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FOREWORD

This research project of numerical techniques and solutions for

axisymmetrical viscous compressible flows was initiated in January

1969 as a part of a doctoral program in Mechanical Engineering at

the University of New Mexico with support by the Air Force. The
original manuscript was submitted to the University of New Mexico

by Dr. Kenneth W. Smith as his doctoral dissertation. Professor

Victor J. Skoglund, Department of Mechanical Engineering, served

as the faculty advisor and collaborated in this research.

Viscous compressible flows around blunt bodies are of primary

interest in a number of relevant aerospace applications including,

for example, missile design and reentry of missile warheads.

Functional solutions for these flows are inaccurate because of

necessary mathematical simplifications and detailed measurements

of flow characteristics are difficult and costly. In this investigation,

a complete set of numerical techniques for axisymmetrical, viscous,

compressible flows around blunt bodies is presented and accurate

solutions are obtained.

Publication of this report does not constitute Air Force approval

of the reported findings or conclusions. It is published only for the

exchange and stimulation of ideas.
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ABSTRACT

The purpose of this investigation was to develop numerical tech-

niques for solving axisymmetrical, viscous, compressible flow around

blunt bodies. Solutions were limited to sys:ems of ideal gases with

laminar unseparated boundary layers. The bow wave was represented

by a moving discontinuity. The remainder of the system was repre-

sented by second order accuracy, time depundent difference equations.

In this investigation the difference equations were derived from basic

time dependent, viscous compressible flow equations that were trans-

formed into body related coordinates. In a development phase, many

numerical techniques were tested on digital computers before adopting

the ones that were used in obtaining the results that are presented.

The addition of stabilizing terms to basic difference equations was used

to achieve numerical stability. Numerical experiments were performed

to minimize the effect of. the stabilizing terms on the results.

Solutions for a hemisphere forebody were obtained at Mach 2 and

4 for inviscid flow and for several Reynolds numbers. At Mach 4,

solutions were obtained for a hemisphere-cylinder for inviscid flow

and for a Reynolds number of 4000. Where possible, calculated and

experimental results were compared. Their agreement was satisfactory.

Prior solutions of viscous compressible flow in the afterbody region of

blunt bodies were not f.,.md in any publication.

It was concluded that accurate solutions for axisymmetrical,

viscous, compressible flows can be obtained in the forebody and after-

body regions of blunt bodies using the time dependent numerical tech-

niques of this investigation. In the forebody region of a hemisphere-

cylinder, approximate solutions may be obtained by solving the forebody

system alone. Stabilization of the modified Lax-Wendroff technique

seemed necessary, but improvements in wave fitting, boundary and

digitizing techniques might eliminate that need.
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H 1. INTRODUCTION

1. 1 Motivation

Analysis of the performance of supersonic vehicles is required in

their design. Their flow fields are complicated by detached bow waves

and by complex flow fields behind the waves which interact with viscous

boundary layers. Functional solutions for viscous, compressible flow

about blunt bodies are inaccurate because of necessary mathematical

sirriplifications. Accurate measurements are costly and difficult,

particularly detailed measurements of flow characteristics. In addition,

most measurements are limited to special systems and may not apply

to a new design. Recently, numerical analysis has become a valuable

supplement to other types of analyses and experiments. When better

numerical technique3 are developed and larger and faster computers

Sbecome available, they may become the main analytical tools of designers

t of supersonic vehicles. Numerical techniques have been developed and

solutions reported for viscous, compressible, supersonic flow in the

forebody region of a two dimensional body. In this irvestigation, a

complete set of numerical techniques was developed for axisymrnmetrical,

viscous, compressible flow around blunt bodies.

1.2 Purpose

The purpose was to develop numerical techniques for axisymmetrical

viscous, compressible flows in both the forebody and afterbody region of

blunt bodies.



1.3 Scope

The investigation included development of numerical techniques

and solutions of axisymmetrical, viscous, compressible flows around

hemispheres and hemisphere-cylinders. The solutions were restricted

to systems of ideal gases with laminar unseparated boundary layers.

In the development phase, the time dependent differencing technique

of Lax and Wendroff [45, 1960)1 was used to represent the basic flow

equations which were expressed in terms of body related coordinates.

The detached bow wave was represented by a moving discontinuity. It

was coupled to the digitized field by a wave fitting technique. The addi-

tion of stabilizing terms to the difference equations was used to achieve

numerical stability. Numerical experiments were used to minimize the

effect of stabilizing terms n results.

Solutions were obtained for hemispheres at Mach 2 and 4 for

3 5
inviscid flows and Reynoldi numbers from 103 to 105. Inviscid flow

results agreed with measurements of Baer [4, 1961). Computed veloc-

ities in the boundary layer agreed with measurements of Wells and

Blumer [75, 1968]. Solutions were also obtained for a hemisphere-

cylinder for Mach 4 for inviscid flow and a Reynolds number of 4000.

A steady solution for a hemisphere-cylinder was used as the initial

condition for a subsequent solution in which the stabilizing terms were

zero.

*--Numbers in brackets [ designate references listed at the ent: of

this report.



The "Review" section describes previous research that was pertinent

to this investigation. The "Theory" section presents the basis of the

adopted numerical techniques. The section on "Numerical Techniques"

presents the equations that were the basis of computer programs. The

"Computations and Results" section describes computer programs and

the data and results of this investigation.

3



2. REVIEW

2. 1 Introduction

The procedure used in the "Review" was to first survey titles and

secure abstracts of literature pertinent to solutions of blunt body systems.

From these titles and abstracts, literature was selected for furtber

study. Using the literature that was collected, different methods of

solving for the flow about blunt body systems were studied. From this

study, the explicit time dependent method was selected as the method

to be used in this investigation. The pury'se of this "Review" se'ztion

is to summarize information that was useful in this investigati in. Topics

that are covered are methods for obtaining initial values, exph-iP. time

dependent differencing techniques, wave fitting, prior solutions and

experimental results for blunt body systems.

Studies of the literature collected were focused on the advantages

and disadvantages of available methods for solving axisymmetrical,

viscous, compressible flows. Without high speed computers, the extent

of early computations was limited. One of the common methods used to

solve for viscous flow around a blunt body system is to divide the shock

layer into an iwaviscid and viscous region. Basic textbooks on boundary

layer theory by Schlichting [63, 1966] and Rosenhead [42, 1963] deal

with the Prandtl boundary layer theory in which the inviscid solution is

matched with the viscous flow next to solid surfaces. In solving axisym-

metrical, viscous, compressible flows early methods required many

assumptions and results were only approximate. Recent availability
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of high speed digital computers has permitted more accurate solutions

in which functional and numerical methods are combined. The literature

on these methods is extensive. A few examples are given in [32, 1955;

41, 1959; 23, 1964; 28, 1968; 22, 1968; and 25, 1969] in which an

inviscid flow solution provides boundary conditions for the boundary

layers. Functional methods involve assumptions and provide only

approximate solutions of the inviscid flow. Hayes and Probstein [38,

1966] deal with methods of solving inviscid flow systems.

More accurate solutions of viscous compressible flows are

obtained by using finite differences to approximate the governing partial

differential equations of a system. In addition to the solution accuracy

gained by using numerical methods, flexibility is improved in repre-

senting boundary conditions. Numerical techniques were selected for

use in this investigation because of their accuracy and flexibility.

Numerical techniques -ind solutions are described in sections 2. 3 and

2.5.

In the study of numerical techniques, attention was focused on

their advantages and disadvantages for blunt body systems including

differencing and initial and boundary conditions. After studying the

literature, a class of explicit, time dependent, finite difference tech-

.Aques was selected to be used in this investigation. The reason for

this selection was that implicit methods involve simultaneous solutions

* of all nodal data points and are more difficult to program for a digital

computer than the straightforward explicit finite difference approach.
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For some systems, implicit methods require less computer time, but

implicit methods have not been successfully applied to viscous compress-

ible flows. For viscous flow around a blunt body, coordinate transforma-

tions are often used which complicate the governing partial differential

equation. The explicit finite difference technique lends itself to simple

treatment of these complicated equations. Therefore, an explicit, time

dependent, differencing technique was selected because of its greater

flexibility and mathematical simplicity. Another advantage of finite

differencing partial differential equations in time dependent form is

that these equations are hyperbolic regardless of Mach number. This

is especially advantageous for viscous compressible flows where there

are regions of mixed subsonic and supersonic flow.

In the explicit time dependent technique selected for use in this

investigation, dependent functionals, such as velocity and temperature,

are determined only at a finite number of locations which are called

nodes. A solution is started with initial values specified at all nodes.

"Later values are calculated by repeated application of the difference

equations that are analogs of the governing partial differential equations

for specific time increments. Boundary conditions must also be repre-

sented in finite difference form. Shock waves in the system may be

represented by the difference e..uations which spread the wave over

several nodes. Waves may also be represented as discontinuities in

which the Rankine--Hugoniot equations apply.

Experimental results of previous investigations were studied for

6
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comparison with those of this investigation. Only steady flow reeults

from wind tunnel experiments were available. A special effort was

made to obtain results for 2 ! M ! 4 where gas properties are related

by ideal gas equations.

2.2 Initial Values

2. 2. 1 Initial Bow Wave. Bow wave coordinates are required to specify

initial values. Moretti, et al. [51, 1968; 52, 1968; 53, 1968] used

relatively crude methods to initially estimate bow wave coordinates for

an inviscid solution. Viscous systems require small nodal and time

increnents which result in long computing times for convergence.

Therefore, a more accurate determination of the initial bow wave

coordinates was desirable in the subject investigation. An accurate

method of predicting bow wave coordinates was given by Moeckel [50,

1949] and Love [t6, 1957]. Their techniques involve a combination of

empirical and functional methods which are relatively simple to code

for a digital computer.

2.2.2 Boundary Layer. A method for calculating laminar compressible

boundary layers of a blunt body was needed in determining initial values.

Many methods were reviewed and rejected as either being too compli-

cated or too restrictive in flow conditions [32, 1955; 23, 1964; 27, 1953;

14, 1949]. The Cohen and Reshotko [19, 1955] results compared favor-

ably with the experimental boundary layer velocities of Wells and Blumer

[75, 1968]. Cohen and Reshotko present tables of a two dimensional

* solution for Prandtl Number = I and constant body temperature.

7



Pressure gradients are allowed from the infinitely favorable to the

adverse gradients of separation. Results are given for body surface

temperatures from absolute zero to twice the free stream stagnation

value. Recently, their tables have been extended by Christian, Hankey

and Petty [15, 1970]. The tables of both references involve the assump-

tion that the inviscid velocity at the edge of the boundary layer is

u = rxm (1)
e

Here r and m arf constants and X is the distance along the body sur-

face. In utilizing the tables, segments of the boundary layer were

matched to equation 1.

2. 3 Differencing Techniques

2. 3. 1 Introduction. Basic theorems for stability and convergence of

difference equations were derived by Courant, Fredricks and Lewy r20,

1928]. Von Neumann (73, 1944] suggested that hyperbolic partial

differential equations representing mixed subsonic and supersonic

flows could be solved by finite difference equations. Von Neumann

and Richtmyer [74, 1950] added a stabilizing term to their difference

equations to stabilize the numerical solution. Stabilizing terms have

been developed which do not seriously degrade accuracy except in the

vicinity of shock waves. Lax [44, 1954] systematically developed

differencing techniques applicable to strong shock waves, but the

waves are spread over several nodes. Rusanov £61, 1962] minimized

the stabilizing term used by Lax to improve accuracy. However,

8



Emery [30, 1967] reported that computations using Rusanov's technique

were unstable after long time periods. Aungier [1, 1970] developed

simple stabilizing terms as a variation of Lax's method and his results

for inviscid flows compared very favorably with those of experiments

and with those of the method of characteristics. Lax and Wendroff [45,

1960] reported a differencing technique of second order accuracy which

has been widely used both in its original and modified forms. Other

time dependent differencing techniques have been introduced by Godunov

[35, 1959), MacCormack [47, 1969] and Crocco [21, 1965].

After studying the available differencing techniques, the one of

Lax-Wendroff was selected for differencing the field equations in this

investigation. It was selected because successful applications have been

reported for both inviscid and viscous flow systems.

2. 3.2 Lax-Wendroff Differencing Technique. Lax and Wendroff trun-

cated a Taylor expansion to yield difference equations of second order

accuracy. The technique is described in detail in section 4. 3.2.

Burstein [12, 1965] used the Lax-Wendroff technique to solve

for the inviscid, two dimensional flow over a body with a square nose.

In his solution, instabilities occurred near the detached shock and

sonic line. Burstein eliminated the instabilities by adding stabilizing

terms to the Lax-Wendroff difference equations. Lapidus r 4 3, 1967]

calculated the characteristics of inviscid flow over a two dimensional

cylinder using a modified version of the Lax-Wendroff technique.

Lapidus also experienced difficulties in stabilizing his solution.

9



However, he developed stabilizing terms which were less complicated

than those of Burstein, and he succeeded in obtaining a solution. The

stabilizing technique of Lapidus is described in section 4. 5. 2.

Skoglund, Cole and Staiano [65, 1967) developed methods for

solving for the interaction of an oblique shock wave with a laminar

boundary layer. Additional stabilizing terms were not necessary to

achieve numerical stability for that system using the Lax-Wendroff

technique. Later, Skoglund and Gay [66, 1969) extended the work to

include separation of the boundary layer. Using the techniques of

Skoglund, et al. [65, 1967], instabilities occurred in the separated

region near the edge of the boundary layer. Numerical stabilization

was accomplished by adding stabilizing terms that were derived from

those of Lapidus [43, 1967].

Richtmyer and Morton [59, 1967], as well as Lapidus r43, 1967],

proposed a two-step, Lax-Wendroff technique. Values are obtained at

time t +A-- using the first order technique of Lax [44, 1954]. Values

at t = t+At are calculated using centered time differences based on
At

values at t +t-. Erdos and Zakkay [31, 1969] used the two-step,

Lax-Wendroff technique for solving an inviscid two dimensional flow

in the near wake region. They added a stabilizing term to the differ-

ence equations of their second step in order to obtain a stable solution.

2.3.3 Aungier Differencing Technique. Aungier [1, 1970; 2, 1971;

3, 1968] developed a version of the Lax technique to solve for inviscid

compressible flow about blunt bodies. His differencing technique is

10



V
described in section 4. 3. 2. The stabilizing term developed by Aungier

! is described in section 4. 5. 3.

2.4 Wave Fitting

As indicated by references [30, 1967; 39, 1954; 45, 1967; 65, 1967;

66, 1969; 74, 1950], representation of shock waves by difference equa-

tions results in spreading the wave over several nodes. For the blunt

body system, it seems better to represent the bow wave as a disconti-

nuity which satisfies the Rankine-Hugoniot equations. The latter tech-

nique is called wave fitting. An important problem of this technique is

the coupling of the wave to the digitt-ed field which is represented by -

difference equations. This technique was described by Richtmyer [64,

1961]. Moretti [52, 1966; 53, 1968; and 51, 1968] used a variation of

Richtmyer's technique for blunt body systems. His method is explained

in detail in [53, 1968).

2.5 Numerical Solutions of Blunt Body Systems

Solutions of blunt body systems using time dependent numerical

techniques became feasible with the advent of high speed digital corn-

puters. An early paper of Burstein [12, 1965] was on inviscid compress-

ible flow over a two dimensional, flat-nosed, blunt body. Free stream

values were used for initial conditions, and the initial bow wave was at

the body surface. The bow wave was represented by difference equa-

tions and was spread over several nodes. Burstein did not describe

the techniques that he used for the body surface and at the downstream

boundary. However, in an earlier paper £13, 1964), Burstein used a



reflection technique at the body surface and a backward differencing

technique at the downstream boundary. Reflection techniques involve

strings of nodes along the body surfaces and within the solid body.

Absolute values at the nodes inside the body are set equal to the values

at the first string of nodes outside of the body surface. Burstein used

a variation of the two-step, Lax-Wendroff differencing technique for

points in the field. Numerical instabilities occurred in the stagnation

region, near the bow wave and near the downstream boundary. The

solution was stabilized by adding stabilizing terms to the differencing

equations.

Bohachevsky and Rubin [8, 1966] used a Lax differencing tech-

nique [44, 1954] to solve for the nonequilibrium inviscid flow over a

variety of two dimensional and axisymmetrical bodies. The grid system

was extended well beyond the expected bow wave into the free stream.

The outer and downstream boundaries were treated in the following

different ways: (1) first derivatives zero, (2) second derivatives zero,

(3) reflection technique and (4) the boundary was left free. The results

were approximately the same for all of these techniques. They concluded

that the choice was unimportant as long as the flow at the boundary was

supersonic. Body surface nodes were treated using the reflection tech-

niques of Burstein [13, 1964]. Shock waves were represented by

difference equations. Bohachevsky and Rubin did not report any

trouble with numerical instabilities. However, their results were

inaccurate in the stagnation region. Bohachevsky and Rubin ascribed

12
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the errors to difficulties in differencing in spherical coordinates.

Later, Bohachevsky and Mates E7, 1966] extended the solution

to include angles of attack. Additional problems were increased corm-

puter storage, further decrease in accuracy and large computer outputs.

DeJarnette [24, 1966] also used the Lax technique to calculate invisr

nonequilibrium flow over a blunt body. DeJarnette limited his solut-

.to supersonic regions and relied on some other solution to provide

initial values downstream of the sonic line. Using a modified forward

differencing technique at the body surface, he reported that results were

more accurate than those of the reflection technique. However,

DeJarnette's results show large perturbations downstream of the sonic

line.

Although not reported by Bohachevsky and Rubin £8, 1966],

according to an analysis by Moretti and Abbett [52, 1966], the required

computer running time to calculate the flow around a step was approxi-

mately four hours on an IBM 7094. The number of nodes required to

provide good resolution of the bow shock was 3588 and results after

650 cycles were presented in [8, 1966]; however, Moretti and Abbett

SF maintained that in their opinion, convergence still had not occurred.

Moretti and Abbett represented the bow wave by a discontinuity.

Since resolution near the wave was not a problem, the number of nodes

in the field was reduced, and with fewer nodes, computational times

were greatly reduced. Moretti and Abbett calculated inviscid flows

over the forebody of various shapes. Initial values were obtained by

13



assuming a parabolic bow wave shape with the standoff distance being

calculated on the basis of curvature. Initial values at the stagnation

point were calculated by assuming isentropic flow behind the bow wave.

Interpolations were used for values in the region between body surface

and bow wave. Linear extrapolation was used at the downstream

boundary. Values at the body surface were calculated using the method

of characteristics. Mapping of the field into a rectangle was accom-

plished using a simple coordinate transformati-on. Moretti and Abbett

used a Lax-Wendroff differencing technique. In order to speed conver-

Sz2 f
gence, the -- ternm, was arbitrarily multiplied by 2. Accurate results

were obtained in the forebody region for two dimensional and axisym-

metrical flows. Computer times varied from 15 seconds to 6 minutes

on an IBM 7094 computer, depending on resolution. This vast improve-

ment over the computational times of Bokachevsky and Rubin is due to

a reduction in the number of nodes.

The foregoing report has served as a foundation for a series of

reports by Moretti and others. Moretti and Bleich r53, 1968] extended

the earlier techniques and obtained solutions for three dimensional

inviscid flow around a blunt body. Their techniques were identical to

those employed by Moretti and Abbett except that the need for a con-

vergence term was not mentioned. A typical running time was thirty

minutes on an IBM 7094 computer. A maximum of 594 nodes was used.

From the results presented, it appears that convergence occurred

within 300 to 500 cycles. Results were limited to the forebody region

14



because of limited computer storage. Later, Moretti r51, 19.8]

improved convergence and accuracy of the results of [53, 1968] by

using spherical coordinates. This dependence of stability, convergence

and accuracy on the coordinate system confirmed the findings of

Bohachevsky and Rubin.

Moretti and Salas [54, 1969] extended the technique of Moretti

and Abbett [52, 1966] to include viscosity and thermal conductivity.

A nonlinear coordinate transformation was used to increase resolution

of the boundary layer. The calculations of Moretti and Salas were

limited to the forebody region of a two dimensional, circular cylinder.

They used Lax-Wendroff differencing techniques in polar coordinates.

In all cases, body temperature and viscosity were constant and Mach

number was equal to 4. Reynolds numbers, that were referred to free

stream conditions and body radius, ranged from 10 to 10 A typical

computing time was 4 minutes for 1000 cycles on a CDC 6600 computer.

The number of cycles varied from 560 for Re ! 5000 to 1500 forI iRe > 5000. In that time, convergence was not yet complete, but

Moretti and Salas considered the results acceptable. Later, for the

same system, Moretti and Salas [55, 1910] abandoned the Lax-Wendroff

differencing technique in favor of the predictor-corrector one of

MacCormack [47, 1969]. An equation written in terms of was used

instead of the continuity equation. Even though coding was simplified,

the reduction in computing time was not significant. Although no insta-

bilities were reported, Moretti stated in a private communication that

15
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instabilities occurred if the flow was not accelerating at the down-

stream boundary.

Scala and Gordon [62, 1968] obtained a solution for viscous

compressible flow around a two dimensional cylinder using, an explicit

time dependent technique. Their technique involved a sligbt variation

of the Crocco differencing technique [21, 1965]. The bow wave was

represented by finite difference equations. The total number of com-

putational nodes was large in order to achieve adequate resolution in

the boundary layer. In one solution case, 637,000 nodal computations

required twenty hours of IBM 7094 computer time.

Godunov [3S, 1959] developed a time dependent iechnique which

is supposedly an optimum combination of characteristic and difference

equations. Godunov represented tne bow wave by a discontinuity; how-

ever, in his calculations of the inviscid flow over a blunt body [36, 1961],

the results were inaccurate near the stagnation point and the bow wave.

Masson, Taylor and Foster (49, 1969] deduced that Godunov's treatment

of the bow wave and body surface was incor tect. They obtained much

better results using a slight variation of Moretti's technique for the bow

wave and body surface. However, their results at and near the stagna-

tion point were still in error. Aungier f1, 1970] also concluded that

Godunov's technique does not properly represent physical conditions

along stagnation streamlines of axisymrnetric flows.

Lapidus [43, 1967] solved for the characteristics of inviscid

flow over a two dimensional cylinder. Initial values including bow wave
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coordinates were taken from the results of Swenson [69, 1964]. An

unusual coordinate transformation was used to obtain a rectangular

field. The bow wave was represented by difference equations. A two-

step, Lax-Wendroff differencing technique was used for interior nodes.

Instabilities occurred when linear extrapolation was used at the down-

stream boundary in early stages of the computation. Computations were

stabilized by using an arbitrary technique for the initial 500 cycles.

After 500 cycles, linear extrapolation was satisfactory. Instabiliies

also occurred near the stagnation point and near the bow wave that

were similar to thcse reported by Burstein [12, 1965]. Lapidus used

a simpler stabilizing term than the one used by Burstein. The difference

of his resnlts is as much as 30% from the more accurate ones of Swenson,

even though Swenson's technique was used to calculate initial values.

Aungier ri, 1970] assumed that the initial bow wave was very

close to the body and that its shape was the same as that of the body.

Rankine-Hugoniot relationships and isentropic flow equations were used

to obtain initial values in the field. Linear extrapolation was used at

1 the downstream boundary. Forward differencing in terms of body

related coordinates was used at the body surface. The field was seg-

me-nted and a steady state was achieved in one segment before computing

the next segment. The bow wave was represented by a discontinuity.

Aungier was able to carry his time dependent inviscid solutions into the

afterbody region. He reported that, within his knowledge, his time

dependent solution was the first successful one for the afterbody region.
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After deciding to use explicit, time dependent differencing tech-

niques in this investigation, other numerical methods for blunt body

systems were of little interest and are described only briefly. Van

Dyke [72, 1958] gave a good survey of the early indirect inviscid

methods in which the bow wave shape was assumed known and body

shape was then part of the solution. A more accurate, but complicated,

solution of a two dimensional, inviscid, blunt body system was given by

Swenson [69, 1965]. Inouge and Lomax [39, 1962] solved for the

inviscid flow over several blunt body shapes using an indirect method

in the forebody region where the Mach number was less than 1. 03.

This solation was then used as a starting point for the method of char-

acteristics for the remainder of the field. Calculated body pressures

agreed closely with experiment in the forebody and afterbody regions.

Slight deviations of calculated and experimental results occurred in the

vicinity of the forebody-afterbody junction.

Dorodnitsyn [26, 1957] proposed a numerical method for non-

linear flow equations which he called the method of integral relations.

This method has been used by many investigators for inviscid flow

[71, 1960; 70, 1963; 11, 1964; 6, 1965]. The method has an advantage

oi being direct, so that the bow wave coordinates are a part of the solu-

tion. Unfortunately, the method becomes extremely complex as the

resolution in the shock layer is increased and, therefore, seems imprac-

tical for visc-)us systems.
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2. 6 Experimental Results

A large amount of experimental data has been collected for the

flow over blunt bodies. However, reports containing data of both the

body surface pressures and coordinates of the bow wave are scarce.

Baer [4, 1961] conducted wind tunnel experiments on an AGARD Model

E hemisphere cylinder configuration. Free stream Mach numbers

ranged from 2 through ** while Reynolds numbers varied from . I7x] 06

to . 51x10 6 per inch. In this report, coordinates of the bow wave are

specified. In many other reports, only unscaled schlieren photographs

are available.

Inouge and Lomax [39, 1962] summarized experimental results

of Kendall [40, 1959], Kubota [42, 1957) and Baer [4, 1961]. Graphs

of the bow wave, as well as body surface pressure distributions, for

a hemisphere at M = 4. 76, hemisphere cylinder at M = 7. 7, sphere

cone at M = 4. 95, and a blunt ellipsoid-cylinder at M = 5.12 are pre-

s ented.

Pressure distributions over hemisphere-cylinder bodies were

given by Reichle [56, 1962] for Mach numbers varying from .4 to 5.0

and Reynolds numbers from. 36x10 6 to 1. Zxl0 6 . Unfortunately, bow

wave coordinates are not available in this report. Cleary [17, 19651

measured pressures along several blunt cones at M = 5.25, 7.4, and

10. 6. In addition, pitot pressures were .-ieasured in the shock layer

for a 150 half angle blunt cone to study entropy layer thickness.

Hasting, Parsh and Redman [37, 1957] measured body surface
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pressures of flat faced cones and provided schlleren and shadow photo-

graphs of bow waves.

Experimental body pressures were compiled by Clark [16, 1966]

for Mach numbers from 1. 9 to 22 for spherical forebodies. Empirically

correlated afterbody surface pressures were given by Eaves [29, 1968]

for Mach numbers from 5 to 10. 2. Forebody shapes consisted of hemi-

spheres, flat faces, and round shouldered flat faces. Bow wave coor-

dinates are not available in those reports.

Complete experimental boundary layer data are not available for

axisymmetrical blunt bodies. Boundary layer velocities were measured

by Wells and Blumer [75, 1968] for a hemisphere at M = 2, Reynolds

number per inch from . 05xl06 to . 5x106 and central body angles of 30,

50, 70 and 90 degrees. Total pressures were obtained with a pitot tube

that ias normal to the body surface. The reported uncertainty of the

parameter yD I Re D was + 3 percent. Here, y is the distance

normal to the body surface, D is the maximum diameter of the body and

Re D is a Reynolds number based on free stream static conditions and

maximum body diameter. Body surface cooling was provided so that

surface tem'peratures approximated the wind tunnel stagnation tempera-

ture to approximate an adiabatic body surface condition.

2.7 Summary

For inviscid flow, Aungier [1, 1970) was successful in obtaining

thie dependent solutions in the afterbody region of a blunt body. His

results agree closely with measurements and those of the method of

zo



characteristics. However, inviscid solutions of blunt body systems

cannot provide boundary layer and heat transf-;.r information.

Solutions of vlscnus flow about blunt bodies have been limited to

two dimensional circular cylinders. In the case of Moretti and Salas

[55, 1970], solutions were restrictsd to the forebody region with

central angles less than 700 and with constant viscosity. Their treat-

ment of bow waves as discontinuities reducAd the computing time. The

solutions of Scala and Gordon [62, 1968] required excessive computing

times and were not verified by other methods. No viscous flow solu-

tions were reported in the literature for the afterbody region of axi-

symmetrical bodies.

Experimental data are sparse and are not adequate for precise

engineering. The most complete presentation of body preswuues and

bow wave coordinates was given by Baer [4, 1961] for a hemisphere

cylinder. For blunt bodies, the only boundary layer experimental data

found in the literature were those of Wells and Blumer [75, 1968).
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3. THEORY

3.1 Introduction

3. 1. 1 System. For purposes of this investigation, a system is a

specified section of matter that is being considered in a particular

problem. The specifications of a system include initial values and

boundary conditions.

Specifications for supersonic flow about a blunt body system

are given in figure 1.

r
.vSystem Boundaries

'- Bow Wav
II
II

T b constant

Free Stream: Axisymmetrical
M 0 od

Gas Compo-
sition:

Initial Condi-
tlone:
Bow Wave
rw(x, 0)

Field
fi(x, r, 0)

Figure 1. Specifications of the Blunt Body System
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In developing time dependent numerical techniques, Independent

f variables were x, r, t, and dependent variables were the radius of

the bow wave rw(x, t) and field variables ft(x, r, t). Boundary conditions

were those of the free stream and body surface. Initial values rw(x, 0)

and f.(x, r, 0) were estimated to approximate steady values.1

3. 1. 2 Scope. The problem was to calculate rw (x, t) and fi(x, r, t) as

t -. -. The viscous compressible flow equations were the basis of cal-

culations. The purpose of this chapter is to present the theory th•..

was used in developing numerical techniques, including the basic

differential equations, coordinate transformations and the method of

characteristics.

3. 2 Basic Differential Equations

From r64], the vertor form of the basic, viscous, compressible

S* flow equations are:

2)-O + (P) 0 (2)at

S = B + V - •(3)

SQ- " + V ." v(4)

where: pis density

t is time

V is velocity

B is specific body force per unit volume which it negligible
- ~ in systems of this investigation.
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- -pI + Ois stress dyad

p - pRT is pressure

R is a gas constant

T is temperature

I is idemfactor

2- ) V V]I + Z;j is the viscous stress dyad

SS - =$ A

t; is bulk viscosity which is negligible in systems of this
investigation, [10]

14 is shearing viscosity

V (VV + VV) is a rate of strain dyad

V V is the transpose of VV

s is entropy

Q = - k VT is heat flux

k is thermal conductivity.

Conversion from vector form into orthogonal curvilinear coor-

dinates -s; accomplished using the following equations:

V =h. •( (5)
((5)

VV A- (6)

t v)(i)

hhh 3  (hh (7)
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MO "--

= ad Vh (8)ax+ h<+ Cx a Ot a

. where: repetition of the English indices i or j without parenthesis

implies a summation of that term with indices 1, 2, 3

h. is a scale factor of the coordinates4 I

is an orthogonal curvilinear coordinate

6 is the kronecker delta.

3. 3 Coordinate Transformations

3. 3. 1 Introduction. To simplify the solution of the blunt body system,

body related coordinates X and w were used. In terms of them, the

entire surface of any body is specified by wb =0. In the numerical

j solution of equations 2, 3 and 4, a concentration of nodes in the bound-

ary layer and near the stagnation point i. desirable for accurate resolu-

tion of those regions. This was accomplished with nonlinear coordinate

transformations. In addition, treatment of the bow wave as a disconti-

nuity was simplified by representing the bow wave as a grid line.

3.3.2 Body Related Coordinates. The body related coordinates X.

and w are shown in figure 2, where X is the distance along the body

from its nose and w is the perpendicular distance from the body surface

to a point in the system.
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X

2• Tangent to Body

fx

I

jI

Figure 2. Body Related Coordinate System

At any point, the lines X. = constant and w = constant are perpendicular.

19 is the angle between the unit vectors A and A. The body curvature is

dOL

The scale factors are:

h h x= 1+ xw

h 1 (10)

h =r
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From figure 2,
A

r(X w) f sinO dX + w coB s
0

x(X, W) = Jcos 0dX - w sin
0

In an axisymmetrical system, velocity

V =ux + vCZ (12)

3. 3. 3 Nonlinear Coordinate Transformations. In the numerical

analysis of a blunt body system, greater resolution is required near

the stagnation point and body surface.

Skoglund, Cole and Statano [65] and Statano [67] demonstrated

that nonlinear coordinate transformations of the differential equations

yield satisfactory results for the interaction of an oblique shock wave

and laminar boundary layer. The logarithmic transformations of

Skoglund, Cole and Stalano were tried for the blunt body system.

They were later modified, so that the bow wave was represented by a

grid line. This simplified coupling of the bow wave to the digitized

field.

The coordinate transformations that were used in the solution

phase of the subject investigation are:

= n(1X + 1) (13)
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,)n + 1 (14)
w

where: •w(X,,t) is the bow wave coordinate

a and P are constants

f it, , = {f i , ') V

For equal increrrents of AC and Av, these transforr entrate

nodes near the stagnation point and body surface. The L Ave is

zepresented by the grid line v = Vw constant.

3.4 Transformation of Differential Equations

3.4.1 Introduction. The basic flow equations with diffusion were not

available in the literature in terms of body related coordinates. The

simplest method of expressing equations 2, 3 and 4 in body related

coordinates is to use the scale factors of equation 10. A more tedious

method is to use the chain rule for a total derivative. As a check,

both methods were used. In these derivations, the inviscid and diffu-

sion parts were treated separately. After expressing equations 2, 3

and 4 in terms of body related coordinates \, w and t, they were

transformed into C, v and r using equations 13, 14 and 15.

3.4.2 Inviscid Equations. For inviscid flow, 0 = 0 and Q = 0. In

transforming equations 2 through 4 to a dimensionless form, reference

variables are the maximum body radius ro, free stream acoustic
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peed ao density pop temperature T and dynamic viscosity gI" In

previous investigations [13, 43, 65, 66, 67], numerical stability was

improved by usinj the following variables:

p

m = Pu

n = pv (16)

E p L~.l) ~

where E is energy per unit volume.

In this investigation, an entropy equation was u*,- instead of an energy

equation. In that equation, the specific entcropy per unit volume

S = ps. By combining equations 2 through 12 and eliminating the ref-

erence variables, the axisymmetrical, dimensionless, inviscid flow

equations are of the form:

fi, t h + + Bi, i= 1, 2, 3, 4 (17)

where

Pp -p

in p P

S mS
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x n
-n -" - pe

mn 2x
- -- mn - me

np S o2- oH= nB=)
n2 -"-'ep~,S) x2 2

x (-" / ;-h" (n -m)- ne00

p phO(nS . .Se
p ph Se00

econr (m svn 8 + n cosfo ea

The symbol e is uned because this term appears in the rite of

strain tensor.

In cartes ian coordinates, the conservative form of the flow equa-

tions is ft, t =t, x hi, y" Lax and Wendroff [45] demonstrated that

the difference form of that equation satisfies the Ranktne-Hugoniot re-

lationships for a finite element and that truncation errors of these dif-

ference equations are dissipative. Equation 17 is in conservative form

except for the B term.

From equations 13 through 15,

ft =kf + f IV (18)

f =kf -kf (19)
A 2, 3 d

f = k4f v (20)
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k (2z)

k where:k = pe(C'• w (23)

3 2 W

Ww

k4 = xe (24)low

From equations 17 through 24

k 2 k3
fi, t klf i, P "•Git C h "• G , 1. k 4 H i, Bi 125)

3. 4. 3 Viescous Equations. Viscous flow equations 2 through 4 have

the form

2 L3

fi,, k 1" kf i, + 7hC it "h G t, + k 4SHt, + B 1 •01 (26)

i where •01 0

AA
+w

•04 Q+O:7VV

(24

The derivation of these terms in body related coordinates was lengthy.

A few examples of the procedures are presented here. From equa-
tion 6,1 r

k31
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I

= (u~(V +, X4 .I + -, (z$ +
h IX h ,x h

(u ), + (v )1U + -1 (u sin 0 + v coo gi•
w w r

Using the transpose of equation 27, the elements of the rate of strain

tensor are:

e.= (u + xv) (28)

"11 uxueXA W soX i(tvx e -" (29)

e vW(.) ,W(

e i(u sin O+vcos O) (31)
(o•P r

From equations 7 and 8,
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(T-) = Me +e (3)]hI
+ rT(e" +eQ) +-(Te e(]

WX ow ,w r (Pp

Tx

= h(Te, + +, (, +
hh (Te Ix hw w

+ -(e sine +e cos e- e sin )IX1r leX Xw 41(

+ [L(Treo, 'X + (T WWO), W +"-e - e)

+ T sin e + e coscos- e coB (32)r (ew'O ewt (P p

By similar methods, the diffusion terms of equation 26 are:

( = 0 (33)

2 e -(To 3 (Te-00),x

(2 Re h XXw

+ 4Te +2(Te + 2) T (sin e + cos e
X]o X ,w r wX eco

- sin 8 e) (34)

0 (MoC T + 4T (T
(P3 =Re 0 '(ek ) wo "3( lO), wo 3 "3(eo0) w

2 2ZT
+ (Texox +"•-T(e - e X + -(sin 0 ex

+coo I a - cos 8 e (35)
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4r'••X '•''- •~4WI ' •j ~ *~'e•Y4'.•f '*"-• ' •h5 ~ ='T' ''.' • ~"z~q 4 z ,-" 'bX• • . -/ ';•: '.. •_ .• , -• - -•• ;" -. • ,

M 0
- o 1-h-r (TT ), + (TT(P4 =TRe IPr - h 2 1X ,•), OW

+•(TT.)()X + T + -L.(T s

4 2 2 2
+T I cos 0)] + Y(Y - Il)T [(e). + e.WW + e.

-e e -~eXe - ee) + 4 e 2J1 (36)

where: M = free stream Mach number
0

Re is free stream Reynolds number
o N

Pr = -s is Prandtl number

C6 = 1 in this investigation.

From Sutherland's equation [63],

Ts +xsu _rC = T s- • T-
CA'T' + x

b su s

x Sutherland constant = 198.60 R for air
su

"= stagnation temperature

"Tb body temperature

In transforming equations 33 through 36 into coordinates • and

v of equations 13 and 14, the 3econd derivatives are:

f = k2(f - f) 2k Zkkf -kftXx 3 it V tV 2 3 i, " 5 1i, V

+ k 2(f1  f1 ) (3?)
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S..,

f1 k)f (38)

ft.W k Jt' - Lft, V)+1 3k4 (fj'V -fIt (39)

where: k2 k3 , k4 are given in equations 21 through 24.

k ,€€ ' C C) (% (40)

Complete difference equations were not. derived. It was simpler to use

equations IS through 40 directly r. computer codes.

3, 4.4 Equations Along the Stagnation Streamline. Equation 26 it

indeterminant along the stagnation streamline where 0 hecause B

and 0, approach. am r approaches 0. For symmetry about the stag-

nation streamline,

f 0 f t. 00f. o, 0 x f =0 i to 3v 4 (41)

For 1 2,

u u 0,, u 0, u .) 0 Uz 0 (42)

L'Hospital's rule is that if fl(A,) and f,(%.) -. 0 as). 0, then

X-0 •z~x~j X-00z,.

In the following example of the application of 1 'Hospital's rule, at

00). , e.e#n +•=-rus@+vco@8). At).% 0. r0, uO, 0. w/2and
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S sin O+ucose0--+V "v cose-vsine-- d
limit -U dX d)

sin -w sin 9 -d '

dO
From h = 1 + Iw = 1 - (•)w,

[(u + xv) sin 8 + (v - xu)Cos )

lmt hsin ] e )L.A. = 0

By similar modifications of equations 17 and 26, at X = 0

S0 -n

e x exp () 0
V p

C;H 2 ~

0 -i exp(:)

p V P

0 -Sn
p

(44)

xn,-7-'•- pe ,X -pu, x.

S0 0

-- n nex G,) -nu,,
p ýh -x x

xSn
"R- -- Se -Su
ph XX,
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q02=0

M C
0 £$4rTe(T

(P3 Re 3 L W'e 4 ",W

÷Z .T I .+ 4xT }(4 5)
h (•,XX + ', w ,\oX h ('ww •..

M o C I 2T 2 xcT
-°yI-T"2-T-+-÷Tz ÷TT T_

04 TRe° Pr[Lh2 ", X)x , ow , IW+ h , W

(1 +.)] +4(vy - 1)T(e - ex, 2 I

Other terms of equation 26 do not require special treatment.

3.5 Method of Characteristics

Since the system is time dependent, the bow wave moves. In

determining bow wave speed, one equation is needed in addition to the

Rankine-Hugontot relationships. The additional equation was obtained

by the method of characteristics. In the following, the technique of

Moretti and Abbett [52) is adapted to bedy related coordinates.

Let w w(X,\t + At) be the point where the w coordinate intersects

the bow wave at time t + At. In this section, the orthogonal coordinate

frame of figure 3 with origin at ww (X, t + At) is used.
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As shown in figure 4, the boundaries of the blunt body system are

A B C D E F A. As indicated, the coordinate w of the bow wavet varies with respect to X and t. Equation 14 implies that the bow wave

coordinate v is a constant and is not a function of C or r. In the

digitized field of figure 5, ts = constant is one of the boundaries.w

Transformations of cylindrical coordinates to C and 0 were specified

in equations 11, 13 and 14. The determination of a and P of equations

13 and 14 is described in section 4.2.2 because of their dependence on

inittal values.
4

4.2 Initial Values

4.2. 1 Initial Bow Wave Coordinates. Initial values of bow wave

coordinates were calculated using the method of Love [46). The

method involves a combination of uinctional and empirical analysis

which assumes that the bow wave is hyperbolic, so that

r(~+X)21/2

S~where: •a distance from the most forward point on the bow wave toa

an intercept of its asymptote with the x-axis

= distance from stagnation point to an intercept of the bow
* w

wave asymptote with the x-axis

M = free stream Mach number.
0
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A characteristic variable P(17,t) is introduced so that

df
f "-A (52)
,t d. t

f = (53)

Substituting equations 52 and 53 into 50 and 51,

dv
pt dp + V ,i d + d- C1 (54)

dv dv

,t Yp +v 1i + dd pV d- c2 (55)

where: c1 = -pvv - v p

cz =v 4v

The determinant form is

(o +v p ) PV, C

(56)
dv

.] (f +v p ) 7 c
,PV ,i ,7t 17,? do 2

In accordance with the usual method of characteristics £33], the left

determinant is set equal to zero. The result is

, + (v a), 0 (57)

One solution of equation 57 is the characteristic

- (V3 a)t (58)
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F.I
For • constant,

d_.. -a ()9)
dt 1 7=

From equations 50, 51 and 59 a compatibility equation Is

dv
"A2) - =,a--.. 0a (60)
"dt " dt " t0

where a =- -pv vp + ypavvI v

In chapter 4, equations 117 through 127 are the basis of a wave fitting

technique which couples the bow wave to the digitized field.

In this investigation, the method of characteristics was also

used to derive an inviscid boundary equation at the body surface in

terms of body related coordinates. With w normal to the body sur-

face, w replaces 17 and v replaces v in equations 59 and 60 so that

Sv - a (61)

- ,a =t P 'W (62)

2u ,Cu u
where aw ypa r-v . -h-p, X Ypp(e +e )

The value of c in equation 62 iL indeterminant along the stagnation

streamline. Using the technique of section 3.4.4, at X = 0

w= -2ype X (63)
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4. NUMERICAL TECHNIQUES

I4.1 Introduction

In this investigation, the transformed, viscous, compressible

flow equations of section 3.4 were solved numerically by converting

them into a set of difference equations. The solution was started with

initial values at all nodes and involved boundary values, equations for

interior nodes and equations along the stagnation streamline. Those

equationfi are presented in this section. The sequence and relationship

of computer operations are presented in section 5.

The following terms are used in the description of numerical

techniques. A system is the specified section of matter that is being

considered in a particular problem. The specifications of a system

include initial values and boundary conditions. A field is the interior

part of a system at a specified time. It does not include boundaries.

The dimensionless, independent variables are C, v and r as defined

in equations 13 through 15. Nodes are defined by specified values of

C and v. The increments AC and &v between nodes are constant.

Intervals are changes in time Ar which are approximately constant.

A cycle is a set of computations for all nodes at a single time. An

iteration is one step of a successive approximation at a single node and

time.
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As shown in figure 4, the boundaries of the blunt body system are

A B C D E F A. As indicated, the coordinate c-j of the bow wavew

varies with respect to X and t. Equation 14 implies that the bow wave

coordinate v is a constant and is not a function of C or r. In the

wwdigitized field of figure 5, v w = constant is one of the boundaries.

Transformations of cylindrical coordinates to C and iv were specified

in equations 11, 13 and 14. The determination of a and P of equations

13 and 14 is described in section 4.2.2 because of their dependence on

initial values.

4.2 Initial Values

4.2. 1 Initial Bow W ve Coordinates. Initial values of bow vfave

coordinates were calculated using the method of Love [46). The

method involves a combination of functional and empirical analysis

which assumes that the bow wave is hyperbolic, so that

rw(X, O) = 1 jla (64)

0

where: ta = distance from the most forward point on the bow wave to

an intercept of its asymptote with the x-axis

S= distance from stagnation point to an intercept of the boww

wave asymptote with the x-axis

M = free stream Mach number.
0
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Love empirically determined the parameters a and w and tabulated
a w

them -,s functions of body shape and free stream Mach r.umber.

4. 2. Coordinates of Nodes. Equal increments of AC and Av were

used in computations to establish the location of nodes. The relation-

ships between C, v, " and indices I, 3, K are:

C (I - l)AC (65)

V = (3 - O)A• (66)

7!K+1= 1"K + A'r (67)

Cylindrical coordinates x(I, J) and r(I, J) of nodes were determined

from equations 11, 13 and 14.

In starting a viscous flow calculation, the number of nodes in the

boundary layer and the total number of nodes betveen the body surface

and bow wave were selected. Staiano [67] found that at least six nodes

were required in the boundary layer for acceptable accuracy. The

minimum boundary layer thickness is at the stagnation point. From

**/,i the boundary layer displacement thickness at the stagnation

. ., axisymmetrical flow about a blunt body is

6* A(gb) b .2 (68)
b eapb ue,X T b

where: A(gb) = the tabulated function of £183

gb = (T"
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Re 0 0 0
a AO

sul,.cript a is for free stream stagnation condt,!ons

subscript b is for the body surface

subscript e is for the edge of the boundary layer.

Using experimental data, Boison and Curtiss £9] derived an empirical

equation for the stagnation point velocity gradient u Combining it

with equation 68, the stagnation point boundary layer displacement

thickness is

t1 •1/2
* _____C_ X 1/4

6 b T (69)

where: X' = value of X for p ep = .95

ps = stagnation point pressure

JA = C AT.

From Schlichting r63),

Woe P 36* (70)

where w e is velocity thickness of the boundary layer.

Using the Newton-Raphson iteration technique, the parameter f of

eqiuitlon 14 was calculated from

elAn(# + 1) - eIn (2 + 1 0 (71)
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where: e1 = number of increments in the bondary layer at the stagna-

tion po-it

e = number of increments for the stagnation streamline

d = standoff distance of bow wave.
w

In a similar manner, the parameter a was calculated using

e.Wn(OOL + 1) - e An(aX. + 1) = 0 (72)

"where: X . = value of X at the junction of the forebody and afterbody

X't = value of X at the downstream boundary

e. = number of increments for the forebody

e A = number of increments for the entire body surface.

4.2.3 Boundary Layer. A simple method wi not available in the

literature for calculating initial values in the boundary layer of an

axisymmetrical body. From an extensive review of the liter,,ture,

the two dimensional, similarity solution of Cohen and Reshotko [191

was selected as the best available ':asis for calculating initial values

in the boundary layer. The transfcrrntion of Mangler [48] was used

to adapt the two dimensional solution to axisymmetrical flows. The

necessary boundary values wer-. u , e' pe and T. The pressure

pe(X) was approximated using Lhe results of Clark [16]. Assuming

isentropic flow along the outer edge of the boundary layer, u (X),
e

Oe (X) and Te (X) were easily calculated for each value of X (I). The

results of Cohen and Reshotko [19] are tabulated in terms of a
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compressibility factor C and the body surface temperature factor gb

of equation 68.

Zee

c (IF) + I (73)

where: IF = nodal index of the forebody

-ST (r a aprdX

C dX s b e e eue fae erb
0

rb(x) = body radius

The assumption in the afterbody region was that P = 0. Having corn-

Sputed Pc and gbp values of 77, f(i7), f'(71) and g(tj) were obtained from

the tables of [191. In terms of them, initial values in the boundary

layer were:

- f (7) (74)

0

.> drb wu
v =rbv -- (75)

by dX, rb

T Gl+-e1 l +g(l)] - 1 LMef'(77)] 2  (76)
T 2 e 2 e

where: w rbseaeLz

r b\p 17(ýaCe a e) cf() +(7) I (yR PI 0)
a p j AsM P 1/'

v C4

y £ ~ :?f'() -f())478



FX
X C-(a r dX (79)

0

f'( e = 995

M Mach number at w.
e e

Equation 79 is a combination of transformations of Mangler [48] and

Stewartson [68]. In the computations, derivatives were approximated

by centered differences, and integrals were approximated by Simpson's

rule. Values at nodes were determined by linear interpolation with

respect to w.

4.2.4 Initial Field Values. The initial bow wave coordinates were cal-

culated using equation 64. The Rankine-Hugonlot relationships were

used to compute initial values of fi(X, w, 0), assuming wave speed

equaled zero. This provided initial values for fi((X, ww, 0). Utilizing

initial values at w e and ww , by linear interpolation

fi()., 0) = fi(X, W e' 0) + C W[f (X., Ww, 0) - fi()h, We' 0)] (80)

where C = (W - W e)/(W W - We).

For viscous flows we was at the edge of the boundary layer. For

inviscid flow W = 0.

4.3 Field Equations

4. 3. 1 Introduction. Implicit and explicit numerical solutions of

equations 2 through 4 are often complicated by instabilities. Many

techniques for solving them are available in the literature [1, 5, 8,
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21, 45, 47]. All of the techniques that were used in this investigation

were explicit and time dependent. No previous solutions were avjab•1

in the special ccordinates of this investigation. The differencing tech-

niques that were used were patterned after those which had been satis-

factory for blunt body systems. All of the techniques of this investig&-

tion were of the form

f(, ,1- + All file, v, r) + Arfir( ,,,, r) (81)

+• (i. vr ¢, r) + •

where: is an arbitrary stabilizing term that is described in

section 4. 5

f, T(C' , "r) is given by equation 26

fi, "",' r'1) is derived in section 4. 3. 2

Depending upon the particular technique, some of the terms of equatit"

81 may be zero.

4. 3. 2 Lax-Wendroff Technique. On the basis of previous results £$4.'

65, 66] and those of this investigation, an extension of the Lax-

Wendroff differencing technique [45] was used to solve viscous com-

pressible flow around a system with an afterbody. The main feature

of the technique is the approximation of fi, rr in equation 81. Since

u W u(I, 0,
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y,~~~tx k~( 1 ,2 f f k f1 , + 2k f1 . (82)
_, - e.r/. v .,tt)X t p i, v 6t

where: 2 wW,t -W ,tt)fi,,

w

f, r kly ( f, +• "o ti )
1, 1 1 v W fi,

w

h i -

L3 +G h + kl(l V)

h?

+ B '• k• 2 w ,

Based upon the results of [65], an adequate approximation of fi, tt to

obtained with 0, = 0. From equation 17

S= I.(a f + (bjfj t cf (83)i'(ftt XWO h ij J, t ,), i+ J•t W qt (

b G 1 aHt i B i

where: aj =. ; b •fj ctj f i i f. ' -ij afij
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By expanding

0 -0 0

u +z-(s - y) -Zu 0 T

a.. = 1 (84)

uv -v -u 0

su -s 0 -u

0 0 -1 0

uv -v -u 0

b.. = 2 T T (85)
v +- (s-Y) 0 -zv --

Y V

sv 0 -s -v
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By expanding equation 83,

1 87
f =(-a +b + c.)f. (87)i, tt hbjX ij, W t

a.. 1 1
t--I G ~ G h +H. + BjX+h •hjkhZj, x h) , x X Hi, A) Bj,X

+b G G -- G h +H. +PB j,
ijh .,i h0 j", ,W JWW 3,

The jacobians ai, b j and c.. were differentiated explicitly to avoid

storing them during computations. For example, from equations 19

and 84

a3 v(k u -"k 3 u,) +u(k~v, " k 3v,)

An example of the differentiation of G, H and B is that

G 39X k 2 G3,C k 3 G3,

4. 3. 3 Aungier Technique. The differenring technique of Aungier £1)

was used to check the derivation and computer coding of boundary and

field equations. The technique is a variation of one proposed by Lax

[44) and is of first order accuracy. In it, f 0 and 0 in

equation 82.

4.3.4 Approximations of Derivatives. Approximations of the deriva-

tives that evolve from equation 81 were those of equations 18 through

24, 37 through 40 and the following:
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-DC(I-1T [*i(f1(C + ACTh'T) " f1(C - aC. v.-)] (88)
1f, T) [f (C-• f(¢ + ACv r) -Vo(l-)-]v,• (88) ,

f f (r v + A , ,r)(- f(C V AV, T)] (89)ii 2Av i

SC c (C, V iT) C f (C + A C, VT) - 2f-(C, , Tr)

Sf i( , - A C,L V,)) (90)

f V-A 2 i' (, + AV, T) V f(,T~)

+- i( AV, r)1 (91)

1
.•, •(, Vr) = 4 vCf.(C + AC, v + Av, r) -

f.(C + AC, - AV, T) - f.(C - AC, V + Av, r) +

f - AC, - AV, 0)] (92)

0 -- W (X,•t + At) - W(,(X0t)] (93)•"W, t At w

tw, tt = [ Ecw, t(Xi t + A•) - w,' t)] (94)

dQ
Because X= -TX is discontinuous at the junction of a hemisphere-

cylinder, the approximations of derivatives at the junction were not

compatible with those at nearby nodes. To avoid this problem, an

average curvature
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x() = [ - ZAC) + (C - AC) + 4x(C) + x( + AC)

+ x(C + ZA)] (95)

was used at all nodes.

As illustrated by figure 6, there is no discontinuity in x .

Junction

S• dO

x = -" of a hemisphere-
dX cylinder

x of equation 95

0
0 X.J

Coordinate X

Figure 6. Curvature x of a Hemisphere-Cylinder

4.4 Equations Along the Stagnation Streamline

Along the stagnation streamline where u = 0, special equations

are:

f, (0,,") kl, h + +k H +i, Bt + (Pi 196)

f, = kl(fi, " f- + fiV W w iV
w

1G+h k4 + k41H - 1 + B (97)
h(Gi h 4 H1, i, 1,
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S+ ci)f

(ftt)X W0 T aj,) X bii, W j

1 /t
f. a

"hm, X. + h j,XX hG ,

+I ( 1-0 j

+j X +B,)+ bij(hGj,Xw

-'--G. h + B.) (98)h 2 j,• • Hj, WWo J, W

Sun nuX -3pu e (99)X,)t "'hP, XX. u, ., e nu, X• ,XeX

0o o -2.0
h

•0 0 0 0

- ij = xv 3xv 0 (100)

Sv -+e ) 0 -- - + e)s(t+eXX) 0 Xh sh e, X)

The jacobians a and bij of equations 84 and 85 are unchanged. The

derivatives f, V and f. , VV were approximated with the centered differ-

ences of equations 89 and 91. The derivatives fi, X, fiX.£ and fi, XW

were approximated using the symmetry conditions of equations 41 and

42, so thaet for all variables except m and u,

f, =f = 0 (101)

ft,X). - Ef1(A,,T) -1 2(O, i, f ')( (102)
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K; where AX - [exp (AC - 1)lJa.

For u,

I
u = uW(, v,'r) (103)

u 0• (104)

U4 Cu(&, v + Av,"r) - u(AX, v - Av, 0) (10: )

XW 2AX AV

Derivatives of m have the same form.

4.5 Stabilizing Terms

4.5. 1 Introduction. Linear stability theory is extensive and compli-

cated and is beyond the scope of this investigation. For linearized

one dimensional equations, Richtmyer and Morton [59] derived the

following criterion .for numerical stability of the Lax-Wendroff differ-

encing technique when 0:

(1vx a) 1 (106)

where: v = the x component of velocity

a = sonic speed

Equation 106 is the Courant-Fredricks-Lewy criterion for stability.

For linearized two dimensional equations in which A = Ay, Richtmyer

[58) derived the criterion that

A(107)
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where v = the y component of velocity.
y

Num rical experiments by Emery [30], Gary [34] and others have

demonstrated that the stability criterion of equation 107 is necessary

for many systems. It was used with the equality sign in this investiga-

tion to determine the upper limit

S= (108)

,42 (ju + vZ + a)

where Ax = minimum of AX and Aw.

Many investigations [12, 30, 31, 43, 66] have shown that linear

stability criteria, such as equation 107, are necessary but not suffic-

ient. In previous numerical solutions of blunt body systems in which

equations 106 or 107 were satisfied, numerical instabilities have oc-

curred near the stagnation point, sonic line and downstream boundary.

In some of these cases, stabilizing terms were added to the basic dif-

ference equations. A stabilizing term is an artificial, mathematical

term that is added to a difference equation to improve numericai stabil-

ity. Satisfactory stabilizing terms must not introduce unacceptable

errors in the results. In this investigation, stabilizing terms of

Lapidus [43] and Aungier [1] were modified and used in num.." :, -I

experiments because they were satisfactory in previous solutions of

inviscid flow about blunt bodies.

4. 5.2 Lapidus Stabilizing Term. Skoglund and Gay [66] demonstrated

that the addition of the Lapidus stabilizing term had a negligible effect



in the boundary layer of a flat plate. For two dimensional inviscid

flow, Lapidus [43] analytically demonstrated that his stabilizing term

was conservative and was of third order accuracy. By expressing the

Lapidus stabilizing term of [43] in C and v coordinates, one of the

stabilizing terms that was used in equation 81 is

'•~~ + (C + AC-• k, 2)- k, 3-"" 4

2 1+ L(C- ) .f.~ -- f (109)

-- ,-

where: f., L (C' V,) C-Iu(C + ACvr) - u(C,vT):]

f, (C, v, r) [f- f(, V. 7) - f v( ( AC , V, T) .

J, AC Iv( vAv

Lj(C:, U+', r') -- G~v(C, V + AV, T) - v(C. V. 7')1

CI and C2 are arbitrary constants. Acceptable values were

determined by numerical experiment

6 j is the kronecker delta = 1 ifi =j; = 0if i 0 j

4.5. 3 Aungier Stabtl:zAng Term. The derivation of the Aungier sta-

bilizing term [I ] begins with the following linearized flow equation:
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_qM _7 1j__%I;RxT ,~ Y ' ý73 7_7 -T

ca2 Ax2
f A-f + - f (110),t x 2 At ,xx

where 1', at2  constant.

By substituting a solution of the form

f = fo + f exp(bt + cx) (111)

into a difference form of equation 110 and requiring lexp(bAt)I ! 1,

the limiting

At___(1)

Ax a 1

where: f = conu'tant0

f = constant << f

b and c are con,'tants.

Aungier reasoned that the Courant-Fredricks-Lewy stability criterion

should be 3atisfied. From equations 106 and 110, a1 = u + a. This

yielded

- = -(113)

AX u+a

For two dimensional systems, Aungier assumed a stabilizing term of

the form

2
S(u+a)At 2f + 2v+

A 2 ,x 2 tf (114

60



By simple replacement for inviscid flow in the subject investigation, a

stabilizing term that was used in equation 81 was:

+ At 2 - + C4(v +a) (115)Oi 'C3 (u + a)4 ""ix "-('f2 i, WW

where C 3 and C4 are arbitrary constants.

This equation was satisfactory for inviscid flow but yieided inaccurate

results for viscous flow. An accurate solution for viscoi:s flow was

obtained using

= C 5 (u + ba) 2 -t , + C (v + ba) 2 2-f(1.16)

where b = exp C-C 7(J -eJ)Av] for J ! T

= 1 for J> J
e

C is an arbitrary constant
7

J = -L-idex of ,±oies in the w direction

J is a node near the edge of the boundary layer.e

4.6 Bow Wave Technique

4. 6. 1 Bow Wave Equaticns. At the upstream boundary A B of figure 4,

the free stro r.m values ire constant. Since the governing equations are

time depenC>' -t, the bow wave may move. In figure 3 of section 3.5,

the speed of the bow wave in the j direction is designati d as w. The

Rankine-Hugoniot relationships for a moving wave are

2 %(v -wz +1

v = 2 v w+ w (117)
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= v•i (118)

(V1 - w) / (v 2 - W) (119)

P 1 + I-. [l(v7 +wZ " I] (iZO)

whe re: v W Cos +sin,• 171 r'L h oesn

SVt[Cos s_ in
v• -r I]

v =freestream velocity in x direction

r =tw;L

subscripts 1 and 2 refer to values at upstream and down-

stream sides of the bow.. wave.

Unit vectors are:

h= i - )r (121)

In the above set of equ- -ons w X was appr~ximat. i by
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k 2

3AC
(123)

where: 'w O, ),t +A0t [w '•w(C + AC, T + AT) - •w(C, 7- + AT.)]

•- I

W, T, A w

W~ ~ (XIt+W (C+IT + AT)-w(C-AT+AT

Aungier C1] found that the technique of equation 123 inhibited oscilla-

tions of w with respect to ),.

Equation 59 was used to obtain the characteristic slope of figure 7.

Characteristic • : Cons'..

dn . v-a

S~dt

t

Coordinate 7

Figure 7. Characteristic at the Bow Wave

The intersection of the characteristic with the ? axis at time t is

symbolized by 71" and was calculated by a method that is outlined in
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the next section. Along the characteristic, an approximation of equa-

tion 60 is

v 2 v1 + [p a /( (124)

;•pwhere: ypa = .5[p2 p'a'2])/$ p

primes refer to values at : i' and time t

subscript 2 refers to values on the downstream side of the

bow wave at time t + At.

In evaluating a', known values at nodes were interpolated to determine

value -c t7". Using the chain rule yielded,

Bf. Bf.
fi-,11 =W$ 04 (125)

where: = 3 Cos ) h sin (9 r i

0!4  [sin(6 - 1"+w h 6')] co r

At ?I',

v1 ua - vt (126)
77 04 3

v u'10 + va (127)3 4

The values of X', w' and 9" at 77' were determined using the Newton-

Raphson iterati.-i technique.

The bow wave coordinates at time t + P- were calculated asing
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"k'',t+ t w W ox~, t) - rw(t),&t (128)

and held constant during a cycle.

4. 6. 2 Iteration Techniques. To calculate f iz( wW t + hi), equations

of the preceding section were solved by an iteration technique. As a

first approximation of w(t + 4t), w(1) = w(t) where the number in

parentheses refers to the approximation number. Having the approxi-

mate value of w(1), equations 1?7, 119 and 120 were solved for v 2 (1),

pZ(1) and p 2 (1). With v Z(1) available, the first approximation of 17r

was

' = Iv 2 (1) - a2 (1)I•t (129)

where a2 (1) /=TZ(1).

Using the Newton-Raphson fteration technique and linear interpolation,

a was determined and equation 126 was solved for v . The second

approximation of 71* was

V= 7v2 (1) - a 2 (1) +v' - a',At/2 (130)

The above process was repeated until

It (n)- t'(n - 1)1 < 10- (131)

Once an accurate location of tj' was obtained, a" was calculated and

equation 124 was solved for v 2 (2).

T,
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Iv - v (2)I > 105 (132)

a new value of w(Z) was estimated from

-•w2(2) + I• y~ "" v - -+ (1 v l]wlZl
2 '"1 -2 vj 2(fw )

+ v + 1 v 2 (1) - V2 - (• 1133)
2 1T~z 2 '171

The value of w(2) was used in equations 117, 119 and 120 to estimate

v112 (2). p2 (2 ) and p 2 (2 ). A new value of,17' corresponding to v 2 (2) and

a2 (2) was determined from equations 129 through 131. Equation 124

was again solved for v 7 2(3). This process was continued until

Iv172(n) - v 2 (n - 1)1 < 10-(5 134)

Only a few iterations were required to satisfy equation 134.

After satisfying equation 134, the downstream X and w components of

velocity were computed from

uX, w' ,t+ A0 = (*V17 h + V 2 j r (135)

VLXw,t +A0I = [Iv 2 +v 2 ~ r (136)

4.7 Boundary Equations

4.7. 1 At the Downstream Boundary. The difference equations at the

d',vnstream boundary X I were the same as those in the field of section

4. 3. Values at X +1 were required in the approximations of derivatives
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at X . In finding the location of nodes at X £+1' an approximation for

shock wave coordinate w w was needed. From figure 8, the

[ extrapolated value of w (X A+I) was determined by finding the intersec-

tion of a line drawn through the points Ww(XI1) and tow ) with a line

extended in the -W direction at

Bow Wave

W Olw A

a

OtW (XiL
b

X A41I

XL w+1

Figure 8. Location of w (X A+l)

From the law of sines,

w( A+i+). = W(wX())bsincx/ sing (137)

By linear extrapolation,

f GX W, t) f (Al- I, t) + C fi(X, ( , t) - f ()Ltis, w,t)]
(138)
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where C.- Qz•-) / ( - X_)

4. 7.2 At the Body Surface with Viscous Flow. The boundary condi-

tions for viscous flow at the body 3urface were u(O, 0, t) = v(O, 0, t) = 0

and T(X, 0, t) = Tb = constant. Using s = An(p/pY) to combine equations

for t = I and 4 in equation 26,

P, t -Ypv, +P4 (139)

where: 0 2 +T T(T + XT T

At the stagnation point

0 MC Y-.[..2 +TT + 2xTbT'] (1410)(4 = Re 0 Pr W, b +TbTwW

+'IY,(y- l)Tbe2•w

I4

Using a Taylor series, the pressure at the body surface is

p()L ,O t + A) = p(L, 0, t) + AtP, t (X.0, t) (141)

TT

+ -- + p (x, 0, t)

Atwhere s taatio poinPtv "PV

z 2 t

Sa , t • r a •t

v =-v 2  +p p Ipv -
t ,W Wt W
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- -4,I =0 as an approximation

03, W' 4, t

f = "�f(X IAwl, t) - ft(X,, 0, t)) (142)

A = w [exp(Av) - !

p W(X, 0, t) was approximated by equation 38 for W Aw.

The density at the body surface

p (X,0, t + At) = p(L,,0, t + A)/Tb (143)

4. 7.3 At the Body Surface with Inviscid Flow. Boundary conditions at

the body surface for inviscid flow are v(X, 0, t) = 0, u(O, 0, t) # 0 and

T(X, 0, t) is not constant. For inviscid flow,

u,t -uu, x - PX/TP (144)

s, =ust (145)

Equation 61 was used to establish the characteristic of figure 9.
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t+At

Characteristic f constant

dt

td

0 
W

Coordinate W

Figure 9. Characteristic at Body Surface

The intersection w' on the w axis at time t was found using the iteration

techniques of section 4. 6.2. Equation 62 was approximated by

p(X, 0, t + A ) oa"At + p ypa v' (146)

where: ypa = .5y[p(X,0, t)a(X,0, t) + pla']

primes refer to values at w'.

Equations 144 and 145 were solved in the same manner as equation 141.

The derivative f. was approximated by equation 142, and the deriva-

tive f. was approximated by equation 38 for w = Aw. Equations 19
L, WWII

and 37 with k3 = k = 0 were used to calculate f and f In these

equations, the derivatives ft, and f were approximated by equa-

and 90.
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At the stagnation point, u, = = St 0. For invicid

flow the stagnation point temperature was precisely calculated from an

isentropic equation and was constant.
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5. COMPUTATIONS AND RESULTS

5. 1 Introduction

In this investigation, digital computers were used to solve the

difference equations presented in section 4. In the first computer

codes, there were major problems with nodal distribution, wave fitting

and numerical instabilities. Refinement of difference equations and

computer codes was accomplished experimentally on digital computers.

In order to keep the length of the report within a reasonable limit,

only the more significant computations and results are presented. The

two principal computer codes are INITIAL, based on initial value

techniques of section 4. 2, and MAIN, based on the techniques of sec-

tions 4. 3 through 4. 7. Results are presented for axisymmetrical,

inviscid and viscous flows around hemispheres and hemisphere-

cylinders. Because of stability problems and const.-aints on computa-

tional time, most development computations were restricted to henris-

pheres. rable 1 lists specifications of the systems that were solved

in this investigation.
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Table 1. Systems

System Configuration* Reynolds Mach ]
Number Number, R e Number, M0 0

1 H - C Inviscid 4

2 H 1e3 4

3 H-C 4x103 4

4 H 104 4

H 105 4

6 H Invizcid 2

7 H 104  2

*Under "Configurat.:.n, " H - hemisphere a mhe; H - C - hemisphere-

cylind,'-r combination.

For -nost of the systems of table 1, many cor.,puter runs were

required before results ere satisfactory. Systems 1 and 4 were used

as test cases to develop the MAIN code and stabilizing terms. Aungier

[11 solved system 1 by segmenting the field. As a heck, his results

were compared with those of this investigation. Steady or time

dependent solutions of viscous systems with arn afterbody, such as

system 3, were not previously available in the open literature. Inves-

tigatiu, of the effect of Reynolds number at M = 4 was the motivation
OI

for solving systems 2 and 4. Solutions of systems 2, 3, 4, 5 and 7

demonctrated that the codes were satisfactory for viscous systems.

Solutions for systems 6 and 7 demonstrated that the codes are satisfac-

tory for lower Mach numbers which have less inherent stability.
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The specifications for computer runs are presented in table 2.

Results of these runs are presented and discussied in succeeding sec-

tions. In table Z, IS equals I just ahead of th,! junction of the hemi-

sphere and cylinder, M. is at the downstream boundary, JE is at the

edge of the boundary layer, SW is at the bow wave and KL is when com-

putations were halted. In the following, most figures of a sub-subsec-

tion, such as 5. 2. 1, are presented at the end of that section.

5. 2 Computer Codes

5.2. 1 INITIAL. A simplifled flow diagram of the INITIAL code is

presented in figure 10. In it, ILPI = IL+1 and JEPI = JE+I. Both

magnetic tape and punched cards were used to input data. The bound-

ary layer tables of Cohen and Reshotko [19), bow wave parameters of

Love [46] and body surface values of Clark [161 comprised several

thousand entries which were recorded on magnetic tape. Punched card

input was used to specify body shape, reference variables, boundary

values and nodal parameters. After calculating initial values of p,

m, n and S at each node, an output tape of their values was generated.
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PROGRAM "INITIAL"

READ I NPUT
VALUESB

dCAL CU LATE

CALCULATE IV ISDJ 1
BODY RELATED SECTION ..
COORD INATESSETO433

SECTION 3.3.2

CALCULATE BOW
WAVE COORDINATES 

CALCULATE FIELD

SLECT ION .31VALUESS 
J-JEP1,JW

SECTON 43-1SECTION 4.3.4

CALCULATE NODAL
END OF

COORDI NATES LOPI
SECTION 4.3.22

CALCULATE CON-
DO A STANTS MAIN

-1 ILPIPROGRAM

GENE RATE

NO OUTPUT

CALCUATE BUND-TAPE

1. I.

Figure 10. INITIAL Code
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Execution time of program INITIAL was approximately 2 minutes on a A

Al
CDC 3800 computer.

Initial bow coordinates were computed by the techniques of sec-

tion 4.2. 1. The computed bow wave was slightly upstream of the ex-

perimental one of Baer [4] as displayed in figure 11.

0
- Computed from Eqn 65 O
o Experiment [4] 0

3 0
0

00

S024
o0

2 0

00

- 0

• • di~~~figurn e betee computed and experimental bow wavecornae

00

difeenebewen opuedan xpriena bw iC oordinatesx

was not important.

Initial values of pressure in the boundary layer were assumed in-

dependent of Reynolds number and w. As expected, computed and

7?



experimental initial body pressures of figure 12 are in good agreement,

since the INITIAL code used experimental results of Clark [16] for a

hemisphere. In the afterbody region, the initial pressure pb(X)was

equal to the initial pressure pb at the junction of the hemisphere and

cylinder. As shown in figure 13, this assumption resulted in a per-

turbation in the velocity thickness w of the boundary layer near thee

junction. In the time dependent computations of the MAIN code, these

perturbations in We were quickly eliminated.e
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5.2 . 2 MAIN. A simplified flow diagram of the MAIN code is pre-

sented in figure 14. A set of indicators was used to con'rol input from

the initial value tape, specify inviscid or viscous flow, specify the sta-

bilizing term, set the output and run intervals and specify the size of

the field. Integer values of I, J and K were used to identify nodes and

time. The relationships between r. v, " and I, J, K are given by

itquations 66, 67 and 68. KIN and KL are starting and ending indices

of times. If KIN = 1, initial values were obtained from INITIAL. If

KIN > 1, initial values were obtained from an output tape of a previous

run. Computations were halted at KL, and results were printed and

recorded on tape.

In operation 1 of figure 14, equation 109 was used to compute

At at all nodes. A&" equaled the minimum of At for one cycle of the

A loop. In operation 2, bow wave coordinates were updated according

to section 4.6. 2. Operation 3 computed values at the body surface, and

operation 4 computed values along the stagnation streamline. In oper-

ation 5, values at all other nodes were calculated using the equations

of sections 4. 3 and 4. 5. Extrapolation of val.ues at the downstream

boundary was accomplished in operation 6.
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BAl

"MAIN" '

PROGRAM ,,J1

100 C
INO IJCATJ

IF NO
j E

READ "INITIAL" YES
TAPE -

-3 COMPUTE
_: f. (1, 1, K)

DO A
K=KIN,KL

11. COMPUTE

SECTION 4.5.1

IIF

2. UPDATE BOW J JWG

WAVE COORDINATES
SECTION 4.6.2

I *igure 14a. MAIN Code
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F ~H I

2. CALCULATE 5. CALCULATE
fi (I, JW, K) f. (1, J, K)

SSECTSECTION 4.6 SECTIONS 4.3,4.5

END OF

GOTO L:OOP DtD

END OF

• : LOOP C

6. EXTRAPOLATE
DOWNSTREAM
BOUNDARY

S"YES IF NO•

K =KTAPEA

fi (I, Jt K)YE

ISECTION 4.7.

FigureNA PRINT OUTPUTd(• WRITE TAPE

IEND OFJ
ILOOP A

IE.D I
Figure 14b. MAIN Code
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5.2.3 Computational Times. Field values were computed at a rate

of 56.7 nodes/second on a CDC 3800 computer. Values of f W(1, JW, K)

at the downstream side of the bow wave were computed at a rate of

17.8 nodes/second. For a CDC 3800 computer,

t = (K)(IL) [c(JW - 1) +. 0563] (147)c

where: t execution time in seconds A: 5%
c

c = .0154 for inviscid flow and = .0177 for viscous flow

K 1 100 cycles

The percentage of total CDC 3800 computer time required for wave

fitting is shown in figure 15.

50

O ...... Inviscid Flow

S-0 Viscous Flow

0

41 4U

0

I0"

0 5 10 is 20 2-5 30 i

Number of Nodes in w Direction JW

Figure 15. Percentage of Computer Time for Wave Fitting
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In this investigation, JW = 11 for inviscid flows and 16 i 3W ! 29 for

viscous flows. Assuming that wave fitting could be accomplished as

quickly as field computations, from 10 to 48 percent of the total compu-

tational time could be saved. Numerical experiments were made in an

attempt to speed up the wave fitting computations. The attempt first

involved increasing 10-5 to 10-3 in expression 132. The second at-

tempt was to use equation 129 to compute 71*. Neither of those attempts

was successful because of lack of convergence near the bow wave.

5. 3 Stabilization of Computations

5. 3. 1 Introduction. The first computation of viscous, compressible

flow around a hemisphere-cylinder without stabilizing terms displayed

numerical instabilities. A major problem of this investigation was to

achieve numerical stability without destroying accuracy. Many attempts

were made to avoid the use of a stabilizing term, including one dimen-

sional wave fitting investigations, stationary coordinate frames, modi-

fication of coordinates of nodes and variation of differencing techniques.

Results of unstabilized computations, the development of satisfactory

stabilizing terms and accurate solutions of several systems are pre-

sented in this section.

5. 2 Unstabilized Computations. Specifications of runs 1 through 4 for

viscous and inviscid flows with = 0 are given in table 2. The location

and extent of instabilities are displayed in figures 16 through 19 at the

end of this section on pages 87 to 90. For viscous flow in run 1, spatial
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oscillations in the u-velocities at I = 3 of figure 16 began near the center

of the field and spread into the region next to the body. As displayed in

figure 17, there was an instability in u-velocities In run 2 at I = 19.

There were similar instabilities in other variables. These instabilities

were maximum at I = 19. Oscillations were small near the body surface

and were maximum near the center of the field. Results of runs 3 and 4

for inviscid flow are shown in figcres l' and 19. Since the instabilities

occurred for inviscid flow, they were attributed to the inviscid part of

the field equations. Since the instabilities were similar for viscous and

inviscid flows, it was concluded that viscous terms had little effect on

the instabilities.
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.4 K= 1400
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014

u-velocity

Figure 16. Instabilities in Forebody Region at I 3. Run 1.
Viscous Flow Around a Hemisphere with = 0.
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'.4
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0 u-velocity

Figure 17. Instabilities in Affterbody Region at I = 19. Run 2.
Viscous Flow Around a Hemisphere-Cylinder with = 0.
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Figure It. Instability in Forebody Region at I = 3.
Run 3. Inviscid Flow Around a Hemisphere with = 0.
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Figure 19. Instability in Afterbody Region at I = 19.

Run 4. Inviscid Flow Around a Hemisphere-Cylinder with 4 = 0.
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5. 3. 3 Development of Stabilizing Terms. A development program was

initiated to determine the cause of the instabilities and to find techniques

for stabilizing solutions. Inviscid flow solutions converged approximately

four times faster than the corresponding viscous ones. Therefore,

inviscid systems were used in this phase. The first step was to deter-

mine if instabilities were caused by errors in equations or computer

coding. To detect errors in equations of section 4. 3.2 and their coding,

results of computations using them were checked with those of a simpler

two-step technique of the form

(C, ATr = f(' , +2 t, 7 (148)

f ( ,L "+ Ar) = f (, V,, ) + Afi r(C V" +-) (149)

Using these equations with the specifications of runs 3 and 4 of table 2,

the instabilities were similar to those of figures 18 and 19, except they

grew more rapidly. It was concluded that the equations of section 4. 3. 2

were correct and properly coded.

The differencing technique of section 4.3.3 with a stabilizing term

was used in run 5 of table 2 to determine if wave fitting and downstream

boundary equations introduced perturbations. The solution was stable

at K = 800. Computed body pressures of figure 20, page 96, are in

agreement with the measurements of [4]. The differences of computed

and measured bow wave coordinates in figure 21 were not considered

detrimental to other parts of the field and were partially attributed to
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the averaging of body curvature x(X\) in equation 96. It was concluded

that the bow wave and downstream boundary equations were satisfac-

tory. The results of runs 5 and 6 with the differencing techniques of

sections 4. 3. 3 and 4. 3. 2 and stabilizing terms were within 1 percent

of each other except near the junction of the hemisphere and cylinder.

The results of run 6 were smoother and in. better agreement with the

measurements of [4].

Equation 110 was used to stabilize the solutions in runs 7 and 8.

In run 7, C1 = C2 = 1, and in run 8, C1 = C2 = 3. In figure 22, body

surface pressures of those runs display an incorrect hump near the

junction. Body surface pressures of run 6 in figure 22 are in better

agreement with the measurements of [4J than are those of runs 7 and 8.

As shown in figure 23 near the junction of the hemisphere-cylinder,

the v-velocities of run 8 deviate from those of runs 6 and 7. From

figures 22 and 23 for inviscid flows, the stabilizing term of equation

115 yielded more accurate results than those of equation 110.

The development of stabilizing terms for viscous flows was more

difficult than for inviscid flows because conditions in the boundary layer

are sensitive to stabilizing terms. In run 9, with the differencing tech-

nique of section 4. 3. 3 and th- stabilizing term of equation 115, results

were unstable near the stagnation point •* KL =68. Run 10, with the

differencing technique of section 4.3.2 and stabilizing term of equation

115, was stable but was unsatisfactory because the stabilizing term

was much larger than the viscous term p. in the boundary layer. This
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meant the boundary layer results were inaccurate. A few runs were

tried with a new stabilizing term

V=(Csu2f, +C v2f, l- (Z (150)
8 .XX 9 ,Wo 2

where C8 C9 = 1, 2 or 3. Although • was small compared to p, in

the boundary layer, severe oscillations occurred outside the boundary

layer and equation 150 was abandoned.

Run 11, for viscous flow around a hemisphere, utilized the stab-

ilizing term of equation 116 for which 0 1(X, 0, t) = 0 at the body surface.

As shown in figures Z4, 25 and 26, in the boundary layer, the stabilizing

term 0, is small compared to the viscous term Small oscillations

in 03 were not reproduced in figure 25. The steady bow wave coordi-

nat s and body pressures agreed with the measurements of [4]. The

results of run 11 are given in section 5.5..2. In runs 11, and 17 through

20, the stabilizing term of equation 116 was satisfactory for hemispheres

atM = 2 and4 and Re = 103 to 10 5. For each set of Machand
0 0

Reynolds numbers, numerical experiments were used to determine val-

ues of C5V C06, C7 Je and nodal parameters.

For viscous flow around a hemisphere-cylinder, the stability prob-

lem was more difficult than for a hemisphere. Figure 27 displays pres-

sures versus wlw in the afterbody region at I = 19 for runs 2, 12 and
w

13. Run 2 was unstabilized and was discussed in section 5. 3. 2. Runs

12 and 13 used the differencing technique of section 4. 3.2 and stabilizing

terms of equations 116 and 110 respectively. !-'ressures in run 12 at
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KL = 2000 are unstable and are approaching those of run 1 without stab-

iliza~ion. In run 13, small oscillations are present; however, these

oscillations decreased as K increased. Values of other variables were

smooth in run 13. As illustrated in figure 28 for run 13, l/. was larger

than •p. in the boundary layer, so that results were inaccurate. More-

over, in figure 23 for inviscid flow, the results of equation 110 were

less accurate than those of equation 115. From the analysis of runs 1

through 13:

1. For inviscid flow, the differencing technique of section 4.3. 2 and

stabilizing term of equation 115 was accurate.

2. For viscous flow and the differencing technique of section 4. 3. 2,

the stabilizing term of equation 116 yielded accurate results in the

boundary layer.

3. Other numerical techniques and coding used in conjunction with

items 1 and 2 were satisfactory.

4. Solutions involving equation 110 with C = C2 3 converged rapidly

and eliminated perturbations but were inaccurate in the boundary layer.

5. Nodal spacing was critical for stability and ac-.uracy.

By incorporating these ideas into the specifications of runs 14 and

15, a satisfactory solution was obtained for viscous flow around a

hemisphere-cylinder. The small Reynolds number of 4000 was selected

to reduce the number of cycles required for convergence. Experimen-

tation revealed that stability was enhanced by increasing the number of

nodes. The number of nodes was 384 in runs 12 and 13 and was 841 in
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runs 14 and 15. In run 14 with the stabilizing term of equation 110 with

C = C2 3, the perturbations of initial values were not apparent in the

results at K = 1600. Using the output tape of run 14 for initial values

in run 15, the results converged within 800 cycles. As illustrated by

figure 29, the effect of the stabilizing term was small, even in the

boundary layer. Results of run 15 are presented in section 5. 5.3.

In applying equation i1c to other viscous systems, acceptable

values of C5 , C 6 , C7 and Je may be determined by numerical experi-

ments in which relative magnitudes of 0 and 0, are compared. Addi-

tional numerical experiments may be desirable to optimize the number

of nodes and nodal spacing.

95

951

S ~ -



0

o **

0 0 )

0 0

0
r4

.m~440 LJ (

.4.4 4.

Uq

saeroc Apo0

tr;~ 2;91



LA/

0
00 0 o4

0 V a1*

c:
0n (

0g

?1@o

UWe

0 MJs l vi .v% Ao

09



In

-44

it 0

*0

o. 0 0 0

I44 'wI

A A

44 46)

Il 04

q dl 0.n vAdA O

98'.



tl

.9 e Run 5, Section 4.3.3,
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5.4 Accuracy

5. 4. 1 Comparisons with Measurements. The accuracy of results

could not be determined analytically and was estimated I y comparisons

with computed and measured results of others. Measurements of bow

wave coordinates and body surface pressures are available in r4] at

M = 2 and 4 and Re = 4.93 x 105 and 1.28 x 10 respectively. Steady
0 C

solutions of viscous flows for such high Reynolds numbers would require

excessive computing time and were not attempted. It was assumed that

computed inviscid results of runs 6 and 16 should agree with these

measurements. Measured and computed values were not at the same

points and differences of results were estimated from graphs. Computed

and measured results are shown in figures 20 and 21 on pages 96 and 97

forM 0 =4 and in figures 30 and 31 on pages 108 and 109 forM : 2.

Computed and measured [75) u/ue-velocities in the boundary layer

at several locations are displayed in figures 32 through 34. The agree-

ment verifies the accuracy of the numerical techniques for the boundary

layer. The central angle 0 of computed and measured results is

slightly different because of nodal requirements.

Tabulated average and maximum differences e e presented in

Table 3. In these comparisons, maximum differences as high as 13.7

percent were noted at selected points where either measurements or

calculations were difficult to obtain. However, the average difference

of measured and compuated results was 5.4 percent or less. Considering

the probable error of the measurements, agreement of results is very good.
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Table 3. Percentage Differences of Computations and Measurements

Max. % Avg. 7 Location M Expert-
Variable Diff. Diff. Max. Diff. o o Run ment Figure

Pb 11.7 1.9 X=1. 57 4 INV 6 [4] 22

1.0 .4 X=l. 02 2 INV 16 [4] 31

w 9.9 4.5 X=1.91 4 INV 6 [41 23w

6.2 4.8 )=l. 02 2 INV 16 [4] 30

d 4.9 )=0 4 INV 6 [4] 23
w

d 5.3 X=0 2 INV 16 [4] 30
w

u/u 4.4 2.1 =.0144 4 104 17 C75) 32e

u/u 13.7 5.4 =.006 4 104 17 [75] 33
e

u/u 5.7 2.5 w•.016 4 104 17 C75) 34e
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5.4.2 Comparison with Computed Resuits of Others. Prior to this

investigation, computed results were not available for viscous flow

around a hemisphere or hemisphere-cylinder. Therefore, comparisons

of computed results were restricted to inviscid flow systems. Compar-

isons were made with numerical results of Aungier [ I) and analytical

results of Belotserkovskii [53 at M = 2 and 4. The latter analytical0

results were obtained by a method of integral relations that is discussed

in section 2. 5. A summary of differences in results is presented in

table 4. Entropy along the body surface was constant for run 6 and

reference 1. The difference of those entropies was 0. 2 percent. Body

surface entropy values were not presented in [1] for M = 2. For
0

"inviscid flow, body surface entropies were calculated theoretically.

Comparisons with those values are also included in table 4. As idi-'

cated by tables 3 and 4, the results of runs 6, 16 and 17 were in agree-

ment with those of rlu, [4), [53 and r753. These solutions demon-

strated that the computer code developed in this investigation is

satisfactory for inviscid and viscous compressible flows around axi-

symmetrical bodies.
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Table 4. Percentage Differences of Computed ResuI~s of this
Investigation and Others.

Max. %/ Avg. %/1 Location MReference
Variable . .... Diff. Diff... Max. Diff. 0 o. Run or Theory

P 0 Z 16 1 ]

Pb 04 6 [1]

S4.8 3.2 X•.--.8 2 16 Cl]

w

d 2.2 X=O 4 16 Cl)

d . 0.8 X,=0 4 6 [C5"

0 .2 0.2 X.=o 4 6 Cl]

1b .4 2 16 Theory

0 .4 14 6 Theory

5.5 Results

5. 5, 1 Introduction. This section includes solutions of inviscid and

S"7iscous flows around hemispheres and hemisphere-cylinders. Prior

to this investigation, time dependent solutions of viscous compressible

S~flow about hemispheres and hemisphere-cylinders were not available

,• in the open literature.

SS~. 5.2Z Results for a Hemisphere. Specifications of runs 6, 11, 18,

19 and 20 for hemispheres are presented in table 2. Each run was

preceded by numerical experiments to determine satisfactory param-

eters for the stabilizing terms of equations 115 and 116. As in
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section 5. 3. 3, comparisons were made of stabilizing and viscous terms.

Runs 6 and ll at M = 4 with inviscid and viscous flows were a part of

the development phase. Their results are described in section 5. 3. 3.

5
Run 20 for M = 4 and Re = 10 was difficult because of the thin bound-

ary layer. Since the total number of nodes was large and AT was small,

the computing time for run 20 was greater than in other runs. Results

were nearly steady at K = 3500.

For M = 4, the standoff distance shown in figure 35, page 117,0

decreases as Reynolds number increases. In figure 36, there is a

decrease in body surface pressure for an increase in Reynolds number.

5
In that figure, inviscid flow and Re = 10 are represented by a single

0

line for X < . 8. The boundary layer displacement thicknesses of

figure 37 were computed from

m* = (151)
0 e

where: m = pu

e refers to the edge of the boundary layer.

The limit w was determined from a graph, such as figure 38, of u-
e

velocity versus w at the point where the boundary layer effects seemed

negligible. For Re 10 and 105, there are oscillations in *near
0

the stagnation point where the boundary layer is thin because of small

oscillations in u-velocity near the edge of the boundary layey. For the

relatively thick boundary layers of Re = 10 and 4 x 10, these
0
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oscillations had a minor effect on 6*. In figures 38 through 40, u-

velocities, pressures and temperatures are presented. The decrease

in boundary layer thickness with increasing Reynolds numbers is

apparent.
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5. 5.3 Results for a Hemisphere-Cylinder. Based on the numerical

results of section 5. 3. 3, the specifications of runs 14 and 15 of table 2

were selected for a solution of viscous compressible flow around a

hemisphere-cylinder. In run 14 for K ! 1600, the stabilizing term of

equation 110 was used to remove initial perturbations. By KL = 1600,

a favorable pressure gradient had been established in the afterbody

region, and the bow wave had moved close to its steady location. The

results of run 14 at KL = 1600 were used as input to run 15 in which the

stabilizing term was that of equation 116. In run 15 at KL = 800, the

solution was steady and seemed accurate in the boundary layer and

other parts of the field. Results of run 15 for KL = 800 are presented

in figures 41 through 56 at the end of this section on pages 127 to 142.

Contours of Mach number, temperature, pressure and entropy are

presented in figures 41 through 44. The contours are consistent with

each other. Near the downstream boundary and bow wave, there are

oscillations in the results. The contours for Mach number and temper-

ature in figures 41 and 42 are similar. Boundary layer growth along

the body is apparent. Mach number contours outside of the boundary

layer in the forebody region are similar to those of inviscid flow in

[521]. In figure 43, as expected, there tr an expansion fan near the

junction of the hemisphere and cylinder. Entropy contours of figure 44

were smooth and resembled streamlines outside of the boundary layer.

Along the isothermal body surface T = 4.2 and entropy increases
b

because pressure decreases.
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Boundary layer displacement and momentum thicknesses of figure

45 seem reasonable. There is a substantial increase of boundary layer

thickness along the afterbody. Figures 46 through 49 present u-

velocities, v-velocities and temperatures versus W at several I indices.

The coordinate w was chosen instead of w/w to display growth of thew

boundary layer. Variations in u-velocities and temperatures are

smooth. At I = 16 near the junction in figure 46, there is a small de-

crease in u-velocity near the edge of the boundary layer. Near the

forebody, variations in v-velocities of figure 47 are sr.tooth. As shown

in figure 48, they oscillate in the afterbody region where they are small

and sensitive to perturbations. Although undesirable, those oscillations

were not considered detrimental to the accuracy of other variables. In

figure 49, temperature gradients < 0 and their absolute value3

increase with increasing I indices. Since body temperature is greater

than adiabatic stagnation temperature, heat transfer is from the body

and should be negative.
ýW~b

Specifications of runs 15 and 19 in table 2 for a hemisphere-

cylinder and hemisphere were identical. As indicated by table 5,

results of both runs in the forebody region are about the same.

11
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Table 5. Percentage Differences of Computed Results of Hemisphere
and Hemisphere-Cylinder. Runs 15 and 19, M = 4, Re = 4000.0 0

Max. % % Location of Maximum
Variable Difference Difference Difference

M 3.3 .6 X=0
0

p 1.3 .1 X=1.28

T 3.0 .3 ,=1.28

1.2 .4 X=1.28

d .4 X=0w

A conclusion was that satisfactory results for the forebody reglo;.

hemisphere-cylinder may be obtained by considering the hemisphere

alone. The conclusion may be true for other shapes and conditions, but j
additional results are needed to strengthen this conclusion.

In run 21, the stabilizing term was zero and results of run 15 at

KL = 800 were used for initial values. In run 21, results were steady

at KL = 1600. Typical results of runs 15 and 21 for the forebody region

are shown in figures 50 through 52. The maximum difference is 9 per-

cent. Average differences of all variables is less than 2 percent. The

variation in pressure versus K index in the afterbody region for variouo

stabilizing terms is shown in figure 53 at 1= 19 and J =26 where differ-

ences of runs 15 and 21 were a maximum. The large differences at that

point were due to the spatial oscillations in the results of run 21. u-

velocities, v-velocities and pressure for run 15 and 21 at I = 19 are

125
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shown in figures 54 through 56. Oscillations of the steady results of

run 21 are a maximum near the bow wave and are insignificant in the

boundary layer. Where there are no significant oscillations of results,

the differences between runs 15 and 21 are less than 3 percent. The

oscillations of run 21 without stabilizing terms were about the smooth

values of run 15. The agreement of the results of runs 15 and 21 indi-

cates that the accuracy of the results of run 15 were not seriously

affected by the addition of stabilizing terms.
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at I = 8 with and without Stabilizing Terms. Computed by Section
4.3.2. M 4 and Re = 4000.
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at I = 8 with and without Stabilizing Terms. Computed by Section
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5. 6 Summary of Results

Considerable analyses and computations preceded the successfIl

solution of viscous flow around a hemisphere-cylinder to develop tech-

S* niqaes. Those analyse6 and computations seemed to indicate:

1. The body related coordinates of section 3.3.2 are applicable to

most blunt bodies.

2. The nonlinear coordinate transformations of section 3.3.3 permit

adequate resolution in the boundary layer without an excessive total

number of nodes.

3. To obtain st-ady results, initial values should be as accurate as

possible to enhance stability and reduce computer time.

4. Techniques for boundary values at the body surface and downstream

boundary have a major effect on stability and accuracy.

5. Precise application of the method of characteristics was the only

technique that was satisfactory for wave fitting.

6. The differencing technique of section 4. 3. 2 with stabilizing terms

should be applicable to a wide variety of axisymmetrical inviscid or

viscous flows.

The most valuable result of this investigation is the complete set

of numerical techniques of section 4 for axisyymmetrical, viscous,

compressible flows aroiuid blunt bodies. Results are presented for

viscous, compressible flow around a hemisphere-cyli-,c'.er at free

stream Mach and Reynolds numbers of 4 and 4000 and for flows around
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hemispheres at Mach numbers of 2 and 4 and Reynolds numbers of

03, 4x 103, 104 and 105.
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6. CONCL USIONS

1. A complete set of numerical techniques for axisymmetrical,

viscous, compressible flows around blunt bodies was developed.

2. An accurate solution was obtained for viscous compressible flow

around a hemisphere-cylinder for freestreamr Mach and Reynolds

numbers of 4 and 4000 respectively.

3. Numerical stability was achieved with stabilizing terms, but their

necessity was not established.

r 4. Approximate results can be ob~ained for the forebody region of a

hemisphere-cylinder with a free stream Mach number of 4 and

Reynolds number of 4000 by solving the corresponding system of a

hemisphere alone.
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