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ABSTRACT

The engineering problem is the design of submerged minimum drag
axisymmetric vehicles for a specified enclosed volume and constant
speed. Propulsion is not considered so that drag rather than power is
to be minimized. Drag reduction is to be accomplished solely through
manipulation of the vehicle shape; other means of drag reduction, such

as polymer injection into the beundary layer, are not considered.
The optimization problem is formulated as a ncngradient search in

a finite constrained parameter space. Two classes of bodies, described
by five and eight parameters, are considered. The bodies are con-

strained to be well behaved based on previous hydrodynamic experience.
The drag model, valid for nonseparating flows, consists of computer
programs available in the literature and is representative of state-of-
the-art drag prediction methods. The requirement for nonseparating flow
represents an additional constraint on the optimization problc,. Two
optimization methods represtting diverse search philosophies are used
to obtain the optimal solutions. These include Box's Complex Method
and Powell's Method of Conjugate Directions used in conjunction with
a penalty function.

The results show that significant drag reduction is possible
through shape manipulation. Reductions of one-quarter to one-third
below the best existing designs have been obtained. All optimal designs
exploit laminar boundary layers. If laminar flow is not allowed, then
drag reduction below the best existing designs apparently must be

accomplished by means other than shape manipulation. The optimal lami-

nar shape is a strong function of Reynolds number, ranging from quite
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slender at low values to quite "fat" at high values. The minimum drag

shapes have a high sensitivity to early transition. Suboptimal low

drag bodies without this characteristic are used for hydrodynamic de-
sign. Extensive runs at one Reynolds number suggest that there is a

unique global minimum drag shape at each Reynolds number.

I-



CHAPTER 1

INTRODUCTION

Of fundamental interest in the field of fluid mechanics is the study

of fluid forces exerted on a moving body. In the area of hydrodynamics,

a time-honored goal of the naval architect has been the reduction of

vehicle resistance by means of vehicle shape as well as by more elaborate

schemes (l], such as viscoelastic polymer injection into the boundary

layer.

We are considering here the shape and resulting resistance, or drag,

of bodies submerged in an incompressible fluid. The applications are

directed toward vehicles such as torpedoes and submarines deeply sub-

mrerged in water. The primary function of such vehicles is to provide an

enclosed volume in which a payload is carried.

The purpose of the present study is to include the hydrodynamics

as part of an optimization problem in which the vehicle drag is to be

minimized through shape manipulation. Other means of drag reduction are

not considered. The hydrodynamic problem is made more tractable by re-

strict;ng the analysis to the class of axisymmetric vehicles (bodies of

revolution) without appendages immersed in axisyminetric flow (zero angle

of attack).

Stated somewhat more precisely, the optimization problem involves

the followijig: for a specified incompressible fluid, vehicle volume,

uii constant vwhlicle speed, fiod the axisymnetric body shape which

minimizes the drag. The vehicle whose shape minimizes the drag is

defined as the optimum body. The equivalent nondimensional optimization

problem may be stated as follows: for a specified Reynolds number

R U•, V•/v, find the vehicle shape %hich minimizes the drag

v,
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2
coefficient CD = D/(.Lp U2 VT), where UJ= is the constant vehicle

speed, V is the vehicle's enclosed volume, v is the fluid kinematic

viscosity, D is the vehicle drag, and p is the fluid density.

The primary concern here is the design of the largest vehicle volume

with the lowest possible drag at a given speed; there are no prescribed

constraints on the body. From the hydrodynamics analysis point of view,

the actual volume and velocity separately are not important; the body

shape and characteristic Reynolds number Rv completely establish the

fluid dynamics. Thus a particular body shape has the same drag coeffi-

cient CD over a wide range of velocities and volumes so long as the

Reynolds number Rv is unchanged.

Other design problems may be more conveniently handled by using a
1

characteristic Reynolds number based on something other than (volume)T.

For example, the torpedo must have a fixed maximum diameter (constant

frontal-area); it is more convenient to specify a Reynolds number based

on mximum diameter rather than volume. Other characteristic lengths

which may be useful in design problems include body length and (wetted

area)2 . It is emphasized that the optimization formulation in the pre-

sent study applies to any of these design problems.

It is not known if a unique optimum body exists for each Reynolds

number. That is, there may be an entire class of bodies which have the

same minimum drag coefficient at a given Reynolds number. If such is

the case, then the designer must introduce additional considerations or

constraints to obtain the one design best suited for his application.

For example, the optimization problem ignores the sensitivity of drag

changes with body velocity variations and ignores the effect of angle

of attack on drag. If the designer has several minimum drag body de-

signs, he considers these kinds of ideas in making the final selection.

Such considerations are outside the scope of the present study. A more

complete discussion on design constraints is given in Chapter 3.

The application of formal optimization methods to the drag minimiza-

tion problem has not appeared in the literature to date. One reason for

this absence is the fact that no reliable drag model for arbitrary axt-

symmetric bodies in incompressible flow is available. More fundamentally,
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. there is an incomplete understanding of the fluid flow physics in the
boundary layer transition region, in the turbulent boundary layer develop-

ment, in the turbulent boundary layer separation regior, and in the wake

region following separation. All of these phenomena are of primary im-

portance in drag prediction. In addition, there are other factors which

complicate the prediction of drag in practice (2], such as the effects

of ambient turbulence, body surface waviness, and body vibration on the
boundary layer development.

With the lack of reliable drag models, all published work to date

directed toward the design of low drag axisymmetric bodies in incompress-
ible flow has been mainly experimental in nature. Two studies will be

noted here.

1.1 Series 58 Study

An experimental study of drag for a systematic series of axisym-

metric bodies was reported by Gertler in 1950 [3]. The series, known

as "Saries 58," was systematic in that five parameters characterizing

the body shapes were perturbed one at a time about a selected "parent

model." Twenty-four body shapes were selected, models were built, and

tests were conducted by towing the models through water at different

speeds. The results indicated that there was indeed a "best shape" for

reducing drag. The results were to be extrapolated from model size and
speed to full-scale submarine design.

From the optimization (drag minimization) point of view, the one-at-

a-time perturbation scheme about the parent model represents a basic

weakness in the Series 58 study. The information which may be drawn

from the study is the variation in drag due to the variation of one

parameter while holding four other parameters constant. Such information

is "local" in nature, that is, the variation effects are pertinent only
to the parent model. Such information cannot be construed as "global;"
hence, no claim to global minimum drag shapes can be made.

A design assumption inferred from the Series 58 study is that at

submarine Reynolds numbers (Rv 10') boundary layers are always
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turbulent and that it is unrealistic to attempt to exploit laminar
boundary layers to reduce drag. Without experimental data it is diffi-

cult if not impossible to judge the validity of such an assumption since
so many extraneous factors influence the actual boundary layer develop-
ment in a real flow situation. The Series 58 "best shape" may be a low
drag design; however, it cannot be inferred from Reference 3 that such
a shape represents a minimum drag shape at its design Reynolds number of
around 10'.

1.2 Laminar Flow "Dolphin" Body

A low-drag shape for torpedo-type Reynolds numbers was reported by

Carmichael in 1966 [2]. The purpose of the study was to determine if

significant drag reduction was possible through shape manipulation alone.
A formal shape-synthesizing procedure was not developed; rather, one
shape was designed based on NACA low drag airfoil data. The one model,
dubbed the "Dolphin," was tested extensively by gravity-powered drop
tests in the Pacific Ocean. A significant drag reduction was noted, the
"Dolphin" having half the drag of a conventional torpedo at similar

Reynolds numbers.
The low drag was achieved primarily by the "Dolphin's" ability to

maintain a long run of laminar boundary layer. This fact in itself is
important since prior to the "Dolphin" testing it was generally accepted

that no significant amount of laminar boundary layer flow could be main-
tained at such high Reynolds numbers (Rv = 101).

While the "Dolphin" is not a minimum drag shape, it certainly
demonstrates the practical possibility of exploiting laminar boundary

layers and body shaping in general to produce efficient low-drag designs,
at least in the tested Reynolds number range.

1.3 Outline of the Text

In Chapter 2 the drag model used in this study is discussed in

detail. The quality of the model is indicated by comparing drag
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predictions with some of the experimental data dvailable in the liter-

ature. Chapters 3 and 4 present the formulation of the optimization

problem. A brief discussion of several possible formulations is given.

The characteristics of the drag minimization problem which lead to the

selected formulation ar- discussed. Chapter 5 presents the optimum

body shapes found during this study. Comparisons with previous designs

are made, including comparisons with scme powerful swimmers found in

nature. Chapter 6 presents conclusions and recommenlations. The weak-

nesses of the drag model and optimization procedure are reviewed.

Improvements in both areas are skggested, along with proposed future

research.

t.
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CHAPTER 2

FLUID FLOW MODEL

This chapter discusses the general nature of the fluid physics and pre-
sents the drag model -s used in the optimization problem. Only in

recent years have the practical tools for predicting drag of arbitrary
axisymmetric bodies in incompressible flow appeared in the literature,

an example is Reference 4. These methods, while founded on more or less

rigorous theoretical considerations, are forced to rely on some empiri-

cal correlatioais and simplifying assumptions. The empirical results and

assumptions, along with the consequential limitations, vary from one

investigator to the next; hence, no one method of drag prediction is

regarded as standard. Therefore, it is the intent here also to indicate

the quality of the drag model from which the quality of the optimization

results may be inferred.

2.1 General Nature of the Physical Problem

The physical phenomena being considered here are sketched in Fig-

ure 1. the fixed, rigid axisymmetric body is immersed in an incompressible

f'uid mediL.7 which at a great distance from the body moves uniformly from

!ef% to right. rhe zero incidence (axisymmetric) flow is deflected in
Ar. 'icinitv uf the vehicle resulting in a streamwize pressure gradient

;.ong a meridional line on the body surface.

The entire flow field F is dominated by inertial (non-viscous) forces

except for a thin layer next to the body surface. Even for fluids of low

viscosity, such as water or air, viscous forc.es dominate due to large

normal velocity gradients which exist in this thin boundary layer.
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- Because of its fundamental importance to vehicle drag, the boundary

layer development will be discussed somewhat in detail. Referring to

Figure 1, the boundary layer is divided into several streamwise regions

along a meridional line on the body surface.

The laminar region AB is well ordered relative to our own scale

and can be readily described by the mathematics of continuum mechanics.

This region is well understood in the sense that the mathematical de-

scription, with its assumptions, yields predicted behavior which agrees

well with that observed in real laminar flows.

In the region BB' the fluid laminas, through some destabilizing

process not fully understood, become chaotic on a macroscopic scale,

One theory [5, 6] explains the process of transition in terms of the

stability of small disturbances in the laminar flow. At point B, down-

stream of the so-called neutral stability point which is somewhere in

the laminar region AB, certain disturbance frequencies begin to amplify

rather than decay. As the fluid layers move downstream, the disturbances

amplify and spread until the motion of the entire boundary layer cross-

section is chaotic, at which point (B') the boundary layer is said to be

fully turbulent.

TUe actual transition length BB' may be large or small depending on

how fast the disturbances amplify. Some of the factos influencing the

location and extent of the transition region for incompressible flow are

listed below [5]:

1. Free-stream turbulence levels relative to free-stream
mean velocity

2. Streamwise pressure gradient on body

3. Surface roughness and waviness

4. Body noise and vibration

The presence of free-stream turbulence, surface roughness and waviness,

or body noise and vibration introduces disturbances in the laminar layer

in addition to those already occurring naturally by self-excitation;

the effect is the tendency to hasten transition. A negative pressure

gradient (favorable, velocity increasing) tends to suppress transition,

while a positive pressure gradient (adverse, velocity decreasing) tends
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to hasten traisition, that is, tends to make the laminar layer more un-

stable. These qualitative effects have been verified experimentally [6);

all quantitative relationships rely on empiricisms to a greater or lesser

degree.

In the region B'C the boundary layer is fully turbulent, that is,

chaotic on a macroscopic scale. No rational theory exists to explain

the complex fluctuating turbulent motion. All attempts to describe the

phenomena have relied on hypotheses which are incomplete without some

empirical data. One example is Prandtl's mixing-length theory [6]; the

functional form of the mixing length is not established within the

theory, much less any constants within the functional form.

Turbulent flow is regarded as the superposition of mean and fluctu-

ating motions. The presence of the fluctuations has a decided effect on

the mean motion, even when the fluctuating velocities are a small per-

centage (1 - 2%) of the mean value. Energy is constantly transferred

from the mean motion to "large scale" fluctuations, and hence to pro-

gressively smaller fluctuations; ultimately the energy is dissipated as

heat. The apparent effect of the fluctuating motion is an increased

resistance by the mean flow to fluid deformation. In other words the

mean motion behaves as if the fluid had an increased viscosity compared

to the same fluid in laminar flow. The apparent viscosity of the mean

motion depends not only on the fluid but also, apparently, on the fluid

kinematics as •]i. The relationship between the apparent fluid viscosity

and the fluctuating motion is the central concept which defies complete

understanding.

Even with a lack of understanding of the basic mechanism of turbu-

lent motion, the mean turbulent flow can be predicted with the aid of

semi-empirical relationships [7]. The trend today is to use complex,

semi-empirical relationships, so-called "eddy viscosity" models, to

compute the apparent increase in fluid viscosity. The eddy viscosity

is a local quantity which must be computed iteratively since the fluid

kinematics affects the apparent viscosity which in turn affects the

kinematics. In all probability, however, the eddy viscosity concept,

which attempts to relate apparent viscosity to fluctuating motion, will

be replaced by more fundamental turbulent flow shear models in the future.
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In the region CC' the turbulent boundary layer separates from the

body su;-face. By this it is meant that as one proceeds toward the trail-

ing edge along a meridian on the body surface, a point is reached at

which the fluid motion immediately adjacent to the body reverses direc-

tion. The classical view of laminar separatinn assures this flow

reversal to occur at a point in a steady manner and to be synonymous

with zero skin friction. This view is not adequate for turbulent

boundary layer separation which may be unsteady both in space and time

(8]. That is, "spots" of turbulent flow reversal may occur upstream of

the fully separated region; these "spots" may be unsteady as well. Due

to a lack of understanding of the physics of turbulent separation, it is

common practice to model turbulent separation as if it were a steady

phenomenon occurring at a point on the body meridian, that is, along an

axisymmetric ring on the surface of an axisymmetric body.

The region C'DE is a fully separated turbulent wake. The means to

compute turbulent wakes in the vicinity of arbitrary axisymmetric bodies

are not established, although wakes behind blunt-ended cylinders have

been predicted successfully [9].

It should be apparent that the complete flow associated with a sub-

merged body is highly complex. Some of the most subtle physics of n?*.ure

are probably associated with the phenomena of fluid flow. The incon1?lete

understanding has forced investigators to rely to a greater or lesser

degree on empirically based relationships, subject to experimental veri-

fication, in order to predict fluid flow behavior. The next section

discusses the simplified flow field, and its limitations, to be con-

sidered in the present study as well as the methods used to predict

such flows.

2.2 Simplified Flow Field and Its Solution

This section describes the somewhat simplified flow field and its

limitations considered in the present study. The methods used to com-

pute the flow are discussed briefly in the context of drag prediction,
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The simplified flow field considered here is illustrated in Figure 2.

The flow region F outside the boundary layer is accurately modeled by

invisc ' potential flow theory. The boundary layer is laminar from the

forward stagnation point A to the transition point B. Transition is

assumed to occur at a single point B rather than over a region. The

boundary layer is treated as fully turbulent from the transition point

8 to the trailing edge C. Turbulent separation is assumed not to occur

so that the wake region CDE is due to viscous displacement effects only.

In fact, if a body has a separating turbulent boundary layer, as indi-

cated by any suitable separation criterion, then the relevance of the

drag model described here is not known.

The flow field described here is essentially that considered by

Cebeci [4] in his work on numerical drag prediction. In the present

study we have taken non-proprietary versions of the component computer

programs developed by Cebeci, A. M. 0. Smith, and their co-workers,

modified them as required, and combined them into a numerical drag

package. The discussion following will pertain to the drag model as

used in the present study and does not pertain necessarily to any drag

package or component programs used within the Douglas Aircraft Company.

Inviscid Flow Outside the Boundary Layer. The zero-incidence

inviscid flow about a rather general axisymmetric body has been success-

fully formulated for numerical solution by A. M. 0. Smith and his co-

workers [10]. The axisymmetric problem considered here is a subset of

the more general geometries and flows which can be handled by Smith's

formulation. The numerical procedure is extremely well documented [11]

and is known generally as the Douglas-Neumann method.

In the context of the present problem, Smith's formulation considers

a uniform flow field in which is placed a stationary hypothetical "trans-

parent image" of the axisymn-etric body. The body is temporarily regarded

as "transparent" to the flow in that the flow field remains unperturbed.

In this hypothetical situation the fluid flows uniformly from left to

right, entering the body interior at some areas and leaving at others.

Since the real body is impervious to the fluid, then it is apparent

that the hypothetical transparent body must somehow be made impervious

- *
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also. This is done by distributing fluid sources along the body surface

so that at every point on the surface the normal velocity comp::nent is

zero. Stated another way, the proper source distribution, which is

unique [10], causes the transparent body to become a streamline in the
flow field. The superposing of the uniform flow and the source distri-

bution flow results in the inviscid flow about the impervious body.

The Douglas-Neumann method reduces the problem of computing a

source distribution to one of solving a linear system. A modified
Seidel iteration scheme has proven efficient in solving for the source

distribution and hence the inviscid pressure distribution.

The pressure impressed on the real body in a real, non-separating

flow is the same as the inviscid pressure except as it is modified by

viscous displacement effects. By this it is meant that the inviscid

streamlines are shifted somewhat both by the retarded boundacy layer and

viscous wake flows. For non-separating bodies, the effect of this

modification to the inviscid pressure distribution is small. But it is

the viscous displacement effect, however small, that accounts for the

pressure drag of a non-separating body.
If the flow does not separate from the body, then it is assumed

that the inviscid pressure, as computed by the Douglas-Neumann method,

is a reasonable approximation to the experimental distribution. This

assumption appears to be justified particularly for bodies with no

dominating rear stagnation point in inviscid flow. Examples are those

with "inflected aftbodies," i.e., with "semi-infinite tailbooms" or

with cusped pointed tails (Figures 8 and 13). For these kinds of bodies

the inviscid flow tends to free-stream conditions rather than stagnatioi,.
For bodies with dominating rear stagnation points, which apparently

all non-inflected aftbodies have, the inviscid pressure is a poor ap-

proximation to the experimental distribution in the vicinity of the tail,

due both to viscous displacement effects and probable sepiration. If

the effect of separation on the inviscid flow streamlines is small com-

pared to viscous displacement effects, then it may be possible to

approximate the experimental pressure distribution, at least for the

purposes of computing drag. The procedure suggested in Reference 4 is

to replace the rear-stagnating velocity distribution by a linear
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extrapolation of the inviscid velocity from 95% length to the trailing

edge. That is, a straight line is drawn tangent to the curve of in-

viscid velocity versus axial distance at •5% length and is extended to

the trailing edge. The inviscid velocity over the first 95% of the body

remains unchanged. Using the modified velocity distribution, the bound-

ary layer is computed. If separation does not occur, then the viscous

displacement is added to the body geometry. The inviscid flow about this

new "viscous body" is computed. The resulting corrected pressure should

be a better, approximation to the experimental distribution than the

original inviscid flow or its linearly extrapolated modification. How-

ever, it cannot be assumed a priori that the corrected pressure is indeed

the experimental distribution since the correction depends on the some-

what arbitrarily modified inviscid flow. Also, repeated corrections to

the pressure do not imply convergence to the experimental distribution.

A further comment is in order concerning the correction to the

pressure. The concept of viscous displacement ' based on mass conser-

vation. That is, the inviscid flow must adjust itself to compensate for

- the retarded flow in the boundary layer and viscous wake. This is neces-

sary so that the total integrated mass flow across any infinite plane

perpendicular to the body axis is conserved when the flow is steady.

Therefore, the proper displacemeot thickness to be added to the body

geometry for the purpose of correcting the pressure must be derived

from mass conservation principles, not from the momentum integral

equation. For this reason, the definition of displacement thickness 6*

given by equation (2.17) does not conserve mass flow. rhe derivation of

the displacement thickness S* for mass conservation in an externalax

axisyimietric flow is given in Appendix A. The relation between 6* andax
P* as defined by equation (2.17) is

6 + (I + 2 cosa•a )) (2.1)
. tax Cos a ro
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where ro and a are shown in Figure 3. The quantity S* -is the properax
displacement thickness to use for correcting the inviscid pressure

distribution. The value of 6* is always less than that of 6*, partic-
ax

ularly when cos a* is much larger than unity.ro

In summary, the correct pressure for computing the boundary layer

and drag is the experimental distribution. For inflected aftbodies

which do not have a dominant rear stagnation point in inviszid flow, the

inviscid pressure is assumed to be a good approximation to the experi-

mental distribution. In tCe case of a dominant rear stagnation point,

for a lack of anything better, the inviscid velocity is linearly extra-

polated from 95% length to Pie trailing edge as outlined above. Although

corrections may improve the approximation to the experimental pressure

distribution, such corrections are not done her: in ovder to conserve

computer time during optimization runs which may involve dozens of drag

evaluations.

Boundary Layer Development. Once the pressure distribution im-

pressed on the body surface is known, it is possible then to proceed

with the boundary layer computation. A numerical procedure due to Cebeci,

Smith, and Wang [7] computes planar/axisymmetric, laminar/turbulent,

incompressible/compressible boundary layers using a variable-grid finite-

difference method; the computer algorithm is called "Progra, E7ET." Our

concern here is the axisymmetric, laminar and turbulent, incompressible

problem. The method of transition is left to a later paragraph. The

method retains transverse curvature effects which may be important for

axisymmetric bodies with thick boundary layers. A two-layer eddy vis-

cosity model is used for the turbulent boundary layer. Both laminar

and turbulent separation are based on the zero skin-friction criterion.

Zero or negative skin friction is inferred when the numerical iterative

scheme diverges at a given streamwise location.

The coordinate system and basic notation are shown in Figure 3,

following Cebeci (7]. There is some redundancy in notation for two

reasons. In the past the notation for inviscid flows and boundary layer

flows emerged separately. Also, computer printed output, with its lack

of low'er casc symbols, has forced some changes in notation. To compute
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; F inviscid flows and to describe the body geometry, the X-Y coordinates

are used; the reference velocity U,, is parallel to the X-axis. Boundary

layers are computed using the curvilinear coordinate system with x (or S)

aligned along a surface meridian and y normal to the surface. It is

convenient also to use a radial coordinate r = ro + y cos a, where ro

is the body radius and a is the angle between the surface tangent and

the center line in a meridional plane. A'- any x location on the body

surface, there is a boundary layer velocity profile u(x, y) and a

velocity at the edge of the boundary layer ue(x). For incompressible

flow knowledge of the inviscid pressure implies that the velocity ue(x)

is also known. Thus, the terms "p-essure distribution" and "velccity

distrioution" are used interchangeably.

For incompressible axisymmetric flow the boundary layer equations

[7J may be written as follows:

Continuity

rx r(pu + 7 ) + r(pv + ') = 0 (2.2)

Momentum

Puau + (pv + p'v-r )auJ d + r[' vu (2.3)By x r By 'layu

where p is the fluid density, V is the fluid dynamic viscosity, p is

the pressure impressed on the boundary layer, and v is the y-component

of the boundary layer velocity. Terms containing primes and overbars,

e.g., 5rur, are time-averaged fluctuating quantities, and other nota-

tion is defined above and in Fiqure 3..

The boundary conditions for equations (2.2) and (2.3) are

u(x,O) - 0 (no slip) (2.4a)

.. v(x,O) - 0 (no mass transfer) (2.4b)
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lrm u(xy) = ue(x) (2.4c)

The so-called Reynolds shear stress term i in the momentum

equation is related to mean flow quantities using the eddy viscosity

concept

77 u (2.5)
• au

ay

where e is the "eddy viscosity," which is represented by a two-layer

model [7]. The eddy viscosity ei for the inner region, i.e., the boundary

layer region near the wall, is based on Prandtl's mixing-length theory,

so that

Ci = £ u (2.6)

where I is the mixing length defined as

.? t = k 1y - + d 2p ] (2.7)

where v is the fluid kinematic viscosity, Tw is the wall shear stress,

and k, is a constant equal to 0.4. The outer region eddy viscosity co

is given by

0 k2 ue 6* y (2.8)

which depends only on x except for the presence of the intermittency

factor y, where
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a

S[1 +-1
[1 + 5.5(6)] (2.9)

and where 6 is the boundary layer thickness defined as the y-distance

for which u/ue u .995. The quantity 6* in equation (2.8) is a is-

placement thickness which for the eddy viscosity model is defined as

6* = ((I ue (2.10)

The constant k2 is equal to 0.0168 when the boundary layer thickness 6

is defined as the y-distance for which u/ue = .995. Hence, from the

wall outward the eddy viscosity e is equal to ei until the magnitude of

ei equals co from which point outward £ equals co. A typical plot of

the eddy viscosity e across a boundary layer is shown in Figure 4.

The purpose for setting down the complex exprissions for the eddy

viscosity is to bring out the implicit and empirical nature of the model.

It is apparent that the boundary layer equations (2.2) and (2.3) cannot

be solved until the eddy viscosity relations (2.6), (2.7), (2.8), (2.9),

and (2.10) are all known. It is also apparent that equations (2.6)

through (2.10) require the solution of the boundary layer before they can

be evaluated. At least for this reason an iterative scheme is required

to solve the turbulent boundary layer.

Using two transformations [7], the boundary layer equations (2.2)

and (2.3) together with the boundary conditions (2.4), are non-dimen-

sionalized and reduced to an ordinary third-order nonlinear differential

equation with transformed boundary conditions. The equation is solved

by an implicit finite-difference method using variable grid spacing in

both the streamwise and normal coordinates. Convergence of solution,

i.e., of the laminar or turbulent velocity profile, at each streamwise

station is based on convergence of the transformed wall shear stress.

Transition Prediction. The state-of-the-art of predicting transition

of axisymmetric boundary layers is unclear at the present time. An

4 , . ...
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[ example of the conflicting evidence and a conjectural explanation is

given in Section 2.4. From the point of view of modeling and simulation,

transition should begin at the point where laminar flow modeling ceases

to be adequate in some sense. In the present study transition is treated
as a point phenomenon, that is, as the switch which "turns on" turbulence.

The transition: model used here is a composite of a planar-flow

empirical correlation due to Michel ("Michel curve") and a rather sophis-

ticated, semi-empirical, planar-flow correlation ("e-to-the-nine-curve")

due to Smith and his co-workers [4, 5]. The composite correlation, the
"Michel-e 9 correlation," is shown in Figure 5. The composite correlation

is based on airfoil data taken from free-flight and low-turbulence wind

tunnel tests. The correlation is between the momentum thickness Reynolds
number at transition Re]tr and the running surface-lenoth Reynolds number

at transition RS]tr, where in Figure 5 e is the momentum thickness, ue

is the local velocity at the edge of the boundary layer, S is the surface

length, and v is the fluid kinematic viscosity. Also shown is a typical
Re versus RS plot as computed by the boundary layer program described

in this study. The recommended ranges for each curve are indicated in
Figure 5 [4].

It is believed that the axisymmetric laminar boundary layer para-

meters used to predict transition should be Mangler-transformed [6] to

their equivalent planar-flow values before applying the transition

correlations. However, the Mangler transformation is explicit only to

within an "arbitrary" constant which is not specified in the transforma-
tion itself. The arbitrary constant has a direct bearing on the trans-

formed boundary layer parameter values and hence affects the transition

prediction directly. In a few cases that were checked no characteristic

constant was found that consistently improved the transition prediction
as inferred from drag data; indeed, in some cases, the Mangler transfor-
mation was grossly detrimental to drag prediction compared to the non-

transformed values.

The correlation curve itself is based on the planar-flow definition

of 0, which for incompressible flow is

0 = f (l- -' dy (2.11)
foue ue
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while the axisymmetric definition of 0 used to predict transition is

( = -u Ue dy (2.12)tu

where r is the radial coordinate of a point in the boundary layer and ro

is the wall radius. However, for laminar boundary layers the value of

r/ro is nearly 1, so that the difference in the definitions (2.11) and
(2.12) should not be significant.

Occasionally the situation arises in which laminar separation occurs

before transition is indicated by the Michel-e 9 correlation curve. Lami-

nar separation is inferred when the numerical iteration scheme diverges.

In this situation turbulent reattachment of the boundary layer is as-

sumed. Thus, as far as the boundary layer computation is concerned,

laminar separation is identical to transition.

Number and Distribution of Body Points. It is appropriate to

describe how the body shape Y(X), which in general may exist as an

engineering drawing or as an analytic function, is t.'Pslated into a
table of points Xi, Y(Xi), i = 1, ... , NN. This is not a trivial task

since both the Douglas-Neumann method and the boundary layer program E7ET

are sensitive to the number and distribution of body points. For example,

the Douglas-Neumann method requires a close spacing of body points where

the body slope or curvature is changing rapidly. Also, program E7ET

requires a close spacing of body points where quantities such as velocity

and skin friction are changing rapidly.

For streamlined bodies, these regions of rapid change occur near the

leading edge and in the vicinity of the transition point. Since the

transition point is not known a priori, the points are closely spaced in

an expanding fashion near the leading edge and uniformly spaced else-

where. It is emphasized that the spacing is established on the surface

meridian, not on the axis of symmetry.

A partial distribution of points along a body surface is shown in

Figure 6. A procedure which has been found to work well in practice is

tF
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to distribute in an expanding fashion about one-fourth of the NN points

in the first ten to fifteen percent of the total surface arc-length
STotal1 The remaining points are distributed uniformly over the last

85 to 90 percent of STotal* Near the leading edge, each step size is

equal to the preceding value multiplied by the expansion factor ke.

Thus, the initial step size is ASO, the second is keASo, the third is
keASo, etc. The accumulated arc-length is the sum of the three terms,
'he initial step size ASO and the expansion factor ke are found by

solving simultaneously the following two equations:

ASO (1 + ke + k2 + ... + keN11) (FPC) (Srotal) (2.13a)

ASO ke Nl ASu (2.13b)

where NI is the number of steps to be included in the first FPC frac-
tional part of STotal* Equation (2.13a) insures that the accumulated

arc-length of the first NI steps is equal to the desired fractional part
of STotal. Equation (2.13b) requires that the first uniform step be

equal to the previous step times the expansion factor ke. The uniform
step size ASu is specified by

ASu = NN 1 1 N1 STotal (2.14)

Two sets of typical values are given below:

I. Number of body points NN = 32

FPC = 0.10

NI = 32/4 8

f PASu = .03913 STotal
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SASO = .00387 STotal

ke = 1.33524

2. Number of body points NN = 101

FPC = 0.15

Nl = 101/4 = 26

ASu = .01134 STotal

ASO= .00299 STotal

ke = 1.05481

These two sets of values are used throughout the entire study.

The set of NN body points is used only within the Douglas-Neumann

method which computes the inviscid velocities only at points midway

between succeeding pairs of the original NN body points. The boundary

layer is computed only at the "midpoints," referred to as "body sta-

tions," by program EIET. The body stations are numbered starting from

zero so that the last body station number NSTA is numerically equal to

NN - 2. Throughout this study the term "30-station" or "99-station"

solution refers to a solution obtained using NN = 32 or 101 body

points, respectively.
Finally, the aIgorithm requires 60 seconds for 30 stations

(NN = 32) to 160 seconds for 99 stations (NN = 101) of CDC 6500

computer time to compute one drag value. The 99-station solutions are

more reliable; all drag values reported in this study are 99-station

solutions. However, for an optimization run, during which dozens of

drag computations may be performed, 30-station solutions are used in

order to reduce computer costs. The "coarseness" of the 30-station

numerical grid introduces a source of error which may slightly distort

the relative trends encountered during a search for an optimum body

shape. It is believed, however, that the distortion is minor and that

overall results are not affected significantly.

In the next section the procedure for computing drag is presented.
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2.3 Computational Procedure for Computing Drag

With the computational tools outlined in Section 2.2, there are two

methods immediately available for computing drag. One method uses cer-

tain flow parameters at the trailing edge of the body in a formula due

to Young [12]. The second method involves integrating the drag (axial)

components of the forces acting over the body surface, these being

SS pressure and skin friction. Both methods require an accurate prediction

of the boundary layer and the transition location. The two methods are

discussed briefly below.

Drag by Young's Formula. Young developed a formula relating total
drag to certain flow parameters at the trailing edge of the body. The

formula in its non-dimensional form is

H+5 1
CD = Drag = 4ro e( U (2.15)L U.VT VT

T.E.

where CD is the drag coefficient, p is the fluid density, U,, is the
2

reference velocity, V is the body volume so that Vj is the reference

area, ro is the body radius, 0 is the momentum thickness as defined
in equation (2.12), ue is the velocity at the edge of the boundary layer,

and H is the shape factor defined as

H - 6* (2.16)

where 0 is defined in equation (2.12), and 6* is the displacement thick-

ness which for equation (2.15) is defined as

6* = foE (1 - ) dy (2.17)
ror ue
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for incompressible flow. The definitions of 6*, , and H are obtained

during the derivation of the axisynmetric form of the momentum integral
equation on which Young's formula is based. In equation (2.15) the

subscript T.E. denotes quantities at the trailing edge of the body. It

is noted that ro, 0, ue, and H are functions of the surface length x so

that the drag coefficient CD could be treated as CD(X), a function of x.

Such a treatment is not implied in Young's derivation, although the
behavior of CD(x) is of interest. The derivation o- Young's formula is

given in Appendix B.

Drag by Integration of Surface Forces. This method is simple in con-

cept but difficult to apply in practice. Essentially, once the pressure
and skin friction distributions are known over the entire body surface,

an integration of the drag (axial) components should give the total
drag. The integral is given as

Drag = L• (p - po) 2TY d- dX + f TW 27rY dX (2.18)

or in its non-dimensional form as

CO= Drag 2 Cp YL-'ddX + -!2- Cf Y dX (2.19)

2 V3  V o V3

where the first and second integrals in (2.18) and (2.19) represent the

contributions due to pressure and skin friction, respectively. The

symbol p. is tl-V free-stream static pressure, p is the local pressure

at the body surface, and Cp ii the pressure coefficient defined as
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P "PooU )
Cp - 1 (2.20)

for incompressible flow. Also Cf is the skin friction coefficient based

on the reference velocity and is defined as

TWCf 1 2 (2.21)

Other notation is defined in previous sections.
The reason equation (2.18) or (2.19) is difficult to apply in

practice is that the pressure over the body surface must be the experi-

mental distribution, which is difficult to z•pproximate numerically as
discussed in Section 2.2. It appears that Young's method is less sensi-

tive to errors in the pressure distribution than direct integration of
the surface forces; hence Young's formula, equation (2.15), is used in
the present study.

Drag Algorithm. The flow chart for computing drag in the"-
present study is shown in Figure 7. The input consists of a character-

I
istic Reynolds number Rv = V3 U./v and a body shape Y(X). A geometry
table is generated using the procedures associated with equations (2.13)
and (2.14) and illustrated in Figure 6. The actual numerical values
in the geometry table are normalized to unit length or unit volume. For
an optimization run 30-station solutions (NN = 32) are used; for de-
tailed drag evaluations 99-station solutions (NN = 101) are used.

The velocity distribution along the body surface is computed using
the Douglas-Neumann method. If a dominant rear stagnation point exists,
then the inviscid velocity is modified by linear extrapolation from 95
percent axial length to the trailing edge.

The laminar and turbulent boundary layers are computed by program

E7ET. Transition is predicted by the Michel-e9 correlation or by
laminar separation/turbulent reattachment, whichever occurs first.
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Input: Reynolds Number R,
Body Shape Y(X)

Start Generate Table of Body Points

SteXi, Y(Xi), il, NN1

Compute Inviscid Velocity by

Dougl as-Neumann Method

Modify Velocity by Yes Dominant Rear
L-'near Extrapolation tagnation Point?From 95% Length

INo

Compute Boundary Layer by E7ET;
Transition by Michel-e 9 or Laminar
Separation/Turbulent Reattachment,
Whichever Occurs First

Compute Drag by No Tubln
Young's Formula, 4 Se a a i n
Equation (2.15)

Yes

1 ,

Figure 7. Flow Chart For Drag Computation.

I-77
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If turbulent boundary layer separation occurs, as Indicated by
solution divergence, the prop m aborts and no drag calculation is made.
During an optimization run, turbulent boundary layer separation is
treated as a constraint violation. The various constraints are discussed

S~in Chapter 3.
If there is no separation, or more generally, if there are no con-

straint violations (details in Chapter 3), then the drag coefficient is
i computed using Young's, formula, equation (2.15).

In the next section the characteristics of the drag model as de-

scribed here will be demonstrated by comparing predictions with some of
the data available in the literature.

2.4 Characteristics of the Drag Model

In this section comparisons are made between predicted and experi-
mental drag coefficients using the drag model indicated in Figure 7.
Transition data comparisons are also made. Rather than presenting a

comprehensive study of the experimental data available in the literature,
it is the intent here to demonstrate the characteristics of the drag
model used in the present study. A more comprehensive comparison of
predicted and experimental drag values is found in Reference 4.

Drag Prediction for the Laminar Flow "Dolphin" Body. A reasonable
approximation to the "Dolphin" Body [2] is shown in Figure 8 along with
the inviscid velocity distribution. A typical transition location Is
indicated. The long, slender tailboom is cut off at about two-thirds
of the actual body length. The experimental data were obtained from

gravity-powered accelerating drop tests in the Pacific Ocean at speeds
up to 62 knots. Figure 9 shows the predicted and experimental drag
coefficients; a standard torpedo curve [2] is also included for compari-
son. The experimental data has been corrected to hull drag values by
subtracting out the drag due to stabilizing fins and the tailboom [2].

A The agreement between predicted and experimental values is good, with the

prediction tending to be optimistic. The role of the laminar boundary

I • • • • • -.....• " = '-= ' • •• ' " ' '' " " = ': • ° • I ' ...t "" " • " " '•• ÷• • • •.. .... ...=. .,. • .... ._ , ,
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/

layer in drag reduction is demonstrated both by prediction and experi-

mentally by tripping the boundary layer at X/L equal 0.05. The drag

coefficient is comparable to that of the standard torpedo as shown in
Figure 9. These data demonstrate that substantial amounts of laminar

flow are possible at high speeds (60 knots) in the ocean environment and

that the drag model used in this study is capable of predicting such
behavior reasonably well.

It is also of interest to observe the trend of CO computed at

various stations along the body surface. A typical CD(X) trend for the
"Dolphin" body is shown in Figure 10. The drag coefficient CD increases

monotonically to the trailing edge.

Drag Prediction for Model 4165 of Series 58. The Series 58 study

has produced a recommended best shape which is very nearly the same as
Model 4165 of that series [3]. This body and its inviscid velocity

distribution are shown in Figure 11. This body has a dominant rear

stagnation point so that the drag is computed using the modified veloc-

ity distribution shown in the same figure; details of this modifying

procedure are given in Section 2.3. For this case the boundary layer
is tripped at X/L = .05. The drag prediction is for one Reynolds

number, that corresponding to the highest test velocity. The drag co-

efficient is computed at various stations along the surface of the body;

the trend is shown in Figure 12 along with the experimental drag value.
As for the "Dolphin" body, CD increases monotonically to the trailing

edge.
The predicted value exceeds the experimental value by nine percent.

The predicted value happens to equal the experimental value at the

location on the body where ue/U. is unity. Cebeci, using a modified
definition of 0 in Young's formula, equation (2.15), reports this be-
havior for a number of bodies including Model 4165 [4]. It might be

inferred that the drag coefficient is to be computed at the body station

nearest the trailing edge for which ue/U®, is unity. For the "Dolphin,"

* with its asymptotic velocity, "nearest" would be interpreted to mean
"at." However, this idea has not been investigated; for the cake of

consistency, the predicted drag value will be that computed at the trail-
ing edge except as noted in the next paragraph.

.' . . . .... ...W .... . ..! .. .. .. . .. ... .... .... . .. ' I ... .... .. .. . .. .. ... " .. .. " .. -. . . . : " .. -
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Figure 10. Variation in Predicted Drag Coefficient

Along Surface of "Dolphin."
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Figure 12. Variation in Predicted Drag Coefficient
Along Surface of Model 4165.
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Ovw Drag Prediction for Murphy Body A2, C4. This body consists of a
rounded-nose forebody, a constant diameter midsection, and an inflected

pointed tail [13]. The boundary layer is tripped using a porous strip

about .03L in width. The downstream edge of the strip, located at X/L

equal 0.5, is assumed to be the point of transition. The body is posi-

tioned about 0.27L inside the wind tunnel contraction cone so that the

experimental and free-stream inviscid velocity distributions are
different. The body shape and its velocity distributiont are shown in
Figure 13. Note that the experimental and inviscid velocity distribu-

tions are in good agreement near the trailing edge, away from the
influence of the contraction cone. This substantiates to some degree

the discussion in Section 2.2 in which it is assumed that the inviscid
velocity is a fair approximation to the experimental velocity distribu-

tion which tends to the free stream value rather than rear stagnation.

The drag is computed at one Reynolds number, the CD variation along
the body surface is shown in Figure 14 for both pressure distributions

along with the experimental range obtained by wake measurements. The

CD reaches a peak value at about S/STotal equal 0.95 and then plunges

rapidly. Whet: such behavior occurs, it is assumed that the peak value

is the proper one to use, the rapid plunging apparently indicating a
breakdovn in the method. No attempt is made here to investigate the

underlying reasons for this behavior. The Douglas-Neumann velocity
distribution yields a higher predicted drag than that obtained when

using the experimental distribution, the difference due mainly to the
different pressure gradients over the forebody.

Both predicted values are in reasonable agreement with the experi-

mental range; the predicted values are 1.8% higher and 5.4% lower than
the experimental mean value.

Transition Prediction for an Ellipsoid. Granville has reported the

results of six different methods of transition prediction for axisynmietric

bodies using three experimental pressure distributions on an ellipsoid

with a fineness ratio (length/maximum diameter) of nine [14]. The dif-

ferent pressure distributions are obtained by placing the ellipsoid at
various positions inside the wind tunnel contraction cone. For these
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Rv = 1.1 X 106

* ~~~~16 -X .

Experimental CSr- .0158 -. 0O167
S• ~X

•?14 -
4J

-12 Experimental P.D.
•po CD .0154

1•-u Douglas-Neumann P.D.
10 CD = .0166

0 Indicates Predicted Value

0.6 0.8 1.0

Fraction of Surface Length

Figure 14. Variation in Predicted Drag Coefficient
Along Surface of Murphy Body A2, C4.
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tests one turbulence burst per second is taken as the beginning of transi-

tion; the bursts dre detected by pressure taps in the body surface.

V The ellipsoid and two of the three experimental velocity distribu-
tions are shown in Figure 15. The change in transition location as a

function of Reynolds number is shown in Figure 16 for both velocity

distributions. It is readily apparent that the Michel-e 9 correlation

prediction does not even resemble the trend of the experimental data;

in fact, the correlation predicts nearly the same transition location

under all test conditions.

The apparent contradiction between the successful "Dolphin" drag

predictions, which include transition prediction, and the failure of the

correlation for the ellipsoid has lead to a questioning of what is meant

by "transition" in the context of drag prediction.

For drag prediction the transition point must represent the stream-

wise location on the body after which laminar flow modeling is no longer

adequate. It is conjectured here that the acoustical definition for

transition, i.e., one turbulence burst per second, may not be particular-

ly relevant for predicting the location at whi-a the boundary layer model

should "switch" from laminar to fully turbulent. A recent experimental

study [15] gives some support to this idea. The study produces a corre-

lation among the average bursting frequency T, the mainstream velocity

ue, and the displacement thickness 6* using data from fully developed

turbulent boundary layers along a flat wind tunnel wall; the correlation

is of the form F = (constant)(ue )/(6*). Although the correlatiun

may not be directly applicable to axisynmetric boundary layers with

pressure gradients, it seems reasorable that the idea of characterizing

a turbulent boundary layer by using a correlated bursting frequency, as

opposed to a fixed frequency, should carry over to the axisymmetric

case.

2.5 Closing Comments about the Drag Model

The drag model as described here appears to be reasonably realistic.

The drag predictions may be either optimistic or pessimistic, apparently

- p
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depending on the body geometry being considered. For example, the pre-

dicted values for bodies with dominant rear stagnation points tend to be
high, but for inflected aft-bodies the values tend to be low. It is

felt that the method of transition prediction tends to be optimistic
because of the somewhat optimistic drag predictions of the "Dolphin"

body.

With the drag model established, the next chapter presents the

formulation of the optimization problem.
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CHAPTER 3

FORMULATION OF THE OPTIMIZATION PROBLEM

This chapter contains a brief discussion of two possible approaches
to the optimization problem. The characteristics leading to the selected
optimization approach are described; the constraints are discussed in

detail. Two optimization methods used in this study are outlined.

3.1 Functional Optimization - Calculus of Variations

Once the reference Reynolds number Rv is fixed for the zero inci-

dence uniform flow, the value of the drag coefficient CD depends on the

particular shape Y(X) of the axisymmetric body; this may be expressed as

CO = CD[Y(X)J (3.1)

where X is the axial coordinate. Equation (3.1) implies that the drag

coefficient is to be minimized by manipulating the function Y(X). Such
a concept is the central idea of the calculus of variations [18, 19].

The simplicity of equation (3.1) is somewhat deceiving since

variations must be performed not only on Y(X) but on other dependent
variables as well. This is apparent from equation (2.19) which is

written here as

L
_ Yd Y0dXCD 2Ir IC dX+CU (3.2)

0S



p " 44V where Cp and Cf are the pressure and skin friction coefficients defined
by equations (2.20) and (2.21), respectively. Equation (3.2) shows that

CD is a function of Y(X), -, and the complicated quantities Cp and

Cf which are governed by partial differential equations.
Certain conditions are imposed on the problem from the outset.

The boundary conditions for Y(X) are

Y(O) = 0 (3.3a)

Y(L) = YTerminal -0 (3.3b)

where YTerminal is not necessarily specified. The iniequality constraint

Y(X) > O, O< X < L (3.4)

must also be satisfied, as well as the equality constraint tacitly im-
plied in equation (3.2), namely, a fixed volume

Y(X) dX = V= Specified
Value (35)

Furthermore, it may be necessary to treat the endpoint X equal L as a
variable quantity. A more thorough analysis will reveal other con-
straints to be imposed oi the problem. In audition, one must include
the physics which constrain C, and Cf.

If the problem can be properly formulated using the integral of
performance defined in equation (3.2), along with the required con-
straints and boundary conditions, the result of the variational calculus
is a set of necessary conditions which must be satisfied by the minimum
drag shape. The set of necessary conditions, which relate the dependent

variables Y, dY-X Cp, and Cf for a minimum drag body, do not explicitly
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define the optimum body shape in terms of the independent variable X.

However, the results may be used as a check to test any profile which

is believed to be a local optimum.

Because of the complicated nature of Cp and Cf, both governed byIIpartial differential equations, it is apparent that the drag integral,,

equation (3.2), cannot be formulated explicitly in terms of X, Y(X),

and derivatives of Y(X). Without such a f1Y,nulation, an explicit solu-

tion for the optimum Y(X) cannot be obtained, at least not from a

calculus of variations analysis alone. For this reason this approach

has not been pursued here.
An interes.ting alternate use of the calculus of variations has

been successfully applied to nonseparating, maximum lift airfoils [16J.
Rather than working with the blade geometry directly, an optimum pressure

distribution for maximum lift is obtained from which the blade geometry
is uniquely inferred. For axisymmetric design, this approach, called

the "inverse design problem," cannot be used in its analytical form [17;
it has not been established that a unique axisymmetric body exists for

a prescribed pressure distribution. Iterative numerical procedures
have been attempted [17], but the inverse problem for axisymmetric bodies
does not appear to be solved. Hence, this approach has not been pursued.

3.2 Parametric Optimization

If the calculus of variations approach were formulated in terms of
X, Y(X), and derivatives of Y(X), and successfully solved, the solution

for a fixed Reynolds number Rv would be an optimum profile Y**(X). For

convenience it is assumed that Y**(X) is unique. Once the profile Y**(X)
is known, either as an analytic function or as a table of numbers, it is

possible to approximate it by a finite series of known functions Fi(X),

i = I, ... , N, each multiplied by a constant. The series of known

functions is assumed to be well behaved so that its properties, e.g.,

uniform convergence in the interval 0 <_ X <j L, do not require special
consideration here.



46

The finite series approximation may be expressed as

11

NY**(X) M I ** Fi(X) (3.6)

i=1

for 0 . X <. L, where N is the number of terms in the series and the

Fi(X), i = 1, ... , N, are known functions. The ai**, i = 1, ... , N,

are the multiplicative constants which, when used with the functions

SFi(X), i = 1, ... , N, yield the best approximation to Y**(X) in some

sense. For example, the ai**, i = 1, .. ,, N, in equation (3.6) may

minimize the error defined by

L j Y**(X) i~l ai Fi(X) ) dX (3.7)

0

The optimum profile Y**(X) has associated with it a minimum drag co-

efficient CD**. The finite series on the right-hand side of equation

(3.6) has associated with it a drag coefficient which can neier be

better than CD** since the finite series represents a perturbation away

from the optimum Y**(X).

It is apparent that by fixing N and the Fi(X), i = 1, ... , N, it

is possible to manipulate the multiplicative constants ai, I = 1, ... , N,

also called "parameters," to produce an optimum profile

Y*(X) = . ai* Fi(X) (3.8)
Si1=1

for which the drag coefficient CD* is a minimum. For convenience it

is assumed here that the ai*, i = ', .. ,, N, form a unique set. It is
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expected that the set ai*, i = 1. , N, in equation (3.8) is different

from the set ai**, i 1, ... , f', in equation (3.6) since the former re-

sults from minimizing the drag coefficient CD while the latter results

from minimizing the error E exemplified by equation (3.7).
Implied in the above discussion is the fact that for a paramet-

rically defined body the drag coefficient depends on the number N of

terms in the series, the nature of the functions Fi(X), i = 1, ... , N,

used in the series, and the multiplicative constants ai, i = 1, ... , N.
This may be expressed as

CD = CD [N, ai, Fi(X), i = 1, ... , N) (3.9)

This is true in particular for the minimum drag coefficient CD* asso-

ciated with Y*(X) in equation (3.8), which is to emphasize the fact

that the minimum drag profile Y*(X) will be different for every value

of N and every set of functions Fi(X), i = 1, ... , N. Therefore,
minimum drag shapes obtained using a formulation implied by equation
(3.9) can be regarded only as the optimum of a restricted class of
bodies with profiles defined by

N

Y(X) = l ai Fi(x) (3.10)

where N and the Fi(X), i 1, ... , N, are fixed.
Although the parametric formulation necessarily introduces limita-

tions on the optimization results, it has been adopted as the most

feasible procedure for the drag minimization problem. Indeed, it
appears that the functional approach, with its implicit necessary con-

ditions, would require the use of an iterative search strategy of the
general nature that we are considering here for the direct problem

solution. A few comments about parametric optimization in general are
given below.

Nearly all contemporary research in the area of optimization methods

is addressed to the parametric problem rather than the functional problem
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of the classical calculus of variations. These contemporary methods

are usually reducible to a digital ccmputer algorithm so that they are
F compatible with performance function models, e.g., drag models, which

may already exist in digital computer program form. The standard

measure of efficiency of parametric methods is the number of perform-

ance function evaluations required to obtain the optimal solution to
within a given error tolerance. An alternate standard is to compare
the performance function value obtained at the end of a fixed number of

evaluations.
The parametric optimization methods may be broadly classified as

unconstrained or constrained methods. The generally more efficient

unconstrained methods are designed to be used in a parameter space

without parameter boundaries (constraints). The generally less effi-

cient constrained methods are designed to cope with parameter boundaries

(constraints) which divide the parameter space into feasible and non-

feasible regions. The presence of nonfeasible regions may be due to

physical considerations or limi-s of model validity, for example. To

take advantage of the efficient unconstrained methods, it is common

practice to convert a constrained problem into one which appears uncon-

strained by introducit "penalty functions." A penalty function arti-

ficially distorts the true performance function "surface," so that

whenever a constraint boundary is violated, the performance function

appears worse than the neighboring performance surface in the feasible

region. The effect of the penalty function is to force the optimal

solution into a feasible, hence acceptable, region. It is generally
desirable to cast the optimization problem into one which is uncon-

strained so that a more efficient unconstrained method may be used.

A second broad classification for parametric optimization is

grddient versus nongradient methods. This classification refers to the

availability of dnalytical gradients of the form 3(performance func-

tion)/a(ai), where the ai, i = 1, ... , N, are the parameters to be

manipulated. Depending on the optimization problem this information,

i.e., the analytical partial derivatives, may or may not be available.

The generally more efficient gradient methods use both the performance

function and the local gradients to obtain the optimal solution. The
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generally less efficient nongradient methods are designed to obtain the

optimal solution using only the performance function itself. When the

analytical gradients are not available, it is possible to approximate
the gradients using finite differences. But it is usually more effi-
cient to use a suitable nongradient method in this case rather than
finite-difference approximations in conjunction with an efficient
gradient method [20].

From the above discussion it may be concluded that problems which
are unconstrained and have analytical gradienLs are to be more effi-
ciently solved than other problems. There are other broad classifica-
tions of parametric optimization problems as well. For example, the
performance function and/or the constraints may be linear or nonlirear
functions of the narameters. The constraints may be expressed as
equalities or inequalities and may involve algebraic, differential, and
integral expressions. The constraints may be explicit or implicit in
the parameters. The performance function and/or the parameters may
be deterministic or stochastic. Tne performance function and/or
"parameters may be allowed only certain discrete values rather than
continuously varying values. The parameter constraint boundaries may
be convex or nonconvex. The optimal solution may or may not lie on a
constraint boundary. Every optimization problem will involve some

combination of these characteristics and perhaps others as we'll.
The parametric optimization method best suited to a particular

problem depends, of course, on the characteristics of the performance
function and constraints as mentioned above. The characteristics of
the drag minimization problem are discussed in detail in the next
section. The discussion leads to the optimization methods which are
used in the present study.

3.3 Characteristics of the Drag Minimization Problem

The implication of the preceding two sections is that the drag
minimization is to be cast as a parametric rather than a functional

-___
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optimization problem. This section examines in detail the characteris-

tics of the drag model and the constraints in order to select appro-

priate methods (search strategies).

Model Characteristics. From the parametric optimization point of
view the drag model is a performance function surface (response surface)

in an N-dimensional space, where N is the number of independent param-

eters (variables) to be manipulated. The drag model, discussed in

Chapter 2, is essentially a nonlinear numerical "black-box" whose input

is a set of parameters ai, i = 1, ... , N, and a Reynolds number, and

whose output is a drag coefficient CD. The parameters imply a unique

shape Y(X) when N and Fi(X), i = 1, ... , M are specified in equation

(3.10). Although it is possible to treat the drag prediction in a

stochastic manner by using an error probability distribution, the model

is treated as deterministic in the present study.

The model is a "black-box" in the sense that no analytic expression

exists relating the drag coefficient CD to the parameters ai, i = 1,
... , N. Indeed, the numerical model performs the same function as an

experiment, for example, in which a body, whose shape is Y(X) as implied

by the ai, i = I, ... , N, is built and tested in a wind tunnel. For

both the numerical model and the hypothetical experiment, the only

information available for a given body at a fixed Reynolds number is

its drag coefficient CD. No analytical gradients 3CD/3ai, i = 1, ... ,

N, are available in either case.

The numerical black-box, with its lack of anaiytical gradients, is
to be used in conjunction with a nongradient (direct) search method.

The procedure of approximating gradients with finite-differences has

been rejected at the outset since it is believed that nongradient

* methods are more efficient with "nongradient problems" than finite-

di ng used with gradient methods [20].

* ,.int Characteristics. Several statements can be made about

the constraints at the outset. Constraints do exist for the drag

minimization problem. The obvious ones include requirements for non-

U' negative body dimensions, nonseparating flow, and a fixed Reynolds

* * * - -- o
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number. Less obvious constraints for a particular class of bodies

defined by equation (3.10) include requirements for a rounded nose and

no inflection points on the forebody (section of body from nose to

maximum diameter). These latter constraints are discussed in detail

in Chapter 4 for two classes of bodies used in the present study.

Other statements which can be made at the outset 3re that the parameters

vary in a continuuus manner and that the parameters are treated as

deterministic, not stochastic.

The procedure for a performance function (PF) evaluation during

an optimization run is to check for constraint violations and then to

compute the PF if no violations occur. When violations do occur, no

PF evaluation is made; indeed, the PF value may not exist in such cases,

e.g., negative body dimensions. The nonseparating flow constraint

presents a special problem; its violation is not known until a complete

pass is made through the drag model. In an attempt to reduce computer

time wasted due to the occurrence of a separated boundary layer, two

additional constraints are checked preceding the costly boundary layer

computation (75% of computer time). These constraints are designed to

avoid pressure distributions which are probably conducive to boundary

layer separation. These constraints are

1. Minimum pressure coefficient C Ž -. 45

2. Maximum pressure recovery after the minimum pressure point

is Cpmax - Cpmin .S 1.0.

Item I restricts the maximum velocity, which occurs near the maximum

diameter for streamlined bodies at zero incidence, to values less than

ue/U- = 1.2. Item 2 restricts the amount of decele-ation occurring

downstream of the minimum pressure (maximum velocity) pGint. These

constraints are not "hard" in that they represent reasonable values

but may rightfully be questioned since they are engineering approxima-

tions to the separation constraint boundary.

Excepting the Reynolds number, all of the constraints mentioned

above are of the inequality type since they represent limiting situa-

tions or boundaries. The general conceptual form of these inequalities

can be written as

•A
t.
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g(a1 , a 2 , ... , aN) < 0 (3.11)

J1though the explicit expression does not always exist, e.g., non-

separating constraint boundary. The requirements for non-negative

body dimensions are constant linear constraints, while the noninflected

forebody and ne'separating flow constraints are nonlinear. Thus the

drag minimization proble... involves linear and nonlinear inequality

constraints; at least one constraint possesses no explicit form as given

by equation (3.11).

The convexity of the constraint boundaries must be considered.

Regions with convax boundaries, e.g., interior of a circle, normally

present no additional difficulties to a search strategy. However,

regions with nonconvex boundaries, e.g., interior of a cardioid, may

cause a search strategy to "hang up" on such a boundary far from the

true feasible optimum. It will be shown by graphical means in Chapter 4

that nonconvex boundaries do exist for at least one of the two classes

of bodies considered in the present study.

The feasible optimum may lie on the interior or on the boundaries

of a constrained parameter space. Optimization methods which converge

quickly on the interior due to approximate quadratic convergence may

not be able to exploit this property if the opti.,,um lies on constraint

boundaries (constrained optimum). One reason is that the performance

function may retain dominating first-order properties at the boundaries
so that second-order (quadratic) characteristics remain insignifi.:ant.

By contrast, a performance function with an interior optimum will have

a neighborhood about the optimum in which the first-order character-

istics, i.e., the gradient or first partial derivatives, tend to zero

so that second-order properties, i.e., second partial derivatives, tend

to dominate. Since it is not known at the outset that the optimal

solution lies on or off constraint boundaries, it is appropriate to

consider alternate methods which werk well in one situation or the

cther if not both.

Reference Reynolds Number - An Equality Constraint. In previous

discussions the reference Reynolds number has been defined as



Rv = V3 Ujv, where V is the vehicle volume so that Vs is a reference

length, U. is the constant vehicle speed, and v is the fluid kinematic

viscosity. No consideration is given to v since it is regarded as a

fixed constant here. A fixed Reynolds number Rv implier a fixed vehicle

volume V since U. is already specified. Thus Rv is equivalent to an

equality constraint requiring the body profile Y(X) to enclose a

specified volume V. However, since the fluid dynamics depends on the

shape Y(X) end Reynolds number Rv, and not separately the volume V,

i.e., the size of the body, and velocity U.. one may simply scale the

shape to automatically maintain the proper volume. In fact, both V and

U. may be scaled so long as the proper Rv is preserved. Thus, because

of the nature of the fluid dynamics, it is possible to exclude consider-

ation of the volume equality constraint from the optimization strategy

itself.

As mentioned in Chapter 1, it may be desirable to specify equality

constraints on quantities other than volume. For example, the constant

frontal-area problem, e.g., torpedo design, may be more conveniently

based on a constant maximum diameter Reynolds number. If there are

neutral buoyancy requirements for the torpedo problem, then a volume

equality constraint is still present and must be dealt with by suitable

means, not necessarily within the search strategy itself.

Depending on the application there may be other constraints to be

considered. For example, submarines must occasionally negotiate chan-

nels dredged to a certain depth; hence, the submarine hull design is

subject to amaximum diameter constraint. Another example is the design

of the "lower unit" of an outboard motor. The lower unit is the faired

transmission housing to which the propeller is attached and by which

the propeller is powered. The design of the lower unit is subject to

the constraint of the space requirements of the transmission. The

optimization method should be able to cope with these kinds of con-

straints, assuming, of course, that the constraints do not prohibit

the existence of a feasible solution.

To summarize the ideas of the preceding paragraphs, the optimiza-

tion method used for the drag minimization problem must be capable of

. ..... . . . . . ...... . . . ........... .
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dealing with a ncnlinear performance function without the use of grad-
ients. The method must cope with nonlinear inequality constraints
which may be nonconvex and which exist in implicit or explicit form.

Furthermore, it is appropriate to consider alternate methods which are
well suited to the optimum-on-boundary or optimum-on-interior situations.

3.4 Selected Search Strategies

For the nongradient, constrained, nonlinear drag minimization
problem there are two possible approaches using direct (nongradlent)

search methods. One approach is to use a method which operates in a
nonlinear inequality constraint environment. The second approach is to
replace all inequality constraints with a suitably constructed penalty
function so that an unconstrained search method may be used. In either

case there are methods which are regarded as more efficient than others,
but the generalization is not always valid since the performance of a
search method is problem dependent. It is not unusual to modify the

search method so as to make it more eflicient for a particular problem.
Some "tailoring" has been necessary in the present study; details are
given below.

For the drag minimization problem it was decided at the outset to
select one promising method and to proceed with the hydrodynamic design

problem. Modifications in the method would be made if they were neces-
sary to obtain optimal solutions. No comprehensive experimentation
with various modifications or different methods would be done due to

the costly nature of the performance function evaluation (40 seconds on
the CDC 6500). Later in the study, however, it was decided to try one

additional method.
Of the many search strategies in the literature for nongradlent,

nonlinear parametric problems, there are two which have been developed
to operate in an environment of general nonllnear inequality constraints

of the form given by equation (3.11). The earlier method is due to
Rosenbrock (1960) [21]; the newer method is due to Box (1965) [22] with

suggested modifications by Guin (1968) [23]. In this study a slight
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modification of the Box-Guin "Complex Method" has been used extensively.

The method is described in a later section.
The various nongradient search strategies in the literature for

unconstrained problems far outnumber those developed for the con-

strained variety. Examples of these methods include an early approach
due to Hooke and Jeeves (1961) [24], a method with approximate quadratic
convergence due to Powell (1964) [25], a directed-hypercone random
search algorithm due to Wozny and Heydt (1970) [26], and a recent modi-
fication of the Nelder-Mead procedure due to Masters and Drucker (1371)
[27]. A critV eview including Powell's method has been reporte4 by
Fletcher (1965) L28]. When using unconstrained search strategies with

constrained problems, one common practice is to replace the inequality
constraints by a penalty function (pp. 477 - 482 of [20]). Of the many
available unconstrained direct search methods, Powell's method, be-
cause of its approximate quadratic convergence, is used in the present

study in conjunction with a simple but general penalty function. The

details are left to a later section.

Modified Complex Method. A detailed word flow chart of the modi-
fied Complex Method, as used in the present study, is given in Appendix
C. The Guin modifications, which include etrategies for coping with
nonconvex boundaries and for generating alternate search directions when
the primary direction fails, have been included in this method. A
modification in the startIng procedure is also included.

Shown in Figure 17 is a slightly simplified version of the method;
specifically, the strategy for nonconvex boundaries is omitted since its

use has never been required during drag minimization runs. The basic
input data are the nu., -Y, of independent parameters N, the number of

vertices K in the complex figure (usually K = 2N), convergence tole-
rances e2 and c (usually £2 = C3 = .01), and the fixed Reynolds number.
For the initial complex generation, constant lower and upper boundaries,
aLi and aui, i = 1, ... , N, respectively, are also input. No initial

guess is needed.
The vertices a-, j = 1, ... , K, for the initial complex figure are

"randomly generated within the constant rectangular boundaries defined

iI
* -
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"by aL., auJi, i = 1, ... , N. Each parameter ai is uniformly distributed

over its interval aui - aLi, so that each vertex .a is uniformly dis-

tributed over the enclosed rectangular N-dimensional volume. The random

vertex aj is checked for feasibility; a nonfeasible vertex is simply

thrown out and randomly regenerated. Whenever a random vertex is found

to be feasible, its performance function PFj is evaluated. The process

continues until a complete complex is formed.

The original starting procedure used by Box [22] requires an

initial feasible vertex. Each succeeding vertex is randomly generated

as outlined in the above paragraph, but a nonfeasible vertex is moved

halfway toward the centroid of the partially completed complex figure.

The presence of the initial feasible vertex insures that the random

vertex will always become feasible by this process. This procedure is
r t adequate for feasible regions which are highly nonrectangular, which

is the situation in the present study. Although each parameter may be

allowed large variations, the actual feasible volume is a small fraction

of the N-space rectangular volume bounded by aU and 2_L. This effect is

more prc'ounced for large N. The effect of the nonrectangularity of the

feasible region is to cause each random vertex to be moved half the

distance to the centroid many times. The result is that the entire

initial complex tends to be clustered in a relatively small neighborhood

about the initial feasible vertex. Since the initial complex is not

well distributed over the feasible space, there is no global information

about the performance function surface. Hence, the chances of converging

to the global feasible optimum are reduced. Furthermore: the small

scale of the initial complex implies small steps and slow progress until

the complex has a chance to expand. But the most detrimental effect is

that the close proximity of all the vertices in the initial complex

greatly increases the chances of premature convergence by the stopping

criterion used with this method. The modified starting procedure

removes these problems. The well-distributed initial complex makes

large global moves at first and has a better chance of inding the

global feasible optimum, although it does not always do so, as results

in Chapter 5 demonstrate.

L~
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Continuing with Figure 17, once the initial complex is formed, the

procedure is to reject the worst vertex, i.e., the vertex associuted

with the highest drag coefficient. A trial vertex is g:!nerated by re-

flection through the centroid of the nonrejected vertice!. an amount (

times the distance from, 'he rejected vertex to the centroid. The

empirical expansion fdctor a is 1.3 throughout this study, as recommend-

ed by Box [22]. If the trial vertex is not feasible, it is repeatedly

moved halfway toward the centroid until it becomes feasible. Noncon-

vexities may cause problems here since the centroid of the feasible

vertices may not lie in a feasible region. Repeatedly moving a non-

feasible vertex halfway toward a nonfeasible centroid may prove futile.

Guin suggests at this point that the entire complex be thrown out; de-

tails are in Appendix C.

Once a feasible trial vertex is found, its performance function

PF, i.e., drag coefficient, is computed and compared with the second

worst PF value of the complex. The second worst value is used rather

than the worst to avoid the situation in which the trial PF is between

the worst and second worst values, in which case the newly found vertex

is immediately rejected at the start of the next cycle. This implies

that the direction of the next cycle will be toward the point from which

the present cycle started. This situation is expected when the complex

is straddling a local opt;flum, but otherwise wasted moves result. If

the trial PF is better than the second worst PF value, the trial vertex
replaces the worst vertex; otherwise, the triai vertex is moved halfway

toward the centroid and the new PF is checked. This retraction toward

the centroid continues until the PF value is acceptable or until the

trial vertex enters a relative e2-neighborhood of the centroid. If the

latter occurs, a new search direction is tried by rejecting the next

worst vertex and retaining that previously rejected.

The process of direction change continues until an acceptable

vertex (feasible, PF better than second worst value) is found. In all

cases, the worst vertex is replaced by the newly found vertex. The

stopping condition is checked and if it is not satisfied the procedure
begins again at entry point 1 in Figure 17. A premature abort occurs

when a new acceptable vertex cannot be found. In such cases, it is
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assumed that an optimum has been found even though the stopping condi-

tion is not satisfied. As with all search strategies, the modified

Complex Method converges ts a local optimum; hence, it may be necessary

to solve the problem several times using different randomly generated
initial complex figures in order to establish that a feasible global

optimum has indeed been found.

Several features of the modified Complex Method make it especially

suited to the drag minimization problem. The primary feature is that

the method can cope with rather general inequality constraints which

are explicit or implicit in the parameters. The method only requires

a *'yes" or "no" to the feasibility question; it does not matter which

constraints are violated or how much. Thus it is a simple matter to

cope with the separation constraint directly. The complex figure's

ability to "roll" along boundaries helps to prevent premature conver-

gence on a boundary. Since the method uses global features of the

function surface, it is not sensitive to local irregularities which

might confuse local gradient methods. The logical strategy is straight-

forward,.and easy to implement on the digital computer. The method as

presented here is self-starting; if the optimum is known to lie in a

certain region, that information can be exploited at the outset by

adjusting the constant boundaries aLi and aui, i = 1, ... , N. No

parameter scaling is required since the movements of the complex are

automatically scaled to the range aui - aLi, i = 1, ... , N.

There are several deficiencies in the method described here. The

stopping condition, while precisely defined, has proved economically

costly to satisfy. That is, many PF evaluations are required to es-

tablish that the present best vertex is a local optimum. In fact, for

the drag minimization problem, the stopping condition has never been

satisfied. Rather, the search is aborted after a large number, e.g.,

3N to 4N, of PF evaluations do not improve'the best PF value. The best

vertex is assumed to be a reasonable approximation to the local optimum.
A second deficiency is the method's inability to handle equality con-

straints; these must be handled by means outside the search strategy

I- itself.

FAN
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A third deficiency, related to the stopping condition, is that the

method lacks quadratic convergence near local optima. This is important

if the local optimum is interior, not on a boundary. One of the two

classes of bodies considered in this study appears to have interior

optima (changing with Reynolds number Rv), so that some consideration

has been given to this weakness of the Complex Method. It appeav

appropriate to exploit a quadratically convergent method for constrained

problems which have interior optima; for this reason Powell's Method of

Conjugate Directions [25], which is approximately quadratically conver-

gent, has been used.

Powell's Method of Conjugate Directions. A detailed word flow

chart of Powell's Method, as used in the present study, is given in

Appendix D. Powell's Method generates search directions but leaves the

actual minimization along the line of search to an external method. A

parabolic interpolation scheme is used for the linear minimization in

the present study; details are given in Appendix D.

Shown in Figure 18 is the essential structure of Powell's Method

of Conjugate Directions as used in this study. The basic input data are

the number of independent parameters N; an initial feasible guess vector

A0 , .e., Ao = (ao0 , ao, "... aoN); the lower and upper scaling vec-

tors aL and aU, respectively, used to scale the search space; a set of
linearly independent search directions 17, ..' "'9 ; an initial step

size STEP for the linear search routine and a convergence tolerance 3.

Normally the initial set of search directions is the set of unit vectors

parallel to the parameter axes. The scaled parameters vary nominally

between zero and one.

To start the procedure the initial guess is scaled to X0 , where

X0 = ýXo , X, " ), using the relationship X (ao. aLiI/
-1 *0 2 .,XON - gterI~uta Oi O

(aui - aLi). The corresponding performance function value PFo is eval-

uated. One cycle consists of a linear search along each of the N

direction vectors ý, , 1 ... 9 IN. The minimum point of one search is

the base point for the next, so that XN is the best point of the entire

cycle. Also, Am is the magnitude of the maximum change in performance
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function to occur in any one linear search. The corresponding direction

vector of maximum change is Eim.

The next phase of the method is to generate the new direction vec-

tor R = !N - o, and to compute the trial point yt = !N + v with its

performance function PFt. Two inequality checks determine whether the

new direction is promising or not. If the new direction is promising,

an additional linear search along it is made; the Dim direction vector

is thrown out and the new direction vector j_/ljl is inserted into the

last position of the set of search directions. Powell has proved for

quadratic surfaces that this procedure guarantees that the new set of

directions will be at least as efficient as the previous set.

After deciding to keep or reject the new direction, a convergence

check is performed. The check involves the original base point X0 and

the best point of the cycle. If convergence is not achieved, a new

step size STEP is computed. The new STEP magnitude must lie between

certain reasonable limits; it can never be larger than 1- (old STEP).

The latter limit is introduced to forc the search to become more local

with each succeeding cycle; it is a modification of Powell's original

procedure. The minimization continues cycle by cycle until the conver-

gence criteria are satisfied.

Since Powell's method cannot cope with constraint boundaries, they

must be replaced with a suitably zonstructed penalty function. The

effect of the penalty function must be to keep the search in the feasi-

ble region. For the drag minimization a penalty function with the

following properties is desirable:

1. The penalty function must deal with general explicit or

implicit inequality constraints in a manner similar to

the Complex Method.

2. Since a constraint violation may render the drag mode'

totally invalid, the penalty function must generate an

apparent performance function value without employing

the drag model itself. In other words, in nonfeasible

regions the response surface may not even exist.

tA
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3. The penalty function should not distort the response

surface on the feasible region.

Item 1 implies that constraint violations are to be indicated with a
simple "yes" or "no" as is done in the Complex Method, rather than indi-
cating which constraints are violated and by how much. Item 2 is a real
necessity since some constraint violations, e.g., non-negative body
dimensions, yield a physically meaningless body shape. Furthermore,
avoiding a drag computation saves computer time Item 3 implies that
the penalty function has no influence on the feasible region so that the
performance function is the actual drag value there. For the drag mini-

mization a performance function PF which includes a simple penalty
function satisfying all three items above is defined as

CD , no constraints violated
PF =

CDNKV + cliCDNKVI , constraints violated (3.12)

where CDNKV is the nearest known value of CD on the feasible region and

c, is a small positive constant approximately equal to the search conver-

gence tolerance. Equation (3.12) may be generalized to

PFactual value , no constraints violated

PF = PFNKv + c1IPFNlKVI constraints violated andI iPF NKv ý 0

small positive number, constraints violated and

PFNKV = 0 (3.13)

-, where PFNKV is the nearest known value of PF on the feasible region.
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The constant c, > 0 is arbitrary but is selected so as to make the

ficticious PF surface eppear reasonably well behaved.

The Powell Method used in conjunction with the penalty functioni implied in equation (3.13) has several features useful in the drag

minim;zation problem. It can handle the general inequality constraints

in the same manner as the Complex Method. It possesses approximate

quadratic convergence which may be beneficial for finding interior

optima.

There are potential deficiencies in the method. An initial feas-

ible guess is required so the method is not self-starting; for some

problms locating a feasible initial guess is not trivial. The param-

eter space should be scaled so that each parameter has an "equal inter-

est" in the performance function. The method uses local information in

its moves so that local irregularities may confuse the search strategy.

However, one motivation for using a "local" method in the drag minimiza-

tion is to study the migration of local minima with Reynolds number.

The stopping condition as indicated in Figure 18 is as costly to satisfy

as that for the Complex Method. From a practical point of view it may

be adequate to test for performance function convergence but not param-

eter convergence.

3.5 Properties of the Optimal Solution

After obtaining an optimal solution, four properties of that solu-

tion must be considered. These include uniqueness, a global ,ersus

nonglobal solution, and the sensitivity of the optimum to off-design

conditions. The fourth property emerges when the optimal solution is

obtained using a finite search and a finite stopping condition; it is

the proximity of the reported solution to the true local minimum. These

properties are of concern in all optimization problems, but they will be

commented on below in terms of a numerical "black-box" performance

function to which a finite search has been applied. This is, of course,

the situation for the drag minimization problem.
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The te,.. .q:ue" is being used in an eng;neering sense. Optimal.

soluticns w, :,:, are spatially far apart in an N-parameter space but

wnich are close in their performance function values, say to within

the convergence tolerance, are regarded as nonunique solutions. The

term "global" ,-efers to the best of all the feasible local optima, but

it has meaning only after uniqueness is established. For "black-box"

models there are no rigorous procedures for establishing whether an

optimal solution is either unique or global. Th'is is true for optima

on the interior or on a 'undary. At best these properties can only bp

indicated by solving the same optimization problem several times using

different starting conditions. This procedure has been used in the

present study.

The question of sensitivity has real practical importance. Es-

sentially, it is desirable to know how quickly the optimal solution

degrades in performance at off-design conditions. Such conditions occur

due to variations in the parameters, variations in assumed fixed con-

ditions, e.g., Reynolds number, and variatirns in the model, e.g.,

transition prediction. These off-design conditions are examined in

this study, although not uniformly ior every optimum body design.
The proximity of the reported solution to the true local optimum

can be interpreted in t',o ways. From the design point of view proxim-
ity of performance is emphasized; from the optimization point of view

spatial proximity as well as performance proximity are important. The

latter statement is true because it is of interest to know how efficient

a search strategy is in seeking out local minima. When using finite

search strategies with "black-box" models, the local optimum is usually

never known exactly. One procedure is to fit an analytic quadratic

surface locally in the neighborhood of the best solution [20]. The

ninimii of this analytic surface is found accurately; the true minimum

is known to within a finte but .. aller tolerance. A side benc it of
the quadratic surface fit is the immediate approxin.ate information "f

local curvature behavior useful in sensitivity studies.

To work reliably the above procedure requires a reasonable distri-

bution of experimc.tits (point!) in a ne ghborhood about the Euspected

local optimum. In an N-parameter space at least N + N(N + 1)/2
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experiments are required. Usually the requirement of a "reasonable

distribution" forces the generation of some additional points not ob-

tained during the actual optimization run so that an extra zost is

incurred using this procedure.

A less thorough and less costly approach for determining the
proximity of the best point to the true local c.timum *; to examine

several points randomly distributed on the surface of an N-hypersphere

whose center is the reported best point. The radius of the normalized

hypersphere may be the normalized convergence tolerance for example.

The procedure ;s to randomly generate a direction, orthogonal to any

previous directions; and to test the performancc function value at

both ends of the hyperspherical diameter parallel to the generated

direction. The random direction is rejected and regenerated if both

ends are in nonfeasible regions. If no better point is found after

two or three random directions have been checked, then the confidence

in the assumption that the rcported optimum is near the true local

optimum has increased. However, if a better point is found, then the
radius is immediately increased and the procedure is repeated. An

alternate procedure is to re-center the same hypersphere on the new
best point and to repeat the procedure. If a bettc; point is found

on the second hypersphere, then it is assumed tOat the reported optimal

solution is not a particularly good approximation to the true local

optimum. But the point may still be acceptable if the performance

function value differences arc ;rnall. In the present study proximity

checks are made using this procedure rather than the quadratic surface

fit.

3.6 Comment on Optimization Philosophy

The optimization p. .'cophy em.rging in this chapter is summarized

* in this section. EsserK.ally the drag minimization is to be solved

through the interactions of two digital computer programs, each a
"black-box" to the other. The drag model and search strategies are

independent of each other; hence, independent improvwŽments can be made

Ai.
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in one without affecting the other. This idea has been established

from the outset so that as better drag models or search strategies

become available, they may be incorporated into the drag minimizat~or

package with only minor programnning changes. So as to not overempha-

size the "black-box" relationship, experience has shown that it is

usually beneficial to tailor the search strategy somewhat to the partic-

ular problem in order to make the complete package more efficient.

The Complex Method and Powell's Method with the penalty function

given by equation (3.13) represent diverse search strategies. The

diversity should lend a degree of confidence to the determination of

uniqueness and global optimality. The Complex Method, with its ran-

domly and globally distributed initial complex figure, has some chance

of finding the global optimum, if there Is only one. Powell's Method,

with its local movements, should be able to "track" a local minimum

drag shape with changing Reynolds number. Two other benefits of
Powell's Method for interior optima include efficient convergence and

the approximate knowledge of the local curvature at the optimum point.
There are two points of view regarding the results of the drag

minimization studies. One is the design point of view in which the

emphasis is on the performance of the design and its sensitivity to

off-design conditions. The other is the optimization point of view
which includes consideration of the above and also uniqueness, globality,

proximity to the true optimum, and search efficiency. Both points of

view are retained in the results to follow but not uniformly with every

minimum drag shape.
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CHAPTER 4

PARAMETRIC BODY PROFILES

This chapter defines the two classes of bodies used in the present

study. Certain inequality constraint expressions are also present.J.

A parametric definition of body shapes more general than that given by

equation (3.10) may be expressed as

N 1
Y(X) = Y aiFi(X), G(4.1)

where N is the number of independent parameters ai associated with the

known functiorn Fi(X). The known function G(X) is present to satisfy

certain boundary conditions built into Y(X). Equation (4.1) implies

that Y(X) may not be a simple linear combination of known functions.

The procedures used to derive the expressions for Y(X), i.e.,

equation (4.1). are essentially those reported by Granville (1969) (29].
The idea is to divide the body into sections each of which is described

by a low degree polynomial. From hydrodynamic , nsiderati% s the com-

plete body is to be continuous through second derivatives; for example,

a discontinuity in curvature can cause a "pressure spike" (local region

of highly accelerated flow) to occur. The low degree polynomial of

e,'ch secti'on is completely specified in terms of its boundary condi-

tions, some of which are fixed and some of which are free to be manipu-

lated. Those which may be manipulated are the parameters to be varied
during an optimization run. Furthermore, for each body section only

two boundary conditions are free so that two-dimensional constraint

boundaries can be plotted. The complete derivations are left to Ap-
pendix E; th results are reported here.

i1
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' •4.1 Five-Parameter Rounded-Nose, Pointed-Tail Body [291

An example of this body is shown in Figurel9. The forebody (0 • X
Xm) is described by a fourth-degree polynomial, the aftbody (XM s..X sL)
by a fifth-degree polynomial.

Y

K.

Figure 19. Rounded-Nose Pointed Tail Body.

SThe six dime~isional parameters shown in the figure are •iited below:

1 . Rn~ = Radius of ciervature at nose

= I/(d 2X/dY2 ) at X = 0

2. D = Maximum diameter

= Y(Xm)

3. Xm = Axial location of maximum diameter D

R--- ii 0*4
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4. KI = Curvature at Xm

"d2 Y(Xm)/dX
2

5. St = Profile slope at tail

= dY(L)/dX

6. L = Overall body length

The rounded-nose, i.e., infinite slope, is a built-in boundary

condition, although a zero radius of *'urvature, Rn = 0, is allowed. The

pointed-tail, i.e., finite slope, is also a built-in boundary condition.

The six parameters listed above can be reduced to five which are

nondimensional, hence the "five-parametev" designation. These ale
listed below.

1. rn = Nondimensional radius of curvwture at nose

= [4Xm/D'] Rn = [4Xmf2] Rn/L (4.2a)

2. fr = Fineness ratio

= L/D (4.2b)

3. xm = Nondimensional axial location of maximum diameter D

= Xm/L (4.2c)

4. k, = Mondimensional curvature at Xm

= [-2X4/D] K, = [-2Xmfr] K, L (4.2d)

5. st = Nondimensional slope at tail

= £-2(L-Xm)/D] St = [-2(l-xm)frl St (4.2e)

All nondimensional parameters are defined so that they are normally

* !non-negative. The particular nondimensionalizing expressions emerge

io
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during the derivations given in Appendix E. The length L is not a free

parameter to be winipulated since it must be scaled to satisfy the

fixed Reynolds number.

The analytical expressions for this five-parameter body are given

below:

1. For 0 X < Xm (forebody):

Y(X) I

4- [rnF,(x) + kRF2 (x) + G(x)]T (4.3)

where x = X/Xm (4.4a)

F1 (x) = -2x(x - l)1 (4.4b)

F,(x) =-x_(x- 1)2 (4.4c)

G(x) = x2 (3X2 - 8x + 6) (4.4d)

2. For Xm <_ X < L (pointed aftbody):

Y(X) _ I [S2 lFXm + I

f tF(x + (---m)2 k, F2(x) + G(x)] 2  (4.5)

where x = (L-X)/(L-Xm) (4.6a)

F1 (x) = -x2 (x - l)- (4.6b)

F 2 (x) = -x 3 (x - 1)2 (4.6c)

G(x) = x 3 (6x 2 - 15x + 10) (4.6d)

The constraint boundaries imposed on the five nondimensional param-
eters are listed below. Some are obviously "pre-judgments" influenced

by previous hydrodynamic experience.
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The complicated constraints are listed last and are considered in
r detail.

1. Non-negative radius of curvature Rn at nose, or

rn Ž?0 (4.7a)

2. Nonpositive c-irvature K, at maximum diameter, or

ki 20 (4.7b)

3. Real location for maximum diameter so that

0 < xm < (4.7c)

4. Reasonable fineness ratios, i.e., not conducive to

separation, so that

fr . some positive constant, say 2.5 (4.7d)

5. Nonpositive slope St at tail, or

st L 0 (4.7e)

6. No inflection points oi forebody

7. No or only one inflection point on aftbody

The low degree polynomials for the two body sections together with

constraints 1 through 7 above imply that the body profile is always
non-negative.

Noninflected Forebody. The forebody, which is described by a
fourtil-degree polynomial, may have zero, one, or two inflection points.

The analysis [29] given in Appendix E leads to a set of two simultaneous
nonlinear algebraic equations which must be solved by numerical itera-
tion. The solution gives the rn versus ý, curve along which one limiting
inflection occurs on the forebody in that the second derivative touches
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zero but does not change sign. The convex rn versus k, boundary is shown
in Figure 20; the non-negative boundaries are due to equations (4.7a)

and (4.7b) above. The existence of two inflections in the labelled

region is demonstrated graphically [29].

3
Two Inflections

--- One Inflection
r

No Inflection

0 5kl

Figure 20. Feasible Region for Noninflected
Rounded-Nose Forebody Section.

Noninflected or Inflected Pointed Aftbody. The aftbody, which is

described by a fifth-degree polynomial, may have zero, one, two, or

three inflection points. The analysis [29] given in Appendix E leads
to a set of two simultaneous nonlinear algebraic equations which must

be solved by numerical iteration. A singularity leads to another set
2of equations which can be solved directly. The resulting st versus

S[(I - Xm)/X m]
2 k, curves are shown in Figure 21. A nonconvexity arises

when both noninflected and singly inflected aftbodies are allowed. The

curved boundary represents the limiting inflection in that the second6
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derivative tou(.hes zero but does not change sigrn. The number of inflec-

tions in each region has been established by Granville [29].

SiTwo

Inflections

10

S 2 No Inflection

"One Inflection

One Inflection

kJ(l - Xm)/Xm] 2  10

Figure 21. Feasible Region for Noninfiected or Singly
Inflected Pointed Aftbody Section.

4.2 Eight-Parameter Rounded-Nose, Tailboom Body

An example of this body is shown in Figure 22. The forebody (0 .<.

X <_ Xm) is described by a fourth-degree polynomial as in Section 4.1

above, the midbody (Xm :_ X _• Xi) bý a fifth-degree polynomial, and the

tailboom aftbody (Xi :i X <j L) by a fifth-degree polynomial.
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K1

S S
R

Xm

Figure 22. Rounded-Nose Tailboom Body.

The nine dimensional parameters shown in the figure are listed below:

1. Rn = Radius of curvature at nose

= 1/[d 2X/dY2) at X = 0

2. D = Maximum diameter

=Y(Xm)

3. Xm Axial location of maximum diameter D

4. K1 Curvature at Xm

=d
2y(Xm)/d X2

5. Xij Axial 1ccation of inflection poirit
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6. Ri Profile radius at Xi

= Y(Xi)

7. Si = Profile slope at X4

= dY(Xi)/dX

8. T = Terminal profile radius

= I(L)

9. L = Overall body length

The rounded-nose, i.e., infinite slope, is • built-in boundary condition
as in Section 4.1 above, and Rn = 0 is allowed. The tailboom has built-

in boundary conditions of zero slope and curvature, and T = 0 is mathe-

matically allowable. The zero slope and curvature at X equal L implies

that a cylindrical tailboom extension may be added withou÷ loss of

profil.e continuity through the second derivative.

The nine parameters listed above can be reduced to eight which are

nondimensional, hence the "eight.-parameter" designation. These are
listed below:

1. rn = Nondimensional radius of curvature at nose

= (4Xm/D 2 ) Rn = (4xmf2) Rn/L (4.8a)

2. fr = Fineness ratio

= L/D (A.S-SP

3. xm = Nondim:nsional axial location of maximum diameter D

= Xm/L (4.8c)

4. k, = Mondimensional curvature at Xm

i =(-2X'/D) KI = (-2xrfr) K1 L (4.8d)I
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5. xi= Nondimensicnal axial location of inflection point

"= Xi/L (4.8e)

6. ri = Nondimensional profile radius at Xi

= (2/D) Ri = (2fr) Ri/L (4.8f)

7, si = Nondimensional profile slope at Xi

= [-(Xi - Xm)/(D/ 2 - Ri)]Si

= [- 2fr(Xi - xm)/(l - ri)]Si (4.8g)

8. t = Nondimensional terminal profile radius

(2/D) T = (2 fr) T/L (4.8h)

All nondimensional parameters are defined so that they are normally non-

negative. The particular nondimensionalizing expressions emerge during

the derivations given in Appendix E. The length L is not a free param-

eter to be manipulated since it must be scaled to satisfy the fixed

Reynolds number.

The analytical expressions for this eight-parameter body are given

below. The expressions for the forebody (0 _< X <_. Xm) are identical to

those given by equations (4.3) and (4.4) in Section 4.1 above; they are

not repeated here.

1. For Xm< X<SXi (midbody):

Y(X) 1 [ri + (ri) (Xi/xm-l) k F,(x)

L 2 fr -ri

+ si Fz(x) + G(x) (4.9)
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where x (X - X)/(Xi- Xm) (4.1Oa)

F2(x) = -- x3 (x - 1)2 (4.1Ob)

F2(x) = x - x3(3x2 - 8x + 6) (4.10c)

G(x) xa(6x 2 - 15x + 10) (4.10d)

2. For Xi < X L I (tailboom aftbody):

Y rX [1 + 1( ) F1 (xI + (1-ri)(-xi)

L 2  1 ri (xi-xm)(ri) s 2(X)

(4.11)

where x = (L - X)/(L - Xi) (4.12a)

F,(x) = 1 - x3(6x 2 - 15. + 10) (4.12b)

F2 (x) = -x3(3x2 - 7x + 4) (4.12c)

The constraint boundaries imposed on the eight i.ndimensional param-

eters are listed below. Because the forebody is iden ical to that for

the five-parame-;er body, some of the constraints listeci here are dupli-

cates of those found in Section 4.1.

1 Non-negative radius of r. "ature Rn at nose, or

r n ?. 0 (4.13a)

2. Nonpositive curvature K at mnximum diameter, or

k _>0 (4.13b)

3. Compatible locations of maximum diameter and inflection

point so that

0 (m <Xi < (4.13c)
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4. Reasonable fineness ratios, i.e., not conducive to

separation, so that

fr 1 some positive constant, say 2.5 (4.13d)

5. Compatible radii at maximum diameter, inflection
point, and trailing edge, so that

0 t rji SI (4.13e)

6. Nonpositive profile slope Si at inflection point, or

si Ž. 0 (4.13f)

7. No inflection points on body except at Xi and L

The low degree polynomials for the three body sections together with

constraints 1 through 7 above impiy that the body profile is always

non-negative. The inflection point requirement, item 7, implies that

all three body sections are noninflected except at Xi and L. The

analysis for the noninflected forebody is identical to that for the

five-parameter body so that Figure 21 applies.

Noninflected Midbody. The midbody, which is described by a fifth-

degree polynomial, may have zero, one, two, or three inflection points,

but no more than two on the interval Xm < X < Xi since one is fixed at

X equal Xi. The analysis in Appendix E leads to a boundary curve de-

fined by two explicit parametric equations. A singularity leads to an

additional equation. The resulting convex si versus [(xi/xm - 1)2/

(I - ri)1k1 curves are shown in Figure 23. The number of inflections

in each region is established by a general analytical demonstration.

Noninflected Tailboom Aftbody. The tailboom aftbody, which is

described by a fifth-degree polynomial, may have zero, one, two, or

three inflection points, but no more than one on the interval Xi < X <

L since one is fixed at X equal Xi and another at X equal L. The

I,
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3

Two Inflections

NoIfeto
One

S1  nieto
One Inflection

k I((Xi/XM) - J/ -ri) 1

Figure 23. Feasible Region for Noninflected Midbody Section.

(1 - rim( - xi)

3 i (ri)(xj xm)

One

11o Inflection

Inflection

One Inflection

0
t/r

Figure 24. Feasible Region for Noninflected
Tailboonm Aftbody Section.
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analysis in Appendix E gives the linear convex [(( - ri)(l -xi)/

(xi - xm)(ri)]si versus t/ri boundaries shown in Figure 24. The number

of inflections in each region is established by a general analytical

treatment.

4.3 Closing Comment

It is apparent that the two classes of bodies considered in this

study are constrained in advance to be well behaved according to previ-

ous hydrodynamic experience. The profiles are continuous through all

derivatives except at a finite number of points which join body sec-

tions; at such points the profiles are continuous through second

derivatives. The discontinuous third derivative at these points implies

that the curvature, while continuous, may change rapidly. Such behavior

causes local regions of accelerated flow. It is interesting to note

that the search strategies described in Chapter 3 have exploited this

phenomenon to help minimize drag, as shown in the next chapter.

A
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CHAPTER 5

RESULTS AND COMPARISONS

This chapter presents results obtained using the drag model and

search strategies described in the preceding chapters. Some attention

is also given to the hydrodynamic performance of powerful swimmers

found in nature. Overall conclusions are reserved for Chapter 6.

5.1 Body D-54 and the "Dolphin"

The impressive performance of the "Dolphin" [2), discussed in

Chapters I and 2, represents the standard of -omparison for the eight-

parameter tailboom body. It is of interest to know whether or not a
body superior (lower CD) to the "Dolphin" can be found. Using the

Complex Method, an opt•:1ization run made early in the study has pro-

duced a body with a drag coefficient CD about 25 percent lower than

that of the "Dolphin" at similar Reynolds numbers. The resulting body,

called "D-54," and its velocity distribution are shown in Figure 25

along with the "Dolphin" profile. Body D-54 is the 54th function (CD)
evaluation of the optimization run.

Body D-54 is characterized by a long run of laminar boundary layer

flow over the forward two-thirds of the body. The small velocity gra-

dients over the forebody help to reduce skin friction; however, the

same near-zero gradients have a neutrally stabilizing effect on the

laminar boundary layer, i.e., the absence of an accelerating boundary

layer increases the chances of early transition. At the midsectinn the
laminar boundary layer is approaching conditions for transition as in-

dicated by the R0 versus RS trajectory in Figure 26. Transition is
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4.0 Log R. = Log 0 ue/v

, Michel-e9
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Log RS Log S ue/V

Figure 26. Re versus RS for Body D-54.
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suppressed, however, by locally accelerating the flow; this is accom-

plished by allowing thu body curvature to change rapidly. After
transition, which is indtcaed by laminar separation/turbulent re-
attachment, the turbulent boundary layer survives the run of adverse
velocity gradient and enters the terminal accelerating region. Such a
region helps to suppress boundary layer separation as suggested by the
skin friction dist,'ibution plotted in Figure 27; we are equating nonzero
skin friction and nonseparating flow.

Perturbation studies on body D-54 have been made. The procedure
is to randomly generate orthonormal direction vectors 6 in Euclidean

8-space. For example, all components of 6, are randomly generated;
each succeeding vector has one less random component so that the re-
maining components may be used to satisfy orthogonality requirements.

Three orthonorimal vectors used in this study are shown in Table 1. The
reported optimum body shape is represented by the set of parameters a*,
where for the eight-parameter tailboom body

a_* = (a*, a*, a*, a*, a*, a*, a*,a*)

=(f*, X* k* r*,
r , 'n ri, s:, xi, t*) (5.1)

Perturbations a' about the reported optimum a* are generated by

= a! (1 ± R6 , j = 1, ... , 8 (5.2)

where R is the magnitude of the perturbation and 6j, j = 1, ... , 8, are

the perturbation direction components. Body D-54 and six 3% perturba-
tions are given in Table 2 using the directions of Table I and R = .03.

The perturbed drag coefficient values, which include two 6% per-

turbations not included in Table 2, are shown in Figure 28; it is

obvious that body D-54 is suboptimal, a result of prematurely stopping
the search after 65 function evaluations. Since the normalized gradients
3CD/3(perturbation direction) are on the order of one, significant im-

provements in the minimum CD shouid be possible.
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Table 1. Three Random Orthonormal Directions in Euclidean 8-Space.

Component Corresponding
Number j Parameter - 15 j 263j

1 fr .51355 -. 33699 -. 14686

2 Xm -. 22359 -. 01275 -. 08439

3 ki .28264 -. 33745 .01052

4 rn -. 06892 -. 08269 .09090

5 ri .43429 -. 11124 .10892

6 si .52863 -. 01050 .14185

7 xt .08208 .06885 -. 96372

8 t .35616 .86507 .04677

U,

- 30 cf T/ PU

4-

C

0

Laminar6
06oRv=7 x10•

ON

C
C

.9-

0 Axial Coordinate X L

- Figure 27. Skin Friction Distribution for Body D-54.
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CDC* 2

CD*1
1 , .

• 1 Rv 7 x 106

Percent PE-turbation

Pigure 28. Perturbation Results for Body D-54.
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5.2 All-Turbulent Body 1-36 and the Series 58 Study

The philosophy of the Series 58 study (3), discussed in Chapters 1!•and 2, is to design low drag bodies on the assumption that laminar flow

cannot exist in the operating environment at submarine-type Reynolds

numbers. No attempt is made here to judge the validity of this assump-
tion; rather, it is of interest to know whether or not an all-turbulent
body can be found with a CD lower than that of the best of the Series
58 bodies.

Using the Complex Method and the five-parameter pointed tail body,

three optimization runs with different initial compl1x figures have
been made. The boundary layer is tripped at X/L equals .05; for all
three runs the Reynolds number is fixed at RV equals 5 x 106 which is
the upper end of the Series 58 test RV values. Two of the three runs
converged after 27 function evaluations; the third run was near con-
vergence but was aborted prematurely after 38 function evaluations due

to reasons external to the search strategy.
The significant result of the three runs is the fact that the

response surface for all-turbulent bodies is quite flat. That is, fcr

fairly wide variations in the parameters, the drag coefficient varies
little. This is evident in Figure 29 which shows nine parameter sets
plotted in the parameter space. All parameter sets have corresponding

CD values within one percent of the best design. It is evident that low
drag all-turbulent bodies are not critically dependent on shape. Hence,

if laminar boundary layers cannot be exploited to minimize drag, then
means other than profile shaping must be used to reduce drag, e.g.,
polymer injection.

The best design, body "1-36," and its velocity distribution are

shown in Figure 30 along with the profile of model 4165, the best of

the Series 58 study. The CD value for body 1-36 is 0.020, which is
about the same as that of model 4165 according to the drig model used
in this study The streamwise velocity gradient is small over most of

the body length to reduce skin friction.
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Figure 29. Parameters for Nine All-Turbulent Bodies within
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5.3 A Series of Lam'-ar Bodies at Three Reynolds Numbers

Of primary interest is the change of minimum drag shape over a

wide range of Reynolds nur.mbers. An underlying topic of fundamental

importance is the uniqueness of a minimum drag shape at its design

Reynolds number. In this section we report the results of' optimization

runs made at three Reynolds numbers using the five-parameter pointed-

tail body described in Chapter 4. The selected Reynolds numbers are

RV = 5 x 106, 1.6 x lO, and 5 x 10 which correspond to nominal vehicle

volumes of 1.1, 37, and 1130 cubic feet traveling at a speed of 35 knots

in water.

Low RV Body G-35. Using the Complex Method a low drag body shape

has been obtained at RV = 5 x 106. The optimization run terminates

prematurely after 43 function evaluations due to reasons external to the

search strategy. The best body shape occurs on the 35th function eval-

uation of the run; its predicted CD val,,e is 0.0054 at the design RV.

Body G-35 and its velocity distribution are shown in Figure 31.

The body is quite streamlined and has a long run nf laminar boundary

layer flow over the forward three-quarters of tlK. body. The forebody is

essentially of the Reichardt type since the velocity gradient is nearly

zero over most of the forward half of the body. In a manter similar to

the tailboom body D-54, the flow is locally accelerated starting at

about X/L equal 0.6 to suppress transition, which is predicted by lami-

nar separation/turbulent reattachment. The effect is readily seen in

the Re versus RS trajectory plotted in Figure 32. The skin friction

distribution plotted in Figure 33 suggests that the turbulent boundary

layer is on the verge of separating near the trailing edge.

Perturbation studies have been made to determine if body G-35 is

near a local minimum. The parameters of the reported optimum in a

Euclidean 5-space are

a* (a, a*, a*, a*, a*)
2 3 4~ 5

€(f* x*, k*, r* s*2 (5.3)
r' m I n' tI
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Figure 32. R0 versus RS fcr Body G-35.
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Figure 33. Skin Friction Distribution for Body G-35.
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- As for the eight-parameter body D-54, random orthonormal directions, .

shown in Table 3, are used to generate perturbations

aj = a*(l R6), j = 1, ... , 5 (5.4)

where R is the perturbation magnitude and the 6j, j = 1,..., 5, are

the components o0 the perturbation direction. The parameters for body

G-35 and six 3% perturbations (R = .03) using the directions in Table 3

are shown in Table 4. The perturbation results, shown in Figure 34,

reveal immediately that body G-35 is suboptimal. The normalized gradi-

ents 3(CD)/a(perturbation direction) are on the order of one so that

significant improvement in the minimum CD should be possible.

Midrange RV Boey H-62. Using the Complex Method a low drag body

shape has been obtained at RV = 1.6 x l10. The optimization run termi-

ndtes after 80 function evaluations, the last improvement occurring

on the 62nd evaluation.

Body H-62 and its velocity distribution are shown in Figure 35; the

CD value is .0059 at the design RV value. The body is somewhat "fatter"

and more pointed than the low RV body G-35. A long run of laminar

boundary layer flow is maintained by continuously but mildly accelerat-

ing the flow over the forward two-thirds of the body. Transition is

predicted by the Michel-e 9 correlation, as indicated by the Re versus RS

trajectory plotted in Figure 36. The skin friction distribution shown

in Figure 37 suggests that the turbulent boundary layer is on the verge

of separating near the trailing edge in a manner similar to body G-35.
Perturbation studies have been made on body H-62 using the pertur-

bation directions given in Table 3. The procedure is the same as for

body G-35. The parameters for body H-62 and six 3% perturbations

(R = .03) are shown in Table 5. The perturbation results are shown in

Figure 38; direction 6 reveals -hat body H-62 is suboptimal and that

improvement in the minimum CD value is possible.

High RV Bodies F-57 and F2-49. Using both the Complex Method and

Powell's Method two distinct low drag shapes have been obtained at

t!
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Table 3. Three Random Orthonormal Directions in Euclidean 5-Space.

Component Corresponding tS3j
Numberj Parameter 2J3

1 fr .03552 .29310 -. 37469

2 Xm .67730 .33316 .15350

3 ki .47704 .35274 -. 38945
4 rn -. 16526 -. 16275 -. 82370
5 s2 -. 53397 .80758 .07677
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RV 5 x 10. One optimization run using the Complex Method is termi-

nated after 90 function evaluations, the best design occurring on the

57th iteration (body F-57). A second run using the Complex Method is

terminated after 70 function evaluations producing a different best

shape on the 49th iteration (body F2-49). A third run using Powell's
Method is terminated after 75 function evaluations with a best shape

quite similar to body F2-49. None of the three runs converges according

to the formal definitions associated with the methods.

Body F-57 and its velocity distribution are given in Figure 39;
the drag coefficient is .0076. This "fat" body has some hydrodynamic

similarity to body H-62 in that it is pointed and has a long run of

accelerated laminar flow over the forward two-fifths of the body. Un-
like the lower RV body shapes, there is no dominant locally accelerated

flow to suppress transition. The absence of the effect is seen in
Figure 40 in which the Re versus RS trajectory approaches the Michel-e 9

correlation curve in a monotonic manner, ultimately crossing the curve

to predict transition. The skin friction distribution shown in Fis,4re

41 suggests that the turbulent boundary layer is on the verge of sepa-

rating near the trailing edge.

Body F2-49 and its velocity distribution are given in Figure 42;
the drag coefficient is .0073 so that it is superior to body F-57 on

the basis of minimum CD. This shape also has hydrodynamic similarity

to body H-62 in that a small run of nearly constant velocity flow

precedes a large region of accelerated flow which heilps to suppress

transition. This effect is seen in Figure 43 in which the Re versus

RS trajectory approaches, veers away, and approaches again the Michel-

e' correlation curve; its ultimate crossing predicts transition. In a

manner similar to all the preceding pointed tail bodies, the skin

friction distribution shown in Figure 44 suggests that the turbulent
boundary layer is on the verge of separating near the trailing edge.

It is interesting %o note that each of the two low drag shapes

exploits a different feature of the midrange RV body H-62 to minimize

drag. That is, the pointed-nose body F-57 maintains laminar flow by

continuously accelerating the flow over the forebody; the rounded-nose

body F2-49 suppresses transition by locally accelerating the flow
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starting at about X/L equal 0.2. Even though the hydrodynamic means

are somewhat different, transition occurs at about the same axial loca-
tion for both bodies.

The existence of these two distinct low drag shapes brings the
question of uniqueness into the foreground. In an attempt to establish

uniqueness, i.e., the existence of a finite number of distinct low drag

shapes, a third optimization run has been made using Powell's Method;

the idea is to see whether a different search strategy converges to an
existing solution or produces yet another low drag design. If the

former occurs, then confidence in the uniqueness of the solutions has

increased. If the latter occurs, then nonuniqueness appears likely and

further testing is required.
The results of the Powell run are best seen by observing the over-

all parameter migrations of all three optimization runs as shown in
Figure 45. The data shown are the initial and fina, designs for each

run; the arrowhead indicates direction of overall movement. For the

runs using the Complex Method, the initial design shown is the best

vertex of the initial complex figure. It can be seen that both fir-l

designs are similar in their parameter values except for the radius of

curvature at the nose rn. It should be noted that small differences in

xm are exaggerated on the kj[(l - Xm)/xm] 2 axis. The result of the
Powell search is quite close to body F2-49 and appears to be converging

on the rn - k, boundary. The conclusion to be drawn is that the low

drag designs are distinct local minima, finite in number, and hence

unique.

Variation of CD with Reynolds Number. One sensitivity analysis of

interest to the hydrodynamic designer is the variation of drag coeffi-

cient with Reynolds number. The variation of CD over a wide range of
RV is shown in Figure 46 for low, midrange, and high RV bodies. At its

own design point each low drag body has the lowest CD of the three

values. The designs are not sensitive to reasonably wide variations in

RV, at least according to predictions of the drag model used in this

study.

JI
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5.4 Hydrodynamic Performance of Powerful Swimmers

Data on the swimn.ing speeds of dolphins (porpoises) have appeared

in the literature since the mid 1930's. Until the early 1960's all

data indicated that dolphins either 1) produced several times the power

believed possible by their musculature, or 2) were able to reduce their

flow resistance by unknown means to values several times lower than

those of similar man-made devices [31, 32]. However, recent studies

[33, 34] have shown through reasonably well controlled experiments that

the dolphin does not have low resistance to flow; indeed, typical drag

coefficients are about the same as that of a torpedo with an all-turbu-

lent boundary layer. Stated another way, there are rigid laminar flow

bodies with drag coefficients about half that of the dolphin animal.

A tested example of such a man-made device is the "Dolphin" [2] dis-

cussed in Chapters I and 2.

Table 6 compares drag data taken from the references indicated for

a nominal RV of 5 x l10. Data for the porpoise species are usually

reported on a dimensional basis so that direct comparisons are difficult

to make, item 1 of Table 6 being a rare exception. It is apparent from

the table that the Stenella attenuata has a drag coefFicient more like

torpedoes and all-turbulent bodies than like laminar flow devices. It

must be concluded that porpoises, as hydrodynamic performers, are.

mediocre.

There are at least three reasons why the earlier conclusions con-

cerning the hydrodynamic abilities of the dolphin are erroneous [33, 34].

Unusually high speeds of dolphins swimming near moving ships may be

explained by assisted locomotion since it is known that dolphins are able

to derive thrust from the moving fluid near the ship. Some speeds have

been deduced from dolphin sightings by observers on moving ships over a

quarter-mile distance r32]. However, the combination of ship motion and

wave motion creates an illusion of fast speed which has been estimated

to cause errors of 25% [34]. A more subtle source of error is the

duration of time over which the speeds are recorded. Dolphins are

capable of high power output and hence high speeds for short periods of

"- time, perhaps 5 to 10 seconds, during which the muscle tissue goes into
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Table 6. Porpoise Drag Data Compared with Rigid

Devices for Nominal RV of Five Million

Animal Drag * Drag Comments and Referencesor Device pt A A i
L pU2V

2~ 00.pU

1. Porpoise, Stenella .00239 Drag due to appendages
attenuata to subtracted out. Data

.00401 from coasting tests
(1966) [34].

2. Typical Torpedo - .0196 [2]

3. Model 4165 .00255 .0186 All turbulent boundary
of Series 58 layer. Tow tank data [3].

4. Laminar Flow .00109 .0092 Data From gravity-pow-
"Dolphin" to to erE.. drop tests 12].

.00164 .0138

• A = body wetted surface area

!A

K.
'It
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- oxygen debt. One series of tests [33] showed that the dolphin attained

a speed of 16.1 knots for 7.5 seconds but only 6 knots on a continuous

basis. For this example the ratio of peak power to continuous power

is approximately (16.1/6)1 = 19.2. Apparently the concept of peak

power has not been considered, or at least has not been stated, in

earlier work.

In comparing the shapes of powerful swimmers to those of rigid low

drag bodies, one important fact must be emphasized: the optimum shape

for swimminr, .aimals will be different from the optimum shape of low

drag man-made devices. The underlying reason is that the animals and

devices are optimally shaped with respect to different performance

functions. The animal is shaped so as to maximize its chances for

survival, which is a rather complex performance function indeed! On

the other hand, the shapes of similar man-made devices, as proposed to

date, are optimal with respect to the relatively uncomplicated perform-

ance function of drag. The powerful swimmer is shaped so as to attempt

to simultaneously minimize drag, maximize propulsion, maximize energy

reserves, minimize the effect of interfering objects such as eyes,

mouth, and gills, and minimize its metabolism rate while swimming

quickly. To extremize any one of these items without regard for the

Lthers would certainly change the shape of the animal.

Of equal importance is the fact that the powerful swimmers are

optimally shaped subject to a different set of constraints than those

for man-made devices. Animals are constrained to utilize propulsion

mechanisms which oscillate rather than rotate since all parts of the

animal must be connected with blood vessels and nerves. There is also

the subtle constraint of maintaining a favorable surface-area-to-volume

ratio so that the organism may function properly [35]. Man-made de-

vices are practically constrained to use rotating mechanisms for pro-

pulsion since oscillating mechanisms of rigid parts apparently cannot

be made to operate efficiently. Implied here is the additional practi-

cal constraint of rigid construction and structural integrity.

The point to be made here is that it is not particularly meaningful

to compare the shapes of powerful swimr.iers and low drag rigid devices.

Each is the result of attempting to extremize different performance

functions subject to different constraints.•iI
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations given in this chapter are based

on results reported in Chapter 5 and Appendix F. At the outset it must
be said that significant vehicle drag reduction is possible through shape

manipulation. The present method has produced low drag bodies with drag
coefficients one-fourth to one-third below that of the low drag "Dolphin"
at similar Reynolds numbers. Of equal significance is the fact that the
minimum drag shape is a strong function of Reynolds number. For the

five-parameter body over a one order-of-magnitude range of Reynolds
number (5 x 10 < RV < 5 x lO) the corresponding opcimum fineness ratio

(L/D) ranges nominally from 8.5 to 3.5. The corresponding location of
maximum diameter ranges nominally From Xm/L = .75 to .45.

Over the reported RV range all optimum body shapes exploit laminar
boundary layers to reduce drag. The experimental evidence of the "Dol-

phin" [2] demonstrates that substantial laminar flow does exist in the

ocean envirornient at speeds LIp to 60 knots (RV above lOt). It must be

concluded that laminar flo,. is a practical means for reducing drag at

these Reynolds numbers and that proper body shaping can use laminar

flow effectively.

If laminar flow is prevented due to extraneous factors, such as
body roughness, then it appears that the body shape is not particularly

critical in reducing drag so long as it is reasonably streamlined. This{ conclusion is based on the all-turbulent drag minimization study at

RV = 5 x 106 in which nothirg better than the best of the Series 58

study [3] is obtained. SLated another way, if laminar flow cannot be

exploited to reduce drag, then further drag reduction below present
design values must be accomplished by means other than prof'le shaping
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alone. One alternate means is polymer injection in the boundary layer.[Numerous optimization runs made at RV = 5 x IO• using two search

strategies produced a number of low drag shapes. Fine tuning by hand

reveals that there is apparently a unique global minimum drag shape.

The global minimum has high sensitivity to early transition; hence, sub-

optimal solutions without this sensitivity are more desirable from the

hydrodynamic design point of view. Alternatively, additional constraints

may be imposed on the problem to avoid such undesirable characteristics.

The modified Complex Mlethod used in this study has performed well.

It operates in a constrained environment without difficulty. Since it

moves on global information, the method can cope with errors in the

performance function which do not obliterate global trends. The method

is well suited for design problems without critIcal convergence tole-

ranc'.s. For the drag minimization problem, one may expect to use ION to

15N minutes of C[C 6500 comnputer time to obtain a minimum drag body

using the recommended 30-station solutions, where N is the number of

parameters.

Povell's Method along with the penalty function used in this study

can only be used effectively with 99-station (3 minute) solutions since

the nonimal 30-station (I minute) solutions introduce enough error to

confuse this locally moving method. The method's primary use for the

present problem is fine tuning; one may exnect to use 9N to 12N minutes

of CDC 5500 comiputer time for each cycle of fine tuning using the recom-

mended 99-st'ation solutions, where N is the number of parameters.

Normally, fine tuning by this method is not necessary; when it is re-

quired, one cycle is adequate.

Several recommendations for future research can be made concerning

the drag minimization problem. The two classes of bodies considered in

this study are constrained to be well behaved according to previous

hydrodynamic experience. The analyses for the various constraint

boundaries are complicated and lack generality. It may prove beneficial

to develop a more general class of bodies using orthogonal polynomials,

for example. Rather than deriving constraint boundaries, it would be

simpler to make a direct check of the profile and its derivatives; how-

ever, knowledge of the constraint boundaries does provide insight into

the nature of the problem.
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The one outstanding weakness of the modified Complex Mlethcd is its I
stopping condition. The problem is that a large number of function

evaluations are wasted in the process of deciding that the best design

is sufficiently near a local minimum. A more sophisticated terminating

strategy would be beneficial.

In the area of drag prediction, the major weakness appears to be

the modeling of the transition region. The assumption of point transi-

tion may be poor at lowi Reynolds numbers for which there is no abrupt

increase in skin Friction as predicted by the drag model used in this

study. The use of the planar flow Michel-e 9 correlation to predict

transition of axisymitnetric boundary layers probably introduces some

error. Experimental verification of the results of this study is

certainly desirable.

As far as hydrodynamic design is concerned, the next logical step

is to include the propeller or propulsive jet effects in the drag model.

This would change the problem from drag to power minimization. Since

the presence of the propeller or propulsive jet will change the flow

field, it is expected that the minimum power body shapes will differ

From those For minimum drag. As mentioned above, it seems desirable to

Further constrain the problem to avoid high sensitivity to early transi-

tion.
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APPENDIX A

DERIVATION OF DISPLACEMENT THICKNESS FOR MASS

CONSERVATION IN AN EXTERNAL AXISYMMETRIC FLOW

This appendix presents the derivation of the displacement thick-
ness 6*x for mass conservation in an external axisymmetric flow. The

principal notation is shown in Figure Al. The zero incidence flow with

x

--i)

r

U X

Figure Al. External AxisyENAetric Flow Notation.

reference velocity U n is parallel to the centerline X-axis. The bound-

pary layer is specified in terms of the curvilinear x-y coordinate
r rsystem. At a point in the boundary layer the velocity is u Tu(x, y),

ary aye isspecfie interm ofthecurvlinar -y cordnat
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which approaches the external value ue(x) as y approaches the boundary

layer thickness 6. The local tangent has angle a; the local wall radius

is ro. It is also convenient to use the relationship r = ro + y cos a,

where r is the radial coordinate of a point in the flow. The local

density p(x, y and external density Pe(X) are retained in the deriva-
tion to follow.

The displacement thickness concept equates the retarded boundary

layer mass flow to a displaced inviscid mass flow of constant local

velocity ue(x). This may be written as

4
(Viscous Mass Flux) = (Inviscid Mass Flux)

Ju 2rr dy = Pe Ue 2rr dy (A.1)

We assume that outside the boundary layer, i.e., for y >_ 6, that

pu =Pe Ue so that equation (A.l) reduces to

Jpu r dy = P ue r dy (A.2)
a6x

This may be written as

p u r r dd y + Pe ue r dy- Pe Ue r dy (A.3)

0 0 68X Jo

which reduces to

". .. . . .... .... . . . ..
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r dy = (l - )r dy (A.4)
Pe Ue

"10 10

Replacing r by ro + y cos a in the left-hand side of equation (A.4) and

dividing through by r. gives

(I + ro cosI ( )u- dy (A.5)
Pe ue ro

"0 0

for ro # 0. If y cos a/ro << 1, then we obtain

•x " l p d (A.6): (1 Pe Ue dy

which is the definition of 6* as given by equation (2.17) where p = Pe

is constant.

When y cos a/r0 cannot be neglected, then integration of the left

hand side of equation (A.5) gives

6x+cos- a(6* )2 = * (A.7)
6ax + 2ro (A.7)

where 6*, as defined by equation (2.17), has replaced the integral on

the right-hand side of equation (A.5). Equation (A.7) is quadratic in

a6*x; applying the quadratic formula gives

"x* 0 (-1r° ,+ a col +a +2cs• a •Aw is (A.8)

- which is the desired result.
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APPENDIX B

i DERIVATION OF YOUNG'S FORMULA FOR DRAG OF
AXISYMMETRIC BODIES AT ZERO INCIDENCE

Young's formula is based on the boundary layer momentum integral

equation. If the pressure gradient across the boundary layer and wake

is negligible, the momentum integral equation for axisymmetric bodies

may be written

S+ U 2x +w 22rr-
ax Ue Peue

where x is the streamwise coordinate along the body surface, ue is the

velocity at the edge of the boundary layer, ue is due/dx, Tw is the

shear stress at the wall, p is the fluid density, r is the radial co-

ordinate measured from the body axis and r = ro + y cos a, where ro is

the wall radius, a is the angle between the surface tangent and the body

axis in a meridional plane, y is the coordinate normal to the wall, X is

the momentum area, and H is the shape factor.

For the non-separatinq wake, the momentum integral equation is

assumed to apply and the skin friction Tw is zero so that equation (B.1)

may be written

i + Ue (H + 2)X = 0 (B.2)'x Ue

where for the wake region x is the streamwise coordinate measured from

the tail along the axis of symmetry, 3X/ax is replaced by dX/dx, and the

radial coordinate r reduces to y.

.1
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The momentum area of the wake is defined as

ou
x = 2r 0e(l - -)y dy (B.3)

and the displacement area of the wake is defined as

uI
A = 27n(( - )y dy (B.4)

Uoe

so that the shape factor is defined as

H = A/X (B.5)

Rearranging equation (B.2) and using the fact that

d(Ltn ue) due (B6)

so that

d !.nU e 1d Z u•e)--e (B.7)
dx U. dx U,,ue/u.

we may write

= (H + 2) d ue
X dx (HxnDU". (B.8)
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- or

Ue
d(in X) = - (H + 2) d(,n ) (8.9)

Integrating from the tail downstream to infinity we obtain

fl)' d An X = - t (H + 2) d(In !L) (B.10)

where subscripts ( and (), denote quantities at infinity downstream

and at the tail, respectively, and we have used in tegration by parts on

the right-hand side of equation (B.10). The value of H at ir-finity is
UeeU

unity [12). Since -i 1, we have that

nuen (+ + )l

in X. in X,+ An( LeIin-dH (.2

which can be written

=Xj Le )(H,+2 p1

X. Ue (H +2p In U eOd

i -. HI
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S - The exponential term may be written

exp ( n Je dH = exp JI n Lee dH (B.14)

!le
At this point Young assumes that Xn varies linearly with H so that

the integral in equation (B.14) is approximately the area of a triangle.
This gives

HI Zn( U d H, 1 - n( U1
1 de 2 Ue (B.15)

or

exp Xn co dH - (B.16)
Ue Ue1

Using equation (B.16) in equation (B.13) and replacing with = gives

H +5
ue 2 XX. =X,( ) (.7

Equation (B.17) relates the momentum area of the wake at infinity X0 to
the momentum area of the wake at the tail X, and other trailing edge



132

Sparameters. The drag coefficient is computed considering the momentum

flux across a closed control volume surface. The result is that

H.I+5

CD 2 = 2 Ue T (B.18)
V3 V3

Since X, = 2r r 0e, where 0 is the momentum thickness defined as

I =_ (1 Ue ee) dy (B.19)

0

then we may write finally that

H1 +5
-Le4D r (B.20)
VT

which is identical to equation (2.15). We have tacitly assumed here

also that the wake momentum area at the tail is equal to that of the

boundary layer there. This seems reasonable since the momentum defect

of viscous flows must change in a continuous manner.

S.1
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APPENDIX C

DETAILED STRATEGY OF MODIFIED COMPLEX METHOD

The word flow chart given below gives the detailed strategy of the

Complex Method [22] as used in the present study. The strategy in-

cludes modifications due to Guin [23] to cope with nonconvex boundaries
as well as the generation of new search directions when the primary
direction fails. The starting procedure is a modification of Box's

original method.

A. Input

1. Number of independent parameters N.
2. Number of verti es in complex figure K.
3. Maximum number or performance function evaluations IPMAX.

4. Tolerances c, 2' F3"

5. Expansion factor a.

6. Contraction factor 8.
7. Lower constant boundaries aLi, i 1, ... , N, used during

initial complex generation.
8. Upper constant boundaries aui, i = 1, ... , N, used during

initial complex generation.

B. Initial Complex Generation

1. Set j = 1.

2. Does j exceed K?

a. Yes: Go to B.4.
b. No: Randomly generate jth vertex using next N elements of

random number sequence indicated by (rni), i = 1, ... , N.

|I
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ai]j = (rni)(aui - aL) , 0 <__rni < 1

i = I, ... , N
3. Is random vertex aj feasible?

a. Yes: Evaluate performance function PFj for vertex aj.
Set j = j + 1.
Go to B.2.

b. No: Has random generation of vertex aj failed more than
1000 times?

1) Yes: Abort program.
CALL EXIT.

2) No: Try another random generation of vertex a-.
Go to B.2.b.

4. Set abest best vertex of initial complex.

Set PFbest = PF value of a best.

Go to C.4.

C. Search Procedure

I. Is newest vertex better than a best?

a. Yes: An improvement has occurred.
Increment improvement counter IMPRV = IMPRV + I
Set abest = new vertex.

Set PFbest = PF value for new a-best.

Go to C.2.

b. No: Continue.

2. Check stopping condition: Are five best PF values within

relative c3-neighborhood of PFbest?

a. Yes: Tentative convergence. Are corresponding five best

vertices within relative c -neighborhood of abest?

1) Yes: Convergence achieved. Go to C.ll.

2) No: Try one more vertex rejection, i.e., if the
previous vertex rejection originated from
this point in program, assume convergence
and go to C.ll. Otherwise, go to C.3.

b. Nu: No convergence. Continue.

3. Will next performance function evaluation exceed maximum number

I.MAX allowed?

a. Yes: Output results obtained so far.
CALL EXIT.
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- b. No: Continue.

4. Reject worst vertex. Rejected vertex is ar.
5. Compute centroid cgr of remaining vertices.

(cgri 1 U aij K i = 1, ... , N

jfr

6. Is cgr in feasible region?

a. Yes: Set NCGVIO = 0
Go to C.7.

b. No: Set NCGVIO 1

7. Generate trial vertex at.

at = cgr + a(cgr- ar)

8. Is trial vertex at in feasible region?

a. Yes: Evaluate trial vertex performance function PFt.
Go to C.10.

b. No: Does NCGVIO = I?

1) Yes: Go to C.9.

2) No: Is trial vertex at within relative ~ 2-neigh-
borhooc of cgr?

a) Yes: Set at = cgr which is feasible.
Evaluate PFt. Go to C.10.

b) No: Move trial vert ex at amount 0 to-
ward cgr. New at = 8(old at + Err).
Go to C.8.

9. Both centroid Ur and trial vertex at are not feasible. Reject

entire complex figure. Have more than 10 complex rejections

occurred?

a. Yes: Abort search.
CALL EXIT.

Sb. No: Reset lower bounds aLi and upper bounds aui., i = 1,
N, to coincide with unfeasible centroid cgr and

best previous vertex abe st Swap components if

necessary to insure that aLi <_aUi, i = 1, ... , N.
Go to B.l.

10. Is trial vertex performance function PFt better than second

worst PF value?

'I
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a. Yes: RrAplac,- Norsc ýe, ex witt, vertex at.
Go to G. i

b. No: Is trial vertex at within relative c2-reighborhood of
:'entroid cgr?

1) Yes: Try a new search direction. Reject the next
worst vertex and retain previously rejected
vertex. Rejected vertex is a r Have all K
vertices been successively rejected?

a) Yes: Abort search.
CALL EXIT.

b) No: Go to C.5.

2) No: Move trial vertex at amount a toward centroid
cgr. New at = $(old at + .:gr). Go to C.8.

11. Output optirrum parimeters a*.

a_* a best

12. END

- - - - - -
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APPENDIX D

DETAILED STRATEGY OF POWELL'S METHOD OF CONJUGATE DIRECTIONS

The word flow chart given below presents the strategy for Powell's
Method of Conjugate Directions [25]. The only modification from Pow-

ell's original procedure is the procedure for computing the new step

size STEP used in the linear search routine; see item B.15 in the out-

line below. Following Powell's method is a word flow chart for the

linear search strategy involving a parabolic interpolation scheme.

D.1 Strategy for Powell's Method

A. Input

1. Number of independent parameters N.

2. Feasible initial guess vector ao = (ao 1 , a0 , 02 , aoN)'

3. Set of N linearly independent normalized search direction

vectors (L, •2.9 .

4. Lower and upper scaling vectors, aL and aU , respectively,
where aL = (aLaL, ... aLN) anda U =(au ,au 2 , .-. , aUN)"

5. Maximum number of search cycles ICYMAX.

6. Initial scaled step size STEP used in linear s2arch routine.
7. Convergence tolerance e3.

B. Search Procedure

1. Initialization.

a. Scale initial guess vector to X0 , where Xoi (aoi aLi)

/(aUi - aLi), i = 1, ... , N.
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b. Evaluate performance function PFo of initial guess. A
2. Start search cycle. '1

a. Set maximum PF change Am = 0.

b. Set direction number For maximum PF change im 1.

c. St direction index j = 1.

3. CALL COGGIN (linear search routine): from base point X.1I

perform linear minimization along direction vector Qj. Find
the minimum point Xj and its performance function vallue PFj.

4. Test for maximum PF change. Is IPFj - PFj.Ij greater than
Am?•

a. Yes: Set Am = JPFj- PFjIlI.
Set im = j. Go to B.5.

b. No: Go to B.5.

5. Increment direction index j = j + 1. Is j . N?

a. Yes: Continue cycle, go to B.3.
b. No: Cycle is complete.

Go to B.6.

6. Set X best = ._N and PFbest = P"N"

7. Compute new direction vector p = (IN - Xo), th.at is, Vi

XNi - Xoi, i = 1, ... , N.

8. Compute trial point y t = !.N + p, that is, yti = 2XNi -Xo,

i = 1, ... , N. Is lYt - Xo1 less than (.001)(F 3 )?

a. Yes: Convergence likely. Go to B.14.

b. No: Compute PFt = PF(yt). Go to B.9.

9. Perform Powell's first inequality check on new direction. Is
(PFt - PFo) z 0?

a. Yes: New direction is not promising.
"Go to B.13.

b. No: Go to B.10.

10. Perform Powell's second in.quality check on new direction. Is

(PFo - 2PFN + PFt)(PFo - PFN - Am) >--Am(PFo - PFt)?

a. Yes: New direction is not promising.
Go to B.13.

b. No: Go to B.11.
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11. New direction is promising. Remove direction vector of maxi-

mum PF change, Lim. Put new direction vector in .N:

a. For i = 1, ... , im - 1: new i = old 9i.
b. For i = im- 1, ... , N- 1: :iewLi = old .i+l.

c. For i = N: hew _N =

12. CALL COGGIN (linear search routine): from base point XN

perform linear minimization along new direction vector _N.

Find new minimum point Xbest and its performance function

value PFbest. Go to B.14.

13. New direction is not promising. Retain old search directions:

a. For i = 1, ... , N: new = old -i

b. Go to B.14.

14. Test for convergence.

a. Is PFo - PFbest

0 ~

1) Yes: Go to B.14.b.

2) No: Go to B.15.

b. Is X0 i - Xbest i
< e3?

i = 1, ... , N
1) Yes: Convergence achieved.

Go to B.17.

2) No: Go to B.15.

15. No convergence yet. Compute new step size STEP:

a. AX = I es Xt I

b. APF = jPFbest- PFo0.

c. STEP =

d. Is STEP < (O.1)(AX)?

1) Yes: Set STEP = (O.1)(AX).
Go to B.15.e.

2) No: Go to B.15.e.

?'
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e. Is STEP > (0.5)(old STEP)?

1) Yes: Set STEP (0.5)(old STEP).
Go to B.15.f.

2) No: Go to B.15.f.
f. Set X0o=X best ' PFo = PFbest.

16. Will next cycle exceed maximum number ICYMAX of cycles allowed?

a. Yes: Output results obtained so far.
CALL EXIT.

b. No: Go to B.2.

17. Convergence achieved.

a. Scale optimum X* back to a*: a = aLi + Xi (au- aLi),

i = 1, ... , N.

b. CALL EXIT.

18. END.

D 2 Strategy for Linear Search Routine

The word flow chart below gives the detailed strategy for the

parabolic interpolation scheme used for the linear search in the pres-

ent study. The method always brackets the minimum along the line of

search before applying the parabolic interpolation.

A. Input from Calling Program POWELL

1. Current base point is X with performance function value FX.

2. Current step vector is S = STEP _, where I is the current

normalized search direction and S = (SI, S2, ... , SN). -i =

(STEP)(ýi), i = 1, ... , N.

B. Linear Search Procedure.

1. Initialization.

a. Set step multiplier D = 1.

b. Set distance DA = 0 for point A.

c. Set distance DB = 0 for point B.

I
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d. Set distance DC =0 for point C. )

e. Set performance function FA = FX fo,' point A.

f. Set performance function FB =0 for point B.

"g. Set performance function FC = 0 for point C.

h. Set step counter K = -2.

i. Set linear search convergence tolerance TOL = 3c.

2. Start linear search.

a. Compute point y= X+ DS, where Yi =Xi + D Si, i = 1, ... , N.

b. Compute performance function F for y.

c. Increment step counter K = K + 1.

3. Is F > FA?

a. Yes: A bracket point has been found.
Go to B.4.

b. No: Performance function is still decreasing.

1) Reset points A, B, and C

DC = DB FC = FB

DB = DA FB = FA

DA = D FA = F

2) Compute new step
For D > 0: new D = 2(old D) + 1.
For D < 0: new D = 2(old D) -1.

3) Go to B.2.

4. A bracket point has been found. Is K_> 0?

a. Yes: Both bracket points have been found.
Set up points A, B, and C so that the minimum point
B is bracketed by the points A and C:

DC = DB FC = FB

DB = DA FB = FA

DA = D FA = F

Go to B.5.

b. No: First bracket point has been found after first step
along line of search. Reverse direction and continue.

1) Set point B

FB = F DB= D

2) Change sign of step multiplier

new D =-old D

3) Go to B.2.
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5. Proceed with parabolic interpolation.

a. Compute location D of minimum on parabolic arc.

b. Is point D between DA and DC?

1) Yes: Go to B.5.c.
2) No: Parabolic interpolation has failed. Use best

point B as local minimum.
Go to B.6.

c. Perform parameter convergence check:

Is ID - DAI / IDA - DCI <_ TOL?

1) Yes: Convergence achieved. Use point B as local
minimum. Go to B.6.

2) No: Go to B.5.d.

d. Perform function convergence check. Compute point y = X +
D S and its performance function value F. Is

IFB - Fl / IFB, <__TOL?

1) Yes: Convergence achieved. Use smaller of FB or F as
local optimum.
Go to B.6.

2) No: No convergence yet. Reset points so that minimum
point B is bracketed by points A and C.
Go to B.5.

6. Convergence to local minimum along line of search has been

achieved. Compute approximate second derivative associated

with present search direction, a2PF/3V .

7. RETURN TO POWELL.
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APPENDIX E

DERIVATION OF PARAMETRIC BODY PROFILES

This appendix presents the derivations for the parametrically de-

fined body profiles considered in the present study. The pertinent

constraint boundaries are also derived. The procedures follow those

reported by Granville (1969) [29] in which the body is divided into

sections at convenient axial locations, e.g., maximum diameter point.

E.1 Rounded-l'nose Forebody Section [29]

The rounded-nose forebody and its dimensional p--.meters are shows.

in Figure El. The maximum diameter D occurs at the axial location Xm;

the curvature at this point is K,. The nose radius of curvature is Rn.

Y
K

D
2

Xm X

Figure El. Rounded-Nose Forebody Section.

*"•d ' •{- • I .,.-.- ......- .. . . .... j- '
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The boundary conditions for this profile Y(X) are listed below where J
primes on Y(X) denote differentiation with respect to X:

I. Y(O) = 0 (E.la)

2. Y'(0) = or dX/dY]x 0o 0 (E.Ib) A

3. ll(d2X/dY2)]X = Rn (F.Ic)

-,4. Y(Xm) = D/2 (E.Id)

5. Y'(Xm) = 0 (E.le)

6. Y"(Xm) =K (E.1f)

where Rn, D, K1, and Xm may all vary.
It is possible to reduce Y(X) to a nondimensional profile with

only two variable boundary conditions. We define the nondimensional
profile to be

x = X/YV (E.2a)

y = 2Y/D (E.2b)

so that the boundary conditions given by equations (E.1) become

1. y(O) = 0 (E.3a)

2. dx/dy]x=0 = 0 (E.3b)

3. 1/(dx/idy2 )]x=0o 4Xm Rn/D = rn (E.3c)

4. y(l) = I (E.3d)
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- 5. y'(1) = 0 (E.3e)

6. y"(1) = 2Xm K1/D = (E.3f)

where primes on y(x) denote differentiation with respect to x. The var-

iable boundary conditions are rn and k,; two free parameters make it

possible to conveniently plot constraint boundaries for the forebody.

The intent here is to derive the simplest polynomial expressions

which satisfy the boundary conditions given by equations (E.3). Fur-

thermore, we shall attempt to make the expressions linear in the free

parameters rn and k,. For this purpose we define the "quadratic" poly-

nomial

n
f(x) =y(x) j n bi xi (E.4)

where the bi, i = 0 ... , n, are to be determined using the boundary

conditions given by equations (E.3). Differentiating equation (E.4)

with respect to x gives

d y• n
f = d = 2yy' = (i) bi x (E.5)

i=l

n

f d2 y = 2yy" + 2y' 2  = • (i)(i-l) bi xi (E.6)

dx i=2

3n .
fill d y = loy"'+ 6y':' = (i)(i-l)(i-2) b xi (E.7)

X7 Y Yx i=3

ai =

* I1
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where primes on f(x) denote differentiation with respect to x. Equa-

tion (E.5) may be written as

2y n (i)bxi )-1 dx (E.8)

and differentiating equation (E.8) with respect to y gives

2 = f (i)(i-1) bi x = 2 + (i) b1 xi' )d~ (E.9)

For the case x = 0, equations (E.4), (E.8), and (E.9) reduce respective-

ly to

y(O) = 0 = bo (E.10)

2y(O) 0 = b, [dx/dy]x=O (E.11)

and

2 = 2b2 [dx/dY]2=O + b, [dlx/dy 2]x= (E.12)

where equation (E.10) has been inserted into equation (E.11). Equation

(E.11) implies that b, or [dx/dy]x=O or both equal zero. If b, equals

zero, then boundary condition (E.3c) cannot be satisfied by equation

(E.12). Hence b, / 0 and boundary condition (E.3b) is automatically

satisfied when y(O) = 0. This is the motivation for selecting the
"quadratic" polynomial, equation (E.4), at the outset. From equations

(E.l0), (E.11), and (E.12) we obtain immediately that
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b = 2 rn (E.13)

Using equations (E.1O) and (E.13), the boundary conditions (E.3d, e, f)

give

n
2rn + I.bi 1 (E.14a)

i=2

n
2rn + X (i)bi = 0 (E.14b)

i=2

n
S(i)(i-l)bi -2k, (E.14c)

i=2

Setting = 4 yields a unique solution for equations (E.14).

Rather than solving for the bi, i = 2, 3, 4, by direct elimination,

we follow Granville [29] and postulate the existence of a function y2 (x)

which is linear in rn and k,. This is justified since y2 is linear in

the bi, i = 2, 3, 4, which are linear in rn and k,. Thus we write

y2 (x) = rn FI(x) + kF,(x) + G(x) (E.15)

where F,(x), F, (x), and Gfx) are polynomials of degree n = 4, and rn and

k, are independent and arbitrary for the momient. The six boundary con-

ditions (E.3) imply the following five boundary conditions for F, (x),

F,(x), and G(x) for arbitrary values of rn and kl:

1. y(O) = 0 implies that F1(0) = F2 (O) = G(O) = 0

2. y(l) = 1 implies that FI(1) = F1(1) = 0 and G(l) = 1

AJ
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3. dx/dy]x = 0 implies that

2y(O) y'(O) = b1 = 2rn = rnF'1(0) + kIF•(0) + G'(O)

so that F•(0) 2 and F2'(O) = G'(0) = 0

4. y'(1) = 0 implies that F,'(1) = F'(1) = G'(1) = 0

5. y"(1) = -k, implies that

-2k, rnF"'(L) + klF2"(1) + G"()) so that

F1'(l) = G"(1) = 0 and F2'(1) = -2

Knowing the polynomial degree and the boundary conditions, one can

write down the functicns F, (x), F,(x), and G(x) almost by inspection.

For Fl(x) we have that

F1 (O) = 0 F1(l) = 0

F,(O) = 2 F•(l) = 0

F',(1) = 0

so that we may write immediately that

F1 (x) = c, x(x -

to satisfy the homogeneous boundary conditions. Applying the final

condition F;(O) = 2 gives

F,(x) = -2x(x- l)' (E.16)

.larly we may write

F2(x) = - x2 (x - 1)2 (E.17)

For G(x) ".•: hi, e that
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G(O) = 0 G(l) : 1

G'(O) = 0 G'(1) : 0[ G"(1) : 0

so we may write

d G(x) c x(x

and integrating gives

G(x) = c1  4 _4 2 X 3 + - X2) + C

For G(O) = Owe have c2  0 and for G(O) 1 we obtain finally that

G(x) = x 2 (3x 2 - 8x + 6) (E.18)

We now have completely defined y2 (x) by equations (E.15), (E.16), (E.17),

and (E.18) which satisfy the boundary conditions (E.3). Irserting these

results into equation (E.2b), and using the fact that fr = L!D, we ob-

tain the forebody profile equaticns (4.3) and (4.4) in Chapter 4.

Constraint Boundaries for rn and k,. From physical considerations

we require a non-negative radius of curvature Rn at the nose and no.!-

positive curvature K1 at the maximum diameter section. We have defined

rn and k, so that rn > 0 and k, >_ 0 s~tisfy these physical requirements.

Mainly because of previous hydrodynamic experience, an additional

requirement is introduced, namely, that of no inflection point on the

forebody [29]. The limiting case occurs when the second derivative

touches zero but does not change sign and is expressed as

d2Y(X)/dX2 = 0 (c.l9a)
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d'Y(X)/dX3  0 (E.19b)

for 0 . X _ Xm. If a solution exists for equations (E.19), it repre-
sents the rn versus k, curve for which a limiting inflection point

occurs somewhere on 0 <_ X _S Xm.
Using equations (E.2), (E.5), (E.6), (E.7), and (E.15), equations

(E.19) reduce to

2ff" - (f,)2  = 0 (E.2Oa)

f = 0 (E.20b)

The procedure is to fix the location x on 0 <. x <. 1 where the limiting
inflection point oc.urs and to solve equations (E.20) for the corre-
ponding values of rn and k,. In this spnse rn and k, are related
through the parameter x. The Secant Method [30] is used to obtain the
solution which is given in Table El and plotted in Figure 20 in Chap-

ter 4.

E.2 Pointed Aftbody Section [29]

The pointed aftbody and its dimensional parameters are shown in
Figure E2. The maximum diameter D occurs at the axial location Xm;

Y.
K1

! ~D

V L X

Figure E2. Pointed Aftbody Section.
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Table El. Solution for Limiting Inflection on Forebody.

x k rn x ki rn

.000 4.0000 .0000 .520 3.7301 1.1187

.020 4.0398 .0005 .540 3.5616 1.2439

.040 4.0794 .0024 .560 3.3711 1.3743

.050 4.1184 .0057 .580 3.1590 1.5080

.080 4.1566 .0105 .600 2.9269 1.6423

.100 4.1940 .0172 .620 2.6774 1.7742

.120 4.2300 .0258 .640 2.4146 1.9002

.140 4.2646 .0366 .660 2.1436 2.0166

.160 4.2972 .0499 .680 1.8710 2.1198

.180 4.3276 .0659 .700 1.6034 2.2069

.200 4.3552 .0849 .720 1.3479 2.2756

.220 4.3796 .1072 .740 1.1104 2.3251

.240 4.4000 .1333 .760 .8957 2.3554

.260 4.4160 .1634 .780 .7068 2.3681

.280 4.4266 .1980 .800 .5448 2.3654

.300 4.4311 .2375 .820 .4094 2.3498

.320 4.4285 .2823 .840 .2988 2.3243

.340 4.4178 .3331 .860 .2108 2.2913

.360 4.3977 .3901 .880 .1424 2.2533

.380 4.3670 .4539 .900 .0909 2.2121
.400 4.3243 .5250 .920 .0534 2.1692
.420 4.2681 .6038 .940 .0276 2.1258
.440 4.1968 .6906 .960 .0112 2.0828
.460 4.1088 .7855 .980 .0026 2.0407
.480 4.0027 .8887 1.000 .0000 2.0000
.500 3.8768 1.0000



152

"the curvature at this point is K . The finite slope at the tail is St.

The overall body length is L. The uoundary conditions for this profile

are listed below where primes on Y(X) denote differentiation with re-

spect to X:

1. Y(Xm) = D/2 (E.21a)

2. Y'(Xm) = 0 (E.21b)

3. Y"(Xm) = K, (E.21c)

4. Y(L) = 0 (E.21d)

5. Y'(L) = St (E.21e)

where D, K1, St, Xm, and L may all vary.

It is possible to reduce Y(X) to a nondimensional profile with

only two variable boundary conditions. We define thW nondimensional

profile to be

x = (L-X)/(L-Xm) (E.22a)

y = 2Y/D (E.22b)

so that the boundary conditions given by equations (E.21) become

1. y(O) = 0 (E.23a)

2. y'(0) =--2(L-Xm)St/D st (E.23b)

3. y(l) = I (E.23c)

4. y'(l) = 0 (E.23d)

5. y"(1) = 2(L- Xm) 2 KI/D = 'kia (E.23e)

L! m



"153

where primes on y(x) denote differentiation with respect to x, From

equations (E.3f) and (E.23e) it is apparent that

k a = ki[(L-Xm)/Xm] 2  = ki[(1-xm)/Xm] 2  (E.24)

where xm = Xm/L. The variable boundary conditions are st and k'a; two

free parameters make it possible to conveniently plot constraint bound-

aries for the pointed aftbody.

We follow the same procedure used in Section E.l for the forebody

so that equations (E.4), (E.5), (E.6), and (E.7) apply. For the case

x = 0, equations (E.4) and (E.5) reduce to

y(O) = 0 = bo (E.25)

2y(O) y'(0) = bi (E.26)

In order to satisfy the finitc slope requirement when using the "quad-

ratic" polynomial, equation (E.4), then

bi = 0 (E.27)

so that y'(0) is indeterminant in equation (E.26). Setting b, = 0 and

dividing through by 2y(x) in equation (E.5), we may apply L'Hopital's

Rule in the limit as x approaches zero so that

n1(i)(i-l)bi xi-

lim y'(x) = lim i=2
x÷O x-*O 2y'Tx -

2b2

2st

b2 2 (E.28)

'= • ... i • = ' " • • : > = I " . .. . .. . :• w • , ,•a . . .• I •• .. . "' • • •. .. . = • • . . .. . .. . . . . . • " . . .. • .. . ' •. .. " • . .. ..t. .•
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Using equations (E.25), (E.27), and (E.28), the boundary conditions

(E.23c, d, e) give

n
st + I = 1 (E.29a)

i=3

n
2s2 + Z (i)bi = 0 (E.29b)

i3

n

2s' + I (I)(i-l)bi = - 2 kia (E.29c)t i=3 '

Setting n = 5 yields a unique solution for equations (E.29).

Rather than solving for the bi, i = 3, 4, 5, by direct elimination,

we follow the procedure given in Section E.I. Since y2 (x) is linear in

the bi, i = 3, 4, 5, which are linear in s4 and ka, we postulate that

y2 (x) : s F1 (x) + kia F2 (x) + G(x) (E.30)

where F1 (x), F2 (x), and G(x) are polynomials of degree n = 5, and s4

and k1a are independent and arbitrary for the moment. Following the

procedures of Section E.1, we obtain finally the poinated aftbody profile

equations (4.5) and (4.6) in Chapter 4. In equation (4.5), parameter

kia has been eliminated using equation (E.24).

Constraint Boundaries for st and k a. From physical considerations

we require a nonpositive slope St at the tail, and a nonpositive curva-

ture K, at the maximum diameter section. We have defined st and k'a So

that st Ž 0 and kia Ž 0 satisfy thkse physical requirements.

'a j
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Either no or one inflection point on the pointed aftbody is al-

lowed. We consider the noninflected case first, proceeding as in

Section E.1 for the forebody. The limiting inflection point condition
is expressed by equation (E.19) for Xm .< X < I. Using equations (E.22),

(E.29), (E.4), (E.5), (E.6), and (E.7), equations (E.19) reduce to equa-

tions (E.20). These are solved using the Secant Method [30]. The

solution is given in Table E2 and is plotted in Figure 19 in Chapter 4.

Although Table E2 contains an entry for x = 0, there is actually a

singularity there with an infinite number of solutions. For x = 0,

equation (E.20a) is identically satisfied and equation (E.20b) reducei

to

3s' +k = 10 (E.31)

where equation (E.30) has been used. This straight line is plotted in

Figure 21 in Chapter 4.

E.3 Midbody Section

The midbody section used with the eight-parameter tailboom body is

shown in Figure E3 with its dimensional parameters. The maximum diam-
eter D occurs at the axial location Xm; the curvature at this point is

Y

K1

- :IRi

X X .m

Figure E3. Midbody Section.
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Table E2. Solution for Limiting Inflection on Pointed Aftbody.

x k'a* st x k'a* st

.000 5.0000 1.6666 .520 7.1756 3.1789
.020 5.0546 1.6490 .540 7.1986 3.5385
.040 5.1118 1.6317 .560 7.1927 3.9549
.060 5.1718 1.6150 .580 7.1518 4.4330
.080 5.2348 1.5990 .600 7.0690 4.9769

.100 5.3008 1.5840 .620 6.9370 5.5894
.120 5.3701 1.5703 .640 6.7480 6.2706
.140 5.4428 1.5582 .660 6.4944 7.0169
.160 5.5191 1.5482 .680 6.1695 7.8194
.180 ;.5990 1.5407 .700 5.7690 8.6614
.200 5.6826 1.5365 .720 5.2923 9.5174
.220 5.7701 1.5362 .740 4.7449 10.3520
.240 5.8614 1.5407 .760 4.1403 11.1212
.260 5.9564 1.5510 .780 3.5005 11.7770
.280 6.0549 1.5685 .800 2.8551 12.2756
.300 6.1568 1.5946 .820 2.2371 12.5868
.320 6.2614 1.6311 .840 1.6772 12.7019
.340 6.3682 1.5799 .860 1.1976 12.6356
.360 6.4762 1./434 .880 .8090 12.4200
.380 6.5845 1.8243 .900 .bill 12.0961
.400 6.6914 1.9257 .920 .2954 11.7039
.420 6.7952 2.0508 .940 .1493 lI.2769
.440 6.8937 2.2036 .960 .0595 10.8403
.460 6.9843 2.3881 .980 .0133 10.4112
.480 7.0640 2.6089 1.000 .0000 10.0000
.500 7.1291 2.8708

kk a (•-m~)2k 1 as given by equation (E.24)
Xm

S(E.2I
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K1. An inflection point occurs at Xi; at this point the slope is Si

and the profile radius is Ri. The boundary conditions for this profile

Y(X) are listed below where primes on Y(X) denote differentiation with

respect to X:

1. Y(Xm) = 0/2 (E.32a)

2. Y'(Xm) = 0 (E.32b)

3. Y"(Xm) = K, (E.32c)

4. Y(XI) = Rt (E.32d)

5. Y'(Xj) = Si (E.32e)

6. Y"(Xt) = 0 (E.32f)

where D, KI, Ri, Si, Xm, and Xt may all vary.

It is possible to reduce Y(X) to a nondimensional profile with only

two variable boundary conditions. We define the nondimensional profile

to be

x = (Xi X)/(Xi Xm) (E.33a)

y = (Y - Ri)/(D/2 - Rt) (E.33b)

so that the boundary conditions given by equations (E.32) become

1. y(O) 0 (E.34a)

2. y'(O) - - Xm)Si/(D/2 Ri) - si (E.34b)

3. y"(O) = 0 (E.34c)

2~
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4. y(l) = 1 (E.34d)

5. y'(1) 0 (E.34e)

6. y"(l) = (Xi - Xm) 2 K1 /(D/2 - Ri) = -km (E.34f)

where primes on y(x) denote differentiation with respect to x. From

equations (E.3f) and (E.34f) it is apparent that

kim = kl(Xi/Xm - 1)2/(l - 2Ri/D) = k1 (xi/x1 j, - 1)2/(l - ri) (E.35)

where Xm = Xm/L, xi = Xi/L, and ri = 2Ri/D. The variable boundary

conditions are si and kim; two free parameters make it possible to

conveniently plot constraint boundaries for the midbody section.

Deviating somewhat from Granville's procedure, we postulate im-

mediately that

y(x) = km F,(x) + si FY(x) + G(x) (E.36)

where Fi(x), F, (x), and G(x) are polynomials of degree five since there

are six boundary conditions given by equations (E.34). It is emphasized

that equation (E.36) is an "ordinary" polynomial involving y(x) rather

than the "quadratic" polynomial used by Granville which involves y2 (x).

If equation (E.36) is an incorrect postulate, then some of the boundary

conditions (E.34) will not be satisfied.

For arbitrary values of kim and si the boundary conditions for the

functions F,(x), F2 (x), and G(x) are

FI(O) = 0 F1(l) = 0

Fj(O) = 0 F-(1) = 0

F"(O) = 0 F'j(l) = -l
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2F(O) = 0 F2 (1) = 0

F;(0) : 1 F2'(1) = 0
F•(0) : 0 Fl(,) 0 0

G(0) = 0 G(1) = 1

G'(O) = 0 Go(]) = 0
G"(0) = 0 G"(i) = 0

For the function FY(x) we may write

FWx = c, x3 (x - 1)2

which immediately satisfies the h,.,nogeneous boundary conditions. The

nonhomogeneous condition gives

-(X) =-LXI(X _ 1)2 (E.37)

For the function F2 (x) we may write

5
F,(x) = bi xi

i=O

since the boundary conditions cannot be satisfied by the simpla form

(constant) xm (x - 1)n. By direct elimination we obtain

F2 (x) x - x3(3x2 - 8x + 6) (E.38)

For the function G(x) we may write

d C(x) c1 x2 (x 1)2

Integrating and applying G(l) = 1 gives
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G(x) x3(6x2 - i5x + 10) (E.39)

Since all the y(x) boundary conditions are satisfied, then apparently

the postulated form given by equation (E.36) is correct. Combining

equations (E.35), (E.36), (E.37), (E.38), and (E.39), and using the fact

that fr = L/D, we obtain finally equations (4.9) and (4.10) in Chapter

4.

Constraint Boundaries for si and k1m. From physical considerations

we require a nonpositive slcpe Si at Xi and nonpositive curvature K, at

the maximum diameter section. We have defined si and kim so that

si > 0 and kim a 0 satisfy these physical requirements.

We also require that no inflection points occur on the midbody

except at Xi. The limiting inflection point occurs when the second

derivative touches zero but does not change sign. This is expressed by

equations (E.19) which reduce immediately to

y"(x) = 0 (E.40a)

y'"(x) = 0 (E.40b)

Equations (E.40) can be solved by direct substitution to obtain

G G"(x) Fl((A) - G"'(x) Fll(x)
F'(x) F2'(x) - F"'(x) F'(x).

= kim F'11(x) - G"(x) (E.41b)F."(x)

for the limiting inflection point condition. The solution is tabulated

in Table E3 and plotted in Figure 21 in Chapter 4.

4ý?
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There is a singularity in equations (E.41) for x = 0. For this

case equation (E.40a) is identically satisfied and equation (E.40ý)

reduces to

si = km + (E.42)

This straight line is plotted in Figure 23 in Chapter 4.

E.4 Tailboom Aftbody Section

The tailboom aftbody section used with the eight-parameter tail-

boom body is shown in Figure E4 with its dimensional parameters. An

inflection point occurs at Xi; at this point the slope is Si and the

radius is Ri. There is also an inflection point at L; the terminal

radius is T. The boundary conditions for this profile Y(X) are listed

y

S
1

xi L X

Figure E4. Tailboom Aftbody Section.

below where primes on Y(X) denote differentiation with respect to X:
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Table E3. Solution for Limiting Inflection on Midbody.

x k•* si x klm*

.020 5.0511 1.2457 .520 7.6460 1.2787

.040 5.1048 1.2415 .540 7.7794 1.3161

.060 5,1612 1.2371 .560 7.8913 1.3641

.080 5.2203 1.2327 .580 7.9698 1.4246

.100 5.2826 1.2282 .600 8.0000 1.5000

.120 5.3430 1.2237 .620 7.9632 1.5919

.140 5.4169 1.2192 .640 7.8387 1.7016
,160 q.4696 1.2147 .660 7.6052 1.8289
.180 5.5662 1.2102 .680 7.2452 1.9716
.200 5.6470 1.2058 .700 6.7500 2.1250
.220 5.7324 1.2016 .720 6.1250 2.2812
.240 5.8225 1.1975 .740 5.3936 2 4308
.260 5.9178 1.1938 .760 4.5957 2.5638
.280 6.0185 1.1904 .780 3.7812 2.6718
.300 6.1250 1.1875 .800 3.0000 2.7500
.320 6."374 1.1852 .820 2.2924 2.7971
.340 6.3560 1.1838 .840 1.6842 2.8157
,360 6.4810 1.1835 .860 1.1854 2.8104
.380 6.6123 1.1846 880 .7941 2.78,:7
.400 6.7500 1.1875 .900 .5000 2.7500
.420 6.8934 1.1926 .920 .2091 2.7048
.440 7.0419 1.2005 .Nio .1467 2.6548
.460 7.1940 1.2121 .960 .0588 2.6029
.480 j.3478 1.2282 .910 .0132 2.5508
.500 7.5009 1.2500 1.000 .0000 2.5000

* kim = (xi/xm - l)2j(l - ri) by equation (E.35)

II

I I;

. .At -AL
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1. Y(Xi) = Ri (E.43a)

2. Y'(Xi) = Si (E.43b)

3. Y"(Xi) = 0 (E.43c)

4. Y(L) = T (E.43d)

5. Y'(L) = 0 (E.43e)

6. Y"(L) = 0 (E.43f)

where Ri, Si, T, Xi, and L may all vary.

It is possible to reduce Y(X) to a nondimensional profile with only

two variable boundary conditions. We define the nondimensional profile

to be

x = (L - X)L- Xi) (E.44a)

y = Y/Ri (E.44bj

so that the boundary conditions given by equations (E.31) become

1. y(O) = T/Ri = t/ri (E.45a)

2. y'(0) = 0 (E.45b)

3. y"(O) = 0 (E.45c)

4. y(l) = I (E.45d)

5. y'(1) = -(L- Xi) Si/Ri = S~a (E.45e)

6. y"(1) = 0 (E.45f)
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where primes on y(x) denote differentiation with respect to x and t

2T/D and ri = 2Ri/D. It is apparent from equations (E.34b) and (E.45e)

that

Sia si[(L - Xi)(D/2 - Ri)]/[(Xi - Xm)(Ri)]

= si[(l - xi,(l - ri)]/[(xi - xm)(ri)] (E.46)

where xm = Xm/L, xi = Xi/L, and ri = 2Ri/D. The variable boundary con-

ditions are Sia and t/ri; two free paramoter• make it possible to con-

veniently plot cunstraint boundaries for the tailboom aftbody.

Following the procedure in Section E.3, we postulatc immediately

that

(x) Fx) + ia F2 (x) + G(x) (E.47)

where Fj(x), F2 (x), and G(x) are polynomials of degree five since there

are six boundary conditions given by equations (E.45). For arbitrary

values of t/ri and Sia the boundary conditions for the functioi FY(x),

F2 (x), and G(x) are

F,(O) = 1 Fl(l) = 0

Fj(O) = 0 F1(1) = 0

F-'(0) = 0 F"'(1) = 0

F2 (O) = 0 F2 (0) = 0

F;(O) = 0 F;(1) = 1
F"(0) = 0 F"(I) : 0

G(O) = 0 G(l) = 1

G'(0) : 0 G'(1) =

G"(O) = 0 G"(1) =

E..
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For the function F,(x) we may write

d IW = c -( 1)2
dx F(x) :clx 2 (x-l)
dx

Integrating and applying conditions F1 (O) = 1 and F1 (l) : 0 gives

F,(x) = 1 - x3 (6x 2 - 15x + 10) (E.48)

For the function F2 (x) we may write

5
F2 (x) = bi x1

i =0

since the boundary conditions cannot be satisfied by the simple form

(constant) xm (x - l)n. By direct elimination we obtain

F2 (x) -:: 3(3x2 - 7x + 4) (E.49)

The function G(x) has the same bcndary conditions as in Section E.3;

thus equation (E.39) applies directly. Equations (E.39) and (E.48)
imply that

G(x) 1 - F1(x) (E.50)

so that

y(x) = 1 F + s( F2 (x) (E.51)

Equations (E.48), (E.49), and (E.51) satisfy the boundary conditions
(E.45); hence the postulated form given by (E.47) is correct. The

results are given a,; equations (4.11) and (4.12) in Chapter 4, to which
equation (E.46) has been applied.
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Constraint Boundaries for s4 and tiri. From physical considera-

tions we require a nonpositive slope Si, a positive profile radius Ri

at Xi, and a non-neyative profile radius T at '.. We have defined Sia,

t, and ri so that Sia > 0 and 0 t/ri <I satisfy these physical

requirements.

We also require that no inflection points occur on th• tailboom

aftbody other than at Xi and L; this implies that at most one inflec-

tion can occur on X4 < X < L. Pquations (E.40) cannot be used to find

the constraint boundarie:; no solution exists on 0 < x < 1 so that an

alternate approach is required. Using equation (E.40a) together with

equation (E.51) one may write

y"(x) (- 1) F'"(x) + Sia F"(x) = 0 (E.52)

Factoring out the solutions at x ' and x = 1, we obtain after some

manipulation that

[l + 7 1ia

x = i (Tt/r7f

[2+ tsia[2+(t/ri l]

which is the location of the third inflection point. It is apparent

that we must find the range of sia/(t/ri - 1) for whi h x <50 and x >_1.

Setting x < 0 and then x > 1 in equation (E.53) and performing the in-

equality analyses gives

S+ S < t (E.54)
3 ri • a 2 ri '

which defines the region for which no infle'.ti,,n point exists on 0 < x <

1. These linear boundaries are plotted in Figure 24 of Chapter 4.
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APPENDIX F

ADDITIONAL RESULTS

This appendix contains additional optimization results not reported
in Chapter 5. Also, summary tablks and figures of all optimization runs

are presented. Unless otherwise noted, all optimization runs are made
using 30-station solutions. However, the reported drag coefficients are
99-station solutions. The computer running time in minutes is nominally

equal to the number of performance function (PF) evaluations on the

CDC 6500.

F.l Eight-Farameter Tailboom Body at RV = 7 x 106.

The results for the eight-parameter tailboom body are limited; the

summary is shown in Table Fl. The additional data not previously re-
ported is the comparison of the CD values based on the 30-station and
99-station solutions. For body D-54 at RV 7 x 106 the predicted CD

decreases 11% when 99 stations are used.

F.2 Five-Parameter All-turbulent Body at RV = 5 x 106.

The three optimization runs for this body are summarized in Table

F2; overall parameter migrations are shown in Figure Fl. From the table
it is evident that there is essentially no relative distortion of the

response surface due to the 30-station solutions. This suggests that

the coarse 30-station grid loses important information associated with
the rapid change in the boundary layer immediately downstream of the
point transition. This rapid change does not occur in an all-turbulent
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boundary layer. From Figure Fl it is apparent that the response surface

for all-turbulent bodies at RV = 5 x 106 is quite flat. The three solu-

tions are spatially far apart but their CD values are all within 4.5%

of the best value. The parameters for the three all-turbulent solutions

are given in Table F3.

F.3 Five-Parameter Laminar Body at RV = 5 x 106.

The optimization runs for this body are summarized in Table F4;

overall parameter migrations are given in Figure F2. It is evident in

' table that there is significant relative distortion of the response

surface due to the 30-station solutions. The Complex M.ethod, moving on

global information, can cope with the relative distortion; that is, the

distortion apparently does not obliterate global trends. The Powell

J.athod, moving on local iniformation, is useless when using 30-station

solutions; the rosults of optimization Series P in Table F4 demonstrate

this. The results of Series P motivated the initiation of Series T

which uses 99-station sclutir..-s. Of course, this procedure triples

the cost of the op ; -:-ation run.

F. Five-Parameter Laminar Body at RV = 1.6 x 10.

The optimization runs for this body are summarized in Table F5;

overall parameter migrations are shown in Figure F3. As discussed

above, there is relative distortion of the response surface due to the

30-station solutions. It appears Lhat 99-station solutions must be

c.•iployed to use the Powell '1;ethed effectively.
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"Table F3. Parameter Values for Three All-turbulent Bodies.

"P"I Body Number

Parameter 1-36 12-24 13-27

fr 6.3294 8.9937 6.1323

xm .3692 .4815 .2924

ki 1.1272 2.5468 .2338

rn .6391 1.5045 .5044
s 2 .1513 .6324 .0951
St

* kla 3.2''17 2.9534 1.3696

~1  1 -Xm )*'ka =kl( xm
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F.5 Five-Parameter Laminar Body at RV = 5 x 10'.

Extensive runs have been made at this Reynolds number in an attempt

to establish the existence of uniqueness of the minimum drag shapes.

These runs are summarized in Table F6; the overall paFameter migrations

are shown in Figure F4. The results show that response surface distor-

tion is present as mentioned in the preceding cases; however, it appears

that large scale trends are not obliterated.
Based on 5 ies L, far from the feasible optimum the response sur-

face is nominally flat with local minima present. TVie series is termi-

nated before formal convergence is achieved, but after 70 PF evaluations

the method is makinq little progress. The three Powell series K, M, and

N all move rapidly co the rn - k1 boundary and then move slowly along

it. It appears that the Powell Method used in conjunction with the

penalty function defined by equation (3.13) cannot cope effectively with

curved boundaries. Stated another way, the direction-seeking strategy

of the method has difficulty aligning the search along boundaries which

dre not parallel to the initial set of search directions, which usually

is the set of parameter axes.

Series F and F2, both using the Complex Method, converge to distinct-

ly different shapes, as reported in Chapter 5. For this reason, the

region containing these two solutions is examined in detail to determine

whether the solutions are unique. By uniqueness we mean the existence

of a finite number of distinct minima. Series R, using the Complex

Method, revealed no significant information regarding uniqueness.

The best body shape obtained formally by an optimization run is

body M-73 which lies on the rn - k, boundary. Mainly due to the trend

of Series F2 and M, it is believed that the minimum CD at this Reynolds

number lies on this boundary. Perturbations on body M-73 along the

rn - k, boundary are shown in Figure F5. A generally well behaved trend

is evident; the bracketed minimum is near solution MP7 with a CD value

of .00712. This behavior suggests that the minimum drag solution is

unique. However, this cannot be construed as a sufficient test for

uniqueness; a truly sufficient test for uniqueness does not exist for

this problem.
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{-•J Series F2 (.00727) Q Series L (.01i13)
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Figure F4. Summary of Parameter Migrations for R= 5 x 10'.
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2 r 3.531l.3 MP5
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s 2 =.1788 .00712 00714rn 1 t= ",M P7 -. 0/0716
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0 5 x 107  M-3 .00724= C D
05S0 kI 5

Figure F5. Perturbations on Body M-73 along rn - k, Boundary.

Assuming that the optimum solution at RV 5 x 107 is body MP7, then

it is proper to question the validity of the presumed boundary on which
the optimum lies. An additional perturbation, body MP5 with CD = .01279,
reveals that the response surface ascends rapidly outside the presumed

feasible region. This tends to confirm the previous hydrodynamic expe-
rience which motivated the presence of this boundary at the outset. The
parameters for six laminar bodies obtained in studies at RV = 5 x l10

are summarized in 'able F7.
It is of interest to examine the hydrodynamic reasons why body MP7

has a low CD while its close neighbor, body MP5, has such an inferior

CD value. Body MP7 and its velocity distribution are shown in Figure
F6. The forebody has a limiting inflection at X/L = .26. The curvature

behavior induces an early adverse velocity gradient region which the

laminar boundary survives at this Reynolds number, at least according to

the flow model. A region of locally accelerated flow suppresses transi-

tion until X/L = 0.5. The early adverse region helps to reduce skin
friction but it has a destabilizing effect on the laminar flow. This

can be seen in Figure F7 which shows the Re versus RS trajectory at
RV = 5 x 10'. The trajectory very nearly touches the Michel-e' curve

at X/L = .25 approximately. The region of locally accelerated flow

M , * * - - -



181

Table F7. Parameter Values for Six Laminar
Bodies Design'ed at RV - 5 x 10'.

Body Number
F-57 F2-49 M-73 MP5 MP7 R-2

fr 4.2735 3.5000 3.5306 3.5306 3.5306 3.7866

Xm .4446 .4300 .4710 .4710 .4710 .4729

ki 3.8081 3.7000 3.8191 3.5000 3.3500 4.1106

rn .1821 .9000 1.0217 1.5500 1.3900 .5607

2
st .1773 .2000 .1789 .1789 .1789 .0478

* k 5.9443 6.5015 4.8157 4.4133 4.2242 5.1086

CD .0077 .0073 .0072 .0128 .0071 .0072

1 -XM) 2

*'ka = k M( xm
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Figure F7. Re Versus RS for Body MP7.

causes the trajectory to veer away and then cross tie correlation curve
at X/L = 0.. The neighboring solution, body MP5, appears very similar
to body MP7 and has a similar velocity distribution (figure not shown).
However, the early adverse region for body MP5 is severe enough to
cause its Re versus RS trajectory to cross the Michel-e9 curve at X/L -
.22. This accounts for the rapid change in CD between the neighboring

solutions.
The high sensitivity of body MP7 to early transition, as inferred

from Figure F7, makes it an undesirable hydrodynamic design. The trade-

off between low CD and low sensitivity to early transition must be left
to the judgement of the designer. It is possible, of course, to insert
additional constraints into the drag minimization problem to avoid this
undesirable sensitivity.


