L A Y S R N N POy

Tan e AN Ag
(Security classitication of title, body of abetract and indexing annatat:on muat ba ontered when the overel! report ie classilied)
RIGINATING ACTIVITY (Corporate suthor)

28. REPORT SECURITY C LASSIFICATION
Unclassified
Purdue University 26 amour

— e

' The Optimum Shaping of Axisymmetric Bodies for

N Minimum Drag in Incompressible Flow
-~
- (CYESCRIPTIVE NOTES (Type of report and Inchisive daies)

fechnical Report No. 4, June 1972

‘ :! UTHOR(S) (Last name, firet name, initial)

EPORT TITLE

> Parsons, Jerome S. and Goodson, Raymond I

@ 'EPORT DATE Ja. TOTAL NO. OF ™rGRS 75. NO. OF NKEPS
June 1972 197 35
CONTAACT OR GRANT NO. 96 ORIGINATOR'S REPORT NUMBEN(S)
NO0O014-67-A-0226-0012
PROJECT NO No. 4
NR 041-423
b 3}:1::&3!0&7 NO(S) (Any other numbers that may be assigned

AVATLABILTY/LIMITATIONNOTICES This document has been approved for public

lease and sale; its distribution is unlimited.

SUPPL EMENTAAY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

‘\ N

ABSTRACT The engineeringiproblem is the desian of submerged minimum
ag axisymmetric vehicles for a specified enclosed volume and con-.
ant speed. Propulsion is not considered so«th&tfﬁragx rather-than
wer:is to be minimized. ODrag reduction is to be accompniished solely
rough manipulation of the vehicle shape; other means of drag re- ‘
ction, such as polymer injection into the boundary layer, are not
msidered., -

Th2 optimization problem is formulatad as a nongradient search
t a finite constrained parameter space. Two classes of bodies, des-
‘ibed by five and eight parameters, are considered. The bodies are
mstrained to be well behaved based on previous hydrodynamic ex-
rience. The .drag model, valid for nonseparating flows, consists of
ymputer programs avaiiable in the literature and-is representative
f state-of-the-art drag prediction methods. The requirement for non-
rparacing flow represents an additional constraint on the optimizatio
~oblem. Two optimization methods representing diverse search philo-
yphies are used to obtain the optimal solutions. These include Box's
mplex Method and Powell's Method of Conjugate Directions used in
snjunction with a penalty function.

CONTINUED

. L
D [, 1473 Unlcassified

Security Classification

Sl MmN amy it e Bt oo o e



vy R

makagiat o) pc-ng e T At b e M S I

Unclassified ' : NO0014-67-A-0226-0012
NR 041-423
Technical Report No. 4

13. Abstract (CONTINUED)

The results show that significant drag reduction is possible
through shape manipulation. Reductions of one-quarter to one-third
below the best existing designs have been obtaired. A1l optimal
designs exploit laminar boundary lavers. If laminar flow is not
allowed, then drag reduction below the best existing designs apparently
must be accomplished by means other than shape manipuiation. The
optimal laminar shape is a strong function of Reynolds number, ranging
from quite slender at low values to quite "fat" at high vaiues. The
minimum drag shapes have a high sensitivity to early transition.
Suboptimal low drag bodies without this characteristic are used for
hydrodynamic design. Extensive runs at one Reynolds number suggest
that there is a unique global minimum drag shape at each Reynolds
number,

Unclassified

o oL a0 St 2 b D e D,

a




TG C g
g NIV RTIR Y P A PO U R L TR YT, ST T Y T —— S
4 ATt g W = PRl b e o Rt T - e T
¥ = R ST > Kl it ety L pp—
3
3 -
)
'
s . ‘

L o

PREFACE

This technical report is a reprint of the main body
of a Ph.D. thesis for research which was done at the

E Automatic Control Center and the Fluids Laboratory of

Westinghouse Research by Mr. J.S. Parsons under the direc-
tion of frofessor R.E. Goodson. Research support for the
work was provided by the Cffice of Naval Research under
contract NO0OO14-A-67-0226-0012, NR 041-423 and by the
Westinghouse Research Laboratories The work described

in the thesis is being continued at the Automatic Control
Center by investigating bette: drag models and experimenting

with more efficient optimization techniques.
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ABETRACT

The engineering problem-is the design of submerged minimum draé
axisymmetric vehicles for a specified enclosed volume and constant
speed. Propulsion is not considered so that drag rather than power is
to be minimized. Drag reduction is to be accomplished solely through
manipulation of the vehicle shape; other means of drag reduction, such
as polymer injection into the bcundary layer, are not considered.

The optimization problem is formulated as a ncngradient search in
a finite constrained parameter space. Two classes of bodies, described
by five and eight parameters, are considered. The bodies are con-
strained to be well behaved based on previous hydrodynamic experience.
The drag model, valid for nonseparating flows, consists of computer
programs available in the literature and is representative of state-of-
the-art drag prediction methods. The requirement for nonseparating flow
represents an additional constraint on the optimization problen. Two
optimization methods represcating diverse search philosophies are used
to obtain the optimal solutions. These include Box's Complex Method
and Powell's Method of Conjugate Directions used in conjunction with
a penalty function.

The results show that significant drag reduction is possible
through shape manipulation. Reductions of one-quarter to one-third
below the best existing designs have been obtained. A1l optimal designs
exploit laminar boundary layers. If laminar flow is not allowed, then
drag reduction below the best existing designs apparently must be

accomplished by means other than shape manipulation. The optimal lami- '

nar shape is a strong function of Reynolds number, ranging from quite

PRy

o r—




KERALLE (A
R
»
<
}

slender at Tow values to quite "fat" at high values. The minimum drag
shapes have a high sensitivity to eariy transition. Suboptimal low
drag bodies without this characteristic are used for hydrodynamic de-
sign. Extensive runs at one Reynolds number suggest that there is a
unique global minimum drag shape at each Reynolds number.
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CHAPTER 1

INTRODUCTION

Of fundamental interest in the field of fluid mechanics is the study
of fluid forces exerted on a moving body. In the area of hydrcdynamics,
a time-honored goal of the naval architect has been the reduction of
vehicle resistance by means of vehicle shape as well as by more elaborate
schemes [1], such as viscoelastic polymer injection into the beoundary
layer.

Ve are considering here the shape and resulting resistance, or drag,
of bodies submerged in aa incompressible fluid. The applications are

-~ directed toward vehicles such as torpedoes and submarines deeply sub-
merged in water. The primary function of such vehicles is to provide an
enclcsed volume in which a payload is carried.

The purpose of the preseht study is to include the hydrodynamics
as part of an optimization problem in which the vehicle drag is to be -
minimized thrcugh shape manipulation. Other means of drag reduction are
not censidered. The hydrodynamic probiem is made more tractable by re-
stricting the analysis to the class of axisymmetric vehicles (bodies of
revolution) without appendages immersed in axisymmetric flow (zero angle
of attack).

Stated somawhat more precisely, the optimization problem involves
the following: for a specified incompressible fluid, vehicle volume,
ani constant vehicle speed, find the axisymnetric body shape which
minimizes the drag. The vehicle whose shape minimizes the drag is
defined as the ontimum body. The equivalent nondimensional optimization
problem may be stated as follous: for a specified Reynolds number

L
R, = Ug V¥v, find the vehicie shape which minimizes the drag

- v
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2
coefficient Cp = D/( -%-p v2 vy ), where Uo is the constant vehicle
sveed, V is the vehicle's enclosed volume, v is the fluid kinematic
viscosity, D is the vehicle drag, and p is the fluid density.

The primary concern here is the design of the largest vehicle volume
with the lowest possible drag at a given speed; there are no prescribed
constraints on the body. From the hydrodynamics analysis point of view,
the actual volume and velocity separately are not important; the body
shape and characteristic Reynolds number Ry completely establish the
fluid dynamics. Thus a particular body shape has the same drag coeffi-
cient Cp over a wide range of velocities and volumes sc long as the
Reynolds number R, is unchanged.

Other design problems may be more conveniently handled by using a

characteristic Reynolds number based on something other than (volumef%.
For example, the torpedo must have a fixed maximum diameter (constant
frontal-area); it is more convenient to specify a Reynolds number based
on meximum diameter rather than volume. Other characteristic lengths
- which may be useful in design problems include body length and (wetted

Nijes

area)?. It is emphasized that the optimization formulation in the pre-
sent study applies to any of these design problems.

It is not known if a unique optimum body exists for each Reynolds
number. That is, there may be an entire class of bodies which have the
same minimum drag coefficient at a given Reynolds number. If such is
the case, then the designer must introduce additional considerations or
constraints to obtain the one design best suited for his application.
For example, the optimization problem ignores the sensitivity of drag
changes with body velocity variations and ignores the effect of angle
of attack on drag. If the designer has several minimum drag body de-
signs, he considers these kinds of ideas in making the final selection.
Such considerations are outside the scope of the present study. A more
complete discussion on design constraints is given in Chapter 3.

The application of formal optimization methods to the drag minimiza-
tion problem has not appeared in the literature to date. One reason for
this absence is the fact that no reliable drag model for arbitrary axi-
symmetric bodies in incompressible flow is available. More fundamentally,
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there is an incomplete understanding of the fluid flow physics in the
boundary layer transition region, in the turbulent boundary layer develop-
ment, in the turbulent bounda?y'layer separation regior, and in the wake
region following separation. A1l of these phennmena are of primary im-
portance in drag prediction. In addition, there are other factors which
complicate the prediction of drag in practice [2], such as the effects

of ambient turbulence, body surface waviness, and body vibration on the
boundary Tayer development.

With the lack of reliable drag models, all published work to date
directed toward the design of low drag axisymmetric bodies in incompress-
ible flow has been mainly experimental in nature. Two studies will be
noted here.

1.1 Series 58 Study

An experimental study of drag for a systematic series of axisym-
metric bodies was reported by Gertler in 1950 [3]. The series, known
as "Saries 58," was systematic in that five parameters characterizing
the body shapes were perturbed one at a time about a selected "parent
model." Twenty-four body shapes were selected, models were built, and
tests were conducted by towing the models through water at different
speeds. The results indicated that there was indeed a "best shape" for
reducing drag. The results were to be extrapolated from model size and
speed to full-scale submarine desian.

From the optimization {drag minimization) point of view, the one-at-
a-time perturbation scheme about the parent model represents a basic
weakness in the Series 58 study. The information which may be drawn
from the study is the variation in drag due to the variaticn of one
parameter while holding four other parameters constant. Such information
is "local”" in nature, that is, the variation effects are pertinent only
to the parent model. Such information cannot be construed as "global;"
hence, no claim to global minimum drag shapes can be made.

A design assumpticn inferred from the Series 58 study is that at
submarine Reynolds numbers (R, = 10°) boundary layers are always




turbulent and that it is unrealistic to attempt to exploit laminar
boundary layers to reduce drag. Without experimental data it is diffi-
cult if not impossible to judge the validity of such an assumption since
so many extraneous factors influence the actual boundary layer develop-
ment in a real flow situation. The Series 58 "best shape" may be a low
drag design; however, it cannot be inferred from Reference 3 that such

a shape represents a minimum drag shape at its design Reynolds number of

around 102,

1.2 _Laminar Flow "Dolphin” Body

A low-drag shape for torpedo-type Reynolds numbers was reported by
Carmichael in 1966 [2]. The purpose of the study was to determine if
significant drag reduction was possible through shape manipulation alone.
A formal shape-synthesizing procedure was not developed; rather, one
shape was designed based on NACA low drag airfoil data. The one model,
dubbed the "Dolphin," was tested extensively by gravity-powered drop
tests in the Pacific Ocean. A significant drag reduction was noted, the
"Dolphin" having half the drag of a conventional torpedo at similar
Reynolds numbers.

The Tow drag was achieved primarily by the "Dolphin's" ability to
maintain 2 long run of laminar boundary layer. This fact in itself is
important since prior to the “Dolphin" testing it was generally accepted
that no significant amount of laminar boundary layer flow could be main-
tained at such high Reynolds numbers (R, = 107).

While the "Dolphin" is not a minimum drag shape, it certainly
demonstrates the practical possibility of exploiting laminar boundary
layers and body shaping in general to produce efficient low-drag designs,
at least in the tested Reynolds number range.

1.3 Outline of the Text

In Chapter 2 the drag model used in this study is discussed in
detail. The quality of the model is indicated by comparing drag
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predictions with some of the experimental data available in the liter-
ature. Chapters 3 and 4 present the formulation of the optimization
problem. A brier discussion of several possible formulations is givan.
The characteristics of the drag minimization probiem which lead to the
selected formulation are discussed. Chapter 5 presents the optimum
body shapes found duying this study. Comparisons with previous designs
are made, including comparisons with scme powerful swimmers found in
nature. Chapter & preseats conclusions and recomendations. The weak-
nesses of the drag model and optimization procedure are reviewed.
Improvements in both areas are swggested, along with propesed future
research.
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CHAPTER 2

FLUID FLOW HMODEL

This chapter discusses the general nature of the fluid physics and pre-
sents the drag model as used in the optimization problem. OInly in
recent years have the practical tools for predicting drag of arbitrary
axisymmetric bodies in incompressible flow appeared in the literature,
an example is Reference 4. These methods, while founded on more or less
rigorous theoretizal considerations, are forced to rely on some empiri-
cal correlations and simpiifying assumptions. The empirical results and
assumptions, along with the consequential limitations, vary from one
investigator to the next; hence, no ona method of drag prediction is
regarded as standard. Therefore, it is the inteat here also to indicate
the quality of the drag model from which the quality of the optimization
results may be inferred.

2.1 General Nature of the Physical Probiem

The physical phenomena being considered hers are sketchad in Fig-
ure 3. The fixed, rigid axisymmetric body is immersed in an incompressible
£ urd mediu> which at a great distance from the body meves uniformly from
feft to right.. The zero incidence (axisymmetric) flow is deflected in
+he ricinity of the venicle resulting in a streamwize pressure gradient
2long a meridional line on the body surface.

The entire flow field F is dominated by inertial (non-viscous) forces
except for a thin layer next to the body surface. Even for fluids of low
viscosity, such as water or air, viscous forces dominate due to large
normal velocity gradients which exist in this thin boundary layer.




F Boundary Layer
: I (Exaggerated)

LS A Bt e I i Y L S Ll

fatia bl

T

on e e mssee B! AT RTINS
NN

c

; y
: :

» Figure 1. General Incompressible Zero Incidence

3 Flow about an Axisymmetric Body. ;
: !
' j

Boundary Layer
(Exaggerated)
—

~

? F ’,/""'—"“‘-~£fi;_

SPRIPPID, T2 SO LI S IR

E With
3 — - - D E j
3 Uni form IR g
—: i Motion \i
¢ }
k. i \ ;’
3 5 \\-_ ___‘.// ;
.; i
] Figure 2. Simplified Nonseparating Flow Considered !
3 in Present Study. §
:

POPRT VIO

S GO P i
I T T N P PP .



oy g, e

L

T AT Jacib S e TR LAY e T e 44 TR Y . A LA 2T PN

Because of its fundamental importance to vehicle drag, the boundary
layer development will be discussed somewhat in detail. Referring tc
Figure 1, the boundary layer is divided into several streamwise regions
along a meridional Tine on the body surface.

The laminar region AB is well ordered relative te our own scale
and can be readily described by the mathematics of continuum mechanics.
This region is well understood in the sense that the mathematical de-
scription, with its assumptions, yields predﬁcted behavior which agrees
well with that observed in real laminar flows.

In the region BB' the fluid laminas, through some destabilizing
process not fully understood, become chaotic on a macroscopic scale,

One theory [5, 6] explains the process of transition in terms of the
stability of small disturbances in the laminar flow. At point B, down-
stream of the so-called neutral stability point which is somewhere in

the laminar region AB, certain disturbance frequencies begin to amplify
rather than decay. As the fluid layers move downstream, the disturbances
amplify and spread until the motion of the entire boundary layer cross-
section is chaotic, at which point (B') the boundary layer is said to be
fuliy turbulent.

Tue actual transition length BB‘ may be large or small depending on
how fast the disturbances amplify. Some of the facto,s influencing the
location and extent of the transition region for incompressible flow are
listed below [5]:

1. Free-stream turbulence levels relative to free-stream
mean velocity

2. Streamwise pressure gradient on body

3. Surface roughness and waviness

4. Body noise and vibration

The presence of free-stream turbulence, surface roughness and waviness,
or body noise and vibration introduces disturbances in the laminar layer
in addition to those already occurring naturally by self-excitation;

the effect is the tendency to hasten transition. A negative pressure
gradient (favorable, velocity increasing) tends to suppress transition,
while a positive pressure gradient (adverse, velocity decreasing) tends

Lo AL oaihin it b b, D i b
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to hasten traisition, that is, tends to make the laminar layei more un- 1
stable. These qualitative effects have been verified experimentally [6];

all quantitative relationships rely on empiricisms to a greater or lesser

degree.

In the region B'C the boundary layer is fully turbulent, that is,
chaotic on a macroscopic scale. No rational theory exists to explain
the complex fluctuating turbulent motion. All attempts to describe the
phenomena have relied on hypotheses which are incomplete without some
empirical data. One example is Prandtl's mixing-length theory [6]; the
functional form of the mixing length is not established within the
theory, much less any constants within the functional form.

Turbulent flow is regarded as the superposition of mean and fluctu-
ating motions. The presence of the fluctuations has a decided effect on
the mean motion, even when the fluctuating velocities are a small per-
centage (1 - 2%) of the mean value. Energy is constantly transferred
frem the mean motion to "large scale" fluctuations, and hence to pro-
gressively smaller fluctuations; ultimately the energy is dissipated as
heat. The apparent effect of the fluctuating motion is ar increased
resistance by the mean flow to fluid deformation. In other words the
mean motion behaves as if the fluid had an increased viscosity compared
to the same fluid in laminar fiow. The apparent viscosity of the mean
motion depends not only on the fluid but also, apparently, on the fluid
kinematics as weil. The relationship between the appirent fluid viscosity
and the fluctuating motion is the central concept which defies complete
understanding.

Even with a lack of understanding of the basic mechanism of turbu-
lent motion, the mean turbulent flow can be predicted with the aid of
semi-empirical relationships [7]. The trend today is to use complex.
semi-empirical relationships, so-called "eddy viscosity" models, to
compute the apparent increase in fluid viscosity. The eddy viscosity
is a local quantity which must be computed iteratively since the fluid
kinematics affects the apparent viscosity which in turn affects the
kinematics. In all probability, however, the eddy viscosity concept,
which attempts to relate apparent viscosity to fluctuating motion, will
be replaced by more fundamental turbulent flow shear models ir the future.

.
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In the region CC' the turbulent boundary layer separates from the
body suiface. By this it is meant that as one proceeds toward the trail-
ing edge along a meridian on the body surface, a point is reached at
which the fluid motion immediately adjacent to the body reverses direc-
tion. The classical view of laminar separation assumes this flow
reversal to occur at a point in a steady manner &and to be synonymous
with zero skin friction. This view is not adequate for turbulent
boundary layer separation which may be unsteady both in space and time
[8]. That is, "spots" of turbulent flow reversal may occur upstream of
the fully separated region; these "spots" may be unsteady as well. Due
to a lack of understanding of the physics of turbulent separation, it is
common practice to model turbulent separation as if it were a steady
phenomenon occurring at a point on the body meridian, that is, along an
axisymmetric ring on the surface of an axisymmetric body.

The region C'DE is a fully separated turbulent wake. The means to
compute turbulent wakes in the vicinity of arbitrary axisymmetric bodies
are not established, although wakes behind blunt-ended cylinders have
been predicted successfully [9].

1t should be apparent that the complete flow associated with a sub-
merged body is highly complex. Some of the most subtle physics of ne.ure
are probably associated with the phenomena of fluid flow. The incon~lete
understanding has forced investigators to rely to a greater or lesser
degree on empirically based relationships, subject to experimental veri-
fication, in order to predict fluid flow behavior. The next section
discusses the simplified flow field, and its limitations, to be con-
sidered in the present study as well as the methods used to predict
such flows.

2.2 Simplified Flow Field and Its Solution

This section describes the somewhat simplified flow field and its

limitations considered in the present study. The methods used to com-
pute the flow are discussed briefly in the context of drag prediction,

. wdorim
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- The simplified flow field considered here is illustrated in Figure 2.
The flow region F outside the boundary layer is accurately modeled by
invisc ‘ potential flow theory. The boundary layer is laminar from the
forward stagnation point A to the transition point B. Transition is
assumed to occur at a single point B rather than over a region. The
boundary layer is treated as fully turbulent from the transition point
8 to the trailing edge C. Turbulent separation is assumed not to occur
so that the wake region CDE is due to viscous displacement effects only.
In fact, if a body has a separating turbulent boundary layer, as indi-
cated by any suitable separation criterion, then the relevance of the
drag model described here is not known.

3 The flow field described here is essentially that considered by

' Cebeci [4] in his work on numerical drag prediction. In the present

study we have taken non-proprietary versions of the component computer

programs developed by Cebeci, A. M. 0. Smith, and their co-workers,
modified Lthem as required, and combined them into a numerical drag
package. The discussion following will pertain to the drag model as
used in the present study and does not pertain necessarily to any drag
package or component programs used within the Douglas Aircraft Company.

o LLAAR IO LA Al il ahabl e e r g ~raty S0 d >y
e
e a8
iles

R s datad 1 At e o ety 0 90

2k

: Inviscid Flow Outside the Boundary Layer. The zero-incidence
3 inviscid flow about a rather general axisymmetric body has been success-
% ; fully formulated for numerical solution by A. M. 0. Smith and his co-
- workers [10]. The axisymmetric problem considered here is a subset of
4§ the more general geometries and flows which can be handied by Smith's
formulation. The numerical procedure is extremely well documented [11]
and is known generally as the Douglas-Neumann method.

In the context of the present problem, Smith's formulation considers
a uniform flow field in which is placed a stationary hypothetical "trans-
parent image" of the axisymaetric body. The body is temporarily regarded
as "transparent" to the flow in that the flow field remains unperturbed.
In this hypothetical situation the fluid flows uniformly from left to
right, entering the body interior at some areas and leaving at others.
Since the real body is impervious to the fluid, then it is apparent
that the hypothetical transparent body must somehow be made impervious
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also. This is done by distributing fluid sources along the body surface
so that at every point on the surface the normal velocity compznent is
zero. Stated another way, the proper source distribution, which is .
unique [10], causes the transparent body to become a streamline in the
flow field. The superposing of the uniform flow and the source distri-
bution flow results in the inviscid flow about the impervious body.

The Douglas-Neumann method reduces the problem of computing a
source distribution to one of solving a linear system. A modified
Seidel iteration scheme has proven efficient in solving for the source
distribution and hence the inviscid pressure distribution.

The pressure impressed on the real body in a real, non-separating
flow is the same as the inviscid pressure except as it is modified by
viscous displacement effects. By this it is meant that the inviscid
streamlines are shifted somewhat both by the retarded houndary layer and
viscous wake flows. For non-separating bodies, the effect of this
modification to the inviscid pressure distribution is small. But it is
the viscous displacement effect, however small, that accounts for the
pressure drag of a non-separating body.

If the flow does not separate from the body, then it is assumed
that the inviscid pressure, as computed by the Douglas-Neumann method,
js a reasonable approximation to the experimental distribution. This
assumption appears to be justified particularly for bodies with no
dominating rear stagnation point in inviscid flow. Examples are those
with "inflected aftbodies," i.e., with "semi-infinite tailbooms" or
with cusped pointed tails {Figures 8 and 13). For these kinds of bodies
the inviscid flow tends to free-stream conditions rather than stagnatiol..

For bodies with dominating rear stagnation points, which apparently
all non-inflected aftbodies have, the inviscid pressure is a poor ap-
proximation to the experimental distribution in the vicinity of the tail,
due both to viscous displacement effects and probable sepiration. If
the effect of separation on the inviscid flow streamlines is small com-
pared to viscous displacement effects, then it may be possible to
approximate the experimental pressure distribution, at least for the
purposes of computing drag. The procedure suggested in Reference 4 is
to replace the rear-stagnating velocity distribution by a linear

i
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extrapolation of the inviscid velocity from 95% length to the trailing
edge. That is, a straight 1ine is drawn tangent to the curve of in-
viscid velocity versus axial distance at 5% length and is extended to
the trailing edge. The inviscid velocity over the first 95% of the body
remains unchanged. Using the modified velocity distribution, the bound-
ary layer is ccmputed. If separation does not occur, then the viscous
displacement is added to the body geometry. The inviscid flow about this
new “viscous body" is computed. The resulting corrected pressure should
be a better approximation to the experimental distribution than the
original inviscid flow or its Tinearly extrapolated modification, How-
ever, it cannot be assumed a priori that the corrected pressure is indeed
the experimental distribution since the correction depends on the some-
what arbitrarily modifiea inviscid flow. Also, repeated corrections to
the pressure do not imply convergence to the experimental distribution.
A further comment is in order concerning the correction to the
pressure. The concept of viscous displacement *s based on mass conser-
vation. That is, the inviscid flow must adjust itself to compensate for
the retarded flow in the boundary layer and viscous wake. This is neces-
sary so that the total intcgrated mass flow across any infinite plane
perpendicular to the body axis is conserved when the flow is steady.
Therefore, the proper displacement thickness to be added to the body
geoimeiry for the purpose of correcting the pressure must be derived
from mass conservation principles, not from the momentum integral
equation. For this reason, the definition of displacement thickness &*
given by equation (2.17) does not conserve mass flow. The derivation of
the displacement thickness G;x for mass conservation in an external

axisymietric flow is given in Appendix A. The relation between G;x and

&* as defined by equation (2.17) is

i
* 2

ax

= _Tao
cos a

(2.1)

2 cos a
) -1+ Q1+ -——?;——-6*)
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where ry and o are shown in Figure 3. The quantity szx-is the proper

displacement thickness to use for correcting the inviscid pressure
distribution. The value of G;X is always less than that of &*, partic-
cos a
Yo

In summary, the correct pressure for computing the boundary layer
and drag is the experimental distribution. For inflected aftbodies
which do not have a dominant rear stagnation point in inviscid flow, the
inviscid pressure is assumed to be a good approximation to the expevi-
mental distribution. In the case of a dominant rear stagnation point,
for a lack of anything better, the inviscid velocity is lincarly extra-
polated from 95% length to the trailing edge as outlined above. Although
corrections may improve the approximation to the experimental pressure
distribution, such corrections are not done herz in order to conserve
computer time during optimization runs which may irvolve dozens of drag
evaluations.

ularly when 8* is much larger than unity.

Boundary Layer Development. Once the cressure distribution im-
pressed on the body surface is known, it is possible then to proceed
with the boundary layer computation. A numerical procedure due to Cebeci,
Smith, and Wang [7] computes planar/axisymmetric, laminar/turbulent,
incompressible/compressible boundary layers using a variable-grid finite-
difference method; the computer algorithm is called "Program E7ET." Our
concern here is the axisymmetric, laminar and turbulent, incompressible
problem. The method of transition is left to a later paragraph. The
method retains transverse curvature effects which may be important for
axisymmetric bodies with thick boundary layers. A two-layer eddy vis-
cosity model is used for the turbulent boundary layer. Both laminar
and turbulent separation are based on the zero skin-friction criterion.
Zero or negative skin friction is inferred when the numerical iterative
scheme diverges at a given streamwise location.

The coordinate system and basic notation are shown in Figure 3,
following Cebeci [7]. There is some redundancy in notation for two
reasons. In the past the notation for inviscid flows and boundary layer
flows emerged separately. Also, computer printed output, with its lack
of lover case symbols, has forced some changes in notation. To compute

1 n i d - T ——— MM“.J
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Figure 3. Coordinate System and
Basic Notation.

Indicated § for
u/ue = .995

Data from Reference 7, Part II

/

0 Eddy Viscosity €

Figure 4, Typical Eddy Viscosity Distribution
Across Boundary Layer.

.
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- inviscid flows and to dascribe the body geometry, the X-Y coordinates
are used; the reference velocity U, is parallel to the X-axis. Boundary
layers are computed using the curvilinear coordinate system with x (or S)
aligned along a surface meridian and y normal to the surface. It is
convenient. alse to use a radial coordinate r = r, + y cos o, where r,

E

>

js the body radius and a is the angle between the surface tangent and
the center line in a meridional piane. A: any x location on the body
surface, there is a boundary layer velocity profile u{x, y) and a
velocity at the edge of the boundary layer ue(x). For incompressible
flow knowledge of the inviscid pressure implies that the velocity ue(x)
is also known. Thus, the terms “"p-essure distribution" and “velccity
distrioution" are used interchangeably.

For incompressible axisymmetric flow the boundary layer equations
[7] may be written as follows:

T

T

CRTII PR TY

CaNUb

3 Continuity
; - 9 9
g 3z Mlou +p7v0 ) + -53,-r(pv+5"\7") =0 (2.2)
3 Momentum
U "I"T'_ai = d l__a_. ] - T
puz— + (pv + p'V )ay - a%- t Ty r[ Mgy = VU ] (2.3)

where p is the fluid density, u is the fluid dynamic viscosity, p is

the pressure impressed on the boundary layer, and v is the y-component

of the boundary layer velocity. Terms containing primes and overbars,
, é e.g., p'u', are time-averaged fluctuating quantities, and other nota-

4 é tion is defined above and in Figure 3..
: The boundary conditions for equations (2.2) and (2.3) are

u(x,0) = 0 {(no slip) (2.4a)
v(x,0) = 0 (no mass transfer) (2.4b)
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Tim u(x,y) = ue(x) (2.4¢)
yoo
The so-called Reynolds shear stress term -u'v' in the momentum
equation is related to mean flow quantities using the eddy viscosity
concept
oL
e = LY (2.5)
du
oy

where ¢ is the "eddy viscosity," which is represented by a two-layer

model [7]. The eddy viscosity €i for the inner region, i.e., the boundary
layer region near the wall, is based on Prandtl's mixing-length theory,

so that

3
e = 22| 5%-] (2.6)

where £ is the mixing length defined as

1
= - - W, dpyy?
L Kiy |1 - exp 5%3 ( > * i 5 ) (2.7)

where v is the fluid kinematic viscosity, t, is the wall shear stress,
and k, is a constant equal to 0.4. The outer region eddy viscosity €q
is given by

€ ~ k2 ug 6* v (2.8)

which depends only on x except for the presence of the intermittency
factor y, where

T e s Hoiek e
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y = [1+5501 (2.9)

and wherelc is the boundary layer thickness defined as the y-distance
for which u/ue = .995. The quantity &* in equation (2.8) is a ..is-
placement thickness which for the eddy viscosity model is defined as

* = - u
8 [: (1 ™ )dy (2.10)

The constant k, is equal to 0.0168 when the boundary layer thickness §
is defined as the y-distance for which u/ueg = .995. Hence, from the
wall outward the eddy viscosity € is equal to €f until the magnitude of
€j equals g, from which point outward € equals eo. A typical plot of
the eddy viscosity € across a boundary layer is shown in Figure 4.

The purpose for setting down the complex exprassions for the eddy
viscosity is to bring out the implicit and empirical nature of the model.
It is apparent that the boundary layer equations (2.2) and (2.3) cannot
be soived until the eddy viscosity relations (2.6), (2.7), (2.8), (2.9),
and (2.10) are all known. It is also apparent that equations (2.6)
through (2.10) require the solution of the boundary layer before they can
be evaluated. At least for this reason an iterative scheme is required
to solve the turbulent boundary layer.

Using two transformations [7], the boundary layer equations (2.2)
and {2.3) together with the boundary conditions (2.4), are non-dimen-
sionalized and reduced to an ordinary third-order nonlinear differential
equation with transformed boundary conditions. The equation is solved
by an implicit finite-difference method using variable grid spacing in
both the streamwise and normal coordinates. Convergence of solution,
i.e., of the laminar or turbulent velocity profile, at each streamwise
station is based on convergence of the transformed wall shear stress.

Transition Prediction. The state-of-the-art of predicting transition
of axisymmetric boundary layers is unclear at the present time. An
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— example of the conflicting evidence and a conjectural explanation is q
given in Section 2.4. From the point of view of modeling and simulation,
transition should begin at the point where laminar flow mode.ing ceases
to be adequate in some sense. In the present study transition is treated
as a point phenomenon, that is, as the switch which "turns on" turbulence.

The transition model used here is a composite of a planar-flow
empirical correlation due to Michel (“Michel curve") and a rather sophis-

‘ ticated, semi-empirical, planar-flow correlation ("e-to-the-nine-curve")

; due to Smith and his co-workers [4, 5]. The composite correlation, the :
"Michel-e® correlation,” is shown in Figure 5. The composite correlation ;
is based on airfoil data taken from free-flight and low-turbulence wind
tunnel tests. The correlation is between the momentum thickness Reynolds
number at transition Rgly, and the running surface-length Reynolds number
at transition Rgli,., where in Figure 5 6 is the momentum thickness, ue
is the local velocity at the edge of the boundary layer, S is the surface
length, and v is the fluid kinematic viscosity. Also shown is a typical
Rg versus Rg plot as computed by the boundary layer program described

- in this study. The recommended ranges for each curve are indicated in
Figure 5 [4].

It is believed that the axisymmetric laminar boundary layer para-
meters used to predict transition should be Manglier-transformed [6] to
their equivalent planar-flow values before applying the transition
correlations. However, the Mangler transformation is explicit only to
within an "arbitrary" constant which is not specified in the transforma-
tion itself. The arbitrary constant has a direct bearing on the trans-

‘ formed boundary layer parameter values and hence affects the transition

2 prediction directly. In a few cases that were checked no characteristic

: constant was found that consistently improved the transition prediction

as inferred from drag data; indeed, in some cases, the Mangler transfor-

mation was grossly detrimental to drag prediction compared to the non-
transformed values.

The correlation curve itself is based on the planar-flow definition
of 6, which for incompressible flow is :

N
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while the axisymmetric definition of 6 used to predict transition is
r u u
8 = e (] - .
Ero AURE SR (2.12)

where r is the radial coordinate of a point in the boundary layer and o
is the wall radius. However, for laminar boundary layers the value of
r/ro is nearly 1, so that the difference in the definitions (2.11) and
(2.12) should not be significant. 4

Occasionally the situation arises in which laminar separation occurs
before transition is indicated by the Michel-e® correlation curve. Lami-
nar separation is inferred when the numerical iteration scheme diverges.
In this situation turbulent reattachment of the boundary layer is as-
sumed. Thus, as far ‘as the boundary layer computation is concerned,
laminar separation is identical to transition.

Number and Distribution of Body Points. It is appropriate to
dascribe how the body shape Y(X), which in general may exist as an
engineering drawing or as an analytic function, is traaslated into a
table of points X3, Y(X5), i =1, ..., NN. This is not a trivial task
since both the Douglas-Neumann method and the boundary layer program E7ET
are sensitive to the number and distribution of body points. For example,
the Douglas-Neumann method requires a close spacing of body points where
the body slope or curvature is changing rapidly. Also, program E7ET
requires a close spacing of body points where quantities such as velocity
and skin friction are changing rapidly.

For streamlined bodies, these regions of rapid change occur near the
leading edge and in the vicinity of the transition point. Since the
transition point is not known a priori, the points are closely spaced in
an expanding fashion near the leading edge and uniformly spaced else-
where. It is emphasized that the spacing is established on the surface
meridian, not on the axis of symmetry.

A partial distribution of points along a body surface is shown in
Figure 6. A procedure which has been found to work well in practice is
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to distribute in an expanding fashion about one-fourth of the NN points
in the first ten to fifteen percent of the total surface arc-length
STota1‘ The remaining points are distributed uniformly over the last

85 to 90 percent of sTotal' Near the leading edge, each step size is

equal to the preceding value multiplied by the expansion factor kg.
Thus, the initial step size is A4Sy, the second is kedS,, the third is
kéASo, etc. The accumulated arc-length is the sum of the three terms.
the initial step size AS, and the expansion factor ke are found by
soiving simultaneously the following two equations:

855 (1 + ke + kZ + .o + kU1 )

(FPC) (Stotar) (2.13a)

I

85, kM = s, (2.13b)

where N1 is the number of steps to be included in the first FPC frac-
tional part of STotal' Equation (2.13a) insures that the accumulated

arc-length of the first N1 steps is equal to the desired fractional part
of Stotal Equation (2.13b) requires that the first uniform step be

equal to the previous step times the expansion factor ke. The uniform
step size ASy is specified by

- 1 - FPC
By = W=T-N Stotal (2.14)

Two sets of typical values are given below:

1. Number of body points NN = 32

FPC = 0.10
Nl = 32/4 = 8
AS; = .03913 S

Total

. . ¢ -
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u

‘f; - ASO
ke

.00387  Syotal
1.33524

2 2. Number of body points NN = 101

3 FPC = 0.15

: Nl = 101/4 = 26
ASy = 01134 So . o

! 8S, = .00299 Sy ..o

E ke = 1.05481

These two sets of values are used throdghout the entire study.

The set of NN body points is used only within the Douglas-Neumann
method whichk computes the inviscid velocities only at points midway
between succeeding pairs of the original NN body points. The boundary
layer is computed only at the "midpoints," referred to as "body sta-

- tions," by program E/ET. The body stations are numbered starting from
zero so that the last body station number NSTA is numerically equal to
NN - 2. Throughout this study the term "30-station" or "99-station"
solution refers to a solution obtained using NN = 32 or 101 body
points, respectively.

Finally, the algorithm requires 60 seconds for 30 stations
(NN = 32) to 1860 seconds for 99 stations (NN = 101) of CDC 6500
computer time to compute one drag value. The 99-station solutions are
more reliable; all drag values reported in this study are 99-station
solutions. However, for an optimization run, during which dozens of
drag computations may be performed, 30-station solutions are used in
order to reduce computer costs. The "coarseness" of the 30-station
numerical grid introduces a source of error which may slightly distort
the relative trends encountered during a search for an optimum body
shape. It is believed, however, that the distortion is minor and that
overall results are not affected significantly.

In the next section the procedure for computing drag is presented.
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2.3 Computational Procedure for Computing Drag

With the computational tools outlined in Section 2.2, there are two
methods immediately available for computing drag. One method uses cer-
tain flow parameters at the trailing edge of the body in a formula due
to Young [12]. The second method involves integrating the drag (axial)
components of the forces acting over the body surface, these being
pressure and skin friction. Both methods require an accurate prediction
of the boundary layer and the transition location. The two methods are
discussed briefly below.

Drag by Young's Formula. Young developed a formula relating total
drag to certain flow parameters at the trailing edge of the body. The
formula in its non-dimensional form is

H+5
CD = —-Er—a-g.._z. = i‘%ro 9( lljf;?_ (2.15)
PV Vv T.E.

where Cp is the drag coefficient, p is the fluid density, U, is the
2

reference velocity, V is the body volume so that V? is the reference
area, r, is the body radius, 6 is the momentum thickness as defined

in equation (2.12), ug is the velocity at the edge of the boundary layer,
and H is the shape factor defined as

H = —6— (2.]6)

where 6 is defined in equation (2.12), and &* is the displacement thick-
ness which for equation (2.15) is defined as

&% = [:%o Qa - ﬁ%) dy (2.17)




26

PN for incompressible flow. The definitions of &%, 8, and H are obtained
f during the derivation of the axisymmetric form of the momentum integral
: : equation on which Young's formula is based. In equation (2.15) the

: subscript T.E. denotes quantities at the trailing edge of the body. It
is noted that r,y, 0, ug, and H are functions of the surface length x so
that the drag coefficient Cp could be treated as Cp(x), a function of x.
Such a treatment is not implied in Young's derivation, although the
behavior of Cp(x) is of interest. The derivation of Young's formula is
given in Appendix B.

Drag by Integration of Surface Forces. This method is simple in con-
cept but difficult to apply in practice. Essentially, once the pressure
and skin friction distributions are known over the entire body surface,
an integration of the drag (axial) components should give the total
drag. The integral is given as

- brag = [b(p-p,) et I ax + [l 2nv ax (2.18)

or in its non-dimensional form as

L L
CD=_£@L=Z% cvgidx+2“lchdX (2.19)
v3

p ' dX "2
3

(]
-

o]

where the first and second integrals in (2.18) and (2.19) represent the
contributions due to pressure and skin friction, respectively. The
symbol p, is ti: free-stream static pressure, p is the local pressure
at the bady surface, and Cp is the pressure coefficient defined as

pravR e
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Cp = = 1-( )2 (2.20)

for incompressible flow. Also C¢ is the skin friction coefficient based
on the reference velocity and is defined as

Tw
o0

C¢ = (2.21)

Other notation is defined in previous sections.

The reason equation (2.18) or (2.19) is difficult to apply in
practice is that the pressure over the body surface mus* be the expneri-
mental distribution, which is difficult t. zpproximate numerically as
discussed in Section 2.2. It appears that Young's method is less sensi-
tive to errors in the pressure distribution than direct integration of
the surface forces; hence Young's formula, equation (2.15), is used in_
the present study.

Drag Algorithm. The flow chart for computing crag in the .
present study is shown in Figure 7. The input consists of a character—
1

istic Reynolds number R, = V® U./v and a body shape Y(X). A geometry
table is generated using the procedures associated with equations (2.13)
and (2.14) and illustrated in Figure 6. The actual numerical values

in the geometry table are normalized to unit tength or unit volume. For
an optimization run 30-station solutions (NN = 32) are used; for de-
tailed drag evaluations 99-station solutions (NN = 101) are used.

The velocity distribution along the body surface is computed using
the Douglas-Neumann method. If a dominant rear staanation point exists,
then the inviscid velocity is modified by linear extrapolation from 95
percent axial length to the trailing edge.

The laminar and turbulent boundary layers are computed by program
E7ET. Transition is predicted by the Michel-e® correlation or by
laminar separation/turbulent reattachment, whichever occurs first.
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Linear Extrapolation
From 95% Length

Yes Dominant Rear

Stagnation Point?

PR 7 el M LR L

Compute Boundary Layer by E7ET;
Transition by Michel-e9 or Laminar
Separation/Turbulent Reattachment,
Whichever Occurs First

Compute Drag by

No Turbulent

Young's Formula,je— ent
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If turbulent boundary layer separation occurs, as indicated by
solution divergence, the pror m aborts and no drag calculation is made.
During an optimization run, turbulent boundary layer separation is
treated as a constraint violation. The various constraints are discussed
in Chapter 3.

If there is no separation, or more generally, if there are no con-
straint violations (details in Chapter 3), then the drag coefficient is
computed using Young's formula, equation (2.15).

In the next section the characteristics of the drag model as de-
scribed here will be demonstrated by comparing predictions with some of
the data available in the literature.

GaR M T s Ay A e R

PRI}

2.4 Characteristics of the Drag Model

In this section comparisons are made between predicted and experi=
i mental drag coefficients using the drag model indicated in Figure 7.
£ - Transition data comparisons are also made. Rather than presenting a
3 comprehensive study of the experimental data available in the literature,
it is the intent here to demonstrate the characteristics of the drag
model used in the present study. A more comprehensive comparison of
predicted and experimental drag values is found in Reference 4.

T )

Drag Prediction for the Laminar Flow "Dolphin" Body. A reasonable
approximation to the "Dolphin" Body [2] is shown in Figure 8 along with
the inviscid velocity distribution. A typical transition location is
indicated. The long, slender tailboom is cut off at about two-thirds
of the actual body length. The experimental data were obtained from
gravity-powered accelerating drop tests in the Pacific Ocean at speeds
up to 62 knots. Figure 9 shows the predicted and experimental drag
coefficients; a standard torpedo curve [2] is also included for compari-
son. The experimental data has been corrected to hull drag values by
subtracting out the drag due to stabilizing fins and the tailboom [2].
The agreement between predicted and experimental values is good, with the
prediction tending to be optimistic. The role of the laminar boundary
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layer in drag reduction is demonstrated both by prediction and experi-
mentally by tripping the boundary layer at X/L equal 0.05. The drag
coefficient is comparable to that of the standard torpedo as shown in
Figure 9. These data demonstrate that substantial amounts of laminar
flow are possible at high speeds (60 knots) in the ocean environment and
that the drag model used in this study is capable of predicting such
behavior reasonably well.

It is also of interest to observe the trend of Cp computed at
various stations along the body surface. A typical Cp(x) trend for the
“Dolphin" body is shown in Figure 10. The drag coefficient Cp increases
monotonically to the trailing edge.

Drag Prediction for Model 4165 of Series 58. The Series 58 study
has produced a recommended best shape which is very nearly the same as
Model 4165 of that series [3]. This body and its inviscid velocity
distribution are shown in Figure 11. This body has a dominant rear
stagnation point so that the drag is computed using the modified veloc-
ity distribution shown in the same figure; details of this modifying
procedure are given in Section 2.3. For this case the boundary layer
is tripped at X/L = .05. The drag prediction is for one Reynolds
number, that corresponding to the highest test velocity. The drag co-
efficient is computed at various stations along the surface of the body;
the trend is shown in Figure 12 along with the experimental drag value.
As for the "Dolphin" body, Cp increases monotonically to the trailing
edge.

The predicted value exceeds the experimental value by nine percent.
The predicted value happens to equal the experimental value at the
location on the body where ug/U, is unity. Cebeci, using a modified
definition of 0 in Young's formula, equation (2.15), reports this be-
havior for a number of bodies including Model 4165 [4]. It might be
inferred that the drag coefficient is to be comput2d at the body station
nearest the trailing edge for which ug/U, is unity. For the "Dolphin,"
with its asymptotic velocity, "nearest" would be interpreted to mean
"at." However, this idea has not been investigated; for the c<ake of

consistency, the predicted drag value will be that computed at the trail-

ing edge except as noted in the next paragraph.
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Drag Prediction for Murphy Body A2, C4. This body consists of a
rounded-nose forebody, a constant diameter midsection, and an inflected
pointed tail [13]. The boundary layer is tripped using a porous strip
about .03L in width. The downstream edge of the strip, located at X/L
equal 0.5, is assumed to be the point of transition. The body is posi-
tioned about 0.27L inside the wind tunnel contraction cone so that the
experimental and free-stream inviscid velocity distributions are
different. The body shape and its velocity distributions are shown in
Figure 13. Note that the experimental and inviscid velocity distribu~
tions are in good agreement near the trailing edge, away from the
influence of the contraction cone. This substantiates to some degree
the discussion in Section 2.2 in which it is assumed that the inviscid
velocity is a fair approximation to the experimental velocity distribu-
tion which tends to the free stream value rather than rear stagnation.

The drag is computed at one Reynolds number, the Cp variation along
the body surface is shown in Figure 14 for both pressure distributions
along with the experimental range obtained by wake measurements. The
Cp reaches a peak value at about S/sTotal equal 0.95 and then plunges

rapidly. Whe: such behavior occurs, it is assumed that the peak value
is the proper one to use, the rapid plunging apparently indicating a
breakdowm in the method. No attempt is made here to investigate the
underlying reasons for this behavior. The Douglas-Neumann velocity
distribution yields a higher predicted drag than that obtained when
using the experimental distribution, the difference due mainly to the
different pressure gradients over the forebody.

Both predicted values are in reasonable agreement with the experi-

mental range; the predicted values are 1.8% higher and 5.4% lower than
the experimental mean value.

Transition Prediction for an Ellipsoid. Granville has reported the
results of six different methods of transition prediction for axisymetric
bodies using three experimental pressure distributions on an ellipsoid
with a fineness ratio (length/maximum diameter) of nine [14]. The dif-
ferent pressure distributions are obtained by placing the ellipsoid at
various positions inside the wind tunnel contraction cone, For these
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tests one turbulence burst per second is taken as the beginning of transi-

tion; the bursts are detected by pressure taps in the body surface.

: The ellipsoid and two of the three experimental velocity distribu-

: tions are shown in Figure 15. The change in transition location as a
function of Reynolds number is shown in Figure 16 for both velocity
distributions. It is readily apparent that the Michel-e® correlation
prediction does not even resemble the trend of the experimental data;
in fact, the correlation predicts nearly the same transition location
under all test conditions.

The apparent contradiction between the successful "Dolphin" drag

1 predictions, which include transition prediction, and the failure of the

1 correlation for the ellipsoid has lead to a questioning of what is meant

by "transition" in the context of drag prediction.

For drag prediction the transition point must represent the stream-
wise location on the body after which laminar flow modeling is no longer
adequate. It is conjectured here that the acoustical definition for
transition, i.e., one turbulence burst per second, may not be particular-

- 1y relevant for predicting the location at whi.n the boundary layer model

should "switch" from laminar to fully turbulent. A recent experimental

study 15] gives some support to this idea. The study produces a corre-
lation among the average bursting frequency ¥, the mainstream velocity
ug, and the displacement thickness &* using data from fully developed
turbulent boundary layers along a flat wind tunnel wall; the correlation
is of the form ¥ = (constant)(ue )/(8*). Although the correlatiun
may not be directly applicable to axisymetric boundary layers with
pressure gradients, it seems reasorable that the idea of characterizing

a turbulent boundary layer by using a correlated bursting frequency, as

opposed to a fixed frequency, should carry over to the axisymmetric

case.
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i 2.5 Closing Comments about the Drag Model

The drag model as described here appears to be reasonably realistic.
The drag predictions may be either optimistic or pessimistic, apparently
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depending on the body geometry being considered. For example, the pre-
dicted values for bodies with dominant rear stagnation points tend to be
high, but for inflected aft-bodies the values tend to be low. It is
felt that the method of transition prediction tends to be optimistic
because of the somewhat optimistic drag predictions of the "Dolphin"
body.

With the drag model established, the next chapter presents the
formulation of the optimization problem.
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CHAPTER 3
FORMULATION OF THE OPTIMIZATION PROBLEM
This chapter contains a brief discussion of two possible approaches
to the optimization problem. The characteristics leading to the selected

optimization anproach are described; the constraints are discussed in
detail. Two optimization methods used in this study are outlined.

3.1 Functional Optimization — Caiculus of Variations

Once the reference Reynolds number R, is fixed for the zero inci-
dence uniform flow, the vaiue of the drag coefficient Cp depends on the
particular shape Y(X) of the axisymmetric body; this may be expressed as

Cp = CplY(X)] (3.1)

where X is the axial coordinate. Equation (3.1) implies that the drag
coefficient is to be minimized by manipulating the function Y(X). Such
a concept is the central idea of the calculus of variations [18, 19].

The simplicity of equation (3.1) is somewhat deceiving since
variations must be performed not only on Y(X) but on other dependent
variables as well. This is apparent from equation (2.19) which is
written here as

w|n

L
¢ = "[ [cpvg}+cfv]dx (3.2)
(o]
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where Cp and C¢ are the pressure and skin friction coefficients defined
by equations (2.20) and (2.21), respectively. Equation (3.2) shows that

Cp is a function of Y(X), d¥(x s and the complicated quantities Cp and

Cs which are governed by partial differential equations.

Certain conditions are imposed on the problem from the outset.
The boundary conditions for Y(X) are

Y(0)

]
(=]

(3.3a)

Y(L)

YTer‘mina’l 20 (3.3b)
where YTerminal is not necessarily specified. The inequality constraint

Y{(X) > 0, 0<X<lL (3.4)

must also be satisfied, as well as the equality constraint tacitly im-
plied in equation (3.2), namely, a fixed volume

L
Specified
I [11 Y3(X) ] dx = v = SPECLIE (3.5)

0

Furthermore, it may be necessary to treat the endpoint X equal L as a
variable quantity. A more thorough analysis will reveal other con-
straints to be imposed o the problem. In aadition, one must include
the physics which constrain Cp and Cg¢.

If. the problem can be properly formulated using the integral of
performance defined in equation (3.2), along with the required con-
straints and boundary conditions, the result of the variational calculus
is a set of necessary conditions which must be satisfied by the minimum
drag shape. The set of necessary conditions, which relate the dependent

variables Y, dY, Cp» and C¢ for a minimum drag body, do not explicitly
dx> “p f
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define the optimum body shape in terms of the independent variable X.
However, the results may be used as a check to test any profile which
is believed to be a local optimum.

Because of the complicated nature of Cp and C¢, both governed by
partial differential equations, it is apparent that the drag integral,
equation (3.2), cannot be formulated explicitly in terms of X, Y(X),
and derivatives of Y(X). Without such a firaulation, an explicit solu-
tion for the optimum Y(X) cannot be obtained, at least not from a
calculus of variations analysis alone. For this reason this approach
has not been pursued here.

An interesting alternate use of the calculus of variations has
been successfully applied to nonseparating, maximum 1ift airfoils [16].
Rather than working with the blade geometry directly, an optimum pressure
distribution for maximum 1ift is obtained from which the blade geometry
is uniquely inferred. For axisymetric design, this approach, called
the "inverse design problem," cannot be used in its analytical form [17];
it has not been established that a unique axisymmetric body exists for
a prescribed pressure distribution. Iterative numerical procedures
have been attempted [17], but the inverse problem for axisymmetric bodies
does not appear to be solved. Hence, this approach has not been pursued.

3.2 Parametric Optimization

If the calculus of variations approach were formulated in terms of
%, Y{X), and derivatives of Y(X), and successfully solved, the solution
for a fixed Reynolds number R, would be an optimum profile Y**(X). For
convenience it is assumed that Y**(X) is unique. Once the profile Y**(X)
is known, either as an analytic function or as a table of numbers, it is
pnssible to approximate it by a finite series of known functions F;(X),
i=1, ..., N, each multiplied by a constant. The series of known
functions is assumed to be well behaved so that its properties, e.q.,
uniform convergence in the interval 0 < X < L, do not require special
consideration here.
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The finite series approximation may be expressed as

Y**(X) = g ** Fi(X
b= aj Fy(X) (3.6)

for 0 < X < L, where N is the number of terms in the series and the

Fi(X), i =1, ..., N, are known functions. The aj**, i =1, ..., N,
are the multiplicative constants which, when used with the functions
Fij(X), i =1, ..., N, yield the best approximation to Y**(X) in some
sense. For example, the aj**, i =1, ..., N, in equation (3.6) may

minir~ize the error defined by

E = IL [ Y**(X) - ? a; Fi(X) ]z dX 3.7)
. j; 3.

The optimum profile Y**(X) has associated with it a minimum drag co-
efficient Cp**. The finite series on the right-hand side of equation
(3.6) has associated with it a drag coefficient which can never be
better than Cp** since the finite series represents a perturbation away
from the optimum Y#*(X).

It is apparent that by fixing N and the Fj(X), i =1, ..., N, it
is pessible to manipulate the multiplicative constants a;, i =1, ..., N,
also called “"parameters," to produce an optimum profile

N
e =) et R (3.8)

for which the drag coefficient Cp* is a minimum. For convenience it
is assumed here that the a;*, i =", ..., N, form a unique set. It is
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expected that the set aj*, i = 1. ..., N, in equation (3.8) is different
from the set aj**, i =1, ..., I, in equation (3.6) since the former re- /
sults from minimizing the drag coefficient Cp while the latter resuits |
from minimizing the error E exemplified by equation (3.7).

Implied in the above discussion is the fact that for a paramet- :
rically defined body the drag coefficient depends on the number N of
terms in the series, the nature of the functions Fi(X), i=1, ..., N,
used in the series, and the multiplicative constants aj, i =1, ..., N. 3
This may be expressed as

Cp = Cp N, a5, F5(X), i=1, ..., N] (3.9)

This is true in particular for the minimum drag coefficient Cp* asso-
ciated with Y*(X) in equation (3.8), which is to emphasize the fact
that the minimum drag profile Y*(X) will be different for every value
of N and every set of functions Fi(x), i=1, ..., N. Therefore,
minimum drag shapes obtained using a formulation implied by equation
(3.9) can be regarded only as the optimum of a restricted class of
bodies with profiles defined by

LTIV I TP WX TIN X8 Y

N
(CRERRETRACY (3.10)
i=

where N and the Fi(X), i =1, ..., N, are fixed.

Although the parametric formulation necessarily introduces 1imita-
tions on the optimization resuits, it has been adopted as the most
feasible procedure for the drag minimization problem. Indeed, it
appears that the functional approach, with its implicit necessary con-
ditions, would require the use of an iterative search strategy of the
general nature that we are considering here for the direct problem §
solution. A few comments about parametric optimization in general are
given below. i

Nearly all contemporary research in the area of optimization methods
is addressed to the parametric problem rather than the functional problem

A CALN Dk e atr e 2 SRS S e 4 e YA




TR Y

" g Y N T WIS

i Ay Fawagen

AT P BT SO e L VB Y A e o e

R T AT Y T TR Ry, TRV R B A Y7L T T W P WL SR T CHOI W TR T T TR T R e T T e o

48

of the classical calculus of variations. These contemporary methods
are usually reducible to a digital ccmputer algorithm so that they are
compatible with performance function models, e.g., drag models, which
may already exist ir digital computer program form. The standard
measure of efficiency of parametric methods is the number of perform-
ance function evaluations required to obtain the optimal solution to
within a given error tolerance. An alternate standard is to compare
the performance function value obtained at the end of a fixed number of
evaluations.

The parametric optimization methods may be broadly classified as
unconstrained or constrained methods. The generally more efficient
unconstrained methods are designed to be used in a parameter space
without parameter boundaries (constraints). The generally less effi-
cient constrained methods are designed to cope with parameter boundaries
(constraints) which divide the parameter space into feasible and nor-
feasible regions. The presence of nonfeasible regions may be due to
physical considerations or 1imi*s of model validity, for example. To
take advantage of the efficient unconstrained methods, it is common
practice to convert a constrained problem into one which appears uncon-
strained by introducir "penalty functions." A penalty function arti-
ficially distorts the true performance function "surface," so that
whenever a constraint boundary is violated, the performance function
appears worse than the neighboring performance surface in the feasible
region. The effect of the penalty function is to force the optimal
solution into a feasible, hence acceptable, region. It is generally
desirable to cast the optimization problem into one which is uncon-
strained so that a more efficient unconstrained method may be used.

A second broad classification for parametric optimization is
gradient versus nongradient methods. This classification refers to the
availability of analytical gradients of the form d(performance func-
tion)/3(aj), where the aj, i =1, ..., N, are the parameters to be
manipulated. Depending on the optimization problem this information,
i.e., the analytical partial derivatives, may or may not be available.
The generally more efficient gradient methods use both the performance
function and the local gradients to obtain the optiimal solution. The
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generally less efficient nongradient methods are designed to obtain the
optimal solution using only the performance function itself. When the
analytical gradients are not available, it is possible to approximate
the gradients using finite differences. But it is usually more effi-
cient to use a suitable nongradient method in this case rather than
finite-difference approximations in conjunction with an efficient
gradient method [20].

From the above discussion it may be concluded that problems which
are unconstrained and have analytical gradier.s are to be more effi-
ciently solved than other problems. There are other broad classifica-
tions of parametric optimization problems as well. For example, the
performance function and/or the constraints may be linear or nonlinear
functions of the narameters. The constraints may be expressed as
equalities or inequalities and may involve algebraic, differential, and
integral expressions. The constraints may be explicit or implicit in
the parameters. The performance function and/or the parameters may
) be deterministic or stochastic. Tne performance function and/or
% - parameters may be allowed only certain discrete values rather than
1 continuously varying values. The parameter constraint boundaries may

be convex or nonconvex. The optimal solution may or may not lie on a
constraint boundary. Every optimization problem will involve some
combination of these characteristics and perhaps others as well.
The parametric optimization method best suited to a particular
3 problem depends, of course, on the characteristics of the performance
function and constraints as mentioned above. The characteristics of
the drag minimization problem are discussed in detail in the next
. section. The discussion leads to the optimization methods which are
i used in the present study.

3.3 Characteristics of the Drag Minimization Problem

The implication of the preceding two sections is that the drag
minimization is to be cast as a parametric rather than a functional
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o i

- optimization problem. This section examines in detail the characteris-
tics of the drag model and the constraints in order to select appro-
priate methods (search strategies).

mh e oA TRARTERTESTS,

Model Characteristics. From the parametric optimization point of
view the drag model is a performance function surface (response surface)
in an N-dimensional space, where N is the number of independent param-
eters (variables) to be manipulated. The drag model, discussed in
Chapter 2, is essentially a nonlinear numerical "black-box" whose input
is a set of parameters a;, 1 =1, ..., N, and a Reynolds nrumber, and
whose output is a drag coefficient Cy. The parameters imply a unique
shape Y(X) when N and F;(X), i =1, ..., N are specified in equation
(3.10). Although it is possible to treat the drag prediction in a
stochastic manner by using an error probability distribution, the model
is treated as deterministic in the present study.

The model is a "black-box" in the sense that no analytic expression
exists relating the drag coefficient Cp to the parameters a;, i =1,

-~ «ess N. Indeed, the numerical model performs the same function as an
experiment, for example, in which a body, whose shape is Y(X) as implied
by the aj, i =1, ..., N, is built and tested in a wind tunnel. For
both the numerical model and the hypothetical experiment, the oniy
information available for a given body at a fixed Reynolds number is
its drzg coefficient Cp. No amalytical gradients 9Cp/9aj, i =1, ...,
N, are available in either case.

The numerical black-box, with its lack of anaiytical gradients, is
to be used in conjunction with a nongradient (direct) search method.
The procedure of approximating gradients with finite-differences has
been rejected at the outset since it is believed that nongradient

: methods are more efficient with "nongradient problems" than finite-
; di "4g used with gradient methods [20].

“r

¢’ .- .int Characteristics. Several statements can be made about
the constraints at the outset. Constraints do exist for the drag
minimization problem. The obvious ones include requirements for non-
negative body dimensions, nonseparating flow, and a fixed Reynolds
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g - number. Less obvious constraints for a particular class of bodies
% % defined by equation (3.10) include requirements for a rounded nose and
F : no inflection points on the forebody (section of body from nose to
g maximum diameter). These latter constraints are discussed in detail

in Chapter 4 for two classes of bodies used in the present study.

Other statements which can be made at the outset are that the parameters

vary in a continuous manner and that the parameters are treated as

deterministic, not stochastic.

The procedure for a performance function (PF) evaluation during

an optimization run is to check for constraint violations and then to

compute the PF if no violations occur. When violations do occur, no

PF evaluation is made; indeed, the PF value may not exist in such cases,

e.g., negative body dimensions. The nonseparating flow constraint

presents a special problem; its violation is not known until a complete

pass is made through the drag model. In an attempt to reduce computer

time wasted due to the occurrence of a separated boundary layer, two

additional constraints are checked preceding the costly boundary layer
- computation (75% of computer time). These constraints are designed to

avoid pressure distributions which are probably conducive to boundary

layer separation. These constraints are

1. Minimum pressure coefficient Cpmin 2 -.45

2. Maximum pressure recovery after the minimum pressure point
1sc%wx-c%ﬁng1.m

Item 1 restricts the maximum velocity, which occurs near the maximum
diameter for streamlined bodies at zero incidence, to values less than
ue/Uo = 1.2. Item 2 restricts the amount of deceleration occurring
downstream of the minimum pressure (maximum velocity) point. These
constraints are not "hard"” in that they represent reasonable values
, but may rightfully be questioned since they are engineering approxima-
§ tions to the separation constraint boundary.
f Excepting the Reynolds number, all of the constraints menticned
above are of the inequality type since they represent limiting situa-
tions or boundaries. The general conceptual form of these inequalities
can be written as

;
i
» =
b
N
3
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«1though the explicit expression does not always exist, e.g., non-
separating constraint boundary. The requirements for non-negative
body dimensions are constant 1inear constraints, while the noninflected
forebody and ncnseparating flow constraints are nonlinear. Thus the
drag minimization proble.. involves linear and nonlinear inequality
constraints; at ‘easi one constraint possesses no explicit form as given
by equation (3.1%).

The convexity of the constraint boundaries must be considered.
Regions with convax boundaries, e.g., interior of a circle, normaily
present no additional difficulties to a search strategy. However,
regions with nonconvex boundaries, e.g., interior of a cardioid, may
cause a search strategy to "hang up" on such a boundary far from the
true feasible optimum. It will be shown by graphical means in Chapter 4
that nonconvex boundaries do exist for at least one of the two classes
of bodies considered in the present study.

The feasible optimum may lie on the interior or on the boundaries
of a constrained parameter space. Optimization methods which converge
quickly on the interior due to approximate quadratic convergence may
not be able to exploit this property if the opti.um 1ies on constraint
boundaries (constrained optimum). One reason is that the performance
function may retain dominating first-order properties at the boundaries
so that second-order (quadratic) characteristics remain insignifisant.
By contrast, a performance function with an interior optimum will have
a neighborhood about tne optimum in which the first-order character-
istics, i.e., the gradient or first partial derivatives, tend to zero
so that second-order properties, i.e., second partial derivatives, tend
to dominate. Since it is not krown at the outset that the optimal
solution lies on or off constraint boundaries, it is appropriate to
consider alternate methods which werk well in one situation or the
cther if not both.

Reference Reynolds Number — An Equality Constraint. In previous
discussions the reference Reynolds number has been defined as
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i % 1 1
T Ry = V¥ U,/v, where V is the vehicle volume so that V3 is a reference
; § length, U, is the constant vehicle speed, and v is the fluid kinematic
§ : viscosity. No consideration is given to v since it is regarded as a

fixed constant here. A fixed Reynolds number R, implies a fixed vehicle
- volume V since U, is already specified. Thus R is equivalent to an
equality constraint requiring the body profile Y(X) to enclose a
specified volume V. However, since the fluid dynamics depends on the
shape Y(X) ¢nd Reynolds number Ry, and not separately the volume V,
i.e., the size of the body, and velocity U, one may simply scale the
shape to automatically maintain the proper volume. In fact. both V and
1 U may be scaled so long as the proper Ry is preserved. Thus, because

: of the nature of the fluid dynamics, it is possible to exclude consider-
ation of the volume equality constraint from the cptimization strategy
itself.

As mentioned in Chapter 1, it may be desirable to specify equality
constraints on quantities other than volume. For example, the constant
frontal-area problem, e.g., torpedo design, may be more conveniently
based on a constant maximum diameter Reynolds number. If there are
neutral buoyancy requirements for the torpedo problem, then a volume
equality constraint is still present and must be dealt with by suitable
means, not necessarily within the search strategy itself.

Depending on the application tiere may be other constraints to be
considered. For example, submarines must occasionally negotiate chan-
nels dredged to a certain depth; hence, the submarine hull design is
subject to a maximum diameter constraint. Another example is the design
of the "lower unit" of an outboard motor. The Tower unit is the faired
transmission housing to which the propeller is attached and by which
the propeller is powered. The design of the lower unit is subject to
the constraint of the space requirements of the transmission. The
optimization method should be able to cope with these kinds of con-
straints, assuming, of course, that the constraints do not prohibit
the existence of a feasible solution.

To summarize the ideas of the preceding paragraphs, the optimiza-
tion method used for the drag minimization problem must be capable of
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dealing with a ncnlinear performance function without the use of grad-
ients. The methced must cope with nonlinear inequality constraints

which may be nonconvex and which exist in implicit or explicit form.
Furthermore, it is appropriate to consider alternate methods which are
well suited to the optimum-on-boundary or optimum-on-interior situations.

3.4 Selected Search Strategies

For the nongradient, constrained, nonlinear drag minimization
problem there are two possible approaches using direct (nongradient)
search methods. One approach is to use a method which oberates in a
nonlinear inequality constraint envivonment. The second approach is to
replace all inequality constraints with a suitably constructed penalty
function so that an unconstrained search method may be used. In either
case there are methods which are regarded as more efficient than others,
but the generalization is not always valid since the performance of a
search method is problem dependent. It is not unusual to modify the
search method so as to make it more ef<icient for a particular problem.
Some "tailoring" has been necessary in the present study; details are
given below.

For the drag minimization problem it was decided at the outset to
select one promising method and to proceed with the hydrodynamic design
problem. Modifications in the method would be made if they were neces-
sary to obtain optimal solutions. No comprehensive experimentation
with various modifications or different methods would be done due to
the costly nature of the performance function evaluation (40 seconds on
the CDC 6500). Later in the study, however, it was decided to try one
additional method.

Of the many search strategies in the literature for nongradient,
nonlinear parametric problems, there are two which have been developed
to operate in an envirunment of general nonlinear inequality constraints
of the form given by equation (3.11). The earlier method is due to
Rosenbrock (1960) [21]; the newer method is due to Box (1965) [22] with
suggested modifications by Guin (1968) [23]. In this study a slight
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- modification of the Box-Guin "Complex Method" has been used extensively.
The method is described in a later section.

The various nongradient search strategies in the literature for
unconstrained problems far outnumber those developed for the con-
strained variety. Examples of these methods include an early approach

3 due to Hooke and Jeeves (1961) [24], a method with approximate quadratic
é convergence due to Powell (1964) [25], a directed-hypercone random
search algorithm due to Wozny and Heydt (1970) [26], and a recent modi-
fication of the Nelder-Mead procedure due to Masters and Drucker (1371)
[27]. A crit’ eview including Powell's method has been reported by
Fletcher (1965) .28]. When using unconstrained search strategies with
constrained problems, one common practice is to replace the inequality
constraints by a penalty function (pp. 477 - 482 of [20]). Of the many
available unconstrained direct search methods, Powell's method, be-
cause of its approximate quadratic convergence, is used in the present
study in conjunction with a simple but general penalty function. The
details are left to a later section.

S 8N R kY 0 B S Eaﬁs
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3 Modified Complex Method. A detailed word flow chart of the modi-

3 fied Complex Method, as used in the present study, is given in Appendix
3 C. The Guin modifications, which include ~trategies for coping with
nonconvex boundaries and for generating alternate search directions when
the primary direction fails, have been included in this method. A
modification in the starting procedure is also included.

Shown in Figure 17 is a slightly simplified version of the method;
specifically, the strategy for nonconvex boundaries is omitted since its
use has never been required during drag minimization runs. The basic
input data are the nu -r of independent parameters N, the number of
vertices K in the complex figure (usually K = 2N), convergence tole-
rances €, and ¢, (usually e, = ¢, = .01),and the fixed Reynolds number.
For the initial complex generation, constant lower and upper boundaries,
ag ; and ay; i=1, ..., N, respectively, are also input. No initial
guess is needed.

The vertices ajs i=1, ..., K, for the initial complex figure are
randomly generated within the constant rectangular boundaries defined
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by aLi, ay; i=1, ..., N. Each parameter aj is uniformly distributed
over its interval ay, - 3 ;, so that each vertex aj is uniformly dis-

tributed over the enclosed rectangular N-dimensional volume. The random
vertex a j is checked for feasibility; a nonfeasible vertex is simply
thrown out and randomly regenerated. Whenever a random vertex is found
to be feasible, its performance function PFj is evaluated. The process
continues until a complete complex is formed.

The original starting procedure used by Box [22] requires an
initial feasible vertex. Each succeeding vertex is randomly generated
as outlined in the above paragraph, but a nonfeasible vertex is moved
halfway toward the centroid of the partiaily completed complex figure.
The presence of the initial feasible vertex insures that the random
vertex will always become feasible by this process. This procedure is
r t adequate for feasible regions which are highly nonrectangular, which
is the situation in the presant study. Although each parameter may be
allowed large variations, the actual feasible volume is a small fraction
of the N-space rectangular volume bounded by aj; and a;. This effect is
more prcounced for large N. The effect of the nonrectangularity of the
feasible region is to cause each random vertex to be moved half the
distance to the centroid many times. The result is that the entire
initial complex tends to be clustered in a relatively small neighborhood
about the initial feasible vertex. Since the initial complex is not
well distributed over the feasible space, there is no global information
about the performance function surface. Hence, the chances of converging
to the global feasible optimum are reduced. Furthermore. the small
scale of the initial complex implies small steps and slow progress until
the complex has a chance to expand. But the most detrimental effect is
that the close proximity of all the vertices in the initial complex
greatly increases the chances of premature convergence by the stopping
criterion used with this method. The modified starting procedure
removes these problems. The well-distributed initial complex makes
large global moves at first and has a better chance of " inding the
global feasible optimum, although it does not always do so, as results
in Chapter 5 demonstrate.
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Continuing with Figure 17, once the initial complex is formed, the
procedure is to reject the worst vertex, i.e., the vertex associxted
with the highest drag coefficient. A trial vertex is g:nerated by re-
flection through the centroid of the nonrejected vertice: an amount o
times the distance from ‘he rejected vertex to the centroid. The
empirical expansion faccor o is 1.3 throughout this study, as recommend-
ed by Box [22]. If the trial vertex is not feasible, it is repeatedly
moved halfway toward the centroid until it becomes feasible. Noncon-
vexities may cause problems here since the centroid of the feasible
vertices may not lie in a feasible region. Repeatedly moving a non-
feasible vertex halfway toward a nonfeasible centroid may prove futile.
Guin suggests at this point that the entire complex be thrown out; de~
tails are in Appendix C.

Once a feasible trial vertex is found, its performance function
PF, i.e., drag coefficient, is computed and compared with the second
worst PF value of the complex. The second worst value is used rather
than the worst to avoid the situation in which the trial PF is between
the worst and second worst values, in which case the newly found vertex
is immediately rejected at the start of the next cycle. This implies
that the direction of the next cycle will be toward the point from which
the present cycle started. This situation is expected when the complex
is straddling a Tocal optisum, but otherwise wasted moves result. If
the trial PF is better than the second worst PF value, the trial vertex

" replaces the worst vertex; otherwise, the triai vertex is moved halfway

toward the centroid and the new PF is checked. This retraction toward
the centroid continues until the PF value is acceptable or until the
trial vertex enters a relative e,-neighborhood of the centroid. If the
latter occurs, a new search direction is tried by rejecting the next
worst vertex and retaining that previously vrejected.

The process of direction change continues until an acceptable
vertex (feasible, PF better than second worst value) is found. In al}
cases, the worst vertex is replaced by the newly found vertex. The
stopping condition is checked and if it is not satisfied the procedure
beginc again at entry point 1 in Figure 17. A premature abort occurs
when a new acceptabie vertex cannot be found. In such cases, it is
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assumed that an optimum has been found even though the stopping condi-
tion is not satisfied. As with all search strategies, the modified
Complex Method converges tu a local optimum; hence, it may be necessary
to solve the problem several times using different randomly generated
initial complex figures in order to establish that a feasible global
optimum has indeed been found.

Several features of the modified Complex Method make it especially
suited to the drag minimization problem. The primary feature is that
the method can cope with rather general inequality constraints which
are explicit or implicit in the parameters. The method only requires
a "yes" or "no" to the feasibility question; it does not matter which
constraints are violated or how much. Thus it is a simple matter to
cope with the separation constraint directly. The complex figure's
ability to "rol1" along boundaries helps to prevent premature conver-
gence on a boundary. Since the method uses global features of the
function surface, it is not sensitive to local irregularities which
might confuse local gradient methods. The logical strategy is straight-
forward-and easy to implement on the digital computer. The method as
presented here is self-starting; if the optimum is known to lie in a
certain region, that information can be exploited at the outset by
adjusting the constant boundaries aj; and ay,, i =1, ..., N. No

parameter scaling is required since the movements of the complex are
automatically scaled to the range ay; - aLy» i=1, ..., N.

There are several deficiencies in the method described here. The
stopping condition, while precisely defined, has proved economically
costly to satisfy. That is, many PF evaluations are required to es-
tablish that the present best vertex is a local optimum. In fact, for
the drag minimization problem, the stopping condition has never been
satisfied. Rather, the search is aborted after a large number, e.g.,
3N to 4N, of PF evaluations do not improve the best PF value. The best
vertex is assumed to be a reasonable approximation to the local optimum.
A second deficiency is the method's inability to handle equality con-
straints; these must be handled by means outside the search strategy
itself,
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A third deficiency, related to the stopping condition, is that the
method lacks quadratic convergence near local optima. This is important
if the local optimum is interior, not on a boundary. One of the two
classes of bodies considered in this study appears to have interior
optima (changing with Reynolds number R,), so that some consideration
has been given to this weakness of the Complex Method. It appear.
appropriate to exploit a quadratically convergent method for constrained
problems which have interior optima; for this reason Powell's Method of
Conjugate Directions [25], which is approximately quadratically conver-
gent, has been used.

Powell's Method of Conjugate Directions. A detailed word flow
chart of Powell's Method, as used in the present study, is given in
Appendix D. Powell's Method generates search directions but leaves the
actual minimization along the line of search to an external method. A
parabolic interpolation scheme is used for the linear minimization in
the present study; details are given in Appendix D.

Shown in Figure 18 is the essential structure of Powell's Method
of Conjugate Directions as used in this study. The basic input data are

the number of independent parameters N; an initial feasible guess vector
3gs 1.8, 85 = (aol, 39,5 -v» aON); the lower and upper scaling vec-

tors a| and aj, respectively, used to scale the search space; a set of
linearly independent search directions §,, £,, ..., §); an initial step
size STEP for the linear search routine and a convergence tolerance ;.
Normally the initial set of search directions is the set of unit vectors
parallel to the parameter axes. The scaled parameters vary nominally
between zero and one.

To start the procedure the initial guess is scaled to X, , where
Xy = (Xol, on, cees XoN), using the relationship Xo; = (aOi - aLi)/
(aui - aLi). The correspording performance function value PF, is eval-
uated. One cycle consists of a linear search along each of the N
direction vectors | S PN §¢r The minimum point of one search is

the base point for the next, so that Xy is the best point of the entire
cycle. Also, A is the magnitude of the maximum change in performance
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- function to occur in any one linear search. The corresponding direction
vector of maximum change is Eip .

The next phase of the method is to generate the new direction vec-
tor uy = XN~ Xo» and to compute the trial point y = Xy + u with its
performance function PF¢. Two inequality checks determine whether the
new direction is promising or not. If the new direction is promising,
an additional linear search along it is made; the £ j,direction vector

: is thrown out and the new direction vector p/|u| is inserted into the
( last position of the set of search directions. Powell has proved for
3 quadratic surfaces that this procedure guarantees that the new set of
directions will be at least as efficient as the previous set.

After deciding to keep or reject the new direction, a convergence
, check is per/yrmed. The check involves the original base point X ,and
the best point of the cycle. If convergence is not achieved, a new
step size STEP is computed. The new STEP magnitude must 1ie between
certain reasonable limits; it can never be larger than 4 (old STEP).
The latter limit is introduced to forc the search to become more local
with each succeeding cycle; it is a modification of Powell's original
procedure. The minimization continues cycle by cycie until the conver-
gence criteria are satisfied.

Since Powell's method cannot cope with constraint boundaries, they
. must be replaced with a suitably constructed penalty function. The
] effect of the penalty function must be to keep the search in the feasi-
' ble region. For the drag minimization a nenalty function with the
following properties is desirable:

TRTE RN TR ST P

1. The penalty function must deal with general explicit or
implicit inequality constraints in a manner similar to
the Complex Method.

2. Since a constraint violation may render the drag mode:
totally invalid, the penaity function twust generate an
apparent performance functicn value without employing
the drag model itself. In other words, in nonfeasible
regions the response surface may not even exist.
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- 3. The penalty function should not distort the response
surface on the feasible region.

T
P 7

Item 1 implies that constraint violaticns are to be indicated with a
simple "yes" or "no" as is done in the Complex Method, rather than indi-
cating which constraints are violated and by how much. Item 2 is a real
necessity since some constraint violations, e.g., non-negative body
dimensions, yield a physically meaningless body shape. Furthermore,
aveiding a drag computation saves computer time Item 3 implies that
the penalty function has no influence on the feasible region so that the
performance function is the actual drag value there. For the drag mini-
mization a performance function PF which includes a simple penalty
function satisfying all three items above is defined as

Cp » o constraints violated
PF

- CDNKV + c1'cDNKV| ,» constraints vioclated (3.12)

\

where Cpy,y is the nearest known value of Cp on the feasible region and

c, is a small positive constant approximately equal to the search cenver-
gence tolerance. Equation (3.12) may be generalized to

¢

PF » no constraints violated

actual value

R N

PF = | PRy + cllpFNKvl ’ ggnstraints violated and
Nkv # 0
¢ csmall positive number, constraints violated and
| \ PPy = O (3.13)
g~ where PFNKV is the nearest known value of PF on the feasible region.
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The constant ¢, > 0 is arbitrary but is selected so as to make the
ficticious PF surface eppear reasonably well behaved.

The Powell Method used in conjunction with the penalty function
implied in equation (3.13) has several features useful in the drag
minimszation problem. It can handle ihe general inequality constraints
in the same manner a3 the Complex Method. It possesses approximate
quadratic convergence which may be beneficial for finding interior
optima.

There are potential deficiencies in the method. An initial feas-
ible guess is required so the method ic not self-starting; for some
problems locating a feasible initial guess is not trivial. The param-
eter space should be scaled so that each parameter has an “equal inter-
est" in the performance function. The method uses local information in
its moves so that local irregularities may confuse the search strategy.
However, one motivation for using @ "local" method in the drag minimiza-
tion is to study the migration of local minima with Reynolds number.

The stopping condition as indicated in Figure 18 is as cestly to satisfy
as that for the Compiex Method. From a practical point of view it may
be adequate to test for performance function convergence but not param-
eter convergence.

3.5 Properties of the Optimal Solution

After obtaining an optimal solution, four properties of that solu-
tion must be considered. These include uniqueness, a global versus
nonglobal solution, and the sensitivity of the optimum to off-design
conditions. The fourth property emerges when the optimal solution is
obtained using a finite search and a finite stopping condition; it is
the proximity of the reported solution to the true local minimum. These
properties are of concern in all optimization problems, but they will be
commented on below in terms of a numerical "black-box" performance
function to which a fipite search has been applied. This is, of course,
the situation for the drag minimization problem.
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The te:n ' . que" is being used in an engineering sense. Optimal
soluticns w. 2%y are spatially far apart in an N-parameter space but
wnich are close in their performance function values, say to within
the convergence tolerance, are regarded as nonunique solutions. The
term "global" -efers to the best of all the feas:ble local optima, but
it has meaning only after uniqueness is established. For "black-box"
models there are no rigorous procedures for establishing whether an
optimal solutior is either unique or global. Tais is true for optima
on the interior or on a ' sundary. At best these properties can only be
indicated by solving the same optimization problem several times using
different starting conditions. This procedure has veen used in the
present study.

The question of sensitivity has real practical importance. Es-
sentially, it is desirable to know how quickly the optimal solution
degrades in performance at off-design conditions. Such conditions occur
due to variations in the parameters, variations in assumed fixed con-
ditions, 2.g9., Reynolds number, and variatirns in the model, e.q.,
transition prediction. Tnese off-design conditions are examinad in
this study, although not uniformly vor every optimum body design.

The proximity of the reported solution to the true local optimum
can be interpreted in b0 ways. rrom the design point of view proxim-
ity of performance is emphasized; from the optimization point of view
spatial proximity as well as performance proximity are important. The
latter statement is true because it is of interest to know how efficient
a search strategy is in seeking out local minima. When using finite
search strategies with "black-box" mcdels, the local optimum is usually
never known exactly. One procedure is to fit an analytic quadratic
surface locally in the neighborhood of the best solution [20]. The
ninim 1 of this analytic surface is found accurately; the true minimum
is known to within a finte but .zaller tolerance. A side bene 'it of
the quadratic surface fit is the immediate approximate information f
local curvature behavior useful in sensitivity studiss.

To work reliably the above procedure requires a reasonable distri-
bution of experiments (pointe) in a ne ghborhood about the cuspected
Tocal optimum. In an N-parameter space at least N + N(N + 1)/2

I




experiments are required. Usually the requirement of a "reasonable
distribution" forces the generation of some additional points not ob-
tained during the actual optimization run so that an extra cost is
incurred using this procedure.

A less thorough and less costly approach for determining the
proximity of the best point to the true local c.timum "= to examire
several points randomly distributed on the surface of an N-hypersphere
vhose center is the reported best point. The radius of the normalized
hypersphere may be the normalized convergence tolerance for example.
The procedure s to randomly generate a direction, orthogonal to any
previous directions; and to test the performance function value at
both ends of the hyperspherical diameter parailel to the generated
direction. 7The random direction is rejected and regenerated if both
ends are in nonfeasible regions. If no better point is found after
two or three random directions have been checked, then the confidence
in the assumption that the rcported optimum is near the true local
optimum has increased. However, if a better point is found, then the
radius is immediately increased and the procedure is repeated. An
alternate procedure is to re-center the same hypersphere on the new
best point and to repeat the procedure. If a bettc: point is found
on the second hypersphere, then it is assumed that the reported optimal
solution is not a particularly good approximation to the true local
optimum. But the point may still be acceptable if the performance
function value differences are small. In the present study proximity
checks are made using this procedure rather than the quadratic surface
fit.

3.6 Comment on Optimization Philosophy

~

The optimization }. -"ccophy emcrging in this chapter is summarized
in this section. Esser:.ally the drag minimization is to be solved
through the interactions of two digital computer programs, each a
"black-box" to the other. The drag model and search strategies are
independent of each other; hence, independent improvuments can be made
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in one without affecting the other. This idea has becen established

from the outset so that as better drag models or search strategies
become available, they may be incorporated into the drag minimization
package witn only minor programning changes. So as to not overempha-
size the "black-box" relationship. experience has shown that it is
usually beneficial to tailor the search strategy somewhat to the partic-
ular problem in order to make the complete package more efficient.

The Complex Method and Powell's Method with thz penalty function
given by equation (3.13) represent diverse search strategies. The
diversity should lend a degree of confidence to the determination of
uniqueness and global optimality. The Complex Method, with its ran-
domly and globally distributed initial compliex figure, has some chance
of finding the global optimum, if there is only one. Powell's Method,
with its local movements, should be able to "track" a local minimum
drag shape with changing Reynolds number. Two other benefits of
Powell's Method for interior optima include efficiant convergence and
the approximate knowledge of the iocal curvature at the optimum point.

There are two points of view regarding the results of the drag
minimization studies. One is the design point of view in which the
emphasis is on the performance of the design and its sensitivity to
off-design conditions. The other is the optimization point of view
which includes consideration of the above and also uniqueness, globality,
proximity to the true optimum, and search efficiency. Both points of
view are retained in the results to follow but not uniformly with every
minimum drag shape.
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CHAPTER 4

PARAMETRIC BODY PROFILES

This chapter defines the two classes of bodies used in the present
study. Certain inequality constraint expressions are also present.d.
A parametric definition of body shapes more general than that given by
equation (3.10) may be expressed as

N
Y(X) = ¥ izlaiFi(x)» 6(X) (4.1)

where N is the number of independent parameters aj associated with the
known functior. F5(X). The known function G(X) is present to satisfy
certain boundary conditions buiit into Y(X). Equation (4.1) implies
that Y(X) may not be a simple linear combination of known functions.

The procedures used to derive the expressions for Y(X), i.e.,
equation (4.1), are essentially those reported by Granville (1969) [29].
The idea is tu divide the body into sections each of which is described
by a low degree polynomial. From hydrodynamic . nsideratic s the com-~
plete body is to be continuous through second derivatives; for exzmple,
a discontinuity in curvature can cause a "pressure spike" (local region
of highly accelerated flow) to occur. The low degree polynomial of
exch sectisn is completely specified in terms of its boundary condi-
tions, some of which are fixed and some of which are free to be manipu-
lated. Those which may be manipulated are the parameters to be varied
during an optimization run. Furthermore, for each body section only
two boundary conditions are free so that two-dimensional constraint
boundaries can be plotted. The complete derivations are left to Ap-
pendix E; th results are reported here.
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E ? -~ 4.1 Five-Parameter Rounded-Nose, Pointed-Tail Body [29]
An example of this body is shown in Figurel9. The forebody (0 < X <
Xm) is described by a fourth-degree polynomial, the aftbody (Xp < X < L)
Y by a fifth-degree polynomial.
E Y
: "
; f 4——-‘~""~
; R D Sy
E - 1 — iy
i q. > X
) Xm —
] P
E Figure 19. Rounded-Nose Pointed Tail Body.

The six dimensional parameters shown in the figure are Visted below:

1. R, = Radius of curvature at nose
= 1/(d®X/dy?) at X = 0
2. D = Maximum diameter
= Y(xm)
3. Xy = Axial location of maximum diameter O
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4. X, = Curvature at Xy

= d2Y(Xg)/dX?

5. 33 = Profile slope at tail
= dv(L)/dX

6. L = Overall bedy length

The rounded-nose, i.e., infinite slope, is a built-in boundary
condition, although a zero radius of -urvature, Ry = 0, is allowed. The
pointed-tail, i.e., finite slope, is also a bujlt-in boundary condition.

The six parameters listed above can be reduced to five which are
nondimensicnal, hence the "five-parametei" designation. These are
lTisted below.

1. ry = Nondimensional radius of curvuture at nose
B = [4Xp/D?] Ry = [4xnf2] Rp/L (4.2a)

2. fp = Fineness ratio

= L/D (4.2b)
3. xp = MNondimensional axial lccation of maximum diameter D

= Xm/l. (4.ZC)
4. k, = HNondimensional curvature at X,

= [-2k3/0] K, = [-2xmfp] K, L (4.24)
5. st = Nondimensional slope at tail

= [-2(L-Xp)/0] S¢ = [-2(1-xy)fr] St (4.2e)

A11 nondimensional pacameters are defined so that they are normally
non-negative. The particular rondimensionalizing expressions emerge
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- during the derivations given in Appendix E. The length L is not a free
parameter to be manipulated since it must be scaled to satisfy the
fixed Reynolds number.

The analytical expressions for this five-parameter body are given
below:

SO
¢
4
=
b
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1. For 0< X < X, (forebody):
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1

s MO - Irgfu ) + Kyl + 6007 (4.3)
: where  x = X/Xp (4.43)
, F,(x) = -2x(x - 1)3 (4.4b)
g Fx) = =x*(x - 1)? (4.4c)
“ 6{x) = x2(3x2 - 8x + 6) (4.4d)

2. For Xy < X < L (pointed aftbedy):

- 1

YO = st R0+ G2 K, By (00 + 6001 (4.5)

where x = (L-X)/(L-Xp) (4.6a)
Fi(x) = -x%(x -1)2 (4.6b)
F(x) = -x}(x -1)? (4.6¢)
G(x) = x3(6x% - 15x + 10) (4.6d)

The constraint boundaries imposed on the five nondimensional param-
eters are listed below. Some are obviously "pre-judgments" influenced
by previous hydrodynamic experience.
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i - The complicated constraints are listed last and are considered in
! : detail.
E 1. Non-negative radius of curvature R, at nose, or
3
. 20 (4.7a)

2. Nonpositive curvature K, at maximum diameter, or

k, 20 (4.7b)

3. Real location for maximum diameter so that
; 0<xp <1 (4.7¢)
3

4. Reasonable fineness ratios, i.e., not conducive to

separation, so that
] fe > some positive constant, say 2.5 (4.7d)
3 - 5. Nonpositive slope Sy at tail, or
S¢ 2 0 (4.7e)

3 6. No inflection points on forebody
3 7. No or only one inflection point on aftbody
L.

The Tow degree polynomials for the two body sections together with
constraints 1 through 7 above imply that the body profile is always
non-negative,

Noninflected Forebody. The forebody, which is described by a
fourti-degree polynomial, may have zero, one, or two inflection points.
The analysis [29] given in Appendix E leads to a set of two simultaneous
noniinear algebraic equations which must be solved by numerical itera-
tion. The sclution gives the r, versus ¥, curve along which one limiting
- inflection occurs on the forebody in that the second derivative touches
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L zero but does not change sign. The convex ry versus k, boundary is chown
¢ in Figure 20; the non-negative boundaries are due to eguations (4.7a)

} and (4.7b) above. The existence of two inflections in the labelled

region is demonstrated graphically [29].

Two Inflections

y/’————-_-555\“-~\\\\l//"One Inflection
r

n

DAL % Lo o od

s

No Infleaction

Figure 20. Feasible Region for Noninflected
Rounded-Nose Forebody Saction.

Noninflected or Inflected Pointed Aftbody. The aftbody, which is
described by a fifth-degree poiynomial, may have zern, one, two, or
three inflection points. The analysis [29] given in Appendix E leads
to a set of two simultaneous nonlinear algebraic equations which must
be solved by numerical iteration. A singularity leads to another set
of equations which can be solved directly. The resulting s% versus

! [(1 - xp)/xp)?k, curves are shown in Figure 21. A nonconvexity arises
! when both noninflected and singly inflected aftbodies are allowed. The
curved boundary represents the limiting inflection in that the second
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derivative touches zero but does not change sign. The number of inflec-
tions in each region has been established by Granville [29].
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s% No Inflection

o —— One Inflection
\\\

One Inflection

kl[(] = xm)/xm]2

Figure 21. Feasible Region for Noninfiected or Singly
Inflected Pointed Aftbody Section.

4.2 Eight-Parameter Rounded-Nose, Tailboom Body

An example of this body is shown in Figure 22. The forebody (0 <
X < Xp) is described by a fourth-degree polynomial as in Section 4.1
above, the midbody (X, < X < X;) by a fifth-degree polynomial, and the
tailboom aftbody (X; < X <L) by a fifth-degree polynomial.
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Figure 22. Rouunded-Nose Tailboom Body.

The nine dimensional parameters shown in the figure are listed below:

5 1. Ry, = Radius of curvature at nose
‘ = 1/[d*X/dY?] at X = 0
2. D = Maximum diameter
= Y(Xm)
3. Xy = Axial location of maximum diameter D
4. K, = Curvature at X,
= d?Y(X,)/dX?
5. X3 = Axial lccation of inflection point
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6. Ry = Profile radius at Xj
= Y(X;)

7. S; = Profile slope at X«
= dY(X;)/dX

8. T = Terminal profile radius
= 1(L)

9. L = Overail body length

The rounded-nose, i.e., infinite slope, is a built-in boundary condition
as in Section 4.1 above, and R, = 0 is allowed. The tailboom has built-
in boundary conditions of zero slope and curvature, and T = 0 is mathe-
matically allowable. The zero slope and curvature at X equal L implies
that a cylindrical tailboom extension may be added withou* loss of
profile continuity through the second derivative.

The nine parameters 1isted above can be reduced to eight which are
nondimensional, hence the "eight-parameter" designation. These are
listed below:

1. ry = Nondimensionai radius of curvature at nose

= (4%p/D%) Ry = (4xpff) Ry/L (4.8a)
2. fp = Fineness ratio

= L/D LR:1y
3. xp = Nondimonsional axial location of maximum diameter D

= Xp/L (4.8c)
4. k, = MNondimensional curvature at X,

= (-243/D) K, = (-2x3fp) K, L (4.8d)
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5. x; = Nondimensicnal axial location of inflection point

= Xj/L (4.8e)

6. r;j = Nondimensional profile radius at X

= (2/D) Ry = (2fy) Rj/L (4.8F)

7. sij = Nondimensional profile slope at X;
= [-(Xj ~ Xp)/(0/2 - R{)1S;
1 = [-2Fp(x5 - xu)/ (1 - r3)1S; (4.8g)

8. t = Nondimensional terminal prcfile radius

= (2/D) T = (2f,) T/L (4.8h)

3 A1l nondimensional parameters are defined so that they are normally non-
negative. The particular nondimensionalizing expressions emerge during

- the derivations given in Appendix E. The length L is not & free param-
eter to be manipulated since it must be scaled to satisfy the fixed
Reynolds number.

The analytical expressions for this eight-parameter body are given
below. The expressions for the forebody (0 < X 5_Xm) are identical to
those given by equations (4.3) and (4.4) in Section 4.1 above; they are
not repeated here.

1. For Xp < X < X5 (midbody):

| L 2t

O

) o1 [7‘1‘ + (1-ri)[(xi/xm-l)2 k, F,(x}

+si5u)+mn” (4.9)
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where x = (X5 = X)/ (X5 - Xp) (4.10a)
Filx) = -3 x3(x - 1)? (4.10b)
Fo(x) = x - x3(3x* - 8x + 6) (4.10c)
G(x) = x¥(6x% - 15x + 10) (4.10d)
2. For Xj <X <L (tailboom aftbody):
Y(X) _ T t (1-r)(1-x4)

R MG AR RCRS =i R AG)
(4.11)
where x = (L-X)/(L - X5) (4.12a)
Fo(x) = 1 - x3(6x* - 15. +10) . (4.12b)
Fo(x) = -x3(3x% - 7x + 4) (4.12c)

The constraint boundaries imposed on the eight 1 ndimensional param-
eters are listed below. Cecause the forebody is iden' ical to that for
the five-parame’er body, some of the constraints listed here are dupli-
cates of those found in Section 4.1,

1 Non-negative radius of r rature R, at nose, or

ry 20 (4.13a)

2. Nonpositive curvature K, at maximum diameter, or

k, 20 (4.13b)

3. Compatible locations of maximum diameter and inflection
point so that

6 ¢ <x5 <1 (4.13c)
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4. Reasonable fineness ratios, i.e., not conducive to
separation, so that

f, > some positive constant, say 2.5 (4.13d)

5. Compatible radii at maximum diameter, inflection
point, and trailing edge, so that

0O<tsrysl (4.13e)

6. Nonpositive profile slope S; at inflection point, or

;20 (4.13f)

7. No inflection points on body except at X; and L

The low degree polynomials for the three body sections together with
constraints 1 through 7 above impiy that the body profile is always
non-negative. The inflection point requirement, item 7, implies that
all three body sections are noninflected except at Xj and L. The
analysis for the noninflected forebody is identical to that for the
five-parameter body so that Figure 21 applies.

Noninflected Midbody. The midbody, which is Hescribed by a fifth-
degree polynomial, may have zero, one, two, or three inflection points,
but no more than two on the interval Xy < X < X5 since one is fixed at
X equal Xj. The analysis in Appendix E leads to a boundary curve de-
fined by two explicit parametric equations. A singularity leads to an
additional equation. The resulting convex si versus [(x1/xm - 1)%

(1 - ri}Jk, curves are shown in Figure 23. The number of infiections
in each region i5 established by a general analytical demonstration.

Noninflected Tailboom Aftbody. The tailboom aftbody, which is
described by a fifth-degree polynomial, may have zero, one, two, or
three inflection points, but no more than one on the interval Xj < X <
L since one is fixed at X equal Xj and another at X equal L. The
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analysis in Appendix E gives the linear convex [(1 - ri)(1 - x3)/

(xi - xp)(rj)]s; versus t/r; boundaries shown in Figure 24. The number
of inflections in each region is established by a general analytical
treatment.

4.3 Closing Comment

It is apparent that the two classes of bodies considered in this
study are constrained in advance to be well behaved according to previ-
ous hydrodynamic experience. The profiles are continuous through all
derivatives except at a finite number of points which join body sec~
tions; at such points the profiles are continuous through second
derivatives. The discontinuous third derivative at these points implies
that the curvature, while continuous, may change rapidly. Such behavior
causes local regions of accelerated flow. It is interesting to note
that the search strategies described in Chapter 3 have exploited this
phenomenon to help minimize drag, as shown in the next chapter.
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CHAPTER 5
RESULTS AND COMPARISONS
This chapter presents results obtained using the drag model and
search strategies described in the preceding chapters. Some attention

is also given to the hydrodynamic performance of powerful swimmers
found in nature. Overall conclusions are reserved for Chapter 6.

5.1 Body D-54 and the "Dolphin"

The impressive performance of the "Dolphin" [2], discussed in
Chapters 1 and 2, represents the standard of ~omparison for the eight-
parameter tailboom body. It is of interest to know whether or not a
body superior {lower Cp) to the "Dolphin" can be found. Using the
Complex Method, an optinization run made early in the study has pro-
duced a body with a drag coefficient Cp about 25 percent lower than
that of the "Dolphin" at similar Reynolds numbers. The resulting body,
called "D-54," and its velocity distribution are shown in Figure 25
along with the "Dolphin" profile. Body D-54 is the 54th function (CD)
evaluation of the optimization run.

Body D-54 is characterized by a long run of iaminar boundary layer
flow over the forward two-thirds of the body. The small velocity gra-
dients over the forebody help to reduce skin friction; however, the
same near-zero gradients have a neutrally stabilizing effect on the
laminar boundary layer, i.e., the absence of an accelerating boundary
layer increases the chances of early transition. At the midsectinn the
laminar boundary layer is approaching conditions for transition as in-
dicated by the Ry versus Rg trajectory in Figure 26. Transition is
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Figure 26. Re versus R¢ for Body D-54.
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- suppressed, however, by 'ocally accelerating the flow; this is accom-

E plished by allowing the hody curvature to change rapidly. After

: transition, which is inaicated by laminar separation/turbulent re-
attachment, the turbulewxt boundary layer survives the run of adverse
velocity gradient and enters the terminal accelerating region. Such a
region helps to suppress boundary layer separation as suggested by the

skin friction disti-ibution plotted in Figure 27; we are equating nonzero

skin friction and nonseparating flow.

Perturbation studies on body D-54 have been made. The procedure
is to randomly generate orthonormal direction vectors § in Euclidean
8-space. For example, all components of §, are randomly genera‘ed;
each succeeding vector has one less random component so that the re-
maining components may be used to satisfy orthogonality requirements.
Three orthonormal vectors used in this study are shown in Table 1. The
reported optimum body shape is represented by the set of parameters a*,
where for the eight-parameter tailboom body

j
3
s
y
"4
i
;
i
b
;
k
)
3
5
3
)
:
i
:
5
3
;
]
[
;!
:
:

a*

(a}, a3, ay, af, at, a¥, a¥, a3)

(fs xps k¥ vy ris s, x¥, t*) (5.1)

T T T T e oF TP B St PP

Perturbations a' about the reported optimum a* are generated by

ay = a} (1+R&), j=1,...,8 (5.2)

where R is the magnitude of the perturbation and 6, J = 1, ..., 8, are
the perturbation direction components. Body D-54 and six 3% perturba-
tions are given in Table 2 using the directions of Table 1 and R = .03.
The perturbed drag coefficient values, which include two 6% per-
turbations not inciuded in Table 2, are shown in Figure 28; it is
obvious that body D-54 is suboptimal, a result of prematurely stopping
the search after €5 function evaluations. Since the normalized gradients
BCD/a(perturbation direction) are on the order of one, significant im-
provements in the minimum Cp shouid be possible.
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Table 1. Three Random Orthonormal Directions in Euclidean 8-Space.

Component Corresponding s

Number j Parameter 1j __Gf_l_

1 , 51355 -.33699
2 Xm -.22359 -.01275
3 K, .28264 -.33745
4 rn -.06892 -.08269
5 ry .43429 -.11124
6 S§ .52863 -.01050
7 X 08208 06585
8 t .35616 .86507
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Figqure 27. Skin Friction Distribution for Body D-54.
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5.2 All-Turbulent Body I-36 and the Series 58 Study

The philosophy of the Series 58 study [3], discussed in Chapters 1
and 2, is to design low drag bodies on the assumption that laminar flow
cannot exist in the operating environment at submarine-type Reynolds
numbers. No attempt is made here to judge the validity of this assump-
tion; rather, it is of interest to know whether or not an all-turbulent
body can be found with a Cp lower than that of the best of the Series
58 bodies.

Using the Complex Method and the five-parameter pointed tail body,
three optimization runs with different initial compisx figures have
been made. The boundary layer is tripped at X/L equals .05; for all
three runs the Reynolds number is fixed at Ry equals 5 x 10® which is
the upper end of the Series 58 test Ry values. Two of the three runs
converged after 27 function evaluations; the third run was near con-
vergence but was aborted prematurely after 38 function evaluations due
to reasons external to the search strategy.

The sighificant result of the three runs is the fact that the
response surface for all-turbulent bodies is quite flat. That is, for
fairly wide variaticns in the parameters, the drag coefficient varies
little. This is evident in Figure 29 which shows nine parameter sets
plotted in the parameter space. A1l parameter sets have corresponding
Cp values within one percent of the best design. It is evident that low
drag all-turbulent bodies are not critically dependent on shape. Hence,
if laminar boundary layers cannot be exploited to minimize drag, then
means other than profile shaping must be used to reduce drag, e.q.,
poiymer injection.

The best design, body "I-36," and its velocity distribution are
shown in Figure 30 along with the profile of model 4165, the best of
the Series 58 study. The Cp value for body I1-36 is 0.020, which is
about the same as that of model 4165 according to the drig model used
in this study The streamwise velocity gradient is small over most of
the body length to reduce skin friction.
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5.3 A Series of Lami~ar Bodies at Three Reynolds Numbers

TR P T

Of primary interast is the change of minimum drag shape over a
wide range of Reynolds nunibers. An underlying topic of fundamental
importance is the uniqueness of a minimum drag shape at its design
Reynolds number. 1In this section we report the results of optimization
runs made at three Reynolds numbers using the five-pd}ameter pointed-
tail body described in Chapter 4. The selected Reynolds numbers are
Ry = 5 x 10%, 1.6 x 107, and 5 x 107 which correspond to nominal vehicle
volumes of 1.1, 37, and 1130 cubic feet traveling at a speed of 35 knots
in water.

Low Ry Body G-35. Using the Complex Method a low drag body shape

has been obtained at Ry = 5 x 105. The optimization run terminates
prematurely after 43 function evaluations due to reasons external to the
search strategy. The best body shape occurs on the 35th function eval-
uation of the run; its predicted Cp valie is 0.0054 ai the design Ry.

Body G-35 and its velocity distribution are shown in Figure 31.
The body is quite streamliined and has a long run of laminar boundary
layer flow over the forward three-quarters of tk: body. The forebody is
essentially of the Reichardt type since the veldCity gradient is nearly
zero over most of the forward half of the body. In a manrer similar to
the tailboom body D-54, the flow is locally acceierated starting at
about X/L equal 0.6 to suppress transition, which is predicted by lami-
nar separation/turbulent reattachment. The effect is readily seen in
the Rg versus Rg trajectory plotted in Figure 32. The skin friction
distribution plotted in Figure 33 suggests that the turbulent boundary
layer is on the verge of separating near the trailing edge.

Perturbation studies have been made to determine if body G-35 is
near a local minimum. The parameters of the reported optimun in a
Euclidean 5-space are

a*

* * * * *
(at, a%, a*, a¥, a¥%)

k¥, r*, s32) (5.3)
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As for the eight-parameter body D-54, random orthonormal directions,
shown in Table 3, are used to generate perturbations
' %* . =
aj - aj(] i RGJ)’ j ], ceey 5 (504)

where R is the perturbation magnitude and the 6js 3 =1, ...y 5, are
the components of the perturbation direction. The parameters for body
G-35 and six 3% perturbations (R = .03) using the directions in Table 3
are shown in Table 4. The perturbation results, shown in Figure 34,
reveal immediately that body G-35 is suboptimal. The normalized gradi-
ents 3(Cp)/a(perturbation direction) are on the order of one so that
significant improvement in the minimum Cp should be possible.

Midrange Ry Body H-62. Using the Complex Method a low drag body

shape has been obtained at Ry = 1.6 x 107. The optimization run termi-
nates after 80 function evaluations, the last improvement occurring
on the 62nd evaluation.

Body H-62 and its velocity distribution are shown in Figure 35; the
Cp value is .0059 at the design Ry value. The body is somewhat "fatter”
and more pointed than the low Ry body G-35. A long run of laminar
boundary layer flow is maintained by continuously but mildly accelerat-
ing the flow over the forward two-thirds of the body. Transition is
predicted by the Michel-e® correlation, as indicated by the Ry versus Rg
trajectory plotted in Figure 36. The skin friction distribution shown
in Figure 37 suggests that the turbulent boundary layer is on the verge
of separating near the trailing edge in a manner similar to body G-35.

Perturbation studies have been made on body H-62 using the pertur-
bation directions given in Table 3. The procedure is the same as for
body G-35. The parameters for body H-62 and six 3% perturbations
(R = .03) are shown in Table 5. The perturbation results are shown in
Figure 38; direction §, reveals that body H-62 is suboptimal and that
improvement in the minimum Cp value is possible.

High Ry Bodies F-57 and F2-49. Using both the Complex Method and
Powell's Method two distinct low drag shapcs have been obtained at
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Table 3. Three Random Orthonormal Directions in Euclidean 5-Space. ]
Component Corresponding 5 s 5 3
Number j Parameter 1j 2j 33 ;
.29310 -.37469
.33316 .15350
.35274 -.38945 i
-.16275 ~.82370 ;
.80758 07677
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Ry = 5 x 107, One optimization run using the Complex Method is termi- A
nated after 90 function evaluations, the best design occurring on the
57th iteration (body F-57). A second run using the Complex Method is
terminated after 70 function evaluations producing a different best
shape on the 49th iteration (body F2-49). A third run using Powell's
Method is terminated after 75 function evaluations with a best shape
quite similar to body F2-49. None of the three runs converges according
to the formal definitions associated with the methods.

Body F-57 and its velocity distribution are given in Figure 39;
the drag coefficient is .0076. This "fat" body has some hydrodynamic
similarity to body H-62 in that it is pointed and has a long run of
accelerated laminar flow over the forward two-fifths of the body. Un-
like the lower Ry body shapes, there is no dominant locally accelerated
flow to suppress transiticn. The absence of the effect is seen in !
Figure 40 in which the Rg versus Rg trajectory approaches the Michel-e® ;
correlation curve in a monotonic manner, ultimately crossing the curve
to predict transition. The skin friction distribution shown in Figure
41 suggests that the turbulent boundary layer is on the verge of sepa-
rating near the trailing edge.

Body F2-49 and its velocity distribution are given in Figure 42;
the drag coefficient is .0073 so that it is supericr to hody F-57 on
the basis of minimum Cp. This shape also has hydrodynamic similarity
to body H-62 in that a smali run of nearly constant velocity flow
precedes a large region of accelerated flow which heips to suppress
transition. This effect is seen in Figure 43 in which the Rg versus
Rs trajectory approaches, veers away, and approackes again the Michel-
e? correlation curve; its uliimate crossing predicts transition. In a
manner similar to all the preceding pointed tail bodies, the skin
friction distribution shown in Figure 44 suggests that the turbulent
boundary layer is on the verge of separating near the trailing edge. ‘

It is interesting o note that each of the two low drag shapes !
exploits a different feature of the midrange Ry body H-62 to minimize
drag. That is, the pointed-nose body F-57 maintains laminar flow by
continuously accelerating the flow over the forebody; the rounded-nose
body F2-49 suprresses transition by locally accelerating the flow
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. - starting at about X/L equal 0.2. Even though the hydrodynamic means
are somewhat different, transition occurs at about the same axial loca-
tion for both bodies.

The existence of these two distinct low drag shapes brings the
question of uniqueness into the foreground. In an attempt to establish
uniqueness, i.e., the existence of a finite number of distinct low drag
shapes, a third optimization run has been made using Powell's Method;
the idea is to see whether a different search strategy converges to an
existing solution or produces yet another low drag design. If the
former occurs, then confidence in the uniqueness of the solutions has
increased. If the latter occurs, then nonuniqueness appears likely and
further testing is required.

The results of the Powell run are best seen by observing the over-
all parameter migrations of all three optimization runs as shown in
Figure 45. The data shown are the initial and fina: designs for each

: run; the arrowhead indicates direction of overall movement. For the

: runs using the Complex Method, the initial design shown is the best

- vertex of the initial complex figure. It can be seen that both fir~1

designs are similar in their parameter values except for the radius of _
curvature at the nose r,. It should be noted that small differences in J
Xp are exaggerated on the k,[(1 - xp)/xp]? axis. The result of the ;
Powell search is quite close to body F2-49 and appears to be converging
on the rp - k, boundary. The conclusion to be drawn is that the low |
drag designs are distinct local minima, finite in number, and hence i
unique.
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Variation of Cp with Reynolds Number. One sensitivity analysis of 3

interest to the hydrodynamic designer is the variation of drag coeffi-
cient with Reynolds number. The variation of Cp over a wide range of
Ry 1s shown in Figure 46 for low, midrange, and high Ry bodies. At its
own design point each Tow drag body has the lowest Cp of the three
values. The designs are not sensitive to reasonably wide variations in
Ry, at least according to predictions of the drag model used in this
study.
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Parameter Migrations during Three
Optimization Runs at Ry = 5 x 107,
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5.4 Hydrodynamic Performance of Powerful Swimmers

Data on the swimming speeds of dolphins (porpoises) have appeared
in the literature since the mid 1930's. Until the early 1960's all
data indicated that dolphins either 1) produced several times the power
believed passible by their musculature, or 2) were able to reduce their
flow resistance by unknown means to values several times lower than
those of similar man-made devices {31, 32]. However, recent studies
{33, 34] have shown through reascnably well controlled experiments that
the dolphin does not have low resistance to flow; indeed, typical drag
coefficients are about the same as that of a torpedo with an all-turbu-
lent boundary layer. Stated another way, there are rigid laminar flow
bodies with drag coefficients about half that of the dolphin animal.

A tested example of such a man-made device is the "Dolphin" [2] dis-
cussed in Chapters 1 and 2.

Table 6 compares drag data taken from the references indicated for
a nominal Ry of 5 x 10%, Data for the porpoise species are usually
reported on a dimensional basis so that direct comparisons are difficult
to make, item 1 of Table 6 being a rare exception. It is apparent from
the table that the Stenella attenuata has a drag coefficient more like
torpedoes and all-turbulent bodies than like laminar flow devices. It
must be concluded that porpoises, as hydrodynamic performers, are
mediocre.

There are at least three reasons why the earlier conclusions con-
cerning the hydrodynamic abilities of the dolphin are erroneous [33, 34].
Unusually high speeds of dolphins swimming near moving ships may be
explained by assisted locomotion since it is known that dolphins are able
to derive thrust from the moving fluid near the ship. Some speeds have
been deduced from dolphin sightings by observers on moving ships over a
quarter-mile distance [32]. However, the ccmbination of ship motion and
wave motion creates an illusion of fast speed which has been estimated
to cause ervors of 25% [34]. A more subtle source of error is the
duration of time over which the speeds are recorded. Dolphins are
capable of high power output and hence high speeds for short periods of
time, perhaps 5 to 10 seconds, during which the muscle tissue goes into
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Table 6. Porpoise Drag Data Compared with Rigid
; Devices for Nominal Ry of Five Million _
: Animal Drag * _ Drag 3
or Device T oA 7 Comments and References ;
2 PV 1 ou2v?

1. Porpoise, Stenella .00239 Drag due to appendages i
attenuata to - subtracted out. Data 3
.00401 from coasting tests b
(1966) [34]. 3
_ 2. Typical Torpedo - 0196  [2] 3
3. Model 4165 A11 turbulent boundary i
of Series 58 -00255  .0186 layer. Tow tank data [3]. i
4. Laminar Flow .00109  .0092 Data from gravity-pow- §

"Dolphin" to to ere. drop tests {25.
.00164 .0138 {
* A = body wetted surface area 3
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oxygen debt. One series of tests [33] showed that the dolphin attained
a speed of 16.1 knots for 7.5 seconds but only 6 knots on a continuous
basis. For this example the ratio of peak power to continuous power

is approximately (16.1/6)% = 19.2. Apparently the concept of peak
power has not been considered, or at least has not been stated, in
earlier work.

In comparing the shapes of powerful swimmers to those of rigid low
drag bodies, one important fact must be emphasized: tha optimum shape
for swimmin, .aimals will be different from the optimum shape of Tow
drag man-made devices. The underlying reason is that the animals and
devices are optimally shaped with respect to different performance !
functions. The animal is shaped so as to maximize its chances for
survival, which is a rather complex performance function indeed! On
the other hand, the shapes of similar man-made devices, as proposed to
date, are optimal with respect to the relatively uncomplicated perform-
ance function of drag. The powerful swimmer is shaped so as to attempt
to simultaneously minimize drag, maximize propulsion, maximize energy
reserves, minimize the effect of interfering objects such as eyes, ]
mouth, and gills, and minimize its metabolism rate while swimming k
quickly. To extremize any one of these items without regard for the
vthers would certainly change the shape of the animal.

0f equal importance is the fact that the powerful swimmers are ;
optimally shaped subject to a different set of constraints than those ;
for man-made devices. Animals are constrained to utilize propulsion ?
mechanisms which oscillate rather than rotate since all parts of the .
animal must be connected with blood vessels and nerves. There is also

~ the subtle constraint of maintaining a favorable surface-area-to-volume
ratio so that the organism may function properly [35]. Man-made de-
vices are practically constrained to use rotating mechanisms for pro-
pulsion since oscillating mechanisms of rigid parts apparently cannot
be made to operate efficiently. Implied here is the additional practi-
cal constraint of rigid construction and structural integrity.

The point to be made here is that it is not particularly meaningful
to compare the shapes of powerful swimuers and lew drag rigid devices.
Each is the result of attempting to extremize different performance
functions subject to different constraints.
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CHAPTER 6

CONCLUSIONS AND RECCMMENDATIONS

Conclusions and recommendations given in this chapter are based
on results reported in Chapter 5 and Appendix F. At the outset it must
be said that significant vehicle drag reduction is possible through shape
manipulation. Tne present method has produced low drag bodies with drag
coefficients one-fourth to one-third below that of the low drag "Dolphin"
at similar Reynolds numbers. Of equal signiticance is the fact that the
minimum drag shape is a strong function of Reynolds number. For the
five-parameter body over a onc order-of-magnitude range of Peynolds
number (5 x 10° < Ry < 5 x 107) the corresponding opcimum fineness ratio
(L/D) ranges nominally from 8.5 to 3.5. The corresponding location of
max imum diameter ranges nominally from Xp/L = .75 to .45.

Over the reported Ry raﬁge all optimum body shapes exploit laminar
boundary layers to reduce drag. The experimental evidence of the "Dol-
phin" [2] demonstrates that substantial laminar flow does exist in the
ocean envirorment at speeds up to 60 knots (Ry above 107). It must be
concluded that leminar flow is a practical means for reducing drag at
these Reynolds numbers and that proper body shaping can use laminar
flow effectively.

If laminar flow is prevented due to extraneous factors, such as
body roughness, tnen it appears that tha body shape is not particularly
critical in reducing drag <o long as it is recasonably streamlined. This
conclusion is based on the ail-turbulent drag minimization study at
Ry = 5 x 10° in which rothing better than the best of the Series 58
study [3] is obtained. Stated another way, if laminar flow cannot be
exploited to reduce drag, then further drag reduction below present
design values nust be accomplished by means other than profile shaping
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alone. One alternate means is polymer injection in the boundary layer.
lumerous optimization runs made at Ry = 5 x 107 using two search
strategies produced a number of low drag shapes. Fine tuning by hand
reveals that there is apparently a unique global minimum drag shape.
The global minimum has high sensitivity to early transition; hence, sub-
optimal solutions without this sensitivity are more desirable from the
hydrodynamic design point of view., Alternatively, additional constraints
may be imposed on the probism to avoid such undesirable characteristics.
The modified Complex Method used in this study has performed well.
It operates in a constrained environment without difficulty. Since it
moves on global information, the method can cope with errors in the 3
performance function which do not obliterate global trends. The method
is well suited for design problems without critical convergence tole-
rances. For the drag minimization problem, one may expect to use 10N to
150 minutes of Ci.C 6500 computer time to obtain a minimum drag body
using the recommended 30-station solutions, where N is the number of

N

o iie — A%ALAT Y O 2 Pty 4 K g

narameters.

Powiell's Method along with the penalty function used in this study ;
can only be used effectively with 99-station (3 minute) solutions since
the normal 30-station (1 minute) solutions introduce enough ervor to i
confuse this locally moving method. The method's primary use for the
present problem is fine tuning; one may exrect to use 9N to 12N minutes
of CDC 35500 computer time for each cycle of fine tuning using the recom-
mended 99-station solutions, where N is the number of parameters.
Normally, fine tuning by this method is not necessary; when it is re-
quired, one cycle is adequate.

Several recommendations for future research can be made concerning
the drag minimization problem. The two classes of bodies considered in
this study are constrained to be well behaved according to previous
hydrodynamic experience. The analyses for the various constraint
boundaries are complicated and lack generality. It may prove beneficial
to develop a more general class of bodies using orthcgonal polynomials, 4
for example. Rather than deriving constraint boundaries, it would be é
simpler to meke a direct check of the profile and its derivatives; how- 1
ever, knowledge of the constraint boundaries does provide insight into ’
the nature of the problem. %
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The one outstanding weakness of the modified Complex Methcd is its
stopping condition. The problem is that a large number of function
evaluations are wasted in the process of deciding that the best design
is sufficiently near a local minimum. A more sophisticated terminating
strategy would be beneficial.

In the area of drag prediction, the major weakness appears to be

the modeling of the transition region. The assumption of point transi- f
tion may be poor at low Reynolds numbers for which there is no abrupt
increase in skin friction as predicted by the drag model used in this f

study. The use of the planar flow Michel-e? correlation to predict
transition of axisymnetric boundary layers probably introduces some :
error. Experimental verification of the results of this study is §
certainly desirable. 3
As far as hydrodynamic design is concerned, the next logical step

is to include the propeller or propulsive jet effects in the drag model.
This would change the problem from drag to power minimization. Since i
the rresance of the propeller or propulsive jet will change the flow
field, it is expected that the minimum power body shapes will differ
from those for minimum drag. As mentioned above, it scems desirabie to
further constrain the problem to avoid high sensitivity to early transi-
tion.
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APPENDIX A :

] DERIVATION OF DISPLACEMENT THICKNESS FOR MASS é

s CONSERVATION IN AN EXTERNAL AXISYMMETRIC FLOW i
g

This appendix presents the derivation of the displacement thick- é

1

ness ng for mass conservation in an external axisymmetric flow. The
! principal notation is shown in Figure Al. The zero incidence flow with

b At
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Figure Al. External Axisymmetric Flow Notation.

1 § reference velocity U, is parallel to the centerline X-axis. The bound-
ary layer is specified in terms of the curvilinear x-y coordinate
system. At a point in the boundary layer the velocity is u = u(x, y),
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which approaches the external value ug(x) as y approaches the boundary
layer thickness 8. The local tangent has angle a; the local wall radius
is ry. It is also convenient to use the relationship r = r, + y cos a,
where r is the radial coordinate of a point in the flow. The local
density p(x, y) and external density pe(x) are retained in the deriva-
tion to follow.

The displacement thickness concept equates the retarded boundary
layer mass flow to a displaced inviscid mass flow of constant local
velocity ua(x). This may be written as

S ...‘_&.:.Xa,.m vt

ok oamad o

(Viscous Mass Flux) (Inviscid Mass Flux)

oA s e Ao o S AT A 14 20l T S et

J pu 2mr dy = J Pe Ug 2ar dy (A.1)
° 83x

Ko a2t e 2

We assume that outside the boundary layer, i.e., for y > &, that

pu = pg Ug SO that equation (A.1) reduces to ;

PR N

purdy pe Ue I dy (r.2)

8ax

e
| S
© (=)
[l
[~}
*

This may be written as ?

83x 6 Sax :
] pe Ug r dy + [ pe Ug " dy - J Pe Ug r dy (A.3) 3

)
J purdy
) o

LY
0 Sax

- which reduces to
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8hy 8
[ rdy = [ (1 - Bélgzir dy (A.4)
(o) 0

Replacing r by ro + y cos a in the left-hand side of equation (A.4) and
dividing through by r; gives

ng Ccos ° U
o5 & = - _jl-__.ll
] (0 + ==y)dy I (- feuglrg (A.5)
o 0

forro # 0. If ycos a/ry, << 1, then we obtain

)
sk, = | (-4 ,6)
ax [ ro ( pe ue) Yy (A ;
0
which is the definition of §* as given by equation (2.17) where p = pg

is constant.

When y cos u/ro cannot be neglected, then integration of the left
hand side of equatien (A.5) gives

Say + —2—-(C°§o°‘ 852 = & (A.7)

where &*, as defined by equation (2.17), has replaced the integral on
the right-hand side of equation (A.5). Equation (A.7) is quadratic in
63x; applying thc quadratic formula gives

. Yo ! 2 COS a xy3
ng * s o ["] ol o+ TG*)T] (A.8)

which is the desired result.
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APPENDIX B

DERIVATION OF YOUNG'S FORMULA FOR DRAG OF
AXISYMMETRIC BODIES AT ZERO INCIDENCE

Young's formula is based on the boundary layer momentum integral
equation. If the pressure gradient across the boundary layer and wake
is negligible, the momentum integral equation for axisymmetric bodies
may be written

3 ug' _ Tw
‘5% + a‘g(H"’z)X = 'aj-e‘z 2ar (B.1)

where x is the streamwise coordinate along the body surface, up is the
velocity at the edge of the boundary layer, ué is dug/dx, Ty is the
shear stress at the wall, p is the fluid density, r is the radial co-
ordinate measured from the body axis and r = r, +y cos a, where ro, is
the wall radius, o is the angle between the surface tangent and the body
axis in a meridional plane, y is the coordinate normal to the wall, yx is
the momentum area, and H is the shape factor.

For the non-separating wake, the momentum integral equation is
assumed to apply and the skin friction 1, is zero so that equation (B.1)
may be written

d ue' -
a)XL + a;-(H‘PZ)X = 0 (B°2)

where for the wake region x is the streamwise coordinate measured from
the tail along the axis of symmetry, 9x/9x is replaced by dy/dx, and the
radial coordinate r reduces to y.
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The momentum area of the wake is defined as

o«
= 2 I ¥ on-Myd
X "OUe( i)Y 9

and the displacement area of the wake is defined as

-
n

2n I - ﬁLQy dy
o e

so that the shape factor is defined as

H = A
Rearranging equation (B.2) and using the fact that

d
d(2n ug) = Cle

so that

we may write

PRI NPTy N el Ay s e g
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(B.3) j
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(8.4) j
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j

;

(8.5) 3
b

[

(8.6) 3
é

(B.7) 1
(8.8) ’
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d(anx) = - (H+ 2) d(2n - ) (8.9)
o0
1
Integrating from the tail downstream to infinity we obtain
0 0 u
[[amy = - [ (1+2) dlon ) (8.10)
()1 (), *® 1
.i
0y 1 1
Ua Ue ‘o 1
;my, -y, = -(H+2) g + fn = dH 8.71)
(),
where subscripts {)_ and (), denote quantities at infinity downstream
and at the tail, respectively, and we have used in_tegration bv parts on 3
the right-hand side of equation (B.10). The value of H at irfinity is :
u i
unity [12]. Since n—'—"’-) = 1, we have that :
o0 o :
X, = oy, +an( uﬁ y(H142) 4 V o o2 o (B.12)
1 Hl Uao

which can be written

LS RPN T S R RTN  LX Voyven

PRI EIVT YRR TR

1 .
X = X %3 )1(H1+2) exp l IH 2n ;—g-dH } (8.13)
-] 1 (>
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? - The exponential term may be written y
; A
|
exp I n %g-dH = exp I ! on %9 dH (8.14) g
Hl *® ] e ;
B
3 . . U . .
A At this point Young assumes that &n g varies linearly with H so that
! the integral in equation (B.14) is approximately the area of a triangle.
; This gives :
3
1 By Hy -1, U
2 ) dH = = Lgn(-= .
l I] in( e ) 2 n{ ue h (8.15)
{ i
or
3 Hy~1
' Hy U U (T)
exp [ I an == dH ] = () (B.16) :
1 e e 1
Using equation (B.16) in equation (B.13) and replacing = with = gives i
H +5 '
Ue ( 2 )
X, = xilq ), (8.17)

Equation (B.17) relates the momentum area of the wake at infinity X, to
the momentum area of the wake at the tail x, and other trailing edge
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I N parameters. The drag coefficient is computed considering the momentum j

; flux across a closed control volume surface. The result is that i

| s

2 _ 2 Ue é

: O = Sx, = Sxlig) (8.18)

V3 v? :

| |

: Since x, = 2mr,0, where 6 is the momentum thickness defined as !

i _ [ rou u ‘

{ o = [o e AL Sk (8.19) :
3 then we may write finally that

o i

u ;

¢ = Erol ), | (8.20)

y3 !

which is identical to equation (2.15). We have tacitly assumed here E

also that the wake momentum area at the tail is equal to that of the :

boundary layer there. This seems reasonable since the momentum defect %

of viscous flows must change in a continuous manner. :
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APPENDIX C

DETAILED STRATEGY OF MODIFIED COMPLEX METHOD

The word flow chart given below gives the detailed strategy of the
Complex Method [22] as used in the present study. The strategy in-
cludes mudifications cue to Guin [23] to cope with nonconvex boundaries
as well as the generation of new search directions when the primary
direction fails. The starting procedure is a modification of Box's

original method.

A. Input
B 1. Number of independent parameters N.
2. Number of vertices in complex figure K.
3. Maximum number or performance function evaluations IPMAX.
4. Tolerances g,, €,, &,. ;
5. Expansion factor a. 3
6. Contraction factor B.
7. Lower constant boundaries af., i=1, ..., N, used during

initial complex generation.
8. Upper constant boundaries ay;s i=1, ..., N, used during

L s baX et aTh

initiai complex generation. ;

B. Initial Complex Generation }
1. Set j =1. "

2. Does j exceed K? §

a. Yes: Go tc B.4. |

b. No: Randomly generate jth vertex using next N elements of %

random number sequence indicated by (rn;), i =1, ..., N.
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a]‘]j

= (rn,-)(aui - aLi), 0<rn; <1
=7, ..., N
3. Is random vertex aj feasible?
a. VYes: Evaluate performance function PF; for vertex a ;.
Set j =j + 1.
Go to B.2.

b. No: Has random generation of vertex aj failed more than
1000 times?

1) Yes: Abort program.
CALL EXIT.

2) No: Try another randcm generation of vertex aj
Go to B.2.b.

4. Set a, .. = best vertex of initial complex. ]

E . Set PFbest
Go to C.4.

= PF value of dphest

C. Search Procedure

1. TIs newest vertex better than a  ?

a. Yes: An improvement has occurred. )
Increment improvement counter IMPRV = IMPRV + 1
Set 3,5 = New vertex.

Set PF o = PF value for new a, -
Go to C.2. '

b. No: Continue.

2. Check stopping condition: Are five best PF values within

relative e;-neighborhood of PF, ..

a. Yes: Tentative convergence. Are corresponding five best
vertices within relative e,-neighborhood °f~1best?
1) Yes: Convergence achieved. Go to C.11.

2) Nc: Try one more vertex rejection, i.e., if the
previous vertex rejection originated from
this point in program, assume convergence
and go to C.11. Otherwise, go to C.3.

b. Nu: o convergence. Continue. y
3. Will next performance function evaluation exceed maximum number
IPMAX allowed?

- a. Yes: OQutput results obtained so far.
CALL EXIT.
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b. No: Continue.
Reject worst vertex. Rejected vertex is ay.
Compute centroid cqr of remaining vertices.

K
. = ] 2 i =
cary m jZ] a1]j s 1 1, ..., N
Jfr

Is cgr in feasible region?

a. Yes: Set NCGVIO =0
Go to C.7.

b. No: Set NCGVIO =1
Generate trial vertex at.

at = cgr +alcgr - ay)
Is trial vertex at in feasible region?

a. Yes: Evaluate trial vertex performance function PFy.
Go to C.10.

b. No: Does RCGVIO = 1?
1) Yes: Go to C.9.

2) No: Is trial vertex ay within relative €,-neigh-
borhoou of cgr?

a) Yes: Set a; = cgr which is feasible.
Evaluate PF. Go to C.10.

b) No: Move trial vertex ai amount B to-
ward cgr. New at = B(old a¢ + cgr).
Go to C.8.

Both centroid cgr and trial vertex at are not feasible. Reject
entire complex tigure. Have more than 10 complex rejections
occurred?

a. Yes: Abort search.
CALL EXIT.

b. No: Reset lower bounds a . and upper bounds ay;. i =1,

...» N, to coincide with unfeasible centroid cgr and
best previous vertex qpest Swap components if

necessary to insure that a3 < Ay i=1, ..., N.
Go to B.1.

Is trial vertex performance function PFy better than second
worst PF value?
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T a. Yes: Repiacy worst verrex with vertex ag. p
i Go te C.i. 4
' b. No: TIs trial vertex ay within relative g,-reighborhood of :
~entroid cqr? :

1) VYes: Try a new search direction. Reject the next §

worst vertex and retain previously rejected i

vertex. Rejected vertex is ap. Have all K }

vertices been successively rejected? :

i

a) Yes: Abort search.
CALL EXIT.

b) No: &Go to C.5.

2) No: Move trial vertex at amount B toward centroid
cgr. Newat =8(old a, + 'gr). Go to C.8.
11. Output optimum parimeters a*,

* =
L} ibest

12. END
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APPENDIX D %

DETAILED STRATEGY OF POWELL'S METHOD OF CONJUGATE DIRECTIONS

The word flow chart given below presents the strategy for Powell's
Method of Conjugate Directions [25]. The only modification from Pow-
ell's original procedure is the procedure for computing the new step
size STEP used in the linear search routine; see item B.15 in the out-
line below. Following Powell's method is a word flow chart for the
linear search strategy involving a parabolic interpolation scheme.

ol et Raz et

PV RTW & IR WSS F]

D.1 Strategy for Povell's Method 3

A. Input

1. Number of independent parameters N.
2. Feasible initial guess vector a, = (a°1’ 85,5 +e aoN).

3. Set of N linearly independent normalized search direction ;

vectors (£,, £,5 ...» EN)-
4. Lower and upper scaling vectors, a; and ay , respectively,

where a; = (aL1’ 3,5 oo ay) and ay = (aul, Y, s - ayy) -

Initial scaled step size STEP used in linear szarch routine.

2

§

]

5. Maximum number of search cycles ICYMAX. 3
;

7. Convergence tolerance g,. 3
1

b

B. Search Procedure

1. Initialization. _ ,
a. Scale initial guess vector to X, , where Xo; = (ap; - aL;) 3
Mag; - agz)s =1, ooy N :
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b. Evaluate performance function PF, of initial guess. 7
Start search cycle.

a, Set maximum PF change Ap = 0.

b. Set direction number For maximum PF change iy = 1. ‘
c. Set direction index § = 1. :
CALL COGGIN (linear search routine): from base point‘ij_]

perform linear minimization along direction vector £j Find
the minimum pointllj and its performance function vaiue PFj.
4. Test for maximum PF change. Is |[PFj - PF;-1] greater than
Ap ?
a. Yes: Set Ap = |PFj - PFj4].
Set ip = j. Go to B.5.
b. No: Go to B.5.

. 5. Increment direction index j = j + 1. Is j < N?
a. Yes: Continue cycle, go to B.3.

b. No: Cycle is complete.
Go to B.6.

= XN and PF

vy ety . 5

- 6. Set X .ot best

7. Compute new direction vector u = (Xy - Xo), that is, Wy =

xN‘i

8. Compute trial poiat = Xn + g, that is, yt: = 2Xn: = X5
Yt AN TH ty Nj 0§

PEy-

- Xo_i’ ‘i = 1, co ey No

.
PRRPRNET Tt RV ST WS O RETLUE TR ey

i=1, ..., N Is |yt - Xo| less than (.001)(e,)?
a. Yes: Convergence likely. Go to B.14.
b. No: Compute PF¢ = PF(y ). Go to B.9.
9. Perform Powell's first inequality check on new direction. Is
(PF¢ - PFy) 2 02

a. Yes: New direction is not promising.
Go to B.13.

b. No: Go to B.10.
10. Perform Powell's second in:quality check on new direction. Is
(PFy - 2PFy + PFy)(PF, - PFy - Ay >+ dp(PFy - PFy)?

LTI R S TP S PR NP ST

[T IV WL PR L

a. Yes: New direction is not promising.
Go to B.13.

Go to B.11.

O L VL T TUNe,

b.

No:
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! % - 11. New direction is promising. Remove direction vector of maxi- 2
mum PF change, £ . Put new direction vector in Zy: 1
a. Fori=1, ..., ip-1: new g =old £;. '
4 b. For i=1dp-1, ..., N=-1: asewEg; =old £;47. ;
c. Fori=N: newEy = /|yl
12. CALL COGGIN (1inear search routine): from base point Xy '
perform 1inear minimization along new direction vector £ y.
Find new minimum pOi"t-Kbest and its performance function §
:
: value PF, ... Go to B.14. 3
3 13. New direction is not promising. Retain old search directions: %
1 a. For i=1, ..., N: newgy =old g;. é
E b. Go to B.14. %
14. Test for convergence. :
a. Is | PF, - PF i
best 3
E PF g < €,? 5
1) Yes: Go to B.14.b. ]
e 2) MNo: Go to B.15. é
i !
3 X < g,? g
B 0j ;
' i=1, .y N :
1) Yes: Convergence achieved. :

Go to B.17.

2) No: Go to B.15.
15. No convergence yet. Compute new step size STEP: j
a. M = | X X

el FemNy atbenon

“best —Ol'

b OPF = |PFy.cy = PRo|.

A ibae AL FVE L Ml e

c. STEP = VAPF,
d. Is STEP < (0.1)(ax)?

1) Yes: Set STEP = (0.1)(aX). :
Go to B.15.e. §

2) No: Go to B.15.e. 3
i

i

fnka
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: Lo e. Is STEP > (0.5)(old STEP)? )
' 1) Yes: Set STEP = (0.5)(old STEP). “
Go to B.15.f. ]
2) No: Go to B.15.f. j
fooSet Xo=X pegys Po = Pbest. ;
E’ 16. Will next cycle exceed maximum number ICYMAX of cycles allowed? ;
a. Yes: Qutput results obtained so far. 3

CALL EXIT.

b. No: Go to B.2. 3
17. Convergence achieved. :
a. Scale optimum X* back to a*: af = aj, + X (ay; - ar;),
i=1, ..., N.
b. CALL EXIT.
18. END.

Clon A h e AN a2

D 2 Strategy for Linear Search Routine

PTG VIR R PP RN, L PRy

The word flow chart below gives the detailed strategy for the
parabolic interpolation scheme used for the 1inear search in the pres- :
ent study. The method always brackets the minimum along the line of %
search before applying the parabolic interpolation.

PREIN

A. Input from Calling Program POWELL §

Current base point is X with performance function value FX. g

2. Current step vector is § = STEP &, where £ is the current %

normalized search direction and S = (S,, S,, ..., SN)- <5 = x

, (STEP)(£4), i =1, ..., N, ;
;; 3 B. Linear Search Procedure. %

1. Initialization. i
_ a. Set step multiplier D = 1. {
[ ! b. Set distance DA = 0 for point A.

- ¢. Set distance DB = 0 for point B,
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E . d. Set distance DC = 0 for point C. ‘j
E % e. Set performance function FA = FX for point A. §
S f. Set performance function FB = 0 for point B. i
g. Set performance function FC = 0 for point C. g
h. Set step counter K = -2, é
i. Set linear search convergence tolerance TOL = 3e,. é
4 2. Start linear search. é
E a. Compute point y = X + DS, where y; = X5 +D S5, i =1, ..., N. 3
b. Compute performance functicn F for y. ﬁ
c. Increment step counter K = K + 1. E
. 3. Is F > FA?
f a. Yes: A bracket point has been found. %
Go to B.4. ¢
b. No: Performance function is still decreasing. f
1) Reset points A, B, and C %
DC = DB FC = FB i
DB =DA  FB = FA
- DA =D FA =F ;
§ 2) Compute new step ﬁ
3 For D> 0: new D = 2(0ld D) + 1. 3
, For D < 0: newD = 2(old D) - 1. ]
3) Go to B.2. -
4. A bracket point has been found. Is K > 0? !

a. Yes: Both bracket points have been found. ‘
Set up points A, B, and C so that the minimum point
B is bracketed by the points A and C:

DC = DB FC = FB
DB = DA FB = FA
DA =D FA = F
Go to B.5.

b. No: First bracket point has been found atter first step
along line of search. Reverse direction and continue.

1) Set peint B
FB = F DB =D

2) Change sign of step multiplier
new D =-01dD

RO S TR WY VPP IPRE. T C PSS W LIRS N

3) Go to B.2.
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o

Proceed with parabolic interpolation.
a. Compute location D of minimum on parabolic arc.
b. Is point D between DA and DC?

1) Yes: Go to B.5.c.

2) No: Parabolic interpolation has failed. Use best
point B as Tocal minimum.
Go to B.6.

c. Perform parameter convergence check:
Is |D - DA| / |DA - DC| < TOL?

% 1) Yes: Convergence achieved. Use point B as local
minimum. Go to B.6.

2) No: Go to B.5.d.

d. Perform function convergence check. Compute point y = X +
D S and its performance function value F. Is
|FB - F| / |FB, < TOL?

1) Yes: Convergence achieved. Use smaller of FB or F as
local optimum.
Go to B.6.

2) No: No convergence yet. Reset points so that minimum
point B is bracketed by points A and C.
Go to B.5.

: 6. Convergence to local minimum along line of search has been

‘ achieved. Compute approximate second derivative associated
with present search direction, 32PF/3E®.

7. RETURN TO POWELL.
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APPENDIX E

DERIVATION OF PARAMETRIC BODY PROFILES

This appendix presents the derivations for the parametrically de-
fined body profiles considered in the present study. The pertinent
constraint boundaries are also derived. The procedures follow those
reported by Granviile (1969) [29] in which the budy is divided into
sections at convenient axial locations, e.g., maximum diameter point.

E.1 Rounded-iiose Forebody Section [29]

The rounded-nose forebody and its dimensional pe-~meters are show.
in Figure E1. The maximum diameter D occurs at the axial location Xp;
the curvature at this point is K,. The nose radius of curvature is Ry.

Y
K
D
2
Ry
—~-—rt 4 —
Xm X

Figure E1. Rounded-Nose Forebody Section.
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A
The boundary conditions for this profile Y(X) are listed below where ’j
primes on Y(X) denote differentiation with respect to X: 2
|
1. ¥(0) = 0 (E.1a)
2. ¥'(0) = = or d/d¥l, = O (E.1b)
;
3. 1/(dx/d¥3)]y 0 = Ry (F.1c) :
8. Y(X;) = D/2 (E.1d)
5. Y'(%;) = 0 (E.Te) !
:
6. V') = ki (E.1f) ;
where R,, D, K1, and X, may all vacy. j
It is possible to reduce Y(X) to a nondimensional profile with 3
only two variable boundary conditions. We define the nondimensional g
profile to be §
x = XY, (E.2a)
y = 2Y/D (E.2b)
;
so that the boundary conditions given by equations (E.1) become %
1. y(0) =0 (E.3a)
= .3b
2. dx/dyl, = 0 (E.3b) }.
3
) 2 - 3
3. V/(dxjdy? )],y = m RyD? = T (E.3c) i
.’g
4. y(1) =1 (E.3d) !
i
H
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n
o

~ 5. y'(1) (E.3e) A

Y

6. y*1) = 2%y K,/D = -k, (E.3f)

1 : where primes on y(x) denote differentiation with respect to x. The var-

3 . iable boundary conditions are rp and k,; two free parameters make it

‘ possible to conveniently plot constraint boundaries for the forebody.

The intent here is to derive the simplest poiynomial expressions

which satisfy the boundary conditions given by equations (E.3). Fur-
thermore, we shall attempt to make the expressions linear in the free

, parameters rp and k,. For this purpose we define the "quadratic" poly-

1 nomial

s /
f(zx) = y*x) = ] bjx (E.4)
i=0

- where the bj, i = 0, ..., n, are to be determined using the boundary
conditions given by equations (E.3). Differentiating equation (E.4)
with respect to x gives

n .
f' = agi.yz = Zyy' = .z](i) bi X.l-1 (E.S) ,
1= i
" d2 2 u 12 L 3 3 i-2 ‘5
o= d—z‘y = 2yy" + 2y = ¥ (i)(i-1) by x4 (E.6) 3
X i=2 !

d? - n . . i-3

PYTI 5(_:;_‘yz = 2yy™ + 6y"y' = .23(1)(1-1)(1—2) bj x (E.7)
1:

<
¥
}
§
3
3
§
¥
?
¥
!

)
[
#
5
¥
~
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where primes on f(x) denote differentiation with respect to x. Equa-
tion (E.5) may be written as

n
2 = [ ] () by xf"‘J% (E.8)

and differentiating equation (E.8) with respect to y gives
2 [ T (1)(i-1) by xi"2 ](a_"")2 j {-1) d2x
= ( -1) X + ’ i - .

For the case x = 0, equations (E.4), (E.8), and (E.9) reduce respective-
ly to

y(0) = 0 = b, (E.10)
2y(0) = 0 = b, [dx/dy]x=0 (E.11)

and
2 = 2b, [dx/dy)_o + b, [d%x/dy?] _o (E.12)

where equation (E.10) has been inserted into equation (E.11). Equation
(E.11) implies that b, or [dx/dy]x=0 or both equal zero. If b, equals

zero, then boundary condition (E.3c) cannot be satisfied by equation
(E.12). Hence b, # 0 and boundary condition (E.3b) is automatically
satisfied when y(0) = 0. This is the motivation for selecting the
"quadratic" polynomial, equation (E.4), at the outset. From equations
(£.10), (E.11), and (E.12) we obtain immediately that
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- b, = 2 (£.13) A
4
Using equations (E.10) and (E.13), the boundary conditions (E.3d, e, f) %
give %
3
,z
n o
2rp + § by = 1 (E.14a) f
=2 f
no

- 2rg + § (i)b; = 0 (E.14b)
1 i=2 ;
i< i‘
! ;
: LI i
3 L (i)(i-1)b; = -2k, (E.14c)
: i=2
Setting ' = 4 yields a unique solution for equations (E.14). §
9 Rather than solving for the by, i = 2, 3, 4, by direct elimination, y
we follow Granville [29] and postulate the existence of a function y?(x) :
which is Tinear in r, and k,. This is justified since y? is linear in é
the bj, i = 2, 3, 4, which are linear in rp and k,. Thus we write ;
y2(x) = ry F(x) + K F,(x) + G(x) (E.15)
F
? vihere F,(x), F,(x), and G/x) are polynomials of degree n = 4, and r, and E
k, are independent and arbitrary for the moment. The six boundary con- é
ditions (E.3) imply the following five boundary conditions for F,(x), E
& F,(x), and G(x) for arbitrary values of ry and k,: %
E :
i 1. y(0) = 0 implies that F,(0) = F,(0) = G{0) = 0 i
- j
K ; 2. y(1) = 1 implies that F (1) = F,(1) = 0 and G(1) = 1 {
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3. dx/dy]x=0 = 0 implies that
2y(0) y'(0) = b, = 2ry = rnF;(O) + leg(O) + G'(0)

so that F{(0) ~ 2and F'(0) = G'(0) = O

4, y'(1) = O irplies that F;(]) = F;(]) = G'(1) = 0
5. y"(1) = -k, implies that

-2k, = rpFi(L) + k,E'(1) + G"(}) so that

(1) = 6"(1) = Oand §'(1) = -2

Knowing the polynomial degree and the boundary conditions, one can
write down the functicns F,(x), F,(x), and G{x) almost by inspection.
For F,(x) we have that

F.(0) = 0 F,(1) = 0
i'1(0) = 2 ;’l = 0
Fy(1) = 0

so that we may write immediately that
Folx) = ¢, x(x -1)3

to satisfy the homogeneous boundary conditions. Applying the final
condition F1(0) = 2 gives

Fo(x) = -2x(x - 1)° (E.16)
" alarly we may write

Fo(x) = - x*(x - 1)? (E.17)

For G(xj v hae that
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G(0) = 0 G(1) =1
G'(0) = 0O G'(1) = 0
G"(1) = O
SO we may write
4 6(x) = ¢, x(x - 1)?
dx 1
and integrating gives
G(x) = c, (3 x*-3x*+1x?) +g,
For G(0) = 0 we have c, = 0 and for G(1) = 1 we obtain finally that
G(x) = x2%(3x% - 8x + 6) (€.18)

We now have completely defined y2(x) by equations (E.15), (E.16), (E.17),
and (E.18) which satisfy the boundary conditions (E.3). Irserting these
results into equation (E.2b), and using the fact that f, = L/D, we ob-
tain the forebody profile equaticns (4.3) and (4.4) in Chapter 4.

Constraint Boundaries for r, and k,. From physical considerations

we require a non-negative radius of curvature R, at the nose and no.-
positive curvature K, at the maximum diameter section. We have defined
rp and k, so that r, > 0 and k, > 0 siutisfy these physical requirements.

Mainly because of previous hydrcdynamic experience, an additional
requirement is introduced, namely, that of no inflection point on the
forebody [29]. The limiting case occurs when the second derivative
touches zero but does not change sign and is expressed as

d2Y(x)/dx? = 0 {<.19a)
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d3Y(X)/dx® = 0 (E.19b)

for 0 < X < Xy. If a solution exists for equations (E.19), it repre-
sents the rp versus k; curve for which a Timiting inflection point
occurs somewhere on 0 < X < X

Using equations (E.2), (E.5), (E.6), (E.7), and (E.15), equations
(E.19) reduce to

I
o

2ffF" - (f')? (€E.20a)

f'* = 0 (E.20b)

The procedure is to fix the location x on 0 < x < 1 where the limiting
inflection point ociurs and to solve equations (E.20) for the corre-
ponding values of ry, and k,. In this sense r, and k, are related
through the parameter x. The Secant Method [30] is used to obtain the
solution which is given in Table E1 and plotted in Figure 20 in Chap-
ter 4.

E.2 Pointed Aftbody Section [29]

The pointed aftbody and its dimensional parameters are shown in
Figure E2. The maximum diameter D occurs at the axial location Xms

v .

(o

><
~ Jes
>

Figure E2. Pointed Aftbody Section.
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Table E1. Solution for Limiting Inflection on Forebody.

X kK, ™ X k, ™
.000 4.0000 .0000 .520 3.7301 1.1187
.020 4,0398 .0005 .540 3.5616 1.2439
040 4.0794 .0024 .560 3.3711 1.3743
L0E0 4.1184 .0057 .580 3.1590 1.5080
.080 4.1566 .0105 .600 2.9269 1.6423
.100 4.1940 .0172 .620 2.6774 1.7742
.120 4,2300 .0258 .640 2.4146 1.9002
.140 4.2646 .0366 .660 2.1436 2.0166
.160 4,2972 .0499 .680 1.8710 2.1198
.180 4.3276 .0659 .700 1.6034 2.2069
.200 4,3552 .0849 720 1.3479 2.2756
.220 4,3796 .1072 740 1.1104 2.3251
.240 4.4000 .1333 .760 .8957 2.3554
.260 4.4160 .1634 .780 .7068 2.3681
.280 4.4266 .1980 .800 .5448 2.3654
.300 4.4311 .2375 .820 .4094 2.3498
.329 4.4285 .2823 .340 .2988 2.3243
.340 4.4178 .3331 .860 .2108 2.2913
.360 4.3977 .3901 .880 1424 2.2533
.380 4.3670 .4539 .900 .0909 2.2121
.400 4.3243 .5250 .920 .0534 2.1692
.420 4.2681 .6038 .940 .0276 2.1258
.440 4.1968 .6906 .960 .0112 2.0828
.460 4.1088 .7855 .980 .0026 2.0407
.480 4.0027 .3887 1.000 .0000 2.0000
.500 3.8768 1.0000

et R o i
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the curvature at this point is K,;. The finite slope at the tail is S;. j
The overall body length is L. The voundary conditions for this profile
are listed below where primes on Y(X) denote differentiation with re-
spect to X: ]
1. Y(Xp) = D/2 (e.21a)
2. Y'(Xp) = 0 (E.21b)
3. Y"(Xp) = K, (E.21c) ;
4. Y(L) =0 (E.21d) :
5. Y'(L) = St (E.21e) f
where D, Ky, St, Xy, and L may all vary. j
It is possible to reduce Y(X) to a nondimensional profile with ;
only two variable boundary conditions. We define thz nondimensional 3
profile to be
x = (L-X)/(L-Xp) : (E.22a) ;
y = 2Y/D (E.22b)
so that the boundary conditions given by equations (E.21) become %
1. y(0) = 0 (E.23a)
2. y'(0) = -2(L-Xp)St/D = s¢ (E.23b) ¢
3. y(1) = 1 (E.23c)
4. y'(}) = 0 (E.23d)
:
[} - ! - %
5. y*(1) = 2{L - Xp)? K,/D = —kla (E.23e) §
§
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§ % - where primes on v(x) denote differentiaticn with respect to x. From

S equations (E.3f) and (E.23e) it is apparent that

z Kig = k[(L-Xn)/Xn1® = Kk, [(V-xp)/xp]? (E.24)

T TS

where xp = Xp/L. The variable boundary conditions are s¢ and k, ;5 two
free parameters make it possible to conveniently plot constraint bound-
aries for the pointed aftbody.

We follow the same procedure used in Section E.1 for the forebcdy

; so that equations (E.4), (E.5), (E.6), and (E.7) apply. For the case
x = 0, equations (E.4) and (E.5) reduce to

y(0) = 0 = b, (E.25)

e 2 Ty

2y(0) y'(0) = b, (E.26)

In order to satisfy the finitc slope requirement when using the "quad-
i ratic" polynomial, equation (E.4), then

3 b, = 0 ' (E.27)

so that y'(0) is indeterminant in equation (E.26). Setting b, = 0 and
dividing through by 2y(x) in equation (E.5), we may apply L'Hopital's
Rule in the 1imit as x approaches zero so that

n .
3 ()(3-1)bg xi-2
Tim y'(x) = 1lim 1=2 =

T S
x>0 x+0 2y (x) t
_ b,
S¢ = ?‘S—t
b, = s¢ (E.28)
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/
Using equations (E.25), (E.27), and (E.28), the boundary conditions -j
(E.23c, d, e) give i
, 0
sg+ 1by = 1 (E.29a) ;
1=3 3
;
2 L i
2st + .23(1)b1 =0 (E.29b) :
3 n ]
z, 25 + _23(-:)(1-1)b1~ = -2k, (E.29¢) ]
: i= j
|: i
1

LU

Setting n = 5 yields a unique solution for equations (E.29).
Rather than solving for the bj, i = 3, 4, 5, by direct elimination,

bt 1 mean

we follow the procedure given in Saction £.1. Since y*(x) is linear in é

; ) the bs, i = 3, 4, 5, which are Tinear in s} and ky,» we postulate that :
4 q
%

y3(x) = si Fl(x) * kg, F,o(x) + G(x) (£.30) 3

where F,(x), F,(x), and G(x) are polynomials of degree n = 5, and s%
and kla are independent and arbitrary for the moment. Following the

{ procedures of Section E.1, we obtain finally the pointed aftbody profile
equations (4.5) and (4.6) in Chapter 4. In equation [4.5), parameter
kla has been eliminated using equation (E.24).

Constraint Boundaries for s¢ and k. From physical considerations

we require a nonpositive slope S¢ at the tail, and a nonpositive curva-
ture K, at the maximum diameter section. We have defined s{ and Kig 89

that s¢ > 0 and kla > 0 satisfy these physical requirements.

kmﬂuu.‘.-‘ e A S8 N I e e a1, L a7 P o MaBL  . —nn D w0 7% K EEABANAS mebsLs ea k5 e b d S Adm e o8 e

A
xS

;
|
|
|
|
|
‘



R >

PP R T s

L ot Fagid bR bt

R &, q
D

AR R

155

Either no or one inflection point on the pointed aftbody is al-
lowed. We consider the noninflected case first, proceeding as in
Section E.1 for the forebody. The limiting inflection point condition
is expressed by equation (E.19) for X, < X < L. Using equations (E.22),
(E.29), (E.4), (E.5), (E.6), and (E.7), equations (E.19) reduce to equa-
tions (E.20). These are solved using the Secant Method [30]. The
solution is given in Table E2 and is plotted in Figure 19 in Chapter 4.

Although Table E2 contains an entry for x = 0, there is actually a
singularity there with an infinite number of solutions. For x = 0,

equation (E.20a) is identically satisfied and equation (E.20b) reduces
to

Isg + ky, = 10 (E.31)

where equation (E.30) has been used. This straight 1ine is plotted in
Figure 21 in Chapter 4.

E.3 Midbody Section

The midbody section used with the eight-paraﬁeter tailboom body is
shown in Figure E3 with its dimensional parameters. The maximum diam-
eter D occurs at the axial location X;; the curvature at this point is

Y
Ky
S.
g \1
2
R;
- —_————
X X. X
m j

Figure E3. Midbody Section.
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E Table E2. Solution for Limiting Inflection on Pointed Aftbody.
» X Ky * st x Ky * st
.000 5.0000 1.6666 .520 7.1756 3.1789
.020 5.0546 1.6490 .540 7.1986 3.5385
.040 5.1118 1.6317 .560 7.1927 3.9549
{ .060 5.1718 1.6150 .580 7.1518 4.4330
3 .080 5.2348 1.5990 .600 7.0690 4.9769
3 .100 5.3008 1.5840 .620 6.9370 5.5894
.120 5.3701 1.5703 .640 6.7480 6.2706
.140 5.4428 1.5582 .660 6.4944 7.0169
.160 5.5191 1.5482 .680 6.1695 7.8194
: .180 ~%.5990 1.5407 .700 5.7690 8.6614
3 .200 5.6826 1.5365 720 5.2923 9.5174
} .220 5.7701 1.5362 .740 4.7449 10.3520
: .240 5.8614 1.5407 .760 4.1403 11.1212
- .260 5.9564 1.5510 .780 3.5005 11.7770
.280 6.0549 1.5685 .800 2.855] 12.2756
.300 6.1568 1.5946 .820 2.231 12.5868
.320 6.2614 1.6311 .840 1.6772 12.7019
.340 6.3682 1.4799 .860 1.1976 12.6356
1 .360 6.4762 1./434 .880 .8090 12.4200 1
: .380 6.5845 1.8243 .900 Sl 12.0961 3
; .400 6.6914 1.9257 .920 .2954 11.7039
E .420 6.7952 2.0508 .940 L1492 11.2769
1 .440 6.8937 2.2036 .960 .0595 10.8403 ;
.460 6.9843 2.3881 .980 .0133 10.4112 3
.480 7.0640 2.6089 1.000 .0000 10.0000 1

500 7.1291 2.8708

* Ky, = (I;Zm)zk1 as given by equation (E.24) ]
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Ky An inflection point occurs at Xj; at this point the slope is $j
and the profile radius is Rj. The boundary conditions for this profile
Y{X) are listed below where primes on Y(X) denote differentiation with
respect to X:

1. Y(Xp) = 0/2 (E.32a)
2. Y'(X) = 0 (E.32b)
3. Y (%g) = K (E.32c)
4. Y(X{) = Ry (E.32d)
5. Y'(X§) = S; (E.32e)
6. Y'(X§) = 0 (E.32f)

where D, K;, Rj, Si, Xp» and Xj may all vary.

It is possible to reduce Y(X) to a nondimensional profile with only
two variable boundary conditions. We define the nondimensional profile
to be

b3
it

(X3 = X)/(X§ - Xm) (E.33a)

(Y - Ry)/(D/2 - Ry) (E.33b)

<
"

so that the boundary conditions given by equations (E.32) become

1. y(0) =10 (E.34a)
2. y'(0) = -(Xj - Xp)Si/(D/2 - Rj) = s (E.34b)
3. y"(0) =0 (E.34c)
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4. y(1) =1 (E.34d)
5. y'(1) = 0 (E.34e)
6. y'(1) = (Xj - Xp)2K,/(D/2 - R{) = -k (E.34f)

where primes on y(x) denote differentiation with respect to x. From
equations (E.3f) and (E.34f) it is apparent that

Ky K (Xi/%n = 1271 = 2R/D) = ky(xi/xy = 1)2/{1 = ;) (E.35)

m

where xp = Xp/L, xi = Xj/L, and vy = 2Rj/D. The variable boundary
conditions are sj and k, ; two free parameters make it possible to

conveniently plot constraint boundaries for the midbody section.
Deviating somewhat from Granville's procedure, we postulate im-
mediately that

y(x) = klm Fo(x) + si F(x) + G(x) (E.36)

where Fi{(x), F,(x), and G(x) are polyncmials of degree five since there
are six boundary conditions given by equations (E.34). It is emphasized
that equation (E.36) is an "ordinary" polynomial involving y(x) rather
than the "quadratic" polynomial used by Granville which iavolves y?(x).
If equation (E.36) is an incorrect postulate, then some of the boundary
conditions (E.34) will not be satisfied.

For arbitrary values of k; and si the boundary conditions for the

functions F,(x), F,(x), and G(x) are

F.(0) = 0 F (1) = 0
Fi(0) = 0 Ry =0
Fi{oj = Fr(1) = 2
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F,(0) = 0 F,(1) = 0
F2(0) = 1 FI(1) = ©
F3(0) = 0 Fa(1) = 0
G(0) = 0 6(1) = 1 5
G'(0) = 0 G'(1) = 0
G"(0) = 0 G"(1) = 0 ;
f
For the function F (x) we may write 3
Filx) = c; x3(x - 1)?
which immediately satisfies the hunogeneous boundary conditions. The :
nonhomogeneous condition gives é
Folx) = -2x3(x - 1)? (E.37)
For the function F,(x) we may write ;
5
Fox) = ] by xI 3
i=0 ;
%
since the boundary conditions cannot be satisfied by the simple form b
(constant) xM (x - 1)n. By direct elimination we obtain %
F,(x) = x - x%(3x% - 8x + 6) (E.38) 5
For the function G(x) we may write g
4 G(x) = ¢, x¥(x - 1)? }
dv 1 ]
Integrating and applying G(1) = 1 gives ]
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G(x) = x3(6x% - i5x + 10) (£.39)

T
!

TV

. Since all the y(x) boundary conditions are satisfied, then apparently

F the postulated form given by equation (E.36) is correct. Combining
equations (E.35), (E.36), (E.37), (E.38), and (E.39), and using the fact
that f, = L/D, we obtain finally equations (4.9) and (4.10) in Chapter
4,

KTy

T

TRaste o o

Constraint Boundaries for s; and k1m° From physical considerations

i Eaue s

we require a nonpositive slcpe Si at Xi and nonpositive curvature K, at

3
E the maximum diameter section. We have defined sj and klm so that
i si > 0 and klm > 0 satisfy these physical requirements.
E
We also require that no inflection points occur on the midbody
% except at X5. The limiting inflection point occurs when the second
3

derivative touches zero but does not change sign. This is expressed by
equations (E.19) which reduce immediately to

YPTITITOWTT
1

y'(x) = 0 (£.40a)
y'(x) = 0 (E.40b)
Equations (E.40) can be solved by direct substitution to cbtain
- G"(x) F2l«) - 6"(x) F3(x)
klm {X) Fm(x) F']"(X) Fg(ﬂ (E.41a)
k. Fi(x) - G"(x)
ST ) (E.41b)

for the 1imiting inflection point condition. The solution is tabuiated
in Table E3 and plotted in Figure 21 in Chapter 4.
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_ There is a singularity in equations (E.41) for x = 0. For this
case equation (E.40a) is identically satisfied and equation (E.400)
reduces to

Y TEW

This straight line is plotted in Figure 23 in Chapter 4.

E.4 Tailboom Aftbody Section

ot 2 il a4 o Ay

Thz tailboom aftbody section used with the eight-parameter tail-
boom body is shown in Figure E4 with its dimensional parameters. An
inflection point occurs at Xj; at this point the slope is S; and the
radius is Rj. There is also an inflection point at L; the terminal
radius is T. The boundary conditions for this profile Y(X) are listed

OED e e

- q~:ui‘;

3 iy 3
E
E S_i
Rj I\T
- — 1 N
X L X

Figure E4. Tailboom Aftbody Section.

below where primes on Y(X) denote differentiation with respect to X:
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Table E3. Solutior. for Limiting Inflection on Midbody.

23
¢
}
h
¢
i
b

X kﬂm* S X Ky S5
.020 5.0511 1.2457 .520 7.6460 1.2787
046 5.1048 1.2415 .540 7.7794 1.3161
060 5.1612 1.2371 .560 7.8913 1.3641
.080 5.2203 1.2327 .580 7.9698 1.4246
.100 5.2826 1.2232 .600 3.0000 1.5000 3
120 5.3480 1.2237 .620 7.9632 1.5919 ‘
140 5.4169 1.2192 .640 7.8387 1.7016 4
, 160 5.4896 1.2147 .660 7.6052 1.8289 7
.180 5.5662 1.2102 .680 7.2452 1.9716
.200 5.6470 1.2058 .700 6.7500 2.1250
220 5.7324 1.2016 .720 6.1250 2.2812 ;
.240 5.8225 1.1975 .740 5.3936 2 4308 ;
_ .260 5.9178 1.1938 .760 4.5957 2.5638 ;
.280 6.0185 1.1904 .780 3.7812 2.6718 1
.300 6.1250 1.1875 .800 3.0000 2.7500 g
.320 6.7374 1.1852 .820 2.2924 2.797
.340 6.3560 1.1828 840 1.6842 2.8157
.360 6.48.0 1.1835 .860 1.1854 Z2.8104
.380 6.6123 1.1846 880 7941 2.7857 j
.400 6.7560 1.1875 .900 .5000 2.7500 k
.420 6.8934 1.1926 .920 .2291 2.7048 ]
.440 7.0419 1.2005 210 1467 2.6548 4
.460 7.1940 1.2121 .86G .0588 2.6029 :
.480 1.3478 1.2282 .20 0132 2.5508
4 .500 7.5009 1.2500 1.000 .0000 2.5000 ]
* Ky T (xi/%m - 1)3/(1 - ri) by equation (E.35) ;
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- 1. Y(X§) = Ry (E.43a)

2. ¥'(Xj) = Sj (E.43b)

3. Y"(X;) = 0 (E.43c)

; 4. Y(L) =T (E.43d)
3

{ 5. Y'(L) = 0 (E.43e)

? 6. Y'(L) = 0 (E.45f)

where Rj, Si, T, Xj, and L may all vary.
It is possible to reduce Y(X) to a nondimensional profile with only
two variable boundary conditions. We define the nondimensional profile

to be

- x = (L-X)/(L-X3) (E.44a)
y = Y/R; (E.44b)

so that the boundary conditions given by equations (E.31) become ﬁ

A

1. y(0) = T/Rj = t/r; (E.45a) 1

2. y'(d) = 0 (E.45b) ;

3. y(0) = 0 (E.45c) ;

4. y(1) =1 (E.45d) j

5. y'(1) = -(L - X;) Si/Rj = Sia (E.45¢) '

i
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where primes on y(x) denote differentiation with respect to x and t =

2T/D and r5 = 2Rj/D. It is apparent from equations (E.34b) and (E.45e)
that

wn
-
1

ia Si[(L - xi)(D/z - Ri)]/[(xi - Xm)(Ri)]

sil(1 - x5 (1 - ri)V/L{x5 = xp)(ri)] (E.46)

where xu = Xp/Ls x4 = Xj/L, and ry = 2R;/D. The variable bouncary con-
ditions are sj, and t/rj; two free parameter ; make it possible to con-

veniently plot cunstraint boundaries for the tailboom aftbody.

Following the procedure in Section E.3, we postulatc immediately
that

(x) = % Fy(x) + sy, Fy(x) + G(x) (€.47)

where F,(x), F,(x), and G(x) are polynomials of degree five since there
are six boundery conditions given by equations (E.45). For arbitrary
values of t/rj and si, the boundary conditions for the function F,(x),

F,(x), and G(x) are

F,(0) = 1 F,.(1) = 0
Fi(0) = 0 Fi(1) = 0
Fi(0) = 0 Fi(1) = 0
F,(0) = 0 F,(1) = 0
FI(0) = 0 Fi(1) =

F2(0) = 0 F3(1) = 0
G(0) = 0 G(1) = 1
G'(0) = 0 G'(1) =

G"{(0) = 0 6"(1) = 4
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For the function F, (x) we may write

é%—Fl(x) = ¢, x%(x - 1)?

Integrating and applying conditions F,(0) = 1 and F,(1) = 0 gives
Fo(x) = 1 - x3(6x% - 15x + 10) (E.48)

For the function F,(x) we may write
5 .
F,(x) = ] bjx]

i=0

since the boundary conditions cannot be satisfied by the simple form
(constant) x™ (x - 1)N. By direct elimination we obtain

Fo(x) = -x3(3x% - 7x + 4) (E.49)

The function G(x) has the same bci'ndary conditions as in Section E.3;

thus equation (E.39) applies directly. Equations (E.39) and (E.48)
imply that

G(x) = 1-F,(x) (E.50)

so that

yix) = 1 G- 1 R s, Falx) (E.51)

Equations (E.48), (E.49), and (E.51) satisfy the boundary conditions
(E.45); hence the postulated form given by (£.47) is correct. The
results are given as equations (4.11) and (4.12) in Chapter 4, to which
equation (E.46) has been applied.
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Constraint Boundaries for Siq ard t/ry. From physical considera-

N

tions we require a nonpositive slope Sy, a positive profile radius Ry
at Xj, and a non-negative profile radius T at .. We have defined Sigo

t, and ry so that S, 20 and 0 < t/r; <1 satisfy these physical

requirements.

We also require that no inflection points occur on tk> tailboom
aftbody other than at Xj and L; this implies that at most one inflec-
tion can occur on X5 < X < L. Fquations (E.40) cannot be used to find
the constraint boundaries; no solution exists on 0 < x < 1 so that an
alternate approach is required. Using equation (E.40a) together with
equation (E.51) one may write

) = G- 1) R+ sy B = 0 (E.52)

TR CS FAUPICL § YC T YR TL07

Factorina out the solutions at x ™~ and x = 1, we obtain after some
manipulation that

[+ 2 rmy)
STEF-;:—])-

x =

Sia
KOS (T TERL

wnich is the location of the third inflection point. It is apparent
that we must find the range of sia/(t/ri - 1) for whi.h x <0and x > 1.

PERTVS [N

Setting x < 0 and then x > 1 in equation (E.53) and performing the in-
equality analyses gives

e ZAN st e

5t . . s t s
3ri+3.’:.51a_<."2-r1,"; (.54)

which defines the region for which no infleticn point exists on 0 < x <
1. These linear boundaries are plotted in Fiqure 24 of Chapter 4.
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APPENDIX F

ADDITIONAL RESULTS

This appendix contains additional optimization results not reported
in Chapter 5. Also, summary tables and figures of all optimization runs
are presented. Unless otherwise noted, all optimization runs are made
using 30-station solutions. However, the reported drag coefficients are
99-station solutions. The computer running time in minutes is nominally
equal to the number of performance function (PF) evaluations on the
CDC 6500.

F.1 Eight-Farameter Tailboom Body at Ry = 7 x 108.

The results for the eight-parameter tailboom body are limited; the
summary is shown in Table F1. The additional data not previously re-
ported is the comparison of the Cp values based on the 30-station and
99-station solutions. For body D-54 at Ry = 7 x 10° the pradicted Cp
decreases 11% when 99 stations are used.

F.2 Five-Parameter All-turbulent Body at Ry = § x 10°.

The three optimization runs for this body are summarized in Table
F2; overall parameter migrations are shown in Figure F1. From the table
it is evident that there is essentially no relative distortion of the
response surface due to the 30-station solutions. This suggests that
the coarse 30-station grid loses important information associated with
the rapid change in the boundary layer immediately downstream of the
point transition. This rapid change does not occur in an all-turbulent
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Figure F1. Summary of Parameter Migrations for §
Al1-turbulent Bodies at Ry = 5 x 10%. ;
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boundary layer. From Figure F1 it is apparent that the response surface
for all-turbulent bodies at Ry = 5 x 10° is quite flat. The three solu-
tions are spatially far apart but their Cy values are all within 4.5%

of the best value. The parameters for the three all-turbuient solutions
are given in Tahle F3.

F.3 Five-Parameter Laminar Body at Ry = § x 10°.

The cptimization runs for this body are summarized in Table F4;
overall parancter migrations are given in Figure F2. It is evident in
2 table that there is significant relative distortion of the response
surface due to the 30-station solutions. The Cemplex Method, moving on
global information, can cope with the relative distortion; that is, the
distortion apparently does not obliterate global trends. The Powell
riethod, moving on local information, is useless when using 30-station
solutions; the rasults of optimization Series P in Table F4 demonstrate
tiiis. The results of Scries P motivated the initiation of Series T
which uses 99-station sclutir.:s. Of course, this procedure triples
the cost of the op *1ization run.

F.+ Five-Parameter Laminar Body at Ry = 1.6 x 107,

The optimization runs for this body are summarized in Table F5;
overall parameter migrations arc shown in Figure F3. As discussed
above, there is relative distortion of the response surface due to the
30-station solutions. It appears ihat ©J-staiion solutions must be
caployed to use the Powiell Methed effectively.
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Table F3. Parameter Values for Three All-turbulent Bodies.

‘ Body Number
Parametur 1-36 12-24 13-27

f, 6.3294 8.9937 6.1323
3692 4815 .2024 “
1.1272 2.5468 .2338 ;
6391 1.5045 5084 |
L1513 6328 .0951

Srdiraly

3.20%7 2.9534 1.3636

1 - Xm
o

PRI

)2

14 Nva e W s SO s L a3 B




eri e et c‘/./ 75 Al Y Qi i crelti s s toni ac s et pr o at S A O R TR T e T R L O i e B e 2 A e R e s el e L L O J..j

:
' ™
._” A
] ;
§ : 00199° = ' ;
, pLLzos = 3s  eseys = Ux
0£89g°2 = "4 f2699°8 = N4 %
122-1 Apog 404 saniep J933w2dpd
3 *MO13q u3dALb sanjea i
A Jajoweded aousbUAUOD |eWUO} ON
: *Aluo s910Ad OM]  -suoL3n|os uoL3e3s
- -65 Pasn  "Ge-9 Apoq ssanb jeL3Lul -- -- £8400° 22-1 o€ [1anod 1
i
*sSuoLyNLoS
’ UoOL3e3S-0E 01 ANP UOLILOISLP SALIRIdU
C 10 2ALIRILPUI " PIABLYDR S2USBUIA
1 -u0d (eumo4 *Gg-9 Apog ssonb |eijiur -- §29G0" £6S00° L1-d AN L L3MOd d
: . * {ewtydogns
/ Apog -Al2anjeuRad pajeuruusl uny Le L£200" 6€500° Ge-3 £ xatdwoy 9
"oy (*e15-08) ("e3S-66) ubBLSAQ - [BAF Id  POY3d  ‘ON
: Susulio] 2unbL 4 Gy ay 1s9¢ 10 “o\ yodeay  uny
m W ‘g0l X G = Ay 2e Apog aeutwe] ud1dwesed-g 404 Adeuming uoLIeZLWLAC) 4 diael
=
|
§

LI an ST T 3 Mg The Gl A aEN PRI K s




By
BRSNS ot me vpe s v

w
. \.,ﬂg“@ g

d
= - C—) series T (.00483)
t O~ Series G (.00539)
1 0.8 O—{J Series P (.00597)
1 Bost CD of Series Showvn
| in Parenthesis
. I
5 |
, *m |
: |
R |
|
i
|
0.2 4 " 3 J 3 3

7-22 r

TR TR YT

bt dads

o b

0.8 1

e DN
i

[72]

J 1
) " X
ky (- —-2
] X

10

- Figure F2. Summary of Parameter Migrations for Ry = 5 x 108,

o
>

adaifduvaiogd a2 o L E e i ¥ S I I T T R YT T P RGRY SRR T R g T ATy Gidiaaeou i tiaca it ad el

174

NN

RS, )

T IR ST T J

PP TPCPE S

LAkt

A

E
k
E
.
]
L. AT e vk eV Al i wE de e,




WOTTTPIR QT

TRV R TE

T T R B R WY A

5

ey

=

L

7S S5

TY

«

T e,

175

/t/ ¥ ¥ Sl e A R TTTR T AT NI Y, TR TR e AT P e e e s L e T TN,
*suoLy
=Nl0S uoLlels-0¢ 0} anp UOLIJ0SLD
SALle|24 JO 3DUSPLAT  *3ouabuaAU0)D
[BuM0l ON  °gg9-H Apoq ssenb [erpiug -- 90900° £6500°  99-D 9 Liamod &
* {ewLado
-qns Apog *2dusbudAu0d [RW.OL O G¢e Lbo00" £8500° 29-H 08 xajdwoy  H
. *oN (*®35-08)  (°®3S-66) ubisa@ ‘ieA3 44 poyrsx Oy
Susuo) aunby 4 o) dy 1599 40 -oN youeas uny

"(0L X 9°L = Ay e Apog aeurwer uajsuraed-g 404 Aaewwns uor3eziwildp ‘¢4 alqey

I Y- R T R VLYo b et sl R

iy

R AT

PP

NiaCchts et i,




~ W mar v = i an i S
QT . 1T AT St U TR WAL U N SR AT AT 4 T S

oy g Etiadi o gd e R e & = E - T
YN YT T Ty

176

O—=Q Series H (.00587)
O—{J series Q (.00597)
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Fiqure F3. Summary of Parameter Migrations for R, = 1.6 x 107,
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F.5 Five-Parameter Laminar Body at Ry = 5 x 107,

Extensive runs have been made at this Reynolds number in an attempt
to establish the existence of uniqueness of the minimum drag shapes.
These runs are summarized in Table F6; the overall parameter migrations
are shown in Figure F4. The results srow that response surface distor-
tion is present as mentioned in the preceding cases; however, it appears
that large scale trends are not cbliterated.

Based on ¢ -ies L, far from the feasible optimum the response sur-
face is nominally flat with local minima present. The series is termi-
nated before formal coavergence is achieved, but after 70 PF evaluations
the method is making 1ittle progress. The tiree Powell series K, M, and
N all move rapidly co the ry - k, boundary and then move slowly along
it. It appears that the Powell Method used in corjunction with the
penalty function defined by equation (3.13) cannot cope effectively with
curved boundaries. Stated another way, the direction-seeking strategy
of the method has difficulty aligning the search along boundaries which
are not parallel to the initial set of search directions, which usually
is the set of parameter axes.

Series F and F2, both using the Complex Method, converge to distinct-

ly different shapes, as reported in Chapter 5. For this reason, the
region containing these two solutions is examined in detail to determine
whether the solutions are unique. By uniqueness we mean the existence
of a finite number of distinct minima. Series R, using the Complex
Method, revealed no significant information regarding uniqueness.

The best body shape obtained formally by an optimization run is
body M-73 which lies on the ry - k, boundary. Mainly due to the trend
of Series F2 and M, it is believed that the minimum Cp at this Reynolds
number 1ies on this boundary. Perturbations on body M-73 along the
ro - k, boundary are shown in Figure F5. A generally well behaved trend
is evident; the bracketed minimum is near solution MP7 with a Cp value
of .00712. This behavior suggests that the minimum drag sclution is
unique. However, this cannot be construed as a sufficient test for
uniqueness; a truly sufficient test for uniqueness does not exist for
this problem.
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Figure F5. Perturbations on Body M-73 along rp - k, Boundary.

Assuming that the optimum solution at Ry = 5 x 107 is body MP7, then
it is proper to question the validity of the presumed boundary on which
the optimum lies. An additional perturbation, body MP5 with Cp = .01279,
reveals that the response surface ascends rapidly outside the presumed
feasible region. This tends to confirm the previous hydrodynamic expe-
rience which motivated the presence of this boundary at the outset. The
parameters for six laminar bodies obtained in studies at Ry = 5 x 107
are summarized in Table F7.

It is of interest to examine the hydrodynamic reasons why body MP?
has a low Cp while its close neighbor, body MP5, has such an inferior
Cp value. Body MP7 and its velocity distribution are shown in Figure
F6. The forebody has a limiting inflection at X/L = .26. The curvature
behavior induces an early adverse velocity gradient region which the
laminar boundary survives at this Reynolds number, at least according .o
the flow model. A region of locally accelerated flow suppresses transi-
tion until X/L = 0.5. The early adverse region helps to reduce skin
friction but it has a destabilizing effect on the laminar flow. This
can be seen in Figure F7 which shows the Ry versus Rg trajectory at
Ry = 5§ x 107. The trajectory very nearly touches the Michel-e® curve
at X/L = .25 approximately. The region of locally accelerated flow
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4
§ Table F7. Parameter Values for Six Laminar
] Bodies Desigred at Ry = 5 x 107.
: T
Body Number
Parameter | ¢ g, £2-49  M-73 MP5 MP7 R-2
fr 4.2735 3.5000 3.5306 3.5306 3.5306 3.7866
_ X .4446 .4300 4710 4710 4710 .4729
k, 3.808i 3.7000 3.819 3.5000 3.3500 4.1106
™ .1821 .9000 - 1.0217 1.5500 1.3900 .5607
st 1773 .2000  .1789  .1789  .178%  .0478
* k!a 5.9443 6.5015 4.8157 4.4133 4.,2242 5.1086
Cp .0077 .0073 .0072 .0128 0071 .0072
1 - Xm
* kla = kl( Xm )2
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4 Pl.og Rg = Log 6 ug/v
Hichel-e?
Curve
Turbulent
d = X/l
ST Laminar
Rv =5 x 10°
2.7 1 A
6 7 8

Log Rg = Log S ug/v
Figure F7. Rg Versus Rg for Body MP7.

causes the trajectory to veer away and then cross tie correlation curve
at X/L = 0.2. The neighboring solution, body MP5, appears very similar
to body MP7 and has a similar velocity distribution (figure not shown).
However, the early adverse recion for body MP5 is severe enough to
cause its Rg versus Rg trajectory to cross the Michel-e® curve at X/L =
.22. This accounts for the rapid change in Cp between the neighboring
solutions.

The high sensitivity of body MP7 to early transition, as inferred
from Figure F7, makes it an undesirable hydrodynamic design. The trade
off between low Cp and low sensitivity to early transition must be left
to the judgement of the designer. It is possible, of course, to insert
additional constraints into the drag minimization problem to avoid this
undesirable sensitivity.
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