

spot-found+>

<UNIQUIZE
jvalue}> returns a pointer to the uvmnigue ccpy of
jvaluej. The function UNIQUIZ® can be used to save space and tizxe in
con}utations. The expression <CRIQUIZE fvaluei{> may be abbreviated as

!~!valoej. The function UNIQUIZE is due tc Peter Bishop.

- T T T T T T IR TR T R R R W o o e

4.5 page 141

<uniquize "“efg"*> is -"efg"
<uniguize (a I"b ["e™ 3])> is ~{a 1"b ~[-%e" 3))

<prog [[x (3 b c]]]

<uniquize .x>
<uniquize <copy .¥3>>>> is true.

<UNIGUELZ?

}x1> is true only if |x} is a uniquely created ccpy of
1x] i.e. to be <==? |z} <URIQUIZE {x]>>.

<IRCREASING?

-elemepts-> is true orly if -elements- are arranged in
increcasing order in the the total ordering on unique expressions.

<SUBSTITUTE

jxl jpatteral 1z}> substitute the valuye of (x| for all

expressions in |z} that match jpatternjy.

<substitute a !=atom (1 (x 2))> evaluates to (a (a a))

1%<block (<oblist substitute!-> <oblist>)>

<derine substitute <function
[x 'p 2]
<subst
X
<eval 1'<actor [] .p>>
«ZO>>

<define subst <function [x p 1]
<ruie [] .z

[Kp>

«X])

[<monadic>
2]

{<lipear ({i}>
<<type .2>

<subst .x .p <1 .¥>>
. (subst .x .p <rest .2z>}>]

2 Y, Caanh o b SOM A e et—

4.5 page 142

[<2>
<2 P>

t%<end-block>
<MEMBER?
ipat} jstruc|> is the tail of |strucj whose first

eleaent matches |pat| if there is one and otherwise is <>,

<member? !=atom [3 4.5 (a) b 6 c]> evaluates to [b 6
c]

13<¢blceck (<cblist mewmber?> <cblist>)>

<define nesmber?
<function ['p s]

<memler1
<eval !*'<actor [] .p>>
eS2>>

<define member!
<function out [p s]

<repeat []
<cond
[<is <empty> .s>
<.out <>>]
[<is <.p> <1 .s>>
<.out .s>Pp
<chop s>>>>

'¥<endblock>

4.5.1.2.1. 1.1 Llist

<LIST!-CONSTRUCTOR

-values~-> ccnstructs a list of -values-. It is

eguivalent to (-values-).

4.5 page 143

4.5.1.2.1.1.2 Vector

Any expression encloged within "("™ and %)" evaluates to a
list, Any expression enclosed within "["™ and "]" evaluates to a
vector.
<IVECTOR
In] 1fcni> creates an implicit vector of length the

value of |n| with entry i initialized to <jfcn§ i>.

<define ivector <product vector vector [n f]
{{i <thru 1 .p>] [<.f .i>]]>>

<ivector
3

<function [1] .i>>

evaluates to [1 2 3].

<ITUPLE
In] jfcn}> creates a definite tuple of length the
value of jnj with entry i initialized to <jfcn} i>. A definite tuple
cac only be created as the initial value of an identifier in a
declaration, as an element of a definite tuple, or as an argument to a
function.
<IADEPIRITRE .
type [-declarations-]
[-for-specifications-
[~"EXIT" jout-name}]
[~"ADJCIK" |expression}])

-body~>
creates an indefinite tuple by setting up a for loop in vhich the

elesents of the tuple are gererated elesment by element such that

- Mddan — e LLC e N e b~ =

4.5 page 144

condition is met. An indefinite tuple can only be created as the

initial value of an identifier in a declaration, as an element of a
definite tuple, or as an argument to a fanction. An indefininte tuple
is a good way to pass arguments which are generated incrementally at
run time. No tuples may be declared in ~declarations-. Evaluating

<. jout-pame|> will cause INDEFINITE to return with the tugle

generated.

<indefinite . .
((!=fix [1 1]]]
;"declare i to be a fixed point
number initialized to 1"
[[~"inc™ i ~"tixu" .n]
s¥increment i thru .a"
[-~"adjoin™ .i]
;"each time through the loop adjoin the value:-- -
of i to the tuple®]
s"the body of the loop is empty">
evaluates to

[12 3 4] if the identitier n kas the value 4
<UNSHARE
|x] jtail-of-x|> creates a copy of the value of x| at
the top level. The value of jtail-of-x| must be obtainable frcu the
value of |x| by repeatedly applying the function REST. The value of
the function UNSHABRE is egual to its argument but it is not identical.
<unshare [1 x (y 2.0)]> evalruvates to {1 x (y 2.0)]
<prog [[!=vector [x [a (¥)]]]]
<is? <== <2 .x>> <2 <unshare .x>>>> evaluates
to true.

<VECTOR!-CONSTRUCTOR

4.5 page 145

~-values-> constructs a vector of -values-. It is

equivalent to [-values-1.

4.5.1.2.1.1.3 string
<STRING!-CCNSTEBUCTOR

-values-> constructs a string of the -values-.

<string
®"Run®
L2 |

*Dick"

“rua®™
">
evaluates to "Run Dick rnn.,"

4.5.1.2.1. 1.4 Graph
<RCDE!~-CCHNSTRUCTOR
-properties-> comnstructs a node with -properties-.
<SHARE
jnode| }indicator| }Jlocative]> will cause [node| to
share the location under jindicator] with the location }locatirveif.
The function SHABRE is due te Peter Bishop.

4.5.1.2.1.1.5 Class

<CLASS1-CONSTRUCTOK

-elementa~-> will construct a class with -eleaents-.

4.5.1.2.1.2 Aton

4.5 page 146

<ATOM!-CONSTRUCTOR |}string}> is the atos on the roct oblist
vith print name |string].
<ATONM!-CONSTRUCTOR
{string| 1patk} +pot-found+> is the atom with the
print pame Jstring} in the |path| of oblists, If the optional
argusent +not-found+ is not present and there is not atem on jpath]
with print name |string| ther a newv atcam is created in <1 |path{>.
<PRAME
J]ator{> is the print name of jJatom] wvhich is a uninque
string.

<pnaae hello!-dolly!-> is -“hello"
4.5.%<2.1.3 Hord and Number PFunciions

<BITS
Is] Ipl> defines a field of |s] bits that is |p] bits
froa the right end of the vord.
<SIGNED-BITS
is| 1pl> defines a signed field of §s}] bits that is
|pl! bits froa the right end of the wvord.
<BYTE
Is} jpl lel> returns a byte pointer to the byte of |s|
bits that is Jp! bits froam the right end of the wvord ;ginted to by
lel.

<INCI1~-PERSISTENT

. Ce——— = - TRy TR S5 T TG - _— -t

4.5 page 147

lvarj Jdelta]> increments the value of the identifier

jvar] by ldelta] and stcre the result in |varj. The body of INC will
be . in a separate lexical biuck so that identifier collisions

cannu JCccur.

t%<block (<oblist inc!-> <oblist>)>
<defire inc <function ['x]

<_ 2eX <+ Lox OO
!%<end-block>

<INC!-TENTATIVE
{var| |deltal> is like LEC except that |var| is

restored in backtracting.

'%<block (<oblist inc!=> <cblist>)>
<define inc!-tentative <function ['x]
<_ _eX <+ LoX O

1%<end-block>

<DEC!~FERSISTENT
jvar| |delta|> decrements the value of the identifier

jvar| by Jdelta) and store the result in }jvary.

!1%<block (<oklist dec!-> <oblist>)>
<define dec <function ['x]
€_ 2.%X K= X 155>

!%<end-block>

<DEC!-TENTATIVE
|var] |delta|> is like DEC except that |var] is
restored in backtracting.
1%<blceck (<oblist dec!-> <oblistd)>

<define dec!-tentative <function ['x]
€_ oX K= oox 13>

N, e = T = AT N 0 =

- l i

4.5 page 148

{X<end-block>

<ASCENDING?

-elements-> is true only if -elements- are in

ascaending order. The function ASCENDIRG? is due to Gordon Benedict.

<define ascending? <function out [~"rest" x]
<cond
[€<is? <emptyd> .x>
<.out ~"true™>)
[o"else"™
<repeat []
<cund
[<is? <enpty> <rest .1>>
<.out ~"true™>]
[<not? <is?
<greater <1 .x>>
<2 >
<.out <>
<chop x>>7>>>

<DESCENDING?
~elerents-> is true only if -elements- are in
descending order.
<IDIVIDE
jdividend} -divisors-> computes the Jguotient| aad

iremainder] of the |dividerd| divided by the -divisors-.

{a !{idivide 7 31} 69) evaluates to [a 2 1 69]

<call -
<idivide 11 &>

<function {q r]
<print .g>
<print .r>>»

s"prints 2 and then prints 3"

<+

-nuabers-> is the sus eof ~nusbers-.

g

4.5 page 149

<+ 3 4 -5> is 2

<*
-numbers-> is the rroduct of -numbers-.
<* 5 6> is 30
<ABS
in}> i- the absolute value of |nj.
<abs -3> is 3
<EXPT
}Jbase| jexponent{d> is exponentiation.
<expt 2 3> is 8
<~
{subtrahend! -subtractors-> is |subtrahnd| less -
"subtractors-.
<- 3 2> is 1
<- -5> is 5
<~ 3 9> is -6
</

|dividsad] ~divisors~> is the floating point number
jdividend| divided by -~divisors-.

</ 4> is .S

</ 12 3> is 4.C

</ 3 2> is 1.5

</ 30 2 5> is 3.0

Y e e X RS T T M) S BRI T T S5V T e emee——

Y - ——

X

4.5 page 150

<#Ax

-values-> is the maximum of -values-.

<max ~3 <+ 4 1> B> is 4.1

<BiN

-valges-> is the sminimus of -values-.

4.5.1.2.1.4 Algebraic

<1+
~terss-> constructs the sua of the teras.
<!+
'<* <expt x 2> 3>
3
<* 2 x>
'<E 4 x>
4
1<exrt x 25> evaluates to
<+
7
<* 6 x>
<* 4§ <expt x 20>>
<1%*

-factors—-> constructs the product sf the factors.

<1% 3 <1+ x 2> <1+ X =-2> x> evaluates to
<+

<* 3 <expt x 3>

<% =12 x>>

4.5 page 151

uoSo 102. ’.5 L‘U'—s-.:i'e

<IR
llocation}> returns the contents of {lccation] as its
value.
<prog [[x 1]] <in <at x>>> evalutates tc 1
<GERLCC
121> generates a new location (which is not on the
stack) holdiug the location of |x]|.
<in <genloc .>> evaluates to 3
<PUTLOC!-PERSISTENT
jlocation}]Jvalue]> stores the |value| in the
jlocation}] and return the jvaluej. It is egquivalent to <_ <smash

jlocationj> jvaluepd.

<prog [x] <putleoc <at x> 1>> assigns x the value 1
<PUTLOC!-TENTATIYE

5. -atiom] }value|> is exactly like PUTLCC except that

|locztion} is rv red on tacktracking.

<defiy: putlocl-temtative <function [locaticn vzlue]
“failpoint
[[save <in .location>]]
<putloc .location .value>
[~"optional"]
<putloc .location .save>>>>

<VALUE

jtheta|{]binAdings|> is the value of the identifier

which is the value of jthetal.

4.5 page 152

<Prog LlRyspeeagslavatdats £

4.5.1.2.1.6 Stack

Stacks cbey a last in first out storage discipline.
<STACK
+checker+> returns the name of a newly created stack
to store elements of the appropriate #checkers.
<POSH
{stack| -values-> pushs the ~values- onto the |stack}.
The value of PGSH is }stack].
<POP
jstack| (number] +¢pot-found¢> pops |nuamber| elemeats
off jstack}. and returns them as the values of POF. The elements
cose off in the opposite orcder they wvent on.
{1 !{pop

<push <stack> a b ¢ @&
el}) evalnates to (1 d ¢ b).

§.5.1.2.1.7 Ring
Elzents can be inserted and removed from either end of a ring.
<RIXNG
tchecker+> returns the name of a newly created ring to
store elements of the appropriate type.

<YRBONT

—————— TTTTETSOOC S TSRS TSN 5T e - -

4.5 page 153

{ring] }jnumber| ¢aot-found+> returns the front

|nurnber] elements cf jringj.
<REAR
Iring} Jnuaber| +not-fouund+> returns the rear jnumber|
elments of jringj.
<INSEET-FRONTI
iring] -values-> inserts -~values- into the front of
jring|.
<INSERT-REAR
jring| -values> inserts -values- in the rear of
jringij.
<DELBTE-FHCNT
jring] {nuamber| +not-found+> deletes |rumber| elements

from the front of |rimg] and returns them.

[a !{delete-front <insert-rear <ring> 1 2 3> 2!} b] is

fa12b])
[a ! {delete—~rear <insert-rear <ring> 1 2 3> 2!} b] is
[2 32b]. . - - - e
<DELETE-REAR

jring] |number} +not-ioyrd+> deletes jaumber| ec¢lemeats

from the rear of jring| and returns then.

4.5.1.2.1.8 Character

T e e

4.5 page 154

<CHARACTER>

matches any character.
<LO¥ER>

matches any of the twventy six lower case alphabetic characters.
<UPPER>

matches any of the twnety six upper case alphabetic characters.
<DIGIT>

matches any character which is a digit.
<ALPHAEETIC>

matches any alphapetic character.

<define alphabetic
<actor []
<either <lowverd> <upperd>>>>

4.5.1.2. 1.8 Input-outpat

Input-output is transacted through channels., The atomic names
read in are looked up in directories called obli-ts,
<CHANNEL
jdivection; |place] |place-dependent)> returns a
cosmunication channel in the jdirection| specified to the }|placai
named, The jdirection| may be eithur ~"REAL™ or -~"PRIRTW,
<CLOSZ
—channels-> terainates transactions oz the named -

channels-.

— e — T T T T TV R S e e ——-

4.5 page 155

<RESET

-channel-> resets jchannelj.
<PRINC
}js] |channels|> prints |s| (vhich must be a strirg or
charater) literally. It does not put quotes around it or otherwvise
translate Jsi.
<PEIN1
ix] [~-channels-] ;path] jprint-table}| |=macro-table}>
prints the value of |x§ on the output channels relative to [path| and
returns it as the value of the fuaction PRINT. The various types are
printed according to the print functions which are defined in jprint-
tablej. The function PRINT maintaians three special identifiers:
PATH §-PRIBET, TAELE!-PRINT, NACROS!~-PRINT, and CHANBELS!-PRINT. The
jprint-table} must be a TYPR-VECTOR. The jmacro~table| sust be a
CHARACTER-VECTOR vhich has eantries ~"NEVER®, ~"BEGINIJIGY, or

~®"ALRAYS™,

t1%<block (<oblist print!-> <oblistd)>
<define print
<functiom [x -~“optional®
[~"special® [channels .channels]]
[~"special™ [path .path]]
[~"special™ [table .table]]
[~"special® [macros .macros]]]
<<getc <type .x> .table> .x>>>
1%<end-block>

The print fuanction for vectors is:

<function out
<cond (yJ

(<empty? .¥y>
<primc " }*>
<.0ut .¥>]

4.5 page 156

[~"else"
<princ !"[
;"print the open bracket which
will be closed by]">
<repeat [[x .y]]
<prini <1 .x>>
<chop x>
<cond
[<empty? .x>
<{princ
sfclose the [
" p
<.out .y>J]>
<princ I!" >
;"print a space">]>>

<PRINT

ix] jpath] |jprint-table| jchanrels|> prints a carriage
return line feed, prints |x} and then prints a space. The {print-
table| aust be a TYPE~VECTOR.

<define print

<function [x -"optional"™
{~"special" [path .path}]]
[~¥special" [table .table]]
[~"special®™ [channels .channels]]]
<princ * ">

<print1 .x>
<princ " ">>>

<OBLIST> is the root chlist.
<OBLIST
ftrailer) +4not-found¢> is the chlist with the
specified |trailer|. If the optional argument +not-found+ is not
present and there is no oblist with {trailer] then one is created.
<TRAILZER

jatos|> is the name of the oblist on whick jatom}

4.5 page 157

exists. The trailer of an atoa on the root oblist is <>.
<ON
Istring| }patlk > returns the first oblist in |path| on
wvhich an atom with pript name |string| exists if there is omne.
Otherwise it returans <>.
<LIRK
latom] |path} Jstring|> creates link c¢n the first
elerent of jpath] with print name |stringj. It is an error if there

is an atom with print name |string} already on |pathj. Both |path]

and {string| are optional.

<prog []
<link
top!-riddlet-bottosr
(<oblist ne!->)
"tab">
tab!-me> evaluates to top!-middle!-button

<BLOCK

lpath|> begins a new lexical block where atoms are

looked up on jpathi{. The function BLOCK is due to Jerry Susssan,

<EN¥D-BLOCK> . - e s -

closes the current lexical block restoring PATH!-READ to its previous
value.
<READCE
jchannelj ¢not-found+) removes the next character fron
jchanpel|. If there are none, then ¢nct-found+ is evaluated,
<NEXTCH

jchannel} enot-found+> is the next character in

v o mm r—

4.5 page 158

jchannel . The channei is not modified by NEXTCH. If there are none

then snot-found+ is evaluated,.

<READ

lchannel}]path] +not-found+ |macros| |syntax|>

returns the next eipression from the input |channel] with atoas which
are not on jpathy created in the firs: element of jpath|. The macro
characters are as defined by functions of one argusent in |pacros)
which must be of type VECTGR-OFP-CHARACTERS. The argument of the
function is the macroc character which triggered it. ¢The lexical
syntactic class of each character is defined by jsyntax} which also
sust be a CHARACTER-VECTOR. The idea for the read tables is due to
John White If there are no mcre expressions on the channel, then +not-
found+ is evaluated. The function READ maintains special local
identifiers CHAMNKEL!-READ, PATH!-READ, NCT-FOUND!-READ, MACROS!-READ,
and SYNTAX!-READ. from which it obtains the appropriate inforsation.

The definition of READ is:

1%<block (<oblist read!-> <oblist>)>

<define read .
<fuanction [-~"optional™

[~"special™ [channel .channel]]
[~"special® [path .path]]
[~"special®
{ *not-found
*<error -~%end-of-file~
reached®>]]
[~"special™ [table .table]]
[~"special™ [syatax .syntax]]]
<prog loop [character]
<_ :character <nextch>>
;™let character be naxt charaacter
about
to be read®

4.5 page 1

<cond
[(<is? <getc .character .syntax>

~"ignore">
<again .loop>]>
<<getc <readch> .table> .character>>
;"execute the read procedure
associjiated
with the first character">>
t%<end-block>

The following are the macro characters which are predefinéd for the

reader:

$itype| jobjec’ reads jobject| then tries to

convert it to re a |typel.

For exaaple #complex [3 4] will attempt to convert [3 4] to
type complex.

!#PALSE is the unique object FALSE.

I1#NODE ¢rest-indext [—propertiegzg vhere each 3
lproperty} is cf the fora [}indicator] |value|] is a node.

{$PROPERTIES |object] [-properties-] where e.ch
Iproperty} is of the form [)indicator] jJvaluej)]

is an object with properties.

18ARC [Jobject] |indicator]] is a arc from jobject|
vith name Jindicatorj.

!Lcharacter] is read as a single character.
The ! serves as an escape for characters

whick cannot be input directly.

1! is the exclamation character,
This is the only way to get in the character !.

%} fora] reads Afornl evaluate it and use the value as the
expression read.

The % macro is due to Chris Reeve.

1%ifore} reads lfotll evaluate it ind tien pretend that
vhat was actually read wvas the null string.

The !% macro is due to Chris Reeve,

The macro chacacter 1% enables us to have side efrects while
reading.

Por exasmple:

59

4.5 page 160

1%<block jpath|> causes the reader to read the

subsequent

itess into jpath; until the matching !%<end-block> is

encountered.

$ termwinates ccamands.
“1string ™ is a character string.
!1"|character| is a single character,

¢|character) reads jcharacter} as though it
vere not a special character.

In other words ¢#¢jcharacter| is an ordinary
alphabetic character to

the literal reader as though <getc Jcharacter]
~"alphabetic™.

~elements~-}) is a list.
he read function for !%(is:

<function [c} . .
;"the value will be a list"

<list
findefinite [x]

jsyntax}> vere

s"counstruct a tuple of indefinite size
made out of the values of x"

[[-~"adjoin" .x]
[~"exit" out]]
<call
<{read>
<function {-~"rest" t]
<cond

[<is? <length .t> 2>
:"read has returned with
twy values"

<rule [] <1 .t>

[;"first of .t matches ("

i)

;"the first value 1s

<.outd>]

~%else"
<error

left">>]

[~"else*

a right paren"®

®3ismatched

<_ 3x <1 JOPO»

w”\ﬂ!w“‘mw -~

Ll

4.5 page 161

The read function for ") is:

<function out [c]
;"exit with two values so that any

function which

calls this one vill know

sopething is fishy"
<.out

;"this should match ("

107

")

<O

[~elesents-] is a vector.

![~elements~!] is a homogeneous vector.
The notation is dae to Chris Reeve and Gerry Sussman,

<-elements-> is an element fors.

{-elements-} is a segrent fors.

! {~elements-!} is a multiple value segment form.
j1form| is #ALLOY—PARALLEL jfors].

1]1ifore| is #ESSENTIAL-PARALLEL |forari}.

jatom] !~ forces |atom| to be rc<ad into the ROOT oblist.

iaton]!-]trailerj.teads Aatonl into the oblist with |trailerj.
f the following 1s typed ing

<pro
preg []foo!-thesis!-

bagr!-prefacel~thesdsi- . .

t%<block (<oblist prefacel-thesis!->
<oblist thesis!->)>

(munble hello!- foo bar 3 thesis preface)

' %<end-block>>

then it will evaluate to .
{muablet!-prefacel-thesis

hello

foo!l-thesis
bar!-preface!-thesis
3

thesis
prefacef~thesis)

&

4,5 page 162

(~expressions- jelerent}] ; jcoxaent| ~more-expressions-)
The read func’ion for I"; lis:
<function out [character] <.out {"™; <read>>>

4~expressions-.]elelent1 !; lintent| -more-expressions-)
bhe read function for I"!; is:

<function out {character] <.out {%®!;: <read>>>

The following prefix macro characters are predefined.

'jexpressioni is <QUOTR je pressicmi}>,

The ' macre is dune to Johp White.

The read function for the character ' is:
<fanction [character] !'<guote <read>>>

1'jformy is <SUPPRESS jfora|> which suppresses invocation
of |forsmj.

The read function for I"!' is :
<function [character] !‘'<supgpress <read>>>

~jvalue| is a ynique co f |valne}.
TLe rea functioanor lRX gs:

<function [character] <uniquize <read>>>

§~lvalue] is <UNIQUIZE lvalge:).
The read function for !%!-~ is:

<function [character] !*<uniquize <read>>>
t=jatom] is <O7-TYPE jatom}>.
&1forai is <GATE jforml>
tt<-elerents~-> is <TERMPORARY <-elements->>
it {~elements-} is [TENPFCRARY <-e¢lements->}
ts<-eiements-> is <STRAIGRZEN <-elements->>
1s {~elements—~' is (STRAIGHTEN <-element->}

Ip<-elenents-> is <PERSISTEET <-eéleaments->>

4.5 page 163

{p {-eleaents-) is (PERSISTERT <-elements->}
The macro characters 1t !s, and !p are due
to Peter Bishor.

.Jidentifier] is <VALUR Jidentifieri>.
!.jidentifjer| is {VALOUE jidentifier}}.
,]ident@fier] is <GLCBAL |identifier>.
!,1identifier| is {GYOEBAL }identifier}.
_lidentifier| is <ALTER!-TENTATIVE }identifier)>.
§_lidentifier} is {ALTER!-TENTATIVE |identifier]}.
sjidentifiery is <ALTER!-PERSISTFNT t(identifier}>.
f:)identifier) is {ALTER!-PERSISTENT |identifier|}.
?}identifier] is <GIVER |identifier|>.

f1?}identifierj is {GIVEN jidentifierjy}.

4.5.1.2.2 Protection

<UHPECTECT
iX} ju]> allows access to the object x according to

the use fu| vhich may be:

~"yrite” for wurite
-"execui*»" for execute

Restricting the access of & piece of data ensures that it can rot be
used for a purpose ¥hich was not intended. PFor example it can be used
to insure that checking routines do not modify the data wvhich they are
supposed to inspect for errors.

<PRBOTECT

~- T TR T RO S T T -

g

4.5 page 164

jx] Ju]> restricts the uses to which {x| may be pyt by

not allowing the use Ju] which may be ~"READ®, ~"PUT", or ~"WRITE.
The use -"PUT" protects against putting on non-numerical indicators

vhereas ="WRITE" protects the numerical indicators.

<put
<2 <protect (a (3 4)) -~"write™>
{1 a)> causes a write protectior error

. <rest <protect (a 2 b) ~"wvrite">> returns (2 b) with
¥rite protect

<PROTECTION
{x]> returns a vector of the protection modes of
access for jxje.
<protection <rest <protect (a 2 b) -%urite™>> is

[~"vrite]

4.5.1.2.3 Monitoring

<MONITOQOR
111 1£f] ju]> moritors the location {1} with the
function Jf] for the use Juj. The use may he a list of :>ny of the

following:

-"READ" for read
~"EXECUTE" for execute
~"WRITE™ for write

If a process attempts to used a monitored location thaen <f]1) {u}
|x1> i3 evalvated. If a write operation is being atteapted, then x is

the value vhich is being stored. If a execute operation is being

PR T T e~ R Y~ W T A~ v

4.5 page 165

completed for a fumc<’cn, then x is the tuple of values being

returned. If an execute operation is Leing <--apleted for an actor,
then x is the object that vas matched. Monitoring is imgplemented in a
way that is logiczlly eguivalent to creating a arc from the location
11{ to the list of monitors for the ..ccation (1] under the iandicator
MCNITORS. Dave Keed invented the more efficient method that is
actually used., Monitcus are useful for implexenting various kinds of
procedural data. Por example they are used to implexent break points
in the iamguage. fThe following procedure will make a list (called
history-of-x) of all the values that are stored into the special

identifier x.
<monitcr
at x>
<function [1 u v)]

<_ shistory-of-x {.v !.history-of-x)>>
~Yyrite">

Hext we would like to describe hcw 3onitors can be used to
iaplement an idea due to Peter Landin which he calls a stream. The
idea is that the element . of a list should he able to be dynamically
coaputed instead of all of them having to be computed at unce. For
exanple in debugging the <elements of a list might be ccaputed
incromentally as they are aeeded by beiung input from a teletypewriter.

Re cculd construct sach a list i} <3 follovs:

<monitor
(0)
:%the 0 is a dvusmy vhich wii?
be replaced mwith the first
eleseat read®

£

4.5 page 166

~"readm>

Were ve define f by:

<de£i%e 2
<function [1 v v]

<monitor
<rest
<-
(«replace <read>>
{replace (0)})
«12>
o £
;:"monitor the rest of the list with f£%
~"read">>>

Now <1 {1}> is the first expression read, <2 J1}> is the second, etc.
<UNMONKITOR
11] jpati> unmonitors the location }j1] by all

furctions that match {patj.

4.5.1.2.4 Type

{RETRBATYT
ix§> returns the valve |x} retracted to the type in
vhich it vas defiped. *The function RETRACT is the identity function
on objects of primitive type.
{STOHAGE
ix|> returns the primitive storage allocation type of
12]- The prisitive gtorage types are LIST, VECTOR, STRIEG,
BONMOGEROUS~VECTCR, STACK, RING, ATON, ACTIVATION, JCNCTICHE, LABRI,
PROCESS, &and MODE,

<TIPE

P A T RN TN I WIS, T Y > e - ——

I - —_

<
[4

3.5 page 167

Ix|> returns the dynamic type of |xj.
<CECLABED

ijx]> returns the declared attributes of {x|. The

function DECLARED is useful in deciding hovw to expand macros.

<GETC
lapparent-indicator| jobject] +not-fourd+> gets the
japparent-indicator| component of jobject| according t¢ the structuare

definition for <7TY jobject }>.

<ATC

japparent-indicator| jobject| tnot-founde¢> returns a
locative to the |apparent-indicator| ccmponent of |ocbject! accerding

to the stiucture definition for <TYPE jobject}>.

<PUTC!-PERSISTENT
lcbject| -properties-> puts -properties- on jobject|

according to the structare definition for <TYPE {objecti>.
<PUTCI-TENTATIVE
jobject]| ~propertiss-> is erxactly iike PUIC except

that the properties of |object| are restored on bac rackinag.

£.5.1.2.% Synchronization

rs

4.5 page 168

<LOCK
~-lock-specifications~> atteapts to satisfy the -lock-
specifications- where each lock-specification aust be cne of the

following:

|location} means that {location| is to be locked if it is wuot
already locked.

£w"BELOC§" Jlocation|]] a=ans that [locatior] is to be relocked
ven if it 1s already "locked.

[~"URLCCKED™ jlocatinmj] means that jlgcation] must be
urlocked.

The process which calls the functiom LOCK is suspended until alil the -
lock-specifications- are satisfied., Suppose that we have a data base
that sometimes is momentarily in ap Inconsiscent state while it is
being modified. %e vould like to set up locks so that arbitrarily
many processes can be reading the data base at one time but only one
process can modify it at a time., Suppose that each data base has =

READIOCK and a WRITELOCK component ia addtion to a CONTENT component.

<define read-~data-base <function rdb [data-base:
<prog [current-rontent]
<1lc <k
[~"unlocked*®
<atc writelock .data-based>]
[~"relock"
<atc readlock .data-base> D
:"in order to read the data base
the writelock aust
be cff and the readlock
must be relocked™
«_ scurrent-c-atent <getc copteai .data-dbase>>
<unlock <atc readlock .data-based>
:*is done after the process stops reading®
. rdh .cargent~-contenid>
;®exit .r4b with .current-contont™d>>

o v B e P i T < TR —— i e i A . P ———

4.5 page 169

<define write-data-base
<function [data-base new-content]
<lock <atc v¥ritelock .data-based>>
<lock <atc readlock .data-~based>
;"in order to write the data base the

¥ritelock
aus: be locked and
then readlock must be locked®
<putc .data-base [content .new-content]>
<unlcck
{atc writelock .data-base>
<atc readlock .data-based>>
;"is done after the process stops writing™>>
<LCCKER

*checkert t¢activation-namet [-lock-specifications-] -
body-> vhere the ¢activation-name+ a +checker+ are optional atteapts
to achieve -lock-specifations- execute the —-body- and then unlock any
locations that were locked by -lock-specifications-. The function
LOCKER makes use of CAICH to insure that the locks are unlocked when

+tactivation-nase+ is exited. We can do the above example as follows:

<define read-data-dase <function [data-lase]
<lecker []
({ ~"uniocked™
<atc writelock .data-based>]
[~"relock"
<atc readlock .data-base>])
<getc content .data-based>>>

<defire vrjite-data-base
<function [data-base new-content]

<locker []
[<atc wuritelock .data-bace>]
<locker []
{<atc rezdlock .?ata-based>]
<putc
.data-Ltase

[content .new-ccateat POO>>
<LOCKED?

-locaticns-> at{mpts to lock the iocations which are

4.5 page 170

arguments. If the locations cannot be locked then the function

LOCKED? returns <>.
<URLOCK

-locations-> unlocks the locations.

4.5.1.3 Debugging
<ERROR
|message|> will type out the message and go into an

error loop.

1%<block (<oblist error!-> <oblist>)>

<deiine error <function
{~"optional™ {message -~"none"]]

<print (-~“error-message:" .message) ,console>
:"print the message on the consocle channel"
{repeat [-~"special" loop]
[[old-cut .out]
;"save the old value of out in old-ount"
[~"special® [culprit <frame 3>])
;"the culprit activation is the one three frames back"”
~*labels"
[~"special” [ovt <function [-~"optional®" [n 1}]
:"the label procedare out haadles
exits froam exror loops"®
<cond
[<is? <less 1> .n>
<again .loop>])]
[~"else™
<.0ld-out <~ .n 1>P>]]]
<print <eval <readd>>>>>>

{%<end~-block>

<DEBUG
Istatous|> vill set the state of the debug state to

jstatus|. The status xay be ~"on"™ or -~"off".

., ——— e e Y e =\ T KPR S T — -
A

4.5 page 171

<BINDINGS
{ipl> is the current set of bindings for the process

ipl.
<FRAME> is the current activation frame of the process which

calls it.
<FRENE |]place}> ¢, the last activation of |place| if |place]
is a process and is jJplace| if §place| is an activation.
<FRANE
fiplace] [n}> is the activation frame which is |n|
frames back frcs fplacej.
<PBOCEDURE
jframe]> is the procedure of |franmej.
<HNANE
jprocedure}> is the vame of {procedure| if it has one
and <> otherwise.

<PBOCKNANKE

jframe}> is the name of the procedure for [frasej. It
is equivalent to <NANE <PROCEDURE |frame}>).

<ARGS
jframe}> is the tuple of arcuments of |frave|.

4.5.1.4 Ydentifier

<ASSIG¥ED?
jvart Ib]> is true only if the identifier (var| has

4,5 page 172

been assigned a value within the bindings {bj}.

CUBASSIGN
jvar| |b}> makes |var| unassigned within the bindings
ibl.
<BOUND?
jvar} |bi> is true only if the identifier jvar| is

bound within tte bindings |bi.
4.5.2 Eramples of the Use of Punctions

The function factorial is defined belowv in order to illustrate
the syotax of functiors that produce values. On entrance to REPEAT,

temp is immediately bound to 1.

<define factorial .
<function factorial [n] <repeat [[temp 1]]

<cond
[<is? <less 1> .n>
<.factorial .temp>
s"exit .factorial with .tesp"]>
<_ :temp <* .n .tesmpd>>
<dec nd>>>>

Using a for statement, ve can define factorial as follous:

<define factorial
<functicn fact {n]

<for

[[te=p 1
c® n ~"thru® 1]
al"

1]
(-=
[~"f

P- Cu

<
n

<.fact .teapd>
;exit .fact with .teap"]]
<_ :temp <* .n .tempid>>>>

Thus the value cf <factorial 3> is 6;

2 2>> is 24

4.5 page 173

and the value of <factorial <+

-

4.6 page 174

4.6 Actors in Patterns

Examples of actors are VEL for disjunction, NCN for negation,
ALL for conjunction, and STAR for Kleene star in general regular

expressiouns. We use the characters { and } to delimit actor calls

that are to ma%ch as segments.

<prog [a b c]

;"ve are ianside a program. we Lave declared the
identifiers a b and c.
In the assignment statenzent below the pattern
(x fall _a _b} _c) is ratched against
(k xy 2).
The pattarr {all _a _b} matches an expression
only if bo*a _a and _b match the expression.™

<is? (k {«:i% _a _b} _c) (kxy z)>

a gets the ralue (x y)

b gets the value (x y)

c gets the value z

<prog [x ¢] .

{ <is? (!I_x {either (th) (tw)}} i_c) (a o tw th)>>
¥ gets the value (a o)

C gets the value (th)

<pro x
prog [lis? ({star a} _x} (a a a a)>>
x gets the value a

The argument uf the actor WHER is a list of clauses. If the object
that the actor WHEN is trying to match has the property taat it
matches the first eleaent of one of the clauses then it must match the
rest of the el=ments in that clause.

<prog [[!=fix x}]

<is? <shen [<?> _x}> 3>
X gets the value 3 since 3 is a fixed point number.

&

4.6 page 175

In the expression below <all _a _b> matches 3 only if both _a

and _b match 3. Thus both a and b are set to 3.

<prog [a b]
<is? <alil _a _b> 3>

A number of actors are defined below.
A palindrome is defined to be a list that reads the szme
backwards ard forwards. Thus (a (b) (b) a), {), amd ({a b) (a b)) are

palindromes. HNcre formally in MATCHLESS, a palindrome can defined as

an actor of no argumentss:

<define palindrome
<actor []
;"palindrome is a actozr of no arguments"®
<either
<eapty>
;"a palindrome is either eapty or"
<declaration [x]
;"declare a nev local 1"
<list _x {palirdrosme} .x>
:"let 1 be the first element of the
lipear structure.
Also x must
beé the last elesent
with a paliadronme
in between®">>>>

Por example

<is? <palindrome> (a 1 1 a)> is true.
The fora ACTOR is like the function of LISP except that it is used in
actors instead c¢f in functions, The above definition reads: a
palindrome is a list or vector such that it is empty or it is a list
or vecter which begins and ends with x with a paliudrome in betveen.
The actor SANE causes the identifier x to be rebounnd every time that

palindrose is called. The actor “%VERSE is defined to bc such that

Eaac biala QN Mt Ein S-SR e a0 oL adien ee-—lhts - - e — ——

——— - - ~ A er———

FORMAT OF ACTOR ACTIVATIONS
IN SNAPSHOTS

IDENTIFIER-BINDINGS

RETURN—-CONTROL

PATTERN
BEING EVALUATED

BACK
———~ - TRACK

CONTROL

VALUE BEING
MATCHED

NEW
IDENTIFIER
BINDINGS

: THE IDENTIFIER ~BINDINGS
AND RETURN-CONTEOQL POINTERS
OF AN ACTIVATION ARE USUAI LY
THE SAME AND THUS ARE
COMBINED INTO A DGUBLE
POINTER LIKE THIS.

- TPy e = - -

o

‘~/~ G [’J(!.,? Y ’75“6)
|

1ivd

‘~
SSSE .Tzomoz:«& X ~3») \

[x] NOILLYY¥VI23QD>

()

43HLI3 >

o= Gt

T~

<(vv)

év m
.w,

.//l-\m_\v

[] 8010V > “
Il ON LOHSJVNS A

IHI IHI IE‘ |

3JWNOYANITVYd 3NI1430 >

<L x.ﬁ ms_omcz_._ﬁ_T >4 .

-

11% e

%b P&y.

_.
| —~
~
[
”
\
_ \
.
-7 —
4
~ o~

[X] NOILVY¥V1030>

—

Av€

H3IHLIZ D>

-

<(v v)

[) ¥010V v\

IWOYANIVYd 3NI430 >

T
T

3Nyl

év

¢ ON LOHSJVYNS

—

4.6 page 176

<is? <reverse .x> .y> is true only if the value of x is the reverse of

tke value of y. The definition of reverse is

<define reverse
<actor [x]
<vhen
[<monadic>
:®if the object being matched is amonadic
then it must l~ equal to x"
X
[<declaration [first rest)]

;®otherwyise let first
be the first ele=ent
of the matching object
and rest
be the segment of the rest of
the elements of the
matching object.”

<lipear _first !_rest>

:"vhen <lipear (reverse .rest} .ficgst>
matches .x ve are done"™

<be <is?
<linear

{revesse .rest)
+first>

<IXDD PO

Por example

<is? <reverse (x y z)> (2 y ¥)> is true

Bany of the ideas for the actors coase froa Post prodactions,
BEF, generai reg.lar expressions, BLIEST (Slagle®s algebraic pattern
matcher), SNOBCL, CONVERY, and LISP., ¥e give examcles of the use of

these actors aftervard.

4.6.1 Definitions of Actors

Y. W T T TR Y K PG WS T -y

4.6 page 177

£.6.1%.1 Control Actors

4.6.1.1.1 Conditional Actors
==
|x1> natches an object only if the value of |X] is
identical to tke object.
<NON
ipattern|> matches an orject only if |pattern] does
not match the object. Thus <aon ¢> matches a, but <non a> does not
match a.
<VYEL
-patterns-> matches an object only if scee pattern in
turn matches the object. If a sisple failure backs up to the actor
VEL, then the next alternative pattern ir turn is tried. If all the
alternatives are exhausted, then VEL itself propagates a simple

failure backwvard. Por exaapie

<prog [[a 3]]
<_ (<vel & _ad> <+ .2 1>) (8 S)>
3 is initialized to 3
§ is matched =zith §
<¢ 3 1> fails to match S.
_a is satchbed agajinst & giving a the value &
<+ 4 1> matcles 5

< b
prog [a<_]

{<vel ‘a ?b> 2a)

(3 8)>
a gets the valge 3
3 does not satch 4 so a siample failure is gemerated
a gets the value #unassigued

SNAPSHOT NO.

46 feg ¢ ('l

1

PROG [a bl

<is?

> (<EITHER Pa ?B> Pa)

VA

ﬁ\}/

3

(3 4)>>

:bd"' ": e

SNAPSHOT No. 2

\ <PROG [ab]

<1579

FAIL

\\
FAIL

> (<EITHER 70 ?p> ?a)

€3 4)>>

i et g s

il o+

%épq&l77@

N

a | -
b{k—
| \:PROG [ab]

<1is?

SNAPSHOT NO. 1

—> (CVEL Pa_pPb> Pa

(3 4)>> \
t
|

S

SNAPSHCT NO. 2

W

L

\\\ <PROG [ab]

-—>» (<VEL Pa

FAIL

’b> Pa)

%QPW€/776

SNaAPSHOT NO. 3

™~

\

PROG [ab]

<IS?

P

> (<VEL Pa Pb> Pa)

O\

e

|

(3 4)>>

SNAPSHOT NO. 4

|

TRUE <PROG [ab]

» < IS 7

~> (VEL Pa ?b> Pa)

/(3 4)>>

— T Y T T T

t Y, eeme— - TYC SN B

4.6 page 178

b gets the value 3
a gets the value «

The folloving example s£hows " VEL is different from EITHER:

<prog (% b}
<is?
{
<either ?a Th>
2a)
(3 4)>>
evaluates to - which i false since EITHER does not try matching ?b

with 3 becaug. + svu~zes. fr’ly matched 3.

<ALL
~-patterns~> matches an object only if each pattern in
turn matckes tle chiect.
<IS-ACTGR
{pattern|> %ill match an object .21y if the object
ratches the value of jpattern|.

<BE

jpredicate}> matches an object only if the !predicatej
is not false, 1In other words the actor BE ignores the object that it
is supposed to match and considers cnly the valve of predicate.

<be <is? 3 3>> matches anythiag

<be <>> does not amatch anything since <> is falsa.

<HATCHING

{iobject| |tail] jloc}] jpredicate}> is exactly like
the actor BE except that the idertifier jobjectj is bound to the
object being matcked, (tail| i3 bound to its tail if it has one, and

lec} is bound to a locative to jchbject) if there is one.

4.6 page 179

<WHER

tcheckert -clauses-> where each clause is of the forna
[{pattern| -acre-patterns-] or of the form #DECLARE [[-declarations-]
|pattern{ -more-patterns-] matches an object if the first element of
some clause in turr matcaes the object and then tke rest of the

elements in that clause match the obdject.

<prog [x y]
{is?
<when [<number> _x]} [_yJ]>
food>>
;"Y gets the value foo since foo is nct a nuaber™

<prog [[2§§%’ (y 1] x1]

<when
[<be <is? _x <+ .,y 1>>
<+ .x 22>
4>>
:%x gets the value 4%

4.6.1.1.2 Block 3trycturing

<DECLAZATION
[-declarations-] -patterns-> matches an object only if
each vpattern in turn matches the object after -declazrations- are

bound.

<_ #declaratiox[[x] _x] &
x gets the value 4

<ACTIVE
<| procedure| ~args-> {place|> matches the pattern

jprocedure| against all the currently active procedures within

4.0 page 180

iplacej. If the match succeeds then —-ardgs- ace matched against the

procedures arguments. The |place| amaay either be a process or of the
form [~"BETWEEN" |namelj jrame?}] whegre jnamel} and {name2] are the

nanes of biccks for a process.

4,5, 1.2 Data Actors

4.6.1.2.1 Specialists

4.6.1.2. 1.1 Structure Actors

Any expression delimited by " (™ and ®)" natches a list. Any
exp.ession delimited by "["™ and "]" matches a vector or a tuple.
<?> matches anything.
<?
in}> matchkes an object only if the object has length

the value of |nj. For exaample the following are true:

<is? <?» (b a ¢)> is true.
<is? ({?}) ()> is true.

<is? (a §?}) (a)> is true.
<is? (a {?}) (a b)> is true.

Something of the fora '|x| matches only those objects which
are equal to tx!. For exasagle '.a matches .a and *a matches a.

<?

in| lpattera]> will match anything of leagth jm| which

in turn matches |patternj.

4.6 page 181

<prog {fggg;characters]
[€? 3> Z? 4 :four~elementsd> <>}
[2bcdefganil>
;"four-elenments has the value [d e £ g]">
<STAR
~patterns-> matches ar object only if the object
consists of a sequence (including the pull sequence) of elements that
match patterns. Por exaaple <star 3> matches (3 3 3) and (a {star b
c} e) matches (a b c b c e).
<DAGGER
—-patterns-> matches an object only if the object
consists of at least one seguence of elements that match patterms.
Por example <dagger 3> matches (3) and {3 3) but does not match ().
<OPTIONS
-patterns~> matches a sequence of elements vhich match
a subsequence of the patterus fros left to right. For example
<options a !=fix !=atos> matches (a 3).

<BAS

~-properties-> matches any object vith the appropriate

properties where each property is of one of the following forss:

[timdicator| <FAIL>) fails if there is an object under
lindicator }.

present {1indicator|) temoves tha wvalue umder the |imdicatori if it is

ind t i t h2s
li-dicatggl .‘ﬁiagi’ot’ﬁall :gigbt=:§c§=: 221‘22:t=§.“?$2€;3h°

————T T

4.6 page 182

The actor HAS allots MATCHLESS to do pattern matching cn arbitrary

graph structures. The example of the syntax of LISP given belou¥ shous
how se can write grammars over graphs., The idea of developing pattern
structures over graphs has been generalized and extended in PLANKER.
<_
<has ["x" 3] [u4] [c <replace 5>]>
<node [c [4])] [4 5] ["x¥ > D>
evaluoates to
#node [["™x"™ 3] [c 5]]
<SELECT
ipat] jother!> matches any structue such that one of
the elements of the structure matches jpat]} and the remainder of the
structure matches jotherf.
<prog [r]

<{select 3 _r> <class 4 3 5>
;*r gets the value <class 4§ S>"

<OF

jpat} jcollect] jother|> matches any sstructure sach
that tke list of all the elesents of the structure that satch |pat)
Katches the pattern jcollect| and the rest match the pattern jother|.

For exaaple

<prog [integers others]
<_
<of 1=fix _integers _others>
[23Db5S 9]
integers gets the value (3 5 9)
others gets the valuye (a b)

<STRUCTURE>

- A g Lo = e WY T ——

4.¢ page 183

matches any list, vectoxr, or node.

<EBPTY>

matches any eapty stroucture.
<KCHAD>

matches any object which cannot be decomposed.
<LINEAR

-patterns-> matches any list, vector, cr tuple wvwhose
elenents match the pattecns in order. PYor example <linear 3 &>
matches (3 4) and it also matches [3 4].

<ELEMENT

|1x|> matches any object such that the object is an

element of |x}.
<CONTAINS
{pat|> matches any structure which contains an object

that natches {patj.

1%<block (<otlist containsi!-> <oblistd)>

<define contains
<actoc
['y]

<container
<eval 1'Cactor () .y>>>>>

<define container <actor [x]

<vhen
[<.x>
+"if the actor x matches
the matching ohiject
then we are done")
[<monadic>

;"if the matching object is
monadic then fail®
<faild>]
[<iinear <container .x> .{?}>

4.6 page 184

+"if the first element in the
matching object contains x
then we are done™]
[<?>
;"else the rest of the matching olbject
sust contain x"
<linear <?> {container .x}>]>>>

1%<end-block>
<REPLACE
}jx}> matches any object. As a side effect the object

vhich is mpatched is replaced with the value of |x].

<prog [y]
<is?
<all
~7
(<replace a> {replace (b)})>
(c d e)>>

Yy gets the value (a b)

e can define an actor wev shich changes any list wvhick it satches to

the reverse of that list.

<define rev <actor []
<either
<empty>
<linear <?>>
<declaration [first last]
<lipear :first (2} :last>
<linear
<replace ,last>
{rev}
<replace .firstd>,>>>>>

Now if evaiuvate

€ :c (e £ >
< <te3> .cg)

ther c aysteriously hag the value (g £ e) because the actor rev
destxoys the initial list to make € reverse,

<PRECEDES

Ve A ey —uw VO T T

4§4.6 page 185

{x}> will match any exfpression which precedes (x| in
the total ordering orn exgressions. Por examfple <precedes “c"> ¥ill
match ®a" since "a"™ prcedes *c",

<FOLLO#S
i1x}> will satch any expression which follows |x] in

the total ordering on expressions.
4.6.1.2.1.1.1 Llist

<LIST!-DECOMEOSER
-patterns-> matches 1lists vhose elemeunts satch -

patteras-, It is equivalent to (-patteras-).
4.6.1.2.1.1.2 Vector

<VECTOERI-DECCKPOSER
~patterns-> matches vectors vhose eleszents match -

patteras-. It is equivalent to [-patterns-].

8.6.1.2.1.7.3 sString
<STRING!-DECONPOSER
-patterns-> matches strings whose substrings satch -
patterans-.

<prog [first rest]
<

<string !_first " " I_rest>

- ———— e ——

ry Eidaddih s S b e et — — -

3.6 page 186

Ysee tie boy">>
first gets the value "see"
rest gets the value “"the boy"

<prog [tootz
<_ <strizg !_goot "s"> ®cats"d>>
root gets the value "cat"

4.6.1.2.1.1. 4 Graph

<RODE!-LECOPOSER

~properties-> is egquivalent to <ALl !=NODE <HAS -

properties->>,
n.60’0201.2 ‘to.

<ATOB!-DECOEPOSER
Isi{ 101> vill satch an atoa vhose print name is the

string §s} and which is on the oblist named lol.
4.6.1.2.1.3 Hord and Nusmber Actors

<NUBRBER > matches an object only if the object is a number.
For exasple <nusber> matches 3.
<LESS
in]> matches aay number less than the value of §n|.
<LESS=
IR{> matches any nuaber less than or equal to the
value of |nj.

<GREATIR r

4.6 page 187

|n|> matches 2ny number greater than the value of |[n]|.
<GREATER=
in]> matckes any number greater than or equal to the
value of |[n}.
<FIELDS
-gspecifications-> matches any fixed point nuamber which
meet each specification of a field in turn., A fixed pcint nusber x
meets a specification cf the form [|bits| |patterni] only if the
aumber which is the byte of x defined Ly |bits| matches |pattern].
The expression <bits |sj |p|> defiasc a byte |s|§ bits wvide which is
ip! bits froas the right end of the word.
<fields [<bits 3 0> §] [<bits 1 35> 7]> =atches a

fixed point number vhose lowver 3 bits are & and wvhose sign bit is on.

4.6.1.2.1.4 Algebraic Actors

The motivaticn for providing algebraic actors is to enable
pattern directed algebraic sisplification to be easily accomplished.
Cften it is not clear vhich sisplified fcra is most useful. Using the
hierarchical lacktrack contrcl structure of FLANNER one fors can be
tried as a hypothesis and then in the light of this experience perhaps
another more suitable one.

<1+

-patterns- |rest—of-suamands]> aatches a sum such that

each pattern matches a suamand and the rest of the suamands match the

D . e R

4.6 page 188

pattern |rest-of-summandsj.

<{is?
<'+ a b <2>>
'+ ¢ t a>> is true.

<prog [y z x)
<is?
<1+ <all <non c> _2> _y _x>
<+ ¢ k a>>»
Z gets the value b

Yy gets the value c
x gets the value a

<pro b 4
prog [’<ig?

<1+ _y b _x>
1<+ 1 ¢c b d>>
y gets the value !
X gets the value <+ 4 c>

<SUB-OF ,
jpat]] teras-that-match-pat| |rest-of-suamandsj>
matches any sur such that the sum of the summands that match {pat| in
turn match the pattern |terms-that-match-pat] and the rest of the

sunsands match the pattern |rest-of-sumaandsi.

<prog {y]
<is?
<sum-of <i* x <2>> _y <2>>
1<+ <* 3 x> <* y a’>>>>
Yy gets the value <+ <* 3 x>>

<1%
-patterns- |jrest-of-factors|> matches a product of
factors such that each pattern matchas a factor in the product and the

rest of the factors satch the pattern |rest-of-factorsi.

€<is? <1* S b c> *<* ¢ b S>> is true.

XN . G
Y - -

4.6 page 189

<prog [x Y]
<is?
Ct1* <all <number> _x> _y <2,
1<% <+ 2 2> 3 ad>»
X gets the value 3
y gets the value <+ 2 a>

<prog [x
prog { 215? <!* 3 _x 1O 0>
. x gets the value 0

<PRODUCT~OP
jpat) jfactors-that-match-pat{ Jrest-of-factors|>
matches any product of factors such that the product of the factors
that smatch pat in turn match |factors-that-match-patj and the rest of

the factors match the pattern jre. .—of-factors|.
<prog [x y]
<is?
<product-of <ncn <number>> _x _y>
1°<* a 3 b 5.05>

X gets the value <* a b>
Yy gets the value <* 3 5.0>

<POVER

jbase| jexponeat|> matches an expoamential.

<prog [x 7]

<is? <power _x _Yy> *<expt y 2>>>
x gets the value y
Y gets the value 2

<prog [x
prog { (Il? <povwer _x _y> 0>
x gets the valuoe 0

<RXTRACT
jpat| |terss-with-pat-extracted| |rest-of-terms|>
matches a sum of teras such that the sus of the terss which coatain a

Zactor which matches |pat] matches |teras-vith-pat-extracted| and the

4.6 page 190

sur of the rest of the teras satches the pattern jrest-of-terms|. The

actor EBXTRACT is due to ¥. Bledsoe.

<is?
<extzact x <%+ 3 a 0> y>
194+ J'C* a x> y 1°'<* x 3I>>> ig tree

Joel NMoses invented the example of defining a quadratic in x

using patterns.

<define quadratic
<actor
[x abc]
<extract
{pover .x 2>
<all <non 0> <non <contains .x>> <.a>>»
<extract
.x
<all <non <contains .x>> <.h>>
<all <nom <contains .x>> <.cO>>>

Thus if
<prog [[“special” a1l b1 c1]}]j

<is?
<quadratic

y
<actor [] _a®
<actor {] _b¥>
<actor {] _ci1>>

<1+
a
<i* 3 P
<i% 2 ‘<expt ¥y 2> &>
<1% c y>>>

then
al gets Lhe valua <¢ z &>

b1 Jets the value <+ 3 c>
cl gats the value a

Be6c 1.2.5.5 Locative

x

4.6 page 191

4.6.1.2.2 Type

<OF-TYPE
jatom]> matches an object Joji only if <==? <TYPE |o}>
jatom}> i.e. only if Jc| is of the type Jatoe}. The expression <OF-
TYPE Jatom|> may be abbreviated as i:={atcas].
<aS
lpat} linj)> matches an object x only if x is of the
type of the range of the injection jinj] and <RETRACT x> matches the

pattern |[pat].

4.6,1.3 Identifier

<GIVEN
jtheta] -bindings-> acts like <YALUE }theta] -
bindings-> if the identifier jtheta’ has a value. Othervise <GIYEN
jtheta} -bindings-> matches an object x only if the identifier |theta]
matches x.
?|theta] is an abbreviation for <GIVEXR |thetal>
1?ithetaj is an abbreviation for [GIVRE jthetz|}
<ALTBR!—-PERSISTENT
jtheta| -bindings~> matches any expression x which
matches the ideantifier (theta} and gives jtheta} the value x.

sjthetaj - an abbreviation for <ALTER jthetzi>

T Lo Shn e i =t

4.6 page 192

t:)theta] is an abbreviation for {ALTER jthetaj}

<ALTRR!-TENTATIVE

{theta] -bindings-> matches any expression x which can
match the identifier jthetaj. The identifier jtheta] is given the
value x. However, if a failure backtrac s vo ALTER!-TENTATIVE, then
jtheta| is restored to its previoms value.

_jtheta} is an abbreviation for <ALTERI-YENTATIVE
lthetaj>

! _ttheta] is an abbreviation for {ALTER!-TENTATIVE

jthetaj}

4.5.2 Examples of the Use of Actors

The rest of our 2xamgples of the use of actors come from giving
a rigorous definition of the syntax of LISP in MATCHLESS. Those
readers whc are not interested in the details of the syntax of LISP
should pnot read section 4.6.2 The following gramamar accounts for
essentially all the context deperdent features of the LISP syntax. It
specifies that a function call must have the right number of
arguments. An explicit qo rust have a tag to which it can go. The

syntax specifics that sose identifiexrs are free and others are bound.

<defiae top-functicn <actorx []
<declaration
[[*special™ [tags ()] [boundvazxs ()]]]
(function <varlistd> <form>)>>>

4.6 page 193

Thus for example <top-fanction> matches (function () ()). The actor

top-~function introduces the pattern identifiers tags and boundvars and

bipds them to - - wyhich is the null segment,

<define varlist <actor []

<{star
<declaration
([!=atom curvar]]
_curvar

<be <is? _boundvars {.curvar !.bouadvars)>>>>>>

The actor varlist checks =ach identifier in turn to make svre that it

is ap atox ind then puts the identifier in boundavars.

<define
form <actor []
<when
[<monadic>
<either <coustantd <var>>]

{t=aton (?})
<vken
{ (prog (?}])
<progform>]
{ {(cond {?})
{condform>]}]
[(setg {?})
{<?> <var> <foxm>)]
[{go 7))
<gofork>)}
[(<has {subr <> (7))
{<7> (star <formd})]
{ (<has [expr <> P ([?))
<exprforad}
[(<has [fexpr 42> (7))
<)
[(<has [£subr <>]> (2})
<2>j
[(<has [lsubr <7>]> ({?})
(2> (star <formd})]
[(<has [lexpr <?>]> {2})
{(<?> (star <forad>})}
[<?»>
<matcaing
{expr ~"optional®)

4.6 page 194

<print (.expr undefined)>>}>)
[((function {2?}) (?})
<function~function>]
(<
{<form> ([star <form>}) P>>

The above definition s.ys that if 5 form is a monad then it must be a
constant or an identifier; if its first element is an atox thenm if it
begirLs with the atom prog, then it must be a progform etc.; if it

begins with "((function ..) ..)™ then it must be a function-fanction;

othervise it must be a fors followed by a foralist.

<define constant <actor [] <either t () <number>>>>

The only constants are t, (), and numbers.

<define var <actor I=atom []
<either

<elepent .boundvars>
<unbound>>>>

An identifier is eitter in boundvarxs or it is unbound.

<define condfors <actor [] (cond {dagger ({star <fora>}}})>>
<define

progfora <actor []
<declaration

[®special"”
{tags .tags)
[localtags {)]
[bonndvars .boundvars]]]

(prog
<varlist>
{all
<collect-tags>
<be <is? _tags (!.localtags 1.tags)>>
<star <either izatom <formd>>>})>>>

5.6 page 195

Cn entrance to progform tags and boundvars are rebound to their

previous values. The frog identifiers of the prog are put in
boundvars, the tags in the proy are put in tags by collect-tags, and

the body of the prog is checked to see if it is well formed.

<define
collect-tags <actor {]
{star
<either
<declaration [
{ !=atom curtag]
["special" localtags]]
_Curtag
<be <is?
_localtags
{e.curtag !.localtags)>>
<vhen [<element .lccaltags>

<e2rror "multiple defined tag">]
C223550>>

<define
exprform <actor []

<declaratior
[args functicnvar])
{
<has {expr (fuuction _functiomvar {?}) >
{all <star <fora>> _args})
<be <==2? <length .functionvar> <lengih .args>>»>>>>

An exprforn is a call to an expr with the correct number of arguments.

Fote that immediately iaside the actor exprform the identifierss args

and functionvar are rebound but remain unassigned.

<deZine gofora <actcr []
(go

<when
[t=aton
<eithker
<element .tags>

<print (.curtag uadefined tag)>>]
[<formd>)]>)>>

S

. T AP R OO — WS i ik yon—.

¥ - ERPC -

4.6 page 196

b goform is either an explicit call to go to a tag which must be in

.tags or a computed go.

<iefine .
function~-functicn <actor []

<declaration
[args functicnvar]
(

<declaratiocn
["special” [boundvars {.boundvars)]]]
{function
<all <varlist> _functioavar>
<form>)>

fall <star <form>> _args})
<be <==? <length .functicnvar .args>>>>>

In a function-function the bound identifiers of the function must he
added to boundvars ard the function-function must have the proper
vumnber of argusents.

The above syntax could easily be extended in several
directions, For example\;z\Ebuld easily modify it so that it would
accept type declaraticns and do type checking. The syrtax of

MATCHLESS could easily be deficed in MATCHLESS.

- B e et e e L e T —— — C o m————

—_—— e Y S o v—

e -

4.7 page 197

4.7 BUMBLE

Section 4.7 is logically cowpletely separate from the rest of
this report. it is not necessary to read this section to understand
the rest of the document,

e are interested in exploring good ways to isplement systeas
like PLABNER on machines. One wvay is to embed the syster in a
language like LISP or PL-1. The problea with embedding is that the
host language has its cwn conveantions for calling sequences and saving
tepporaries. tThe conventions might not be ccapatible with the systea

. . w®hich.is. being imsplemented. Arother approach is to try to develop’a
formalisa which is sufficiently flexible so that it can adapt to the
higher level systes conventions bet still is efficient enough so that
it is feasible to use as an isplementation language. The applicative
sublanguage of BATCHLESS seems to be at approximately the right level
with the restriction that the data are ro longer have types associated
with them at run time, Thus all the type information must be able to
be processed at coapile time. The general type definition formalisa

remaias although the definitions must be processed at cospile tise.

4.8 page 198

4.8 The Editor

<EDIT
12|> enables editing the structure jx]J. The editor
maintains a séecial identifier CUBSOR!-BDIT which represents the
position of the editor within the structure. A coasmand may be
abbreviated by the first letter in its pame. Tge editor msakes use of
the tentative versions of the structure modifying commands so that the
results of a series of edits can be undone by backtracking. Gregory
Phister made suggestiops and iaplemented an editor.,
<BEMEATH |cu.sor]> is the expression beneath jcursor| or <> if
there is none.
_ <CONTAIMS_ |cursor}> is. the structure vhich contains fcursor|
or is <> if there is none.
<ABC |Jcursor}, is the indicator under which <BB¥EAThk |cursor)>
is fcund under <CONTAIES jcursor|> or is <> if <CONTAINS jcursor|> is
<>, That is if <COXTAIBS jcursori> is not <> then:
<get

<{contains jcursorj}>
<arc jcursor§>> is <beneath jcursor}>

<GO |n] |jcursor|> moves jcursor| [n|] positions to the right if
in}] is positive and !n| positions to the left if jn| is negative.

<WALK |n}] |cursor]> vwalks |cursor} jr| positions around the
tree.

<UP in} lcursor|> rises through |a| levels of structure froa
|Cws80K]| .

<DOW¥ |n} jcursori{> descends through |a} levels of structure

4.8 page 199

from Jcursor}. If |n] is positive the cursor is moved dovn to the
right otherwvise to the lett.

<SEARCH }pattern] {n] lcursor|> searches for the |n|th
occurence of an object that matches jpattern}j. If {n] is positive the
search is to tke right, othervise to the left.

<PINC jpattern] |n] Jcursor|> will conduct the search onrly in
the object under |curscyie.

<REPLACE |patterniy |x§ }n] |cursor}> replaces {n] occurences
of objects that match }Jpatternf with the value of jxj. If |nj] is
positive the search is to the right, otherwise to the left.

<CHANGB |pattern| |x} {n] Jcursir}> changes }jn] occurences of
objects that match |pattern]| vwith the value of |x| on the structare
which is under |cursor|.

<INSERT —-expressions— jcursor|{> inserts -expressions- into the
ztructure.

<KILL jn} jcursor}{> deletes the expression under the cursor

and <~ In} 1> expressiocns folloxing it.

- o Y TS pu—— — - .———J
f

5. FLANNER

The PLARKNER formalisa incorporates a unified set of problea
solving primitives that run under a multiprocess backtrack control
strocture, The fcrmalisam itself is independent of any porticular
problem solving domain., The primitives of the formalisa nake defauit
decisions in the course of a ccmputation in those cases where the
information supplied doces not specify exactly what is toc be done.
However, as a matter of principle each primitive allows a coatinuum of
expression fror no preference at all down to the specification of
exactly one choice. The formalise is intended to be n;ed as a matrix
in vhich the necessary domain dcpendent knowledge can be eabedded.
Ssany of the primitives rely or side effects to accoaplish their
purpose. Although the use of side effects is in oppositicn to some
theories of good language design, their use in PLABNEE has worked out
vell, The forsalisa encourayes mcdular progranaing through the use
of specialized rovtines to satisfy goals and make deductions.

The name PLANNER comes from the desire to create a forsalisa
in vhich it is easy to express plans of action. To0 comstruct a plan
in the formaliss is the sase as constructing a PLABKEB theorea.
mixing planning and deduction is quite easy. Conditiomal plans are
explicitly provided for as is the ability to backtrack in case of

failure.

Consider a statemeat that matches the pattern [IBPLIBS (x|

* .

e~

5. page 201

lyl]e The statement has several iaperative uses.

st1: 1f ve can deduce |x)|, then we can deduce Y.

In PLANNER the staterent st1 would be expressed as <ANTECEDENT [] Ix{
<ASSERT }jyi>> vhich means that (x| is declared to te the antecedent of
a theorem such that if (x| is ever asserted in such a vay as to allow

the theorea to become activated thern {y}| is asserted.

st2: if ve vant to deduce |y},
then establish a subgoal to first deduce jx].

In PLAANER the statement st2 vould be expressed as

CCONSEQUEXT [] 1yl
© - <GOKL x{>
<ASSERT 1yi>>

vhich means that |y| is declared to be the consequent of a theorea
such that if the subgoal |x| can b2 established using any theores then
the consequent]y| is asserted.

We could also assert <CLAUSE {] [NOT |x]] 1yl> vhich is a
clause vhich says that [aot jx}] or {y{ is the case. PLANEER has goal
oriented priamitives zfor using and maniprziating all of the above
variants. Por certain purposes any one of the variants can he more
useful than the others. Iaperativa information and heuristics can
more easily be expressed in the procedsral variaats. Por example
beuristic information as to sken wve should create a sabgoal) x is order
to achieve y can more easily be ircorporated into a CGESEQUENT

theoren. {On the other hand we cam more easily deduce <LL2OSE [l.Cc ..

- haued Lo S S g

5. page 202

d> from <CLAUSE [] x [BOT y] c 4>] Of course the distinction is not

sharp since the tvo kinds of ascsertions can be combined by making

assertions about the actions of imperatives.

5.1 page 203

5.1 PLARRER Forsns

S.1.1 Hierarchical Backtrack Control Structure

PLANNER uses a control structure in which the hierarchy of
calls is preserved sc that a computaticn can backtrack to an
activation froms which jt has already returned. Backtracking preserves
the nesting of block structure. It siaply traverses the statements
executed in reverse order. The primitive functions PAIL and FAILPOINT
enable the backtrack process to be controlled. The form <FAIL>
generates a sisple failure which backtracks to the most recently

executed forn

<FAILPCINT +activation-name+ [-declarations-])
jexpression|
[Imessage] jactivationi]
-body->

Where |message}] is bound to the ressage of the failure and the

predicates are evaluated to try to find one which is true. For

examgle

<prog [[2*311

<prog foo []
<failfpoint []
X
(~"optional"])
<.foo <_ tx 4>
s"exit .foo with 8">>

——— PR RN e T

5.1 page 204

;"the first time through the above expression
has .x as its value"
<copnd
[<is? 3 x>
<fail>]
[~Yelse”
51>>>

evaluates to <+ 4 5> which is 9.

The identifier x is declared to be a fixed point integer which is
initialized to 3. The value of <failpoint [] .x [-"opticnal®] <_ :x
§>> is 3. When the second argqumert of the call to ®*+%" is evaluted the
conditional detects that x is bound to 3 and so generates a simple
failure. The failure backtracks to the call to PAILPOINY with the
message <> which is FALSE, the identifier x is assigned the value U
aad the rest of the computation proceeds noraally.

The "top level function of PLANNER is a read, evaluate, prant
loop. When tie expression read is snccssstﬁlly evaluated then the
shole hierarchy of calls is forjotten, the value is priated, and the
process repeats.

One of the most straight forward ways to i1asplesent
hierarchical backtrack contrcl structure is through the use of a
backtrack stack on which backtrack information is stored., The only
tricky point comes in the exdcuton of an exit vhere the teaporaries
must be pushed onto the backtrack staek dbefore doing the exit. The
other straight forvard sethod of isplementation is not to have a stack
at all but rather to keep all the activation frames in garbage
colliected storage. <The stack isplesentation has the advantages that

it keeps a smaller working set and dcesn't cause garbage collection.

S.1 page 205

The swvasp implementation has the advantages that it is conceptuaily

cleaner and is more flexible. The ideal isplesentation is to be able
to run either mode. In stack mode the acivation records are simply
tuples on the stack.

The use of backtrack control structure has the iaportant
fringe henefit that it allows us to debug more easily. We have
available the following control praitives.

<STEP }pl! In})Jcondition|> exccutes the process ;p| for jnj
elementary steps unless the fcondition] is met in vhich case it
returas the number of elementary steps cospleted. If in| is negative
then the process is executed BACXWRRDS! This emables us to zero in on
bugs by ranning forwards and hackwards until tke bug is found.

<INVCKE |p{ In! lcondition]|> executes-the ‘process |pl for |pl-
procedure invocations unless tue jcondition] is met in which case it
stops and returns the number of procedural invocations which have been
coapleted, 2gain if |n} is negative then the process is run

backwvards.

S 1«2 PLANNER Functicnal Foras

The functional forms in PLANNER are PUNCTICH and ACTOR. The
sole change in the semantics is that the functional forss of PLANNER
can handle pattern directed invocations.

The folloving exaaple illustrates the syntax of functional

foras. The function ANMONG wvhich is defined below is a generally

5.1 page 205

useful PLAKNER function. What AMONG does i3 to successively return

the elerents of the structure given as its argument. For exaaple
<among [E A]> returas E as its value. But if a simple failure
backtracks to it then it returns A as its value and continues the
computation. But if still ancther simple failure backtracks then it
allows the failure to continue to propagate through the fuaction
ANONG. The particular way in which the function ANONG is used here
does not accomplish anything that cannot be done easily ip LISP. Ve
give this example because it is simple enough to be easily understood.
One way to assign to the identifier x the value which is the first

element of .list that is greater than $ would be

<is
({?} Lall <greater 5> :x> {?})
.list>

Another way would be <is _x <larger S <among .list>>> vhere

<define amo <functicn mynger [list] <pro first
<fa2§po§nt fotvar3 f% (1 <prog [first]
<>

;"establish a faiipoint aand return O™
[2 a?]
;:"on backtracking let m be the message and a? be true
if
the failure vwill propagate through®
<cond
[<not? <is? .» <O>>
;*if the message is not <>
then restart tae faiiure®]
[<is? .m <>
;"the message is O"
<restore .forvard>
;"start going forward agai
vith the failpoint restored” >>
<cond
[<eapty? .list>

5.1 page 207

s"if list is empty generate a
simple failure out of among"
<fail <> .munger>)
[~"else"
<_ <linear :first !:.iist> .list>
i"set first to the first of .list and
list to the rest of .list"
{.runger .first>
;"exit ' munger vith .first" >>>>

{define larger <function {a b]j
<cond

[<is? <greayer «b> .a>
:"if a 1s qreater than b then return a"
a)
[~"else™
;"othervise generate a failure with the message OY
<fail O>P>>

Thus the value of <larger <among (2 4 6)> 5> is 6.

5« 1.3 PLARNER Theoreas

PLANYEE allows procedures to be invoked by a pattern which
states what the procedure is supposed to accosplish,

There are four kinds of theoreas which are presently defined
in the language for satisfyiny requests made in the bLody of

procedures:

1. Consequent theoreas for satisfying goals. Consequent
theorers are the most fundamental in the sense that they can easily be
used to simulate the other two Xinds of thesrens.

2. Antecedent theorems for deducing the conclusions of

¥3QHO NI 2 1vd HOIVW LSNW L 1vd S3SVD TV NI i 3i0N

"TIN4SS300NS 38 O1L NOILVIOANI 3JHL ¥Od

< 2 1vd 3svH3I>

<2 1Vvd 1¥3Ssv>

<2 1vd 109>

NOI11VvY¥3d40

3Sv8 vivad A8
Q34399141 NOILVOOAN!
Q3103410 N¥3llivd

<[<2 1vd 3svy3l>

<[2 1vd L¥3SSV]>

<[2 .ivd w09l >

NOI1V JOANI
Q3103410 NY¥3.lvd

<-AQO8- < -AQ08- < -AQ08-
L 1vd l 1vd L LVvd W3HO3HL
[-SNOILYHY1030~1] (-SNOILVYYVTIO30-] [—SNOILVY¥V1030-] 40 NI
ONISVH3> IN3A303LNV> LN3IND3ISNOI>
NOIL3T130 NOILY3SNI NOILVOOHYILNI

SNO|IlvHd3d0 3sv8 vivd
NOILVOOAN! Q3103410 N¥Y31llvd

‘;‘Z() 7- e

AP

T f o

5.1 page 208

assertions

3. Erasing theoreas for deducing conclusions fror the fact

that some assertion is no longer true

4., Simplifying theorems are for simplyfying expressions.

5.1.3.1 Conseguent

<CCHSECDENT . .
-type~ t+activation-nanme¢

ldeclaration-specificationj
jconseqguent-pattern|
=body->
evaluates to a procedure which declares that |coansequent-pattern| is

the consequent of a theorem which can te used to try %o establish
goals that match Lthe pattern]éozééquent-patteru{. Whether or not the
theorea actually succeeds in establishing the gcal depends on the
body. Typically the first action that a theorea of type counsegquent
takes is to try tov reject the goal. We cannot emphasize too strongly '
the importance of analyzing tke consequences of goals in order to
reject the ones shich canaot be achieved. BEven if no absurdity is
detected, the consequences are often just the statements that are

needed to establish the goal., The only way that a theorea that begins

vith the atom consequent can be called is by the pattern directed
call:

<CALL
[<[GOAL |goal-pattern|
jrecoamendation|
|state-path| P>

TS YT Lo DA S o aeaie g

5.1 page 209

vhich attempts to satisfy the goal {goai-pattern| where jconsequent-
pattern| matches jgoal-pattern] and the consequent theorem is in the

data base specified by |state-pathj. The function CONSEQUENT is
defined to be:

<FUNCTIOY +checker+ ¢activation-panme+
[~"PATTERN"

[1declarations}] [GOAL lconsequent-pattern} J)]
-body~>

The follosing theorew says that if it is our goal to prove x and we

have proved that v isplies x then we shonld make it our goal to prove

V.

<consequent [x w] 2x
{curreat [implies 2w 2x >
<goal .¥>>

The following theores says that two *hings axe equal if they are

identical.
<consequent [x] [= ?x x>

With this consegquent theorea, evaluating the following causes:

.

<prog {a]
s"declare an identifier an
<goal [= ?a 3
:"a gets the value 3 since a is linked to the
identifier x ip the consequent theorem">

<prog [a

C

H Jeclate a and c"

<prog []
s:"declare H"
{goal {= ?a 2P

5.1 ga~e 210

s"a is linked to b"
<goal [= ?b 2c]>
s®b is linked to c™>
<goal [= 2?4 3D
s"a gets the value 3 and so
therefore c gets the value 3">

5.1.3.2 Antecedent

<ANTRCEDENT
+checker+

jdeclaration-specificationj}
jantecedent-pattern|
~body->
evaluates to a theorem which declares that |antecedent-pattern| is the

antecedent of a theorea froam which comclusions may be drawn by the
body. The. theorenm can he used to try to deduce consequences from the
fact that a statement that matches the antecedent has been asserted.
The only way that a theorem that begins with the atom antecedent can

be called is by the pattern directed call:

<CALL
[<[ASSERT fjassertx-~patieraj >
jrecommendation|
{statc-path} >

vhich draws conclusions frcam |jassert-pattorn] where jassert-patterni
.. . matches jantecedent-pattern| the satecedndent theorem statisfies
jreconmendation} and the artecedeunt theorem is in the data base

specified by |state-pathy. 7The function ANTECEDENT is defined to be:

<PUNCTIOKN +checker¢ ¢tactivatisa-name+
[~"PATTERE"
{ 1declarationg| [ASSEBT jantecedent-
patteraj]]]
-body->

T CHGIT NG [P s, W ——

—-————

I ¥

5.1 page 211

The following theorem says that if we assert something of the fora

{not [implies X Y]] then we should deduce X.
<aatecedent [x y] [not [implies _x _y]] <assert .x>>
The following th2orxrem says tbat if something of the form [marry [xi|

jy!] is asserted then [bachelor {x}{] should be erased.

<antecedent {x Y]
[marry _x _Yy]
<erase [bachelor .x}>>

5.7.3.3 Erasiag

<ERASIIG
ldeclaration~specification|
ferasing-patternj
-body->
can be used to try to deduce consequences freca the fact that a

statement that maztches the patt-.'n lerasing-pattern| has been erased.
The only way that a function of kind erasiag can be called is by the

expression
<CALL
[<[BERASE f{erase-pattera}l]>

| recosnendation}
= -+ -+ lstatg>path] >

vhich expresses the fac* that there h: s been a change in the world
affecting |erase vattern| where jerase-pattexn| ma<ches jerasing-

patterni. The functicn ERASIEG is defined to be:
<PUNCTION ¢checkert +actiration~manse

[~"PAYTERE"
[1declarations| [EEASE {erasing-pattern|]]]

T p el B R Y] - sargoms A

5.1 page 212
~body->

The following theorem says that if something of the form [alive x] is
erased then [dead x] should be asserted.
<erasing [x]

[alive _x])
<assert {dead .x]>>

5.2 page 213

5.2 FLANNER Punctions

5.2.1 Data Priaitives

Some of the functions in PLANRER are given below together with
brief explanations of their purpose Examples of their use are be given
inmediately after the definiticn of the priaitives below. The
primitives probably cannot be understocod vithout trying to understand
the examples since the language is highly recursive. In general
PLANNER remembers everything that it is doing oa all levels unless
commanded to forget some part of this information. The default
response of the language vhen a sisple failure occcurs is to backtrack
to the last decision that it made and to make another choice.

<CANDIJATES

lkind} |pattern] |state-path}|> are the }Xxind}
candidates that have the same coordinates as |pattern| and are in the
local data base defiped by |state-path}. CANDIDATES is the basic
retrieval function for the data base, The candidates can be generated
incrementally if it 'is not desired to cdonstruct thea all at once at

the beginning. The kind of data retrieved may bdbe:

CURRENT for assertions
PUNCTICN for functions

5.2 page 214

5.2.1.1 Assertions

<ASSERT!-TENTAIIVE

{statement] jzeci [~"PATH |state-pathj] {~"ALREADY"
jalready-current|]> puts |statement) in the 3ata base defined by
|state-path| ard tries to draw conclusions according to the
recommendation jrecy. PRecoamendations are optional; the defau’s
reconmendation is [-+"TRY"] which says not to try any theoress. If the
statement is already ip the data base then jalready-current| is
evaluated. If the value of jalready-curzent] is -~"REASSERT™ then the
|statement] is asserted in the first element of |state-path|j. The
~"reassert" feature is due toc Drew KcDeramott. Othervise, the fizction
ASSERT causes the statement statement vith properties to he inserted

in che data base vhich is the first element of |state-path|. Then

<CALL
[<[ASSERT |statement} }>
istate-path}
jrec| >

is evaluated to draw conclusicns from statement. If the call to DRAW
ultiaately fails then |statement| is removed froam the data base. The
argument jalready-current] is due to Peter Bishop. The. recommendation
is optional. The value of the fupmction ASSERY is the arc fros the

state which contains the assertion having as indicatcer the assertion.

<assert
<put
[subset a b]
{difficulty trivial]>>

bacaboan TN oo aaani 2 b o aniien it — e S

i R Lo i D e e~ ———

5.2 page 215

asserts that the set a is a subset of the set b and put the value

trivial under the indicator difficulty.
<ASSERT!-PERSISTENT
jstatement| f(rec| [-"PATH |state-path]) [~"ALREALY"
lalready-current]]> is exactly like ASSERT!-TENTATIVE except that
jstatement| is not withdrawn from |state-path} on backtracking.
Exzressions of the form <CLAUSE [Jeclarations] -alternatives->
denotes an assertion with variables declared followed by logical

alternatives. For example

<assert
<claus+:. [[<set> x Yy 2]
[not [subset 2x 7y]]
[rot [subset 2y 2z]]
[subset 2?x 22> i

asserts in declarative form that the subset relaticn is transitive for

set=. 1In other vords it is equivalent to

<assert
<clause [[<set> x ¥ 2]]
[implies
[and
[subset 2x ?y])
{subset ?y 2z])
[subset ?x 22])>>

-Another kind of assertion is one which has variaBles which are
consnmed by being bound For example if we translate the assertion
that John is somewhere as <assert <closure <clause [] fat John 72x}>
x>>, then <goal {at John store]> causes x to be bound to the ztom
store, Thecreafter <goal [at l2ohn home]> fails since the identifier x

vas consunsed in being bound to the atoa store. The above problem vas

5.2 page 216

suggested by Gene Charniak.

W. Bledsoe suggested trying the problem of showing that [all a

[some b [p b al]) follows frox [some x [all ¥y [p x Y]]l

<assert <clause [y] [p [x0] 2Y>>
<prog [b]
<goal <clause [p ?b [a0]]>>>
b gets the value [x0]

The expression <clause [y] [p [x0] ?y]> is the assertion Skolea fora
of the assertion [some x [all y [p x y]]] vhere x0 is the Skolenm
function for x. The expressions <clause [p ?b [a0)]> is the goal
Skolem form of [all a [some b [p b a])] where a0 is the Skolem
function for a. On the other hand if we were to try tc derive [some x

{all y [p x y]]] froms [all a [some b [p b a]]] wve would fail:

<assert <clause [a] [p [b0O 22] 2a]>>
<prog [x]
<gcal <clause [p ?x [Y0 ?x]]>>>

The identifier x cannot be be bound. The many-sorted cmega order
quantificational calculus of PLANNER allovs for the possibility of
null domains., For exasple it does not follow that there is a god
vhich is a deity if ve assume that all gods are deities. That is
{some [in g god] [deity g]] does not follow from [all [in g god]
[deity g]]. Thus ve cannot frove the exiséence of a god so'é;;ily.
However [some [in g god)] [deity g]] does follov froam {scme [in g god]

[mythical g]] and [all [in g god] [implies [mythical g] [deity g]]l].

<assert {aythical [gUu]]>
<assert
<clause [[<god> ¢]]
[aot [mythical 2g]]

5.2 page 217

{deity 2g]>>
<prog [[<ged> x]]
<tenmprog []
{assert <clause [] [not [deity 2x]]>>
;"assert that there are no gods which
hase the property of being deities"
<prog [literall literal2]

<current
{clause
<all
[deity <2>]
_literal2>
<>
<current
{clause
<all
[not [deity <2>]]
_literali>
<box>>>
<assert
<resolve
«literal1
.literal2>>>

:"resolve a clause which contains an element
vhich matches [deity <2>] and
a singleton clause
vhose element matches
[not [deity <2?>]] fproducing
<clause [] [not [mythical ?x]}> which
is then asserted®

<prog [literall literal2)

<current
<clause
<all
[mythical <2>]
_literali>
<box>>>
<current
<clause) .
SRR <all: : ' T
[not [mythical <2>]]
_literal2>
<box>>>
<assert
<{resolve
.literalt
<literal2>>>

;*resolve two singleton clauses;
one containing
a positive instance of mythical and

SV e et et . o e e U ST Y PRI e TN

5.2 page 218

one a negative imnstance,
this binds x to [g0] and produce a

clause which is written <box>"
<current <box>>
:"thus we have derived the null clause which
is a comtradiction">

{assert <clause [] [deity .x]>>>
;"assert [deity [g0]]"

S5.2. 1.2 Brasures

<ERASE!~-TENTATIVE
{statement] jrec| [~"PATH"™ |state-path}] [~"XOT-FOUND"
{not-fonnd}]> tries to find an assertion lal in |state-pathj in the
data base that matches jstatement|. If such an assertion |aj is found

then it is erased and

<CALL
[<[ERASE jal >
jrecommendation}
|state-path| D

is evaluated to assay the isplications of the chamge. If no such
assertion is found then jnct-found] is evaluated. If the change
statement fails or if a failure backtracks to the function BRAS?, then
la}. is reipserted in the .data base and the vhole process repeats with
another statement from the data base, The value of the functiom BRASE
is am arc from an element of j|state-path| wvith indicator a statesent
vhich matches |pattera}. The reader should be careful not to confuse
vhat happens wkten the functicn ERASE is called to reemove something

from the data base with what happens when an ASSERTION fails and thus

“‘.

-

5.2 page 219

removes what was asserted froa the data base. The function ERASE may

attespt to do pattern directed invocation to deduce consequences of
the deletion wvhereas ASSERT will not. 1The arqument |not-foundjf is due
to Peter Bishop.
<erase [ca-top-of brickt brick2]> erases the fact that brickl is on
top of brick2.
<ERASE!-PERSISTENT

istatesent] jrec} [~"PATH" |state-path|] [:"NOT-POUND®
inot-found}]> is exactly like the function ERASE!-TENTATIVE except
that the assertion deleted froa jstate~-path] is not re-inserted on

backtracking.

5.2.1.3 $o0als

<CURRENT?
jpattern] |state-path|> tests to see if a statement
that satches jpattern] currently is in jstate-pathj. If there is such
a statesent, then the identifiers in |patterni are bound to the

appropriate valnes, If there is no such statemsent, then CURRENT?

returns false. If a simple failure backtracks to the function

CUBRRENT, then the identifiers that were bouand are unbound, Thea the
vhole process repeats rith another statesent in the data base.

PLASNRR is designed so that the time that it takes to
deteraine whether a statemeat that satchkes pattern is ip the data base

or not is esseamtially independeat of the namber of irrelevant

s = — P —
W FEE Sl s T S T IR S

b'e

e ar

5.2 page 220

statements that bave already been asserted. A ¢oordinate of a

structure is defined by some atoam, nusber, or string being in some
position of the structure, When an s- _xpression is asserted PLANNER
rereabers every coordinpate that cccurs in the s-expression. Two
expressions are similar on retrieval only to the extent that they have
the same coordinates. The function <MEBRGE |w| |1}> will merge jv|
izto the list j1|. Cousider the simple assertion

<assert .z [~"path" (.s1)]> vhere s1 is bound to a state and 2

is bound to ~[a [b c]] causes the following changes:

<put .
<position 1 curremt>
[a
<merge
-z
<get a
<position 1 curreat>
(0)
:"if the bucket is empty then,
initialize it with
an eapty list">> P
<put .
<position 1 <position 2 current>>
[k
<merge
% 4
<get b
<position
1
<pcsition 2 current>>
0)>>p
<put
<position 2 <pogition 2 current>
[c
<merge
.
<get ¢

<position

S«2 page 221

2
{position 2 current>>
{0)>>P

<put .s1 [.z2 ~"asserted" }> L
Classes are stored in tuckets under the position -~"class". Thus the

assertion <assert .¥ [-"path" (.s1) }> where w is bound to [nocaempty

<class e £>] would result in:

{put
<position 1 current>
[ncnempty
<merge
oV
<get nonempty
<position 1 current>
(0)
:#if the bucket is enpty then,
iritialize it with
an empty list"™>>)]
<pat ‘s
<{position -"class" <position 2 currentd>>
[e
{merge
¥
<get e
<position
~"class"
<position 2 current>>
(0)>>1
<put . .
<position ="class" <position 2 current>>
(£
<merge
. e ¥
<get £
<position
~"class"
<positicn 2 current>>
0)>>p

<put .s!1 [.¥ ~“asserted" >

Clauses are classes at their top level., Por example the clause

§.d poge ala

TREE - STRUCTURED WORLDS

<WORLD $1> B y
- —
o
z A
o
>
o ASSERTED Pl
v
ASSERTED

INITIAL WORLD WITH B ON A WHICH IS AT POSITION P1

<WORLD 82 S1>

en
o B A
2
@ \& ASSERTED P1
»
ASSERTED —
v ASSERTED
SRASED

PUSHED DOWN WORLD WHERE B8 HAS BEEN MOVED TO THE
LEFT OF A. NOTE THAT A IS STILL AT P1 FROM THE POINT
OF VIEW OF THIS WORLD. HOWEVER B (S NO LONGER ON A.

5.2 page 222

<clause [] [not [on a b]] {on a ¢]> would be stcred under the

coordinates for [not [cn a b]] and [on a cj. Variables in expressions
are ignored on indexiang. ‘Thus two expressions which are the same
except for change of variables are considered equivalent. W#hen the
bucket under s.me coordinate exceeds a threshcld then tke bucket could
be sub~divided by *takin, the cuordinates by pairs. The only reason
that we don't store statements under all the possible ccmbinations of
coordirates is that we can not afford to use that much space. Storing
the nost recent assertion at the front of a bucket also tends to speed
retrieval. If a total ordering is imposed cn the assertions, then the
buckets car be sorted. Richard Greenklatt tkas constructed a clever
total ordering on the assertions which also has the advantage of
storing new assertions at the froat of the buckets. The total
ordering is constructed incrementally as assertions are made. 3If
MATCELESS had an efficient parallel processing capability then the
retrieval could be esver faster since xe would do the look-ups on
cocrdinates in parallel. We might imagine a aachine with zultigle
program counters each ¢f which is capable of interruptiang the
execution of the others. However, with the current technolcgy it
appears pore econosical to timeshare a few very fast physical
processors. Clauses are stored in a special way for efficiency. The
value of the expression <CURBENT jpattern| |state-path}> is an arc
fromn the state in jstate-path] which contains tke assertion wuith

iadicator name being an assertion that ratches }|patterny.

. Y P N T ST W T O T

LY

b

Lo N Ll T e (e = TS

5.2 page 223

{current?
{subset a b]
[~"use” <has [difficulty %trivial]> P
is true only if it has been proved that a is a subset of b with the
value trivial under the indicator difticulty. We shall use the prefix
operator ?x for <GIVEE x> to denote variables of the quantificational

caiculus. The concept of a variable is difierent froa that of 2n

identifier in that variables have glolkal scope,

given:

<assert
<put
<clause [[<object> x] [£set> y z])
[subset [£f ?2x] 2y}
[subset ?y 2)>
[difficulty hard]>>

The above statement says that for all objects x amnd sets y z that [
x) is a subset of y cx y is a subset of z. evaluate:
<prog [[<set> ¥ u])

<{current
<clause [subset _vw _ul] <2>>>>

evaluates
to <clause
[[<object> x]]
[{subset [£ 2x] [£f 2x)]>
v gets the value [f ?x]
u gets the value [f ?x]
<CORRENT

tpattern} j{state-pathl> is exactly like CJURBRREBAET2
except that if it ruams out of objects thit are currently in |state-
path] which match }pattern} then it generates a siaple failure insizad

of returning false. The value of CURRENET is the node wkich is the

S.2 page 224%

property list »>f anp assertinn in jstate-path| which matches |pattern]

<GOAL

{goal-pattern| irec) [-~"PATH" |state-path|]]> tries %0
achieve the jgoal-pattern] according to a recossendation jrecj.
Recoamendations are optioral; the defauit recom.endation is [-~®pse"
~"CURRENT" <?>] vhich means the data hase is searcked to see if there
is soaething already proved shich matches jgoal-pattern| then use it
othervise try any conseguent theores whose conaegﬁent #atches jgoal~
patternj. The recommendation jrecj must be of cne of the following
tvo foras:

1 [-~"CTSE"

~“"CURBRENT"

~pats—-] is equivalent to

CON
f(CUBRBnt? jgoal-pattern| jstate-path|>]
[~%ELSE"™
<CALL
[<{GOAL jgoal-patteranj >
[~"0SE" —-pats-]
istate~path| > >

2: [-"USBI"
~<~®"CORRENT"™
~pats-] is equivalent to

COND
[<CURRENT? {goal-patteran} |state-pathl>])
[~"“ELSE%
<CALL
[<[GOAL jgoai-psttera|>
[~"DSE®* -pats-]
istate-path}]>)>

The ~"USBE1" recoamendation is due to Pat Bimston. Alan Kay has
suggested that the systax of PLA¥NER could be easily changed so that

every expraessicn is a goal. Thus instead of vriting <GJAL x> ve would

5.2 page 225

simply write x. Alan's suggestion has the merit that it simplifies the

language. Ogne reason that we 3o not do this is that pattern directed
invocations are somevwhat more inefficient than straightforvard calls
in vhich the name of the czlled functicr is explicit. Anyone vho
prefers the other syntax can easily expznd all function calls <f args>
into <[f args > by a trivial macro.

Suppose that we know that zero is an integer and that if a is
an integer them n+1 is an integer. we would like to f£ind an integer j

which is not zero.

<assert { integer G}’

<assert <ccnsequeat [n]
fintegér [+ ?p°1)]]
<goal [integer ?al>>>

<pro 4<roen 0>
prog [{<goa1 [iggéger 731>

J gqets the waluwe [+ 0 1]
<GOAL?
fgoal~patzern] |rec| [-"PATH” |state-pathj]}> is
exactly lieke GOAL except that it returns <> instead of backtracking
if it runs cat of alternatives.
<GCALS>
returns as its value a list cf the specifications of the curvently
active goals.
<SUBGOAL
-clauses-> atteapts to match the first element of each

clagse im turn to the elements of the list of currently active goals.

T S T R R TIOWT TNI N L YTN TARIOTS ey - R e - - ~——

5.2 page 226

If the first element of a clause matches tken execution continues w¥ith

the remaining elements of that clause.

5. 2. 2 Control primitives

<SRITICH
|rev-state-path} jexpression|> evaluates |expression|
gsing tke jrew-state-pathi to do retrievals froa the data base. At
any given time PLANNER expressions are being evaluated in a state

path, A top level process begins by using the primarv data base as

its state. It can switch intc a local state by usiung the the function

SHITCH. Tree structures of local states can be created by using the
function STATEPROG., States fram be conceptualized as a linear list of
changes to the data base. Thus there can be several incompatible
states of the vorld siuultaneously under consideration. Although the
tree structure of the local states can be conceptualized as a linear
list of changes, it is actually iaplexented more efficiently so that
the retrieval time for assertions is essentially independent of the
size ard nuaber of local states. The assertions in the data base are
tagged as tc which states they are in.

<STATE>
returus &s its value a neyw local state.

<PRINARY>
is the primary state of the systes,

<GPDATE

THVC A EERA TF R M RN T M S e -~ - ———

o

5.2 page 227

jstatel] {statel2]> updates Jstatel) into jstatel}. If

the second argument is aissing the global data bese is assurmed.
<GATE
Ix]> is the value of !x} unless }x] fails sixmply in
vhich case it is <>, The expression E}x) is an abbreviation for <GATE

jxi>.

1%<biock (<oblist gate!-> <oblistd)>
<dcfine gate <function ot {'x]
<failpoint {] <
[message activation?]
<cond
[<not <or .message .activation?>>
s"neither the message nor
activation are on*
<.0ut OO
;"exit gate vith false" D>
<eval .x>
:"the value of gate is the value of .x umless
the evaluvation uvf x fails>>
1%<end~-block>

<cond [~%else®” <fa2fl>}> fails vith the message <D.
<cond [<faild> 3] [~"else® 7}> fails

<cond [&6<fail> 3] [~"else® 7]> evaluates to 7.

<cond [<> 3]> evaluates tao <O,

{cond [<> 3] [~"else® §]> evaluates to 4.

<cond [~"else®" <fail>] [~%"else" 5] fails.

<cond [&~-"else" <fail>] [~%elge® 5]> evaluates to 5.

<TEBPRECG
¢checker+ tactivatioy-pawme+ {-declarations-) -body->
is likxe the function PRGG except all assertions and erasures that are
sade wvithin the scope of the feaction TE#PROG are undone vhen the
function TEXPROG returns. The fzrction TREPR0G is useful for dealing

with hypotheticals. Suppose that we vanted tc estsblisk [all x [p x])

o T e S i . 3 . T T T R G N YRR N o

"HITLER WOULD HAVE BEEN CRAZY
TO INVADE ENGLAND"

/_\

GLOBAL DATA
BASE

[NOT [INVADE HITLER ENGLAND]]

STATE S STATE S1
<ERASE [NOT [INVADE HITLER ENGLANDI]I >

<ASSERT [INVADE HITLER ENGLAND]>

< ASSERT [CRAZY HITLER]I>

07 7-) 7 4

Jf [i At e N S M T D S e TS ne———

1 e —- -

5.2 page 228

b mathesatical inducticn.

<goal [p O
;"first try to prove [p O]"
<temproq [k <arbitrary <integer>>])
+"let k be an aiskitrary integer”
<assert [p .k]>
;"assert that p hoids for k"
<goal [p 1'<+ .k P
;"try to prove that p holds for k+1%

<SHITCH
jstate-path}] }expression|> causes jexpression| to be

evaluated with |state-rath| as its current local state path. The
value of PATH!-STATE is the current state path, Lccal states are
useful for handling coatra—-to-factual conditiopals and tor
simultanecusly manipulating inconsistent states of ‘ho vorld.
Assertions affect only the state which is the first element of the
state path in which the assertion is evaluated. The followviny assiygns
the identfier s1 the value which is a local state path in which Hitler

invaded England.

<switch
<_ :s1 [<state> !.path!-state)>
<assert [invade Hitler England }>>

We further suppose that Hitler is crazy. This could be expressed by

doing the assertion within s1 and assigning the result to s2:

<switch
<_ :52 [<state> .81}
<assert [crazy Hitler]>>

Now if we ask if Aitler is crazy in the state path s1, the ansver is

that he is not; but he is crazy in the state pata s2.

<switch
<switchk

<switch
<{switch

<switch

<switch

Erasures affect
are evaluated.

<{sw¥itch

<switch
<{switch

If ve knov that a formula of the form [or |Xx]

5.2 page 229

.81 <current [crazy Hitler >> fails
.s2 <current {crazy Hitler P> is triue

.S2 <current [invade Hitler England }>> is true

[€<1 .52>]
<current [invade Hitler England}>> fails

[€<1 .52>]
<curcent [crazy Hitler }>> is true

[€2 .52> <1 .s2>]
<current [-razy Hitler]>> is true

the first local state of the state path in which they
After

.s1 <erase [invade Hitler England]>> ve have

&1 <current [invade Hitler England }>> fails
52 <current [invade Hitler England }>> fails

lyl]) is true and

ve vant to establish a gocal of the form jg; then we could write:

<PROG []

<TEMPROG []

<ASSERT {x|>
<GOAL }gi>>

<TEEPROG []

<ASSER?

<ASSEBT y>
<GOAL g|>>
igi>>

The above foram of disjunction elimination is often used vhen y is of

the forx [NOT]Xx}].

as follous:

<PROG []

Goals of the form [or |x] |Y]] can be established

<TERPROG []

<ASSERT

<ASSERT [M¥OT x| >
<GOAL y>>
<CLA9YSE [] Ix} 1yI>>>

5.2 page 230

5.2.2.7 Failure Prisitives

<UMICUE> fails if the current goal is not unique among all the
goals that are currestly active,
<UNICUE
<]p} -args-> Jplacel> fails if the procedure |p! with
arguments —args- is not unique among all the procedures that are
active in !placej. The }placej can be a process or it can be [RETWEEN
|namel] |name2}] in which case only the procedures betveen j(namel} and

Jname2| are be examined.

<RETRY
Jactivation]> causes failure to jactivaticnj whick
must include the call to RETRY within its scope. Execution resuses

with the beginning cf the named block.

<prog bere [a]
<_ _a
<prog there [}
<cond
[<is? 4 .a>
<.here .a>
;"exit .herc with .a"]>
<_ :a 4>
<{retry .there>>> aevaluates to 4

5.2.2.2 Pinalize primitives

Y

s - -— S TN N S T [y S . ————— -
2 -

5.2 page 231

<PINALIZE

tactivation-pase+> causes all actions that have bheen
taken in the block tactivation-name+ to be finalized and then returas
the value of +activaticn-name+. Thus <<FINALLIZE +activation--rame+> -
values-> will firalize all the actions tkat have been taken in the
scope of +activation-name+ and then exit +activation-name+ with -
values-. Actions which are finalized are anot undome if a failure
backs up. Pinalization can be useu to save storage for actions shich
should not be automatically reverted in case of failure. Por exasple,
robot thinking for a given task is often divided into two phases: a
planning phase and an action phase. 1In PLANNER this is typically done
by having the planning phase return as its valuve a PROCEDUBE whichk is
to be executed in the action phase. Asser ions which record events
vhich have taken place in the "real world" should be finalized in the

action phase as they happen.

5.2.2.3 Repetition Primitives

<FOR
+checker+ +activation-pame+ [-declarations-]

[-for-specifications-
[~"CURRENT™ Jpattern| |state-path}]]
~body->
is the for statement of PLANNER. PFor each assrertion in the data base

that matches |patterp| the -body- is executed. Por example the

folloving statement places all the bricks on brick? im the blue box.

<for
[[<brick> x]]

3¢ ST " T Y R T re—

<PERSIST

5.2 page 232

[[-"current" [on~top-of _x brick1]]]
<pick-up .x>
<place-in <' [blue box]>>>

+checker+ +activation~name+ [-declarations-]
[[-"IBITIAL® -initial-actior-]

[~"TEST" jtest] ~-test-action-]

[~"LIST" jitem] condition]

[~*STEP" -step-action-]

[~"FINAL" -finai-]]

~body->

vhere tactivation-name+ and #checker+ are optiomal is egquivalent to

‘the followings

<PROG +checker+ *activation-naame+
[-declarations-
[CCLLECTED ()]]
;®initialize COLLBCTED to []

<FAILPOINY
[MESSAGE ACTIVATION]
<COND
[<NOT? <OR?
« BESSAGE
«ACTIVATIONDD
-final-
<.tactivation-nanse+
+CCLLECTEDD
:Yexit .¢tactivation-name# vith
.Collected " D>
-body-.
<CUED
[ftest]
-tegt-action-

<.tactivation-nase+ .COLLECTED>

i%exjit .tactivation-name¢
vith .collected® >

<COoND
{ tcondition]

;:®if the condition is met
then add iten
to thas end of COLLRCTED"™

~ W NI TS 1 W

5.2 page 233

<_ sCCLLECTED (!.CCLLRERCTED item)>)}>
-step-action~
<FAIL>
;"generate a simple failure">

"Are all the blocks in box1! green?" translates to

<persist b1 £[<block> b]g
[[~"EIinai" <.b17€> ;Mexit .b1 with t¥]]

<goal {in _b box']
;"find a block in box1iv
<cond
(6<goal [green .b]>
;"if the block is green then
continue vith the loop")
[~"else"
<fail <> b1
;"otherwise generate a failure out of
the persist loop"}>>

<FPZIND
+activation~nase+

[-declarations-]

r
¢

[~"QUANTITY jquantity]]
[~"LESS" |lo¥er-bound] -fewver-)}
[~"GREATER" jupper-bound| -~azore-j]]

jiten)

~body->
constructs a list of betwveen Jlower| and }upper] {item}s according to
the jbody{. The FPIND - :: * runction is eguivalent to the
following:

<STRAIGHTER <PROG tactivation-name?
[-declarations- [NUMBER 0] [COLLECTED ()]]

<failpoint [] <> [N A]
<CORD
[<NOT? <OR? .B .1>>

;. e L o ye L o

5.2 page 234

<COND
[<NOT? <IS?
Jquantity]
~"ALL">>
<FAIL> >
¢"if the gquantity sought
is not all
theu backtrack"
<COND
[<IS?
<LESS |lower-bound|>
« NUMBER>
~less~-]>
<.t+activation-pase+
+CCLLECTED>
s"return with the itens
collected"]>>
-body-
<_ 2CCLLECTED (!.COLLECTED jitenmi|)>
<INC!~-PERSISTENT NUMBER>
<COND
[<IS? {quantity| .NUMBER>
<.+activation-name+ .CCLLBCTED>
;"if have found the gquantity
desired then return thea™}>

<CCHD
[<IS? <GREATER Jupper-bound}> .NUMBER>
-more- 1>
<FAIL>>>

*rind three boxes that contain green blocks.®
translates to:
<find [{<box> x] [<block> b]1 [[~"CUANTITY" 3]] .x
<goal [box _xP

<goal [cortains .x _bJ>
<goal [greem .bJ}>>

5.2.2.8 Bulti-Process Primitives

In more complicated situations, we £ind that it is convenient

to be able to have more than one PLARNER process.,

———ey .
TR TR AT -

5.2 pige 235

<FAIL
|message| jplace}] |function|> generates a failure with
|message] to the |place}] at the last pcint *hat execution left
{placei. If the process which called PAIL is ever resumed with

arguzents, then it begins by applying]functiop} to the arguments.

<EXHAIST)] .)
tchecker+ tactivation—ramet+ [-declaraticcrs-]

[["INITIAL"™ -initial-action-]}
[~"TEST" jtest} —test~action~]
[*ACTIION® ~action-~]
[~ 'LIST" }iteu] {condition]]
[~-"STEP" -step-action-]
[~"PINAL"™ {final}]]
-body-~->
attempts to executc -body- once for each time that -action- is

successfully evaluated. Every time that the body it executed the
function YXHAUST seunds a simple failure to the action to see if it has
any alternatives. An EXHAUST loop is very much like a PERSIST loop
vhich is defined above. Both loops are driven by the failure
mechanijsa, Tte main difference is that the effects of :zxecuting the
body « PEBSIST loop are not preserved beczuse a failure amust

Prope ,aie through the body before it can be executed again. 1In ar
EXHATST loo ' . scparate process is created for the ac*ion so that the
effects of - ‘<. :*ing the bhody can be preserved. The function EXHADST
is equivalen: 4c che fclloving expression:

<PROG +¢checkei+ tactivation—-name+

L
[COL”ECTED {)]
[<proc>
[ACTIOK-PROCESS <PROCESS ,ACTIOE-FUNCTICKD>]
[YAL-PROC <.ACTION-PROCESS <PROCESS>>]]]

- e e e ——————

. - — PN DR TN VN, T T T LI e -

o

5.2 page 236

;"declare CTOLLECTED to be initialized to [J"
t"ACTICN-PROCESS is the nase of the

process which is t- be exbausted by failure®
;"start the ELANNER proces: .ACTION-PROCESS in

wvhich the action is executed with

the name of this process

as an argument so that it can later resunme

this process"
;"vwe expect one value to be returned

which we shall call VAIL-PROC"

<REPEAT []
<COND
[<IS? EXHAGSTED .VAL-PRCC>
-final~-
<.k .CCLLECTED>
;"exit .b with .collected”]
[[test!
-test-action-
+"if the test is npet
then execute the test-actiou®
<.b CCLLECTED>]>
~-body~
<COND

[lcondition]
<_ :COLLECTED (!.COLLECTED ljitenm])>]>
;"if the condition is met then add the ites to the end
of the list of collected items"
<FAIL
<>
~ACTICN~PROCESS
<FUNCTIONK [Y] <_ :VAI-PROC .Y>>>
;"suspend
execation of the current process
and begin failing from the point within
the action prccess
where execution last left off%>>

The following functicn is defined so that we can start off the
evalvation of the action process.

<DEFINE ACTION-FUNCTION
[PUNCTION [[<proc> MAIN]]

<FAILING? [<2?> <.MAIN EXHAUSTED> >

;%vhen the action finally is exhausetad
resuse the orocess .MAIN with the value BXHAUSTED and
terpinate the action piocess”

-action-

<.3AIK SUCCESS>

;"resume the main process with the valiuwe SUCCESS")]>

=

Ve o ——

5.2 page 237

Suppose that wve want tc disprove a proposition .p using likely

counterexaaples. Purthermore we would like to work on each

counterexample in parallel as it is found.

<exhaust disprove [c]
<goal [likely-counter—-example _c .p}>
<] <ccnd
[6<goal .c>
<terporize
.disprove>
~"found-counter-example”>> 1>>

b

5.3 page 238

5.3 Clauses in FLANNER

We would like teo explore the potentialities for using PLANNER
to control a resolution based deductive system. Since the gquestion
whether or umot a given foraula is a theorem or not is undecidabple, a
coaplete proof procedure using resolution for the first order
quantificational calculus aust in gemeral bhe rather inefficient. 1In
fact any unifors proof procedare for the first order quantificational
calculus can be sped up by an arbitrary recursive functior for almost
all pro~fs. The result on the necessary inefficiency of a corplete
proof proc.:dure should be sharpened up. New theoretical tonls must be
developed in order to make any substantial advance on the problen.

The importance of resolution as a prchlem solving technique does not
lie in the fact that it appears to be the fastes: Xncwn uniform proof
procedure for first order logic. BRather, resoluticn provides one
technigue for dealing with the iogic of di-iunction and instantiation.
Domain dependent procedures must proiide most of the direction in the
computation to attempt to prove a theorea. We shall ini-oduce aew
actors to match clauses:

<CLAUSE

-patterns- |rest-of-disjuncts]> amatches a clause only
if it has disjuoncts which match -vatteras—- and the rest of the

disjuncte match the pattern jrest-of-disjunctsj.

-—- et e P g e~ A] - o ——— g, =

5.3 page 239

<prog [yg
<clause [suobset a .y]>
<clause [x] [subset ?2x b]>>>

Y gets the value b
X gets the value a

<CLAUSE-QOF
iyatj Jdisjuncts-that-ratch-pat] |rest-of-disjuncts|>
matches a clause such that the clause of the disjurcts that match
fpat] in turn match the pattern jdisjuncts-that-match-pat] andthe

clause of the the rest of the disjuncts match |rest-of-disjuncts].

The following functions are used to manipulate clauses.
<CLAUSE
[- declarations-] -disjuncts-> returns a copy of a
clause with the variables declared.
<VARIABLES
jclause|> returns the variables in the clause.
CINSTANTIATE
jclause|{> returns a copy of the clause with all of its
variables instantiated vith unique constants of the appropriate type.
<BESOLYE
-claugse-specifications-> results in resolving the
clauses represented by the clause specifications together to yield a
claase which is returned as the value of the function resolve. A
clause spacification is the liiteral of the clause which is tc be

vnified.

5.3 page 240

<FOR-RESOLVENT
+checkert+ ¢+activation-namet+ {-declaratiions-]
[[-"CLAUSES" -clause-specificatioas-]
[~"RESOLVEET" {resolvent|]
~-for-locp-specifications-])]
-body->

at teapts to execute the body of the for statement once for each result

of resolving clauses tkat meet the clause specifications to produce a
clause which matches the pattern resolvent.

It is possible for PLABNER to run out of things to evaluate
before it has deduced the null clause. A cosxplete proof procedure
could be called to try to finish off the proof. If in the course of
its operation, the complete procedure gemerates a clause that matches
the antecedent of a2 theorea then PLANNER can be re-invoked. The
coaplete procedure could be run in parallel with PLANNER. Thus using
TLAKNER we could implement a complete proof procedure. The point is
that implementing any "reasonahble™ proof procedure stkould be easy in
PLARXER. However, we should not rely on a uniforas proof procedure to

solve our probleas for us,

> 3/0(1:)-('7‘!qu

[29 13s8NnS)

[P D13S8NS]
(9 © 1358NnS]

<<[z' x* 1L3s8NS] 1¥3SSV >

<[2¢ K- 13s8ns] voo >

<[Ad x¢ 13s8NS] V09 Dje—

<3NdDINND>
[2¢ xd 413s8ns]

[Z £ x] AIN3INDISNOI D leamr

3svg viva

Nyl

<[220 13S8NS] V09 > €—

L 'ON 1OHSJVNS

3 pauje_ '1‘40))

-

vyl

A’ 4

(29 13s80NS)
[P D 13358NS]

(q o 1388NS]

<L [20 %' 13s8NS) L¥3SSv>
<r2¢ £- 13s80S] Tv09>
<Chkd x¢ 13s8ns) oS>
< 3N0INM>
[z¢ x¢ 13sgns]

£z £ x3) LN3ND3ISNOD>

ERrm
-1 2
- &
p|x
T1vd
Ik 3NS1 |
4
-| &
pl x
RICZ)

A A

i -

tp o i3sans)| [IAET]

- pd
21 2
pi K
D} X
\‘H

e

3sve vlivd

<{9% b 13S8NS1] WO09>

Py -

~

2 'ON LOHSJVNS

— —

-

A T MY e 0

ey € LYor

el

(2 0 1358n8]
(29 13s8ns])

[P D 13S8NS)
(qa o 13s8ns]

[z x° 13s8ns] 1y¥3ssv >

[> o i3s8ns]

[> q9 13sens]|

[4 D 13s8NS) Inys

—

<[z¢ £ 13s8nS] V08 > |

<[4 xd 13s8NS] V09 > |

<3NDINN D>

(z¢ x4 13s8ns]

s va - o e MG G Gn e o an e T W e e e

3sve vivda

<[2 0 13S8NS V09> €~

[z £ x] IN3ND3SNOQ > €t __

&
2
q
)

X

b o ._.wmoa.nuL

l\\\‘_r

s o 13s8nS)

€ ON LOHSJVNS

ST T KO L e

5.4 page 241

5.4 A Sinple Example

S5.4.1 Using a Corsegquent Theoren

Suppose that we know that [subset a b], [subset a d], [subset
b c], and [all [functicn <bccle> [[<set> x] [<set> y] [<set> z]]
[implies {and [subset ?x 2y)] [subset 2y 2z)] [subset ?x 2z]]]] are
true. How can we get PLANNER to prove that [subset a c] holds? We

would give {ke system the following theorenms.

given:
[subset a b]
[subset a 4]
[subset b c]

<asscrt <define backward
<consequent [{<set> x y z]] [subset ?x 2z]

<unigue>
;"the current goal must be unigue"
<goal

[subset 2x 2y]

[-~"use™ ~"current" backward <?>]>
<goal

[subset .y 22]

[~"use"™ ~"current" backv¥ard]J>
<assert [subset .x .z] [~"t-y" <2>P>>>

Now if we ask ELANNEP to evaluate <goal [subset a c]> then we obtain

the following protocel:

<goal [subset a c]>
<current [subset a c}>
fail
<achieve [subset a ¢
enter tackward
x becomes a
Zz becomes c
<unique>
<goal [subset a 2y >
<curreat [subset a ?y}>
node 1,9
y beconres d
{goal [subset d c]>
<current [subset d c]>
fail
<achieve [subset 4 c]
enter lbackward
x becomes 4
z beccres ¢
<unigued
<goal [subset d ?y]>
<current | subset 4 ?y]>
fail
<achieve [subset 4 2y)>
enter backward
X becomes d
Z becomes ?y
<unique>
fail
fail
node 1,9 ;noute that this ncde appears above
y becoames b
<goal [subset t c)]>
<current [subset b c]>
<assert [subset a c]>
succeed

After the evaliation the data base contains:
[subset a b]

[subset a 4]}
[su’ et b c]
[sv et a c]

5.4 page 242

In other words the first thing that PLANNBR does is to lecck for a

theorer that it can activate to work on the goal. It firds backward

and Linds x to a and z to c. Then it makes [snbset a ?y] a subgoal

vith the recoumnendation that backward should be used first to try to

5.4 page 243

achieve the subgoal. 7The syster notices that y aight be 4, so it

binds y to d. Next [subset @ c] ic made a subgoal with the
recoamendation that cpnly backsard be used to try to achieve it. Thus
backward is called recursively, x is bound to 4, and 2z is bound tn c.
The subgoal [subset d ?y] is established causing backvard to again be
called recursively with x bcund to d and z determined to be the sam2
as what the o0ld value of y =ver turns out to be. But now the systen
finds that it is in trouble because the new subgoal [subset 4 ?y] is
the same as a subgoal on which it is already working. So it d«cides
that it was a vristake to try to prove [subset d ¢] in the first place.
Thus y is bound to b instead of d. Now the system sets up the subgoal
{subset b c] vwhich is estalblished immediately. We use the abave
example only to shov hov the rules of the language work in a trivial
case, If ve were seriously interested in proving theorems ir PLANNER
about the lattice of sets, then vwe would construct a finite latcice as

a model and use it to guide us in finding the proof.
5.4.2 Using an Antecedent Theores
Suppose we give PLARMER only the following theorerns,

given:
[sebs > a b]
[subset ¢ 4]

<assert <define forvard-right
<antecedent [[<set> x y z]] [subset _y _z2]}

<goal) {subset ?x .Y |>
<assert

- N ATy e TR TS ¢ T -- ———— -

5.4 page 244

[subset .x .2]
[~"try" forwvard-right forward-left]>D>>>

<assert <define forward-left
<antecedent [[<set> x y z]] [subset _x _y]
<goal [subset ?y .z]>
<assert
[subset .x .z]
{-"try" forward-right forward-left]>>>>
Now if PLANNER is asked to the theoream evaluate <assert {subset b c]

[~"try" <2>]>, ve okttain the following protocol:

{assert [subset b c)]>
<drawv [subset t c}>
enter forward-right
Yy becceres b
Z becoses c¢
<goal [subset 2x b
<current [subset ?x b >
x becomes a
<assert [subset a c D
<drawv [subset a c}]>
enter focward-right
y becomes a
Zz beccpes c
<goal [subset ?x a]>
<current [subset ?x a >
fail
enter forward-left
x becomes a
z becomes ¢
<goal [subset ¢ 2z)>
<proved [subset c ?2z}]>
? becones d
vissert [subset a AP
<drav [subset a 4]>
enter forward-right
Yy becones a
z becomes d
<goal {subset 2x a)]>
<current [subset ?x a)]>
fail
enter forvard-left
x becowes a
y becomes d
<goal [subset 4 2z]>
<current [sibset 4 2z
fail

iy

DY, mr——r

S5.4 page 245

fail
succeed

After the evaluation the data ltase contains:
[subset a b

[subset ¢ 4]
[subset a 4]
[subset b c]
[subset a c]

Theoress in FLANKER can be proved in much the same way used
for ordinary theorems. For example suppose that we had the following
twoc theorens:

<assert <def1ne thy <conseguen* [[<set> a c]] [subset 2a ?c]
<goal [set ?za}>

<temprog [[<cbject> [x <arbitrary <object>>]]]
{assert [element .x .a] <2>>
<goal [elemeant .x 2c P>

<assert [subset .a .c] <2>>>>>

The function AEBITRARY generates a unique symbol which has the type of

its argurent. On entrance tc the function TEMPROG the identifier x is
bound to a freshly created symbol. The above theorem is a
constructive aralogue of

[all [function <boole>[[<set> a] [<set> c]]
[implies

fall [function

<boole>

[[<object> x]]

[impiies [element ?x ?a][elelent 7x ?2cll]
[subset ?a ?2c}]]]}]

Going in the opposite directicn, wec have

<assert <define thi4~-5 <antecedent
[[<set> a b]]
[subset a b]
<assert
<{antecedent
[({<element> x]]

— | —— et

[eleaent ?Xx 7a]
<assert [element 2x 2?b] <2>> ad>>>>>

<assert <define &
[[<set> a
fzubset a
<assert
{consequent
[[<element> x]]
{elenert ?x 2?2b]
<goal [element 2x 2a]> b>>>>>

h % <antecedent

§-
b]
b]

<assert <define
th3

<consequent [[<object> x}[<setd> 1 s]]
[element ?x ?s])
{goal {element 2x 2?r >
<goal [subset 7z ?s5}]>
<assert [elezent .¥ .s] <?>>>>>
The above theoreas 15 a constructive aralogue for

[&ll [funmction
<boouled>
([{<obkject> x] [<setd> s]]
[implies
[some [fuaction
<tooled>
[[<set> r]]

[and [element ?x 2?r} [subset ?r
[eleaer* ?2x ?s51]11])

Pros th3 and th3l ve can p ave the fcllowing theores:

<cousequent &[(s:t) ab c]] [subset ?a 2c;
<goal [subset 7a 2L 1>

<goal [subset .b 72c P
<assert [subkset .,a .c] <?22>>

The above theorer is a ccnstrucrive analogue for

{all [function

<boole>

[[<set> a] [<set> b] [<set> <¢)}]
[iaplies
. {and [subset 7a 2b [subset 7 2c])
{subzet 73 2¢]l1}

o R SPENADPTWL T

5.4 page

?s31]

e e

246

|

5.4 page 247

Often ve treat the statement of a theores siepply as ar abbreviation

for the proof of the theoren.

We would like to examine the previous problem from the point
of viev of resclution based deductive system. The actor "LAUSE matchs
clauses. It nses tue fact that disjunction is comnutative and
associative, We have:

1. <clause [[<set> a b <obiject> x
[notlisubset ?a]?gj] J 1

{not [element 2x ?a}])
[element ?x 2?b >

2. <clause [[<set> a b]g
(elemeat [elesedt-of-difference ?a ?b] ?a])

[subset 2a ?2b P>

3. <clause [{(set) a H]}
[not [element [élement-of-difference ?a ?b] ?b]]

[subset ?a 2b]>

<assert <define necessary
<antecedent

[literall literal2]
<clagse <all [subset {2}] _literalt> <>
<
<clause
<all
{not {subset {?}]]
_literal2>
<25
<clause [[<sat> a p] [obicct> x]]
[not ~nbset .2 .b]]
[nol ' element ?x .a]]
[elexent 2?x b P>
<assert <resolve .litexall .literal2>>>>>

The above theorea says that ve shonld eliminate all positive isstances

of the predicate subset from clauses. It is a special case of

theoreal vhich ha: been partially compiled.

5.4 page 248

{a.sert <define sufficient
<antecedent
[[<set> a b] literall]
<clause <all [not [suhset _a _b]] _literalt> <2>>
<prog [literall]
<
<ciause <all [subset ({2}] _literal2> <2>>
<clause [[<set> a b]]
(subset .a .b]
[element
{element-of-~differeiice .a .b]
~al>>
<assert <resolve .literall .literal2>>>
<prog [literal2)
<
<clause <all [subset {?}] _literal2> <?>>
{clause [[<set> a b]]
[subset .a .b]
[not [elexent
[element-nf-difference .a .b]
21312
<assert <resclve .literali .literal2>>>,>>

The above theorem says that we should eliminate all negative instances

of the predicate subset froa clauses.
5.4.3 Using Hesolution

¥e sball assume that the resolutica rontines automatically
detect contradictory pairs of <lauses shen they arte generated. The

theorea [implies [ard [suhset a b] (svbset b c]] [subset a cJ] c¢in pe

proved as follows:

<prog []
<temprogq {[<setd>
{a <arbitrary <set>>)
[b <azbitrary <seid>>)]
[~ <arbitrary <set>>]]]
<assert <clause [] [subset .2 .D [-~®try" <>P
<agsert <clause {] [subset b .¢ > [+%try® <>}
<assert <clause [| {not [subset .» .cl}]> [="try"™ <2> P

. o e =~ BXTT VIO~ ™ an _ma ———— ——— [—— -

<goal <claused>>>
<assert <clause [[<set> x y 2]]
[not [subset 2x 7y]]
[not [subset 2y 7z]]
[subset ?2x 72z]>>>

The procf is:

4. <clause L]
[subhset a b]>

5. <clause E(set) x] J

[n0t [element 1] [element ?2x b}> by 1. and

6. <clause []
[subsét b c >

7 <c1ause <set>
gt[elelenél?x Z}]) [(element 2x c]> by 1. and

8, <clause []
[nol [subset a c]]>

9. <clause [] .
[elenment [element-of-difference a c] a)]> by 8.

10. <clause (]
{elemént [elemcnt-of-difference a c] b]> bv 8.

11. <clause [
[not [element [element-of-difference a c] cl)>

12. <clause [.
[not [element [eler:nt-of-difference a c] blY>

13. <clause [])> by 12. and 19,

MR Y TYG, T ~

5.4 page 249

apd 2.

acd 3,

by 10. aand 7.

by 9. and S.

I

5.5 page 250

5.5 Byths about PLANNER

5.5.1 Consequent Thecrems Are Used Only for Werking Backwards

We would like to give an example to show that the computation
tree that PLARNER defines as it executes theorems does not necessarily
correspond to the tree of the intuitive solution space whicha is being
investigated. The example ‘'hich we use is the farmer, goat, cabbage,
and wolf probles. We vworked out the following solution with Jeff
Rulifson. The problea begins with a farmer on the side of a stream
with a boat, a wolf, a goat, and cabbage. The farser wants to
transport them all across the streasm in the boat. The boat caa only
hold one of thes Lesides the farmer. The wolf will eat the goat and
the goat will eat the cabbage if the farmer is not there tc iiterfere.
How can the farmer get thes all across the st-eam? ¥We begin by
evaluating <goal [frca t ¢t t t]> vhich nmeans to set up a goal to make
a move from the postion wvhere all four objects - e on the same side of

the tank.

<assert <define make-move <consequent make
[volf gecat cabbage farmer])
{from ?wolf 2goat 2cabbage ?faxuar}
<goal [safe .wolf .goat .cabbage .farmer >
:*nake sure the current situation is safe®
<cond
{ <and?
<is? <O .wocli>
<is? <> .goat>
<1s? <> .cabbage>
<ic? <> ,farmer>>

T e I R e = ol N T, B o = o e e~ ot S TR ST e T

¥

5.5 page 251

<.pake t>
i"exyit _make with t"]>

;"if they are all safely op the other
side of the rivev return t"

<cond
[<current? [looked-at
«%olf
.goat
.Cabbage
.farmer }>

{.make <>
sexit .make with O"J
;1¥if ve have already looked at this situation
retarn <> which is false"
<assert [looked-at .wolf .goat .cabbage .farmer]>
<ot
&<cond
{<is? .farser .gcat>
;"if the fara~nr is on the saae side
2s the goat,
then he can carry the goat with
his tc the other side”
<goal [fron

«WOlf
<not? .goat>
.Cabbage

<not? .farmer>p>]>
§<goal [fron
.Wolf
.goat
.catbage
<not? .farmer>}]>
€<cona
[<is? .farmer .wolf>
;"sisilarly if the Carxer is on the same side
as the volf"
<gual {froa
<not? .wolf>
«goat
-Cabbage
{not? .farsexr> P
t<cond
[<is? .faraser .catlaged>
<goal [froa
.volf
.goat
‘not? .cabbage>
<not? .farmer>) P>
;®"the functicn OR tries the
possibilities in oxder>>>

A R TV M e S -, -~ ——

5.5 page 252

<assert <define safety-check <conseguent safety-check
[wolf goat cakkage farmer]

[safe 2wclf 2goat ?2cabbaqe fazlet]
<cond
[<or?
<and?
<is? ,wolf <not? .farmerd>>
<is? .volf .gocatd>>
<and?
<is? .goat <not? .farmer>»
<is? .goat .cabbage>>>
:"the situation is not safe if either
the wolf is om the opposite side
frca tbe farmer
but on the same side as the goat or
the gdat is on the opposite side from the
farmer but on the same side as the cabbage®
<fail <> .safety-checkd>]>>>>
The protocol of the solution is:

<goal [froa t t t tJ>
<goal [from t > t <>]> goat
<goal [frem t t t t]> goat
<goal [from t <> t t]> himself
<goal [frxom t <> t <>]> hinmself
<gcal {frce <O <Ot OP wlf
<gval [from <> t t t]> goat
<goal [frcm <> <> t <O P goat
<goal [fror <> *t ¢t <>]> himseif
<goal [frou <> t t t]> himself
<goal [from t t t t]> wolf
<goal [frca <> t <> <>J> cabbage
<goal {from <O t <> t]> hiaself
<goal [from <> <> < <>]> goat

Note that there are several things w¥rong with the above procedure.
For one thing t¢he problea sclver should work forwards and backwards
simultaneously trying to find necessary conditions for a solution as
vell as sufficient condtions. The procedure is not very smart in the
way that it goes about looking for a solution. These ills can be
cured in variocus ways. The reader might find it iastructive to

congsider scome o0f the possibilities.

- T RS T T T g Y I, S T T—— e —— -

5.5 page 253

5.5.2 PLANKER Loes only Depth Pirst Search

PLAKNEE runs under a backtrack control structure. Because of
the control structu.e the execution tree of a process lccks like a
depth first investigation., However, by creating more processes the
grovth of the set of execution trees can be quite arbitrary. As an
example we can convert the above solution to the farmer, goat,
cabbage, and wclf problem to breadth first investigation by evaluating
the arguments to OR in parallel instead of sequentiully in the thecoren

MAKE-MOVE.,

5.5.3 Use of Pailure Iwplics Inefiicient Search

The failure primitive in PLANNER is a method of tramsferring
ceontrol. The concept does not have any necessary relatican to progran
errors such as dividing by zerc. Often a proof by contradiction is
conpleted by generating a failure back to an label function vith a
message like "happiness" vhen the contradiction is detected. The
message is caught when it propagates lback to the pcint wvhere the proof
by contradiction was set up. The effect of the fajilurc is to get rid
of all the garbtage that is generated in the proof by comtradiction.

In a similar vein the failure mechanisa is often used as a summarizing
mechanisas., At certain points along the computation, certain

conclusions arc deriveu frcm the process of investigation, These

5.5 page 254

conclusions can be l'ifted cut of the details that were used to derive

them by faiiing ...k with values which susmarize what has been
learned. Then the computation can continue with a cleaner slate.

FPor =xample in a chess program, exploration of the possible moves
might reveal that our queen is pinned against our king threatening the
loss of the gueen. Information to that effect vould be passed back

with the failure.

5.5.8& PLANNER DCss Only What It Is Told

In a strict sense PLANNER does only what it is told to do.
There is no random 2lement or independent consciousness built into the
primitives. However, because of the gcal oriented nature of the
formalism it is very difficult to predict vhat a large body of PLANNER
theoress vill do. 1In fact one of the more obnoxious things that can
happen is that some theoreas find a nonobvionr ; way tc¢ accomplish a
trivial goal. Usually this happens because there is a bug in the code

for the obvinus way to achieve the goal.

. eemme e " EIRNP TR TR WIS v —_— - B

6. More on PLANNER

6.1 PLANNER EXAMEFLES

6.1.1 London's Bridge

Most of the time ve decide which statements we want to erase
on the basis of the “s_tifications of the statements. If we erase
stateaent a, :.d stateaent b depends on statement a because a is part
of the justification of b, then we probaply want to erase statement b.
Sometinzes a decision is made on the basis of other criteria. For
exaanrle suppose that we carefully rexove the bottor brick fream a
column of bricks. We shall suppose that each brick is of umit length.
The statement [at {brick)] |place} |height}] vill be defined to =ean
that brick |brick| is at place jplace]| at the height jheight}.

Suprose that have the following tbeoresas:

at btrick2 here 1
[at brick3 here 2]

[at brickl here 0}

<define london's-bridge
<erasing

(
{<brick> brickx other-brick]
[(<place> place]
{<integer> height]]
[at _brick _glace _height])
<erase

6.1 page 256

[at
_other-brick
«place
<add? .height>}
[~use~ <25]
;"erase the fact that there is another brick
in the place above brick"
<assert
[at .other-brick .place .height]>
;"assert that it is vhere
brick agsed to be">>

Thus after <erase [at krick?1 here 0]> we will have [at bricvsZ hern (]

and {at brick3 here 1]. The upper bricks in “he tower have ail fallen
down one level., The above exanmfple comes from a suggestion made by S.

Papert.

6. 1.2 Amalogies

6.1.2.7 Simple Analogies

Our next example illustrates the usefulness of the pattern
directed deductive system that PLANNER uses compared wvith the
cuantificational calculus of order omega., We are interested ip simple
analogies such as those explored by Tom Evans. Given that object al
has some reiation to object a2 and that object cl1 has the same
relation to object c2, the probles is to deduce that at is analogous
to 1, We use the predicate test-analogons xithin the theorem pair to
record that we think two objects might be analoqous and that we would
like to check it out. Svrpose that we give PLANREB the followving

theoreas:

6.1 page 257

[inside al a2)
finside c1 c2]
{a-obiect ail]
[a-cbject a2]
[c-object c1]
[c-object c2)

<define Fair <consequent pair

[<object> a cl
[<fun~tor> predicate]
[{?} argsal argsa2 argscl argsc2]]
[analogous ?a ?c 2predicate]
<unigue>
;"the current goal must be gynigue"
<cond
[<current? [test-aralogous ?a Zc]>
;"if a and c are test-analogous then
ve are done"
<.pair done>
;"exit .pair with done" }>
<current [a-cbject ?a]>
<current [c-object 2c)}>
;"find an a-object and a c-object®
<assert [test-analogous .a .c ?predicate >
<current [?precicate !'_argsal .a !_argsazll>
<current [.predicate !_argscl .c §_argsc2]>
;"find a predicate in wvhich both a and
Cc are arguaments"
<coni
[<is? <non [}> .argsat>
<gcal [corresponding-analogous
.argsal
.3Cgsci
.predicate > P
<cand
[<is? <non []> .argsa2>
<gcal [corresponding-analogous
.argsa2
«2rgsc2
.predicate]> >
;"show that tne other arguments are analogous"®
<assert [aralogous .a .C .predicate Pp>>

<derine chop-off-znother <{consequent

[<objecc> a b}
[{2} aa bb]

W, ewe—————— Bl T e T e S ~— — — e ——— +

[~"else®
<{current [analogous ?a ?c ?predicate]> >
<ccnd
{<is? <non [> .aa>
<current [corresponding-analogcus
?aa
?ce
Ipredicate > >>>

Thus 1f we ask PLANNER o evaluate <gcal [analogous al ?x inside D

then x will be bound to c1 in accordance with the fcllowing protocol:

<goal [analogous a1l ?x inside]>
enter rair

a gets the value a1l
¢ gets the value ?x
predicate gets the value inside
<unigue>
<current [tes*-analogous al ?c iaside}>
FAIL
<current [a-object al1}]>
<{current [c-cbject ?c >
node 1
¢ gets the value c2
X gets the value c2
{temparaxry [test-analogous al c2 inside}>

6.1 page 258
[<functar <2?> <?>> predicate]]
{corresponding-znalogous [2a 2?aa] [?¢ 22cc] Ypredicate]
<cond
[<current? [test-analogous ?a 2c ?2predicate]>
;71if a and ¢ are currently test-analogous “hen
ve only have to lnok at
| the rest of the elements"]

<current [inside a1l a2}

<current [inside c1 c2>

<Goal [corresponding-analogous [a2] [] inside D
S enter chop-off-arcther
N FAIL

FAIL

node 1; note that this node aprears above

c gets the value c1
x gets the value c1

<{teaparary [test-aralogous atl c1 inside]>
‘ <current [inside ct c2]>

i

<goal [corresponding-anzlogous [a2] [c2] iaside]>

| enter chop-off-aanther

i

i

\

\

\

\

‘ -)-(N, = TR A e — "U‘wﬁw;—’-‘ e TS T A RASImaNh mm——
— L _

6.1 page 259

a gets the value a2
€ gets the value c2
<curreat {test-analogous
a2
c2
inside P
FAIL
<current [anajiogous a2 c2)
enter pair
a ge¢s the value a2
c gets the value c2

<unique>
<cyrrent [test~analoy>us
a2
c2
inside >
FAIL

<current [a-object a2)>
<current [c~-object c2]>
<temporary [test-analogous a2 c2 inside]
<current [inside at a2)>
<current [inside c1 c2]
<gcal {correspoind.ing-anarogous
(a1]
fc1]
irside P
enter chop-off-another
a gets the value a1t
C gets the value ct
{current [test-analogous al c1}>
succeed

In the process of carryiag out the evalsatior the following additional
facts vill be established: [analogous al ¢! inside] and [analogou. a2
c2 inside]. The reader might find it amusiag to try to forasulate the

above problea in the first order quaptificatinnal calculus.

6.1. 2.2 Structural Analuogies

The process of findisg aralogous proofs and methods piays a

very important role in theores proving. Por example the proofs of the

o w———r——y .-
N T RTIR P — TT V . v

6.1 page 260

uniqueness Of the identity element and inverses in semi-groups are

closely related. The definitions are:

[equivalent [identity e] [equal {* a e] [* @ a] a]]

{isplies [identity e] [eguivalent [inverse b1 h) [equa. [* b1 b] [* b
b1] e]]j If e and e' are identities, then we have [equal e [* e e']

et). If 21 and al' are inverses of a, then we have [equal a1 [#* a1l?
a al] al]. The general form of the analogy is [equal w _string w']
vhere .string algebraicly simplifies to w and v'. In many cases
analogies are found by construction. That is the problea solver looks
around for problems that might be solved with an analogous technique.
In other vords ve will have a method of solution in search of a
problem that it can solve! ¥owv that we have found a technique for
proving that various kinds of elements are unique, let us look around
for a similar probles to wkich our technique applies. Ve find that
zeros in seai-groups are defined as follows:

fequivalent [zexro 2] [equal {* a z] [* z a] 2]] Supposing that z and
2' are zeros wve find that [equal z [* 2 2*] 2']. Cme major problea ip
the effective use of analogies in order to solve probleas is that it
is very difficult to decide when and at what level of detail to try
for an analogy. Another probles is that often the analogy holds anly
at a quite abstract level and it must not be pushed too far. Coasider
the following two slgoritass:

<define nusber-of-atass

[function [x]
<cond

<+

<nuymber-of-atoas <1 .x>>

<number-of-atoas <r st x>>>]PP

<define list-of-atous
[functaon [x]

<cond
[<empty? .Xx>
S
[<is? !=atos .x>
[-x]]
[~"else"
<append

[<empty? .x>
0]

[<is? l=atom .X>
1]

[~%else"

<nondecreasing
<expt
<+
<k Lx D
<% <x 2>
D
<*
<+
<expt <x
<~ <x 2>
<+
<~ <y 2>
PN x wm————— - -y g e e -

<list-of-atoas <1 ,x>>
<list-of-atoms <crest .x>>>PP

analogous proofs is found in the Schwartz inequality:

<y 1>
<y 2>

1> 2>
2>>

2D
2>>>>

6.1 page 261

The Iuvunctions number-of-atoms and list-of-atcas are precisely

analougous. In most cases tyoc functions will not be nearly so
similar., Very fev of the ideas of one will be used in the other.
Structural analogies m2y also be comstructed by procedural abstraction

[see chapter 7]. Bledsoe has suggested that still another example of

6.1 page 262

<nodecreasing
<expt
<sigsa
1
D
<function
(1]
<expt <% <x .1i> <y .1i>> 253>
2
<*
<sigwa
1
n
<function
[i]
{expt <x .i> 2>>>
<sigma
1
n
<functiou
(1]
<expt <y .i> 2>>>>>
<nondecreasing
<expt <integral <* x y> 2>
<

<integral <expt f 2>>
<integral <~ g 2>>>>

6.1.3 Bathematical Induction

¥e can formulate the principle of mathematical induction for

the integers in the Zollowirg way:

<defipe induction <conseguent [p]
[for-all _p]
<{temfrog [[a <arbitrary <integer>>]]
<goal {'<.p 0>>
<assert !°'<.p .a>>
<goal 1*'<.p 1'<+ .» 125>
<assert [for-all .p}P>>

6.1 page 263

If we are given the facts [= <+ 0 0> 0] and

{clause {x y]
[:
<+ 2y <+ 2X 1D
<+ <+ 29y ?2x> DD

then we can establish
[for-all <function {(n] [= <+ 0 22> 2n)]>].

The following theorea will do induction on s-expressions:

<define expr~induction
<consequent
{p]
[for-all _p]
<{temprog
[[a <arbitary <atom>>]]
<goal 1'<.p .ad>>
<{temfrog
(
[car <arbitrary <expr>>]
[cdr <arbitrary <exprd>>3}]
<assert !'<.p .car>>
<assert 1°<.,p .cdr>>

<goal !'<.p !*'<cons .car .cdr>>>>
<assert [for-all .pJ>>>

e would like to try to do without existential quantifiers. We can

eliminate them in favor of Skolem furctions in assertions and in favor
of PLANNER identifiers in goals. The problem of finding proofs by
induction is forsally identijcal to the problem of syntesizing prograass
out of "canned loops". The process of procedural abstraction [wvhich
is explained in chapter 7] has an analogne which is "induction

abstraction® [findiag proofs by induction frcm exasple proofs written

-

6.7 page 264

out in full without induction].

6. 1.4 Descriptions

6. 1.4.1 Structural Descriptions

PLANNEE can be used to find objects from partial or schematic
descriptioans. The statement [perpendicular [line _a _b] [line _c
_4]])] will be defined tc mean that tke lines [line .a .b] and [line .c
.d] are perpendicular. The MATCHLESS function <ASSIGNED? arg> tests
to see if the identifier arg has a value. We shall adopt the
conventioa that [gqlued a b)] means that bricks a and b are glued
together and [orthogonal [line Ja] |b]] [line |cy (d]]] means that the
lines between the centers of bricks |a| and |b}| is orthoganal to the
line betveen tie centers of bricks jc] and {d]. A three-corner is
defined to be a group of three bricks joined together such that tvo of
them ave diagonal to each other. A three-corner is shown in figure 1.

In other :ords the fcllowing is a description of a three-corner:

<define find-three-corner
<consequent
[[<brick> a » c]]
[three-caozner ?a b 2c]
<goal [glued 2a ?b]>
<prog again []
<goal [glued
.‘
<all <non .b> 2>
<goal [orthogonal [1line .a .b] [line .a .c])]>
<cond
[<or?
§<goal [glued

e

G-l \3.\q€. A€

A Three- Corner.
(cube 1] Cglued | 21

{cube 2] (glued 2 3]
[cube 3]

A STICK :

{cube 4] [glued 4 5]
Ccube 5] [glued 5 6]

(cube 6] [glued 6 7]
(cube 7]

8 9l/|o

|

ANOTHER STICK!

Ccube 8] {glued 8 9]

Ccube 93 {glued 9 10]
Ccube 10}

TS Tt o

4

6.1 page 266

.a
<all <pon .b> <non .cO>D]
&€<goal [glued .b <mon .a>}>
£§<goal [glued .c <mon .ad>}>>
<fail <> againd>]>>>>

The description can be used in the obviocus way to find three-corners.

The statement [stick _a _b) is defined to mean that .a and .b are end
bricks of a line of bricks and [between _a _b _c] is defined to mean
that brick .b is betveen bricks .a and .c. Examples of sticks are

shown are shown in figure 1.

<define find-stick
<consequent

[[<brick> a b] [!=fix n])]

[stick ?a ?b _n)}
<curreant [brick 2a}]>
<current (brick ?b]>
<goal [stick-segment .a .b <- .n 2>]>
<assert [{stick .a .b .a]>>>

<define fimd-stick-segsent
<consequent find

[[<brick> x y v} !=fix n]]
[stick-segment ?x 2y _n]
<cond
{<is? <neg> .n>
<faild>]
[e<goal [glued 2w 2:]>
<goal [orthogonal
{(line .x .w]
[line .x ?y]D
<fail>]
[6<goal [glned ?x ?y >
<cond
[<and?
<goal) [glued 2y 2y]>
<goal {orthogonal
[line .y .v]
{line .y x]1)>>
<fail>3}
<.find t>
svexit .find with t"]>
<goal [glued ?w¥ .x]>

Al T Y SN e v TS TT e R

[

6.1 page 267

<goal [between .x .v .yJ]>

<goal
[stick-segment .¥w .y <~ .n 1>)
{~use~ find-~-stick-segment <2> }>>>

6.1.U.2 Constructing Examples cf Descriptions

Given a description of a structure [such as a stick] ve would
like to be able to derive a geperal method for building the structure.
The groblem of deriving such general construction methods froa
descriptions is very difficult. 1In this case ve ve can construct a
stick of length n vith ends x and y using the functions <GLUE facel
face2> which glues the value of facet to the value of face2 and the

function new-brick which produces a nes brick.

<define make-stick <consequent aake
{[<brick> x y w] [!=fix n]]
[make~-stick _x _y _n]
<cond
[<is? <less 3> .o
<glue [bottaor .x] [top .¥]>
<.Bake t>
;"exit .make with t"]>
<is _u <ney-brick>>
<clye [bottom .x] (top .w]>
<goal [make-stick _v _y <~ u 1>]>>

6.1.4.3 Descriptions of Scenes

S. Papert has suggested that theorem proving technigues might
be applied to the probles of amalyzing 2-disensioral . rojections of 3-
dimensional bricks. In this section we vwill give a forsal definition

of the problea, Adolphc Guzsan has developel a program [called SER]

¥ MR T T VRSN e T o —

6.1 page 268 |

vhich tries to solve such probleas “apy humans solve such probless

by mentally constructiing a symbolic 3-dimensional scene which

ur .+=ally projects back to the given ?2-dimensional input. de define a
brick to be a connected ozen opaque region of 3-space bounded by a

finite number of plar = such trat if t:o planes intersect then they

must be orthogonal. -thye_more the complement of a brick is
required to be connect-u, iiat. *:#i iS are allowed to have holes in
ther, A 3-dirensional scene - .n arrangement of bricks ﬁuch that no 1
tvo of thes intersect. A 2-dizeasional scene is a collection of
straight lines in a plane. A 2-dimensional projection is the optical
projection of a 3-dimensional scene onto a plane. & statemepi p about !
3-disensioral scenes xill pe said to be valid for a 2-disensional
scene r if for all 3-dimensicnal scenes t such that t projects to r it
is the case that p is true for t. A two dimensional scene r0 will be
said to be ambiguous fcr a languagn 1 if it is the projecticn of two
3-dirensional scenes t1 and t2 such that there is a sentence p0 in 1
with p0 true in t1 and false in t2. There are a nusber of primitive
predicates that should be included in a language for scens analysis:
fvarallel x y] means that x and y are parallel.
[coplanar x Y] means that x and v are coplanar.
[normal planetl directed-linesegment] mzans that the normal of
plasel is in tte direction of the directed-linesegment.
[restricted plaretl pt1l pt2 pt3] means that <¢he norsal to
plarel is restricted to the angie pt1 pt2 pt3.

[sape-brick regionl region2) m:ans that regioni1 and region2

Sy —— e S G T N BT Y WM S, ™ . -- - T ———

6.1 page 269

are part of ~he same brick.

[adjaceat regionl1 region2] means that regicnl and region2 are
regions of the same brick that intersect at right angles.

[convex regiont region2] means that regioni and region2 are
regions of the same brick that intersect at right angles to make a
convex body.

[concave regioni region2] means that regionl and region2 are
regions of the same brick that intersect at right angles to amake a
concave body.

[@element x y] means that x is an element of 7.

{in-frcut-of brick1 brick2] means that brick1 is in front of

brick2.

[resting~on brick1 brick2] means that brick! is resting on
brick2.

{on-top-of brick?! brick2] aeans that brick? 1s on top ot
brick2.

[subset x y] means that x is a subset of y.
[coordinates point1 coordl1] mesns that point?1 has 3-

dimsensional coocdinates coordl.

1he following statements about exasmplel are valid as can be seen by
considering wherz the normals of the planes sight lie and deducing

consequences uatil contradictions are found.

[normai a (direction 7 13])
[noraal b [direction 12 13}]
[coavex a b]

———

—

(Ei~tn,

6 '/{3 .’Lc/'% *e

EXAMPLE |

EXAMPLE 2

[convex
[coavex
[mormal
[normal
[normal
[convex
[normal
[convex
[coanvex
[norzal
[rormal
[convex

uauaiIromipg RO e

c]
c]
[(direction
[direction
{direction
e]
[dicection

irectioa

-l W

]
1o
direction
di

]

10 13])
7 41]
2 4]]

3 4]]

16 18)]
15 16]]

The follouving statement about exanmple 1 satisfiables

[and

[resting-on [brick a b c¢] [brick e £ d])
[resting-on [brick a b ¢] [brick g h]}])

The folloving statements about example 2 are valid:

convex
convex

[convex
[noxrmal
[normal
{convex
[normal
{normal

[not [adjacent ¢ d]]

rQua O oo

c

3

c]
[direction
{direction
b}
[direction
{direction

[not [adjacent b d])]

[convex
[convex
[convex
{ noxaal
[normal
[normal

4

e
a
e
4
£

[direction
[direction
[direction

12 14]]
3 14]]

5 6]]
8 6]]

8 13])
9 13}]
1 13]]

The following statement about example 2 is satisfiable:

[and
[same~region
[same-region
[same-brick a

c g]
b &)
b ¢ g bh}]]

6.1 page 271

6.1 page 272

The three disensiomal coordinates of points are obtained by

using more than one cameva to viev the sceme or using a focus map. In
the case vhere we have coordinates as a primitive predicate, the
definitior of a projection of a 3-dimensional scene must be modified
to include the 3-dimensional coordinates of all the projected
vertices, in the case where we have the three diaensiomal co-
crainates of the projected verti.es, we can deduce that tvo planes are
part of the same brick if they intersect at an acute rigbht angile.
Since the. object that is teing viewed might be so far arvray that
accurate coordinates caanot be obtained, a deductive system should be
developed which does not use ccordinates. At the very sinimua a hard
core aeductive systexm for the analysis of 2-dimensional projections
should be consistent and every valid statement should be proveab.ie.
That is every theorem cf the system should be satisfiable [theri is ai
least one interpretation that satisfies tlhe theores;. Inteirest in
questions of satisfiability comes froa the fact that some
interpretations ace far vwore likely than others in the real wvorld.
Statements that are to lle tested for satisfiability mast be nmade as
strong as possiktle in order to provide a aeaningful cest. Although
the linking rules are mathematically very elegant, in their present
fora they do not adequately represent the sesantics of the optical
projection rules. The value of the prcgram by Guzman is that it
provides c 1jectures about which regions are satisfiable in the
relation sare-brick. Howevwr, the program suffers because it does not

aave aLy explicit knowledge of optics. 8§e would advocate an approach

—ro T L~ man ot ey e W T . ——— ——— e —

|

6.1 page 273

that makes grz=ater use of deduction to test the validity or

satisfiability of a sentence. Questiocns of satisfiability and

validity of sentences vith respect to any given projecticn are

decidable siuce the theory of real clcsed fields is decidable.

Bfficient algorithems should be developed to test whether a given

sentence is valid or satisfiable in a projection.

6.1.“-“

Pover Set of Intersection of Two Sets Is the Intersection of

Their Pover Sets

the poser <2t of the intersection of tuo sets is the intersection of

their power sets.

<define

<define

<define

<define

<define

The followving example vas proposed by W. Bledsoe. Prove that

extensionality-conse <consegquent [[<set> x y1l]
{= ?r 2y]

<goal [subset ?x ?y >

<goal [subset 2y 2x]>

assart [= «x Y>>

elenment-pover—-conse <consequent [[<set> x a]]
[€lement ?x [pover ?a]]

<goal [subset ?x Z?a}>
<assert [eleaent .x [power .a]l]>>>

element-pover—-ant <antecedent [{<set> x a]]
[element ?x [power ?a]}]

<assert [subset 2?x ?aJ>>>

subset-cap-ccnse <corsequent [[<set> a b c]]
[subset 2c [cap ?a ?b]]

<goal [subset 2c ?a)]>
<goal [sulset 2c 2b >
<assert [subset .c [cap .a .b]P>>

subset-cap-ant <antecedent [[<set> a2 b c]}
[subset _c [cap _a _b]]

We shall use cap as a synonym for intersection.

- e e ————

6.1 page 274

<assert [subset .c .a}>
<assert [subset .c .b]P>>>

<define subset-cap-conse <{consequent [{<set> a b c]]
[subset ?c [cap ?a 2?b]]

<goal [subset ?c 2a]>
<goal [subset 7c 7?b]>
<assert [subset .c [cap .a .b]]>>>

<define element-cap~ant <antecedent [x [<set> a b]]
[element _x [.ap _a _b}]
<assert {element .x .a}]>
<assert [elereat .x .b]>>>

<define element-cap-conse <consequent [x [<set> a Lk]]
[element ?x [cap 2a ?b]]

<goal [element ?x 2a}>
<goal [element ?a ?b]>
<assert [element 2x [cap ?a ?Lb]]>>>

<define subset-conse <consequent [[<set> a b]]
[subset _a ?b]

<temprog [x <arbitrary <2>>]
<assert {elesent .x .a)]>
<goal {elesent .x .b1]>>

<assert [subset .a .b}>>>

¥e can nox set up our gcal to prove the theorenm:

<goal [=
[cap [pover al] [power aZ]]
[power [cap a1 a2]])>

The goal will produce the following protocol:

enter extensionality-conse
x becomes [7ap [power al] [pover a2}l]

Yy becoases [power [cap atl a2]]
<goal [subset [cap [pover al1] [pover a2]]}{ poxer [cap al a2}]}]>
enter subset-conse
a becones [cap [pover atl] [pover a2])
b becoiges [power [cafp al 2a2]]
x becoses g1
<assert
[elenment
gl
[cap [power al] [pover a2]])
enter eleament-cap-ant
X beccmes g1

a beccmes [pcwer at]
b beconmes [pover a2]
<assert [element g1 [power al]l]>
enter element-power-ant
<assert [subset g1 a1}>
<assert [element g1 [pover a2]]>
entex element-power-ant
<assert [subset g1 a2}
<goal [element g1 [pover [cap al a2]]]>
enter element-pover-conse
x becoaes g1
a becomes {cap a1l a2]
<goal {subset g1 [cap at a2]]>
enter subset-cap-conse
C becomes g1
a becores a1l
b becomes a2
<goal [subset g1 a1}
<goal [subset g1 a2)]>

<assert
[subset
g1
‘ [cap a1 a2]1p
assert
[element
g1
[pover [cap atv a2]I]p
<assert
[subset
[cap [power a1] {pover a2])
[power [cap atl a2]]]>
<goal

[subset
[povwer [cap at a2]]
[cap [pover al1] [power a2]]]>
enter subset-~conse
a becomes [power [car al a2j])
b becoses [car [power a1] [powver a2]]
x becomes g2
<assert {element g2 [fpover [cap al a2}]P
enter element-powver-ant
X becomes g2
a becomses [cap al a2)
<assert [subset g2 [cap a1 a2]]>
enter subset-cap unt
X becomes g2
a becomes at
b beccaes a2
(assert [subset g2 a1)]>
<assext (subset g2 a2

6.1 page 275

6.1 page 276

<goal
[element
g2
[cap [rower al]) [pover a2]]l]>
enter e€lement-cap-conse
X becomes g2
a becores [power al]
b becomes {pover a2]
<goal [element g2 [pover 21]]
enter element-power-conse
x becomes g2
a becosmes atl
<goal [subset g2 at1)>
<goal [element g2 [power a2]]>
enter eleaent-power-conse
x becomes g2
a becomes at
<goal [subset g2al1]>

{assert
[element
g2
[cap [pover al] [pover a2]]l]>
<assert
[subset
[{power [cap al a2]]
[cap [rover al] [pover a2]])>
<assert
[-

[pover [cap al a2]]
[cap [power 21] [powver a2]}]1P

6.1.5 Semantics of Natural Language

Rlthough problems for PLANNER are typically phrased in a
perfectly forsal, precise, unambiguous syntax, ve will usually not
find the semantics as vell defined. If ve say [{very bappy] john]

stead of "Jokn i3 very happy.® we vill not thereby have made thz
concept of happiness any less nebulous for the machine., Revertbwaless
it is convenient for a problem solver to have such concepts allbough

they ar2 not rigorously defined. Probless of sesantic ambiguity and

6.1 page 277

clarificaton can require arbitrary amounts of computaticn in order to

be adequately resolved. For exaaple ccnsider the following simple
example of hov semantic ambiguities car be eliminated with the aid of
"real-world" knowledge:
<assert [is-smaller-than hand [fpig pen])>
<ass$5§fine example-of-tar-aillel

<antecedent [[<otject> x yI?
[in _x _y)
<cond
[<is? pen .x>
<goal [is-smaller-than ?y [pig fpen)]>
<assert [in [fcuntain pen] .y]>]>>>>

Now if we assert {ir pen hand], PLANNER will conclude that [in

[fountain pen]) hand] is true since a hand is smaller than a pig pen.
One cf the iaportant difficulties that have plagued mcst cf the
programas that have been written to answer questions in fnglish is that
they are trying to solve two very hard problems at the same tire.
First they must make sense of English syntax and second they need a
poverful problem solving cagability to answer the Juestion once they
have "understood"™ it. Ambiqguous cases shculd be resolved on the basis
of deduction atd not on the basis of scme linking scheme such as
"semantic memory®. As it stands PLANNER provides sophisticated
mechanisas for sclving prcbleas in formal languages. A piograa could
be written [perhaps in PLANNER?] to translate English into PLANNER
theorems for problem solving. Conversely we could try to translate
PLANNER theorems into siasple natural language. Surprisingly

translation into natural language can te very awkward because natural

6.l pege 27Te

THE PONS ASINORUM

GIVEN : AB=AC
PROVE :<ABC = «<ACB

b l ibo,qé 3—7'”1

DIAGRAMS FOR GEOMETRY THEOREMS

SIDE - ANGLE - SIDE

y<| 3

3 \
Y2

[CONGRUENT [X; Xp X3.] EY3 yZ Y1 1]

EQUAL —ANGLE

P2
[EQUAL [ANGLE p, p,p,1 [ANGLE p, p,p,1]

¥ Y- - . —— e e P R T T BTt — —

6.1 page 278

language lacks many of the descriptive and procedural prisitives of

PLANNER.
6.1.A The Pons Asinoruxn

We would like to show how the "bewilderingly siEple™ proof of
the pons asinorum [i. €., base angles of an isoscles triangle are
equal] can be done very simply in PLANNER, The following notation

vill be used:

[length |p1} 1(2)] for the iength frcm point |p1} to |pZ|

. Banglg I x} l¥| {z]] for the angle |x} |yl 12| which has the
point |y) at its vertex

Pour PLANNER theoreas are used. They are procedural analogues of

axioas in plane Euclidean gecmetry.

<define side-angle-side
<consequent [x1 x2 x3 y1 y2 y3]
[congruent [2x1 2x2 ?2x3] [?y! 2y2 ?y3]]
<unigued>
<goal [= [length 2x1 ?x2] {leuyth 2yl 2y2]1]>
<goal {= [angle 2x1 ?x2 2x3] [angle 2?2y1 2y2 2y3]1]
<goal [= [length ?x2 2?x3] {length 2y2 2?y3;P>>

<define equal-angle
<consequent [p1 2 p3 w]
[= [angle ?p1 2p2 2?p3] ?v]
<unigque>
<goai [= [angle ?p3 2p2 2pl1] 2w]>>>

<define equal
<consequent [x y]

[= ?2x ?y]
<unique>
<or
<match ?x ?y>
<goal [= 2y 2x]>>>>

6.1 page 279

<define angles-by-congqruence
<consegquent {p1 pZ2 p3 gl g2 g3]
[= [angle ?p1 2p2 ?p3] [angle 291 292 2q3]]
<unique>
<goal
[congruent
[?2p1 2p2 2p3)]
{291 292 293]]>>>

Suppose that ve have an isosceles triangle ABC with the length of AB

equal to the length of AC. Ve can input this as:

<assert [= [length A B] [length A C]]>

The goal isg to prove that angle ABC is equal to angle ACB:

<goal [= {angle A B C] [angle A C B]]>

One protoccl for establishing the gozl is:
enter angle-by-coagruerce

p1 becomes
p2 becoames
P3 becomes
g1 beconmes
g2 becomes
43 becoames
<goal [congruent [A B C] [CB]D
enter side-angle-side
Pl becoames 1
p2 becoames
p3 beconmes
g1 beconmes
g2 beccnes
g3 beccses
<goal {= [length i B) [length A C])}> is easy since it is in
the 3ata bhsse
<goal {= [angle B A C)] [amgle C A B]D
enter equal-zungle
pl becoses B
p2 becomes A
p3 becoaes C
v becomes f{angle C ¢ B]
<goal {= [angle C A B8]} ~ 4gle C A Bl1Jp
enter equal
x becoses {angle C A B]
Y becoses [angle C A 8]

L. NN Nel. N J

W COwOw

6.1 page 280

<goal [= [length A C] [length A B}
enter egual
X becomes [length A C])
y becormes [leagth A B)

<goal [= [length A B] [length A C]]> succeeds by
looking in the data base

Ira Goldstein bhas impiemented a Gerlernter-like geosetry

theoreas prover.

6.2 page 281

6.2 Current Problems and Future Work

P_ANNEF would benefit greatly from an efficient fparallel
processing capability. The system would run faster if it could wvork
on its goals in parallel. Quite often a goal will fail arter a short
computation alcng its path. The use of parailelism would enable us to
get sany goals to Zail so that we could adopt more of a progressive
refinement strategy. We would like to carry out computations to iry
to reject a proposed subgoal at the same time that we are trying to
satisfy it. HMapny coaputations can be carried out much faster in
parallel than in serial., VYor example we can detersine whether a graph
with n nodes is connected or rnot in a time proportional to <* <log n>
<log n>>. 1t has been xnown for a long t.me that LISP ccmputations
using parallel evaluation of arguments are determinate if the
functicns rplaca, rplacd, and setg are prohibited. We could impose a
similar set of restrictions on PLANNER. Another approach is to
introduce expiicit parallelism into the control structure. We have
®|<" and ®#>" delimit parallel calls for e .ements and "j {" and “}¥
delimit parallel calls for segements. A parallel function call will
act as a forX in vhich one process is created to do tae function call
and the other proceeds with normal nrder evaluation. For exaample in
<+ {<* 3 4> <+ 7 8>> we could compute 3*4 in parallel 4ith 7+8. The
copy function could be sped up by a factor proportional to the nuaber

of processors:

%

6.2 page 282

<define copy [function [x]
<cond
(<is? <mcpadicd> .x>
eX]
["else"
[J<copy <1 .xX>> {ccpy <rest .x>}]]PP

However, wWe would still hav~2 problems communicatianj between the

branches of the computation proceeding in parallel. Partly this a
problem of sharing an indexed global data base between parallel
processes. ¥e vould need the standard lock and unlock primitives and
ublinited use of assigasent in order to keep the computations
synchronized. But if ve allowed the us« of lcck and unlock and
unlisited use of assigasent, the programs might become indeterainate.
One of the most isportant properties that can be proved about a
program is that it is determinate.

PLANNER logic is a kind of hybrid between the classical logics
[such as the gquantificational calculus and intuitionistic logic), and
the recursive functicas [as represented by the lambda calculus and
Post productions]. The semantics of PLANRER logic is most natnrally
defined dynamically by the properties of procedures. The semantics of
the quantificational caiculus can be defined by set thecretic models
of possible worlds. fThe logic of the gquantificational calculus is
CORSERVATIVE in the sense that if a sentence S follows from a set of
sentences A then S will follow froa any superset of K. Do to its
ability to have conditional expressions that test the state of the

world, PLANNER logic is NOT conservative. This causes coasternation

pomiee £ =" Do gy 20 L gy -t - - —— ——

6.2 page 283

among classical logicians because many elegant thecreas for classical

logic do not hold for PLANNER lcgic., The restriction of having to be
conservative is quite severe in problem solving., Sufppose that there
are three cubes A, B, and C sitting on a table. Suppose that it is
d~sired to build a tower two cubes bigh at place E. The plan
constructed might be to pick up A, set it down at P, and then place B.
on top of it., If in the process of constructing the plan ve deduced
that cube A ¥as glued to the table with liquid iron, ve would want to
chaunge ocar plan to use cubes B and C to make the tover. But by the
coaservative properties of ordimary logic the original plan must

remain valid. The only way around this wxculd appear to be introduce
some special xind of internal state into the deductive machinery cof

the gquantificational calculus. Recommendations are ancther source of
nonconservative behavior in PLANNER. For example we aight not allow
Zorn's Lemma to be uced more than oace in a proof. Both PLANNER logic
and quantificatignal logic are COMPACT in the sense that a computation
[proof] depends Ga ¢ 1ly a finite numaber of expressions. 1In comparison
with the quantificational calculus PLASNER would appear to be more

powerfal in the following areas:

control structure
pattern satchking
erasure

local states ot worlad

There are interestirg parallels betveen theorea proving and
algebraic manipuslation. The two fields face similar problems on the

issues of simplification, equivalence of expressions, intermediate

6.2 page 284

expression bunlge, and man-machine interaction. The parallel extends

to the trade off between dorain dependent krowledge and efficiency.

In any particular casc, the theoreas need not allow PLANNER to lapse
into its default conditions. It will sonetimes happen that the
heuristics for a problez are very gcod and that the proof proceeds
smoothly until almost the very end. Then the progam gets stuck and
lapses into default conditions to try to push through the proof. On
the other hand the program amight grope for a ¥hile trying to get
started and then latch ontc a theorem that knows how to polish off the
problem in & lengthy but fool proof ccmputation. ELANKER is designed
for use where one has great number of interrelated procedures
[theorens] that might ke of use in solving some preobler along with a-
general plan for the s.lution of the problex, The language helps to
select procedures to refine the plan and to sequence throungh these
procedures in a flexible way in case everythiang does not go exactly
according 2o the plan. The fact that PLAENEE is phrased in the fora
of a language forces us to think more systematically about the
prinitives needed for fproblea solving. W§We do not telieve that
computers will be able to prove deep mathematical theorems wvithout the
use of a poverful contrcl structure. Nor do we believe that computers
can solve difficult problems where their domain dependent kaowledge is
limited to finite-state difference tables of connections between goals
and methods. Difference tahles can be trivially sisulated by

conditional expressions in PLANNER.

6.2 page 285

Difficult iproblems for PLAHNER

We vould be grateful tc any reader who could suggest types of probleas
vhich might be difficuit to encompass naturally within the present
formalisa. PLANNER is inteaded to be a good language for the
creation and descripticrn c¢f problea solving strategies. Currently it
operates within the restriction of generalized stack discigline. By
relaxing this restriction ve could make the language cocapletely
restartable at the comsiderable cost in efficiency of hawving to
garbage collect the stack.

Speed: PLANNER runs best on a fast.general purpose cosputer.
However two special kinds uf hardware vould be useful. Alan Ray has
pointed out that special hash code hardware could sake the functions
GET and PUT as fast for nodes as indexing hardvare does tor vectors.
Second if we had a load thru sask instrinction, then we could speed up
monitoring. The instruction would interrupt if the appropriate
monitor bits were on. Both of the above kinds of instructions should

probably be aicro-coded.

Bemory: There is never enougk fast randos access storage.
Partheraoxe the eighteen bit address space of the PDP-10 is
ipadequate. §e need a bigger address space for the following

purposes:

——— T T Y - - - e————— e e -

6.2 page 246

Garbage collection

Breathing space betveen data spaces [ecpecially
stacks]

Backtracking
Dynamsic linking

Exploding definitions: We cannot afford to rerlace every tera
by its definition in trying tc prove theoreas. However, in the proof
of almost every theorem it is necessary to replace some terms by their
definitions. Tromain dependent methods nmust be developed to make the
decision in each case.

Creating PLANNER theoreamas: ¥We need to determine when it is
desireable to ccnstruct PLANNER theoress as opposed to dynamically
linking the« ‘togefther at run timé.” “At the present we have only a few
exanples of nontrivial constructed theoreas. We can generate some
from the functicnal abstraction of protocols and from attempts to
construct schesatic rrcofs of theorems. Others are generated as the
dansvers to simple problems. For example if we ask the ccmputer how it
veuld put all the swall yreen and yellow bricks in the red box, then

it might answer:

<for [[<face> facel face2] L<brick> brick}]] .
[[~"cucrent® [small-brick _brick]]]

{current [face _facel .brick]>
<current [colcr .facetl green)]>
<current [face _faceld .brick}>
<current [color .face2 yellow)>
<pi -up .brick>

<cariry-to [above [red rox]]>
<drop>>

S e et —— -~ e ST T R T T e T T T n~—

6.2 page 287

Terry Winograd has developed a program to translate English into

PLANNER theoress. An interesting expreriment that could be attempted
would be 'c modify a chess porgram so that it would return a PLANNER
program as vell as the symbolic description of a position. The idea
iz that the PLANNER prcgrae wculd represent the plan of action that
vould be taken in case of the various moves that the ofpcnent aignt
take. Willias Henneman has investigated some of the possibilites for
doing planning in king and pa¥n end games. The groblenm seems to be
very difficult but not impossible given the present state of the art.

Arhitrary Cons%raints: Using procedures as a semantic base
requires us to solve the probles of making procedural formalisas more
goal-oriented. The quantificational calculus is very goal oriented
but suffers growing pains trying to introduce procedural knowlede.

Manipulation of PLANNER theorems: PLANRER provides a flexible
computational) base for manifpulating tbeoreas that can be pat in
disjunctive normal form. Ye need to deepen our understanding so that
we can carry out sisilar manipulations on PLAKNER theoreas with the
same facility.

frogressive refinemeat: ¥e need to make more use of the style
of reasoning in which we comstruct a pl»n tor the solution of a
problem from necessary conditions that the solution sust have, atteapt
to execute the plan, find out vhy it does not work, and then try
again. The style is often used in chess vhere very much the same
game tree is gone over several times; cach time with a deeper

understanding of wvhat factors are relevant to the solution.

6.2 page 288

Garbage collection of assertions: Statements which have been

asserted should go away automatically when they can no lcnger be of
use. Unfortunately, because cf some lcgical problems and becuause of
the retrieval systeam of PLANNER, we have difficulty in achieving
completely autcsatic garbage collection. The erase primitive of the
language provides one way to get rid of unvanted statements. If the
asserted statement appears in the local state of some process instead
of in the global date base thern it will disappear automatically.
Simultaneous goals: HWHe often find that ve need to satisfy
several goals siaultaneously. We usually try to accosplish this by
choosing one of the goals to try to ackieve first. However, vhen
working on the goal, ve should keep in lind the other constraints that
the goal must satxsfy. One solntlon is to p;;; the goal to be vorked
on as a list whose first element is the goal aad whose succeeding
elesents are the other goals which must bhe simultaneously satisfied.
Nonconstructive proofs: The most natural vay to do a proof by
coatradicticn is to try to calculate in advance the statement which
ultisately vwiil produce the contradiction. The method is to find a
statement S such that S is provable and [not S] is provable. Hoxe
precisely, ve compute a stateseat S, make S a goal, and then make [not
S) a gual. Bob Boyer has pointed out that in mathematics if the goal
is tc prove s, ther if at any point in the proof the main goal reduces
to the subgoal to prove [not S], then a proof by comtradiction cam be

coapleted.

Bodels of Dosaims: Suppose that # is model for the set of

6.2 page 289

hypotheses H with conseguent C. Using constructive logic a subgoal S

of the goal C wculd be rejected if it could be shown that it was
unsatisfiable by B, Often rejections are made on the basis of a model.
For example in the iptuitive model of Zerwelo-Fraenkel set theory all
the descending clement chains are finite and terminate in the null
set. Purthermore every set has an ordinal rank. Thus the ordinals
form the lack bone of the set theory. The intuitive meaning of [+ A
B] [where A and B are ordinals] is the concatenation of A with B. The
intuitive meaning of [# & B) is the concatenation of A with itself B
times, If two ordinals have the samse crder type then they are equal.
Thus intuitively ve would expect that [= [+ 1 omega] omega] is true.
Every vell developed mathematical domainm is built around a complex of
intuitive lodel; and simple exanpléé‘ané.§¥6ce&5;é;; Axiom ;;ts are
constructed to attempt to rigorously capture and deiineate various
parts of the ccrplex. One of the most important criteria for judging
the importance of a theorem is the extent to which it sheds light on
the coamplex of the dcmain. These complexes uwust be mechanized. 1We
conclude that it is unlikely that deep mathematical theorems can be
proved solely from axicas and definitions by a uniform proof
procedure. A uniform proof procedure based on model resolution does
not provide the means for mechanizing the cosplex of a dcmain. HNodel
resolution is a strategy for deciding which clauses to resolve. There
is a great deal more tc mechanizing the coaplex of a domain than
simply pruning proof trees. Furthersore, clauses are often false ir a

mnodel even though they are irrelevant to the proof that is being

6.2 page 290

sought. One way that is often used to try to find a counterexample

to a false statement about ordinals is to atteampt to comstruct the
counterexasple from well known ordinals. Some wvell known ordinals are
1, 2, 3, omega, the least uncountable ordinal, etc. Thus in seeking a
counter exaaple to the statement that there are only finitely many
limit ordinals less than a given ordinal ve need go no further than [*

orega omegal.

B e e i 2 ot R o

5 o~ O R ' T A W | g A e — T ——

7. page 291

7. Bodels of Procedures and the Teaching of Procedures

7.1 Bodels of Procedures

7.1.1 8odels of Expressions: Intentions in INTEADER

A problem solver neceds to have some way to knce the properties
of the procedures which it uses tc solve problems. It can use the
knowledge which it has as a partial model of itself. 1In order to be
able to model procedures, it needs:

1t a vay to express properties cof procedures.

2: 1 way to establish that the properties do in fact hold for
the procedures.

INTENDER is a goal-oriented forsalisa for expressiong asodels
of proceduras. The models are expressed ia teras of intentions of
what the procedure should accomplish. <The primitcives of INTBEDER are
concerned with expressing intentions in procedural terss. Thus the
inteantions are capable of themselves having intentions. INTENDER
rechanizes the knowledge needed to do execution induction on
procedures. It cal.s on PLARNER to satisfy goals azd uses PLARNER
theoreas to hold the substantive knowledge (suct as facts about

integers) which are needed to prove properties of procedures.

Ve = TR TN S5~ T — -

7.% page 292

INTENDLR has three main uses for PLANNER:

1: It enables PLANNER to verify that its frocedures
do what is intended.

2: Mest knowledge in ELANNER is embedded in
pi ocedures. INTENDER helps PLANNER understand these

prccedures and thus to have some knowledge of its own
problem solving tehaviour.

3: INTENDER enables ELANNER to verify that its ilans
{procedures) are valid relative to its prccedura

podel cf the world.

We shall express the properties of an expression x by the
following function.

<INTENT

[-declaraticns-] Jpredecessor) ix} |function] -

successors-> is trie if }jpredecessor| evaluates to true, the function
applied to the value of |x| is true, and the —-successors- all evaluate
to true. The value of the function intent is the value of jx|. The
function intent is used to state a model for an exgressicn x. hs might
be expected the models are stated in PLANNER. The intentions are
established by INTENDER which is the language in which intentions are
stated, The proof is by induction on the activations of the
procedure. Thus for the control structure of LISP, the proof is by
recursion induction. 1To aveid confusion we shall write the intention
variables in upper case. Also we shall use !' to suppress
invocations. Thus <+ 2 3> evaluates to the number 5 while !'<+ 2 3>
evaluates to <¢ 2 3>. For example the intentions in the prog below

are all trve.

7.1 page 293

<progqg foo [{a 1] {b 2]]
1;<intent [] <goal !'<= 1 .ad>>>
:"Yes the ideptifier a was
indeed initialized to 1. ¥ill wonders never cease?"
;<intent [] <goal !¢<= .b 1'<+ .a 1>>>>
;<intent []
<goal !*<= .b 2>>
<_ :b <+ .b >
<function [X] <goal !*<= X I>>>
<goal 1*'<=.,b 3>>>
;"¥e have just verified that an assignment statement
can change the value of the identifier b from 2 to 3"
<.foo .b>
s"exit .foo with .b">

t
H
1
<

The followiag rrotoccl for INTEKDER verifies that the
intentions ip the above program do in fact hold. %e shall use the
notation }identifierj_|n| for the |n]lth value of (identifier| and

Jidenifier|_ for the initial value.

.. .<assert !''<= 1 a_>> e e e L. .

<assert 1'<= 2 b_>>

<{goal 1'<= 1 a_>>

<goal 1'<= b_ !*'<+ a_ D>

<goal 1'<= 2 b_>

<assert !'<= b_1 <+ b_ 1>>

<goal 1'<= <+ k_ 1> 3>>

<goal !*<= b_1 3>

The essential idea for intentions comes frcm the break
function introduced into LISE by W. Martin. A. intention is not
allowed to assign a value to a non-intention identifier and ordinary
code is not allcwed to reference intention identifiers. We shall
distinguish intention identifiers fror ordinary identifiers by puttiag
thea in all caps. The intention

<IHTENMD

[-declaratioLs—] }predecessor| jexgression;

jfunction}> is exactly like the function intent except that intention

7.1 page 294

variables can be declored in the declaration. In additicn we peed a

function
<CVERALL
[-declaraticns-] }jpredecessor] jexpressionj
ction|> which is exactly like the function INTEND except that it

is used to state the overall intention of a procedure. If
lexpression is a junction then the overall input output intentions of
the junction are given by |predecessor| and |functicnj. ‘Thus INTENDER
does computational induction across process bounlaries. All the

intentions in the function fact are true where

<define fact <function fact [n]
<overall []
<intention []
<goal !t*<is? !'<non~-mneg> .ad>> s e o
<assert !?'<is? !*<non-neg> ,.n>>>
<repeat [[temap 1] [i 0]]
!:<inte.tion []
<prog {1
<goal !'<is? 1'}<non-neg> .i>>
<goal !*<= .temp !'<factorial .id>>>>
<prog []

<assert !'<is? !'<non-neg> .i>>
<assert !'JI= ,tenp <facvrorial .i>>>>>

<cond

[<is? .n .i>

<.fact .teamp>
;Mexit .fact with .temg" >

<_ 31 <+ i DD

<_ :teap <* .i .te=mpd>>

<faactior [X]

<intentioa []
<assert 1'<= X $1'<factorial -n>>>
<goal !?<= X !*'<factorial .n>>>>>>>>

where

<define factorial <fumction [n]
<overall []

<intention []

—— T PR ORI R LS T e

);

7.1 page 295

<goai !'<is? !'<non-neqg> .nd>>
<assert !'<is? !*<pon-neg> .n>d>>
<cond
[<is? € .n>
1)
[~"else"
<* .n <factorial <- .n 1>>> 7]
<function [%]
<intention [)
<prog []
<cond
[E<goal !'<= ,.n 0>>
<assert !'<= X 1>>)
[<goal !®<not !'<= ,n 0>>>
<assert
1%«=
llx
19<* .n 1'<Cfact 1'<- .n 155555 >
Cassert !'<= .X !*'<combinations .n 0>>>
<assert !"<= X !1'<fact .nd>>>>
<prog {]
<cond
[6<goal !1'<= .n 0>>
<goal !'<= .X 1>>]
[6<goal !'<not !'<= .n 0>>>
<goal !'<= X !'<* ,n !'<Cfact !'<~ .n 1>>>>>]
<goal !'<= .X !'<combinations .n 0>>>
<goal !'<= .X !*<fact .n>>>>>>>>>

The following is a protocol of the action of INTENDER on the

intentions of fact:

<assert !'<is? !'<non-neg> n_>>
enter intentions of repeat

Case 1: initial entr;
<assert !'<= 1 temp_>

<assert !'<= 0 i_>>
<goal !'<is? t'<pon-neg> i_>>
<goal !'<= 1 t'<factorial 0>>>
enter interntio:>ns of factorial

n becones 0
X beccmes 1
<goal 1'<is? !*<non-neg> 15>
<goal !'<= 1 1>>
<assert '*<= 1 1*°<factorial 0>>

7.1 page 2S6

Case 2: inductively assune

<assert !¢<is? !'<non-neg> i_>>
<assert !'<= tenmp_ !'<factorial i_>>>
enter conditional

Case 1: .
<assert !'<= n_ 1i_>>

<goal !'<= temp_ !*'<factorial n_>>>

Case2:
<assert !'<pot !'<= n_ i_>>>
<assert !'<= i_1 1'<+ 1 1>>>
<assert !!<=
temp_1
17<* i 1 temp_>>>
<goal !'<= temp_1 !*'<factorial i_1>>>
enter intentions of factorial
n becomes i_1
X becones temp_1
<goal !'<is? !'<non-neqg> i_1>>
<gcal 1'<= 0 i_1>»>

FAIL
<gcal !'<=
19<*
i1 - e . .-
!1'<factorial !'<- i_1 1>>>
temp_1>>

On the other hand if INTENDER analyzes the intentions of

factorial we get:

<assert 1'<is? !*<non-neg> n_>>
enter conditional

Cazel:
<assert !'<= 0 n_>>
<goal !'<= 1 !'<fact C>>>
enter intentions of fact
n beccmes 0
X beconmes 1
<goal !'<= 0 0>>
<goal !'<= 1 1>

Case2:
<assert !'<not !1'<= 0 n_>>>
<assert !'<=
f*<tactorial 1*'<- o_ 1>>
1%<fact 1'<- n_ >

TR PR RIS T T Ao, -

7.1 page 297

<{goal !°<=
1o
n-—
t*<factorial t'<- n_ 1>
1sCfact n_>>>>
enter intentions of fact
h beccomes n_
X becones
Jvx

n
i'<factorial 1'<- n_ 1>>>
<goal !'<=
1o g
n~
1*<factorial !'<- n_ 1>>>
f*<combinations n_ C>>>
<goal !1!<=
AR
n.
i1*<factoriai ''<- n_ 1>>
1

n
t1dfact 1'<- n_ 153>>>

The intentions four the faaction fctrl defined below are not s0--

easy to establish.

<def ine fctrl <functicn fctrl [n]
<ov2:all [{ARG .n]]
intention []
<goal !'<is? !!<non-neg> .nd>>
<assert !'<is? !'<pon-neg> .n>>>
<repeat [[teap 1]]
!;<intention []
<goal !°'<= .temp !'<combinations .ARG .n>>>
<assert !'<= .temp l'<combinations .ABG .nd>>>>
<cond
[<is? O .m>
<. fctrl .temp>
:"exit .fctrl with .teap"]>
<_ stemp <* ,temp .2>
<_ :n <~ .n B>
{function [X]
<intention [}
<assert !'<= X !°*'<factorial .ARG>>>
<goal !'<= .{ !*<factorial .ABG>>>>>>>>

Y, e e o —— —— T N T T Y UMY, ~ - —— -

|

7.1 page 298

We need to define an auxillary functicn in order tc do the proof:

<define combinations <functicn [n r]
<overall []

<intention
<and
£<goal !'<is? !'<non-neg> .nd>>
&€<goal 1'<is? !*<non-neg> .r>>
6<{goal !'<is? !'<{greater= .r> .n>>>
<2rnd
E<assert !'<is? !?<pon-ney> .n>>
E<assert 1'<is? (*<non-neg> .rd>>
E<assert !'<is? !t'<greater= .r> .n>>>>
<cond
[€is? .n .I>
1]
[~"eise"

<* .n <ccmbinations <- .n 1> .>>]>
<function [X]
<intemtion []
<prog []
<cond
[6<goal !'<= .n .r>
<assert !'<= 1 ,X>>]
[6<goal i'<= .r 0>>
<assert !'<= X {'<factorial .n>>> P
{assert
11<=
X
11L»
1*<combinations !'<- .,n 1> .r>
JADDDD>
<prog []
<cend
[6<goal 1%'<= .n .I>>
<goal 1'<= 1 ,i>>]
[<goal !*'<= .r 0>>
<goal 1'<= X !*'<factorial .pd>>>]
<goai
104z
.x
10»
{*<cambinations i1'<- . 1> .r>
JNDIDIIDD3>

INTENDER yields the following protoco) for the intentions of

fctrl:

7.1 page 299

Cassert !'<is? !'<ncn-neg> n_>>
enter intentions of repeat

Case 1: initial entry
<assert !'<= 1 temp_>>

<goal !1'<= 1 !'<combinations n_ n_>»>>
enter intentions of ccrbinations
n kecomes n_
r teccmes n_
<goal !'<is? !?<non-neg> n_>>
<goal !1'<is? !'<non-neg> n_>>
<gqoal !'<is? !*<greater= n_> n_>>
<goal !'<= n_ n_>>
<goal 1'<= 1 1>>

rase 2: inductively assune
<assert

1eg=
temp_
tt<combinations n_ n_>>>
enter conditicnal

Casel:
<assert !'<= 0 n_1>>

<goal !'<= temp_ !‘'<factorial n_>>>
enter intenticas of factorial

n becomes n_

X beconmes tenp_

<gcal
11<=
temp_
!1*<ccmbinations n_ 0>>>
Casel:
assert !'<mot !1'<= 0 n_1>>>
{assert
- g o !.<=. - . . . * ~ &
temp_1

1<% temp_ n_1>>>

<assert 1'<= n_2 !°<= n_1 1> >>
<goal !1'<=

teap_1

!*<comtinations n_ n_2>>>
enter interticns of ccmbinations

n becoues n_

r becomes n_2

A becomes tenp_1

<goal !'<is? !*<non-neg> n_>>

<gcal !'<is? !*'<non-neg> n_2>>

TR N Y T Y TN - - — — — e

7.1 page 300

<goal !'<is? !'<greater= n_2> n_>>

<gcal !'<=
terp_1
114
t'<¢ccnobinations
n—-
n_1>

n_1i>>>

We can use the same techniques for showing that a prccedure
will convezge if its arguments satisfy certain conditicns. The idea
is tc define a partial order with no infinite descending chains and
then prove that every time control goes through the seme roint in the
program that it has descended in the rartial order. The ordering ve
shall use is that [SMALLER [}Jal |b] jcy) [1d} jel 1£1]] is true if one
of the followinc three conditions holds:

fa] is less than |d|

jJaj=]e] and }b} is less than }jej

jas]=]e] and jt}=]e] and |c| is less than *'f} For examgle

consider Ackerman's functicn as defined below:

<define ackerman <functiovn [z x ¥y
<overall []
<intention []
<prog []
<goal !'<is? !'<aon-neg> .2z2>>
<goal 1'<is? !'<non-negd> .x>>
<goal !'<is? !'< .on~neg> ,y>>>
<prog []
<assert !:<is? !'?<non~-neg> .2>>
<assert !'<is? !'<non-neg> .i>>
<assert !'<is? !'<non-neg> .y>>>
smaller>
<cond
[<is? 0 .x>
<rule [] .z
[0 .7]
[10]

[<greater 1> 1}>]

[<is? 0 .2>

<+
<ackerdsan 0 <- .x 1> .y>
1]

[~"else"

<ackerman
<= .2
<ackerman .z <= .x 1> .y>
Y2

<function [x]
<intention []
<assert !'<is? !?<non-neg> .w>>
<goal !'<is? !'<non~neg> ,¥>>>>>>>

<defire show-smaller <conszquent {a b c d e f]
[smaller [?a ?b ?c] [?a ?e 7f]]
<cond
[£<goal !'<is? !'<less 24> ?ad>>]
[E<goal t'<= 22 2d>>
<cond
[6<goal 1'<is? !'<less ?e> ?b>>]
[€<goal 1*<= ?Db ?ed>
<gual !1'<is? 1'<Cless ?2f> 2cd>>)
[~"else” <fail>}>]
[~"else" <faild >>>

The protocol for PLANNER on acrerman®s function is:

<assert !¢<is? !*'<pon-neg> z_>>
<assert !'<is? !'<non-neg> x_>>

<assert !'<is? !*<non-neg> y_>>
enter conditional

Case 1:
<assert ! =0 x_>>

<assert !'<is? !'<greater 0> x_>>

Case 2:
<assert !'<= 0 z_>>

<goal [smalle:
(0 1'<-x_ > vy]
[0 x_y 10>
enter show-sraller
baecomes 0
becomes !'<- x_ 1>
becomes y_
Lecomes 0
becones x

S c,Owrw

7.1 page 301

——— Smee— ———

. alian o il T et R e T T

7.1 page 302

f becomes y_
<goal !'<.5 !'<less 0> 0>>
FAIL
<goal !1'<= 0 0>>
<gcal !'<less x_> !'<- x_ 1>

<assert !'is? !'<greater 0> z>>

Cace 3:
<goal [smaller

[z_ 1'<=-x_ 1 y_]
(z_x_y 1P
<goal {smaller
[1°<- z_ 1> <ackerman z_ !'<~- x_ 1>y >y >]

(z_ x_ Yy 1P
He would like to shov that if we reverse a list twice then we

get the original list.

<define_reverse <function rev (1]
<overalil []
t
<repeat [[u .1] [v ()]]
!;<intention []
<goal !1'<is? .v !''<reverse [7<sub .] .ud>>>>
<assert !°<is? .v !'<.everse !1'<sud .1 .udd>>>>
<cond
[<eapty? .u>
<.rev .v>
s"exit .rev with v]
<_ v (<1 .u> t.V)>
<_ :u <rest .ud>>»>
<function [X]
<intention []

<and
‘ - <cond " *
[€<is? () .1>
<assert 1'<= . X ()>>P
<assert $'<is? .X t*<rev .1>>>
<assert 1'<is? .1 {'<reverse .X>>>>
<prog []

<cond
[<is? () .1>
§<goal :1'<= .X ()>>P
§<goal !1°'<is? .X 1'<rev .1>>>
6<goal 1'<is? .1 §*<reverse .ID>>D>>>3>>>

e e . g AR g T W T P

7.1 page 303

We would like tc show that for all J1} that <reverse <reverse |1{>> is
l1]. Again we will need a helping fuacticn to express our intentions.
We stall define <SUB |[x] {yl> to be }x]| subtract |y] as lists,

<define last <function [x]
<cond

[<empty? <rest .x>>
<1 .x>1
[~Yelse"
<last <grest .x>>P>>

<define butlast <function [x]
<cond

[<empty? <rest .x>>
01
[~"else"
(<1 x> <butlast <rest .x>>]1>>>

<define sub <function [x y]
<overall []

t
<cond
[<is? .x .y>
0]
[~"else"

(<1 .x> {sub <rest .1} .y} P
<function [2]
<intenticn [)
<congd
[6<goal !'<is? .,y () >
<assert !'<is? .Z .x>>)]
[&<goal !*<not !°'<is? .y () >>>
<assert !'<=
1'<last !'<sub .x !'<rest .y>>>
19<1 sy>>>
<assert !'<=
A
!1*'<butlast 1'<sub .x t'<rest .y>>>>>]
<cond .. ARG N
[§<goal !'<is? .y () >
<goal !'<is? .Z .x>>]
[&6<goal !'<not 1?!<is? .y () >>>
<goual !'<=
1'<last !'<sudb .x !*<rest .y>>>
1'<1 .y>>>
<goal !'<=
.z
{*<hutlast !'<sub .x !*<rest
JEOOIIOPOI>D

- - R RS T SR . L o o e SPL R S

7.1 page 304

<define rev <function [list]
<overall []

t
<cond
[<monad? .list>
.list]
[~T"else"

{¢last .list> {rev <butlast .list>}) }>
<function [X]
<intention []

<prog []
<assert !'<is? .X !*'<reverse .list>>>
<assert !'<is? .list !*'<reverse .X>>>>

<prog []
<goal !'<is? .X !{'<reverse .list>>>
<goal !'<is? .list !'<reverse .X>>>>>>>>>

The prrotocol of INTENDER op REVERSE is:
enter intenticrns of repeat

Case 1: 1initial entry
<assert $'<= u_ 1_>>
<assert !'<= v_ {)>
<goal !'<is? () !'<reverse !*!<sub 1_ 1_>>>>
enter intenticns of suab
X becomes ()
y beccpes ()
<assert !'<= () !'<«sub 1_ 1_>>>
enter intenticns of reverse
1 becomes {)
<assert {'<= () !*<reverse ()>>>

Case 2: inductive hypothesis
<assert !'<is v_ !*'<reverse !*<sub 1_ u_>>>>

enter conditional

Case 1:
<assert !'<= () u_>>

enter overall consequent. . e e e -
X becomes v_
<goal !'<is v_ !'<reverse 1_>>>

<assert !'<not 1'<= (3 u_>>>

Case 2:
<assert !'<= v_1 (1'<1 u_> !¢ {value v})>>
<assert !'<= uv_1 !'Crest u_>>>
<goal !*'<is
1°<1 uw_>

7.1 page 305

't {reverse !'<sub 1_ u_>})
t'<reverse
t*<sudb

1
10<rest u_»>>>>>
Allowing shared side effects in structured data considerably

complicates the process of proving intentions,

7.1.2 Models in Patterns: Aims

Ains are like intentions except that they are actors and occur
in patterns.

<AIM predecesscr pattern down uf successors> is the form for a
call to the actor aim. An aim vill be said to be attained when the
following conditions are satisfied:

[1] Its predecessor evaluates to true

[2] We apply the function down with two arguments. The first
is the expression to be matched. The second is <> if and cnly if
pattern doesn't match.

(3] We apply the function up with twe arguments. The first
is <> if and orly if the rest of the pattern doesn't matclt. The
second is <> if and cnly if pattern fails,

»[#.] The successors evaluate to true.

The function down expresses the intent of the downward action of the
pattern and the functicn ufp expresses thka upuard gcing action. The
actor CAXMING [declarations] predecess.r pattern dovn up successors>
1s exactly like the actor AIN except that intention variables may be

declared. For example the aim in the folowing expression is

. e ——————— " o———— w-mcw“ -

7.1 page 306

attained:

<aiming Q[OLD-P .£1]

<function {X Y]
<assert !'<eg .f .3I>>
<assert !'4<is? .Y t>>>
<function [X Y]
<cond
[&8<goal !'<is? .X <O>>
<assert !'<eq .f .OLD~-F>>
<assert !'<is? .Y []>>]
[E<goal !'<is? .X t>>
<assert !'<eq .f .X>>
<assert !'<is? .V t>>]>>

The value of f changes only if the rest of the match succeeds. The
acter <ENTIRE [declarations] predecesscr pattern down up su?cessors)
is exactly like the actor AIMING except that it is used to express the
entire intent of the pattern. For example for the actor ATCMIC which

takes no arguments and matches only atoms can be characterized b;,:

<define atomic <actor []

<entire g]

<atomic>
<function [X Y]
<cobnd
[&6<goal l'<atoa .XI>>
*° " Lassert !1'<is? .Y t>>]
[6<goal !'<not !'<atom .X>>>
<assert !'<is? .Y <3O> P>
<function [X Y]
<assert 1'<is? .X .Y>>>>>>

7. 1.3 Bodels of PLARNER Theoress

_ _ _
AP NG YO " i n—

- e e e) T R T AN -

7.1 page 307

we shall construct mcdels for FLANNEER theorems in much the

same manner as for MATCHLESS patterns.

<THINTENT predecessor x down uf successors> is true if the
following conditions are met:

[1] t¢he predecessor is true.

{21 We apply the function down wita two arguments: The first
argunent is <> if and cnly if the evaluation of x fails. If thr Iirst
arguuent is not <> then the value of the second argument is the valte
of x,

(3] We apply the function up with four argunents. The first
is <> if and only if the rest of the computation fails, If the first
argument is <> then the second arguuent is the message of the failure.
The third arqument is <> if and only if the evaluation of x fails. If
the third argument is not <> ther the fourth argument is the value of
X.

The function THINTENC is exactly like the function THINTENT
except that a declaration of intention variables must be the first
argurent. For examfple the folliwng intention is alvays satistied:
Becall that the function ASSERT! will assert a statement if has not

_ already been prcved.

<thinteng [[already-fprcved <>]]

<assert1 [sulset a b >
<functicn [X Y]
<cond
{6<goal [proved [subset a b]}>
<assert !'<is? .X O>>
<_ :already-proved t>

T R T T TS L . A

AR OOt LOBRAKNS BICF AALER o vr | W B AT cop

PR T O A T s e RSP S PPRCRP AR

7.1 page 308

<assert 1'<is? .Y <>>>)

[€<gcal !*<not [proved [subset a b]JI>
<assert [proved [subset a b]]>
<assert !°'<is? .X t>>
<assert !1'<is? ,Y [subset a b]>>]>

<function (X Y U V]
<cond

[<is? <» .already-proved>
<ccnd

[€<goal 1'<is? .X <>>>
<erase [proved [subset a B]PDP P
<assert 1'<is? .0 .X>>
<assert !'<is? .V .Y>>>>

7.2 page 309

7.2 Teacking Prccedures

Crucial to our understanding of the phenonenon of teaching is
the teaching of procedures. Understanding the teaching c¢f procedures
is crucial because of the central role played by the structrual
analysis of procedures in the foundaticnc of problem solving. How can
procedures such as multiplication, algetraic simplification, and
verbal analogy problem solving be taught efficiently? Cnce these
procedures have been taugat, hov can most efftective use of them be
made to teach cther precedures? In addition to being incorporated
directly as a black box, a procedure which has already been taught can
be used as a model for teaching other frocedures with an analocgous
structure. One of the most important methods of teaching procedures
is telling. FPor example one can be told the algorithm for doing
symbolic integration. Telling should be done in a high level goal-
criented language., PLANNER goes a certain distance toward raising the
level of the language in which we can express a procedure to a
coaputer. The language has grimitives which implement fundamental
prgy}gg_solvinq abilities., Teaching procedures is intimately tied to
vhat superficially appears to be the cpecial case of teaching
procedures vhich vrite procedures, The process of teaching a
procedure should not be confused with the process of trying to get
the one being taught to guess what some tlack bor rrocedure really

does [as is the case in in sequence extrapolatidn for example])]. The

7.2 page 310

teacher is duty bound to tell anything that sight help the one being
taught to understand the properties and structure of the procedure.

¥e assume that the teacher has a good model of how the student thinks.
Also, just because we speak of "teaching", we do not thereby assume
that anything like what classically has been called learning is taking
place in the student., However, this dces not exclude the fossiblity
that the easiest vay tc teach 2any procedur2s is through examples. We
can give protocols of the action of the procedure for various inputs
and enviroments. By "variablization™ [the introduction of identifiers
for the constants of the exarmples] the protocols can be formed into a
tree. Then a recursive procedure can be generated by identifying
indistinguishable nodes on the tree. We call the above procedure for
constructing procedures frcm exarples the procedural abstraction of

protocols., . .3cedural abstraction can be used to teach oneself a

procedure.
7.2.2 By Procedural Abstracticn

7.2.2.4 Examples of Procedural Abstraction

7.2.2.4.1 Building a wall

We shall explain procedural abstraction in more detail using
the exaample of building a wall. We define <brick-at |w| |h|> to mean

that there is a brick at the lccation with vidth)Jv| and height (h]

2 e

BUILDING WALLS

(¢,2)
(1)
(¢.¢)

[WALL 2]

(b, 1)) (1,1)
(p P)| (1,9)

[waLL 2 1]

NOTE: THE NUMBERS IN THE BOXES REPRESENT
THE COORDINATES OF THE BRICKS.

TN RV T T R TSRO S < Y

7.2 page 311

and defipre the statesent [wall |wj |h|] to mean that there is a wall

of width w and height h using the definition

<define wall <function [v h]
{<conjuncticn [[ww 0]]
[~"incY wv -"by" 1 -"thru" .v]
<conjurction [[hhk .h]]
[~"dec™ hh ~"by" 1 -"thru" 0]
<brick-at .ww .hh>>>>>

Thus <wall 1 2> means

<aund
<and
<brick-at 0 2>
<brick-at 0 1>
<brick-at 0 0>>
<and

<brick-at 1 2>
<brick-at t 1>
<brick-at 1 0>>>.

Notice that the syntactic definition of a wall rums orthogonal to the
way in waich a wall has to be constructed. <Thus we could not use
purely syntax directed methods to constru~t walls. The predicate
<ASS1GNED? var> is true only if the identifier var has been assigned a

value.

<define build-tover
<{consequent build
{[!=fir w h] [actions []]]
[brick-at 2?v 2h)
<cond
[<not? <assigned? h>>
<_ b P
<cond
(<current? [brick-at ?w 2h >
<.builad {)>
s"exit .build with () P
[<is? .h O>
<.build (!*<pat-brick-at 2v 2h>)> 7>
<{_ cactions <gcal {[brick-at 2w <- .h P>

7.2 page 312

<goal [put-brick-at 2w ?h]>

<goal [check-brick-at .w .,h}>

<assert [brick—-at .w .h]>

<.build {(!.actions !*<put-brick-at .w .h>)>>

If we give PLANNER the task cf constructing a [wall 1 2], then the
acticns that will be taken are:

<put~brick-at C 0>
<put-brick-at C 1>
<{put-brick-at 0 2>

If the goal is [wal" Z 1) then the actions are:
<put-brick-at C 0>
<{put-brick-at 0 1>
<put-br.ck-at 1 0>
<put-brick-at 1 1>

We shall use tte expression new 5 to wean that a new identifier is

bourd aand initialized to 5. We shall use the expression <value 9> to
sean a reference to an identifier whose value is 9; the expression
<alter 3 7> means that am identifier with value 3 is altered to be the

value 7. More precisely, the frotoccl for {wall 1 2] is

<new [1 ZJ
<new [UNASSIGNED UNIASSIGNEEL)

<_ <alter UNASSIGNED C> >
<is? <value 0> <value 1>> IS FALSE
SO
<_ <alter UNASSIGNED C> 0>
<is? <value 0> <value 2>> IS FALSE
o
<put-brick-at <value 0> <value 0>>
<_ <alter 0 1> <+ <yalue 0> 1>>
<is? <7alue 1> <value 2>> IS FALSE
So
<put-brick-at <value 0> <value 1>>
<_ <alter 1 2> <+ <value 1> 1>>
<is? <value 2> <value 2>> IS TRUE
SO
<_ <alter 0 1> <+ <value 0> 1>>
<is? <value 1> <value 1>> IS TEOUE
so
[

7.2 page 313

The protocol for {wall 2 1] is

<new [2

1]

<«ney [UNASSIGNED UNASEZIGNED]
<_ <alter UNASSIGNED 0> 0>
<is? <value 0> “<value 2>> IS FALSE

S0

<_ <alter UNASSIGNED 0> 0> <is? <valve 3> <value 1>> IS FALSE

SO

<put-brick-at <value 0> <value 0>>
{_ Caiter 0 1> <+ <valuve 0> 1>
<is? <value 1> <valve 1>> 15 TRUE
ScC
<_ <alter C 1> <+ <value 0> 1>>
<is? <value 1> <value 2>> IS FALSE
sc
<_ <alter 1 0> 0>
<is? <value 0> 1>IS FALSE
sC
<put-brick-at <value 1> <value 0>>
<_ <alter 0 1> <+ <value G> 1>
<is? <value 1> <value 1>> IS TRUE

SC
<—
<alter 1 2>
<¢ <value 1> 1>
<is?
<value 2>
<value 2>> IS TRUE
so [P>

Tha protgﬁol for [wall 2 2] is

‘nev [2

<nev [UNASSIGNED UNASSIGNED]

<_ <alter UNASSIGNED 0> 0>

<is? <value (> <value 2>> IS FALSE
SO

<_ <alter UNASSIGNED 0> 0>

<is? <value 0> <value 2>> IS FALSE
SO

<put-brick-at <value 0> <value 0>>
<_ <alter 0 1> <¢ <valge 0> 1>>
<is? <value 1> <value 2>> IS FALSE
S50

<{put-brick-at <value 0> <value 1>>
<_ <alter 1 2> <¢ <value 1> 1>
<is? <valuc 2> <value 2>> IS TRIUE
S0

<_ <alter 0 1> <+ <valuve 0> 1>>
<is? <value 1> <value 2>> IS FALSE

T STl T YT I T, T Y

7.2 page 314

SO

<_ <alter z (> 0>

<is? <value 0> <value 2>> IS FALSE
SO

<put-brick-at 1 0>

<_ <alter 0 1> <¢ <vaiue 0> 15>
<is? <value 1> <value 2>> IS FALSE
-0

<put-brick-at <value 1> <value 1>>
<_ <alter 1 2> <+ <value 1> 15>

<_ <alter 1 2> <+ <valuve 1> 1>
<is? <value 2> <value 2>> IS TRUE
SO

[

By introducing identifiers fcr the constants and b{ tracing the
bindings of the identifiers of BUILD-TCWER the protocols can be

arranged in a tree as follows:

new {v ha
nev | we=UNASSIGNED; hh=UNASSIGNED]
{_ iwwW C2
if <is? W% W
then
(1]
else <_ :th 0> if <is? .hh .h>
then
<_ sww <+ owW 1D
if <is? .ww W2

tken
[l
else
<_ thh U>
if <is? .hhk 0>

then
<_ :wy <+ ww 1>
if <is? .ww .W>
then
(]
else..:
als@. ..
else
<put—brick-at .ww .hh>
<_ :hh <+ .hh 1>
if <is? .hh .h>
thken
< tvv <+ L uy OO
if <is? .ww 1
than
{1

3.'— .. - I WMWY T e Y N -

>

7.2 page 315

else
<_ *hh 0>
if <is? .hh .h>
then

<put-brick-at .ww .hh>
<_ shh <+ .hh 1>
if <is? .hh .h>
then
<_ tww <+ Lww 13D
if <is? .uv .w>
then []
else,..
else...
els2...
else
<_ thh <+ .hh 1>>
if <is? .hbh . B>
then
<_ tuw <+ Lww 1DD
it <is? .ww WD
then {]
else...
else...

¥e define the frotocol of an evaluation to be a list of the

events and the places in the program where they happen that cccur when
the evaluaticn is being carried out. By examining the protocols of
the system as it tries to build a wall we find that it always uses the
sape procedure. Of course it will not alvays be the case that the
protocols froa the sclutions of the instances of a goal can be
combined into a procedure. The basic idea is to combine the set of
protocols into a tree and thern consider any two nodes of t.e tree
vhich cannot be distinquished on the rasis of the protoccls to be
identical. In cther vords it is necessary to coapute a minimal or
aleost minisal homomorghic isage of the set of available protocols.

Unfortunately it is often difrficult to extract the inforsation needed

7.2 page 316

to do procedural abstraction from the protocols produced by PLANNER

theorems as they solve prcblems. The procedure that the theorem is in

fact using can ke expressed as follcus:

<{define compile-build <function [w¥ h]
<overall []
!;lintention []
<and
<goal !'<is? !'<non-neqg> .w>>
<goal !'<is? !*'<non-neg> .h>>>>
<and
<assert !'<is? !'<non-neg> .w>>
<assert !'<is? !?!<pon-neg> .h>>>>
{repeat columa
[[ww C3)
!;<intention []
{goal [vwall .ww .h]
<assert [wall .ww .h]>>
<cond
[(Kis? .ww .w>
{intept <wall .w .h>>
<.column>
s"exit .column"]>
<repeat height [{hh 0]]
!;<iptenticn []
<goal {column .ww .hh]>
<assert [column .ww .hh]>>
<cord
[<is? .hh B>
<.height>
:"exit .height with OGP
f;<intent <goal [support~-for .ww .hh}>>
<put-brick-at .ww .hh>
!;<intent <goal [brick-at .ww .ha]>>
<_ :hh <+ _hh 1>>>
< v <+ uv 1O
<function [X]
<assert [wall .vw .b)]>
<goal [wall .w .h}>>>>

<define check-wvall
<consequent

check-vwall
[w* ¥ h® h]
[wall 2w* ?h*]
<cond

[<or?

2 S, ————r— =\ S pgaram—— e AT DR T M AN W TR ET ek, - .- .- —_——
&4

7.2 page 317

§<goal !*'<is? ?h* 0>>

6<goal !'<is? 2w’ 0>>>]
[<is2?2 1'<+ ?2h 1> .h*>

<coal {wall 2y' .h)]>

<goal {column ?w?® 2k*]>]
[<is? !1'<+ 2w 1> .w'>

<goal [wall ?v .h'}]>

<goal [column ?¥' 2h' }>]
[~"else"

<fail <> .check-valld }>>>

<define check-colunn
{consegquent

check-coclunmn
[v h h*]
[coluen 2v 2h']
<cond
[€<goal !°*'<is? ?h' 0>>]
[<is? !1'<+ 2h 1> .h'>
<goal [column ?w 2h]}]>]
[~«"2lse”
<fail <> .check-column>]>>>

<define check-support
{consequent

check-support
[v h)
[support-for ¥ ?h]
<cond

[6<goal !'<is? ?h 0>>])

[<goal [cclumn .w¥ .hh]>)
[~“Yelse"
<fail <> .check-sugpport> >>>

<define put-brick-at
<function [w h]

<overall []
<goal {suprort-for .¥w A
<put-brick-at .v .h>
<assert [brick-at .v 5]>>>>

The INTENDER protocol for the verification of the inte.tions
of compile-build is:
<assert 1'<is? {'<non-neg> v_>>

<assert !'<is? !*<non-neg> h_D>>
enter interticns of repeat

gy S —eay— ez oo .

7.2 page 318

Case 1: initial entry
<assert !'<is? 0 ww_>>
<goal {walil 0 h_D
enter intenticns of check-wall

¥' becomes 0
h' becomes h_
<goal !'<is? h_ 0>>
FAIL
<goal !*'<is? 0 0>>

Case 2: Inductively assume
<assert [wall ww_ K

enter conditional

- d

Case 1:)
<assert 1°<is? w_ ww_>>

<goal [wall v_ h_D]>

Case 2: .
<assert !'<not !'<is? w_ ww_>>>

enter intenticns of repeat

Case 1: initial ertr
<assert !'<is? 0 hh >

<goal [column wv_ hh_]>
enter intentions of check-column
¥ becomes ww_
h* becomes hh_
<goal !'<is? 0 hh_>>

Case 2: inductively assunme
<assert [cclumn ww_ hh_]>

enter conditional

Case 1:)
<assert 1'<is? hh_ h_>>

<assert !°'<is? ww_1 !'<+ ww_ 1>>>
<goal [wvall wv_1 h_D]>
enter intentions of check-wall
¥' beccmes wv_1
h* becomes h_
<goal 1'<is? !1'<+ ?h 1> h_1>>
¥ becones w_
<goal {wall wvw_ h_D]

Case 2:
<assert !'<not !*'<is? hh_ h_>>>

<goal [support-for ww_ hh_7>
enter intentions of check-sugport
¥ becomes ww_

T s = . e - — - - D _

7.2 page 319

h becoses hh_

<goal [column ww_ hh_)]>
<assert !'<is? hh_1 '+ hh_ 1>>>
<goal [column ww_ hh_17]>
enter intentions of check-coluamn

W becomes ww_

h' beccmes hh_1

<goal !'<is? 1<+ 2?h 1> hh_1>>

h becomes hh_1

<goal [column ww_ hh_1]>

Note that the above proof tnat CCMPILE-~-BUILD meets its
intentions is relative to the PROCEDURAL MODEL that we have
constructed. The preccedural model is constructed out of procedures
such as PUT-BRICK-AT. The procedural model is connected to our goal
oriented lanqguage by COBRESPORCENCE RULES such as CHECK-SUPPORT.

The structure of the abstracted procedure must at least
reflect the structure of the PLARNER theorems from which it has been
abstracted. Thus the abstraction of a for-proved loop will generate
a recursive equation wvhich might be simplified to a loop. Some of the
recursion in abstracted funaticns is primarily generated by the
structure of the data c¢f the fproblem. If we consider the tags column
and height to define functicns, then the proot is essentially by
recursion indiaction. 1In the above procedure ,w is the width of the
vall %o be built, .ww is a running index over the width, .h is the
hei yjht, and .bb is a running index over the height. Using the
intentions in the above procedure as subgoals we can easily see that
the procedure does build walls., Notice that we can use the protocols
of the procedure [in a process that we call "protocol rejection"] to

reject false subgoals in much the same vay that Geleranter used

diagrass in his geometry theorem prover. For example we might

T TN T T KT I YT Ty = e mni—

p

7.2 page 320

evaluate <compile-build 1 2>, <compile-ktuild 2 1>, and <ccampile-build

3 2> remenbtering the protoccls of the evaluvations. Thus when

considering the case where the intention

<intent
<or

<is? .w¥ O
<wall <subl .w¥> .hh>>>

is evaluated inmediately after <end column> is evaluated, it will be

the case that <is? .wv 0> is false and so cannot possibly be a
provable subgoal even though it implies the intention. The suktgoal
will be to prove [implies <not <is? .w 0>> <wall <sub1 .ww> .hh>]., Of
course using protocols for the purpose of rejecting false csubgoals

does not help us to eliminate those that are true tut unprovable.
7.2.2.4.2 Bever. ing a List at All levels
Consider the following protocols for a procedure r:

<new Ea] .
<is? <monadic> <value a>>> IS TRUE

SO <value a>

thus <r a> is a

<new [[n]]
<is? <monadic> <value [n1]>> IS FALSE
SC

{nev [<rest <vaiue [n]>>]
<is? <monadic> <value [}>> IS TRUE
SO <value [J>}

Lats

it - TR T TR - - - I

<new [<<value [n]> 1>]
<is? <monadic> <value n>> IS TRUE
SC <value n>>}>

thus <r [n} is [n]

<new [[a b]]
<is? <monadic> <value [a b]>> IS FALSE
SO

{new [<rest <value [a b]>>]
<is? <monadic> <value [b]>> IS FALSE
SO
[
f<ne¥ [<rest <value [b]>>]
<is? <monadic> <value []>> IS TRUE
SC <value { }>>}
<new [<<value [b]> 1>]
<is? <mponadic> <value b>> IS TRUE
SC <value b>>1]}
<new [<<value [a b]> 1>]
<is? <monadic> <value a>> IS TRUE
SC <value a>>}>

thus <r [a b]> is [b a]

<new [[[a]]]
<is? <monadic> <value [[a]]>> IS FALSE

SO

{

{<new [<rest <value [[a]]>>]

<is? <mcnadic> <value []>> IS TRUE
50 [1>}

<nevw [<<value [[a]]> 1>]

<is? <mcnadic> <value [a]>> IS FALSE
SC

{<new [<rest {value [a]>>]

<is? <wmonadic> <value []>> IS TRUE
SC [)2}

<new [<<value [a]> 1>]

<is? <monadic> <value a>> IS TRUE
SC <value a>> PP

thus <r [[a]P is [[a]]

We ottain the following prctoccl tree:

7.2 page 321

£ - ST et T e T W AR e T T " JE——

7.2 page 3Z2

= <nevw fx12 .

‘ if <is? <monadic> .x1>
then .xi
else

(new [x2 <rest .x1>]
if <is? <monadic> .x2>
then .x2
elise

{new [x3 <rest .x2>]
if <is? <monadic> .x3>
then .x3
elsecas}
<new [x4 <1 .x2>]}
if <is? <monadic> .xi4>
then .x4
~ else. s>]}
2 <ne¥ [x5 <1 .x1>]
- if <is? <sgnadic> .x5
then .x5
else

{ne¥w [x6 <rest .x5>]

if <is? <mcnadic> .x6>
then .x6 ‘
else...}

<new [x7 <1 .x5>]

if <is? <monadic> .x7>
then .x7
else...>]> P

By identifying indistinguishable nodee we obtain:

<define super-reverse <fuaction [x]
<cond

{<is? <m2nadicd> .x>
%]
[~-%else™
[
{super~reverse <rest .x>}
<super~reverse <1 ,x>>]1P>>
7e2.2.4.3 Pinding the Description of a Stick

2 BT A s e T P

7.2 page 323

Suppose that we have the following data base:
[block a]
[block b))

[glued a b]

The above data base represents a stick on the the Lasis of the

following protocol:

<goal [stick a bg)
<new [UNASSIGNED UNASSIGNED UNASSIGNED]

;"we have three new identifiers that do not have
values™

consequent: [stick <given UNASSIGNED a> <given UNASSIGNED b>]
cond

{current [glned <given ad> <given b>]>
<return t>>

Bow suppose that the data base as:
[block a

[block b]
[block c]
[{glued a b}
[glued k c]
[between a b c]

We obtain the following prctocol:

<goal [stick a c§>
[new ONASSIGNEL UNASSX' . " RSIGNED])
cansequent: |[stick <g:. iven c>)
cond

<current [glued <giveu &> <given c>}>
tail
<current [block <given a>)>
<goal [glued <value a> <_ UNASSIGNED b>)>
<current [betveen <value a> <value b> <given c>)]>
<goal [stick <value b> <valuve c>]
[new UNASSIGNED UNASSIGNED UNASSIGRAED]
conseguent: [stick <given bY <giwven c>]
cond

<proved [glued <given b> <given c>]
<return t>

> S - ST R AT TR T T Y e+ 3 T

1.L \”'I"\qq— J)b‘"b‘

o} b
[biock al
[block b1l
{glued a bl
FIGURE |
7/
a b c
[block al
[block b]
[block c]
[glued abl
[glued bc]
) [between a bcl
FIGURE 2
(block al c
[block bl
{block ¢
fglued a b]
(glued b c] a b
(not{between a b cl]

FIGURE 3

7.2 page 325

By variabalization we obtain the following protoccl tree:

<goal [stick a v]>
[pev x y72]
consequent c1: [stick ?x 2z]
<cond
[&€<goal [glued 2x 2z]>
<.cl t>
;lexit .c1 with t" >
<current [block ?x]>
<goal [glued .x _yJ>
<current [between .x .y 2z >
<goal [stick .y .z }>
{new x1 y1 21"
conseguent c2: [stick ?x1 2z1)
<cond
[&<goal [glued 2x1 2z1]>
<.c2 t>
;"exit .c2 with t"]>
<current [blecck ?x1}]>
<goal [gqlued .x1 _yi1]>
<curxent [between ,.x1 .yl 2z1)>
<goal {stick .yl .z1)]>

By identifying indistinguishakle nodes ve cbtain the following

corsequent theorer vhich is the description of a stick.

<define stick-des stion <ccnsequent c

[x ¥y 2]
[stiek 2% ¢z]
<cond

. -<goual [glued 2x 22]>
R A
JAexat .C with 7]
<currew’ {rie. i x>
<goal [gx.:=c .Xx _YJP
<{currernt [betveen .¥ .y 22
<goal [sti ¥ .y .Z2]>>>

7.2.2.4.4 Finding the Fibonoccli Nambers Iteratively

ST e T T T

7.2 page 326

Sonmetimes it iz possible to improve the efficiency of a

procedure by procedural abstraction. For example consider the

protocols of thke schema £ defined below.

<define f <function [n]
<cond

[<or <P .n> <P <5 .m>>>

<ONE>]
[~"else"

<A <f €S .p>> £ <5 <S5 .mdO>>>P>>>

We shall used the abbreviation that <f-~0 x> is x and <f-np+1 x> is <f
<f-n x>> where f is a function. Thus <f-~2 x> is <f <f x>>. The

protocol for the above schema is:

if <or <P <S-0 n>> <P <S-~1 n>>>

then <ONE>
else
<A
if <or <P <S-1 n>>
then <ONE>
else
<A
if
if

if <or <P <S~2 n>»

then <CRE>
else
<A
is
if

<P <S-2 n>>>

<or <P <S~2 n>> <P <S-~3 nd>>>
then <CNE>
else...

<or <P <5~3 n>> <P <S4 a>>>
then <ONE>
else...>

<P <S-~3 n>>>

<or <P <S-3 n>> <P <S-& nd>>>
then <OKE>
elSE...

<or <P <S4 n,> <P <S~5 n>>>
tlen <ONE>

else,..>>

By procedural abstractioa we can obtain a function £1 wiich is

eguivalent to £. rhe function is obtarned by identifying some or the

nodes that are not on the samse branch of the protiscol tree.

B e T e N -

7.2 page 327

<define £ <function out [n] !
<comnd

[<or <P .&> <P <5 .n>>>
<.out <ONE> <CNE>>]

[~"else"
<call
<f <S .n>>
<function [downl down2]
<.out

<A .downt .down2>
.dowyn1>>>15>>

Another approach is tc use scme of the theory of recursive schenmas.
The function f defined azbove is schematically equivalent to the

functior ff defined below

<define ff <fuaction ff [n]
<for [[x 0] [y 0]}]

[[~"test®™ <P .n> <.ff .x> ;"exit .ff vith .x*]}
[~®step” <_ :m <5 .n>>?]
<_ {:x 23] <tuple <A X y> x>>
:%the previouns statement is just a tricky uay to
simultaneously accomplish <_ :x <R .x .y>>
and <_ 1y .x>">>>

Note that <fil n> the nth Fibonacci nuaker can be defined as follows

<define fib <function [n]
<cond
[<or <is? 1 .m> <is? 2 .n>>
1]
[~"else"
<+ <fib <= .n D> <~ .n 25>P>>

Gsing the intergpretaticn that <OKE> is 1, <P x> tests to see if x 1s

1, and ik is add, ve see that the function fib can be reuritten

iteratively.

The process of procedural abstractiom iz very much like a

7.2 page 328

generalized form of ccspilation. The relationship between the

compiled versicn and the interpreted versior can be very subtle. 1In
classical compilers the relationship is much more straightforward.
Every time that the interpreter for the language changes the comriler
aust change., 1In fact the interpreter and compiler are two moaes of
what is essentially <ne program: an interpreter—compiler. 1In crapile
mode it would antually prodvce the coppiled code for the source code;
in interpret mode it would take the actions corresponding to the
compiled code that wculd be produced in compile mode. 'The
interpreter-cospiler can be written it HATCHLESS so that in compile
mode the MATCHLESS skeletons have as value the compiled code. One
problem with interpreter-comgilers is that they suffer from the
inefficiency cf double interpretation. Instead of directly
interpeting the expressions, in interpret mode thé interpeter-cogpiler
interprets the skeletons that would produce the code in ccapiie mode.
The prcblem can be svived by compiling the interyr -cer-coapiler for
interpret mode. HWe would like to try to extend this idea to PLANNER
iz a mor2 noantrivial wva’ so that joals would be creat;d ;o pr;éuce the

cospiled code.
7.2.2.4.5 Defining a Data Type

We can do procedural abstraction of protocols along the same

lines for actors. PFor example if ve obtain the following actor

protocol

7.2 page 329

[<when
| (e
g [<atomic>]
! [<when
(L1l
[<atomic>]
[<when
{1l
[<atomic> 1>]>
{when
[cil]
[<atomic>]
[<when
(ril
[<atomic>]
[<when
(t1p
{vhen
(03]

[<atomic> 1> 1 11
Then by identifying equivalent nodes we obtain the actor expr where

<define expr <actor []
<when

l (0]l

[<atomic>]
{[<expr> {expr} lI>>>

Goodstein bhas many inductive prcofs of the the properties of

recursive programs. John McCarthy was one of the first to popularize

the use of recursica induction for proving the properties of programs.
The easiest way to do recursion induction is tc provide at least one

predicate for each recursive equation. Robert Floyd has proposed that
predicates in the first order quantificational calculus be attached to

the edges of flow charts in order to provide subgoals for proofs of

e

properties of prograss. 1n general we would prefer %o proceed more

constructively and to write intentions ip PLANNER rather than in a

7.2 page 330

fore of the guantificational calculus. Finding an intuitionistic

proof of a sentence in first order logic is the same rroblea as
finding a recursive functicn that realize the the formula. Sirce the
logistic system of PLANNER is very constructive, a proof of a PLANNER
theorem entails being able to rrite the procedures which compute the
values that identifiers in goa': take cn as a Cesult of the goal being
estatlished. Iotentions are a first step toward constructing models
of the environment in shick a process cxecutes. We need to develop
good ways to increase the exrressive vower cf intentions. Currently
the model of ile computaticn must be expressed by intentions within
the process being executed which makes it difficult to get a global
view of tae model of the execution of the process. The application of
intentions in which we are most interested is their use to provide
subgoals tc enablea ns to deduce PLANNER theoreams with loops in then.
We shall say that an intenticn i characterizes a function f if
vhenever <f x> converges then <equal <f x> y> if and cnly 1i1f <i x y>
is trve. A 1lcng time ago Johu McCarthy and cthers proposed that the
debugging problem be solved h; proving that the procedure is correct
once and for all. Using inAduction McCartly and his students have
nrcred that certain cospilers are cortect. The most important
practical difficulty to the realization of the profposal is that for
many functions f writtenm in higher level languages it seeas that all
the intentions that chavacterize f are at least as loag as f because

the only vay to tell whether the value of <f x> is correct or not is

to do an equivalent coamputation s3ll over again. A good example of

7.2 page 331

such a functiou is eval in LISP. <ke function eval is an extrenme

examnple of a function that has no simple declarative input ouput
characterizaticn. A real challenge in autowmatic program vwriting is
tc develop a sysbolic inetegration routine from the critexiia that the
derivative of the answer must be equivalent to the input. One
approach toward coastructing such a routine would be to make use of
some results of Risch om vhat sust be the fors of the integrand as a
function of the form of the integrand. In the case of the factorial
function there are two obvious vays to compute the function: usiny
recursion or using a lcop. Ibn other cases it is uat so obvious how to
£find a sufficiently ditferent squivalent program. VWe shall say that
an intention i is implied by a function f if wvhenever <f x> converges
then if <egual <f x> y>, then <i x y> is true. Implied intentions are
useful wvhen we are only interested in some property of the function
and don't care to try to characterize it completely. Por example ve
might not care whether a function that determines how to stack cubes
always puts red cubes on the bottom of the tower that it is trying to
build. Or ve might be interested in proving that a scheduler for a
time sharing system passes soue test for fairness in its distribution
of tize to users. Another pctential use for implied intentions is to
provide subgoals to prove that a given fuaction that uses lock and
unlock and unlisited use of assignsent in parallel cosputatioos is
indeed detersninate.

A more serious probles is that often ve cannot develop

reasonable implied overall intentions. Consider trying to write

7.2 page 332

intentions for a chess program. We could require that the progranm
play LEGAL chess but this is the least of considerations. How can ve
vrite intentions to the effect that the program should play GOOD

chess? There is a completely trivial program which will play PERFECT

chess given sufficient time and storage. However, the amount of time
and storage required are wildly impractical. Ore gight believe that

the problem of writing overall intentions afflicts ornly game playing |
prograas, However, the same problem arises in trying to write 1
overall inteations for a robot. #We can specify in detail a certain 1
finite number of elesertary procedures uhich the rob»ot should be able \
to perfora., 1In a given situation there may be some obscure way for 1
the procedures to interract to provide a solution for a problemn.
However, it is not fair to blame the robot fcr not solving a very
difficult problex. Thus we again have a prchlem writing realistic ‘

overall intentions.
7.2.3 Teaching Procedures by Deducing the Bodies of Canned Loops

If the type cf control structure is known a priori, then the
rest of the function can often be deduced. Often the ccntrol
structure needed is a very cosmonly used loop such as the FOR loop in
MATCELESS, recursion on the tree structure of lists, or one of the
loops in PLANBER such as TRY, FISD, or EBXHAUST. We shall call loops

such as the above %caaned® lcops since we will often pull thex out and

use them whole when we are in need of a control structure for a

7.2 page 333

routine, The approach of using canned loops is the one used by

Kieene for constructive realization functions for intuitionistic
logic., Suppose that we know the following theores about the
predicate [REVERSE? x y) which seans that y is the reverse of x. For
exanple [reverse? aa aa] and [reverse? {1 2 [3 4]) [[{3 4] 2 1]) are
true. As befure ' is used to suppress invocations, and a monad is

defined to be an atoms, . nuasber, {], ovr []. The function IDENTITY

which is used helow is ‘he identity function.

<define th69 <consequent
[a b c]

[reverse? ?a ?t])
<cond
[<hasval? a>
<cond
[6<goal !'<aonad? .a>>
+"if a is a monad then b should be equal to a"
<goal !°<is? .a ?b>>]
[~"else"
<goal i{*<not i'<monad? .a>>>
<goal [reverse? {'<rest .a> _c)p
:Potherwise let ¢ be the reverse of the rest
of an
<goal 1°<is? [' (identity .c} !1'<1 .a>] 2b>>j>]
[Pelse" <faild]>>>

We would like to find a function reverse such that {reverse? x
[reverse x])] is aivays true. The theoream above suggests that we try

to use linear induction on lists as the control s%4-ucture. The schesa

for iinear induction applied to the function reverse is:

<define reverse <functiom [x]
ft<{cond

{ t*<mcnad? .x>
<tenprog [Y]
<asscrt 1¢€<monad? .x>>

Y ———— r———— g TP T T T Y AL - — ~—er - ——

7.2 page 334

<goal (reverse? .x _I]>
t3"find a Y which is the reverse of the monad T
x and return it as value®
1]
[~%else"
{temprcg [Y]
<assert !*<not !*<monad? .x>>>
<assert [reverse?
t*<rest .x>
1*{reverse !'<rest .1>>)]
<goal [reverse? .x _Y]>
CYDIOO>

The above expression evaluates to the following definition:

<define reverse <function [x]
<coad

[<monad? .x>
.X]

[~"else"
[{identity <reverse <rest .x>>}
<1 x> 1P>

7.2.4. Coaparison of the Netbods

Superficiaily considered, there is no* auch to be said about
teaching proceGures by telling. It is not aivays clear vhether the
procedure should be taught fros the tor down or the primitives should
be taught first. Hovever, the basics of the method are simple and
direct. Unfortunately the teacher will not alwvays know the code for
the procedure wvhich is to be taught., Be might Le engaged ip wishful
thinking hoping te £ind a procedure with certain properties. The
method of canned loops is oftern applicable to such cases. Trving to
use the sethod of canned loops has the probleam that the control

structure must be supposed. Often it is very difficnlt to guess the

7.2 page 335

kind of control structuce which vill prove appropriate. Alsoc the

method of canned loops works on the problem ia the abstract as opposed
to specific examples where the identifiers are bound to actual values.
The advantage of the abstract approach is that if it succeeds then the
procedure will be kaown by its construction to have certain
properties. On the cther hand it is cften easier to see what to do
on concrete cases. Often it is eacsier to shov somecone how %o do
something than to tell him how to do it, Partly this is because the
descriptive language necessary has not been adequately developed and
so we use "body language®. The approach of procedural abstractionm is
to -ombine together several ccncrete cases into ome sucposed general
procedure, Properties of the general procedure must then be
established by separate arqument., If the protocols of the examples
are produced by a goal-oriented lauguaye such as PLANNER, then there
¥ill be points along the protocols where certain predicates arc Xmown
to be true. The predicates express the fact that some gjoal was
established as true at that point. Often it is possible tc show by
satahematical induction that the corresponding properties in the
abstracted procedure are alvays true vken the procedure passes through
the points. 1In thic ay a probles solver can have a partial model of
his problem solving procedures. The models can be expressed naturally
in PLANNER., Also che zethod of procedural abstraction has the
advantage that the control structure does not have to be suppused in
advance, Often a problem solver will have the basic probleam solving

ability to soclve any one of a certain ciass of problems. But he will

- T - TR TR YNTORON 0TS = AR v s — - - ——m

7.2 page 336

not know that he has the capability. W®riting a procedure which can be

shown to solve the class enables the problem solver to bootstrap on
his previous work. Prccedural abstraction itself is further evidence
for the Principle of Procedural Pmbedding. To inplement the principle
as a research progras requires a high level goal-oriented formalisa.
PLANNER and sose embellishments that W have made to the language are

first steps toward realizing the Principle of rrocedural Enmbedding.

T R T TR YV i S T e MY LT T e s a5 i ki = g

7.3 page 3:x7

7.3 Current Prcblems and Puture work

Currently we have mechanisms to handle the following kinds of

"hugs" or "local changes®™ in programs:

MISTDENTIFICATION of NODES: If two nodes of a protocol have
been mistakenly identified as being the same then the mistake can be

corrected from new fprotocols which distinguish the nodes.

VARIABALIZATICN: Procedures can bhe made more general by

changing some of their constants into variables.

PATCHES: Existing routines can sometimes be ccnverted into
the desired procedure Ly intrcducing pew intentions into thea. The

patch is produced by the code generated by the newy intention as it is

evaluated by INTENDER in the envircnment in which it was placed. Of
course a bug is suspected at the point where an ordinary intention

cannot be verified.

We need to find ways to improve the existing mechanisas and to
find ways to handle other kinds of bugs and local changes. Also
procedural abstraction zust be generalizad tu accept higher level
protocols and to make better use of existing procedural knowledge in

doing the abstractio:x.

S - ——— i — - & e ———
o - . ——r G S AR LTSS S L m v e —— i ———— " . o S o -

P, —

8. page 338

8. Hore Comparative Schematclcgy

Abstract

Schemata are programs in which some of the function syabols
are uninterpreted. 1In this chapter we compare classes of schesata in
which various kinds cf constraints are imposed on some of the function
symbols. Amoug the classes of schemata compared are progranm,

recursive, backtrack, and parallel.

T R T R Ve T —— S AT st rmen o

8.1. page 339

8.1. Analytic Theory

8.1.1 Classes of Schenmata

8.1.1.1 Recursive Schenatn

The following is an informal fprogress report of some vork that
I have done w¥ith Mike Patersoan. John 1. shite male important
suggestions and corrections. The result that recursive schemata are
more powerfvl tan proqgram schema was obtained as a tercr project in
the =pring of 1969. Rigorous proofs are not given here but just an
indicatiop of how a prcof wculd go. Pgogram schamata are nonrecursive
procedures tlat Lave upiaterpreced function s;abols and predicate
symbols, He shall use capital letters to denote uninterpreted
syabols. We assume that within each computing Jdomair that there is a
distinguished element denote: by false an? that all cther elements of
the cemputing domain are regarded as true in conditional e«pressions.
Thus we 49 not need to distiuguish betveen predicates and other
function«. Iteration withip frograa schezata is performed by BREPEAT
loops. Repeats are defired so tnat (repeat <body>) will repeatedly
execute <body> urLcil a {retura <values>) statemcnz is epnountered at
vhich point ceontiol is transfered out of the sascllest en<iosing block
with tte¢ ipdicated values, Blocks can be given noasaes and tae furction
{(exit <nawse> <values.; wili czuse ccntral t~ leave th2 -.amed block

vith the appropriate values. It is e.sy to see that cny program

~ - P - ———— gy § SR — — - —e—— o ==

..
¥

e T T e T TG T NG AN R Py — R v — ———————————— e s

- e o g ' : B - e, Lo Vel L Do :
Pl ’,.'» . R R u~{ e EN .~' . i e - ., . £ 2 1)

8.1.1.1 page 340

schera in the sense of Pattersch can ke written using REPEAT and EBXIT

with out the use of GO. +&riting iterative ccmputations using BEPEAT
and EXIT has the advantage that all the loops are cf necessity nested.
We shall allow schemata to use a finite number of distinguished
objects shich can be tested by the binary predicate IS. For exanple
{is x "hello™) is true only if x is the distinguished constant
"yellot, Functions evaluate their argusents from left to right.

The following is an example of a prograa schema:

(3 x) = (repeat <~
9 %) (pls a(éyregls{er cf the prcgranm schema g which is

initiallzed to the value of the argument x"
(if (cr (P x) {(is x "dolly")) then (return y))
(x <- (L 1))
(y <~ (B (R 7)}))

The BNF svntax for p.ogram schemata is a5 fcllows:

rograa ::= <{termd>
egm ::= <hlcck>
<repeat> i
<again>
<axiit>
(Lf <term> ther <terms> else “i., asd} |
{assignmreptd> |
false |
<literal-string> |
<identiiier> |
<function-calid
block ::= {block <body>)
ssignment ::= {(<identifier> %<-* <{tera.)
re;eat ::3= (repeat <body>)
fuaction-—call ::= (< ainterpreted-furction> <arguments>) |
{is <ters> <tera>) |
icall
{(<vnint~ypreted-functiond> <arjumentsd)
<fanction>)
again r:= (again))} (agais <naae’)
exit z:= (exit <naas, <terms>) | (retarn <terasdj

TR TR AW TR RSBt T e, SN = —~—e — e — - —

b

’

. \e. ~ o,

8.1.1.1 page 341

body ::= <name> <declaration> <terasd> |
<declaraticn> <teras>

teras ::= <tera> | <term> <teras>

declaration ::=x (<Kidentifiersd)

arguments ::= | <terasd

idertif ers ::= | <identifier> <identificrs>

A recursive schegpa is a prograa schema that is allowed to call
itself or other recursive schemata recursively. The following is an
example of a recursive schema k which is defined by a set of racursive

equations:

tk 1) = (if (P x} then x
else (C [k z) {(m (R x)}})

v) = if (P (R Y\ th L
(o= ae e 0 N i¥ o« o

Por any recursive schema defined by a set of recursive equations we
can ceastruct ar eguivalent recursive schepa with cnly one eguation
and oae additional arqument to tell which egquation is being simulated.
This is possible because wve a2llow recursive schemata to use a fimite
nuaber of distipguished constants and predicates to test for these
constants. Thke folloving is an example °of a recursive schema that

uses the interpreted constant symbol=s true and false.

f x) = (i P
(£ x) - us ()
(if (2 x)
then %rue
else false)
elseif (£ (L x))
then true
else (f (B x)))

— e R A T el Y IR - - ot p— s ——— " — = - RE—

RE

C eI TNNGETY WIAGDNE b T 7,

8.1.1.1 page 342

8.1.1.1.1 Conmparison with Program Schemata

In fact tke abcve recursive schema is not equivelent to any prograa
schema. 3y equivalent we mean that the tvu schemata must both fail
to terminate or both must return th-e same value for all
interpretations of the functions P, y, L, and B, Cften ve will take
the set of uvnincerpreted terms as our domain of interpretation. In
the above case the dormain ot interpretation is x (L x), (R x), (L (L
x)), (L (B x)), (R {L x)), etc. The funcition letters L and R are
interpreted as 1 and r vhere:

(1 y) is defined to ke the term (L y)

{r y) is the tern (R y)

Thus (1 (8 (L x))) is the term (L (R (L Xx))). Two schemata are
equivalent if and only if they define the same fanction on the domain
of teracz.

Theoren:

The function f defined above is not equivalent to any prograrm schema.
Proof: <Consider the fcllowing class of interpretations {I n} vhere n
is a non-negative integer:

The domain of interpretaticn is the set _f teras that can be
constructed ftros the indeterminate x and the predicate letters L and
®. The predicate Q is interpreted as a functios q with raage {true
false}. The predicate P is interfpreted as the function p:

(p (b//C seuth//% X)ee.)) = troe fcr m = p

Lo A 2 A AP —— - e -

MFN HW 404 3381 ¥-7 3LIAdW0OL

"2 19A8] D sapou

3y 404 Ajuo anuyy (X4)N (xY)7 (X7 Y)
S| 4 3400ipaid ayy

‘2 13A3) b apou A m
dUO Sow 4D 10; Bnzy
SI O 94001paig oYy

l
|
|
|
|
|
|
|
|
|
I
|
|
l
(1 ed
|
"\IL
|
|
|
|
|
|
i
|
l
|
|
|
!
|
|
|
l
|

2 B

T T T T T TR TN

8.1.1.1 page 343

= false otherwise

shere each h//i ({"h sukscripted by i"™} is the interpretaticn for R or
the interpretation for L and there is at most one path such that
{9 (h//0e..(h//0 X)ee.)) = true

The domain of (I B} is the set of all teras that can be constructed
fror the indeterzinate x and the functions L and R. We are going to
prove that fo. any program schema P we can find an integer t such that
P does not define the same function as the recursive schema f on at
least one sember of the class {I n}. 1In the the irtergretation (I 3},
we have the following 1-R tree (vhere each node is a term in the

domain of (I 3}):

{x

of P that will be executed next.

{(x)
(L (L x))
(L {L (L x)))}
{{R (L (L x)})}}
({BR (L x))
{{L (R (L x}))}
{((R (B (L x)))}}}
{(R x}
{(L (R x),
((L (L (B x)))}
((B (L (R x}))}]}
{8 (R x))
{(L (R (R x)))}}
{((B (R (R x)})}}}}
The functioa p is true only or the right-most (i.e. bottom) ncdes and

g is true on at z2o0st one of the right-ucst (bottom) aoaes.
define the state of a program schema P at a point in its computatcion
tc be the contents of the registers of P together with the stateraut
Two states S1 and S2 of P under tke

ixterpretion { will be said to be EQUIVALENT if p =xecutes exactiy the

¥e shall

1t

e

- ———y — A ———y T I T T T Y A o e, . - ~

s . P

8.1.1.1 page 344

same seguence of instructicns when started from S? as when started

from S2. We shall define the number of stateaments of a fprogram schema
to be the total number of left parentheses in the text of the progranm
schesna. Suppose we have a prcgram schema P with s staterments and k
registers. In the inte.pretation (I n}, the program schema P has at
most s* ((n+2)-~k) equivalence classes of states where — is the
exponential function, (Intuitively the only thing the schema can do
is tc count down each aof its k registers to the bottom of the L-R tree
and test each of them to see if it has reached the bottom.) However, 2
program schema needs at least 2-n steps in order to ckeck if g is true
on each of the nodes at level n. But after 2-n steps, P must be in an
infipnite loop simce it will have arrivaed at two distinct nodes of the
L R tree in the same equivalence class of states. To see the matter
somewvhat differently lcok a2t the sequence of equivaience classes of
states. If the sequence repeats then the program schema is in ap
infinite loop. But the program schema must seek and test all 2-n
terainal nodes and then halt. Therefore the grograa schema nheeds at

least 2-n equivalence classes.

The Single Instance Theores:

A sinpnale recursive schematic eqnation that defines a function fora f

can be transformed irto an equivalent program schema if the form f

appears only once in the defimition «: the function.

L&

8.1.1.1 page 345

Pronf:

Define (FP~n x) to be F applied n times to sore arguaent Xx.
{F~0 x) = x
(F~(n¢1) x) = {F (F-n x))

FPor example {F~1 x) is (F x) and (F-~2 x) is (F (F x)).

Suppose the definition of f is of the form

(f k) if {alpha k}
then {beta k}

else {qamma (f {delta k}) k}

vhere f{alpha k} is the expression that is evaluated befcre the
recursive call to f, { beta k} is the expression that is evaluated if
there is no recursive call to £, and {gamma (r {delta k}) k} is the
value for a recursive call to £. The reader may or may not want to

examin the followirg tree which shows f partially expanded:

(if {alpha {delta-) k}}

then
{beta {delta-0 k}}
else
fgamma
{if falpha {delta-1 k}}
then
{beta {delta-1 k}}
else
fgamna
{if {alpha {delta-2 k}}
then
fbeta {delta-2 k}}
else

e > o)
{delta~1 ; })
{delta-~0 k3}})

e e sae e e SR e, s b e Ko oA

I

8.1.1.1 page 346

The function £ can be re-written as followus:

(f k) = (block ({m <~ k) n i j)
i"m, a, i, and j are registers of the program schema £; » is
irnitialized to the value of k¥
{repeat ()
(if {alpha m} then (return))
{n <- {deltz m}))
(i <~ k)
(n <~ {(beta m})
(repeat ((i <~ k) (n <- k))
(£ {alpha i}
then !
(exit £ n)) |
(i <~ idelta i}) |
{repeat {{(j <- i) (m <- k)) i
(1f {alpha j} then (returmn})
(j <~ f{delta j})
{2 <- {delta m}))
(n <~ {gampa n @}j))

He would like to repeat the iterative definition of £ giving comments.
An expression that appears within [and] is an intenticn that is
expected to be true whenever ccntrol passes through the expression.

It is not necessary to understand the intentions in o: uer to
understand the schema f, In fact many readers might prefer not to read
the intentions. The irntention functions fa, fc, and fd are intended

to express what goes c¢r in locgs a, ¢, and 4 respectively.

(f k) = (block (f{m <- k) n i jJ) . .

:"m, n, 1, and j are registers of the program schema f; a is !
initialized to the value of k"

(repeat a {)

{if f{alpha m} tben (exit a))
(n <- {delta a};)
fdefine /fa m) = if {alpha m} then n else {delta »}]
[(m = (fa k)) :"It is our intent that ® be a2qual to (ta k) at

this point. It can be shown by induction that this intention is
alvays realized."]

(i <~ k)
(n <- [beta =})

S e ST T T TR, ;rz & > ? e TR NN Y

8.1.1.1 page 347

(repeat ¢ ((i <= k) (n <~ X))
(if {alpha i}

then
L (E k) = (fc {delta (fa k)} X) = n]
(exit £ n))
[n= (f1)]

[define (fd b a 3J)
else (fd n {delta m} ({delta 3j})]
[define (fc v i) = 3f falpha i} then n else (fc (fd n
k i) (delta i}))
{n = (£d8 {beta (fa k)} k 1)]
{1 <~ f[delta 1i})
(repeat @ ((j <- 1) (m <= k))
(if {alpha j} then (exit 4d))
i3 <~ {delta j})
{m <~ {delta n}))
{n <- {gamma b m})

[n=(fm])

if {alpha j} then {ganma n m}

8.1,1.1.2 Conapilation

We can look at program schemata and recursive schemata as
aytosata that operate ¢n the universe of terms as a data space. A
finite state schema autcmaton orerates under a finite state control
structure using a finite nurber of registers each of which can hold
one term. As a primitive operation the autcmaton is allowed to create
a tere by applying a function to terns stored in 1ts registers and
then to store tte result back in a register. In addition the
autosaton is allowed a finite nuamber of primitive predicates to test
the contents of its r:gisters. Thke class of finite state schema
automata is equivalent to the class of prograam sckemata in the obvious
vay. Program schemata can te regirded as being executed by a finite
state schema automaton after a suitable compilation. A pushdown

schesa autonaton is defined to be a finite stete schema automatun w.th

a0

€.1..,.1 page 348

a pashdown stack. 1Ipn additicn a pushdown schepa autosaton is allowed

a finite number of distirguished constants as terms together with
predicates that test ftor the distinguished constants. ®e will
investigate the reiationship between these machines and schemata. The
appropriate kind of eqguivalence is one in which side effects are
alloved. Twe schemata will be said to be side-effect equivalent if
they are the same functicn for all interpretations ’ncluding those
vhich invclve side effects. An uninterpreted function eay change the
definition of any of the unintepreted fumctions as a side effect of

being evaluated., For example the schexwata j1 and j2 below are nat

side-effect equivalent.

1 = i
g1 x 1f (P x&lgge?jg {p1 (G x) (G x)))

(1 xy) =x

G2 < it @ ey)

The free interpretations for side effect schemata are the ores in
which each uninterpreted function syabol is interpreted 1is the
function which evaluates to the list of al) the primitive terms that

have been previously evaluated in the computation. Por example the

side-effect protocol tree for j2 is

if (P X
then {x *(P xj}
else
if (P (G X))
then {(G x) 7 :. «- (G x) ~{P X))}
else

v —p.-

3 2O *“""’?‘" ROy "@g;& AR e RN
I T ST Y i e PRI T gty

8.1.1.1 page 349

if (P (G-2 x)})
i then {(G-~2 x) + (P (G~2 x}) (G-2 x)} =-(P (G x)) (G
X) —-(P x)}
% else...
On the othex bhand the side-effect protocol tree of j1 is:
if (P Xx)
then (x +(P x)}
, else
. if (° (G X))
then {{(G x) +(P (C x)) (G x) {G x) —{F x}}
elce
if (P (G~2 x))
. then {(G-~2 x) +{(P (G=2 x)) (G-2 x) (G=2 Xx) - (P (G
- x)} (6 x) (G x) ~(P Xx)}
else...
Thus j1 and j2 are nct side-effect equivalent.

Theores: Side-effect equivalence .- decidable for precgran
schenata.

Proof: The frcof is by tree expansion. Two program schemata
are side effect equivalent if and only if for every execution path of
one schema there is an execution path for the other with the
uninterpreted functions called in exactly the same order. Given a

) cycle in one schema it is decidable whether the cycle c¢an be erbedded
" in the other.

< Con jecture: sSide-effect equivalence is decidable by tree

Q¥A ezpansion for recursive schesata.

If this conjec! 1re is courrect then we can attach a post processor to a
p Y

corpiler «' decides whetner or not th= compiled code is side-effect
u"';‘
;","‘-- 2 ° - = o - M TN W T TRy VKN RSN . GIMET W P mpemets . - v——— - - ——— ——— oern " e —

!

. I O T Yo N T s Y WM ANty AT LR
BT S S T SRR A

- T - - Tyipe L e B
e e - A, - - ‘\'V i»ib,é *‘?—i* ¥ .{;*’i:'ﬁf} =30y £ I . N R 1)5’,74 : ehEtm

8.1.1.1 page 350

equivalent with the source code.

The BNF syntax for progras schema automata is as follows:

= <ccanmandd>
= <block> |

<repeat> |
<again> |
<exit> |
<push> |
<pop> |
<conditional> |
<functicer-call>
value ::= false]| identifier | <literal-string>
valges ::= <value> | <value> <values>
pop :2:= pop) | {(pop <identifierd)
exit ::= (exit <named> <valuesd>) | (return <valuesd)
conditicnal ::= (iftrue <coamands> else <{ccamandsd) |
(ifespty <ccasmands> elsz <coamands>)
again ::= (again) | (again <named)
push ::= (push) | (push <valued)
block ::= (block <body>)
repeat ::= (repeat <body>)
function-call ::=
(call

progras :
coamangd :

-
-
-
-

<nusber-of-args>
<apinterpreted-functiond) |
(call
<nusber-ocf-arys>
<gninterpreted-function>
(<identfiers>)
<commands>) |
(call 2 is)
identifiers ::=) <identifier> <identifiers>
body ::= <pamed> <declaration> <commands> |
<declaration> <coamands>
declaration ::= (declarers)
declarers ::= | (<idemtifier> <value>) <declarers>

There are a fev mon-cbvious constructs in the above syntax.
The expression (pop <identifier>) removes the top element fror the
stack and makes it the ney ralue of the fidentifjier. Arguzents to
function are passed on the stack and the rasults are returned on the

stack.

8.1.17.1 page 351

The Compilation Theores:

Por every recursive schema there is a side-effect equivalent pushdown

schema autcsatca.

Proot:

¥e shall shov hov to compile the schema £ defined below:

f x} = (block <- (H x
‘ ! !‘y is :‘ien lécal’llich is initialized to (H X) "

(it (P x)
tken (K x Yy)

elseif (and y (P (f x)))
then (K y X)
else (G (K y x) Y)))

The coapiled fcrm is

(£) = iblock ({y false))
pesh x)

(call 1 BH)
(pop Y)
{push 1x)
{call 1 P)
(iftrue
(pop)
(push I)
(push y)
(call 2 x}
(retuzn 1)
else
(pop)
(push y)
(iftroe
(poP)
(pusk x)
(call 1 £)
(call 1 p)
(iftzsue
(pop}

8.1.1.1 page 352

(push y)

{push x)

(call 2 k)

{return 1)
else

(pop)}
else

(push y)
{(pesh x)

{call 2 K)
{push)

{push })
{call 2 G)

(return 1})))

8.1.1.1.3 Schernata with Resets

Tags can be thought of as identifiers which are bound at each
activation level. By passing the activation as a parameter the leovel
of activation can be immediately reset by executing a2 transfer ot
control through the activation. In oider to obtain an equivalent
machine, ve can extend the instructions of the push down scheasa
automaton by allowing them tc store a pointer to the top element of
the stack into one of the registers. The resulting class of eachines
is called the reset rush down schema autopata. If the stack is ever
popped back past a location that is pointed to by a register then the
autcasaton halts with an error. He found discussions with ¥ike
Fischer helpful in analyzing schemata with resets.

The Beset Theoren:
The class of reset push down schema automata is equivalent to the
class of ordinary push down schema autosata.

We shall show bov we can tramslate a reset push down schema

- TO STV T NRTIT WXL T ST NN S — - - S i e m—

8.1.1.1 page 353

into am equivaleat ordirarv push dcwn gcherma., An ordinary function

call (f x//% ... x//n) will be translated into {(call (f x//1 ... x//n)
{y y//1 ... ¥//1) body) where we will explaip the tody teiow. The
idea is that if the fubnction f wants to execute a non local transfer
of ccntrol through argument x//1 we can simulate tkis by recurning the
corresponding y//1 as "e: t" or Tagain" depending cn whether the block
x//1 is to be exited or reiterated respectivey. Then the procedure
vhich makes tbe call tc f can test the values of the y//i and take the
appropriate action dependin, howvw the name was generated. Consider the

follovwing example:

{try x = (repeat t1
y x) (if((pr) 0

then

{(x <- (F x))
elseif (P Xx)

tten
{x <~ tharder (F x) t1))
:"the pame t1 is an identifier®
(if (not x)

then {return false))
else (retira false)))

(barder x1 tag) = (regeat ()
if (8 x?)
then
{x <~ {¥ x1))} ;"set the global x to (P x1)"
{agair *=q) :"reiterate the repeat locop named tag"
elseif (P x)
then
{x1 <~ {haxder (F x1) tagqg))
{if {not x1)
then (return false))
else {return false))

¥e can rewrite try and hazxder as try* and harder® respectively so

that resets are eliminated.

(pasaqunu
31D S3POU 8Y4 YIdIyM u!l Japio Yy uj)

9 A8 dIHOYVIS S| HOIHM 3344 N \

((x;1),8)
. .
AN ((x;1))@
2 ()8 O~
Axnmv@ R // S
m//

o]
AxJVLWWJ//
(x54)

(xY)

(x, P

X ~ANdNI

—

TS TGP TS5 L e

L

)

i
|
i

(harder!?

8.1.1.1 page 354

%) = (repeat t1 {()

(if (Q x)
tten
{(x <~ (F x1))
elseif (P x)
then
(x <- {(call f(harder' (f x) t1) {(y yl1 y2)
(if
{is y2 "again")
then
(again t1)
elseif
{is y2 "exit")
then
(exit t1)
else y)))
(if (oct Xx)

then (return false))
else (return false)))

X1 tag) =
(if (Q x73)
tben
(x <= {F x1))
(exit harder' false false ‘again")
;*reiterate the loop named tag"
elseif (P x1)

{repeat {)

then
{x1 <~ {(call
(harder (F x1) tagq)
(y y1 y2)
(if
{is y2 "exit"™)
then
{(exit harder?' false false
"exith) Leeif
elsei
(is y2 "again%)
then
(exit harder® false false
"again")
else y)))
(if (rot x1)

then (return false))
else {returrn false)))

8.1.1.1 page 355

S.1%.1.% 4 Decompilation

The Decompilation Theorem:
For every push dcwn schema autcmator we can effectively coastruct a

side-effect equivalent recursive schena.

Procf:

The only difficult ccnstructs to translate are the push and
pop comrands. MWe shail translate (push <value>) as (<function>
<value> tags false) where <functicn> is g unique function nanme
distinct from all others. The function is defined to be have two
argunerts x and y and have a body which is the code that fcllcws the
push command wbich is Feing translated. The ccmmand (pop) is
translated as (GO <tag>) <tag>: where <tag> is a unigque tag distinct
from all others. whereas ([pop <identifier>) is translated as
(<identifier> "<-" x) (GO <tag>) <tag>:. The idea is that there nust
be a tag for every insiacce of a call to pop so that contrcl can get
back to the proper place,

Consider the fcllcwing push dcun schema autcmaton: |

{f£ y) sb lock ()

push)
{cali 1 g)
(return 1))

(g 1) irepeat 0

push)

{call 1 p)

(iftrue
(pop’
(push)
(call 1 Q)

2

8.1.1.1 page 356

(iftrue
(pop)
{repeat ()
(ifempty
(terminate "t%)}
(pop)))
else
(pop)
(pog)
(L1fempuy
(terminate false))
else
(call 1 R)
else
(Fop)
(push)

(call 1 L)))

The schema f can be decompiled as followus:

(f x) = (block oquter (%
(£0 x false false false false "t%))

(£0 x n1 n2 n3 nd p5 D6 em tyl6=f(repeat {

(f1 x €1 €2 t3 t4 t5 alse)
{(x <~ (P x))
(if
) 4
then
{go n1)
t1i:
(2 x t1 2 t3 t4 t5S t6 false)
{r <- (Q x})
(it
X
then
(go n2)
t2:
{repeat ()
(if
enpty
then
(exit outer t"))
(3o n3)
t3:
)
else
(go n#)

8.1.1.1 page 357

igo 15)
ta:
(if
enpty
then
(exit outer false)
else
(x <~ (R x))})
else
(go n6))
t6s

(£3 x t1 t2 t3 td4 tS t6 false)
(x <~ (L x)))

(£1 x u1(g§ n3 n&é n5 n6 empty) = (block ()
i
X
then
(go n1)
else
(go n2)))
(£2 x n n% n3 n4 n5 né empty} = (klock ()
(i
X
then
{go 13)
else
(go nl)))
{(£3 2 n1 n2 n3 p4 o5 né empty) = (block ()

(x <~ (L x))
{£f0 2 p1 n2 n3 n& nS n6 empiy})

8.1.1.1.5 Primitive Recursive Schenmata

Definitior a recursive schesa f vill be said to be PRIMITIVE
BECURSIVE in the the uninterpreted functiop syabols U if £ can be
defined recursively as (£ x//1 ... x//n) = pki{x//%1 ... X//0n] ubere
each instance (f t//1 ... t//n) of a call to £ within phi[x//1 ...
x,//n] has t//1 of the fora (h x//1) vhere b is in the set U and the

only other functions in the definition are either uninterpreted or are

Eim7 VPO

S e TR TR T W T TR

8.1.7. ., page 358

theaselves prixitive recursive in U.
For example the following schema is primitive recursive in (L

R} .

(£ x) = if {P x)
" then (£ ¥)
else (€ {£ (L x)) (£ (R x3))

The following schema is not primitve recursive in {S}:

orm =
{acker a%ig ﬁzyi)
then
if {Z w)
tken y
elseif (0 w)
then ({ZERD)

else {ONE)
elseif (2 w)
then
{i?
(ackerman (ZEBC} (S x 1) y)
{CNE))
else
{a..“ermsan
(S w 1I;

(ackermzan ¥ (S x 1) y)
Y)}

8.1.1.2 page 359

8.1.1.2 Schemata with Counters

We would like to present another example of a function that
can be computed by a recursive schema but not by any program schema.
Define (FP~n x) as in the proof of the Single Instance Theorem. Thus
({(P~n¢1) x) = (F (P~n Xx)). Suppose that we successively compute (F
x), (F (P x)), €tc. As ve successively compute the quantity (F-i X)
for some integer i we shall keep a running count nf the nuamber of
times that (P (F~j x)) has been true for j less than i, minus the
number of times that (P (P-~j x)) has been false for j less than i. If
this count ever goes negative then ve Shall return false as the vaiue
of the function (zérc x), otherwise the function (zero x) will run
forever.

The Counting Conjecture fér Program Schemata

The recursive schema 'zero' defined below is not schemati~ally

equivalent to any program schema.

ero = epeat a
{zero x) (rep if (E"x)
then
(x <~ (positive (F Xx)))
(if x
then
(again a))
else
(return false)
else

(return false))

end
The schema 'zero' uses the schema ‘positive' to keep track of the

P

8.1.1.2 page 360

count by Lhe depth of recvrsion of the schema 'positive!?,

ositive x) = eat
(p) (rﬁg 7? a ()

X)
then
{x <- ({(positive (F Xx}})
(if x
then
{again a))
else
(return false)
else

{return (F x)))
end

Using the technique c¢f loop eliminatiou we can convert the above

functions into purely recursive schesata. We shall define a schema
zero1 which is equivalent to zero and a schema positivel whichk is

2quivalent to positive.

(zerol x)= (if (P x)

then
(1f (positiveil (P x)))
thezn
(zerol1 (positivel (F x}))
else
false)
else
false)
ositivel x)=
b (if)(P ¥)
then
{(1¢ (rcsitivel (F x)}
tien
{positive? {(positivei {P x}})
else
talse;}
else
(F x))

The protocol tree foi tke scuema 20 is

TOTR TTRMAY. Y S WS aNO T NSTLD T S chetta s ek e

schema is

respectively add, suttcact, and test for zero,

{zerol 2} = (block {n) (return (zero2 x)))
{(zero2 x) = {repeat ()
(€ (P x)
then

{x <~ {P X))
(a <- n + 1)
else

8.1.1.2 page 361

Gf {P {F-~0 x})
then
(it (P {(F~1 x))
then
(if (P (P-2 X))
then
else
{if (P (P-3 x))
then
else
(if (P (f-4 X))
then
else
false)))
else
(if (P (F-~2 X))
then
(if {P (F~3 X))
then
else
if (P (P-~4 x))
then
else
else
false))
else
false)
Hovwever a prograz schema can solve the problem if we give it a
counter. We fostulate the functiomns "+", "-®_ and zerc? whi<ch

The following grograas

schematically equivalent the the function zero:

{if (zero? an) then {(returs falsa)j

{n <= n-1)})

8.1.1.2 page 362

By allowing recursive schepata to use a counter, ¥e can construct a

function 'reczero' that is not equivalent to any ordinary recursive
schema. the function reczero counts the number of nodes alcng the
boitom of the L-R tree that have the property P minus the ones that do
not have the property P. The function returns the vzlue false if the
count ever goes negative. fe assuae that argudments are evaluated from

left to right,
The Counting Conjecture for Becursive Schemata:

The schema (with counters} reczero defired below is not equivalent to

any ordinary recursive schesa.

{(reczero x} = {blcck {n) (return (reczerol x)))

(zreczerol1 x) =
(it (BOTTOM? x)
then
(if (P x)
then
{n <~ n+1)
trae
else
{if (zero? n) then (return false))
{n <~ p~1)
trne)
else
(if {nct (reczerocl (L x))) then (return false)}
{1Lf (not {reczeroil {R x))) then (retura false))
{return true})

7he reason tbhat reczezc is not equivalent to any recursive schema is

very similar to the reason that no recursive schera can search the

branches of the L-R tree in parallel. 1If a recursive schema is

- — B i s T e Rt Tt - — ——

8.1.1.2 page 363

equivalent to reczero then it is constrained to search the tree in

essentially the same crder that reczero searches the tree. Otherwvise
it could be pade to fall into an infinite loop on an interpretaticn
where reczero coLverges. We conjecture that constrained in this
fashion a recursive schema has only a finite nuaber of states in which
to try to keep the cournt. The recursive schema cannot succeed for, the
sape reason that we ccnjecture that noc grogram schema is equivalent to
the function zero defined above,

Conjectura: the following functioa is not
schematically equivalent to any purely schematic recursive systen of
equations., Tte function even is surposed to test whether the number
of botiom nodes of a L-8 tree that are true for the predicate P is the
same as the nurkber that are false for the predicate PB. The schenma
‘even' differs from the s~cheza 'reczero’ in the crucial respect that
'even'® always looks at all the bottos nodes before it ccmes to any
conclusiaons. Thus a recursive schesma that tries to imitate the
schepa even has a lot m~re roor in which to paneuver. We conjecture
that no recursive schema can bhave enough internal states to be

equivalent to the furction even defiued below,

{(even x) = {(blcck {(n)
{evenl x)

(return (zero? a)))

(even?! x) =
{if {BOTTCHM? Xx)

then
(1£ (P x)
then
{u <- n+1)

D

o~y —

=

s —— e

x)
else

{r <~ n-1)

x)

else

~ —————

{even {L x})
{even {R x})}}

T T NN TS T e

. TTTXOREAAG, AN AT e

8.1.1.2 page 364

€.1.1.3 paye 365

' 2.1.1.3 Parallel Schenata

e introduce the delimiters "] (™ and)" to delimit quantities
that are to be computed in parallel. Gthenever a process executes an
expression like | (x) it divides into two processes. One process
executes x and the cther attempts to ccntinue normal execution. Por
exanple in the expression | (2+3)* (4*5), the product U*5 is computed in
parallel vith the sum 2¢3. Thus the expression " (block | (return x)
(return y))" is defined to be the valuve of x or Yy depending on which
evaluates first in scme particular but unspecified parallel
computatioa. Processes can coordinate their actions through locks.
Any expression x can be locked by (lock x) provided that the
expression is pot already locked. If x is aiready locked then any
process which executes (lock x) will be blocked until x is unlocked by
the primitive (unlock x). However a process can execute ({(locked? x)
which will return true is x is locked but will lock x if it is
unlocked. The kind of call deliaited by "| (" and ")" can be
implemented using the follovwing primitives:

(create f) vill create a new processwhich will bhegin execution
wvith a call to f and will return the name of the created process as
the value of the fuanction create.

(resume (p send-args) f) vill suspend execution of the process
that calls resuse and vill resume execution of the process named p

vith argusents send-args. If the process p is already running then

. Me

Y S

Lo

.1.1.3 page 366

the process which called resuume vill re blocked until [beconcs

suspended. If the rrocess which called resume is itself ever resumed
then it will invoke f with the arguments received.

{(fork (r send-args)) will resume exeuction of the process p
with arguments send-args and in parallel return the name of the
process forked as the value of the function fork.

(interrupt p x) will interrupt the execution of the process p
and then begin execution of x IN THE PECCESS p.

(step p) will ster the process p through cne steg.

By adding the above primitives we obtain the class of Parallel
S—chemata. It is our thesis that the class of Parallel Schemata is in
fact UNIVEBsAL for the class of all effective schemata. By this wve
mean that fcr any effective schema there is a timing side-effect
equivalent parallel schera. T<4o0 automat 2 and b will be said to be
tieing side-effect equivalent if for every ccmputation of a there is a
side-effect egquivalent conmputation 3f * where the timings of the
contrcl primitives of L are allowed tc be arbitrarily adjusted and

vyice-versa.

we define the follewing function using parallel processing:

(£ x)=(1f (P x}

tienm x
else
begin
t{returp (f {L x)})
{return (£ (R xj})
end)

v —— T TN T AR e SR TN OO WL T T niarn, e e e = e . ettt e

S

8.1.1.3 page 367

The above function is determinate {i.o. halts and has the same value

independent of the relative speed a: which the sub~processes zun} on
infirite binary trees in which the predicate P is true cn only cne
node.

The Parallel Evaluaticn Theorexs

The function f defined is nct equivalent to any recursive schena.
Proof: Suppose a set of recursive equations {f£//C, £//1, ..., £//n}
is schepatically equivalent to f with Z/,0 equivalent to £. That is
for all interpretations of the uninterpreted function symbols, the
schenmata f and £//0 are the sare function, Suppose that we start up
f//0 on input x and make the predicate F false for every node to which
it is applied as f//0 computes along., Il the computaticn converges
then f//0 does not lcck at scre node which is a contradiction of the
supposition that f£//0 is equivalant to f. Therefore the computation
runyg forever and the sequence of statements through which the ccntrol
passes is ultimately periodic. Consider the sequence of arquments to
one of the functions {call it f//i for *f subscripted by i*) as the
control passes through one cycle. Suppose that f//i is a functicn of
j arguments: a//1,...,a//j. The arguments with which f//i will be
called after the contrcl has passed through one cycle are terss
definable from a//%1,.-.,a//j. Let us call them a//1~1,...,3//3~1.

The situation can be diayramsed as follows:

{f//1 a/}tr...,a//j); the beginning of the cycle in the

- e e e e TR S T L T AT RS I TN TS, T T L R - N ~

8.1.1.3 page 36R

control structure

(£//1 a//1~1, «..,a//3=1) ; e pass thrcugh the same point of
the cycle ii the contrcl structure

If ncne of a//1~1, ...,2//3~1) is the same as one of a//1,...,a//1
then we are done since the arquments of the recursive equations are
tracing j paths down an expontentially growing tree which mean< that
some node is not looked at. 4.f we set the interpretaticn so that P is
true for the node then we have a contradiction. We conclude that the
fact that cne of a//1~1,a//j~1 might be same as one of
a//1ae+.4d//3 is a nuisance, Lot us call the argusents to f//1 after
we have gome through the cycle k tiaes a//1~k,...a//j~k. Observe that
if we go through the cycle jt! times then there will be some i such
that i is less than j! and a//1~i,...;a4//3~1 has the property that it
is an epicycle. By this we mean that soae a//q~i is the same as oane
of a//1,+...,3//73 if and only if it is the same as a//q. All such a//q
do nct contribute to the number of nodes examined since they are
repeats of nodes previcusly examined in exactly the same ¥way. The

situation can be diagrammed as follovs:

(/71 a//Vee.e,a//3)

(f//71 az/1~1, <...a//3-1)

e I £ T A AP A

v

o

8.7.1.3 page 369

(t//1 a//1~k, e..,a//73-k);: the beginning of the epicycle in
the control structure

(f/s1 a//1~(2%*k), +..,a//3~(2%k)); we pass through the same
point in the epicycle

Threrefore vwe can cosplete our proof by applying tc epicycles the

above arqument that we used for cycles.

Fad

8.1.1.4 page 370

8.1.1.4 Locative Scherata

The Locative Tteoresn:

If locations of identifiers are an allowed data tyre, then the control
structure of recursive schemata can compute any partial recursive
function.

Proof:

Let (at x) dencte the locaticn of the identifier x.
Furthermors suppose that we have a function in of cne argument which
will return the contents of its arqument. The procf will be phrased
in terms of pushdown schema pachines. We can define a counter using a

register as fcllows:

(block {(c?1 false))
(initialize-counter?) =(block ((v false))
{push (at w))
(pap 1))
(ccunt-upl) = (block ((y false))
(push c1)
(pop Y)
(push (at y))
(pop ¢1))
{(count-down1) = (block ¢{)
{push c1)
{call 1 in)
(pop c1))
{zero-test1) = {blcck {)
{push c1)
{call 1 in)
(iftrue (push "t®)} elsc {(push false))})})
Marvin Minsky proved that two counters are universal. Q.E.D.

8.1.1.5 page 371

8.1.1.5 35cheuata with Selectors and Replacenment

Another way in wbich ve can proceed is to impose data types on
the computing domain., Storage off the stack can be established by
pos: vlating a constructor ¢ and selectors s1 and s2 such that for all

x and y in the coaputing dcmain we have:

1]

(s {¢c x y))
(s2 {c x ¥))

b ¢

i

y

in the domain of intergretaticn. Classically we wvould postulate thkat
every call to the ccnstructcr nust return a nev element of the

computing dozain.

e e i e ——— 8 RN T T ROTRRNET SIS YT e

ot

&
~-

n

P

YR SN i N . RTe Lo BN EDN -
. - : .- : s .
- ~ N C . - T TR . e e

B.1.1.6 rage 372

8.1.1.6 Schemata with Free Variatles

(c x y} = (block {(z)
{z <~ (s1 free-storage-list))
(free-storage-list <- (s2 free-storayge-list))
;"free-storage-list is free in c®
{return (CCNSTIRUCIOR x y 2})
The point is that ir general (c x y) will not be the same as (c x y)
because of use of assignment on the free varialbe free-storage-list,

Other than in this fairly trivial way, schemata dc not add any power

to recursive schemata.

————

T T R — .
L e e TN ~ o~ ———o—

—— ——— - - e ———

8.1.1.7 Schemata with tguality

Schemata vith e€quality are allowed to make use

predicate (= x y) whose interpretation is that x anu y

8.1.1.7 page373

ot a special

are the same

clement of the domain cf integpretaticn. Universal dorains of

interiretation for schemata wicn equality are the Herbrand universe

with & ccngruence relaticn theta such that:

1: theta 1s an equivalence relaticno

2: if xs/% theta y/1, ..., and x/n theta y/n then for each

uninterpreted functicn f and predicate p:
(f x/%... x/n) theta (f y/1 «.. y/u) and

(p x/1 ... x/n)} if an only if (p y/1 ... y/n)

In other words the elements cf the dorain of intercretation are the

equivalence classes 0f theta.

T ——— T

8.1.1.8 page 374

8.1.1.8 Hierarchical Backtrack Schemata

PLANNEF uses a more powerful control structure than that of
the recursive functiop call. A BACKTRACK CONTROL STRUCTURE is used
, vhich means that at any point a process can fail which will cause 1t
to back up to sgme previous state and then continge. The primitive
fuaction (FAIL) will generate a simpis failure. fThe primitive
function (FAILPCINT try lose) vwill evalvate the expression try. 1if
the evaluaticn succeeds then the value of the fuactios FAILPOINT is
the value of try. Otherwise the value of the function FAILPOINT is
the value of lcse. For example the valne of

{+

(failpcint (x <~ 2) {(x <= 3))
(if x=2 then (fail) else 4))
is 7 since x first gets the value 2 but then is given the value 3 when

a failure Lkacks up tc the function FAILPOINT.
8.1.1.8.1 Conparisor w¥ith Recursive Schesmata
We shall give an exaaple tc shov that backtrack control

structure is nore powverful than recarsive contiosl structure.

Backtrack Scheaata Are fAore Poverful than Recursive Schemata

8.1.1.8 page 375

The backtrack schema g defined below is nct eguivalert to any

recursive schema. What the schema g does is to search the following

tree for x looking for a ncde on which P is true:

{L~1 x)
(L-2 x)
{L-~3 x)
{R~1 {L-2 x))
(L-4 x)
(R~1 (L~4 x))
(R~1 {L~1 x))
{(R~2 (L-1 Xx)))
(R~1 X)

{R~2 Xx)
{R~3 x)

We have shown in the sectiocn on parallel schemata that no recursive

schema can do the search.

{g x} = (2 (£ x))
th z) = (if 2z
tten
"true®
else
{(fail))
£ x)=
(ifail?
(P x)
{block (y)
;"Yy is a nev local®
(y <~ x)
{k
(£ (L x))
(if (P 1)
then true

else (y <~ (R y) false)})))

The reasor that we make the fumction k defined belowv intoc a separate
function is so that BOTE argusesnts will be evaluated.

<
- .. B s |
- v T G T T RN T M e T ~ NN

&

8.1.1.8 page 374

(k s ty = if s
taen
“true"
else t

Proof: The procf is sipilar to the proof of the parallel

evaluation theorea, Suppose a set of recursive equations {f£//0, £//1,
eeey £//n} is schematicaly ecguivalent to f with £/,/0 equivalent to f.
Suppose that we start up r//0 cn ipput x and make the prdicate p true
for every node to which it is aprlied as f//0 computes alonqg. If the
computaticon convereges then £/,0 does not lock at some node which is a
contradiction cf the supposition that £/,0 is equivalent to f.
Therefore the computation runs forever and the sequence of statements

therough which the cocntrol passes is ultimately periodic.

8.1.%.8.2 Ccmparison with Multiprocess Scherata

The method by which nmultiprocess schemata carp simulate
hierachical backtrack schemata is messy but straight Zcrward.

Multiptocess schemata are more powerful than backtrack
schexata. One exanple wkich may shou this is the one used to show
~hat parallel schemata are mcre powerful than recursive schemata.
Unfortunately we have not yet been able to prove that backtrack
schemata caunnot search the full L-R trev., So wvwe skall resort to brute
for.e technigues.

¥e would like to defiue the P-lexgth of an expression x as the

namber of times which D can be applied to x before (P x) is true.

- —— T TSRS STWSNOCTTY T TNagrre e v e, -

———

E43 . e S W T TR TS ~ m— e -— -

PROGRAM SCHEMATA

k REGISTERS EACH GF WHICH CAN HOLD
AN INTEGER UP TO n

s STATEMENTS

HAS AT MOST sn*X STATES
. N i7 /
- 3Pl

.
)

d

8.1.1.8 page 377

Thus (P-length x) = (if (P %) then 0 else 1+ {P-length D x))) Now ve

would like tc define a schema expt such that

(expt ¥ y} = (I~{2~({P-length X))} ¥)

Suppose that {PF-length x) = 2. Then fexpt 2 yj = (I=~{2-2) y) x-4

Y} = (I {2 (I (I y)))).

{expt x y} = {if (P x)
then
Iy
else
{expt (D x} y (expt (D x) y}))

Now we claim tbat thecTe is no program schexa which is
equivalent to expt. Suppose to the coptrary that there is a progranm
schema ®¥ith k registers and s statements which is equivalent tc expt.
Such a prograa schema has at most only s * k~{P-length x) eguivalence
classes of states. Thus if it runs for more tkan s * k-~{P-length Xx)
steps it must be in a locp. Therefore it cannot passiktly produce the
output (I-~(2~({P-length x)) y) since s # k~(P-length X} is less than
2~(P-length x) for large values of (P-length x). This is a
contradiction.

In an exactly analogous fashion wve can prove that there is no

recursive schema expt2 suych that

{expt2 x y} = (I~{2~(2~{P—-length x})) ¥)
Suppose that there is a recursive schema with k registers and s

statements which is equivalent to expt?, Such a recursive schema has

at mcst only

R g Y e T T S I TN — B e —— - - ——

RECURSIVE SCHEMATA

STACK OF REGISTERS

k REGISTERS
R, Ro Ry

EACH REGISTER CAN HOLD AN
INTEGER UP O n,

l } s STATEMENTS

HAS AT MOST sn* nsP* sSTATES

e —— < — o e N AT Y AN T T T = e

e &

8.1.1.8 page 378

J = s % (P-length x)-k * (P-length x)~(s * (P-length x}-kj
equivalence classes cf states. The same state counting argument shovs
the contracdiction. The above arqument has been independently

discovered by Robimr Milner.

Theorem: Multiprocess schemata are more povwerful than kacktrack

schemata

Proof: We will apply cur trute force technigue. There is no

bachtzrack schema expt3 such tnat

(expt3 x y) = (I~{2~(2~{2~(P-length x}})) Y}

g - - - Suppose thdt tiere is a backtrack schexa with k registers and s
scatements which is equivalent to expt3. .Let J be as defined abdove.
The recursive schema has at most J~J equivalence classes of states,
Thus if it runs for sore than J-~J steps it must be in a loop.
Therefure it cannot fossibly produce tle output (I-(2-2-2~(P-length
x)) y) since J-J is less than z~2~2-(P-length x) for largz values of

{(P-lergth xj. This is o ccntradiction.

S ———————
T e —

BACKTRACK SCHEMATA

STACK OF REGISTERS

k REGISTERS

R, R, Ry

— e i ame - aOh

EACH REGISTER CAN HOLD AN
iNTEGER UP TO n

i
\/ s STATEMENTS

HAS AT MOST JY STATES WHERE

: k
J= snk pSn

. ~ - o~ o —— e T T e T TSNS T
%

8.2.1 page 379

B.2. Synthetic Tkeory

8.2.1 Realizations

8.2.1.1 Realizations fcr the Quantificational Calculus

He would like to skow how ve can use schesata to express
procedurally tke neaning of certain constructive logically valid
sentences in the predicate calculus. Classically, intuitionistic
logic nas been used to frove constructive sentences. However, the
connection between this language and push down schema autonmata is
somevhat indirect. We need to define the notion of a schema g
realizing a forsmla phi. Rcughly speaking g realizes phi if it tells
hov to compute the value of phi from the subformulas of phi depending
on the logical connectives of phi. Kleene's notion of "g realizes
phi® is defined by irducticn <n the structure of phi:

For {terams}. g realizes phi where phi is a tera if g is true
if ara only if phi is true. For example (P (F w) 2z) realizes (P (F w)
Z) .

Por {and...}. g realizes phi = {and theta psi) if (g 0)
realizes theta and (g 1) realizes psi. Hote that g really is two
functions in disguise.

For {or...}. g realizes phi = (or theta psi) if whenever (g 0)

is false then (g 1) realizes psi and wvhenever (g Q) is not false then

Yoo = e T e TS IR TR TS, T T et e -

8.2.1 page 380

(g 1) realizes theta.
For {implies...}. g realizes phi = (implies theta psi) if

whenever h realizes theta then (g k) realizes psi,.

Por {not...}. g realizes phi (not theta) if for no h is it

the case that (g h) realizes theta.

For {all...}. g realizes phi = (all x [theta x]) if for all x
it is the case that (g x) realizes [theta x].

For {some...}. g realizes phi = (some x [theta x]) if (g 1)

realizes [theta (g 0)].
Consider the following formula which we shall call phi:

(lmplies
(some x
(impiies (A x) (B x)))
(ieplies (all x (A x)) <some x (B x})))

We claim the function g defined below realizes phi.

g = {(lambda t (lambda k (lasbda s
{(if s = 0
tten (h 0)
else ((h 1) (x (h 0)))))))

Supﬁose that b realizes (some x (1m811es (A x) (B x)))
) realizes (imflies (A (k 0)) th 0)))

suppose that k realizes (all x (A x))

(x (b C)) realizes (A (h 0))

{(h 1) (k (h 0))) realizes (B (h 0)}

(({(g b) k} 1) realizes (B (((g h) k) 0j})

({9 b) k) realizes (some x (B X))

{g h) realizes (implies (all x (A x)) {some x (B X))}

g realizes pbhi

_ e e — - -—
~ B o TS P S e

8.2.1 page 381

We are interested in kpowing whken a forsula can be realized

constructively.
Realization Thecrem for Recursive Srhermata with Functional Argquments.

If phi is prcveable in intuitionistic logic, then phi is
realizable by a recursive schema with functional arguments. The
Bealization Thecrem represents one approach toward a constructive
theory of coamputation., From a description of the kind of object that
ve would like to have given the descrigtion of certain other objects
as input, ve derive a rrogram for computing our goal. Actually ve
shall prove that for intuitionistic logic tpe.Pgallzation functicn can
be made primitive recursive., The proof is a slight modification of
the standard proof for the integers. It is a warm up for the
analogous procf fer the deductive systerm of PLANNEE. Hovever, in
PLANRER ve require the full power of the recursive functions for our
constructive realizations.

Proof: The following proof is by induction on the structure of
intuitionistic fproofs using pnatural deduction. It goes by
straightforvardly winding and unwinding of definitions. With a little

vork we could get PLANNER to create the proof.

fand introductioni.
theta realized by say g

psi realized by say h
(and theta psi) realized by (lambda s (if (s = 0) then g else
k))

R T S

6.2.1 page 382

{and eliminaticn% . .
{and theta psi) realized by say g

—— -y

theta realized by (g 0)
psi realized by (g 1)

{or intro} .
psi realized by say g

(or theta psi) realized by (lambda t {(if t=0 then false else
g))

9))

(or psi theta) realized by (lambda t (if t=0 then true else

for elim} . .
{or theta psi) realized by say g
theta hypothesis; suppose that theta is realized by h

L d

eventually deduce say cmega wvhich is realized by (@ h)
for some recursive m using the inductive hypcthesis
psi hypothesis; suppose the psi is realize. by k

eventually deduce omega which is realized by (1 k) for
some recursive 1 using the inductive hypothesis

——— g S s i

cmega which is realized by (if (g 0) then (@ (g 1)) else (1 (g
Hn

{implies intro}) . .
omega hypothesis; suppcse omega is realized by h

eventually deduce say psi vhich is realized by (g h)
for some recursive g using the inductive hypothesis.

- ——— s —— - —

{(inplies omega psi) reslized by {(lambda b (g h))

{implies elinm}) .
(inplies omega psi) realized Ly say g
omega realized by say h

—-— - — - ——

psi realised by (g h)

Ry 0

8.2.1 page 383

{fneg intru}
omega hypothesis; suppose that omega is realized by h

eventually deduce say (not psi) which is realized by
(g L) for some recursive g using the induciive hypothesis

eventually deduce psi which is realized ty (k h) tor
some recursive k using the inductive hypothesis.

——— . — o

{(not omega) which is realized Ly any functioa since it is
impossible for both {nct psi) to be realized by (g h}) and for psi to
be realized by (kK h}.

{all intro}

leventually deduce say [omega x] which is realized by
(g x) for some recursive g using the inductive hypothesis

———— - — - - —— ———

{all x [{omega x]} realized by (lambda x (g x))

{all elim}
{(all x {omega x]) realized by say g

[omega t] for some term t; realized by (g t)

{fexist intro})
[omega t] is realized by say g where t is a tern

{exist x {omega x]) is realized by (lambda s (if (s = 0) then
t else g))

fexist elin})
(some x [omega x]) realized by say g
x{f{omega x] realized by (g 1)
|
l

|
ljeventually deduce say psy which does not contain x

free; psy is realized by (ma (g 0) (9 1)) for some recursive m using
the inductive hypothesis.

T T v i P e T A ARy A

a

<

L A

6,2.1 page 384

- ——— S ot -

psy

Thus ve have ccepleted the inductive proof.

Intuiticnistic Ieplewentaticn Theoren

For every recursive schepma P, we can effectively find a first
orde¢ foramula [theta x y] such that P is total if and only if (all x
(some y [tketa X y]j) is proveable in intuitionistic logic.
Furtherwore, tle program P on input x converges to the value y if and
only if [theta x y] is proveable in intuitionistic loygic. We assume
that all uninterpreted function symbols in schemata are total.

We shall give an exanile of hew to censtruct the formula theta

for the fcliowing pregram which is due to Paterson:

= {if (T (F
@ x) 4 (tte(n ﬂn)x (F %3}

else x)

(h x)= _
(312 {T (F (F ¥)))
then x
elseif (T (F x))
then (h (F x) {F (F y)))
else (g (F x}))
¥e cap obtain the formula that vwe require by doing a straight forward
translation of the recursive equations imnto the quantificational
calculus. These formulas are sizmilar ip intent to those of Manna,
hovever we need use only intuitionistic logic to obtain the result we
require. The foremula [theta ¥ y] to be constructed is the

conjuaction of the following three forsulas where *iff" is aan

. '.\~:"vb/‘ .’.9 ,

8.2.1 page 385

abbreviation fcr "if ard only if":

(iff
{PG X y)
{or
(eand (T (F x)) (PH x (F x} v)})
(and (not (T (¥ X)) (Y = x)))))

(all x1 x2 y ‘iff

{PH x1 x2 y)
{or
(and (T (F (F x2))) (y = x1))
(and
(not (T (P {F x2)}))
(T (F x1))
(PH (F x1) (F (F x2)) 1))
{and
(not (T (F (F x2))))
(not (T (F x1};j)
(PG (F x1) y))1))}
(all x (or (T x) {(not (T xj))) o

The last statement comes frcm the fact that we are assuming that all
uninterpreted functions are total. Tke schema g is indeced total.

Even after adding selectcrs and constructors the realization
theorea can still be proved in the standard way. #We introduce the
predicate atom which tests to see if its avgument is atomic and thus
canpnot be broken down using the selectors. The following rule is
added to intuitionistic legic:

(@l) x {implies {ator x) [theta x]})} realized by say ¢

x,yi{theta x] hypothesis; suppose [theta x] is
reaxized by {(m x)

{[theta y] bypothesis; [theta y] is realized by (m
Y)
]

83,2.1 page 386

|
leventually deduce {theta {c x y)] realized by say
(h m x y) using the inductive bypothesis

—— > —— o

(all x [{theta x]; realized by
{(k x) = (if {(atom X)

tten (g x)

else (h k (s1 2) (s2 2z)))

Suvmetises an increase in efficiency can be nbtained from

replacenent operators 11 and r2 such that

if x = (s1 2) and v = (s2 2z} then after (r?1 z w) we have fs1
z) = w, and (s2 z) =y

if x = (s1 z) and y = (s2 2z) then after (r2 z w} we have (s1
z) = x, and (s2Z2 z) = w.

We siall call schemata th2t allow *the use of selectors and reglacement
operators list structure schemata. Two schemata will said to be
equivalent as list structure schemata if for all interpretaticns of
the uninterpreted function symbols they are the same function. For
schemata that dc not explicitly contain s1, s2, ri, or r2 list
structure equivalence is the same as side-effect equivalence. We have
showr akove how to ccnstruct a universe of terms so that two schemata
are si;de-effect equivalent iff they are equivalent over the domain of
terns, It is impossille {0 use the universe of terms as a universal
domair of interpretation when the use of replacement operators is

allowed.

- e T TTMBAN ST NS RN T T A enas

£€.3. page 387

8.3. Current Prcblerms and Future Work

How can we characterize more precisely the difference between
functions that need tc usc a recursive or parallel contrcl structure
as opposed to thcse that only need a sinmple iterative program
structure? Tte problem of deciding whether avy given recursive
schema can be rewritten as a prcgram schema is of course undecidabple.
He would like to find general criteria of independent interest which
would be sufficient to guarantee that a vecursive schema could not be
rewritten as a program schena.

There is general agreement that the theory of computation is
currently not in good slape. The three major areas (autcmata theory,
recursive function thecry, and special case kacks) are not applicable
to practical programs. We can contrast our plight with the situvation
in applied physics. An applied physicist finds that it is essential
to understana fundamental rhysical laws both in designing his
experiaents and in interpreting their results. No such fundamental
laws and principles are kncwn in programming. Recursive function

theory sets the very outer limits of what is possible. FPew theories

are more elegant, However, the fact that classical recursive function

theory deals with the indices of the

not with the meaning of the prograsms

TESTY TR TS TS e

linitiation on the applicability of the theory.

— e -

partial recursive functions and
has been a fundamental

Por example the

recursion theorem says that fixed points exist for any acceptable

8.3. page 388

Goedel nuwber ng. Almcst all the classical theorems of recursive

function theory can be decived using only the Godel axicms for indices
of partial recursive functicns, Similarly, the ccmplexity theory of
the recursive functions can pe derived from Blur's axicss for indices.
Automata theorists have been able to discover some of the structure of
varicus limited ~lasses of auvtcmata such as finite state machines,
push down machines, and space and time bounded machines., Howvever,
cince the theory develcped has been anostly ccacerned with closure and
complexi*y properties of the special machines considered as acceptors,
it has had limited applicability to real computer programs. HNost
programs are not structured in the way required to fall into one of
the special classes of machinres. Some theorists hope that by study¥ing
enou¢h exemrlec of very narrow domains of algorithms where we have a
lct of domain dependent knowledge that wé ¢an induct a theory of
cosputation in a Bacoaian fashion., [Leep studies have been made on
guestions such as how fast integers can be sultiplied and how fast
natrices cam be multiplied, Studies in the theory of searching and
snrting anpear tc be mcre 1. levaut for constructing a unified theory
of computaticn since they are concerned with basic computational
abilities.

Studying the properties of gprograms schepatically offers
several acdvantages. Sche®ata can be programzed in a realistic
fashion. They mirror the structure of prograas that are used in
applicatious. Using them we can precisely defiue atructural

prepecties., 2roperties of the¢ stractiutael classes car Ye

e Ay m—— e e il RIS AT T S T = = W ARC R B g AP ammnn e Ve e S

i

w3 .

L2 N

-
©

8.3. page 389

demonstrated. Schepata give us a tocl by which we can rigorously

formulate and prove statements that every progra®mpmer intuitively
krows. We have used schemata tc make a kind of distinction betlvaen
semantic and syntactic extensions to programming languages. Th2
intent of the cestricticn that functions be uninterpreted is to try to
prevent our uathematics frcem falling intc what Perlis likes to call
the "Turing Machine Tar Pit." By using uninterpreted function symbols
we can prove both analytic and constructive theorems about classes of
prograzs. In the analytic theory the mathematical properties of the
structural claszes is expcunded. 1In the constructive theory the
process by whick schemata can be constructed from ycal oriented
language such as ELAKNER. The intention is rnnly partizlly realized
and we must search for cther uatural mathcmatical structures tc impose
ou otr schemata in order to obtain a acre realistic theciry of semantic
ertensions to progragging languages., We are continuing to investigeote
wvhat gains in efficiency can be ob*ained fiox the fcllewing exrensions
to pzogramming lanquages:

recursion

tacktrack contracl stxucture

PLANREF primitives

Locaticns as a type

resets

free identifiers

parallel evaluation

replacement grerators for constructocs.

TN T T SN TS SRRl TR SRR, T s T an

- o A = ———

.- - - = T

TR T R Y e T T i S N ————

- AR -

8.3. rage 350

icdentity tes*t as a prisitive

y, e

A —ra h e [Y g o VO A L NN RSNV S TN A RO

0
-2

11. page 391

1Y. BIBLIOGRAPHIY

Balzer, R. "Dataless programning" Proceedings FJCC, 19€7.

Balzer, R. “EXDAMS - Extendable Debugging and Monitoring
Systen™ Proc. SJCC 1969, 34. Hay, 1969.

Baizer, g. M. "On the_ Future of Computer Program Specification
and Crganizalion" Decesber 197C.

Black, P. 1964. "A Peductive Question A, -vering Systen"
Doctoral Dissertation, Harvard University, Cambr_dge, HNass.

Bebrow D., Teitleman ¥., and Darley L. "The BBN-LISP System".

Coopec, D. C. "The Equivalence of Certain Ccmputations®™ The
Cogrputer Jowrnal, Vol. 9, no. 1.

Conway, Kelvin B, "M Multiprocessor Sgstem Design"™ AFIPS
Copference Proceedings, XXIV {Fall, 1963), 139-146.

Dalki, 0., and N%gaard, K. 7SINMDLA - an ALGC-Based Simulation
Language®™ CACM. Sept. 66.

DPavies, D. J. K, POPLER: A POP-Z PLAERER. HIF-89. 5chool of
i-I. University of Edinburgh.

Dennls, Jack B. "pProgramming Gererality, Parallelism and
Computer Architectue" <Computation Structures Group Hemo MNo. 32,

Auguse 1968.

Barley Ja%. "Tcvard an Understarding of Data Structures®
Computer Science Departement, University of California, Berkeley.

. . e oA « . . v~

Bvans, T. G, "2 Heuristic Program to Solve Geometric-lnalogy
Problemrs™ Proceedinrds Spring Jecint Computer Conference. 1964,

Pikes, R. "Ref-Arf: A Systep zor Solving Problems Stated as
Procedures®™ Artificial Intelligence {1S7().

™

1970 Fisker, D. A. "Control Sturctures for Pregramming Langjuages®

_ Floyd, B, W. "Assigning meanings to Programs®™ Proceedings Of
Symposia in Applied Bathematics. Volure XIX.

T A R T NS I RO WY DL, & e =

11. page 392

Floyd, R. W. "Rondeterministic Algoritams™ JACHM. Cct. 1967.

. Green, C. C. and Raphael B. "Research on Intelligent Question-
answering Systers" May 1967

1 nGreen CiJgi "Application of Theorem Proving to Problen
Solving Pooc I.

Guzman, A. "Sonme As¥ect$ of Pattern Recogniticn by Computer”
¥.S. thesis, Massachusetts Institute of Technology, 1947.

. Guzman, 4. and McIntosh, H. V. "Convert® Ccamunications of the
Association for Computing Machinery, August, 1966.

. . _Hewitt, C, "PLANNER: a_Language for Proving Theorens"
Artificial Intelligence Memo 137, EasSachusetts InsStitute of

Technology {prcject MAC), July 1S967.

. Hewitt, C. "PLANNER: A Lanqguage for Manigulating_nodels and
Proving Theoress in a Robot®™ Proceedings of the International Joint

Conference on Artificial Intelligence. Washington D. C. May 1969.

_Hewitt, .c. "Procedural Embedding of Knowledge in PLANNER".
Proceedings of the Second International Joint Conference on Artificial

Intelligence. Lcndon Sept. 1S71.

Hewitt, C. "Description aad Theoretical Analysis _ (using .
Schemata) of pLaNNER: 2 Language for Proving Theorems ard Maripulating

Xodels in a BRobot" Phd. Peb. 1971.

.. _Hewitt, C, "Funclional Abstraction in LISP and EFLANKRER"
Artificial Intelligence ¥emo 151. January 1968. Massachucsetts

Institute of Technology {prcject MAC},

Hewitt, C. "%Teaching Procedures in Hurans and_ Robots™
Conference on Structural Learning. April 5, 1970. Philadelphia, Pa.

Journal of Structural Learning.

Hewitt, C. and Patterson M. "Cosparative Schematology" Record
of Project MAC Conferesce cn Ccncurrent Systems and Parallel

Compuation. Jume 2-5, 1970. Available from ACH.

xaglaa D. B. "Correctness of a . ompiler for ALGOL-like
Prograzs® tanford A.I. Memo Nc. 48,

Kay, Alaz C, "leactive Engine™ Ph., D. thesis at University of
Dtak, 1970.

Fellogy, C. "A Natural Language Congiler for On-line Data
ganagesent® Prec. of PJICC, 1968. pp. 473-432.

[— . Y P g A g I -~ aetaTe ey

11. page 393

Kleene, S. C. "Introduction to Metamathematics' Van Nostrand.

_Mapra 2. and Waldinger R. J. "Tovards Autcmatic Progran
Synthkesis" July 1§7C.

McCarthy, J. 1959. "Programs with Cormon Sense, Proceeding of
the Symposium on Mechanisaticn of Thought Prccesses" National Physical

Laboratory, Teddingtco, England, London: H. M. Stationery Cffice, pp.
75-84,

McCartby, J.; Abrahams, Paul W.; Edwards, LCaniel J.; Hart,
Timothy P,; and Levin, Michael I. "Lisp 1.5 Prograsmer's Manual, M. I.

T. Press®

McCarthy, J. "A Basis for a Mathematical Theorg cf
Computationm Ccmputer Programsing and Formal Systems. Rorth-Holland,

Amnsterdam 1967.

. HcCarthx . "Cefiniticns of New Data Types in ALGCL X" ALGOL
Bulletin. OCT. 1964.

kcCarthy, J. and 5a{es, P. "Scee Philoscphical Prcklems_form
the Standpoint cf Artificial Intelligence® Stanford A. I. Memo 73.

Minsky, Marvin. "Matter, Mind, and Models" in Serantic
Information Processing. pp. U425-432.

Minksy, Marvin. {ed.,) "Semantin. Informaticn Processing"
B.I.T. Press, Cambridge, FMass., 1968.

Minsky, Marvim. "Fcrm and Content in Computer Science" JACH.
Jan. 1970.

Newell, A., Shaw, J. C.., and Simon, H. A. "Repcrt on a General
Problem—solving Prograa” P:oceeélngs of the International Conference

on Information Processing, Paris: UNESCO House, pp. 256-264.

-

" Paterson, M. S. "Equivalence Problems iu a Model of
Compuation® Ph. D. Thesis Orniversity of Canmbridge. August 1967.

Paterson, #. S. "Program Lchemata" Machine Intelliyence III.

Perlis, A, J. "The Synthesis of Algorithmic Systems"™ JACH.
Jan. 1967,

1970 Kaphael B, "The Frame Protlem in Problem-sclving Systems™ June

———— e v ST KT T 5 o AR g —

11. page 394

Rulifscn, Jchns; Waldirger, Richard; and Derksen, Jan. "A
Language for Writing Problex-Solving Precgrams™ IFIP 1971,

. Rovner, Paul D. "LEAF Users Hanual" Lincoln Labcratory
Technical Memorandup Nc. 231-0009.

_ Sandewall, E. "Formal Methods in the Desiga of Question-
answering Systers. Uppsala University Department of Computer Sciences

Report NR 28. Cct. 1970,

. Slagle, J., 1%€5. “Experiments with a Deductive Cuestion-
answering Progranm®™ Compunicaticns of tlke Associaticn for Ccmputing

Machinery, Decenber, 8:792-7G8.

Strong, H. R., Jc. "Translating Recursion Equations into Flow
Charts" Cecnference Reccrd cf Second Annual ACHM Symposium on Theory of

Computing.
Waldinger R., “Rocbot and State Variable® April 197¢C.

L Waldinger and Lee, "PROW: A Step Toward Autcmatic Frogram
Writing" Proc. IJCAI.

Winograd, T. " Procedures as a Representation for Data in a
Computer Program for Understanding Natural Lanyuage™ MAC TR-84.

February 1S71.

. Woods, W. A. "Procedural Semantics for a (uestion-Answver
Machine" Proc. FJCC. 1968. pp. 457-471.

,'. o~ T N Mdad N S T NG W N -

¥ - *w . . s A

12. page 395

Biographical Note

Carl Hewitt was born in Clinton, Iowa, but considers himself a
native of E1 Paso, Texas tc which he moved at the age of two years.
He attended El Paso Public Schools and graduated from El Paso High
: School in 1963. ©W®ith a Mc Dermott Schclarship, he attended M.I.T. In
1967 he graduated in 2athematics, receiving a fellowship teo do
graduate vork in artificial intelligence and theories of computation.

His publications include:

q "putomata cn a Two Dimensional Tape"™ (with Manuel Blum}.
Annual Conference on Switching and Autcmata Theory. Octcber 1967.
Austin, Texas.

_"Comparative Schematclogy" (vith ¥ichael Faterson).
Proceedings of Froject MAC Confereace on Parallisw. June 1970, ¥oods

Hole, Mass.
"DLANNER: A Language for Proving Theorems in c¢bots"
Proceedings of IJCAI. May 7-9, 1969. Washington L. C.

"Teaching Procedures in Humans and Rcbots*® Proceedings of
Conference on Structural Learning. April 5, 1970. Philadeiphia, Pa.

* i Y e e T T VI, . I . S Sy = a—carm - [—— oo —

tabs are 8 spaces

IVRERET ()
*+,-.,0123
456789: ;<=
>?3ABCDEFG
HIJKLMROPQ
BSTUVWIYZ]
£ I~_tabcde
fghijklmno
pgrstuvuexy
z{1}°

12. page 396

10. Index of Procedures

The syntax primitives are given after the function READ.

number gives the explanation of the procedure.

1%

1+

1+

~N

I
1}

i
1l
)

The type hierarchy is given at the beginning of chapter 4.

Index of Procedures

The page

188
150
150
187
149
149
149
149
177

134

397

V)

ABS

ACTIVE

ACTOR
ACTOR-CALLER
ACTOR-FUNRCTION
AGAIN

ALL

ALPHABETIC
ALTER!I-PERSISTENT
ALTER!-TENTATIVE
ARD

AND?

ANTECEDENT

ARC

ARGS

AS

ASCENDIKG?
ASSERT!-PEBSISTENT
ASSERT{-TENTATIVE
ASSIGHED?

AT

ATC

10.

134

180
180
149
179
79
99

77

93

92
210
133
171
191
148
215
218
171
133
167

page 338

AR NGRS

r—— = ——

I L S T

ATOM!~CONSTRUCTIOR

ATOU!-DECCHPCSER
BE

BIKWDIRGS

BITS

BLOCK

BLOCKBIND

BOTTOM

BOURNL?

BYTE

CALL

CALL

CALL

CALL

CANDIDATES

CATCH

CHANNEL
CHARACTZR
CHARACTER~VECTOR
CHCP!-PERSISTENT
CHOP!-TENTATIVE
CLAUSE

CLAUSE

CLAUSE-OF

CLGSE

e R e

i ey s e — g~

146

18u
178
171
146
157
109

140

146

R

120

101

94
154
154

86

139
139
239
238
239

154

CLOSURE

COND
CONSEQUENT
CONTAINS
CONTINUE
CoPY

CURRENT
CURRENT?
DAGGER

DEBUSG
DEC!-PERSISTERNT
DEC!-TENTATIVE
DECLARATICN
LECLARE
DECLARED
DELETE-FRONT
DELETE-REAR
DESCENDING?
DIGIT

EDIT

EITHER
ELENYNT
EMNPTY

EKPTY?

EAD~BLOCK

10.

130

9y
208
1821
128
134
223
219
181
170
147
147
179

99
167
153
153
148
154
198

81
183
183
130
157

page 400

B - M e i e S e e~

ERASE'-FEBRSISTENT

ERASE!-TENTATIVE
ERASING
ERROR
EVAL
EXHAUST
EXPT
EXTENSICH
EXTRACT
FAIL

PAIL
FAILECINT
“IELLS
FINALIZE
FIND
FOLLCHS
FOR

FOR
FOR-RESOLVENT
FORK
FRAME
FPRONT
FURCTION
GATE

GENLOC

10.

219

218

170
106
235
149

86
189
112
235

96
187
231
233
185
113
231
240
127
17
152

12
227

151

page 401

—wrevon

GET
GET!-NC-monitor
GETC

GIVENX

GuAL?

GCALS

GREATER
GREATER=

HAS

HEAD
HOMOGENECUOS
IDIVIDE

IN
INCY-FBRSISTENT

INCY-TENTATIVE

[+ X}

INCREASIRG?
INDEFPINITE
IRDEX
INDICAICH
INXITIML
INSEET-FBCNT
IRSERT-REAR
THSTENTIATE
INTERD

INTERT

10. page 402

132

132
167
191
225
225
187
187
181
134

84
148
151
147
147
147
143
140
134
133

153

INTERRUPT
INVOKE

IS

IS-ACTOR
Is?
ISONORPHIC?
ITURLZ
IVECTOR
LAST?
LEHGTH

LESS

LESS=
LIREAER

LINR
LIST!~COES¥RUCTOR
LYST!-DEBCCHPUSER
LOCATIVE
LOCK
LOCKED?
LOCKER
LOYEE

AACRO

%2 ICH
BATCH?

BATCHI NG

o2y

10.

129

185
13
168
169
369

158

page 403

Ty

BaX

MEMBER?
MIR
g0N2D
MONAL?
YONITGR
NAME
KEXT

NEXTCH

NODEI-CONSTRUCICR

NODE! - PECUPCSER

ROW
NGT?
HOMBER
OBLXIST
OF
T-YYPE
oN
CPTIOKS
GR
OR?
OVERALJ

PERSIST

PERSISTENT

DHAME

v e e ——— aa = ——

10.

150
142
150
183
130

164

133
157
145
166

177

186
i56
132
191
157

181

w0
129

294
232
104

136

page 404

ot~ Sl 0 2 ek v 2o I

» T T et et L, T « %A C o
' 16. page 405
‘
'é pop 152
g
- PORT 122
POFER 189
PRECEDES 185
PRIMARY 22%
- PRIN 1 155
ff PRINC 155
i PHIKT 158
?Q PRUCBI KD 110
tf EROCEDURE 171
é PROCESS 113
g PROCKANE - - . 171
| PRODUCT 82
ﬁf PRODUCT-OF 189
B PROG 106
. PROTECT 163
. PEOTECTICH 164
PUSH 152
PUT1-HC~BCRITOR 138
PUTI~PERSISTENT 137
PUT¢~TENTATLVE 138
POTC i~ PLESISTENT 167
POTCI-TLHTATIVE 167
PUTLCCS-PERSYSTENT 51
PUTLCC!- TEWTATIVE 151

Ck
.

{
|
|
!
é
!
|
E

y 10. page 406
; PUTREST!-PERSISTENT 138
PUTREST!-TENTATIVE 138
QUOTE 100
READ 158
READCH 157
REAR 153
REPEAT 112
' REPLACE 184
- RESOLVE 239
REST 131
RE5STCRE 97
- RETRRCT 166
i RETRY 230
RI NG 152
RULE 98
SELECT 182
SET-ALARE 96
. SET-TINER a0
i SHARE 145
SIGNED-BITS 146
SINILAR? 135
STECK i52
STAR 181
STATE 326

b
x:

K STED 1

STOP

STORAGE
STRAIGHTEN
STRAIGHTEN-UP
STRINS!-CONSTRUCTOR
STRING!~DECOMECSER
STRUCTURE
STRUCTURE?
SUBGOAL
SUBSTITUTE
SoM~-QF
SUPPHESS
SUSPENRD
SWITCH

SWITCH

TAIL
TENPCRARY
TEHPORIZZ
TE¥PECG
TERHINATE

TOP

TRAILER

TYPE
TIPE-VECTOR

UBASSIGE:

- YT T AN TR AU T —— v

10.

128

166
103
104
145
185
182
129
225
141
188
106
128
228
226
134
101
102
227
128
140
156
166

85

i72

page 407

UNEXTEND

UNPALSE

UNIQUE

UNIQUELY?

UNIQUIZE

UNLCCK

UNNONITOR
UBPRCTECT
UNSET-ALARH
UNSET-TINER
UNSHARE

UPDATE

UPPER

VALUE

VARIABLES

YECTUR I-CONSTRUCTOR
VECTOh '-DECOMECSER
VEL

WAIT-C2LL

WAIT-GET

WEDK

10. page 408

86

91
230
141
140
170
166
163

90

20
144
226
154
151
239
145
185
177
126
132
179

105

