FTD-MT-24-1227-71

AD744277 FOREIGN TECHNOLOGY DIVISION

A BASIS FOR THE SELECTION OF THE ALLOY GRADE FOR ALUMINUM BRIDGE STRUCTURES

by

S. A. Popov

1

Reproduced by

NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22131 Approved for public release; distribution unlimited.

C

Section Section

1

(A TIME ACTIVITY (Corporate suffer) Foreign Technology Division Ai. Force Systems Command U. S. Air Force A EASIS FOR THE SELECTION OF THE BRIDGE STRUCTURES Translation Franslation Forov, S. A. Translation FOROV, S. A. TOATE 1969 RACT OR GRANT MO. ECT NO. 60108	ARCHINER AND DE ONICESS WHAP BE STREE FERSI IS CLASSIFICATION UNCLASSIFIED De. REPORT SECURITY CLASSIFICATION UNCLASSIFIED DE. GROUP TE ALLOY GRADE FOR ALUMINUM TE ALUMINUM TE ALLOY GRADE FOR ALUMINUM TE ALU
Foreign Technology Division Ai. Force Systems Command U. S. Air Force Truck A EASIS FOR THE SELECTION OF TH BRIDGE STRUCTURES UPTIVE MOTES (Type of report and inclusive detee) Translation Prise (First manne, addies inclusive detee) Popov, S. A. Popov, S. A. TT DATE 1969 RACT OR SHANT MO. ECT NO. 60108 USUTION STATEMENT Approved for public release; C	UNCLASSIFIED The Shoup The ALLOY GRADE FOR ALUMINUM The ALUMINUM T
Ali Force Systems Command U. S. Air Force A EASIS FOR THE SELECTION OF THE BRIDGE STRUCTURES UP TIVE NOTES (Type of report and Inclusive dates) Translation Translation Popov, S. A. Popov, S. A. TDATE 1969 RACT OR BRANT HO. ECT NO. 60108 USUTION STATEMENT Approved for public release; C	distribution unlimited.
A EASIS FOR THE SELECTION OF THE BRIDGE STRUCTURES Translation Translation Popov, S. A. Popov, S. A. TOATE 1969 RACT ON STATEMENT Approved for public release; C	HE ALLOY GRADE FOR ALUMINUM The ALLOY GRADE FOR ALUMINUM The ALLOY GRADE FOR ALUMINUM 27 12 The OHIGINATOR'S REPORT NUMBERIES FTD-MT-24-1227-71 TD-MT-
A BASIS FOR THE SELECTION OF THE BRIDGE STRUCTURES IPTIVE NOTES (Type of report and inclusive detes) Translation POPOV, S. A. IT DATE 1969 RACT OF SMANT NO. ECT NO. 60108 USUTION STATEMENT Approved for public release; C LEMENTARY NOTES	 HE ALLOY GRADE FOR ALUMINUM TOTAL NO. OF PARES [72, NO. CF HEFS 27 12 ORIGINATOR'S REPORT NUMBER(S) FTD-MT-24-1227-71 OTHER REPORT NOILL (Any other authors that may be satisfied distribution unlimited. IZ. SPONEDRING MILITARY ACTIVITY EOREI JD. Technology, Division
Translation Translation Popov, S. A. Popov, S. A. TOATE 1969 RACT OR BRANT HO. ECT NO. 60108 USUTION STATEMENT Approved for public release; o	12. SPONDORING MILITARY ACTIVITY
Popov, S. A. Popov, S. A. T DATE 1969 RACT OR SHANT MO. ECT NO. 60108 USUTION STATEMENT Approved for public release; o LEMENTARY MOTES	26. TOTAL NO. OF PARES 27 12 27 12 34. ORIGINATOR'S REPORT NUMBER(S) FTD-MT-24-1227-71 34. OTHER TRPORT NOILL (Any other subbone that may be satisfied and set may be satisfield and set may be satisfied and set may be satisfied a
Popov, S. A. 1969 RACT OR GRANTHO. ECT NO. 60108 USUTION STATEMENT Approved for public release; of LEMENTARY HOTES	76. TOTAL NO. OF PARES 75. NO. CF HEPS 27 12 96. ORIGINATOR'S REPORT NUMBER(S) FTD-MT-24-1227-71 96. OTHER REPORT NOILI (Any other subbers dat may be sadigned dat matching) distribution unlimited. 12. SPONEORING MILITARY ACTIVITY FOREI YR. Teschnologyr. Division
1969 RACT OR BRANT HO. ECT NO. 60108 RESUTION STATEMENT Approved for public release; o Lementany hotes	27 12 27 12 28. ORIGINATOR'S REPORT NUMBER(S) FTD-MT-24-1227-71 St. OTHER TREPORT NOILS (Any other numbers that may be eacligned distribution unlimited. 12. SPONESRING MILITARY ACTIVITY FOREI UN TEACHDOLOGY, Division
Approved for public release; o	 CI 12 Stribution unlimited. Stribution multimited.
ECT NO. 60108 USUTION STATEMENT Approved for public release; o LEMENTARY HOTES	FTD-MT-24-1227-71 . OTHER REPORT NOTIFICARY offer members that may be exclored Als reports distribution unlimited. 12. SPONSORING MILITARY ACTIVITY Foreign Technology, Division
ECT NO. 60108 REBUTION STATEMENT Approved for public release; o	FTD-MT-24-1227-71 ••• OTHER REPORT HOLIS (ARY other manhare that may be eatigned distribution unlimited. 12. SPONSORING MILITARY ACTIVITY Foreign Technology Division
Approved for public release; (distribution unlimited.
ABUTION STATENENT Approved for public release; o	distribution unlimited.
Approved for public release; (distribution unlimited.
Approved for public release; (distribution unlimited.
Approved for public release; (distribution unlimited.
	Foreim Pechnology Division
	Wright-Patterson AFB, Ohio
Having examined the basic and a the choice of a grade of alloy, for aluminum structures for dif such a selection is provided by in Table 13, in which values ar mation of the properties of alu facturing bearing structure or as well. The estimation of she either in general, or separatel the performance of sheets or th formance (quality) of the shape	additional factors which effect we can justifiably select them ferent purpose. Help in making the data complied by the author e given for the relative esti- minum alloys suitable for manu- combining enclosing functions et and profile metal is given by [for those alloys for which heir quality differs from the per- ed metal].
ORN1473 I.a.	UNCLASSIFIED

.

Salat to second a second

... .

2.04

Level Level Level Level Level Mail mail mail mail mail mail mail High Strength Alloys Aluminum Alloy I I I I I Aluminum Alloy Property I I I I I I	Security Classification	
High Strength Alloys Aluminum Alloy Property	REY WORDS	LINK A LINK & LINK C
	High Strength Alloys Aluminum Alloy Property	
	The	

FTD-MT- 24-1227-71

EDITED MACHINE TRANSLATION

A BASIS FOR THE SELECTION OF THE ALLOY GRADE FOR ALUMINUM BRIDGE STRUCTURES

By: S. A. Popov

English pages: 27

Source: Issledovaniya Metallicheskikh Proletnykh Stroyeniy Mostov (Studies on the Metal Spans of Bridges), No. 269, 1969, pp. 166-186.

This document is a SYSTRAN machine-aided translation, post-edited for technical accuracy by: Francis T. Russell.

UR/0000-69-000-269

Approved for public release; distribution unlimited.

IC.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-MT- 24-1227-71

Date 24 Mar19 72____

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
A a	A a	À, &	Рр	P 🗩	R, r
Бб	Бδ	B, b	CĊ	Cċ	S. 8
BB	B •	V. v	Τт	T m	T. t
Гг	Γ.	G. g	ý v	Уу	U. u
Дπ	Дд	D. d	• •	\$	F. f
E e	Ë 🕯	Ye. ye; E. e*	XX	Xx	Kh, kh
Жж	Жж	Zh. zh	Цц	$\vec{\boldsymbol{\mu}} \cdot \vec{\boldsymbol{\mu}}$	Ta, ta
3 :	3 1	Z. z	ે પુંષ	4 4	Ch. ch
Ин	И и	I. i	111	Шш	Sh. sh
8 .	<i>A</i> a	Y. y	Шщ	Ш н	Shch. shch
Kĸ	Kκ	K. k	3 3	5 .	1
Ла	ЛА	L. 1	Ын	Ыи	Y. v
Мж	Ми	M. m	b 1	<u> </u>	1
Ня	Н н	N. n	3 +	9 ,	E. e
0 0	0 0	0. 0	10 10	Ю в	Yu, yu
Пп	Пи	P, p	R R	Ял	Ya, ya

ļ

.....

يرته المراجع الأرا

通信部 きょうかい しょう

ŝ,

* ye initially, after vowels, and after b, b; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

Id.

FTD-MT-24-1227-71

Acronyms and Abbreviations

- CHMN Construction Norms and Legulations
 - TY Technical Specifications
- FOCT All Union State Standard
- TY MXN Technical Specifications Ministry of Chemical Industry

- НИП Иостов Scientific Research Institute of Bridge Construction
 - ЛИИЖТ Leningrad Institute of Railroad Transportation Engineers
 - AMTY Metallurgical Technical Specifications

FTD-MT-24-1227-71

A BASIS FOR THE SELECTION OF THE ALLOY GRADE FOR ALUMINUM BRIDGE STRUCTURES

GENERAL RECOMMENDATIONS

S. A. Popov, Dector of Technical Sciences

In the selection of the alloy grade for a construction it is necessary to proceed soundly, taking into account not only low weight and high strength, but also the rest of the properties of the metal - deformativity, durability, plasticity, manufacturability, and the service conditions of the material in the structure (the presence of a corrosive environment, shock effects, stress concentrators, etc.). In so doing, the principles of selection of the alloy grade for the enclosing and bearing structures can be different. For bearing structures one should not be attracted to the use of excessively high-strength alloys which, as a rule, are less corrosion resistant, have reduced durability (an increase in the tensile strength of such alloys is not usually accompanied by a proportional increase in the fatigue limits), are sensitive to shock loads and concentrators.

It is necessary to strive to design aluminum bearing structures for strength, by simultaneously observing the requirements of

FTD-MT-24-1227-71

rigidity. To do this, it is necessary to reexamine the structural forms of aluminum structures in accordance with the recommendations of the author [1, 2] and other researchers [4, 9, 10, 12]. The selection of the grade of alloy plays a major role, whereby in recent years abroad there has been a marked change from alloys of the type of duraluminum to the more technologically effective avials, magnaliums or alloys with zinc, especially for welded structures.

In remarking on the working features of material in construction, the majority of the authors (A. Kh. Khokharin [3], V. P. Sukhanov and S. A. Tamashev [4] et al.) indicated only part of the properties influencing the selection of the grade of aluminum alloy. The degree of influence of these properties depends upon the purpose of the construction: some of them are important for enclosures, others (durability, cold resistance, and others) - for bridges which are located in the north of the country. Therefore one must take into account all properties of alloys for bridge constructions recommended by Construction Norms and Regulations CHMT II-B.5-64 and the Technical Specifications [TY] [5].

COMPARATIVE ESTIMATION OF ALLOYS DURING THEIR WORK ACCORDING TO FIRST AND SECOND LIMITING STATES

When selecting the grade of alloyz, in the first place, it is necessary to evaluate the strength, stability, and durability of the basic aluminum alloys which determine their bearing strength according to the first limiting state.

By comparing these alloys with one another, it is possible to relate their strength, stability, and durability to the static strength of the strongest of the traditional alloys recommended by $CH_{H}\Pi$ - $\Lambda I6-T$ and thus to evaluate the relative bearing strength of these alloys (as compared with the strongest).

Table 1 gives a comparison of the strength of aluminum of the

FTD-MT-24-1227-71

basic grades (sheets and profiles). In the numerator there is shown R_0 in kgf/cm², in the denominator - the R_0 ratio (in percent) for the given alloy to R_0 for the alloy Al6-T. The asterisk designates strength (* clad duralumin sheets.

Form	Alloy grade									
of Article	A.MrG	AMr61	AB-T1	АД33-Т1	А ДЗ5-Т1	d92-T	ді-т	7.61.T		
Profiles	<u>1460</u> 54	69 1800	<u>1700</u> 65	1600 62	<u>1900</u> 73	2500 96	<u>1950</u> 75	2600 100		
Sheets	$\frac{1400}{54}$	1:00 62	1700 · 65	$\frac{1600}{62}$	$\frac{1700}{65}$	<u>1900</u> 73	<u>18C0 *</u> 69	<u>2400 °</u> 92		

By $c \to_i r$ ing constructions from different alloys with each other only in respect to static strength, we can evaluate the expenditure of metal for the construction, by using Table 1. In such a calculation this expenditure will be inversely proportional to the relative strength of the material.

But on the bearing ability of the aluminum construction. calculated from the first limiting state, stability and durability of its component elements exerts a great influence.

When evaluating the effects of stability of elements on the bearing strength of constructions made from different alloys, as a criterion it is advantageous to use not simply the bearing strength reduction ratio ϕ given in CHMU and TY, taking into account the initial distortion and random eccentricities, but also the product of $R_0\phi$, where R_0 - the basic rated strength for pressed profiles from the given alloy.

Table 2 gives the values of products $R_{o}\phi$ for eight compared alloys and an estimation of their strength is given (in the denominator) in relative figures (in % to the static strength of

FTD-MT-24-1227-71

proritios made	e irom alloy	дто-1).	The valu	ies of	the ϕ	ratio	have
been taken fo	or aluminum	bridge sti	ructures	[5].			

nnofiles

Tab	le 2.							
Flexi-			Grade	of allo	9			
bility	AMr6	A Mr61	AB-TI	АД33-Т1	АД35-Т1	B92-T	ді-т	л16-Т
	<u> </u>			R _o 9				
0	<u>1400</u> 54	1800 68	1700 65	$\frac{1600}{62}$	<u>1960</u> 73	2500 96	1950 75	2600 100
40	<u>1080</u> <u>42</u>	$\frac{1305}{50}$	$\frac{1230}{47}$	<u>1160</u> 45	$\frac{1200}{46}$	$\frac{1515}{42}$	$\frac{1265}{48}$	<u>1680</u> 65
_ 50	<u>910</u> 35	<u>1120</u> . 43	1050 40	<u>995</u> 38	1000 38	1 <u>300</u> 50	1060 41	1350 52
. 60	- <u>770</u> - <u>30</u>	<u>900</u> . 35	850 · 33	800 31	<u>805</u> <u>31</u>	<u>1040</u> 40	865 33	1050 42
70	615 24	730 28	<u>687</u> 2 6	<u>647</u> 25	<u>558</u> 25	810 31	$\frac{715}{28}$	819 32
80	490 19	<u>605</u> 23	<u>570</u> 22	537 21	536 21	<u>650</u> 25	<u>592</u> 23	575 26
90	<u>420</u> 16	<u>495</u> 19	<u>468</u> 18	<u></u>	456 18	<u>525</u> 20	<u>502</u> 19	535 21
100	<u>350</u> 13	415 16	<u>391</u> 15	368 14	$\frac{390}{15}$	<u>425</u> 16	<u>400</u> 15	442 17

As can be seen from Table 2, the bearing strength ($R_0\phi$) of compressed aluminum ids is considerably inferior to the bearing strength of elongated ones (see Table 1), especially in flexibility exceeding 80-100, in connection with which, the use in the building constructions of compressed aluminum rods with a flexibility of 100 and more (and in bridges - a flexibility of more than 80) is even inexpedient and not allowed by the norms. Construction Construction and a state of the second state of the second state of the second s

Estimation of the effect of the durability of material on bearing strength is especially important for bridge structures which work under a load under considerably more severe conditions as compared with the majority of building structures.

The criterion of estimation of the effect of durability on bearing strength is the product of γR_0 , where R_0 - the basic rated strength, and γ - the rated reduction ratio in calculations on durability [5].

Table 3 gives the values of factor γ for the basic grades of aluminum with various values of the coefficient of cycle asymmetry ρ , the product γR_{0} , and also an estimation of the durability of the parent metal of the elements (far from nodes and joints) with a value of the effective coefficient of concentration $\beta = 1.0$ and with preferred elongation.

As can be seen from the last four lines in Table 3, the durability of high-strength alloys increases not proportionally to the growth in strength: where $\rho = -1$ durability of profiles made from B92-T and Al6-T alloys proves to be even less *then* the durability of elements made from the less durable alloy Al-T, and where $\rho = 0$ and o = 0.1 the durability of elements of all three alloys is approximately identical. Therefore in bridges, especially railroad bridges whose elements require checking for durability, the application of more durable alloys instead of less durable does not always give the expected effects (a reduction in the weight of metal). This depends upon the system of span structure and weight ratio of the elements, in the calculation of which it is respectively necessary and not necessary to introduce the coefficient γ . For justification of the selection of a grade of alloy it is necessary also to consider deformativity of structures made of various grades of aluminum in order to estimate their working from the point of view of the second limiting state.

	1	Grade of alloy									
Character:	istic	AMr6	AMr61	AB-T1	АЛЗЭ-ТІ	A.235-T1	D92-T	ді-т	A16-T		
R _o , kgf	?/cm ²	1400	1800	1700	1600	1900	2500	1950	2600		
2		0,96	0,96	0,79	1,04	1,04	1,14	0,82	1,14		
ь		0,25	9,25	0,29	0,32	0,32	0,25	0,23	0,26		
1	p=-1	0,522	0,522	0,634	0,506	0,506	0,596	0,440	o,440		
7	ρ=0	0,827	0,827	0,928	0,735	0,735	0,715	0,952	0,715		
	ρ=0,1	0,875	0,875	0,971	0,775	0,775	0.765	1,01	0,765		
	p==0,25	0,971	(*,971	1,040	0,848	0,848	0,848	1,11	0,848		
	p=1	730	940	1080	810	960	1100	1190	1145		
•	ρ=0	1160	1490	1580	1175	1400	1790	1855	1860		
7 <i>R</i> 0	p=0,1	1230	1575	1650	1240	1470	1915	1950	1990		
-	p=0,25	1360	1750	1700	1355	1610	2120	1950	2200		
	°p=-1	28	36	48	31	37	42	45	44		
	p=0	45	57	61	45	54	69	71	72		
<u>;R</u> , 9 R ₀ ^{ЛIG-T} , 9	6 p=0,1	47	61	64	48	57	74	75	777		
	p==0,25	52	67	65	52	62	82	75	85		

8. A.

Service:

Station - there we are a set of the set

12.7

ť

٠.

٦,

٠,

فمسقطعهم ويجهل وإيطاع بهداد

Table 3.

Marine Palaters

CARD SHARE

With the complete utilization of rated strength, trusses made of aluminum of the stronger grades will have greater deformativity since their elements have smaller areas of cross section which enter into the denominator of Mohr's formula.

Allowing only for static strength, the reduction of the areas of cross section and the increase in the total sag of the trusses will be propertional to an increase in the rated strength of the alloy (see Table 1).

However, a reduction of areas of cross section of elements is restricted in actual trusses in addition to the general requirements of rigidity of trusses and again to the requirements of general and local stability, by checking on the durability of elements, etc. Therefore, in actual trusses the expenditure of metal and their deformativity are not proportional to the change in rated strength, as is shown in Table 1, but differ somewhat from this regularity in reserve rigidity as a result of the effect of factors of stability, and durability, and others on the area of section of the elements. If we consider that one half of the elements of trusses work on compressing with an average flexibility of $\lambda = 60$, and the second half of the elements work on durability with preferred elongation (where $\rho = 0.1$) and that the area of cross section of these elements will be increased inversely proportional to the products of $R_0 \phi$ and γR_0 taken from Table 2 (when $\lambda = 60$) and Table 3 (where $\rho = 0.1$), then the expenditure of metal in the truss will be increased inversely proportional to the third line in Table 4, and the sag of such trusses will be inversely proportional to the last line in Table 4, where an estimation is made of the deformativity of trusses made from different alloys in % (the deformativity of trusses made from aluminum ANr6 is taken as 100%).

The least sag was obtained for a truss made from the alloy AMr6: it had the greatest expenditure of metal and, therefore, the lowest (line 3) estimate in respect to its expenditure. The sag

			G	rade o	of all	cy		
Guaracteristic	AMr6	AMr61	AB-T1	17-6527	A 235-T1	B92-T	71-1	A16-T
Estimate of stability ($\lambda = 60$)	30	35	33	31	31	40	33	42
Estimate of durability (p=+0,1)	47	61	64	48	57	74	75	77
Total estima- tion of the expenditure of metal	77	96	9 7	79	89	114	103	119
Estination of deformativity (in % of a truss add from AM(6)	100	60	79	98	87	68	71	65

of the rest of the trusses will be greater than for AMr6; consequently, the estimation of their deformativity turns out to be lower (line 4).

Analysis of the deformativity of aluminum rod structures shows that very great maximum theoretical values of their deformations are not actually attained as a result of the unavoidable effect of constructional factor (the estimate of stability, durability. and other factors) on an increase in areas of cross section of elements and the accompanying reduction in sag. ESTIMATING THE CHARACTERISTICS OF REALIZATION AND WORKING OF A CONNECTION

Table 4.

Recommendations in regard to the choice of the grade of alloy necessarily must be supplemented by an estimation of the static strength and durability of riveted, bolted and welded connections of elements from alloys of different grades.

The static strength of riveted connections always can be provided for; however, in this case one must take into account the

weakening of sections by the rivet holes by 15% (factory rivets), and for field connections - a reduction in the quality of field connections by 10%.

An estimation of the static strength of factory butt joints is given in Table 5, the durability of riveted and bolted joints - in Table 6 and welded butt joints - in Table 7. Here the effective coefficients of concentration have been taken as equal to 1.2 for butt welded and 1.4 for riveted and regular bolted connections. The durability of welded lap joints proves to be considerably lower than the durability of butt joints, in connection with which for critical aluminum structures (bridges) lap joints are not recommended.

	1	I	G	rade c	of the	base	metal		
Characteristics	Type of	AMr6	AMr61	AB-TI	17.65.0.1	лдээ-ті	b92-T	AI-T	116-1
			Gr	ade of	addi	tional	L allo	У	
	welding	AMr6	A Mr61	CaAKS	CnAi(5	C*AK5	B92 CnAK5	B01, AĶ	161. AK
Estimation of the strength of connection, in \$ of strength of base metal	Manual	90 100	· 93	47—56	58—70	51—52	83—85		
	Seni- auto- matic	92— 100	83	. –	72			-	-
	Auto- matic	96 100	85 88	57 66	66 71	66 71	7 4—9 5 56—66	60—70	60-75
peor CHaff,	%	100	s9	59	62	53	<u>68</u> 60		-
Butt to butt Rea		:400	1600	1000	1000	1000	1700 1500	-	-

A comparison of the data in Tables 6 and 7 makes it possible to reach very interesting conclusions regarding the efficiency of one or another form of connection for an alloy of a specific grade. Thus, for elements made of alloy AMr working on durability, it is more expedient to use welded joints since the product of γR_0 for those cases of alternating and variable load ($\rho = -1.0-+0.25$) proves

Table	6	
-------	---	--

A State of the second of the

1234-1

.

		1 Anada of structure allow							
		1		rade	of Sti	uctur	5 allo	у 	
				A8-T1	A.033-T1	A. D. 35-TI	B92-T	A1-T	A16-T
Charac	teristic.	1	Gra	de of	rivet	allo	У		
	AMrs	AMr61	AB-TI	AD33-T1	A433-T1	139.7	A-18-T1 B65-T	118-T1 1165-T	
R _{o,Kgf} /cN ² a b		140ŭ 0,96 0,25	1800 0,96 0,25	1700 0,79 0,29	1600 1,04 0,32	1900 1,04 0,32	$2500 \\ 1.14 \\ 0.26$	1950 0.84 0,35	2600 1,14 0,26
7	p = -1 p = 0 p = 0, 1 p = 0, 25	0,370 0,625 0,670 0,750	C,370 0,625 0,670 0,750	0,450 0,715 0,756 0,840	0.312 0.562 0.599 0,667	0,342 0,562 0,599 0,667	0,312 0,538 0,578 0,653	0,376 0,513 0,549 9,715	0,312 0,538 0,578 0,653
7 <i>R</i> 0	p = -1 p = 0 p = 0.1 p = 0.25	518 875 937 1050	656 1125 1205 1350	765 1215 1285 1430	548 900 960 1070	650 1070 1140 1285	780 1335 1445 1635	734 1195 1270 1395	811 1400 1503 1700
<u>7</u> <i>R</i> ₀ <i>R</i> ^{AIG-T} . %	p = -1 p = 0 p = 0, 1 p = 0, 25	20 34 36 40	25 43 46 52	29 47 50 55	21 35 37 41	25 41 44 50	30 51 56 63	28 46 49 54	31 54 58 63

State of the second second

the bigging the fight and the destruction of the second of the second of the second of the second of the second

A second shares a

10.2

Table 7.

**************************************		Grade of allor									
Characteristics 		AMr5	A.Mr61	AB-TI	17-8°EA	АД35-71	892-7				
		1400	1600	1000	1000	1090	1700				
ĩ	ρ=-)	0,435	0,435	0,526	0.460	0.400	0,365				
	= 0	0,715	0,715	0,806	0.637	0.637	0,613				
	ρ=0.1	0,764	0,764	0,850	0.675	0.675	0,637				
	p=0.25	0,846	0,846	0,926	0,746	0.745	0,740				
ŗR.	ρ=-1	610	695	526	4 **	400	620				
	ρ=0	1000	1145	806	637	637	1040				
	ρ=0,1	1170	1223	850	675	675	1120				
	ρ=0,25	1185	1355	926	746	746	1250				
Raist, ?	p=-1	23	27	20	15	15	24				
	p=0	38	44	31	25	25	40				
	p=0,1	45	47	33	25	25	43				
	p=0,25	45	52	36	29	29	48				

to be higher for welded butt joints than for riveted and bolted, in which the section will be still further weakened by rivets or by bolts (the calculation is conducted on $\gamma F_{\mu\tau}$).

For alloy AMr61 the product of γR_0 for all values of ρ are practically identical for welded and riveted (bolted) connections; however, since for the latter there will be weakening of section by rivets or by bolts, welded butt joints of elements made from alloy AMr61, working on durability, are more expedient than the riveted or bolted joints.

For all alloys of the avial type (AB-T1, A β 33-T1 and A β 35-T1) the reduction in rated strengths in welding is so significant (see Table 5) that rivets or bolts for connecting the elements of bridges in allowing for durability prove to be more expedient than welding, even despite the weakening of sections by rivets or by bolts (see Tables 6 and 7) for all values of ρ .

Here it must be noted that riveted and bolted connections of elements made from alloys of the avial type may prove to be less economical in allowing for durability than according to the data in Table 6, where the values have been taken for the effective coefficents of concentration $\beta = 1.4$, since the investigations of bridges conducted by the Scientific Institute of Bridge Construction [NII Mostov] (HiM Moctor) showed that for samples made of alloy AB-T1 with an opening $\beta = 1.15$, and for a joint made from alloy AA33-T1 on rivets from the same material $\beta = 1.80$, which is considerably higher than the standard value $\beta = 1.4$. For riveted connections from alloy A1-T the coefficient of $\beta = 1.5$ was obtained, and from alloy AMr61 with rivets of alloy B65-T the coefficient of $\beta = 1.7$ was obtained [6].

ŝ

For duralumin $CH_{H\Pi}$ [7] recommends only riveted and bolted connections. Welding of elements from these alloys is not permitted.

Finally, for alloy B92-T it turns out that elements from profiles with riveted and bolted joints (for profiles R = 2500

kgf/cm²), allowing for durability, are obtained an expenditure of metal almost equivalent to sheet structures from this alloy $(R = 1700 \text{ kgf/cm}^2)$ with welded butt joints.

In connection with this, when selecting the type of connection for aluminum structures, it is necessary to give up the template approach (for structures from heat-treatable alloys - only rivets or bolts, for non-heat-treatable alloys - only welding). Selection of the type of connection must be made by taking into account the service conditions of the structure (durability, shock loads, stress concentration) taking into account the data in Tables 6 and 7, and also the conditions of factory preparation of structures and assembly requirements.

As field joints for aluminum structures, the most advisable are high-strength friction bolts.

ESTIMATION OF THE MANUFACTURABILITY OF ALUMINUM ALLOYS

The concept of manufacturability of various aluminum alloys must include, in the first place, simplicity and the absence of technical difficulties in manufacture (pressing and rolling) the semi-finished products (manufacturability in the preparation of the semi-finished products), in the second place, manufacturability in cold working of profiles and sheets (cutting, drilling holes, planing of ends, finishing of weld grooves, etc.,) and, thirdly, manufacturability in the preparation of the connection (weldability). An estimation of the manufacturability of aluminum alloys under all three headings is given in Table 8.

The concept of manufacturability in pressing aluminum profiles may also include conditionally the possibility of factory preparation of the given profile by means of that equipment which is located at the factory. The conditionality consists of the fact that the

Гa	b	1	е	8	•	

				Gr	ade of	f allo	У		
Estimation (manufactural (in %)	of bility	AMr6	AMr61	A8-T1	A 233-T1	A.335-T1	B92.T	21-T	A16-T
In rolling (pressing)	Sheets	90	85	100	100	100	85	95	95
	Profiles	63	50	100	100	100	70	70	70
In machinin	ng	70	70	70	80	80	80	100	100
In prepa- ration	Sheets	95	89	60	65	55	85	50	50
(werd- ability)	Profiles	95	89	ప 5	60	55	80	40	40

difficulties in the production of profiles of specific types and grades are more frequently organizational than technological (for example, a given factory may lack the necessary press, and the factory does not specialize in pressing profiles of the given alloy).

The practice of pressing profiles in our factories shows that the obtaining of profiles of any cross section inscribing a circle of 530 mm diameter, from the traditional alloys which have been mastered by our factories, (the alloys $\Delta 1$ -T, $\Delta 16$ -T, AB-T1) presents no technological difficulties, but it is 1.5 times more costly, and for profiles of 830 mm diameter it is 5 times more costly than for profiles obtained through a die with d = 320 mm. Profiles with a thickness of wall of more than 4 mm are pressed without special difficulties. The pressing of bridge profiles from alloy AMr61 with sections which inscribe a circle of 530 mm diameter, also do not cause special difficulties, but the cost of profiles from this alloy proves to be 1.5 times higher, while the labor involved in their manufacture is 1.4 times greater as compared with cost and the labor of similar profiles from alloy A16-T [8]. If we take the labor intolved in the pressing of profiles from the traditional alloy $\Delta 16$ -T as one, then the labor factor in pressing for the remaining mastered alloys will be for grades AB and AA - 0.7; for grade AMr6 - 1.1. Depending on the configuration of the profile, the labor in pressing can increase from 1 to 5 times even for the mastered alloy A16-T (the factor 5 pertains to thin-walled profiles of box section and tubes) [8].

Alloys of the avial type are pressed more easily than duralumin; alloys AA33 and AA35, and also alloy B92, have already undergone production testing and mastering. A new alloy of this group, grade 01915 differs in its higher speed of pressing and according to this index is more manufacturable.

ESTIMATION OF CORROSION RESISTANCE

and the second secon

When selecting grades of alloys under various operating conditions of structures it is necessary to proceed from the capability of ensuring long service life; therefore it is certainly advisable to consider increasing the resistance of alloys to corrosion even at the expense of a slight reduction in strength indices. An example can be the limitation on the copper content in alloy AB-T introduced in 1960, which increases its resistance to corrosion, but lowers rated strength by approximately 100 kgf/cm². It is recommended that alloy AB-T1 be replaced by alloy AJ33-T1 which does not contain copper and which possesses greater corrosion resistance, but less rated strength [9]. The fact is that high resistance of alloys to corrosion not only lowers maintenance costs during the operating life of the structure, but also leads to a direct reduction in the cost of construction, since the reduction of area of cross section of elements as a result of constant corrosive destruction decreases the strength of the construction and should be taken into account in calculations.

In structures made from corrosion-resistant aluminum alloys during prolonged operation the corrosive destruction penetrates to a depth of not more than 0.05 mm, which with a thickness of 2 mm does not exceed 2.5%. In compression and shear, the bearing strength of thin-walled structural elements is proportional to the cube of the thickness of material, as a result of which a reduction in thickness because of the effect of corrosion sharply reduces the strength of the structure: the reduction in the effective thickness of elements of aluminum structures, usually not exceeding 5%, reduces the compression strength reserve from 100% in all to 72%, while the 20% reduction in thickness which can take place in steel structures gives rise to a drop in the safety factor from 100 to 4% [10]. This, strictly, explains the refusal to employ thicknesses of less than 2 mm in steel structures, whereas for aluminum structures a thickness of 1 mm or less is considered.

ないないないないないないないないないで、これにないないできたかったとうという

the second s

Closed and box sections, multiweb elements with openings and others unavailable for maintenance of the element which offer many structural advantages are not usually used in steel structures while aluminum alloys which are corrosion-resistant open wide possibilities in regard to the utilization of these measures for the purpose of increasing strength and reducing the weight of constructions [10].

An estimation of relative corrosion resistance of aluminum alloys is given in Table 9.

Table 9.	•							
·····	1		Q	rade o	f all	oys		
Form of articles	AMra	AMrei	AB-TI	АД83-Т1	АД35-Т1	D92.T	д1.T	д16-T
	-		Corr	osion	resis	tance		
Sheets	85	80	70 •	85	80	75	60	60
Profiles	85	50	70 •	85	03	75	50	50
			•	•		•	•	-

'With a copper content of less than 0.1% - resistance 80%.

EFFECTS OF THE REMAINING PROPERTIES OF ALUMINUM ALLOYS ON SELECTING THEIR GRADE. ESTIMATION OF THE EFFECTS OF CREEP

Until recently it was considered [1, 3] that the necessity to take into account the phenomenon of creep in structures made from aluminum alloys comes up only under conditions at increased temperatures, since during the working of the structure under conditions where the change in their temperature is from -50 to $+60^{\circ}$ the phenomenon of creep practically does not take place.

However D. S. Bogoyav]enskiy's recent studies [11] which present the results of a three-year test of creep of elements made from alloy AMr6 at room temperature in tension, compression, and bending showed that the creep of this alloy during compression is approximately 5 times higher than in elongation, and it begins to be noted even under stresses close to rated strength, whereas in elongation during 1000 days creep was observed only under stresses of more than 1825 kgf/cm². In spite of this fact, he has made the encouraging conclusion that creep discovered during the working of a structure in the course of 200 years does not lead to structural failure if the material works under stresses equal to rated strength; however it can lead in the course of 10 years to a reduction of 10-15% in the stability of compression members.

In connection with the properties displayed by allcy AMr6 at room temperature, the effect of creep can be estimated for it by a correction factor of 0.85, while taking this factor for alloy AMr61 as equal to 0.95, and for the remaining alloys - as one, since in them creep of such dimensions has not been established.

ESTIMATION OF THE SENSITIVITY OF ALLOYS TO SHOCK LOADS AND TO STRESS CONCENTRATORS

ないたいというというというたちとうとうと

1

As experimental studies have shown [12], the impact toughness number of aluminum alloys is highest in commercial aluminum grade A1 (7.5-9.4 kg-m/cm²), is very high in alloy AMr-M (9 kg-m/cm²) and lowes. in the high-strength alloys (in alloys B95-T1 it amounts to a total of 1.1 kg-m/cm²). For the rest of the alloys, their values are given in Table 10.

Table 10.								
			Gira	de of	allo3	s		
Characteristic	AMr6	A.Mr61	A8.T1	A.0.33.T1	АД35-Т1	B92-T	ZI-T	DIG-T
ak, Kg-m. [C.M2	4,0	3,5	2,8	3,5	3,0	2,8	2,6	1,9
Estimation,%	102	88	70	§ 8	.75	70	65	48

Sensitivity to stress concentrators (notches, openings, weld seams, and others) in high-strength alloys is also considerably increased as compared with the low-strength alloys: it is especially high in alloy grade B95-T1, and lowest - in commercial aluminum alloy A1.

Therefore the estimation provided in Table 10 in respect to indices of impact toughness number can sufficiently adequately characterize the sensitivity of various alloys to the stress concentrators.

As studies much at the NII Mostov of the Leningrad Institute of Railroad Transportatio. Engineers [LIIZhT] (JNNHAT) [12] have shown, the impact toughness across the rolled product is 20-40% less than the impact toughness along the rolled product (see Table 10). Hardening has accessically no effect on the value of impact toughness of the aluminum alloy. With an increase in work hardening, impact toughness is reduced approximately equally for all the aluminum alloys given in Table 10. ESTIMATION OF THE PLASTICITY OF MATERIAL

The plasticity of material affects both the manufacturability of pressing of semi-finished products and also the working of material in a structure, protecting the material from brittle rupture under load. This plasticity can be estimated from the amount of relative elongation of samples of various alloys which are standardized in All-Union State Standards [GOST] and in Aviation Metallurgical Technical Specifications [AMTU] (pressed profiles, Table 11).

Table 11.			Gr	ade of	allo	y		
Characteristic	A.Mr6-M	A [4r61-M	AB-T1	A 233-T1	A 233- T 1	192.T	ді-т	Д16-Т
E according FOCTy & AMTY	15	11	10	10	10	13	12	10
The same, typical	20-22	11	16	12-15	10—13	1520	15	12
Estimation of plasticity.%	100	50	73	68	59	91	68	55

where a

When estimating plasticity (in %) 100% is taken as the relative elongation (22%) for the most plastic of the given alloys (AMr6). If we take as 100% the relative elongation (typical or per GOST) of carbon steel of grade St. 3 (23%), then the estimation of the plasticity of aluminum alloys will be still lower. True, as numerous experiments have shown, as well as observations of the working of structures during the period of service, the reduced plasticity (as compared with its values for steel) of aluminum alloys is not expressed in essential form in the working of structures under static and dynamic loads. The maximum permissible work hardening (3%) lowering impact toughness not more than 20%, requires taking minimum radii of bending and straightening of aluminum sheets equal to 16 thickness of the element being bent or straightened [12]. COST ESTIMATE OF ALUMINUM SEMI-FINISHED PRODUCTS

The high cost of aluminum is sometimes considered as one of the main disadvantages in this new building material. However, its cost is a market-controlled value which is dependent on the cost of basic material, electric power, the melting and pressing technology employed, and will change with time in connection with reduction of prices of electric power (since 1965, all the main aluminum combines have received the cheapest hydroelectric power) and the reduction in the cost of ingots, the perfection of technology of manufacturing profiles, and the reduction in prices of new grades of alloys, etc.

Therefore, it is also advantageous to estimate the cost of semi-finished products not in absolute values (roubles) but in relative (in %). Such an estimation also will not be free from errors, but they will be, as a rule, of a second order of smallnesses and will be insignificantly expressed in a relative estimation of semi-finished products from the various grades of alloys. The question of the cost of semi-finished products and metal has been examined by various authors. Thus, A. Kh. Khokharin [3] compared the cost of the semi-finished products of different b ands on a ten-point system; N. G. Malinina [8] pointed out that the cost of billets from various alloys (the cost of ingots) can be estimated by using cost factors depending on the 1 ades of the alloys. V. P. Sukhanov and S. A. Timashev [4] compiled from foreign data (thin sheets up to 1.4 mm and plate) a graph of the dependence of the cost of semi-finished products upon the strength of alloys. For plate, they obtained a direct dependence, since strength, just as cost, depends on the quantity of alloying additives as well as the volume of the thermal and mechanical treatment of the semi-finished products. From this, the authors reached the conclusion that economic factors contribute to the preferred use of alloys of average strength.

In the author's book [1], besides the cost of semi-finished products, the point is also made that the cost of bridge constructions from aluminum, takes into account the costs of factor preparation, assembly, transport, scaffoldings, temporary structures, and overhead costs which then affect the wholesale price lists.

A CONTRACTOR OF CONTRACTOR

Today, it is necessary to estimate the cost of semi-finished products made from aluminum in accordance with price list No. 02-06 of wholesale values for rolled-drawn and pressed articles from non-ferrous metal and alloys effective 1 July 1967. These prices are given in Table 12 in roubles per ton: for sheets - in width up to 1.5 m and thickness of 3-5 mm and above; for profiles - II (average complexity), solid (without openings) in area cross-section from 25 to 90 cm²; for tubes - with diameter of 91-140 mm with thickness of wall of 5-9 mm.

Table 12.							
	1	Grad	le of	<u>al</u>]	oy		
Range	A Mr6	AMr61	AB-T1	A 233-T1 A 235-T1	B93-T	ם-ד	7-916.
Sheets, roubles The same, \$ Profiles, roubles The same, \$ Tubes, roubles The same, \$ Tubes, 0=:221280	1200 74 1450 61 1380 64	1426 - 62 1190 - 60 - 3800 - 23	1100 81 1010 88 990 90	1200 74 950 94 1400 64	1400 64 1550 57 1550 57	890 100 920 97 900 99	900 99 1010 88 980 91
10-15 mm, roubles The same, %	1350 - 66	1770 50	062 93	959 94	1206 74	890 100	91 91

Prices in Table 12 are given without surcharge (i.e., for an order of not less than 500 kg of an article of one form with length of sheets 4 m, tubes 5.5 m, profiles 6 m). With an order for less than 500 kg, a 10-20% surcharge is collected and for a length of profiles from 6 up to 9 m - a 10% surcharge, from 9 up to 12 m - 20% surcharge, and for more than 12 m - 30%. The cost of artificial aging (60-70 roubles per ton of finished product) is not included in the costs given in Table 12.

Besides the set in roubles in ever line (for sheets, profiles, and tubes) the cost estimate is given in percent: expensive articles

are rated at a 'ower percent inversely proportional to the cost of 1 ton of sheets from alloy A1-T taken as 100%.

and the second second

The cost of transport and assembly (disassembly) of structures also acts as an additional factor affecting the choice of the grade of the alloy.

Since the cost of transport is directly proportional to the weight of the metal, we can consider that other conditions being equal, without allowing for stability and fatigue limit, the weight of structures from alloys of different grades is inversely proportional to the strength of the alloy (structures from a more durable alloy weighs less and requires less expenses for transport and assembly). Therefore, transport and assembling expenses can be approximately estimated (relatively in %) in accordance with the data in Table 1, since disregarding the effect of the phenomena of stability and durability on these expenses leads to certain error which, it is true, in a comparison of alloys of different grades is on the second order of smallness.

RECOMMENDATIONS FOR SELECTION OF THE GRADE OF ALLOY

Having examined the basic and additional factors which effect the choice of a grade of alloy, we can justifiably select them for aluminum structure; for different purpose.

Help in making such a selection is provided by the data compiled by the author in Table 13, in which values are given for the relative estimation of the properties of aluminum alloys suitable for manufacture bearing structures or combining enclosing functions as well. The estimation of sheet (1) and profile (2) metal is given either in general, or separately [for those alloys for which the performance of sheets or their quality differs from the performance (quality) of the shaped metal]. Table 13.

CHONE FOR

Design of the tradition of the second s

						0	rade	anc	ste	te	Sr a	1103		Ì			1
		7	1r6	Ň	ē	A6	71	A	ī.,	5	12.3	Ĩ	۱ <u>۲</u>	E		Ĩ	1.
	Froporty onaracteristic					Por	ю Е	361	i Li	H Sh	d p	npou					1
		-	¢	-	••	-	~	-	с.	-	c.	-	[-	-	-1	~
	I. Estimation of Proporties of the Parent Metal										Γ				1]
	Static strength General stablitty of communeratory mombers	51	5	8	69	33		5	3	65	23	73	96	ŝ	75	55	101
ł	(when $\lambda = 60$).		30		35		5		2						50		9
n.t	Durability of elements (when D = 0.1) Deforms filty of etwiceting	-	2		63		58		÷.		5		223	-84 -84-	3 12		15
	Effect of oreap		2.5		28		2		38		101		Ëĝ		28		50 193
ċ	Sensitivity to shook loads and						-	-									
7.	concentraterrs Plasticity of material		28		%G		22		88		23		25		:83		ş:3
	II. <u>Estimation of Properties of the Connection</u>				~ ~												
5	Static strongth:																
	a) factory riveted		£		8		÷		83	••••	8		13	-	82.		ŝ
N	b) butt welded Durability (when P = 0.1);	3		ĩ		<u>ତ୍</u> ୟୁ		3		53		89			1		ł
	a) riveted b) butt wolded	ť	8	Ę	ų.		S	ä	5	ć	44		36		¢.		58
	III. Estimation of Manufacturability	2		;		3		2		ą		2			1		!
	In pressing (rolling) In cold working of vetal	28	22	22 22	88	8	3	8%	100	s S	10.1	52	02	6.6	20	33	22
ň	In preparation (welaability)	5	55	93	3	0	13	3	88	3	13	528	12	33	2	33	22
	IV. Estimation of Corrosion Resistance	3	:2	50	ę	5	20	£	5	ŝ	80	75	12	3	50	8	50
	V. <u>Estimation of Oost</u> : a) semifinished products b) transport and asrembling expenses	53	53	88	88	22	\$3	29	55	23	33	63	57	83	52	88	3
	• •				•			•	•			-		5			

: 2

Na 人名英格利斯法 名をあるのない あるまでん ないない かんのか かんかうやある いた きょう しょうしん きょう しょうかい はなる そうしょう いうしょう くう きょう きょう

:

:

オリキーからない、「あたんかんだんからればないであったいないかないかん、なましたとないなんないないないないないない。 まったい たいない あんしょう ちゅうしょう しょうしょう しょう マン・ション マン・ション マン・シ

•

۰.

Table 13 is constructed so that the large figure in the table corresponds to a positive property of the alloy: that alloy can be considered best which has a large sum of evaluations of all its properties (in % or, which is the same thing, in points on the hundred-point scale).

However, simple addition of all estimates in a vertical line for each alloy will be incorrect not only because the properties enumerated in Table 13 are nonequivalent, but also because for each. particular case (riveted or fabricated structure) not all estimations should be taken into account, but only those pertaining to a given form of connection.

Using Table 13, we can soundly select the alloy of the grade necessary for a structure for any purpose which is being designed under any local conditions, by taking into account these requirements and all features of the properties of the given alloy. In so doing, one ought to take into account the recommendations in Table 4 of CHuf II-B.5-64 [7]. For constructions which combine bearing and enclosing functions, CHuN most highly recommends alloys AMF, A Δ 31-T (less loaded) and A Δ 31-T1, A Δ 33-T, A Δ 33-T1 (more loaded elements); it is also possible to use grades A Δ 35-T and AB-T.

For supporting structural and bridge structures which do not require increased corrosion resistance, it is possible to use alloy A1-T (riveted constructions). Under average and high corrosion requirements for welded and riveted constructions alloys AMr5 and AA33-T1 are recommended, but it is possible to use AMr6 and AB-T1.

For critical riveted structures of permanent bridges which do not require increased corrosion resistance, it is possible to recommend mainly alloy A1-T. Alloy A16-T can be recommended for structures in which it is required to use high strength and light weight, but for which questions of rigidity or durability are not of serious significance (prefabricated highway bridges, exhibition pavilions, drilling derricks, stock storage structures, high superstructure coverings of hangars, stadiums, etc.).

For critical constructions which require increased corrosion resistance, it is best to use chrome-aluminum alloys AA35-T and AA33-T1 (avials), and also alloy E92-T (riveted constructions) or AMIrE1 and E92-T (welded sheet constructions).

For draw bridges which are usually constructed in large cities and require the observance of strict standards of rigidity, the use of avial type alloys is advantageous and even alloys of the AMr type (magnalium).

For the riveted span structures of temporary bridges which work under corrosion-free conditions, if sheetmetal predominates in the structure, it is advantageous to use alloy A16-T, and with a preferred preponderance of pressed profiles - alloy A1-T with rivets of alloy A18-T. In the manufacture of riveted structures predominantly from pressed profiles avial type alloys (AA35-T1 and AB-T1) and duralumin type (A16-T and A1-T) are practically identically valuable. In this respect alloy AA35-Ti is more resistant to corrosion and the construction made from it (with rivets of alloy AA33-T1) is more durable. Therefore, preference should be given to it for structures intended for operation in a corrosion hazardous atmosphere or for prolonged service life.

For welded bridge structures one should recommend alloy AMr61, and for weld seams - semi-hardened welding wire of 1.6-5 mm diameter from the same alloy or from aluminum-magnesium alloy per Structural Technical Regulations [STU] 13-5-58 with argon arc welding of

FTD-MT-24-1227-71 24

composition No. 1 per Technical Regulations of the Ministry of Chemical Industry TU MKhP 4315-54.

If any of the versions calls for a combination of welded structures of pressed profiles or tubes, then in this case it is possible to recommend the use of alloy B92-T, and for weld seams welding wire from the metal. In this case it is possible to allow the use of not only machine welding with a melting electrode, but also hand welding with a tungsten electrode taking into account in the calculations the decrease in the strength of the weld joints (including butt welds) as compared with the strength of the parent metal.

For permanent bridges it is most advantageous to use: for riveted structures - alloy AA35-T1 with rivets made of alloy AA33-T1; this alloy is equally advisable for use in sheet structures and in structures with a preponderance of pressed profiles because of its manufacturability and long service life; for welded structures - alloy B92-T with welding wire of the same material (with a combination of sheets and pressed profiles). For sheet welded structures, alloys AMr6 or AMr61 should be recommended, and for weld seams - semi-hardened welding wire of 1.6-5 mm diameter made from the same alloy. Today, for building constructions special grades of aluminum alloys are being developed which are relatively low in cost, possess good weldability and corrosion resistance and relatively high strength (AMr4 type aluminum-zinc alloy of the 01915 type and others); however as yet it is difficult to hope, that in the immediate years welding in aluminum constructions will occupy the same monopolistic position which it occupies in steel constructions.

Therefore the use of specific grades of alloys for riveted constructions, rivets, and bolts will remain the same for a certain period of time, and further perfection of both these grades of alloys and the forms of connections of aluminum constructions with them is necessary.

FTD-MT-24-1227-71

For welded connections, the following are used as welding wire and filler material: in structures made from alloy Afiq - wire from the same alloy; in structures made from alloys of the AMr type wire from magnalium with a higher magnesium content as compared with the parent metal or from the parent metal (for alloys AMr6 and AMr61); in structures from alloys of avial type of all grades - wire of the AK type; in structures from B92 alloys - wire made from the same alloy. and the second second

For rivets, alloys A18 or B65 are recommended (for structures from duralumin type alloys) and alloy AA33-T (for structures made from magnalium), AA33-T1 (for structures from avials) and A16 and B94 (for structures from duralumin and alloy B95).

For high-strength bolts heat-treated steel with tensile strength not below 100 kgf/mm² the following are used: grade St. 5 per GOST 380-60, grade 35 per GOST 1050-60, and alloy steel 40 Kh per GOST 4543-48 with tensile strength of 120 kgf/mm².

For bolts with compression rings (lock-bolts, rivet-bolts) for rod bolts of rigid alloy are used, for example, B65, and for the compression ring - plastic alloy, for example, AB.

In special cases, with the corresponding technical and economical foundation, it is possible to allow the use of high-strength B95 alloys (with rivets from alloy B94), but in this case one must take into account their reduced resistance to shock loads and stress concentrators and their other characteristics noted above.

ì

Bibliography

1. Попов С. А. Строительные конструкции из алюминиевых сплавов М., над-во «Высшая школа», 1963.

2. Попов С. А. Некоторые вопросы проектирования разводных чостокиз алюминиевых сплавов. Труды МИИТа, вып. 227 «Исследование новых конструкций и условий эксплуатации металлических мостов», М., издево «Тращнорт», 1966, стр. 91—106.

3. Хохарин А. Х. О выборе марки алюминисвого сплава для строятельных конструкций и изделий. «Промышленное строительство», 1962. № 1. стр. 54-56.

FTD-MT-24-1227-71

Bibliography (Continued)

4. Сухансв В. П., Тимашев С. А. К выбору марки алюминисто-силава для стролтельн. у конструкций. «Промышленное строительство», 1992 № 8, стр. 35--38. 5. Попов С. А. Основные положения Технических условий проекти-вания мостов из алющиниевых сплавов (дополнения и изменения к СН 200-62).

Труды МИИТа, вып. 227 «Исследование новых конструкций и условий эксплуа-тании металлических мостов», М. изд-во «Транспорт», 1966, стр. 29-67.

6. Новожилова Н. И. О выносливости авиалей в клепаных и 622 тосых соединениях. Труди ЛИИЖТа, вып. 208, ТЖДИ, Л., 1963, стр. 167-180

7. СНиП II-В.5-64. Алюминиевые конструкции. Ногмы проектирозлет. М. Госстройиздат, 1965.

8. Малинина Н. Г. К вопросу установления стоимости прессовая "" профилей для строительных конструкций. В сб. ШИИИСК «Строитель" конструкции из алюжинистых спланов» под ред. проф. С. В. Тарановского. М Госстройиздат, 1952, стр. 334—338.

9 Тарановский С. В. Полготовка к широкому применению за минислих сплавов в строительстве. «Известия АСИА СССР», 1961, № 3

10. Научно-техническое совещанле по эффективному применению и заще: от коррозан алючника и его сплавов. 21—23/XII 1961. Тезисы докладов II-ВДИХ. М., 1951.

14. Болоявленский Д. С. Исследование получести алючина" матика за ситевос. (г. 18°С) Труди Воронежского ниженерно-строителис чиститута. Сборанк № 11, вил. 2. Изд. ВГУ, Воронеж, 1965.

12 Сатась Ю. П. О механических свойствах строительных алочет вых ситавов и искоторых зависимостях между ними. Труды ЛИЦАТ выв 208, ТЖ.ДП. Л. 1963, стр. 157-166.

FTD-MT-24-1227-71