

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

IMCLasaiELED
Security Classification

DOCUMENT CONTROL DATA R&D
(Securily clataiticmlion ol llllo, body ol abstract and indexing annolalion must be entered when the overall report is classitled)

i ORIGINATING *c TIVITY fCofpor»»« «ulhorj

Project MAC
Massachusetts Institute of Technology

2«. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

N/A
3 REPORT TITLE

ON THE DESIGN AND SPECIFICATION OF A COMMON BASE LANGUAGE

4. DESCRIPTIVE NO TES (Type ol report and inclusive dates)

t. AU THORIS) (First name, middle initial, last name)

Jack B. Dennis

«. REPORT DATE

May 1972
9a. CONTRACT OR GRANT NO.

N00014-70-A-0362-0001
6. PROJECT NO. N/A

c. N/A

<*• N/A

7a. TOTAL NO. OF PAGES

46

76. NO. OF REFS

27
9». ORIGINATOR'S REPORT NUMBER(S»

MAC TR-101

9b. OTHER REPORT NO(S) (Any other numbers that may be aeslgned
Ihlt report)

NONE

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES
NONE

12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

13. ABSTRACT

The design and specification of a common base language for procedures and
information structures is discussed. We envision Öwrt the meanings cf programs
expressed in practical source languages wirll-4)e defined by ruJes of translation
into the base language. The meanings of programs in the base language are speci-
fied by a transition system that is an interpreter for the base language. The
base language interpreter serves as the functional specification of a computer
system with emphasis on programming generality — the ability of users to build
complex programs by combining independently written program modules. A rudimentary
version of the base language is presented, and the problem of translating
block-structured programs into base language programs is discussed.

DD IFN0ORVMJ473
S/N OI02-OI4-6600

(PAGE 1) J. UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Clarification i cu

K EV WORDS

a. base language

b. formal semaj^tics

c. information structures

d. interpreters

e. block-structurei programs

f. modular programming

DD.F,r..l473 BACK,
(PAGE 2)

[TNCLASSTFTED
Security Classification

MAC TR-IOI

ON THE DESIGN AND SPECIFICATION
OF A COMMON BASE LANeUAGE

JACK B. DENNIS

JUNE 1972

This research was supported in part
by the National Science Foundation
under research grant GJ-432, and in
part by the Advanced Research Proj-
ects Agency of the Department of De-
fense under ARPA Order No. 433
which was monitored by ONR under
Contract No. N 00014-70-A-0362-
0001.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

*

"3-

On the Design and Specification of a Common Base Language

t
Jack B. Dennis

Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract; This i^ a report on the work of the Computation Structures Group
of Project MAC toward the design and specification of a common base language
for programs and information structures. We envision that the meanings of
programs expressed in practical source languages will be defined by rules of
translation into the base language. The meanings of programs in the base
language is fixed by rules of interpretation which constitute a transition
system called the interpreter for the base language. We view the base lan-
guage interpreter as the functional specification of a computer system in
which emphasis i.s placed on programming generality — the ability of users
to build complex programs by combining independently written program modules.

Our concept of a common base language is similar to the abstract programs
of the Vienna definition method — but a single class of abstract programs ap-
plies to all source languages to be encompassed. The semantic constructs of
the base language must be just those fundamental constructs necessary for the
effective realization of the desired range of source languages. Thus we seek
simplicity in the design of the interpreter at the expense of increased com-
plexity of the translator from a source language to the base language. As an
illustration of this philosophy, we present a rudimentary form of the base lan-
guage in which nonlocal references are not permitted, and show how programs ex-
pressed In a simple block structured language may be translated into this base
language.

The importance of representing concurrency within and among computations
executed by the interpreter is discussed, and our approach toward incorporating
concurrency of action in the base langauge is outlined.

Computation Structures Group, Project MAC, MIT.
*
The work discussed in this article was done at Project MAC, MIT, and was sup-
ported in part by the National Science Foundation under research grant GJ-432,
and in part by the Advanced Research Projects Agency, Department of Defense,
under Naval Research Contract N00014-70-A-0362-0001.

ACKNOWLEDGMENT

The work discussed in this article was done at Project MAC, M.I.T., and

was supported in part by the National Science Foundation under research

grant GJ-432, and in part by the Advanced Research Projects Agency,

Department of Defense, under Naval Research Contract N00014-70-A-0362-0001.

^W^.-' ."i'.^■■■V-■.■''>> ;..^i-.:;--.-

■5-

TABLE OF CONTENTS

Page

Abstract 3

Acknowledgment 4-

Table of Contents 5

Introduction 6

Formal Semantics 9

Interpretation of a Rudimentary Base Language 17

Translation of Block Structured Languages 23

Cycles and Their Prevention 33

Representation of Concurrency in the Base Language 41

Conclusion 43

References 44

INTRODUCTION

The Computation Structures Group of Project MAC is working toward the

design and specification of a base language for programs and information

structures. The base language is intended to serve as a common intermediate

representation for programs expressed in a variety of source programming lan-

guages.

The motivation for this work is the design of computer systems in which

the creation of correct programs is as convenient and easy as possible. A

major ingredient in the convenient synthesis of programs is the ability to

build large programs by combining simpler procedures or program modules,

written independently, and perhaps by different individuals using different

source languages. This ability of a computer system to support modular pro-

gramming we have called programming generality [3, 4]. Programming gener-

ality requires the communication of data among independently specified pro-

cedures, and thus that the semantics of the languages in which these pro-

cadures are expressed must be defined in terms of a common collection of data

types and a common concept of data structure.

We have observed that the achievement of programming generality is very

difficult Jr -"nventional computer; systems, primarily because of the variety

of data '■•.' . » and access methods that must be used for the implementation

of large »• jn acceptable efficiency. For example, data structures

that vav sizt and form during a computation are given different represen-

tations t m those that are static; data that reside in different storage

media are accessed by different means of reference; clashes of identifiers

appearing in different blocks or procedures are prevented by design in some

source languages but slmilai. consideration has not been given to the naming

and referencing of cataloged files and procedures in the operating environ-

ment of programs. Thes.- Limitations on the degree of generality possible in

computer systems of conventional architecture have led us to study new con-

cepts of computer system organization through which these limitations on pro-

gramming generality might be overcome.

In this effort we are working at the same time on developing the

base language and on concepts of computer architecture suited to the exe-

cution of computations specified by base language programs. That is, we

regard the base language we seek to define as a specification of the func-

tional operation of a computer system. Thus our work on the base language

is strongly influenced by hardware concepts derived from the requirements of

programming generality [3].

In particular, the choice of trees with shared substructures as our

universal representation for information structures is based in part on a

conviction that there are attractive hardware realizations of memory systems

for tree structured data. For example, Gertz [8] considers how such a memory

system might be designed as a hierarchy of associative memories. Also, the

base language is intended to represent the concurrency of parts of computa-

tions in a way that permits their execution in parallel. One reason for em-

phasizing concurrency is that it is essential to the description of certain

computations — in particular, when a response is required to whichever one

of several independent events is first to occur. An example is a program

that must react to the first message received from either of two remote

terminals. Furthermore, we believe that exploiting the potential concurrency

in programs will be important in realizing efficient computer systems that

offer programming generality. This is because concurrent execution of pro-

gram parts increases the utilization of processing hardware by providing many

activities that can be carried forward while other activities are blocked

pending retrieval of information from slower parts of the computer system

memory.

Our proposal for the definition of a common base language may seem like

a rebirth of the proposal to develop a Universal Computer Oriented Language

[24]. Thus it is reasonable to inquire whether there is any better chance

that the development suggested here will succeed whereas this earlier work

did not result in a useful contribution to the art. Our confidence in

eventual success rests on important trends in the computer field during the

past ten years and fundamental differences in philosophy. The most important

change is the Increased importance of achieving greater programming gener-

ality in future computer systems. The cost of acquiring and operating the

hardware portion of computer systems has become dominated by the expense

-8-

of creating and maintaining the system and application software. At present,

there is great interest in the exchange of programs and data among computer

installations, and in building complex procedures from components through

the facilities of time-shared computers. Computer users are often pre-

pared to forsake efficiency of programs to gain the ability to operate

them in different environments, and the ability to use the program in

conjunction with other programs to accomplish a desired objective.

Furthermore, the pace of programming language evolution has slowed. It

is rare that a fundamentally new concept for representing algorithms is in-

troduced. Workers on programming language design have turned to refining

the conceptual basis of program representation, providing more natural modes

of expressing algorithms in different fields, and consolidating diverse ways

of representing similar actions. Today, there is good reason to expect that

a basic set of notions about data and control structures will be sufficient

to encompass a usefully large class of practical programming languages anJ

applications. In particular, the set of elementary data types used in com-

putation has not changed significantly since the first years of the stored

program computer — they are the integers, representations for real numbers,

the truth values true and false, strings of bits, am!, strings of symbols from

an alphabet. Also, considerable attention is currently devoted to the de-

velopment of useful abstract models for information structures, and the pros-

pects are good that these efforts will converge on a satisfactory general

mode1.

We are also encouraged by others who are striving toward similar goals.

Andrei Ershov is directing a group at the Novosibirsk Computing Center of the

Soviet Union in the development of a common "internal language" for use in

an optimizing compiler for three different languages — PL/I, Algol 68, and

Simula 67 [7]. The internal language would be a representation common to

the three source languages and is to serve as the representation in which

transformations are performed for machine independent optimization.

The "contour model" for program execution, as explained by Johnston [10]

and Berry [1] provides a readily understood vehicle for explaining the

■9-

semantics of programming languages such as Algol 60, PL/I, and Algol 68

in which programs have a nested block structure. It is easy to imagine

how the contour model conld be formalized and thus serve as a basis for

specifying the formal semantics of programming languages. The contour

model may be considered as a proposal for a common base language and as a

guide for the design of computer systems that implement block structured

languages.

John Iliffe has for some time recognized some of the fundamental im-

plications of programming generality with respect to computer organization.

His book Basic Machine Principles [9] is a good exposition of his ideas

which are argued from the limitations of conventional computer hardware in

executing general algorithms. Again, Iliffe's machine defines a scheme of

program representation that could be thought of as a common base language.

However, Iliffe has not discussed his ideas from this viewpoint.

FORMAL SEMANTICS

When the meaning of algorithms expressed in some programming language

has been specified in precise terms, we say that a formal semantics for the

language has been given. A formal semantics for a programming language gen-

erally takes the form of cwo sets of rules — one set being a translator,

and the second set being an interpreter. The translator specifies a trans-

formation of any well formed program expressed in the source language (the

concrete language) into an equivalent program expressed in a second

language — the abstract language of the definition. The interpreter ex-

presses the meaning of programs in the abstract language by giving explicit

directions for carrying out the computation of any well formed abstract pro-

gram as a countable set of primitive steps.

It would be possible to specify the formal semantics of a programming

language by giving an interpreter for the concrete programs of the source

language. The translator is then the identity transformation. Yet the in-

clusion of a translator in the definition scheme has important advantages.

For one, the phrase structure of a programming language viewed as a set of

strings on some alphabet usually does not correspond well with the semantic

-10-

structure of programs. Thus it is desirable to give the semantic rules

of interpretation for a representation of the program that more naturally

represents its semantic structure. Furthermore, many constructs present

in source languages are provided for convenience rather than as fundamental

linguistic features. By arranging the translator to replace occurrences of

these constructs with more basic constructs, a simpler abstract language is

possible, and its interpreter can be made more readily understandable and

therefore more useful as a tool for the design and specification of computer

languages and systems.

The abstract language that has received the most attention as a base

for the formal semantics of programming languages is the lambda-calculus of

Church. For several reasons we have found the lambda calculus unsuited to

our work. The most serious problem is that the lambda calculus does not

deal directly with structured data. Thus it is inconvenient to use the

lambda calculus as a common target language for programs that make use of

selection to reference components of information structures. It also rules

out modeling of sharing in the form of two or more structures having the same

substructure as a component.

A second defect in terms of our goals is that the lambda calculus in-

corporates the concept of free and bound variables characteristic of block

structured programming languages. We prefer «■ > exclude these concepts so

the base language and its interpreter are simpltr and more readily applied

to the study of computer organization. Later in the paper we show how block

structured programs may be translated into base language programs using the

rudimentary version of the base language introduced below. This translation

of block structured programs into programs that are not block structured is

an important example of how simplicity in the interpreter may be obtained

by translating source language constructs into more primitive constructs.

Our thoughts on the definition of programming languages in terms of a

base language are closely related to the formal methods developed at the IBM

Vienna Laboratory [17, 18], and which derive from the ideas of McCarthy [19, 20]

and Landin [13, 14]. For the formal semantics of programming languages a gen-

eral model is required for the data on which programs act. We regard data as

consisting of elementary objects and compound objects formed by combining

elementary objects into data structures.

■11-

Elementary objects are data items whose structure in terms of simpler

objects is not relevant to the description of algorithms, ^-n- the purposes

of this paper, the class E of elementary objects is

E = Z U R U W

where

Z = the class of integers

R = a set of representations for real numbers

W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in which

elementary objects are associated with nodes, and each arc is labelled by

a member of a set S of selectors. In the class of objects used by the Vienna

group, the graphs are restricted to be trees, and elementary objects are as-

sociated only with leaf nodes. We prefer a less restricted class so an ob-

ject may have distinct component objects that share some third object as a

common component. Thf. reader will see that this possibility of sharing is

essential to the formulation of the base language and interpreter presented

here. Our class of objects is defined as follows:

Let E be a class of elementary objects, and let S be a class of

selectors. An object is a directed acyclic graph having a single

root node from which all other nodes may be reached over directed

paths. Each arc is labelled with one selector in S, and an elemen-

tary object in E may be associated with each leaf node.

s = z u w

Figure 1 gives an example of an object. Leaf nodes having associated ele-

mentary objects are represented by circles with the element of E written

inside; integers are represented by numerals, strings are enclosed in single

-12-

r
1

o

4

2 Q

i

'»'

® 1 ü

Figure 1. An example of an object.

concrete programs abstract programs

states state

intem'eter

text mfem' 'cant'

L^4 abstract memory control
program

Figure 2. Language definition by the Vienna method.

-13-

quotes, and reals have decimal points. Other nodes are represented by

solid dots, with a horizontal bar if there is more than one emanating arc.

The node of an object reached by traversing an arc emanating from its

root node is itself the root node of an object called a component of the

original object. The component object consists of all nodes and arcs that

can be reached by directed paths from its root node.

At present, we rule out directed cycles in the graphs of objects for

several reasons: In the first place, the data structures of the most im-

portant source languages are readily modelled as objects according to our

definition. Also, it seems that realizing the maximal concurrency of com-

putations on data structures will be difficult to do with a guarantee of

determinism if objects are permitted to contain cycles. Finally, the pos-

sibility of cycles invalidates the reference count technique of freeing

storage for data items no longer accessible to computations, and some more

general garbage collection scheme must be used. The general techniques do

not seem attractive with regard to the concepts of computer organization we

have been studying — especially when data items are distributed among sev-

eral physical levels of memory.

It is convenient to introduce oar concept of % base language and its

interpreter by comparison with the Vienna definition method as represented

by the formal definitions of Algol 60 [15] and PL/I [18], The Vienna method

is outlined in Figure 2. The concrete programs of the programming language

being defined are mapped into abstract programs by the translator. A con-

crete program is a string of symbols that satisfies a concrete syntax usually

expressed as a form of context free grammar. The interpreter is a nondeter-

ministic state transition system defined by a relation that specifies all

possible next states for any state of the interpreter. Abstract programs

and the states of the interpreter are represented by objects (trees).

Figure 2 shows the three major components of interpreter states. The

'text'-component is the abstract program being interpreted. The 'mem'-

component is an object that contains the values of variables in the abstract

program, thus serving as a model of memory. The 'cont'-component of the

-14-

state contains information about statements of the abstract program

whose execution is in progress. The interpreter is specified as a non-

deterministic system so activities may be carried out concurrently where

permitted by the language being defined.

For comparison, note that a separate class of abstract programs and

interpreter are sepcified for each formal definition of a source language;

that states of the interpreter model only the information structures re-

lated to execution of one abstract program; and that statements in the con-

crete program retain their identity as distinct parts of the corresponding

abstract program.

Figure 3 is the corresponding outline showing how source languages

would be defined in terms of a common base language„ A single class of

abstract programs constitutes the base language. Concrete programs in

source languages (LI and L2 in the figure) are defined by translators into

the base language — the class of abstract programs serves as the common

target representation for several source languages. For this to be effec-

tively possible, the base language should be the "least common denominator"

of the set of source languages to be accommodated. The structure of abstract

programs cannot reflect the peculiarities of any particular source language,

but must provide a set of fundamental linguistic constructs in terms of which

the features of these source languages may be realized. The translators

themselves should be specified in terms of the base language, probably by

means of a specialized source language. Formally, abstract programs in the

base language, and states of the interpreter are elements of our class of

objects defined above.

The structure of states of the interpreter for the base language is

shown in Figure 4. Since we regard the interpreter for the base language

as a complete specification for the functional operation of a computer sys-

tem, a state of the interpreter represents the totality of programs, data,

and control information present in a computer system. In Figurt 4 the

•15-

concrete program» in LI abstract programs in base
anguüQo

Figure 3. Language definition in terms
of a common base language.

I
' local structure' 'control'

4_ __1 I 1
sites of
activity

/ instruction \

J ^
procedure structure P local structure L

Figure 4. Structure of objects representing states
of the base language interpreter.

•16-

universe is an object that represents all Information present in the computer

system when the system is idle — that is, when no computation is in progress.

The universe has data structures and procedure structures as constituent

objects. Any object is a legitimate data structure; for example, a data

structure may have components that are procedure structures. A procedure

structure is an object that represents a procedure expressed In the base

language. It has components which are instructions of the base language,

data structures, or other procedure structures. So that multiple activa-

tions of procedures may be accommodated, a procedure structure remains un-

altered during its interpretation.

The local structure of an interpreter state contains a local structure

for each current activation of each base language procedure. Each local

structure has as components the local structures of all procedure activa-

tions initiated within it. Thus the hierarchy of local structures represents

the dynamic relationship of procedure activations. One may think of the

root local structure as the nucleus of an operating system that initiates

independent, concurrent computations on behalf of system users at they re-

quest activation of procedures from the system files (the universe).

The local structure of a procedure activation has a component object

for each variable of the b^ae language procedure. The selector of each com-

ponent is Its Identifier in the instructions of the procedure. These ob-

jects may be elementary or compound objects and may be coonon with objects

within the universe or within local structuret of other procedure activations.

The control component of an interpreter state li an unordered set of

sites of activity. A typical site of activity is represented in Figure 4

by an asterisk at an instruction of procedure P and an arrow to the local

structure L for some activation of P. This la analogous to the "instruction

pointer/environment pointer" combination that represents a sit« of activity

in Johnston's contour model flO). Since several activations of a pro-

cedure may exist concurrently, there may be two or more sites of activity

involving the same Instruction of some procedure, but designating different

local structures. Also, within one activation of a procedure, several

-17-

instructions may be active concurrently; thus asterisks on different In-

structions of a procedure may have arrows to the same local structure.

Each state transition of the interpreter executes one instruction for

some procedure activation, at a site of activity selected arbitrarily from

the control of the current state. Thus the interpreter is a nondeter-

ministic transition system. In the state resulting from a transition, ehe

chosen site of activity is replaced according to the sequencing rules of

the base language. Replacement with two sites of activity designatlrj two

successor instructions would occur In Interpretation of a fork instruction;

deletion of the site of activity without replacement would occur in execu-

tion of a quit or Join instruction.

INTERPRETATION OF A RUDIMENTARY BASE LANCUACK

Next we show how typical instructions of a rudimentary base language

would be implemented by state transitions of an Interpreter. This will put

the concepts expressed above into more concrete form, and provide a basis

for understanding the transUtior of block structured languages into Che

base language. Because consideration of concurrency in programs has led

to concepts of program representation unfamiliar to moat readers, and be-

cause these concepts are not sufficiently advanced, we will use for 11 lus*

tratlon a base language employing conventional Inatructioa sequencing. The

inatructions of a procedure are objacea aelected \ suci-t^siv« integers,

with 0 being the selector of the initial inatruction.

The effect of representative inatructions on ehe interpreter state Is

shown In Figures 5 through 11 in the form of before/after pictures of rele*

vant state components. In these figures, F marks the root of the procedure

structure containing an instruction under consideration aa its l-component,

and L(F) is the root of the local structure for the relevant activation of

P

18-

The add Instruction is typical of instructions that apply binary

operations to olementary objects. The instruction

add 'u', 'v', 'w'

is an object having as components the four elementary objects 'add', 'u',

'v', and 'v'. These are interpreted as an operation coda and three "address

fields" used as selectors for operands and result in Che local structure

L(P). The state transition is shown in Figure 5. Note that the site of

activity advances sequentially to the 1 + l-conponert of P.

Let us say that a procedure activation has direct access to a data

structure if the data structure is the s-coaponent of the local structure

for some selector s. The instruction

P . n t 9

la used to gain direct access to the 'n'-coaponanc of a data structure to

which direct acceas exists. This instruction «ekes Che object that is the

'p'*'n'-component of L(P) alao the 'q'-rompooent of L(P) aa shown by Figure 6.

Literal values are retrieved from the procedure structure by gg&U

inaerucciona such aa

Sggli 1.5, V

w.ich make« the elementary object l.S Che 'i'-component of L(P). lalect end

£02|| Inacrucdons may be used to build arbitrary dace structures aa lllua-

t re ted In Figure 7. Note that execution of select >*, V, 'a* Impllas

craaclon of an 'n'-componanc of the objecc selected by 'p* If none already

aslsca.

Figurt • showa how Che Inacmeclon

u* >*• ,n,• '*'
escabllahas an arc bacwaea two ob tacts (the >'- and 'q'-iump ata of L(P))

Co which dlracc accaas aslsca. tMcwdon of chls InacrucClon makes Cha

'q'-cas^onanc of L(P) alao cha >'**n'-aamponanc of L(P).

•19-

ii it

I
Al

1 I • i II II

i 11 11 r
& i) * T» g) ® ®

odd u.v.w imtruction

Plgur« 5. Inccpratatlon of an Inseructlon specifying a binary oparaclon.

'--■---■.".' ' i*1

flgura 6. Intarpratacion of a ||^|£| Inaerueelon,

(0)
«P

I ^ I i UP)

i4r O' (b)

'umtw^y^ 11. ^121 (PI

5??

(e)
twit:*- •»•

1" 9UP)

i
■ * ■

ftfar« 7. temcevr« buiUtn« «Minf iMCmctl

■20-

The link Instruction It th« meani for «itabllihlng sharing — making

on« object a coonon component of two distinct objtcts. Unless SOON re-

striction Is built Into the base language or Its Interpreter, use of

Knk Instructions can Introduce cycles Into the Interpreter state. At

present IM do not know how use of link Instructions should be limited so

Introduction of cycles cannot occur. One way In which cycles can arise

occurs ^n the Interpretation of block structured programa by the scheow

given In the next section of the paper.

The Instruction

delete V, V

ereses the arc labelled 'n* esMnatlng from t. e root of the 'p'-component

of L(P). Any nodes and area that are unrooted after Che erasure cease to

be part of the Interpreter state, aa shown In Figure 9.

Activation of a new procedure la accomplished by the Instruction

aeolv 'f. V

where the 'f'-component of L(P) ie the procedure structure P of the pro-

cedure to be activated, and the 'e'-component of L(P) is an object (an

arafent structure) that contains as components alt data requited by the

procedure (e.g., actual parameter values) to perform its function, execu-

tion of the aeelv instruction ceuees UM state transition tlluacrated in

r I sure 10: A root node UP) is created for the local structure of Che new

acttveclon. ehe argiasenc scructure is made Che A-componenc of L(P): a new

site of activicy is denoted by an aacerisk on Che 0-componsnt of P and an

arrow co L(P); and Che original sice of activity is advanced to ehe

Ul-lnacruccioo of P and made dormanc aa indicated by ehe parencheaes.

A procedure acttveclon is termlnaced by ehe InscrucCion

which ceusee Che scaee crane It Ion displayed In Pigure II. The root node

LCP) la eraaed, deleclng all pares of Che local scrwecure of P that are not

linked co ehe argumeoc scruccwre; ehe sice of acelvlcy ac ehe Qjjm in-

scrwecion diaappoar«; and ehe dormanc alee of acelvlcy in ehe accivacing

procedure la aeeiveeed. Woce ehac ehe encire effecc of execudng procedure

P la wmwmyed co Che accivaclon of P by «ay of ehe ergtmwnc scrucctfe.

-21-

Pigur« 8. Insertion of «n «re by a link Inaeruction.

(o)
9L(P)

lb)

n

 I
i i i

• • • ■ • i i a b c u JJ

.r

1

Pigur« 9. 1h« offoct of «xocudnf • dolote inscmccion.

-22-

'apply'f'/o" 'instruction'

(b) fP 1

i r

—772" ■' I ' 1 apply f,a Instruction i

procedure argument
structure structure

frUF)

Instruction argument
structure

Figure 10. Initiation of a procedure activation
by an ag^l^ instruction.

UP)

opply f,o instruction

"apply'f', a' instruction

i ' i i ■ i
return argument

structure
9 UP)

'a'

—^ r-i-i procedure argument
structure structure

Figure 11. Termination of a procedure activation by
a return instruction.

■23-

To apply a procedure, its procedure structure must be a component

of the local structure of the current procedure activation. If the pro-

cedure to be activated is the 'g1-component of the procedure structure P

in execution, execution of the instruction

move 'g', 'f1

will make it directly accessible by identifying the 'f'-component of L(P)

with the 'g'-component of P.

TRANSLATION OF BLOCK STRUCTURED LANGUAGES

Many important programming languages for practical computation are

block structured; the texts of blocks and procedures are nested, and identi-

fiers in one text may refer to variables defined in other texts. Since we

do not plan to include in the base language provision for directly repre-

senting references by a procedure to external objects, we must show how the

execution of block structured programs may be simulated through translation

into the base language and execution by the base language interpreter. The

following discussion gives one way in which this may be accomplished — a

way that seems attractive in relation to the concepts of computer organiza-

tion we are investigating. This difcussion also serves as a good example of

how complexity in a source language may be represented in the rules of trans-

lation rather than in the rules of interpretation of a formal definition.

For this discussion we will use an elementary block structured language.

Identifiers are declared by the lines

integer x or proced x

to denote simple variables or procedures. Basic statement types include:

Assignment statements such as

x := g(u, v)

where x, u, and v are simple variable identifiers, and g denotes an un-

specified function; procedure applications of the form

■24-

apply f(x, y) or z := apply f(x, y)

where f is a procedure identifier, the second form being used for a value

returning; procedure; e ^d conditional statements like

if p(x) then SI else S2

and iteration statements like

while pCx) do Si

where p denotes an unspecified predicate and SI and S2 are basic statements

or a sequence of statements delimited by begin, end.

A procedure variable f may be assigned a value by a declaration state-

ment having the form

f := procedure (x, . ., y)

begin

end

where x,...,y are the formal parameters. A statement

return z

specifies the result of a value returning procedure. The lines between begin

and end, together with the list of formal parameters, make up the text of the

procedure.

A program in this language has the form of a nested set of procedure

declarations. Except for the text of the outermost declaration, each text

is enclosed by the text within which its declaration appears. As in Algol 60,

each identifier is local to the text in which it is declared, and the meaning

of a nonlocal appearance of an identifier is defined to be the same as its

meaning in the enclosing text. The formal parameters of a procedure are

local identifiers of the text being declared.

•25-

The meaning of block structured programs can be expressed in terms

of a tree of symbol table«? as has been explained by Weizenba an [26], or

in terms of the contour model. The interested reader should study the

work of Berry [2] and Lucas [16] for other discussions of formal implemen-

tations of block structured programs and their equivalence.

To simulate the execution of a block structured program by a base

language program, we need a scheme for implementing the nonlocal ref-

erences of the source program. Our method is to augment the argument

structure associated with a procedure activation in the base language in-

terpreter so that all external objects to which reference is required by

the block structured procedure are accessed as components of the argiment

structure.

To make matters precise, it is convenient to adopt some notation. Sup-

pose T is the text of a procedure declaration. We write B(T) to denote the

set of identifiers declared within T (local to T). The set X(T) of external

identifiers associated with text T is defined as follows: We write T' < T

if text T' is nested within text T, that is, if there is a sequence of

texts T0, Tj, ..., Tk such that T = TQ, T' = Tk, and ^ encloses T, j, for

i = 0, k- 1. Then X(T) contains each identifier x that has a nonlocal

appearance in some text T', T1 ^ T, and is not local to any text T",

T1 < T" S T.

In these terms we can describe the formats of the local structures and

argument structures to be used in simulation of block structure in the base

language. Corresponding to the activation record for an activation of pro-

cedure text T, a local structure (L-structure) is formed by the base lan-

guage program. The L-structure has the format shown in Figure 12a. It has

an E-component in which a value is associated with each identifier in

B(T) U X(T), that is, each local and each external identifier of T. The L-

structure also includes components for temporary values required by the base

language instructions that interpret the text T.

Ihe argument structure (A-structure) for an activation of procedure

text T will have one component for each formal parameter of the text T, and

in addition, an E-component that conveys access to objects referenced by

the external identifiers of T, as shown in Figure 12b.

A procedure identifier is given a value by a procedure declaration

-26-

(a) L-structure (b) A-structure (c) C-structure

L(T) tA(T) TC(T) I 1
temporaries

1 2 - n E

fl '" «k xl "* xk

u{x,}=8(T)UX(T) y{x,}=X(T) u{x,} .X(T)

Figure 12. Formats of local, argument, and closure
structures for the interpretation of block
structured programs.

■27-

statement Including a text T. Because procedure values may be assigned

to nonlocal identifiers, and may be passed to the calling activation by a

value returning procedure, activations of the text T may occur in situations

where there is no clear meaning for the external identifiers of T. The usual

solution to this problem is to let a procedure value be an object called a

closure of the text T (a C-structure) having two components as in Figure 12c.

The T-component of a closure is the text itself. The E-component (environment)

includes an x-component for each x in X(T), and gives an activation of the

text access to objects referenced by its external identifiers.

Usually, the meaning of the external identifiers of a closure of T is

fixed at the time the closure is created by execution of the declaration of

T. Each x € X(T) is given the same meaning as the current meaning of x in

the text T' that encloses the declaration statement.

The way in which block structured programs may be simulated by the base

language interpreter is best introduced by an example. The following pro-

gram is adapted from Weizenbaum's paper [26]:

program 1'.

p := procedure

begin proced f, q, r; integer u, v, z

f := procedure (x); integer x

begin proced g

g := procedure (y); integer y

begin integer t

t := (x + y) t 2

return t

end

return g

end

q := apply f(l)

r := apply f(2)

u := apply q(3)

v := apply r(5)

z := u + v

end

■28-

The program consists of three procedure texts P, F and G having local and

external identifiers as follows:

B(P) = (f, q, r, u, v, z) B(F) = (x, g} B(G) = {t,y)

X(P) = 0 X(F) = 0 X(G) = (x)

Following Weizenbaum and Johnston, we display the progress of a compu-

tation by giving a series of snapshots of the interpreter state, chosen to

illustrate points about the execution mechanism. For procedure P, the

initial state of the interpreter (Snapshot 1, Figure 13) includes the text

of P in the form of a procedure structure. This procedure structure is in

ract a tree of procedure structures; for each text T s P, the procedure

structure for T has as a component a procedure structure for each text en-

closed by T. We will not describe further the coding of procedure texts as

sets of instructions, as the required instruction sequences will be clear

from the discussion of the state transitions seen in the series of snapshots.

The initial state also includes a local structure L(P) that Will serve as the

activation record for procedure P; it is empty except for the argument struc-

ture A(P), which consists of an empty E-component.

For clarity, the arcs that make each argument structure a component of

the local structures of the calling and called procedures are omitted from

the snapshots. Also, we will not include the procedure structure for P in

subsequent snapshots, its presence being understood throughout the computation.

The first step performed by instructions of the base language represen-

tation of P is to create an E-component of its L-structure, and an E^'x'-

component for each identifier x in B(P) U X(P) = {f, q, r, u, v, z}. Execution

of the declaration of text F yields snapshot 2. The E»'f'«C-component of L(P)

is now a closure of F represented by a C-structure. Its T-component is the

text of F and is shared with the text of P, its E-component is empty because

X(F) = 0.

The first step in the execution of

q := apply f(1)

is to form an appropriate argument structure A(Fl). Its 1-component is the

actual parameter value, and its E-component is empty, again because X(F) = 0.

•29-

Snapshot 1

I

'text P I A
'f I I

1 text F|

X text G

Snapshot 2

UP) ^^ tA(P) ^P

t«x

9L(P) f

J *
A(P)

'f T E s

I I I
•f 'd 'r' 'u* 'v* 'i*

^t^rr
Snapshot 3 Snapshot 4

^UP) fAiFl)|L(Fl)

1 0
^LCP) tACFD^LCFl)

■ I ii

i

text F

Figure 13. Interpretation of a block structured program —
formation of a closure of text G.

•30-

Activacion of ch« procedure ■cruceurt for P creates an L-acructure L(fl).

lha flrae action by Inaerucdnna of P la to aaaoclate actual paraMtera

with Identlflora In B(P). Thua tht. E* V-ca»ponent of L(PI) la linked to

the 1-coaponent of A(Pl) aa In anapahot J.

Snapshot 4 shows the effect of interpretlnt the declaration of C. Ihla

adda a cloaure of C aa the E.'f'.C-co^onent of L(Pl). The «aanlns of iden-

tifier x, which la an external Identifier of C, la fixed in the cloeure by

■aklng the E*'x'-co^onent of ehe cloaure Identical with the E«'x'-co^onent

of the current L-atructure. Snapshot 4 alao shows the effect of the atate-

■ent rftvi-n g which llnka the E*'g'-conponent of L(Pl) aa the R-coaponent

(reault value) of the argtaent acructure A(Pl). Thla action cos^letes execu-

tion of the Instructions of P. hence L(Pl) la deleted and execution of In-

atructiona of P is reataed. To collate interpretation of the statamnt

q :- uüx f(l), the R-coMponenc of A(P1) la «ade the r.'q'-co^onent of L(P), and

A(Pl) la deleted. The result la shown In anapahot 5 (Pigure U), which alao

•how. the effect of interpreting r :- „^ f(2) by a aiallar aequ^oa of eeenea

The progreaa of thla coaputation through anapahot 5 Illustrates how

valuea required to Interpret external referencea My be conveyed to a pro-

cedure activation via the arguaant structure, and how cloeurea of « e«xt «ay

be foraad to fU the waning of the external (free) Identlflora In a pro-

cedure declaration — all without going outside the baae language featurea

we have Introduced. The resalnl.ig snapshots show what la Involved In ap-

plying a cloaure with a noneapty E-coaponent.

Interpretation of the atateaent u :• |££^ ,(J) beglna with forastlon of an

arguaent structure A(Cl) aa In anapahot 6, Pigure 14. Hare, since X(C) - (x),

an F-'x'-component of A(C1) la created and aade Identical with the E.'x'-

coaponent of the cloaure value of q In L(P). Then the Initial instructions

of C identify the E*'y'-coaponent of L(Cl) with the 1-coaponent of A(Cl).

and, since x € X(C), identify the E*'x'-coafKnent of L(Cl) with the E^'x'-

coaponent of A(C1). Instructions corresponding to the body of C coapute t|^

value t - (1 ♦ 3) f 2-16 which la returned aa the R-cowponent of A(Cl).

The reault la snapshot 7 which includes the effect of Interpreting the stace-

ments v :- spply r(5) and a :• u ♦ v.

«31-

Snopthot 5

rigur« 14. Interpr*c«cIon of t block «trwcturvd
program — «ffllcatlofi of cloauroi.

•»•

Mich fh* «how« •nampl» M • tulto, «• CM forauUc« • tßmrtl MC «f

ml«« twvmlnfl clw ttauUclon of block •cruclur*! proffM by ehe bM«

Un«ua4« IflCcrprcccr.

I. r-nHdon of «fi »rpamnt «crvcCMf« for •ppHcado« ef • clocurc

of CMC Tt

Tbo 1C

ChC t-CMVOMM

a. Tho t(<l OCCM! MfMwcor for oMllMCtonof CMC T la

b. for MC* iModflor ■ In X(T), Cbo C>'■'•COO^OMM of ebo

cloouro of T co bo «MIIO^ U MM cbo E*'«a*coMo«ofic of

ACT).

2. tolciollMClM of cbo locol terweewro LCT)

a. for oMb ■ € E(T), tbo E^O'-MMOMOC of A(T) to ooM cb«

t*V-ceMBMwc of LCD.

b. for Mcfc ■ € irr), M «MCT I**«**CMPOM«C la oppmiii co

L(Ti.

c. I««b MCMI MroHocor «oluo (l*eanpoM*c of A(T)) 1« MM Cbo

r»,<,'»iwniiiioc of LCD, «boro « tc cbo IModfior of cbo l"

fornal Mroaocor.

I. Kocurn of «ot«0!

o. lACorprococtvi* of cbo CCOCMOAC Q^^S " ■•k*i %im *'

of ACH 14MC1CO1 wich cbo t'V'UMPiiiiiH of LCT).

b. tocororococton of t :• OMW ff M«. CMC T !■ co^loco4

hf Mbln« cbo t'V'CM»oiH"t of LCT) I4MC1M1 «leb cbo ••

IMP Pin ot of cbo crtMonc «crvcctiro for opptlcodM of cbo

cloMro f.

c. Tbo orrawnt ftrviccwro It 4*Uio4 froo LCT).

4. foTMClo« of o clMwro of CMC T M cbo MIM of IModfior f In

on octlvocion of CMC T* t

• Tbo noo C*«croccuro la Cbo t**f'«C-i.JM»"nnc of LCT*).

b. Tbo CMC T la M* Cbo r-coopononc of cbo C-acr«cC«ro.

e. for ooeb n € XCT), cbo E» V'CBMOIHHC of LCT') la M4O ch«

• •'«'•conooMoc of cbo C'acrmcoro.

•»•

S. tA(«rpr«c«ll'Ni of • proiMtur* — Ifiwi •i«c«wa((t« | U

tmnt »i

«. UM l-'i'-C-tDiuiimc of LCD It M* UM C T'C-CIMPO—t

of KT), t provtoiMity oslotlot C-orc fro« pro^aoioro

r-'f bol^ 4olocotf.

1*o oocfcod of •UwUilot »lock •trvcturotf frofraao prooootoi

• M)or «tfocc to (OOH of oor okfoeclvo* for clw kooo lo^vofO! tatoryroM'

ctoo of prmrw eoo tootf to Incororocor «cocoo for «Mol» dM gropli of ttm

•(•to ho« tflroc<o4 crcloo ooo io oo« oo ok)o«c oooortfl^ co oor «ofloicto«.

Tho •toolooc oooo !• cbo folloirti« protrast

P »•

r—

(.1

' - T* »' te . c^r ,

y ■ • o |^
« !• fC«)
• >• i^ii f(«)

ooou rd)

9m •oopolioc l« ftf .o l5o «hew« ctw ittwotion }w«t «ftor locorprouttoo of

Klw 4ocUrocian of tost f. Ihm eytlo «rltoa ttoooM of tho froo occwrrooco

of f «HtM« toot f, «fdoro tho «oloo of f U o cloowro of f.

TO —iorotood lo looorol tho cooiltlOM ooior ohlch crcloo oro lotrotoood.

It U irttmctlvo to woo 4l»ttmtm «hovlnt «H ooolaocl roforoooo« to tho pro-

Miuri «orloblo« of profrooo holfm tturflo^. A proc«**rc «orlohlo ti «Mlgyotr

opoclflo4 hf o pair («, T) «horo « Ic o proco^oro Identifier oo4 T lo a tost

lo which * lo 4octoro4, that If, ■ € •(?). HO write R(R, T) to repreeent

(t)

rtgur« IS. tflC«rpr*c«r ■c«c* for progr«* 2
■hotting cho cycle Introduced, ond
cho correspondi«m procvar dingra*.

Ptgur* 16. Procvar 4lagr«i for progroa 1
•howlnf abaoneo of oacaaaary con-
dlciooa for tha occurranca of epeiaa,

•35-

cH« ran«« of • procedure viirUbU; R(K(T) IS • toe eoncalnlng ••eh text T*

poch that the veri^bU (n, T) could be •••Igned • cloeure of T* •• Iti valu«

during progrMi •«•cutIon. The range of t procedure variable nay be deter-

mined by treeing r*f*r*nc^s to, ••id •••IgnMnta of, tho cloturct defined by

procedure d«cUr^tlo<w. «• tuipect thet, unUat • prograi ha^ redundant or

unproductive •tateaenta, there «rill be COM Interpretation for Ite function

•nd predicate tyabols such th^t Mch •l«Mnt of tho rang« of • procedure

varUbl« occurs •• It« valM In «OM coaputotlon by th« progm.

TO construct Cho procedure variable diagraa (procvor dUgr^si for shore)

of « block structured progrsa represent th« tsxts of th^ progrm by closed

contours nested In the seaw way •• th« tsxts. Ths srs^ Inald« the contour

for T but outsids contours for tsxts «nclossd by T Is ths locslttv of T.

Let (xv t) be • procedure vsriebU of tho progm, •nd rsprsaent It by «

solid dot UbslUd x and pUccd In th« locollty of T. PUc« • small open

circle In the locality of T* for each text T* with T* < T In which

Identifier x refers to ths procedure variable (x, T). Join each of thess

circles to the solid dot denoting (x, T) by sres without srrows. For sach

text T* in the range of variable (x, T), draw an arrow from ths solid dot

representing (x, T) to the contour for T*. Repeat thess stsps for «sch pro-

cedure variable of the prograa.
The procvar dlagraa for prograr is shown in Pigurs 15b, snd ths disgrsn

for progrsa 1 appears in Figure 16.
9ext we foraulat« a neceaaary condition for a block structured program

to generate cyclea when interpreted according to our rules of simulation.

Pirst consider the foras s cycle must have in an interpreter state. There

are nine kinds of nodss Involved in ths Interpretation of block structursd

prograaa:

L; root nodea of L-structures

L*C: environment nodes of L-structurss

A: root nodss of A-structurss

A*E; environment nodss of A-sttucturss

S: siaple vsriable nodes

P: procedure vsrisbls nodss

C: root nodss of C-structurss

OT: text nodes of C-structures

C*E: environment nodes of C-structurss

•36-

Of these, types L and A cannot occur in cycles because no action by the

Interpreter creates any arcs terminating on L-nodes or A-nodes (aside from

th« Implicit links we have omitted from the dlagranw). Further, arcs

terminating on L«E- or A»E-nodes can only emanate from L- and A-nodes,

respectively. Hence these node types cannot occur In cycles. No arcs

emanate from S-nodes, and no arcs from procedure structures terminate on

nodes of L-structures; therefore S-nodes and T-nodes cannot occur in

cycles. These considerations leave Just three kinds of arcs that can be

members of any cycle (x is some procedure identifier):

C C-E P

x C

I I C'E

Thus a cycle in an interpreter state consists of a series of triplets, each

triplet having one of each kind of arr,, in the order shown above. From this

reasoning, we deduce that a cycle arises from Interpretation of a block struc-

tured program only if there is a finite sequence of texts T^, T^, ..., T^,

and a corresponding sequence of Identifiers x,, x«, ..., x, that meet these

conditions:

1. Each x. is an external proi-odure identifier of T^: x^^ € X(Ti).

Let (x,, T') be the procedure variable denoted by x^^ in text T^

Note that T < T'

2. For each i and with j = (1 mod k) + 1, T. is in the range of

(x^ Tp.

These conditions imply that the procvar diagram uf a program has a

cycle of arrows such that each arrow terminates on the contour of a text that

contains an external reference to the procedure variable from which the next

arrow emanates. For program 2, Figure 15b shows a cycle that involves just

one procedure variable (f, F).

Program 3 below is a nest of procedures activated recursi. ly.

-37-

program 3:

p := procedure ()

begin

f := procedure ()

F—I begin

G—
g := procedure ()

begin ... apply f() end

apply g()

end

apply f()

end

The procvar diagram for this program is shown in Figure 17a, and Figure 17b

illustrates the interpreter state resulting from simulation through the first

activation of text G. Still the cycle only involves procedure variable (f, P)

because the only external reference is the appearance of f in text G.

The sort of program that leads to more complex cycles is illustrated by

-38-

(a) (b)
oL(P) |A(F1) oL(Fl) |A(Gl)<j>L(Gl)

E E E E

f i 4. M
,f. .f. .f. .g. .

T E

■f

 J
■f'

_-d

t
T E

L t 'textG

■ i.i

-Z2

Figure 17, Procvar diagram and interpreter state for program 3,

Figure 18. Procvar diagram and interpreter state for program 4.

räßm

program 4:

P —

-39-

p := procedure ()

begin

F —
f := procedure ()

begin ,.. apply g()

g := procedure ()

befiin ... apply f()

end

end

apply f()

end

Figure 18 gives the procvar diagram for program 4 and shows the state of the

interpreter after trB declaraticas of F and G have been executed. The cycle

involves procedure variables (f, P) and (g, P).

We have found that many block structured programs can be rewritten so

they accomplish the original computation but no longer satisfy the necessary

condition for the creation of cycles. The principle is to convey closures

to and from a procedure activation by passing them as parameters or results

rather than by external references. In this way, the three example programs

may be rewritten as the three transformed programs given below. In each case

the texts of the transformed programs do not contain any external references

to procedure variables and therefore cannot lead to cycles when performed by

the interpreter we have described.

program 2*•

p := procedure (u)

begin

f := procedure (h, x) proced h, integer x

begin

if x = 0 then return 1

x := g(x)

z := apply h(h, x)

return z

end

apply f(f, u)

end

program 3' i .

-40-

P—

p := procedure ()

begin

f := procedure (h,); proced h

F— begin

end

G —
g := procedure (k,); proced k

begin ... apply k(k,) ... end

aPPlv g(h,)

end

apply f(f,)

program 4' i .

P—

p := procedure ()

begin

f := procedure (h, k,)

begin ... apply k(h, k,) ... end

g := procedure (h, k,)

begin ... apply h(h, k,) ... end

apply f(f, g,)

end

-41-

Several interesting questions are unresolved at this writing. We do

not know in what sense, if any, the necessary condition formulated above

is a sufficient condition for the formation of cycles during interpretation

according to the acheme outlined. Also, we do not know a general method

for rewriting block structured programs so that cycles will not arise

during execution.

REPRESENTATION OF CONCURRENCY IN THE BASE LANGUAGE

A subject of major importance in the design of the base language is the

representation of concurrent activities. In the introduction we noted that

some computations inherently involve concurrent processes and cannot be

Simulated by sequential programs — also, that a high degree of concurrency

within computations may prove essential to the practical realization of com-

puter systems with programming generality. To these motivations we may add

that some contemporary source languages, notably PL/I, have explicit pro-

vision for programming concurrent processes.

We regard the state transitions of the interpreter as representing the

progress of all activities in a computer system that is executing many

programs simultaneously. The basic requirements for representing concurrent

actions in the interpreter are met by providing for many sites of activity

in the control component of the state (Figure 3), and by organizing the

local structures of procedure activations as a tree so a procedure may

spawn independent, concurrent activations of component procedures. Multiple

sites of activity may represent many actions required to accomplish different

parts of one computation as well as parallel execution of many independent

computations.

Consideration of concurrent computation brings in the issue of

nondeterminacy — the possibility that computed results will depend on the

relative timing with which the concurrent activities are carried forward.

The work of Van Horn [27], Rodriguez [22] and others has shown that computer

systems can be designed so that parallelism in computations may be realized

while determinacy is guaranteed for any program written for the system. The

-42-

ability of a computer user to direct the system to carry out computations

with a guarantee of determinacy is very important. Most programs are in-

tended to implement a functional dependence of results on inputs, and

determinism is essential to the verification of their correctness.

There are two ways of providing a guarantee of determinacy to the user

of a computer system. The distinction is whether the class of abstract or

base language programs is constrained by the design of the interpreter to

describe only determinate computations. If this ^.s the case, then any

abstract program resulting from compilation will be determinatr in execution.

Furthermore, if the compiler is itself a determinate procedure, then each

translatable source program represents a determinate procedure. On the

other hand, if the design of the interpreter does not guarantee determinacy

of abstract programs, determinacy of source programs, when desired, must be

ensured by the translator.

In the base language, it is necessary to provide for computations that

are inherently nondeten.^uate, such as the example of a process awaiting the

first response from either of two terminals. We want to include in the base

language primitive features for representing essential forms of nondeterminacy.

In principle, we wish to guarantee that any (base language) procedure that

does not use these features will be determinate in 1ts operation. Further-

more, use of base language primitives for the construction of nondeterminate

procedures is intended to be such that the choice among alternative out-

comes always originates from the source intended by the program author, and

never from timing relationships unrelated to his computation.

Our current thoughts regarding representation of base language procedures

so as to guarantee determinacy are based on data flow representations for pro-

grams in which each operation is activated by the arrival of its operands,

and each result is transmitted as soon as it is ready, to those operations

requiring its use. Rodriguez [22] has formulated a data flow model that

applies to programs involving assignment, conditional, and iteration state-

ments, and data represented by simple variables. Procedures represented by

Rodriguez program graphs are naturally parallel and the rules for their exe-

cution guarantee determinacy. In [3], Dennis has given a similar program

graph model for procedures that transform data structures, but do not involve

-43-

conditional or iteration steps. Determinacy is guaranteed for these program

graphs if they satisfy a readily testable con iition.

We hope to be successful in combining and extending these two models

to obtain a satisfactory data flow model for all determinate procedures.

If this objective can be achieved, we expect to use program graphs as the

nucleus of the base language. On the basis of improved understanding of

parallel programs obtained by recent research o\i program schemes by Karp

and Miller [11], Paterson [21], Slutz [23], and Keller [12], we are opti-

mistic about finding an inherently determinate scheme for representing the

concurrency present in most algorithms.

CONCLUSION

This article has been an introduction to the goals, philosophy and

methods of our current work on the design of a base language. The material

presented is an "instantar.eous description" of an activity that still has

far to go — many issues need to be satisfactorily resolved before we will

be pleased with our effort. In addition to the representation of concurrency,

the base language must encompass certain concepts and capabilities beyond

those normally provided in contemporary source languages. Four aspects of

this kind are: 1. Generation and transformation of information structures

that share component structures; 2. Concurrent processes that, in pairs,

have producer-consumer relationships; 3. Progranming systems that are able

to generate base language programs and moi.itor their execution; and

4. Provision for controlling and sharing access to procedures and data struc-

tures among users of a computer system. We are continuing Investigation of

how these capabilities should be incorporated in the base language. Some

ideas on intercommunicating processes have been reported briefly [5]. Some

thoughts on program monitoring and controlled sharing of information are

given by Dennis and Van Hern [6], and by Vanderbilt [25].

-44-

1. D. M. B«rrv, Introduction to Oregano. Proc««dlngg of a Sypoait» on Data

Structure« in PrograiwlnK Unguaga«. filfifl^ Wotlca« Vol. 6, No. 2, AC«.

February 1971, pp 171-190.

2. D. M. Berry, Block structure: retention or deletion? Proceedinat of

TMrd Annual AQJ Syapoiiuin on Theory of Computing. May, 1971, pp 86-100.

3. J. B. Dennis, Programing generality, parallelisn and computer architecture.

In formt ion Processing 68, North-Ho Hand, Aasterdan 1969, pp 484-492.

4. J. B. Dennis, Future trends in tine scaring systeas. Tiws-Sharing Innovation

for Operationa Research and Deciaion-Mekina. Washington Operationa Research
Council 1969, pp 229-235.

5. J. B. Dennis, Coroutines and parallel cooputation. Princeton Conference on

Information Sciences and Systems. Princeton, New Jersey, March 1971.

6. J. B. Dennis and E. C. Van Horn, Programing semntics for multiprogramed

computations. Com. of the AOI, Vol. 9, No. 3 (l^rch 1966), pp 143-155.

7. A. P. Ershov, Private communication.

8. J. L. Gertz, Hierarchical Aasociatlve Memories for Parallel Computation.

Report MAC-TO-69, Project MAC, M.I.T., Cambridge, Mss., June 1970.

9. J. K. Iliffe, Basic Machine Principles. American Elsevier, New York 1968.

10. J. B. Johnston, The contour model of block structured processes. Proceedings

of a Symposium on Data Structures in Progratmnlng LanKuages. SIGPUW Notices

Vol. 6, No. 2, ACM, February 1971, pp 55-82.

11. R. M. Karp and R. E. Miller, Parallel program schesata. J. of Coegwer and

System Sciences. Vol. 3, No. 2 (>tay 1969), pp 147-195

12. R. M. Keller, On maximally parallel schemata. IEEE Conference Record.

Eleventh Annual Symposium on Switching and Automata Theory. October 1970,

pp 32-50.

13. P. J. Landin, The mechanical evaluation of expressions. The Cosputer Journal.

Vol. 5, No. 4 (January 1964), pp 308-320.

-45-

14. P. J. Undln. Corr«ipond«nc« b«c«M*n Algol 60 and Church'i l»b«U-ooMtloi»

(Pares 1 «nd II). Pare I: gs- of Ha &flj. M- ». fi2- 2 ('•«»«^•n' l'M>«

pp 89-101. f»rt II: &■• tf £1* AB. M- «. H2- 3 (H>rch lH5)'

pp 158-165.

15. P. Uuar. JsiMl D«""ltlon 2l ÄilSi *fi. ^chnicMX Mport T« 25.088.

IRH Uboracory, Vtaima, Otcadbar 1968.

16. P. Lucat. Ä2 ^«truetlva HftUffUffM 2l SHi Äl2£!L fiSÜSlU Uä UttU
K^ulvlanca. Tachnlcal Mport W 25.085. IBM Uboratorr, Vlanna. Juna 1968.

17. P. Lucas, P. Lauar and H. Stitlaltnar. Msthod and Hotatton for r]jf £2011

Ptflnltion of Proarawsiwa Lanauaaaa. Technical Raport fR 25.087, IBM Lab-

oratory, Vlanna, Juna 1968.

18. P. Lucas and K. Walk, On tha foraal dascriptLon of PL/1. Aaflidi llXifif i&

Autoaattc rr?trmiltn8i M- *. till J. Pirgawn Praas 1969, pp 105-182.

19. J. McCarthy, Toward« a aathaaatlcal sciancs of coaputation. Inforaation

Procssslna 62, North-Holland, Aaatsrdan 1963, pp 21-28.

20. J. McCarthy, A foraal dascrlpt'on of s subsst of Algol. Poraal Langmat

Datcrlptlon Unauaaas for Oowputar Proara—tins. North-Ho Hand, AMtvrdaa 1966,

pp 1-12.

21. M. S. Patarton, Prograa schaaata. Machlnt lntallla«ncs. Vol. 3,

Assrlcan Elsavlsr, Naw York 1968, pp 19-31.

22. J. E. Rodrlguas, A Graph Modal for Para Hal Coaoutatlons. Raport MAC-W-64,

ProUct MAC, M.I.T., Caad>ridga, Maas., Saptaabar 1969.

23. D. R. Sluts. Tha Floa Graph Schaaata Model of Para Hal Coaoutatlon.

Raport MAC-TR-53, Projact MAC, M.I.T., Caabrldga, »teas., Saptaabar 1968.

24. T. B. Staal, Jr., WOOL: Tha ayth and tha fact. Annual Ravla« In Autoaatic

ProaraBrolnA. Vol. 2, Pargaaon Praas 1961, pp 325-344.

25. D. H. Vsndarbilt, ControlUd Information Sharlna In a Coaputar Utility.

Raport mc-TR-67, Project MAC, M.I.T., Caabrldga, Maas., Octobar 1969.

•46-

26. J. ItoliMbMa, Ua OlMCI frobii e»Ui—<. UiipublUh«^ ■MoranAa.

Nirch I96S.

27. |. c. Van Norn, Co—ufr OiiUn for A«ynchfonomW ltoPfodu«it>U tlÜii'

I, Upon mc-TI-M. Project HAC, N.I.r., Gubrl^t«, «•••..

1966.

