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’V
On the Design and Specification of a Common Base Language¢

Jack B. DennisT
Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract: This is a report on the work of the Computation Structures Group
of Project MAC toward the design and specification of a common base language
for programs and information structures. We envision that the meanings of
programs expressed in practical source languages will be defined by rules of
translation into the base language. The meanings of programs in the base
language is fixed by rules of interpretation which constitute a transition
system called the interpreter for the base language. We view the base lan-
guage interpreter as the functional specification of a computer system in
which emphasis is placed on programming generality — the ability of users

to build complex programs by combining independently written program modules.

Our concept of a common base language is similar to the abstract programs
of the Vienna definition method — but a single class of abstract programs ap-
plies to all source languages to be encompassed. The semantic constructs of
the base language must be just those fundamental constructs necessary for the
effective realization of the desired range of source languages. Thus we seek
simplicity in the design of the interpreter at the expense of increased com-
plexity of the translator from a source language to the base language. As an
illustration of this philosophy, we present a rudimentary form of the base lan-
guage in which nonlocal references are not permitted, and show how programs ex-
pressed in a simple block structured language may be translated into this base
language.

The importance of representing concurrency within and among computations
executed by the interpreter is discussed, and our approach toward incorporating
concurrency of action in the base langauge is outlined.

TComputation Structures Group, Project MAC, MIT.

*The work discussed in this article was done at Project MAC, MIT, and was sup-
ported in part by the National Science Foundation under research grant GJ-432,
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INTRCDUCTION

The Computation Structures Group of Project MAC is working toward the
design and specification of a base language for programs and information
structures. The base language is intended to serve as a common intermediate
representation for programs expressed in a variety of source programming lan-
guages.

The motivation for this work is the design of computer systems in which
the creation of correct programs is as convenient and easy as possible. A
major ingredient in the convenient synthesis of programs is the ability to
build large programs by combining simpler procedures or program modules,
written independently, and perhaps by different individuals using different
source languages. This ability of a computer system to support modular pro-

gramming we have called programming generality [3, 4]. Programming gener-

ality requires the communication of data among independently specified pro-
cedures, and thus that the semantics of the languages in which these pro-
cadures are expressed must be defined in terms of a common collection of data
types and a common concept of data structure.

We have observed that the achievement of programming generality is very

difficult ir ~onventional computer systems, primarily because of the variety

of data - - . * and access methods that must be used for the impiementation
of large + . -h acceptable efficiency. For example, data structures
that vay size and form during a computation are given different represen-

tations t = those that are static; data that reside in different storage
media are accessed by different means of reference; clashes of identifiers
appearing in different blocks or procedures are prevented by design in some
source languages but simila. consideration has not been given to the naming
and referencing of cataloged files and procedures in the operating environ-
ment of programs. Thes.: limitations on the degree of generality possible in
computer systems of conmventional architecture have led us to study new con-
cepts of computer system organization through which these limitations on pro-

gramming generality migh% be overcome.



In this effort we are working at the same time on developing the
base language and on concepts of computer architecture suited to the exe-
cution of computations specified by base language programs. That is, we
regard the base language we seek to define as a specification of the func-
tional operation of a computer system. Thus our work on the base language
is strongly influenced by hardware concepts derived from the requirements of
programming generality [3].

In particular, the choice of trees with shared substructures as our
universal representation for information structures is based in part on a
conviction that there are attractive hardware realizations of memory systems
for tree structured data. For example, Gertz [8] considers how such a memory
system might be designed as a hierarchy of associative memories. Also, the
base language is intended to represent the concurrency of parts of computa-
tions in a way that permits their execution in parallel. One reason for em-
phasizing concurrency is that it is essential to the description of certain
computations — in particular, when a response is required to whichever one
of several independent events is first to occur. An example is a program
that must react to the first message received from either of two remote
terminals. Furthermore, we believe that exploiting the potential concurrency
in programs will be important in realizing efficient computer systems that
offer programming generality. This is because concurrent execution of pro;
gram parts increases the utilization of processing hardware by providing many
activities that can be carried forward while other activities are blocked
pending retrieval of information from slower parts of the computer system
memory .

Our proposal for the definition of a common base language may seem like
a rebirth of the proposal to develop a Universal Computer Oriented Language
[24). Thus it is reasonable to inquire whether there is any better chance
that the development suggested here will succeed whereas this earlier work
did not result in a useful contribution to the art. Our confidence in
eventual success rests on important trends in the computer field during the
past ten years and fundamertal differences in philosophy. The most important
change is the increased importance of achieving greater programming gener-
ality in future computer systems. The cost of acquiring and operating the

hardware portion of computer systems has become dominated by the expense



of creating and maintaining the system and application software. At present,
there is great interest in the exchange of programs and data among computer
installations, and in building complex procedures from components through
the facilities of time-shared computers. Computer users are often pre-
pared to forsake efficiency of programs to gain the ability to operate

them in different environments, and the ability to use the program in
conjunction with other programs to accomplish a desired objective.

Furthermore, the pace of programming language evolution has slowcd, It
is rare that a fundamentally new concept for representing algorithms is in-

troduced. Workers on programming language design have turned to refining
the conceptual basis of program representation, providing more natural modes
of expressing algorithms in different fields, and consolidating diverse ways
of representing similar actions. Today, there is good reason to expect that
a basic set of notions about data and control structures will be sufficient
to encompass a usefully large class of practical programming languages and
applications. In particular, the set of elementary data types used in com-
putation has not changed significantly since the first years of the stored
program computer — they are the integers, representations for real numbers,

the truth values true and false, strings of bits, and strings of symbols from

an alphabet. Also, considerable attention is currently devoted to the de-
velopment of useful abstract models for information structures, and the pros-
pects are good that these efforts will converge onla satisfactory general
model.

We are also encouraged by others who are striving toward similar goals.
Andrei Ershov is directing a group at the Novosibirsk Computing Center of the
Soviet Union in the development of a common "internal language" for use in
an optimizing compiler for three different languages — PL/I, Algol 68, and
Simula 67 [7]. The internal language would be a representation common to
the three source languages and is to serve as the representation in which
transformations are performed for machine independent optimization.

The '"contour model" for program execution, as explained by Johnston [10]

and Berry [l] provides a readily understood vehicle for explaining the



semantics of programming languages such as Algol 60, PL/I, and Algol 68
in which programs have a nested block structure. It is easy to imagine
how the contour model conuld be formalized and thus serve as a basis for
specifying the formal semantics of programming languages. The contour
model may be considered as a proposal for a common base language and as a
guide for the design of computer systems that implement block structured
languages.

John Iliffe has for some time recognized some of the fundamental im-
plications of programming generality with respect to computer organization.

His book Basic Machine Principles [9] is a good exposition of his ideas

which are argued from the limitations of conventional computer hardware in
executing general algorithms. Again, Iliffe's machine defines a scheme of
program representation that could be thonght of as a common base language.

However, Iliffe has not discussed his ideas from this viewpoint.

FORMAL SEMANTICS

When the meaning of algorithms expressed in some programming language

has been specified in precise terms, we say that a forinal semantics for the

language has been given. A formal semantics for a programming language gen-
erally takes the form of two sets of rules — one set being a translator,
and the second set being an interpreter. The translator specifies a trans-
formation of any well formed program expressed in the source language (the

concrete language) into an equivalent program expressed in a second

language — the abstract language of the definition. The interpreter ex-

presses the meaning of programs in the abstract language by giving explicit
directions for carrying out the computation of any well formed abstract pro-
gram as a countable set of primitive steps.

It would be possible to specify the formal semantics of a programming
language by giving an interpreter for the concrete programs of the source
language. The translator is then the identity transformation. Yet the in-
clusion of a translator in the definition scheme has important advantages.
For one, the phrase structure of a programming language viewed as a set of

strings on some alphabet usually does not correspond well with the semantic
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structure of programs. Thus it is desirable to give the semantic rules

of interpretation for a representation of the program that more naturally
represents its semantic structure. Furthermore, many constructs present

in source languages are provided for convenience rather than as fundamental
linguistic features. By arranging the translator to replace occurrences of
these constructs with more basic constructs, a simpler abstract language is
possible, and its interpreter can be made more readily understandable and
therefore more useful as a tool for the design and specification of computer
languages and systems.

The abstract language that has received the most attention as a base
for the formal semantics of programming languages is the lambda-calculus of
Church. For several reasons we have found the lambda calculus unsuited to
our work. The most serious problem is that the lambda calculus does not
deal directly with structured data. Thus it is inconvenient to use the
lambda calculus as a common target language for programs that make use of
selection to reference components of information structures. It also rules
out modeling of sharing in the form of two or more structures having the same
substructure as a component.

A second defect in terms of our goals is that the lambda calculus in-
corporates the concept of free and bound variables characteristic of block
structured programming languages. We prefer t) exclude these concepts so
the base language and its interpreter are simpler and more readily applied
to the study of computer organization. Later in the paper we show how block
structured programs may be translated into base language programs using the
rudimentary version of the base language introduced below. This translation
of block structured programs into programs that are not block structured is
an important example of how simplicity in the interpreter may be obtained
by translating source language constructs into more primitive constructs.

Our thoughts on the definition of programming languages in terms of a
base language are closely related to the formal methods developed at the IBM
Vienna Laboratory [17, 18], and which derive from the ideas of McCarthy [19, 20]
and Landin [13, 14]. For the formal semantics of programming languages a gen-
eral model is required for the data on which programs act. We regard data as

consisting of elementary objects and compound objects formed by combining

elementary objects into data structures.
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Elementary objects are data items whose structure in terms of simpler
objects is not relevant to the description of algorithms. Tor the purposes

of this paper, the class E of elementary objects is

=
]
nea

URUW

where

Z = the class of integers
R = a set of representations for real numbers
W = the set of all strings on some alphabet

Data structures are often represented by directed graphs in which
elementary objects are associated with nodes, and each arc is labelled by
a member of a set S of selectors. In the class of objects used by the Vienna
group, the graphs are restricted to be trees, and elementary objects are as-
sociated only with leaf nodes. We prefer a less restricted class so an ob-
ject may have distinct component objects that share some third object as a
common component. The reader will see that this possibility of sharing is
essential to the formulation of the base language and interpreter presented

here. Our class of objects is defined as follows:

Let E be a class of elementary objects, and let S be a class of

selectors. An object is a directed acyclic graph hLaving a single
root node from which all other nodes may be reached over directed
paths. Each arc is labelled with one selector in §, and an elemen-

tary object in E may be associated with each leaf node.

e

=Z__U

n=

Figure 1 gives an example of an object. Leaf nodes having associated cle~
mentary objects are represented by circles with the element of E written

inside; integers are represented by numerals, strings are enclosed in single
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quotes, and reals have decimal points. Other nodes are represented by
solid dots, with a horizontal bar if there is more than one emanating arc.

The node of an object reached by traversing an arc emanating from its
root node is itself the root node of an object called a component of the
original object. The component object consists of all nodes and arcs that
can be reached by directed paths from its root node.

At present, we rule out directed cycles in the graphs of objects for
several reasons: In the first place, the data structures of the most im-
portant source languages are readily modelled as objects according to our
definition, Also, it seems that realizing the maximal concurrency of com-
putations on data structures will be difficult to do with a guarantee of
determinism if objects are permitted to contain cycles. Finally, the pos-
sibility of cycles invalidates the reference count technique of freeing
storage for data items no longer accessible to computations, and some more
general garbage collection scheme must be used. The general techniques do
not seem attractive with regard to the concepts of computer organization we
have been studying — especially when data items are distributed among sev-
eral physical levels of memory.

It is convenient to introduce our concept of 3 base language and its
interpreter by comparison with the Vienna definition mecthod as represented
by the formal definitions of Algol 60 [15] and PL/I [18]. The Vienna method
is outlined in Figure 2. The concrete programs of the programming language
being defined are mapped into abstract programs by the translator. A con-
crete program is a string of symbols that satisfies a concrete syntax usually
expressed as a form of context free grammar. The interpreter is a nondeter-
ministic state transition system defined by a relation that specifies all
possible next states for any state of the interpreter. Abstract programs
and the states of the interpreter are represented by objects (trees).
Figure 2 shows the three major components of interpreter states. The
'text'-component is the abstract program being interpreted. The 'mem'-
component is an object that contains the values of variables in the abstract

program, thus serving as a model of memory. The 'cont '-component of the
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state contains information about statements of the abstract program
whose execution is in progress. The interpreter is specified as a non-
deterministic system so activities may be carried out concurrently where
permitted by the language being defined.

For comparison, note that a separate class of abstract programs and
interpreter are sepcified for each formal definition of a source language;
that states of the interpreter mordel only the information structures re-
lated to execution of one abstract program; and that statements in the con-
crete program retain their identity as distinct parts of the corresponding
abstract program.

Figure 3 is the corresponding outline showing how source languages
would be defined in terms of a common base language. A single class of
abstract programs constitutes the base language. Concrete programs in
source languages (Ll and L2 in the figure) are defined by translators into
the base language — the class of abstract programs serves as the common
target representation for several source languages. For this to be effec-
tively possible, the base language should be the '"least common denominator"
of the set of source languages to be accommodated. The structure of abstract
programs cannot reflect the peculiarities of any particular source language,
but must provide a set of fundamental linguistic constructs in terms of which
the features of these source languages may be realized. The translators
themselves should be specified in terms of the base language, probably by
means of a specialized source language. Formally, abstract programs in the
base language, and states of the interpreter are elements of our class of
objects defined above.

The structure of states of the interpreter for the base language is
shovm in Figure 4. Since we regard the interpreter for the base language
as a complete specification for the functional operation of a computer sys-
tem, a state of the interpreter represents the totality of programs, data,

and control information present in a computer system. In Figure 4 the
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Figure 3. QLanguage definition in terms
of a common base language.
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universe is an object that represents all information present in the computer
system when the system is idle — that is, when no computation is in progress.

The universe has data structures and procedure structures as constituent

objects. Any object is a legitimate data structure; for example, a data
structure may have components that are procedure structures. A procedure
structure is an object that represents a procedure expressed in the base
language. It has components which are instructions of the base language,
data structures, or other procedure structures. So that multiple activa-
tions of procedures may be accommodated, a procedure structure remains un-
altered during its interpretation.

The local structure of an interpreter state contains a local structure

for each current activation of each base language procedure. Each local
structure has as components the local structures of all procedure activa-
tions initiated within {t. Thus the hierarchy of local structures represents
the dynamic relationship of procedure activations. One may think of the
root local structure as the nucleus of an operating system that {nitiates
independent, concurrent computations on behalf of system users as they re-
quest actfivation of procedures from the system files (the universe).
The local structure of a procedure activation has a component object
for each variable of the bise language procedure. The selector of each com-
ponent is its f{dentiffer in the instructions of the procedure. These ob-
jects may be elementary or compound objects and may be common with objects
within the universe or within local structures of other procedure activations.
The control component of an interpreter state {s an unordered set of

sttes of activity. A typical gite of activity is represented in Figure &

by an asterisk at an {nstruction of procedure P and an arrow to the local
structure L for some activation of P. This {s analogous to the "instruction
pointer/environment pointer' combination that represents a sfte of activity
in Johnston's contour model [10). Since several activations of a pro-
cedure may exist concurrently, there may be two or more sites of activity
favolving the same {nstruction of some procedure, but designating different

local structures. Also, within one activation of a procedure, several
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instructions may be active concurrently; thus asterisks on different in-
structions of a procedure may have arrows to the same local structure.

Each state transftion of the interprater executes one instruction for
some procedure activation, at a site of activity selected arbitrarily from
the control of the current state. Thus the interpreter is a nondeter-
ministic transition system. 1In the state resulting from a transition, che
chosen site of activity {s replaced according to the sequencing rules of
the base language. Replacement with two sites of activity designatir. two
successor instructions would occur i{n interpretation of a fork {nstruction;
deletfon of the site of activity without replacement would occur in execu-

tion of a quit or join instruction.

INTERPRETATION OF A RUDIMENTARY BASE LANGUAGE

Next we show how typical {nstructions of a rudimentary base language
vould be implemented by state transitfons of an {nterpreter. This will put
the concepts expressed above into more concrete form, and provide a basis
for understanding the zranslatior of block structured launguages into the
base language. Because consideration of concurrency {n progra=ms has led
to concepts of program reprcsentation unfamiliar to most readers, and be-
cause these concepts are not sufficiently advanced, we will use for {llus-
tration a base language employing conventional {nstruction sequencing. The
instructions of a procedure are objects selected ' succcamfve integers,
vith O being the selector of the f{nftial {nstruc:

The effect of representative {nstructions on the interpreter atate {»
shown {n Figures 5 through 11 {n the form of before/after pictures of rele-
vant state components. In these figures, P marks the root of the procedure
structure containing an {nstrocticon under cons{deration as {ts {-component,
and L(P) {s the root of the local structure for the relevant activation of
P.
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The 232 fnstruction {s typical of instructions that apply binary

operations to clementary objects. The {nstruction

a d 'U'. 'V'. 'wl

{s an object having as components the four elementary objects 'add', 'u',

te,!

v', and 'w'. Thesec are {nterpreted as an operation code and three ''address
fields" used as selectors for operands and result {n the local structure
L(P). The state transition §s shown {n Figure 5. Note that the site of
activity advances sequentfially to the § + l-componert of P.

Let us say that a procndure activation has direct access to a data

structure {f{ the data structure {s the s-component of the local structure

for some selector s. The {nstruction

select 'p', 'n', 'q'
is used to gain direct eccesy to the 'n'-component of a data structure to
vhich direct access exists. This instruction makes the object that s the
‘'p’*'n'-component of L(P) also the 'q’'-component of L(P) as shown by Figure 6,
Literal values are retrieved from the procedure structure by const

fnstructions such as

const 1.5, 'x

v ich makes the elementary object 1.5 the 'x'-component of L(P). Seigct and
const instructions may be used to build arbitrary data structures as {llus-
trated {n Figure 7. Note that execution of select 'p‘, 'n’, ‘2" twplies
creat{on of an 'n'-component of the object selected by ‘p' If none alresdy
exiets,

Figurz B shows how the {ngtruction

l‘ in D"I' ln" lql
establishes an arc between tvo objects (the 'p'- and 'g'-componente of L(T))

to vhich direct access exists, Feecution of thie {nstruction saces the

'q’~conponent of L(P) aleo the "p'<"n'-cemponent of L(F).
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The link {nstruction {s the means for establishing sharing — making
one object a common component of two distinct objects. Unless some re-
striction {s built into the base language or its interpreter, use of
link instructions can introduce cycles into the interpreter state. At
present we do not know how use of link instructions should be limited so
introduction of cycles cannot occur. One way in which cycles can arise
occurs in the i{nterpretation of block structured programs by the scheme
given in the next section of the paper.

The instruction

delete 'p', 'n

erases the arc ladelled 'n' emanating from tiec root of the '

p'-component
of L(P). Any nodes and arcs that are unrooted after the erasurc ccase (O
be part of the interpreter state, as shown in Figure 9,

Activation of a nev procedure {s accomplished by the Instruction

apply ‘t', ‘'a
vhere the 'f'-component of L(P) is the procedure structure F of the pro-
cedure to be activated, and the 'a'-component of L(P) is an object (an

aTgument structure) that contains as components all data requiied by the

procedure (e.g., actual parameter wvaluon) to perform {te function. Execu-
tion of the apply instruction causes the state transition illustrated in
Figure 10: A root node L(F) is created for the local structure of the new
activation; the argument structure (s made the A-component of L(F): a new
site of activity is denoted by an asterisk on the O-component of F and an
srrov te L(F): and the originai sfte of activity is advanced to the
fsl-tnstruction of T and made dormant as indicated by the parentheses.

A procedure activation is terminated by the Instruction

e

which causes the state transition displayed In Figure 11, The root node
L{F) La erased, deleting all parte of the local structure of F that are not
linked to the argument atructure: the site of activity at the return in-
struction disappears. and the dormant aite of activity I(n the activating
grocedure ls activated, YNote that the entire effect of egocuting procedure

¥ ie conveyed to the activation of I by way o the argument structure.
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To apply a procedure, its procedure structure must be a component
of the local structure of the current procedure activation. If the pro-
cedure to be activated is the 'g'-component of the procedure structure P
in execution, execution of the instruction

move 'g', 'f'

will make it directly accessible by identifying the 'f'-component of L(P)
with the 'g'-component of P.

TRANSLATION OF BLOCK STRUCTURED LANGUAGES

Many important programming languages for practical computation are
block structured; the texts of blocks and procedures are nested, and identi-
fiers in one text may refer to variables defined in other texts. Since we
do not plan to include in the base language provision for directly repre-
senting references by a procedure to external objects, we must show how the
execution of block structured programs may be simulated through translation
into the base language and execution by the base language interpreter. The
following discussion gives one way in which this may be accomplished — a
way that seems attractive in relation to the concepts of computer organiza-
tion we are investigating. This diccussion also serves as a good example of
how complexity in a source language may be represented in the rules of trans-
lation rather than in the rules of interpretation of a formal definition.

For this discussion we will use an elementary block structured language.

Identifiers are declared by the lines

integer x or proced x

to denote simple variables or procedures. Basic statement types include:

Assignment statements such as

x := g(u, v)

where X, u, and v are simple variable identifiers, and g denotes an un-

specified function; procedure applications of the form
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apply f(x, y) or z := apply f(x, y)

where f is a procedure identifier, the second form being used for a value

returning procedure; 2,d conditional statements like

if p(x) then S1 else S2

and iteration statements like
while p{x) do Sl

where p denotes an unspecified predicate and S1 and S2 are basic statements

or a sequence of statements delimited by begin, end.
A procedure variable f may be assigned a value by a declaration state-

ment having the form

f := procedure (x, ..., y)

begin

=3

en

where x,...,y are the formal parameters. A statement

return 2z

specifies the result of a value returning procedure. The lines between begin
and end, together with the list of formal parameters, make up the text of the
procedure.

A program in this language has the form of a nested set of procedure
declarations. Except for the text of the outermost declaration, each text
is enclosed by the text within which its declaration appears. As in Algol 60,
each identifier is local to the text in which it is declared, and the meaning
of a nonlocal appearance of an identifier is defined to be the same as its
meaning in the enclosing text. The formal parameters of a procedure are

local identifiers of the text being declared.
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The meaning of block structured programs can be expressed in terms
of a tree of symbol table= as has been explained by Weizenba m [26], or
in terms of the contour model. The interested reader should study the
work of Berry [2] and Lucas [16] for other discussions of formal implemen-
tations of block structured programs and their equivalence.

To simulate the execution of a block structured program by a base
language program, we need a scheme for implementing the nonlocal ref-
erences of the source program. Our method is to augment the argument
structure associated with a procedure activation in the base language in-
terpreter so that all external objects to which reference is required by
the block structured procedure are accessed as components of the argument
structure,

To make matters precise, it is convenient to adopt some notation. Sup-
pose T is the text of a procedure declaration. We write B(T) to denote the
set of identifiers declared within T (local to T). The set X(T) of external
identifiers associated with text T is defined as follows: We write T' < T
if text T' is nested within text T, that is, if there is a sequence of
texts TO’ Tl’ . Tk such that T = TO’ T' = Tk’ and Ti encloses Ti+1 for
i=0, ..., k-1, Then X(T) contains each identifier x that has a nonlocal
appearance in some text T', T' < T, and is not local to any text T",

T'"< T"S T.

In these terms we can describe the formats of the local structures and
argument structures to be used in simulation of block structure in the base
language. Corresponding to the activation record for an activation of pro-
cedure text T, a local structure (L-structure) is formed by the base lan-
guage program. The L-structure has the format shown in Figure 12a. It has
an E-component in which a value is associated with each identifier in
B(T) U X(T), that is, each local and each external identifier of T. The L-
structure also includes components for temporary values required by the base
language instructions that interpret the text T.

The argument structure (A-structure) for an activation of procedure
text T will have one component for each formal parameter of the text T, and
in addition, an E-component that conveys access to objects referenced by
the external identifiers of T, as shown in Figure 12b.

A procedure identifier is given a value by a procedure declaration
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(a) L-structure (b) A-structure (¢) C-structure
L(T) IA(T) T c(T)
E f2-n E T E
temporaries l ‘ l ,_L,
,_L ,.L text T F'j-ﬂ
xi"' X Xi"' xk xi e xk
S oo SO

u{afBmuxm  ula}exm o u{x}axm

Figure 12. Formats of local, argument, and closure
structures for the interpretation of block
structured programs.
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statement including a text T. Because procedure values may be assigned

to nonlocal identifiers, and may be passed to the calling activation by a
value returning procedure, ac*ivations of the text T may occur in situations
where there is no clear meaning for the external identifiers of T. The usual
solution to this problem is to let a procedure value be an object called a
clogsure of the text T (a C-structure) having two components as in Figure 12c.
The T-component of a closure is the text itself. The E-component (environment)
includes an x-component for each x in X(T), and gives an activation of the

text access to objects referenced by its external identifiers.

Usually, the meaning of the external identifiers of a closure of T is
fixed at the time the closure is created by execution of the declaration of
T. Each x € X(T) is given the same meaning as the current meaning of x in
the text T' that encloses the declaration statement.

The way in which block structured programs may be simulated by the base
language interpreter is best introduced by an example. The following pro-

gram is adapted from Weizenbaum's paper [26]:

program 1:
p := procedure
begin proced f, q, r; integer u, v, 2
f := procedure (x); integer x
P == =
begin proced g
b g := procedure (y); integer y
G — begin integer t
t := x+y)t2
return t
end
=
return g
end

‘q := apply £(1)
r := apply £(2)
u := apply q(3)
v := apply r(5)

z :=u+v

(1]
=]
=9
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The program consists of three procedure texts P, F and G having local and

external identifiers as follows:

B(P)
X(P)

[x’ g] B(G) = [t’ Y]
) X(6) = {x)

Following Weizenbaum and Johnston, we display the progress of a compu-

{f’ q’ r’ U, V,Z] B(F)
1) X (F)

tation by giving a series of snapshots of the interpreter state, chosen to
illustrate pointsg about the execution mechanism. For procedure P, the
initial state of the interpreter (Snapshot 1, Figure 13) includes the text

of P in the form of a procedure structure. This procedure structure is in
fact a tree of procedure structures; for each text T £ P, the procedure
structure for T has as a component a procedure structure for each text en-
closed by T. We will not describe further the coding of procedure texts as
sets of instructions, as the required instruction sequences will be clea:
from the discussion of the state transitions seen in the series of snapshots.
The initial state also includes a local structure L(P) that wiLll serve as the
activation record for procedure P; it is empty except for the argument struc-
ture A(P), which consists of an empty E-component.

For clarity, the arcs that make each argument structure a component of
the local structures of the calling and called procedures are omitted from
the snapshots. Also, we will not include the procedure structure for P in
subsequent snapshots, its presence being understood throughout the computation.

The first step performed by instructions of the base language represen-
tation of P is to create an E-component of its L-structure, and an Ee'x'-
component for each identifier x in B(P) U X(P) = (f, q,r, u,v, z}. Execution
of the declaration of text F yields snapshot 2, The E«'f'«C-component of L(P)
is now a closure of F represented by a C-structure. Its T-component is the
text of F and is shared with the text of P, its E-component is empty because
X(F) = 0.

The first step in the execution of

q :=apply £(1)

is to form an appropriate argument structure A(Fl). 1Its l-component is the

actual parameter value, and its E-component is empty, again because X(F) = @.
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Snapshot 1 Snapshot 2
P *——-*TL(P) = —9A(P) P ZL(P) EA(P)
| ¢ é
rqext P] ‘A : gl c& ‘" c:’c ch ?l.
{ '\ ) ¢ 444 4
rm’rpl - text P C
g T E
text G | | <
text F
Srapshot 3 Snopshot 4

(.

i
|

? LIP)  ®A(F1) oL(FY) TL(P)  TA(FL) FLI(FY)
E | E E | E
A 4 L
4
c
—

e et | fe d

Figure 13. Interpretation of a block structured program —
formation of a closure of text G.
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Activation of the procedure mtructure for F creates an L-structure L(F1).
The firast action by instructic:us of F {s to associate actual parameters
vith ident{fiers in B(F). Thus the Ee'x'-component of L(F1) {s linked to
the l-component of A(Fl) as in snapshoe 3.

Snapshot 4 shows the effect of {nterpreting the declaration of C. This
adds a closure of G as the £:'g'-C-component of L(F1). The meaning of iden-
tifier x, which is an external f{dentifier of G, is fixed {n the closure by
making the E«'x'-comfonent of the closure {dentical with the Ee'x'-component
of the current L-structure. Snapshot 4 also shows the effect of the state-
ment return g which Jinks the E«'g'-component of L(Fl) as the R-component
(result value) of the argument structure A(Fl). This action completes execu-
tion of the instructions of F, hence L(F1) {s deleted and executfon of in-
structiors cf P {s resumed. To complete interpretation of the statement
q ‘= apply £(1), the R-component of A(Fl) {s made the Ee'q'-component of L(P), and
A(Fl) s deleted. The result is shown in snapshot 5 (Figure 14), which also
shows the effect of tnterpreting r := 422y f(2) by a similar sequence of evants

The progress of this computation through snapshot 5 tllustrates hov
values required to interpret external references may be conveyed to a pro-
cedure activation via the argument structure, and how closures of a text may
be formed to fix the meaning of the external (free) idenctifiers in a pro-
cedure declaration — all without going outside the base language features
ve have introduced. The remaini. g snapshots show what is {nvolved in ap-
plying a closure with a nonempty E-compone-t.

Interpretation of the statement u := tﬁgéi q(3) begins with formation of an
argument structure A(Gl) as {n snapshot 6, Figure l4. Here, since X(G) = (x]),
an E+'x'-component of A(Gl) is created and made identical wvith the F«'x'-
component of the closure value of qQ in L(P). Then the initial fnstructions
of G {dentify the E+'y'-component of L(Gl) with the l-component of A(Gl),
and, since x € X(G), tdentify the E-'x'-comp.nent of L(Gl) wicth the £.'x’'-
component of A(Cl). Instructions corresponding to thz body of G compute the
value t = (1 + 3) * 2 = 16 vhich is returned as the R-component of A(Cl).

The result {s snapshot 7 which {ncludes the effect of interpreting the stale-

ments v ‘e 4221; r(5) and ¢ := u + v,
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Figure l4. [Interpretation of ¢ block structured
programs — applicetion of clowsurea,




Uith the above exarple as 4 gulde, ve can (ormulate 4 gemeral aet of
rules governing the alnulation of hlock etructured progreme by the haae

language interpreter.

! Frrmation of an argument ettucture for application of & closure
of text T
s The ‘(h actual parameter for applicationof text T jeo made
the |-cemponent of A(T).
b For each (dentifier = (6 €(T), the 0+ g’ component of the
closure of T to b applicd 18 made the £ 'x"-comporent of
A(TY.

2. Initislication of the local atructure L(T)°
a. Fot each ¢ € T(7), the L+'s’-component of A(7) le made the
£:'n"-component of L(T).
b, Tor each « € B(T), a0 empty §«'x'-component feo appended to
L(T,.
€. fFach actual parmmter value (|-component of A(T)) 2 nade the
T+'x'ecomposent of L(T), vhere z s the identifier of the §*

forral paraneter.

J. 2oturn of walwe:
a. Interpretation of the etatement fetyft =« nadss the N-component
of A(T) ldentical with the 5. ¢ ~component of L(7).
5. Interpretation of 2 = apply f( , ..., Vi text T ie completed
by mading the F* 2 '-component of L(T) identical vith the R
component of the srgument structure for application of the
closure f.

€. The argument struclure (¢ deleted from L(T).

%, Tormmtion of & closure of test T ae the value of identifier  in
an activation of et 7'

6. The pew Ceetructure s the T f «C-romponent of L(T"),

] he test 7 (e made the Tocomponent of the Coestruwclure.

¢. Tor cach 2 £ T(T), the Fe'g'-component of L(T") i* wade the

to'g scomponent af the C-etlructure.



.

-))-

Y. Interpretatinn of & procedure aeeigmment otalement { !~ g IR
tent Y1
a. The F.'g"' Cocomponent of L(T) Les made the §: ' !’ C-component
of L(T), = previoualy exleting Crarec from provedure noade
£+°f° being deleted.

The method of simulating block etrvctured programs presented above has
o najor defect (n terme of our objectives for the basc langusge: Interpreta-
tion of progrene can lead to (aterpreter statles fOr which the graph of the
state has directed cyclee amd (o not an object according to our definition,

The simplset caee (e the folloving program:

pLestas 1
:'*u_mm:("’
begie
r— ::—M(n):m:
gl
¥ L“’OMLM'
% 1= g(n)
2 7-“8"(;)
eturn ¢
‘Eﬁ
axply f(v)
=

™e enapahot In Fig .e 158 ehowe the eltuation juet after interpretation of
the declaration of text F. The cycle arioee becauwee of the free occurrence
of  within text I, vhere the value of § [e & closure of T,

To underetand in general the conditiona under which cycles are introduced,
it fe (regructive to uae diagrams shoving all nonlocal references to the pro-
codure variablee of programe being etudied. A procedure variable la uniquely
epecified by & palr (=, T) vhere x Lo & procedure Lldentifler and T (e a text
in vhich = ie deciared, timi le x € B(T). We wvrite R(x, T) to represent



la. gLLP) (b}

toat F

Flegure 195, Interpreter atate for prugras 2

shoving the cycle introduced, and
the corresponding procvar diagras,

Flgure 16. Procvar diagram for progra=m |
ashowing atsence of necessary con-
dittons for the occurrence of cycles.
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the range of a procedure veriable; R(x, T) {s a set containing each zext T'
ruch that the variable (x, T) could be assigned a closure of T' as its value
during program execution., The range of a procedure varjable may be deter-
mined by tracing references to, and assigrments of, the closures defined by
procedure declarations. We suspect that, unless a program has redundant or
unproductive statements, there will be some interpretation for fts function
and predicate symbols such that each element of the range of a procedure
varfable cccurs as its value in gome computation by the program.

To construct the procedure variable diagram (procvar diagram for short)
of a block structured program represent the texts of the program by closed
contours nested in the same way as the texts. The area ingide the contour
for T but outside contours for texts enclosed by T is the locality of T.
let (x, Y) be a procedure viriable of the program, and represent it by a
solid dot labelled x and placed in the locality of T. Place a small open
circle in the locality of T' for each text T’ with T' < T in which
{dentifier x refers to the procedure variable (x, T). Join each of these
circles to the solid dot denoting (x, T) by arcs without arrows. For each
text T' i{n the range of variable (x, T), draw an arrow from the solid dot
representing (x, T) to the contour for T'. Repeat these steps for each pro-
cedure variable of the program.

The procvar diagram for progran is shown in Figure 15b, and the diagram
for program | appears in Figure 16.

Hlext we formulate a necessary condition for a block structured program
to generate cycles when interpreted according to our rules of simulation.
First consider the forms a cycle must have i{n an interpreter state. There
are nine kinds of nodes involved in the interpretation of block structured

programs:

L: root nodes of L-struvctures

L+E: enviromment nodes of L-structures
root nodes of A-structures

sE: enviromment nodes of A-structures

simple variable nodes

procedure variable nodes

root nodes of C-structures

+T: text wodes of C-structures

O O 0 w o n >

+E: enviromment nodes of C-structures
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Of cthese, types L and A cannot occur in cycles because no action by the
interpreter creates any arcs terminating on L-nodes or A-nodes (aside from
the implicit links we have omitted from the diagrams). Further, arcs
terminating on L¢E- or A+E-nodes can only emanate from L- and A-nodes,
respectively. Hence these node types cannot occur in cycles. No arcs
emanate from S-nodes, and no arcs from procedure structures terminate on
nodes of L-structures; therefore S-nodes and T-nodes cannot occur in
cycles. These considerations leave just three kinds of arcs that can be

members of any cycle (x is some procedure identifier):

CiE
!

oryr—QO—8%y

i

]

C+E
Thus a cycle in an interpreter state consists of a series of triplets, each
triplet having one of each kind of arc, in the order shown above. From this
reasoning, we deduce that a cycle arises from interpretation of a block struc-
tured program only if there is a finite sequence of texts Tl’ TZ’ ceey Tk’

and a corresponding sequence of identifiers Xis Xoy cees X that meet these

conditions:

1. Each Xy is an external proredure identifier of Ti: X; € X(Ti)'
Let (xi, Ti) be the procedure variable denoted by Xy in text Ti'

J < 1
Note that 'I‘i Ti'

2. For each i and with j = (L mod k) + 1, Tj is in the range of
(xi, Ti).
These conditions imply that the procvar diagram uf a program has a
cycle of arrows such that each arrow terminates on the contour of a text that
contains an external reference to the procedure variable from which the next
arrow emanates. For program 2, Figure 15b shows a cycle that involves just
one procedure variable (f, F).

Program 3 below is 2 nest of procedures activated recursi ly.
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program 3:
p := procedure ( )
begin
p_| —
£ := procedure ( )
F— begin
g := procedure ( )
begin ... apply £( ) ... ggg
apply g( )
end
apply £( )
end
==

The procvar diagram for this program is shown in Figure 17a, and Figure 17b
illustrates the interpreter state resulting from simulation through the first
activation of text G. Still the cycle only involves procedure variable (f, P)
because the only external reference is the appearance of f in text G.

The sort of program that leads to more complex cycles is illustrated by
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(a) (b) TL(p) TA(Fi) L(F1) $A(GI)TL(GI)
Z E E

F Py

//’_—\\f' 't ' 'f 't
T4

m

o

-

— J/J JJJ

Figure 17. Procvar diagram and interpreter state for program 3.

{a) (b)

i

J_;

Figure 18. Procvar diagram and interpreter state for program 4.

={

f
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program 4&:
]; := procedure ( )
begin

——

Figure 18 gives the procvar diagram for program 4 and shows the state of the
interpreter after tte declaraticus of F and G have been executed. The cycle
involves procedure variables (f, P) and (g, P).

We have found that many block structured programs can be rewritten so
they accomplish the original computation but no longer satisfy the neccssary
condition for the creation of cycles. The principle is to convey closures
to and from a procedure activation by passing them as parameters or results
rather than by external references. In this way, the three example programs
may be rewritten as the three transformed programs given below. 1In each case
the texts of the transformed programs do not contain any external references

to procedure variables and therefore cannot lead to cycles when per formed by

the interpreter we have described.

program 2°': _

p := procedure (u)
begin
Pl E-:= procedure (h, x) proced h, integer x
begin
F— if x = 0 then return 1
x = g(x)
z := apply h(h, x)
return 2
end
apply f(f, u)
foand -
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program 3':
(; := procedure ( )
P begin
[£ := procedure (h, ); proced h
F—begin
g := procedure (k, ); proced k
®lbegtn ... apply k(k, ) ... end
apply g(h, )
end
apply f£(f, )
end
program 4':
;; := procedure ( )
P—lbegin
. f := procedure (h, k, )
begin ... apply k(h, k, ) ... ggg
c (E := procedure (h, k, )
begin ... apply h(h, k, ) ... end
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Several interesting questions are unresolved at this writing. We do
not know in what sense, if any, the necessary condition formulated above
is a sufficient condition for the formation of cycles during interpretation
according to the scheme outlined. Also, we do not know a general method
for rewriting block structured programs so that cycles will not arise

during execution.

REPRESENTATION OF CONCURRENCY IN THE BASE LANGUAGE

A subject of major importance in the design of the base language is the
representation of concurrent activities. 1In the introduction we noted that
some computations inherently involve concurrent processes and cannot be
3imulated by sequential programs — also, that a high degree of concurrency
within computations may prove essential to the practical realization of com-
puter systems with programming generality. To these motivations we may add
that some contemporary source languages, notably PL/I, have explicit pro-
vision for programming concurrent processes.

We regard the state transitions of the interpreter as representing the
progress of all activities in a computer system that is executing many
programs simultaneously. The basic requirements for representing concurrent
actions in the interpreter are met by providing for many sites of activity
in the control component of the state (Figure 3), and by organizing the
local structures of procedure activations as a tree so a procedure may
gpawn independent, concurrent activations of component procedures. Multiple
sites of activity may represent many actions required to accomplish different
parts of one computation as well as parallel execution of many independent
computations.

Consideration of concurrent computation brings in the issue of
nondeterminacy — the possibility that computed results will depend on the
relative timing with which the concurrent activities are carried forward.
The work of Van Horn [27], Rodriguez [22] and others has shown that computer
systems can be designed so that parallelism in computations may be realized

while determinacy is guaranteed for any program written for the system. The
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ability of a computer user to direct the system to carry out computations
with a guarantee of determinacy is very important. Most programs are in-
tended to implement a functional dependence of results on inputs, ard
determinism is essential to the verification of their correctness.

There are two ways of providing a guarantee of determinacy to the user
of a computer system. The distinction is whether the class of abstract or
base language programs is constrained by the design of the interpreter to
describe only determinate computations. If this is the case, then any
abstract program resulting from compilation will be determinate in execution.
Furthermore, if the compiler is itself a determinate procedure, then each
translatable source program represents a determinate procedure. On the
other hand, if the design of the interpreter does not guarantee determinacy
of abstract programs, determinacy of source programs, when desired, must be
ensured by the translator.

In the base language, it is necessary to provide for computations that
are inherently nondeteri..aate, such as the example of a process awaiting the
first response from either of two terminals. We want to include in the base
language primitive features for representing essential forms of nondeterminacy.
In principle, we wish to guarantee that any (base language) procedure that
does not use these features will be determinate in its operation. Further-
more, use of base language primitives for the construction of nondeterminate
procedures is intended to be such that the choice among alternative out-
comes always originates from the source intended by the program author, and
never from timing relationships unrelated to his computation.

Our current thoughts regarding representation of base language procedures
S0 as to guarantee determinacy are based on data flow representations for pro-
grams in which each operation is activated by the arrival of its operands,
and each result is transmitted. as soon as it is ready, to those operations
requiring its use. Rodriguez (22} has formulated a data flow model that
applies to programs involving assignment, conditional, and iteration state-
ments, and data represented by simple variables. Procedures represented by
Rodriguez program graphs are naturally parallel and the rules for their exe-
cution guarantee determinacy. In [3], Dennis has given a similar program

graph model for procedures that transform data structures, but do not involve
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conditional or iteration steps. Determinacy is guaranteed for these program
graphs if they satisfy a readily testable condition.

We hope to be successful in combining and extending these two models
to obtain a satisfactory data flow model for all determinate procedures.
If this objective can be achieved, we expect to use program graphs as the
nucleus of the base language. On the basis of improved understanding of
parallel programs obtained by recent research ou program schemes by Karp
and Miller [11], Paterson [21], Slutz [23], and Keller [12], we are opti-
mistic about finding an inherently determinate scheme for representing the

concurrency present in most aljzorithms.

CONCLUSION

This article has been an introduction o the goals, philosophy and
methods of our current work on the desigr. of a base language. The material
presented is an "instantareous description" of an activity that still has
far to go — many issues need to be satisfactorily resolved before we will
be pleased with our effort. In addition to the representation of concurrency,
the base language must encompass certain concepts and capabilities beyond
those normally provided in contemporary source languages. Four aspects of
this kind are: 1. Generation and transformation of information structures
that share component structures; 2. Concurrent processes that, in pairs,
have producer-consumer relationships; 3. Programming systems that are able
to generate base language programs and moritor their execution; and
4. Provision for controlling and sharing access to procedures and data struc-
tures among users of a computer system. We are continuing investigation of
how these c.pabilities should be incorporated in the base language. Some
ideas on intercommunicating processes have been reported briefly [5]. Some
thoughts on program monitoring and controlled sharing of information are

given by Dennis and Van Fsin (6], and by Vanderbilt [25].
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