Ropmduc“ by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

=

B L T S S INE Wi R Ao aa—rty" o Sl

] s 1 '

UNCLASSIFIED o ' !
Security Classification !

| DOCUMENT CONTRO.. DATA - R &0

(Security claulllculon of titie, body of abstract and indexing annotation must be snnnd when the oveuM report is classiiied)

1. ORIGINATING ACTIVITY (Corporate aulhol) 28, REFPORT SECURITY |CLASSIFICATION
Project 'MAC ! ' ‘ Unclassified
Massachuretts Institute of Technology 2b. GROUP
]
None

3. aspon'r TITLE . ; !
. i
i H v

FURTHER RESULTS ON HIERARCHIEé OF CANONIC SYSTEMS) ‘ ;
}] '

4. DESCRIPTIVE NOTES (Type of report and inciusive daies) | i '
. [

5. AUTHOR(S) (Flru name, middie initia{, iast name) |

Robert Mandl | e

|

6. REPORT DATE 78, TOTAL NO. OF PAGES 7b. NO. OF REFS
June 1972 . 84 !
8a. CONTRACT OR GRANT NO. ') ' 9&, ORIGINATOR'S REPORT NUMBER(S) . v
N00014-70-A-0362-0001 \ Y b !
b. PROJECT NO. N/A ' | : | MAC TR-100
. ' ' . , !
c. N/A ' ob. OTHER nEPon‘r NO(S) (Any orhor numbers that may bs assigned
' . . this report)
d..iN/A ' ' , P |

10. DISTRIBUTION STATEMENT Lo
Distribution of this document is unlimited.: '
] , ' '
! o !

\

. !UBBLEFENTAN'V NOTES 12. SPONSORING MILITARY ACTIVITY
|
¥

None- . i : Office of Naval Research

)
i

1 systems, a new hierarchy is developed fehapter 2T) which relates the general canonic

' L I
'3. ABSTRACT Phas thesis outlines a new way of presenting the theory of canonic systems,
including a distinction (for methodic reasons) between simple canonic systems and
general canonic systems, ‘and proves a serles of results on hierarchies of canonic
systems. After a brief summary of Doyle's results on a ‘partial hierarchy of canohic

systems not only to all 4 types of formal grammars defined by Chomsky but also to
any class of formal® grammars definable in terms of productlons. It'is also shown
4Chapter-III) that all attempts to define a mathematical system which. exactly
corresponds to the recursive sets are necessarlly fruitless. |, le's work on how to
define noncontrdctlng canonic systems with predicates of degreeFZ" (NCST) is continued
arr1v1ng at a workable definition which permits us to prove [NCST] [Type 1} (Chpt 4),
a conjecture put forth at the 3rd Princeton' Conference on, Information $c1ences and
Systems. This result transforms Ddyle's hierarchy from "the unioh ‘6f two half--+*
hierarchies and a dangling term (the NCST)" into a gomplete h1erarchy of canonic :
systems (all 4 types, represénted). However, this h1erarchy is heterogenous- canonic
systems correspondlng to grammars of types 3 and 2 use only predicates of degree 1,
while canonic, systems correspondlng to grammars of types 1 and. 0 use also predicates
of degtee 2; moreover, not all of them are simple canonic systems. A [homogenous]
hierarchy of simple canonic systems with predicates 'of degree 1 is presented in Chpt.4.
Several new classes of canonic aystams (non-crossreferencing, non-inssrting, and plire
canonic' systems) are introduced in Chapter 6, where their properties are explored,

‘and a class1f1ca ion schema and several hierarchies are developed.

\

s]] !

Dﬂ Form TATI (PAGE ‘1) 7

— e SNBSS —— —

| gequrity %ln&mcntjon

I - o

S/N'0102.-014-6600

T

A S TeesTeation 20

14.
KEY WOROS

LINK A LINK B

LINK ¢C

ROLE

wT ROLE wT

ROLE

canonic system
alphabet

context sensitive
subrecursive

DD *.1273 o0

(PAGE 2)

UNCLASSIFIED

Security Clasaificstion

2b

A T A e A T Gy SR e e S e A e, S

b
It
I
t:

MAC TR-100

FURTHER RESULTS ON HIERARCHIES OF CANONIC SYSTEMS

ROBERT MANDL

MAY 1972 i

This research was supported by the
Advanced Research Projects Agency of
the Department of Defense under ARPA]
Order No. 433, and was monitored by

ONR under Contract No. N00014-70-A-0362-0001

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE . MASSACHUSETTS 02139

A

ACKNOWLEDGEMENT

I wish to take this opportunity to express my thanks to
Prof. John Donovan, who took the time from a busy schedule to
supervise this thesis and whose initial work on canonic systems
provided the motivation for this research. -

I should like to express my appreciation to Amitava Bagchi,
who contributed significantly to the successful completion of
this thesis by critically readipg several successive versions of
my work on canonic systems.

I wish to thank Prof. Malcolm Jones for helping me find
the right set of goal priorities during a very busy summer.

Finally, I am grateful to Project MAC, which provided the
facilities and support for this thesis and a stimulating envi-
ronment for formal research. Particular thanks go to several:
individuals at Project MAC, especially to Joseph Haggerty,
Norman Kohn, and Hoo~min Toong, for their interest and comments
during many discussions on the thesis subject.

Cambridge, Massachusetts Robert Mandl
August 1969

TABLE OF CONTENTS

Page
ABSTMMll..0‘."................ll..l...l...“..2

ACKNOWLEDGEDENT cccc-ooc.cccccccco.ooocooccc-c-ooooccco-cc-cc-ccccc-c 3

Chapter I : Simple and general canonic systemscccccercccncns 5
Chapter II : A hierarchy of general caponic SBYStemS cecoocecvoccsses 23
Chapter III : Subrecursive classes «f canonic systemscc.c.... 35
Chapter IV : Canonic systems for context-sensitive sets «ocecvevss. 39
Chapter V : Further hierarchies of canonic systems «...cccc.cccc-- 55

Chapter VI : Non-crossreferencing, simple, and non~-inserting cenonic_
systems. Classification of cenonic systems 64

REFERENCES cococccococ-occoc-ococcooc-ccoocoocccococccocccccoccccccc 89
LISTOF DEFINITIONS Ioocc-coocoooocooccoOoocc‘coococccccoooocco-cc-oc 82
LIST OF THEOREMS 'cooc‘oococo-cooococccoo0-ooccccoccccc-coccoccoocc- 83

LIST OF FIGURES ococcooooccccooocooocoooo0-ccoccoococcccco-oocccoocc 84

i'
|

b o e F o e R R - ol o o e

CHAPTER I

SIMPLE AND GENERAL CANONIC SYSTEMS

This chapter presents the differences between the traditional defi-

nitions and the ones we will use, and builds the theory of canonic sys-

tems gccordiﬁg to the new specifications. It also includes the motiva-

tion for the reorganization of 'canonic systems.
Canonic systems were first defined in Donovan 1966 . The starting

point of our work was the version presented in Donovan and Doyle 1968,

pp. 3-9. The reader is assuwed to be acquainted with this work, and

therefore we will not repeat that definition but rather present the

present only the modified definition. |
A canon used to be defined as a list of statements followed by the

=
sign }- and then followed by a statement, where a statement (tradition-

ally called 'remark') is composed of a_term of some degree followed by

————

a zredicatg of the same degree. A term of degree n 1s an n-tuple of
arbitrary concatenations of variables and words on the given alphabet,
the words surrounding the variables being referred to as the context

of the variables. A particular case was singled out, the case when
context is actually indicated, and the canonic systems satisfying this
condition, i.e. canonic systems which contain at least one canorn in

which there 1s an instance of variables and symbols concatenated together

in the same term, were called canonic systems with indicated context

(CSwIC) [Donovan and Doyle 1968, p. 28; Haggerty 1969, p. 41], but not

much was known about them beyond the observation that they appear to be
rather powerful. Most classes of canonic systems encountered in the
course of research were not "canonic systems with indicated context" in
the sense of the old definition mentioned above; moreover, in all cases
but one, constructive proofs for the existence of canonic systems with a
certain property yielded canonic systems which were not "with indicated
context', and the same holds for Alsop's "canonic translator" [Alsop

1967] . Because of these, and especially in view of Haggerty's recent
result [Haggerty 1969] that contextual indications can be dispensed with,

we have decided not to regard as a distinguished class the class of cano-

dicating contextual conditions, and nothing more than the option, in con-
trast with the old meaning, which required us to exercise this option in

at least one canon.]

The situation is similar to that encountered in automata theory, in
connection with the definition of nondeterministic automs ta. The old de-
finition of canonic systems with indicated context corresponds to the
machine' [NTM] : '"A NIM is a TM in which there is at least one state sa-
tisfying the condition that for at least one symbol of the tape alphabet

tuples] in the specification of the TM" . According to this definition,

deterministic TM were not particulsr cases of NTM but constituted a class

dinJoint from the class of NTM. Clearly, this choice of & definftion

OLD NEW

CANONIC SYSTEMS CANONIC SYSTEMS =
= GENERAL CANONIC SYSTEMS =
C.S. WITH INDICATﬁD CONTEXT

Figure 1

Graphic representation of the changes in terminology

The circles represent particular examples of canonic systems.

would not be fortunate, and, in fact, this is not the de”int.10n of nondeter?
ministic Turing machines, as everybody knows; rather, the deterministic TMs
were singled out (were distinguished) as & particular case of NIMs. The new

.............. . |
definition of canonic systems with indicested context and the introduction of

the simple canonic systems were necessitated in order to "normalize" the.

e i

lwmw*:j:m_ : . oy ”

' [N :

1

usage in canonic systems, to switch from a nomenclature corresponding to

the hypothetical definition of NTM, in our example, to a nomenclature

which corresponds'to the true definition of NTM. .
Similarly, instead of talking of canonic systems with insertion,' or
! | i . i
of canonic Systems with crossreferencing, etc., we would single out the

These classes of canonic systems 'will be introduced and studied in

Chapter VI. ' ’

The way in which we chose to'lmﬁlement" this reorganization is by
introducing p-terms ("premise terms")'and.theirglists along 'with

.. | [- i :
terms and their lists, and gremises‘ along with statements . A

p-term is an'n-tuple each of whose elements ig a "nure"'conchtena-

tion (containing either exclusively variables or exc]usively symbols)

This, incidentally, also! eliminates the recursion on term , so that;

it.will no‘longer the case that a substring of a term is, sutomatically,
] i i’ ;
itself a term. ' ;

j

. i
' We are now ready to present the definition of simple canonic systems.
[' !

; [E . : e
Definition 1. A simple canonic system (of level 1) is a septuple
. | H

i |

|
= (¢, ,V,,M ,P, ,S D,G_)
C; 10 Vg My By 30 Dy o

where . ; _
' Ci is a finite set of gappns i (rules of inference);
Vi is the alphabet used to form the strings generated by E; H
' Mi! is a fipite setiof)variables 'used to stand for elements

1

of any predicate ;

P is a finite set of predicates used to name sets bf tuples.
. The ‘number of compongnfs In the tuples is the degree ..

Si is a finite set of punctuation signs;

D; (&P;) is a set of sentence predicates whose union will

be defined to be the language specified by the
canonic system.

t;i—l is the "object' canonic system.

This definition is not complete until we say what the canons,
variables, predicates are and what we can do with thenm.

However, since the reader is assumed to be familiar with these
concepts, these will not be repeated here. Most of the differences
have been outlined above, and a formal definition, using second-
level canonic systems, will now be given. The reader is urged to
compare it with the old definition of canonic systems ([Donovan and
Doyle 1968, pp. 10-18], to get a complete and accurate image of the changes
that were introduced. In order to facilitate the comparison, our
exposition will also be given by way of an example, and will use the
same example, a canonic system defining the set of numbers composed
of the digits 1,2 and 3. ‘foreover, the drawing on page 5 of the
above-mentioned work is presented beiow in a updated form as Figure 2
to provide a quasi-pictorial representation of some of the changes

introduced. General canonic systems are defined similarly, but

- -

-

the conclusion but also in the premises.

. P

10

G =€V MRSy Dy co)

where Cl : r-— 1 digit

r— 2 digit

[~ 3 gigic

x digit ‘-— X number

x digit ; y number '—— yx number

\') = 1,2, 23

) { }

M = {x, }

1 y

P = { digit, number }
1

S1 = {;, ‘- }

D1 = { number }

g‘°=(z, o, &, &8, &, & &).

The following parse of the fifth canon of this system illustrates

the metalanguage used to describe canons.

conc. of var.

|

p-term predicaté
remise

;Y number |—

variable

conc. of var.

T ———————————
A ——————

}- term predi cate

A

rllill

N\

lisk uf remises

-

of legal canon format

Figure 2

—-—-T——fﬂ
(E?tiable or word

11

y X number
variable variable
variable or word
conc. of var. & words
conc. of var. & words
redicate
ltltilln:

2R A e i e

A . A R ol s o T

|
]
.
i
*Q

12

The second-level canonic system is a 7-tuple

tz = (Cz» Vé: Mz: Pz’ Sz: [b Cl)

where
C2 = { the canons listed on the following pages }
v, = {1,2,3, digit, number, x, y, 5 , |-}
M, = {q, r,s, t,u, v, w }
P2 = { predicates as defined in the canons }
l s, ={ ;;,l=,<,>, <}

D2 = { legally defined string }
!51 is the first-level canonic system

The canons of the second level must formally define the
metalanguage and operations of the first level; these canons are
presented on the following pages with a brief discussion of the
motivation and use of some of the canons. The particular manner
in which we have constructed the second-level canons system
allows this system to define other cannnic systems with only
slight modifications, which include, mainly, canons which

define the set of canons of the system being defined.

1.1 |-1 g
(1.2) l—z symbol
(1.3) '-A=3 symbol

(2.1) |-=; sign

. | ‘ ! 'm\
| TR :

(2.2) |= }sign | |
(3.1) |,,—_- ' x variable | o
(3.2) |;=_- y variable | | | |
(4.1) : =" digit predicate |
(4.2) = mumber predicate S
(4.3) |= number sentence predicate ‘
(5.1) F— A word (A is the myll strling) | | |
(5.2) ' u symbol ;; v word Fuv‘w_m_‘g' ' ; o | |
(6.1) - u variable !-ru concat, of var. , ‘
(6.2). 'u concat. of var. ;; v yariable Fl uv concat, of var.
(6.3) u' concat, of var. F ulp;t_ex;m_ C | - :
(6.4) ' u word p=u p-tern - ‘ | | | !
(6.5) - u yarigble leu concat.' of var. § words ! '

(6.6) u word |—u concat. of var. § words - ! i

' H
(6.7) u concat. of var. § words ;; v variable }-uv concat. !
. i , :
: l 1
of var: & words , '- -

(6.8) : u concat. of var. § words »3 Vv word |— uv ‘concat. i

’ - of var, & words ' | ! ,
(6.9) ! u cor|1cat. of var. § wo'rd; F'u term ’ . i
(7.1) t potemm ;; 'u g&dli_gg_t_g[: tu premise = Lo
(7.2) ! t term }; u Bredicatehtu statement - | | !
(8.1) A .list of premises . I o]
(?.2) : u list of premises ;; v gremise ‘suv; list of prem. i n
(6.3) A list of ;t_atements |

§ ' | i

o e

| N . N ' 14
1 | ! '
(8.4) u list of §tgtemen€s 33 vV statement ‘::'uv; list of !

l statements.) : ! .
’ 1

For efficiency's sake, one might add . oo

: ! | | ==y ' TN !
(7.0) u premise |== u statement ' C
’ (8.0) ' ‘u list of premises |—,—=u list of statements
A ; ’l

}
|

1 \ \
Note ‘especially the intuitive meaning of p-term : a p-term is '
, .
; | -
either a concatenation of variables or .a single word (in V*). A

| 5 q ! q . 3
term is.an arbitrary concatenation of words and variables. The

P . . . : ;
d1fferen<:.e between 2;em1seland statement is that premise c%oes n?t

allow concatenations of variables and symbols (hence it is ''context-free')
!)

while sta‘temeng allows them. One and the same variable may occur

i .
! \

. . . ' .
several times in the hypothesis and the conclusion of & canon.

i

| 9.1) u word f-nlx constant ‘
9.2) u predicate {-’u constant | |
| (9.3) Cu ' sign ‘= u constant |
(9.4) u mﬂ'an; ;3 v sonstant '==]uv constant
(10.1) : !-<-x < v > differ ’
(10.2) <u v 3 differ v o u> differ

1 N \

f
The following canons define a set or ordered quadruples named

. . g i \
substitution. They specify the substitution of constants for
o ’ -, ™ ' .
variables in canons. Thus each canon of the fif"st-level canonic
! i
system, if it contains any variables at all, gives rise to a class of
t , 1

t [

!

15

specific instances of canons. These instances are obtained when

any terminal string is substituted for the variables in the canon.
Substitution is defined by a 4-tuple <w v _ s .t >

The first element, w , is a word; the second element, v , is a

variable; the third element is the original nonempty string s ; and the

fourth element is the string t which results when the word is

substituted for each occurrence of the variable in the original

string.
(11.1) w word ;; v yarijable ‘=<w<v<v<w> substitution
(11.2) w word ;; s yariable ;; v yvariable ;; <v.s >
d_iifgz_|—< W,V S . s> substitution
(11.3) w word ;; v yvariable ;; s constant F=<w <V¢Sc¢csS?>
substitution
(11.4) <WeVesSceq Substitution ;; <WveXxct t‘

< WV SX o qt> substitution

Canon 11,1 defires the substitution of a word for a variable
in a string consisting of only that variable. Canon 11.2 defines
the substitution of a word for a variable in a string which does
not include that variabi.; this substitution has no effect. Canon
11.3 defines the substitution of a word for a variable in a constant
string; this substitution has no effect. Canon 11.4 defines substi-
tution in general.

Canons 12.1 - 12,5 list the canons of the first-level canonic

system.

AT AR

[y

16 !

(12.1) |= 1 digit canon
(12.2) ¥== -2 digit canon

(12.3) = 3 digit canon
(12.4) P== x digit |~ x number canon

(12.5) "' x digit ; y number }- yx number canon

In order to make sure that indeed the canons are of the

required format, we add:

(13.0) v statement F:: v of legal canon format

(13.1) u; list of premises ;; v statement F:u v of
legal canon format
(13.2) u canon ;; u of legal canon format '-u instance

of legal canon

(Canon 13.3 defines the set of canons in which constants have

been substituted for some or all of the variables.)

(13.3) u instance of legal canon ;; v variable ;;
w word ;; <w_v_u_t> substitution k—r
t instance of Jegal canon

Canon 13.4 defines a subset of the canons; this subset is the
set of all canons which contain only constants. Derivations will be

generated from '"canons with constants."

(13.4) u instance of legal canon ;; u constant F-=
u instance with constants

= SR 2 Y Y .
I T R AT SY W Sy S .) 2

17

Canons 14, 15.1 and 15.2 define the sets nam:d constituent of
and occurrence ; these sets are used in defining derivation. It
has been stated that a statement can be derived as the conclusion
of a canon by showing that all of the statements in th; premise
have been derived; i.e., the premise occurs in the derivation.
Thus, the meaning of the "occurrence" of a statement in a list of
statements must be defined. The concept "occurrence" must be
generalized to show that all of the statements in the premise have

already occurred in the derivation; this generalization is the

set constituent of.

(14) v statement ;; r list of statements ;; t
list of statements '-<v‘rv;t> occurrence
(15.1) u list of stgtgnentsfd < u>constituent of
(15.2) u list of statements ;; v list of statements ;;
<u cv>constituent of < w ¢v> occurrence ‘:z

<uw. v >constituent of

(16.1)) derivation

(16.2) t derivatjon ;; w list of statements ;;
u statement
;3 wiu instance with constants ;;<w .t >
constituent of F tu; derjvation *

The canon (16.2), which also occurs in the definition of general
canonic systems, is not itself admissible in a simple canonic system,
In other words, the higher-level canonic systems that we construct
here are not themselves simple , wvhether or not they describe simple
canonic systems. However, it will shortly be evident, using a result
of Haggerty, that they can be converted to simple canonic systems.

18

R T W VR

The final set to be defined is the set of strings derived
by derivations; cach of these strings is simply the last statement
in some derivation.

(17) tu; derjvation ;; u statement *"

u Jlegal erived ing.

Canons 16 and 17 are of particular interest since they define
the essence of a proof (derivation) and a lgw (legally derived
string) in all mathematical systems.

This completes the construction of the canons of the second-level
canonic system. In this example the first-level canonic system had
only predicates and terms of degree 1; modification to the second-
level system may be made to handle predicates and terms of higher
order in the first-level canonic system [Donovan and Doyle 1968) .

The metalanguage describing the sccond-level canonic system
(canon, substitution, derivation, etc.) has not been defined; a
third level system would be needed to define it formally. The form
of the third-level canonic system is almost identical to that of
the second-level system with appropriate changes in notation, i.e.
predicates are underlined three times and the punctuation signs
are ';;;' and 'F". ie now outline briefly a formation of a
third-level canonic system for this particular second-level system.
We remark first that when we specified the second-level canonic
system, we set up a standard frame, indepcndent of u:l (canons

5,6,7,8,9,10.2,11,13,14,15,16,17) to which z;l-dgpcodco; 80005

19

werc added: 1,.2, 3, 6, 10.1, 12. The same precedure will
be followed here. The third-level ((i+l)th -level, i22)
canonic system may be constructed from the second-level

(ith-lcvcl) canonic system by the following algorithm:

1. To obtain the &;z-independent (d;i-independent)
canons, use the standard frame, but make the appropriate changes
in notation, i.e. underline the predicates one rdditional time and add
one more semicolon wherever the sign *;;° (;i) occurs,

2 To obtain tae ‘:z-dependent (Gh-dependent) canons,
use the members of these sets listed in the definition of the second-
level (i‘h-levcl) canonic system as the terms of the appropriate
canons of the second-level canonic system and underline the
predicates one additional time.

Thus, the (i+l)th-level canonic system can be constructed
from the ith-level canonic system with a minimum of effort. Thus,
it can be seen that all higher-level canonic systems have the same
basic form. Since no level defines its own operations, cach level
is logically consistent,

For purposes of discussion, at some level the metalanguage of the
level must be defined informally. It appears that the second level
would be an appropriate level to do this. Recall that, for a
given problem, the first-level canonic system defines the problem;
the second-level canonic system defines the operation of the

first-level canonic system. All higher-level systems define the

20

operation of previous-level systems. Thus, by selecting the
second-level to informally define the metalanguage, the first
level canonic system (which defines the problem) is precicely
defined and logically consistent.

For the case when the 'object' canonic system 61 is not

a simple canonic system, the following changes will have to
be made in the second-level canonic system 62 formally |

specifying 'the anatomy and physiology" of clt

1) 6.1-6.4 7.1 8.1 8.2 are unnecessary

(6.5-6.9 7.2 8.3 8.4 alone will do in this case);

2) 13.1-13.2 should be replaced by

(13.1) u; list of statements ;; v statement '—u v
of legal canon format
(13.2) u canon ;; u of legal canon format l“

u accepted canon
3) Obviously, all the 61-dependent canons of tz will

be chosen so as to reflect the pgrticular components of
o,.

Suitable changes may be made to allow for predicates of
higher degrees. Examples of canons allowed in general canonic systems
are:

x A f— ax A

axby A '—-xy B

xby A ‘-— xcyd B

21

X number; @x, book descriptor '-—x Year of copyright
(x,y eM; '(:)', 'a', 'b' , and ', ' are in V) |

The sentence symbol (predicate) will be denoted by 'sentence’
i instead of ' J' (D = {sentence}).

The alert reader has undoubtedly noticed another departure from
the traditional terminology: our avoidance of the term ";grminah
alphabet®. The set V has been called just plain '"alphabet®. The
reason is that this set does pot necessarily correspond to the
terminal alphabet of a formal grammar; it may include auxiliary °

symbols.' In this connection, see also Chapter VI.

Before we study the different hierarchies of canonic systems,
we wish to mention several results of Haggerty and to point out one
| of their implications. |
801¢D. =1, Any canonic system can be reduced to onme in which no
predicate has degree greater ttan 1 . ["Reduced" means that a state-

ment is provable in the asecond canonic system 1iff it is provable in
the first one.]

*
In constructing canonic systems to correspond to regular or to
context-free grammars, Doyle took the terminal alphabet of
the grammar to serve as alphabet of the canonic system, and the
nonterminal alphabet to serve as set of predicates. When, however,
J he considered grammars of type Oor 1, using a completely different
approach, he correctly uczd, in fact, the union of the terminal
alphabet and the nonterminal alphabet of the grammar to be the
alphabet of the resulting canonic system, but he sgid he included
only the terminals. If in his construction the alphabet is to
include only the terminal symbols of the grammar, then his construction
would not yield a canonic system at all, since some of the ""canons"'
included are of the form I~ A nonterminal, where A is neither
a symbol nor a variable. I'henever we shall heredfter mention these

constructions, we shal) assume that the appropriate correction has
been made.

!

o T AR e S e e e e

R .

! ' 1
. 22
[frggf by replacing n-tuples < 8. .8, (..« (8 > by terms of'the form
‘ 813523...$an s Where $ 1is a new symbol, to ‘be"used as a separator.)
. | ' ! 3

Theorem H-2. Any canon using indicated context may be reduced to a
canon without indicated context (in other words, any canonic system can
be reduced to a simple canonic system). ! '

!

[grdof. Each constant word will be replaced by a variable whose value is

speclfied (by an additidnal premise) to'be in an [adequately defined]
"singleton set.] | l

t

. I :
Theorem H-3. Any canonic system can be reduced to one in which each

canbn-ﬂz:-:T:zzglg premise. . L

[The proof uses the following basic idea: a canon 1lik , '
1 term, pred, ; term, pred, ; e ; temm prednt—-termtgreé

is replaced by' .

| ! :
< term, temm, ... term > 2red1,_2,...,ln ‘—- term pred ,
where .Bredl 2 ™ is a new predicate rhose degree is the sum of the
tH] pgoeooe .

degrees of 'pred , and then édditional canons are introduch for the
newly-created prédicates.] ‘ N
' i

I
¥

T : : .
We remark that, as a consequence of 'Theorem H-2, the class of simple

.................................... il Bl
syatems. Knowing this, one might wonder why bother to defined simple ca-
R ']

. nonic aystems if the class of sets definable by themlis not different

from the class of sets defined by the most general canonic sysiems.
" However, the real significance of this theorem is quite different: we
I I

. I
should study simple canonic systems precisely because they form a res-

coccoes MBIV T
0

tricted class of simpler canonic systems which still realizes the same

computq;ional power, Ap additional argument is th;t Algbp's "canonic
,transllto;" [Alaop 1967] useé only "simple cerions'. 'Moreover, there 1is
nothing ?o guarantee us that if we apply a certain réstrhction on the
claas of all canonic ;ysteﬁs and on' the class of simple canonit systems,
the resulting classes have the same cpmpﬁtgtional power, ar tha; the

image of the firat reatricFed class under the tran;formation of Theorem

H-2 13'1nc1uded in the ;second restricted class.

! i i

i | '

CHAPTER 1II 23

A HIERARCHY OF GENERAL CANONIC SYSTEMS

Canonic systems were first used in specifying the syntax of simulation
languages [Donovan 1966], including the features which cennot be expressed
in Backus—Naur Form. Since canonic systems, while designed to be more po-
werful than BNF, were too powerful when first defined (having the full com-
putational power of Turing machines and thus being able to define non-re-
cursive sets), it was felt that restrictions have to be applied so as to
render the resulting classes of canonic systems incapable of defining non-
recursive sets yet powerful enough to specify the syhtax of any programming
language. (Experience and intuition have indicated to us that for most pro-
gramming languages the set of legal prosrams is recursive and it is only
specialized features of languages such as those found in PL/1 which have
enabled us to prove that the set of legal PL/1 programs is not recursive

[Mandl 1969al) This was the motivation for studying hierarchies of cano-

search and defined a partial hierarchy of canonic systems, trying to in-
clude in it correspondenté for Chomsky's 4 types of formal grammars.
Doyle's hierarchy has two distinct parts. The first part includes two
classés of canonic systems, one equivalent in strong generative power to
regular grammars and the other equivalent in strong generative power to
context-free grammars:

. Theorem D-3 ["3" for "Type 3'"]. The class of right-1linear canonic
systems and the class of regular grammars are strongly equivelent.

Theorem D-2. The class of normal-form two-premise canonic systems

and the class of context-free grammars are strongly equivalent.

There was a clear correspondence between the two formal systems, to each

A Ao

—

24

production in the grammar corresponding a canon in the canonic system, and
vice-versa. All the predicates occurring in the canonic system were of
degree 1 (sets of strings), and the canonic systems turned out to be,

in our terminology, simple canonic systems. In the second part of his
hierarchy, Doyle allows predicates of degreze 2 to occur (sets of pairs
of strings) but no predicates of higher degrees, and obtains a class of
canonic systems equipotent to Turing machines: for any grammar of Type O
there is a canonic system which generates the same language. In other

words,

Theorem D-0. The class of canonic systems with predicates of degree
2 is weakly equivalent to the class of Thue semisystems (grammars of
Type 0).

From the Pf??f of this theorem we also have:

Theorem D-0s. The class of simple canonic systems with predicates

of degree 2 1is weakly equivalent to the class of Thue semisystems.

Doyle also mentions "noncontracting canonic systems with predicates
of degree 2", and states that these canonic systems generate only recur-
sive sets and that for any given context-sensitive grammar one can find
a "noncontracting canonic system with predicates of degree 2'" weakly
equivalent to it. We have not listed this as a theorem since the defi-
nition of "noncontracting" is entirely inadequate, especially when pre-
dicates of degrees 2 (and higher) are included, and therefore the
above-mentioned class cannot be considered to be defined. TIn this con-

nection, see also Chapter V.

This completes the second part of the hierarchy. The one-to-one

25
correspondence between the productions of the formal grammars and the

canons of the corresponding canpnic systems, while present in the first
part of the hierarchy, could not be established in the seconri part,

owing to the inherent difference between canons of these classes of
canonic systems and the productions of Tl or TO grammars. If we direct
our attention to canonic systems which do take context into consideration
(canonic systems with indicated context, which are here called 'general
canonic systems'), a natural solution presents itself which not only
fills in the above-mentioned gaps but actually brings about strong equi-
valences with all 4 types of formal grammars considered by Chomsky and

the_theory of formal grammars into that of ca~onic systems. This simulation

of formal grammars by appropriately restricted canonic systems with indi-

cated context 1s the object of the present chapter.

The following definitions are analogous to Chomsky's:

Definition 2. A canonic system is called canonic system of Type 0

if each of its canons, except tor five of them, is of one of the forms

(D | xfoAyy derivable '— x?wwy derivable
(2) : A nonterminal

(3) a terminal

where

(a) - 7,, ’l, w denote particular strings, possibly empty;
(b) A 1is a nonterminal (i.e. there is a corresponding canon of
the form (2)); and

(c) for every symbol from the alphabet there is either a canon of

|
:
!

26
form (2), or a canon of form (3) {(but not both) ,
the five other canons being
(4) - Y derivable (Z ev)
(5) F— N terminal string
(6) x terminal }—x terminal string (x,yeM) *
(7 x terminal ; y terminal string f_.xy terminal string
(8) x derivable ; x terminal string f— X sentence .

We may dispense with the predicate 'nonterminal' altogether, and

replace the present requirement (c) with a new one, (c'):

(c') Any symbol in the position of A in a canon of form (1) **

must not appear in a canon of form (3) .

Since this modification will simplify the proof of the main equivalence

theorem, we shall adopt it.

* The effect of applying Canon (6) in a derivation can be achieved
by applying Canons (5) and (7). Canon (6) was retained in order to pre-
serve the correctness of future references by formula number.

*% There are two ways in which a canon like
XABCy derivable ’-»xABACy derivable
may be interpreted as a canon of form (1):
1) (f= A; = C; w=BA; the expanded letter is B
2) CF= AB ;\'J= N3 w = AC ; the expanded letter is C .

(Of course, this is just one cancn, not two, and the two interpretations
have no influence on the use of this canon in derivations.) In such a
case, only one of the symbols that may be considered as being ''the expanded
letter" is requied to be a nonterminal (i.e. to be missing from the canons
of form (3)).

TIPS s s

‘ . | 2 i

Definition 3. A canonic SY;tem is called 4 9§E9né§_§2§£9@_9f :

, :

Type_ 1 or 99ﬁ§9§§:§99§i§i¥9-sgngnis_§r§§9111_ (CSCS) if it is a canonic | N
system of type 9 sati§fying the additional conditiop that in all its ?
canons of the form (1) the string ' w is non-null. | | | , |
Definition 4. A canonic systém is called a canonic system of Type 2 J

i
v

, |
or context-f{ree canonic system (CFCS) if it is a CSCS satisfying the addi-

) .

o 1
tional condition that in all its canons of form (1) the strings @, are null.

. : .) N
Definition 5. A canonic system is called a.S?QQH?Q.?ZEES?_Qf.TXPQ.2 .

or regular_canonic_system if it is a CFCS saFisfying{the additional condition
! ' | !

that in all its canons of form (1) the string w contains just two
' | , |
symbols, one terminal and one nonterminal (one for which there exists a
1 . :
canon of the form (3) and one for which there 'is no such'canon), always in

the same order. If the order, is 'monterminal - terminafﬁ the regular
A \ | i
canonic system is also called a left-linear canonic system. |

---------- v .- -- e mm--

The, definitions for linear, one-sided linear, metalinear, ' '

: !
¢ \ l '

grammars hold also for the corresponding types of canonic systems.
N * |

Theorem 1 For_every Type_ i_canonic system (i = 0, 1, .2, 3) _there | e

H i R ' ,
e shall show how one can pass from grammars to canonic systems and 1 q

' .

from canonic systems to grammars. Let there be given a grammar G = N,' T, P, I)

of Typei (i =0, 1, 2, 3). ' The associated canonic system has the canons t4),
. i '

|

‘-

1
!

| , g - : 28
(5), (6), (7); (8), one canon of the form (3) for each element of T, and for

' |) ' ! v '
each production pAY - Qpu Y one canon of the form (lf. The resulting

1 1]
~canonic system is, by construction, a canonic system of Type i (i = 0, 1, 2,

|
3); the strings (p, .y may be empty. Suppose now a canonic system of Type .

‘i is given; the corresponding grammar is defined in.the following manner.

- . ; .
The set T lincludes all symbols for which there i's a canon of type (3);

| : ; ;
N will jnclude all other symbols and for each production there will
| :

| : ,
be a canon of form (1). It is obvious ‘that the resulting grammar is

'

by construction of the same type as the canonic system from which it was’

1
'

derived. co!
4 1
Before we show how derivations are 51mu1ated, we should clarify
) ' '
what is meant by a derivatian in formal grammars. Two defimitions are in

use in the theory of formal grammars, and our construction below works

w1th either of them. Accordiﬂg to the first definition, any sequence of

!
applications of productions constitutes a derivation of the string obtained

..........
! .

at the last application; a string is accepted iff:: ,

. a) it has a derivation;

bj it contains only terminal symbols.
|

; N
According to the’second definition a sequence of applications of productions

p0551b1e. The:grammar is usually required to have for each nonterminal
!

1))
symbol, at least one production expanding‘it, in which case a derivation
prbduces automatically a strlng of terminals (if there were a nonterminal

in the strin,, the sequence could be continued and therefore does not

constitute a derivation); a string is accepted iff it has a derivation.
I t

We shall use the f1rst definition, but we remark that 1f the grammar
. 1
is required to have for each nonterminal symbol at least one production

29
expanding it, a derivation in the first sense (according to the first
definition) is also a derivation in the second sense (i.e. cannot be
continued) iff its last string contains only terminal symbols, and so
the two concepts of acceptance coincide.

Let us consider a derivation in the canonic system. We shall
simulate the derivation in the canonic system, in a step-by-step manner, by
a derivation in the formal grammar. Without loss of generality, we may assume
that the derivation in the canonic system starts with the canon (4). The
derivation in the formal grammar simulating it will start with the one-
character string I . Any canon of the form (1) will be simulated by means
of the corresponding production; canons of other forms will be disregarded
for the moment. Ie have thus obtained a derivation in the formal grammar simu-
lating step-hy-step the given derivation in the canonic system. If, the
last string obtained is not only derivable but also a sentence, then this
string has been obtained by applications of canons (5), (6), (7), with a
final application of canon (8). Theapplicability of canon (8) proves
that the second condition for acceptance in formal grammars (condition 'b)'
of the first definition of derivation) is fulfilled, and therefore the
string is accepted by the formal grammar.

Therefore we have shown that for every derivation in the canonic
system there is a derivation in the grammar. The converse result is proved
similarly. This completes the proof. It is easily seen that what we have
proved amounts to 3339?§_SSE§Y?}SPSS; We can therefore assert:

(strong form of the general equivalence theorem)

Theorem 1' The class of Type i grammars is strongly equivalent to the

class of Type i canonic systems, for 1 = 0, 1, 2, 3. The classes of linear

SA L.l sanonie systems, Jor k2 0, L, 2, 3. The classes of linear,

one;sided linear, metalinear, sequential, etc. grammars are strongly equivalent

ooseoseesas .-..-..--.-J. -.--..J..---- AL AL LT T YT P Y YT Y £ .-.--.J

Jespectively, to the classes of linear, one-sided linear, metalinears..

wTosess e -..-..-.--.-.-.-..--....J..-.... CL ALY L 1 2 1]

ssquentadla.gicaacanQuic systons.

30

Specia)_types.of context-sepsitive canonic_systems

Defipition.7 A canonic system is called a left-context-seositive_cancoic
system (1CSCS) if it is context-sensitive and in all its canons of type (1)
the right context (the string ¢) is empty. [And similarly for rCSCS.)
These definitions are the natural counterparts of the definitions for left-
context-sensitive, [right-context-sensitivg grammars. One-sided context-
sensitive grammars have been studied but with no significant results to date.
About all that is known is that they can gencrate non-CF languages (and cannot
generate non-context-sensitive languages). It is conjectured that they
cannot generate all context-sensitive languages.

Another type of formal languages (1eftdtontext-sensitivd have
been defined in Mandl 1968 and shown to be weakly equivalent in generative
power to context-sensitive grammars. This gives rise to a new type of
canonic systemsstrongly equivalent to leftd¥context-sensitive grammars.
These grammars scem to be new and interesting and therefore we will
discuss these further here.
The definition below was suggested by Booth's definition of

context-sensitive grammars [Booth 1967] as a phrase-structure grammar all
of whose productions of any of the following three forms:

(9) % AL, * & g,

(10) ¢ AL, ~w & &

(1) ¢ Ag, *§ w g,
He further remarks that productions of the forms (9) and (10) are not really
necessary (since they can be obtained by adding a few rules of the form (11)
and by adding a fe+ new nonterminal symbols) but they make his exposition
easier to follow. :uppose now that the right contexts are null in all

these rules (and simi arly for left contexts). Then the rules have the form

31

Cl A hd Cl W
B é - ¥ @
Cl A * Cl (]

vhere the first and the third are left-context-sensitive, rules and the
second is not. This second form of production will be the only form
allowed in the grammars we are going to define.

Definition 8. A left-icontext:sensitive graser is a phrase-structure
grammar all of whose productions except perhaps for a rule I =+ A ;
are noncontracting productions of the form

(12) QA =+ @u.,A € N, eVt = NUUT*, v 4.
(Similarly for right-*context-sensitive grammars] It may be remarked
that this type of production is pet a particular case of the general
productior (PA v * Quy as the left-context-sensitive rules were.
Likewise, the corresponding type of canon is not a particular case of
(1), and so we cannot (yet) define left-‘context-sensitive, systems as
a special case of Tl (or Type 0, for that matter) canonic systems (see

footnote). Wz shall use instead e definition which is similar to

Definition 11.

Definition 9. A left-* context-sensitive, cenonic system {s o

canonic system which includes the particulsr csnons (), (5), (6). (7).

(8), o finite number of cenons of the form

(14) XAy derivable ‘-—- xmry derivable

and one canon of form (3) for each symbol A occurring in some csnon

(14). ([Similsrly for right-* context-sensitive, cenonic systems; (14)

is replaced by (15) xAyy derivable }_ x\yuy derivgble |

32

Theorem 2. For any given context-sensitive grammar, there exists a

left-4context-sensitive, grammar (a righs-ﬂcontext-sensitiva...)_gegeratigg

the.same_ lengusge and obrainable from the original one by s uniformly
offective procedure. _(The converse result_is_trivial,)

Proof. The proof will make use of certain reductions [Kuroda 1964)
but it will be evident how to start the proof should one wish not to use
the reductions. Definition (Kuroda) A context-sensitive grammar is
of order n if there appears no string of length greater than n in any
rule of the grammar. Lemma 1 [Kuroda) For any context-sensitive grammar
of order n (n > 3) there exists a context-sensitive grarmar eof
order n-1 generating the ssae language.

(By repeated use of Lemma 1:)
Lesma 2. [Kuroda] For any context-sensitive grammar there is a grammar
of order 2 equivalent to it.

Let G be the given grammer. By introducing new terminal sywbols,
we can convert it to an equivalent grammar in which terminal symbols appear
only in rules of the form A + a ("terminal rules").

Remark. [Kuroda] The original grammar might have been given in an
appsrently more general form® in which there might be a production which
rewrites more than one symbol:

(16) w o w, lwll 2|

(wl € (TUN)* , N(TUN)*

o

"A

*Me can thus define two new types of canonic systems ('Types 1' and O .,
with canons (4), (S), (6), (7), (8), canons of the form (3) (and (2)) and
canons of the form

(17) X, y derivable f—-— X,y derivable

where w; includes at least one nonterminal, with or vithout the restriction
fw,| ¢ lw,| . Using Kuroda's remark and our general equivalence theorem, we
cn* conclude that these types of canonic systems are weakly equivalent,
respectively, to Tl and TO canonic systems. At this stage we could redefine
left-*context-sensitive canonic systems as a certain special case of

T1' (context-sensitive) canonic systems.

33

Using the general equivalence theorem, we have:

coccccsabtoalocescsscess ve cocceccosveccssccsseliscscscscscscscscscscsnss

colosccsesscccessnsscsnsnboecscscessnnscsnns~sosnasnssnans

Similar theorems hold for right-%context-sensitive canonic

systems and grammars. A further application of the general equivalence
theorem yields:

strongly
g

CONTEXT-SENSITIVE GRAMMAR CONTEXT-SENSITIVE

CANONIC SYSTEM
e, 1
h‘-h - - .

Eriv.

weakly; Th. 2
g
stroagly;

——
q
scrongly: trivial

LEFT-*CS GRAMMAR = — LEFT-*CS CANONIC SYSTEM
strongly

(Th. 3a,) Th. 1

Pigure 3

Most of the equivalence theorems of this chapter are summarized

in Figure 3. Por completeness' sake, we also included several trivial

results.

35
CHAPTER 111

both these hierarchies of canonic systems, as well as the hierarchy :
of formal grammars, !iave no class of system to correspond to the class of
recursive sets. ("Noncontracting canonic systemswith predicates of !
degree 2" were claimed to be situated somewhere between context-
sensitive sets and recursive sets, both inclusions being in the weak
sense.)

We state here in what sense(s) would a class of canonic systems
(formal grammars, etc.) correspond to recursive sets and elucidate
why no class of system has beer found equivalent to recursive sets.

It is wel’ nown that there can be no procedure for deciding
whether an arbitrary recursively enumerable set is a member of a
giver non-empty collection of recursively enumerable sets, oxcept!
in the trivial case when all the recursively enumerable sets are
members of the collection. This is Rice's theorem; <ee, e.c.,
Rogers [1967 , p- 324 (Th. 14-XIV (a))]. Consequently, it is clear
that we cannot hope to find a class of canonic systems which (a) defines
all recursive sets, and only recursive sets, and (b) the class includes

all the canonic systems which define recursive sets.

* [Mandl 1969b) ‘

'

; , , | !
" We might hope that there exists a ''small" class of canonic

A I I !
systems which define all and only recursive sets however realizing

that the class cannot include all canonic systems which define

' . !

récursive sets. Or, stated in another way, it might be the case
. .) o ¥ & ! - ' : o .
that a certain class of canonic systems (characterized by a finite

set of properties, and snch that ?s is decidable whether a given
' , ! . ' i
canonic system meets those properties), would correspond to ‘the
\ i 1] .

recursive sets in the sense that

I -
=-only recursive sets are generated by canonic' systems of \

that class (the class is "subrecurs1ve")

{(a) ' Lo Tt ‘ ' ;

-for every recursive set, there is among the canonic systems
of that class 'at least one canonic system defining the

given recursive set (and there may be such canonicsystems outside

Lthe considered class). _
I ; !
We shall prove that such a' class cannot exist, i.e. if a class

. of canonic systems defines onlyirecursive,sets; then it cannot define all .

i
récursive sets, ~ven if it does not have a monopoly in defining recursive

sets. This result can be restated succinctly.as: "Subrecursive classes
:]

of canonlc'systems are strictly subrecur51ve y i

ooaass [
1

Theersu.s. Neghsss of canonic_systevs. (or. of any. £initely-specified

formal systems; for that matter) can correspond exactly (in the sense of

' -------------------------------------?---- LT Y LT LRV P Y T T T 7 ¥ T T e

(a) above) to the class of recursive sets. In particular , [[;JCS’I] g.

e e e e e e
; [Becursive_sets] * .

i
[

*The reader may have noticed a similar statément, without proof, in Donovan

' and Doyle, 1968, p. 46t "Thus, a noncontracting canonic system can, only define

a recursive set. 6 Hlowever, it cannot define all recurs;ve sets; some
recursive sets can be generated only to a TO grammar.", An earlier work
cldimed to have proved this by exhibiting a concrete example, but the '
proof was eliminated when the emample turned out to be a context -sensitive set.
| N

- [

TR s L s e o g Ay

37

‘

Proof (based on an idea of Hopcroft and Ullman [1969 , §8.31).

Since canonic systems are finitely specified, we can canonically
enumerate all canonic systems, the canonical index encoding the

whole description of the canonic system ("Godelization" of canonic
systems.) Likewise, we can canonically number (encode) all the words
over the denumerably infinite list of potential symbols; let

wy be the kM work in this numbering. Since it is assumed decidable

whether a certain canonic syster is of this type or not, we can strike

out all the canonic systems pot.of_tbis_.type, thereby effectively

enumerating all the canonic systems of the type considered:

C 0 G] 6 G . By the hypothesis, all these canonic
1 2 3 113 -!3
systems define recursive languages J!l, 25 3 e . Consider
the set :

{u | w ¢Zk }

It is different from all 'Z:i’ i=1, 2, ... ; yet it is recursive.
Therefore no type of canonic systems can define all and only recursive sets.
Bemark. A recursion-theoretic argument yields Theorem 7 as an immediate
consequence of the known theorem that the class (set) of all recursive

sets [while recursively enumerable as a class of r.e. sets [Blum 1965;

i a—

Suzuki 19591)is not characteristically enumerable. Proof_of_the_reduction.
For all subrecursive classes of canonic systems the proof of the subrecursive- :
ness has been done by exhibiting a decision procedure. In other words, i

if we have a finite description of a canonic system, we can interpret

it not only as giving a procedure for enumerating a set but also as giving

e

38

a procedure for computing the characteristic function of the set, i.e.
that we can find not only an r.e. index of the generated set but also

a characteristic index thereof. Therefore [a description forl] 3

*The elucidation of this point owes much to a discussion with Professor
Patrick Fischer and Professor Juris Hartmanis at the Third Princeton

Conference on Information Sciences and Systems in March 1969.

A

PP RET S

R A A O 5 e s m o

39

CHAPTER IV

CANONIC SYSTEMS FOR CONTEXT-SENSITIVE SETS

In Chapter II we mentioned Doyle's work onahierarchy of canonic sys-
tems, where, inter alia, it was stated that the NCST were situated some-
where between context-sensitive sets and recursive sets. Let us now take
a closer look at the definition of NCST. It reads ("Definition 2.13"):

"A noncont: ting Canonic system (NCCS) is a canonic sys-
tem in which each application of a canmon results in the length-
ening of the string denoted by the predicate defined in the
canon. That is, if A P and we€A and to prove wea it
wag first necessary to prove B &B , then [w] 3 IB[. That is,
in a de;ivation, if we have !

eee 3 BB .o s wA ;...
then Ju|3B|. (B may denote the same predicate as 4) i

A noncontracting canonic system with predicates of degree
two (NCST) can be constructed to describe the language gener-
ated by a Tl grammar; this canonic system has the same basic
structure as the canonic system equivalent ot a TO grammar
with the additional length restriction."

Objections to the definition

1. "the string denoted by the predicate defined in the canon" . The l
conclusion of a canon has only one gtatement , and therefore it involves
£
exactly one predicate. However, this predicate is not necessarily of :

degree 1 , so we cannot refer to "the string".

I

2. "lengthening" . That unspecified string is longer than something. II
Longer than what? The hypothesis of a canon may include many strings and I
many n-tuples (tuples) of strings. E‘j
3. " lml)‘ﬂl ". If w and B are tuples, their length is unde- j
fined. 1If they are strings, then something has to be said about tuples, *’

or at leastabout pairs, since predicates of degree 2 have to be allowed

in order for Doyle's proof of [Type 1]g [NCST] to work.

R T AR . Sur s e o S|

B

40
4. [Concerning the derivation] Although on p. 18 of that paper it

was said "In this paper, a derivation will consist of a sequence of canons
instead of the sequence of conclusions of these canons, here we have to
revert to the original definition of derivation (as sequence of conclu-
sions). When we do so, we see that an axiom may appear anywhere in this
sequence, and it is not necessarily longer than all its predecessors (or
shorter than other strings that may follow). Moreover, not only strings
appear in a derivation but also tuples.

5. "(B may denote the same predicate as A)" . B does not denote
a predicate; rather, it is a predicate. Formally, predicates are and
remain elements of P ; and when we write P = ié s 2} we also mzan that
A and B are different elements of P . We could have introduced meta-
variables ranging on predi‘cate‘s, 1}1 , 1); y e ? in much the same way in

which we tacitly introduced B , w , ? s W to stand for particular
strings, and in that case we could have written

...;BU;;...; w‘v;';
distinct predicates A , B or one and the same predicate A . Since we
have not introduced such "predicate-variables', and since A , by defini-
tion, is not the same as B , one should have said

"n,,. if we have e 3 B
or we have .cee 3 B

then [w|3/Bf , "

P oeee 3 W

; LN] ; w

3
A

1>

We therefore see that, at this stage, there is no such thing as non:

contracting canonic_systems with Eredicates of degree 2 . Correspondingly,

and will be such that

1] Doyle's claims will hold for it ([Type l1@[new class] g [Rec]);

2] will allow a proof of equivalence with [Type 1] .

. , N : |
. ‘ | 41 |
As it very often happens in such cases, the real problem is not to -
! : . -
prove but to ''guess'' what to_prove (and to "improve a bad guess' by trial
1

om0 2 S eoeceoswesspeocsos m--- 1

-

and error).
We cénnot define 'ﬁoncontrécting' [nc] as '"such that the sum of the .
j— - !
lengths of all strings in the hypothesis (whether appearing isolated or as
’ ' 1

elements of tuples) is at most as large aé the sum of the lenéths of all" : .

. ORI et ——————— “ﬁ

i
'

the strings in the conclusion'" , since then a, canon lik \ i
1 ¥ ' \

x A; x Bl x C. :

would not be noncontracting, which is not only counter-intuitive but also
’ l

does not allow us to salvage the proof for '"[Type 1] & [NCST] ". For
¢ : ' !

the particular case when no predicates of degree 2 appEar\in the conclu- [

!
sions of the canons, one could try | , i |

"the string in the conclusion 1is no shorter than any of the ' ‘ i

strings appearing in the h&pothesis, whether they constitute
terms of 'degree 1 or are elements of higher-degree terms"™ .
!]
\ | H
We shall reconsider this suggestion .later on (in a modified form); at !
: ' |

the moment we have to 'abandon it because we plan to use as much és:pos-
i 4 .
o |

sible of the existing proof [Donovan & Doyle'1968, PP- 43*44?, and the

canonic systems constﬁucted in this proof are;, as we noted in Chapter I[,

general canonic systems witthredicates of degree 2 (also in the conclu- : |
------------------------------ it b e it !

sions of the canons). . . ' |

Since the real problem here was the finding of of a good'défin;tion,

we think it woﬁld be more instructive for ' the sntudent of canonic systems
- 3

t
i

exhibiting it and showing that it works.
Doyle's proof' of the fecursiveneqs used a multitape Turing machine; |

vt
the idea was to show that this machine always halts, thus deciding mem-

bership in L(c). . We intend to prove more, viz. that the set L(c) ‘ "k

i . i

| . 1 i | 1 4!2
definéd by the canonic system 1is context-sensitive. For this, it will

| , .
be enough to show that the multitape Turing machine which decides whether
1 . ¢ ’ 1o v 3
}
w € L(‘;) never uses more than 'w' squares on any of its tapes.
As our first step, we modify Doyle's' Turing machine to have, in

. ; T J
addition to one tape for each predicate of degree '1 , also k tapes
B ' | . '

for each predicate of degree k ; for k =2, 3, ... (all'the tapes are
,distinct). ;In‘Doyle“s construction, the Turing 'machine exhaustively ge-

nerated all strings: of length ‘s lw' in the language defined by the ca-
] , , .
: , . ! |
nonic system and checked for the occurrence of w on the tape ass'igned

to the sentence, predicate, Naturally, all strings, pn all tapes, had to

. 1 }
be placed one beside the other (separated by special characters), and so
\ ?
i i

H . | ! f
the storage space for far from being linear. One could aEhieve linearity

instead of"being appended (with a separator) to the cprfgnt end of the
H !) H

%ape: However, each string has to stay zvailable indefinitely, for later '
| ,

use in derivat.ons' (Fig. 4).
!

=

|

[Other com-
putatidns]

' 43
More exactly, it has to stay indefinitely available in all cases EXCEPT

when each canon has at most one premise (1f O premises, the canon is an

Figure 5

each statement on a computation path is used once immediately after being
obtained and never needed again. This wiil be the main idea of our proof.

In order to achieve thie situation we have to reduce our given cano-
nic system ‘ (""of Type X"} to one c“ in which canons have at most one
premise and which is also'of Type X" . Forgetting for the moment of the
"Type X" restriction, we notice that such a reduction is always possible:
this 18 one of Haggerty's results (Theorem H-3, here). There are exactly
3 ways in which the canons of 6” are constructed:

1) they may be inherited from C , 1f they have st most one premise;

e R S e Ll e g e e

o

—

e . W W P

44

2) they may have been included in G.to replsce some canon

tl p_rcdl HE, 8 tn pred ‘._. to pred
of c ; general form:

< i etr e " e tn> pred pred,...pred *"to pred ,

where the degree of the newly introduced predicate is the sum of the de-

grees of the n predicates in the hypothesis of the old canon;
3) they may have been required by canons already in CN g
if R has cenons
]
<ty g g? R ._ t R
L X -3
(tv‘...‘t;‘> S ‘- :c"s_' , and R'S' is already m{;“
then it will also have the canon
]] L 1oy
Kt oor o at]laratl> B F—(:o‘:c,) R'S :

wvhere deg(RS) = deg(R) + deg(S) , deg(R'S') = deg(R') + deg(S') .

From here we get the final hint as to how to choose "Property X" :
1f we are to use the method of proof sketched above, "Property X" has to
be invariated by '2},'3)' . '3)' suggests the following:

PROPERTY X In each cenon of the canonic system:

=
If the predicate in the conclusion is of degree k , then in each premise,
separately, the tuple can be decomposed * into k parts (possibly empty),
vhich are contiguous, mutuslly disjoint, and collectively exhaustive; and
there i{s a permutstion of these k parts such that, for every | ,{gi €k ,
each element in the 1th pert ** al.ays represents a string whi h is

no longer than that represented by the 1th element of the term [of order

k] in the conclusfion of the csnon.

* Tt i{s understood that no element of any tuple is tu be cut in the
middle by the decomposition.
** The part which becsme the 1" afrer the application of the per-

mutation.

45
Exsmples: < xy>A t"ﬁz Y M
< x,y>B =<yl x2> BB

Aa 8 particular case, we have:

>

PROPERTY X [Seme a8 X but only one of the elements in the

2’ 1’
conclusion is compared with those in the hypothesis- there i{s sn integer m ,
mg k , such that the uth element of the conclusion slways represents 8

string longer than those represented by any element in any term in the

hypothesia.)
Exsmple: <x_ _y>» A ‘—(xy «> B

We shall now clarify wvhat we mean by the expression 'slways repre-
senta a shorter atring' . When a canon is used in o derivation it does
not appear in its general form but as » particular canon instance, in
vhich all the varisbles are replaced by particular strings. What Pro-
perties x‘ (1=1,2) require is that for each cenon there be o
decomposition of the kind specified above and such that for sll the
instances of that canon that can appesr in derivations in the given

canonic system * the sbove-mentioned decomposition yield particular

strings which satiafy the length relationships specified in the defini-

tion.

* FPor exsmple, if a canonic system contains on)y the canons

- 3 atgte
- 5 digte
x digit ’- x number
x digit ; y number f—— xy number

then '535 digit }-535 number' {ia a legitimate instance of one of the

above canons, but can never sppear in s derivation. We shall be concerned

here with canona like

€ x,y> greater in length ; y very long atripg ’— x yery long arring

vhich are so decomposable, because any [apparently] offending instance

46

Thus in order to sscertain whether s certsin c.s* has Property x1 ve
have to make sure not only that the csnons have certain forms but slso that
sn infinity of canon inatances sstisfy certain restrictions. When we talk
of clesses of canonic systems we usually require thst membership in the
clasa be determined on t'.e besis of a finite set of csnons, not on the basis
of an infinite set of canon instances; therefore we now proceed to define
properties similar to Properties X1 but such that they involve the canons
themselves reather than an infinity of cenon instances.

Let us consider first a term of degree 1 , e.g. xaby , vhere s , b
arc symbols and x , y are vatables. Whatever the strings represented by
x , y may be, the resulting string is alvays longer than the string repre-
sented by xxyabb . We shall write:

yx é xaby § xxssbb

Other exemples:

We have to make one more preparatory digressfon before we formslly define
the relstion ‘s . Since we want to use Doyle's construction of a c.s. for
s given context-sensitive grasmar, let us have a closer look at that cons-
truction. (We want to make sure that the definition of < vill be chosen in

such a way that the ¢.s. conatructed will heve Property xl) Its "most im-

<odbe (defg> grester {n length ; defg yery lopg aftring '—abc very long string

, vhile legitimate as an instance, can never appesr in a derfvation in a c.a.

vhich defines ‘ex, y>» greater fin length® to mean ' x ia longer than y ".

* Yo g." = "canonic syatem" .

47
portant canon”, and the only one vhich is likely to csuse problems, is

(1) wxe derived string ; €x V> production ; €y (xgrester in iength l—-
wys derived stiing .

The problem {s that we need wxzgwvyr , vhers x , y are not comparsble
(being two distinct vsrisbles). All we went is thet slways the string re-
presented by y be ot leest as long ss that represented by x , snd this

i{s ensured by the premise «Cyqxdgrester in lenth (ly|»Ikl). The defi-

nition will include slao this case, thus ''legslizing"” cenon (1) . The pre-

dicete grester in length used sbove 1s defined thus:

2) x terminsl i— x aymbol
3) x nonterminal l-— x symbol

(4) f<x 1> lengeh
(s) <x_,y> length ; z aymtol *—«xz < Y1> length
(6) <x_,y> length ; <z yl> length }—u‘x) grester in length *

(€)) <x ,y> grester in length ;ey,z> greater in length '—-q, z> gres-
ter in length

(8) <x .y> length ; <z y> length '-—fx, z> grester in lemgth

Canonic systems which include the cenons (2)...(8) will be called

yn'th--gnitorin' canonic systems. We remark for later use that these cs-

nons satisfy themselves the requirements placed upon canons of cenonic sys-

tems setisfying Properties X X2 ({.e. they sre decomposable in the pre-

l'

scribed manner).

* It {s becsuse of this csnon that the c.s. vhich include csnons (2)...

(8) are not simple. The second element of & pair in length represents

the length of the first element expressed in l-sry notastion: O='l', 3='l111’, etc.

e T r—

o

e

.

R

48
Dcfinition_lg. (Definition of & (with reapect to a particular canon

in a particular canonic system))

.la, For any words « , B
AgQ (A 1s the empty word)
agp .. |a|<|p|
.1b, If x 1is a variable, then
A&gx
X £ x

-le. If s premise of the form <v u> greater in length 1s

included in the canon, where u , v are variables, then

ugv (in that canon)

If tl , t2 3 t3 ’ ta represent concatenations of variables and words,
.28. ([Transitivity) t) < t, -t < ty . =y L, € ty

.2b. [Side-by-side concatenation of inequalities)

t,€t, . ta £ t, . =D tty % tyt,

.3. No relationship t., € t, is valid unless it is deduced from

1 2

a finite pumber of instances of .la. , .1b. , .lc. by means of a finite

number of applications of .2s. , .2b, ,

With the help of the relation <« we are now in s position to define
PROPERTIES Yl ’ Yz » for length-monitoring canonic systems.These properties

are defined in a similar manner to that in which we defined Properties X

x2 , but:

1) the expression 'element tl always represents s string which is

no longer than that represented by t2 ! is replaced by ' t) £ tz '

2) the canons (2)...(8) , present in any length-monitoring c.s.,

l L

49
are not required to be ''decomposable" . [Notice the forma. change in the

concept of "decomposability".] [We shall later consider other types of length-

monitoring c.s., in which case '2)' will refer to the canons there used for
monitoring length.]

We note that Property Y, implies Property X, (1 = 1, 2), and that

i i

one can immediately tell, by inspection, whether a c.s. has Property Yi

(1i=1, 2) or not (this was not the case for Property X, , Property Xé).

1
This iatter fact justifies the following definition:

pectively Y2) if it has the Property Yl (respectively Y2) . [The name

'type' is reserved for properties detectable by inspection.}

Theorem 6.
a8) Given any coutext-sensitive grammar, one_can uniformly effectively
comstruct a_length-monitoring canonic system of Type ¥, (Y,) defining

b) For_any length-monitoring camonic system of Type -31--5 Y , the

.. - [y JO! S Wit

Proof. Since Type Y, implies Type Yy » it is enough to prove 'a)!

=) 2
1 L} .
for Y2 and 'b)' for Y1 :

[(Type 1] & [Type Y,]) & [Type Yll?['l‘ype 1]
a

[
]

["the class of languages for which there is grammar of Type 1 1is included

in the class of languges defined by c.s. of Type Y2 , which ..!, etc.] ,

a) All we have to show is that the length-monitoring c.s. constructed

in Donovan & Doyle 1968 pp. 43-44 always satisfies Property Y, , and this

;! | . 50
is ensured by the manner in’ which we chose our definitions. ' :

[Remarks. There is no need to.first reduce the. grammar to one of order 2; y
f - the alphabet of the C.8. inclLdes not only the terminals but also
| the nonmerminals, and ¥ 1is included amdng rhe letter;
!
e e e e e
cept 'string', since this 'concept is part of the definitlon
. ! . . : _
of canonic systems in general;
- for formal reasons) the Lanon. : |

. [v string ;] <z <> Eroduction 3 <Y 2 greater in length

. ! !
i . . ; ! f— y derived string

is replaced by the two canons |~Z initial string ‘and

x initial string 5 <x y” Eroduction 3 <y‘x> greater in

; :) 1en th y derived str1ng ,
. : _.L.

; . where init1a1 string is a new, singleton pred1cate]

| !
| ! i . ! :

'
o

?) Applying Theorem He3 * ,iwe reduce the‘given;c.s..of Type' Y1 to
]

! one in which no canon has more than one premise. Since the original'crs.
! ! i

had Property Xl , and since this property is invariated by the construction

dn Theorem H-3 , the resulting C.8. also has Property X1 . We shall now f
construct (rn a uniformly effective way) a nondeterministic multitape LBA
which recognizes ‘the language defined by the reduced:c.s. (yhich is tne same
as that defined by thé original one). For each predicate of degrce k (k=
1,2, ...), the LBA will nave k tapes.]Since‘eaeh hypotheésis has only

one canon, the derivations have a certain '"Markovian" character (see Fig. 5V.

L
Each-statement o“tained in the derivation is-used in the immediately following

* I am érateful to Amitava'Bagchi for the suggestion to use Theorem

! ‘ ; ! !

H-3 'in this proof.

51
the tapes corresponding to a predicate when this predicate reappears in a de-

rivation. The LBA will simulate nondeterministically the derivation and will
halt when a sentence 1is derived; if a string w 1is a sentence then there
is a computation path ef the LBA which halts with w displayed on the
sentence tape, and conversely, The last step in the derivation of w 1is

of the form

<qQ coech > AB...M }-— w sentence 3

«Be

by Property X1 we have

lol 3 lal
lol = gl
ol 2 lul .

'Tracing back our derivation, we see that, in view of the Property X1 s
w 1s at least as long as any string in the derivation, and therefore |w|
is an upper bound, on each tape separately, on the amount of space necessary
for recognition.

The proof will now be concluded by replacing the multitape LBA by a

["multitrack"] one-tape LBA and noting that each step in the chain of cons-

tructions
c.s. of c.s., with multitape context-
" Type Y1 => one-premise =y LBA =3 LBA =§ sensitive
canons grammar

is uniformly effective.

As an illustration to this proof, we now show how the multitape LBA
would handle the canonic system which was chosen by Haggerty to illustrate

his procedure.

52
e 2> #BC |— <ax by cz> ARG
<y .z> B |-<a by, czP ARC

< x _y> AB - <ex. by . c 7 ABC

A
"

A
Vv
Iz
+
A
s
‘U‘

A

cz > ABC

™

[[=
A
1]
™

n
o
[}

c > ABC

<
I
A
[++]
n
o
<
A

c > ABC

cz > ABC

N
Q
-—
\
N
o
"
o
A

<x L ¥> BC ,—-—(xbtyc>B_C

y c — <b .ye > BC
< x yS> AC l——<xa eyc? AC
X A ‘_.—.(xa.c?ﬁi_

Derivation for 'aabbbcaabbb' : bB; <a bb>AB; < aa bbb>AB;
< ¢ aabbb > CD ; aabbbcaabbb E ;

The multitape LBA has 16 tapes (=5°1+4-2+1-3) . The following figure
(Figure 6) shows the contents of these tapes at successive stages of the

simulated derivation.

i [—————-—

m_-m.,___ P—

53
Original cancnic system:
e
— b5
 cc
x4 |— axa
B | B
RC p— ex
xA 5 yB |~ xyD
xC 5 yD |-wmyE
Derivation for 'aabbbcaabbb' : bB; aA; bbB; aaAd; bbbB; cC;

aabbb D ; aabbbcaabbb E ;

(The decompositions are shown by

ai

t b B suitable underlining)
b occ
x4 |- oex A
xB |- bxB
X ¢

<x_ y>AB |- xy
<x _y>CD |-yxy

= 1o

< x_y> AB ,,_\'ax,by-)ég

X A i—-<ax < b > AB

j-<a _ b > AB

[}
<X _V..2> ABC '—(cz,‘xy)Q_D
<x‘y>§§§ j-<c . xy> CD
~ Il\ 4

(2) (1) (1) (Y

T

54

1>

1]

o

-]

[The arrows mean 'longer than' .]

aabbbcaabbb

” bb

bbb

!

aabbb

(not used) A 16eta

(not used)

Figure 6

pe IBA simulates a derivation in a canonic system

CHAPTER V :

FURTHER HIERARCHIES OF CANONIC SYSTEMS

i
' ' ; : . |

The purpose of thislchapteg is Fo‘apply thé main result of Chepter IV
toward the development of iﬁproved hieraréhies of canonic systems.

Let us consider Doyle's higrar;hy agpin: fhis hierarchy hes two se-
parate parts, one part comprising classes of canbnic,systemq strongly
equivalent to the class of, regular grammars and the class of context- ‘
free grammars, and the other part comprisingja class of canonic systems
weakly equivalent' to the clgss of untestricted réwriting systems (Thue
semisystems). The hierarcﬁ§ was claimed to include another class of c;-
nonic system;, situateq somevhere betweer context-sensitive grawmars and
recursive sets, gut we hav? seen in Chapter IV that this class was pot'

completely defined. In the same chapter, two classes of canonic systems,
! ! I

the length-monitoring canonic systems of Type Y, . (Y,) , were proved to

be weakly equivalent'to the class of context-sensitive lgnguages. The;e;
fore if we add any of;them:to the two;parts of Doyle's hierarchy we obtain
a complete hierarchy of canonic systems, where by "complete' we mean only .
that all 4 types of granmars are represented., (The hierarchylpresehted in
Chapter II had correspondents not only for thelé classic typeé of formal
)

grammars but also for any class definable in terms, of productions.)

While cémpleteness is cert;inly a very!'desirable property, we cannot

' [
consider ourselves satisfied}with it and ignore the fact that this com-~
|

bined hierarchy is quite heterogenous: for Typeq 3 aqd 2 it ptrovides
[\ 1

Mide - A A

: ’ 56

simplé canonic sysfems with predicates of degree 1 ; for 'I"ype 0 -

sixl'nple canonic systems with predigates of degree 2 ; and for Type 1
o

;ythe l¢::imonic systems are not even si_mple. The f.onn of the hier'archy méy‘

be schematically summarized as

s1 '§1 G2 S2
(for Types: 32 . 1 0
|

Our first step toward "homogenization" will I;e to reduce the third

class from G2, to S2 . Clearly, we can alwaysA reduce a genefal c.8.
, .

H

c.8., weakly eciuivalent i:o conte?ct-sensitive g’ramars, and the plroperty
'obltainable from class .4 .l;y eliminating contextua.l references' 1is rot
a good ci:iterio:n for class membership, since a criterion shoul:d refer to
the _fgm of the new system, irrespective of how the c.s. was obtained.

We have seen that the length-monitoring c.s. cannot be simple, by defi-

nition, since they all include the offending cenon

<x_ y> length ; <z, yl> length }-(z‘ xY greater in length L.
If we modify N.(é)...(S) by replacing this cahon by the cancns

<x, y» length ; €z _yu>» length! u unit F—Q:. x» greater in length .

1
h 1 unit ' [singleton predicate] |

and call the canonic systems whieh include (1) and IV.(:2)...(‘5),(7)...

similar to that of Chapter IV.

Definition_12. A simple s-monitoring canonic sysreni is of IYBS--XI

. v of ,
(respectively Y2) 1if it has Property Y1 (Y2). Property Y1 (Y2)
! | t , ' 0

! ‘ A \ '

57
for s-length-monitoring cenonic systems is defirad in s similar msnner as
for length-monitoring canonic systems but the condition '2)' in that de-
finition will now exempt from the decomposability requirement the modified

canons used here for monitoring length.

conmstruct a_simple s-length-monitoring canonic system of Type Y, (¥,)

.. L2

5_32_2 2_the language defined by it is_context-sensitive (and one can

uniformly effectively find a grammar for 1:2;

Proof. a) The only contextual referencing in the canonic systems of
Theorem 6a was in Canon IV.(6) . If we replace that canon by (1) we
get a canonic system which is simple, s-length-monitoring, of Type Y2
(and therefore also Yl) , and defines the same language.

b) Completely similar to the proof of Theorem 6b . [Theorem 7b 1is

not a particukr case of Theorem 6b since s-length-monitoring c.s. are,

formally, not the same as length-monitoring c.s.]

We have thus obtained a hierarchy of the form

S1 81 Ss2 s2)

contains all the simple c.s. with oredicates of degree 2), and we shall

try to reduce it to the form

S1 S§s1 Ss1 sl .

58
The last clsss can essily be so reduced. For any r.e, set there is

A simple c.s. with predicates of degree 2 which defines the given set,
and this c.s. may be reduced to one with predicates of degree 1 (by The-
orem H-1) while remaining simple; and the converse result is ce:tainly
true, since sets defined by canonic systems are always recursively enu-
merable.

The hierarchy has now the form
§1 S1 Ss2 sl

Unfortunately, Theorem H-1 appears to be of no further use in reducing the
form of the hierarchy, since none of the 4 classes mentioned in this

chspter as being weakly equivalentto context-sensitive grammars
(length-monitoring canonic systems of Type Y1 ; of Type Y2 R

simple s-length-monitoring c.s. of Type Y of Type Y

n E 2)
is invariant under the transformation involved in the proof of Theorem
H-1.

Having thus arrived at sn spparent ''dead end'" in our endeavors to
develop and simplify Doyle's hierarchy, we now consider the other basic
hierarchy, the hiersrchy of genersl c.s. with predicates of degree 1
(of the form Gl Gl Gl Gl)
which wss introduced in Chapter II, and apply to it Theorem H-2.
It is easily seen that we obtain indeed 4 types of canonic systems,
i.e. valid criteria can be stated (depending only on the form of the
transformed canonic system) for membership of a c.s. in a type. These

tvpes of c.s. may also be introduced independently. The following de-

finitions are analogous to Definitions 2...5 .

59
A simple ceanonic system is of Type 0('2 1f each

pgfintt ion 13

of its cenons, except for 4 of them, is of one of the forme

(2) xuy derivable ; ulU ; vy ‘-— xvy derivable

(3) '-—u M (x, y, u, v are variables)
(4) |~ & terminal

vhere

(b) for any predicate sppearing in a canon of form (2) , except
for the canon derivable , there is exactly one canon of form (3) ,

f.e. U, VY., M are !_193_12599 predicates;

(c¢) 1f U, V (in this order) are two singleton predicates appear-

ing in a canon of form (2) , and if H , ¥ are the corresponding strings,

then 4. snd V can jointly be put in the form
VL] Q A L 4
vV=Qu ¢y

vhere .’} - ‘P » W are [meta-variables standing for) porticular strings,

possibly empty, and A does not appear in a canon of form (4)

the 4 other canons being:

(5) f—z derivable

(6) - » terminal string

7 x terminal ; y terminal string '— xy terminal string

(8) x derivable ; x terminal string ,,.x sentence .

60
Definition l4. A simple canonic system is gf_Iygg--lf:Z if 1t s

of Type 0(') end sstisfies the sdditional condition thst for each canon

of form (2) the corresponding string w (defined in (c)) {s non-null.

of form (2) the corresponding strings q’, iy (defined in (c)) are

null.

Pff!?!ff??-}g: A simple csnonic system is 9!-!!?5--?5:2 if it is
of Type 2(“) snd satisfies the additional condition that for esch canon
of form (2) the corresponding string w contains just two symbols,

one terminal and one nonterminal (one for -hich there i{s & csnon of form

(4) snd one for which there is no such csnon), always in the same order.

left- context-sensitive,, etc., grammars may be similsrly imitated, and

Proof. Similsr to that of Theorem 1.

The second part of Theorem 8 (the converse result) can be proved

61
more essily L{f we use Theorem 1 and the following obvious Lewms:

Lesma. The result of spplying the procedure of Theorem H-2 upon
s canonic system of Type 1 (1 =0, 1, 2, 3) 1{a a simple csnonic sys-

tem of Type 1(') >

Theorem 8 provides us with a hiersrchy of simple csnonic systems

with predicstes of degree 1, that is a hiersrchy of the form
§1 St Ss1 s1 ,

snd the goasl of the present chapter is thereby completely achieved.
Before concluding this chpter, however, we should 1ike to point out an
interesting fsct which provides a link between the two basic hierarchies
developed in this chapter (the one of the form S1 sl G2 82
-- bastd on Doyle's -- and the other of the form G1 6@ Gl G1 |,
introduced in Chapter II). When we wanted to reduce the first basic
hierarchy to one composed exclusively of simple canonic systems and no-
ticed that fits third clsss, the length-monitoring c.s. of Type Yl , failed
to be simple only because one of the canons used in monitoring string
lengths included contextual referencing, we just replaced the offending
canon. But there is absolutely no need for a csnonic system to monitor
fitself the lengths of the strings. A context-gensitive grammar does not
monitor the lengths of its strings, and it is no less noncontracting be-
casuse of this; strings grow in length not because the grammar monitors

their lengths (which it does not) but just because the productions are

noncontracting. When we exsmine the grammar '"from the outside" (by

using s meta-gystem) we can prove that the strings are bound to grow; T

62
grammar - or the cenonic system). We therefore eliminate the canons

tains canons of the fom

'—- £ ?A\r 4 ?wqo> production

(one for each production 'Av-.,m’p ; Donovan & Doyle 1968, p. 43),

and we just lcggg that in each such canon Iw,)l . This, however, does
not yet solve our problem. We have to redefine the concept 'c.s. of Type
Yl' s Or, more exactly, to redefine the relation ‘ ; and this relation
has to hold, sometimes, between two different varjsbles, as for example,

in

" wxz derived string j<x_ y>production;<y x»greater in length '-wyz de-
rived string

where we ought to be able to prove that xgy . For length-monitoring

c.8. we could say that xgy because the premise ¢ Y ¢ X> greater in length

is present (Definition 10.1¢), but we do not have the predicate greater
in length any more, and we are still under the obligation to ascertain,

member of the class we define. One way to solve the problem of eliminat-

need to ever compare (in length) two distinct variables. Then «£ would be-
come an absolute relation, not denendent om the canonic system, and defined
by .la.1b.2a.2b.3. of Definition 10 (i.e. without .lc.). To achieve
this end we have to replace canon (9) by as many canons as there are pro-

ductions, each new canon being the result of '"plugging in' a particular

production in the canon (9) :

(10) w,Ayz derived string '—— w(,wyz derived string

63
The class of canonic systems of Type Y, (from the first basic hierar-

chy) 1is thereby trunsformed into a class which is, essentially, no
different from the class of canonic systems of Type 1 (from the second
basic hierarchy; Definitaon 3), and from here the whole second basic

hierarchy is just one small step away.

T e — —

4
i

NON-CROSSRE#ERENCING, SIMPLE, AND NON INSERTING CANONIC SYSTEMS
I

CLASSIFICATION OF CANONIC SYSTEMS

! ’ !

In this chapter we pursue anliéea mentioned in Chapter I ,-- that
r - |
, | i
one should not distinguiqh (and name) the subclass of canonic systems

|
with contextuadl referencing, with insertions, with crossreferencing, '

'
N t

the respective options. Canonic systems without cbntextual referencing

.
formally introduce the other two classes and investigate their computa-

tional pOWer.

Crossreferencing was defined [Donovan & Doyle 1968, p. 27] as con-
: | !
sisting of the use of qné and the same variable more than once in the;

term of the conclusion or the use of one and. the same variable in more

than‘oneipremise’in the hypothesis. Thc possibility of a variable being

used in e*actiy pne premise of the hypothesis but occurring several times

in that premise is not included in:this definition. On the other'hand,
. !

there is a fundamental difference'between multiple ‘occurrences in the

. . 5
hypothesis part of the canon and multiple occurrenczs ip the conclusion.

The applicability of a canon in a particular situation has to beiesta-

| blished before the canon could be used, and the'applicability depends

only on the hypothesis of the canon; if 'the hypothesis contains two

occurrences of a variable, we have to check that the strings matched by

i

65

the two occurrences are identical strings (substrings), and this checking
is not an elementary action. Multiple occurrences in the conclusion,
however, have no influence on the applicability of the canon. This argu
ment suggests that we should specifically exclude from the definition of

aossreferencing multiple occurrences in the conclusion, and include

The same point of view is taken by Turing (in connection with Turing
machines) and by Minsky (in connection with Post's canonical systems).

Quoting from Turing 1936 [p. 137 in Davis's collection]:

"If, on the other hand, [the squares] are marked by a se-
quence of symbols, we cannot regard the process of recognition
as a simple process. This is a fundamental point and should
be illustrated. In most mathematical papers the equations and
theorems are numbered. ... But if the paper was very long, we
might reach Theorem 157767733443477; then, further on in the
paper, we might find '... hence (applying Theorem 1577677334~
3477) we have ...' . 1In order to make sure which was the re-
levant theorem we should have to compare the two numbers figure
by figure, possibly ticking the figures off in pencil to make
sure of their not being counted twice." .

Minsky [1967, p. 231] remarks that he could have allowed multiple occur-

rences of variables within any premise, but chose not to:

"Post's most general formulation allowed each production to

same. This meant that the rule of inference would apply only
to a string (theorem) in which there was an exact repetition
of some (variable) substring in two places in the antecedent.
We prefer to prohibit antecedents of this form, not because we
want to restrict the generality of the systems, but because it
would run counter to our intuitive picture of what ought to be
permitted as elementary, unitary operations.'",

With this motivation (and backing) we change the definition of 'crossrefe-

rencing' to read:

0 et Vot 3 0 SR AP R

prees

66

Defidition 1B. A'cadon isiisadd! [Foicontwinicrogsreferencing it at leaast
one of the variables involved in it occurs more than once in the hypothesis
of the canon, whether these occurrences are within one premise or are in

different premises.

Definition 19. A canonic system is non-crossreferencing if none of .

as canonic systems in which terminal symbols are inserted between the
variables of one string to form a new string. Since we are interested in
canonic systems without insertions, we tentatively define canons without
insertion as canons in whose conclusion no symbols appear, i.e. whose

conclusions contain concatenations of variables rather than concatenations
e e —— — —— — ——

of variables and words. The formal modifications required in the defining

second-level canonic system are not difficult to figure out, but the defi-
nition would be forbiddingly restrictive: the axioms would be totally
useless. In fact, we never defined axioms formally, but just referred by

this name to any canon whose list of premises was empty, and therefore any

restriction on the canons is automatically a restriction on the axioms.

This suggests the following definition:

perty that in all its canons, except for the axioms, the term in the
conclusion of the canon has only "pure' elements, i.e. each element is

either a concatenation of variables or a concatenation of symbols.

The foilowing canonic systems will be used as examples:

R e g ———

I — | e e ——— e — e 0

Ca s |

x theorem ‘_— xx theorem

67

Languege: set of balanced (well-formed) strings of
parentheses

\Y ={(,) } [Minsky p. 230]

’-— () theorem

x theorem ‘-—- (x) theorem

one- predicate (Post)
non-crossreferencing

x()y theorem I——xy theorem

1"

xy theorem }./x()y theorem

2, Language:

20,

E - -

Same language, same alphabet. [Minsky p. 230]
'-/ () theorem simple

> 1> 1>

I> 1= 1> >

one-predicate
non-crossreferencing

palindromes over a , b, ¢ . [Minsky p. 228]

s A

b A

c A

aa A simple

bb A one predicate

cc A non-crossreferencing

a A

b A

c A

axa A simple

bxb A :gﬁ:zggéizg:rencing
cxc A

xx A

SRRy U G G B W S

3. Language: all true statements about adding l-ary positive integers

[Minsky p. 229]
V= ,{1 v+, =

F1+1=1 add
x+y=z add f“x1+y-zl add
x+y=z add = xtyl=z1 add

[or: x+y=z add P-y+x=z add]

68

(3="'111" , etc.)

one-predicate
non-crossreferencing

inserting
not simple

4. Language: all true statements about multiplying l-ary positive

integers [Minsky p. 229]

veli. e, o}

F1-1=1 mult

X-y=z mult F—xl-y=zy mult

X.y=z mult f—y-x-z mult

one-predicate
non-crossreferencing

inserting
not simple

5. Language: {am'bnambn ‘ m , n natural numbers}

sentence

> s >
< ¢
= = >
x
<
=]

|~ xyxy sentence

«

simple
non-erossreferencing

inserting

simple
non-inserting
non-crossreferencing

!
6. Language: 'squares in l-ary.

Alphabet = {1, *} - | '

‘— 1* A o ;
xX*y A | xll*yx A o ,
A !— y B8quare | | ‘not simple

*
xy . inserting

6'. Same language. ‘ : b ,, |

i !
[Mentioned here for completeness; will be introduced later.]

[
o

1 }
i
5''. Language: same as 5 . ' ’
. |
‘-—8 é B * t
. simple
Fb B ’ . non-inserting
x A;yAfxyaA ‘ N -
XxB; yBfxyB.) ' L
crossreferencing
x A; vy B; z B |- %yxz pBA B
X A; y A; z B |~ xzyz BAB ‘
. ‘ 1
x ABA ; x BAB (-’ X sentence '
! |
5'", Same -language. . "
Feaa
x A ,-— ax A ' ’
"‘ b B) simple
x B f— bx3B |
" ABA o
sl ; . inser'ting ;
BAB 98/ abiove ' I crossreferencing

x ABA ; x BAB l—— X sentence’ |

1

non-crossreferencing

!

e i o Ml i MRS ac U man—

5", Language: 2 1p0g M0

!
|

The first 6 canons of 5'".
Last canon replaced by * ' ,
' ! }

’ D i ABA ; x BAB 'x sentence

!
|

'] '
5V. Same language. '

The first 4 canons of 5' .

Last canon repiaced byI
‘]
‘ x A; y B ' xyxy ABAB

| ax ABAﬁ X sgentence
i ! !

i
!

m, n natural nuhpera 1

non-ingserting

‘ not simple

_crossreferencing |

! 1

non-inserting
non-crossreferencing
|

‘not simple

! PEN T e ae—— — - - — - i

71

Of the classes of canonic systems considered until now, only the
two classes which correspond, in the first basic hierarchy, to regular
grammars and to context-free grammars are non-crossreferencing. Since
they are also simple and non-insertiﬁg, this implies that non-ingerting
c.s., non-crossreferencing c.s., and simple non-crogsreferencing non-insert-
ing c.s. are all powerful enough to define any contex:-free language.
The following figure shows the new classes of canonic systems (the numbers

refer to our examples):

Figure 7. :
Classification of canonic systems

AT A AR A s

R IR e R KT Ol o= s e T A e~ o T

I T R R . o re——

= i P

Introducing the abbreviations 7e

Q = non-crossreferencing €.8.
R = non-inserting c.s.
S = simple c.s.
QR = Q/}R
QF = Q\R etc.
e = (Q MER)\s
we have
[QRS] =@ [CF] (since (5') defines a non-,context-
free, language)
{ [QRl 2 [CF] .
= [Qs] » [CF] As before, [class of c.s.] = class of
languages definable by the classcog
[RS] = [finite intersections of CF languages]

(since they can be obtained by cross-
referencing; we note that the lan-
guage of (5') is included in this
class)

[l P [cFl

(Rl = [finite intersections of CF] [Result improved
below]

[S] == [r.e.] .

Since a c.s. in QRS can be trivially modified so as to belong to

QRS or QRS or QRY, we also have

[QRS] =& {CF]
[QRs] &= [CF]

Similarly,

finite

[QRS] = [intersections of CF]

-_—

| W N W ———— T

73
[QRS) @ I[cF]

We shall now show that the non-inserting c.s. are powerful enough
to define any r.e. set: [R] = [r.e.] . As for the non-crossreferen-
cing c.s., we have not been able to improve the result stated above
(1Q] ;[CF]). It is known that non-crossreferencing c.s. with one
predicate of order 1 cannot define the set of squares in l-ary (see

[Minsky 1967, p. 235]).

Theorem 9 [analogous to Theorem H-2 (of Haggerty)]. Any c.s. can

Proof. Any word (sequence of symbols) in the conclusion is replaced
by a variable whose value is specified (by an additional premise) to be
in an (adequately defined) singleton predicate. This implies that the

desired reduction is possible.

We shall now develop a complete hierarchy of non-inserting c.s..
Since the first two classes I.om the first basic hierarchy (of the form
S1 Sl G2 S2) are already non-inserting, we shall retain them and
adapt the last two to our purposes.

The most general non-inserting c.s. obviously generates an r.e. set;
and we hagve seen that for any r.e. set there is a non-inserting c.s. de-

fining it (by Theorem 9). This gives us a class corresponding to Type O.

74

Av for Type 1 , we have a result completely similar to Theorem 7 (Ch. V).
Before stating it, we need a few definitions. We would like to talk
about non-inserting length-monitoring c.s.; but all length-monitoring

c.s. (as previously defined) include the [inserting] canon

IV.(5) <x,y>length ; 2 s ymbol '—txz‘y1> length .

[A similar situation was encountered just before Definition 12.] By re-

placing this canon by

<x,y»length ; z symbol ; u unit ‘—(xz‘yu> length
t—— 1 unit [singleton predicate]

in the definition of 'length-monitoring' we arrive at the definition

of r-length monitoring c.s. (similar to s-length-monitoring c.s.).

Py e T TR L D R

'g-length-monitoring' , we arrive at the definition of rs-length-monitoring

canonic_systejts.

-) - - D P = D D D D D D D P D D D D R P D D D G D D D S D e D D D SPGB D 6D 6D D D 6 e

puptuipeghapupefughugiepippaiippapepaPapey SF PR it iubalatedededededad b dd bt it e L LYo

defining the same iangtxge.

b) For any non-inserting r-length-monitoring c.s- of Type Y1 (Y2 ,

%* Definition similar to Def. 12.

75

Proof. Analogous to that of Theorem 7.

We have thus obtained a hierarchy of non-inserting canonic systems.

The form of this hierarchy may be described as

RL RL R R
¥
R1

(More exactly, RS1 RS1 RG2 RSl .)

Definition 21. A canonic system is said to be pure if it is simple

and non-inserting. ['pure" since all concatenations contain either

exclusively symbols or exclusively variables.]

RS1 RS1 RS2 RS2

RS1

can be easily obtained, in a manner entirely similar to that in which
the hierarchy of non-inserting c.s. was obtained. However, we prefer to
preseﬁt another hierarchy, based on the second basic hierarchy (form:

Gl Gl Gl Gl). At the end of Chapter IV, we found a hierarchy of
simple c.s. with predicates of degree 1 : 81 S1 S1 S1 .
(Cf. Def. 13, 14, 15, 16 and Theorem 8.5 By inspecting the definitions

of the classes of simple c.s. involved, it is easily seen that these

canonic systems are also non-inserting. Therefore we have obtained:

s T

Coon

R T T L T LA, of » AL

!hggrem 11. The hierarchz 76

T e e - P S Y I Y P P PR L P R R P P R L L L L X

RS1 RS1 RS1 RSl

The next logical step would be to look for a hierarchy of the form
QRS1 QRS1 QRS1 QRS1 . We suspect that such a result is impossible to
obtain, and, more precisely, that the non-crossreferencing c.s. are not
sufficiently powerful to define any language of Type O or 1 . We shall
now introduce a modification in their definition, modification which will

enable us to obtain a complete hierarchy. Following Minsky's [1967, p.

defines is
rnlJuk. s

A€D
rather than UL(C s A) . The set VNT 1is called auxiliary alphabet.
A

Systems with T = V may be identified with ordinary canonic systems.

The difference between canc.-*: systems with auxiliary alphabet and
ordinary canonic systems becomes significant only in the case of
non-crossreferencing canonic systems, For all other canonic systems we

could define a predicate terminal string and then achieve the desired

effect by adding a canon like

S i— . T E—— =] [—e:

i
i

7

x sentential form ; x terminal string ’-— X sentence .

Example. The set of squares in l-ary.

6'. ={1,+}
T = { 1} non-crossreferencing
one~predicate :
WITH AUXIL. ALPHABET
Canons: }- 1 A

" * not simple
x*y A '—-xll o & inserting

x*y Ay A

Examples 6 and 6' show that a set may be undefinable by Post !
systems (canonic systems with one predicate of degree 1 and no auxili-
cate or allow an auxiliary symbol. This "trade-off" between additional
predicates and additional (auxiliary) symbols is, in fact, an instance

of a general result:

Post systems

|

more than one predicate (4) one predicate of degree 1 ;
[(w.l.0.g.) of degree 1] ﬁ auxiliary symbols '
CANONIC SYSTEMS

(©)
(®) N /

one predicate of
higher degree .

(A): Trivial.

(B)(C) : [Haggerty 1969, p. 44] ~*

* Theorem 3. However, the statement of this theorem, ''Any canonic

K

‘ . o _ - 78
(B) may also be proved by using Theorem H-3 and the proof of Theorem 6b.
. [The number of the predicates will be the number of tapes of the LBA.]
) : "

(C): 'Proved by introducing separators acting as auxiliéry symbols.

" A result similar to (B)(C) has been announced By N. Kohn [1969]; it in-
volves variables which range on all but one of the symbols i;n the alphabet.

]

Having’def;ned and exémplified cadonic sysfems with auxiliary alpha-
bet, we are now ready to derive a hierqrchy of nor-crossreferencing ca-
nohic systems with Euxi}iary alphabet. -

; | Lo

l

|

Theorem 12. . . H

' T v :
i a) Non-crossreferencing canonic gystems with auxiliary alphabet

-------------------------- - - o e e e s s o 0 o o e e B -
l
i ' i

'gfggfu Obviously, it is sufficient to prove :b)' .

. | . g
! ! The only canon with cronreferencing in the canonic systemsifrom the
.above-mentioned hierarchy (Chapter 1I) is ,

. | . !
x. derivable ; x terminal string }_. ¥ sentence .

i

|
By eliminating it from a given c.s. (together with the canons which define
) | |

the predicate terminal string) and by replacing the.axiomé of the fomm

!

}- a temrmina

i i

| !

| !]
qualification "...which is a canonical extension [in Minsky's sense] of
the given canonic system.'", since there are formulas which are theorems
in the Post system without being theorems in the given canonic system,
and all such formulas contain auxiliary symbols not in the alphabet of
the given canonic system. The ¢anonic systems 6 and 6' above are
examples of systems which can not be simulated unless we allow canonical
extensions. . ' ‘ ’

1
1

by & declaration
T = { 8 45 sos } ’
we obtain a canonic system equivalent to the given one. The theorem

now follows.

OPEN PROBLEMS:

1. "[QRS] = ? " Find the computational power of the class of
simple, non-grossreferencing, non~inserting canonic systems (no auxi-

liary alphabet, any number of predicates)., [[QRS]PICF]]

2, "[Q] =?" Find the computstional power of the class of
p

non-crossreferencing cenonic systems (no auxilisry alphabet, any number

of predicates). [Includes all finite intersections of context-free

sets.]

3. " [Q1] = 7" Find the computational power of [unextended]
Post systems (non-crossreferencing, no auxiliary alphabet, one predicate

(necessarily of degree 1)).

80

REFERENCES

Alsop, Joseph W, 1967

Blum, E. K. 1965
Booth, Taylor L. 1967
Davis, Martin [Ed.] 1965
Donovan, John J. 1966
Donovan, John J, and 1968

Doyle, James T.

Donovan, John J., and1967
Ledgard, Heury F.

Doyle, James T. 1968
Doyle, James T.
Haggerty, Joseph P. 1969

Hopcroft, John E., and969
Ullman, Jeffrey D.

Kohn, Norman 1969

Kuroda, Sige-Yuki 1964

Ledgard, Henry F.

A canonic translator , Project MAC Techni-
cal Report MAC-TR-46, M.I.T., Cambridge, Mass.,
June 1967.

Enumeration of recursive sets by Turing ma-
chine , Zeitschrift fiir mathematische Logik
und Grundlagen der Mathematik 11, 197-201.

Sequential machines and automata theory ,

Wiley, New York.

The undecidable -~ basic papers on undecidable

propositions, unsolvable problems, and compu~-

table functions , Raven Press, Hawlett, N.Y.

Investigations in simulation and simulation
languages , Doctoral Dissertation, Yale U-
niversity.

Hierarchies of canonic systems . Reissued in
August 1969 as Project MAC Memorandum MAC-M~
417,

A formal system for the specification of syn-
tax and translation of computer languages |,
Proceed. F.J.C.C., 1967, pp. 553-569.

Issues of undecidability in canonic systems ,
S.M. Thesis, M.I.T., Cambridge, Mass., Jan-
uary 1968.

- see also Donovan, John J.

Complexity measures for language recognition
by canonic systems , S.M. Thesis, M.I.T.,
Cambridge, Mass., January 1969.

Formal languages and their relations to au-

tomata

» Addison-Wesley.

The relationship lLetween canonic systems
and Post systems . Unpublished.

Classes of languages and linear-bounded au-
tomata , Inform. and Control 7, 207-223.

- see Donovan, John J.

Mandl, Robert

Mandl, Robert

Mandl, Robert

Minsky, Marvin

Rogers, Hartley, Jr.

Suzuki, Y.

Turing, Alan M.

Ullman, Jeffrey D,

1968

1969a

1969b

1967

1967

1959

1936

81

Topics in the theory of autoumata and formal
languages . Term paper for Mathematical Mo-
dels in Linguistics (M.I.T. 23.772), May 1968,

The place of PL/1 in the hierarchy of formsal
languages , Project MAC Memorandum MAC-M-
419, January 1969.

Canonic systems and recursive sets , Pro-
ceed. of the Third Annual Princeton Conference
on Information Sciences and Systems, p.363.

Computation - finite and infinite machines ,
Prentice-Hall.

Theory of recursive functions and effective
computability, McGraw=-Hill.

Enumeration of recursive sets , J. of Sym-
bolic Logic 24, 311.

On computable numbers, with an application to
the Entscheidungsproblem , Proc. London
Math. Soc. {(2) 42 (1936-7), 230-65. Correc-
tion, ibid. 43 (1937), 544-6. Reprinted in
Davis's collection, pp. 116-51 and 152-4,

- see Hopcroft, John E.

e r——

e

Def.

W 0O NNV P W N

10

11
12
13
14
15
16
17
18
19
20

LIST OF DEFINITIONS

82

Page Chapter

Simple Canonic Systema ® 0 00000000000 0000006000000000 8
Canonic systems of Type 0 B 1
" " " 1oooooooooooooooo.oooooooo27

1"t " " 2

L9000 00 000000000000 0000000 27

" " " 3

cesessecsseseesssessnnesss 27
Linear, sequential, etc., canonic systems 27
Left-CS canonic System ...ccoeseeceoocccosocscocoes 30
Left;*CS EYAMMNAT oo ceveevsoosssosossvossccescsossee 31
Left-*CS canonic systemcceceevoescevsssoosaes 31
Property X1 . X2 rees e LG4
Length-monitoring canonic systemococeeceeoss 47

Cessesssessssscssnsssssesessessesesecesssssecse U8
Properties Y1 , Y2 B.eo. .. H. 0. 708. . E.FEERGE

Types Y1 , Y. for length-monitoring can. syst. ... 49

" " ior simple s-" " " .e..s 56
Simple canonic system of Type 0(5) P 1 |
" " i . o 1(5) cesesesesesseses 60
" " " " 2(5) 2L « TE » 6L ¢ 5EE - 160
L " " " 3(5) cesesessessesses 60

Linear, sequential, etc., simple can. syst. 60
Crossreferencingﬁpﬁ)66
Nor.-crossreferencing canonic systemcoc00000.. 66
Non-inserting canonic systemccceovvcvscocscss 66
Q, R, S and their combinationsccc0cveceeecas 72
Pure canonic SYStemceeececrcosvsooscocccvcoses 1D

Canonic system with auxiliary alphabet76
[a generalized canonic system, not a subclass
of the ordinary canonic systems]

I
II

v

Vi

r——— T o N R

Th.

LIST OF THEOREMS

1

Psge Cﬂapter

83

i I
1 Equivalence theorem for Types 0, 1, 2, 3. 27 1II

1

Gl G1 Gl Gl ‘.U.‘UUU..IUUUUUUUU‘UUU‘.U‘.U.‘IUU.U27’5.8
1' General equivalence theorem (stfong) ceseesssssiens 29

2 Left-*CS &~ context-sensitivecoccivevee.. 32
|

3a Equivalenpe between ’ . r..%... 33
3b Context-sensit ive and left-*CS' oo 000000000 ’33
4 grammars'snd canonic systems 33

Subrecursive classes are stFictly subrecursive'.... 36
[nmeYﬂ =[nme1]..”.Q.U.L;”.n.”.”.”l.gy
S1 Sl G2 S2 tivogesececrsocenonseosssescossscces 56
[Simple of Type Yi] ="' [Type 1] .1.....3.7}....... 57

8 Equivalence theorem for simple csnonic systems

of® ... 38 | ' '

of Types o] 00 o s GIEYe]e o+ #Gfe o ¢ « » A5l > « WED
S1 S1 S2 s2l....l...,....;.........,......n..... 57,
S1 S1 Ss2 s1L........,.................. 58
S1 S1 S1' Sl svveevsvrvecococrsnsscscccscescasces 61
Connection between the two*basicyh{erarchiésJ'51
9 Any c.s. can be reduced to a non-ingerting c.s. ... 73
10 [non-inserfing ...’Type Yi] = [Type 1];... 74
RL Rl R R2cvcinnveccronennscescasasnnnans 75

|

RI RL B2 RL cevuvvnrrennrrnnsonsosscasssssssses 75
RS1 Rs1 Rs2 Rs2 (Pier. of pure c.a.) ... 75
RS1 RSL RS2 RSL +uituvuvnvuncnrnsncencncncsaceanaees 75
11 RS1 RSL RSL BSL «vvvveeennneeinnneseseesonnneeeis 76

12a non-crossreferencing c.s. with auxil. aiphabet !

can define sny r.e. set .J/....vvccvvevversvocscs 78
12b hierarchy of non-crossreferencing c.s. with '

auxilisry alphabetceeveoeccrcsenseesssos 78

Theorems H'l, H-Z’ H-3 [H&ggell'ty] 00 0000000000000 000000 21 ‘
Theomﬂ D-3, D"Z, D-O [Doyle] aoaao-aa-oaaoaa‘oooooooo'o 2'3

III
IV

s

IT

Fig. 1

b2

3

4

"5

6

7 |

Simple and general canonic Systems i......ocoeeeeens 7 1

,Relationships between left-*CS and CS grammar
H

! . ’ : - 84
LIST OF FIGURES

i
|

| t : } '
Page Chapter

! .

Parsing Of @ CaNON +eevvurenernrenonaesocosnanennns 11

! and c.s. ...‘33 II

Derivations in general é.s. .L...........f......... 45 - IV '
1 .

IDer;vatibns in c.s. in which canons have most

one premise 43

Y

Multitape LBA simulating a aerivat;on\in ac.s. ... 54

Classification of canopic systems:71 VI
|

i ' 1

| : I ! i

