
r

UNCLASSIFIED
Security Clarification

DOCUMENT CONTRO . DATA -R&D
(Security clmitlllcmllon ol lille, body of ibtlrmrl mnd Indexinj annolalion muat be mnf'nd jvften »i« ovarull report Is ctafllltd)

i ORIöINATING ACTIVITY (-Corpora« «uUior;

Project 'MAC , !
Massachutetts Institute of Technology

3 REPORT TITLE

2a. REPORT SECURITY |C L ASSIFIC* TION

Unclassified
2b. GROUP

None

FURTHER RESULTS ON HIERARCHIES OF CANONIC SYSTEMS

4. DESCRIPTIVE NOTES (Type ol report end Ineluelve deles)

a. AUTHOR(S| (Flretname, rfiiddl* Initial, laet neme)

Robert Mandl

t REPORT DATE

June 1972

8a. CONTRACT OR GRANT NO.
N00014-70-A-0362-00dl

6. PROJECT NO. N/A

c N/A

d. h/h '
10 DISTRIBUTION STATEMENT

7a. TOTAL NO. OF PAGES
84 '

7b. NO. OF REFS
22

»a. ORIGINATOR'S REPORT NUMBERIS)

I,
MAC TR-100

Bb. OTHER REPORT NO(S) (Any other number» that may be etelgned
, thle report)

1 '
Distribution of this document is unlimited

II. SUPPLEMENTÄR* NOTES

None

12. SPONSORING: MILITARY AiCTIVITY

; Office of Naval Research

is ABSTRACT fjJE5 thesis outlines a new way of presenting the theory of canonic systems,
including a distinction (for methodic reasons) between simple canonic systems and
general canonic systems, and proves a series of results on hierarchies of canonic
systems. After a brief summary of Doyle's results on a partial hierarchy of canonic
systems, a new hierarchy ^.s developed f€hapter If) which relates the general canonic
systems not only to all 4 types of formal granunars defined by Chomsky but also to
any class of formal'grammars definable! in terms of ^productions, it'is also shown
(Chapter III^ that all attempts to define a mathematical system which e^act^y
corresponds to the recursive sets are necessarily fruitless. Doyle's work on how to
define "noncontralcting canonic systems with predicates of degree* 2" (NCST) is continuec
arriving at a workable definition which permits us to prove [NCST] = [Type 1} (Chpt.4),
a conjecture put forth at the 3rd Princeton1 Conference on Information fciences and*
Systems. This result transforms Doyle's hierarchy from "the union öf two half *
hierarchies and a dangling term (the NCST)," into a cpomplete hierarchy of canonic ,
systems (all 4 types, represented). However, this hierarchy is höterogenous: canonic
systems corresponding to grammars of types 3 and 2 use only predicates of degree 1,
while canonic, systems corresponding to grammars of types 1 and,0 use also predicates
of degree 2; moreover, not all of them are simple canonic systems. A [homogenous]
hierarchy of simple canonic systems with predicates !of degree 1 is presented in Chpt.4.
Several new classes of canonic systems (nOn-crossreferencing, non-inserting, and pure
canonic systems) are introduced in Chapter 6, where their properties are explored,
and a classification schema and several hierarchies are developed.

DD ,^..1473
S/N'0102-014-6600

(PAGE 1)

X IMCIASSJFIEP
Security Ctaaiific ification

■

Security CUtsIfl cation 2Q,
KEY WOROt

canonic system
alphabet
context sensitive
subrecursive

HOLE

LINK C

DD .,r,..1473 BACK)
(PAGE 2)

UNCLASSIFIED
Security Clauificatlon

<2h

MAC TR-100

FURTHER RESULTS ON HIERARCHIES OF CANONIC SYSTEMS

ROBERT MANDL

MAY 1972

This research was supported by the
Advanced Research Projects Agency of
the Department of Defense "under ARPA
Order No. 433, and was monitored by
ONR under Contract No. N00014-70-A-0362-0001

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGEMENT

I wish to take this opportunity to express my thanks to
Prof. John Donovan, who took the time from a busy schedule to
supervise this thesis and whose initial work on canonic systems
provided the motivation for this research.

I should like to express my appreciation to Amitava Bagchi,
who contributed significantly to the successful completion of
this thesis by critically reading several successive versions of
my work on canonic systems.

I wish to thank Prof. Malcolm Jones for helping me find
the right set of goal priorities during a very busy summer.

Finally, I am grateful to Project MAC, which provided the
facilities and support for this thesis and a stimulating envi-
ronment for formal research. Particular thanks go to several-
individuals at Project MAC, especially to Joseph Haggerty,
Norman Kohn, and Hoo-min Toong, for their interest and comments
during many discussions on the thesis subject.

Cambridge, Massachusetts Robert Mandl
August 1969

 . . :

TABLE OF OONTENTS

Page

. 2

3

ABSTRACT

ACKNOWLEDGEMENT

Chapter I : Simple and general canonic systems 5

Chapter II : A hierarchy of general, canonic systems 23

Chapter III : Subrecursive classes of canonic systems 35

Chapter IV : Canonic systems for context-sensitive sets 39

Chapter V : Further hierarchies of canonic systems 55

Chapter VI : Non-crossreferencing, simple, and non-inserting cenonic
systems. Classification of canonic systems 64

REFERENCES 8G

LIST OF DEFINITIONS •. 82

LIST OF THEOREMS 83

LIST OF FIGURES 8A

CHAPTER I

SIMPLE AND GENERAL CANONIC SYSTEMS

This chapter presents the differences between the traditional defi-

nitions and the ones we will use, and builds the theory of canonic sys-

tems according to the new specifications. It also includes the motiva-

tion for the reorganization of canonic systems.

Canonic systems were first defined in Donovan 1966 . The starting

point of our work was the version presented in Donovan and Doyle 1968,

pp. 3-9. The reader is assumed to be acquainted vtth this work, and

therefore we will not repeat that definition but rather present the

?9^l^£2Si25S we h8ve introduced and the arguments behind them, and then

present only the modified definition.

A canon used to be defined as a list of statements followed by the

sign [— and then followed by a statement, where a statement (tradition-

ally called 'remark') is composed of a term of some degree followed by

a predicate of the same degree. A term of degree n is an n-tuple of

arbitrary concatenations of variables and words on the given alphabet,

the words surrounding the variables being referred to as the context

of the variables. A particular case was singled out, the case when

context is actually indicated, and the canonic systems satisfying this

condition, i.e. canonic systems which contain at least one canon in

which there is an instance of variables and symbols concatenated together

in the same term, were called Sfponic_8^8tem8_with_indicated context

(CSwIC) [Donovan and Doyle 1968, p. 28; Haggerty 1969, p. 41], but not

much was known about them beyond the observation that they appear to be

rather powerful. Most classes of canonic systems encountered in the

course of research were not "canonic systems with indicated context" in

the sense of the old definition mentioned above; moreover, in all cases

but one, constructive proofs for the existence of canonic systems with a

certain property yielded canonic systems which were not "with indicated

context", and the same holds for Alsop's "canonic translator" [Alsop

1967] . Because of these, and especially in view of Haggerty's recent

result [Haggerty 1969] that contextual indications can be dispensed with,

we have decided not to regard as a distinguished class the class of cano-

nic systems which do exercise the option of indicating context, but rather

to distinguish the class of canonic systems which have no such option

available, and call them 8imple_canonic systems , while the unrestricted

canonic systems will sometimes be referred to, for emphasis only, as

f?D?5fi_£5i?2DiS_2y5S5™S or a8 £anonic systems with indicated context .

[Therefore the new meaning of this term is that we have the option of in-

dicating contextual conditions, and nothing more than the option, in con-

trast with the old meaning, which required us to exercise this option in

at least one canon.]

The situation is similar to that encountered in automata theory, in

connection with the definition of nondeterministic autonata. The old de-

finition of canonic systems with indicated context corresponds to the

following hypothetical definition of the concept 'nondeterministic Turing

machine' [NTM] f. "A NTM is a TM in which there is at least one state sa-

tisfying the condition that for at least one symbol of the tape alphabet

there are two or more quadruples [or quintuples, if we work with quin-

tuples] in the specification of the TM" . According to this definition,

deterministic TM were not particular cases of NTM but constituted a class

^ifJ2iDJ-l^9?-5l!S_Si!SS_2l_?I?• Clearly, this choice of a definftion

■■■■■■^

I
OLD NEW

CANONIC SYSTEMS CANONIC SYSTEMS =

= GENERAL CANONIC SYSTEMS =

= C.S. WITH INDICATED CONTEXT

Figure 1

Graphic representation of the changes in terminology

The circles represent particular examples of canonic systems.

would not be fortunate, end, in fact, this is not the de'•»"■*'.ion of nondeter-

ministic Turing machines, as everybody knows; rather, the deterministic TMs

were singled out (were distinguished) as a particuler case of NTMs. The new

definition of canonic systems with indicated context and the introduction of

the simple canonic systems were necessitated in order to "normalize" the

-i—J-

usage In canonic systems, to switch from a nomenclature corresponding to

the hypothetical definition of NTM, In our example, to a nomenclature

which corresponds to the true definition of NTM.

Similarly, instead of talking of canonic systems with Insertion,1 or

of canonic systems with crossreferenclng, etc., we would single out the

canonic systems without Insertion, or without crossreferenclng, etc..

These classes of canonic systems will be Introduced and studied In

Chapter VI. , ,

The way In which we chose to 'Implement" this reorganization is by

introducing p-terms ("premise terms") and their lists along'with

f -■ i :

terns and their lists, and premises along with statements . A

p-term is an1 n-tuple each of whose elements is a "pure" concatena-

tion (containing either exclusively variables or exclusively symbols).

This, incidentally, also eliminates the recursion on term , so that

It will no longer the case that a substring of a term is, automatically,
1 i | i' j

itself a term.
I . i

i I ! i :

I ' '
We are now ready to present the definition of simple canonic systems.

i i

P£l-!?-£-2!Ll'! ^ simple canonic system (of level 1) is a septuple
i . ' i

1 'i i ;

^- (C,. Vi.Mi,P1 .Si,Di , ^)

where

C. Is a finite set of capons (rules of Inference);

i

1 t

, 1

t

1

V. is the alphabet used to form the strings getier?ted by £,, ;
i ! I

H.i is a finite set of variables 'used to stand for elements
of any predicate ; ———- i

P. is a finite set of predicates used to name sets of tuples.
The number of compolients m the tuples is the degree .

i
i

S. is a finite set of punctuation signs;

Dj^ (Spi) is a set 0^ sentence predicates whose union will
be defined to be the language specified by the
canonic system.

Co. , is the "object" canonic system.

This definition is not complete until we say what the canons,

variables, predicates are and what we can do with them.

However, since the reader is assumed to be familiar with these

concepts, these will not be repeated here. Most of the differences

have been outlined above, and a formal definition, using second-

level canonic systems, will now be given. The reader is urged to

compare it with the old definition of canonic systems [Donovan and

Doyle 1968, pp. 10-18] , to get a complete and accurate image of the changes

that were introduced. In order to facilitate the comparison, our

exposition will also be given by way of an example, and will use the

same example, a canonic system defining the set of numbers composed

of the digits 1,2 and 3. Moreover, the drawing on page 5 of the

above-mentioned work is presented below in a updated form as Figure 2

to provide a quasi-pictorial representation of some of the changes

introduced. General canonic systems are defined similarly, but

allowing arbitrary concatenations of variables and symbols not only in

the conclusion but also in the premises.

S = (Cj , Vj , M1 , P j , S j . D j , C()

10

where I— 1 digit

l— 2 digit

j— 3 digit

x digit [— x number

x digit ; y number U— yx number

M

= {1,2,3}

= { x , y }

= { digit, number }

{ ; . |- }

{ number }

c = (A, ^"j #, %t %, &, fir)

The following parse of the fifth canon of this system illustrates

the metalanguage used to describe canons.

: _

11

digit

variable

y number f——

I
variable

cone, of var. cone, of var.

number

variable variable

variable or word

p-term predicate

variable or word

cone, of var. & words

p-term predicate

cone, of var. & words

of legal canon format

Figure 2

predicate

_

12

The second-level canonic system is a 7-tuple

where

^2 " (C2. V2, M2. P2, S2. % Si)

C = { the canons listed on the following pages }

V2 ■ { 1, 2, 3, digit, number, x, y, ; , |— }

H2 » { q, r, s, t, u, v, w }

P = { predicates as defined in the canons }

^2 = <■ »> » P= » ^ » ^ > < t

D = { legally defined string }

& is the first-level canonic system

The canons of the second level must formally define the

metalanguage and operations of the first level; these canons are

presented on the following pages with a brief discussion of the

motivation and use of some of the canons. The particular manner

in which we have constructed the second-level canons system

allows this system to define other can^ric systems with only

slight modifications, which include, mainly, canons which

define the set of canons of the system being defined.

(1.1) ■"i saafeai

(1.2) mm2 aasM
(1.3) ■=3 symbol

(2.1) -=; si^n

13

(2.2]

(3.1]

(3.2]

(4.1]

(4.2]

(4.3]

(5.1]

(5.2]

(6.1]

(6.2]

(6.3]

(6.4]

(6.5]

(6.6]

(6.7]

(6.8]

(6.9]

(7.1]

(7.2]

(8.1]

(8.2]

(8.3]

=r |-5l«n
i

tmt x variable ,

=ss y variable

h digit predicate'

t^ number predicate

toe nuinber sentence predicate
i

» X Word (X is the mjll string)

u symbol i;; v word 1= uv word

u variable ts u concat. of var.
i I ■'"■,^^=^"^^"^""

u concat. of var. ;; v variable tsr uv concat. of var.

u! concat. of var. hm u p-term
r | .. ^. | ^

u ' word |» u p-terni i

u variable |«u concat.' of var. S words
i i i ■ i 'i

u word |»u concat. of var. S wojrds

u concat. of var. 6 words ;; v variable L»uv concat.

of var. 6 words , i

u concat. of var. ,S words ;: v word f» uv concat.

of var. 6 words

u concat. of var. 6 words km u teym

1 p-term ;; u predicate |s tu premise

t term i: u predicate lee tu statement

X i list of premises

u list' of premises ;; v premise ^uv; list of lyrem. '

X list of statements

I ;

I , .1

14

(8.4) ,u list of statements ;; v statement U=-uv; list of i

statements. i i

For efficiency's sake, one might add i

i i ' . i '' ■ '■ '

(7.0) u premise |== u statement

(8.0) ' u list of premises Ls. u list of statements

i ' '

Note especially the intuitive meaning of p-term : a p-term is

either a concatenation of variables] or a single word (in V*). A

term is an arbitrary concatenation of words and variables. The

i . i i

diffeirence between premise and statement is that premise does not

allow concatenations of variables and symbols (hence it is "context-free")

while statement allows them. One and the same variable may occur

several times in the hypotheisis and the conclusion of a canon.

(This is an instance of crossreferencing.) ,

(9.1) u word |» u constant
1 i

(9.2) u predicate JL- u constant ,

(9.3) u i sign W u constant

. (9.4) u constant ;; v constant |= uv constant

(10.1) LB < x < y > differ

(10.2) < u < v > differ t= < v < u > differ

The following canons define a set or ordered quadruples named

substitutiont They specify the substitution of constants for

variables in icanons. Thus each canon of the ^Irst-level canonic

system, if it contains any variables at ail, gives rise to a class of

_!^5-

I

15

specific instances of canons. These instances are obtained when

any terminal string is substituted for the variables in the canon.

Substitution is defined by a 4-tuple <w<v<s<t > .

The first element, w , is a word; the second element, v , is a

variable; the third element is the original nonempty string s ; and the

fourth element is the string t which results when the word is

substituted for each occurrence of the variable in the original

string.

(11.1) w word ;; v variable !=.< w<v<v<w> substitution

(11.2) w word ;; s variable ;; v variable ;; < v < s >

differ |—< w<v<s<s> substitution

(11.3) w word ;; v variable ;; s constant ks<w<v< s< s>

substitution

(11.4) < w < v < s < q substitution ;; <w<v<x<t H

<w<v<sx<qt> substitution

Canon 11.1 defir.es the substitution of a word for a variable

in a string consisting of only that variable. Canon 11.2 defines

the substitution of a word for a variable in a string which does

not include that variable, this substitution has no effect. Canon

11.3 defines the substitution of a word for a variable in a constant

string; this substitution has no effect. Canon 11.4 defines substi-

tution in general.

Canons 12.1 - 12.5 list the canons of the first-level canonic

system.

16

(12.1) |s= t-l digit canon

(12.2) \= (-2 digit canon

(12.3) p1 t-3 digit canon

(12.4) f= x digit |— x number canon

(12.5) f* x digit ; y number \— yx number canon

In order to make sure that indeed the canons are of the

required format, we add:

(13.0) v statement |s= |- v of legal canon format

(13.1) u ; list of premises ;; v statement leu h-v of

legal canon format

(13.2) u canon ;; u of legal canon format U u instance

of le^al canon

(Canon 13.3 defines the set of canons in which constants have

been substituted for some or all of the variables.)

(13.3) u instance of legal canon ;; v variable ;;

w wjoai ;; <w<v<tt<t> yu^^u^iyn |—r

t instance of legal canon

Canon 13.4 defines a subset of the canons; this subset is the

set of all canons which contain only constants. Derivations will be

generated from "canons with constants."

(13.4) u instance of legal canon ;; u constant p^

u instance with cgnstants

!

17

Canons 14, 15.1 and 15.2 define the sets nam a constituent of

and occurrence ; these sets are used in defining derivation. It

has been stated that a statement can be derived as the conclusion

of a canon by showing that all of the statements in the premise

have been derived; i.e., the premise occurs in the derivation.

Thus, the meaning of the "occurrence" of a statement in a list of

statements must be defined. The concept "occurrence" must be

generalized to show that all of the statements in the premise have

already occurred in the derivation; this generalization is the

set constituent of.

(14) v statement ;; r list of statements ;j t

list of statements l"<v rv;t> occurrence

(15.1) u list of statementsf»^ < u> constituent of

(15.2) u list of statements ;; v list of statements ;;

<tt <-v> constituent of g < w <v> occurrence 1=

<uw< v Constituent of

(16.1) » derivation

(16.2) t derivation :: w list of statements ::

u statement

;; w^-u instance with constants ;;<w <t >

constituent of L«tu: derivation ♦

The canon (16.2), which also occurs in the definition of general
canonic -ystems, is not itself adalsalbl« in a simple canonic system.
In other words, the higher-level canonic systems that we construct
here are not themselves silBlS • whether or not they describe simple
canonic systems. However, it will shortly be evident, using a result
of Haggerty, that they can be converted to simple canonic systems.

18

The final set to be defined is the set of strings derived

by derivations; each of these strings is simply the last statement

in some derivation.

(17) tu; dwivation ;; u statement J^*

u legally derived string.

Canons 16 and 17 are of particular interest since they define

the essence of a precf (derivation) and a Uv (legally derived

string) in all mathematical systems.

This completes the construction of the canons of the second-level

canonic system. In this example the first-level canonic system had

only predicates and terms of degree 1; modification to the second-

level system may be made to handle predicates and terms of higher

order in the first-level canonic system fDonovan and Doyl« 1968) .

The metalanguage describing the swcond-level canonic system

(canon, substitution, derivation, etc.) has not been defined; a

third level system would be needed to define it formally. The form

of the third-level canonic system is almost identical to that of

the second-level system with appropriate changes in notation, i.e.

predicates are underlined three times and the punctuation signs

are •;;;' and «p««. Ke now outline briefly a formation of a

third-level canonic system for this particular second-level system.

We remark first that when we specified the second-level canonic

system, we set up a standard frame, indepmdent of (Jj (canons

$.6,7,8,9,10.2,11,13,14,15,16,17) to which Bi dcpeodeoi caooos

- ———— -

19

were added: 1,2, 3, 6, 10.1, 12. The same precedure will

be followed here. The third-level ((i+l)th -level, ii2)

canonic system may be constructed from the second-level

(i -level) canonic system by the following algorithm:

1. To obtain the f 2'indePendent (6i-independent)

canons, use the standard frame, but make the appropriate chanjes

in notation, i.e. underline the predicates one additional time and add

one more semicolon wherever the sign •;;• (;i) occurs.

2. To obtain tie b^-dependent { Si-dependent) canons,

use the members of these sets listed in the definition of the second-

level (ith-level) canonic system as the terms of the appropriate

canons of the second-level canonic system and underline the

predicates one additional time.

Thus, the (i*!)1 -level canonic system can be constructed

from the ith.ievel canonic system with a minimum of effort. Thus,

it can be seen that all higher-level canonic systems have the same

basic for». Since no level defines its own operations, each level

is logically consistent.

For purposes of discussion, at some level the metalanguage of the

level must be defined informally. It appears that the second level

would be an appropriate level to do this. Recall that, for a

given problem, the first-level canonic system defines the problem;

the second-level canonic system defines the operation of the

first-level canonic system. All higher-level systems define the

20

operation of previous-level systems. Thus, by selecting the

iecond-level to informally define the metalanguage, the first

level canonic system (which defines the problem) is precisely

defined and logically consistent.

For the case when the "object" canonic system (Oj is not

a simple canonic system, the following changes will have to

be made in the second-level canonic system £2 formally

specifying "the anatomy and physiology" of Gj*

1) 6.1-6.4 7.1 8.1 8.2 are unnecessary

(6.S-6.9 7.2 8.3 8.4 alone will do in this case);

2) 13.1-13.2 should be replaced by

(13.1) iy list of statements ;; v statement L»u Hv

of le£al canon format

(13.2) u ^asQ ;; u of legal canon format |ss

u accepted canon

3) Obviously, all the (92-dependent canons of C2 "ill

be chosen so as to reflect the particular components of

Suitable changes may be made to allow for predicates of

higher degrees. Examples of canons allowed in general canonic systems

are:

x A (— ax A

axby A ^— xy B

xby A t— xcyd B

21

i

i

i

x number; ©x, book descriptor I— x year of copyright

(x,y €M; 'O', «a», 'b' , and •. • are in V)

The sentence symbol (predicate) will be denoted by 'sentence

instead of • p (D - {sentence}).

The alert reader has undoubtedly noticed another departure from

the traditional terminology: our avoidance of the term "terroioal

alphabet". The set V has been called just plain "alphabet». The

reason is that this set does OQt necessarily correspond to the

terminal alphabet of a formal grammar; it may include auxiliary

symbols. In this connection, see also Chapter VI.

Before we study the different hierarchies of canonic systems,

we wish to mention several results of Haggerty and to point out one

of their implications.

Iil$8iSS«ll;i • Any c«nonic lygtem can be reduced to one In which no
predicate bat degree greater than 1 . f"Reduced" means that a atate-
■•nt la provable in tha aecond canonic ayatem Iff It la provable In
the firat one.]

•

In constructing canonic systems to correspond to regular or to
context-free grammars, Doyle took the tarminal alphabet of
the grammar to serve as alphabet of the canonic system, and the
nonterminal alphabet to serve as set of predicates. When, however,
he considered grammars of type Oor 1, using a completely different
approach, he correctly y-j, in f««, the union of the terminal
alphabet and the nonterminal alphabet of the granaar to be the
alphabet of the resulting canonic system, but he said he included
only the terminals. If in his construction the alphabet is to
include only the terminal symbols of the grammar, then his construction
would not yield a canonic system at all, since some of the "canons"
included are of the form |— r nonterminal, where A is neither
a symbol nor a variable, rhenever we shall hereafter mention these
constructions, we shall assume that the appropriate correction has
been made.

I

I

I

1 22
(Proof by replacing n-tuples < 81< s. ,... ,8 > by terms of the form
s~?8Ä$...$8 , where $ is a new symbol, to benused as a separator.]

1 Z n i i , ,

Thegreg^H-2. Any canon using Indicated context may be reduced to a
canon"wIthout"Indlcated context (In other words, any canonic system can
be reduced to a simple canonic system).

i i i

[Proof. Each constant word Will be replaced by a variable whose value Is
specified (by an additional premise) to be In an [adequately defined!
singleton set.l ,

I ;.

Theorem H-3. Any canonic system can be reduced to one In which each
miMmmmmmmmmm *

canon has a single premise. ; ,

[The proof uses the following basic Idea: , a canon like

term, pred. ; term2 pred ; ... ; tern^ pred ^—term pred

Is replaced by1

< term, term- ... term > pred, „ ' I—term pred , 1* 2« « n * 1,Z,...,T\ \ ■*—
where pred, . Is a new predicate whose degree Is the sum of the ■ ■ 1,2 ,.. ., n !
degrees of pred. , and then additional canons are Introduced for the
newly-created predicates.] -'

i • i i
! i

' I i ;
We remark that, as a consequence of Theorem H-2', the_52fiS8_of_8imple

canonic systems Is ni less powerful than the clf28_of_generfl_C£nonlc

systems. Knowing this, one might wonder why bother to defined simple ca-

nonlc systems If the class of sets definable by them is not different

from the class of sets defined by the most general canonic systems.

However, the real significance of this theorem is quite different: we

should study simple canonic systems g£S£i|£i2==i£l~l they form a res-

tricted class of simpler canonic systems which still realizes the same

computational power. An additional argument is that Alsop's "canonic

translator" [Alsop 1967] uses only "simple carions". Moreover, there is

nothing to guarantee us that if we apply a certain restrict ion on the

class of all canonic systems and on the class of simple canonic systems,

the resulting classes have the same computational power, or that the

image of the first restricted class under the transformation of Theorem

H-2 la Included in the second restricted class.

i i i :

! i I ' ■ .

i

CHAPTER II 23

A HIEBARCHy OF GENERAL CANONIC SYSTEMS

Canonic systems were first used in specifying the syntax of simulation

languages [Donovan 1966], including the features which cannot be expressed

in Backus—Naur Form. Since canonic systems, while designed to be more po-

werful than BNF, were too powerful when firs*, defined (having the full com-

putational power of Turing machines and thus being able to define non-re-

cursive sets), it was felt that restrictions have to be applied so as to

render the resulting classes of canonic systems incapable of defining non-

recursive sets yet powerful enough to specify the syntax of any programming

language. (Experience and intuition have indicated to us that for most pro-

gramming languages the set of legal programs is recursive and it is only

specialized features of languages such as those found in PL/1 which have

enabled us to provf that the set of legal PL/1 programs is not recursive

[Mandl 1969a].) This was the motivation for studying hierarchies of cano-

nic_8y8tems. Doyle, in his Master's thesis, picked up this line of re-

search and defined a partial hierarchy of canonic systems, trying to in-

clude in it correspondents for Chomsky's 4 types of formal grammars.

Doyle's hierarchy has two distinct parts. The first part includes two

classes of canonic systems, one equivalent in strong generative power to

regular grammars and the other equivalent in strong generative power to

context-free grammars:

Thegrem_D-3 ["3" for "Type 3"]. The class of right-linear canonic
systems and the class of regular grammars are strongly equivalent.

Theorem_D^2. The class of normal-form two-premise canonic systems
and the class of context-free grammars are strongly equivalent.

There was a clear correspondence between the two formal systems, to each

24

production in the granmar corresponding a canon in the canonic system, and

vice-versa. All the predicates occurring in the canonic system were of

degree 1 (sets of strings), and the canonic systems turned out to be,

in our terminology, simple canonic systems. In the second part of his

hierarchy, Doyle allows predicates of degree 2 to occur (sets of pairs

of strings) but no predicates of higher degrees, and obtains a class of

canonic systems equipotent to Turing machines: for any grammar of Type 0

there is a canonic system which generates the same language. In other

words,

I~iIli=§=Q' The class of canonic systems with predicates of degree

2 is weakly equivalent to the class of Thue semisystems (grammars of

Type 0).

From the proof of this theorem we also have:

Ibeorem=D-0s. The class of simple canonic systems with predicates

of degree 2 is weakly equivalent to the class of Thue semisystem».

Doyle also mentions "noncontracting canonic systems with predicates

of degree 2", and states that these canonic systems generate only recur-

sive sets and that for any given context-sensitive grammar one can find

a "noncontracting canonic system with predicates of degree 2" weakly

equivalent to it. We have not listed this as a theorem since the defi-

nition of "noncontracting" is entirely inadequate, especially when pre-

dicates of degrees 2 (and higher) are included, and therefore the

above-mentioned class cannot be considered to be defined. In this con-

nection, see also Chapter V.

This completes the second part of the hierarchy. The one-to-one

mm

25
correspondence between the productions of the formal gramnars and the

canons of the corresponding canonic systems, While present In the first

part of the hierarchy, could not be established in the secord part,

owing to the Inherent difference between canons of these classes of

canonic systems and the productions of Tl or TO grammars. If we direct

our attention to canonic systems which do take context into consideration

(canonic systems with indicated context, which are here called 'general

canonic systems'), a natural solution presents Itself which not only

fills in the above-mentioned gaps but actually brings about strong equi-

valences with all 4 types of fomal grammars considered by Chomsky and

with any type of granmar definable in terms of productions, thus embedding

i!}S_S!}S2ry_2^_l2£!?Si_ir2!??2r5_i!?*°.Sl}5^_o£_Sf"'>nic systems. This simulation

of formal gramnars by appropriately restricted canonic systems with indi-

cated context is the object of the present chapter.

The following definitions are analogous to Chomsky's:

PSÜDiSi??-?* ^ canonic system is called canonic system of Type 0

if each of its canons, except for five of them, is of one of the forms

(1) x^A^y derivable ^- xputify derivable

(2) A nonterminal

(3) a terminal

where

(a) &> U/> u denote particular strings, possibly empty;

(b) A is a nonterminal (i.e. there is a corresponding canon of

the form (2)); and

(c) for every symbol from the alphabet there is either a canon of

....

26

form (2), or a canon of form (3) (but not both) ,

the five other canons being

(4) |— V derivable (Z ^V)

(5) I— \ terminal string

(6) x terminal f^-x terminal string (x , y €M) *

(7) x terminal ; y terminal string 1 xy terminal string

(8) x derivable ; x terminal string L— x sentence .

We may dispense with the predicate 'nonterminal' altogether, and

replace the present requirement (c) with a new one, (c*):

(c1) Any symbol in the position of A in a canon of form (1) **

must not appear in a canon of form (3) .

Since this modification will simplify the proof of the main equivalence

theorem, we shall adopt it.

* The effect of applying Canon (6) in a derivation can be achieved
by applying Canons (S) and (7). Canon (6) was retained in order to pre-
serve the correctness of future references by formula number.

** There are two ways in which a canon like

xABCy derivable L—xABACy derivable

may be interpreted af i canon of form (1):

1) y>= A ; (p= C; a) = BA ; the expanded letter is B

2) ü>= AB ;&= \ i u) = AC ; the expanded letter is C .

(Of course, this is just one canon, not two, and the two interpretations
have no Influence on the use of this canon in derivations.) In such a
case, only one of the symbols that may be considered as being "the expanded
letter" is requied to be a nonterminal (i.e. to be missing from the canons
of form (3)).

. . ^ ■. i i 27 '
i

i

Pl^fiPiJiPD-?- A canonic system is called a canonic system of
i "" ----------

T^B?-1 or ?9!????t:§§D§i5iY5-9§D9Di9-§Y§?51!D (CSCS) if it is a, canonic

system of type 0 satisfying the additional condition that in all its

canons of the form (1) the string' w is non-null.

P?fi?i5i°P_f• A canonic system is called a canonic system ofJType 2

or context-free canonic system (CFCS) if it is a CSCS satisfying the addi-

tional condition that in all its canons of form (1) the strings ^,ij; are null.

P^fiDiJi??-*?* A canonic system is called a cianonic system of Type 3

or regular.canonic^system if it is a CFCS satisfying the additional condition

that in all its canons of form (1) the string to contains just two

symbols, one terminal and one nonterminal (one for which there exists a

canon of the form (3) and one for which there is no suchicanon), always in

the same order. If the order is "nonterminal - terminal", the regular :

canonic system is also called a \eft-linear canonic system.

The definitions for linear, one-sided linear., metalinear, '

seguential, etc., grammars can be similarly imitated, and so we can speak;

(P?fiDi5i9P-§) of liD5§r» 9!?9r§ided linear, metalinear, seguential, etc.,

canonic systems. Obviouslyi all results obtained for these types of
__.. ^ , . i ,- '

grammars hold also for the corresponding types of canonic systems.
i

Theorem 1 For_ever^_Type_i_canonic_system_(i_=_0t_ll42t_3i_there

is_a_Tyge_i_gra^ar_which_generates_the_samemla^

95l}9r-y9I^§i-5!}9_9l§§5-9f_I^9_i-gI§^|r5-is .equivalent ^q.the'.class

9f-I^9-i-95599i9-§1^9ro|_f2r-i-=-Qt-li._ti.-5i '

Ke shall show how one can pass from grammars to canonic systems and

from canonic systems to grammars. Let there be given a grammar G = N,' T, P, E)

of Type i (i = 0, 1, 2, 3). The associated canonic system has the canons (4),
11 i

_..., .

i ■ 28

(5), (6), (7), (8), one canon of the form (3) for each element of T, and for

each production pA ^ -•> <^ w d/ one canpn of the form (1). The resulting

canonic system is, by construction, a canonic system of Type i (i = 0, 1, 2,
i

3); the strings (p, ty may be empty. Suppose now a canonic system of Type .
i

i is given; the corresponding grammar is defined in.the following manner.
i

The set T incudes all symbols for which there ib a canon of type (3);

N will include all other symbols and for each production there will

be a canon of form (J). It is obvious that the resulting grammar is

by construction of the same type as the canonic system from which it was
1 ,

derived. , ' ;
i .

üefore we show how derivations are simulated, we should clarify

what is meant by a derivation in formal grammars. Two definitions are in

use in the theory of formal grammars, and our construction below works

with either of them. According to the first definition, any sequence of

applications of productions constitutes a derivation of the string obtained

at the last application; ? string is accepted iff:

i a) it has p derivation; i

b) it contains only terminal symbols.

According to the second definition, a sequence of applications of productions

constitute a derivation only if no further applications of productions are

possible. The grammar is usually required to have for each nonterminal

symbol, at least one production expanding it, in which case a derivation

produces automatically a string of terminals (if there were a nonterminal

in the striu0, the sequence could be continued and therefore does not

constitute a derivation); a string is accepted iff it has a derivation. i

We shall use the first definition, but we remark that if the grammar

is required to have for each nonterminal symbol at least one production

 i_. i .

29

expanding it, a derivation in the first sense (according to the first

definition) is also a derivation in the second sense (i.e. cannot he

continued) iff its last string contains only terminal symbols, and so

the two concepts of acceptance coincide.

Let us consider a derivation in the canonic system. We shall

simulate the derivation in the canonic system, in a step-by-step manner, by

a derivation in the formal grammar. Without loss of generality, we may assume

that the derivation in the canonic system starts with the canon (4). The

derivation in the formal grammar simulating it will start with the one-

character string Z . Any canon of the form (1) will be simulated by means

of the corresponding production; canons of other forms will be disregarded

for the moment, le have thus obtained a derivation in the formal grammar simu-

lating step-by-step the given derivation in the canonic system. If, the

last string obtained is not only derivable but also a sentence, then this

string has been obtained by applications of canons (5), (6), (7), with a

final application of canon (8). Th^applicability of canon (8) proves

that the second condition for acceptance in formal grammars (condition 'b)'

of the first definition of derivation) is fulfilled, and therefore the

string is accepted by the formal grammar.

Therefore we have shown that for every derivation in the canonic

system there is a derivation in the grammar. The converse result is proved

similarly. This completes the proof. It is easily seen that what we have

proved amounts to strong equivalence. We can therefore assert:

(strong form of the general equivalence theorem)

Theorem 1 The class of Type i graranars is strongly equivalent to the

cUy. Q* Tfrgt 1 Cfflylc lyytty^ <pr ^ « 0^ 1,^ 2^ 3. _ g» cUflg» of 1 i near,

22SzSi'$S§.liSSB£jml*Sl*lPX9'iTA sequential, etc. grammars are stronjjly equivalent

M

Definiti<?'J.7 A canonic systev is callea a lfift:fiODt»t:!fiD9Ui¥fi.fitDCDiC

SYStSV (1CSCS) if it is context-sensitive and in all its canons of type (1)

the right context (the string <») is e»pty. [And similarly for rCSCS. 1

These definitions are the natural counterparts of the definitions for left-

.context-sensitive.tright-^ontext-sensitiv^ grammars. One-sided context-

sensitive grammars have been studied but with no significant results to date.

About all that is known is that they can generate non-CF languages (and cannot

generate non-context-sensitive languages). It is conjectured that they

cannot generate all context-sensitive languages.

Another type of formal languages (left^Context-sensitiv^ have

been defiaed in Mandl 1968 and shown to be weakly equivalent in generative

power to context-sensitive grammars. This gives rise to a new type of

canonic systems^trongly equivalent to left^context-sensitive graanars.

These grammars soem to be new and interesting and therefore we will

discuss these further here.

The definition below was suggested by Booth's definition of

context-sensitive grarmars (Booth 1967] as a phrase-structure grammar all

of whose productions of any of the following three forms:

(9) C! A c2 - Cj <:2 "

(10) Cj A Cj ■,, " Ci ^2

(11) Cj A J;2 * C! H C2

He further remarks that productions of the forms (9) and (10) are not really

necessary (since they can be obtained by adding a few rules of the form (11)

and by adding a fe » new nonterminal symbols) but they make his exposition

easier to follow, suppose now that the right contexts are null in all

these rules (and simi arly for left contexts). Then the rules have the form

31

Cj A <- ?! w

C, A - tu

Cj A •► ?! w

Hhere the first and the third are left-fontext-sentitivetrule* and the

second is not. This second for« of production will be the only for*

allowed in the graaaars we are going to define.

Definition 8. A left-Vontext-sensitive, graBmar is a phrase-structure

grammar all of whose productions except perhaps for a rule £ -» X ,

are noncontracting productions of the fora

(12) 9A - ^w , A C N, epe V* • (mjT)*, w M.

(Similarly for right-'context-sensitive grammars 1 It may be remarked

that this type of production is wtt * particular case of the general

production (ßh # • tfu ii as the left-^context-sensitive| rules were,

likewise, the corresponding type of canon is not a particular case of

(1), and so we cannot (yet) define left -ynntcxt sensitive, systems as

a special case of Tl (or Type 0, for that matter) canonic systems (see

footnote). Ve shall use instead a definition which is similar to

Definition 11.

De f In it k« 9. A l*tt£jttotfxt;9™itiy%jmC»rtonlciy*tmm U a

canonic systea which includea the pcrticutar coona (A), (S), (6). (7).

(8), a finite nuaber of canons of tb* form

(14) xyA derivable |— numy derivable

and one c«wn of fom (3) foreech syabol A occurrlnf in sea* canon

(14). (Similarly for rlght-*leont«ii-eenaltlve, canonic eyataM; (14)

la replaced by (IS) xAi^y derivable [— xy/yy derivable .1

32

I~£i£Li • « J-fl'Liiy'P.fprff;!:*;?»^ jyf.irffpf ji.ii'«!«. •xi»t»-;

5ff5S5iy?-Pr?sf^i*r?j..iI!ij.£P!?y5r5S-r??yii-if.jriyliiiJ
Prpor The proof will Mko use of ctrtain reductions (Rurodi 1964]

but It will be evident how to »tert the proof should one wish not to use

the reductions. Definition (tturodal A context-sensitive gravuir is

of order n if there appears no string of length greater than n in any

rule of the grammar, lemma 1 [Kuroda] For any context-sensitive gravur

of order n (n > 3) there exists a context-sensitive grnrnar ef

order n-1 generating the same language.

(By repeated use of Leaaa 1:)

Lemma 2. (Kuroda) For any context-sensitive graaur there is a graaaar

of order 2 equivalent to it.

Let G be the given graaaar. By introducing new terminal syvhols,

we can convert it to an equivalent graaaar in which terminal symbols appear

only in rules of the fona A -► a ("terminal rules").

Raaark. (Kuroda] The original grammar aight have been given in an

apparently more general fo«# in wh^ch there might be a production which

rewrites «ore than one ayabol:

(16) •. - «_ / 1^1 < |^|

fUto)» . N(TÜN)* \wl €

Ne can thus define two new types of canonic systems ('Types 1 and tf ")
with canons (4), (5), (6). (7), (g), canons of the form (J) (and (2)) and
canons of the form

(17) xwjy derivable |— xi^y derivable

where «j includes at least one nonterminal, with or vlttalt the restriction
|w.| « Iw-I . Using Kuroda*s remark and our general equivalence theorem, w«
can conclude that these types of canonic systems are weakly equivalent,
respectively, to Tl and TO canonic systems. At this stage we could redefine
left-•context-sensitive canonic systems as a certain special case of
Tl» (context-sensitive) canonic systems.

Using the general «quivalence theorem, we have:

Ita£ltl.2i' For enyglven left ^or text-eeniltlv< grentnar there 1B

cotjvorBcly. The cl«««jf left-*con text-«ens It Ive granmers I» strongly

33 '

!Z!E*?2.^!!rf.lf.!.l!!S:*€??S*?S:!*?!iS!Y*.S9?9?i3.!7!S*?.iSff??!f2.^1Sl!

8?ü*?!S!!.?!}!.J!?!-lf98V?89i-f5-_S89Y?r!?ly:.-T^?.Si!Jf-?l.£?!?S??Sl

!*"!^lYf.ir????E!.^f???iS.f7!S!?!2.if.Y??^l7.?9^iY!l!?£.S?.S(}f.£l!!!

Similar thporems hold for right-^contaxt•aensitive. canonic

ayataaa and granoara. A further application of the general equivalence

theorea yields:

ItlSSESSafL' ?or an]f glvon context-sensitive canonic system there la

',-lp^f.'*-on-?xi:8r!?"iSiY'.?f099i£-?y!S??.^??!Jly.?9"iYfif"S.S?-iE:_.iTl!5

converse is trivial.^

strongly

CONTEXT-SENSITIVE GRAMMAR S
CONTEXT-SENSITIVE
CANONIC SYSTEM

Mt J&

LEFT-*CS OlAMM/Jl — —— LBFT-*CS CANONIC SYSTEM
strongly

(Th. 3a.) Hi. 1

Pigure 3

s

Moat jf the equivalence Chaorwu of this chapter ar« auamarisad

In Figur« 3. For conplatanaaa' aaka. we also Included several trivial

reaulta.

m

35

CHAPTER III

SyBRECyPSiyE_CLASSES OF CANONIC SYSTEM? ------------------

iioth these hierarchies of canonic systems, as well as the hierarchy

of formal grammars, '.ave no class of system to correspond to the class of

recursive sets. ("Norcontracting canonic systeimwith predicates of

degree 2" were claimed to be situated somewhere between context-

sensitive sets and recursive sets, both inclusions being in the weak

sense.)
t

We state here in what sensed) would a class of canonic systems

(formal grammars, etc.) correspond to recursive sets and elucidate

why no class of system has beer found equivalent to recursive sets.

It is wel nown that there can be no procedure for deciding

whether an arbitrary recursively enumerable set is a member of a

given non-empty collection of recursively enumerable sets, except

in the trivial case when all the recursively enumerable sets are

members of the collection. This is Rice's theorem; «ee, (?.j.,

Rogers f 1967 , p. 324 (Th. 14-XIV (a))]. Consequently, it is clear

that we cannot hope to find a class of canonic systems which (a) defines

all recursive sets, and only recursive sets, nnd (b) the class includes

all the canonic systems which define recursive sets.

[Mandl 1969b]

{a]

' i 36

We might hope that there exists a "small" class of! canonic

i ■ i , ' i

systems which define all and only recursive sets however realizing

that the class cannot include all canonic systems which define

recursive sets. Or, stated in another way, it might be the case

that a certain class of canonic systems (characterized by a finite

set pf properties, and such tljiat is is decidable whether a given i

canonic system meets those properties), would correspond to the

recursive sets in the sense that
i

^only recursive sets are generated by canonic1 systems of
i

that class (the class is "subrecursive"); .

-for every recursive set, there is among the canonic systems

of that class 'at least one canonic system defining the '

giVen recursive set (and there may be such canonic systems Qutgjde

the considered class). '

We shall prove that such a1 class cannot exist. I.e. if a class

of canonic systems defines only recursive sets, then it cannot define all

recursive sets, oven,if it does not have a monopoly in defining recursive

sets. This result can be restated succinctly as: "Subrecursive classes

of canonic 'systems are strictly subrecursive."

Ib§8S§Ss§ • JiJLJÜUss-of-caooDic-syskems. (JÄiÄJfflX.JÜÜliÜfc^^SBÄUÖJ^

formal systems, for that matter) can correspond exactly (in the sense of:

(a) above) to the clas? of recursive sets. In particular , (^CSTl £Sr
i

[Becursive.setO * .

*The reader may have noticed a similar statement, without proof, in Donovan
and Doyle, 1968, p. 46t "Thus, a noncontracting canonic system can only define
a recursive set., However, it cannot define all recursive sets; some
recursive sets tan be generated only to a TO grammar.". An earlier work
claimed to have proved this by exhibiting a concrete example, but the '
proof was eliminated when the eaample turned out to be a context-sensitive set.

37

ElQOf (based on an idea of Hopcroft and Ullman [1969 ,88.3]).

Since canonic systems are finitely specified, we can canonically

enumerate all canonic systems, the canonical index encoding the

whole description of the canonic system ("Codelization" of canonic

systems.) Likewise, we can canonically number (encode) all the words

over the denumerably infinite list of potential symbols; let

iii^ be the ^ work in this numbering. Since it is assumed decidable

whether a certain canonic system is of this type or not, we can strike

out all the canonic systems DQt_Qf_tbis_type* thereby effectively

enumerating all the canonic systems of the type considered:

6 » £ , & «By the hypothesis, all these canonic
12 3 f Jf Jf

systems define recursive languages ^-l» 2» 3 ••• • Consider

the set

{uk | wk^.Cfc }

It is different from all •^•i» i = !» 2» ••• '» yet i* is recursive.

Therefore no type of canonic systems can define all and only recursive sets.

Remark. A recursion theoretic argument yields Theorem 7 as an immediate

consequence of the known theorem that the class (set) of all recursive

sets [while recursively enumerable as a class of r.e. sets [Blum 1965;

Suzuki 1959]Us not characteristically enumerable. PrQ9f_öf_Jh§_reductiQn.

For all subrecursive classes of canonic systems the proof of the subrecursive-

ness has been done by exhibiting a decision procedure. In other words,

if we have a finite description of a canonic system, we can interpret

it not only as giving a procedure for enumerating a set but also as giving

38

a procedure for computing the characteristic function of the set, i.e.

that we can find not only an r.e. index of the generated set but also

a characteristic index thereof. Therefore [a description for] 3

caooDic-system-beloogiDg-to-a.subrecursive-class-is.akiD.to-a.cbaiacteristic.

iDdgx_fQr_the_r§cujsiye_§et_dgfined_by_th§J_canoDJS_§ystem.

*The elucidation of this point owes much to a discussion with Professor

Patrick Fischer and Professor Juris Hartmanis at the Third Princeton

Conference on Information Sciences and Systems in March 1969.

39

CHAPTER IV

CANONIC SYSTEMS FOR CONTEXT-SENSITIVE SETS

In Chapter II we mentioned Doyle's work on a hierarchy of canonic sys-

tems, where, inter alia. It was stated that the NCST were situated some-

where between context-sensitive sets and recursive sets. Let us now take

a closer look at the definition of NCST. It reads ("Definition 2.13"):

"A nonconti ting canonic jäystem (NCCS) is a canonic sys-
tem in which each application of a canon results in the length-
ening of the string denoted by the predicate defined in the
canon. That is, if ,A$? and w^A and to prove w^A it
was first necessary to prove ß «B , then (u)(> |ß| . That is,
in a derivation, if we have

••• »P£J ••• J'JAj ...
then M>jß(. (B may denote the same predicate as A)

A noncontracting £anonic system with predicates of degree
.two (NCST) can be constructed to describe the language gener-
ated by a Tl grammar; this canonic system has the same basic
structure as the canonic system equivalent ot a TO grammar
with the additional length restriction."

9°JfSSi°?*LH2_S!}e definition

1- "^l??-!5riDS denoted by the predicate defined in the canon" . The

conclusion of a canon has only one statement , and therefore it involves

exactly one predicate. However, this predicate is not necessarily of

degree 1 , so we cannot refer to "the string".

2. "lengthening" . That unspecified string is longer than something.

Longer than what? The hypothesis of a canon may include many strings and

many n-tuples (tuples) of strings.

3. " |a)|}|ß(" . If u and ß are tuples, their length is unde-

fined. If they are strings, then something has to be said about tuples,

or at least about pairs, since predicates of degree 2 have to be allowed

in order for Doyle's proof of [Type 1]^ [NCST] to work.

- , _ ■._.._.._ _ _ __ _ _ _.

40

4. [Concerning the derivation] Although on p. 18 of that paper it

was said "In this paper, a derivation will consist of a sequence of canons

instead of the sequence of conclusions of these canons", here we have to

revert to the original definition of derivation (as sequence of conclu-

sions). When we do so, we see that an axiom may appear anywhere in this

sequence, and it is not necessarily longer than all its predecessors (or

shorter than other strings that may follow). Moreover, not only strings

appear in a derivation but also tuples.

5. "(B may denote the same predicate as A)" . B does not denote

a predicate: rather, it is a predicate. Formally, predicates are and

remain elements of P ; and when we write P = ^ A , ßj we also mean that

A and B are different elements of P . We could have introduced meta-

variables ranging on predicates, 1^ , 1^ , „, > in much the same **? in

which we tacitly introduced ß , u , ^ , ((/ to stand foi particular

strings, and in that case we could have written

... i P tK > ••• • w IJt, ; •••

and said that the meta-variables "ÜJ and 1^ may denote either two

distinct predicates A , B or one and the same predicate A . Since we

have not introduced such "predicate-variables", and since A , by defini-

tion, is not the same as B , one should have said

... if we have ...;ß B ; ... I w A ; ..
or we have ... ;ß A ; • • > > u) A;.,
then H^fßl . "

We therefore see that, at this stage, there is no such thing as non:

contracting canonic_8ystems_with_predicates_of_degree__2_. Correspondingly,

this chapter will be devoted not to proving something about the [undefined]

NCST but rather to finding_a_definition which will be intuitively acceptable

and will be such that

1] Doyle's claims will hold for it ([Type l]C[new class] ^ [^ec]);

2] will allow a proof of equivalence with [Type 1] .

... , ■ . _..... 'lL _. _._

I ,■..,.

41
As it very often happens in such cases, the real problem is not to

i

prove but to "guess" what to grove (and to "improve a bad guess" by trial

and error).
■■

We cannot define 'noncontracting* [nc] as "such that the sum of the

lengths of all strings in the hypothesis (whether appearing isolated or ^s
i

elements of tuples) is at most as large as the sum of the lengths of all

the strings in the conclusion" , since then a.canon like

xA;xBf— xCi '

would not be noncontracting, which is riot only counter-intuitive but aljso
i

does not allow us to salvage the proof for "[Type 1] g [NCST] ". For

the particular case when no predint« of degree 2 appear in the conclu-

i

sions of the canons, one could try

"the string in the conclusion is no shorter than any of the

strings appearing in the hypothesis, whether they constitute
I !

terms of 'degree 1 or are elements of higher-degree terms" .

We shall reconsider this suggestion later on (in a modified form); at '
i ■ i

the moment we have to abandon it because we plan to use as much as pos-

sible of the existing proof [Donovan & Doyle 1968, pp. 43-44], and the

canonic systems constructed in this proof-arei as we noted in Chapter IC,'

general canonic systems with_predicates_of_degree_2 (also in the conclu-

sions of the canons).

Since the real problem here Was the finding of of a good definition,

we think it would be more instructive for the,otudent of canonic systems

if we try to present how_the_definition_wa8_arrived_at, instead of just

exhibiting it and showing that it works.

Doyle's proof: of the recursiveness used a multitape Turing machine;

the idea was to show that this machine always halts, thus deciding mem-

bership in L(£) . We intend to prove more, viz. that the set L(£)

! I

i ' ' ,45

defined by the canonic system Is context-sensitive. For this, It will

be enough to show that the multitape Turing machine which decides whether

<<> £ L(£) never uses more than jwj squares on any of Its tapes.

As dur first step, we modify Doyle's1 Turing machine to have, In

addition to one tape for each predicate of degree 1 , also k tapes

for each predicate of degree k , for k a 2, 3, ... (all1the tapes are

distinct). In Doyle's construction, the Turing machine exhaustively ge-

nerated all strings of length ^ |u)| In the language defined by the ca-

nonic system and checked for the occurrence of ui on the tape assigned

to the sentence, predicate,. Naturally, all strings, pn all tapes, had to

be placed one beside the other (separated by special characters), and so

the storage space for far ffom being linear. One could achieve linearity

^.f each string replaces the contents of the tape on which It Is placed.

Instead of being appended (with a separator) to the current end of the

tape. However, each string has to stay tvallable Indefinitely, for later

use in derlyat_ons (Fig. 4).i

[Other com-
putations]

Figure 4

43
More exactly, It hai to stay Indefinitely available in all cases EXCEPT

when each canon has at moat one premise (if 0 premises, the canon is an

axiom), in which case (see Fig.5),

|(axiom)i

mmn

Figure 5

each statement on a computation path is used once innedlately after being

obtained and never needed again. This will be the main idea of our proof.

In order to achieve tM' situation we have to reduce our given cano-

nic system © ("of Type X") to one £ in which canons have at most one

premise and which is also'Vrf Type X" . Forgetting for the moment of the

"Type X" restriction, we notice that such a reduction ia always possible:

this is one of Haggerty's result! (Theorem H-3, here). There are exactly

3 ways in which the canons of L are conatructed:

1) they may be inherited fron g , if they have at most one premise;

44

2) th«y may have been Included In UJ^ Co replace some canon

t, pred, ; ,,.; t '»red L-. t pred
i ■ i n * ii | o ■ o

of G ! general form;

< ^«tj«.••«*,> £rsd1pred2...pred|| (-^££2^

where the degree of Che newly Introduced predicate is the sum of the de-

grees of the n pred lea tea in the hypotheaU of the old canon;

3) they may have been required by canons already in ui. i

if C haa canons

^ 1 • * m' — | o —

^tl«,,,«t^- H" 'o^- . ««x1 SIS: !• «Iwedy in ^ ^

then it will alao have the canon

where deg(re) - deg(R) + deg(8) , deK(R'S') - deg(j£) + deg(8i) .

Fron here we get the final hint aa to how to chooae "Property X" :

if we are to uae the method of proof sketched above, "Property X" haa to

bc !?Yfr*!t??.&.!22i.!?2' * ,3)' su8g"t« the following:

PBOPERTY x . In each canon of the canonic ayatem:

If the predicate in the concluaion ia of degree k . then in each premiae,

aeparately, the tuple can be decomposed * into k parts (poaaibly empty),

which are contiguous, mutually dialoint, and collectively exhauative; and

there ia a permutation of theae k parta auch that, for every i ,ifi<k ,

each element in the 1 part ** al'aya repreaeota a string whi "i ia

no longer than that repreaented by the i element of the tern (of order

k) in the concluaion of the canon.

* It la underatood that no element of any tuple ia tu be cut in the

middle by the decomposition.
th ** The part *\ich became the l1"" after the application of the per-

mutation.

43
Example«: < x ., v>A |-<V , >> AA

As • particular caaa, «a havat

PWPEHTY X2 . (S«»e «■ ^ , but ooly ooa of tha alaMota 1B tha

conclusion la co^>«r«d with thoaa in tha hypothaala- thara is an Intagar ■ ,

B<k , auch that tha ■** alaaaot of tha conclusion alwaya rapraaaota a

atrlog loogar than thoaa rapraaantad by any alaa»nt in any tarn lo tha

hypothaala.l

Wa ahall no» clarify uhat ua »aan by tha axpraaaloo 'alwaya rapra-

aaota a ahortar atrlat* . Whao a csnon la uaad In a derivation It doaa

not appaar In Ita general fox» but aa a particular HMp.lofÜPSf* in

which all tha varlablaa ara raplacad by partlcuUr atrlnga- «b« 'rt>-

partlaa 1. (1 • I , 2) raqulra la that for aach canon thara be a

decompoBltion of tha kind apaclflad above and such that for all tha

inatancaa of that canon that^can^apjaar^ln^darlvatlopa^ln^tha^ilvan

canonic s^staai * tha abova-nantionad dacoapoaltlon yield particular

strings uhlch aatUfy tha langth ralatlonahlpa apaclflad In tha defini-

tion.

* Por axsapla, if a canonic ayataa contains only tha canons

f- 3 diait

x dUlt k- x masbar
« dlalt ; y nuaiber ^— xy nuaibar

than •533 dltlt ^333 mabar' la a lagltiMta Inatanca of ona of tha

abova canons, but can navar sppaar In a derivation. We ahall ba concerned

here with canons Ilka

< s a y> graatar in length ; y very long at rIns ^- x vrv inn, .trin.

which ara ao decoe^oaabla, because sny (apparently) offending Instsnca

46

Thus in order to ascartaln whether a ctrteln c.afha» Property X. «M

h«vo to make sur« not only that tho canons hava cartain form* but aUo that

an Infinity of canon inatancaa aatiafy cartiain roatrlctlona. Whan «a talk

of claaaaa of canonic aystaas «a uaually rtquira that aaabarthip in tha

claaa ba dotandnad on f r baaia of a finlta aat of canona. not on tha baaia

of an infinita aat of canon inatancaa; tharafora «a now procaad to define

propartiaa alailar to Propartiaa X but auch that thay iovolva tha canons

thaaaalvaa rsthar than an infinity of canon inatancaa.

Lat us considar firat a cam of dsgrss 1 , a.g. xaby , «Atara a . b

ara ayabola and x , y ara varfsblaa. Whatavar tha atringa rapraaantad by

x , y aay bat tha raaulting atring ia aluaya longar than tha at ring rapra-

aootad by xxyabb . Wa ahall writ.

X« ^ ««by 4 ■»/•**

Othar axaa^laa:

X ^ XX

x ^ xy

x ^ xb

xx3y>yx

Wa hava to awka ona aora preparatory digraasion bofora «a foraally dafina

tha ralaticm ^ . Sinca wa want to uaa Doyla'a conatruction of a c.a. for

a givan contaxt-aanaitiwa graoMf. lat ua hava a cloaar look at that cons-

truction. (Wa want to sMka aura that tha definition of ^ will be choaen in

auch a way that tha c.a. conatruotad will heva Property Xj .) Ita "wost im-

<abc4deft> ^roaf r in lenxth ; defg YtTv lonl, *trln')~abc v,rv lon't ,trina

, while legitimate aa an instance, csn never sppeer in s derivstion in s c.a.

which definea '«c, y> «reater in length' to «ean - x U longer thsn y ".

* "ca." • "cenonic ayataaP* .

Ul

portaot canon", cod th« only on« which 1« Ukaly to caua« probl«Mt !•

(1) wi dTlvod ttring ; <x ^y» production ;<y^KVgroaf r In fngth I—

wyi dorlvd ||| Ing ,

Th« problMi U chat we need vxi^vyi , whor« x , y or« not coaparabl«

(b«lnt two distinct variable«). All «o «ant is that always tha atriog ra-

praaantad by y ba at laaat aa long aa that rapraaantcd by x , and thia

ia ansurad by th« prasiiaa ^y^x»graatar in lanth (H^Ul) Tha dafi-

nitioo win include alao thia eaaa, thua "latalising" canon (1) . Tha pra-

dicata greater In length uaed above ia defined thua:

(2) x tsnainsl |— x aybol

(3) x nonterminal ^— x syt >l

(4) (-<\,1> laogth

(5) <»< y> l«>gth ; s aytol \- <xs ^ yl> langth

(6) «x, y> laagth ; <a< yl> Isngth [— xr # x> greater In length <

(7) <xay> graatar in Isngth ;«y<i> grastar in langth L-<x „ t> grea-

ter In length

(8) <s<y> langth ; ^s ^ y> Isngth |—<xr8> grsetsr In Isngth

Canonic a vat etna which Include the canona (2)...(8) will be called

i??B£!?r??Di£?llllf.5!???*£.!?!!!?!' We re«Mrl' for latar uaa that thaaa ca-

nona SStisfy themaelvea tha requl retaent a placed upon canona of canonic avs-

tsas sstisfying Propsrtlea X., X. (i.a. thay are dacowpoaabla in tha pra-

acribad wannar).

* It ia bacauaa of this canon that ths c.s. which include canons (2)...
«

(8) »re not siapla. Tha ascond alcasnt of s psir in Isngth represent«

tha langth of tha firat alsant «xpresssd in 1-ary notation: O-T. >'llir, ate.

48
P!^Pi5i°?-i9' (I>«'lnltlon of < (with respect to a particular canon

in a particular canonic aytton))

.la. For any words a , ß

\ 4 a (vis the empty word)

04 ß .♦»• |a|<|ß|

.lb. If x is s variable, then

\4 x

x 4 x

.lc. If a premise of the form <v,u> greater in length is

Included in the canon, where U , V ere variables, then

U < v (In thst canon)

If ci » c2 • c3 ' t4 r*present conestenet ions of vsrisbles and words,

.2a. [TransItIvityJ ^i < ^ ' 4 ^ 'j ' "^ 'l 4 ^

.2b. [Slde-by-slde concatenation of inequalitiea]

tx*t2 . t34 t4 .=♦ t^^ t2t4

.3. No relationship t. 4 t, is valid unless it is deduced from

e finite number of instsnees of .Is. , .lb. , .lc. by means of a finite

number of epplicetions of .2«. , .2b. .

With the help of the relation 4 we are now in a position to define

PROPERTIES T1 , Y2 , for leogth-aonitoring canonic systems.These properties

are defined in a siaiilar manner to thst in which we defined Properties X ,

Xj , but:

1) the expression 'element -t. slwsys represents s string which la

no longer thsn thst represented by t ' is replaced by ' t. < t ' }

2) the canons (2)...(8) . present in sny length-monitoring c.s.,

49
•r« not required to be "decomposable" . [Notice the forma, change In the

concept of "decomposability".] [We shall later consider other types of length-

monitoring c.i., in which case '2)' will refer to the canons there used for
monitoring length.]

We note that Property Y, implies Property X. (1 - 1, 2), and that

one can Immediately tell, by inspection, whether a c.s. has Property Y.

(1 - 1, 2) or not (this was not the case for Property X. , Property X.).

This iatter fact Justifies the following definition:

Defir-itio" 11- A length-monitoring canonic system is of Type Y. (res-

pectively Y_) if it has the Property T. (respectively Y2) . [The name

'type* is reserved for properties detectable by inspection.)
i

Il£S£§9.£-
a) Given any context-sensitive grairanar, one can uniformly effectively

construct a_length-monitoring canonic system of Type Y. (Y„) defining

language defined by it is context-sensitive (and a suitable grammar cnn be

constructed_in_a_unlformly SHjctlv^oarner^

i

I .M Proof. Since Type Y implies Type Yj , it is enough to prove 'a)

for Y2 and «b)' for Yj :

[Type 1] $ [Type Y2] C [Type Yj ^[Type 1]
a b

["the class of languages fot which there is grammar of Type 1 is included

in the class of languges defined by c.s. of Type Y. , which ..!', etc.] .

a) All we have to show is that the length-monitoring c.s. constructed

in Donovan & Doyle 1968 pp. 43-44 always satisfies Property ^ , and this

i

! 5°
Is ensured by the1 manner In which we chose our definition^.

[Remarks. There is ho need to first reduce the. grammar to one of order 2; <
i ...

1 - the alphabet of the c.s. includes not only the terminals but also
I ! ; ■ • ,

the nomterminalfl, and Ü is included aihong the latter;
• - . j

l - there is no need,for *hei_canonic_8ystem_itself_>to_define the con-
I .- — -----.--. . ^

cepi 'string', since this'concept is. part of the definition
' • j • i ! '

of canonic systems in general;
i I

- for formal reasons, the canon i

[y string ;] <S y> production ; <y ^ 2> greater in length

i , r— y derived gtrlng.

is replaced by the two canons f-E initial string and

I x initial string ;| <x^y> production ; <y<y> greater In

length L— y derived string ,
■ l ■ , ■ ; , ' , '

where initial string is a new, singleton predicate.]

' . ' . ' ^ ' ' '
i | i

b) Applying Theorem H-3 * , we reduce the given c.s. of Type Y^^ to

one in which no canon has more than one premise. Since the original c.s.

had Property X. , and since this property is invariated by the construction

in Theorem H-3 , the resulting c.s. also has Property X. . We shall now

construct (in a uniformly effective way) a nondeterainistic multitape LBA

Which recognizes ;the language defined by the reduced c.s. (which is the same

as that defined by th6 original one). For each predicate of degree k (k p

1 ,2 , ...), the LBA will have .k tapes. Since each hypothfesis has only

one canon, the derivajtlons have a certain "Markovian" character (see Fig. 5"».

Each statement obtained in the derivation is used in the immediately following

step 9nd never needed again«,«ltd therefore can allow ourselves to overwrite

* I am grateful to Amitava Bagchi for the suggestion to use Theorem

i ■ I ' : , ,

H-3 in t^iis proof.

I

I ■

51

the tapes corresponding to a predicate uhen this predicate reappears in a de-

rivation. The LBA will simulate nondetemtlnlstically the derivation and will

halt when a sentence is derived; if a string u is a sentence then there

is a computation path of the LBA which hjlts with CJ displayed on the

sentence tape, and conversely. The last step in the derivation of co is

of the form

<a<ß<...<|i> AB.. .M I— CJ sentence ;

by Property X. we have

M > |a|

M ^ Ißl

Tracing back our derivation, we see that, in view of the Property X. ,

co is at least as long as any string in the derivation, and therefore |a)|

is an upper bound, on each tape separately, on the amount of space necessary

for recognition.

The proof will now be concluded by replacing the multitape LBA by a

["multitrack"] one-tape LBA and noting that each step in the chain of cons-

tructions

c.s. of
Type Y1

c.s. with multitape _.
LBA ^

context-
one-premise '"■'^ ■5=^ sensitive
canons graranar

is uniformly effective.

As an illustration to this proof, we now show how the multitape LBA

would handle the canonic system which «as chosen by Haggerty to illustrate

his procedure.

52

< x ^ y ,, z > ABC j— < ax ^ by < cz > ABC

<yt
z> BC L. < a , by , cz > ABC

<xtcy> AB |^<ax,by<,c7 ABC

XTx^ z> AC |—<axtb<cz> ABC

x A f— < ax „ b g c > ABC

y B |— < a . by „ c > ABC

z C | < a m b «. cz > ABC

•Cx <y> BC j— <'xbcyc>BC

x B \— <xb ^ c > BC

|— «C b ^ yc >. BC

|— <b < c ,> BC

y £

y> AC [— < xa c yc > AC

 <;xa ^ c > AC

1 < a ^ yc > AC

\— <* , c^- AC

Derivation for 'aabbbcaabbb' : b B ; < a bb > AB ; < aa bbb > AB ;

< c aabbb > CD ; aabbbcaabbb E ;

The multitape LBA has 16 tapes (=5-1+4«2+1-3) . The following figure

(Figure 6) shows the contents of these tapes at successive stages of the

simulated derivation.

?ii-5i-?iii-_5fpsp^c aya tem:
53

h -A
1 b I
h- c £

x A |— ax A

■

x B f— bx B

x C j— cx £.
x A 5 y B h- xy D
x C ; y D |— yxy E

Derivation for 'aabbbcaabbb'

aabbb D ; aabbbcaabbb E ;

b B ; a A ; bb B ; aa A ; bbb B ; c C ;

Transfomed canonic system:

- a A

- b B

- c C

x A

x B

X C

(— ax A

^. bx B

|— :x C

<x< y>AB [~ xy D
<x< y>aD j—yxy E

(The decompositions are shown by

suitable underlining)

< x < y > AB

x A

y B

j—<ax ^ by> AB

j—<ax , h > AB

|-<a < by> AB

L.<a < b > AB

< x ^ y <jz> ABC |—<cz ^ xy> CD

■< x < y >'; M H<c< xy> ^2
^ f i '

(a) (1) (O <V

i£ IS
a
o
n

C w
a
a.

18

s
o

c w
n a.

IO lo

54

ltd |a>

or

i
IM
If
irt
ia>
ro

ig
la

if
IF*
Itt
irt
i»
ice
i
10)
i
IQ.
1(0

I*1
!*r i<
10)
Irt
il*
10
19
i
il*
19
l
10)
I
IO
101
19
IO
19
It*
IO
I
109

r^
in
l§

'S

ON

n
H
(0

0)
H
H

i

O
9

0Q
A
H

rt

0)
9

01
o*
o*
o*

0)
o>
a"
a*
er
o «>
0)
o*
o*

I

55 i

CHAPTER V

FURTHER HIERARCHIES OF CANONIC SYSTEMS

i ' i •

The purpose of this, chapter is to apply the main result of Chapter IV

toward the development of improved hierarchies of canonic systems.
i

Let us consider Doyle's hierarchy again. This hierarchy hes two se-

parate parts, one part comprising classes of canonic systems strongly

equivalent to the class of,regular grammars and the class of context- '

free grammars, and the other part comprising a class of canonic systems

weakly equivalent to the class of unrestricted rewriting syötems (Thue

semisystems). The hierarchy wqs claimed to include another class of ca-

nonic systems, situated somewhere betweeri context-sensitive grammars and

recursive sets, but we have seen in Chapter IV that this class was not
i

completely defined. In the same chapter, two classes of canonic systems,

the ifnSth-monltorlng_canonic_systems_of_T^pe _¥.__(¥_) , were proved to

be weakly equivalent to the class of context-sensitive languages. There-

fore if we add any of them to the two parts of Doyle's hierarchy we obtain

a S2?Ei?SS_l3iSr5I£!}y.2l_£f505*£_!^2t-5HllS* where by "cpmplete" we mean only

that all 4 types of grammars are represented.,(The hierarchy presented in

Chapter II had correspondents not only for the 4 classic types of formal

grammars but also for any class definable in terms, of productions.)

While completeness is certainly a very idesirable property. We cannot
i

consider ourselves satisfied with it and ignore the fact that this com^

bined hierarchy is quite heterogenous: for Types 3 and 2 it provides

i

 , . : _ _

1 • 1

1 I

1 (,

i

i

i

i
t 1

i ;

i

i

i

<

56

simple canonic systems with predicates of degree i ; for Type 0 • •

simple canonic systems with predicates of degree 2 j and for Type
i

1

the canonic systems arc ! not even simple. The form of the hierarchy may

be schematically summarized
i

as
i i

J
>

SI SI G2 S2
(for Types: 3 2 1 0)

- '

Our first step toward "homogenlzatlon" will be to reduce the third

class from G2 to S2 . Clearly, we can always reduce a general c.s.

to a simple one by using Theorem H-2 , but we need a class of simple

c.s., weakly equivalent to context-sensitive grammars, and the property

'obtainable from class .4 by eliminating contextual references' Is not
i . i

i

a good criterion for class membership, since a criterion should refer to

the form of the new system, irrespective of how the c.s. was obtained.

We have seen that the length-monitoring c.s. cannot be simple, by defi-

i

nltlon, since they all include the offending canon

<x<y» length ; <2 t yl> length ^^ztxS greater in length

If we modify IV.(2)...(8) by replacing this cahon by the canons

(<*4 y> length ; <z ^ 3

1 U. 1 unit [si

yu> length j u unit I—* x> greater in length

singleton predicate]

i and call the canonic systems which Include (1) and IV.(2)...(5),(7)...

(8) s-length-monitoring_canonic_8y8tert8, we can build for them a theory

ölmllsr to that of Chapter IV. ,
ii ' •

i i ■ ,

i i

Definition 12. A simple s-monitoring canonic syst^em is of TypeJ^

(respectively Y2) if it has Property Y1 (Y2). Property Yj (Y2)

i ■ '

, ' .ii
i . *

1

57

for «-length-monitoring canonic systems li daflrsd In a similar manner as

for longth-monltorlng canonic svstems, but the condition '2)' in that de-

finition will now exempt from the decompoaabllity requirement the modified

canons used here for monitoring length.

Pjss£se.Z-

a) Glyen_an^_cont«t-»en8ltive_gramari_one_can_unlformly effectively

construct a simple s-length-monitoring canonic svstem of Type Y (Y)

b) For anv simple s-length-monitoring canonic svstem of Tvpe Y

1.- -2_i_H!}?_lfD81fi8?--eliS5^-^_iS_i!_S2Dt??5l5?n!itive ian<1 one CBn

uniformly effectively find a grammar for 1^

Proof, a) The only contextual referencing in the canonic svstems of

Theorem 6a was in Canon IV.(6) . If we replace that canon by (1) we

get a canonic system which is simple, s-length-monitoring, of Type Y

(and therefore also Y) , and defines the same language.

b) Completely similar to the proof of Theorem 6b . [Theorem 7b is

not a particular case of Theorem 6b since s-length-monitoring c.s. are,

formally, not the same as length-monitoring c.s.]

We have thus obtained a hierarchy of the form

SI SI S2 S2 ,

i.e. a hierarchy of simple canonic systems (of which the last class

contains all the simple c.s. with oredlcates of degree 2), and we shall

try to reduce it to the form

SI SI SI SI

38

The last class can aasily be ao reduced. For any r.a. sat there ia

^ simple c.s. with predicates of degree 2 which daflnaa the given «et,

and thla c.a. may be reduced to one with predicates of degree 1 (by The-

orem H-l) while remaining tiraple; and the converse result is cettslnly

true, since aeta defined by canonic systems are always recursively enu-

merable.

The hierarchy haa now the form

SI SI S2 SI

Unfortunately, Theorem H-l appeara to be of no further use In reducing the

form of the hierarchy, alnce none of the 4 classes mentioned In this

chapter as being weakly equivalent to context-sensitive gramnara

(length-monitoring canonic systems of Type Y ; of Type Y. ;

simple a-length-monitoring c.a. of Type Y ; of Type Y)

la Invariant under the transformation involved in the proof of Theorem

H-l.

Having thus arrived at an apparent "dead end" in our endeavors to

develop and simplify Doyle's hierarchy, we now consider the other basic

hierarchy, the hierarchy of general c.s. with predicates of degree 1

(of the form Gl Gl Gl Gl)

which was Introduced in Chapter II, and apply to it Theorem H-2.

It is easily seen that we obtain Indeed 4 types of canonic systems,

i.e. valid criteria can be stated (depending only on the form of the

transformed canonic system) for membership of a c.s. in a type. These

types of c.s. may also be introduced independently. The following de-

finitions are analogous to Definitions 2...5 .

59
Py/iSiSiSP.ih A •*•*• eaoonlc ■ySt«a !■ of Typ« O^-^ If «ach

of Its canon«, except for 4 of thm, i§ of on« of the form«

xuy dorlvblo ; u]J ; v V I— xvy darlvabU

f— »* ü («. y. n, v an varlablaa)

(2)

(3)

(♦) t~ a tamlnal

Mbtti

(•) M (a Mta-varlabl«) itanda for a particular atrlng;

(b) for any predicate appaarlng In a canon of fora (2) , wcapt

for th« canon darivabla , there la exactlv on« canon of fora (3) ,

1.«. U . V ■ M ar« fingleton predicates;

(c) If Ü , V (In thla ordar) am two singleton predicates appaar-

lng In a canon of form (2) . and if M , ^ #r, tha corresponding atrlnga.

than u and V can Jointly be put In the fora

M - fp A ^

I* - <f u (f

where y , ^ , u are [neta-varlablea standing for] purtlcular atrlng«.

possibly empty, and A doe« not appear In « c«non of fora (4) ,

the 4 other canon« being:

(5) (-2 derivable

(6) f— \ 5;npin;l.;trlng

(7) x terminal ; y terminal string [- xy terminal strlnfj

(•) x derivable ; x terminal string L x «entence

60

Definition 14. A ■lap!« canonic lyttM la of Typ« V* it it U ------------- * _,_-_fc.---_-_-

of Typ« u<,) and «atUfl«« the additional condition that for «ach canon

of fom (2) th« corratpondlnt atring u (d«fio«d in (c)) la non-null.

p«finitlonalS: A tia^l« canonic ayitaa it of_Tjp«_r^ if it U

of Typ« l(') and aatiafUa tha additional condition that for «ach canon

of for« (2) th« corroapondinf atrings <f , y (defined in (c)) «re

null.

Definitional^ A »üopla canonic ayataa ia of^Tjpj^^jJJ; if it ia

of Typ« 2^ and satiaflaa th« additional condition that for «ach canon

of fotta (2) th« corrnsponding atring u contains Juat two ayabols,

on« tanninal and ona nontaniinal (on« for vhich th«r« ia a canon of fora

(4) and on« for which th«r« ia no auch canon), alwaya in tha aaaa ordar.

The dafinitiona of linear, on«-8ided_linear, metallnear, ••Suential,

left-1context-eenaltlve1, etc., graonara may be aljnllarly imitated, and

ao we may apeak (pjflnitionl?) of linear, one:aided_linear, metallnear.

sequent i.Tl, Ijft^xContejtt-aenaltlv^, etc., almple_canpnlc_8y8teni8.

Theorem=8 (Analogoua to Theorem 1] . For_any_almgle_cenonlc_8jr8tem

of Type i^*^__i.i_:.2i.ii.2i_3_2.there_i8-a_granMr_of_T^e__l_ y^ich

generate8_the_8am«_languagez_and_coiwer8el^.

Proof. Similar to that of Theorem I.

The second part of Theorem 8 (the converae reault) can be proved

61
more eatlly If \tm tit« Th«or«i 1 and th« following obvlotu

I. Th« roiult of applying th« procedure of Theorem H-2 upon

a c.nonlc eyttMi of Typ« 1 (1 • 0, lt 2, 3) 1« • «iopl« canonic ay«-

ten of Typ« 1(,) .

Theorrm 8 provides u* with « hlerercliv of simple canonic avsten«

with predicates of d«gr«« 1. that la a hlararchy of th« for«

81 81 81 81 ,

and th« goal of tha present chapter la thereby completely achieved.

Before concluding this chpter, however, we should Ilk« to point out an

Intonating fact which provides a link between tha two basic hlararchlaa

developed In this chapter (tha on« of th« form 81 81 G2 S2

— bastd on Dovle's — and th« other of th« font Gl 01 Gl Gl ,

Introduced In Chapter II). When we wanted to reduce th« first basic

hlararchy to on« composed exclusively of simple canonic systems and no-

ticed that its third claaa, tha length-nonitoring c.s. of Type Y. , failed

to be simple only because one of the canons used in monitoring string

lengths included contextusl referencing, we Just replsced the offending

canon. But there la absolutely no need for s canonic system to monitor

itself the lengths of the strings. A context-sensitive granmar does not

tik-nitor the lengths of its strings, and it is no less noncontrsctlng be-

cause of this; strings grow in length not because the grammar monitors

their lengths (which if does not) but just because the productions are

noncontrsctlng. When we examine the granmar "from the outside" (by

using s nets-system) we can prove that the strings are bound to grow;

but there is no need to duplicste this proof inside the object system (the

62
grcour - or the canonic ■ystra). We therefore eliminate the canons

IV.(2)...(8), and the canonic ayitem becomes now simple. It still con-
— - — L - _

tains canons of the form

h ^ toAU^ (p^W} production

(one for each production apAu^^uxp ; Donovan & Doyle 1968, p. 43),

and we just know that in «ach auch canon I 1^1 This, however, doea

not yet aolva our problem. We have to redefine the concept 'c.e. of Type

Yj" , or, more exactly, to redefine the relation ^ ; and thla relation

haa to hold, sometimes, between two different variablea, a% for example,

In

(9> wxr derived string ^x^yyproductlon^y^ygreater in length Lwyz de-

rived string

where wc ought to be able to prove that x^y . For length-monitoring

c.a. we could aay that x^y because the premlae < y x> greater In length

la present (Definition lO.lr), but we do not have the predicate greater

In length any more, and we are still under the obligation to ascertain,

by merely ln*p?ctln£ the canons, whether or not the canonic system if a

member of the claaa «re define. One way to solve the problem of eliminat-

ing length-monitoring and still being able to define ^ la to abolish the

need to ever compare (in length) two distinct variables. Then 4 would be-

come an absolute relation, not dpnendent on the canonic aystem, and defined

by .la.lb.2a.2b,3. of Definition 10 (i.e. without .1c.). To achieve

this end we have to replace canon (9) by as many canons as there are pro-

ductions, each new canon being the result of "plugging in" a particular

production in the canon (9) :

(10) wteAy z derived string |— wMuWZ derived string

63

The class of canonl; systems of Type Y (from the first bsslc hierar-

chy) is thereby transformed Into a class which is, essentially, no

different from the class of canonic systems of Type 1 (from the second

basic hierarchy; Definition 3), end from here the whole second basic

hierarchy is Just one small step away.

CHAPTER VI

64

NON-CBOSSREFERENCING. SIMPLE. AND NON INSERTING CANONIC SYSTEMS

1 CLASSIFICATION OF CANONIC SYSTEMS

In this chapter we pursue an idea mentioned in Chapter I ,— that
j -i

one should not distinguish (and name) the subclass of caponic systems
1 i |

with contextual referencing, with insertions, with crossreferencing,

but one should rather consider the subclasses o(f canonic systems without

| J

the respective options. Canonic systems without contextual referencing

(simple c.s.) were extensively studied in Chapters I and V; we shall now

formally introduce the other two classes and investigate their computa-
! ! ' ■ 1

tional power.
i

Crossreferencing was defined [Donovan & Doyle 1968, p. 27] as con-

• i ' '
sisting of the use of one and the same variable more than once in the,.

term of the conclusion or the use of one and,the same variable in more

than one premise in the hypothesis. The possibility of a variable being

used in exactly one premise of the hypothesis but occurring several times

in that premise is not included in this definition. On the other hand,

there is a fundamental difference between multiple occurrences in the

hypothesis part of the danon and multiple occurrences ip the conclusion.

The applicability of a canon in a particular situation has to be esta-

blished before the canon could be used, and the1 applicability depends
i

only on the hypothesis of the canon; if the hypothesis contains two

occurrences of a variable, we have to check that the strings matched by

65

the two occurrences are Identical strings (substrings), and this checking

Is not an elementary action. Multiple occurrences In the conclusion,

however, have no Influence on the applicability of the canon. This argu

raent suggests that we should specifically exclude from the definition of

a-ossreferencing multiple occurrences in the conclusion, and include

multiple occurrences of a variable within one premise of the hypothesis.

The same point of view is taken by Turing (in connection with Turing

machines) and by Minsky (in connection with Post's canonical systems).

Quoting from Turing 1936 [p. 137 in Davis's collection]:

"If, on the other hand, [the squares] are marked by a se-
quence of symbols, we cannot regard the process of recognition
as a simple process. This is a fundamental point and should
be Illustrated. In most mathematical papers the equations and
theorems are numbered. ... But if the paper was very long, we
might reach Theorem 157767733443477; then, further on in the
paper, we might find '... hence (applying Theorem 1577677334-
3477) we have ...' . In order to make sure which was the re-
levant theorem we should have to compare the two numbers figure
by figure, possibly ticking the figures off in pencil to make
sure of their not being counted twice." .

Minsky [1967, p. 231] remarks that he could have allowed multiple occur-

rences of variable i within any premise, but chose not to:

"Post's most general formulation allowed each production to
have several antecedents. ... Also in Post's most general for-
mulation, he allowed two of the $'s in the antecedent to be the
same. This meant that the rule of inference would apply only
to a string (theorem) in which there was an exact repetition
of some (variable) substring in two places in the antecedent.
We prefer to prohibit antecedents of this form, not because we
want to restrict the generality of the systems, but because it
would run counter to our intuitive picture of what ought to be
permitted as elementary, unitary operations.".

With this motivation (and backing) we change the definition of 'crossrefe-

renclng' to read:

66

Definition 18. A canon is said to contain crossreferencing if at least

one of the variables involved in it occurs more than once in the hypothesis

of the canon, whether these occurrences are within one premise or are in

different premises.

Definition 19. A canonic system is non-crossreferencing if none of

its canons contains crossreferencing.

Let us consider now the phenomenon of insertion, whose definition is

implicit in the traditional definition of 5fnoni5_systens_with_insertion

as canonic systems in which terminal symbols are inserted between the

variables of one string to form a new string. Since we are interested in

canonic systems without insertions, we tentatively define canons without

insertion as canons in whose conclusion no symbols appear, i.e. whose

conclusions contain concatenations of variables rather than concatenations

of variables and words. The formal modifications required in the defining

second-lev«! canonic system are not difficult to figure out, but the defi-

nition would be forbiddingly restrictive: the axioms would be totally

useless. In fact, we never defined axioms formally, but just referred by

this name to any canon whose list of premises was empty, and therefore any

restriction on the canons is automatically a restriction on the axioms.

This suggests the following definition:

Definition 20, A canonic system is nj^^ffting it: ^ h8s the Pro"

perty that in all its canons, except for the axioms, the term in the

conclusion of the canon has only "pure" elements, i.e. each element is

either a concatenation of variables or a concatenation of symbols.

The following canonic systems will be used as examples:

1
1.

67

Language: set of balanced (well-formed) strings of
parentheses

v.{(,,} [Minsky p. 230]

r— () theorem

x theorem I—■ (x) theorem

x theorem j— xx theorem

x()y theorem L— xy theorem

one-predicate (Post)

non-crossreferencing

Same language, same alphabet,

I— () thecrem

[Minsky p. 230]

xy theorem i—x()y theorem

simple
one-predicate
non-crossreferencing

2. Language: palindromes over a

L- a A
f— b A
f—- c A

I— aa A
I— bb A

I— cc ä.
x A |— axa A
x A f— bxb A

x A I— cxc A

b.c. [Minsky p. 228]

simple
one -predicate
non-crossreferencing

Same language. [Minsky p. 228]

— a A

f- b A
f_ c A

x A f— axa A

x A ^— bxb A

x A (— cxc A

x A r— xx —

s imp le
one-predicate
non-crossreferencing

. KM*

68
3. Language: all true statements about adding 1-ary positive Integers

[Mlnsky p. 2291 (3 - '111' , etc.)

v-{i. + ..}

(—1+1-1 add

x+y-z add f— xl+y-zl add

x+yz add ^— »fyl-zl add

[or: x+y-z add f—yt«-z add]

one-predicate
non-crossreferencing

inserting
not simple

4. Language: all true statements about multiplying 1-ary positive

integers [Minsky p. 229]

v - I 1 . * . " }|
I—l'1-l mult

X'y-z mult j—xl»y=zy mult

x.y-z mult (-yx-z mult inserting

not simple

one-predicate
non-crossreferencing

5. Language: {aVaV

|—a A

hb A
x A f- ax A

x B (- bx B

x A ; y B[-xyxy sentence

m , n natural numbers I

simple
non-crossreferencing

inserting

5*. Same language.

|-a A

h" b B
x A ; y A |— xy A

x B ; y B ^— xy B

simple
non-inserting
non-crossreferencing

i '^-—-■^--^■..^
 ■ ... _ _ ..

6. Language: squares in 1-ary.

Alphabet = { 1 ,, *}

|— 1* A .

x*y A (— xll*yx A

x*y A f—. y square

69

non-crossreferencing
i

not simple i
inserting

6'. Same language. '
i

[Mentioned here for completeness; will be introduced later.]

Language: same as 5 .

(-a ä
hb B

x A ; y A|-xy A

x B ; y B /-xy B

x A ; y B ; z B (— kyxz ABA
x A J y A ; z 5 h~ xzyz BAB

ABA ; x BAB (— x sentence

simple
non-inserting

crossreferencing

x ABA

5'". Same language,

(- a A

x A j— ax A

(— b B

x B j— bx B

ABA

BAB

; x BAB f— x sen'tence

as above

simple

inserting i
crossreferencing

 ü _.._ _._ _.

5"". Language: a"1" bW m , n natural numbers
70

The first 6 canons of 5".
I

Last canon replaced by ,

i i

ax ABA ; x BAB x sentence

non-Inserting

not simple
crossreferenclng

5 . Same language.

The first 4 canons of 5' .

Last canon replaced by
non-Inserting
nori-crossreferencing

x A ; y B xyxy ABAB

ax ABAB x sentence
not simple

■ ■ii. ■ ■ .

71

Of the classes of canonic systems considered until now, only the

two classes which correspond, in the first basic hierarchy, to regular

grammars and to context-free grammars are non-crossreferenclng. Since

they are also simple and non-inserting, this implies that non-inserting

c.s., non-crossreferenclng c.s., and simple non-trossreferencing non-insert-

ing c.s. are all powerful enough to define any context-free language.

The following figure shows the new classes of canonic systems (the numbers

refer to our examples):

Figure 7.
Classification of canonic systems

 . . __ ..._:

Introducing the abbreviations 7ß

Q - non-crossreferenclng 6.i.

R = non-inserting c.a.

S - simple c.s.

QR - Q^R

Qff - Q \ R etc.

QR? - (Q ^ R)\S

we have

I
[QRS] 9 [CF] (since (5*) defines a non-,context-

free, language)
[QR] ^ [CF]

[QS] -^ [CF] As before, [class of c.s.] ■ class of
languages definable by the class of

C » 8 a

[RS] ^ [finite intersections of CF languages]

(since they can be obtained by cross-
referencing; we note that the lan-
guage of (5*) is included in this
class)

[Ql ^ [CF]

[R] 2 [finite intersections of CF] [Result improved
below]

[S] « [r.e.]

Since a c.s. in QRS can be trivially modified so as to belong to

$BS or QBs or QR?" , we also have

[QR?] ^ [CF]

[Qfe] 2 [CF]

Similarly,

finite
[QBSI S [Intersections of CF)

73
[QRS] qß [CF]

We shall now show that the non-inserting c.s. are powerful enough

to define any r.e. set: [R] - [r.e.] . As for the non-crossreferen-

cing c.s., we have not been able to improve the result stated above

([Q]5J[CF]), It is known that non-crossreferencing c.s. with one

predicate of order 1 cannot define the set of squares in 1-ary (see

[Minsky 1967, p. 235]).

Theorem^ [analogous to Theorem H-2 (of Haggerty)] . Any_c.s. can

-?_r5^"£?^_S2_f_D2DZ^D2£rt^DS canonic system.

Proo£. Any word (sequence of symbols) in the conclusion is replaced

by a variable whose value is specified (by an additional premise) to be

in an (adequately defined) singleton predicate. This implies that the

desired reduction is possible.

Remark. This procedure invsriates the class of non-crossreferencing

canonic systems; it Is recalled that the elimination of words from the

hypothesis of a canon introduced crossreferencing.

We shall now develop a complete hierarchy of non-inserting c.s..

Since the first two classes r^om the first basic hierarchy (of the form

SI SI G2 S2) are already non-inserting, we shall retain them and

adapt the last two to our purposes.

The most general non-inserting c.s. obviously generates an r.e. set;

and we have seen that for any r.e. set there is a non-inserting c.s. de-

fining it (by Theorem 9). This gives us a class corresponding to Type 0.

74

An for Type 1 , we have a result completely similar to Theorem 7 (Ch. V).

Betöre stating it, we need a few definitions. We would like to talk

about non-inserting length-monitoring c.s.; but all length-monitoring

c.s. (as previously defined) include the [inserting] canon

IV. (5) <xt y> length ; z symbol |-<xz^ yl> length

[A similar situation was encountered just before Definition 12.] By re-

placing this canon by

< x ^ y> length ; z symbol ; u unit |—<xz 4 yu> length

I— 1 unit [singleton predicate]

In the definition of 'length-monitoring' we arrive at the definition

of r-length monitorinK_c;8; (similar to s-length-monitoring c.s.).

Similtrly, if we perform this replacament in the definition of

•s-length-monitoring1 , we arrive at the definition of Jf^length^monitoring

canonic^systejtts»

Theorem_10.

a) Given any context-sensitive grammar, one can ''T,ifo™}y_5Hff55y?}r

construct a non-insertirg^r-length-monit^

defining the 8ame_langi3je^

b) For any non-inserting r-leng^h^^of^Lf^f •-2f_I??f..]fl__Ll2_i.

the language defined by it is context-sensitive (and one_ff^_^55?™}?

effectively find_a_graipmar_for_lt2^

* Definition similar to Def. 12.

i^a^::;.^^^K^^^vJ^^.J^^^jA^^...1.^-v/v..

75

Proof^ Analogous to that of Theorem 7.

We have thus obtained a hierarchy of non-Inserting canonic systems.

The form of this hierarchy may be described as

Rl Rl R2 R2

Rl

(More exactly, RSI RSI RG2 RSI .)

We shall now define pure canonic systems.

»l£S»£9S.21z A canonic system is said to be pure if it is simple

and non-inserting, ["pure,• since all concatenations contain either

exclusively symbols or exclusively variables.]

A complete]}ierarchy_of Pure c'8. , of the form

RSI RSI RS2 RS2

I
RSI

can be easily obtained, in a manner entirely similar to that in which

the hierarchy of non-inserting c.s. was obtained. However, we prefer to

present another hierarchy, based on the second basic hierarchy (form:

Gl Gl Gl Gl). At the end of Chapter IV, we found a hierarchy of

simple c.s. with predicates of degree 1 • SI SI SI SI .

(Of. Def. 13, 14, 15, 16 and Theorem 8.) By inspecting the definitions

of the classes of simple c.s. involved, it is easily seen that these

canonic systems are also non-Inserting. Therefore we have obtained:

£l!SS££S./1 * The hierarchy '•

SI SI SI SI

of Theorem 8 Is, actually, a hierarchy of pure canonic systems,

RSI RSI RSI RSI

The next logical step would be to look for a hierarchy of the form

QRS1 QRS1 QRS1 QRS1 . We suspect that such a result is impossible to

obtain, and, more precisely, that the non-crossreferencing c.s. are not

sufficiently powerful to define any language of Type 0 or 1 . We shall

now introduce a modification in their definition, modification which will

enable us to obtain a complete hierarchy. Following Kinsky's [1967, p.

235] definition for Post systems, we shall call canonic system_with_auxi-

liary alphabet a formal system similar to ordinary

c.s. but in which a subset T of the alphal^'- V is

singled out (and called terminal alphabet), and for which the language it

defines is

L(£ , A) . The set VVT is called auxiliary alphabet.

Systems with T = V may be Identified with ordinary canonic systems.

The difference between cane--'; systems with auxiliary alphabet and

ordinary canonic systems becomes significant only in the case of

non-crossreferencing canonic systems. For all other canonic systems we

could define a predicate terminal string and then achieve the desired

effect by adding a canon like

. .

x sentential form ; x terminal string 1— x sentence

77

Example. The set of squares in 1-ary.

6'. V = { 1 , *}

T = {l}

Canons: |- 1* A

x*y A ^- xll*yx A

x*y A L- y A

non-cross referencing
one-predicate
WITH AUXIL. ALPHABET

not simple
inserting

Examples 6 and 6' show that a set may be undefinable by Post

systems (canonic systems with one predicate of degree 1 and no auxili-

ary alphabet) but become definable if we either allow one more predi-

cate or allow an auxiliary symbol. This "trade-off" between additional

predicates and additional (auxiliary) symbols is, in fact, an instance

of a general result:

Post systems

more than one predicate
[(w.l.o.g.) of degree 1]

CANONIC SYSTEMS

(A)
Iff

(B)
V

one predicate of degree 1 ;
auxiliary symbols

(C)

one predicate of
higher degree

(A): Trivial.

(B)(C) : [Haggerty 1969, p. 44] *

* Theorem 3. However, the statement of this theorem, "Any canonic
system can be simulated by a Post system.", must be supplemented by the

.. _ " ._

: . ' ' "78
(B) may also be proved by using Theorem! H-3 and the pi^oof of Theorem 6b.

i [The number of the predicates will be the number of tapes of the LBA.]

(C); Proved by introducing separators acting as auxiliary symbols. '
A result similar to (B)(C) has been announced by N. jKohn [1969]; it in-
volves variables \AYicfc range on alii but one of the symbols in the alphabet.

i

Having defined and exemplified caiionic systems with auxiliary alpha-

bet, we, are now ready to derive a hierarchy of nofi-crossreferencing ca-
i

nohic systems with auxiliary alphabet.
; i ' i .

Theorem_|12. '■
I !

a) Non-crossrp.ferencing canonic systems with auxiliary alphabet

fr?_E9!f5I^!?i_5D2^Si?>to ^cfin". any r.e.^set.
■ ■ • (

i

b) A_complete^hierarchy of such canonic systems may be obtained from
1 ------ --- | --I i

the second basic hierarchy.

Proof. Obviously, it is sufficient to prove 'b)' .

i i i
The only canon with crossreferencing in the canonic systems from the

above-mentioned hierarchy (Chapter II) is

, x derivable ; x terminal istring L, j. sentence
; j

I

By eliminating it from a given c.s. (together with the canons which define
i

t^ie predicate terminal string) and by replacing the axioms of the form

] ' '■ '

ha terminal i i
i

i i
i

qualification "...which is a canonical extension [in Minsky's sense] of
the given canonic system.", since there are formulas which are theorems
in the Post system without being theorems in the given canonic system,
and all such formulas contain auxiliary symbols not in the alphabet of
the given canonic system. The Canonic systems 6 and 6' above are
examples of systems which can not be simulated unless we allow canonical
extensions, i , ' , '

i ■ > , |

i i
i

! i I

. L

79

by s declaration

T = { a , ... }

we obtain a canonic system equivalent to the given one. The theorem

now follows.

OPEN PROBLEMS:

1. "[QRS] = ? " Find tht computational power of the class of

simple, non-cross referencing, non-Inserting canonic systems (no auxi-

liary alphabet, any number of predicates). [[QRS]^g[CF]]

2. " [Q] = ? " Find the comput&tlonal power of the class of

no,:;-cross referencing cenonlc systems (no auxiliary alphabet, any number

of predicates). [Includes all finite Intersections of context-free

sets.]

3. " [QJ = ? " Find the computational power of [unextended]

Post systems (non-crossreferencing, no auxiliary alphabet, one predicate

(necessarily of degree 1)).

80

Alsop, Joseph W.

Blum, E. K.

Booth, Taylor L.

REFERENCES

1967 A canonic translator , Project MAC Techni-
cal Report MAC-TR-46, M.I.T., Cambridge, Masa,
June 1967.

1965 Enumeration of recursive sets by Turing ma-
chine , Zeitschrift für mathematische Logik
und Grundlagen der Mathematik 11, 197-201.

1967 Sequential machines and automata theory ,
Wiley, New York.

Davis, Martin [Ed.] 1965 The undecidable - basic papers on undecidable
propositions, unsolvable problems, and compu-
table functions , Raven Press, Hawlett, N.Y.

Donovan, John J.

Donovan, John J, and
Doyle, James T.

1966

1968

Donovan, John J., and
Ledgard, Henry F.

1967

Doyle, James T. 1968

Doyle, James T.

Haggerty, Joseph P. 1969

Investigations in simulation and simulation
languages , Doctoral Dissertation, Yale U-
niversity.

Hierarchies of canonic systems . Reissued in
August 1969 as Project MAC Memorandum MAC-M-
417.

A formal system for the specification of syn-
tax and translation of computer languages ,
Proceed. F.J.C.C, 1967, pp. 553-569.

Issues of undecidability in canonic systems ,
S.M. Thesis, M.I.T., Cambridge, Mass., Jan-
uary 1968.

see also Donovan, John J.

Complexity measures for language recognition
by canonic systems , S.M. Thesis, M.I.T.,
Cambridge, Mass., January 1969.

Hopcroft, John E., and_,. Formal languages and their relations to au-
Ullman, Jeffrey D. 969

Kohn, Norman 1969

Kuroda, Slge-Yuki 1964

tomata , Addison-Wesley.

The relationship between canonic systems
and Post systems . Unpublished.

Classes of languages and linear-bounded au-
tomata , Inform, and Control 7, 207-223.

Ledgard, Henry F. see Donovan, John J.

Mandl, Robert

Mandl, Robert

Mandl, Robert

Minsky, Marvin

81

1968 Topics in the theory of automata and formal
languages . Term paper for Mathematical Mo-
dels in Linguistics (M.I.T. 23.772), May 1968.

1969a The place of PL/1 in the hierarchy of formal
languages , Project MAC Memorandum MAC-M-
419, January 1969.

1969b Canonic systems and recursive sets , Pro-
ceed, of the Third Annual Princeton Conference
on Information Sciences and Systems, p.363.

1967 Computation - finite and infinite machines ,
Prentice-Hall.

Rogers, Hartley, Jr. 1967 Theory of recursive functions and effective
computability, McGraw-Hill.

Suzuki, Y.

Turing, Alan M.

Ullman, Jeffrey D.

1959 Enumeration of recursive sets , J. of Sym-
bolic Logic 24, 311.

1936 On computable numbers, with an application to
the Entscheidungsproblem , Proc. London
Math. Soc. (2) 42 (1936-7), 230-65. Correc-
tion, ibid. 43 (1937), 544-6. Reprinted in
Davis's collection, pp. 116-51 and 152-4.

- see Hopcroft, John E.

_*kkb

82
LIST OF DEFINITIONS

Page Chapter
Def. 1 Simple canonic systems 8 I

2 Canonic systens of Type 0 25 II

3 " " " 1 27

4 •• " " 2 27

5 " » »• 3 27

6 Linear, sequential, etc., canonic systems 27

7 Left-CS canonic system 30

8 Left-*CS grammar 31

9 Left-*CS canonic system 31

Property X , X 44 IV

Length-monitoring canonic system 47

I 10 48
Properties Y . Y2 48

11 Types Y. , Y. for length-monitoring can. syst. ...49

12 " " for simple s-" " H 56 V
(a) 13 Simple canonic system of Type 0V ' 59

14 •• •• " " l^8^ 60

15 n ii ii ii 2'8^ 60

16 •• " •• " 3^8^ 60

17 Linear, sequential, etc., simple can. syst 60

18 Crossreferenclng 66 VI
I

19 Nor. crossreferenclng canonic system 66

20 Non-inserting canonic system 66

Q, R, S and their combinations 72

Pure canonic system 75

Canonic system with auxiliary alphabet 76
[a generalized canonic system, not a subclass
of the ordinary canonic systems]

 __ _

I

83
LIST OF THEOREMS i

i l i

Page Chapter
j

Th. 1 Equivalence theorem for Types 0, 1, 2, 3 27 II

Gl Gl Gl Gl '. 27,58

I' General equivalence theorem (strong) I... 29

2 Left-*CS » context-sensitive 32

3a "j Equivalence between • • • • 33

3b 1 context-sensitive and left-*CSl 33

4 (grammars and canonic systems 33

5 Subrecursive classes are strictly subrecursive'.... 36 III ;

6 [Type Y^ = [Type 1] 49! IV

SI SI G2 Si i 56 y

7 [Simple of Type Y^ = ' [Type 1] 57

8 Equivalence theorem for simple canonic systems

of Types 0(8) ... 3(s) .! 60

SI SI S2 S2 ,. 57

SI SI S2 SI 58

SI SI SI SI 61

Connection between the two basic hierarchies 61

9 Any c.s. can be reduced to a non-inserting c.s. ... 73 VI

10 [non-inserting ... Type Y.J ■ [Type 1] 74

Rl Rl R2 R2 , 75

Rl Rl R2 Rl 75

Rsi Rsi RS2 RS2 .^?5:.?f.?^.?:?:>.. 75

RSI RSI RS2 RSI 75 i

11 RSI RSI RSI RSI 76

12a non-crossreferencing c.s. with a^xil. alphabet

can define any r.e. set .J „ 78

12b hierarchy of non-crossreferencing c.s. with i

auxiliary alphabet '... 78 >

Theorems H-l, H-2, H-3 [Haggerty] 21 I

Theorems D-3, D-2, D-0 [Doyle] ^ ?3 II

' —:—t—i 1

i

I
, " , ' .84

LIST OF FIGURES
i

i ■ t ■

' ; ■ , ,

Page Chapter

Fig. 1 Simple and general canonic systems t 7 I

i

! 2 Parsing;of a canon , 11

'' i . '

3 Relationships between left7*CS and CS grammar

and c.s. ... 33 II

I i ! ;
i

4 Derivations in general c.s. , 42 IV
i

5 Derivations in c.s. in, which canons hive most

one premise 43

i . i

6 Multitape LBA simulating a derivation in a c.s. ... 54

7 Claissification of canonic systems 71 VI
i

i

i . i

i

i
i

