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Abstract

These notes are based on a course of lectures given at Stanford,
and cover three major topics relevant to optimization theory. First
an introduction is given to those results in mathematical programming
which appear to be most important for the development and analysis of
practical algorithms. Next unconstrained optimization problems are
considered. The main emphasis is on that subclass of descent methods
which (a) requires the evaluation of first derivatives of the ob,iective
function, and (b) has a family connection with the conjugate direction
methods. Numerical results obtained using a program based on this
material are discussed in an Appendix. In the third section, penalty
and barrier function methods for mathematical programming problems are
studied in some detail, and possible methods for accelerating their
convergence indicated.
This research was supported in part by the National Science Foundation
under grant number 29988X, and the Office of Naval Research under contract

number N-000l4-67-A-0112-00029 NR O44=-211 . Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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Introduction

Thesc notes were prepared for a course on optimization given in
the Computer Science Department at Stanford University during the fall
quarter of 1971. 1In part they ar: based on lectures given during the
year of study in numerical analysis funded by the United Kingdon Science
Research Council at the University of Dundee, and on courses given at the
Australian National University.

The choice of material has been regulated by limitations of time as
well as by personal preference. Also, much material appropriate to the
development of algorithms for linearly constrained optimization problems
was covered in the parallel course on numerical linear algebra given by
Professor Golub. Thus, despite some ambition to cover a larger range,
the course eventually consisted of three main sections. These notes
cover these sections and have been supplemented by brief additional
comments and & list of references. A more extensive bibliography is
also included. This is an amended version of a bibliography prepared
by my former student Dr. D. M. Ryan.

The first section is intended to provide a solid introduction to
the main results in mathematical programming (or at least to those results
which appear to be the most important for the development and analysis
of practical algorithms). The main aim has been to characterize local
extrema, so that convexity and duality theory are not treated in any
great detail. However, the material given is more than adequate for the
purposes of the remaining sections. Opportunity has been taken to
prevent the recent results of Gould and Tolle which provide an accessible
and rather complete description of the first order conditions for an

extremum. The second order conditions are also considered in detail.
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The sccond section on unconstrained optimization is largely resiricted
to that subclass of descent methads which  (a) requires the evaluation
of first derivatives of the ob,jective function, and (b) has some Wl

family connection with the so-called conjugate direction methods. This 3

is an area in which there has been considerzble recent activity, and

9
-
Y

here an attempt is made hoth to summarize significant recent developments |
and to indicate their algorithmic possibilities. An appendix (prepared

with the help of M. A. Saunders) summarizes numerical results obtained

&)

with a program based on this material. Onec significant omission from }
this section is any detailed discussion of convergence. However, the

convergence of certain algorithms (those that reset the Hessian estimate

periodically or according to appropriate criteria) is an easy consequence

of the material given.

In the third section, penalty and barrier function methods for non-
linear programming are considered. This turns out to be a very nice
F application, in particular, of the results of the first section. These i ,
methods have advantages of robustness and simplicity but carry a definite |
cost penalty. However, uttempts to remedy this situation chow some

promise. 'The material presented in this scction has important connections

with other areas: for example, with the method of regularization for

the approximate solution of improperly posed problems.
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1. Minimum of a constrained function.

Consider a function f(x) on S c E - E, where S is a given

point set.

*
Definition: x 1is the global minirmum of f on § if

~

£(x") < £(x) V¥xes . | (1.1)

*
Remark: x  exists, for example, if S is finite, or if S is

~

compact and f(x) continuous on S .

*
Definition: x 1is a local minimum of £ on S if 98 > 0 such that

~

£(x) < £(x) ¥xcN(x ,8) (1.2)
where

N(x,8) = {t;8n {t; \\’g-f\\t/ <B}] . (1.3)

*
If strict inequality holds in either (1.1) or (1.2) whenever x # x

then the minimum is szid to be isolated.
Definition: S 1is convex if Xys Xy €S = Oxl+ (1-9)x2es for 0<6<1.

Example: If § is convex all finite combinations of points in S is

m m
again in S . That is iglkifies where )fies N iglki 5 a8

A 20, 1<n<e=.

Definition: f(x) is a convex function on the convex set S if

£(6x, + (1-6)x,) < Of(x;)+ (19)£(x)) , 05O <1 . (1.1)

¥

& 2.1/2
el = {Zti} , the euclidean vector nom of ¢t .
L & -
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If strict inequality holds when 0O <6 <1 then f is strictly convex.

Say ¢(x) 1is concave (strictly concave) if -g is convex (strictly

~

convex) .

Lemma 1.1: If f(x) is a convex function on the convex set S then

a local minimum of f 1is the global minimum. If f is strictly convex

then the minimum is unique.

Proof: It is necessary to consider only the case f bounded below.
* *%
If x is & local minimum but not the global minimum 9 x such that

~

*K * *
f(x ) <f(x) . Now, by assumption, & >0 such that f(x) > f(x )
*.
for xcN(x ,8) . Choose 6 >0 sufficiently small for

*% % *
ox + (1-8)x cN(x ,3) then

~

¥* *¥ * ¥*
(i) f(x) <f(ex +(1-8)x ) as x is a local minimum, and

(11) t(ex + (1-8)x") < of(x )+ (1-8)£(x ) by convexity

< f(x*) unless f(f*) = f(f**) ‘

~

* *¥
Now asgume X , X both ares ¢lobul minima and that f is strictly

~ ~

convex. Then

* X% X X%
£(ex + (1-Q)x ) <af(x )+ (1-R)f(x ) , 0 <81
which gives a contradiction. J

Definition: A set C is a cone with vertex at the origin if
xeC > XxeC, N>0. C 1is a cone with vertex at p 1f

{x-p ; xecC} 1is a cone with vertex at the origin.
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Definiticn: x is in the tangent cone :r(S,xo) to S at X if

q sequences {A.n} >0, {fn} =Xy {fn} c S such that
’é ’ = “)‘n(fn'fo) 'fn =0 - (1.5)
3 n-—-e
g
‘ Example: (i) § = {x;|x-wl =x}, 7(S,x;) = {x;x (x-w) =0} .
D

(ii) S = {x;|jx-wl| <r} . ‘.r(S,xo) =E if x, in interior of §,

otherwise :I’(S,xo) = {x;xT(xo -w) <0} .
» Lemma 1.2: T(S,xo) is closed.

Proof: Consider a sequence ({t.}c7(S,x,) such that [t,-t]l =0, i «w.

It is required to show that t eT(S,xo) . Now tie:r(S,xO) = q

AMy>o B xl.} c S such that 1lim Ki(xi.-x Y-t,ll =0 . Prescribe
JAS o= JYd i

. AR
j e
{e;}40 . Select t, such that \\ti-t\\ < ‘1/2 , and J = i(j) such

. L
that  [AS(x) - x0) -ty]l < €5/ o Then [N(xy-x)) -t < &g = teT(S,x,)
a

i+
Lemma 1.3: (Necessary condition for a local minimum.) If f£(x) eC )/
and if X, is a local minimum of f on S then vf(xo)x >0,

Vic ¢ T(S’fO) s

Proof: Let x be defined by sequences {)\r} . {xn} - As x, is a local
== * *
minimum I & >0 such that f(x ) > f(xo) Yx eN(xo,b) . Consider now

the restriction of the sequences {)».n} > {xn} such that x_ cN(xO,b) 3

74 fect at Xy if f(f) = f(xo) + vf(xo) (f "fo) + °(Hf -xo\\) . Higher

crder continuity classes are defined similarly. For example, £ eC2
if the o( ) term can be estimated in the form

% 23 ’fo)T ng(fo)(f - X5) + ol - 50“2) .

2
EN

S o




We have
0 < £(x) - £(x,)
< 9200 (% = %) + oy - %511
whence (note it is sufficient to consider X such that “f h=1)

0 < vf(xo)}\n(}fn - ’fo) + o()\nn)jn - foh)

SVf(fo)’f+°(l) as n oo . =

bxample: (i) Tr X, ¢ S (the interior of S ) then T(S’fo) =E .

Thuc x can be chosen arbitrarily so that vf(xo) =LOM

(ii) If 8= {x;|x-w|| =r} then I(S,xo) = {x ;xT(xO -w) =0} .
In particular if x eT(S,xO) then -x e:r(S,xo) . Thus we must have
vf(xo)x = 0 ¥x such that xT(xO -w) =0 . Thus vf(xo) = oz(xo -w)

for some « .

(iii) If S = {x;|x-w| <r} and on -w|| = r then
T(S,x()) = {x; xT(xO -w) <0} . In this case we have vf(xo)x >0
¥x such that xr(x()-w) <0 . Thus vf(xo) = aw -xo) for some

nomng;rative « .

Let A bc a set in En 5

*
Definition: The polar cone to A is the set A = {x;xXy <0 VyeA}.
*
A has the following properties.
*
(1) A is a closed convex cone.

x %
(i1) If Aj c A, then A, CA .

1 2

¥
(1ii) A =A if and only if A is a closed convex cone.

L

L

)

i b v T




Ll o ik

* o %
(iv) A = (A%)" -- the polar cone of the closure of the convex hull
of A . The convex hull of a set is the smallest convex set

conteining it. Tms A° =NX, AcX, X convex.

*
(v) If A is a subspace then A* =4 .
Remark: Lemma 1.3 can be restated: ' if x* is a local minimum of f

~

on S then -vf(x*)eI(S,x*)* B

Lemma l.k: If y e:r(S,xo)* then -y is the gradient of a function

having a local minimum on S at xo .

Remark: It is sufficient to consider the case |yl =1, Xy =0 .
r o Nxd
Proof: Let C_ = x;xy < = } e=1222... . We first show that

for each e , & e(e) >0 such that N(0O,e(e)) < C, . For assume this is

not the case. Then 3 {xp} (i En-C with xpeN(O,l/p) 3 B= Li2exe 1

e

such that |
xT y

5 1 i

_L_ > _é"' ) p = 1,2’00- . (106) 3

The sequence —B is bounded and therefore cotains a convergent

I

subsequence
|l

X,
':1 ||} - z . By definition 2z e 7(8,0) , but, by (1.6),
1

T
z ¥y

~

1
>?>0

which contradicts yej’(S,O)* A

10
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Now let Ek = sup{e,N(0,¢) c Ck} . We define

El = min(l, ?:l) ’

0 l A ~,
Ek = mln(-e. €k_1’ Ek) 2 k e l 2
and

P(z) =2zl , llzll 2,

Azl Nzll-en | 2lzl e -zl
k-1 €k " el k €k T Ek+l

’ “5\\ 3 [€k+l’ Ek] ’

o, lzlj=0.

monotonically decreasing. Further

It is clear that >0 and ¢

k k
P(z) >0, P(z) is an increasing function of ||z , and

2il 2
2l s e = ®o) s—pam

~

Tlius P(E) 5 o(\\;z\\) so that 9¢P(0) = O .

Now let z = x - (xTy)y . We show that, under appropriate conditaions,

~ o~ oA

xTy < P(z) . It is sufficient to consider xTy > 0, and in this case :
1 T l T
fxll-xy < flzff = lxll+xy . (1.7)
o x|l
16 XGCe then x'y < 3 Using (1.7) we have
& x|) <zl < 2 ix) . (1.8)

Now assume xeN(0,€) , ¢ < £ - Then || x || e[ek+l’ ek] for some k >3

whence chk . This gives

~

11
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T Il x|l Iz

Xy £ Tk S Tk (1.9)
; k-1
However, |[z| >—= €, > €4 Whence
2ll z ||
P(z) > —5— (1.10)
so that, combining (1.9) and (1.10)
T ktl
2= lanery B S REL Gl
Thus the function
T T
£(x) = -xy+P(x-(xy)y) (1.12)

has a local minimum on S at Xy = 0 . Further fc—:Cl at 0, and

vf(0) = -y . O

~

2. Some properties of linear inequalities.

Definition: The set H(u,v) = {x ;uTx = vy} is a hyperplane. Note that

the hyperplane separates E_ into two disjoint half spaces

g ;uTx<v} .

it® B

R, = {x3u

'+ XZ\’}’ R_:'{

Lemma 2.1: (lemma of separating hyperplane). Let S be a closed convex set

in E_ , and let xO;fS » Then 3 a hyperplane separating X, and § .

Proof: Let X, be any point in 5 . Then min Hf'fo" = “’fl'fo“ =r.

1
Xe

The function |x -x,l| is continuous on the closed set SN s ll-xll < rd
*
and hence the minimum is attained. Let this point be x . From

Figure 2.1 it is suggested that

(x 'f*)T(f* =Xy) =0 (2.1)

12




X, %

fR-s ) (x =8) =€

Figure 2.1

is an appropriate hyperplane. To verify this, note that X5 €eR_ so

that it remains to show that Sc R . Let xeS then for 0<8<1,

> [ =%l

0

lox + (1-0)x" - x|1°

so that

Gellx - x*||2+ 20(x - )T - x)) >0

4 and, letting 6 -0,

‘3

¢ * *

(x - x )T(x -xO) >0
whence XcR_ . d
Definition: C is finitely gencrated if

i P ,

€ = {08 = }\i ci,)\izo, i=1,2,.0.,p} . It is clear that C
4 B == S

is a cone. It can be shown that C is closed.

1 Lemma 2.2: (Farkas Lemma). Let A be a pxn matrix. If for every
i —
k solution y of the system of linear inequalities

Ay >0 (2.2)

13
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it is true that

ETZ >0 (2.3)

then 9 x > 0 such that ATx =4 .

~

Proof: Let C be the cone generated by pi(A) s 1 =12..5p.
Then the result of Farkas lemma is that if (2.2) = (2.3) then acC .
We assume E,éc and seek a contradiction. By Lemma 2.1 there exists
a separating hyperplane. To construct it let f* be the closest point

*
in ¢ to a . Then | -a.||2 hes & minimum at A = 1 . Differentiating

and setting AN =1 gives

(f* - a)Tx* =0 . (2.4)

~ ~

By (2.1) the equation of the separating hyperplane is
(x-x)T(x" -0) = x'(x -a) =0 (2.5)
which shows that it passes through the origin.
By Lemma 2.1 C c R, whence
A 20
for arbitrary v > 0 so that
A(f* -3) >0 , (2.6)
but g.eR_ whence
al(x -a) <0 (2.7)

which gives the desired contradiction. 0O

15.1




Remark: Another way of looking at this result is that at most one of

the following pair of systems can have a solution.

o .

v

~

(1) Aty >0 , vly<o .

~

This is an example of a 'theorem of the alternative!.

5. Multiplier relations.

We consider now the mathematical programming problem (MPP)
min £(x) subject to

Ui(f) 20, 1.1,

)
<
.

| N
)
=

h, (x)

Wc assume that 1, By > icIl s and hi s icI2 , are in 02 and that
the constraints on the problem are not contradictory. This corresponds

to the problem discussed in Section 1 with S given by
S=@;QQ)ZO,icH,hJ?=O,ie%}. (3.1)

At any point X € S let BO be the index set for the constraints

catisfying gi(fo) =0 . If icBy we say that g, is active at Xy

Definition: S 1is Lagrange regular at x. iff for every f such that

0

(i) f has a minimum on S at X, » and (ii) fect at X5 (i.e.,

fc}Qg 9u , v such that
(1) 9B(x) = L u.ve(x)+ L v.vh,(x.) (3.2)
=0 . 1Y21M0 3 171iY.0
1<zBO icl,
(i1) u; >0 , icB

o

14
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This can also be written

(1) vf(x,) = zuvs(X)+ZVVh(X) ’
Sh{o AR 1V841\%9 1984 %
1cIl 1612

(11) u“g(x)) =0 , and

(ii1) u>0
where zero multipliers are introduce;d corresponding to the inactive

constraints.

Remark: If (3.2) holds for feF, , then f satisfies the Kuhn-Tucker

conditions.

Example: It is important to realize that (3.2) need not hold. Consider
the MPP
min f = X1
: _ - = (1-m)2-
subject to g =%y >0, & =X, 20, 85 = (1 xl) X, 20 .
From Figure 3.1 it is clear that the minimum is attsined at Xy = 1l,

X, = 0 , and here 81 and g3 are active. We nave
Vgl = 'V85 = 52

while

Figure 3.1
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Let

H

{Z' ;Vhi(fo)f =0, 1 €12} ’

Gy = [xsve,(x5)x >0, icBy} .

[

*
Lemma 5.1: is Lagrange regular at x.  iff -vf(xo) € (GO n Ho)

0

for all chO 0

£ f -gf(x.) € (G H )* th
Proof: If -y (}jo € (Gy N Hy en
Yy such that

G O

Iy

o0 , ic¢1,

-V}li(“{())- Py

~ ~

v (x))y >0, icBy .

Thus, by Farkas Lemma, vf(xo) is a linear combination with nonnegative
weights of vgi(.lco) » i€By , and Vhi(fo) ¥ 'Vhi(fO) » iel, . Thus
(5.2) holds. On the other hand, if (3.2) holds then vf(x )y >0 for

all y(GOﬂH -

5
Remark: Lemma 5.1 shows the difficulty with the above example. Here

T = == -ae,, @ >0}, Gy NHy = {x = e, , @ unconstrained} . We have

~

* *
T = right half plane , (GO N HO) the x. axis. By Lemma 1.4t for

*
cvery xcT there is a function with a minimum at (1,0) and such that

-9f = x . Thus the conditions of Lemma 5.1 ¢ ‘e not met in this case.

16
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%* *
Lemma 3.2: (G0 n Ho) = T(S,fo) .

Proof: This result follows if we show that :r(S,xo) CHy NGy . If

xeT(8,x)) T {x} ~x, xles, {»,} >0 such that

{)‘n(fn ',..O)} ~X% . We have

hy (%) + vhy (%) (x5 - %) + ollxy - %0l 5 LIy

and

0 < g;(x,) = 8 (xo) + ey (x0) (x, -xp) +olljxy - x5ll) 5 1eBy -
Multiplying by %'n and repeating the argument used in Lemma 1.5 we have

vhi(fo)f =0, ieI,, vgi(fo)f >0, ieB ,

so that xeG. NH 0

0 0°
Theorem 3.1: The set S is Lagrange regular at X, iff

* *
T(S,?EO) = (GO n Ho) g

Proof: If T(S,x) = (G. NH) X th £(x) e (G. NHY VE b
oof: I T,ico)—(oﬂo en-v(foeono V£ eF, by
Lemma 1.3. Thus (3.2) holds by Lemma 3.1. If S is Lagrange regular at
*
X, then by Lemma 3.1 -vf(xo) € (Go n Ho) VfeF, . .., by Lemma 1.k,
* * * *
3-(s,:~co) G (Go n HO) . Thus y(s,fo) = (Go n Ho) by Lemma 3.2. O

Remark: Conditions which ensure that S 1is Lagrange regular at X,

are called restraint conditions. Theorem 3.1 gives a necessary and

sufficient restraint condition.

Corollary 3.1: (Kuhn Tucker restraint condition). If vgi(xo)t >0,

ieB

o » and vhi(fo)t =0, iel, =E is tangent at X to a once

17




differentiable arc x = x(®) , x(0) = X, contained in N(xo,b) for

some & >0 then S is lagrange regular at Xy e

Proof: It is clear that t«¢ I(S,xo) for consider a sequence {Oi] L0

and define {x } = (x(9)} , A} = (§} then
n

dx(0)
Py -5 = g = BeTGx)
Thus the Kuhn Tucker restraint condition implies (Go N Ho) g'T(S,xo) :

The result now follows from Lemma 3.2 and Theorem 5.1l. (O

Lemma 5.5: Let lf.i(f) cc? , ki(f*) =0, and Vki(’f*)t =0,

i 1,2,4..98 <n . Wec assume A ¢ >0 such that the vki(:f) s

i 130y e.est are lincurly independent for ||§-§*|I <€ . Then
& Gnedul ‘are x = 1(9) g (O) & < , such that ki(x(Q)) = 0 %

~ ~ ~

dx(0)

e *,
1 = 1y .ewuie 5 Lar |p6) - ” < ¢ and —EF— =% .

Proof: Let P(x) = KT(K KT)-:L K where pi(K) = vki(x) y 1=1,2.000y8 .

Then x(®) can be found by integrating the differential equation

dx

= = (T-R(x)% (3.3)

*
subject to the initial condition x(0) =x . O
Remark: Let the ki be as given in the statement of Lemma 3.3. Then

*
the linear indeperd=nce of the vki in a region containing x is a

*
conscquence of the linear independence at x . For consider the matrix

E
KKT . At x =x this matrix is poesitive definite as K has rank s .

~




Thus the smallest eigenvalue is positive. Clearly it is a continuous
L function of x 8o that it remains positive in a small enough neighborhood

* b ¥
of x , and in this neighborhood the vki(x) are linearly independent. 3

Lemma 3.4: (Restraint ccadition A). S is Lagrange regular at Xy
if the set of vectors Vgi(fo) s> TeBy vhi(:fo) » ieI, are linearly

independent.

' Proof': This is a consequence of Corollary 3.l and Lemma 3.3. For
let teGyNHy, and let B(t) be the index set such that
vgi(xo)t =0, 1ieB(t) . Then by Lemma 3.3 a smooth arc can be constructed

t such that x = x(9)) , gi(x(e)) =0, ieB(t), hi(x(e)) » il ,

gi(x(e)) >0, icIl-B(t) s, x(©) eN(x,8) for some 8 >0, and =t g

b
b Lemma 3.5: (Restraint condition B). If vhi(xo) » 1eI, are linearly
independent, and if ¥ t such that vgi(xo)t >0, ieBy, vhi(xo)t =0 ;

icI then S 1is Lagrange regular at Xq

2}

Proof: Assume weGy NH, but w,éT(S,xO) . Prescribe {ek}zo and

set w =w+ et . Then Vgi(f)3k>o’ ieB,, vhi(fo)v:k=0, iel, -

k ko

dx, (0)
Now construct x, = fk(e) such that ~xk(0) =Xy B =V

hi(fk(e)) =0, iel,, for fk(e) is some neighborhood of X, . By

continuity there will be a subneighborhood (say N(xc,bk) for some

ax, (8) .
By > 0) such that (i) vgi(fk(e)) ~5— 20, 1eB;, and

(ii) gi(fk(e)) >0, 1eI,-B, for fk(e) eN(fo’bk) . The argument
of Corollary 5.1 now gives wkef(s,xo) . But, by construction,

{wk} - W . Thus we:r(S,xo) as T 1is closed. O




4. Second order conditions.

In certain cases it is possible to further characterize local minima

of £ on S by looking at second derviative information.

Lemma 4.1l: Let w(x) 602 , W have a local minimum on S at Xy »

; and 9w(x)) = 0 . Then t70%u(x )t >0 VeeT(S,x) . If

tvw(x)t >0 V‘tej’(s, O) then 38 >0, m >0 such that

b w(x) > w(xo) +m||x - x| E

...O” ’ fGN(fo:b) .

Proof: Let {xn} " {A.n} be defining sequences for tej’(s,xo) . Then

for n large enough we have, as vw(xo) =0,

0 < w(xy) =wlxg) =5 (x, - x) "wPwixg) (- x0) + o (e, - %)

X
~N
1,72
B &

: 2
g AL kn(w(fn) 'w(fo)) =5ty w(x )t+o(1) as X ~X, .

=0
Now assume tTvew(xo)t >0 Yt e:r(S,xo) and ¥ no m >0 such that
w(x) zw(xo) +m||x-x0||2 for x in any neighborhoc »f x, . This

implies that for any integer q , 3 X, € S such that (i) Xy ¢N(xo,l/q) 5

E i1) w(x ) -w(x <l X =X e . Select a subsequerce of the x_ such
: (12) wlx)) ~w(x) <3 fix -l q X

Xq " %o T 2
that = = - t €T(S,x.) . Then (ii) =1t'v w(x )t < 0 which
Xq %ol %0 ~ ~00L =

gives a contradiction. J

Definition: The Lagrangian function associated with the MPP is given by

o) =200 - Lug () - Lvnx . CRY
i, iel, =

20




It will frequently be convenient to suppress the dependence of £ on u
and v in the case where these are implied by the Kuhn Tucker conditions.

In this case (3.2) becomes

Lemma 4.2: Let S be Lagrange regular at Xy f£(x) have a local

minimum on S at X, , and Sl = {f;xes, gi(x) =0, ieBo} then

tTePg(x )t >0, Yt eT(S,,x.)) . (4.3)
et e - 17°.0

Proof: Note that £ = f on Sl so that £ has a minimm on Sl

at x, . Also, as S is Lagrange regular at x, , vj:(xo) =0 . Thus

~0
the result follows from Lemma L4.1l. (O

Remark: If S, is Lagrange regular at X, then tTve.r,(xo)t >0 W

such that vgi(xo)t =0, ieB, and vhi(xo)t =0, deI, .

Example: Consider

2 2 2 2
gl=x1+(x2+l) -1>0 , 32—1-xl-(x2-l) >0 .

S8 is illustrated diagramatically in Figure 4.l. At X) = %5 = o,
vg, = V8, = (0,2) . However S 1is Lagrange regular at the origin --

for example, e, satisfies a%2
: g, >0
Vgl.e‘2 >0, vgzof,2 >0 so s::-D ge'-tﬂ
that restraint condition B
- X
applies. In this case Sl is
the single point x = 6 5o that
5 T - gl-ﬂ

:r(Sl,O) is null.
~ Figure 4.1
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Lemma h.5: If trv".\‘,(xo)t >0 Vte:r(s,xo) such that vgi(xo)t =0

r~

Vi« BO such lhat s >0 then dm, 8 >0 such that
)
£(x) > £(x,) +mlfx -fO” ) X €N(fo’6) . (4.4)

Proof: Assume % no = , & >0 such that (4.4) holds. Then for each

integer q % Xy such that (i) fqu(fo’l/Q) ,  (i1) f(fq) 'f(’fo)

< l q - O'I Select a subsequence of the xq such that
X, =Xy
; _; - ErT(S,fO) . Set G = Z uigi(.}f) . Then G>0 on S,
~a 0 i€B,

(.( ) =0, and t =f£+G . For the subsequence defining t we have

x(fq)-x(go) L ‘ie = P (k.5
g =%l llxy =%l 4
Thus
G(x_)
:(x )t + 1lim sup ——QT <0 (4.6)
q - X

Ar f}(xq) > 0, the second term is bounded and nonnegative. Therefore

G(x )

e e B AL S v

Thus

vgi(fo)t =0, VicB, such that u >0 (4.8)

so that (4.6) states that tc:r(s, ) such that t satisfies (4.8) and

that tTv2,c(xO)t < 0 . This gives a contradiction. 0O




Consider now the system

T
vE(x))” =0
uigi()’f) =0 ) 1= l,2,...,m ’
hi(f) =0, 1=12..05D (4.9)

where explicit enumerations of Il “and 12 are assumed.

Definition: J(x.) is the Jacobian of the system (4.9) with respect to

(x,u,v) .

[ =

vzs(fo) -vsl(fo)T -vgm(gfo)T -Vhl(fo)T -vhp(xo)T

~

u,78, (x4) g (%)

s O

I(xg) =| u_vg (x,) &n (%)
A, (%5)

Vhp(fo)

-

(4.10)

Lemma L. L4: If J(xo) is nonsingular, then x, is an isolated local

minimum of £f on S.

Remark: Note that the condition J (xo) nonsingular imposes strong

T conditions on the problem. For example,

(i) the active constraint gradients must be linearly independent, and



ko o G 2
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>0 (this condition is called strict

(11) if gi(fo) =0 then u

i
complementarity) .

In particular S, 1is Lagrange regular at x. .

1
r— -
!/
Proof: If J is singular there is a vector a satisfying
b
. 28
J
J a = 0 . (’4’011)
b

This relation gives
(1) Vhi(fo)z =0 , 1=12,..05D,
(ii) uivgi(fo)¥+ aigi(fo) =0 , i=120.0,m, and

2 -~ T f T
(iii) v £(xo)z-iz=laivgi(xo) -i=lbivhi(xo) =0 .

From (ii) we see that u; >0 = vgi(x )y = 0 while u, =0=a =0.

Now consider the problem
. T2
min y'¢ ,s:(xo)y

subject to wvg, (x))y =0, icB vh (x,)y = 0, iel, , ‘and ||y||2 =1.

o ?
Clearly the constraint gradients are linearly independent as

2y = v(|| 2”2) is in the orthogonal complement of the set spanned by the
other constraint gradients. Thus the set of feasible y is Lagrange
regular at every point by restraint condition A. Let go | minimize the
objective function (the minimum exist:z as the constraint set is compact),
then the Lagrange regularity ensures that d multipliers A\, a, ieBO ’

bi s 1eI, such that

2

2k

W




2 7 )
207 2(x0) ¥, = 2N - g 8,98, (x5)" = L, byvhy (x5)" = 0 (k.12)
ie o ieI2

whence

T 2 T 2
N = Yousxy)y, = min y9Us(xy)y 20

Now if A =0 , (4.12) shows that conditions (i) - (1ii) above are

satisfied and hence J(xo) singular. Thus if J(xo) nonsingular,

then N >0 . In this case Lemma 4.3 shows that the minimum of the MPP

is isvlated. O

5. Convex programming problems.

If gi(f) concave, icI, , then the set § = {f;gi(f) >0, iel,]}

is convex. The problem of minimizing a convex function on S is called

a convex programming problem. In this section certain properties of this 7 1
problem are studied. We require the following characterization of convex yq
functions.

Lemma 5.1: If f£(x) eCt then f(x) is convex on S iff

£(x) +v£(x)(y-x) <(y) , xyeS (5.1)

Proof: If f convex then, for 0 <A <1,

£(x+ (1) (y-x)) < £(x) + (1-A) (£(y) - £(x))

whence, if A<1,

£(x + (1-N) (y-x)) - £(x)
= T = < f(y) -f(x) .

25
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The necessity follows on letting A -1 . Now if (5.1) holds then

£+ (1-N)y) + WE(Ax+ (1-M)y) (y=x) < £(y) 5 (5.2) )

£+ (1-N)y) - (N)TE(x+ (1)) (y-%) < £(x) (5.3) 3
Multiplying (5.2) by (1-N) , (5.3) by A and adding gives (1.%) which 1]
demonstrates sufficiency. 0O r ;

Lemma 5.2: If S = {x; gi(x) >0, g; concave, ieIl} has an interior

*
point x , then every point of S is Lagrange regular.

Proof: Consider xoes . Let ieBo then Lemma 5.1 gives

ek,

Vgi(fo) (f* = }.fO) > gi(f*) >0 (5.1) W)

as g.(x,) =0, ieB, . Thus restraint condition B is satisfied. (I
it.0 0

3

Lemma 5.5: If f convex satisfies the Kuhn Tucker conditions at xo

then f has a minimum on S at xo .

~

Proof: 1In this case (3.2) gives g

T
vf(x.) = Z uivgi(xo) s g(xo) =0 , u >0 .

Let x be any other point of § , then 2 4

£(x) > £(x) - L ug;(x) = £(x) (5-5)
~ B iel = "
1l
where g£(x) is convex on S as the gi(x) » 1eI, , are concave. Thus
£(x) > £(xy) + vE(x,) (x - %,)

f(x

EoANElD
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n 3 Remark: If f has an interior the Kuhn Tucker conditions are both
| » necessary and sufficient for a minimum of the convex programming problem.
Definition: The primal function for the convex programming problem is
w(z) = inf £(x) , S, = (x;e(x) >z} . (5.6)
! » - XGSZ R =
‘ Note that if 2z, >z, then Szl = Szz' so that w(fl) > “’(EQ) and that
" » if S has an interior then Sz nonempty for z >0 and small enough.
3 Lemma 5.3: w(z) 1is convex.
> Proof: If }fleszl ’ §2€SZ2 then, by concavity of 8y s ieIl )
,. [ (1-x)§2) > Mz + (1-x)52 y OER 2.
f 4 » Thus N, + (l'}")fQ € S)w.zl+(l->\.) 2, . We have
3 w(hz, + (1-M)z,) < inf f(k§l+(l-x)§2)
i B xlesz ,}(24';8Z
4 ' [ ] ~ 1~ 2
' < inf ()»f(xl) + (1-N) f(xe)) by convexity
: xlesz ,xee:SZ = -
: ~ Ay = 2
1 &
1 <N inf f(x,)+ (1-\) inf f£(x,)
= ~1 ~2
xleSZ xaeSz
. 1 ~ 2
. < ho(z)) + (1Ne(zy) - O
[
j Definition: The dual function is
¢
3 * T * *
) p(z’) = inf £(x) - g (x)z , z 20 (5.7)

xXeQd

~

vwhere Q is the region on which f, -8 » ieIl s 8o convex.




Lemma 5.h: ¢(z*) is concave.

* %
Proof: Let 0 <A<1l, and El,fazo,then

inf (£(x) - € (1) Oy + (1-N)z) )

~

*
inf {NMT - gTz;) + (1-N) (£~ gTze)}
x ~ .~ -~ ~

~

B0nzy + (1N)zp)

* *
>\ inf (f- gTzl) + (1-N) inf (£ - stg)
x ~ -~ x "~ '

~o ~

v

N Blap) + (A-NB(z) - 0

Lemma 5.5: Let T = {z3;d xeQ such that g(x) >z} . Then

B(2) = inf (w(z) -2'2) -
2) =
Proof:
B(z) = 1nf (209 -e(®)2)

X

~

*
< inf (£(x) -2z )
xeSZ -~ -

*
w(z) - 2z

*
inf (w(z) -2’z ) -

p(z)

A

Now let 5()’51) =2 - Then

28
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»* *
£(x,) -gT(x 2= > inf (£(x) -zT z )
=1 S5l |~ R [

XeS

T *
> w(z)) -2 2

> inf (w(z) -2°2 )
inf (£(x,) - & (x,) 2') >inf (0(z) -2°2") . (5.10)

The result follows from the inequalities (5.9) and (5.10). O
*
Theorem 5.1: (Duality theorem). (i) sup @(z ) < inf f£(x) .
z* >0 ~ XeS ~
(ii) If S has an interior, and 4 X, such that the Kuhn Tucker
*
conditions are satisfied, then I 2 meximizing P(z ) and equality

holds in (i).

Proof: From Lemma 5.5 we have that

¢(Z*) < w(8) = inf £(x)
- xS 7

~

X
holds for each z >0 . Thus

sup ¢(z*) < inf f(x) . (5.11)
* = xeS ~
z >0 =

If 3 x0 such that the Kuhn Tucker conditions are satisfied then xo

*
minimizes £ on S . Defining z = {up,++;u }’ where the u, >0

~

are the multipliers in the Kuhn Tucker conditions we see that

§(z") = £(x;) . O

29
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Corollary 5.1: (Wolfe's form of the duality theorem). Consider the

primal problem minimize the convex function f(f_‘) subject to the concave
constraints gi(_{c) >0, 1=12...,m, and the dual problem maximize

5:(1:,11 ) subject to v,£=0, u > 0 . If a solution "to the primal exists
then the dual problem has a solution and the objective function values are

equal.

Remark: (i) The linear programming problem

min a'x subject to Ax-b >0 (5.12)

is & speciul case of a convex programming problem as linear functions have
the special property of being both convex and concave ~- this ig an
immediste consequence of Lemma 5.1. This property of linear constraints
permits the nrevious discussion to be extended to per;nit linear equality
constraints. Note that if the linear equality constraints are not to be
contradictory, then their gradients must be linearly independent.

(ii) If the restraint condition B is satisfied at Xy

a minimum on S at X then X, also solves the linear programming

3 ~

, and f(x) has

problem
min £(x,) + vE(x) (X - X,)
subject to
(1) gy(x)) +vey(x,)(x-x7) >0 , 1el, , and
(1) hy(xo) +vhy (%) (x -x5) >0

By (o) -9y (o) (X -%p) 20 5 1eTy

as the Kuhn Tucker conditions are both necessary and sufficient for a

30
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solution to the linear programming problem. That the converse need not
be true is readily seen from the example min -x subject to

l-x2 -y2 >0 which has a minimum at x=1, y=0. The associated
linear programming problem is min -x subject to 1l-x >0 which
has the solution (1,y) for any y . Thus additional conditions are
required if the converse is to hold (for example, Lemmas 4.3 or h.k

could be used).

Exemple: (i) (Duality in linear programming). Consider the primal

problem
minimize a'x subject to Ax-b >0 .

~ o~

The corresponding dual is

maximize bTu subject to ATu-a =0 , u>0 .

If the primal has a solution then so does the dual and the objective

function values are equal.
(ii)  (The cutting plane algoritim).

(a) Consider the set S = {x; gi(x) > 0 and g; concave, ieIl} :

*
If x*fs then gi(x ) <O for at least one i . Let «a satisfy
* *
ga(x )= gi(x )'p iel; . Consider the half space
* * * *

U = {f;ga(f )+vga(lc )(’f'f ) >0} . Then x U . Now if ga(’.f) >0

then, as g, concave,
* * *
gy(x ) +9g (2 ) (x-x7) > g,(x) 20 .
Thus ga(x) >0 = xeU so that

5, = {x;3gy(x) 20}cU .
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* *
We have Sc §,cU . Thus the hyperplane ga(x )+vga(x )(x-x*) =0

separates x* and S .

(b) The convex programming problem minimize f£(x) subject to =xeS is 8l

equivalent to the problem minimize x 1 Xt

is & new independent variable (note that the new constraint

subject to xeS , 1 -£(x) >0

where Xx atl
is concave). This equivalence follows from the Kuhn Tucker conditions v
by noting that the new constraint must be active. Thus a convex programming

problem can be replaced by the problem of minimizing a linear objective

function subject to an enlarged constraint set. O

(c) Consider the problem of minimizing ch subject to xeS and S
bounded. In particular we assume that ScR, = {x;Ax-b >0} . We

can now state the cutting plane algorithm

() 1i=0.

(1) Let x, minimize c'x subject to xeR, .

i
(1i) Determine @ such that ga(fi) ng(fi) P - S

(1ii) 1f ga(fi) >0 go to (v).

(iv)  Set Ry =Ry N {x;8,(%;) +vgy(x;)(x-%5) >0}
i :=i+l, go to (1)

(v) Stop.

Note that step (i) requires the solution of a linear programming problem.

(d) The cutting plane algorithm generates a sequence of points X, with
the property that j

T Sch <L SchiS eee < inch

L

as Ry 2R 2.0 2 S . Thus the sequence {chi} is increasing and
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*
bounded above and therefore convergent. Let x ©be a limit point of
 d the {xi} . Then x ¢S and therefore solves the convex programming
*
problem. To prove this, assume x £S . Then
* *
» mingi(f)=sa(§)=-7~<0 .
f |
Let a subsequence {Jf J} X then. ¥ k such that :
* A i
» (1) lx -xl <z » end '
A
(i1) &%) < - %
® where C > ||vgi(f)|| » XeRy , ieI; .
Let
e
A * o 1limit point of {x,} =X € NR, . In :
Then ga(ﬁ)<-2.Nowic a it po X,} = x i
i .
particular, Jf eRk+l whence 3
[ ] *
eg(¥y) + vgg (X ) (x -%) >0 -
But
* A N
5 Iveg(x) (x -3l < z¢ < 7
so that
g, (x) +vgy (0 ) (X" - x) < - 3+ lvgy(x) (x - x|
plXy! ¥ VEg i /X " Xy ) g\ X/ \ X =Xy
’ < 0
which gives a contradiction.
»

33




Notes

1.

For properties of tangent cones, see Hestenes. Luenberger discusses

polar cones (which he calls negative conjugate cones) on pp. 157-159.

Lemma 1.4 is due to Gould and Tolle. The proof is due to Nashed
et al.

Hestenés is a good general reference for this section and includes
a proof that a finitely generated cone is closed. The proof given
here of Farkas Lemma is standard (see for example Vajda's paper).
An extensive list of alternative theorems is given in Mangasarian.
The main result is due to Gould and Tolle. The treatment of the
other restraint conditions follows Fiacco and McCormick.

The treatment of second order conditions is based on Hestenes.

Similar material is given in Fiacco and McCormick.

The treatment of duality is based on Luenberger. A related treat-
ment is given by Whittle who is good value on applications. Vajda
is a good reference for the mathematical programming application.

Wolfe's papers in both the Abadie boors discuss various aspects of

the cutting plane method.
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II. Descent Methods for Unconstrained Minimization
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1. General properties of descent methods.

i~

The class of descent methods for minimizing an unconstrained
function F(f) solve the problem iteratively by means of a sequence
of one dimensional minimizations. The main idea is illustrated in
Figure 1.1. At the current point x, a direction t, is provided, and

~1 ~1
the closest minimum to xi of the function

Gi(x) = F(§i+ wfi)

sought. At .)fi+l we have

G'i(xi) N vF(fi+l)Ei =10 (1.1)

= x,+K.t. .

where X,
~i+tl i il

Figure 1.1

Definition: A step in which x is determined by satisfying the above

i+l

conditions is said to satisfy the descent condition. We consider ti

a profitable search direction if F(xi+ M’i) decreases initially as A

increases from zero. This condition is formalized as follows.
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Definition: (i) The vector t is downhill for minimizing F at x
if yF(x)t <0 . (ii) The sequence of unit vectors {ti} is downhill
for minimizing F at the sequence of points {xi} it 48>0,

independent of i , such that vF(xi)t g S -bqu(xi) I

Example: The sequence of vectors {-vF(x,) / “VF(’.fi)"} satisfies the
downhill condition with 8 =1 . 1In this case we say that t " is in the

direction of steepest descent.
An estimate of the value of A minimizing Gi is readily given.

We have
T -
0 = F(x; 1)t = VP(x)b + 2y &) ()t

where is an appropriate mean value. Thus

-
1]

M
+
b}

lct

-VF (x, )t g 8{|vF (x, ) | i

*
Theorem 1.1: (Ostrowski's descent theorem). Let R = {x;F(x) <F 1},
o)
and assume that F bounded below and v~ F(x)t < K|t \\2 » XeR .
Define

8]lvF (x,) i
B e R BaA
)b, < SIEG) s eyl =1

for i =1,2,... where 8 >0 . Then {F(xi)} converges, and the limit

points of {xi} are stationary values of F .




Proof: As f{t i} downhill then {xi} c R . Expanding by the mean

value theorem we obtain

8llor (x, ) | slive(x) | ) )
Flxy,) = Flxg) + —g=— WR(x;)t, + %(_fﬂ) 89 FE)E

where ii is a mean value. We have

~
-

2
B|ivF 2 o} b'd
@l )® %< nvF;;i)u) )

F(xg,q) <F(xy) - X

2 2
&%l (x )|l

SFx) - —p— (2.3)

Thus the sequence {F(xi)} is decreasing and bounded below and therefore

convergent. Further, from (1.3),

PG < FVEK(R(x,) -F(x,, 1)) (L1.1)

"'O) 'i_.Q.

~

* *
Thus 9F(x ) =0 if x is a limit point of {xi} . 0

Remark: By (1.2) the step taken in the direction ty underestimates
the step to the minimum of G, . Thus (1.3) holds if the descent
condition is satisfied so that the conclusions of the theorem are valid

also in this case.

*
Theorem 1.2: (Goldstein's descent theorem). Let R = {x;F(x) <F }

1
be bounded, and assume FeC  and bounded below on R . Define




B(xgoN) = F(xg) -F(x;+My)

A(fi) K) . [ | 3

i VxN) = - oy A
&t AVF(x;)8; i

where {ti} downhill, and the {xi} are generated by the algorithm
- ~ )

T e

(1) xpy =% if AxpM =0

_ (11) If ¥(x,,1) <o where 0 <o <1/2 5
L then choose M, such that o < w(xi,ki) <1l<, Vi

else choose hi =1.
(111) x5 = X3+ M8, 5

Then the limit points of {xi} are stationary points of F . y

Proof:  A(x,N) = -AVF(x,)t, +o(A) . 5
‘; Thus A(x,N) = 0= |[vF(x )} -0 es {t;] downhill sothat x, isa i
stationary point. Otherwise VF(fi)Ei <0 so that »y(fi,%.) = 1+0(1)
E whence w(fi,o) =1 . Also the boundedness ~f R implies that ) j
% A(fi,%.) < 0 for some M\ large enough so that, as w(}fi,h) is continuous, 1

N, can be found to satisfy condition (ii) of the algorithm. Note that i
.

{xi} c R . We have

~

F(fi) -F(xi"'l) = -KiW(fi’Ki)vF(fi)ti

NoBllvF(x )| - (1.5) J

v

Thus {F(x,)} decreasing and bounded below and therefore convergent. To

show that the limit points of {xi} are stationary velues of F consider

ko
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* *
the subsequence {xu } - x and assume ||vF(x )|| > € >0 . Then
~ i ~ ~

HVF(XU- Y] >e for i>i This implies that inf A =N >0 as

By Y

otherwise sup \y(xu ,Kp' ) =1 contradicting wy(xi,)\.i) <1l-0 . Thus
3 ~Hy B4 ~

o )

Flx, ) -B(x, )

Ilveex Ol < >i‘o°° <. (1.6)

The right hand side -+ 0 as i - o which establishes a contradiction. O

Remark: There are two aspects of this theoreir which are of particular
interest. (i) It is necessary to assume only that feCl in R .
However, the boundedness of R 1s used explicitly. (ii1) The algorithm
for determining the step length hi is readily implemented. A value of
N satisfying condition (ii) of the algorithm will be said to satisfy

the Goldstein condition.

Theorem 1l.3: (i) Let the vector sequence in the Goldstein algorithm

be defined by

T
s; = A VF(G)T Lty =8 /syl (1.7)
tive definite, bounded, and X(A,) "min(Ay) 0
where A, is positive definite, bounded, an A =—7—)-_>_w> ’
= i Kma.x Ai

i =152y9.¢ » Then {ti} is downhill with constant & =uw .

o(1) , then

* =
(ii) Assume that {xi} - X , and that ||Ail-v2F(xi) I
M o= ||sl|| satisfies the Goldstein condition for i large enough.
(iii) The ultimate rate of convergence of the algorithm is superlinear

for this choice of xi o

L1




U —

Proof: (i)

oF(x,)Aor ()"
V(8 = TR |

MNP IFF ) |
= N _(4)

max

IA

- w”vF(fi)" . (1.8)

F(xy) -F(x; +Mt,)
(i1) ¥(x5N) = - NVF(x,)t,

2
A2 T
MF(x ), + 5 ¢y

AF (%)%,

2 -
VOE(x,)t,

where X, is a mean value dependent on A . Now, writing

&

-1

2 =
v F(;_ci) =A;"+E;

and noting that |[[E,|| =0 &s i -e, we have

T
) o1 5 EY

WM =1 -3 [ ' F(xy)ty

so that

. vl sl
Vo™ - (- gl S s aerGeT

x A

2“51“ w

4 (1.9)

IN

)

J

£)




g
In particular
) 2,1l llagll
1 1 i i
lxgllsd) -3 | < § 2= =0, 1= .
(iii) Another application of the mean value theorems gives
o
= T _. - *\y T j
Ag = = 8 () Sy (7B SeR GE)) {
2 * * 3
SIS Ai(v F(fi)(fi 'f )+ O(“fi -f ”)) | B
> 1
* *
= - (,}fi -x )+ o(”fi-x n - (1.10) , %
:
Thus g
y » - . {
X1 7% =Xt 748 X :
* *
= (1=7)(x; -x )+ ofllx; -x ) - (1.11)
&
From (1.11) the choice 7, =1 (A = ”sill) gives superlinear
convergence. [
L ® Remark: Theorem 1.3 shows that if V2F is positive definite in the
neighbourhood of an unconstrained minimum, then it is possible to have i
algorithms with superlinear convergence without the necessity of satisfying 1
b “o
» the descent condition. It is not generally considered economic to compute
the second partial derivatives of F , and considerable emphasis has
been placed on developing approximations to the inverse Hessian using
8
only first derivative information. Although the steepest descent
direction is initially in the direction of most rapid decrease of the
function it gives in general only linear convergence.
|
k3
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2. Methods based on conjugate directions.

The problem of minimizing a positive definite quadratic form is
an important special case of the general unconstrained optimization
problem. In particular it is frequently used as a model problem for the
development of new algorithms. It is argued that in a neighborhood of
the minimm, a general function having a positive definite Hessjan at
the minimum will be well represented by a quadratic form so that methods
which work well in this particular case should work well in general.

Let F be given by

F(x) = a+ bTx +

ol

X C x (2.1)
where C is a positive definite, necessarily symmetric matrix. We have

WF(x) = bL+xC . (2.2)

~

Consider now a de~cent step from X in the direction ti « The

descent condition gives
T
0 = WP(xy, )t = £;(C(x;+ ;) +b)

whence

._.g_i (2_3)

where g, = vF(x.)T . To calculate the change in the value of F in
i o

a descent step we have

Ly
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[
>~
t
c:i
1 ct
+
>
Nl'-i
Q
cr
+
ol
&

F(xy+hty) =Fxy) =

L]
bd
e
o
He 3
H.d'
+
-
>
no
1t
e -3
Q
c’.

T
==l (2.4)

Example: (Linear convergence of the method of steepest descent) .

Let F = %‘- X Cx . Then (2.4) gives

~

T.2 2
- (xiC xi)
-F(x e D

X INE o)
mitl s 2

F(

where w, =Cx, .
oot ~1i

T
W,
~1

a s

Y. 1 so that

gl -
We have F(}fi) =5u; C

T 2
v = | 1-2 oy ¥3)
Sitl’ T 2

F( F(x.)
Wwow W oLy ==
S s (e ~1

The Kantorovich inequality gives

(wT w)2 holo
~ -~ S n
T.-1 T = 2
LG R e

where o and o, are the smallest and largest eigenvalues of C

respectively, whence
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¢
g -0 ;
n_ 1
F(fiﬂ) = <0n+o F(fi) -
¢
which shows that the rate of convergence of steepest descent is at least
linear.
To show that 1t is exactly linear consider the particular case in a
which
i il
BERNTHR N
d
where vy and Zn are the normalized elgenvectors associated with o
and % respectively. We have
i+l i+1 i 4 .
Xgpg <0 LT, = (1-0407)00 Vit (1-0y0 )0 v J
with (from (2.3))
i\2 2 i2 2
o (al) o+ (an) o 0
i i,2 i\2 ’
(al) oljl+ (an) orjz
so that
i\2 2 J
i+l () (0p-09)9 4
04 = q 3 a
1 i 2 i2 1
(al) (".?L+ (an) 0?1 N
and
U
iye 2
i1 (@) (g -9) a4
N a = - a .
’ n ij2 i,2 n
L ) °i+ (a) i
)
In particular ( !
LY
i+l 2 i i-1
% b %n % _ %4
i+l - T2 i~ i-1
% 7 % %
L6




8o that the ratios a:‘_ / a:l' assume just two values for all i (depending

1 & on i even or odd). Now
: (a )
T (P ) ot

| - %) @ 5 log|

»

] and
8 a12
| o > ( U
14 & @)%+ @)? "

so that

\"

» A1y it %9 °1 : ii i
e i I A ) i3 2(|°‘i|+la|)
| n %n (a ) + (o )

: 2

i g. [+

> (-2 )(2) et

v

| r

ot | )

f 2 v

E (Y ai o‘i+l

n n

t where 7 —min<——a£— TSN | > < 1, and 7 1s independent

3 1

1 1+ — 1+

3 a:Ll er1.1+l

,? \ p

of 1 . This inequality shows that the rate of convergence of steepest

; descent is linear.

] Definition: Directions El ’ 32 are conjugate with respect to C if

tict, =0 (2.5)
,.,.l ~2 . .

[ ) In what follows it will frequently be convenient to speak about a

-
S O




'direction of search! without intending to imply that its nomm is

unity. However, the mull vector is excluded from any set of mutually
conjugate 'directions. It is clear that any set of mutually conjugate

directions are linearly independent.

Example: The eigenvectors of C are conjugate. The property of being

both conjugate and orthogonal specializes the eigenvectors.

Lemma 2.1: Let El""’..t.n be a set of mutually conjugate directions
(with respect toc C ). Starting from X let XsXgyeees Xy be points

produced by descent steps applied to (2.1). Then

g t.=0 ’ ,j = 1,2,00-’1'1 . (2.6)

Proof: The descent condition gives 8£ biy = 0 80 it is necessary

only to verify the result for j < i-1 . We huve

T T
gy tg = (Cx;+ 1) &,
F s
=(Cx_,.+b+ 2. Ct ) ®
L R T R
i-1
T T
=g t + z A t.Ct ) 8 31,2,0..,1‘2
~8+l .8 Keg¥1 k .k .8

=0 . 0O

Corollary 2.1: The minimum of a positive definite quadratic form can

be found by making at most one descent step along each of n mutually

conjugate directions.

L8
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Pl‘OOf: Fran Lm 2-1\16 have §+1 ti =0, i=l,2,...,n .
Thus -} is orthogonal to n 1linearly independent directions and

therefore vanishes identically. O

Remark: A method which minimizes a quadratic form in a finite number

of steps is said to have a quadratic termination property.

Example: The sequence of vectors ]

=8
2
. A . .
..1='§i+||_§..i-l y 1=2,.00yn (2.7)
51-1"

are conjugate. The algorithm based on this choice is called the method

of conjugate gradients.

We now consider the generation of sequences of conjugate directions

to provide a basis for a descent calculation. To do this we note that

1

the minimum of (2.1) is at x = <C ~ b 8o that if we minimize in the

direction t = -C'l(Cxl+ b) -C'lvF(J_El) then the minimum is found in a

1l

single step. In general C™™ is not Jnown in alvance, so that we are

lead to consider processes in which each step consisis of two parts

(i) a descent calculation in the direction

t, =-H

Y1 184 (2.8)

where H, is the current estimate of ¢t , and (ii) the calculation

of a correction to H, which serves both the purposes of making the

approach ¢l . It is convenient in what

i

t i conjugate and making Hi

follows to assume that the H, are symmetric. This seems a natural

i
condition given the symaetry of C but is in fact not necessary.

k9
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If we assume that t g? 8 < i, are mutually conjugate then the

condition that each be conjugate to t 1 is

t

T _ T _
icts £ giHiCt =N O 8<i,

and, by Lemma 2.1, this is certainly satisfied if

Hicfs=ps'£s ’ s<i .

We write this equation in the equivalent form (multiplying both sides
by Ag)
Hiys =08 » 8<1, (2.9)

where

4y =Xjpy7%; 2 Yy T 85178 - (2.10)

Consider the symmetric updating formulse
T T T T
Hypg =Hyv 6 i+ H y, yiH, - C(4 vy H +H v, d)  (2.2)

where ¢ g2 ‘ni 3 Ci are to be determined (or prescribed). We have

H H pgds » 8 <i, provided (2.9) holds as

41 ¥s =" ¥s T P2

T T ) T
di¥s =M "stict =0, and yiH Yy =AYy HCEo=p Ay dg

Pg )\s )‘id Cd.s =0 . Thus (2.9) is satisfied for i := i+l if

T T
0 =14m{yy By yy) -G8 3y) (2c12)
and

If &, and 7, are expressed in tems of p, and ¢, from (2,12) and

(2.13) we have




T

1 d; ¥y
G = -7 * 4 T ’
Vil Yy RIR
and T
Py VitV
& = BT o o )
&Yy b BT
so that equation (2.11) becomes
T T
g e wigi HETE
+1 -7 Py oz Ty
G ¥y YiH™Yy
T T
Vi, Wi a; ¥y
YiHy Yy . Y Y T T T
NS S| Gra o hhl Hy -4, yy 8y -Hiy 4y
4 Y 1% 95
T
= D(p ,Hi)+gi TV (2.1%)
where
1
he S et (2.15)
and
T
Y:H. ¥
v o= =t (2.16)
1 d, v.
D e

Example: The particular case Py = l, ci =0, 1=12,... gives
the variable metric or DFP formula which is the most frequently used

member of the family.

The class of formulae described by (2.14) generate recursively a set

of conjugate directions so thet the first of our aims 1s satisfied. It

still remains to show the relationship between the H, and ¢cl. mao

(PSR OTE R, SPLIPRA Bk s T PPU | P RN . IR 1 TP



this note that (2.9) can be written (introducing the symmetric square

1/2

root C of the positive definite matrix C ).

Cl/EHiCl/QCl/ets = pscl/ets s 8§ = 1,2,00-,1-1 ’

or, more briefly,

H :E‘s ) S = l,a,ooo’i-l . (2.9&)

T

i
. . b

Detining the matrix T by Ki(T) = —'._r—;_l'/ﬁ »y 1=121,2..0yn, and the
(t.Cty)

diagonal matrix P by P,; =py i=1,2...,n, we can write (2.%a)

in the case 1 = n+l 1in the form

fi,0-TP . (2.9b)

Now T is an orthogonal matrix so that

7 a AT
Hml—TPT )

whence

_ A=l/2a AT -1/2
H,q=C TPT C . (2.17)

In particular, if P = pI ,

=]
Hoq =0C " - (2.18)

Remark: Remember the motivation for developing the recursion (2.14) is
the search for efficient descent directions. Specifically we are looking
not only for conjugate directions but also for good estimates qf the
inverse Hessian. This indicates that p = 1 is {the natural choice (or

at least p = constant ), and almost all published methods use p =1 .
However, from (2.17), tne choice of p variable may well have sceling
advantages in the initial phases of a computation with a genez_j;al objective
function. Presumably the strategy for choosing p should mal;e

p = constant to ensure a fast rate of ultimate convergence. f
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Lemma 2.2: Provided the descent condition is satisfied,

]
Hi+l§i+l ” vy or null.
Remark: In what follows it is convenient to drop the i subscripts.
® Quantities subscripted i+l will be starred. In what follows we assume
p 1is constant.
Proof: We have (using the descent condition, the definition of ¢t ,
®
and d =)\t )
" ddT HnyH .
D(p,H)g = (H+tp - —F—) &
~ 'y Yy HY
. ~ o~ ~r ~
Y
Hyy H(y+g)
=] Hy+Hg - — ~T -]
2 = y Hy
' ~
1 v
=-3 (4 - = Hy) -
y iy
8
Whence
* * *
Hg =-(F+Ctvg)v . O (2.19)
8
* *
Remark: (i) The condition that H g =0 when v #0 gives a
condition which determines ( . We have
» T * 1l *T KL
VEl= e By =ST £ S
so that (from (2.19))
1
C = —T—; o (2.20)
A " Hg
53




AL it d k) R T P Yoy e T T g T TR s e g

*
Provided this value of ( is excluded from consideration then x 1is

indcpendent of ( . Note that this result is true for a general
function as no properties specific to a quadratic form have been used

in its derivation.

(11) We cen only have v =0 with d snd g nonmull if H is

*
singular, and in this case H 1is also singular and the null space of

*
H is at least as large as that of H . This follows from (2.15) which
* 1
cen vanish only if (a) Hg =0 and 1+F=O’ or (b) Hg and

*
Hg are parallel. Now if H is singular & w, wTH =0 . Thus

*
T4 = 0, and hence WH =0 .
Clearly it is important that Hi positive definite = Hi+l positive
definite, i = 1,2,... in order that premature termination should be
* * * * *
avolded (Hg =0 and H positive definite = g =0 whence x is

a stationary point). Conditions which ensure this are given in the

following lemma (due to Powell).

Lemma 2.3: If O0<p,T<®, H positive semidefinite, and
*
HH+ v = v (where H+ is the generalized inverse of H ), then H is

*
positive semidefinite, and the null space of H 1is equal to that of H

provided
i (2.22)
c > T E = T . 2.21
(@8 Dy HY) - (&)
Proof: We first note the identity
T\,rr T
D(p,H) = (I+uy )H(I+yu) (2.22)




u = {,/"d --—Hv} . (2.02%
> | \/(d y) (3" Hy)
= and
B T T -3
| det(I+uy’) = 1+yu =\[= (2.24)
v. . i
1 | so that, by the assumptions, I+uyT is nonsingular. Now yTv =0
p * . ~ o
so that H can be written
» T
| = (Truy) @+ g (Teyt) . (2.25)
:
' Thus the problem reduces to considering H+ ( TWT . We have
18 - T
,' H+Ctvw =H(I+¢TH vv') .
* . . + T
The null spaces of H and H will agree provided I+ (TH vV ig
R nonsingular. The condition for singularity is
0 = det(I+ g‘rH+ VVT)
. =1+g'rvTH+v s
: Noting that HH H =H, and HH' v=v=HH 4 =d we have
‘ T T
41 8 T 4+ d'y vy Hy
ECTv H W= 1+C% (d HE d-e-"—=+“ 2")
= = T
B o2
. (d . (€°y) )
= 4 CT H o RO
3 T
L’ y Y
i and this vanishes provided
1 4 T
i » ) ~yd
- T 2 L]
i (d H G Hy) - (¥ d)
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The stated result is a consequence of this and the observation that

*
decreasing ( below this value will make H indefinite. [ .

Remark: (i) The condition on 7 is automatically satisfied if

H 1is positive definite and the descent condition is satisfied for then

STZ = -§T§ = }\ETH'% + However the lemma does not require that the

descent condition be satisfied and remains valid even though the exact

minimum in the direction E is not found. In this case the condition
o

on 1 18 necessary.

Coro. 2.2: If H, positive definite, and H, , = D(p’Hi) ’

i=212... then provided the descent condition is satisfied for {

1,2,... then H is positive definite.

L i+1

Proof: This is a consequence of (2.22) and the above remark which shows
L)

that if H 1is positive definite, and if the descent condition is

satisfied, then I+uyT is nonsingular. O

Theorem 2.1: (Dixon's equivalence theorem). If (i) the formula (2.1%4) o
is used to generate descent directions, (ii) C; satisfies (2.21) for
i=1,2... and H, is positive definite, and (iii) the descent
condition is satisfied in each descent step, then the sequence of points
generated by the aligoritim depends only on F , Hl s o, &nd Xy and

is indeperldent of Ci ] i = l,a’o-o .

Remark: It is important to note that F 18 not restricted to be a

quadratic form in this result.
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Proof: Let D, =H,, D, = D(p,Di_l) s 1=2,3... . We show that
= T T
3 if Hi = Di+a§i,d: s then H i+1+Bdi+l...i+l By Lemma 2.2 we
* *
have H = D(p,H)+7y4d aT Now
aa® (p+aad) yy'(p+addl) ’
s D(p,H) = D+p 5= - =R =2 4 add
a'y y (D+add)y
‘ ad® Dyy D+ oy d)(DydT+dy D) + o (d'y) 2adf .
® =D+p - - T =~_ + qdd
dy Y oy+ay'a)® i
T
T ( d) T
’ Dyy pa 3=+ a(y'a)(dya +ay' D) -ay' by) ad’
* Yy Dy
= = D T 2
y Dy+a(y d)
: 5 T T T
j * a(y” Dy) yd d
- T
R 2(9' 5" Dy)(d - == 5 Dy)” . (2.26)
y Dy+a(yd) yby ~ 7 yDy ~
. X * * * *
By Lemma 2.2, 4 ||D(p,l)g . By (2.26) D(p,H)g ||D' g . Thus
! ; -
d, JDJL,J R I e (R d1+1”D1+1~1+1 . But the case j =1
] is a consequence of Lemma 2.2 so the result follows by induction. O
Example: Equivalence results for a wide class of conjugate direction
algorithms applied to a given positive definite quadratic form can be
[

demonstrated by noting that at the i-th stage we find the minimum in the

translation to Xy of the subspace spanned by tl’ ""ti s and that this

subspace is alceo spanned by Hlf‘.l’ ""H1§i . Thus §i+l depends only on
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X1seonsXy and not on the particular wpdating formula for the inverse

Hessian estimate. If H, = I this equivalence extends to the conjugate

1
gradient algorithm (2.7).

Lemma 2.4: If the descent condition is satisfied at each stage then
the sequence g{ Di 8 » i=122.. is strictly decreasing provided Dl

is positive definite.

Proof: We have (as g*Td =0)

¥ _\2
sox x  wp_x (87DY)
g Dg =8 Dg ~—g——
Yy Dy

—t +
¥ ¥ ¥ ¥ % T

1 1
] (2.27)
§ D g § Dg §Dg

By Corollary 2.2, the D 4 are positive definite so that the desired

result follows from (2.27). O

Remark: This result indicates a potential defect of the DFP algorithm.

For if the choice of Dl is poor in the sense that 1t leads to too

small a value of gT D. g then the algorithm has no mechanism to cox.=ct
17121

this, and must initially generste a sequence of directions which are

nearly orthogonal to the gradient. This must also happen if, for any

WRE
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reason, an abnormally small value of gTDg is generated at some stage.
» A possible cause of such behaviour is poor scaling of the problem.
Lemma 2.5: Corresponding to the formula (2.14) for updating H there
- is & similar formula for updsting H ™~ . Specifically we have
*a -
gts D(p,H) l+7p,wa (2.28)
where
L ny
- - ~r l -l -l
(o)L am Tl (4 ) F- - 4y R eE ey (2.29)
é
o Tyla i
b= z—T—'- ) (2-30) E
Y ;
{
] Ia
s W = y- %H-ld 7 (2.31)
and 7y 1is related to ( by
7 =4 4.5_% -— . (2.32) 4
l+gTtv H vV ]
8 Proof: From (2.22) we have
-1 Ty =1 T T
.' D(p,H) ~ = (I - %—gg)ﬂ (I-\ljgg)
4
. and (2.29) follows from this by an elementary calculation. From (2.25)
K-\ [Eyuh) o)™ @\ ey
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Now

= -u,z N

so that (2.28) is a direct consequence of (2.33) and (2.34). O

Remark: If we teke 7 = - =~ in (2.28) then we obtain

lddT H-l

aTrta

TH-

Gl ™) =K+

vSalid

t

= (1+ sz)H-l(I+ a z%)

where

teq

4 - l { l =i 1 H-l d } .
E @i o™ Ve
We have

-1, - -1
p(p, i Y™ = 6(p,™h) + -%;ggT
N

~ e

= (1+z a)@E™T+ -%—wa)(nde)
~ y ~ -~ "~ ~r

n
o

as

t
t

(2.3k)

(2.35)

(2.36)

(2.37)

i)

o,

W]
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To summarize these results we have the following:

(1) D(pH) = (T+wH(T+yu")
6(psH™) = (1+2a)H ™Y1+ ag)
(1) D(pH) ™ = GloE™) + H-wi
ya-~~
G(pE )™ = D(psH) + 4= vV
y

~

2

update formula

update formula for inverse

i s

SET HXVTH 1,1 XYT 1, m 1 1.7
D(p,H) H+p Sp— - —%— H +(;+u)—T--T(g§H +Hdy")
dy Yy Hy ¢y &y -

T

(o, )| H +%

dd

H+ (p+1) = - 4 (47 H+Hyd)

dTy ay

~ o ~

»>

D(p,H) , G(pH™Y) have been called dual formulae by Fletcher.

Lema 2.6: Let A be a symmetric matrix, A = TAT® where A diagonal

*
(Aii = Xi ’ i = 1,2, ooo,n) ) a.nd T Orthogonal- Ilet M » i = 1,2’ ooo’n

be the eigenvalues of A+oa g.T » then

* »*
)‘15)‘15)‘#1’ i=2%2...n, 0or 0<O0 and )‘1-157‘15)‘1 .

either ¢ >0 and

O T




Proof: We have

det{A+0aal -AI} = ﬁ'(xi-x) et {I+a(A -AI) "L (17a) (T7a) )
v ( &)(T"a

- TLoym @ ro®™n-x o)

2

Tro,Mss b ook ) (7)
= - o » = a
=1 1 1= M e A

and the desired result is an easy consequence of this expression. (O

In the followinz theorem we consider specifically the minimization
of a positive definite quadratic form. We assume that the initial
estimate of the Hessian Hl is positive definite, and we make use of
the following sequences of updates for the current Hessian estimates

(Q) H1+l = D(p,Hi) ’ 1= 1,2,.-., and

- -1,-1
(b) H1+1 = G(p’Hi ) ) ia= 1,2,000 .

Further we do not assume that the descent condition is satisfied.

Theorem 2.2: (1) Let K, = cl/"’nicl/2 , and let the eigenvalues of

K, ordered in increasing magnitude be Kgi) sy §=12se0yn « Then

i

if xgl) >p then xgl) zxga) > ... >p, vhile if ).:(’1) <p then

kgl) 5h§2) <eee<p for J =12,0.0pn . (i1) Let ii .cl/zﬁi
(1)

and let the eigenvalues of f(i be Xgi) y J=12,¢0e5n . 1If iJ b

then igl) Ziga) > ... >p, while if ,‘;:(11) <p then

igl) Siga) S see Sp for J = 1,2’ seeypl o

2
c/?,
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Remark: This result is important because it shows that we have a
'weak' convergence result for these Hessian estimates when minimizing a
positive definite quadratic form even when the descent conditions is

not satisfied at each step.

Proof: Noting that €24 = ¢™¥2y = &, we can write the formula for

updating K as
. aa’ Kaa'K
K = K+p — e —m—— O
5 aTl(a.

~ o

We can break this into the two operatioms

Kaa'k

J=K" == ) md
Q.TK&

A,

*
K =J+p

Note that J has a zero eigenvalue, and that a is the corresponding
eigenvector. By Lemma 2.6 we have k_l(J) =0, and )'J-l < kJ(J’) < )'J
for J =2,3,.+eyn « The rank one modification which takes J into

K* changes the zero eigenvalue to p and leaves the other eigenvalues
of J unchanged. Assume that kJ(J) <p< AJ+1(J) then reordering the
eigenvalues in increasing order of magnitude we have k: = hHl(J) ’

K = 1,200,541, x; .0, x: =N (3, k=4...,n . This
establishes the first part of the “heorem. The second is demonstrated
in similar fashion by noting that i'l satisfies a formally similar
update relation. This establishes the result for the eigenvalues of f('l

and hence for their reciprocals. (O
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Remark: Note that both H:1 and ﬁi are positive definite 1 = 2,3,...

if H, is positive definite. In this case the result does not depend

1
on the descent conditions being satisfied.

Theorem 2.3: Let H be positive definite, and consider a step d in

¥* A -]y =
the direction -Hg . Let H =D(o,H) , H = G(pE )™t =

PN +*
D(psH) + —— vV', and Hy = @i+ (1-0)K = D(p,H) + °T—" vv' . Let

/2 .1/2 B ; :
K=¢C HC , and define K , K, KO similarly. Let the eigenvalues

]
4 J,a.nd)\J
o

J=1,2..n. let 0<O<1. If Aj>p then szijzszxgzp

5% A %* a~
of X, K , K,K9 be A ,xj,x respectively,

<p. If 64[0,1] then A

<\
= J

* e
while if A, < th N, <A A
© 3 S0 then Ay <Ay Shyshy

need not lie in the interval defined by A 5 and p .

* ~
Proof: It follows from the definition of H , H , and I-I9 and

* e
Lemma 2.6 that M SM S

The first part of the result is now a consequence of Theorem 2.2. To

<A 3= 1,2 .00yn , provided 0 <O <1.

show that xg need not lie in the interval defined by A, and p,

conslider the example

+e  [¢ 0
C = y H=I , p=1, as= C
Je € ~ 1
Wehave A, =1, My =1+2c-17 where =3 (L+2¢-V1+tue). Thus

7 1is positive and O 52) . In this case we have

1//e
KB. = - .
= 0

’ Cl/2V =8 =

ol

o
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It is readily verified that K = [O l] s 80 that K-e -[0 l] ’

x1+€ = [1+O2e g] . In both cases eigenvalues lie outside the
prescribed interval. In the first case we have 0 < 1, and in the

second 1+2¢e > 1l+2¢-1 .

Remark: This resilt shows that H  gives the best improvement in the
eigenvalues < p , while H* has a similar property for those > p .
This suggests an algorithm in which a choice is mede between updating

H to f# or H* depending on some appropriate criterion. Fletcher
suggests that if 1 >1 (that is, !THX > ZTc'lg ) then H' should
be used, while if T <1 then fi is chosen. He has used this criterion

in an implementation of Goldstein's algorithm, and has reported satisfactory

results.




Notes

1. For Ostrowski's theorem see his book 'Solution of Equations' N ‘7
(2nd edition) or Kowalik and Osborne. Goldstein's theorem is from g

his peper 'On steepest descent' in SIAM Control, 1965. Theorem 1.3

is abstracted from Goldstein and Price, 'An Effective Algorithm

for Minimization', Num. Math. 1967.

2. For background material see Kowalik and Osborne. The form of the
update for the inverse Hessian is due to Powell 'Recent Advances in
Unconstrained Optimization' to appear in Math. Prog. It is a
specialization of a form derired in Huang, 'Unified approach to
quadratically terminating algorithms for function minimizaj;ion' 5
JOTA, 1970. The form (2.14) and the result of Lemma 2.2 are
probably due (in the case p = 1 ) to Fletcher 'A new approach to
variable metric algorithms', Comp. J., 1970, and Broyden, 'Convergence
of a class of double rank minimization algorithms', JIMA, igro.
Lemma 2.3 is due to Powell (to be published). The product update
form (2.22) is due to Greenstadt (to be published). Dixon's paper
containing Theorem 2.1 is to eppear in Math. Prog. The significance
of (2.27) for the successful performance of the DFP algorithm was
noted in Powell's survey paper already cited. Attention was drawn
to the dual updating formulae by Fletcher. This material together

with Theorems 2.2 and 2.3 are included in his paper already cited.
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¢ APPENDIX Numerical Questions Relating to Fletcher's Algorithm ; !
E‘ o ;
E 1. Implementation ;
¢ In this section we consider two questions relating to the implemen-
i tation of Fletcher's algorithm. These are £
b (1) an appropriate strategy for determining N to satisfy the

Goldstein condition, and §
. (ii) the use of the product updating formulae for the inverse Hessian 0
E estimate. ;
g In his program Fletcher uses a cubic line search to determine A . Here %
‘s we use a somewhat simpler procedure which has the advantage of requiring J |
i only additional function values. Also we work with the Choleski decompo-
E sition of the inverse Hessian estimate. This has certain numerical :

advantages which have been outlined by Gill and Murrayﬂ . In particular, )

! it is possible to ensure the positive definiteness of Hi » and this can
." be lost through the effect of accumulated rounding error when direct ;
E evaluation of the updating formulae is used. Anocther possible advantage =] |
i
i

of the Choleski decomposition is that we can work with an estimate of
t the Hessian (that is nt ) rather than with H as division by a triangular
matrix does not differ greatly in cost to multiplication. We felt this

could well be an advantage in problems with singular or near singular ;

Hessians, in which case H would be likely to contain large numbers.
E To implement the line search we note that by Theorem 1.2 we should
test first if xy(fi,‘fi,ilfi”) = ¥(x;,8,,1) satisfies the Goldstein condition.

i This requires the evaluation of F(xi+ 8 i) , and this, together with the

i TNPL Mathematics Division, Report 97, 1970.
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Q‘,
: known values F(xi) and F'(xi) - VF(xi)si s glves sufficient information
. to determine a quadratic interpolating polynomial to T . We write this
as
P(A) = F(x,) + F'(x, A+ IA° (A.1)
t . > where A is to be determined by setting P(1) = F(xi+si) . This gives
= = - Tt
1 A= P(x;+5y) -F(x;) -F'(xy)
¥ = F(x,) (¥(x,,8,,0) -1) (8.2)
| S
1. The minimum of P(N) is given by
1]
‘ N (x,) _ 1 _ o
’ oA 2(1 - v(x,,8,,1))
To test if this is an appropriate value we compute v(xi,si,)\.) . This
gives
1 & L
q = F"(x, + A
| W(X,58,N) = 5+ = , . EF )
, Ckgel T 272 A (A.4)
: ® where X 1is a mean value. Thus, if F 1is quadratic and
‘V(fi’f i,l) <o then A given by equation (A.3) satisfies the Goldstein
condition for any allowable ¢ (normally s is chosen small --
9 say lo',‘L ): For nonquadratic F the test is satisfied if the relative
y error in estimating %F"(xi+isi) by A 1is not too large.
i - &
.‘ This analysis provides the basis for our method which is given below.
,,
®
; Algorithm
(1)  Celculate ||s,|| , set w= min(1,|ls,ll) » A =1.
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