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FOREWORD

This research project of numerical techniques and solutions for
axisymmetrical viscous compressible flows was initiated in January
1569 as a part of a doctoral program in Mechanical Engineering at
the University of New Mexico with support by the Air Force. The
original manuscript was submitted to the University of New Mexico
by Dr. Kenneth W. Smith as his doctoral dissertation. Professor
Victor J. Skoglund, Department of Mechanical Engineering, served
as the faculty advisor and collaborated in this research.

Viscous compressible flows around blunt bodies are of primary
interest in a number of relevant aerospace applications including,
for example, ' missile design and reentry of missile warheads.
Functional solutions for these flows are inaccurate because of
necessary mathematical simplifications and detailed measurements
of flow characteristics are difficult and costly. In this investigation,
a complete set of numerical techniques for axisymmetrical, viscous,
compressible flows around blunt bodies is presented and accurate
solutions are obtained.

Publication of this report does not constitute Air Force approval
of the reported findings or conclusions, It is published only for the

exchange and stimulation of ideas.
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ABSTRACT

The purpose of this investigation was to develop numerical tech-
niques for solving axisymmetrical, viscous, compressible flow around
blunt bodies. Solutions were limited to sys:ems of ideal gases with
larninar unseparated boundary layers. The bow wave was represented
by a moving discontinuity, The remainder of tke system was repre-
sented by second order accuracy, time dependent difference equations.
In this investigation the difference equations were derived from basic
time dependent, viscous compressible flow equations that were trans-
formed into body related coordinates. In a development phase, many
numerical techniques were tested on digital computers before adopting
the ones that were used in obtaining the results that are presented.

The addition of stabilizing terms to basic difference equations was used
to achieve numerical stability, Numerical experiments were performed
to minimize the effect cf the stabilizing terms on the results.

Solutions for a hemisphere forebody were obtained at Mach 2 and
4 for inviscid flow and for several Reynolds numbers. At Mach 4,
solutions were obtained for a hemisphere=~cylinder for inviscid flow
and for a Reynolds number of 4000, Where possible, calculated and
experimental results were compared. Their agreement was satisfactory.
Prior solutions of viscous compressible flow in the afterbody region of
blunt bodies were not {r.und in any publication.

It was concluded that accurate solutions for axisymmetrical,
viscous, compressible flows can be obtained in the forebody and after-
body regions of blunt bodies using the time dependent numerical tech-
niques of this investigation. In the forebody region of a hemisphere-
cylinder, approximate solutions may be obtained by solving the forebody
system alone. Stabilization of the modified Lax~-Wendroff technique

seemed necessary, but improvements in wave fitting, boundary and

digitizing techniques might eliminate that need.
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Superscripts

body surface

edge of boundary layer

index

junction of hemisphere-cylinder or index
downstream boundary
reference value

stagnation point

time

bow wave

indices

perturbation

7 direction or coordinate

A direction or coordinate

v direction or coordinate

£ direction or coordinate
time

w direction or coordinate
upstream of bow wave
downstream side of bow wave

partial derivative with respect to
variables which follow

forward differe'nce
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l. INTRODUCTION

1.1 Motivation

Analysis of the performance of supersonic vehicles is required in
their design., Their flow fields are complicated by detached bow waves
and by complex flow fields behind the waves which interact with viscous
boundary layers. Functional solutions for viscous, compressible flow
about blunt bodies are inaccurate because of necessary mathematical
simplifications. Accurate measurements are costly and difficult,
particularly detailed measurements of flow characteristics, In addition,
most measurements are limited to special systems and may not apply
to a new design. Recently, numerical analysis has become a valuable
supplement to other types of analyses and experiments., When better
numerical techniques are developed and larger and faster computers
become available, they may become the main analytical tools of designers
of supersonic vehicles. Numerical techniques have been developed and
solutions reported for viscous, compressible, supersonic flow in the
forfzbody region of a two dimensional body. In this irvestigation, a
complete set of numerical techniques was developed for axisymmetrical,

viscous, compressible flow around blunt bodies.

1.2 Purpose

The purpose was to develop numerical techniques for axisymmetrical

viscous, compressible flows in both the forebody and aftertody region of

blunt bodies.
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1.3 Scope

The investigation included development of numerical techniques
and solutions of axisymmetrical, viscous, compressible flows around
hemispheres and hemisphere-cylinders. The solutions were restricted
to systems of ideal gases with laminar unseparated boundary layers.

In the development phase, the time dependent differencing technique
of Lax and Wendroff [45, 1960]" was used to represent the basic flow
equatinns which were expressed in terms of body related coordinates,
The detached bow wave was represented by a moving discontinuity, It
was coupled to the digitized field by a wave fitting technique. The addi-
tion of stabilizing terms to the difference equations was used to achieve
numerical stability. Numerical experiments were used to minimize the
effect of stabilizing terms 'n results,

Solutions were obtained for hemispheres at Mach 2 and 4 for
inviscid flows and Reynolds numbers from 103 to 105. Inviscid flow
results agreed with measurements of Baer [4, 1961]. Computed veloc-
ities in the boundary layer agreed with measurements of{ Wells and
Blumer [75, 1968]. Solutions were also obtained for a hemisphere-
cylinder for Mach 4 for inviscid flow and a Reynolds number of 4000,

A steady solution for a hemisphere-~cylinder was used as the initial
condition for a subsequent solution in which the stabilizing terms were

zero.

! Numbers in brackets [] designate references listed at the enc of
this report.
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The '"Review'' section describes previous research that was pertinent
to this investigation. The "Theory' section presents the basis of the
adopted numerical techniques. The section on "Numerical Techniques"

‘ t presents the equations that were the basis of computer programs, The
""Computations and Results' section describes computer programs and

the data and results of this investigation,
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2. REVIEW
2.1 Introduction

The procedure used in the '"Review'' was to first survey titles and
secure abstracts of literature pertinent to solutions of blunt body systems.
From these titles and abstracts, literature was selected for furtber
study. Using the literature that was collected, different methods of
solving for the flow about blunt body systems were studied. From this
study, the explicit time dependent method was selected as the method
to be used in this investigation., The puryose of this "Review' se~tion
is to surnmarize information that was useful in this investigati,n. Topics
that are covered are methods for obtaining initial values, expl.-¥ time
dependent differencing techniques, wave fitting, prior solutions and
experimental results for blunt body systems.

Studies of the literature collected were focused on the advantages
and disadvantages of available methods {or solving axisymmetrical,
viscous, compressible flows. Without high speed computers, the extent
of early computations was limited. One of the common methods used to
solve for viscous flow around a blunt body system is to divide the shock
layer into an iuviscid and viscous region. Basic textbvoks on boundary
layer theorv by Schlichting [63, 1966] and Rosenhead [42, 1963] deal
with the Prandtl boundary layer theory in which the inviscid solution is
matched with the viscous flow next to solid surfaces. In solving axisym-
metrical, viscous, compressible flows early methods required many

assumptions and results were only approximate. Recent availability
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of high speed digital computers has permitted more accurate solutions
in which functional and numerical methods are combined. The literature
on these methods is extensive. A few examples are given in [32, 1955;
41, 1959; 23, 1964; 28, 1968; 22, 1943; and 25, 1969] in which an
inviscid flow solution provides boundary conditions for the boundary
layers. Functional methods involve assumptions and provide only
approximate solutions of the inviscid flow. Hayes and Probstein [38,
1966 ] deal with methods of solving inviscid flow systems,

More accurate solutions of viscous compressible flows are
obtained by using finite differences to approximate the governing partial
differential equations of a system. In addition to the solution accuracy
gained by using numerical methods, flexibility is improved in repre-
senting boundary conditions. Numerical techniques were selected for
use in this investigation because of their accuracy and flexibility.
Numerical techniques 1nd solutions are described in sections 2.3 and
2.5.

In the study of numerical techniques, attention was focused on
their advantages and disadvantages for blunt body systems including
differencing and initial and boundary conditions. After studying the
literature, a class of explicit, time dependent, finite difference tech-
uiques was selected to be used in this investigation., The reason for
this selection was that implicit methods involve simultansous solutions
of all nodal data points and are more difficult to program for a digital

computer than the straightforward explicit finite difference approach.
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For some systems, implicit methods require less computer time, but
implicit methods have not been successfully applied to viscous compress-
ible flows. For viscous flow around a blunt body, coordinate transforma-
tions are often used which complicate the governing partial differential
equation., The explicit finite difference technique lends itself to simple
treatment of these complicated equations. Therefore, an explicit, time
dependent, differencing technique was selected because of its greater
flexibility and mathematical simplicity, Another advantage of finite
differencing partial differential equations in time dependent form is

that these equations are hyperbolic regardless of Mach number. This

is especially advantageous for viscous compressible flows where there
are regions of mixed subsonic and supersonic flow.

In the explicit time dependent technique selected for use in this
investigation, dependent functionals, such as velecity and temperature,
are determined only at a finite number of locations wkich are called
nodes., A solution is started with initial values specified at all nodes.
Later values are calculated by repeated application of the difference
equations that are analogs of the governing partial differential equations
for specific time increments. Boundary conditions must also be repre-
sented in finite difference form. Shock waves in the system may be
represented by the difference e uations which spread the wave over
several nodes. Waves may also be represented as discontinuities in
which the Rankine~Hugoniot equations apply.

Experimental results of previous investigations were studied for
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comparison with those of this investigation. Only steady flow reeults z/
, from wind tunnel experiments were available. A special effort was
made to obtain results for 2 < M < 4 where gas properties are related :

by ideal gas equations.

TFT TR,
’

2.2 Initial Values
2 2.2.1 Initial Bow Wave. Bow wave coordinates are required to specify

initial values. Morstti, et al, [51, 1968; 52, 1968; 53, 1968] used

G SRR

Ehli

T

relatively crude methods to initially estimate bow wave coordinates for

TR

an inviscid solution. Viscous systems require small nodal and time

incren.ents which result in long computing times for convergence.

Therefore, a more accurate determination of the initial bow wave :
coordinates was desirable in the subject investigation. An accurate

method of predicting bow wave coordinates was given by Moeckel [50,

1949] and Love [46, 1957]. Their techniques involve a combination of

empirical and functional methods which are relatively simple to code

for a digital computer.

2.2.2 Boundary Layer. A method for calculating laminar compressible

boundary layers of a blunt body was necded in determining initial values.

Many methods were reviewed and rejected as either being too compli-

cated or too restrictive in flow conditions [32, 1955; 23, 1964; 27, 1953;
: 14, 1949]. The Cohen and Reshotko [19, 1655] results compared favor-

ably with the experimental boundary layer velocities of Wells and Blumer

[75, 1968]. Cohken and Reshotko present tables of a two dimensional

solution for Prandt] Number = 1 and constant body temperature.
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Pressure gradients are allowed from the infinitely favorable to the
adverse gradients of separation. Results are given for body surface
temperatures from absolu!:e zero to twice the free stream stagnation
value, Recently, their tables have been extended by Christian, Hankey
and Petty [15, 1970]. The tables of both references involve the assump-

tion that the inviscid velocity at the edge of the boundary layer is

u =A™ (1)

e
Here I" and m are constants and A is the distance along the body sur-
face. In utilizing the tables, segments of the boundary layer were
matched to equation 1,

2.3 Differencing Techniques

2.3.1 Introduction, Basic theorems for stability and convergence of
difference equations were derived by Courant, Fredricks and Lewy [20,
1928]. Von Neumann (73, 1944 ] suggested that hyperbolic partial
differential equations representing mixed subsonic and supersonic
flows could be solved by finite difference equations. Von Neumann

and Richtmyer [74, 1950] added a stabilizing term to their difference
equations to stabilize the numerical solution. Stabilizing terms have
been developed which do not seriously degrade accuracy except in the
vicinity of shock waves. Lax [44, 1954] systematically developed
differencing techniques applicable to strong shock waves, but the

waves are spread over several nodes. Rusanov [61, 1962] minimized

the stabilizing term used by Lax to improve accuracy. However,
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Emery [30, 1967] reported that computations using Rusanov's technique
were unstable after long time periods. Aungier [1, 1970] developed
simple stabilizing terms as a variation of Lax's method and his results
for inviscid flows compared very favorably with those of experiments
and with those of the method of characteristics. Lax and Wendroff [45,
1960 ) reported a differencing technique of second order accuracy which
has been widely used both in its original and modified forms. Other
time dependent differencing techniques have been introduced by Godunov
[35, 1959], MacCormack [47, 1969] and Crocco {21, 1965].

After studying the available differencing techniques, the one of
Lax-Wendroff was selected for differencing the field equations in this
investigation. It was selected because successful applications have been
reported for both inviscid and viscous flow systems.

2.3.2 Lax-Wendroff Differencing Technique. Lax and Wendroff ¢run-
cated a Taylor expansion to yield difference equations of second order
accuracy. The technique is described in detail in section 4. 3.2,

Burstein [12, 1965] used the Lax-Wendroff technique to solve
for the inviscid, two dimensional flow over a body with a square nose,
In his solution, instabilities occurred near the detached shock and
sonic line, Burstein eliminated the instabilities by adding stabilizing
terms to the Lax-Wendroff difference equations. Lapidus (43, 1967]
calculated the characteristics of inviscid flow over a two dimensional
cylinder using a modified version of the Lax-Wendroff technique.

Lapidus alsc experienced difficulties in stabilizing his solution.
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However, he developed stabilizing terms which were less complicated
than those of Burstein, and he succeeded in obtaining a solution. The
stabilizing technique of Lapidus is described in section 4.5.2.

Skoglund, Cole and Staiano [65, 1967] developed methods for
solving for the interaction of an oblique shock wave with a laminar
boundary layer. Additional stabilizing terms were not necessary to
achieve numerical stability for that system using the Lax-Wendroff
technique. Later, Skoglund and Gay {66, 1969] extended the work to
include separation of the boundary layer. Using the techniques of
Skoglund, et al. [65, 1967], instabilities occurred in the separated
region near the edge of the boundary layer. Numerical stabilization
was accomplished by adding stabilizing terms that were derived from
those of Lapidus [43, 1967].

Richtmyer and Morton [59, 1967], as well as i.a.pidus f43, 1967],
proposed a two~-step, Lax-Wendroff technique. Values are obtained at

-

time t + ‘%E using the first order technique of Lax (44, 1954]. Values
at t = t+At are calculated using centered time differences based on
values at t +AZ-E. Erdos and Zakkay {31, 1969] used the two-step,
Lax-Wendroff technique for solving an inviscid two dimensional flow
in the near wake region. They added a stabilizing term to the differ-
ence equations of their second step in order o obtain a stable solution.
2.3.3 Aungier Differencing Technique. Aungier [1, 1970; 2, 1971;

3, 1968] developed a version of the Lax technique to solve for inviscid

compressible flow about blunt bodies. His differencing technique is
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3 % described in section 4.3.2. The stabilizing term developed by Aungier

i gg is described in section 4,5.3. ;
:

: ﬁ 2.4 Wave Fitting

ix ‘ . As indicated by references [30, 1967; 39, 1954; 45, 1967; 65, 1967; ;
55 ‘ 66, 1969; 74, 1950], representation of shock waves by difference equa- ‘
L tions results in spreading the wave over several nodes. For the blunt ‘
: body system, it seems better to represent the bow wave as a disconti- ;

nuity which satisfies the Rankine-Hugoniot equations, The latter tech-

nique is called wave fitting. An important problem of this technique is

the coupling of the wave to the digiti.ed field which is represented by

difference equations., This technique was described by Richtmyer [64,

LR P N——.

1961]. Moretti [52, 1966; 53, 1968; and 51, 1968] used a variation of

T R S NPV,

Richtmyer's technique for blunt body systems. His method is explained
in detail in [53, 1968].
2.5 Numerical Solutions of Blunt Body Systems

Solutions of blunt body systems using time dependent numerical

techniques became feasible with the advent of high speed digital com-
puters, An early paper of Burstein [12, 1965] was on inviscid compress - !
ible flow over a two dimensional, flat-nosed, blunt body, Free stream
values were used for initial conditions, and the initial bow wave was at

the body surface. The bow wave was represented by difference equa-

tions and was spread over several nodes. Burstein did not describe

the techniques that he used for the body surface and at the downstream

L,

boundary. However, in an earlier paper {13, 1964], Burstein used a
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reflection technique at the body surface and a backward differencing
technique at the downstream boundary. Reflection techniques involve
strings of nodes along the body surfaces and within the solid body.
Absolute values at the nodes inside the body are set equal to the values
at the first string of nodes outside of the body surface. Burstein used
a: variation of the two-step', Lax-Wendroff differencing technique for
points in the field. Numerical instabilities occurred in the stagnation
region, near the bow wave and near the downstream boundary. The
solution was stabilized by adding stabilizing terms to the differencing
equations.

Bohachevsky and Rubin [8, 1966] used a Lax differencing tech-
nique [44, 1954] to solve for the nonequilibrium inviscid flow over a
variety of two dimensional and axisymmetrical bodies, The grid system
was extended well beyond the expected bow wave into the free stream.
The outer and downstream boundaries were treated in the following
different ways: (1) first derivatives zero, (2) second derivatives zero,
(3) reflection technique and (’4) the boundary was left free, The results
were approximately the same for all of these techniques. They concluded
that the choice was unimportant as long as the flow at the boundary was
supersonic. Body surface nodes were treated using the reflection tech-
niques of Burstein [13, 1964]. Shock waves were represented by
difference equations. Bohachevsky and Rubin did not report any
trouble with numerical instabilities. However, their results were

inaccurate in the stagnation region. Bohachevsky and Rubin ascribed

12
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the errors to difficulties in differencing in spherical coordinates.

Later, Bohachevsky and Mates [7, 1966] extended the solution
to include angles of attack., Additional problems were increased com-
puter storage, further decrease in accuracy and large computer outputs.
DeJarnette [24, 1966] also used the Lax technique to calculate invisr '~
nonequilibrium flow over a blunt body. DeJarnette limited his solut.
to supersonic regions and relied on some other solution to provide
initial values downstream of the sonic line. Using a modified forward
differencing technique at the body surface, he reported that results were
more accurate than those of the reflection technique. However,
DeJarnette's results show large perturbations downstream of the sonic
line.

Although not reported by Bohachevsky and Rubin [8, 1966],
according to an analysis by Moretti and Abbett [52, 1966], the required
computer running time to calculate the flow around a step was approxi-
mately four hours on an IBM 7094. The number of nodes required to
provide good resolution of the bow shock was 3588 and results after
650 cycles were presented in [8, 1966]; however, Moretti and Abbett
maintained that in their opinion, convergence still had not occurred.

Moretti and Abbett represented the bow wave by a discontinuity.
Since resolution near the wave was not a problem, the number of nodes
in the field was reduced, and with fewer nodes, computational times
were greatly reduced, Moretti and Abbett calculated inviscid flows

over the forebody of various shapes, Initial values were obtained by
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assuming a parabolic bow wave shape with the standoff distance being
calculated on the basis of curvature. Initial values at the stagnation
point were calculated by assuming isentronic flow behind the bow wave.
Interpolations were used for values in the region between body surface
and bow wave. Linear extrapolation was used at the downstream’
boundary. Values at the body surface were calcuiated using the method
of characteristics. Mapping of the ficld into a rectangle was accom-
plished using a simple coordinate transformation, Moretti and Abbett
used a Lax-Wendroff differencing technique. In order to spsed conver-

2
gence, the 2 term was arbitrarily multiplied by 2. Accurate results

a2
were obtained in the forebody region for two dimensional and axisym-
metrical flows, Computer times varied from 15 seconds to 6 minutes
on an IBM 7094 computer, depending on resolution. This vast improve-
ment over the computational times of Bol.achevsky and Rubin is due to
a reduction in the number of nodes.

The foregoing report has served as a foundation for a series of
reports by Moretti and others. Moretti and Bleich [53, 1968 ] extended
the earlier techniques and obtained solutions for three dimensional
inviscid flow around a blunt body. Their techniques were identical to
those employed by Moretti and Abbett except that the need for a con-
vergence term was not mentioned. A typicai running time was thirty
minutes on an IBM 7094 computer. A maximum of 594 nodes was used,

From the results presented, it appears that convergence occurred

within 300 to 500 cycles. Results were limited to the forebody region

14
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because of limited computer storage. Later, Moretti (51, 19u8]
improved convergence and accuracy of the results of [53, 1968] by
using spherical coordinates. This dependence of stability, convergence
and accuracy on the coordinate system confirmed the findings of
Bohachevsky and Rubin,

Moretti and Salas [54, 1969] extended the technique of Moretti
and Abbett [52, 1966] to include viscosity and thermal conductivity.
A nonlinear coordinate transformation was used to increase resclution
of the boundary layer. The calculations of Moretti and Salas were
limited to the forebody region of a two dimensional, circular cylinder.
They used Lax-Wendroff differencing techniques in polar coordinates.
In all cases, body temperature and viscosity were constant and Mach
number was equal to 4. Reynolds numbers, that were referred to free
stream conditions and body radius, ranged from 102 to 105. A typical
computing time was 4 minutes for 1000 cycles on a CDC 6600 computer,
The number of cycles varied from 560 for Re < 5000 to 1500 for
Re > 5000. In that time, convergence was not yet complete, but
Moretti and Salas considered the results acceptable, Later, for the
same system, Moretti and Salas [55, 1970] abandoned the Lax-Wendroff
differencing technique in favor of the predictor-corrector one of
MacCormack {47, 1969]. An equation written in terms of %f was used
instead of the continuity equation. Even though coding was simplified,
the reduction in computing time was not significant. Although no insta-

bilities were reported, Moretti stated in a private communication that

15

|
b

TTTTATTT 'T.“Tﬂ"f‘%"»‘fa
b
\;%

PP N NV S PY J

L W e £ 1 e

AV RE VS

SRS E T SORERET R W LU A PPL TN

[




RN TR R

2 RN DRE L B o e b et e b Tt e B R S el P g e L AR TR A RS DT 6 R PR

instabilities occurred if the flow was not accelerating at the down-
stream boundary.

Scala and Gordon [62, 1968] obtained a solution for viscous
compressibie flow around a two dimensional cylinder using an explicit
time dependent technique, Their technique involved a slight variation
of the Crocco differencing technique [21, 1965]. The bow wave was
represented by finite difference equations. The total number of com-
putational nodes was large in order to achieve adequate resolution in
the boundary layer. In one solution case, 637,000 nodz1 computations
required twenty hours of IBM 7094 computer time.

Goduno.v (35, 1959] developed a time dependent iechnique which
is supposedly an optimum combination of characteristic and difference
equations. Godunov represented tne bow wave by a discontinuity; how-
ever, in his calculations of the inviscid flow over a blunt body [36, 1961],
the results were inaccurate near the stagnation point and the bow wave.
Masson, Taylor and Foster [49, 1969] deduced that Godunov's treatment
of the bow wave and body surface was incor¢ect. They obtained much
better results using a slight variation of Moretti's technique for the bow
wave and body surface. However, their results at and near the stagna-
tion point were still in error. Aungier [1, 1970] also concluded that
Godunov's technique does not properly represent physical conditions
along stagnation streamlines of axisymmetric flows.

Lapidus [43, 1967] solved for the characteristics of inviscid

flow over a two dimensional cylinder, Initial values including bow wave
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coordinates were taken from the results of Swenson {69, 1964], An
unusual coordinate transformation was used to obtain a rectangular
field, The bow wave was represented by difference equations. A two-
step, Lax-Wendroff differencing technique was used for interior nodes.
Instabilities occurred when linear extrapolation was used at the down-
stream boundary in early stages of the computation. Computations were
stabilized by using an arbitrary technique for the initial 500 cycles,
After 500 cycles, linear extrapolation was satisfactory. Instabilic:es
also occurred near the stagnation point and near the bow wave that
were similar to thcse reported by Burstein [12, 1965]. Lapidus used
a simpler stabilizing term than the one used by Burstein. The difference
of his resunlts is as much as 30% from the more accurate ones of Swenson,
even though Swenson's technique was used to calculate initial values.
Aungier [1, 1970] assumed that the initial bow wave was very
close to the body and that its shape was the same as that of the body.
Rankine-Hugoniot relationships and isentropic flow equations were used
to obtain initial values in the field. Linear extrapolation was used at
the downstream boundary. Forward differencing in terms of body
related coordinates was used at the body surface. The field was seg-
mented and a steady state was achieved in one segment before computing
the next segment. The bow wave was represented by a discontinuity,
Aungier was able to carry his time dependent inviscid solutions into the
afterbudy region. He reported that, within his knowledge, his time
dependent solution was the first successful one for the afterbody region.
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After deciding to use explicit, time dependent differencing tech-

niques in this investigation, other rnumerical methods for blunt body

systems were of little interest and are described only briefly. Van
3 Dyke [72, 1958] gave a good survey of the early indirect inviscid

methods in which the bow wave shape was assumed known and body

LTEESRIYT

shane was then part of the solution. A more accurate, but complicated,

solution of a two dimensional, inviscid, blunt hody system was given by

Swenson {69, 1965]. Inouge and Lomax [39, 1962] solved for the

SRR SR LA TG ot

inviscid flow over several blunt body shapes using an indirect method

in the forebody region where the Mach number was less than 1, 03.

This solation was then used as a starting point for the method of char-
acteristics for the remainder of the field., Calculated body pressures

agreed closely with experiment in the forebody and afterbody regions.

Slight deviations of calculated and experimental results occurred in the
vicinity of the forebody-afterbody junction,

Dorodnitsyn [26, 1957] proposed a numerical method for non-
linear flow equations which he called the method of integral relations.
This method has been used by many investigators for inviscid flow
[71, 1960; 70, 1963; 11, 1964; 6, 1965]. The method has an advantage
of being direct, so that the bow wave coordinates are a part of the solu-
tion. Unfortunately, the method becomes extremely complex as the

resolution in the shock layer is increased and, therefore, seems imprac-~ .

tical for viscous systems,
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2.6 Experimental Results

A large amount of experimental data has been collected for the
flow over blunt bodies. However, reports containing data of both the
body surface pressures and coordinates of the bow wave are scarce.
Baer [4, 1961] conducted wind tunnel experiments on an AGARD Model
E hemisphere cylinder configuration. Free stream Mach numbers
ranged from 2 through & while Reynolds numbers varied from .17x190
to . 51x106 per inch, In this report, coordinates of the bow wave are
specified, In many other reports, only unscaled schlieren photographs
are available,

Inouge and Lomax [39, 1962] summarized experimental results
of Kendall {40, 1959], Kubota [42, 1957] and Baer [4, 1961]. Graphs
of the bow wave, as well as body surface pressure distributions, for
a hemisphere at M = 4, 76, hemisphere cylinder at M = 7. 7, sphere
cone at M = 4,95, and a blunt ellipsoid~cylinder at M = 5, 12 are pre-
sented,

Pressure distributions over hemisphere-cylinder bodies were
given by R;aichle [5&, 1962] for Mach numbers varying from .4 to 5.0
and Reynolds numbers from , 36x106 to 1. 2x106. Unfortunately, bow
wave coordinates are not available in this report. Cleary [17, 1965]
measured pressures along several blunt cones at M = 5,25, 7.4, and
10. 6. In addition, pitot pressures were .neasured in the shock layer
for a 15° half angle biunt cone to study entropy layer thickness,

Hasting, Parsh and Redman [37, 1957] measured body surface
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pressures of flat laced cones and provided schlieren and shadow photo-
graphs of bow waves.

Experimental body pressures were compiled by Clark [16, 1966]
for Mach numbers from 1.9 to 22 for spherical forebodies. Empirically
correlated afterbody surface pressures were given by Eaves [29, 1968]
for Mach numbers from 5 to 10.2. Forehody shapes consisted of hemi-
spheres, flat faces, and round shouldered flat faces, Bow wave coor-
dinates are not available in those reports.

Complete experimental boundary layer data are not available for
axisymmetrical blunt bodies. Boundary layer velocities were measured
by Wells and Blumer [75, 1968] for a hemisphere at M = 2, Reynolds
number per inch from . 05x1 06 to . 5x106 and central body angles of 30,
50, 70 and 90 degrees. Tctal pressures were obtained with a pitot tube
that /as normal to the body surface. The reported uncertainty of the
parameter yD-‘\rﬁ;}; was + 3 percent. Here, y is the distance
normal to the body surface, D is the maximum diameter of the body and
ReD is a Reynolds number based on free stream static conditions and
maximum body diameter. Body surface cooling was provided so that
surface tem:peratures approximated the wind tunnel stagnation tempera-
ture to approximate an adiabatic body surface condition.

2.7 Summary

For inviscid flow, Aungier [1, 1970] was successful in obtaining

tiine dependent solutions in the afterbody region of a blunt body, His

results agree closely with measurements and those of the method of




characteristics. However, inviscid solutions of blunt body systems

cannot provide boundary layer and heat transf:r information,

Solutions of viscnus flow about blunt bodies have been limited to
two dimensional circular cylinders. In the case of Moretti and Salas
[55, 1970], solutions were restricted to the forebody region with
central angles less than 70° and with constant viscosity, Their treat-
ment of bow waves as discontinuities reduccd the computing time, The
solutions of Scala and Gordon [62, 1968] required excessive computing
times and were not v.erified by other methods. No viscous flow solu-
tions were reported in the literature for the afterbody region of axi-
symmetrical bodies,

Experimental data are sparse and are not adequate for precise
engineering. The most complete presentation of body pressures and
bow wave coordinates \'vas given by Baer [4, 1961] for a hemisphere
cylinder. For blunt bodies, the only boundary layer experimental data

found in the literature were those of Wells and Blumer [75, 1968].
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3 3. THEORY
3 3.1 Introduction
g 3.1.1 System,., For purposes of this investigation, a system is a
‘ specified section of matter that is being considered in a particular
, problem. The specifications of a system include initial values and
g boundary conditions.
Specifications for supersonic flow about a blunt body system
are given in figure 1,
] T
/System Boundaries
r -— 1- - - s cub uae dEe wune e
3 Bow Wave
| l
] |
I I '
| b= constant |
1 I | .
: Free Stream: | | Axisymmetrical
. Mo : Body
‘ Gas Compo- ' / Body i
4 sition: i ’/ x
P T | ///// '
3 ! ‘
3 Initial Condi- |
3 tione: |
Bow Wave |
3 rw(xo 0) :
3 Field |
f{(x’ r, 0) |

Figure 1, Specifications of the Blunt Body System
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In developing time dependent numerical techniques, independent
variables were x, r, t, and dependent variables were the radius of
the bow wave rw(x,t) and field variables fi(x, r,t). Boundary conditions
were those of the free stream and body surface. Initial values rw(x, 0)
and fi(x, r, 0) were estimated to approximate steady values.
3.1.2 Scope. The problem was to calculate rw(x, t) and fi(x, r,t) as
t = «, The viscous compressible flow equations were the basis of cal-
culations. The purpose of this chapter is to present the theory thc:
was used in developing numerical techniques‘, including the basic
differential equations, coordinate transformations and the method of
characteristics.
3.2 Basic Differential Equations

From [64], the vertor form of the basic, viscous, compressible

flow equations are:

20 49 (p¥) =0 2)
PY=B+7- 3 (3)
PT =-9v: Q+® : 9V (4)

where: p is density
t is time
V is velocity

~

+Y -9y

?

B is specific body force per unit volume which is negligibie
in systems of this investigation.

23




O SRR e R vt S S D S B SR TS AL AT A av £ 28 L TR M e s TR T I P TR P R TR, LR BT v L T T T T L T T e
3 T R T U T e TR L, ,.,..,Iﬁ.

e
1

-pl + @ is stress dyad

~3

pRT is pressure

)
1l

R is a gas constant

is temperature

H

is idemfactor

U T

=[(m- 5w v- V]I + 2y = is the viscous stress dyad
~ox ~~

is bulk viscosity which is negligible in systems of this
investigation, [10]

3

is shearing viscosity

h 3

= & (VV + V) is a rate of strain dyad

v is the transpose of WV

—
)
b
v

~

s is entropy .

Q = - k VT is heat flux
k is thermal conductivity.
Conversion from vector form into orthogonal curvilinear coor-

dinates was accomplished using the following equations:

5 i 2

i V== o (5)

3 B 3X(j)

' W= =} v (6)

] ~  h ()

3 TR — 0 (b v,) (1) j
‘_ ~ hlh2h3 Bxi j ki .
3 24
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axXg a 9X, af «

where: repetition of the English indices i or j without parenthesis

implies a summation of that term with indices 1, 2, 3

hi is a scale factor of the coordinates

X; is an orthogonal curvilinear coordirate

6 is the kronecker delta.

of

3.3 Coordinate Transformations
3.3.1 Introduction. To simplify the solution of the hilunt body system,
body related coordinates A and w were used. In terms of them, the
entire surface of any body is specified by wy = 0. In the numerical
3olution of equations 2, 3 and 4, a concentration of nodes in the bound-
ary layer and near the stagnation point i. desirable for accurate resolu-
tion of those regions. This was accomplished with nonlinear coordinate
transformations. In addition, treatment of the bow wave as a disconti-
nuity was simplified by representing the bow wave as a grid line,
3.3,2 Body Related Coordinates., The body related coordinates \
and w are shown in figure 2, where X is the distance along the body

from its nose and w is the perpendicular distance from the body surface

to a point in the system,




TETS TS T o

AT om 10

Tangent to Body

L-m-——-—--—_-

Figure 2. Body Related Coordinate System

At any point, the lines A = constant and w = constant are perpendicular.

6 is the angle between the unit vectors A and ®. The body curvature is

xX(A) = -f%% (9

The scale factors are:

= =1+
h hk nw

(10)
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2 3 From figure 2,

A
r(\, w) = f sin @ d\ + w cos 8

B o
: (11)
4 i A
; ! x(X,w)=f cos B d\ - wsin 0
K| o
3
-
: y‘ In an axisymmetrical system, velocity
; R
V=ul+vd (12)

3.3.3 Nonlinear Coordinate Transformations. In the numerical

analysis of a blunt body system, greater resolution is required near
the stagnation point and body surface, .

Skoglund, Cole and Staiano [65] and Staiano [67] demonstrated
b that nonlinear coordinate transformations of the differential equations
yield satisfactory results for the interaction of an oblique shock wave

7 and laminar boundary layer. The logarithmic transformations of

Skoglund, Cole and Staiano were tried for the blunt body system.
They were later modified, so that the bow wave was represented by a

grid line. This simplified coupling of the bow wave to the digitized

TR .
KA o M e

E field.

The coordinate transformations that were used in the solution

. phase of the subject investigation are:

. ¢ = fn(aX + 1) (13)

PO—
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vV = zn[ﬁw-i- 1] (14)

T PR AT TS DT TR ST,

: T =t (15}

where: ww(k »t) is the bow wave coordinate

T TRV T T

a and 8 are constants

palr i

< f = (£, )
3 i, i
t 'ty
-
£ = (f.
i, r ( i, 'r)gv
For equal increments of A{ and Ay, these transforr . entrate
nodes near the stagnation point and body surface. The . ave is

~epresented by the grid line v = Ve = constant.

3.4 Transformation of Differential Equations

3.4.1 Introduction, The basic flow equations with diffusion were not
available in the literature in terms of body related coordinates. The
simplest method of expressing equations 2, 3 and 4 in body related
coordinates is to use the scale factors of equation 10. A more tedious
method is to use the chain ruie for a total derivative. As a check,
both methods were used. In these derivations, the inviscid and diffu-
sion parts were treated separately, After expressing equations 2, 3
and 4 in terms of body related coordinates A, wand t, they were
transformed into {, v and 7 using equations 13, 14 and 15,

3.4.2 Inviscid Equations, For inviscid flow, = 0and Q = 0, In

]

transforming equations 2 through 4 to a dimensionless form, reference

variables are the maximum body radius L free stream acoustic
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speed a_ density P, temperature To and dynamic viscosity B In
previous investigations{13, 43, 65, 66, 67], numerical statility was

improved by using the following variables:

P
m = pu
n = pv (16)

2 2

E = p[y(yT- 1)+u ;v ]

where E is energy per unit volume,

In this investigation, an entropy equation was uscd instead of an energy
equation. In that equation, the specific entropy per unit volume

S = ps. By combining equations 2 through 12 and eliminating the ref-
erence variables, the axisymmetrical, dimensionless, inviscid flow

equations are of the form:

i=1, 2, 3, 4 (17)

f. =+G + H + B, ,
w i

i,t h7i,x i,

where
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op pr )

The symbol eWP is uned because this term appears in the rate of

strain tensor.
In cartesian coordinates, the conservative form of the flow equa-
it = 8 & + hi, v Lax and Wendroff [45] dernonstrated that

the difference form of that equation satisfies the Rankine-Hugoniot re-

tions is f

lationships for a finite element and that truncation errors of these dif-
ference equations are dissipative. Equation 17 is in conservative form
except for the Bi term.

From equations 13 through 15,

Ee = ki, v, (18)
£ T hpf e kgl (19)
f’w = k4f’v (20)
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where: k) = Be”’ £w (21)
w
k, = e C (22)
k3 = aBe-((+v)'-%-ww’c 123)
w

2 -V
k = & (24)
From equations 17 through 24

fi, r = klfi, v + T;Gi, ¢ - -I;-Gi. v + k4Hi, v + Bi (25)

3.4.3 Viscous Equations. Viscous flow equations 2 through 4 have

the form

g
-2
(1]
"
[+ ]
]
—

"
(=]

The derivation of these terms in body related coordinates was lengthy.
A few examples of the procedures are presented here, From equa-

tion 6,
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%(ui. +v(3)’ N + Bl +vc3).

il

%(u,k +avA + (-l-v

..
h ,A h

é -
w+ " (ud +v(3)’(p

A +

X - _]_»_ LA A
(w oA+ (v OO + 7 (u in @ +v cos 8)5P

Using the transpose of equation 27, the elements of the rate of strain

tensor are:

e

AA

AW

ww

QP

=1
"h‘“,l“‘v)
1.1 am
= = o (o + - —
e ~2hv A %W h
= v
s W

= %(u s8in 6 + v cos 0)

From equations 7 and 8,
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2
xex T

= 1L —Aa
[h(TeM).A+ n T W, w

in @ + - >
sin @+ e, cos 0 e(mpsine)])\

"“n AW
1 2L
+ [h(Te)\ w).k * (T°ww),w * h (eww °n’

T
+2 (elw sin 6 + € w0 S°° 8- e‘P‘P cos 9)](.3 (32)

By similar methods, the diffusion terms of equation 26 are:

(pl =0 (33)
MZC
(4] j 2
Q, = "L"(T ) —('1‘ -=(Te )
2 Reo “Ara’ia ww A 37 Tpo,A

2T
+ 4Tolwx] + Z(Texw)’w+ = (sin 6 )% + cos Oexw

- si ' 34
sn@e(p(p) (34)

0, = b Z(re, ) +4
37 Re U3 w T3 ey w "3 0o, w
h(TeXo) X T(eww ) + (sin Oe

+cos 0 ® o - S8 ;] ewp)} (35)
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Py = TRe_ PrlaTT ) ) * T D W

h

1 L8 T L. g
+h(TT,A)(h),A + h T w+hr(r;1 sin 6

1

4,2 2 2
+ + -1)T(= + +
T'w cos 0)] + ¥(y )T[3(ehl € ow eWP
-e,.e -e,,€ -e e )+4e2] (36)
AN W AA Qo ww oY Aw
where: Mo = free stream Mach number
PoVo o
Reo = —-;:—-- is free stream Reynolds number
o
pe
Pr = _I:E is Prandtl number
u=cC zT
C 8" 1 in this investigation,
From Sutherland’'s equation [63],
. - Tyt [Ty
) T, +2n T
b su s
Moy = Sutherland constant = 198, 6° R for air

Ts = stagnation temperature

T, = body temperature

b

In transforming equations 33 throvgh 36 into coordinates { and
v of equations 13 and 14, the second derivatives are:

.2
I S U R e R TR

2
+ k?.(fi, te” fi, c) (37)
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fi, ww k4“t. w fi. v) (38)
«
- N 4 ) .
&, wh “z“4‘.’t.tv w, )t F G (39

where: kzp .ks. k 4 Are given in equations 21 through 24,

L o2 - 2CH) o gy 2
k '%“‘ ["’W.ft w, £ ww“"w.t’]’ (40)

W

Complete difference 2quations were no: derived. It was simpler to use
equations 18 through 40 directly in computer codes,
3. 4.4 Equations Along the Stagnation Streamline. Equation 26 is

indeterminant along the stagnation streamiine where A = 0 because B‘

and @ approach @ ag r approaches 0. For symmetry about the stag-

nation streamline,

1,2 =0, t.ufo. :‘.M’so. i=1, 3, ¢ (41)
Fori=2,
u=0, u’xfo, u.n-o. u’xw#O (42)

L'Hospital's rule is that if f‘(}«) and tzik) «“0as ) =0, then

. (\) '
Hmit Tl'('ﬁ] . umn[-‘-l'l] ‘ - 43)
A0 L2 A~0 L2,

In the following example of the application of | ‘Hospital's rule, at

A #0, .“--f:qu.muvcou). AtA =0, r=0 u=0, 0=9/2and
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imit
X~0 sin § - w sin 99‘9—
d

d6

Fromh=1+xw=1-(ax)w,

{u

limit[" A

A-0

+ nv) 8in 6 + (V.X - %Xu) cos 9)]

h sin 0

eaar=o0

By similar modifications of equations 17 and 26, at A = 0

0
Y
iy A S
y exp(p)
0
0
X e
h - PE
0
2
B e
ph A
ASn
" ph Seya

-n
0
H =
2 Y
o e’ S
) yexp(p)
_$n
P
i
0
G =
s A 'nu,k
-Su,)\
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Other terms of equation 26 do not require special treatment.
3.5 Method of Characteristics

Since the system is time dependent, the bow wave moves, In
determining bow wave speed, one equation is needed in addition to the
Rankine-Hugoniot relationships. The additional equation was obtained
by the method of characteristics. In the following, the technique of
Moretti and Abbett [52] is adapted to bedy related coordinates.

Let ww(k »t + At) be the point where the w coordinate intersects
the bow wave at time t + At. In this section, the orthogonal coordinate

frame of figuré 3 with origin at ww(k.t + At) is used.




As shown in figure 4, the boundaries of the blunt body system are

NPT T T

NPT W

A BCDEUF A, Asindicated, the coordinate ww of the bow wave

R P I,

varies with respect to A and t. Equation 14 implies that the bow wave §

coordinate Vo is a constant and is not a function of £ or 7, In the . 1

digitized field of figure 5, Vo, = constant is one of the boundaries.
3
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Transformations of cylindrical coordinates to { and v were specified

DrR vl aibema s . Y e N She e

in equations 11, 13 and 14. The determination of ot and 8 of equations

RO g e Wt

P A

] 13 and 14 is described in section 4. 2.2 because of their dependence on

initial values,

4,2 Initial Values

4,2,1 Initial Bow Wave Coordinates, Initial values of bow wave

[T S ERCN

coordinates were calculated using the method of Love [46]. The

method involves a combination of functional and empirical analysis

which assumes that the bow wave is hyperbolic, so that

E 1/2
' (&, + x)z - g:
= (64) :

4 T = M -1
: [+

distance from the most forward point on the bow wave to

3 where: {a

an intercept of its asymptote with the x-axis

<
NN

Poa b

distance from stagnation point to an intercept of the bow

s

€y

wave asymptote with the x-axis

M = free stream Mach number,
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A characteristic variable 8(n,t) is introduced so that

_ af ' .
£, =38P, | (52)

BULAY L e LS

L

- 3

f’ﬂ = 3B B’n (53)

Substituting equations 52 and 53 into 50 and 51,

B, Lyvp Lipyp —h=c (54)

B gl+v B —cR+-—p SB-o (55)

0
1l
v

<

<

The determinant form is

tdp.
E | (B:t+vnﬁ.n) p?ﬂ’" ap <)
. | = (56)

1 -
pyP.n BetvpP ol |38 ‘2

Gt
T R T PP T S

In accordance with the usual method of characteristics [33], the left

2 determinant is set equal to zero. The result is

: B.tuvn*a)p.n:o (57

One solution of equation 57 is the characteristic

B=n- (Vn - at (58)
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For B constant,

dn, _. . (59)
dt)ﬁ vn a s

From equations 50, 51 and 59 a2 compatibility equation is

._E ‘ypa—-n

60
B (60)

8=y
where on p‘yv£ € Ep.£ + ‘ypa.\rev‘n’e

In chapter 4, equations 117 through 127 are the basis of a wave fitting
technique which couples the bow wave to the digitized field.

In this investigation, the method of characteristics was also
used to derive an inviscid boundary equation at the body surface in
terms of body related coordinates, With @ normal to the body sur-

face, w replaces 7 and v replaces vn in equations 59 and 60 so that

dwy, _ .
gV e (61)
_E
tlg = TP dt B~ % (62)
u w?, u
where o, ‘)'pa('}:v'x =) 7P Y ‘)‘p(e’:Ax )

The value of aw in equation 62 i. indeterminant along the stagnation

streamline., Using the technique of section 3.4.4, at A = 0

O‘w = ‘ZVPEAX (63)
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4, NUMERICAL TECHNIQUES

4,1 Introduction

In this investigation, the transformed, viscous, compressible
flow equations of section 3.4 were solved numerically by converting
them into a set of difference equations, The solution was started with
initial values at all nodes and involved boundary values, equations for
interior nodes and equations along the stagnation streamline. Those
equations are presented in this section. The sequence and relationship
of computer operations are presented in section 5,

The following terms are used in the description of numerical
techniques. A system is the specified section of matter that is being
considered in a particular problem. The specifications of a system
include initial values and boundary conditions. A field is the interior
part of a system at a specified time. It does not include boundaries.
The dimensionless, independent variables are {, v and T as defined
in equations 13 through 15. Nodes are defined by specified values of
£ and v. The increments A{ and Av between nodes are constant.
Intervals are changes in time AT which are approximately constant.

A cycle is a set of computations for all nodes at a single time. An
iteration is one step of a successive approximation at a single node and

time,
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As shown in figure 4, the boundaries of the blunt body system are
A BCDEF A, Asindicated, the coordinate W, of the bow wave
varies with respect to A and t. Equation 14 implies that the bow wave
coordinate Vo is a constant and is not a function of £ or 7. In the
digitized field of figure 5, Vo © constant is one of the boundaries.
Transformations of cylindrical coordinates to { and v were specified
in equations 11, 13 and 14, The determination of @ and 8 of equations
13 and 14 is described in section 4. 2.2 because of their dependence on
initial values,
4.2 Initial Values
4.2.1 Initial Bow W ve Coordinates, Initial values of bow wave
coordinates were calculated using the method of Love [46]. The
method involves a combination of functional and empirical analysis

which assumes that the bow wave is hyperbolic, so that

1/2
2 2
(Ew +x) - £a
o
where: Ea = distance from the most forward point on the bow wave to
an intercept of its asymptote with the x-axis
¢ = distance from stagnation point to an intercept of the bow

wave asymptote with the x-axis

M = free stream Mach number,.
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Love empirically determined the parameters Ea and Ew and tabulated

them 28 functions of body shape and free stream Mach rumber.

P
E
4
L

]
3
3
z
¥
i
2

4.2.2 Coordinates of Nodes, Equal increments of A{ and Ay were

used in computations to establish the location of nodes. The relation-

RO s e

ships between {, v, T and indices I, J, K are:

“ g = (I-1JAL (65)
v = (J - 1)Av (66)
TR+l - TK + A'rK (67)

Cylindrical coordinates x(I, J) and r(I, J) of nodes were determined
from equations 11, 13 and 14,

In starting a viscous flow calculation, the number of nodes in the
boundary layer and the total number of nodes between the body surface
and bow wave were selected. Staiano [67] found that at least six nodes
were required in the boundary layer for acceptable accuracy. The
minimum boundary layer thickness is at the stagnation point. From

".21 the boundary layer displacement thickness at the stagnation

ni .o axisymmetrical flow about a blunt body is

»
L TEP 3

1/2
M T
b ) -2 (68)

2P, a/  Tp

8" = A(gb)(R

where: A(gb) = the tabulated function of [18]

)
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subccript s is for free stream stagnation condt.ions

subscript b is for the body surface
subscript e is for the edge of the boundary layer.
Using experimental data, Boison and Curtiss [9] derived an empirical

equation for the stagnation point velocity gradient u Combining it

e, A’
with equation 68, the stagnation point boundary layer displacement

thickness is

,  1/2
6% = A( )——Sﬁi——— Ti/4 (69)
& .Z69prea s

where: A’ = value of A for pe/ps = .95

P stagnation point pressure

-]

w =c,T.

From Schlichting [€3],

W, 36" (70)

where W, is velocity thickness of the boundary layer.
Using the Newton-Raphson iteration technique, the parameter £ of

equastion 14 was calculated from

W
e fn(B +1) - ezln(ﬁzi + 1) = 0 (71)
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number of increments in the bouandary layer at the stagna-

g
3
o
"
©
o
N

1
tion po’at
e, = number of increments for the stagnation streamline
dw = standoff distance of bow wave,

In a similar manner, the parameter o was calculated using

ejzn(akz +1)- ezzn(akj +1y=0 (72)

where: Xj = value of A at the junction of the forebody and afterbody

A e value of A at the downstream boundary

ej = number of increments for the forebody

e, = number of increments for the entire body surface.
4.2.3 Boundary Layer. A simple method was not available in the
literature for calculating initial values in the boundary layer of an
axisymmetrical body, From an extensive review of the liter~ture,
the two dimensional, similarity solution of Cohen and Reshotko [19]
was selected as the best available mMasis for calculating initial values
in the boundary layer. The transfcrmztion of Mangler [48] was used
to adapt the two dimensional solution to axisymmetrical flows, The
necessary boundary values wer.-. Uy Pgr Py and Te. The pressure
pe(x) was approximated using the rasults of Clark [16]. Assuming
isentropic flow along the outer edge of the boundary layer, ue(l),

pe(k) and Te(x) were easily calculated for each value of A (I). The

results of Cohen and Reshotko [19] are tabulated in terms of a

46




1 compressibility factor ﬂc and the body surface temperature factor gy,

of equation 68,

2o
c

a +1
c

B Rl ss L o L o e o

B_lIF) = (73)

where: IF = nodal index of the forebody

Co -1 A

= =27 (p2 2
ac T oda Ts(rbaepeTeue) J; aeperbdk

rb(x) = body radius

The assumption in the afterbody region was that Bc =.0. Having com-
puted Bc and gy values of 17, £(n), £’(n) and g(n) were obtained from
the tables of {19], Interms of them, initial values in the boundary

layer were:

< = £'(n) (14)
o
dr
- . b wu
v = rbvy * T (75)
b
I . x-1,.2 XL £9my1°
T (1+5===M (1 +en)] - =5—M £'(n)] (76)
- 1/2
X
1 ( Ps ) 2 Bgds fn T
where: @ = — { ) (=)dn (77)
rb\peae _ac t1 MeReaps o To
- 1/2
a p 2y M p
1 s e’'s
v =C (° e)-—, ] [nf’(n) - £(n)] (78)
y 2 PP, zhdsRea(ac + 1)X
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4 X=C,ap)" * 2 ax (79)
: - Lasps o a'eperb

f'(ne) = .9995
M = Mach number at w .
e e

Equation 79 is a combination of transformations of Mangler [48] and
Stewartson [68]). In the computations, derivatives were approximated

by centered differences, and integrals were approximated by Simpson's

A R DT T R

rule. Values at nodes were determined by linear interpolation with
reagpect to w.

4.2.4 Initial Field Values. The initial bow wave coordinates were cal-
culated using equation 64. The Rankine-Hugoniot relationships were
used to compute initial values of fi(). y W 0), assuming wave speed
equaled zero. This provided initial values for fi(l W 0). Utilizing

initial values at we and ww, by linear interpolation

£, ,0) = £, 1,0 +C, [\, w_,0) - (X, 0]  (80)

where Cw = (w - we)/(ww - we)-

For viscous flows w, was at the edge of the boundary layer. For
inviscid flow w, = 0.
4.3 Field Equations
4.3.1 Introduction. Implicit and explicit numerical sclutions of

equations 2 through 4 are often complicated by instabilities. Many

techniques for solving them are available in the literature [1, 5, 8,




21, 45, 47]. All of the techniques that were used in this investigation
were explicit and time dependent. No previous solutions were avajhlalé
in the special ccordinates of this investigation. The differencing tech}:'_
niques that were used were patterned after those which had been satis- |
factory for blunt body systems. All of the techniques of this investi}.’;-‘:
tion were of the form |

£ v rtAr) = L) Arfi,,r(t, v, 7) (sli

A'rz
+-z_- fi, TT(C' W T) + 'bi

where: lbi is an arbitrary stabilizing term that is described in
section 4.5
£, 1,(C. v, T) is given by equation 26

fi TT(C' v, T) is derived in section 4.3.2

’

Depending upon the particular technique, some of the terms of equatiﬁi:

‘? *’
81 may be zero. Ak

4.3.2 Lax-Wendroff Technique. On the basis of previous results [54;'
65, 66] and those of this investigation, an extension of the Lﬁx-
Wendroff differencing technique [45] was used to solve viscous com-».»
pressible flow around a system with an afterbody., The main featux:‘ei

of the technique is the approximation of f r in equation 81. Since

i, r

v = v\, wt),
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¢ i.tt)xw' 14, vy i.v)' 61, v 11, pr

i, ‘r'r)Cv =

-y
. - Be wf2 2
where: k6 > w ww.tt)fi,v

ww w,t
ww
wwt
= .4 .Y
fi,u'r kl(f! vy .u)+ W, fi.v
TN . P
h \i,Lv h h "oy v
k
+;§'Gi uhv+k4(Hl. °Hi.v)
+B _l‘zﬁm_c
by h w i,v

Based upon the results of [65], an adequate approximation of { is

ot
obtained with ¢ i 0. From equation 17
-1
== +
€ ey w L@ iJfJ‘ )\ (bijj gt c“fj.t (83)
3G 3H °B
where: & st b . c = —t
Y4y T of, T iy of, ' Tij  df
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By expanding equation 83,

f +b + cij)f (87)

1
itt ‘haij,x ij, w it

a,.

Big L
t (th,u 25 T a Bj.x)

#b.f+G, . --=G, . h +H, _ +B,
Gj\b " Aw ;270 v lhew e

The jacobians aij' b.. and cij were differentiated explicitly to avoid

ij

storing them during computations. For example, from equations 19

and 84

a = v(k - k3u’ v) + u(kzv kv )

31, 2%, ¢ 3,

An example of the differentiation of G, H and B is that

Gs,\ = 203, ¢ ~ k3G,

4.3.3 Aungier Technique. The differencing technique of Aungier [1]
was used to check the derivation and computer coding of boundary and
field equations. The technique is a variation of one proposed by Lax

{44] and is of first order accuracy. In it, £ = 0 and tbi #0in

i, r7
equation 82.
4.3.4 Approximations of Derivatives. Approximations of the deriva-

tives that evolve from equation 81 were those of equations 18 through

24, 37 through 40 and the following:
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(v, 71) = 57 [L(E + AL, v, 7) - £(8 - 8L, v, 7)) (88)

i I 2AC

fi, v

e Gvn M = =S5 + AL v, 7) - 26(8, v, 7)

AL
+ fi(c = Ac:v9 T)] (90)
f oy = 3GV + AN T - 260,
Av
+£(C,v - Av, 7)] (91)
e v = 4AL‘A o L6(C + ALy + Av,T) -
fi(c +AC'V' AU:T)"fi(C 'AC:U"' AV:T)+
fi(c - AC: v - Ay, T)] (92)
By = T [0ME+ AD) - 0 A, 8)] (93)
Wy b = ar [0y (ot + 28 - 0 A, (94)

Because X = -g—g is discontinuous at the junction of a hemisphere-
cylinder, the approximations of derivatives at the junction were not
compatible with those at nearby nodes. To avoid this problem, an

average curvature

54

= ZAV [f (C' v+t Ay, T) - {, (C: v - Ay, T)] {89) "
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% (€) = SIRE - 280) + X(C - AD) +4x(Z) + %X + AT)

= A

+w({ + 2A0)] (95)

was used at all nodes,

As illustrated by figure 6, there is no discontinuity in X,

/ Junction
l -

n= & of a hemisphere-

.48
dA cylinder

=

Curvature o

x, of equation 95

J
Coordinate \

Figure 6. Curvature x of a Hemisphere-Cylinder

2 ar

4.4 Equations Along the Stagnation Streamline

Along the stagnation streamline where u = 0, sp2cial equations

: § are:

1

: £ (0T =k 435G K H 4B o (96)

Ly hi,A 4714,

fi, vr kl(fi. w ™ h

1 R 1V WS -
+50G p ) tR(H, -H )+ B (97
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1
i, = (=
e = G2y, * Py, * o35G,
f a
i ij /1 1
ap Tmmonms +—--J-— -~ —
b ™, At h(th,u 2%,

1
+ H. + B, + b,.ITG,
HJ.wx BJ,A) btJ(hGJ.Xw

1

-==G. .,h +H, + B, 8
hz GJ)A » W ), W BJ’ w) (9 )
m = L -u,n _ _-nu - 3pu , e (99)
At TyRP A T 0T ™Maw T 7P
~2%
0 0 o 0
0 0 0 0
c,. = (100)
ij LA 3nv
Lo - (= 0
Vi tean f h T
s('!y'+e ) 0 _ans YL AN )
h "X h ‘h ~ "X
The jacobians aij and bij of equations 84 and 85 are unchanged. The
derivatives fi v and fi ww were approximated with the centered differ-

ences of equations 89 and 91. The derivatives fi.l' fi.kk and fi, X w
were approximated using the symmetry conditions of equations 41 and

42, so that for all variables except m and u,

fi,l B fi;lw N 0 (101)
fan C ';i'i[fi(Ak. v T) - £(0, v, 7)) (102)
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where AL = [exp (AL - 1)]/a.
For u,
u’x = -&lx—u(Mt V. T) (103)
a0 (104)
ky
C s w " ZANAp ALY+ AV, T) - u(AL, v - An 7)) (105)

Derivatives of m have the same form,

4,5 Stabilizing Terms

4.5.1 Introduction. Linear stability theory is extensive and compli-
cated and is beyond the scope of this investigation, For linearized
one dimensional equations, Richtmyer and Morton [59] derived the
following criterion for numerical stability of the Lax~Wendroff differ-

encing technique when i = 0:
At
(v, | ta)s <1 (106)

where: Ve T the x component of velocity

a sonic speed

Equation 106 is the Courant-Fredricks-Lewy criterion for stability,

For linearized two dimensional equations in which Ax = Ay, Richtmyer

58] derived the criterion that

‘/2 2, \a L
(vx-&vy+a.)Axsj5 (107)
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where vy = the y component of velocity.

Num. rical experiments by Emery [30], Gary [34] and others have
demonstrated that the stability criterion of equation 107 is necessary
for many systems. It was used with the equality sign in this investiga-

tion to determine the upper limit

At, = Ax (108)

2
ﬁ(‘uz +v2 + a)

where Ax = minimum of AN and Aw.

Many investigations [12, 30, 31, 43, 66] have shown that linear
stability criteria, such as equation 107, are necessary but not suffic-
ient. In previous numerical solutions of blunt body systems in which
equations 106 or 107 were satisfied, numerical instabilities have oc-
curred near the stagnation point, sonic line and downstream boundary,
In some of these cases, stabilizing terms were added to the basic dif-
ference equations. A stabilizing term is an artificiali, mathematical
term that is added to a difference equation to improve numericai stabil-
ity. Satisfactory stabilizing terms must not introduce unacceptable
errors in the results, In this investigation, stabilizing terms of
Lapidus [43] and Aungier [1] were modified and used in num.":- -1
experiments because they were satisfactory in previous solutions of
inviscid flow about blunt bodies,

4.5,2 Lapidus Stabilizing Term. Skogiund and Gay [66] demonstrated

that the addition of the Lapidus stabilizing term had a negligible effect
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in the boundary layer of a flat piate. For two dimensional inviscid
flow, Lapidus [43] analytically demonstrated that his stabilizing term
was conservative and was of third order accuracy. By expressing the
Lapidus stabilizing term of [43] in £ and v coordinates, one of the

] stabilizing terms that was used in equation 81 is

k k
4’1 = -A_ZI;Lij(c +A2§'9 v, T)["ﬁ"z'f. - 3f., ]

3¢ " h v
. x
3 _AL 2y _ 3%
3 + Lij(C 5 Vs 1-)[h fj, ¢ fJ ] (109)
d &
+ Lij(c’ v+55 ‘r)[k4fj' u] (K. v-=" 'r)[k4 S, u]

where' 'C(Ctv’f)- :[f(c +Ac:u:'r)'£(c’l)»f)]

g I . -
fj, c((. v, 1) = N [fj(C. T fj(C A, v, 1]

Lij(C +A2§'. v,7) =G, |u + AL, v, 7) - (L, v, 'r)lﬁij

Av

L (Cov+ 2

) 7') = Czlv(c'v + All. ‘!'} - V(CD Vs T)'Gij

Cl and CZ are arbitrary constants. Acceptable values were

determined by numerical experiment
61j is the kronecker delta = 1 ifi =j; = 0if i #j
4.5.3 Aungier Stabilizing Term. The derivation of the Aungier sta-

}}; . bilizing term [1] begins with the following linearized flow equation:
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a 2
2 Ax
f,x+ 2 At f,xx (110)

f,t = -ay

where al, ozz = constant,

By substituting a solution of the form

E f= f0+f6 exp(bt + cx) (111)

into a difference form of equation 110 and requiring |exp (bAt)I <1,

1 the limiting

3 At va
3 == -2 (112)
3 Ax o,

where: fo conuntant

f

6 constant << f
o

b and ¢ are con:tants.

.. Aungier reasoned that the Courant-¥redricke -L ewy stability criterion
9 should be satisfied. From equations 106 and 110, o, =u +a. This

E yielded

? _Atl - V:L. (113)

.I Ax - uta

For two dimensional systems, Aungier assumed a stabtlizing term of

the form

PR

< 2
2
) -_-.(B_j;_a}...At fxy+LL%§-LAtzfyy {1:4)
4 ’ * ’

a
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By eimple replacement for inviscid flow in the subject investigation, a

3 stabilizing term that was used in equation 81 was:
i 2 2
3 2 At 2 At
= 0 s 2
tbi 3(u+a.) 5 fi,)t)\ +C4(v+a) 3 fi, ww (115)

where C3 and C4 are arbitrary constants,
This equation was satisfactory for inviscid flow but yieided inaccurate

results for viscous flow. An accurate solution for viscouvs flow was

obtained using

2 2
2 At "
+ 06(v + ba) =5 fi, ww {(116)

At

- 2 At
c,bi = Cs(u+ba) > fi,kk

where b = exp [~C7(Je -J)Av] for J < T

lforJ>7J e

C7 i8 an arbitrary constant

J = 1ndex of ucdes in the w direction

J'e is a node near the edge of the boundary layer.
4.6 Bow Wave Technique
4.6.1 Bow Wave Equaticns. At the upstream boundary A B of figure 4,
the free str: om values are constant. Since the governing equations are
time depenc=-.t, the bow wave may move. In figure 3 of section 3.5,

the speed of the bow wave in the % direction is designat/d as w. The

Rankine~Hugoniot relationships for a moving wave are

-1
2 nl

V.o = + w (117)
12 .Lz"'_l.(vnl - w) i

-w)2+1

v




(118)

(119)
- 27 Y-
P, 1+), “II(v,71 w)~ - 1] (i20)
Y1 [ “w, A
where: v 1 = -I'.,—[-v';-;—— cos 8 + sin 9]

V1 “w, A
v€1 = -I-.;-[cos ] -—%‘-— sin 9]

v, = freestream velocity in x direction

- e

subscripts 1 and 2 refer to values at upstream and down-~

1/2

stream sides of the bov: wave,

Unit vectors are:

w- ~
ﬁ=(—‘-’;l‘-’-‘-k-&)/r (121)

w-
£=(i-—l§;—"—“)/r (122)

In the above set of equ- “‘ons W, 4 was approximat. 1 by

' A
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1 - Lo
ww’x(k.t+At) gfww’)‘(x.nm)nww’x(x,c+At)]

k

= Sap [0, + AL, 7+ A7)

(123)
tw (L, 7+ AT) - 20 (L - AL, 7+ AT)]

where: G ) (,t +At) = 3 lw (L + AL, T+ A7) - @ (€, 7+ Ar)]

Tow’x(x.t + At) = leEww(C.'r+ AT) - ww(t - AL, T+ AT)]

Aungier [1] found that the technique of equation 123 inhibited oscilla-
tions of W, with respect to ).

Equation 59 was used to obtain the characteristic slope of figure 7.

t+At

Characteristic § = Cons*.

dn .
dt-v”a

Time t

0 n’
Coordinate 7

Figure 7. Characteristic at the Bow Wave

The intersection of the characteristic with the 5 axis at time t is

symbolized by n’ and was calculated by a method that is outlined in
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: the next section, Along the characteristic, an approximation of equa-

3 tion 60 is

E ) Y -
4 v‘n2 = Vﬂ + [pz ) OnAt] / vpa (124)

where: ypa = .S[szaz +yp'a’]

primes refer to values at 1’ and time t

subscript 2 refers to values on the downstream side of the

«
3
;f bow wave at time t + At.
E In evaluating 07'7, known values at nodes were interpolated to determine
value .c n’. Using the chain rule yielded,
a1, s,
: fi,e =-é?a3+_aw' o, (125)
- © -
where: @, = jcos (6 -9 -——%’-’-—J-\-sin -6 /7T
.3 i ww l )
K o, = [sin (e-e')+-—hJ-—cos (6-6]/T.
: At ',
" v;, = u'a4 - v'a3 (126)
ro_ ! ’
vE —aa3+v oz4 (127)
E The values of A/, w’ and 6’ at 5’ were determined using the Newton-

Raphson iterati.m technique.

The bow wave coordinates at time t + {* were calculated ausing
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w (Aot + AL) = w (A, t) - Tw(t)At (128)

and held constant during a cycle.

4,.6.2 Iteration Techniques., To calculate fiZ(A R ww,t + At), equations
of the preceding section were solved by an iteration technique. As a
first approximation of w(t + At), w(l) = w(t) where the nymber in
parentheses refers to the approximation number. Having the approxi-
mate value of w(l), equations 1’7, 119 and 120 were solved for v'nZ(l)’
pz(l) and pz(l). With vnz(l) available, the first approximation of n'

was

n'(1) = Ivnz(l) -a,(1)|at (129)
where az(l) = f'f‘z_(l_).

Using the Newton-Raphson iteration technique and linear interpolation,
a’ was determined and equation 126 was solved for v;'. The second
approximation of ' was
n'(2) = |vn2(1) - a,(1) +v7" -a’lat/2 (130)
The above process was repeated until
5

In'(n) - n'(n - 1)] <10° (131)

Once an accurate location of n' was obtained, o"’ was calculated and
equation 124 was solved for vnz(l).

If
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-5
|vn2(1) - vnz(z)l > 10 (132)
a new value of w(2) was estimated from
2 Y-3 Jxtl
w (2) + [ > v"?l > vnz(l)]w(Z)
x+1 Jx-12 4.
+ ) vnlv”z(l) ) vr'1 1 ¢ (133)

The value of w(2) was used in equations 117, 119 and 120 to estimate

4
vnz(Z), pz(Z) and pz(Z). A new value of‘n corresponding to vnz(Z) and
az(Z) was determined irom equations 129 through 131. KEquation 124

was again solved for vn2(3). This process was continued until

v 2o = v, 5= 1] < 107 (134)

Only a few iterations were required to satisfy =quation 134,
After satisfying equation 134, the downstream A and w components of

velocity were computed from

w
u(l.ww,t + At) = [vnz‘—wl':-&-i'vez] /T (135)
ww A
v(l,ww.t + At) = -v"z +v£2—l-;-_ /T (136)

4.7 Boundary Equations
4,7.1 At the Downstream Boundary. The difference equations at the
drwnstream boundary A 4 were the same as those in the field of section

4.3, Values at A 4+ Were required in the approximations of derivatives
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at A g In finding the location of nodes at A PRE approximation for

shock wave coordinate ww(xz+1) was needed. From figure 8, the

extrapolated value of ww(l ) was determined by finding the intersec-

441
tion of a line drawn through the points ww(). z-l) and ww(x L) with a line

extended in the ') direction at A,H-l'

Bow Wave

w o A+]

£+1)

Body

72>

€
Figure 8, Location of ww(kzﬂ)
From the law of sines,
ww(xm) = ww("z) +bsina/ sin g (137)

By linear extrapolation,

Qg @) = {0, o0 t) + G IHM, wt) - 00, 1, wt)]
(138)
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4.7.2 At the Body Surface with Viscous Flow. The boundary condi-
tions for viscous flow at the body surface were u{x,0,t) = v(x,0,t) = 0

and T(\,0,t) = T, = constant. Using s = !,n(p/py) to combine equations

b

for i = | and 4 in equation 26,

P, = -YEV e (139)
M C
o 2] Y |
: = e+ +
where: Py Re Prl L w TbT, beT’
T.T
b™,w . -4 2 2
L. -t =
t——=cos 9] +y(y .)Tb 3eww+u’ w]
At the stagnation point
MoCz Y 2
0y = ——Reo %Pr [T,w+TbT,ww+szbT.w] (140)

4 2
3y - ”Tbewwz

Using a Taylor series, the pressure at the body surface is

p(x»o’t +At) = p(X.Oot)*‘AtP t()tnoot) (141)
2
At
+ 2 p’ tt(llott)
wnere: p' et = -‘yp’ tv’ w ‘ypv’ wt

/vp

v .='-v2 +p

p Iy 2.
» WOT s W W, W P p,ww
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W = <p4’t = 0 as an approximation /’
_ L ]
L ow ™ Bw [£0. Aw,t) - £,(0,0,¢)] (142)

Aw = wwfexp(Av) -1]/8

p ww(x , 0,t) was approximated by equation 38 for w = Aw.

The density at the body surface

p(x,0,t + At) = p(A,0,t + At)/'r|D (143)

4,7.3 At the Body Surface with Inviscid Flow. Boundary conditions at
the body surface for inviscid flow are v(A,0,t) = 0, u(x,0,t) # 0 and

T(\, 0,t) is not constant. For inviscid flow,

U T ey PR (144)

= =us

ot ’X (145)

Equation 61 was used to establish the characteristic of figure 9,
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Characteristic § = constant

—=—=v-a

dt

Time t

0 w"

Coordinate

Figure 9. Characteristic at Body Surface

The intersectior w’ on the w axis at time t was found using the iteration

techniques of section 4.6.2. Egquation 62 was approximated by

p(A,0,t + At) = O’C;Ati-p'-‘ypa v’ (146)

where: -‘;-5; = .5y[p(X,0,t)a(X,0,t) + p’a’]
primes refer tc values at w’.
Equations 144 and 145 were solved in the same manner as equation 141,
The derivative fi, w V38 approximated by equation 142, and the deriva-
tive fi, ww was approximated by equation 38 for w = Aw. Equati.ons 19
and 37 with k, =k_. = 0 were used to calculate f, and f,

3 5 i, A i,AX’

equations, the derivatives fi z and fi e were approximated by equa-

In these

#5». ¥ and 90,
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At the stagnation point, u’t = u,tt = s,t = s,tt = 0, For inviscid

N

flow the stagnation point temperature was precisely calculated from an

isentropic equation and was censtant.
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5. COMPUTATIONS AND RESULTS

5.1 Introduction

In this investigation, digital computers were used to solve the
difference equations presented in section 4. In the first computer
codes, there were major problems with nodal distribution, wave fitting
and numerical instabilities. Refinement of difference equations and
computer codes was accomplished experimentally on digital computers.
In order to keep the length of the report within a reasonable limit,
only the more significant computations and results are presented. The
two principal computer codes are INITIAL, based on initial value
techniques of section 4.2, and MAIN, based on the techniques of sec-
tions 4. 3 through 4,7. Results are presented for axisymmetrical,
inviscid and viscous flows around hemispheres and hemisphere-
cylinders. Because of stability problems and cons{ .aints on computa-
tional time, most development computations were restricted to herais-
pheres, Table i lists specifications of the systems that were solved

in this investigation,
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Table 1., Systems

SN?I;:::r Configuration* Nul::g::,l d; e Numl\:::t1 Mo

. 1 h-C Inviscid 4
2 H 103 4
A 3 H-C 4 x 103 4
] 4 H 10* 4
,f 3 H 10° 4
E 6 H Inviscid 2
9 7 H 104 2

* Under "Configura*inn, " H = hemisphere a me; H - C = hemisphere-
:’ cylind~.r combination,
For nost of the systems of table }J, many corn.puter runs were
q required before results ere satisfactory. Systems 1 and 4 were used
as test cases to develop the MAIN code and stabilizing terms., Aungier ¢
[1] solved system 1 by segmenting the field. As a theck, his results g
‘- were compared with those of this investigation. Steady or time é
5 dependent solutions of viscous systems with an afterbody, such as i
: gsystem 3, were not previously available in the open literaiure. Inves- i

tigatiii of the effect of Reynolds number at M0 = 4 was the motivation

I

for solving systems 2 and 4. Solutions of systems 2, 3, 4, 5 and 7 . E
demonctrated that the codes were satisfactory for viscous systems.
Solutions for systems 6 and 7 demonstrated that the codes are satisfac- 7

tory for lower Mach numbers which have less inherent stability.
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The specifications for computer runs are presented in table 2.
Results of these runs are presented and discussed in succeeding sec-
tions, In ;:able 2, IJ equals I just ahead of th: junction of the hemi-
sphere and cylinder, I is at the downstream boundary, JE is at the
edge of the boundary layer, JW is at the bow wave and KL is when com-
putations were ﬁalted. In the following, most figures of a sub-subsec-
tion, such as 5.2.1, are presented at the end of that section.

5.2 Computer Codes

5.2,1 INITIAL., A simplified flow diagram of the INITIAL code is
presented in figure 10. In it, ILP1 =IL+! and JEP1 = JE+1. Both
magnetic tape and punched cards were used to input data. The bound-
ary layer tables of Cohen and Reshotko [19], bow wave parameters of
Love [46] and body surface values of Clark [16] comprised several
thousand entries which were recorded on magnetic tape. Punched card
input was used to specify body shape, reference variables, boundary
values and nodal parameters, After calculating initial values of p,

m, n and S at each node, an output tape of their values was generated.
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PROGRAM " INITIAL"

|

READ INPUT
VALUES

CALCULATE
BODY RELATED
COORDINATES

SECTION 3.3.2

1

CALCULATE BOW
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rEALcULATE
INVISCID J = 1

SECTION 4.3.3

3
%
A
3
¥
4
3
§
A
p
P
k:
3
3
3
k:

POt MU A PR S

i s At ks AL REMAY A 3 e e N RO EAS D0 RN IND AN AN e E e s R
2 FLPP PP TELN vl ¥

3 WAVE COORDINATES CALCULATE FIELD
1 SECTION 4.3.1 VALUES J=JEP1,JW
1 1 SECTION 4.3.4
1 CALCULATE NODAL
1 COORDINATES END OF
- SECTION &.3.2 LOOP A
: CALCULATE CON- :
: STANTS MAIN g
3 PROGRAM :
3 s
3 GENERATE ]
3 OUTPUT :
: CALCULATE BOUND- TAPE :
3 ARY LAYER VALUES 5
p J =1, JE | i
3 SECTION 4.3.3 !
3 GO :
E T0 :
c j
Figure 10. INITIAL Code :
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Execution time of program INITIAL was approximately 2 minutes on a

CDC 3800 computer,

Initial bow coordinates were computed by the techniques of sec-

tion 4.2.1. The computed bow wave was slightly upstream of the ex-

R 2ot Ll Sl L

e ppy

e ok o B 2N x@;nr;f;:g.m,mn\.;\my. b

perimental one of Baer (4] as displayed in figure 11.

N ALt ar oty

4 e Computed from Eqn 65 0o 3
1 O Experiment (4] o
3k o £
2 o 3
3 o :
‘ “w2F %
E ]
3 L4 of
. o) 3
g 3
opmd E
L o E
} 8-0 3
3 0
3 g b
A O
i i 3
E | 1
3 g 0@ / : ;
K i 0 1 2 3 4 3
3 ; Coordinate x «:
3 § Figure 11. Computed and Experimental Bow Wave 4
{ Coordinates at M = 4 ;
3 Since the MAIN code adjusted the location of the bow wave, the ;
3 difference between computed and experimental bow wave coordinates
E b . was not important. 3
- - <l
E B 1 g
g f Initial values of pressure in the boundary layer were assumed in- i g
& i
N | dependent of Reynolds number and w. As expected, computed and ‘ é
| |
' 77 % ;
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|
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experimental initial body pressures of figure 12 are in good agreement,
since the INITIAL code used experimental results of Clark [16] for a
hemisphere. In the afterbody region, the initial pressure pb(h) was
equal to the initial pressure Py at the junction of the hemisphere and

cylinder. As shown in figure 13, this assumption resulted in a per-

turbation in the velocity thickness W, of the boundary layer near the

junction. In the time dependent computations of the MAIN code, these

perturbations in w, were quickly eliminated.
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5.2.2 MAIN, A simplified flow diagram of the MAIN code is pre-

e Neeaz

sented in figure 14. A set of indicators was used to con*rol input from
'E - the initial value tape, specify inviscid or viscous flow, specify the sta-

33 bilizing term, set the output and run intervals and specify the size of

PR

the field. Integer values of I, J and K were used to identify nodes and

time. The relationships between {, v, Tand I, J, K are given by

£ b2 M IS AN M B0 0

nquations 66, 67 and 68, KIN and KL are starting and ending indices

ek

IRe?

of times. If KIN = 1, initial values were obtained from INITIAL, If

SEg QD A P Ly A At

iy
2

KIN > 1, initial values were obtained from an output tape of a previous

Ao

run. Computations were halted at KL, and results were printed and

£ S 255 v ¢ A

R S
L

recorded on tape,

2 dips

13 In operation 1 of figure 14, equation 109 was used to compute ;

At 2 at all nodes. AT equaled the minimum of At p for one cycle of the

o e AT LTS

A loop. In operation 2, bow wave coordinates were updated according

to section 4, 6.2, Operation 3 computed values at the body surface, and

SISV RVF oS I LS PP 34 )

operation 4 computed values along the stagnation streamline. In oper-
ation 5, values at all other nodes were calculated using the equations

of sections 4.3 and 4.5, Extrapolation of values at the downstream

BTy AT RS T Y

boundary was accomplished in operation 6,

SN 1 ms F
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READ "“INITIAL"
TAPE

Do A
K=KIN,KL

1. COMPUTE
At

SECTION 4.5.1

1

L 2. UPDATE BOW

AVE COORDINATES

SECTION 4.6.2

Figure l4a.
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3. COMFUTE
f. (1, 1, K)
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MAIN Code
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2. CALCULATE
f. (1, Jw, K)

5. CALCULATE
P, 9, K

SECTION 4.6

SECTIONS 4.3,4.5

}

END OF
00P D

|

END OF
LOOP ¢

|

6. EXTRAPOLATE
DOWNSTREAM
BOUNDARY

SECTION 4.7.1

L, CALCULATE
| (1, J, K)

SECTION 4.4

A

GO TO

YES

PRINT QUTPUT
WRITE TAPE

1]

END OF
LOOP A

t

END

PROGRAM

Figure 14b. MAIN Code
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5.2.3 Computational Times. Field values were computed at a rate

of 56.7 nodes/second on a CDC 3800 computer. Values of fi(I' JW, K)

at the downstream side of the bow wave were computed at a rate of

17.8 nodes/second. For a CDC 3800 computer,

(K)(IL) [c(JW - 1) + ,0563] (147)

I

v

execution time in seconds + 5%
., 0154 for inviscid flow and = ., 0177 for viscous flow

100 cycles

The percentage of total CDC 3800 computer time required for wave

fitting is shown in figure 15.
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Figure 15. Percentage of Computer Time for Wave Fitting
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In this investigation, JW = 11 for inviscid flows and 16 £ JW < 29 for
viscous flows. Assuming that wave fitting could be accomplished as
: quickly as field computations, from 10 to 48 percent of the total compu-

tational time could be saved, Numerical experiments were made in an

TENETT

attempt to speed up the wave fitting computations. The attempt first

3 involved increasing 10"5 to 10"3 in expression 132, The second at-

TR T

tempt was to use equation 129 to compute 5. Neither of those attempts
was successful because of lack of convergence near the bow wave,

5.3 Stabilization of Computations

5.3.1 Introduction, The first computation-of viscous, compressible
flow around a hemisphere-cylinder without stabilizing terms displayed
numerical instabilities. A major problem of this investigation was to
achieve numerical stability without destroying accuracy. Many attempts
were made to avoid the use of a stabilizing term, including one dimen-
sional wave fitting investigations, stationary coordinate frames, modi-

fication of coordinates of nodes and variation of differencing techniques,

-
R A M ek e At o

Results of unstabilized computations, the development of satisfactory

stabilizing terms and accurate solutions of several systems are pre-

b

sented in this section.
5.3.2 Unccabilized Computations, Specifications of runs 1 through 4 for

viscous and inviscid flows with &i = 0 are given in table 2, The location

-

and extent of instabilities are displayed in figures 16 through 19 at the

end of this section on pages 87 to 96, For viscous flow in run 1, spatial

A ' abe

e
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oscillations in the u-velocities at I = 3 of figure 16 began near the center
of the field and spread into the region next to the body. As displayed in
figure 17, there was an instability in u-velocities in run 2 at I = 19,
There were similar instabilities in other variables., These instabilities
were maximum at I = 19, Oscillations were small near the hody surface
and were maximum near the center of the field, Results of runs 3 and 4
for inviscid flow are shown in figures 1% and 19. Since the instabilities
occurred for inviscid flow, they were attributed to the inviscid part of
the field equations, Since the instabilities were similar for viscous and
inviscid flows,. it was concluded that viscous terms had little effect on

the instabilities,
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5.3.3 Development of Stabilizing Terms. A development program was
initiated to determine the cause of the instabilities and to find techniques
for stabilizing solutions. Inviscid flow solutions converged approximately
four times faster than the corresponding viscous ones. Therefore,
inviscid systems were used in this phase. The first step was to deter-
mine if instabilities were caused by errors in equations or computer
coding., To detect errors in equations of section 4, 3,2 and their coding,
results of computations using them were checked with those of a simpler

two-step technique of the form

v, r+ 80 = v, + 8 v, (148)
fi(c,v. T+ AT) = fi(C»Vo T) + A‘rfi, T(C, VT +AZI) (149)

Using these equations with the specifications of runs 3 and 4 of table 2,
the instabilities were similar to those of figures 18 and 19, except they
grew more rapidly. It was concluded that the equations of section 4.3.2
were correct and properly coded.

The differencing technique of section 4. 3.3 with a stabilizing term
was used in run 5 of table 2 to determine if wave fitting and downstream
boundary equations introduced perturbations. The solution was stable
at K = 800. Computed body pressures of figure 20, page 96, are in
agreement with the measurements of [4]. The differences of computed
and measured bow wave coordinates in figure 21 were not considered

detrimental to other parts of the field and were partially attributed to
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the averaging of body curvature a(\) in equation 96. It was concluded
that the bow wave and downstream boundary equations were satisfac-
tory. The results of runs 5 and 6 with the diiferencing techniques of

sections 4.3.3 and 4. 3.2 and stabilizing terms were within 1 percent
of each other except near the junction of the hemisphere and cylinder.
The results of run 6 were smoother and in better agreement with the

measurements of [4].

Equation 110 was used to stabilize the solutions in runs 7 and 8.
In run 7, C1 = C2 =1, and in run 8, C1 = C2 = 3, Infigure 22, body
surface pressures of those runs display an incorrect hump near the
junction, Body surface pressures of run 6 in figure 22 are in better
agreement with the measurements of [4] than are those of runs 7 and 8.
As shown in figure 23 near the junction of the hemisphere-cylinder,
the v-velocities of run 8 deviate from those of runs 6 and 7. From
figures 22 and 23 for inviscid flows, the stabilizing term of equation
115 yielded more accurate results than those of equation 110,

The development of stabilizing terms for viscous flows was more
difficult than for inviscid flows because conditions in the boundary layer
are sensitive to stabilizing terms. In run 9, with the differencing tech-
nique of section 4. 3.3 and th- stabilizing term of equation 115, results
were unstable near the stagnation point 2t KL = 68, Run 10, with the
differencing technique of section 4. 3.2 and stabilizing term of equation
115, was stable but was unsatisfactory because the stabilizing term "’1

was much larger than the viscous term o, in the boundary layer. This
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meant the boundary layer results were inaccurate, A few runs were

tried with a new stabilizing term

2

- 2 2 o
¥y = Gt n POV 2 (150)

where C8 = C9 =1, 2 or 3. Although tbi was small compared to ®; in
the boundary layer, severe oscillations occurred outside the boundary
layer and equation 150 was abandoned.

Run 11, for viscous flow around a hemisphere, utilized the stab-
ilizing term of equation 116 for which tbi(l » 0,t) = 0 at the body surface.
As shown in figures 24, 25 and 26, in the boundary layer, the stabilizing
term api is small compared to the viscous term @, Small oscillations
in ¢4 were not reproduced in figure 25, The steady bow wave coordi-
nat 8 and body pressures agreed with the measurements of [4]. The
results of run 11 are given in section 5,5.2. In runs 11, and 17 through
20, the stabilizing term of equation 116 was satisfactory for hemispheres
at Mo =2 and 4 and ReO = 103 to 105. For each set of Mach and
Reynolds numbers, numerical experiments were used to determine val-
ues of CS' C6' C7, Je and nodal parameters,

For viscous flow around a hemisphere-~cylinder, the stability prob-
lem was more difficult than for a hemisphere., Figure 27 displays pres-
sures versus (.»/wW in the afterbody region at I =19 for runs 2, 12 and
13. Run 2 was unstabilized and was discussed in section 5.3.2. Runs
12 and 13 used the differencing technique of section 4. 3.2 and stabilizing

terms of equations 116 and 110 respectively. i’ressures in run 12 at
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KL = 2000 are unstable and are approaching those of run 1 without stab-
ilizacion. In run 13, small oscillations are present; however, these
oscillations decreased as K increased. Values of other variables were
smooth in run 13. As illustrated in figure 28 for run 13, z[)i was larger
than @; in the boundary layer, so that results were inaccurate, More-
over, in figure 23 for inviscid flow, the results of equation 110 were
less accurate than those of equation 115. From the analysis of runs 1
through 13:

1. For inviscid flow, the differencing technique of section 4,3,2 and
stabilizing term of equation 115 was accurate.

2. For visccus flow and the differencing technique of section 4, 3, 2,
the stabilizing term of equation 116 yielded accurate results in the
boundary layer.

3. Other numerical techniques and coding used in conjunction with
items 1 and 2 were satisfactory,

4, Solutions involving equation 110 with C, = (‘:2 = 3 couverged rapidly

1
and eliminated perturbations but were inaccurate in the boundary layer.
5. Nodal spacing was critical for stability and ac-uracy.

By incorporating these 1deas into the specifications of runs 14 and
15, a satisfactory solution was obtained for viscous flow around a
hemisphere-cylinder, The small Reynolds number of 4000 was selected
to reduce the number of cycles required for convergence. Experimen-

tation revealed that stability was enhanced by increasing the number of

nodes. The number of nodes was 384 in runc 12 and 13 and was 841 in
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runs 14 and 15, In run 14 with the stabilizing term of equation 110 with
C 1 ° C2 = 3, the perturbations of initial values were not apparent in the
results at K = 1600, Using the output tape of run 14 for initial values
in run 15, the results converged within 800 cycles, As illustrated by
figure 29, the effect of the stabilizing term was small, even in the
boundary layer. Results of rur 15 are presented in section 5.5.3.

In applying equation llo to other viscous systems, acceptable
values of CS’ C 6’ C7 and J e MY be determined by numerical experi-
ments in which relative magnitudes of 05 and Y ; are compared, Addi-

tional numerical experiments may be desirable to optimize the number

of nodes and nodal spacing.
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5.4 Accuracy

5.4.1 Comparisons with Measurements. The accuracy of results
could not be determined analytically and was estimated L y comparisons
with computed and measured results of others., Measurements of bow
wave coordinates and body surface pressures are available in [4] at
Mo =2 ard 4 and Rcc = 4,93 x 105 and 1,28 x 10‘ respectively, Steady
solutions of viscous flows for such high Reynolds numbers would require
excessive computing time and were not attempted., It was assumed that
computed inviscid results of runs 6 and 16 should agree with these
measurements. Measured and computc(:l values were not at the same
points and differences of results were estimated from graphs. Computed
and measured results are shown in figures 20 and 21 on pages 96 and 97
for Mo = 4 and in figures 30 and 31 on pages 108 and 109 for Mo 2 2,
Computed and measured [75] u/ue-vclocities in the boundary layer
at several locations are displayed in figures 32 through 34, The agree-
ment verifies the aceuracy of the numerical techniques for the boundary
layer. The central angle Oc of computed and measured results is
slightly different because of nodal requirements.
Tabulated average and maximum differences s ¢ presented in
Table 3. In these comparisons, maxirmum differences as high as 13.7
percent were noted at selected points where either measurements or
calculations were difficult to obtain. However, the average difference
of measured and computed results was 5.4 percent or less. Considering

the probable error ofthe measurements, agreement of results is very good.
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Table 3. Percentage Differences of Computations and Measurements

?
4
[
¢

Max. % | Avg. % | Location Experi-
Variable] Diff, Diff, Max. Diff.] o o | Run}] ment Figure

NLs LA jad S

11.7 ] 1.9 A=1,57 4 |INV 6 | [4] 22 4
Py 1.0 .4 A=1.02 2 |INV | 16 | [4] 31

w 9.9 | 4.5 A=1.91 4 |INv] 6| [4] 23

oY Yoo o I ENE R E AR g X e o v

w 6.2 | 4.8 A=1,02 2 |INV| 16 | [4] 30

d 4.9 A=0 4 {INv] 6] r4] 23

AT

d 5.3 A=0 2 lnv | 16 | 4] 30
u/u 4.4 2.1 w=.0144 | 4 {10° | 17 | [75] 32
u/u 13.7 | 5.4 w=.006 | 410 ] 17| [75] 33

i u/u 5.7 2.5 w=.016 | 4 (10" | 17 | [75] 34
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5.4.2 Comparison with Computed Resuits of Others. Prior to this

investigation, computed resuits were not available for viscous flow

' ’ around a hemisphere or hemisphere-cylinder. Therefore, comparisons

vt s W i o

3 of computed results were restricted to inviscid flow systems. Compar-
isons were made with numerical results of Aungier [1) and analytical

results of Belotserkovskii [5] at Mo =2 and 4. The latter analytical

results were obtained by a method of integral relations that is discussed
in section 2,5. A summary of differences in results is presented in
table 4, Entropy along the body surface was constant for run 6 and
reference 1. The difference of those entropies was 0.2 percent, Body
surface entropy values were not presented in [1] for Mo =2, For
B inviscid flow, body surface entropies were calculated theoretically, ]
Comparisons with those values are also included in table 4, As indi-
cated by tables 3 and 4, the results of runs 6, 16 and 17 were in agree-
ment with those of [1], [4], (5] and [’1.5]. These solutions demon-

strated that the computer code developed in this investigation is

satisfactory for inviscid and viscous compressible flows around axi~

symmetrical bodiea.
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Table 4. Percentage Differences of Computed Results of this l
Investigation and Others,

Max. % |Avg. % | Location M Reference
Variable Diff, Diff. Max. Diff. o Run or Theory
P, ~0 ~0 2 16 (1]
P | 20 ~0 4 6 [1]
|
W, 4.8 3.2 | A=1.28 2 16 [1]
w 3.1 1.8 A= .84 4 6 (1]
w
d 3.4 A=0 2 16 [1]
d 2.2 A=0 4 6 [1]
d 0.8 A=0 4 6 (5]
5, 0.2 0.2 | A=0 4 6 [1]
8 1.4 2 16 Theory
8y, 0.4 4 6 Theory

5.5 Results

5.5.1 Introduction. This section includes solutions of inviscid and
+iscous flows around hemispheres and hemisphere-cylinders, Prior
to this investigation, time dependent solutions of viscous comnpressible
flow about hemispheres and hemisphere-cylinders were not available
in the open literature.

5.5.2 Results for a Hemisphere, Specifications of runs 6, 11, 18,

19 and 20 for hemispheres are presented in table 2. FEach run was
preceded by numnerical experiments to determine satisfactory param-

eters for the stabilizing terms of equations 115 and 116, As in

114
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section 5. 3.3, comparisons were made of stabilizing and viscous terms.

Runs 6 and 11 at Mo = 4 with inviscid and viscous flows were a part of

4

'

1 fo the development phase. Their results are described in section 5.3, 3.

00 e

: Run 20 for Mo = 4 and Reo = 105 was difficult because of the thin bound-

ary layer. Since the total number of nodes was large and AT was small,

¥idee

the computing time for run 20 was greater than in other runs, Results

a9 KEX fT Pt

were nearly steady at K = 3500,

iy W P ARARTE A

For Mo = 4, the standoff distance shown in figure 35, page 117,
decreases as Reynolds number increases. In figure 36, there is a
decrease in body surface pressure for an increase in Reynolds number.
In that figure, inviscid flow and Reo = 105 are represented by a single
line for A < .8. The boundary layer displacement thicknesses of

figure 37 were computed from

S L NS B b S XD Al 2T A bt kiR bt B Sy

w

¥ S
X & 6 = f (l -—r;l—')dw (151)
5 o e

E where: m = pu

Sl ¥

e refers to the edge of the boundary layer.
The limit w, was determined from a graph, such as figure 38, of u-

velocity versus w at the point where the boundary layer effects seemed

AL 2% 2SI At 2k b iy PR S A b

T b, AR £~ T SR SV SR A

*
negligible, For Reo = 104 and 105, there are oscillations in § near

LA b s A

‘ the stagnation point where the boundary layer is thin because of small
:': 3 :E

3 : oscillations in u-velocity near the edge of the boundary layer. For the 3

3

relatively thick boundary layers of Reo = 103 and 4 x 103, these §
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oscillations had a minor effect on § . In figures 38 through 40, u-
velocities, pressures and temperatures are presented. The decrease

in boundary layer thickness with increasing Reynolds numbers is

apparent.
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5.5.3 Results for a Hemisphere-Cylinder. Based on the numerical
results of section 5.3.3, the specifications of runs 14 and 15 of table 2
were selected for a solution of viscous compressible flow around a
hemisphere-cylinder. In run 14 for K < 1600, the stabilizing term of
equation 110 was used to remove initial perturbations. By KL = 1600,
a favorable pressure gradient had been established in the afterbody
region, and the bow wave had moved close to its steady location. The
results of run 14 at KL = 1600 were used as input to run 15 in which the
stabilizing term was that of equation 116. In run 15 at KL = 800, the
solution was steady and seemed accurate in the boundary layer and
other parts of the field. Resuits of run 15 for KL = 800 are presented
in figures 41 through 56 at the end of this section on pages 127 to 142,
Contours of Mach number, temperature, pressure and entropy are
presented in figures 41 through 44, The contours are consistent with
each other, Near the downstream boundary and bow wave, there are
oscillations in the results. The contours for Mach number and temper-
ature in figures 41 and 42 are similar, Boundary layer growth along
the body is apparent. Mach number contours outside of the boundary
layer in the forebody region are similar tc those of inviscid flow in
[52]. In figure 43, as expected, there is an expansion fan near the
junction of the hemisphere and cylinder. Entropy contours of figure 44
were smooth and resembled streamlines outside of the boundary layer.
Along the isothermal body surface Tb = 4,2 and entropy increases

because pressure decreases,
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Boundary layer displacement and momentum thicknesses of figure
45 seem reasonable, There is a substantial increase of boundary layer
thickness along the afterbody. Figures 46 through 49 present u-
velocities, v-velocities and temperatures versus @ at several 1 indices.
The coordinate w was chosen instead of w/ W, to display growth of the
boundary layer. Variations in u-velocities and temperatures are
smooth, At I = 16 near the junction in figure 46, there is a small de-
crease in u-velocity near the edge of the bc;undary layer. Near the
forebody, variations in v-velocities of figure 47 are sniooth, As shown
in figure 48, they oscillate in the afterbody region where they are small
and sensitive to perturbations. Although undesirable, those oscillations
were not considered detrimental to the accuracy of other variables. In
figure 49, temperature gradients %%)b < 0 and their absolute values
increase with increasing I indices. Since hody temperature is greater
than adiabatic stagnation temperature, heat transfer is from the body
and _E:_'I_‘_) should be negative,

3wy

Specifications of runs 15 and 19 in table 2 for a hemisphere-

cylinder and hemisphere were identical, As indicated by table 5,

results of both runs in the forebody region are about the same,

LA e itd

iaa ;u(\.J\“w )

Lt st gt

AAnSA e AN

PPRCErN

e EM b

AT

EPNVR A D bk Soa an R

CV e

E}d.&y&u){\ Bttt IR QAP P L € an AL O RN Yod ADNEL L L Lot £ it



TR, PIEFL T L WIS |

T e SRR T A L T I S S AT SRR 0 L f L onl -

Table 5. Percentage Differences of Computed Results of Hemisphere
and Hemisphere-Cylinder. Runs 15 and 19, Mo = 4, Reo = 4000,

o 4\.‘»\«\::3,'

Max., % Avg. % Location of Maximum :
¥ 3 Variable Difference Difference Difference ;
{ f
E 1 Mo 3.3 .6 A=0 ;
35 P 1.3 .1 A=1.28 i
¢ 5
L a
: T 3.0 .3 A =1.28 i
g W, 1.2 .4 A=1,28 j

- 4

v
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A conclusion was that satisfactory reaults for the forebody regin:

hemisphere-cylinder may be obtained by considering the hemisphere

alone. The conclusion may be true for other shapes and conditions, but

additional results are needed to strengthen this conclusion.

In run 21, the stabilizing term was zero and results of run 15 at

Vo WM i e € Adrtad 2 S0 d bk

KL = 800 were used for initial values. In run 21, results were steady

at KL = 1600, Typical results of runs 15 and 21 for the forebody region

PP VL S S Y

are shown in figures 50 through 52. The maximum difference is 9 per-

cent. Average differences of all variables is less than 2 percent. The

el S A% ST a e B

variation in pressure versus K index in the afterbody region for various

stabilizing terms is shown in figure 53 at I = 19 and J = 26 where differ- ]

ences of runs 15 and 21 were a maximum, The large differences at that
point were due to the spatial oscillations in the results of run 21. u-

velocities, v-velocities and pressure for run 15 and 21 at I = 19 are
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shown in figures 54 through 56. Oscillations of the steady results of
run 21 are a maximum near the bow wave and are insignificant in the
boundary layer. Where there are no significant oscillations of results,
the differences between runs 15 and 21 are less than 3 percent. The
oscillations of run 21 without stabilizing terms were about the smooth
values of run 15, The agreement of the results of runs 15 and 21 indi-
cates that the accuracy of the results of run 15 were not seriously

affected by the addition of stabilizing termas,
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Figure 55. v-velocities in Afterbody Region of Hemisphere-Cylinder *

4 I = 19 with and without Stabilizing Terms. Computed by Section :
- 4,3,2. M_ =4 and Re_ = 4000,
; o o ;
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5.6 Summary of Results A

Considerable analyses and computations preceded the successiuvl

37
wre o A

solution of viscous flow around a hemisphere-cylinder to develop tech-
‘ nigues, Those analyses and computations seemed to indicate:

1. The body related coordinates of section 3.3.2 are applicable to

most blunt bodies.

2. The nonlinear coordinate transformations of section 3, 3,3 permit

T S A G T T Y7 TP R« T Ty T e S g e s [,

adequate resolution in the boundary layer without an excessive total

number of nodes.
3. To obtain st=ady results, initial values should be as accurate as

possible to enhance stabilitv and reduce computer time.

E: 4, Techniques for boundary values at the body surface and downstream
boundary have a major effect on stability and accuracy.
5. Precise application of the method of characteristics was the only

_?’ : technique that was satisfactory for wave fitting.

6. The differencing technique of section 4. 3.2 with stabilizing terms
. should be applicable to a wide variety of axisymmetrical inviscid or
viscous flows.
9 The most valuable result of this investigation is the complete set
of numerical techniques of section 4 for axisymmetrical, viscous,
E ' compressible flows aroind blunt bodies. Results are presented for
. viscous, compressible flow around a hemisphere-cylincer at free

stream Mach and Reynolds numbers of 4 and 4000 and for flows around

R
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hemispheres at Mach numbers of 2 and 4 and Reynolds numbers of

)
"} 103, 4 x 103, 10? and 105.
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6. CONCL USIONS
1. A complete set of numerical techniques for axisymmetrical,

viscous, compressible flows around blunt bodies was developed.

. 2, An accurate solution was obtained for viscous compressible flow

around a hemisphere-cylinder for freestream Mach and Reynolds
numbers of 4 and 4000 respectively.

3. Numerical stability was achieved with stabilizing terms, but their
necessity was not established,

4, Approximate results can be ob:ained for the forebody region of a
hemisphere-cylinder with a free stream Mach number of 4 and

Reynolds number of 4000 by solving the corresponding system of a

hemisphere alone.
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