

Ţ

AD

B. A. Couch

- March 28; 1972

Proposed for: U.S. Army Materia, Command HARRY DIAMOND LABORATORIES Weshington, D.C. 20438

This document has been approved for public release and sales its diversion is mainteed.

Best Available Copy

TEMS USING FRI	EQUENCY MODE	ECURITY CLASSIFICATION ICLASSIFIED
TEMS USING FRI	EQUENCY MODU	JLATION WITH A
74. TOTAL NO 54		
74. TOTAL NO 54		
74. TOTAL NO		
74. TOTAL NO 54		· · · · · · · · · · · · · · · · · · ·
	OF PAGES	10. NO. OF REFS
S. OHIGINATO	TH'S REPORT NUM	11C H(S)
	0058-8	
P. OTHEN NE	POHT NCISI (Ant	uther numbers that may be assigned
this reput)	SR-72-3	
		· · · · · · · · · · · · · · · · · · ·
oublic release	e and sale;	
ARMY MATERIEL COMMAND HARRY DIAMOND LABORATORIES WASHINGTON, D. C. 20438		
nce measuring ated by a non ified by a pa or undesirab be decreased sed to predic Alternately reduce the r	system which linear trian rameter. le effects; or increased t range law , practical ange-law sig	ch transmits an ngular waveform, that is, the side- d depending on the s of systems which nonlinear triangular delobes.
	Pr. 011+EM ME Bits report) ARMY MA HARRY D WASHING ARMY MA HARRY D WASHING ARMY MA HARRY D WASHING ace measuring ated by a non lfied by a non lfied by a pa or undesirab be decreased sed to predic Alternately reduce the r	MUDDE-0 M. OTHEN REPORT NCULTAIN Mis report) SR-72-3 Mublic release and sale; ARMY MATERIEL COMMA HARRY DIAMOND LABON WASHINCTON, D. C. 2 ARMY a nonlinear trian lifed by a nonlinear trian lifed by a parameter. or undesirable effects; be decreased or increased sed to predict range laws Alternately, practical reduce the range-law side

ą

2.4

٢.

ALC: NO.

F

A STATE OF A

• Security Classification LINK C LINK A LINK B 14 KEY WORDS ROLE ROLE ROLE WT WT W T Frequency Modulation 9 0 1. 2. 8 3 Nonlinear Triangular Frequency Modulation Radar 1 0 3. Range Laws 9 3 4. 5. Sidelobe Suppression 8 3 Triangle Waveform Modulation 9 6.

в

and the second sec

あたちをあるとうないないないが、ちまいとうちょうちょうちょうちょう しょう

* , .

Security Classification

· · ·

DA-1B262301A208 AMCMS Code: 522A.11.17700 HDL Proj: 16114

Ston-

AD

0058-8

and the second second

RANGE LAWS FOR DISTANCE MEASURING SYSTEMS USING FREQUENCY MODULATION WITH A NONLINEAR TRIANGULAR WAVESHAPE

Ъy

L. W. Couch

March 28, 1972

United States Army Materiel Command HARRY DIAMOND LABORATORIES Washington, D. C. 20438

Prepared by:

ENGINEERING AND INDUSTRIAL EXPERIMENT STATION College of Engineering University of Florida Gainesville, Florida 32601

> Under Contract Number DAAG39-70-C-0058

This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT

Range laws are obtained for a distance measuring system which transmits an RF signal. The RF is frequency modulated by a nonlinear triangular waveform, the amount of nonlinearity being specified by a parameter.

The nonlinearity may have desirable or undesirable effects; that is, the sidelobe level of the range response may be decreased or increased depending on the shape and amount of nonlinearity.

The results of this report may be used to predict range laws of systems which have nonlinear triangular modulation. Alternately, practical nonlinear triangular waveforms may be specified which will reduce the range-law sidelobes.

Preceding page blank

or the factor and the state of the second second

COLONIA STATE

And the second second

「ないないろうちにないないないないないない

TABLE OF CONTENTS

					Pa	ge No.		
ABST	RACT	• • • • • • • • • • • • • • • • • • • •	••	••	•	3		
KEY '	TO SYM	BOLS ••••••••••••••••••••••••••••••••••••		•••	•	7		
1.	INTRO	DUCTION ••••••••••••••••••••••••••••••••••••	• •	••	•	9		
2.	GENER	AL FORMULATION FOR THE RANGE LAW			•	9		
	2.1.	Range Law in Terms of the Fourier Coefficients •	•	••	•	9		
	2.2.	Ambiguity Function • • • • • • • • • • • • • • • • • • •	id ti • •	he •••	•	12		
3.	RANGE	LAW FOR TRIANGLE PLUS SINUSOIDAL NONLINEARITY .		•••	•	14		
4.	RANGE	LAW FOR TRIANGLE PLUS CUBE-LAW NONLINEARITY	•	•••	•	27		
5.	EXPER	IMENTAL AND THEORETICAL VERIFICATION OF RESULTS ·		••	•	35		
	5.1.	Experimental Verification • • • • • • • • • • • • • • • • • • •	•	•••	•	35		
6.	SUMMAI		•••	•••	•	38 41		
		Realize Contra Contra No. 10	-	•	•	41		
APPE	NDIX A-	Fourier Series for the Mixer Output · · · · ·	•	••	•	43		
APPEN	NDIX B-	Fourier Coefficients for Triangle plus Sinusoid Modulation ••••••••••••••••••••••••••••••••••••	ial •	••	•	46		
APPEN	NDIX C-	Fourier Coefficients for Triangle plus Cube-Law Modulation ••••••••••••••••••••••••••••••••••••	•	•••	•	48		
APPENDIX DPercentage of Modulation Required for Equivalent								
		Sinusoidal and Cube-Law Nonlinearity	•	••	•	50		
REFE	RENCES		•	••	•	51		
DISTR	RIBUTIC	N • • • • • • • • • • • • • • • • • • •	•	••	•	52		
		LIST OF FIGURES						
1. г	DMS and	l a Point Target	•		•	10		
2. 1	[riang]	le plus Sinusoid 1 Nonlinearity • • • • • • • •	•		•	14		
3. F	Range f	Response for K = 0, Sinusoidal Nonlinearity • • •	•	••		17		
4. F	Range F	Response for K = 1, Sinusoidal Nonlinearity • • •	•	•••	•	17		
5. F	Range F	Response for K = 2, Sinusoidal Nonlinearity • • •	•	••	•	18		
6. F	Range F	Response for K = 3, Sinusoidal Monlinearity • • •	•	••	•	18		
7. F	Range F	Response for K = 4, Sinusoidal Nonlinearity • • •	•	• •	•	19		
8. F	Cange F	Response for $K = 8$. Sinusoidal Nonlinearity • • •	•			20		

Preceding page blank

LIST OF FIGURES

6

Page No.

E-WARDET ST

11000

den un

9.	Range Response for K = 16, Sinusoidal Nonlinearity • • • • •	21
10.	Range Response for K = 0, Negative Sine Nonlinearity $\cdot \cdot \cdot \cdot$	22
11.	Range Response for K = 1, Negative Sine Nonlinearity $\cdot \cdot \cdot \cdot$	22
12.	Range Response for K = 2, Negative Sine Nonlinearity $\cdot \cdot \cdot \cdot$	23
13.	Range Response for K = 3, Negative Sine Nonlinearity \cdot \cdot \cdot	23
14.	Range Response for K = 4, Negative Sine Nonlinearity \cdots	24
15.	Range Response for K = 8, Negative Sine Nonlinearity $\cdot \cdot \cdot \cdot$	25
16.	Range Response for K = 16, Negative Sine Nonlinearity \cdots	26
17.	Triangle plus Cube-Law Nonlinearity ••••••••••••••••••••••••••••••••••••	27
18.	Range Response for K = 0, Cube-Law Nonlinearity • • • • • • •	30
19.	Range Response for K = 1, Cube-Law Nonlinearity • • • • • • •	30
20.	Range Response for K = 2, Cube-Law Nonlinearity • • • • • • •	31
21.	Range Response for K = 3, Cube-Law Nonlinearity • • • • • • •	31
22.	Range Response for K = 4, Cube-Law Nonlinearity • • • • • • •	32
23.	Range Response for K = 8, Cube-Law Nonlinearity • • • • • • •	33
24.	Range Response for K = 16, Cube-Law Nonlinearity • • • • • • •	34
25.	Test Apparatus for Experimental Measurement of Range Laws •••	35
26.	Experimental Range Laws for K = 4, Triangle plus Positive Cube-Law Nonlinearity • • • • • • • • • • •	36
27.	Experimental Range Laws for K = 8, Triangle plus Positive Cube-Law Nonlinearity • • • • • • • • • • •	37
28.	P _C vs E _S for Approximately Equivalent Cube-Law and Sinusoidal Nonlinearities	39
29.	Comparison of Range Laws, Cube-Law Nonlinearity K = 4 • • • •	40
30.	Nonlinear Frequency Modulating Waveforms • • • • • • • • • • • • • • • • • • •	41

KEY TO SYMBOLS

- B Peak-to-peak FM deviation (Hz)
- ck Fourier coefficient of the mixer output for the kth harmonic of the fundamental modulation frequency
- D Deviation sensitivity of the FM modulation (radians/volt-sec)
- DMS Distance measuring system

- m(t) Composite frequency modulating waveform
- 100P_c Percent cube-law nonlinearity
- 100Ps Percent sinusoidal nonlinearity
- 100Pt Percent of pure triangular contribution to the composite nonlinear triangular modulating waveform
- $R_k(\tau)$ Range law associated with the kth harmonic of the fundamental modulation frequency
 - T Period of the modulation t $f(\tau)d\tau$

 $v(t) = e^{0}$ Complex envelope of the transmitted RF signal

- $x = 2B\tau$ Normalized round-trip time delay between the distance measuringdevice and the target
- $\mathbf{x}_0 = 2B\tau_0$ Normalized round-trip time delay which gives the peak range law response
 - $y(t,\tau)$ Mixer output signal
 - $\theta_d(t,\tau)$ Difference phase between the transmitted and received RF signals
 - τ Round-trip time delay between the distance-measuring-device and the target
- $\omega_c = 2\pi f_c$ Radian carrier frequency

 $\omega_d = 2\pi f_d$ Radian doppler frequency

 $\omega_{id}(t,\tau) = \frac{d\theta_d(t,\tau)}{dt}$ Instantaneous difference frequency (rad/sec) between the transmitted and received RF signals

 $\omega_{\rm m} = 2\pi f_{\rm m} = \frac{2\pi}{T}$ Fundamental modulating frequency (rad/sec)

RANGE LAWS FOR DISTANCE MEASURING SYSTEMS USING FREQUENCY MODULATION WITH A NONLINEAR TRIANGULAR WAVESHAPE

1. INTRODUCTION

The range law of a distance-measuring system (DMS) is the envelope of the test statistic [1]. This is a function of the time delay between the device and the target (or the corresponding distance between the device and the target). If this envelope is above a certain level determined by a pre-set threshold, the device is said to be within the functioning window of the target and an alarm signal is given at the output of the threshold device. Here the DMS is assumed to be of the type that is frequency modulated by a periodic waveform.

It is well-known that nonlinear frequency modulation can be used to decrease the sidelobe levels in the range law [2, Chapter 20],[6]. In fact, by frequency modulating with a waveform having Taylor weighing, the sidelobe may be decreased to 40dB below the main lobe, as compared to 13dB sidelobe suppression for pure triangular modulation [2]. The modulating waveform for Taylor weighing is

 $m(t) = a \left(\frac{t}{T} + \sum_{n=1}^{7} K_n \sin(n \omega_m t) \right) , |t| < \frac{T}{2}$

where T is the period of the modulation and $\omega_m = 2\pi/T$. For the DC range-law to have 40dB sidelobe suppression, the constants are $\kappa_1 = -0.1145$, $\kappa_2 = 0.0396$, $\kappa_3 = -0.0202$, $\kappa_4 = 0.0118$, $\kappa_5 = -0.0082$, $\kappa_6 = 0.0055$ and $\kappa_7 = -0.0040$ [2]. In practice this modulating waveform is difficult to generate.

In this report the range laws for the DMS will be calculated for a class of nonlinear frequency modulating waveforms. This class consists of (1) Triangle plus one sinusoidal term and (2) Triangle plus a cube-law term. This class of waveforms is relatively easy to generate in practice. Thus, the results of this report can be used to design practical nonlinear modulating waveforms which will increase the sidelobe suppression over that obtained by use of pure triangular modulation. Alternately, this class of waveforms can be used to model the actual nonlinear modulation in devices which are designed to have pure triangular modulation. Thus, the realized sidelobe suppression of an actual DMS with "triangular" modulation can be predicted. This is important because, for certain nonlinear shapes, the sidelobe suppression is increased (instead of decreased) by the incidental nonlinearity.

2. GENERAL FORMULATION FOR THE RANGE LAW

2.1 Range Law in Terms of the Fourier Coefficients

For periodic modulation the range law is obtained by evaluating the Fourier coefficient for the mixer output of the DMS. Referring to Figure 1,

Preceding page blank

Figure 1. DMS and a Point Target

the transmitted signal is represented by

$$\mathbf{x}(t) = \sqrt{2} \operatorname{Re} \left\{ \mathbf{v}(t) e^{\mathbf{j} \mathbf{w} \mathbf{c} \mathbf{t}} \right\}$$
(1)

where ω_c is the radian carrier frequency and v(t) is the complex envelope [3]. Then the corresponding received signal is

$$\mathbf{r}(\mathbf{t}) = \sqrt{2} \operatorname{Re} \left\{ \mathbf{v}(\mathbf{t} - \tau) \mathbf{e}^{j\omega_{c}(\mathbf{t} - \tau)} \right\}$$
(2)

where τ is the round-trip time delay. To the first approximation, the maxer output is given by the cross-product term

$$y(t,\tau) = x(t)r(t)$$

= Re {v(t)v*(t-\tau)e^{j\omega_c\tau}}
+ Re {v(t)v(t-\tau)e^{j\omega_c(2t-\tau)}}

where $[\cdot]^*$ denotes the complex conjugate of $[\cdot]$. Neglecting the output about $2\omega_c$ (which is filtered out in the physical DMS), we have for the mixer output

$$y(t,\tau) = \text{Re} \{v(t)v^{*}(t-\tau)e^{j\omega_{c}\tau}\}$$
 (3)

The test statistic is a filtered version of (3) usually obtained by a doppler band-pass filter centered about some harmonic of the fundamental modulating frequency.

For this frequency modulated DMS

$$j[D_{0}^{f} m(t)dt]$$

$$v(t) = e^{0}$$

where D is the deviation sensitivity (radians/volt-sec) and m(t) is the periodic frequency modulating waveform. Then

$$\mathbf{v}(t)\mathbf{v}^{*}(t-\tau) = e^{\mathbf{j}\boldsymbol{\theta}_{\mathbf{d}}(t,\tau)}$$
(4)

where

$$\theta_{d}(t,\tau) = D \int m(\sigma) d\sigma ,$$

 $t-\tau$

 $\theta_d(t,\tau)$ is the mixer output difference phase with τ being a parameter.

The instantaneous difference radian frequency associated with the mixer output is then

$$\omega_{id}(t,\tau) = \frac{d\hat{v}_d(t,\tau)}{dt} = D[m(t) - m(t-\tau)]$$
(5)

where it is assumed that the variation of τ with respect to t is negligible, i.e. the doppler frequency is much less than the carrier frequency. Thus,

$$\theta_{\mathbf{d}}(\mathbf{t},\tau) = \mathbf{D} \int_{0}^{t} [\mathbf{m}(\mathbf{t}) - \mathbf{m}(\mathbf{t}-\tau)] d\tau$$
(6)

If m(t) is periodic, then, $\theta_d(t,\tau)$ is periodic with respect to t. Thus, from (4), $v(t)v^*(t-\tau)$ is also periodic and can be expanded in a Fourier series

$$\mathbf{v}(\mathbf{t})\mathbf{v}^{*}(\mathbf{t}-\tau) = \mathbf{e}^{\mathbf{j}\boldsymbol{\theta}_{\mathbf{d}}(\mathbf{t},\tau)} = \sum_{k=-\infty}^{k=\infty} \mathbf{c}_{\mathbf{k}} \mathbf{e}^{\mathbf{j}k\boldsymbol{\omega}_{\mathbf{m}}\mathbf{t}}$$
(7)

where

and a second provide a second second second second second and a second second second second second second second

$$c_{k} = \frac{1}{T} \int_{0}^{T} e^{j\theta_{d}(t,\tau)} e^{-jk\omega_{m}t} dt$$

$$\omega_{m} = \frac{2\pi}{T}$$
(8)

and T is the period of the modulating waveform.

Using the above formulation the mixer output can be obtained in terms of the Fourier coefficients $\{c_k\}$. Assuming a modulating waveform such that the instantaneous difference frequency has half-wave odd symmetry; that is

$$\omega_{id}(t,\tau) = -\omega_{id}(t + \frac{T}{2}, \tau) ,$$

then from Appendix A, it follows that the mixer output is

$$y(t,\tau) = |c_0(\tau)| \cos \left[\omega_d(t-t_0) + \underline{c_0}\right] + \sum_{k=1}^{\infty} 2|c_k(\tau)| \cos \left[\omega_d(t-t_0) + \underline{c_k}\right] \cos \left[k\omega_m(t-t_0)\right]$$
(9)

「ないます」かられたりたいからできる

where

 t_0 is the value of t at the first turn-around time of the modulation m(t), $|[\cdot]|$ denotes the magnitude of $[\cdot]$

and

たたま

$$f$$
·] denotes the angle of [·].

The range law is given by the envelope of the output of the doppler-band filter centered at $\omega = k\omega_m$. Thus, the range $\exists a\omega_{\mu}$ are

$$R_{k}(\tau) = \begin{bmatrix} |c_{0}(\tau)| & , & k = 0 \\ \\ 2|c_{k}(\tau)| & , & k = 1, \hat{r} \end{bmatrix}$$
(10)

where

$$\mathbf{c}_{\mathbf{k}}(\tau) = \frac{1}{T} \int_{0}^{T} e^{\mathbf{j}\theta_{\mathbf{d}}(t,\tau)} e^{-\mathbf{j}\mathbf{k}\omega_{\mathbf{m}}t} dt \qquad (11)$$

2.2 Relationship Between the Fourier Coefficients and the Ambiguity Function

It is interesting to relate $c_k(\tau)$ with the Ambiguity Function. The Ambiguity Function is given by [1, p. 353]

$$\lambda(\tau,w) \stackrel{\Delta}{=} \int_{-\infty}^{\infty} v(t - \frac{1}{2}\tau)v^{*}(t + \frac{1}{2}\tau)e^{-jwt} dt$$

which becomes for periodic complex envelopes

$$\lambda(\tau, w) = \frac{1}{T} \int_{0}^{T} v(t - \frac{1}{2\tau})v^{*}(t + \frac{1}{2\tau})e^{-jwt} dt . \qquad (12)$$

Using (7), (11) and (12) we obtain the relationship

$$c_{k}(\tau) = e^{-jk \frac{\omega_{m}\tau}{2}} \lambda(-\tau, k\omega_{m})$$
(13)

or

$$|c_{k}(\tau)| = |\lambda(-\tau, k\omega_{m})| \qquad (14)$$

Thus, the magnitude of the Fourier coefficient gives the magnitude of the Ambiguity Function along the $w = k\omega_m$ axis where the positive and negative directions of the τ axis have been reversed.

Furthermore, the Fourier coefficient corresponding to the DC range law, $c_0(\tau)$, is related to the power spectrum of the transmitted signal by the Fourier transform. From (12) for the case of w = 0, $\lambda(\tau, 0)$ is the autocorrelation, $R_V(\tau)$, of the complex envelope v(t) of the transmitted RF signal, x(t). That is, for w = 0, (13) becomes

$$R_{v}(\tau) = c_{0}(-\tau) = \lambda(\tau, 0)$$

and

$$R_{v}^{\star}(\tau) = R_{v}(-\tau).$$

The power spectrum of the transmitted signal is given by [3]

$$P_{\mathbf{X}}(\omega) = \frac{1}{4} \left[P_{\mathbf{V}}(\omega - \omega_0) + P_{\mathbf{V}}(-\omega - \omega_0) \right] .$$

 $P_v(\omega)$ and $R_v(\tau)$ are a Fourier transform pair. Thus

$$c_0(\tau) = \lambda^*(\tau, 0) = \frac{1}{2\tau} \int_{-\infty}^{\infty} P_v(\omega) e^{j\omega(-\tau)} d\omega$$

or

$$c_{0}(\tau) = \lambda^{*}(\tau, 0) = \frac{2}{\pi} \int_{-B/2}^{B/2} P_{\mathbf{x}}(\omega + \omega_{\mathbf{c}}) e^{-j\omega\tau} d\omega$$
(15)

where

 $P_{\mathbf{X}}(\omega)$ is the power spectrum of the transmitted RF signal, $\mathbf{x}(t)$.

B is the bandwidth (rad/sec) of the RF signal

 ω_c is the carrier frequency (rad/sec).

ADDRESS OF ADDRESS ADDR

Thus, the $c_0(\tau)$ coefficient, corresponding to the DC range law and the conjugate of the Ambiguity Function evaluated along the w = 0 axis are related to the translated power spectrum of the RF signal by the Fourier transform times $2/\pi$.

A detailed discussion of the Ambiguity Function and its application to DMS is given by Rihaczek [4].

3. RANGE LAW FOR TRIANGLE PLUS SINUSOIDAL NONLINEARITY

The range laws, $R_k(\tau)$, will now be evaluated assuming periodic modulation by a composite waveform which is the sum of a pure triangle plus a sinusoid as shown in Figure 2 below. The composite modulation is described by

$$m(t) = m_1(t) - b \cos \omega m t$$
(16)

where

Library and the partition of the texts on the

$$m_{1}(t) = \begin{bmatrix} a(t - T/4) & 0 \le t \le T/2 \\ \\ a(t - 3/4 T) & T/2 \le t \le T \end{bmatrix}$$
(17)

a and b are constants to be determined according to the percentage of sinusoidal nonlinearity.

Figure 2. Triangle Plus Sinusoidal Nonlinearity

The percentage of sinusoidal nonlinearity added to the pure triangle component is defined by the percentage of sinusoidal contribution to the composite peak value measured at the time that the peak-value occurs. Thus, the percent sinusoidal nonlinearity is given by 100P_s where

$$P_{s} \stackrel{\Delta}{=} \frac{b}{b + aT/4} \tag{18}$$

The percentage of modulation, see (18), may be positive or negative depending on the sign of b with respect to a. It will be found that the sidelobes of the range law are increased or decreased depending on the sign of P_s .

The range laws resulting from this triangle plus sinusoidal nonlinearity are described by (see Appendix B for the derivation)

$$R_{k}(\tau) = \begin{bmatrix} |c_{0}(\tau)| & , & k = 0 \\ \\ 2|c_{k}(\tau)| & , & k = 1,2 \dots \end{bmatrix}$$
(19)

where

$$c_{k} = \frac{1}{2} e^{j(\pi/2)P_{S}x} \left\{ Y[(\frac{\pi}{2} P_{S}x) , (k-xP_{t})] + (-1)^{k} e^{j\pi P_{t}x} Y[(-\frac{\pi}{2} P_{S}x) , (k+xP_{t})] \right\}$$
(20)

and

$$\mathbf{Y}[\mathbf{z},\mathbf{v}] \stackrel{\Delta}{=} \frac{1}{\pi} \int_{0}^{\pi} e^{-\mathbf{j}[\mathbf{z} \cos \theta + \mathbf{v}\theta]} d\theta$$
(21)

$$x \stackrel{\Delta}{=} 2B\tau \tag{22}$$

$$P_t \stackrel{a}{=} 1 - P_s \tag{23}$$

and B is the peak-to-peak frequency deviation (Hz) of the composite frequency modulating waveform. For $B >> f_m$, which is usually the case, B corresponds to the spectral bandwidth (Hz) of the transmitted RF signal.

For the case of $P_S = 0$, i.e., pure triangular modulation, (20) reduces to

$$\mathbf{c_{k}} = \frac{1}{2} \mathbf{e}^{j \frac{\pi}{2}} \left(\mathbf{x}-\mathbf{k}\right) \left\{ \frac{\sin\left[\frac{\pi}{2} (\mathbf{x}-\mathbf{k})\right]}{\frac{\pi}{2} (\mathbf{x}-\mathbf{k})} + (-1)^{k} \frac{\sin\left[\frac{\pi}{2} (\mathbf{x}+\mathbf{k})\right]}{\frac{\pi}{2} (\mathbf{x}+\mathbf{k})} \right\}$$
(24)

which yields the well-known $[5] \sin z/z$ type of range law.

<u> Alizous sienness</u>

For the case $P_s = 1.0$, i.e. pure sinusoidal modulation, (20) reduces

to

$$c_{k} = (-1)^{k} e^{j \frac{\pi}{2} x} J_{k} (\frac{\pi}{2} x)$$
 (25)

which yields the well-known [2] Bessel function range law.

The range laws for several percentages of sinusoidal nonlinearity are shown in Figures 3-16. These curves were obtained by evaluating (20) numerically.

Figures 3-9 give the range laws for positive percentage of modulation. It is evident that this type of nonlinearity moves the range laws to the left; that is, it decreases the normalized delay, x_0 , to the peak of the range law. This positive percentage of sinusoidal nonlinearity also increases the sidelobe level over that obtained for pure triangle modulation for distances larger than x_0 . This type of nonlinearity is undesirable.

Figures 10-16 give the range laws for negative percentages of modulation. This type of nonlinearity moves the range laws to the right, i.e. increases x_0 . However, the sidelobe level is decreased for distances greater than x_0 . From these figures, the optimum decrease in the sidelobe level is obtained when the percentage of sinusoidal nonlinearity is set to approximately

$$P_s = -1.5 \ (1/k+4)$$
 (26)

This type of linearily is desirable.

Figure 6. Range Response for K = 3 Sinusoidal Nonlinearity

19.00

والمالية والمتحدث والمحافظ والمتحدود والمحافظ

g

and and second of the second second

ne on other set of the set of the

Figure 13. Range Response for K = 3 Negative Sine Nonlinearity

こう うちょう たいしょう

areas and a second and a second and the areas of the second second second second second second second second s

10 A 10 A 10

26

and the set of the second department of the second indication of the second second second second second is the

4. RANGE LAW FOR TRIANGLE PLUS CUBE-LAW NONLINEARITY

The range laws, $k_k(\tau)$, will now be evaluated assuming periodic modulation by a composite waveform which is the sum of a pure triangle plus a cube-law as shown in Figure 17 below.

The composite waveform is described by

$$m(t) = m_1(t) + m_2(t)$$
 (27)

where

「日本」というというないないでのない

$$m_{1}(t) = \begin{cases} c(t - T/4) , & 0 \le t \le T/2 \\ \\ -c(t - (3/4)T) , & T/2 \le t \le T \end{cases}$$
(28)

and

$$\mathbf{m}_{2}(t) = \begin{cases} d(t - T/4)^{3} , 0 \le t \le T/2 \\ \\ -d(t - (3/4)T)^{3} , T/2 \le t \le T \end{cases}$$
(29)

c and d are constants to be determined by the percentage of cube-law nonlinearity.

Just as in Section 3, the amount of cube-law nonlinearity added to the triangular component is defined by the percentage of cube-law contribution to the composite peak value measured at the time that the peak value occurs. Thus, the percent cube-law nonlinearity is given by $100P_{\rm C}$ where

$$P_{c} \stackrel{\Delta}{=} \frac{d(T/4)^{3}}{d(T/4)^{3} + c(T/4)} = \frac{d(T/4)^{2}}{d(T/4)^{2} + c} \qquad (30)$$

The range laws resulting from this triangle plus cube-law nonlinearity are described by (see Appendix C for the derivation)

$$R_{k}(\tau) = \begin{bmatrix} |c_{0}(\tau)| & , & k = 0 \\ \\ 2|c_{k}(\tau)| & , & k = 1, 2 \dots \end{bmatrix}$$
(31)

where

$$c_{k}(\tau) = \frac{1}{\pi} \int_{0}^{\pi} \frac{j\{P_{t\theta} + P_{c}(2/\pi)^{2}[(\theta - \pi/2)^{3} + (\pi/2)^{3}]\}x}{cos(k\theta)d\theta}$$
(32)

 $\mathbf{x} \stackrel{\Delta}{=} 2\mathbf{B} \tag{33}$

$$P_{t} \stackrel{\Delta}{=} 1 - P_{c} \tag{34}$$

and B is the peak-to-peak frequency deviation (Hz) of the composite frequency modulating waveform. For $B >> f_m$, which is usually the case, B corresponds to the spectral bandwidth (Hz) of the transmitted RF signal.

For the case of $P_c = 0$, i.e. pure triangular modulation, (32) reduces to our well-known sin z/z type result given by (24).

Once again the percentage of modulation may be positive or negative depending on the sign of d with respect to c in (30). By comparing the shapes of the sinusoidal and cube-law modulating waveforms (see Figure 2 and 17) it is seen that the shape obtained for a positive cube-law nonlinearity is roughly equivalent to that obtained using a negative sinusoidal nonlinearity. (The exact relationship is discussed in Section 5.2). Thus, in comparing the results for cube-law nonlinearity with those for sinusoidal nonlinearity, we would expect the sidelobe level in the range laws obtained for small percentages of *positive* cube-law nonlinearity to be suppressed with respect with those obtained using pure triangular modulation. The converse is also true. Since only the positive cube-law nonlinearity gives sidelobe suppression while negative cube-law nonlinearity gives increases in the sidelobe levels, only the positive cube-law results will be given here.

The range laws for several positive percentages of cube-law nonlinearity are shown in Figures 18-24. These curves were obtained by evaluating (32) numerically. It is evident that this type of nonlinearity moves the range laws to the right; that is, it increases x_0 . Furthermore, if the percent nonlinearity is not too large the sidelobe level is decreased at distances greater than x_0 . From these figures, the optimum decrease in sidelobe level is obtained when the (positive) percentage of cube-law nonlinearity is set to approximately

$$P_{c} = 1/k+4$$
 , (35)

Thus, some positive cube-law nonlinearity is desirable, and negative cube-law nonlinearity is undesirable.

Said at the states of the ball and the states of

日本のないないのでいたので、

のうだけたらいなななかっ

Range Response For K = 8 Cube-Law Nonlinearity

33

1222 AUGUSTANA STRATT

and the second se

5. EXPERIMENTAL AND THEORETICAL VERIFICATION OF RESULTS

5.1 Experimental Verification

For the case of triangle plus sinusoidal modulation, the two limit results (i.e. pure triangle or pure sinusoidal modulation) are well-known. Since the theoretical range laws given in Figures 3-9 fall within these known limits, these results are already verified experimentally.

For the case of triangle plus cube-law modulation, the theoretical range laws have been given by Figures 18-24. These results will now be verified experimentally by using the test apparatus shown in Figure 25 below. The FM oscillator was supplied by HDL and is capable of large peak-to-peak deviations with little incidental AM. B was set to 20MHz and f_m was 5KHz. The experimental results are shown in Figures 26 and 27.

Figure 25. Test Apparatus For Experimental Measurement of Range Laws

Figure 26. Experimental Range Laws for K = 4--Triangle Plus Positive Cube-Law Nonlinearity

Experimental Range Laws for K = 8--Figure 27. Triangle Plus Positive Cube-Law Nonlinearity

It is seen that these experimental results agree with Figures 22 and 23 when the attenuation characteristic of the transmission line in the experimental apparatus is taken into account.

5.2 Theoretical Verification

If negative percentages of cube-law modulation are used we have a modulating waveform of the form

$$\mathbf{m}(t) = \mathbf{k}_1 t - \mathbf{k}_2 t^3 , \quad -T/4 \le t \le T/4$$
(36)

where the t = 0 axis has been shifted by T/4 for analytical simplification. This may be compared with the waveform shape that is obtained for triangle plus sinusoidal nonlinearity

$$\mathbf{m}(\mathbf{t}) = \mathbf{k}_3 \mathbf{t} - \mathbf{k}_4 \mathbf{t}^3 + \text{higher order terms}$$
(37)

where the expansion $\sin \theta = \theta - (1/3!)\theta^3 + (1/5!)\theta^5...$ has been used (see Appendix D). Neglecting the terms of order higher than t^3 , a relationship between the percentage of cube-law nonlinearity and the percentage of sinusoidal nonlinearity can be obtained such that the two waveforms of (36) and (37) are equivalent; that is $k_1 = k_2$ and $k_2 = k_4$. Referring to Appendix D, the result is

$$P_{c} = \frac{-\frac{1}{6(2/\pi)^{3}} P_{s}}{1 - \frac{P_{s}}{\frac{6(2/\pi)^{3}}{6(2/\pi)^{2}(1 - 2/\pi) - 1}}} = \frac{-0.64596P_{s}}{1 - \frac{P_{s}}{13.304}}$$
(38)

which may be approximated by

$$P_{c} \approx -0.646P_{s}$$
 (39)

when $|P_s| < 1$. Equation (39) is plotted in Figure 28.

Using (38), some range laws for cube-law nonlinearity which are equivalent to the sinusoidal nonlinearity are shown in Figure 29. It is seen that Figure 29 is almost identical to Figure 4. Thus, the theoretical results for the cases of cube-law and sinusoidal nonlinearity are verified theoretically with respect to each other.

Stranger and the state of the s

استقلتاه وووا التووي الارب

ALC: CONTRACT

6. SUPPLARY

the standing of the second of the second second second second second

Range laws have been obtained for a class of distance measuring systems. This class radiates an RF signal which is frequency modulated by a nonlinear triangular waveform. The nonlinearity consists of one of two shapes--Type I and Type II--as shown in Figure 30. Type I nonlinearity may be synthesized from a triangle plus a positive sinusoidal nonlinearity or from a triangle plus a negative cube-law nonlinearity. Type II and be synthesized from a triangle plus a negative sinusoidal nonlinearity or a triangle plus a positive cube-law nonlinearity.

Figure 30. Nonlinear Frequency Modulating Waveforms

The amount of nonlinearity is specified by a parameter which gives the percentage contribution of the sinusoidal $(100P_S)$ or cube-law $(100P_C)$ nonlinearity with respect to the composite waveform amplitude at the time when the peak value occurs (i.e. t = 0, T/2, T, etc.). These percentages may have positive or negative values.

The resulting range laws show that the nonlinearity may be desirable or undesirable. The Type I nonlinearity produces an undesirable effect (Figures 3-9) since the sidelobe levels are increased over those obtained for pure triangular modulation, for all distances greater than x_0 . The Type II nonlinearity produces a desirable effect (Figures 11-16 and 18-24) provided that the percentage of nonlinearity is not too large. That is, the sidelobe levels are decreased for distances greater than x_0 if P_S or P_C is small and of the correct sign. From the figures it is seen that a sinusoidal nonlinearity with

$$P_{s} \approx -1.5 \ (1/k+4)$$
 (40)

or a cube-law nonlinearity ith

$$P_{c} = 1/(k+4)$$
 (41)

gives the optimum sidelobe suppression and that the x_0 is not shifted very much for these small percentages of nonlinearity.

In summary, the results of this report may be used to evaluate existing distance measuring systems and to design new systems. The range laws of existing systems may be predicted for the case of frequency modulation by a nonlinear triangular waveform. For new systems, modulating nonlinear triangular waveforms may be prescribed which produce range laws with better sidelobe suppression than those obtained by use of the pure triangular waveform.

APPENDIX A

Fourier Series for the Mixer Output

Equation (9) will now be derived from (3), (7) and (8). The mixer output is

$$y(t,\tau) = \operatorname{Re} \left\{ \sum_{k} e^{jk\omega_{m}t} e^{j\omega_{c}t} \right\}$$
 (A-1)

Expanding $\tau(t)$ in a Taylor's series about t we have

 $\tau(t_0 + t) = \tau(t_0) + \frac{d\tau}{dt} \Big|_{t_0} t + \dots$ (A-2)

Now

$$\frac{\mathrm{d}\tau}{\mathrm{d}t}\Big|_{t_0} = \frac{\Delta\tau}{\Delta t} = \frac{(2\mathbf{v_r}/\Delta s)}{(c/\Delta s)} = \frac{2\mathbf{v_r}}{c}$$

where $\Delta\tau$ is the incremental change in the round trip time delay during the incremental time Δt

 Δs is the incremental change in distance

vr is the radial velocity of the target with respect to the DMS

and c is the speed of light.

From (A-2), using the first two terms of the Taylor's series

$$\omega_{c}\tau = \phi_{0} + \omega_{d}t \tag{A-3}$$

where

$$\phi_0 = \omega_c \tau(t_0)$$

and

$$\omega_{\rm d} = (2v_{\rm r}/c)\omega_{\rm c}$$

 ω_d is the radian doppler frequency. Using (A-3), but neglecting the phase angle $\phi_0,$ (A-1) becomes

$$y(t,\tau) = \sum_{k=-}^{\infty} \operatorname{Re} \left\{ c_{k} e^{j(k\omega_{m} + \omega_{d})t} \right\}$$
$$= \operatorname{Re} \left[c_{0} e^{j\omega_{d}t} \right] + \sum_{k=1}^{\infty} \operatorname{Re} \left\{ \left[c_{k} e^{jk\omega_{m}t} + c_{-k} e^{-jk\omega_{m}t} \right] e^{j\omega_{d}t} \right\}. \quad (A-4)$$

We will now show that $c_k = c_{-k}$ for the case when the instantaneous difference frequency has odd symmetry; that is when

$$\omega_{id}(t,\tau) = -\omega_{id}(-t,\tau) \qquad (A-5)$$

From (8)

$$c_{k} = \frac{1}{T} \int_{0}^{T} e^{j\theta_{d}(t,\tau)} e^{-jk\omega_{m}t} dt \qquad (A-6)$$

and

$$c_{-k} = \frac{1}{T} \int_{0}^{T} e^{j\theta_{d}(t,\tau)} e^{jk\omega_{m}t} dt . \qquad (A-7)$$

Letting $\sigma = -(t + T)$, (A-7) becomes

$$c_{-k} = \frac{1}{T} \int_{0}^{T} e^{j\theta} d[(T-\sigma),\tau] e^{-jk\omega_{m}\sigma} d\sigma . \qquad (A-8)$$

Identifying (A-8) with (A-6) we see that a sufficient requirement for $c_{-k} = c_k$ is that

$$\theta_d[t,\tau] = \theta_d[(T-t),\tau]$$

and since θ_d is periodic with period T, this is equivalent to the requirement

$$\theta_{d}[t,\tau] = \theta_{d}[-t,\tau]$$
 (A-9)

Taking the derivative of both sides of (A-9)

$$\omega_{\underline{i}\underline{d}}(t,\tau) = \frac{d\theta(t,\tau)}{dt} = \frac{-d\theta_{\underline{d}}(x,\tau)}{dx}\Big|_{x=-t} = -\omega_{\underline{i}\underline{d}}(-t,\tau)$$

Thus

$$c_{k} = c_{-k} \text{ if } \omega_{id}(t,\tau) = -\omega_{id}(-t,\tau) \qquad (A-10)$$

Using (A-10) in (A-4) we have

$$\mathbf{y}(\mathbf{t},\tau) = |\mathbf{c}_{0}| + \sum_{k=1}^{\infty} 2|\mathbf{c}_{k}| \cos \left[\omega_{d}\mathbf{t} + \underline{\mathbf{c}_{k}}\right] \cos \left(k\omega_{m}\mathbf{t}\right)$$
(A-11)

provided that $\omega_{id}(t,\tau) = -\omega_d(-t,\tau)$ where $|[\cdot]|$ denotes the magnitude of $[\cdot]$ and $\underline{/[\cdot]}$ denotes the angle of $[\cdot]$. Now let t_0 be defined as the value of t which gives the first turnaround of the modulation, m(t). This is illustrated in the figure below for the case of m(t) having a triangular waveshape.

1

. . .

Then, using the above sufficient condition for $c_k = c_{-k}$, we have the requirement, from (A-5), that

$$\omega_{id}[(t-t_0),\tau] = -\omega_{id}[-(t-t_0),\tau]$$
(A-12)

and (A-11) becomes

$$y(t,\tau) = |C_0| + \sum_{k=1}^{\infty} 2|c_k| \cos [\omega_d(t-t_0) + c_k] \cos [k\omega_m(t-t_0)]$$
 (A-13)

Furthermore, since ω_{id} is periodic with period T, (A-12) is satisfied if we require the difference frequency to have half-wave odd symmetry, that is if

$$\omega_{id}(t,\tau) = -\omega_{id}(t + \frac{T}{2}, \tau) \quad . \tag{A-14}$$

2

45

And a superior of the second second

APPENDIX B

Fourier Coefficients For Triangle Plus Sinusoidal Modulation

Using (6), (16) and (17), the difference phase is

$$\theta_{d}(t,\tau) = \begin{cases}
(Da\tau)t + \frac{Db}{\omega_{m}} [\sin \omega_{m}(t-\tau) + \sin \omega_{m}\tau - \sin \omega_{m}t] , & 0 \le t \le \frac{T}{2} \\
(-Da\tau)(t-T) + \frac{Db}{\omega_{m}} [\sin \omega_{m}(t-\tau) + \sin \omega_{m}\tau - \sin \omega_{m}t] , & \frac{T}{2} \le t \le T \end{cases}$$
(B-1)

where the exact representation for θ_d during the turn-around time has been neglected.

Referring to (18), the peak-to-peak frequency deviation in Hz is

$$B = \frac{1}{2\pi} \left[2D(b + \frac{aT}{4}) \right] .$$
 (B-2)

Using (18) and (B-2), (B-1) becomes

$$\theta_{d}(t,\tau) = B\pi \begin{cases} \left(\frac{4\tau P_{t}}{T}\right)t + \frac{P_{s}}{\omega_{m}}\left[\sin \omega_{m}(t-\tau) + \sin \omega_{m}\tau - \sin \omega_{m}t\right] &, \quad 0 \le t \le \frac{T}{2} \\ \left(-\frac{4\tau P_{t}}{T}\right)(t-T) + \frac{P_{s}}{\omega_{m}}\left[\sin \omega_{m}(t-\tau) + \sin \omega_{m}\tau - \sin \omega_{m}t\right] &, \quad \frac{T}{2} \le t \le T \end{cases}$$
(B-3)

where

$$P_t = 1 - P_s$$

$$c_{\mathbf{k}} = \frac{1}{T} \int_{0}^{T/2} e^{jB\pi \left\{ \left(\frac{4P_{t}\tau}{T}\right)t + \frac{P_{s}}{\omega_{m}} \left[\sin \omega_{m}(t-\tau) + \sin \omega_{m}\tau - \sin \omega_{m}t \right] \right\}} e^{-jk\omega_{m}t} dt$$

$$+ \frac{1}{T} \int_{T/2}^{T} e^{jB\pi \left\{ -\left(\frac{4P_{t}\tau}{T}\right)t + \frac{P_{s}}{\omega_{m}} \left[\sin \omega_{m}(t-\tau) + \sin \omega_{m}\tau - \sin \omega_{m}t \right] \right\}} e^{-jk\omega_{m}t} dt$$

$$(B-4)$$

Using a change of variable, $t_1 = (t - T/2)$, on the second integral and using the approximation:

$$[\sin \omega_m(t-\tau) - \sin \omega_m t] \approx (\omega_m \tau) \sin (\omega_m t - \frac{\pi}{2}), \tau \ll T$$

(B-4) becomes

$$c_{k} = \frac{1}{T} e^{jB\pi P_{s} \sin \omega_{m}\tau} \int_{0}^{T/2} e^{jB\pi \left\{ \left(\frac{4P_{t}\tau}{T}\right)t + P_{s}\tau \sin \left(\omega_{m}t - \frac{\pi}{2}\right) \right\}} e^{-jk\omega_{m}t} dt$$

$$+ \frac{(-1)^{k}}{T} e^{jB\pi \left[2P_{t}\tau + \frac{P_{s}}{\omega_{m}} \sin \omega_{m}\tau\right]} \int_{0}^{T/2} e^{-jB\pi \left\{ \left(\frac{4P_{t}\tau}{T}\right)t + P_{s}\tau \sin \left(\omega_{m}t - \frac{\pi}{2}\right) \right\}} e^{-jk\omega_{m}t} dt$$

$$(B-5)$$

Using a change of variable, $\theta = (2\pi/T)t$, and the approximation sin $\omega_m \tau = \omega_m \tau$ for $\tau << T$, (B-5) reduces to

$$c_{k} = \frac{1}{2} e^{j(\frac{\pi}{2})P_{s}x} \left\{ Y[(\frac{\pi}{2}P_{s}x), (k-P_{t}x)] + (-1)^{k} e^{j\pi P_{t}x} Y[(-\frac{\pi}{2}P_{s}x), (k+P_{t}x)] \right\}$$
(B-6)

where

$$Y(z,v) \stackrel{\Delta}{=} \frac{1}{\pi} \int_{0}^{\pi} e^{-j[z \cos \theta + v\theta]} d\theta \qquad (B-7)$$

and

$$x \stackrel{\Lambda}{=} 2B\tau$$
 . (B-8)

Y(z,v) becomes $J_v(-z)$ when v is an integer.

APPENDIX C

Fourier Coefficients For Triangle Plus Cube-Law Modulation

Using (6), (22), (28) and (29), the difference phase is

$$\theta_{d}(t,\tau) = \begin{cases} (Dc\tau)t + (Dd\tau)\left[(t - \frac{T}{4})^{3} + (\frac{T}{4})^{3}\right] & , & 0 \le t \le \frac{T}{2} \\ (-Dc\tau)(t-T) \div (-Dd\tau)\left[(t - \frac{3}{4}T)^{3} - (\frac{T}{4})^{3}\right] & , & \frac{T}{2} \le t \le T \end{cases}$$
(C-1)

where the exact representation of θ_d during the turn-around time has been neglected and the following approximations have been used

$$\left[t - \left(\frac{T}{4} + \tau\right)\right]^3 = \left(t - \frac{T}{4}\right)^3 - 3\left(t - \frac{T}{4}\right)^2$$
, $\tau \ll \frac{T}{4}$ (C-2)

and

$$\left[t - \left(\frac{3}{4}T + \tau\right)\right]^3 = \left(t - \frac{3}{4}T\right)^3 - 3\left(t - \frac{3}{4}T\right)^3 \tau$$
, $\tau << \frac{3}{4}T$. (C-3)

COLOR WE

The approximations are valid for our problem of interest i.e. when $\tau \ll T$. Substituting (C-1) into (11), the Fourier coefficients are

$$c_{k} = \frac{1}{T} \int_{0}^{T/2} e^{j\{(Dc\tau)t + (Dd\tau)[(t - \frac{T}{4})^{3} + (\frac{T}{4})^{3}]\}} e^{-jk\omega_{m}t} dt$$

$$+ \frac{1}{T} \int_{T/2}^{T} e^{-j\{(Dc\tau)(t-T) + (Dd\tau)[(t - \frac{3}{4}T)^{3} - (\frac{T}{4})^{3}]\}} e^{-jk\omega_{m}t} dt.$$
(C-4)

Using the change in variable, $t_1 = T-t$, on the second integral, (C-4) becomes

$$c_{k} = \frac{2}{T} \int_{0}^{T/2} e \frac{j\{(Dc\tau)t + (Dd\tau)[(t - \frac{T}{4})^{3} + (\frac{T}{4})^{3}]\}}{\cos (k\omega_{m}t)dt} . \quad (C-5)$$

Using the change of variable $\theta = (2\pi/T)t$, this reduces to

$$c_{k} = \frac{1}{\pi} \int_{0}^{\pi} e^{j\left\{\frac{Dc\tau T}{2\pi}\right\}\theta + (Dd\tau)\left(\frac{T}{2\pi}\right)^{3}\left[\left(\theta - \frac{\pi}{2}\right)^{3} + \left(\frac{\pi}{2}\right)^{3}\right]\right\}} \cos(k\theta)d\theta . \quad (C-6)$$

Referring to (30), the peak-to-peak frequency deviation in Hz is

$$B = \frac{1}{2\pi} \left\{ 2D \left[d \left(\frac{T}{4} \right)^3 + c \left(\frac{T}{4} \right) \right] \right\}$$
 (C-7)

Using (30) and (C-7), (C-6) becomes

$$c_{k} = \frac{1}{\pi} \int_{0}^{\pi} e^{j\{P_{t}\theta + F_{c}(\frac{2}{\pi})^{2}[(\theta - \frac{\pi}{2})^{3} + (\frac{\pi}{2})^{3}]\}_{x}} \cos(k\theta)d\theta \qquad (C-8)$$

when

$$\mathbf{x} \stackrel{\Delta}{=} 2B\tau \tag{C-9}$$

$$P_t \stackrel{\Delta}{=} 1 - P_c \tag{C-10}$$

 $100P_{\rm C}$ is the percentage of cube-law modulation, $100P_{\rm t}$ is the percentage of triangular modulation, x is the normalized round-trip time delay between the fuze and the target, and B is the peak-to-peak frequency deviation (Hz).

APPENDIX D

Percentage of Modulation Required For Equivalent Sinusoidal and Cube-Law Nonlinearity

For triangle plus sinusoidal nonlinearity, using (16) and (17), the modulating waveform is

$$\mathbf{m}(t) = at + b \sin \omega_{\mathbf{m}} t , \quad |t| \leq \frac{T}{4}$$
 (D-1)

where the t = 0 reference has been shifted by T/4 for convenience. Then approximating the sinusoidal nonlinearity of (D-1) by the first two terms of the Taylor series we have

$$m(t) = (a + b\omega_m)t - \frac{1}{6}b(\omega_m t)^3$$
, $|t| \le \frac{T}{4}$. (D-2)

Identifying (D-2) with (37) we have

$$\mathbf{k}_3 = (\mathbf{a} + \mathbf{b}\omega_{\mathbf{m}}) \tag{D-3}$$

and

$$k_{4} = \frac{1}{6} b \omega_{m}^{3}$$
 (D-4)

For triangle plus cube-law nonlinearity, using (27), (28) and (29), the modulating waveform is

$$m(t) = ct + dt^3$$
, $|t| < \frac{T}{4}$ (D-5)

where the t = 0 reference has been shifted by T/4. Identifying (D-5) with (36) we have

 $\mathbf{k}_1 = \mathbf{c} \tag{D-6}$

$$\mathbf{k}_2 = -\mathbf{d} \qquad (\mathbf{D}-\mathbf{7})$$

It is required that $k_1 = k_3$ and $k_2 = k_4$ for these two types of nonlinear modulation to be equivalent. Thus, (D-3) through (D-7) becomes

$$c = a + b\omega_m = a + \frac{2\pi b}{T}$$
(D-8)

$$d = -\frac{1}{6} b \omega_m^3 = -\frac{1}{6} b \left(\frac{2\pi}{T}\right)^3 . \qquad (D-9)$$

Solving (D-8), (D-9), (18) and (19) simultaneously for P_C in terms of P_S we have

$$P_{c} = \frac{-\frac{1}{6} \left(\frac{\pi}{2}\right) P_{s}}{(1 - P_{s} + P_{s} \frac{\pi}{2}) \left(\frac{2}{\pi}\right)^{2} - \frac{1}{6} \left(\frac{\pi}{2}\right) P_{s}}$$
(D-6)

where $100P_{C}$ is the percentage of cube-law nonlinearity and $100P_{S}$ is the percentage of sinusoidal nonlinearity.

Equation (D-6) can be arranged into a more useful form

$$P_{c} = \frac{-[1/6(2/\pi)]^{3}P_{s}}{1 - \frac{P_{s}}{\frac{6(2/\pi)^{3}}{6(2/\pi)^{2}(1 - 2/\pi) - 1}}} = \frac{-0.64596 P_{s}}{1 - (P_{s}/13.304)}$$
(D-7)

which can be approximated by

$$P_{c} \approx -0.646P_{s}$$
, $|P_{s}| < 1.$ (D-8)

REFERENCES:

- 1. Helstrom, C.W., Statistical Theory of Signal Detection, Pergamon Press, 1968.
- 2. Skolnick, M., Editor, Radar Handbook, McGraw-Hill, 1970.
- 3. Rowe, H.E., Signals and Noise in Communication Systems, Van Nostrand, 1965.
- 4. Rihaczek, A.W., Principles of High Resolution Radar, McGraw-Hill, 1969.
- 5. Peperone, S.J., "Analysis of the C-Class Fuzing Systems," <u>Harry Diamond</u> <u>Laboratories Technical Report No. TR-914, 1961.</u>
- 6. Tozzi, L.M., "Resolution in Frequency-Modulated Radars," Ph.D. Dissertation, University of Maryland, 1972.