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CHAPTER I 

SIMPLE AND GENERAL CANONIC SYSTEMS 

This chapter presents the differences between the traditional defi- 

nitions and the ones we will use, and builds the theory of canonic sys- 

tems according to the new specifications.  It also includes the motiva- 

tion for the reorganization of canonic systems. 

Canonic systems were first defined in Donovan 1966 . The starting 

point of our work was the version presented in Donovan and Doyle 1968, 

pp. 3-9. The reader is assumed to be acquainted vtth this work,  and 

therefore we will not repeat that definition but rather present the 

?9^l^£2Si25S we h8ve introduced and the arguments behind them, and then 

present only the modified definition. 

A canon used to be defined as a  list of statements followed by the 

sign [— and then followed by a statement, where a statement (tradition- 

ally called 'remark') is composed of a term of some degree followed by 

a predicate of the same degree. A term of degree n is an n-tuple of 

arbitrary concatenations of variables and words on the given alphabet, 

the words surrounding the variables being referred to as the context 

of the variables. A particular case was singled out, the case when 

context is actually indicated, and the canonic systems satisfying this 

condition, i.e. canonic systems which contain at least one canon in 

which there is an instance of variables and symbols concatenated together 

in the same term, were called Sfponic_8^8tem8_with_indicated context 

(CSwIC)  [Donovan and Doyle 1968, p. 28; Haggerty 1969, p. 41], but not 



much was known about them beyond the observation that they appear to be 

rather powerful. Most classes of canonic systems encountered in the 

course of research were not "canonic systems with indicated context" in 

the sense of the old definition mentioned above; moreover, in all cases 

but one, constructive proofs for the existence of canonic systems with a 

certain property yielded canonic systems which were not "with indicated 

context", and the same holds for Alsop's "canonic translator" [Alsop 

1967] . Because of these, and especially in view of Haggerty's recent 

result [Haggerty 1969]  that contextual indications can be dispensed with, 

we have decided not to regard as a distinguished class the class of cano- 

nic systems which do exercise the option of indicating context, but rather 

to distinguish the class of canonic systems which have no such option 

available, and call them 8imple_canonic systems , while the unrestricted 

canonic systems will sometimes be referred to, for emphasis only, as 

f?D?5fi_£5i?2DiS_2y5S5™S or a8 £anonic systems with indicated context . 

[Therefore the new meaning of this term is that we have the option of in- 

dicating contextual conditions, and nothing more than the option, in con- 

trast with the old meaning, which required us to exercise this option in 

at least one canon.] 

The situation is similar to that encountered in automata theory, in 

connection with the definition of nondeterministic autonata. The old de- 

finition of canonic systems with indicated context corresponds to the 

following hypothetical definition of the concept 'nondeterministic Turing 

machine' [NTM] f.    "A NTM is a TM in which there is at least one state sa- 

tisfying the condition that for at least one symbol of the tape alphabet 

there are two or more quadruples [or quintuples, if we work with quin- 

tuples] in the specification of the TM" . According to this definition, 

deterministic TM were not particular cases of NTM but constituted a class 

^ifJ2iDJ-l^9?-5l!S_Si!SS_2l_?I?• Clearly, this choice of a definftion 
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I 
OLD NEW 

CANONIC SYSTEMS CANONIC SYSTEMS = 

= GENERAL CANONIC SYSTEMS = 

= C.S. WITH INDICATED CONTEXT 

Figure 1 

Graphic representation of the changes in terminology 

The circles represent particular examples of canonic systems. 

would not be fortunate, end, in fact, this is not the de'•»"■*'.ion of nondeter- 

ministic Turing machines, as everybody knows;  rather, the deterministic TMs 

were singled out (were distinguished) as a particuler case of NTMs. The new 

definition of canonic systems with indicated context and the introduction of 

the simple canonic systems were necessitated in order to "normalize" the 
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usage In canonic systems, to switch from a nomenclature corresponding to 

the hypothetical definition of NTM, In our example, to a nomenclature 

which corresponds to the true definition of NTM. 

Similarly, instead of talking of canonic systems with Insertion,1 or 

of canonic systems with crossreferenclng, etc., we would single out the 

canonic systems without Insertion, or without crossreferenclng, etc.. 

These classes of canonic systems will be Introduced and studied In 

Chapter VI.    , , 

The way In which we chose to 'Implement" this reorganization is by 

introducing p-terms ("premise terms") and their lists along'with 

f -■ i     : 

terns and their lists, and premises along with statements . A 

p-term is an1 n-tuple each of whose elements is a "pure" concatena- 

tion (containing either exclusively variables or exclusively symbols). 

This, incidentally, also eliminates the recursion on term , so that 

It will no longer the case that a substring of a term is, automatically, 
1    i | i'    j 

itself a term. 
I    . i 

i I !    i : 

I    ' ' 
We are now ready to present the definition of simple canonic systems. 

i i 

P£l-!?-£-2!Ll'!    ^ simple canonic system (of level    1 )  is a septuple 
i .    ' i 

1  'i i ; 

^-  (C,. Vi.Mi,P1 .Si,Di , ^) 

where 

C.  Is a finite set of capons    (rules of Inference); 

i 

1 t 

, 1 

t 

1 

V.      is  the alphabet used  to  form the strings getier?ted by   £,,   ; 
i    ! I 

H.i is a finite set of variables 'used to stand for elements 
of any predicate ; ———- i 

P.  is a finite set of predicates used to name sets of tuples. 
The number of compolients m the tuples is the degree . 

i 
i 



S. is a finite set of punctuation signs; 

Dj^ (Spi) is a set 0^ sentence predicates whose union will 
be defined to be the language specified by the 
canonic system. 

Co. , is the "object" canonic system. 

This definition is not complete until we say what the canons, 

variables, predicates are and what we can do with them. 

However, since the reader is assumed to be familiar with these 

concepts, these will not be repeated here. Most of the differences 

have been outlined above, and a formal definition, using second- 

level canonic systems, will now be given. The reader is urged to 

compare it with the old definition of canonic systems  [Donovan and 

Doyle 1968, pp. 10-18] , to get a complete and accurate image of the changes 

that were introduced.  In order to facilitate the comparison, our 

exposition will also be given by way of an example, and will use the 

same example, a canonic system defining the set of numbers composed 

of the digits 1,2 and 3. Moreover, the drawing on page 5 of the 

above-mentioned work is presented below in a updated form as Figure 2 

to provide a quasi-pictorial representation of some of the changes 

introduced. General canonic systems are defined similarly, but 

allowing arbitrary concatenations of variables and symbols not only in 

the conclusion but also in the premises. 



S  = (Cj , Vj , M1 , P j , S j . D j  ,  C( ) 

10 

where I— 1 digit 

l— 2 digit 

j— 3 digit 

x digit  [— x number 

x digit ; y number  U— yx number 

M 

= {1,2,3} 

= { x , y } 

= { digit, number } 

{ ; . |- } 

{ number } 

c  = ( A,  ^"j #,     %t     %,    &,     fir    ) 

The following parse of the fifth canon of this system illustrates 

the metalanguage used to describe canons. 

:   _ 
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digit 

variable 

y number   f—— 

I 
variable 

cone, of var. cone, of var. 

number 

variable variable 

variable or word 

p-term predicate 

variable or word 

cone, of var. & words 

p-term  predicate 

cone, of var. & words 

of legal canon format 

Figure 2 

predicate 

_  .      ..   .   .... 
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The second-level canonic system is a 7-tuple 

where 

^2 " (C2. V2, M2. P2, S2. % Si  ) 

C = { the canons listed on the following pages } 

V2 ■ { 1, 2, 3, digit, number, x, y, ; , |— } 

H2 » { q, r, s, t, u, v, w } 

P = { predicates as defined in the canons } 

^2 = <■  »> » P= » ^ » ^ >  < t 

D = { legally defined string } 

&      is the first-level canonic system 

The canons of the second level must formally define the 

metalanguage and operations of the first level; these canons are 

presented on the following pages with a brief discussion of the 

motivation and use of some of the canons. The particular manner 

in which we have constructed the second-level canons system 

allows this system to define other can^ric systems with only 

slight modifications, which include, mainly, canons which 

define the set of canons of the system being defined. 

(1.1) ■"i saafeai 

(1.2) mm2 aasM 
(1.3) ■=3 symbol 

(2.1) -=; si^n 

     .... 
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(2.2] 

(3.1] 

(3.2] 

(4.1] 

(4.2] 

(4.3] 

(5.1] 

(5.2] 

(6.1] 

(6.2] 

(6.3] 

(6.4] 

(6.5] 

(6.6] 

(6.7] 

(6.8] 

(6.9] 

(7.1] 

(7.2] 

(8.1] 

(8.2] 

(8.3] 

=r |-5l«n 
i 

tmt x variable                , 

=ss y variable 

h digit predicate' 

t^ number predicate 

toe      nuinber sentence predicate 
i 

» X  Word ( X is the mjll string) 

u symbol i;; v word 1= uv word 

u variable ts u concat. of var. 
i   I  ■'"■,^^=^"^^"^"" 

u concat. of var. ;; v variable tsr uv concat. of var. 

u! concat. of var. hm u p-term 
r  | .. ^. | ^ 

u ' word |» u p-terni       i 

u variable |«u concat.' of var. S words 
i        i i ■     i       'i 

u word |»u concat. of var. S wojrds 

u concat. of var. 6 words ;; v variable L»uv concat. 

of var. 6 words      ,     i 

u concat. of var. ,S words ;: v word f» uv concat. 

of var. 6 words 

u concat. of var. 6 words km u  teym 

1 p-term ;; u predicate |s tu premise 

t term i: u predicate lee tu statement 

X i list of premises 

u list' of premises ;; v premise ^uv; list of lyrem.  ' 

X list of statements 

I   ; 

I ,  .1 
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(8.4)      ,u list of statements ;; v statement U=-uv; list of   i 

statements. i i 

For efficiency's sake, one might add      i 

i     i   '    .       i  '' ■  '■ ' 

(7.0)      u premise |== u statement 

(8.0) '    u list of premises Ls. u list of statements 

i    ' ' 

Note especially the intuitive meaning of p-term : a p-term is 

either a concatenation of variables] or a single word (in V*). A 

term is an arbitrary concatenation of words and variables. The 

i .   i i 

diffeirence between premise and statement is that premise does not 

allow concatenations of variables and symbols (hence it is "context-free") 

while statement allows them. One and the same variable may occur 

several times in the hypotheisis and the conclusion of a canon. 

(This is an instance of crossreferencing.) , 

(9.1) u word |» u constant 
1 i 

(9.2) u predicate JL- u constant , 

(9.3) u i sign  W u constant 

. (9.4)      u constant ;; v constant   |=  uv constant 

(10.1)      LB < x < y >  differ 

(10.2) < u < v >  differ t= < v < u > differ 

The following canons define a set or ordered quadruples named 

substitutiont They specify the substitution of constants for 

variables in icanons. Thus each canon of the ^Irst-level canonic 

system, if it contains any variables at ail, gives rise to a class of 

_!^5- 

I 
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specific instances of canons. These instances are obtained when 

any terminal string is substituted for the variables in the canon. 

Substitution is defined by a 4-tuple <w<v<s<t > . 

The first element, w , is a word; the second element, v , is a 

variable; the  third element is the original nonempty string s ; and the 

fourth element is the string t which results when the word is 

substituted for each occurrence of the variable in the original 

string. 

(11.1) w word ;; v variable !=.< w<v<v<w> substitution 

(11.2) w word ;; s variable ;; v variable ;; < v < s > 

differ |—< w<v<s<s> substitution 

(11.3) w word ;; v variable ;; s constant ks<w<v< s< s> 

substitution 

(11.4) < w < v < s < q        substitution ;;    <w<v<x<t    H 

<w<v<sx<qt> substitution 

Canon 11.1 defir.es the substitution of a word for a variable 

in a string consisting of only that variable. Canon 11.2 defines 

the substitution of a word for a variable in a string which does 

not include that variable, this substitution has no effect. Canon 

11.3 defines the substitution of a word for a variable in a constant 

string; this substitution has no effect. Canon 11.4 defines substi- 

tution in general. 

Canons 12.1 - 12.5 list the canons of the first-level canonic 

system. 
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(12.1) |s= t-l digit canon 

(12.2) \= (-2 digit canon 

(12.3) p1 t-3 digit canon 

(12.4) f=  x digit |— x number canon 

(12.5) f*  x digit ; y number \— yx  number canon 

In order to make sure that indeed the canons are of the 

required format, we add: 

(13.0) v statement   |s=  |- v of legal canon format 

(13.1) u ; list of premises ;; v statement leu h-v of 

legal canon format 

(13.2) u canon ;; u of legal canon format U u instance 

of le^al canon 

(Canon 13.3 defines the set of canons in which constants have 

been substituted for some or all of the variables.) 

(13.3) u instance of legal canon ;; v variable ;; 

w wjoai ;;  <w<v<tt<t>  yu^^u^iyn  |—r 

t  instance of legal canon 

Canon 13.4 defines a subset of the canons; this subset is the 

set of all canons which contain only constants. Derivations will be 

generated from "canons with constants." 

(13.4) u instance of legal canon ;; u constant  p^ 

u instance with cgnstants 
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Canons 14, 15.1 and 15.2 define the sets nam a constituent of 

and occurrence ; these sets are used in defining derivation.  It 

has been stated that a statement can be derived as the conclusion 

of a canon by showing that all of the statements in the premise 

have been derived; i.e., the premise occurs in the derivation. 

Thus, the meaning of the "occurrence" of a statement in a list of 

statements must be defined. The concept "occurrence" must be 

generalized to show that all of the statements in the premise have 

already occurred in the derivation; this generalization is the 

set constituent of. 

(14 )     v statement ;; r list of statements ;j t 

list of statements l"<v rv;t>  occurrence 

(15.1) u list of statementsf»^ < u> constituent of 

(15.2) u list of statements ;; v list of statements ;; 

<tt <-v> constituent of g < w <v> occurrence  1= 

<uw< v Constituent of 

(16.1) » derivation 

(16.2) t derivation :: w list of statements :: 

u statement 

;; w^-u instance with constants ;;<w <t > 

constituent of L«tu: derivation      ♦ 

The canon (16.2), which also occurs in the definition of general 
canonic -ystems, is not itself adalsalbl« in a simple canonic system. 
In other words, the higher-level canonic systems that we construct 
here are not themselves silBlS • whether or not they describe simple 
canonic systems. However, it will shortly be evident, using a result 
of Haggerty, that they can be converted to simple canonic systems. 
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The final set to be defined is the set of strings derived 

by derivations; each of these strings is simply the last statement 

in some derivation. 

(17) tu; dwivation ;; u statement   J^* 

u legally derived string. 

Canons 16 and 17 are of particular interest since they define 

the essence of a precf (derivation) and a Uv (legally derived 

string) in all mathematical systems. 

This completes the construction of the canons of the second-level 

canonic system. In this example the first-level canonic system had 

only predicates and terms of degree 1; modification to the second- 

level system may be made to handle predicates and terms of higher 

order in the first-level canonic system fDonovan and Doyl« 1968) . 

The metalanguage describing the swcond-level canonic system 

(canon, substitution, derivation, etc.) has not been defined; a 

third level system would be needed to define it formally. The form 

of the third-level canonic system is almost identical to that of 

the second-level system with appropriate changes in notation, i.e. 

predicates are underlined three times and the punctuation signs 

are •;;;' and «p««.  Ke now outline briefly a formation of a 

third-level canonic system for this particular second-level system. 

We remark first that when we specified the second-level canonic 

system, we set up a standard frame, indepmdent of (Jj (canons 

$.6,7,8,9,10.2,11,13,14,15,16,17) to which Bi dcpeodeoi caooos 

- ———— - 
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were added: 1,2, 3, 6, 10.1, 12. The same precedure will 

be followed here. The third-level ( (i+l)th -level, ii2 ) 

canonic system may be constructed from the second-level 

(i -level) canonic system by the following algorithm: 

1. To obtain the  f 2'indePendent (6i-independent) 

canons, use the standard frame, but make the appropriate chanjes 

in notation, i.e. underline the predicates one additional time and add 

one more semicolon wherever the sign •;;•   (;i) occurs. 

2.  To obtain tie b^-dependent { Si-dependent) canons, 

use the members of these sets listed in the definition of the second- 

level (ith-level) canonic system as the terms of the appropriate 

canons of the second-level canonic system and underline the 

predicates one additional time. 

Thus, the (i*!)1 -level canonic system can be constructed 

from the ith.ievel canonic system with a minimum of effort. Thus, 

it can be seen that all higher-level canonic systems have the same 

basic for». Since no level defines its own operations, each level 

is logically consistent. 

For purposes of discussion, at some level the metalanguage of the 

level must be defined informally. It appears that the second level 

would be an appropriate level to do this. Recall that, for a 

given problem, the first-level canonic system defines the problem; 

the second-level canonic system defines the operation of the 

first-level canonic system. All higher-level systems define the 
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operation of previous-level systems. Thus, by selecting the 

iecond-level to informally define the metalanguage, the first 

level canonic system (which defines the problem) is precisely 

defined and logically consistent. 

For the case when the "object" canonic system (Oj is not 

a simple canonic system, the following changes will have to 

be made in the second-level canonic system £2 formally 

specifying "the anatomy and physiology" of Gj* 

1) 6.1-6.4 7.1 8.1 8.2 are unnecessary 

( 6.S-6.9 7.2 8.3 8.4 alone will do in this case); 

2) 13.1-13.2 should be replaced by 

(13.1) iy list of statements ;; v statement L»u Hv 

of le£al canon format 

(13.2) u ^asQ ;; u of legal canon format  |ss 

u accepted canon 

3) Obviously, all the (92-dependent canons of C2 "ill 

be chosen so as to reflect the particular components of 

Suitable changes may be made to allow for predicates of 

higher degrees. Examples of canons allowed in general canonic systems 

are: 

x A  (— ax A 

axby A ^— xy B 

xby A t— xcyd B 
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i 

i 

i 

x number; ©x, book descriptor I— x year of copyright 

(x,y €M; 'O', «a», 'b' , and •. • are in V) 

The sentence symbol (predicate) will be denoted by 'sentence 

instead of • p (D - {sentence}). 

The alert reader has undoubtedly noticed another departure from 

the traditional terminology: our avoidance of the term "terroioal 

alphabet". The set V has been called just plain "alphabet». The 

reason is that this set does OQt necessarily correspond to the 

terminal alphabet of a formal grammar; it may include auxiliary 

symbols.  In this connection, see also Chapter VI. 

Before we study the different hierarchies of canonic systems, 

we wish to mention several results of Haggerty and to point out one 

of their implications. 

Iil$8iSS«ll;i • Any c«nonic lygtem can be reduced to one In which no 
predicate bat degree greater than 1 .  f"Reduced" means that a atate- 
■•nt la provable in tha aecond canonic ayatem Iff It la provable In 
the firat one.] 

• 

In constructing canonic systems to correspond to regular or to 
context-free grammars, Doyle took the tarminal  alphabet of 
the grammar to serve as alphabet of the canonic system, and the 
nonterminal alphabet to serve as set of predicates. When, however, 
he considered grammars of type Oor 1, using a completely different 
approach, he correctly y-j, in f««, the union of the terminal 
alphabet and the nonterminal alphabet of the granaar to be the 
alphabet of the resulting canonic system, but he said he included 
only the terminals. If in his construction the alphabet is to 
include only the terminal symbols of the grammar, then his construction 
would not yield a canonic system at all, since some of the "canons" 
included are of the form   |— r  nonterminal, where A is neither 
a symbol nor a variable, rhenever we shall hereafter mention these 
constructions, we shall assume that the appropriate correction has 
been made. 
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(Proof by replacing n-tuples    < 81< s.  ,... ,8    >    by terms of the form 
s~?8Ä$...$8    , where $    is a new symbol, to benused as a separator.] 

1    Z             n i                        i                         ,               , 

Thegreg^H-2. Any canon using Indicated context may be reduced to a 
canon"wIthout"Indlcated context (In other words, any canonic system can 
be reduced to a simple canonic system). 

i i i 

[Proof.  Each constant word Will be replaced by a variable whose value  Is 
specified  (by an additional premise)   to be In an [adequately defined! 
singleton set.l , 

I ;. 

Theorem H-3. Any canonic system can be reduced  to one In which each 
miMmmmmmmmmm * 

canon has a single premise.    ; , 

[The proof uses the following basic Idea: , a canon like 

term, pred. ; term2 pred  ; ... ; tern^ pred ^—term pred 

Is replaced by1 

< term,  term-  ...  term > pred, „    ' I—term pred  , 1*    2«   «   n   * 1,Z,...,T\  \ ■*— 
where pred, .       Is a new predicate whose degree Is the sum of the ■ ■       1,2 ,.. ., n ! 
degrees of    pred.     ,  and then additional canons are Introduced  for the 
newly-created predicates.] -' 

i •     i   i 
! i 

' I    i ; 
We remark that, as a consequence of Theorem H-2', the_52fiS8_of_8imple 

canonic systems Is ni less powerful than the clf28_of_generfl_C£nonlc 

systems.  Knowing this, one might wonder why bother to defined simple ca- 

nonlc systems If the class of sets definable by them is not different 

from the class of sets defined by the most general canonic systems. 

However, the real significance of this theorem is quite different: we 

should study simple canonic systems g£S£i|£i2==i£l~l they  form a res- 

tricted class of simpler canonic systems which still realizes the same 

computational power. An additional argument is that Alsop's "canonic 

translator" [Alsop 1967] uses only "simple carions". Moreover, there is 

nothing to guarantee us that if we apply a certain restrict ion on the 

class of all canonic systems and on the class of simple canonic systems, 

the resulting classes have the same computational power, or that the 

image of the first restricted class under the transformation of Theorem 

H-2 la Included in the second restricted class. 

i i i    : 

!   i I ' ■ . 

i 
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A    HIEBARCHy    OF    GENERAL    CANONIC    SYSTEMS 

Canonic systems were first used in specifying the syntax of simulation 

languages [Donovan 1966],  including the features which cannot be expressed 

in Backus—Naur Form. Since canonic systems, while designed to be more po- 

werful than BNF, were too powerful when firs*, defined  (having the  full com- 

putational power of Turing machines and thus being able to define non-re- 

cursive sets),  it was  felt that  restrictions have to be applied so as to 

render the resulting classes of canonic systems   incapable of defining non- 

recursive sets yet powerful enough to specify the syntax of any programming 

language. (Experience and  intuition have indicated to us that  for most pro- 

gramming languages the set of legal programs  is recursive and  it  is only 

specialized  features of languages such as those found  in PL/1 which have 

enabled us to provf  that the set of legal PL/1 programs is not recursive 

[Mandl  1969a].)    This was  the motivation for studying hierarchies of cano- 

nic_8y8tems.    Doyle,  in his Master's thesis, picked up this  line of re- 

search and defined a partial hierarchy of canonic systems,  trying to in- 

clude in it correspondents  for Chomsky's 4 types of formal grammars. 

Doyle's hierarchy has  two distinct parts. The first part  includes  two 

classes of canonic systems,  one equivalent  in strong generative power to 

regular    grammars and the other equivalent in strong generative power to 

context-free grammars: 

Thegrem_D-3   ["3" for "Type 3"]. The class of right-linear canonic 
systems and the class of regular grammars are strongly equivalent. 

Theorem_D^2. The class of normal-form two-premise canonic systems 
and the class of context-free grammars are strongly equivalent. 

There was a clear correspondence between the two formal systems,  to each 
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production in the granmar corresponding a canon in the canonic system, and 

vice-versa. All the predicates occurring in the canonic system were of 

degree 1 (sets of strings), and the canonic systems turned out to be, 

in our terminology, simple canonic systems.  In the second part of his 

hierarchy, Doyle allows predicates of degree 2 to occur (sets of pairs 

of strings) but no predicates of higher degrees, and obtains a class of 

canonic systems equipotent to Turing machines: for any grammar of Type 0 

there is a canonic system which generates the same language. In other 

words, 

I~iIli=§=Q' The class of canonic systems with predicates of degree 

2 is weakly equivalent to the class of Thue semisystems (grammars of 

Type 0). 

From the proof of this theorem we also have: 

Ibeorem=D-0s. The class of simple canonic systems with predicates 

of degree 2  is weakly equivalent to the class of Thue semisystem». 

Doyle also mentions "noncontracting canonic systems with predicates 

of degree 2", and states that these canonic systems generate only recur- 

sive sets and that for any given context-sensitive grammar one can find 

a "noncontracting canonic system with predicates of degree 2" weakly 

equivalent to it. We have not listed this as a theorem since the defi- 

nition of "noncontracting" is entirely inadequate, especially when pre- 

dicates of degrees 2 (and higher) are included, and therefore the 

above-mentioned class cannot be considered to be defined.  In this con- 

nection, see also Chapter V. 

This completes the second part of the hierarchy. The one-to-one 
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correspondence between the productions of the formal gramnars and the 

canons of the corresponding canonic systems, While present In the first 

part of the hierarchy, could not be established in the secord part, 

owing to the Inherent difference between canons of these classes of 

canonic systems and the productions of Tl or TO grammars. If we direct 

our attention to canonic systems which do take context into consideration 

(canonic systems with indicated context, which are here called 'general 

canonic systems'), a natural solution presents Itself which not only 

fills in the above-mentioned gaps but actually brings about strong equi- 

valences with all 4 types of fomal grammars considered by Chomsky and 

with any type of granmar definable in terms of productions, thus embedding 

i!}S_S!}S2ry_2^_l2£!?Si_ir2!??2r5_i!?*°.Sl}5^_o£_Sf"'>nic systems. This simulation 

of formal gramnars by appropriately restricted canonic systems with indi- 

cated context is the object of the present chapter. 

The following definitions are analogous to Chomsky's: 

PSÜDiSi??-?* ^ canonic system is called canonic system of Type 0 

if each of its canons, except for five of them, is of one of the forms 

(1) x^A^y   derivable ^-  xputify   derivable 

(2) A  nonterminal 

(3) a  terminal 

where 

(a) &> U/> u denote particular strings, possibly empty; 

(b) A is a nonterminal (i.e. there is a corresponding canon of 

the form (2) );  and 

(c) for every symbol from the alphabet there is either a canon of 

....    .  .   ..         
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form (2), or a canon of form (3)  (but not both) , 

the five other canons being 

(4) |— V derivable     (Z ^V ) 

(5) I— \  terminal string 

(6) x terminal f^-x  terminal string   ( x , y €M )   * 

(7) x terminal ;  y  terminal string 1 xy terminal string 

(8) x derivable ; x  terminal string L— x  sentence      . 

We may dispense with the predicate 'nonterminal' altogether, and 

replace the present requirement (c) with a new one, (c*): 

(c1)  Any symbol in the position of A in a canon of form (1) ** 

must not appear in a canon of form (3) . 

Since this modification will simplify the proof of the main equivalence 

theorem, we shall adopt it. 

* The effect of applying Canon (6) in a derivation can be achieved 
by applying Canons (S) and (7). Canon (6) was retained in order to pre- 
serve the correctness of future references by formula number. 

** There are two ways in which a canon like 

xABCy derivable L—xABACy derivable 

may be interpreted af i canon of form (1): 

1) y>= A ; (p= C;  a) = BA ; the expanded letter is B 

2) ü>= AB  ;&=    \ i      u) = AC ; the expanded letter is C . 

(Of course, this is just one canon, not two, and the two interpretations 
have no Influence on the use of this canon in derivations.) In such a 
case, only one of the symbols that may be considered as being "the expanded 
letter" is requied to be a nonterminal (i.e. to be missing from the canons 
of form (3) ). 
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Pl^fiPiJiPD-?- A canonic system is called a canonic system of 
i       ""   ---------- 

T^B?-1 or ?9!????t:§§D§i5iY5-9§D9Di9-§Y§?51!D (CSCS) if it is a, canonic 

system of type 0 satisfying the additional condition that in all its 

canons of the form (1) the string' w is non-null. 

P?fi?i5i°P_f• A canonic system is called a canonic system ofJType 2 

or context-free canonic system (CFCS) if it is a CSCS satisfying the addi- 

tional condition that in all its canons of form (1) the strings ^,ij; are null. 

P^fiDiJi??-*?* A canonic system is called a cianonic system of Type 3 

or regular.canonic^system if it is a CFCS satisfying the additional condition 

that in all its canons of form (1) the string to contains just two 

symbols, one terminal and one nonterminal (one for which there exists a 

canon of the form (3) and one for which there is no suchicanon), always in 

the same order.  If the order is "nonterminal - terminal", the regular : 

canonic system is also called a \eft-linear canonic system. 

The definitions for linear, one-sided linear., metalinear, ' 

seguential, etc., grammars can be similarly imitated, and so we can speak; 

(P?fiDi5i9P-§) of liD5§r» 9!?9r§ided linear, metalinear, seguential, etc., 

canonic systems. Obviouslyi all results obtained for these types of 
__..       ^ ,     .    i ,-     ' 

grammars hold also for the corresponding types of canonic systems. 
i 

Theorem 1  For_ever^_Type_i_canonic_system_(i_=_0t_ll42t_3i_there 

is_a_Tyge_i_gra^ar_which_generates_the_samemla^ 

95l}9r-y9I^§i-5!}9_9l§§5-9f_I^9_i-gI§^|r5-is .equivalent ^q.the'.class 

9f-I^9-i-95599i9-§1^9ro|_f2r-i-=-Qt-li._ti.-5i    ' 

Ke shall show how one can pass from grammars to canonic systems and 

from canonic systems to grammars. Let there be given a grammar G = N,' T, P, E) 

of Type i (i = 0, 1, 2, 3). The associated canonic system has the canons (4), 
11     i 

_...,  . 



i     ■ 28 

(5), (6), (7), (8), one canon of the form (3) for each element of T, and for 

each production  pA ^  -•>  <^ w d/  one canpn of the form (1). The resulting 

canonic system is, by construction, a canonic system of Type i (i = 0, 1, 2, 
i 

3); the strings (p, ty   may be empty. Suppose now a canonic system of Type . 
i 

i is given; the corresponding grammar is defined in.the following manner. 
i 

The set T incudes all symbols for which there ib a canon of type (3); 

N will include all other symbols and for each production there will 

be a canon of form (J). It is obvious that the resulting grammar is 

by construction of the same type as the canonic system from which it was 
1 , 

derived.   ,  ' ; 
i       . 

üefore we show how derivations are simulated, we should clarify 

what is meant by a derivation in formal grammars. Two definitions are in 

use in the theory of formal grammars, and our construction below works 

with either of them. According to the first definition, any sequence of 

applications of productions constitutes a derivation of the string obtained 

at the last application; ? string is accepted iff: 

i    a) it has p  derivation; i 

b) it contains only terminal symbols. 

According to the second definition, a sequence of applications of productions 

constitute a derivation only if no further applications of productions are 

possible. The grammar is usually required to have for each nonterminal 

symbol, at least one production expanding it, in which case a derivation 

produces automatically a string of terminals (if there were a nonterminal 

in the striu0, the sequence could be continued and therefore does not 

constitute a derivation); a string is accepted iff it has a derivation.    i 

We shall use the first definition, but we remark that if the grammar 

is required to have for each nonterminal symbol at least one production 

 i_. i . 
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expanding it, a derivation in the first sense (according to the first 

definition) is also a derivation in the second sense (i.e. cannot he 

continued) iff its last string contains only terminal symbols, and so 

the two concepts of acceptance coincide. 

Let us consider a derivation in the canonic system. We shall 

simulate the derivation in the canonic system, in a step-by-step manner, by 

a derivation in the formal grammar. Without loss of generality, we may assume 

that the derivation in the canonic system starts with the canon (4). The 

derivation in the formal grammar simulating it will start with the one- 

character string Z  . Any canon of the form (1) will be simulated by means 

of the corresponding production; canons of other forms will be disregarded 

for the moment,  le have thus obtained a derivation in the formal grammar simu- 

lating step-by-step the given derivation in the canonic system.  If, the 

last string obtained is not only derivable but also a sentence, then this 

string has been obtained by applications of canons (5), (6), (7), with a 

final application of canon (8). Th^applicability of canon (8) proves 

that the second condition for acceptance in formal grammars (condition 'b)' 

of the first definition of derivation) is fulfilled, and therefore the 

string is accepted by the formal grammar. 

Therefore we have shown that for every derivation in the canonic 

system there is a derivation in the grammar. The converse result is proved 

similarly. This completes the proof. It is easily seen that what we have 

proved amounts to strong equivalence. We can therefore assert: 

(strong form of the general equivalence theorem) 

Theorem 1 The class of Type i graranars is strongly equivalent to the 

cUy. Q* Tfrgt 1 Cfflylc lyytty^ <pr ^ « 0^ 1,^ 2^ 3. _ g» cUflg» of 1 i near, 

22SzSi'$S§.liSSB£jml*Sl*lPX9'iTA  sequential, etc. grammars are stronjjly equivalent 
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Definiti<?'J.7 A canonic systev is callea a lfift:fiODt»t:!fiD9Ui¥fi.fitDCDiC 

SYStSV (1CSCS) if it is context-sensitive and in all its canons of type (1) 

the right context (the string <») is e»pty.   [And similarly for rCSCS. 1 

These definitions are the natural counterparts of the definitions for left- 

.context-sensitive.tright-^ontext-sensitiv^ grammars. One-sided context- 

sensitive grammars have been studied but with no significant results to date. 

About all that is known is that they can generate non-CF languages (and cannot 

generate non-context-sensitive languages).  It is conjectured that they 

cannot generate all context-sensitive languages. 

Another type of formal languages (left^Context-sensitiv^ have 

been defiaed in Mandl 1968 and shown to be weakly equivalent in generative 

power to context-sensitive grammars. This gives rise to a new type of 

canonic systems^trongly equivalent to left^context-sensitive graanars. 

These grammars soem to be new and interesting and therefore we will 

discuss these further here. 

The definition below was suggested by Booth's definition of 

context-sensitive grarmars (Booth 1967] as a phrase-structure grammar all 

of whose productions of any of the following three forms: 

(9) C! A c2 - Cj <:2 " 

(10) Cj A Cj ■,, "   Ci  ^2 

(11) Cj A J;2 * C!  H   C2 

He further remarks that productions of the forms (9) and (10) are not really 

necessary (since they can be obtained by adding a few rules of the form (11) 

and by adding a fe » new nonterminal symbols) but they make his exposition 

easier to follow, suppose now that the right contexts are null in all 

these rules (and simi arly for left contexts). Then the rules have the form 
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Cj      A       <- ?! w 

C,      A        - tu 

Cj      A       •► ?! w 

Hhere the first and the third are left-fontext-sentitivetrule* and the 

second is not.    This second for« of production will be the only for* 

allowed in the graaaars we are going to define. 

Definition 8.    A left-Vontext-sensitive, graBmar is a phrase-structure 

grammar all of whose productions except perhaps for a rule   £   -» X , 

are noncontracting productions of the fora 

(12)    9A     -    ^w , A    C    N,        epe V* • (mjT)*, w   M. 

(Similarly for right-'context-sensitive grammars 1    It may be remarked 

that this type of production is wtt * particular case of the general 

production     (ßh   #       • tfu ii     as the left-^context-sensitive| rules were, 

likewise, the corresponding type of canon is not a particular case of 

(1), and so we cannot  (yet) define left -ynntcxt  sensitive, systems as 

a special case of Tl  (or Type 0, for that matter) canonic systems  (see 

footnote).    Ve shall use instead a definition which is similar to 

Definition 11. 

De f In it k« 9.    A l*tt£jttotfxt;9™itiy%jmC»rtonlciy*tmm   U a 

canonic systea which includea the pcrticutar coona (A), (S), (6).  (7). 

(8),    a finite nuaber of canons of tb* form 

(14) xyA       derivable    |—   numy     derivable 

and one c«wn of fom (3)  foreech syabol    A   occurrlnf in sea* canon 

(14).    (Similarly for rlght-*leont«ii-eenaltlve,  canonic eyataM;    (14) 

la replaced by     (IS)    xAi^y   derivable   [—  xy/yy   derivable .1 
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I~£i£Li • « J-fl'Liiy'P.fprff;!:*;?»^ jyf.irffpf ji.ii'«!«. •xi»t»-; 

5ff5S5iy?-Pr?sf^i*r?j..iI!ij.£P!?y5r5S-r??yii-if.jriyliiiJ 
Prpor The proof will Mko use of ctrtain reductions (Rurodi 1964] 

but It will be evident how to »tert the proof should one wish not to use 

the reductions. Definition (tturodal A context-sensitive gravuir is 

of order n if there appears no string of length greater than n in any 

rule of the grammar, lemma 1 [Kuroda] For any context-sensitive gravur 

of order n (n > 3) there exists a context-sensitive grnrnar ef 

order n-1 generating the same language. 

(By repeated use of Leaaa 1:) 

Lemma 2. (Kuroda) For any context-sensitive graaur there is a graaaar 

of order 2 equivalent to it. 

Let G be the given graaaar. By introducing new terminal syvhols, 

we can convert it to an equivalent graaaar in which terminal symbols appear 

only in rules of the fona A -► a ("terminal rules"). 

Raaark. (Kuroda] The original grammar aight have been given in an 

apparently more general fo«# in wh^ch there might be a production which 

rewrites «ore than one ayabol: 

(16)        •.   -   «_  /      1^1   <   |^| 

fUto)» . N(TÜN)* \wl € 

*Ne can thus define two new types of canonic systems ('Types 1* and tf ") 
with canons (4), (5), (6). (7), (g), canons of the form (J) (and (2)) and 
canons of the form 

(17)    xwjy   derivable  |— xi^y derivable 

where «j includes at least one nonterminal, with or vlttalt the restriction 
|w.| « Iw-I . Using Kuroda*s remark and our general equivalence theorem, w« 
can conclude that these types of canonic systems are weakly equivalent, 
respectively, to Tl and TO canonic systems. At this stage we could redefine 
left-•context-sensitive canonic systems as a certain special case of 
Tl» (context-sensitive) canonic systems. 



Using the general «quivalence theorem, we have: 

Ita£ltl.2i'     For enyglven  left  ^or text-eeniltlv< grentnar  there   1B 

cotjvorBcly.     The  cl«««jf   left-*con text-«ens It Ive granmers   I»   strongly 
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!Z!E*?2.^!!rf.lf.!.l!!S:*€??S*?S:!*?!iS!Y*.S9?9?i3.!7!S*?.iSff??!f2.^1Sl! 

8?ü*?!S!!.?!}!.J!?!-lf98V?89i-f5-_S89Y?r!?ly:.-T^?.Si!Jf-?l.£?!?S??Sl 

!*"!^lYf.ir????E!.^f???iS.f7!S!?!2.if.Y??^l7.?9^iY!l!?£.S?.S(}f.£l!!! 

Similar  thporems hold for right-^contaxt•aensitive. canonic 

ayataaa and granoara.    A further application of the general equivalence 

theorea yields: 

ItlSSESSafL'     ?or an]f glvon context-sensitive canonic system there   la 

',-lp^f.'*-on-?xi:8r!?"iSiY'.?f099i£-?y!S??.^??!Jly.?9"iYfif"S.S?-iE:_.iTl!5 

converse is trivial.^ 

strongly 

CONTEXT-SENSITIVE  GRAMMAR S 
CONTEXT-SENSITIVE 
CANONIC  SYSTEM 

Mt J& 

LEFT-*CS  OlAMM/Jl — —— LBFT-*CS CANONIC SYSTEM 
strongly 

(Th. 3a.) Hi. 1 

Pigure 3 



s 

Moat jf the equivalence Chaorwu of this chapter ar« auamarisad 

In Figur« 3.  For conplatanaaa' aaka. we also Included several trivial 

reaulta. 
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CHAPTER  III 

SyBRECyPSiyE_CLASSES OF CANONIC SYSTEM? ------------------ 

iioth these hierarchies of canonic systems, as well as the hierarchy 

of formal grammars, '.ave no class of system to correspond to the class of 

recursive sets.  ("Norcontracting canonic systeimwith predicates of 

degree 2" were claimed to be situated somewhere between context- 

sensitive sets and recursive sets, both inclusions being in the weak 

sense.) 
t 

We state here in what sensed) would a class of canonic systems 

(formal grammars, etc.) correspond to recursive sets and elucidate 

why no class of system has beer found equivalent to recursive sets. 

It is wel  nown that there can be no procedure for deciding 

whether an arbitrary recursively enumerable set is a member of a 

given non-empty collection of recursively enumerable sets, except 

in the trivial case when all the recursively enumerable sets are 

members of the collection. This is Rice's theorem; «ee, (?.j., 

Rogers f 1967 , p. 324 (Th. 14-XIV (a) )]. Consequently, it is clear 

that we cannot hope to find a class of canonic systems which (a) defines 

all recursive sets, and only recursive sets, nnd (b) the class includes 

all the canonic systems which define recursive sets. 

[Mandl 1969b] 



{a] 

'        i 36 

We might hope that there exists a "small" class of! canonic 

i ■  i  , ' i 

systems which define all and only recursive sets however realizing 

that the class cannot include all canonic systems which define 

recursive sets. Or, stated in another way, it might be the case 

that a certain class of canonic systems (characterized by a finite 

set pf properties, and such tljiat is is decidable whether a given     i 

canonic system meets those properties), would correspond to the 

recursive sets in the sense that 
i 

^only recursive sets are generated by canonic1 systems of 
i 

that class   (the class is "subrecursive"); . 

-for every recursive set, there is among the canonic systems 

of that class 'at least one canonic system defining the ' 

giVen recursive set (and there may be such canonic systems Qutgjde 

the considered class). ' 

We shall prove that such a1 class cannot exist. I.e. if a class 

of canonic systems defines only recursive sets, then it cannot define all 

recursive sets, oven,if it does not have a monopoly in defining recursive 

sets. This result can be restated succinctly as: "Subrecursive classes 

of canonic 'systems are strictly subrecursive." 

Ib§8S§Ss§ • JiJLJÜUss-of-caooDic-syskems. (JÄiÄJfflX.JÜÜliÜfc^^SBÄUÖJ^ 

formal systems, for that matter) can correspond exactly (in the sense of: 

(a) above) to the clas? of recursive sets. In particular , (^CSTl £Sr 
i 

[ Becursive.setO  * . 

*The reader may have noticed a similar statement, without proof, in Donovan 
and Doyle, 1968, p. 46t "Thus, a noncontracting canonic system can only define 
a recursive set., However, it cannot define all recursive sets; some 
recursive sets tan be generated only to a TO grammar.". An earlier work 
claimed to have proved this by exhibiting a concrete example, but the ' 
proof was eliminated when the eaample turned out to be a context-sensitive set. 
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ElQOf (based on an idea of Hopcroft and Ullman [1969 ,88.3] ). 

Since canonic systems are finitely specified, we can canonically 

enumerate all canonic systems, the canonical index encoding the 

whole description of the canonic system ("Codelization" of canonic 

systems.) Likewise, we can canonically number (encode) all the words 

over the denumerably infinite list of potential symbols; let 

iii^  be the ^ work in this numbering. Since it is assumed decidable 

whether a certain canonic system is of this type or not, we can strike 

out all the canonic systems DQt_Qf_tbis_type* thereby effectively 

enumerating all the canonic systems of the type considered: 

6 »   £ ,   & . ...  «By the hypothesis, all these canonic 
12     3 f       Jf Jf 

systems define recursive languages   ^-l»   2»    3 •••   • Consider 

the set 

{uk    | wk^.Cfc  } 

It is different from all   •^•i» i = !» 2» ••• '»  yet i* is recursive. 

Therefore no type of canonic systems can define all and only recursive sets. 

Remark. A recursion theoretic argument yields Theorem 7 as an immediate 

consequence of the known theorem that the class (set) of all recursive 

sets  [ while recursively enumerable as a class of r.e. sets [Blum 1965; 

Suzuki 1959]Us not characteristically enumerable. PrQ9f_öf_Jh§_reductiQn. 

For all subrecursive classes of canonic systems the proof of the subrecursive- 

ness has been done by exhibiting a decision procedure. In other words, 

if we have a finite description of a canonic system, we can interpret 

it not only as giving a procedure for enumerating a set but also as giving 
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a procedure for computing the characteristic function of the set, i.e. 

that we can find not only an r.e. index of the generated set but also 

a characteristic index thereof. Therefore [a description for] 3 

caooDic-system-beloogiDg-to-a.subrecursive-class-is.akiD.to-a.cbaiacteristic. 

iDdgx_fQr_the_r§cujsiye_§et_dgfined_by_th§J_canoDJS_§ystem. 

*The elucidation of this point owes much to a discussion with Professor 

Patrick Fischer and Professor Juris Hartmanis at the Third Princeton 

Conference on Information Sciences and Systems in March 1969. 
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CHAPTER    IV 

CANONIC SYSTEMS FOR CONTEXT-SENSITIVE SETS 

In Chapter II we mentioned Doyle's work on a hierarchy of canonic sys- 

tems,  where,  inter alia.     It was stated that the NCST were situated some- 

where between context-sensitive sets and recursive sets.    Let us now take 

a closer look at  the definition of NCST.    It reads  ("Definition 2.13"): 

"A nonconti     ting canonic jäystem    (NCCS)     is a canonic sys- 
tem in which each application of a canon results  in the length- 
ening of the string denoted by the predicate defined  in the 
canon.    That  is,  if ,A$?    and    w^A    and to prove    w^A    it 
was first necessary to prove    ß «B  ,  then    (u)(> |ß|   .    That  is, 
in a derivation,   if we have 

•••   »P£J   •••   J'JAj   ... 
then    M>jß(.     ( B    may denote the same predicate as    A ) 

A noncontracting £anonic system with predicates of degree 
.two (NCST)  can be constructed to describe the language gener- 
ated by a Tl grammar;  this canonic system has  the same basic 
structure as  the canonic system equivalent ot a TO grammar 
with the additional  length restriction." 

9°JfSSi°?*LH2_S!}e definition 

1-  "^l??-!5riDS denoted by the predicate defined  in the canon"  .    The 

conclusion of a canon has only one statement  ,  and therefore  it  involves 

exactly one predicate.    However,  this predicate  is not necessarily of 

degree    1  ,  so we cannot  refer to "the string". 

2. "lengthening"  .    That unspecified string is  longer than something. 

Longer than what? The hypothesis of a canon may include many strings and 

many n-tuples  (tuples)  of strings. 

3. "    |a)|}|ß( "  .     If    u    and    ß    are tuples,  their length  is unde- 

fined.     If they are strings,  then something has to be said about  tuples, 

or at  least about pairs,  since predicates of degree    2    have to be allowed 

in order for Doyle's proof of    [Type  1]^ [NCST]     to work. 

-  , _  ■._.._.._ _   _   __ _    _  _. 
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4. [Concerning the derivation]  Although on p. 18 of that paper it 

was said "In this paper, a derivation will consist of a sequence of canons 

instead of the sequence of conclusions of these canons", here we have to 

revert to the original definition of derivation (as sequence of conclu- 

sions). When we do so, we see that an axiom may appear anywhere in this 

sequence, and it is not necessarily longer than all its predecessors (or 

shorter than other strings that may follow). Moreover, not only strings 

appear in a derivation but also tuples. 

5. "( B may denote the same predicate as A )" . B does not denote 

a predicate: rather, it is a predicate. Formally, predicates are and 

remain elements of P ; and when we write P = ^ A , ßj we also mean that 

A and B are different elements of P . We could have introduced meta- 

variables ranging on predicates,  1^ , 1^ , „, > in much the same **?  in 

which we tacitly introduced ß , u , ^ , ((/  to stand foi particular 

strings, and in that case we could have written 

... i P tK > ••• • w IJt, ; ••• 

and said that  the meta-variables     "ÜJ     and     1^   may denote either two 

distinct    predicates    A  , B    or one and the same predicate    A   .    Since we 

have not  introduced such "predicate-variables",  and since    A     ,  by defini- 

tion,  is not  the same as    B  ,  one should have said 

...  if we have ...;ß    B ;   ...  I w   A ;   .. 
or we have ...   ;ß    A ;   • • >  > u)    A;., 
then    H^fßl . " 

We therefore see that,  at this stage,  there is no such thing as non: 

contracting canonic_8ystems_with_predicates_of_degree__2_.     Correspondingly, 

this chapter will be devoted not to proving something about  the [undefined] 

NCST but  rather to finding_a_definition which will be intuitively acceptable 

and will be such that 

1]   Doyle's  claims will hold for it    (  [Type l]C[new class] ^ [^ec]   ); 

2] will allow a proof of equivalence with    [Type 1]   . 

... , ■ .       _.....      'lL  _.   _._    ....  .... 
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As it very often happens in such cases, the real problem is not to 

i 

prove but to "guess" what to grove (and to "improve a bad guess" by trial 

and error). 
■■ 

We cannot define 'noncontracting*   [nc]   as    "such that the sum of the 

lengths of all strings  in the hypothesis  (whether appearing isolated or ^s 
i 

elements of tuples) is at most as large as the sum of the lengths of all 

the strings in the conclusion" , since then a.canon like 

xA;xBf— xCi ' 

would not be noncontracting, which is riot only counter-intuitive but aljso 
i 

does not allow us to salvage the proof for "[Type 1] g [NCST] ". For 

the particular case when no predint« of degree 2 appear in the conclu- 

i 

sions of the canons, one could try 

"the string in the conclusion is no shorter than any of the 

strings appearing in the hypothesis, whether they constitute 
I ! 

terms of   'degree    1    or are elements of higher-degree terms"   . 

We shall reconsider this suggestion later on (in a modified  form);  at ' 
i ■ i 

the moment we have to abandon it because we plan to use as much as pos- 

sible of the existing proof [Donovan & Doyle 1968, pp.  43-44],  and the 

canonic systems constructed  in this proof-arei  as we noted  in Chapter IC,' 

general canonic systems with_predicates_of_degree_2 (also in the conclu- 

sions of the canons). 

Since the real problem here Was the  finding of of a good definition, 

we think it would be more  instructive  for the,otudent of canonic systems 

if we try to present how_the_definition_wa8_arrived_at,   instead of just 

exhibiting it and showing that  it works. 

Doyle's proof: of the recursiveness used a multitape Turing machine; 

the  idea was  to show that this machine always halts,  thus deciding mem- 

bership in    L( £ )   .  We intend to prove more, viz.  that  the set    L( £  ) 

! I 
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defined by the canonic system    Is  context-sensitive.    For this,   It will 

be enough to show that the multitape Turing machine which decides whether 

<<> £ L( £ )       never uses more than     jwj    squares on any of Its  tapes. 

As dur first  step, we modify Doyle's1  Turing machine to have,   In 

addition to one tape for each predicate of degree    1  ,  also    k    tapes 

for each predicate of degree    k  ,   for   k a 2,  3,   ...  (all1the tapes are 

distinct).     In Doyle's  construction,  the Turing machine exhaustively ge- 

nerated all strings of length ^ |u)|    In the  language defined by the ca- 

nonic system and  checked  for the occurrence of    ui    on the tape assigned 

to the sentence, predicate,.    Naturally,  all strings,  pn all tapes,  had to 

be placed one beside the other (separated by special characters),  and so 

the storage space  for far ffom being linear.    One could achieve  linearity 

^.f each string replaces the contents of the tape on which It  Is placed. 

Instead of being appended  (with a  separator)   to the current end of the 

tape.    However,  each string has  to stay tvallable Indefinitely,   for later 

use  in derlyat_ons  (Fig.  4).i 

[Other com- 
putations] 

Figure 4 
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More exactly,   It hai to stay Indefinitely available in all cases  EXCEPT 

when each canon has at moat one premise (if 0 premises, the canon is an 

axiom),   in which case  (see Fig.5 ), 

|(axiom)i 

mmn 

Figure 5 

each statement on a computation path  is used once  innedlately after being 

obtained and never needed again.    This will be the main  idea of our proof. 

In order to achieve tM' situation we have to reduce our given cano- 

nic system © ("of Type X") to one £ in which canons have at most one 

premise and which is also'Vrf Type X" . Forgetting for the moment of the 

"Type X" restriction, we notice that such a reduction ia always possible: 

this is one of Haggerty's result! (Theorem H-3, here). There are exactly 

3 ways  in which the canons of L     are conatructed: 

1)  they may be  inherited fron    g     ,   if they have at most one premise; 
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2) th«y may have been Included In UJ^ Co replace some canon 

t, pred, ; ,,.; t '»red  L-. t pred 
i ■  i      n *  ii |    o ■  o 

of G !  general form; 

< ^«tj«.••«*,> £rsd1pred2...pred|| (-^££2^ 

where the degree of Che newly Introduced predicate is the sum    of the de- 

grees of the    n    pred lea tea  in the hypotheaU of the old canon; 

3) they may have been required by canons already in ui. i 

if C   haa canons 

^ 1 •   * m'  —  |    o — 

^tl«,,,«t^-  H" 'o^-  . ««x1 SIS: !• «Iwedy in ^ ^ 

then it will alao have the canon 

where deg(re) - deg(R) + deg(8) , deK(R'S') - deg(j£) + deg(8i) . 

Fron here we get the final hint aa to how to chooae "Property X"  : 

if we are to uae the method of proof sketched above,  "Property X" haa to 

bc !?Yfr*!t??.&.!22i.!?2' *      ,3)'  su8g"t« the following: 

PBOPERTY    x    .    In each canon of the canonic ayatem: 

If the predicate  in the concluaion ia of degree    k   .   then in each premiae, 

aeparately,  the tuple can be decomposed    * into    k    parts (poaaibly empty), 

which are contiguous, mutually dialoint, and collectively exhauative;  and 

there ia a permutation of theae    k    parta auch that,   for every    i   ,ifi<k  , 

each element  in the    1        part    **    al'aya repreaeota a string whi "i  ia 

no longer than that  repreaented by the    i        element of the tern (of order 

k )   in the concluaion of the canon. 

*    It la underatood that no element of any tuple ia tu be cut  in the 

middle by the decomposition. 
th ** The part \*\ich became the    l1""    after the application of the per- 

mutation. 
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Example«: < x ., v>A     |-<V    ,     >>   AA 

As • particular caaa, «a havat 

PWPEHTY   X2  .    (S«»e «■   ^ , but ooly ooa of tha alaMota 1B tha 

conclusion la co^>«r«d with thoaa in tha hypothaala-  thara is an Intagar   ■ , 

B<k , auch that tha   ■**   alaaaot of tha conclusion alwaya rapraaaota a 

atrlog    loogar than thoaa rapraaantad by any alaa»nt in any tarn lo tha 

hypothaala.l 

Wa ahall no» clarify uhat ua »aan by tha axpraaaloo 'alwaya rapra- 

aaota a ahortar atrlat*   .   Whao a csnon la uaad In a derivation    It doaa 

not appaar In Ita general fox» but aa a particular HMp.lofÜPSf*  in 

which all tha varlablaa ara raplacad by partlcuUr atrlnga-    «b« 'rt>- 

partlaa   1.    ( 1 • I  , 2 )    raqulra la that for aach canon thara be a 

decompoBltion of tha kind apaclflad above and such that for all tha 

inatancaa of that canon that^can^apjaar^ln^darlvatlopa^ln^tha^ilvan 

canonic s^staai   *    tha abova-nantionad dacoapoaltlon yield particular 

strings uhlch aatUfy tha langth ralatlonahlpa apaclflad In tha defini- 

tion. 

*   Por axsapla, if a canonic ayataa contains only tha canons 

f- 3 diait 

x dUlt    k- x masbar 
« dlalt  ;        y nuaiber     ^— xy nuaibar 

than    •533 dltlt ^333 mabar'    la a lagltiMta Inatanca of ona of tha 

abova canons, but can navar sppaar In a derivation.    We ahall ba concerned 

here with canons  Ilka 

< s a y>  graatar in length  ;   y very long at rIns ^- x vrv inn, .trin. 

which ara    ao decoe^oaabla,  because sny (apparently)  offending Instsnca 
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Thus in order to ascartaln whether a ctrteln c.afha» Property X.    «M 

h«vo to make sur« not only that tho canons hava cartain form* but aUo that 

an Infinity of canon inatancaa aatiafy cartiain roatrlctlona.    Whan «a talk 

of claaaaa of canonic aystaas «a uaually rtquira that aaabarthip in tha 

claaa ba dotandnad on f r baaia of a finlta aat of canona. not on tha baaia 

of an infinita aat of canon inatancaa; tharafora «a now procaad to define 

propartiaa alailar to Propartiaa X      but auch that  thay iovolva tha canons 

thaaaalvaa rsthar than an infinity of canon inatancaa. 

Lat us considar firat a cam of dsgrss    1 , a.g.    xaby , «Atara   a . b 

ara ayabola and   x , y   ara varfsblaa.   Whatavar tha atringa rapraaantad by 

x , y   aay bat tha raaulting atring ia aluaya longar than tha at ring rapra- 

aootad by   xxyabb .   Wa ahall writ. 

X« ^  ««by 4 ■»/•** 

Othar axaa^laa: 

X   ^    XX 

x ^ xy 

x ^ xb 

xx3y>yx 

Wa hava to awka ona aora  preparatory digraasion bofora «a foraally dafina 

tha ralaticm ^   .    Sinca wa want to uaa Doyla'a conatruction of a c.a. for 

a givan contaxt-aanaitiwa graoMf.   lat ua hava a cloaar look at  that cons- 

truction. (Wa want to sMka aura that tha definition of ^  will be choaen in 

auch a way that tha c.a. conatruotad will heva Property Xj   .)    Ita "wost  im- 

<abc4deft>  ^roaf r in lenxth  ; defg YtTv lonl, *trln' )~abc v,rv  lon't ,trina 

, while  legitimate aa an instance,  csn never sppeer in s derivstion in s c.a. 

which definea        '«c, y>  «reater in length'    to «ean    - x U  longer    thsn    y ". 

*   "ca." • "cenonic ayataaP* . 
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portaot  canon",  cod th« only on« which  1«  Ukaly to caua« probl«Mt  !• 

(1) wi dTlvod ttring ; <x ^y» production ;<y^KVgroaf r In fngth   I— 

wyi      dorlvd ||| Ing , 

Th« problMi U chat we need vxi^vyi , whor« x , y or« not coaparabl« 

(b«lnt two distinct variable«). All «o «ant is that always tha atriog ra- 

praaantad by y ba at laaat aa long aa that rapraaantcd by x , and thia 

ia ansurad by th« prasiiaa ^y^x»graatar in lanth ( H^Ul) Tha dafi- 

nitioo win include alao thia eaaa, thua "latalising" canon (1) . Tha pra- 

dicata    greater   In   length     uaed   above     ia  defined   thua: 

(2) x tsnainsl   |— x aybol 

(3) x nonterminal    ^— x syt >l 

(4) (-<\,1>   laogth 

(5) <»< y>   l«>gth  ;  s aytol \- <xs ^ yl>   langth 

(6) «x, y>   laagth ; <a< yl>    Isngth   [— xr # x>   greater In length < 

(7) <xay>   graatar in Isngth  ;«y<i>   grastar in langth   L-<x „ t> grea- 

ter  In  length 

(8) <s<y>   langth  ; ^s ^ y>   Isngth   |—<xr8>   grsetsr In Isngth 

Canonic   a vat etna  which   Include   the  canona     (2)...(8)     will   be  called 

i??B£!?r??Di£?llllf.5!???*£.!?!!!?!'    We re«Mrl'  for latar uaa that thaaa ca- 

nona   SStisfy  themaelvea   tha   requl retaent a   placed  upon  canona   of   canonic   avs- 

tsas sstisfying Propsrtlea    X., X. (i.a. thay are dacowpoaabla in tha pra- 

acribad wannar). 

*    It  ia bacauaa of this canon that  ths c.s. which  include canons (2)... 
« 

(8)    »re not siapla.    Tha ascond alcasnt of s psir  in    Isngth    represent« 

tha langth of tha firat alsant «xpresssd in    1-ary notation: O-T.  >'llir, ate. 
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P!^Pi5i°?-i9' (I>«'lnltlon of < (with respect to a particular canon 

in a particular canonic aytton)) 

.la.   For any words a , ß 

\ 4 a (vis the empty word) 

04 ß      .♦»•    |a|<|ß| 

.lb.        If    x    is s variable,  then 

\4 x 

x 4 x 

.lc.      If a premise of the  form    <v,u>    greater  in  length     is 

Included   in  the  canon,   where     U   ,   V     ere variables,   then 

U < v (In  thst  canon) 

If    ci   » c2  • c3  '  t4    r*present conestenet ions of vsrisbles and words, 

.2a.      [TransItIvityJ       ^i < ^    '    4 ^ 'j      ' "^  'l 4 ^ 

.2b.       [Slde-by-slde  concatenation of  inequalitiea] 

tx*t2     .     t34 t4       .=♦   t^^ t2t4 

.3.      No relationship    t. 4 t,    is valid unless it is deduced from 

e  finite number of instsnees of    .Is.   ,   .lb.   ,   .lc.    by means of a  finite 

number of epplicetions of    .2«.   ,   .2b.    . 

With the help of the relation     4    we are now in a position to define 

PROPERTIES    T1  , Y2   ,  for leogth-aonitoring canonic systems.These properties 

are defined in a siaiilar manner to thst  in which we defined Properties    X    , 

Xj   ,  but: 

1) the expression    'element    -t.    slwsys represents s string which la 

no longer thsn thst  represented by    t     '       is replaced by      '   t. < t    '   } 

2) the canons    (2)...(8)   .  present  in sny length-monitoring c.s., 
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•r« not required to be "decomposable"  .  [Notice the forma,   change In the 

concept of "decomposability".]   [We shall later consider other types of  length- 

monitoring c.i.,  in which case  '2)' will refer to the canons there used for 
monitoring length.] 

We note that Property    Y,     implies Property X.    (  1 - 1,  2),  and that 

one can Immediately  tell,  by inspection, whether a c.s. has Property    Y. 

(  1 - 1, 2 ) or not (this was not the case for Property X.   ,  Property X. ). 

This  iatter fact Justifies the following definition: 

Defir-itio"  11-  A  length-monitoring canonic system is of Type Y.   (res- 

pectively   Y_ )  if it has the Property T.    (respectively   Y2 )   .  [The name 

'type*   is reserved for properties detectable by inspection.) 
i 

Il£S£§9.£- 
a)  Given any context-sensitive grairanar,  one can uniformly effectively 

construct a_length-monitoring canonic system of Type    Y.     ( Y„ )    defining 

language defined by  it  is context-sensitive  (and a suitable grammar cnn be 

constructed_in_a_unlformly SHjctlv^oarner^ 

i 

I .M Proof.    Since    Type Y    implies    Type Yj   ,   it  is enough to prove  'a) 

for    Y2    and «b)'   for    Yj  : 

[Type  1] $ [Type Y2] C [Type Yj ^[Type 1] 
a b 

["the class of languages  fot which there is grammar of Type 1    is included 

in the class of languges defined by c.s. of Type Y.   ,  which  ..!',  etc.]   . 

a) All we have to show is  that  the length-monitoring c.s.  constructed 

in    Donovan & Doyle 1968 pp. 43-44    always satisfies Property    ^   , and this 

i 
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Is ensured by the1 manner In which we chose our definition^. 

[Remarks. There is ho need to first reduce the. grammar to one of order 2;        < 
i ... 

1 -  the alphabet of the c.s.  includes not only the terminals but also 
I ! ; ■ • , 

the nomterminalfl,  and    Ü    is  included aihong the latter; 
•   - . j 

l   -  there is no need,for *hei_canonic_8ystem_itself_>to_define the con- 
I .- — -----.--. .      ^ 

cepi  'string',  since this'concept is. part of the definition 
' • j • i ! ' 

of canonic systems in general; 
i I 

-  for formal reasons,  the canon i 

[  y string ;] <S y> production ; <y ^ 2>    greater in length 

i        ,     r— y   derived gtrlng. 

is replaced by the two canons      f-E initial string and 

I        x initial string ;| <x^y> production ; <y<y> greater In 

length   L— y derived string    , 
■   l ■ ,     ■    ;      , '      , ' 

where    initial string    is a new, singleton predicate.  ] 

'    .    '   . '   ^ '       ' ' 
i | i 

b) Applying Theorem H-3 * , we reduce the given c.s. of Type Y^^ to 

one in which no canon has more than one premise. Since the original c.s. 

had Property X. , and since this property is invariated by the construction 

in Theorem H-3 , the resulting c.s. also has Property X. . We shall now 

construct (in a uniformly effective way) a nondeterainistic multitape LBA 

Which recognizes ;the language defined by the reduced c.s. (which is the same 

as that defined by th6 original one). For each predicate of degree k ( k p 

1 ,2 , ...), the LBA will have .k tapes.  Since each hypothfesis has only 

one canon, the derivajtlons have a certain "Markovian" character (see Fig. 5"». 

Each statement obtained in the derivation is used in the immediately following 

step 9nd never needed again«,«ltd therefore can allow ourselves to overwrite 

* I am grateful to Amitava Bagchi for the suggestion to use Theorem 

i ■      I     ' :   ,    , 

H-3 in t^iis proof. 

I 

I ■ 
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the tapes corresponding to a predicate uhen this predicate reappears in a de- 

rivation. The LBA will simulate nondetemtlnlstically the derivation and will 

halt when a sentence is derived;  if a string  u is a sentence then there 

is a computation path of the LBA which hjlts with CJ displayed on the 

sentence tape, and conversely. The last step in the derivation of co is 

of the form 

<a<ß<...<|i> AB.. .M  I—  CJ sentence ; 

by Property X. we have 

M > |a| 

M ^ Ißl 

Tracing back our derivation, we see that,  in view of the Property    X.   , 

co    is at  least as  long as any string in the derivation,  and therefore    |a)| 

is an upper bound, on each tape separately, on the amount of space necessary 

for recognition. 

The proof will now be concluded by replacing the multitape LBA by a 

["multitrack"]  one-tape LBA and noting that each step in the chain of cons- 

tructions 

c.s. of 
Type Y1 

c.s. with multitape              _. 
LBA           ^ 

context- 
one-premise '"■'^ ■5=^   sensitive 
canons graranar 

is uniformly effective. 

As an illustration to this proof, we now show how the multitape LBA 

would handle the canonic system which «as chosen by Haggerty to illustrate 

his procedure. 
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<   x   ^    y   ,,   z > ABC j—   < ax ^ by <  cz > ABC 

<yt
z> BC L. < a    ,   by ,  cz > ABC 

<xtcy> AB |^<ax,by<,c7 ABC 

XTx^ z> AC |—<axtb<cz> ABC 

x A f— < ax  „ b   g   c > ABC 

y B |— < a     .   by „ c  > ABC 

z C | < a    m   b    «. cz > ABC 

•Cx      <y>       BC j— <'xbcyc>BC 

x B \— <xb   ^    c  >   BC 

|— «C b ^ yc >. BC 

|— <b < c ,> BC 

y £ 

y>   AC [— < xa c yc > AC 

 <;xa ^ c > AC 

1  < a ^ yc > AC 

\— <*    , c^- AC 

Derivation for  'aabbbcaabbb' :   b B ; < a  bb > AB ;  < aa  bbb > AB ; 

< c aabbb > CD ;  aabbbcaabbb E ; 

The multitape LBA has 16 tapes (=5-1+4«2+1-3) . The following figure 

(Figure 6) shows the contents of these tapes at successive stages of the 

simulated derivation. 
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h -A 
1      b I 
h-    c £ 

x A |—   ax A 

■ 

x B f—   bx B 

x C j—   cx £. 
x A 5   y B h-   xy D 
x C ;   y D |— yxy E 

Derivation for 'aabbbcaabbb' 

aabbb D ;  aabbbcaabbb E ; 

b B  ;     a A  ;     bb B  ;     aa A  ;    bbb B  ;     c C ; 

Transfomed canonic system: 

- a A 

- b B 

- c C 

x A 

x B 

X C 

(—  ax A 

^.   bx B 

|— :x C 

<x< y>AB [~ xy D 
<x< y>aD   j—yxy E 

(The decompositions are shown by 

suitable underlining) 

<  x <  y >      AB 

x    A 

y B 

j—<ax ^ by> AB 

j—<ax , h > AB 

|-<a < by> AB 

L.<a    < b >   AB 

< x ^  y <jz> ABC |—<cz ^ xy>   CD 

■< x <   y >'; M H<c<   xy> ^2 
^              f i             ' 

(a)                (1) (O          <V 
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CHAPTER    V 

FURTHER HIERARCHIES OF CANONIC SYSTEMS 

i ' i • 

The purpose of this, chapter is to apply the main result of Chapter IV 

toward the development of improved hierarchies of canonic systems. 
i 

Let us consider Doyle's hierarchy again.    This hierarchy hes  two se- 

parate parts,  one part  comprising classes of canonic systems  strongly 

equivalent to the class of,regular grammars and the class of context-        ' 

free grammars,  and the other part comprising a class of canonic systems 

weakly equivalent to the class of unrestricted rewriting syötems    (Thue 

semisystems).    The hierarchy wqs claimed  to include another class of ca- 

nonic systems,  situated somewhere betweeri context-sensitive grammars and 

recursive sets,  but we have seen in Chapter IV that this  class was not 
i 

completely defined. In the same chapter, two classes of canonic systems, 

the ifnSth-monltorlng_canonic_systems_of_T^pe _¥.__(¥_) , were proved to 

be weakly equivalent to the class of context-sensitive languages. There- 

fore if we add any of them to the two parts of Doyle's hierarchy we obtain 

a S2?Ei?SS_l3iSr5I£!}y.2l_£f505*£_!^2t-5HllS* where by "cpmplete" we mean only 

that all 4 types of grammars are represented.,(The hierarchy presented in 

Chapter II had correspondents not only for the 4 classic types of formal 

grammars but also for any class definable  in terms, of productions.) 

While completeness  is  certainly a very idesirable property.  We cannot 
i 

consider ourselves satisfied with it and  ignore the fact  that  this com^ 

bined hierarchy is quite heterogenous:   for Types    3    and    2     it provides 

i 

 , . :      _ _ 
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simple canonic systems with predicates of degree i ; for Type 0 • • 

simple canonic systems with predicates of degree 2 j and for Type 
i 

1 

the canonic systems arc ! not even simple. The form of the hierarchy may 

be schematically summarized 
i 

as 
i i 

J 
> 

SI  SI  G2  S2 
(for Types: 3 2  1   0 ) 

-  ' 

Our first step toward "homogenlzatlon" will be to reduce the third 

class from G2  to S2 . Clearly, we can always reduce a general c.s. 

to a simple one by using Theorem H-2 , but we need a class of simple 

c.s., weakly equivalent to context-sensitive grammars, and the property 

'obtainable from class .4 by eliminating contextual references'  Is not 
i   .        i 

i 

a good criterion for class membership, since a criterion should refer to 

the form of the new system, irrespective of how the c.s. was obtained. 

We have seen that the length-monitoring c.s. cannot be simple, by defi- 

i 

nltlon, since they all include the offending canon 

<x<y» length ; <2 t yl> length ^^ztxS greater in length 

If we modify IV.(2)...(8)  by replacing this cahon by the canons 

(<*4 y> length ; <z ^ 3 

1 U. 1 unit      [si 

yu> length j u unit I—* x> greater in length 

singleton predicate] 

i and call the canonic systems which Include (1)  and IV.(2)...(5),(7)... 

(8)  s-length-monitoring_canonic_8y8tert8, we can build for them a theory 

ölmllsr to that of Chapter IV. , 
ii '   • 

i i    ■       , 

i i 

Definition  12.    A simple s-monitoring canonic syst^em is  of TypeJ^ 

(respectively    Y2  )     if it has Property    Y1    ( Y2 ).    Property    Yj    ( Y2  ) 

i ■ ' 

, ' .ii 
i   . * 

1 
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for «-length-monitoring canonic systems li daflrsd In a similar manner as 

for longth-monltorlng canonic svstems, but the condition '2)' in that de- 

finition will now exempt from the decompoaabllity requirement the modified 

canons used here for monitoring length. 

Pjss£se.Z- 

a) Glyen_an^_cont«t-»en8ltive_gramari_one_can_unlformly effectively 

construct   a   simple   s-length-monitoring  canonic  svstem of Type     Y       (   Y     ) 

b) For anv  simple  s-length-monitoring  canonic  svstem of  Tvpe     Y 

1.- -2_i_H!}?_lfD81fi8?--eliS5^-^_iS_i!_S2Dt??5l5?n!itive ian<1 one CBn 

uniformly effectively find a grammar for 1^ 

Proof,  a) The only contextual  referencing in the canonic svstems of 

Theorem 6a was  in Canon IV.(6)   .     If we  replace that  canon by    (1)    we 

get a canonic system which is simple,  s-length-monitoring,  of Type    Y 

(and  therefore also    Y    )   ,  and defines  the same  language. 

b)  Completely similar to the proof of Theorem 6b  .    [Theorem 7b is 

not  a particular case of Theorem 6b since s-length-monitoring c.s.  are, 

formally,  not  the same as  length-monitoring c.s.] 

We have thus obtained a hierarchy of the  form 

SI      SI      S2      S2 , 

i.e. a hierarchy of simple canonic systems (of which the last class 

contains all the simple c.s. with oredlcates of degree 2), and we shall 

try to reduce it to the form 

SI  SI  SI  SI 
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The last class can aasily be ao reduced.    For any r.a. sat  there ia 

^ simple c.s. with predicates of degree    2 which daflnaa  the given «et, 

and thla c.a. may be reduced to one with predicates of degree    1 (by The- 

orem H-l)    while  remaining tiraple;     and the converse result is cettslnly 

true,  since aeta defined by canonic systems are always  recursively enu- 

merable. 

The hierarchy haa now the form 

SI      SI      S2      SI 

Unfortunately, Theorem H-l appeara to be of no further use In reducing the 

form of the hierarchy, alnce none of the 4 classes mentioned In this 

chapter    as being weakly equivalent to context-sensitive gramnara 

(length-monitoring canonic systems of Type    Y      ;    of Type    Y.    ; 

simple a-length-monitoring c.a. of Type    Y       ;    of Type    Y ) 

la  Invariant under the  transformation  involved  in the proof of Theorem 

H-l. 

Having thus arrived at an apparent  "dead end"  in our endeavors  to 

develop and simplify Doyle's hierarchy,  we now consider the other basic 

hierarchy,  the hierarchy of general c.s. with predicates of degree    1 

(of the form Gl      Gl      Gl      Gl ) 

which was  Introduced  in Chapter II,  and apply to it Theorem H-2. 

It  is easily seen that we obtain Indeed 4 types of canonic systems, 

i.e. valid criteria can be stated  (depending only on the  form of the 

transformed canonic system)   for membership of a c.s.   in a type.    These 

types of c.s. may also be  introduced  independently.    The  following de- 

finitions  are analogous to Definitions    2...5   . 
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Py/iSiSiSP.ih    A •*•*• eaoonlc ■ySt«a !■    of Typ«   O^-^    If «ach 

of Its canon«, except   for 4 of thm,  i§ of on« of the  form« 

xuy dorlvblo  ; u ]J ; v V   I— xvy darlvabU 

f— »* ü («. y. n, v an varlablaa) 

(2) 

(3) 

(♦) t~   a tamlnal 

Mbtti 

(•)    M (a Mta-varlabl«) itanda for a particular atrlng; 

(b) for any predicate appaarlng In a canon of fora (2)  , wcapt 

for th« canon   darivabla  ,  there la exactlv on« canon of fora   (3)  , 

1.«.     U   .   V   ■   M    ar« fingleton predicates; 

(c) If    Ü , V    (In thla ordar)    am two singleton predicates appaar- 

lng In a canon of form    (2)   .  and  if    M  ,  ^    #r, tha corresponding atrlnga. 

than      u    and  V can Jointly be put  In the fora 

M - fp A  ^ 

I* - <f u   (f 

where   y ,   ^ ,    u      are [neta-varlablea standing for]  purtlcular atrlng«. 

possibly empty,    and    A    doe« not appear In « c«non of fora    (4) , 

the 4 other canon« being: 

(5) (-2   derivable 

(6) f— \   5;npin;l.;trlng 

(7) x terminal   ;  y terminal string  [- xy terminal strlnfj 

(•) x derivable  ;  x  terminal string  L x «entence 
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Definition 14.    A ■lap!« canonic lyttM la of Typ«    V*       it it  U ------------- * _,_-_fc.---_-_- 

of Typ«   u<,)    and «atUfl«« the additional condition that for «ach canon 

of fom (2) th« corratpondlnt atring   u    (d«fio«d in (c) )    la non-null. 

p«finitlonalS:   A tia^l« canonic ayitaa it of_Tjp«_r^    if it U 

of Typ«    l(')    and aatiafUa tha additional condition that for «ach canon 

of for«    (2)    th« corroapondinf atrings   <f , y   (defined in (c) )    «re 

null. 

Definitional^   A »üopla canonic ayataa ia of^Tjpj^^jJJ;    if it ia 

of Typ«   2^ and satiaflaa th« additional condition that for «ach canon 

of  fotta   (2)    th« corrnsponding atring   u    contains Juat two ayabols, 

on« tanninal and ona nontaniinal (on« for vhich th«r« ia a canon of  fora 

(4) and on« for which th«r« ia no auch canon), alwaya in tha aaaa ordar. 

The dafinitiona of linear, on«-8ided_linear, metallnear,  ••Suential, 

left-1context-eenaltlve1, etc., graonara    may be aljnllarly imitated, and 

ao we may apeak    (pjflnitionl?) of linear, one:aided_linear, metallnear. 

sequent i.Tl,   Ijft^xContejtt-aenaltlv^, etc.,    almple_canpnlc_8y8teni8. 

Theorem=8 (Analogoua to Theorem 1]   .    For_any_almgle_cenonlc_8jr8tem 

of Type    i^*^__i.i_:.2i.ii.2i_3_2.there_i8-a_granMr_of_T^e__l_ y^ich 

generate8_the_8am«_languagez_and_coiwer8el^. 

Proof.    Similar to that of Theorem I. 

The second part of Theorem 8 (the converae reault)  can be proved 
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more eatlly If \tm tit« Th«or«i 1  and  th« following obvlotu 

I.    Th«  roiult of applying th«  procedure of Theorem    H-2     upon 

a c.nonlc eyttMi of Typ«    1    ( 1 • 0, lt 2, 3)    1« • «iopl« canonic ay«- 

ten of Typ«    1(,)   . 

Theorrm  8  provides   u*  with «  hlerercliv  of  simple   canonic   avsten« 

with predicates of d«gr«« 1. that la a hlararchy of th« for« 

81     81     81      81 , 

and   th« goal of tha  present   chapter  la   thereby  completely  achieved. 

Before  concluding  this   chpter,   however,   we  should   Ilk« to point  out  an 

Intonating fact which provides a link between tha two basic hlararchlaa 

developed   In  this   chapter  (tha on« of th«   form 81       81       G2       S2 

—   bastd on Dovle's —    and th« other of th«  font    Gl      01      Gl      Gl     , 

Introduced   In  Chapter  II).     When  we wanted   to   reduce  th«   first   basic 

hlararchy to on« composed    exclusively of simple canonic systems and no- 

ticed that its third claaa, tha length-nonitoring c.s. of Type Y.   ,  failed 

to be simple only because one of the canons    used  in monitoring string 

lengths included contextusl referencing, we Just replsced the offending 

canon.    But there la absolutely no need for s canonic system to monitor 

itself the lengths of the strings.    A context-sensitive granmar does not 

tik-nitor the lengths of its strings, and it  is no less noncontrsctlng be- 

cause of this;  strings grow in  length not  because the grammar monitors 

their lengths  (which if does not)  but just because the productions are 

noncontrsctlng.    When we examine  the granmar "from the outside"    (by 

using s nets-system)  we can prove that  the strings are bound  to grow; 

but there is no need to duplicste this proof inside the object system (the 
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grcour    -    or the canonic ■ystra).    We therefore eliminate  the canons 

IV.(2)...(8),  and  the canonic ayitem becomes  now simple.     It  still  con- 
— - — L - _ 

tains   canons  of  the   form 

h ^   toAU^ (p^W}    production 

(one for each production    apAu^^uxp    ;  Donovan & Doyle 1968, p. 43), 

and we just know that in «ach auch canon      I   1^1 This, however, doea 

not yet aolva our problem.    We have to redefine the concept  'c.e. of Type 

Yj"   , or, more exactly, to redefine the relation   ^    ;  and thla relation 

haa  to hold,  sometimes,  between two different variablea,  a% for example, 

In 

(9> wxr derived string  ^x^yyproductlon^y^ygreater in  length Lwyz de- 

rived string 

where wc ought to be able to prove that      x^y .    For length-monitoring 

c.a.  we could aay that    x^y    because  the premlae    < y    x> greater In  length 

la  present   (Definition  lO.lr),  but we do not have the predicate      greater 

In  length    any more,  and we are still  under the obligation to ascertain, 

by merely ln*p?ctln£ the canons,  whether or not  the canonic system if a 

member of the claaa «re define.    One way to solve  the problem of eliminat- 

ing  length-monitoring and still being able to define ^    la  to abolish the 

need to ever compare (in length)   two distinct variables.    Then 4 would be- 

come an absolute  relation, not dpnendent on the canonic aystem,  and defined 

by    .la.lb.2a.2b,3.  of Definition 10  (i.e. without     .1c.  ).    To achieve 

this end we have to replace canon    (9)    by as many canons as  there are pro- 

ductions,  each new canon being the  result of "plugging in" a particular 

production in the canon    (9)   : 

(10) wteAy z      derived string   |—     wMuWZ    derived string 
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The class of canonl; systems of Type Y  (from the first bsslc hierar- 

chy)  is thereby transformed Into a class which is, essentially, no 

different from the class of canonic systems of Type 1 (from the second 

basic hierarchy; Definition 3), end from here the whole second basic 

hierarchy is Just one small step away. 
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NON-CBOSSREFERENCING. SIMPLE. AND NON INSERTING CANONIC SYSTEMS 

1 CLASSIFICATION OF CANONIC SYSTEMS 

In this chapter we pursue an idea mentioned in Chapter I ,—  that 
j -i 

one should not distinguish (and name) the subclass of caponic systems 
1        i | 

with contextual referencing, with insertions, with crossreferencing, 

but one should rather consider the subclasses o(f canonic systems without 

| J 

the respective options.  Canonic systems without contextual referencing 

(simple c.s.) were extensively studied in Chapters I and V; we shall now 

formally introduce the other two classes and investigate their computa- 
! !   '  ■ 1 

tional power. 
i 

Crossreferencing was defined [Donovan & Doyle 1968, p. 27] as con- 

• i    ' ' 
sisting of the use of one and the same variable more than once in the,. 

term of the conclusion or the use of one and,the same variable in more 

than one premise in the hypothesis. The possibility of a variable being 

used in exactly one premise of the hypothesis but occurring several times 

in that premise is not included in this definition. On the other hand, 

there is a fundamental difference between multiple occurrences in the 

hypothesis part of the danon and multiple occurrences ip the conclusion. 

The applicability of a canon in a particular situation has to be esta- 

blished before the canon could be used, and the1 applicability depends 
i 

only on the hypothesis of the canon; if the hypothesis contains two 

occurrences of a variable, we have to check that the strings matched by 
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the two occurrences are Identical strings (substrings), and this checking 

Is not an elementary action. Multiple occurrences In the conclusion, 

however, have no Influence on the applicability of the canon. This argu 

raent suggests that we should specifically exclude from the definition of 

a-ossreferencing  multiple occurrences in the conclusion, and include 

multiple occurrences of a variable within one premise of the hypothesis. 

The same point of view is taken by Turing (in connection with Turing 

machines) and by Minsky (in connection with Post's canonical systems). 

Quoting from Turing 1936 [p. 137 in Davis's collection]: 

"If, on the other hand, [the squares] are marked by a se- 
quence of symbols, we cannot regard the process of recognition 
as a simple process. This is a fundamental point and should 
be Illustrated.  In most mathematical papers the equations and 
theorems are numbered. ... But if the paper was very long, we 
might reach Theorem 157767733443477; then, further on in the 
paper, we might find '... hence (applying Theorem 1577677334- 
3477) we have ...' . In order to make sure which was the re- 
levant theorem we should have to compare the two numbers figure 
by figure, possibly ticking the figures off in pencil to make 
sure of their not being counted twice." . 

Minsky [1967, p. 231] remarks that he could have allowed multiple occur- 

rences of variable i within any premise, but chose not to: 

"Post's most general formulation allowed each production to 
have several antecedents. ... Also in Post's most general for- 
mulation, he allowed two of the $'s in the antecedent to be the 
same. This meant that the rule of inference would apply only 
to a string (theorem) in which there was an exact repetition 
of some (variable) substring in two places in the antecedent. 
We prefer to prohibit antecedents of this form, not because we 
want to restrict the generality of the systems, but because it 
would run counter to our intuitive picture of what ought to be 
permitted as elementary, unitary operations.". 

With this motivation (and backing) we change the definition of 'crossrefe- 

renclng' to read: 
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Definition 18. A canon is said to contain crossreferencing if at least 

one of the variables involved in it occurs more than once in the hypothesis 

of the canon, whether these occurrences are within one premise or are in 

different premises. 

Definition 19. A canonic system is non-crossreferencing if none of 

its canons contains crossreferencing. 

Let us consider now the phenomenon of insertion, whose definition is 

implicit in the traditional definition of 5fnoni5_systens_with_insertion 

as canonic systems in which terminal symbols are inserted between the 

variables of one string to form a new string.  Since we are interested in 

canonic systems without insertions, we tentatively define canons without 

insertion as canons in whose conclusion no symbols appear, i.e. whose 

conclusions contain concatenations of variables rather than concatenations 

of variables and words. The formal modifications required in the defining 

second-lev«! canonic system are not difficult to figure out, but the defi- 

nition would be forbiddingly restrictive: the axioms would be totally 

useless.  In fact, we never defined axioms formally, but just referred by 

this name to any canon whose list of premises was empty, and therefore any 

restriction on the canons is automatically a restriction on the axioms. 

This suggests the following definition: 

Definition 20, A canonic system is nj^^ffting it: ^ h8s the Pro" 

perty that in all its canons, except for the axioms, the term in the 

conclusion of the canon has only "pure" elements, i.e. each element is 

either a concatenation of variables or a concatenation of symbols. 

The following canonic systems will be used as examples: 
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Language: set of balanced (well-formed) strings of 
parentheses 

v.{(,,} [Minsky p.  230] 

r— () theorem 

x theorem I—■ (x) theorem 

x theorem j— xx theorem 

x()y theorem L— xy theorem 

one-predicate (Post) 

non-crossreferencing 

Same language, same alphabet, 

I— ()  thecrem 

[Minsky p. 230] 

xy theorem i—x()y theorem 

simple 
one-predicate 
non-crossreferencing 

2. Language:  palindromes over    a 

L- a A 
f— b A 
f—-      c    A 

I—   aa   A 
I—    bb    A 

I—    cc ä. 
x    A     |— axa    A 
x    A     f— bxb    A 

x    A     I— cxc    A 

b.c.  [Minsky p.  228] 

simple 
one -predicate 
non-crossreferencing 

Same language. [Minsky p. 228] 

—     a    A 

f-   b  A 
f_     c    A 

x    A f—   axa A 

x    A ^—   bxb A 

x    A (—   cxc A 

x    A r— xx   — 

s imp le 
one-predicate 
non-crossreferencing 

. KM* 
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3. Language: all true statements about adding 1-ary positive Integers 

[Mlnsky p. 2291 ( 3 - '111'   , etc.) 

v-{i. + ..} 

(—1+1-1    add 

x+y-z add  f— xl+y-zl    add 

x+yz add  ^— »fyl-zl    add 

[or: x+y-z add f—yt«-z    add ] 

one-predicate 
non-crossreferencing 

inserting 
not simple 

4. Language:  all true statements about multiplying 1-ary positive 

integers [Minsky p. 229] 

v - I 1 .   *   .    " }| 
I—l'1-l mult 

X'y-z mult j—xl»y=zy mult 

x.y-z mult (-yx-z mult inserting 

not simple 

one-predicate 
non-crossreferencing 

5. Language: {aVaV 

|—a    A 

hb A 
x    A f- ax A 

x    B (- bx B 

x    A  ;  y B[-xyxy   sentence 

m , n    natural numbers I 

simple 
non-crossreferencing 

inserting 

5*. Same language. 

|-a    A 

h" b    B 
x    A  ; y    A  |— xy A 

x    B ; y    B   ^— xy B 

simple 
non-inserting 
non-crossreferencing 

i '^-—-■^--^■..^  
 ■ ...  _     _   .. 



6. Language: squares in 1-ary. 

Alphabet = { 1 ,, *} 

|— 1* A  . 

x*y A  (— xll*yx  A 

x*y A  f—. y square 
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non-crossreferencing 
i 

not simple i 
inserting 

6'.  Same  language. ' 
i 

[Mentioned here for completeness;  will be  introduced  later.] 

Language:  same as 5   . 

(-a    ä 
hb    B 

x    A  ;  y A|-xy A 

x B  ;  y B /-xy B 

x    A  ;    y    B  ;     z    B    (— kyxz    ABA 
x A J   y A ;   z 5 h~ xzyz  BAB 

ABA  ;       x    BAB     (— x    sentence 

simple 
non-inserting 

crossreferencing 

x ABA 

5'".  Same language, 

(- a A 

x A  j— ax A 

(— b B 

x B j— bx B 

ABA 

BAB 

; x BAB f— x sen'tence 

as above 

simple 

inserting     i 
crossreferencing 

 ü _.._  _._  _.  



5"".    Language: a"1" bW     m , n    natural numbers 
70 

The first 6 canons of 5". 
I 

Last canon replaced by        , 

i      i 

ax ABA ; x BAB  x sentence 

non-Inserting 

not simple 
crossreferenclng 

5  .    Same language. 

The first 4 canons of    5'   . 

Last canon replaced by 
non-Inserting 
nori-crossreferencing 

x A ;  y B   xyxy ABAB 

ax ABAB    x sentence 
not simple 

■ ■ii.        ■ ■ . 
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Of the classes of canonic systems considered until now, only the 

two classes which correspond,   in the first basic hierarchy,  to regular 

grammars and to  context-free grammars    are non-crossreferenclng.    Since 

they are also simple and non-inserting,  this  implies that non-inserting 

c.s.,  non-crossreferenclng c.s.,  and simple non-trossreferencing non-insert- 

ing c.s.  are all powerful enough to define any context-free  language. 

The following figure shows the new classes of canonic systems  (the numbers 

refer to our examples): 

Figure 7.   
Classification of canonic systems 

 .  .  __ ..._:  



Introducing the abbreviations 7ß 

Q -    non-crossreferenclng 6.i. 

R =    non-inserting c.a. 

S -    simple    c.s. 

QR -    Q^R 

Qff -    Q \ R etc. 

QR? - (Q ^ R)\S 

we have 

I 
[QRS] 9   [CF] (since    (5*)  defines a non-,context- 

free,   language ) 
[QR]   ^  [CF] 

[QS]    -^    [CF] As before,  [class of c.s.]   ■ class of 
languages definable by the class of 

C » 8 a 

[RS]    ^    [finite intersections of CF languages] 

(since they can be obtained by cross- 
referencing; we note that the lan- 
guage of (5*)  is included in this 
class) 

[Ql    ^    [CF] 

[R]    2    [finite intersections of CF]        [Result improved 
below] 

[S]    «   [r.e.] 

Since a c.s.  in QRS can be trivially modified so as to belong to 

$BS    or    QBs    or    QR?" , we also have 

[QR?] ^ [CF] 

[Qfe] 2 [CF] 

Similarly, 

finite 
[QBSI S [Intersections of CF) 
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[QRS]   qß    [CF] 

We shall now show that the non-inserting c.s.  are powerful enough 

to define any r.e.  set:      [R]  - [r.e.]   .    As  for the non-crossreferen- 

cing c.s.,  we have not been able to improve the result stated above 

(  [Q]5J[CF]   ),    It  is known that non-crossreferencing c.s. with one 

predicate of order    1 cannot define the set of squares in 1-ary (see 

[Minsky 1967,  p.  235]). 

Theorem^ [analogous to Theorem H-2  (of Haggerty)] .    Any_c.s.  can 

-?_r5^"£?^_S2_f_D2DZ^D2£rt^DS canonic system. 

Proo£.    Any word  (sequence of symbols)   in the conclusion is  replaced 

by a variable whose value is specified  (by an additional premise)   to be 

in an  (adequately defined)  singleton predicate.    This  implies that  the 

desired reduction is possible. 

Remark.    This procedure invsriates  the class of non-crossreferencing 

canonic systems;   it  Is  recalled that the elimination of words  from the 

hypothesis of a  canon introduced crossreferencing. 

We shall now develop a complete hierarchy of non-inserting c.s.. 

Since the  first  two classes    r^om the first basic hierarchy    (of the form 

SI      SI      G2      S2  )   are already non-inserting,  we shall retain them and 

adapt  the  last two to our purposes. 

The most general non-inserting c.s. obviously generates an r.e.  set; 

and we have seen that  for any r.e.  set there is a non-inserting c.s.  de- 

fining it  (by Theorem 9).    This gives us a class  corresponding to Type 0. 
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An for Type    1  , we have a result completely similar to Theorem 7 (Ch. V). 

Betöre stating it, we need a few definitions.    We would like to talk 

about non-inserting length-monitoring c.s.;  but all length-monitoring 

c.s.  (as previously defined)  include the [inserting]   canon 

IV. (5)   <xt y> length  ;     z symbol |-<xz^ yl>   length 

[A similar situation was encountered just before Definition 12.]    By re- 

placing this canon by 

< x ^ y> length  ;     z    symbol ;    u    unit   |—<xz 4 yu>   length 

I—   1    unit [singleton predicate] 

In the definition of 'length-monitoring'  we arrive at the definition 

of    r-length monitorinK_c;8;    (similar to    s-length-monitoring c.s.). 

Similtrly,  if we perform this replacament in the definition of 

•s-length-monitoring1   , we arrive at the definition of Jf^length^monitoring 

canonic^systejtts» 

Theorem_10. 

a) Given any context-sensitive grammar, one can ''T,ifo™}y_5Hff55y?}r 

construct a non-insertirg^r-length-monit^ 

defining the 8ame_langi3je^ 

b) For any non-inserting r-leng^h^^of^Lf^f •-2f_I??f..]fl__Ll2_i. 

the language defined by it is context-sensitive (and one_ff^_^55?™}? 

effectively find_a_graipmar_for_lt2^ 

* Definition similar to Def.  12. 

i^a^::;.^^^K^^^vJ^^.J^^^jA^^...1.^-v/v.. . ... 
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Proof^    Analogous  to that of Theorem 7. 

We have thus obtained a hierarchy of non-Inserting canonic systems. 

The form of this hierarchy may be described as 

Rl      Rl       R2       R2 

Rl 

(More exactly, RSI RSI RG2 RSI .) 

We shall now define pure canonic systems. 

»l£S»£9S.21z A canonic system is said to be pure if it is simple 

and non-inserting, ["pure,• since all concatenations contain either 

exclusively symbols or exclusively variables.] 

A complete ]}ierarchy_of Pure c'8. , of the form 

RSI  RSI  RS2  RS2 

I 
RSI 

can be easily obtained, in a manner entirely  similar to that in which 

the hierarchy of non-inserting c.s. was obtained. However, we prefer to 

present another hierarchy, based on the second basic hierarchy (form: 

Gl  Gl  Gl  Gl ). At the end of Chapter IV, we found a hierarchy of 

simple c.s. with predicates of degree 1  •  SI  SI  SI  SI  . 

(Of. Def. 13, 14, 15, 16 and Theorem 8.)  By inspecting the definitions 

of the classes of simple c.s. involved, it is easily seen that these 

canonic systems are also non-Inserting. Therefore we have obtained: 



£l!SS££S./1 *    The hierarchy '• 

SI      SI      SI      SI 

of Theorem 8 Is,   actually,   a hierarchy of pure canonic systems, 

RSI     RSI    RSI    RSI 

The next  logical step would be to look for a hierarchy of the  form 

QRS1    QRS1    QRS1    QRS1  .    We suspect that such a  result  is  impossible to 

obtain,  and, more precisely,  that  the non-crossreferencing c.s.  are not 

sufficiently powerful to define any language of Type 0 or 1  .    We shall 

now introduce a modification in their definition, modification which will 

enable us  to obtain a complete hierarchy.    Following Kinsky's  [1967,  p. 

235]  definition for Post systems, we shall call canonic system_with_auxi- 

liary alphabet    a formal system similar to ordinary 

c.s.  but  in which a subset    T    of the alphal^'-    V    is 

singled out  (and called terminal  alphabet),  and  for which the  language  it 

defines is 

L( £ , A )   .    The set    VVT    is  called auxiliary alphabet. 

Systems with    T = V    may be Identified with ordinary canonic systems. 

The difference between cane--'; systems with auxiliary alphabet    and 

ordinary canonic systems    becomes significant only in the case of 

non-crossreferencing canonic systems.    For all other canonic systems we 

could define a predicate      terminal string      and then achieve the desired 

effect by adding a canon like 

.    . 
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Example. The set of squares in 1-ary. 

6'.      V = { 1 , *} 

T = {l} 

Canons: |- 1* A 

x*y A ^- xll*yx A 

x*y A L- y  A 

non-cross referencing 
one-predicate 
WITH AUXIL.  ALPHABET 

not simple 
inserting 

Examples 6 and 6'  show that a set may be undefinable by Post 

systems (canonic systems with one predicate of degree 1 and no auxili- 

ary alphabet) but become definable if we either allow one more predi- 

cate or allow an auxiliary symbol. This "trade-off" between additional 

predicates and additional (auxiliary) symbols is, in fact, an instance 

of a general result: 

Post systems 

more than one predicate 
[(w.l.o.g.) of degree 1] 

CANONIC SYSTEMS 

(A) 
Iff 

(B) 
V 

one predicate of degree 1 ; 
auxiliary symbols 

(C) 

one predicate of 
higher degree 

(A): Trivial. 

(B)(C) : [Haggerty 1969, p. 44]  * 

* Theorem 3. However, the statement of this theorem, "Any canonic 
system can be simulated by a Post system.", must be supplemented by the 

.. _ " ._  
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(B) may also be proved by using Theorem! H-3 and the pi^oof of Theorem 6b. 

i      [The number of the predicates will be the number of tapes of the LBA.] 

(C);  Proved by introducing separators acting as auxiliary symbols.       ' 
A result similar to (B)(C) has been announced by N. jKohn [1969];   it in- 
volves variables \AYicfc range on alii but one of the symbols  in the alphabet. 

i 

Having defined and exemplified  caiionic systems with auxiliary alpha- 

bet,  we, are now ready to derive a hierarchy of nofi-crossreferencing ca- 
i 

nohic systems with auxiliary alphabet. 
; i ' i     . 

Theorem_|12. '■ 
I ! 

a) Non-crossrp.ferencing canonic systems with auxiliary alphabet 

fr?_E9!f5I^!?i_5D2^Si?>to ^cfin". any r.e.^set. 
■ ■ • ( 

i 

b) A_complete^hierarchy of such canonic systems may be obtained  from 
1 ------       ---        | --I i 

the second basic hierarchy. 

Proof. Obviously,   it  is sufficient to prove  'b)'   . 

i i i 
The only canon with crossreferencing in the canonic systems  from the 

above-mentioned hierarchy (Chapter II)   is 

, x    derivable  ;    x    terminal istring    L, j.    sentence 
; j 

I 

By eliminating it from a given c.s. (together with the canons which define 
i 

t^ie predicate    terminal string )  and by replacing the axioms of the form 

] ' '■ ' 

ha    terminal i i 
i 

i i 
i 

qualification "...which is a canonical extension [in Minsky's sense] of 
the given canonic system.", since there are formulas which are theorems 
in the Post system without being theorems in the given canonic system, 
and all such formulas contain auxiliary symbols not in the alphabet of 
the given canonic system. The Canonic systems 6 and 6' above are 
examples of systems which can not be simulated unless we allow canonical 
extensions, i     ,       '        , ' 

i ■ >  ,       | 

i i 
i 

! i    I 

. L 
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by s declaration 

T = {  a  ,   ...    } 

we obtain a canonic system equivalent  to the given one.    The theorem 

now follows. 

OPEN PROBLEMS: 

1. "[QRS]  = ? "    Find tht computational power of the class of 

simple,  non-cross referencing,  non-Inserting canonic systems (no auxi- 

liary alphabet,  any number of predicates).      [   [QRS]^g[CF]       ] 

2. " [Q]   = ? "      Find the comput&tlonal power of the class of 

no,:;-cross referencing cenonlc systems  (no auxiliary alphabet,  any number 

of predicates).        [Includes all  finite Intersections of context-free 

sets.] 

3. " [QJ  = ? "    Find the computational power of [unextended] 

Post systems  (non-crossreferencing,  no auxiliary alphabet,  one predicate 

(necessarily of degree    1 )  ). 
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