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INTRODUCT 10N

The fixed charge problem was formulated by G. B. Dantzig and W. Hirsch in 1954 [1].
It arises in situations which involve the planiing of several interdependent activities,
some or all of which have set-up charges (or fixed charges independent of the activity

level as long as it is positive) associated with them. The problem may be formulated

as follows:
Min €(x) = D(x) + Z(x)
subject to Ax = b
x>0 (M
where
n
Y4 = z: X,
(X) cJ J
j=1
n
D(x) = ) 41 -5y, )
j=! ’
and
60'x. = | if xJ = 0
J
= 0 if xj >0 5
A xn® Pmxl € e C (c‘,....cn). dyyn" (dl""'dn) are given real matrices and

x " . Corresponding to any feasible solution x , D(x) is known as the fixed charge

nxl
component of the cost and Z(x) the variable cost.

G. B. Dantzig and W. Hirsch have shown that min €(x) is attained at an extreme
point of the convex polyhedral set determined by (1) (See [1,2]). [(3,4.5] discuss some
approximative algorithms for solving the fixed charge problem, especially when the under-

lying structure of the restrictions (1) is of the transportation type.

The author is indebted to Professor R. Van Slyke, Mr. R. Chandrasekaran, and Profes-
sor Alan S, Manne for their suggestions and criticisms,




The algorithm described in this paper applies in general to any fixed charge problem. j
Since only the extreme points of (1), which are finite 11 number, have to be scanned, it
leads to the optimal solution in a finite number of steps. However, the algorithm works
efficiently when (1) is nondegenerate and the range in the value of Z(x) for feasible

x is large compared to the fixed charges.

Algorithm for the Fixed Charge Problem Assuming that the Vertices of (1) can be Ranked

in Increasing Order of the Variable Costs Z(x)

An algoritim for ranking all the vertices of (1) in increasing order of the linear
functional Z(x) 1is given in Section 2. For an application of this algorithm we have to

assume that min 2Z(x) is finite. Here, min indicates that the minimization is

(xf(1)] xI(1)]

over all x satisfying (1).

Case 1: min £{x) = .= .
Ixi1(1))
Assuming that d is finite, it is clear that Z(x) s unbounded below. Hence by Prob-
lem 19, page 146 of [6], we know that min €(x) = - iff the system of equations
[x1(1)]
Ax = 0
x > (2)
cx <0

has a feasible solution.

Hence in all subsequent discussions we shall assume that min 2(x) > == and
(xi(1)]
hence that min E(x) > -a .
(x|(1)]
Case 2: min I(x) > -a = min 2(x) > -= .
(x1(1)] (x{(1)]

So in this case It is possible to rank all the extreme points of (V) in increasing order

of Z(x).

o




Let Sy» SpseeesS,5e.. be such a ranking and let Z(Sk) =2, . Then we have

Z, <1 be a lower bound on the

| Let /\k =7 - Zl and let Dk = D(Sk) . Let D

k 0

)
fixed charge component of the total cost at any vertex of (1); i.e., Dy < 0, vk

method for obtaining Do is discussed at the end of this section. The efficienty of

the algorithm improves with the nearness of Do to the greatest lower bound of Dk vk

Suppose we have determined some Sr . Then it is clear that the optimai solution to the

f ixed charge problem must be one of the vertices SI""'Sk w.ere kr is such that
r

and
= Zr > 0r - 00 o (3)

for any k > kr vie have
Zk + Dk = Zr + (Zk - Zr) *0,>Z +D <+ (0k - Do) by (3). And since we know by the

choice of D0 that Dk 2 04 vk

+D, >2Z +D  for k >k
k r r

Zk .

Hence it is not necessary to rank all the extreme points of (1) to solve the fixed charge

problem. As soon as S| is found we get an upper bound on the extent of the values of

2(x) to which we may have to carry on the ranking by using the above result.
In general, suppose we have determined Sr . Then it may be necessary to rank the

extreme points of (1) to the extent that 2(x) $2, %40 -0y . Nowthe stages in the
algorithm can be described.

Stage r: In this stage S'.....Sr have been determined. Let

- r -
) min 'Ak + Dk 00]
kel ,....r

’ -~
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If 8. 26, the algorithm terminates and the optimal solution is given by the extreme

point corresponding to

Min  [2, +D,] .
k=l,,..,r & K

If Ar < ar » then it is necessary to determine Zr+l and proceed to stage r+l .

However, we know that the ranking algorithm has to be carried on to find out vertices of

(1) only to the extent of Z(x) S2,*6 . The various stages of the algorithm may be
represented geometrically as follows:
x Extent of
¥ . values of
' 2(x) to
[ ' which
S ranking
! ! r may have
' ' . to be
' ) . carried
' [ , * out.
[} [} L}
]
‘ [} (]
)
[} ] [}
]
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The lines parallel to the k-axis on the diagram indicate the extent of the value of Z(x)
to which ranking may have to be carried out. At each stage, the horizontal 1ine nearest

the k-axis applies. This limit is improved at each stage.

To Find Do » @ Lower Bound on the Fixed Charge Component of Cost at any Vertex of (l!

Suppose the variables X|seeesX ~are arranged in increasing order of the value of

d, , i.e.,
J

d 54 - &9, :

Each extreme point of (1) consists of m basic variables, but some of them may be at
zero values if the problem is degenecrate. If we know that there is no degeneracy in

the problem we can take

Even if (1) is degenerate, it may be possible to obtain a lower bound, m, » on the number
of basic variables which are positive at any vertex of (1). If (1) is not totally dege-
nerate (i.e., b ¥ 0), then none of its canonical equivalents can be totally degenerate
anyway. This may help us to get some lower bound for m

If the constraints of (1) are of the transportation type it is very easy to deter-

mine m' + Then if all d, >0 , we can take

J

DO = d|*.. .+dm'

A crude value for 0o is 0 when all dj >0

Corollary 1: The algorithm works equally efficiently if we replace D(x) be any con-

cave function and D, by a lower bound to min 0(x) .
0 M (1)1

Then £(x) = Z(x) + D(x) is also a concave function and it is & well-known result

that the minimum of a concave objective function over a convex set occurs at an extreme

point.

h——-—_——_




Il. An Algorithm for Ranking the Vertices of (1) in Increasing Order of 2(x)

Consider the linear programming problem in its standard form

min Z = ¢cx
subject to Ax = b

(m

X

tv

We shall assume that this problem has a finite optimum, i.e., that min 2(x) > -= .

Cx (1))

Then it is well known that there exists a vertex of (1) which is optimal for the above
problem.
The algorithm developed here is an extension of the simplex algorithm. It helps in

ranking the basic feasible solutions of (1) in increasing order of Z, after the optimal

is obtained by the simplex method. It uses only one step pivot operations.
Let the letters B and T , with any subscripts or superscripts if necessary, de-
note basic feasible solutions of (1). Suppose in any basic feasible solution B the

variables X, secesX  are basic. We shall indicate this by
| m

x €B i=1,.0.,m
"
1
and

} .

3= [xr veeesX
m

r
1

Here we are defining a basic feasible solution by the set of variables which are basic

in it.

Let S denote the minimal cost (w.r.t. Z(x)) basic feasible solution and

1’ Smax
the maximal cost basic feasible solution respectively. We have assumed that S| exists.

Consider any basic feasible solution B . Corresponding to any nonbasic variable

leB , let

.
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CB = the relative cost coefficient of the nonbasic variable x. cor-
J

responding to the basic feasible solution B .

0? = the value with which the nonbasic variable xj enters the basis
in the canonical form of the basic feasible solution B .
T? = the new basic feasible solution obtained by pivoting on the column

of xj in the canonical form of & .

From the simplex algorithm

By . B «B
Z(Tj) z(8) + oj Cj .

The basic solutions T? for j such that xjdﬂ are adjacent vertices of the vertex
B .

However, when (1) is degenerate, several basic feasible solutions may repre-
sent the same vertex and all the adjacent vertices of this vertex are given by the basic
feasible solutions, T? » corresponding to the various canonical forms B which represent
the same vertex.

Let B(B) denote the set of all the adjacent vertices of B with cost value not

less than that of B, i.e.,

o(s) = IT? vj such that x,é8 , c? >0} . (4)

It can be seen that the canonical form corresponding to any of the adjacent vertices of
B can be obtained by pivot operations on the canonical formof B . {f (1) is nonde-
generate, then corresponding to nach vertex of the polyhedron there exists a unique
basis B which represents it, and equation (4) holds for each individual basis.
However, if B is a degeneratc basic feasible solution of (1), let VB denote
the vertex represented by it. Let Bl""’Br be all the basic feasible solutions of

(1) that represent the same vertex VB . Then we should replace equation (L) by

i — b S




B B

{7.P yj such that %48 and ij >0} , (4a)

e
0(VB) = 2, ;

p
where ©B(B) of (4) and ﬂ(VB) of (4a) represent the set of all adjacent vertices of the
vertex represented by the basic feasible solution B whose cost value is not less than

that of B.

To Get all the Basic Feasible Solutions Representing a Degenerate Vertex

When the vertex VB is degenerate, the canonical vYorms of all the basic feasible so-

lutions B .,Br » which represent it, may be obtained by tooking at the canonical form

pore
of any one of them and then pivoting among the non-zero input-output coefficients in the

rows corresponding to the basic variables which are zero.

Ranking the Vertices of (1)

Let SI’SZ"" be a ranking of the basic feasible solutions of (1) in increasing

order of Z . Suppose we already know the basic feasible solutions SI’SZ""’Sk ) in

the sequence., It is intuitively clear that the next element in the sequence, Sk , must
be a cost nondecreasing adjacent vertex of one ¢f +h: vertices represented by the known

basic feasible solutions Sl""’sk-l . We shall prove this.

Proposition 1: Every basic feasible solution can be reached by taking a cost nonde-

creasing path from S, through the vertices of (1) .

E PROOF: Consider any tasic frasible solu. jon & . From the proof of the simplex algo-
! ~ithm we know that there exists a cost nonincreasing path moving along adjacent vertices
from B to S| . By taking the same path in the reverse direction from SI , we reach

B from S, by moving along adjacent vertices along a cost nondecreasing path.

1

Proposition 2: Suppose Sl""’sk-l are already known. Let us define

p-1 )
np = igl o{vsi} 5 {s‘,...,sp_]] P =2,3,... : (s

i.. PR — e - T o




Then Sk = minimal cost solution in ﬂk .

By Proposition 1, Sk must be a cost nondecreasing adjacent vertex of one of the
vertices SI""’Sk-I . But Sk is the minimal cost vertex after Sl""’sk-l are
excluded. Hence Sk = minimal cost solution in ﬂk .

Now the algorithm can be iiven. The method starts with the finding of Sl by

the simplex method.
General Step: Suppose SI""’Sk-l have already been obtained and we are trying to

find out Sk . Then Sk is the minimal cost basic feasible solution among

k-1 Si Si
;21 {Tj 1 j such that xj¢Si and Cj >0} - {SyseeesSe )
k-1
0(si) - {sl,...,sk_'} 5 (6)

= U
jl=

i

Of course, if any of S. are degenerate we should replace Q(Si) by ﬂ(VS ) asin
i
equation (4a).

Thus S, can be easily located by examining the values Z(Tj') for i =1,...,k-1
and j such that le.‘Si and Cj' 0. S  is that new basic feasible solution in (6)
which is distinct from S|,...,Sk_‘ and which has least cost value > Zk-l « The algl-

rithm is stepwise and in each step we determine an additional element in the sequence

of ranked vertices Sl, Sz,... 0

To _Organize Computatiops: Computationally, this may be done by storing at:

S.
Array 1: All the Z(Tj') values for all S, determined so far, Vj such that

S. I
xjési and Cj' >0 and Tj' # any ~r *he known Si so far 0f cour-se, when any of

Si are degenerate, we should scan all basic feasible solutions which represent that

Same vertex.
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Array 2: All the basic feasible solutions that have already been found and ranked.
Each of the Si's may be stored in terms of the subscripts of the basic variables in

it, arranged in increasing order,

S,
Array 3: The basic feasible solutions Tjl corresponding to the Z-values stored

in Array 1. Whenever a basic feasible solution is to be stroed, store the subscripts of
the basic variables in it in increasing order.
It is convenient to locate Array | and Array 2 in core memory, and Array 3 on tape.

The computations required to get the next element in the sequence, i.e., Sk , are

i) to scan Array | completely and then determine the least value there;

ii) to identify the corresponding basic solution from Array 3. This is Sk 5
The values of the basic variables in Sk may be obtained by referring to
the restrictions (1). If it is required to find out some more elements in
the sequence, then

iii) delete Z(Sk) from Array 1, Sk from Array 3, and add Sk to Array 2.

iv) find out the canonical form of Sk and all its cost nondecreasing adjacent

vertices, i.e., 0(Sk) (or ﬂ(Vs ) if Sk is degenerate). Store these
k
basic feasible solutions at Array 3 and their Z-values at Array 1.

If the problem is only to rank all basic feasible solution for which Z < o , then we

can save space by storing in Arrays 1 and 3 only those solutions for which Z <g¢ .

A Numerical Example: We apply the algorithm to the following fixed cost transportation

problem.




T xU
dy = 6 18 0 3 7 s 19 J
23
€y =% 1 12 6 24 19 20
35 ) ) 26 10 2
26
17 40 15 8 13 1 5
9 1 24 16 2 15
38
19 109 8 "9 26 5 25
12 36 b 31 19 FB 5
75
92 29 2 20 42 6 17
6 9 10 5 43 12 18
56
23 27 1LY 17 "y 38 26
? XU 22 9 35 54 8 5% 35
Table 1
to minimize €(x) = }‘:' i‘ dij(' o "O"‘i_;) + }Icijxij subject to row and column sum con-

straints.

As before, let 2 = 7 IC Let us rank the extreme points of the transporta-

NP
ijU ij

tion problem with respect to Z . On solving the transportation problem we find that

min Z = 2, = 2214 and the fixed charge corresponding to this is 0, = 83.

1
We know that in any basic feasible solution, at least 7 of the xu's must be

positive., Hence we can take for Do the sum of the least seven of the fixed charge

b_——_——_
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cost coefficlents = 16.

onts Ol . 00 = 67

and hence it may be necessary to rank the extreme points of the transportation problem

only to the extent of 2 < 2214 + 67 = 2281, TYhe tableau corresponding to l| is glven

betow.

CU - b g 7 2 "
IU s9 L
8
2(7 p2n 2270
9 3 25 6 17
8 18
2268 2250
89 ) 16 2 9
6 32
2230
72 8 6 17
35 23 17
2262 2250
3 9 86 29 6
16 4o
2241
Z, = 214, 0, = 83 v - 2297
Solution §

Orly xij-vaiues corresponding to the basic cells are recorded in the middle of the cell.
The l(Tj') values are recorded only in those nonbasic cells where it is < 2281, since

we are only interested in extreme points which have 2 < 2281,

Using equation (6) we find that 52 can be obtained by introducing u” into the

basis.

\ ,ﬁ




Ey=t 18 5 20 "
9 A
9 N 25 6 -2 17
26
89 ) 16 $
6 8 24
72 8 6 15
35 N 9
3 9 8L 29 6
16 ) 40
F(U)'E’
2, - 2230 0, = 4 ¢ . 2276

Solut i
olut ion 52

Now ()2 . 00 s 30 and hence it s necessary to rank the extreme points only to the ex-

tent that 2 < 2230 ¢+ 30 = 2260. In the tableau corresponding to Sz , only those non-
52

basic cells which lead to Z(‘rj ) < 2260 have been marked.

Using equation (6) again, we find that S) s obtained by Introducing ) into

the basis in the tableau of s' 5




I

TR -3 6 ? 2) n
23
9 28 13 6 q
8 18
86 -5 16 2 9
6 i 32
Z(TJ)'ZN
n 5 6 17
35 23 17
-3 86 29 é
16 9 31
1
Zy = 2241 0y = 84 e = 2325

Solution S3

Using equation (6) again, we find that there is a tic for the next position in ranking.

S“. -3 are obtained by introducing 5 and “ul respectively into the basis of S| .

5




CU"‘ 24 13 27 17
9 I
3 25 25 17
6 8 12
-6 83 7 10 ? 9
38
66 12 [ 17
35 ’ 17 23
2(1,)+250
3 15 92 35 13
22 L]
Z, = 2250 0, =175 e = 2328
Solution S‘.
clj s L 4 13 27 17
9 "
3 26 25 0 17
8 18
-6 83 7 108 2 9
38
66 2 17
35 6 17 12
3 1 92 35 12
22 3
25 . 2250 ()‘3 - 80 r = 2330
Selution SS




16

Using equation (6) ugain, we find that S, !t obtained by introducing %59 into the
basis of S2 .
b= -3 6 3 21 n ’
)
9 28 3 6 -4 1?7
26
86 - 16 9
6 8 22U
72 S 6 13
35 3 9
-3 19 29
16 9 3
16 = 2257 06 s 60 = 2317
Sclut ion 56

With this. all the extreme points with 2 < 2260 has been ranked and hence the algo-

rithm terminates. By inspection we find that s2 gives the optimal solution to the

fixed problem.
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