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ABSTRACT

Range laws are obtained for a distance measuring system which trans-
mits an RF signal. The RF is frequency modulated by a nonlinear triangular
waveform, the amount of nonlinearity being specified by a parameter. j

The nonlinearity may have desirable or undesirable effects; that is,
the sidelobe level of the range response may be decreased or increased de-
pending on the shape and amount of nonlinearity.

The results of this report may be used to predict range laws of sys-

tems which have nonlinear triangular modulation. Alternately, practical non-
linear triangular waveforms may be specified which will reduce the range-law I
sidelobes.-
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RANGE LAWS FOR DISTANCE MEASURING SYSTEMS USING

FREQUENCY MODULATION WITH A NONLINEAR TRIANGULAR WAVESHAPE

1. INTRODUCTION

The range law of a distance-measuring system (DMS) is the envelope
of the test statistic [1]. This is a function of the time delay between
the device and the target (or the corresponding distance between the device
and the target). If this envelope is above a certain level determined by a
pre-set threshold,the device is said to be within the functioning window of
the target and an alarm signal is given at the output of the threshold de-
vice. Here the DMS is assumed to be of the type that is frequency modulated
by a periodic waveform.

It is well-known that nonlinear frequency modulation can be used to
decrease the sidelobe levels in the range law [2, Chapter 20],[6]. In fact,
by frequency modulating with a waveform having Taylor weighing, the sidelobe

may be decreased to 40dB below the main lobe, as compared to 13dB sidelobe
suppression for pure triangular modulation [2]. The modulating waveform for
Taylor weighing is

7
m(t) = a + Kn sin (nimt Itl < T

where T is the period of the modulation and wn = 2n/T. For the DC range-law

to have 40dB sidelobe suppression, the constants are K1 = -0.1145, K2 = 0.0396,

K, = -0.0202, K4 = 0.0118, K5 
= -0.0082, K6 = 0.0055 and K7 = -0.0040 [2].

In practice this modulating waveform is difficult to generate.

In this report the range laws for the DMS will be calculated for a
class of nonlinear frequency modulating waveforms. This class consists of
(I) Triangle plus one sinusoidal term and(2) Triangle plus a cube-law term.
This class of waveforms is relatively easy to generate in practice. Thus,
the results of this report can be used to design practical nonlinear modu-
lating waveforms which will increase the sidelobe suppression over that ob-
tained by use of pure triangular modulation. Alternately, this class of
waveforms can be used to model the actual nonlinear modulation in devices
which are designed to have pure triangular modulation. Thus, the realized
sidelobe suppression of an actual DMS with "triangular" modulation can be
predicted. This is important because, for certain nonlinear shapes, the

sidelobe suppression is increased (instead of decreased) by the incidental
nonlinearity.

2. GENERAL FORMULATION FOR THE RANGE LAW

2.1 Range Law in Terms of the Fourier Coefficients

For periodic modulation the range law is obtained by evaluating the
Fourier coefficient for the mixer output of the DMS. Referring, to Figure 1,

Preceding page blank



x(t)

DMS 
~r(t) 

1re

Mixer Output
y(t,T)

Figure 1. DI4S and a Point Target

the transmitted signal is represented by

x(t) = /r Re {v(t)ejWct} (1)

where wc is the radian carrier frequency and v(t) is the complex envelope [3].
Then the corresponding received signal is j t

r(t) - Re {v(t--)eJ~c(t - )} (2)

where T is the round-trip time delay.
To the first approximation, the mixer output is given by the cross-product
term

y(t,T) = x(t)r(t)

= Re fv(t)V*(t-)e:JW
C T

+ Re fv(t)V(t-T)e 
j iAc ( 2 t - T)

where [.]* denotes the comple; coniugate of [.].
Neglecting the output about 2wc (which is tiltered out in the ph-sical D'!S),
we have for the mixer output

y(t,T) = Re {v(t)v*(t-T)ejW cCT (3)

The test statistic is a filtered version of (3) usually obtained by a
doppler band-pass filter center'd about some harmonic of the fundamental
modulating frequency.

For this frequency modulated DMS

II)fm(t)dt]

v ( t ) = e 0 f,:

10



where D is the deviation sensitivity (radians/volt-sec) and m(t) is the periodic
frequency modulating waveform. Then

iOd(t,Tr)
v(t)v*(t-T) = e (4)

where

t

Od(t,T) = D m(o)do
t-T

Od(t,T) is the mixer output difference phase with T being a parameter.

The instantaneous difference radian frequency-associated witii the
mixer output is then

WiddttT) D[m(t) - M(t-T)] (5)

where it is assumed that the variation Of T with respect to t is negligible, i.e.
the doppler frequency is much less than the carrier frequency. Thus,

0d (t~t D y f a(t) - m(t-T)]d-r (6)

If m(t) is periodic, then, Od(t,") is periodic with respect to t. Thus, from
(4), v(t)v*(t-r) is also periodic and can be expanded in a Fourier series

v(t)v*(t-T) = ejad(t 'T) k- kwmt= = c ke~k m  (7)

k=-oo

where

T e j 0d(tT) e-jk(%t dt8
Tj 0 (8)

27r
Wm= T

and T is the period of the modu'ating waveform.

Using the above formulation -he mixer output can I), obtaincd in terms
of the Fourier coefficients {Ck}. Assuming a modulating wavef,-,m such that
the instantaneous difference frequency has half-wave odd symmetry; that is

Wil(t,T) = -id(t-T1



f- -- --

then from Appendix A, it follows that the mixer output is

y(t,T) = Ico(T)I cos [wd(t-tO) + C I

00-

+ I 21ck(T) cos Ewd(t-to) + &0 cos [kwM(t-to]] 9)
k=l

where I
to is the value of t at the first turn-around time of the modulation m(t),

[.]I denotes the magnitude of []

and

Al denotes the angle of [.]

The range law is given by the envelope of the output of the doppler-band
filter centered at w = kwm . Thus, the range ]a,,,, are

F c(T)j , k = 0I

Rk(T) = L (10)

21Ck(T)l , k --- L, t .

where

ck(T )  f T ej e d ( t T) e- J k wmt dt .(1,.-
0

2.2 Relationship Between the Fourier Coefficients and the Ambiguity Function

It is interesting to relate ck(T) with the Ambiguity Function. The
Ambiguity Function is given by [1, p. 353]

X(T,W) f v(t - T)v*(t + !!)e -  dt

which becomes for periodic complex envelopes

X(T,W) f v(t - 'YT)v*(t + T)e - J wt dt . (12)I0Using (7), (11) and (12) we obtain the relationship
WMT

C(T) = (-T,km) (13)

12



I
or

I !Ck () = A(-T,kwm)I (14)

Thus, the magnitude of the Fourier coeffLcient gives the magnitude of the
Ambiguity Function along the w = kwm axis where the positive and negative
directions of the t axis have been reversed.

Furthermore, the Fourier coefficient corresponding to the DC range

law, co(T), is related to the power spectrum of the transmitted signal by the
Fourier transform. From (12) for the case of w = 0, A(,0) is the autocor-
relation, Rv(T), of the complex envelope v(t) of the transmitted RF signal,
x(t). That is, for w 0, (13) becomes

i

Rv(T = c,;(-T) = X(T,O)

and

P*(i) = Rv(-T).

The power spectrum of the transmitted signal is ginen by [3]

Px(W) =  [rv(w-wO) + Pv(-Wr'wo)]

Pv(w) and Rv(r) are a Fourier transform pair. Thus

C(T) =X*(TO) f Pv(w)e " -' ) dw
2-r

or

B/2
CO(T* ) = f Px (UIWc)e - jWT dw (15)

0 B12x

wh-ere

Px(wa) is the power spectrum of the transmitted RF signal, x(t).

B is the bandwidth (rad/sec) of the RF signal

Wc is the carrier frequency (rad/sec).

13



Thus, the c0 (T) coefficient, corresponding to the DC range law and the conjugate
of the Ambiguity Function evaluated along the w = 0 axis are related to the
translated power spectrum of the RF signal by the Fourier transform times 2/w.

A detailed discussion of the Ambiguity Function and its application
to DHS is given by Rihaczek [4].

3. RANGE LAW FOR TRIANGLE PLUS SINUSOIDAL NONLINEARITY

The range laws, Rk(T), will now be evaluated assuming periodic modu-
lation by a composite waveform which is the sum of a pure triangle plus a
sinusoid as shown in Figure 2 below. The composite modulation is described
by

m(t) = mi(t) - b cos wmt (16)

where

ra(t T/4) 0 < t <_ T/2

m1 (t) ] (17)
La(t 3/4 T) ,T/2 :S t < T

a and b are constants to be determined according to the percentage of sinusoidal
nonlinearity.

M, (t)l

T/ t

(a) Triangular Component

M2(t) / I / t

(b) Stnusoidal Component

me(t)

(c) Composite Modulation Waveform

Figure 2. Triangle Plus Sinusoldal Nonlinearity
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The percentage of sinusoidal nonlinearity added to the pure triangle
component is defined by the percentage of sinusoidal contribution to the
cmWposite peak value measured at the tine that the peak-value occurs. Thus,
the percent sinusoidal nonlinearity is given by 100Ps where

A b
= b + aT/4 (18)

The percentage of modulation, see (18), may be positive or negative depending
oh-the sign of b with respect to a. It will be found that the sidelobes of
the range law are increased or decreased depending on the sign of Ps.

The range laws resulting from this triangle plus sinusoidal nonlinearity

are described by (see Appendix B for the derivation)

Ico(T)I k =0
Rk(r) = (19)

2jCk(T)I , k =1,2 .

where

k 1 eJ(lr 2 Ps y("! Psx) , O-xPt)]

+ (_1)ke j Ptx Y[(- Ps x )  , (k + xPt)] (20)

and

Y[z,vl 0 f e-j[- cos e + vo] dO (21)

A (22)x =2Br 22

Pt I 1 - PS (23)

and B is the peak-to-peak frequency deviation (l1z) of the composite frequency

modulating waveform. For B >> fm, which is usually the case, B corresponds to
the spectral bandwidth (Hz) of the transmitted RF signal.

For the case of Ps = 0, i.e., pure triangular modulation, (20) reduces
to

i (x-k) sin [I (x-k)] sin [1 (X+k)
= + (-) (24)ck  e 7r + (-

2 (x-k) .x+k) j

which yields the well-known [5] sin z/z type of range law.

1!



For the case Ps = 1.0, i.e. pure sinusoidal modulation, (20) reduces

to

Ck = (- 1 )k e3  k G' x) (25)

which yields the well-known [2] Bessel function range law.

The range laws for several percentages of sinusoidal nonlinearity are
shown in Figures 3-16. Tht- e curves were obtained by evaluating (20) numer-
ically.

Figures 3-9 give the range laws for positive percentage of modulation.
It is evident that this type of nonlinearity moves the range laws to the left;
that is, it decreases the normalized delay, xg, to the peak of the range law.
This positive percentage of sinusoidal nonlinearity also increases the side-
lobe level over that obtained for pure triangle modulation for distances
larger than x0. This type cf nonlinearity is undesirable.

Figures 10-16 give the range laws for negative percentages of modulation.
This type of nonlinearity moves the range laws to the right, i.e. increases xD.
However, the sidelobe level is decreased for distances greater than x0 . From
Zhese figures, the optimm decrease in the sidelobe level is obtained when the

percentage of siausoidal nonlinearity is set to approximately

Ps = -1.5 (1/k+4) (26)

This type of l6earily is desirable.

16



: *O Sn

S .

0 6 .... . ...

l02 Sind
+0. 100% T~angle:..

50% Sine

C) 100% Sine

0.4- O.ZTrange 25% Sine

100%Sin 0 '0 Sine

0% Tri-
0.2 angle -

0 1 x3 4 5 6 7

x 2B

Figure 3. Range fesponse for K = 0

Sinusoidal Nonlinearitv

0[ Sine
; 100% Triangle

,102 Sine

/ 25% Sine
\ iO50 Sine '

"0.6

0.4

100% Sine
0.2 0% Triangle

I J I

0 1 2 3 4 5 7
x - 2BT

Figure 4. Range Response for K = 1
Sinusoidal Nonlinearity



1. 0% 0-Sine -- -100 Triagle le

10 0. 0 Sine

-v 5% Sine

04 \ 50% Sine

;.-

100% Sine0. 2- 0% Triangle

21J2( y X), A

0 1 2 3 4 5 6 7 8 9".
x =2BTx

Figure 5. Range Response for K = 2
Sinusoidal Nonlinearity

1.0 . .... . 0% Sine - - -
100% Triangle

t 0.8 l Sine

~. 5% Sine

C14 50% Sine

0.4--

02100% Sine /
0.2-- 0% Triang

2 JIT,-- x) I

0 1 2 3 4 5 6 7 8 91
x 2BT 4

Figure 6. Range Response for K 3
Sinusoidal Nonlinearity



-I. 0% Sine
1.0 100% Triangle

1 0.8 1/

.10.6 50 Sine-

I-.4 .

II

0.4--'7N
100% Sine e

0.2~ 7Ti0n Triangle

:0. I1/.jx) 2 /

•~~ ~ J4 (, 'X)3: .
2 2

2 3 4 5 6 7 8 9 10 11!
x = 2BT

Figure 7. Range Response for K 4

Sinusoidal Nonlinearity

19



II

C%

rI U D

00 0

0

14)

:0

0

000

C -

00 a,-

-4 0 0 0

1 90jZ = ())



C3

0 or X

0~r Is c HG

r.- -N

Z6 1-4- 4'

1-

24 uA.

0

10
* ai

ca'

-H $4

'.4a

0%

000



I. .. .8. . .

- " -
a I

o a- ,- i

-0.6I *..... : . .. i

: 0.-4 .... 125Z sin ""

- I

VOI Triangle .

Figure 10. Range Response for K =0
Negative Sine Nonlinearity

0.0 .... .. .. ..I a
. 0 .4 -10%. - I

• I V
-2=S. I

1 0.2 0% Sine in

0 1

* 00%~ Triangle / ii

- L L J .. :.I AT

Figure 1. Range Response for K = 1
Vegative Sine onlinearity

22



---------------- - -T r '~~

... : -25' Sine

r 0.4 i -IOt Sine i

0O- Sine

0.2 100 Triangle-

----~ I

Figure 12. Fange Response for K =2 .

Negative Sine Nonlinearity

1.00 /' '

,0.8/ 107 Sine

7T-

0.6. -25% Sine

0.4-- -50 Sine

IM". Triangle

0.2-

U p
o - 2 / si- e

0 1 2 3 4 58

Figure 13. Range Response for K 3

Negative Sine Nonlinearity

23



-0.8 -- 102' Sine

0.6 .- 25% Sim e

- /500 SSiee
0.4---0 0SiSin

*0.2-

2 3 4 5 6 7 8 9 10 1
x 2BTY

Figure 14. Range Response for K 4
Negative Sine Nonlinearity



-41

Go~

a z

*Lr 0) I i *-

- - I m : Iaiv4

a, * '8-00
TI -. I Oca

U) - 0)

-. -- ~ *~-V4
I~S *J -4 .- 04

E-4-

I a

co - Z

--- a --

-0.--- -, a~25



I In

I I n
I- ..- T------ .i--.-. 

>

r- (3 

-

-4

4-4,

E-4

a~ NO

0 0
0 l

C.

26



4. RAWNE LAM FOR TRIANLE PLUS CUBE-LAW .ONLINFARITY

The rai:Se lays, kk(T), wili now be evaluated assuming periodic modu-
lation by a composite wveform which is the sum of a pure triangle plus a
cabe-lw aw shown in Figure 17 below.

%z) Triangular Component

U2 (t)[

(b) Cube-Law Component

m(t)

t

(c) Composite Modulation Waveform

Figure 17. Triangle Plus Cube-Law Nonlinearity

The composite waveform is described by

wm(t) = mI(t) + m2 (t) (27)

where

-c(t T/4) ,0 < t T/2

rI (t) (28)

-c(t (3/4) T) ,T/2 <t T

? 27



and

-d ( -d(t T) ( )/2sts

c and d are constants to be determined by the percentage of cube-law nonlinearity.

Just as in Section 3, the amount of cube-law nonlinearity added to the
triangular component is defined by the percentage of cube-law contribution to
the composite peak value measured at the time that the peak value occurs. Thus,
the percent cube-law nonlinearity is given by lOOPc where

PC d(T/4) 3  d(T/4)2  (30)Pc = = . (30)

d(T/4)3 + c(T/4) d(T/4)2 + c

The range laws resulting from this triangle plus cube-law nonlinearity
are described by (see Appendix C for the derivation)

F Ico(T)I , k = 0Rk(T = (31)
R~k~r) = 2LCk(T)l , k = 1,2 j3

where

I J{Pte + PC(2/7r)2[(G-Tr/2)3 + (Tr/2)3])x

Ck() r e cos(kO)dO (32)

x = 2B (33)

Pt 1 Pc (34)

and B is the peak-to-peak frequency deviation (12z) of the composite frequency
modulating waveform. For B >> fm, which is usually the case, B corresponds to
the spectral bandwidth (Hz) of the transmitted RF signal.

For the case of Pc = 0, i.e. pure triangular modulation, (32) reduces
to our well-known sin z/z type result given by (24).

Once again the percentage of modulation may be positive or negative
depending on the sign of d with respect to c in (30). By comparing the shapes
of the sinusoidal and cube-law modulating waveforms (see Figure 2 and 17) it
is seen that the shape obtained for a positive cube-law nonlinearity is roughly
equivalent to that obtained using a negative sinusoidal nonlinearity. (The
exact relationship is discussed in Section 5.2). Thus, in comparing the results
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for cube-law nonlinearity with those for sinusoidal nonlinearity, we would
expect the sidelobe level in the range laws obtained for small percentages of
Positive cube-law nonlinearity to be suppressed with respect with those ob-
tained usivg pure triangular modulation. The converse is also true. Since
only the positive cube-law nonlinearity gives sidelobe suppression while nega-
tive cube-law nonlinearity gives increases in the sidelobe levels, only the
positive cube-law results will be given here.

The range laws for several positive percentages of cube-law nonlinear-
ity are shown in Figures 18-24. These curves were obtained by evaluating (32)
numerically. It is evident that this type of nonlinearity moves the range laws
to the right; that is, it increases x0 . Furthermore, if the percent nonlinear-
ity is not too large the sidelobe level is decreased at distances greater than
x0 . From these figures, the optimum decrease in sidelobe level is obtained
when the (positive) percentage of cube-law nonlinearity is set to approximately

Pc l 1/k+4 , (35)

Thus, some positive cube-law noiinearity is desirablp, and negative cube-law
nonlinearity is undesirable.

' ii
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I
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5. EIPErU AL AD THEORErica VERIFICATION OF RESLLTS

5.1 Experimental Verification

For the case of triangle plus sinusoidal modulation, the two limit
results (i.e. pure triangle or pure sinusoidal modulation) are well-known.
Since the theoretical range laws given in Figures 3-9 fall within these
known limits, these results are already verified experimentally.

For the case of triangle plus cube-law modulation, the theoretical
range laws have been given by Figures 18-24. These results will now be ver-
fied experimertally by using the test apparatus shown in Figure 25 below.
The FM oscillator was supplied by HDL and is capable of large peak-to-peak
deviations with little incidental AN. B was set to 20?Wz and fm was 5KHz.
The experimental results are shown in Figures 26 and 27.

Wide Band
Oscillator 30021

RF Mixer Reflectot

FM Output 300Q Transmission Line

Mod.

5KHz k--h Harmonic -4150
Band Pass Envelope Strip

Filter (Tuned Detector Chart
to MHz) i IRecorder

I I
ExactCube-Law OutputIExact m t J

Function -
Generator
(5KHz) m

I I

KI m(t) Composite Output I

--- )

Figure 25. Test Apparatus For Experimental
Measurement of Range Laws
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Figure 27. Experimental Range Laws for K = 8--
Triangle Plus Positive Cube-Law Nonlinearity
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It is seen that these experimental results agree with Figures 22 and
23 wher. the attenuation characteristic of the transmission line in the experi-
mental apparatus is taken into account.

5.2 Theoretical Verification

If negative percentages of cube-law modulation are used we have a
modulating waveform of the form

m() = k 1t - k2 t 3  , -T/4 S t - T/4 (36)

where the t = 0 axis has been shifted by T/4 for analytical simplification.
This may be compared with the waveform shape that is obtained for triangle plus
sinusoidal nonlinearity

m(t) = k3t - k4t
3 + higher order terms (37)

where the expansion sin 0 = e - (1/3!)03 + (l/5!)0s... has been used (see
Appendix D). Neglecting the terms of order higher than t3, a relationship be-
tween the percentage of cube-law nonlinearity and the percentage of sinusoidal
nonlinearity can be obtained such that the two waveforms of (36) and (37) are
equivalent; that is k, = k2 and k2 = k4 . Referring to Appendix D, the result
is

1

6(2/w) 3 P -0.64596PsPC =  (38)
Ps PS

6 (2/r) 3  13.304

6 (2/r) 2 (1-2/iT)-l

which may be approximated by

[PC = -0.646Ps] (39)

when IPs1 < 1. Equation (39) is plotted in Figure 28.

Using (38), some range laws for cube-law nonlinearity which are equiva-
lent to the sinusoidal nonlinearity are shown in Figure 29. It is seen that
Figure 29 is almost identical to Figure 4. Thus, the theoretical results for
the cases of cube-law and sinusoidal nonlinearity are verified theoretically
with respect to each other.
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6. SU~NaaM

-Range las have been obtained for a class of distance measuring systems.
This class radiates an RF signal which is frequency modulated by a nonlinear
triangalar waveform. The nonlinezrity consists of one of two shapes-Type I and
Type I-as shown in Figure 30. Type I nonlinearity may be synthesized from a
triangle plus a positive sinjsoidal nonlinearity or from a triangle plus a nega-
tive cube-law nonlinearity. Type II may be synthesized from a triangle plus a
negative sinusoidal nonlinearity or a triangle plus a positive cube-law nonlinear-
ity.

(a) Type I Nonlinearity

-

i u(t)

T/2 t

(b) Type II Nonlinearity

Figure 30. Nonlinear Frequency Modulating Waveforms

The amount of nonlinearity is specified by a parameter which gives the
* percentage contribution of the sinusoidal (lOOPs) or cube-law (10OPc) non-

linearity with respect to the composite waveform amplitude at the time when the

peak value occurs (i.e. t = 0, T/2, T, etc.). These percentages may have posi-
tive or negative values.

The resulting range laws show that the nonlinearity may be desirable or
undesirable. The Type I nonlinearity produces an undesirable effect (Figures
3-9) since the sidelobe levels are increased over those obtained for pure tri-

- angular modulation, for all distances greater than x0 . The Type II nonlinear-
ity produces a desirable effect (figures 11-16 and 18-24) provided that the
percentage of nonlinearity is not too large. That is, the sidelobe levels are

-decreased for distances greatcr than xO if Ps or Pc is small and of the correct
4
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sign. From the figures it is seen that a sinusoidal nonlinearity with

Ps = -1.5 (1/k+4) (40)

o-- a cube-law nonlinearity ith

Pc z l c+4) (41)

gives the optimim sidelobe suppression and that the x0 is not shifted very much
for these small percentages of nonlinearity.

In summary, the results of this report may be used to evaluate existing
distance measuring systems and to design new systems. The range laws of
existing systems may be predicted for the case of frequency modulation by a non-
linear triangular waveform. For new systems, modulating nonlinear triangular
waveforms may be prescribed which produce range laws with better sidelobe sup-
pression than those obtained by use of the pure triangular waveform.

42



APPENDIX A

Fourier Series for the Mixer Output

Equation (9) will now be derived from (3), (7) and (8). The mixer
output is

y(t,T) = Re { ck ej k wmt ej~ct }  
. (A-1)

Expanding T(t) in a Taylor's series about t we have
dTi . A2

T(t 0 + t) = T(t 0 ) + d t 0  + .(A-2)

Now

dT AT (2vr/As) 2 vr 4

dtlt o  At (c/As) c *1

where AT is the incremental change in the round trip time delay during the
incremental time At

As is the incremental change in distance

vr is the radial velocity of the target with respect to the DMS 2

and c is the speed of light.

From (A-2), using the first two terms of the Taylor's series

Wct =0 + wdt (A-3)

where

o 
=

CT(to)

and

wd = ( 2 vr/c)wc

wd is the radian doppler frequency. Using (A-3), but neglecting the phase
angle 00, (A-1) becomes

y(t,T) = Re {Ck e (k(om + wd)t}
k
=
-

= Re [coejwdt] + Re {[cke.ik"hmt + c-ke - j k("mt] e j ' )dt }  (A-4)
k=l
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We will now show that ck = c.k for the case when the instantaneous
difference frequency has odd symetry; that is when

wid(t,.T) = -wid(-t,' ) (A-5)

From (8)

Ck fT eJud(t,T) ejkwmt dt (A-6)
T 0

and

1 T eJ~d(tT) jkwmt

c-k = f e dt (A-7)

Letting a = -(t + T), (A-7) becomes

T ej'd[(T-o) ' T] e - jki m  do (A-8)C-k T¥ 0

Identifying (A-8) with (A-6) we see that a sufficient requirement for c-k = ck
is that

Od[t,T] = Od[(T-t),T]

and since 0d is periodic with period T, this is equivalent to the requirement

OdIt,T] = Od[-t,T] (A-9)

Taking the derivative of both sides of (A-9)

d(t,T) = dO(t,T) _ -d~d(x,r)
dt dx =x=-t

Thus

ck = c-k if id(t,T) = -wid(-t,T) (A-10)

Using (A-10) in (A-4) we have

01

y(t,T) = Icol + i 21ckl cos [wdt + cos (kwmt) (A-I)
k=l

provided that wid(t,T) = -wd(-t,T)

where I[']I denotes the magnitude of ['

and ] denotes the angle of [.
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Now let t o be defined as the value of t which gives the first turn-
around of the modulation, m(t). This is illustrated in the figure below for
the case of m(t) having a triangular waveshape.

wid(t,T)

to V t

Then, using the above sufficient condition for ck = c-k , we have the require-
ment, from (A-5), that

(id[(t-tO), T] = -wid[-(t-t), T] (A-12)

and (A-Il) becomes

y(t,T) = Icol + 7 21ckI cos [wd(t-to) + ck] cos [kwa(t-t 0 )] (A13)
k=l

Furthermore, since wid is periodic with period T, (A-12) is satisfied
if we require the difference frequency to have half-wave odd symmetry, that
is if

id(t,T) = - id(t + 2 T)-
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APPEMDIX B

Fourier Coefficients For Triangle Plus Sinusoidal Nodulation

Using (6), (16) and (17), the difference phase is
S(VaT)t + 2-- [sin %(t-T) + sin wmT - sin wmt] ,0 S t S

Od(t,'T)

(-DaT)(t-T) + Db [sin WM(t-T) + sin wm*-sin wmt] , < t < T
(B-l)

where the exact representation for 0d during the turn-around time has been

neglected.

Referring to (18), the peak-to-peak frequency deviation in Hz is

B = [2D(b + aT(B-2)

Using (18) and (B-2), (B-l) becomes

(--)t + -- [sin wm(t-T) + sin WmT-Sin wmt] , 0 < t < T
T WM2

ed(t,r) = Bw :

( -- )(t-T) + P [sin Wm(t-T)+sin 
-T-sinmt] , 1 < t S T

T W2 
(B-3)

where

A
Pt = 1 - Ps

loops is the percentage of sinusoidal modulation
and loops is the percentage of triangular modulation.

Using (B-3) in (11) we have for the Fourier coefficients

4PtT Ps

T/2 JB)T (T)t + wm [sin Wm(t-T) + sin Wm - sin wmt
f e e- j kwmt dtTk= 0

_(4PiT Ps
T jB )t + jmm [sin wm(t-t)+sin WMT - sin wmt]J

+¥ f e T ,Jwtdt
T T/2

(B-4)
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Using a change of variable, t1 = (t - T/2), on the second integral and using
the approximation:

[sin wm(t-T) - sin wt' z (wT) sin (w=t -T) r<< T

(B-4) becomes

Ck : 1 eJBWP s sin %+o eJBi (- --)t + PS T sin (wmt - e - k1 mt dt

+(- 1)k eJB[2PT+ T/2m e-jBiln - 2)q e- j k nt dt

0
(B-5)

Using a change of variable, 0 = (2,/T)t, and the approximation
sin auT =WmT for T << T, (B-5) reduces to

k e Y[(! Psx),(k-Ptx)] + (-l)keJlPtx Y[(- 2 Psx).(k + P (
(B-6)

where

Y(z~v) T e-j[z cos 0 + VOl

11') do (B-7)

and

A 2BT (B-8)

Y(z,v) becomes Jv(-z) when v is an integer.
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APPENDIX C

Fourier Coefficients For Triangle Plus Cube-Law Modulation

Using (6), (22), (28) and (29), the difference phase is

1(]CT)t + (Dlr)[ (t + vJ 1 T 0 t

6d(t,T) (C-1)
3 3 T 3  '

(-DcT)(t-T) + (-DdT)[(t - T) - ()] , S T

where the exact representation of Od during the turn-around time has been
neglected and the following approximations have been used

T { )]3 (t-T (t T 2 T T (C-2)[t- + ( ) T< 4

and

3 )] 3 33

[t -(3_ T + T)]3  (t - T) - 3(t - T T)3t , T << T T (C-3)
4 4 4

The approximations are valid for our problem of interest i.e. when T << T.
Substituting (C-1) into (11), the Fourier coefficients are

12/2j{(c~r~ +) + (4) 3]}
T/2 j{ (C ) -DdT)[(t - T T) 3 -( )] -

ck  fe + w t

T -J{((c-t)(t-T) + (DdT)L(t - .1T)3 T ( 3]) m

T/2 (C-4)

Using the change in variable, ti = T-t, on the second integral, (C-4) becomes

T3 3
T/2 j{(Dc)t + (DdT)[(t - )3 + (1)3]}

Ck f e cos (kwmt)dt . (C-5)
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Using the change of variable 0 - (2v/T)t, this reduces to

-ICTT- .w [( )

$eJ((=j- " ) 8 + (DIr)'73( -13+ (21)3])
ck 0+ (D))[ 2 2 cos(ke)dO (C-6)

Referring to (30), the peak-to-peak frequency deviation in Hz is

TI
B - f2D{[d 3 + c()] (C-7)

Using (30) and (C-7), (C-6) becomes

1 Of e cos(kO)de (C-8)gk=o

when

Ax =2BT (C-9)

Pt= 1 - PC(C-)

lOOPc is the percentage of cube-law modulation, lOOP t is the percentage of
triangular modulation, x is the normalized round-trip time delay between the
fuze and the target, and B is the peak-to-peak frequency deviation (Hz).
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APPENDIX D

Percentage of Modulation Required For Equivalent Sinusoidal

and Cubs-Law Nonlinearity

For triangle plus sinusoidal nonlinearity, using (16) and (17), the
modulating vaveform isIT

u(t) =at +b sin wat It iT -  (D-1)

wbere the t - 0 reference has been shifted by T/4 for convenience. Then approx-
imating the sinusoidal nonlinearity of (D-l) by the first two terms of the
Taylor series we have

a(t) = (a + bwm)t -t b(Wt) t (D-2)6 4

Identifying (D-2) with (37) we have

k 3 = (a + bwm) (D-3)

and

k4= b (D-4)

For triangle plus cube-law nonlinearity, using (27), (28) and (29), the
modulating waveform is

m(t) = ct + dt 3  t < (D-5)

where the t = 0 reference has been shifted by T/4. Identifying (D-5) with (36)
we have

kI = c (D-6)

k 2  -d (D-7)

It is required that kI = k3 and k2 = k4 for these two types of non-
linear modulation to be equivalent. Thus, (D-3) through (D-7) becomes

c = a + bwm = a + 2b(D-8)

6 - b ((9) ( )
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Sojlvigg (US)Q, (D-9). (18) and (19) simultaneously for PC In term of Ps we
have

CZ(j) Ps
PCi (D-6)

where 1OO?. is the percentage of cube-law nonlinearity and lOOPs Is the per-
centage of sinusoidal nonlinearity.

Equation (D-6) can be arranged into a more useful form

-[l/6(2ar)]3 s -0.64596 Ps

I - (2i0 1 -(PsIl3.304)

6(2/1)2 (l-2/w)-l

which can be approximated by

Pc -0.646Ps IPsI < 1. (D-8)
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