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Ih this work a numerical model is developed for the welding and subsepuent loading of
a fabricated structure. The model treats the weld process as a thero-mechanical. prob
lem. A finite element formulation derived from the uncoupled thermal and mechanical
energy balances forms the basis of the model. During the development of the thermal
model, two significant problems are discumsed. One is the material nonlinearity, whic]
manifests itself in the temperature dependence of the thermal properties, and in the
fusion problem, where the material phase change is accompanied by a latent heat effect.,
This latter is modeled by use of a modified specific heat, since the materials of prime
concern are alloys which melt over a finite range of temperature, while the former are
introduced through periodic re-evaluation of the properties throughout the analysis.
The second problem is that of boundary conditions: The deposition of molten beai on
the base is modeled by using the intimate contact boundary condition, which is devel-
oped into a set of impulse type equations on the finite element model. Since radiatior
is a dominant cooldown mechanism, this boundary condition is also included. Thus the
first part of work develops a non-linear finite element thermal analyzer capable of
modeling all of the above effects. This program is then applied to several problems ir
order to assess its accuracy.

i)uring the second part of the work the mechanical model is described. This is an in-
cremental finite element model in which the basic constitutive descriptions are time
independent elastic-plastic behavior with temperature dependent properties, and a creep
rate formulation for the time dependent behavior. The development is not based on
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thermodynamic theorie•but on direct extension of the classical (isothermal) theories.>
The model includes f4 !-.e strain effects during isothermal loading, so that it may be/
used in the modelirt '' distortion sensitive structures. The integration of the rate'
equations is discus: ,K. with respect to the introduction of a residual load (total
equilibrium) corr-ectin; it is shown that such a correction must be introduced very
carefully in a comp',-tely incremental formulation such as is developed here.

-Finally the model .1 compared with simple bead-on-?late weld experiments, performed
with high strength steels., ,It is found that in one case the experimental approxima-
tions are well jus*ified by the finite element results, but there is no agreement
with the experimentally measured residual stresses. The suggested explanation for
the unique stress patterns observed experimentally is shown to have little effect on
the finite element stress predictions, so that it is concluded that the finite element
model does not include a significant material behavior in this oase. In the second
example it is shown that the experimental assumptions were not .astified by the
results of the present model. In both cases the model predicts the usually expected
residual stress patterns. Use of a simple creep formnulation is ,hziown to give the
same order of r-sidual stress reduction as a result of post weld heat treatment as
is maasuved e-perimentally.
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Introduction

The welding process is of fundamental technological importance because

of its universal use as a fabrication technique. By the very nature of the

process, welding subjects parts of the structure to an extremely severe

thermal history, so that weld sections are often the critical determinants of

the life and working strength of a fabricated structure.

The welding process leaves very large residual stresses in the joint

that has been formed, so that weld sections are prone to cracking and subse-

quent ftAlure under cyclic loading. For these reasons weld fabrication has

been the subject of much experinental and analytic investigation, both from

the metallurgical and the structural point of view. At present there is much

empirical knowledge of the problem, although few analytic models have been

developed. The work in this area was surveyed in a 1970 paper by Masubuchi [i].

In that paper are mentioned the numerical models of Tall [2) and Masubuchi,

Simmons and Monroe [3], both of which are one-dimensional.

The intention of the present work is to develo) a general numerical model

of the weld process (from a structural view point) which will be capable of

predicting the structurally significant effects of the process on the basis of

knowm behavior of the material and known parameters of the process.

The welding and subsequent loading processes are viewed as a bouadary

material behavior and of the primar-: boundary conditions (heat input, rate,

weld bead deposit rate, cooling conditions, etc.).

Any sach modeling of the welding process is different, since the process

is highly non-linear because of the wide temperature range covered (from room

temperature to a molten state). The finite element method is adopted here

because it is readily adapted to non-linear problems, where the non-lineprity

-1--5
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occurs due to both geometric and material effectrý [4-7]. The behavior of the

method in such cases ic quite well known, and by use of an incremental approach,

solutions have Iden obtained for history dependent material behavior such as

might describe a metal alloy during welding [7-8]. The general nature of the

method allows the development of general purpose programs covering many geom-

etries and materials [7]. Many such programs exist for linear stress analysis

[9] and a growing number exist for non-linear steady-state and dynamic struc-

tural and thermal analysis [7], [10]. Because such concepts have been adopted

here, the capability developed in this work is not restricted to particular

geometries or material behaviors, other than in a very general sense.

The welding and loading processes are now described from the structural

viewpoint, with some of the effects which are considered important to a good

model emphasized. The structural history divides naturally into two distinct

phases:

a) The Welding Process. Here a structure is fabricated by joining its

various component parts through 4 .elding technique; that is, fusion of the

material around a joint by heating above the melting point, with the addition

of molten filler material. This phase is taken to include all events occuring

after the start if the initial pre-heating and before the final cooled state

is reached.

In the following we have assumed an uncoupling of the thermal and

mechanical aspects of the problem. The model adopts a ncn-thermodynamic, time-

independent plasticity theory [111] for most of the analysis. Creep effects are

introduced only when essential, such as in the stress relief by post-heating.

Then a conventional formulation for creep [12] is employed.

b) The Loading Process. Here the structure is subjected to its wnrking

loads, and such effects as geometric instabilities beccme more important in the
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a;ialysis. While this part of the analysis often contains nonlinearities, it

falls in a more famii-,p range of problems (see r[4, [5], [61, etc.) and so will

not be discussed in deta.l in the paper.

Theoretical Considerations

Thermal Analysis:

The finite element model for the thermal analysis was developed by

uncoupling of the fundamental energy belance postulated in [13]. This required

the introduction of uncoupling assumptions, of which the most critical for the

present work are the neglect of dimensional changes, and the neglect of cross-

coupling between thermal and mechanical work. The reduced thermal energy

balance then takes the form

J p(r -U*(T))dV f hdS (1)
V S

where p is the density

r is the specific heat flux

S is the surface area

V is the volume

h is the surface heat flux per unit area

and time derivatives are taken with fixed material coordinates.

By introducing the heat flux vector 0i , we obtain the heat flow rate

normal to the plane defined by a unit normal n

Qn n = h (2)

By using the Gauss t•eorem and then introducing a virtual variation, g(x) to

apply the Galerkin method we obtain a vari4ational form of the uncoupled energy



balance equation

J p(r U)gdV + Q -1-.dV JghdS (3)

V V S

the model is then completed by introducing the Fourier heat law

aT (4)Q. -k..•-
Qi ij, ax. I!

where the conductivity k.. is a function of position X And the temperature
1)

T . For all problems considered here, isotropy is assumed:

k.. 6 k (5)

The rate of change of internal energy is now written in terms of c , the

instantaneous rate of change of internal energy with temperature.

U c(T, X.)T (6)
1

Note that c is the irsjtaitaneous specific heat except where fusion is

occurring, when c also includes latent heat effects. Substituting (4) and (6)

in (3) we obtain the final variational form of the uncoupled thermal model as

JcdJV - ) g + g k T
f grd-jhd ax.i ij axd
V S V1

. The finite element form of this equation is then obtained by restricting g to

the same functional form as the description of temperature variation in an element.

In the usual finite element procedure we define the temperature T' et

a point in the element by an interpolation function
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N NT R T (8)

where R(X.) is the interpolation function and N is a nodal index on which

the summation convention is implied.

The virtual variation g is then given by

g RM (9)

Substituting (9) in (7), making appropriate summation over elements and choosing

Morthogonal variations of the g , we obtain

N(R PcR)dV 'I fR~prdV -R~hdS fr" kij )dV''

elements f delements 1 S - (

which may be writt4n

MN*N M 14 NN N11MMT B -H - K T

with the coefficients referred to as follows:

M is the internal heat matrix

B is ithe corsistantly distributed body flux

H is the consistantly distributed heat flux

TiisK is the ecnductivity matrix.

This is the same resalt for linear problems as that obtained in [14] and [15)

where the derivation begins from tve diffus.-.cr equation or some equivalent state-

ment. The time integrati.an of the n.merieal model of the uncouplid thermal prob.-

• lem was achieved by using the rodified Crank-Nicholson operator du, to Wilson

and Nickell (14]. Thic scheme has thý advantage of simplicity and worked well

for the examplob t~sted. It is alio uncondiiionally stable for linear problems

(17]. Both the vectors and matrices are, in general, functions of temperature.
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For economy in computing the matrices M and K are not recomputed after

every time step but only as frequently as judged necessary.

Note on Modeling of Physical Phenomena Accompanying Welding
The physical phenomena and boundary conditions accompanying the welding

process are discussed in i is section. Particular attention is given to the

numerical procedures developed to account for the thermal phenomena.

a) Phase Change and Latent Heat. Most workers r18-22] have assumed that the

phase change takes place at some specific temperature T . While such models
0

are of great value for materials exhibiting a single phase change temperature

(such as a pure element or eutectic alloy), Weiner has pointed out [23] that

rather different assumptions are necessary for general alloys which change phase

over a finite temperature range. Following Weiner, we adopt a uniform release

of the latent heat over the range of temperature of phase change. This reouires

the location of two distinct discontinuity interfaces (solidus and liquidus) and

the application of an increased 'specific heat' to simulate the latent heat in

the interface region.

b) Prescribed External Heat Flow, h, r. In most cases of electric arc weldinF,

the resistive heating will be negligible compared to the surface heatinp frc,,

the are, so that the body flux - will usually be assumed to be zero. The

external flux h is assumed to be completely known as a function of position

and time. The flux h is the most critical parameter in a welding analysis and

in principle may be obtained as a function of welding parameters. In the present

analysis some very simple assumptions are made. Later suggestions are offered

for improving this part of the modeling.

c) Surface Heat Loss as a Function of Surface Temperature. This is an imnortan+

boundary condition which determines much of the interrediate and long term be-

havior of the model. We have used simultaneously the linear Newton convective



cooling and the quartic Stefan-Boltzmann law. The f)rmer dominates at temperatures

close to ambient while the latter becomes a major factor at the higher tempera-

tures around the melting range.

d) Ad.idtion of Molten Filler Material to the Base Metal. Most commonly in

weldiag practice the addition of filler takes place smoothly at a finite rate.

In the approximate numerical model developed here, this continuous addition of

fill was modeled as a step-wise addition of finite volumes of filler (several

elements per step) in infinitesimal time so that an 'intimate contact' problem

is created in the form of an impulsive boundary condition extending over

finite surfaces. After finite element discretization, the elements of surfaces

being brought instantaneously into intimate contact are taken to be the sur-

faces of elements of the mash, so that the weld deposition process is modeled

as a series of steps in each of which a finite amount of weld filler (corres-

ponding to at least one finite element) is added to the structure in a t~me

interval which is small compared to the time scale of the overall problem. The

interface surfaces on bcth filler and base metal take on the same temperature

in that same short interval. Because of the reduced time scale the heat flux

across the surfaces dominates this part of the thermal problem and we ohtain

an impulse type equation from (11)

H MNTNAt -HMAt (12)

where R is zero for all but the two surfaces SA and S brought into intim-

ate contact. The heat flux balance is simply

MA -B (13)

and since the temperýatures of corresponding poin's must be the same immediately

after contact, we have a linear relation between nodal terperatures
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(T- + AT) A S AB T- + AT)B (15)

where the superscript indicates quantities prior to contact, and SAB is a

linear .,nstraint matrix. Equation (14) is a non-homogeneous constraint condi-

tion and is implemented by a generalization of the tying procedures described in

[24] by the elimination of dependent unknowns and equations.

f) Location of the Solidus and Liquidus Surf-ices. In the model developed above

for fusion problems, there are two discontinuity surfaces associated with the

solid/liquid phase change. The assumption has been made that the 'latent heat'

or energy required for phase change is absorbed uniformly during the temperature

change from solidus to liquidus. In the present work the main concern is steel,

for which typical values are:

Specific heat outside the melting range - .15 BThU/lb°F

Solidus - 26000 F, Liquidus - 2700OF

'Latent heat' - 118.6 BThU/lb. (excluding specific heat)

so that during the phase change the internal energy rate is

118.6.

(.15 + 1-8.) - 1.34 BThU/lb°F

Clearly the discontinuities are large, and as the melting range decree' they

become extreme. Because of these severe discontinuities it is not o' how

to develop a good model within the conventional finite element approximation.

For a finite element model developed with tempetature as the dependent variable

(such as that used here), continuity of spatial Jerivatives of temperature is

imposed at least within elements and possibly also between them. This is, of

course, improper for the latent heat problem.

Because mechanical resistance is absent in the liquid phase and is ex-

tremely low in the temperature range close to the melting phase, the primary goal



is to maintain a proper local energy balance during the fusion part of the

history. A mean weighted specific heat was calculated for each element by inter-

polating for the solidus and liquidus boundary before and after a time interval

of integration. It was found that the discontinuities were better modeled by a

fine mesh of low order elements because of the discontinuous temperature gradients.

Mechanical Description

In this project we have made use of the small strain large displacement

theory [4) of incremental finite element analysis, as derived as a special

case of the large strain, large displacement theory by Hibbitt, Rice and

Marcal [25). Much effort has been devoted to the practical application and

development of controls for the application of [4]. In order to discuss these

procedures we use as a point of departure the incremental stiffness equations

wwritten in rate form which also makes use of a linearized incremental stress-

strain relation Dijkt . Because of the displacement assumption, the stress rates

¶ *%re obtained as a linear combination of the nodal displacement rates:

N R M N

";i Uq) ax + -a uq + H .. (T) (16)
Tj Dijk£ (xL + • q m ij

where u denotes nucal displacements. The additional term H. (T) accounts for

the explicit temperaturc dependence of the stress rate caused by thermal expansion

and temperature variation of material properties (Young's modulus, Poisson's ratio

and yield stress).

The incremental stiffness equation is given by

, I
+N -N (O)NQ + k(l)NQ + k( 2 )NQ --NQ) !Q(k+ pI + k r +r £r r Ur (17)

SK
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where

k(O)NQ i I
k: r e x -X Dijkp -- dV

elements p 0 P ,

is the usual small dispiacement stiffness matrix,

IN

elements o 1i
V

is the initial stress stiffness matrix,

p aRM Q NRt R£rD DR DRk @• X
k(2)NQ -M tq tr -2.&

elementsVo pqX ax

aDQ~~ aQt RN R N aRP
t~-M -P aRtq DRtr g..a DR

aX~ ax~ ax i q Uf ax, ax a3.a

IrI

is the initial displacement stiffness matrix

Qtr-NQ is the load stiffness matrix ,,and. ,

p - - J , (rf&. + -•x x u) dV°
elements ~o. ,3 )

I i

is the thermal load" vector.

il Equation (17) is linear, in 'the nodal displacement, rates ,•d may be

solve' for them. It should be noted thai: the load stiffness matrix is ,ot

symmetric. Since it is customary to take advantage of symmetry in solving

structural stiffness equations, it is often more convenient, and usually

adequate, to move the term Q u to the right-hand, side and treat it as

a load, by iterating for the u if necessary.
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We shall now discuss the integration of the rate equations. Probably
•:. the most co~mmon integration scheme adopied has been the Euler methold, which

Isteps out the solution'from the first derivative term in a Taylor, expansion, the

-zeroth term being .ropped. This metho is the most straightforward -- in effect

Sall that is necessary is to replace the rates in equation (17) by the corres-

ponding increments (e.g., f z Au). The method has been shown to give accurate

"solutions fpr many, problems, [7, 26, 27,1 281. ! The present work requires the,

solution to be propagated over many steps, because the thermal history is so

complex; in fact, the solutions necessarily involve an order of magnitude more

steps than are used in the examples of the above mentioned references. For

this reason it i's valuable to look at the application of the simple residual

load correction 4iscussed in [29-313. This correction is the topic cf the

reminider of this section. ,The correction consists in retaining, the zeroth

A' term in the Taylor expansion as a measure of the out-of-equilibrium forces.

It will be shown that' when such a 'correction in included with a rate formulation

* such as (17) above, the strain must be accumulated exActly and not merely by

.5 summationof the trunqated increments, otherwise the residual load correction

may introduce further error.
AI

For the purposes of this discussion it is convenient to introduce some

simplified notation. The finite element equilibrium equation is written as

P I

where - •' ' '' !o'BT(18N/
B T Ia' dVO

"elements 118

V0

and B is the interpolation function, a are, s1estes, P are the

consistent nodal forces.
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The simple Euler integration is obtained from (17) as

AP = K Au (19)

again using a simplified notation.

The residual loed correction is introduced by adding the unbalanced

force

pU = P -I (20)

at the beginning of an increment to the incremental equation (19) to give

AP +P -I =K Au (21)

Clearly the residual (unbalanced) force at the beginning of the increment

would be zero if the stress field used in I were in equilibrium with the

external forces P . This would imply that the displacement field u at the

beginning of the increment is an equilibrium displacement field, provided the

stresses used in (20) correspond to u . This last point is now examined.

A constitutive law has been assumed to exist according to

6 = D E + (T) (22)

Adopting the Euler integration, this is written

Au = D AE t AH (23)

where
,BAuk a)u aft

AEkX k M m
3X + ýx Xk 3x£

The stresses used in (20) are obtained from a: E Au . Then these

stresses a are no longer the stresses corresponding tc the displacement
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fiel u . For in the case of linear, isothermal elasticity,

a C E , C = constant

with
*au. 1 au. u.KLE3 ax. +2 ax. ax. (•

(24

But the summed Euler increments give

= C ZE ,

with the error

ee C(E -. AE) (25)

i.e.

afu aAu
e : (E 1 m m
1 ijk incs 2 aX aXa

Thus the error is the sum of terms quadratic in the increment of dis-

placement gradient, which for a finite element approximation are quadratic in

increment of displacement. The object of introducing the load correction is to

remove the quadratic error term from the incremental procedure. Since the

error (25) is a sum of such terms over all. prev*ous increments, the load

correction cannot be expected to improve solution accuracy unless this error

is also removed. Indeed, as might be expected, the introduction of the

residual load correction on the basis of stresses accumulated from the su~med

strain increments of (23) may lead to degradation of the solution accuracy.

This was demonstrated for the one degree of freedom example of Haisler et al [291.

The results are not shown here for lack of space. Reference should be made to [161.

The difficulty is readily avoided for the elastic case by redefining

the strain increment exactly:

auk aAUm aux a ft Au
SAkz 77 ax x 4 k aX£ z 2 RX k ;Y£ (t
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This form of AE may then be used in (23) to generate the stress

increments. For the elastic-plastic case the problem is not so straightforward.

However the combination of (25) with the 'mean stiffness' and 'mean normal'

corrections described in [32] above has been shown to be satisfactory

(see, for examples, [32]). In fact the elastic-plastic problem is rather more

easily controlled, because the total stress is not so directly dependent on

total strain in yielded regions.

Case Studies

In this section we present a small selection of test cases to assess the

accuracy of the techniques used in the program. This is then followed by the case

study of two welding examples. We should keep in mind the fact that the two ther-

mal examples considered adopted extreme impulse boundary conditions. All corres-

ponding analytic models began with step-shaped temperature distributions which

cannot be modeled accurately by a finite element mesh (which interpolates the

temperature field continuously and differentiably within an element) unless a

special asymptotic mesh is developed for the beginning of the solution.

Example 1: The Weiner Problem [23)

This problem is of value because it is a deliberate attempt to model a

simple but realistic fusion situation for steel. Both analytic [23] and

experimental results £34] are available so that the accuracy of the basic

modeling assumptions (uncoupling, etc.) may be assessed. The problem is that of

a half-space of molten steel at 29450 F, suddenly brought into contact with a

half-space chill at 70 0 F, (the chill is assumed to be made of the same steel as

the cast). The geometry and material properties assumed are shown in Fig. 1.

Nonlinear specific heat and thermal conductivity were assumed. In [23], as in the

present work, fusion was assumed to take place over a temperature range.
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The predictions of the histories of solidus and liquidus positions are

shown in Fig. 2. The agreement with the analytical solution is close, but the

fact that general agreement with experiment is achieved is more significant.

Figure 3 3hows the finite element predictions of temperature profiles at

different times. The severe gradient discontinuities may be seen. It is

interesting to note that Weiner's solution is based on the imposition of a con-

stant temperature at the interface. The finite element model has no such bound-

ary condition but reproduces this assumption quite well: a constant temperature

point is seen at a small distance from the original interface. This agreement

is rather surprising. It is not clear whether the position of the constant

temperature point in the finite element results more truly represents the real

situation than Weiner's boundary condition. However, it is probable that the

constant temperature point shoule be closer to the interface than the finite

element model predicts. This is because the fixed grid model cannot reproduce

exactly the initial conditions just after contact: contiltuity of temperature

acmss the (finite si-id) element next to the interface in +he cast requires

that the solution start with the fusion fronts some distance from their true

position on. the interface. Thus on the basis of energy balance the fixed

grid finite element model introduces a geometrical shift in the solution.

This example demonstrates that in a one-dimensional case very simila"

to the situation under study the thermal model is able to predict experimental

results to the same order of accuracy as the experimental measurements can be

made. This does not necessarily imply that the model is adequate for the

welding problem, because it is possible that the wead problem is more critically

dependent on solution of this part of the history. Nevertheless this result

gives some confidence in the technique.
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Example 2: The Two-Dimensicnal Square Plate Fusion Problem

This problem was chosen to illustrate a two-dimensional solution. The

problem is very like the Stefan problem in two-dimensions, except that a finite

region is studied. No exact solution exists, although some approximate solutions

are available; [20, 35, 36]. The finite element mesh and the boundary conditions

and material properties are shown in Fig. 4, An octant of the problem was

modeled to give a better idea of the performance of the method when modeling

non-simple geometries. The resulting prediction of solidus and liquidus positions

along the diagonal and normal bisector of an edge are compared in Fig. 5 with the

various other approximate solutions. The finite element results show general

agreement at later times with the results of Allen and Severn [36] and

Lazaridis [20]. The oscillations observed in the finite element results arise

because the mesh used fails to provide sufficient discontinuity surfaces to pro-

duce a smooth result on the time scale used. The properties chosen were those

used by Poots [35). The latent heat. effect is very severe (the ratio of the spe-

cific heat outside melting range to the internal heat rate within melting range

is 1/700). With respect to the typical properties of steel, the properties chosen

in this example (in particular, the latent/specific heat ratio) represent an

extreme discontinuity. Thus any element containing a fusion region is unable to

respond until the energy of that fusion region has been removed from the element.

This effectively constrains the nodal temperatures for that element, so that nodal

temperatures change rapidly as the fusion region propagates from one element to

the next, but remain essentially constant as the fusion region traverses an element.

This results in the wavy form of the solidus and liquidus time histories: clearly

these can only be accurately placed to within the order of size of the elements.

For the welding stress analysis, the significant part of the thermal

fusion problem solution is the definition of initial conditions for the lower
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temperature (later time) part of the solution. Some indication of the accu::acy

of the present technique may be obtained from Fig. 6, where the temperature pre-

dictions at two points are given as functions of time. While the fixed grid

finite element solution is ".naccurate at early times, later on the agreement

with previous work is reasonable. Thus it appears that the overall energy dis-

tribution is essentially maintained through the solution.

Example 3: Thermally Loaded Plate

This problem is taken from Landau et al [37) and is that of an infinite

plate, 3 ft. thick, initially at a high temperature (but not above any phase

transition), then cooled to room temperature by linear convection from both

surfaces. The material is linear elastic-perfectly plastic, with the yield

stress as the onJy temperature dependent property.

Initially the plate is at a uniform 15000 F. The same finite element

mesh was used for both the transient thermal analysis and the stress analysis.

This consisted of 20 equal sized axi-symmetric elements all with one edge on

r = 0 , modeling one half of the plate thickness. The axisymmetric model was

used in order to reproduce the traction boundary conditions with ease.

The thermal problem for the half plate, then, is one dimensional and

linear, with an insulated boundary at x = 0 , and convection at x = 1.5 ft.

The lowest order two-dimensional isoparametric element was used (linear

Lagrange interpolation in the mapped plane): in one dimension this reduces

to linear interpolation between nodes. A small time step of 0.05 hrs. was used

Xit•o give good temperature definition for the stress analysis. The solution was

run to t = 20 hrs , when all points of the mesh were below 100OF (room temp-

erature was assumed to be 700 F): centroidal temperatures were then reduced to

room temperature in an additional linear step.
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The boundary conditions for the stress problem are: traction free

surfaces at x = 0 , x = 1.5 ft., and generalized plane strain normal to the

x-direction, with no associated normal force. The latter condition was repro-

duced by use of axi-symmetric elements with one set of edge nodes at r = 0

constrained to zero radial displacement, while the opposite edge nodes are

tied together with the linear constraint condition described in reference [24]:

this ensures all these nodes have the same (unspecified) radial displacement

with zero integrated normal traction.

The residual stress at 70°F (assuming the'material to be stress-free

at 15000F) is shown in Fig. 7. The centroidal values of stress from the finite

element model agree closely with the solution of [37]. Figure 8 shows the

growth of plastic zones as a function of time. The time scale is non-linear

here, since it is taken to be proportional to the increment number in the

stress analysis.

The only significant discrepancy between the finite element solution

and that of the reference is the lack of a yield zone in the centre of the'

plate at late time in the finite element solution. It is clear from Fig. 7

that the inside two elements are very close to yielding at the end of the

finite element solution, so that the discrepancy is rather small. It is prob-

ably caused by the interfacing technique whici. prepares the temperature data

for the mechanical analysis: this has a tendency to reduce spatial temperature

gradi'ýnts because it reduces a temperature-time curve to a series of secant

appr •-'..ations.

It is evident from this example that the finite element model is able

to reproduce the analytic solution with accuracy. However, caution must be

erercised in using this comparison as a guide to the accuracy of the solutions

in the sample weld problems, since the latter are two-dimensional models and

involve rather more complicated material behavior.
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Example 4: Axisymmetric Weld

'he numerical'model developed was used to follow the histories of two

sample welds so that comparisons could be made with experiment. Few of the

experimental studies of weld residual stress and distortion contain sufficient

definition of the process foz the boundary conditions of the numerical model

to be accurately defined. The study by Corrigan [38] does define the weld

pýrameters fully, and in view of Tall's [2] conclusion that residual stresses

depend, most critically pn the heat input, was chosen for the present study.

In [38] Corrigan conducted extensive experimental investigations of the

residu~l stresses in high strength steels. The weld which was chosen as one

!example for the present work is a circular bead weld on an 1/2" plate of 11 5/8"

diameter made from HY130-150 steel. The geometry of this configuration is shown

in Fig. 91 This is one o0 a series of thin plates which was tested (1/2" com-

pared to 1" for other cases), inwhich the assumption of plane stress was more

likely to be valid. The assumption of plane stress is necessary for the

analysis of the Sach boring technique.

The weld was modeled as an axi-symmetric geometry with axi-symmetric

stress distribution. Corrigan has some discussion on the validity of this

assumption, and justifies it experimentally. Because' the welding rate

(20 ins/minute on a 3" radius) is such that the conduction of heat through the

steel ahead of the weld torch is negligible, each section sees essentially the

same:thermal history. In the model, this implies that the heat input of the

torch must be applied io the model as' it is assumed to'be seen by any radial

slice of infinitesimal tangential thickness. This is the basis for the boundary

conditions discussed later.,

This problem is one of the few thermal stress problems for which it is

reasonable to use the same mesh for the thermal and for the stress analysis:
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this mesh of the lowest order isoparametric element is shown in Fig, 10. The

mesh used was rather coarse for the anticipated gradients but was thought to be

a reasonable compromise with computing cost. The shape of the weld bead was

taken from a macrophotograph of the section of the weld given in [3s].

5.2 Material Definition

Because of the assumptions made duing the development of the numerical

model, the only properties which are necessary to describing the material are:

Specific heat, thermal conductivity, latent heat, solidus and liquidus temper-

atures, Young's Modulus, Poisson's Ratio, yield stress, workhardening modulus

and secondary creep relation.

The general variation of most of these properties with temperature

is discussed in some detail by Tall [2] who made a comprehensive literature

sumvey on the topic. The properties used in the present work are assumed on

the basis of [2), and from the ASTM special publications on elevated temp-

erature properties of steels, [39], [40). Base mechanical properties for

HY130-150 were taken from [41). It is apparf, nt from the stress-strain curve

of that publication that this steel may be considered as perfectly plastic up

to 3% strain, above which the hardening is quite slow (about 50,000 psi modulus).

Since strains above 2 - 3% accumulated plastik strain were not anticipated, a

perfectly plastic material was assumed. In fact some elements showed

accumulated plastic strains of the order of 6%, but this mostly occurred at

high temperatures ( above 1500 0F) where the strength was very low. The range

of variation for carbon steel is not extensive, so that it is probable that

the properties used, as shoim in Fig. 11, are within 20 - 30% of the true

values. The thermal properties around the melting range are those used by

Weiner [23] for .3% carbon steel (HYl30-150 has .1% carbon [383) while the
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mechanical properties are extrapolated linearli from the values abou-t 1200 -

1500OF so as to give zero strength (E 0 0, cY + 0) at the meitinp range, and

a high Poisson's ratio (to approach incompress',•ility 3n the liquid nhase).

Secondary creep data for HY130-150 were not fr£•nd, so that a non-linear

Maxwell model was assumed, and the constants chosen to give ., tfinfiinum least

square error fit to the available data at 1000OF (the stress relief temp. rture

used by Corrigan) for SAE-4340, for which considerable high temperature data

are available. The data and the fitted non-linear Maxwell law are shown in

Fig. 12. This creep law is not expected to be of the same order of accuracy

as the other material data.

In crder to obtain an axi-symmetric model, the time variation of the

heat input from the torch was modeled as it passes over a fixed radial line in

the base metall. For this it was necessary to know the physical size of the heat

flow area. It was assumed that this was of the same order as the weld bead it-

self, so that the heat input shown in Fig. 13 was assumed. This input is con-

sistent with the total rate (20 ins/min) and the total heat input (600 BThU)

used. The heat rate was then applied to the surface and throughout the weld

bead, proportionately to the surface area of each 'layer' of nodes: this was

done in an attempt to model the 'puddling' of the weld bead. Finally the intiw-

ate contact was assumed to take place at the time when the heat input rate became

zero. It might be more accurate to introduce the intimate contact layer by layer

over the 5 sec span of the heat input. In any case since the temperatures are

very high in the immediate neighborhood of the bead at this time, it is unlikely

to make a significant differenice in the stress results.

The remaining thermal boundary conditions are the surface cool-

down parameters. Clearly radiation will be an important effect at such high

temperatures, so that this was introduced over all surfaces with an assumed
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emissivity of .6 (taken from Sparrow and Cess [44] as typical for steel which

has seen repeated heating and cooling) and a unit form factor. ConvecvAve cool-

-6 2ing was also assumed on all surfaces. A convective-constant of 2 x 10" BThU/in

sec°F was taken for most parts of the history, except for the weld-side surface

during the 60 sec of weld deposit, when a large volume of gas (50 cu. ft/hr) is

blown over the surface from the weld torch. To take some account of the addi-

tional heat removal due to this flow, a constant of 1.5 x 10 -5BThU/in 2sec0 F was

used for the weld side surface during the first 60 seconds. It should be noted

that these are very approximate numbers, and are simply order of magnitude assump-

tions. The surrounding temperature was taken as 70OF throughout, for both radia-

tion and convection. During the mechanical analysis the disc was taken to be

•traction free throughout.

A simplified model was adopted for the stress relief. The disc was assum-

ed to reach 1000OF from room temperature in a uniform manner (that is, negligible

thermal gradients throughout), with no creep during this time. It was then allow-

ed to creep as a non-linear Maxwell material for 2 hours (the time given for stress

relief in the experiment), then reduced uniformly to room temperature without any

further creep. Apart from the material behavior, the main assumptions are that

any additional stresses caused by thermal gradients during the heat-tp and cool-

down times are not significant, but that the heat-up and cool-down times are

sufficiently short that creep at intermediate temperatures during these times may

be neglected. Al-hough these are conflicting assumptions, they are judged suf-

ficient in view of the uncertainty in definition of creep 1-ohavior.

The results of this particular study are ibtaresting, because of

the wide discrepancy between the experimentally obtained stress patterns and

the finite element predictions. In Figs. 14 and 15 the experimental tangential

and radial stresses are shown as functions of radius. The same graphs show the
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range of stress on each section of element centroids in the finite element mesh.

The experimental results show an unusual pattern which Corrigan found in this

case (HY130/150) and in the case of a 12% nickel maraging steel. This 'rabbit

ears' residual stress pattern in the dominant stress (tangential) after weld-

ing had never previously been observed. Indeed the finite element results are

typical weld residual stress patterns ([2, 38, 42, 43]): the stress picture is

dominated by the stress component parallel to the weld, with this component

reaching its maximum tensile value through the fusion regions, this value being

about the room temperature tensile yield stress.

In Fig. 16 the equivalent plastic strains predicted by the finite element

model are shown as contour levels through the disc. This strain measure is

intended as a cumulative measure of damage: it is the sum of the increments of

equivalent plastic strain, Ap /2 Acp Acpj . so that arv plasticity at a13 j 1)

point increases its value at that point. The picture shows that values of

5 1/2% are obtained in those elements in the base material just below the

weld bead/base interface. This value is probably rather high, and may have

been caused by the model if the heat input boundary condition (Fig. 131,

This boundary condition caused peak temperatures in the bead of the u

of 45000F, which seems excessive, and which in turn created extrr •ely sharp

temperature gradients around the interface. In the second example (W' HYBO

plate - see below) this boundary condition was altered, as shown in Fig. 13,

and the peak temperatures dropped considerably. This indicates one of the

difficulties wit.h the model, namely that this heat input rate is a very sensi-

tive boundary condition.

An interesting aspect of the equivalent plastic strain distribution

•i (Fig. 16) is the extent of the plastically yielded zone. As can be seen, there

is extensive plastic deformation throughout the entire weld section. This will
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later be contrasted with the results in the i" HY80 plate (Fig. 24). The

equivalent J 2 stress, Fig. 17, shows the same pattern: very sharp gradients

either side of the weld section, with all bf that section at the iýoom tehpera-

ture yield point.

The contours of the individual stress components were found to justify

the plane stress assumption made by Corrigan. However the assumption made in

[38) that there was no bending through the thickness was not verified by the

finite element results. Similarly the assumption that there 4as purely elastic

readjustment during the stress boring was not likely to be true for the stress

field predicted by the finite element model because of the prediction of stresses

near yield associated with high stress gradients.

The finite element model was taken through a stress relief phase, as

'escribed above. Once again the comparison with the experimental results,

Figs. 18 and 19, shows a wide aiscrepancy between the two sets of results.

In both cases, however, a drop in peak stress values of 35% is observed.,

Thus conventional stress relief results have been obtained: this would be ex-

pected, although the lack of an accurate creep law prohibits close analysis

of these results.

The 'rabbit ears' distribution observed by Corrigan remains unaccounted

for. The explanation offered by Corrigan is that this distribution results

from the suppression of the phase transition in HY130-150 steel: this transi-

tion may occur at temperatures as low as 400 0 F. In order, to investigate this

possibility, the finite element stress analysis was restarted at a point where

the temperatures in the weld neighbophood were in the range 1500-l70OoF. The

solution was then completed, using the same properties defined in Fig. 11 but

with the exception of the coefficient of thermal expansion, which was given

the modified temperature dependence showl? it. Fig. 20. The change was intended
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to reproduce the suppression of the lower temperature phase change and its

associated volume change. However, this modification produced vern" small

changes in the room temperature strqss distribution:' nowhere wer'e the residual

stresses (as welded) altered by more than 5%. Thud the effect observed by

Corrigan cannot be explained by the suggested phenomena.

Example 5: HY80,1" Disc Weld

The 1" thick disc of HY80 steel studied by Corrigan was also analyzed.

The same material properties were assumed for this example as were used for

the previous' one, except for the yield st-ress which was reduced as shown in
7 II I

Fig. 11. The same boundary conditions were also applied except that the heat

input was assumed over 6 sec. rather than the 5 sec. used previously. This last

change was intended to reduce the high temperatures observed in the previous

model. A similqr mesh was .sed for this example.' A few layers pf elements

'were added to increase the thickness of the disc.

Figurýe 21 gives the amperattre histories of the elements close to the

wtld. The short duration of the transient temperatures should be noted. This
picture also shows the hesitation as the material melts or fuses. The

as-welded residual stresses are compared in Figs. 22 and 23 with the experi-

mental results of Corrigan. These plots show the range of stress on the sec-

tions as predicted by the finite element model, and the stress as measured

experimentally by Corrigan. It is 'clear from these graph? that the finite

element model is predicting considerable bending on the sections close to the

I bead. This indicates that the no-bending assumption mnade by Corrigan for the

experimental analysis was not valid for this thicker disc. It appears from

Fig. 23 that the experifhentally measured radial stress is close' to the mean

stress predicted by the finite ýlement method. However, the tangential stress

measurement does not correspond to a mean, but favors the higher tensile side,
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which is the welded face of the specimen. A high hydrostatic tension was found

at the root of the weld = 54500 psi.). This is an effect which canat~~~ ~~ th oto h ed( kk

only be observed in a complete stress analysis, and so it would not be easy to

find experimental verification (except, perhaps, if there should be a hydro-

static dependence for crack initiation). However, it is consistent with Fig. 24

which shows the equivalent plastic strain: here the region which has undergone

plastic deformation is seen to be quite localized. This may be explained from

the temperature histories, Fig. 21 which show clearly the reason for this

localization, since the elements toward the back face never see very high temp-

eratures and so remain relatively rigid, while the front side elemrnts are

experiencing very high temperature gradients and so must flow plastically.

In this example the highest total equivalent plastic strain was only 3.7%

(c.f. 6.6% for the 1/2" weld). This is probably due to the different heat rates

used for the two cases (Fig. 13), which would lend support to the point made

strongly by Tall [2] that the most critical boundary condition in the problem

is the heat input and heat input rate.

Discussion of Results

The approximations of uncoupling and finite-element modeling of the

thermal terms in the postulated energy balance, when used with approximate data

(book values) of thermal properties, gave reasonable agreement with experimen-

tally determined solid depth in a one-dimensional casting problem. The solution

also agreed with an analytic model of the same situation, derived from the dif-

fusion equation. Thus it seems that at least for the fusion part of the problem,

V the uncoupling and the material model were not inaccurate assumptions.

In all cases the late time (i.e. after passage of the fusion region)

solutions agreed quite well with other soiut.Lons, indicating that the general

energy distribution was maintained.
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On the basis of the above results and arguments, the present technique

is judged acceptable for use in rcsidual stress problems (which are the main objec-

tive of this work). For other problems in which accurate definition of fusion

front positions at all times is necessary it is clear that a more refined tech-

nique would be necessary. The essential difficulty is believed to be the ne-

cessity of allowing spatial temperature gradient discontinuities normal to the

fusion front surfaces. This difficulty is made acute by the use of temperature

as the fundamental field variable for the finite element model, because this

imposes a differentiability requirement on the temperature field chosen within

each element. It is this constraint which must be eased or circumvented before

more accurate results may be expected.

The examples used in the thermal development indicate that the present

method is able to predict the position of the fusion front with fair accuracy.

For an alloy such as steel this prediction is more accurate than for a pure

phase, since the discontinuities associated with latent heat effects are less

when the melting range is quite broad. In any case the fusion fronts cannot

be located with more accuracy than the order of the size of the element, which

means that for good prediction of fusion zone extent, a relatively fine mesh

must be used around the weld itself.

In both the weld examples studied, high residual stress gradients were

observed in the immediate neighborhood of the weld bead. Both models exhibit-

ed ths typical bead-on-plate residual stress patterns such as the dominance of

the stress component parallel to the weld, high stress gradients in the close

neighborhood of the bead, and a relatively large hydrostatic tension at the

root of the weld.

The creep model results in the expected reduction in peak stresses:

after 2 hours at 10000 F, these stresses drop by 35-40%. Because of the short
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creep times involved in stress relief (usually less than 10 hours), this model

(when properly fitted to the known creep behavior) would probably furnish good

results. The results for the 1/2" disc and the 1" disc differ very considerably.

The 1/2" disc contains residual stresses which are essentially uniform across

the thickness but the stresses in the 1" disc vary drastically through the

thickness in the neighborhood of the bead. This is explained by the rigidity

of the back face of the I" disc: because of the bead size and heat input

rate, this face never experiences very high temperatures (see Fig. 21) and so

forces the distortion to be localized around the bead (Fig. 24). It would

appear from this observation that the assumptions made for experimental analysis

by Corrigan are reasonable for the 1/2" plates, but are not acceptable for the

I" plates. The maximum cumulative damage, as measured by the total equivalent

plastic strain, is very different in the two cases, the 1/2" disc having at the

weld root 6.6% strain and the I" disc having 3.7% at the same point. That is

explained by the different heat input boundary conditions (Fig. 13) assumed in

the two cases.

We have used a time independent plasticity theory even though this is

not the dominant mechanism high temperatures. But it has been argued that the

important stresses and distortions only arise at the lower temperatures when

the material can offer resistance to the thermally induced strains. Moreover,

at intermediate temperatures (say from 800-1200OF for steel) th? time-independ-

ent theory is based on materials data (yield stress) which is obtained through

tests controlled over the same order of time scale as is involved in the weld-

ing process, and so contains some part of the primary creep effects. It is there-

fore thought that the theory is a reasonable first approximation. It does not

account for important effects such as the temperature rate sensitivity of the

low temperature yield stress in multiphase alloys nor does it combine the
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plasticity and creep effects.

To some extent the present results suggest that the theory curn-ently

used in the model is satisfactory in this first order sense. For both welds

modeled, the residual stress predictions follow the patterns generally observ-

ed. However, one of the examples (1/2" disc, HYl30/150) was deliberately

chosen because the experimental results showed a very Vnusual residual stress

distribution, for which the mechanism of suppressed phase chapge had been

offered as an explanation. The numerical model was not able to reproduce this

peculiar distribution when an attempt was made to include the suppression of

the phase change. This is taken to indicate that phase change suppression is not

the physical mechanism involved, and that this mechanism is not contained in the

numerical model. It is interesting to speculate that those unusual patterns ob-

served in the experiments were the result of micro-cracking, since this steel

(HY130/150) is prone to such failure. As yet no crack criterion has been includ-

ed in the model. Thus the difficulty with this result has not been resolved.

* iSo far this work has not discussed the problem of weld dressing. The

welds examined above were not, in fact, dressed in the experiments, but the

dressing process is usually a part of welding in structural fabrication. it is

not yet clear whether this process has an important influence on the residual

distortion and stress patterns, although it may be anticipated from the very

high stress gradients close to the surface that dressing will alter the stress

distributions significantly. In fact it should not be difficult to introduce

a simple model of this process. One possibility is to compute the reactions at

the nodes of an element in the 'dressed off' part of the mesh, as is done for

the residual load correction, then to remove that element, replacing it with

the reaction forces which are then reduced to zero over some increments.
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It is clear that the present results are in agreement with Tall's con-

clusion [2] that the residual stresses are most sensitive to the primary heat

input boundary condition. In more recent work a better definition of this

boundary condition has been achieved by compazing finite element predictions of

fusion zone extent with post-weld macro-photographs, in which the extent of the

fusion zone may usually be readily seen. Then such parameters as are efficiency

and are size are adjusted to give reasonable agreement. This technique gives

some confidence in the definition of this critical boundary condition.

In view of the above menticned extensions to the present work, it seems

that the effort involved in developing the model within the context of the work

on a general purpose program should prove of great value, in that these antici-

pated developments should all be readily incorporated into the general model.

Conclusions

It has been shown that the uncoupled thermo-mechanical finite element model

of the weld process developed in this work has the ability to model several

important aspects of that pzocess. The procedure treats the thermal and mechani-

cal parts of the process as separable, and in each part techniques have been

developed to treat what are regarded as the dominant first-order effects.

a) The Thermal Analysis:

1. It has been demonstrated that the finite element model is able to

predict the temperature field in solids undergoing fusion transformation to

reasonable accuracy. However, the accuracy is limited by the temperature gradient

discontinuities across a fusion front. The technique used essentially limits the

definition of fusion front position to the order of Ulement size for a very

narrow melting range (as for a pure solid), although higher accuracy has been

shown for steel, which has a relatively broad melting range.
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2. The intimate contact boundary condition has been assumed for the

deposition of the bead. This boundary condition allows the model to assume

that the bead and base do not have the same temperature when the bead is de-

posited, and so is applicable to various other physical situations. This

model has been shown to give reasonable correlation with experiment and analysis

in the case of a one-dimensional steel solidification problem.

3. The shape change when the bead melts has not been modeled, but in the

examples considered the read has a rather uniform temperature field before it

is merged into the base, so that this should not be an important effect.

4. It has been shown that a minor change in the heat input rate from the

weld torch has a significant effect on the peak temperatures, because of the

extremely high radiation cooling rate at the temperature of the process. Thus

the results ot the analysis appear most sensitive to the heat input rate.

b) The Mechanical Analysis:

1. The constitutive assumption is of primary importance in this part of

the analysis. In this work it hes been demonstrated that the generally observed

residual stress patterns are predicted when classical time-independent plasticity

theory with tempei ature dependent properties is assumed.

2. A simple creep formulation has been used to model the stress relief

process. This has been shotn to give the expected drop in peak stress values as

a result of high-temperature stress relief.

3. Predicted residual stress pattern3 even in simple cases are ouite

complex. For the 1" disc agreement with peak stress values is evident, but the

experimental assumptions of no bending cannot be accepted on the basis of the

finite element predictions of stress. In particular the variation of the stress

through the thickneas in this case (where the weld denth is about 204 of the

thickness) is very strong.
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For the 1/2" disc the experimental assumptions are generally upheld, but

there is no agreement with experimental results. The suggested mechanism of

phase change suppression does not appear to cause the observed stress patterns,

so that it must be concluded that these are caused by phenomena which have not

been built into the numerical model.
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