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I. INTRODUCTION

) In optimal deterministic control theory, the basic assumption is
made that the effect of any future control action can oc Jcduced exactly
from the present state and the dynamical equation. In many situatioms,
the necessity for control arises from the fact that there are disturbances

) and/or component failures in the physical system. These random phenomena
prevent exact determination of the effect of all fufure actions, and there-
fore deterministic theory is not strictly applicable. If the effect of
these random phenomena is small, one can still use optimal control theory

: ? to obtain a feedback control law based on deterministic considerationms.

: The feedback nature of the control would tend to reduce the seasitivity

to uncertainties but would require the state of the system to be measured

exactly. Again, this assumption is good only when the measurement error

3 is small in comparison with the signal being measured.

In many cases, the phenomena of uncextainty (including measurement
error) can be appropriately modelled as stochastic prccesses, allowing
2 them to he considered via stochastic optimal control theory. Using the
Principle of Optimality one can reduce the stochastic optimal control to
that of selving a stochastic Dynamic Programming equation (al, Bl].
Unfortunately this equation cannot be solved numerically in most situations.
' L 4 In this repcrt, a new approach toward a practicel solution for stuchastic
control problems is described. This report represents Part I of a one-year
study supported by the Air Force Office of Scientific Research (AFOSR Pro-
ject Ro. F44620-71-C-0077): Development of Dual Control and Identification

2 Methods for Avionic Systems. Part II of the study: Input Design for
3 {M5]
[8

Identification, is discussed In a separate report

) 1.1 Main Purposes

‘ \ B "

T1 1960, Feldbaum, in & series of three iapers, introduced duel control
[F2]

theory . His approach 1s a combination of arstistical decision theory
and dyuaric programming. He pointed out abstvactly that the control signal
) has twe purposses that might be conflicting: ore is to learn 2%gut any un-

known parameters and/or the state of the system: the orher is (o achieve *le
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contrel objective. Thus the best control must have the characteristic
of appropriately distributing its energy for learning and control pur-
prses. However, no further develcpment c¢r algorithms that implement
these ideas appear in the literacure. Feldbaum used a stetic example

to demonstrate his dual control theory, but it is difficult to visualize
how a dual control will work in a dynamic situation. One of the main
purposes of this study is to provide a deeper understanding of duel
control theory for dynamical systems. Another objective 1s to develop
an approaci: toward obtaining (or approximating) a near~optimal dual con-
trol that can be implemented, with the objective of indicating the pot-
ential applications of the rasults to Air Force problems.

1.2 OQutline of the Report

In Section II, optimal stochastic control theory is reviewed and
the practical difficulties in computing and realizing the optimal control
law are pointed out, both serving as a motivation for the development of

the later ser-icus.

In Section III, the stochastic control problem is reformulated in
light of the dual navure of the control and a one-step optimal dual
control strategy which possesses an active learning characteristic is
obtained., This result is new, and in fact is entirely different from
the other sunoptimal approaches reported in the literature.

In Section IV, the results are specialized to a very important
class of problems of controlling a time-varying linear system with ran-
dom parameters, and a specific algorithm is developed for this class of
problems. Since the derived algorithm is rather complicated, illustra-
tive examples are presented to provide understanding of the dual nature

of the resulting control strategy.

In Section V, three example problems, described in detail, are in-
tended to demonstrate (1) the computational feasibility of the new
algoritim, (2) the performance level of the new algorithm, and (3) to
provide more insight into the dual control theory.
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In Section VI, potential aepplications of the results obtained

during this research are indicated and recommendations are made for
) ereas for future research.
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g 1.3 Summary of Contributions

, A new formulation and a new stochastic control algorithm for general
nonlinear stochastic systems hes been developed. The algorithm posseeses
an active learning characteristic that is lacking in the existing aub-
optimal stochastic control algorithms described in the literature. Sim-

) ulation studies dem~nstrate that this algorithm ia potentially feasible
for large classes of Air Force problems. Sizable improvement over the
widely used certainty equivalence suboptimal contxol policy is demonstrated in
the examples being considered. The important class of problems of con-

. trolling a linear time-~varying system with random parameters is treated in
detail, and a specific algorithm for this class of problems is obtained. Sim-
ulation studies on some example problems provide certain insights into the
dual nature of the control. Also, these examples represent the only com-

P plete simulation studies on dual control in the literature.

1.4 Notations

Throughout the report, lower case underscored letters stand for vectors

¥ (e.g., X, Yy); upper case underscored letters stand for matrices (e.g., A, B).
Noise disturbances are dencted by lower case underscored Greek letters (e.g., &,
n).
B The transpose of a matrix A 1is denoted by é'. The transpose of a
' colum vector, X, 1s a row vector and is denoted by 15'.
Let A be an nxn square matrix; the trace of A 1is defined as
4
n
tr A= E 81 - (1.1)
i=1
]
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Using the convention that a vect~r is always in column foru one has the

gradient operator

3/36 3/sx
i E A § 1
A4 6 = ¢ AR : (1.2)
24 - 123/38 £ |3
i A
. x

The gradient of the scalar function H(x,8), a column vector, is written as

a - H - ¥ .
The Jacobian of the m-vector f 1is the matrix
.?_f_l se00 m
of axy ox
& = A n
f W m— 2 & & 4 & 0 6 0 o Lo (v f')' . (1'4)
; T Y R TN x
.',: ax1 3xn
2
9 Accordingly,
3 11 o ' ! ' - 3t .
3 Bye = [Tg@Y 1" = [T Ty HI' =7, Vg B = Hyy -
I8y ¥
g i
o |
Fx 7 Vg T B (1.6)
|
? ' The natural base in R® is denoted by {gi}n where
i=]
:
?‘ ; g = 1l 1*0 component. 1.7)
; 0
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IT. OPTIMAL 5TOCHASTIC CONTIROL

In this section, the formulation and solution for the optimal stoch~-
astic control problem for discrete time systems is discussed, as are the
difficulties associated with the solution procedures. These difficulties
mctivate the specific dual control approach presented in SectiZon 1III.

2.1 Problem Statement

Co'nsider a discrete-time nonlinear stochastic system described by

x(k+l) = £lk,x(k),uk)] + §(k) ;

y(k) = hlk,x(k)] + k) , k=0,1,...,N-1 (2.1)

where x(k) ¢ Rn, u(k) € Rr, and y(k) € R, It is assumed that x(0),
{ﬁ(k),.ﬁ_(k-l-l) }g-é are independent Gaussian vectors with statistics:

E{x(0)} = kX (0]0) ; Cov{x(0)} = E(0}0) (2.2)

E(K))} =0 ; Covi&(k)} = Q(K) (2.3)
E{(n(k+1)} = 0 ; Cov{n(k+l)} = R(kH) . (2.4)

Consider further the performance measure
N-1
J = E{p[x(N)] + T 2[x(k),u(k),k]} (2.5)
k=0

where the expectation E{*} is taken over all undgrlying random quantities.
Finally, consider admissible contrcls of the faedback type:

1
o0 = w50y R @,y 3T (), ule DY (246)

The goal is to fird the optinal control sequence {.‘.l*(k) ,‘:ﬂé that is of the form
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(2.6) aud minimizes the cost (2.5) subject to the dynamic comstraint (2.1).

2.2 Optimal Stochastic Control Solution Method

To solve the optimal control protlem stated in Section 2.1, Bayes'
rule and dynamic programming are used. A complete derivation for the
optimal solution is ziven by Meier [Mll;therefore, we shell only outline

the derivation and summarize the results below.

An important concept is the information state. This can be viewed

as a quantity which is equivalentt to the observaticn process YK and all

a priori knowledge of the system and yk-l 4 describing the future evolu-
tion of the system. Thus, an information state will summarize all the
sufficient information content conveyed by the observation process Yk, and
past control sequence gk-1, Clearly, the combined sequence (Yk,Uk'l) is an
information state., If we denote this information state by

k-1

ol = o, v 2.7)

then a recursion relaticn foré?i is

9;1[9;, g(k)] = {nlkeL, £ [k 00, w0014 E@) +N0D) L, @ pul0]  (2.8)

where £(k), M(k+l) and x(k) are randgm vectors. Anccher such information
state is the conditional densityéﬁé = p[gﬂk)lYk, yk~1j, Using Bayes' rule,

a recursive equation for the conditionel density is given by (all, [M1]

2 [._2
«?kﬂ[ﬁ'k.g(k)] = aipmkﬂ‘l) | % (t1) 1 /p [ (k1) llc_(k).g(k)].?i dx(k)  (2.9)

where €, is a normalizing constanti. Next, we can use the principle
of optimality in the "information state" space, which gives us

t A precise definition cf equivalent statistice is given by Streibel [83}.

3
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the stochastic dynamic programming equetion (see alsc Meier [MI]):

I*{#, ,k} = min E {7{x(k),u(k),k]
k u(k)

k k-l
+ IMF (58], kY, U (2.10)
where u(k) is a deterministic quantity,d?, is an information state (can be ;
eitherg’t or.?lz(), and I*{.,k} denotes the optimal cost-to-go associated

with the information state at time k. If we useéV& as an information state,

then the optimal control can be obtained by solving (2.8) where an optimal
feedback table, {_g_*(Yk,Uk“l) }ﬁ:%, 1s constructed for all piussible pairs
(Yk,uk-1y k=1, 1, ..., N=1., On the other hand, if we use?ﬁ as an inform-
ation state, then the optimal control can be solved by the following separate

procedures:

A. Control ~ The optimum control law is found as a function of
the conditional density p[_:g_(k)[Yk,Uk"l] by solving the sto-
chastic dynamic programming equation (2.10), In general,

thie can be an off-line procedure.

B. Estimation - The conditional density is updated by use of the
recursion relation (2.9), and the optimum input is obtained
from the optimum control law. The updating of the conditional
density must be done in real time.

2.3 Difficulties Associated with the Optimal Solution Procedure

Theoretically, the optimal control problem has been solved when equations
€2.9) and (2.10) are derived; however, in practice, the problem only begins
with these equations. In the following, we discuss the difficulties associat-
ed with the solution procedures using either.?i or 9’12( as the information

state, This will motivate our development in the next section.

From (2.7), we note that the dimension of&”}c grows linearly in k., Thus

even with appropriate quantizing, the number of quantization poimts, which
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grows in time will soca become too large to be handled by a ccmputer of any
size. Note that the expectation in (2.10) requires the availability of the
conditional density, pLg(k)lYk, Uk-ll, which 1s usually infinite dimensional.
This adds one more "dimension" of difficulty in carrying out the dynamic pro-
cedure. In general, the optimal cost-to-go-function, I*[.,.], cannot be
expressed as an analytical function of the information state. Thus, direct
solution of (2.10) becomes practically impossible for any computer. We face
the similar kind of difficulty even if we use é?i as ihe information state.
In this case the information state, é?i, is usually of infinite dimension for
all k>1. One may attempt to approximate the solution for (2.10). FHowever,
even if this can be done, it still does not solve the dimensionality problem,
since in general, the approximate optimal control law is nonlinear in the in-
formation state, and can only be expressed as a table look-up type of function
of the information srate. This prohibits functional realization of the optimal
control law, and thus real-time generation of the optimum coatrol value is

practically impossible for most problems.

Note that the bagic difficulty is in the control rather than in the estimation
procedure. The updating of density although a difficult problem in itself,
can be reasonably approximated efficiently by using parallel estimation pro-
cedures, Some recent results (83],[T3],[a3],[L1] indicate the feasibility
of parallel estimation. We should emphasize the fact that the capability of
approximating the conditional density does not solve half the problem because
the difficulty in obtaining the optimal control in real time is not so much
due to the estimation procedure as to the growth in dimensionality and to
the fact that even if an optimal control law 1s obtained, the extremely large
(perhaps infinite) number of possible information states will prevent it from
being realizable.

In the special case where the system (2.1) is linear, the conditional
density pLﬁ(k)lYk,Uk-ll is equivalent to the conditional mean estimate'g(klk)
(see Streibel [83],Meier [Mll,Tse [TZIL which is a finite dimensional vec-
tor generated by the Kalman filter. If in addition, the cost is quadratic,
then the optimal cost~to-go I*[.,k] can be expressed analyticelly as a func-
tion of g(klk), so that equation (2.10) can be solved exactly to yiald a
realizable linear feedback law (Joseph and Tou [Jll’ Meier, Larson and Tether
[MZ],Streibel{S3], Tse[Tal). This result is known as the Separation Theorem
or Certainty Equivalence Principle.
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2.4 Previous Subcptimul Approaches

In the litersture, the most popular approximation method used for
ccmbined estimation and control is linearization of the plant about the
deterministic optimal trajectory and applfiacion of the well-known sepa-

ration theorem to the resulting perturbation equations. However, this

may not g.ve gocd performance if the system is very nonlinear and the
noise level iz high. This is because with the linearization approach

the control action is corrected only after it has been diacovered that the
trajectory has deviated from the nominal, But, in fact, if it is known
that a disturbance will occur in the future, the control should be modified

before as well as after the disturbance occurs in order tc minimize its

f' : effects. Therefore, if linearization is to be used, some nominal traject-

ory other than the deterministic optimal trajectory should be used. Den-

2 ham (D11 [43] (v1]

s Meier » and Vander Stoep considered the problem of chocsing

A
2,
i

a nominal path to minimize a certain cost criteria on using second order

;2 analysis of the perturbed system along the nominal path. The advantage of

‘E g these approaches is the simplicity of the resulting control law., The main

{% b r drawback is the validity of assuming a nominal trajectory. This assumption
b: % is unjustified if there are uncontrollable unknown parameters in the system.
f? i A much more "adaptive" type of controller would be desirable.

Eé ) The open-loop feedback optimal approach suggested by Dreyfus[Dzl, and

j% applied to specific problems by Tse and AthansITl], Bar-Shalom and Siven[BZ],
;i 3 CurrY[CI]: AOki[Al] and Spangtszl, suffers from the drawback that the resulting
_5 5 control is passive in learning -- the decision of the control action does not
:? 3 ? anticipate the fact that future learning is possible. An extension of this
f_é approach ~-- the m-measurement feedback control suggested by Curry{C1] - %8
‘éfé only slightly less complicated than the optimal approach., To the authors'

knowledge, no successful application of this method has been reported in the
P literature,

SN S o S

All there approaches take into account the past observation information
but ignore the future observation program. In the next section, we shall

) describe a new method which is based on the Principle of Optimality ecn tha
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information state Sﬁf and the concept of dual control. In contrast to the
previous approaches, this method will not only take explicitly into account

the past abservation information but also the future observation program.
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III, DUAL CONTROL FOR STOCHASTIC SYSTEMS—-
AN ACTIVE LEARNING PROCEDURE

In Section II, it was noted that the main difficulties in implementing
the optimal control law are:

(1) The inforustion state ic either infinite dimentionel ov finite
but grows with time,

(2) The optimal cost-tc-go associated with the information state

is generally a non-analytic function,

(3) Storage of the control value associated with each information
state at time k, k=0,...,N~1 is practically impossible due to
the large dimensionality,

Thus a reasonshle suboptimal approach would be to

(1) Reduce the dimension of the information state space so that it

stays a constant dimension for all time,

(2) Approximate the optimal cost~to-go associated with each
information state at time k, k=0,...,N-1,

(3) Compute the control value on-line rather than obtain the
Feedback law off~line and store the whole "feedback table."

Each of these procedures are discussed in dete¢.l in the following
subsections. To simpiify the discussilon, assume that the cost is of the

form:

Zlx), uk),k} = L{x(k),k] + ¢[ulk),k] ‘

The extension to the more general cost is straightforward.

11




3.1 Wide-Sense Adaptive Ccatrol

As discussed in Section II, the information state, p[gﬁk)lYk” Uk'll

is generally of infinite dimension. One approach to reduce this dimension
is to use the "wide-senge" property[D2] : in this approach the controller

is restricted to the form

u(k) = ulk,x(k|k),Z(k|k)] (3.1)
where

x(k|k) = Elx(l) |¥*, v} (3.2)

Z(k[k) = Covix()|¥¥, vy | (3.3)

We shall call such a control scheme the wide-sense adaptive control law.
The computation of %ﬁklk), Eﬂklk) can be obtained by any one of the
following methods:

(1) Exterded Kalman Filter!S#1»[J2]

(2) Adaptive Filter with Tuning[TS]

(3) Second Order Filter[AZ]

(4) Parallel Estimator[BZ]’{T3]’[A3]‘

Depending on the specific problem under investigation, one of these methods

may be more appropriate than the others,

3.2 Perturbation Control and the Duval Cost

Before going into the new approximation procedure, consider first the
perturbation control problem and obtain a cost that exhibits the dual
property of the control.

The present time is indexed by k. Let us assume that Uk"1
hae been applied to the system, and that the observation sequence Yk has
been obtained. The conditional mean,.i(klk), and covariance, Ejklk), are

assumed available from a learning device, an estimator. Consider a nominal

12
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§ open-loop contrcl sequence Uo(k,N-l) 4 {}_lo(j)}?:l]; and the associated nominal
‘” pach
! :
: x (3+1) = £[3,x (Hu D] =k, .0, N1 (3.4) ‘
| 4 , with initial condition x (k) = %(k|k)
Let 6x(j) be a small perturbation about the nominzl path due to the dis~-
turbance £(j) and a perturbation control {u(j). The true trajectory and
* ? control are given by
\’f‘
3
'8 x(3) =~ x O+ 6x(3)
i
1 ¥ u@) =u G+ Su(d) (3.5)
,, with x(3), u(j) satisfying (2.1). Since &x(J), 6u(j) are assumed to be
; " small, we can approximate the cost-to-go ty expandirg it up to second order:
[ ' A N_l k
b I 2 EOGIxM] + [ [Llxd),31 + ¢lu@),31]]Y )
.'“ jnk
S 3 (k) + E(Y'6x(W) +36x" (V) s (N)+Nfl[L' (3)6x(3)
14 o) + Elhy 2D 4588 (0%, SOV L Tho %X
slog' (DL . Dex() + 6! Dou@ +3e’ (e, L Deu®ITY
2= CyXX U= o,u”" = 2= o,nl — ~ ’
> ?
(3.6)
2 where
i J (k) = w[z:_O(N)]+j§kL[_:_c°(j),j]+¢[gﬂ(j).j] , G.7
The quantities wo x and \bo xx 3Fes respectively, the gradient and Heseian ;
s P KLY N
) of ¥(*) with respect to x evaluated along the nominal trajectory. For a .
ixed nominal, choosing 620 (1), 3=k,..4,N~1 to minimize the incramental i
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cost AJ(k) 4 J(k)-Jo(k) , one obtains a cost J*[k,Uo(k,N-l)] associated with
the nominal control Uo(k,N-l).

Let us consider the perturbation control problem. From (3.6), we have

230 4 300 - (k) = E{tp;’xﬁi(NIN) +355" IMY, SR (NN

N-1 " . . ,
+ jzk[(L;’i(j)Gzc_(jlj)-P-él-ng QINL, Lo QI +o, (o)

2XX =

1 N-l

' k
+ 30 e, L, DIy }+-§-«:r{wo’ﬂgomln>+j§kLo,§x Wz, G19)]

(3.8)
where 6x(3]3) 4 E{éi(j)IYj} and Eo(jlj) 4 Cov{@g(j)le}. The problem is

to minimize AJ(k), subject to the dynamic constraints of the second order
incremental process.,

Application of dynamic programming with retention of up to second order
terms yields the following (the derivations of (3.9)-(3.17) can be found in
Appendix A):

S = - B, +E) K GRE,  17HIE, R, GHE, )
FH (j)]ag(j|j)+no’g(j)} , : (3.9)

where

H (1) & L[_’_Co(j),j]"'ﬂuo(j)sj]+2‘;(j+1)£o(j);_£_’°(j)éf[j,_:_:_o(j),go(j)] (3.10)

§

B = By (D) - [E) (K GHE, (D+E, o (D]

By, B +E) DR GHDE

-1 -
NCP e SN I NOEE A

(3.11)

14

\)




2N RSSO BN e ¥ A e eIt

' ' !
R = £ (DK UHIE, () - £, (DR (HDE @) +E, o ()]
' -1
C L D HE (DR HDE ()]

P gy (OB GHE, (DHE DI, (D B

L1

(3.12}
and the op~imal cost associated with the nominal Uo(k,N-l) is given by

N-1
I NN+ | (H

* 1,
U, e W-1)] = 3,0 +g, (0 +5eefv, T L,

xx D019
+ 2,043 - §°(J+1|j+l)]§o(j+l)}§ (3.13)
with go(j) satisfying
5, () = g, (H) - FH, (D, @D +E) DK DL, OITE, @) 5

g, (M) = 0 (3.14)

and Eo(jlj) is the future error covariance which is assumed to be generated
by the extended Kalman filter:

L0435 = (I-Y (G+DR,  GHDIZ G4 5 S=k,.. 8-l

2 (ki) = D[k (3.15)

' . f -]
Y, () = 2 G4 Dh, G4 - Ty (GHDE GHIIDE, | (41) +RGHD) (
3.16)

LUl = £, DI GINE ) +2Q@) . (3.17)

Note that the updated and one~step prediction error co. viances, §°(j+1|j41)
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and go(j+1|j), are dependent on the choice of the nominal control Uo(k,N-l).
The cost J*[k,Uo(k,an)] associated with Uo(k,N-l) fnvolves

® Control cost Jo(k)

e Estimation cost--the remaining terms involving nonnegative

weightings of error covariances

For this reason, J*[k,Uo(k,N-l)] will be called the duail cost associated with
the nominal Uo(k,N-l). We shall comment on the existence of gb(j) and Bo(j)
in Section 3.4, item 5.

3.3 One-Step Optimal Dual Control

The outline of the one-step optimsl dual control procedure, which is
the main result of this report, 1s as follows. It is assumed that at the
present time k, one can apply an arbitrary control u(k). From time k to
k+l a second order extrapolation iec performed and for j>k+l, the future
time, only perturbation analysis about some nominal trajectory is carried
out. By assuming that perturbation control will be applied in addition to
a nominal from time k+l to the end of the process, one obtains the expression
of the cost (3.13), which includes the future estimation performance. Since
this performance depends on the present control u(k), the method is to choose

the control such as to minimize {3.13) which includes both control performance

and estimation performance. It has to be pointed out that the use of the

(fictitious) nominal trajectories and perturbations between k+l and N is
with the sole purpose of obtaining the value of the cost-to-go. The pro-
cedure is repeated at every step to obtain the value of the control to be

used next.

Let {Ev(k+1)}$~1 be a set of points in the state space that are salected

on the basis of past estimation performance. Associated with each 5v(k+1)
N~1

. The vth nominal trajectory
J+k+l

is a sequence of nominal controls {gv(j)}
is obtained by

x, (D) = £l3,x () w (D], IekEl, N1 (3.18)

16
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Next, consider & control u(k) to bz applied at time k. Expanding the
function £[k,*,u(k)] about _i_%_(klk) up to second order terms, we have the
predicted state and covariance given by

n
EeL]l) = £[k,E KK ,u00] +3 Lee {f;i [x0k|k) i) §Tkn3) (3.19)
L(k+1]k) = £ [x(k]k),u(k) 1§<k|k)g3"_[3_<klk> »u (k)] +Qk)

n , { .
z er{f x [x(k|k),u(k)]

k0] 260,000z k[0 (3.20)

where f::x denotes the Hesslan of the ith component of f with respect to

x and Té;.}:-l is the natural base in R". The updated error covariance for

the incrementai state estimate is:

ZQetl|ktl) = (L= V(ktDb [ktd,x (k1 {k) 1 TECk+L fi) (3.21)

V(etl) = E(ktd[l)h, [kekl,ZCr1]R)) T {h [t R (kL 1) JE (e k)
B leH, 2 M [ ] +RGHY S (3.22)

If the predicted state, x(k+l|k), caused by the control u(k) 1s closest to
}_(v(k‘.'l), 1.60’

|| Rkt1]k) =2 (R+D) || s [T xCHL[R) =%, (et |] 5 v e 1,0 (3.23)

th

then the future analysis will be based on perturbation about the v neninal

as derived in the previous section. Note that for all admissible u(k), there




corresponds a nearest nominal such that (3.23) is satisfied.f The error
covariance gﬂ(j+1|j+1) is given by (3.15)-(3.17) with ir+_1al condition
gjk+l|k+l), where.g(k+1|k+1) is given by (3.21) and (3.22).

Since we assume that for j>k+1, only perturbation analysis will be
carried out along the vth nominal if (3.23) is satisfied, the optimal

cost-to-go time k+l can be written, on the basis of the results of the

previous subsection, as follows (see Appendix A for the derivation):
oA 1
IV [ (k+1 | k1), 2 (k41 [k+1) k1] = J, (k+1) + gv(k+1)+§tr{wv,££_§v (N|N)

+ 1 DLOID+E,6D

where
X (erL[ke1) & XCerlflo)) - x (b)) (3.25)
Therefore, the cost of applying wu(k) can be approximated as follows:
I,lu(k)] = E(o(w(k) k] + LIx(k) K] + T [R 0+ [ket1) 5 (et [kt ) k1) 1Y%}
= olu(), k] +E(LIx(k),k1|Y*) + 3 (eH) +g (L) +-§-zr{wv ey B D

N-1
- L, g DLA18+ (2, (41D - £, (411340 1E, G40)

+p! (DE (1) +3 F (L [OK (D (oL ]k

+2e([E0[K) - L0 1) IK, (k+1) (3.26)

¥ if there is more than one v satlsfying (3.23), we may choose any one

of them.

13
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)
where
’ X, (kHL[K) = X(ktL|k) = x (kHL) (3.27)
< = =v )
Since E{L[_:g(k) ,k] Yk} is independent of g(k), minimizing the cost (3.26)
is equivalent to minimizing
|

Tglul0] = 3,041) + ¢ [u(k), k] +g, (ket1) +p) (41 [R (kLK) - x (kt1)]
+ [X(k+1 | k) -x (k+1)] 'gv (k+1) [x (k+1 |k) -x (k+1)]

1
+5tr{[Z(k+- k) -E(k+l|k+1)]_§v(k+1)+wv,ﬁ§v(n|N)

N~1

+H (k+1) L (k+1 |k+1) + H ML Gy
VeX X j=l§+2 L, 13

VoXX

N-1

+ (2, (3+1]3) ~ 2 (3+1]3+1) 1K (§+1 (3.28)
j,éﬂ-v 93 - 2, (51| 3+1) 1k (3+1))

subject to the constraints (3.19), (3.20), (3.21), (3.22) and (3.23) and

v

where Zv(j-i-llj), g:_v(j-f-llj-*-l) are given by (3.17) and (3.15), respectively,

with initial condition
_g:_v(k+llk+1) = _z_:_(k+llk+l) . (3.29)

The procedure for computing Jd[g(k)] is also described in Fig. 3.1.

One can extend this to the situation in which a nominal control sequence

{Eo[j’-}s'(k-*.l'k)]}jzk-}-l is associated with each predicted state x(k+l|k).

Thus if a control u(k) yields _:’_E_(k+1|k), future analysis will be carried out

around the nominal control {9_0[.‘] ;_f:_(k-l-llk)]}N—l

juktl and the nominal trajectory

2 (LR [0)T = £03,x 1R[], u [332042]0D])
J = k+l,. .0 ,N-1 :
x LR 0] & sl (3.30)

In this case, Jd[g(‘.:)l becomes

19
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34[8@0] = J_(xt1) + ¢[u(i) k] + g (icHD) + -]i'-tr{[é(k‘*'l%k)" ZetL k1) IR (kt1)

N-1
Uy LMD+ G E Gk [ket1) ﬁuj_lgﬁuo’ii 1, G319
N-1 ‘
- . 3031
* | L B0 £, (41340 IR (42 (3.31)

Depending on the problem under consideration, one may or may not want to
discretize the state space for the predicted state.

Denote the optimal solution for the above one-step optimization problem
by u*(k). When u*(k) is applied to the system and a new observation y(k+l)
is obtained, the estimate of x(k+l) and its error covariance are upiated

and the same procedure is repeated to obtain u*(k+l). Starting with k=0 to
N-1
k=0

T T s 04

? k=N-1, we obtain a sequence of controls {u*(k)} which is called the one-

step optimum dual control.

o mtan

- Note that in the above development, the choice of future nominal control
? is "fictitious"; it is only used to approximate the optimal cost-to-go function.
Therefore, its choice is quite flexible and is dependent upon the problem under

e W A B

consideration. In Section IV, we indicate how these nominals can be selected

for a special class of problems,

s
W T S

? 3.4 Remarks

1. Note that in most csses, Jd given in (3.28) or (3.31) cannot be
expressed explicitly as a function of u(k); thererore, straight-
4 forward minimization technigres, such as taking the derivative with
respect to u(k) and setting it to zero, would be of no use.
Because of the rather complicated dependence of Jd on u(k), one
has to search to find the minimizing u(k) which will be applied
) to the system. Search methods appropriate for finding u(k) are

those of local variations or, if the control is a scalar, then

a line search, e.g., Fibonacci. To obtain u*(k), start the
search at 3¢e(k)’ the first of the sequence of controls obtained
b by assuming certainty equivalence (i.e,, the separation theroem)

21
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to be valid., Then determine which direction Jd decreases, next
the "box" in which the minimum lies, and then narrow it down to a
certain predetermined size, and finally make a quadratic inter-
polation from the last three points; the result is taken as

u*(k). A search procedure is described in Appendix B.

The approach described in this section requires appropriate selection
of nominal controls, an essential in approximating the future optimal
cost-to-go. Note that these nominals are not applied in the future,
but only to give a rough idea of the optimum cost corresponding to
future learning and control. This flexibility is a distinguished

feature of our approach. One may consider this to be an advantage

or disadvantage, depending on one's viewpoint. Clearly, such an

approach will not be of use to a designer who knows nothing about -
the system he is controlling, since he is unable to select a set

of appropriate nominal controls. However, an engineer who is

familiar with the system he is controlling.can use his heuristic

knowledge to select the nominal controls. For him, this approach -
is of great value, because it makes use of his knowledge to come up

with a good control strategy in a systematic manner. Thus, in some

sense, the approach bears some characteristic of heuristic program-

(N1}

reduce the dimensionality of the program.

ming methods, where use 1s made of knowledge of the system to -

Let us comment on the dual nature of the control. The estimation
purpose of the control is reflected by the covariances appearing in
(3.20)-(3.22). If the predicted and updated error covariances are
independent of the control, the dual property will disappear. This
would be the case if the system is linear (with known parameters).

In general, this dual property of the control is important.
We shall also distinguish two different types of learning procedures.

Note that if the function £ (x,u) is not a function of the control

u (e.g., when f(x,u) = £(x) + g(u) and the measurements are linear

22




R TR P Mt 20101 il A A R s TR TR R

: then the error covariances gﬁk+l|k) and §jk*1lk+l) will be in-

& P dependent of the control action at time k; (see (3.20) and (3.21)).
The control does not influence the estimation performance in one
step, but the effect of the control in future estimation will appear
& n steps (n>1) after the time it is applied; (note the dependence

5%» p on the nominal in (3.15)-(3.17)). In this case, the control has the
- capability of exciting certain modes of the system that will, in the
future, enhance the estimetion. A typical example is the problem of
: controlling a linear system with known zerces but unknowm poles. In
) the second case, 1if gx (x,u) is a function of u, then the error
covariances §§k+1|k) ;hdig(k+1|k+l) will both be dependent on the
control action., Besides exciting certain modes of the system, the
control also has the capability of directly regulating the signal-

to-noise ratio and isolating the effects of different parameters.

13

A typical example is the problem of controlling a system where the
control multiplies the state and/or some unknown parameters of the

ey T W v "
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system. Thus, we see that the control is "actively adaptive" since

N Xt Tl S T WO

it regulates its learning in an optimal manner.
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1 3. A sufficlent condition for K (3), p (§) and g (3) ((3.12), (3.11),
EE (3.14)) to exist is

H o >0 . (3.32)

Let us consider the deterministic control problem of minimizing the
performance Jo(k) given by (3.7) for the system described by (3.4).
The Hamiltonian for this problem is given by (3.10): therefore, from
(3.11)~(3.14), go(j) is the adjoint variable, gb(j) is the return
matrix for the linear quadratic control problem whose state equation
is (3.4) linearized about the nominal and whose cost matrices are the
second derivatives of the Hamiltonian evaluated along the nominal, and
the quantity Jo(k) is the deterministic performance when the initial
state is §°(k) and the nominal control is used. Thus condition (3.32)
is eguivalent to the existence of neighboring stationary paths abour

(B4]

the nominal trajectory. In general, if the deterministic control

problem has a solution and if the nominal control trajectory is that

23
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solution, then (j) + f' (j)K (j+1)f (j) will be positive
semi-definite. Where this deterministic optimal control is non-
singular, this matrix is positive definite and thus invertible;

and where it is singular the inverse should be replaced by the
pseudo-inverse. For a general nominal trajectory no such state-
ments can be made; however, for nominal trajectories near the
deterministic optimum, one would expect similar properties to hold,
Thus, one reasonable choice of the set {U (%t N~ 1)} 1
the deterministic optimal controls associated with {x (k+1)}v-1

In the special case where f[k,x(k),u(k)] is first order in the
control and ¢(u,j) is strictly convex in u, then Ho uu ) =¢o uu(j)
which is positive definite by the convexity of ¢; therefore in this

would be

special case the matrix can be inverted.

The results hold even when the cost has the more general form (2.5).

The only change one needs to make is to replace (3.10) by

H (1) 2 2z (1),u, (D] +p] GHDEIE,x (),u,(1)] (3.10)*

and the term ¢[u(k)] in (3.28) by
E{Zx (k) ,u(k), k]| Y%} = 22 (k| k) ,u ) , k)

+ cr{g;(x[g(klk) yu(k) k1Z(k|k) . (3.33)

e
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IV, ACTIVELY ADAPTIVE CONTROL FOR STOCHASTIC LINEAR
SYSTEMS WITH RANDOM PARAMETERS VIA DUAL CONTROL

In this section, we consider the control of linear systems with
unknown parameters, a class of problem of major theoretical and practical
importance. A control strategy that regulates its speed of learning
(i.e., the adaptivity is not passive but active) is obtained for this class
of problems by specializing the results of section III.

4.1 Problem Statement

Consider a discrete-time linear system described by
x(kt+1l) = Alk,8(k)]x(k) +b[k,6(k)Ju(k) +£(k)
y(k) = Clk,08(k}]x(k) +n(k) k=0,1,... (4.1)

vhere _:_c_(k)eRn, X(k)eRm, g(k)eRS and u(k) 1is a scalar control.+ It is
assumed that 6(k) 1s a Markov process satisfying

8(k+1) = D(K)O (k) +y (k) k=0,1,... (4.2)

where D(k) is a known matrix. The vectors {x(0), 6(0), g£(k), n(ktl),
y(k), k=0,1,...} are assumed to be mutually independent Gaussian random

variables with krown statistical laws:
2(0gIX(0), 2% (0) 15 8(ONGI8(0),2°% ()15 ECimsl0,Q(k)]
DNGIO,R( T3 Y (kWS0,G(K) ] 4.3)
with £%%(0)>0, £2°(0)>0, R(k)>0, Q(k)20, G(k)20. The notation w%a,B)

is used to denote that the random vector v is Gaussian with mean a and
covariance B. Furthermore, we assume that the unknown parameter 8(k) enters

linearly in A(k,+), b(k,*) and C(k,*).

+For simplicity, we shall discuss only the scalar input case. The results
can be readily extended to the multi-input case, See also Section 4,5,
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A control is admissible if it is non-anticipative; i.e.,

u(®) = ule, ¥, 050 5 ¥y, e300 MA@, u -y} 4.0)

Our objective ie to find an admissible control sequence UN'1 such that

the cost functional

N-1

I = FE{[x®) - o) ] @ [x0) - 0] BA-CLICH

+ B0 [x(8) - p (0] + A (oo’ (]

(4.5)

is minimized subject to the dynamic constraints (4.1) and (4.2). The expecta-

tion in (4.5) is «ver ali the uaderlying random quantities x(0), 6(0),

{é(k)9 D_(k+1)3 l(k)s k=031""sN"1}‘

Assume the following:

1. W) 20 and A(k) >0,

2. {p(k), k=0,1,...,N} 1s given a priori.

Note that if p(k) = 0, k=0,1,-..,N, we have a regulator problem; if

E—O is a glven trajectory, we have a tracking problem; and i1f

W(k) = 0, k=0,+++,N~1 but W(N) ¥ 0, we have an interception problem,

4.2 Previous Approaches

Before describing our new approach to this claseg of preblem it is

appropriate to summarize some of the past approaches and indicate how this

work fits into the whole development.

This problem can be solved exactly 1f one can solve the stochastic

dynamic programming equation (2.8) associated with the problem; unfortunately,

a numerical solution for this is prohibited by the "curse of dimensionality"

(see Secrion II). Thus different approaches have been suggested in treating

this class of problem.
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One popular approach is the certainty equivalence[Al]. If at a time

instant, the estimates of the unknown parameters are available, a control

T SO Y
PR TS Soe 750 IR ¢

law can be obtained by assuming the estimated parameters to be the true ones
and solving the control problem accordingly. In this manner, we obtain a
control law which 1s adaptive to the estimates. The problem now is reduced
to that of closed-loop parameter estimation. Such an approach has been
considered by Farison, et al.,[Fll Saridis and Lobbia.[SII The question
now is not "how to control the system,”™ but rather "how well can we
estimate the parameters." The advantage of this approach is the simplicity
of the control law. The major drawback to the approach is that we are
ignoring the confidence level on the parameter estimates in deriving the
adaptive control scheme; one would expect that such a contrcl scheme will
result in a control system which is extremely sensitive to stochastic
variations, which turns out to be the case.

If the design of adaptive systems takes not only “he instantaneous
parameter estimates but also the associated confidence levels into account,
it would surely result in a "better" system. One such method is the open-
loop feedback approach[nll. Typical papers along this line are those by
[52] (€] e ALl [s2]

In the last-mentioned, it was demonstrated that in the case where only the

, and Tse and Athans[TI].

Bar-Shalom and Sivan , Curry » Spang
T input gain vector is unknown, the adaptive feedback gains of the control
3 system depend upon the parameter error covariance matrix. In this open-loop
feedback approach, the fact that the estimated parameter may not be exact

- is therefore taken intc consideration, but the knowledge of future observation

programs is completely ignored., The problem when the system is linear with
unknown parameters that belong to a finite set has been studles by Stein and

SRR,

?’ Saridis[ssl and Lainiotis, et al.[Lzl Their solution was also of the open-
%} 3 loop feedback type because it did not take iato account the effect of the
?; 5 ) control on the future estimation performance,

Sy

Yet another approach is to approximate the dynamic programming equation,
MurphylMl], Gorman and Zaboraky[G1] used this approach in considering the

A A A
¥ b

situation where the gain vector is unknown. To the aughors' knowledge, the

3 Y

extension of this approach to more general situations is not found in the

-

1iterature.

2SR A T Y
SLETH
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The approach described in this section is based on the one-step optimal
dual control theory developed in Section III. As we have noted, such a control
scheme has the characteristic of appropriately distributing its energy for
learning and control purposes. In view of this, it is obvious that the open-
loop beedback control is, from the estimation point of view, passive. In
contrast, the one-step optimal dual control is active, not only for the
control purpose but also for the estimation purpose, because the performance
depends also on the "quality" of the estimates. Therefore, the one-step
optimal dual control can be called "actively adaptive" since it regulates its
adaptation (learning) in a systematic maoner.

4.3 The Optimal Cost-to-o and the Dual Effect

In this subsection, the results developed in Section III will be
specialized to the cliass of problems being considered here to obtain the

approximate optimal cost-to-go.

Let the present time be denoted by k. Given a poiht represented by
the augmented state 5°(k+1) s [Eé(k+1)- gé(k+1)]' in the augmented state
space, one associatea with it a nominal control sequence denoted by
{uo[j (k+1)]} -k+1 . A nominal trajectory originating from 5°(k+1) is
generated by applying the above control sequence. Consider a control u(k)
applied at time k and the resulting predicted state and covariance, denoted
as z(k+l|k) and I(k+l|k), respectively. In order to bring out the dual effect
of the control, assume that for time j2k+l, a second order perturbation
analysis will be carried out about the nominal trajectory originating at
z, (k+1) 4 £(k+1|k) with a certain nominal control sequence. The details on
how this nominal is obtained are given in Section 4.4. The subscript "o" is
used to denote both "nominal" control {u [3; z(k+1lk)]}5 aktl and the associated
nominal trajectory {z [3; z(k+1|k)]}N whkt]® In this manner, one obtains an
approximate optimal "cost-;o-go" I*[gjk+1|k). Ejk+1|k).k+1] associated with
éjk+1|k) and Ejk+1|k), which 1is a function of u(k). This cost reflects both

the future estimation performance and control performance. The minimigzation

of this cost ylelde u*(k) and the procedure is repeated at every step.
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Assume that the one-step prediction _2_(k+1|k) and the associated error
covariance

I(kt1]k) & coviz(ktl) |k} (4.6)

have been obtained (using, e.g., a second order filter) when a certain control
u(k) is applied to the system. Let {z (j)} Juktl be the nominal trajectory
obtained by applying the nominal control sequence {u [3; z(k+1|k)]} ukl

to the deterministic part of the systzm (4.1), 1.0.,

x,(341) £ A
g & 2TV gy 4] 2P SR RO A
8,(3+) g0 | g
where superscripts denote matrix partitions and
A9 & Al3,0 (1)
(4.8)
By (1) & b8, (1]
with initial condition z, (k+1) 4 é(k+1|k). For simplicity, the dependence
on z(k+l|k) will be suppressed and u, [3s z(k+1|k)] denoted hy u (1),
Define the Jacobian
A v Y
(J) {V g9y l x (£X fG]
-’=o Y T
- zoz
£ .0 £ A 3 et ot
= "‘:»?5. =0,8 ] . | 2l 12 24% ﬁg ()t u (9 b (4.9)
0 2
£5,x gmgmj 0 p(3)

# Since @ enters linearly in A, C and b, their partials with respect to
8 are constants.
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The measurement vector in (4.1) can be written in terms of the augmented state
] S
h(1) = [C(3,0(3)) | 8] z(3) (4.9a)
|
and its Jacobian evaluated along the nominal is
” N
-;m ' J 1 . A .
b,z [g°(j)'i :L; e, x' g5 152 Ui 8,00 (4.90)
where a ' i=1,...,n and gi' i=1,...,m are the corresponding rows of ;
A and C, respectively. Similarly,
b (3)
—o
L,u® ‘[ ] ‘ (4.10)
0
and bi will denote the corresponding component of b.
Using the results in Section III, the approximate optimal cost-to-go g
I* 1is given by (see also Appendix C)
I*{Z(k+1]k), I(k+l|k), k+l] = 3 (ki) + g (ki)
1 .
+ 5 te{[EtL]K) - £ (kt1]kt1)] K (k1)
N N-1
+§+lq_(/ (3) Eo(JlJ) +E [§.o(j+1,j) - Eo(j"'l'j'*'l)].lfo(j*'l)} (4.11)
J=ktl ,
where
J (k1) = L [1x '
o 2 X, (N) - p(M)]" W) [x ) - pW)]
> |
1
+ brd X - ]
2 e 150 - 2D x,0) - p(3))
+ L ¢ 2 (6.12)
3 A D [ 2|11}
30




The cos’ matrices corresponding to the augmented state z = [x°0'] are
dencted by

oll
(1) -[;m ;" (4.13)

where 9_“8 denotes an nxXs zero matrix and So(j)’ go(j) satisfy the backward
equations

(4.14)

K1) = A G I-1 (DEF(+1b, ()b (IS (+1A_(§)

+HQ@) 5 KM = um) (6.15)

0x x' xx ' 0x
R 9) = 185 5(0) KIXIHD) + D' () KoF(I+LIA ()
- u (1) {tz’,f:em KE(H) + D) K G+ b, (3)

n '
+LEI &) B3 bh () J}{g;,m K F(3+1) Ao(j)} i K =0 (4.16)

1] x'
50 (3) = £o,_@_(3} ‘g_(:"(j-o-l) 5:.2(_1) + D' (4) 52"(34-1) 5:,6(1)

]
+E5,6@ K26+ 0y + 2"y k) pp) -

B BUDIE T LT o) + K (+13D(9)]

/

o (KD £X () + Ko 3+1n(a)]

n
+§ e} B (3+1) b-é (j)}'
n

¥ L 2: (31 b;(J)} ; 529(11) -0 (4.17)

i=1
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1) & O + 5L EFGH) p (17 4.18)

g, (1) = 5 (4D = u (DI u (B + g% (1) b (D1

g, (M) = 0 (4.19)

Bo() = ALY pr(HD) + B [x,() - o] = u () AL
o K¥¥(441) b ( X' (341
R4 b (3) N@) v (3) +p) (3+1) b ()]s
By(N) = W [, M) - p(M)] (4.20)

and _§° (j+1| i), _23_0(j+1| j+1), the predicted and updated error covariances of
the augmented state satisfy the forward equations: (F=kt+l,e0.,N)

Yo (4D = 5, G41[9) by (Db, (34D 2D By (3+0)

RO fok, oML (4a21)
.g.o(j+1|j+l) = []’_-y.o(j+l)ho,£(j+l)]z'o(j+llj); 3=k, e0s,N=1 (4.22)
LU = £ DI GIDL () +21) 3=k, N1 (4.23)
where Q(J) 0
[ ]
0 [I6)) . (4.26)

The initial condition in (4.22) is _go(k-i-llk) =£(k+1|k), the extrapolation
covariance obtained after applying u(k) to the system,
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4.6 Nominal Selection and the Computation of the ONe-Step Dual Cost

In this section, the appropriate selection of the nominal control
sequence associated with each predicted state will be discussed along with
the detailed computation of the one-step dual cost.

One reasonable choice of the nominal control sequence uolji z(k+l k)] §:t+l

would be the certainty equivalence control; i.e., this sequence is obtained by
golving the problem of minimizing

3,(642) = ZIx () = o (1" WA [x, ) - p(W)]

1 J
R 2R SORS IR EUCIERCEYICH DLW w25

subject to the constraints:

x (341) = A58 S x <5> +bl3; & (D] u ()5 x (k+l) = x(k+1lk)  (4.26)

—

8 (341) = (9 9_‘0(1) 38 (k#1) = 8(k+1]k) (4.27)

Note that 9 (i), j=k+l,...,N can be computed independently of how the control
u (j) is selected The solution for this optimization problem can be obtained

easily.t 2] The optimal control ug(j) is given by

u (J) == 3,3 b (3) [x (3+1) A (1) 2,(3) + 3, (4+D)] (4.28)
where

B’(J) (A +b() K (j+1) (J)] (4.29)

and gb(j+l),ﬁo(j+l) zaat::l.efy.r

B () = A0 - u (1) B G+ () bINE, (341 4, (D

+H ;. K )« 5 (4.30)

+ The squiggle here denotes quantities related to the certainty eauivalence
control which determines the nominal trajectory from k+l to N.

.
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By () = AT = B () K (341) by (9) b (IE, (341)
"HD o 5 BN = cymp @ . (4.31)
The corresponding minimum cost is
3o0e1) = 3 &' (e [k B (o) Akt ]i) + 3" (b)) R0eb1[K) + (kM) (4.32)
where Eo(j) satisfies
L) = F040) - 3 U B b () b () B, (341)
+Z0'0) B o) 5 B0 =30 m) um e . (.33)
By comparing (4.30) with (4.15), we see that
KX =% () 3= kel, ..., (4.34)
and hence from (4.18) and (4.29)

M) =W (1) (4.35)

It is shown in Appendix D that

B =X @) 2, +F 9 . (4.36)
From (4.35) and (4.28), we have
M () + BE (D) Byl = A(H) whh) + xL() ALCH K, (D) by ())

+uy(3) L) Ko GH) b () + B b () =0 . .37)

Therefore (4.19) becomes

8,(3) = 05 J=k+l,...,N . (4.38)
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If we do not discretize the predicted state, the one-step cost can be computed
by the following procedures:

" A
1. Obtain x(k+1]k), 8(k+l|i), and Z(k+1]k) by

Z0HL[K) = Alks 8(k[1)] £&[W) + blks k[0)] ulio)

1 3 1 2 xx

- % +2 Y e, trif x|k, uk)IE (klk)} (4.39)
b 2 =1 xx =

k| ) 8Gkt1]K) = D(K) ECk|K) (4.40)
5 .

b - ¢
£ | LG = £ @ 2 &lo £ a0 + 20
e nts nts ] .

ol 1 i .

L e t30, 3 e gy erley , W L K[E, , (I K[ . .61
E i=1l 4=l
L 2., Generate 8 (1), j2k+l via the equation (4.27).
: / o~ ~ '

. 3. Compute _l_(o(j). Bo(j)’ Jok+l,...,N using (4.30) and (4.31). Note

3 that these equations are a function of _é_(k]k) only, and are
: 1 @ independent of u(k).
9 *
4. Generate 3_<°(j), J=k+l,...,N using (4.26) (with uo(j) = uo(j)) and

f% , (4.28).

. B
v G 5. Compute Ko¥(3), K2°(), $=#1,00.,N by (4.16) and (4.17). These
k< 3 are backward equations.

6. Form the matrix _!50(;1), k+l,...N, using (4,14) and (4.34).

7. Compute 30(3+1|3+1), J=kyeen N1, §°(j+1ij), Joktl, ... ,N-1,
using (4.21)-(4.24),
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4.5 Rem

ain the one-step dual cost by

G0l = 3200 ui) + 3 2 (k1 ]k) B () 2011 ]10)

+ B (kt1) X (k+1[k)

N-1
v3ecd 3o W) 2XGl)
J=k+l

7

FIERHL|K) - E (kt1]kt1)] K (kHD)

N-1
+Y I G4l - pGalBD] KGR (4.42)
j‘k+1 i N

arks

1,

3.

The minimization of (4.42) is done by performing a search for
u¥(k). Since u is scalar, we can use the quadratic fit

optimization method described in Appendix B,
The dual property of the control is revealed in (4.42) where
the one~step cost to be minimized includes both control and

estimation cost.

Let us partition the error covariance Eo

g5

'§'° b . (4043)
I 1
-0 <0

Then 1f I00(lcH|k+1) =0, ve must also have £* (ktl|k+1)=0 and

for large k the one~step dual cost becomes
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3380] = 2 h) o?t0) + § ' (1]1) B, (kH1) EGeH1]K)

N
a 1 XX
o+ k) +3 ¢ e ol
+ 30 (e41) x(kt1|k) -{:% J§+1 s
+ K ([ (kL k) - En (kL))
N-1

* _;ﬂ gy, galp -y <3+1|3+1>1} (4
Since 1f 500 (L [kt) = 0,
£, (K0, @] 26w - o (4.45)

we have from (4.39)

£(ct1]k) = Ak, 8(k|B)] xk|K) + blk, Skik)) uik) . (4.46)

Also, one can easily show from (4.21)-(4.24) that _g:fx(j-l-llj-i-l),
j=k,...,N=1, satisfy the minimum error equation of the linear

system with known parameters 6(J) -__é_(j |k). These imply that if
we have high confidence on the parameter estimate, we can assume

separation to hold.

The one~step dual cost reflects also the effect of the future obser-
vation program. For example, if it is known a priori that during the
interval 2<jsN, %2k, no observations will be made, then we would
have ;o(jlj-l) -_g:_o(j|j). In this case Ja[u(k)] becomes

37
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Ialu@] = 2a@) wP) + 3 20ck1 1) B (erd) 20641 00

+ B (ktl) R(kH1|K) + % tr{ E H(3) I, (3+1]341)
Juichl
N

+JZ!1<3) Z, 4l
4

+ K (kt1) [E(kHL[K) - 2] (k+l|k+1)]
-1 .

3 K D IZ (51D - 2 g3l 4.47)
J=k+2

Therefore, the knowledge that future observations will or will not

be taken would change the present control strategy. If future learning
will not take place, the present control tries to minimize the average
control performance, whereas if future observation will take place, the
present control will invest some of its energy to help the future
learning. It is in this way that the dual control regulates its

future learning under sowe control objective. Because of this "active
learning" characteristic we call this control strategy an actively

adaptive control.

H

The estimation cost of (4.42) is also a function of time-to-go. 1In

the beginning of the control interwal, the estimation cost is rel~
atively high. The one-step optimal dual control must therefore be
selected so that it compromises between control and estimation purposes.
When k is approaching N-1, the estimation cost becomes smaller, and
thus the one-step optimal dual control will give less weigﬁt to the

estimation part and will finally concentrate on the control purpose.
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For the case where the control u(k) is a vector rather than a

ORRETALE
a2

) scalar value, o§: can obtain exactly the same equations as above
except that now uo(j), uo(j) are matrices and care 1s required
in their placement in Equations (4.30)-(4.33) and (4.15)-(4.20).
In the vector control case, the search for the one-step optimal

’ is more complicated since we are searching over a volume rather

than a line, Conceptually this does not create any new difficulty.
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& V. SIMULATION STUDIES

13 )

35 In this section, three example problems pertaining to dual control are
5,§ considered, the purposes of which are:

§;§ (1) To investigate the computational feasibility of the one-step
1) optimal dual control algorithm.

:ﬁ?ﬁ (2) To compare this algorithm with another widely used suboptimal

4 algorithm -- the certainty equivalence.

,L;f ’ (3) To understand the dual nature of the proposed algorithm; in

A, particular, to understand the learning purpose of the control.
,if{ The first -- the scalar case example -- will be a simple one, so that we may

understand the implications more clearly. The other two -~ on interception
and soft landing -- will be more complicated and will give additional insight
into the dual control and some indication as to the computation feasibility
of the proposed algorithm,

5,1 Scalar Case Example

Consider a scalar linear system
x(k+l) = ax(k) + bu(k) + £(k)
y(k) = x(k) + n(k) (5.1)

where a,b are unknown constants and w(k), v(k) are independent zero-mean
white noises with covariances q and r, respectively. The problem is to find
a control sequence {u*(k)}z:é such that the performance
N-1
J=E & x™ - 012 +2 L @)
k=0 (5.2)

c >0
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is minimized subject to the constraint (5.1) and
(k) = uk (Y%, UL | (5.3)

A comparison of the certainty equivalence (C.E.) control strategy, and

' the actively adaptive dual control strategy as described in Section IV will
: be illustrated.

Two cases are considered. For both cases, N=20, p=5, C=100,
et x(0)=C, a=0.8, b=0.5, q=0.25, r=0.04; the initial guesses are %(0|0) =0.13,
L a(0/0) =1.2, 5(0]0) = 0.3 with initial error covariance

L A S T

i x(0) 0.25 0 0

. Cov a = 0 0.04 0 . (5.4)
b 0 0 0.01

In case 1, the observations are available for all k=1,2,++.,19; in case 2,

wr n o e i SV S PN

the observations are availabvle at k=1,...,14; for k215, no cbservation is

available. It is impossible to see how close the dual contrcl strategy
performence igs to that of the truly optimum control strategy, since the

truly optimwm control strategy is very difficult to obtain. To give an

idea about the performance level of the dual control strategy, we shall
include the results for the optimal contrel when the parameters are all

known. The performance for this will serve as a lower bound. It must be

T T L T

kept in mind that this lower bovnd 1s not achievable even by the truly
; optimal stochastic rontrol for our problem., Ten Monte Carlo runs were per-
i formed for both cases, the results of which are shown in Tables 5.1 and 5.2.

et The first zolumn shows the results for the optimum control when the para-

b meters are known.

From Table 5.1, we see that, on the average, the dual control is better
than is the C.E. control., Aun important fact here igs that the dual control
performance has a relatively small deviation from its average performance

: compared with that of the C.E. control. This property indicates that the

dual control is more reliable than is C.E. control under stochastic effects.
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TABLE 5.1

COMPARISON OF DUAL CONTROL WiITH C.E.
CONTROL FOR THE SCALAR EXAMPLE (CASE 1)

STANDARD
AVERAGE AVERAGE AVERAGE RANGE DEVIATION
MISS DISTANCE|TERMINAL ERROR|TERMINAL ERROR{ AVERAGE OF OF
SQUARED SQUARED IN a | SQUARED IN b | PERFORMANCE |PERFORMANCE| PERFOPMANCE
OPTIMUM 0.0653 0 0 20.7 15.71-36.34 6
C.E. 0.311 0.126 0.233 34.7 22,11-70.43 17
DUAL 0.219 0.125 0.228 32.0 22.04-48.40 10
TABLE 5.2
COMPARISON OF DUAL CONTROL WITH C.E.
CONTROL FOR THE SCALAR EXAMPLE (CASE 2)
STANDARD
AVERAGE AVERAGE AVERAGE RANGE DEVIATION
MISS DISTANCE|TERMINAL ERROR|TERMINAL ERROR| AVERAGE OoF OF
SQUARED SQUARED IN a | SQUARED IN b | PERFORMANCE | PERFORMANCE [PERFORMANCE
OPT IMUM 0.097 0 0 22.3 17.66-43.26 7
DUAL .143 .282 .258 74.5 66.6-113.36 13
43
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From the estimation performance, both the dual control and C.E. control
perform well in terms of estimation at the terminal time, as shown in Figs.
5.1 and 5.2, Thus the fact that dual control performs better than C.E.
control must be related to how fast learning is being performed. In Fig.
5.1, the control histories are plotted for one particular sample run. In
this sample run, the noise sequences are the same for the optimal with
known parameters, C.E., and dual controls. If the parameters are known
exactly, learming is obviously not required and thus the control action will
have only the control objective., Notice that to achieve this objective,
the control energy should be kept small in the beginning and become larger
toward the terminal time. In general, the C.E. control has this character-
istic (the overshoots at about 10 and 13 are due to stochastic effects).
However, the dual control acts quite differently, namely, at the initial
time, the control value is quite far from zero. Thus, the dual control
allocates some energy which is not directly intended for the control
objective in the beginning.

In Fig. 5.2, the evolutiou of the parameters estimated is plotted for
one sample run. As we notice in the figure, this energy is utilized for the
learning purpose, which indicates that in the initial period, achieving the
control objective and learning are in conflict, For k212, the control
energy is buillding up in order to achieve the control objective, Since
large control energy will excite the modes and improve the signal to noise
ratio, it will promote learning. Thus for k 12, learning and controlling
are not in conflict, This explains why the C.E. contr~l does have good
estimates at the terminal time. In this case, learning is "accidental."

To 1llustrate this point, we will see what happens if learning is not
possible in the final period. This is shown in case 2. Table 5.2 shows the
results of artificially terminating the final learning period. The C.E.
contrel does very poorly in estimation, and, consequently, very poorly in
achieving the control objective, This is reflected by the very large
average cost and its standard deviation. The duval control, on the other
hand, still performs reasonably well due to anticipation of the open-loop
period at the end.
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In Fig. 5.3, the control histories for another sample run with identical
noise sequeuce for dual control case 1 and case 2 are plotted. Note that at
the initial time, more energy is allocated to learning in case 2 than in
case 1. This is so because in case 2, the derivation of the dual control
takes into account that no learning is possible for k215, and thus any
large control at the end will not help in learning; therefore, in order to
achieve good control performance, a large amount of energy must be invested
for pure learning purposes during the initial period to excite the system
and to improve the signal-tc-noise ratio. This is illustrated by Figs. 5.3,
5.4 and 5.5. As a result, the dual control achieves a much lower average
cost and, at the same time, a much more reliable control strategy than does
the C.E. control.

This active learning characteristic is a distinguishing feature of the
dual control strategy, which depends not only on past observation infor-
mation but also on the future observation program; therefore, the control
value will differ depending on whether or not future observations will be
made. Note that such a feature is not possessed by any of the existing
suboptimal schemes suggested in the literature.

In the scalar example, a second order filter is used for on-line
estimation of state and parameters., This estimation scheme is quite
effective, Clearly, one may expect better performance if one uses a more

sophisticated estimation algorithm; e.g., via parallel filters[B3]’[T3]’[A3].

One important point to be stressed iz that the dual control strategy
tries to improve the performance by considering what should be done
before as well as after the parameters are identified, whereas the C.E.
control strategy only tells what should be done afier the parameters are
identified.

5.2 Interception LExample

In this subsection, the interception problen will be investigated.

Consider a third order system

x(kt+l) = 5_(91,92.93)5_&) +§(94,05,96)u(k) + E (k) (5.5)

y(k) = [0 0 1]x(k)+n(k)
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where

010 8,
6, 0. 6
1% 9 8¢

6
and {8,},_, are unknown constant parameters with normal a priori statistics

having mean and variance
8(olo) = [1., -.6, .3, .1, .7, 1.5]' ,
CT:)
£’%(c]o) = diag(.1, .1, .01, .01, .01, .1) .

The true parameters are

‘{ _@_" [1.8 _1001, 058’ 03’ 05’ lo]' . (507)
-
; The initial state is assumed to be known:
;
!‘ A
¢ x(0/0) = x(0) =0 . (5.8)
- i
g The objective is to bring the third component of the state to a desired velue.
i This 1is expressed by the cost
-k
N 1 2 M1
¢ J =5 E{[x;M=-p1" + | ru®(W)) (5.9)
1=0
. where p is some value and X is chosen to be small. In our example p=20 and % is
f chosen to be 10~3, The noises {éi(k)}gzl and n(k+l) are assumed to be
3 'Y independent and are normally distributed with zero mean and unit variance.
If we interpret x4 88 the position of an object, then this example corresponds
to an interception problem: the guidance of an object to reach a certain
point, without constraints on the velocity and acceleration of the cbject
B when it reaches that point. The difficulty lies in the fact that the
g § N 51
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poles and zeroes of the system are both unknown. The initial condition (5.7)
represents the fact that the system is initially at rest.

Twenty Monte Carlo runs were performed on the interception example ard
av..rage performances are summarized in Table 5.3 and Figs. 5.6-5.8. The
performance for the optimal control when all the parameters are known is
Included tc serve as a lower bound for the truly optimum performance for
this problem. Again, it should be emphasized that this lower bound iz

unachievable ¢7en by the optimum stochastic controller for the system with
unknown parameters.

As shown in Table 5.3, the dual control performance is an order of
magnitude better than the C,E. control. The second and third rows indicate
that the dual control performance is highly predictable, compared with the
C.E. control. Note that the dual control uses only about twice the energy
of the C.E, control, at the same time achieving a dramatic improvement in
the miss distance squared over the C.E. control., This indicates that the
dual control does use control energy at approrpiate times to improve learning,

and thus achieves a satisfactory control objective,

Note that in Fig. 5.8, the dual control invested at the beginning
considerable energy in learning. The effect of this is revealed in Figs. 5.6
and 5.7, where the average error squared for the parameters' estimates are
displayed. Note that the learning in 64, 65, and 66 is much faster than the
learning in 91, 62, and 93. As discussed in Section 3.4, the learning of
64, 65, and 66 results from the fact that large control will improve the
signal-to-noise ratio for these parameters and thus the control can help
in learning them in one step; on the other hand, the learning of 91, 92,
and 63 is accomplished by exciting the modes of the system; and thus
learning would be delayed until the system is properly excited.

Note that the C.E. control provides fairly good learning in 61, 62,
and 93, but practically no learning in 64, 65, and 66. Note also that the
C.E. control builds up energy very quickly after the tenth step. As observed

in Fig. 5.7, some learning is 64, 65, and 96 is performed for k 210, but
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TABLE 5.3

SUMMARY OF RESULTS FOR THRE INTERCEPTION EXAMPLE

CONTROL
POLICY

OPTIMAL CONTROL
WITH
KNOWN PARAMETERS

C.E. CONTROL
WITH
UNKNOWN PARAMETERS

DUAL CONTROL
WITH
UNKNOWN PARAMETERS

AVERAGE
COST

114

14

MAXIMUM COST
IN A SAMPLE OF
TWENTY RUNS

20

458

53

STANDARD DEVIATION
OF THE COST

140

16

EXPECTED MISS
DISTANCE SQUARED

12

225

22

WEIGHTED
CUMULATIVE
CONTROL ENERGY
PRIOR TO
FINAL STAGE

1

1.4

3.2
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prior to k=10, practically no control is applied and thus in ea, 65, and
96 no learning is done. The learning in 81, 62, and 63 before k=10 is due
to the process noise, which serves as a random input that excites the modes
of the system. Thus in this case, the learning is 61, 62, and 93 is quite
accidental; also because this learning is too slow, it is of little use in
achieving the control objective.

5.3 Soft Landing Example

Consider the same svetem with thie same a priori conditions as discussed
in Section 5.2. The only difference is that instead of bringing only the
third component of the state to a desired value, the objective is to bring
the final state to a certain point in the state space. This is expressed by

1 N1 o,
J =2 E{lx®) - pl' [x(M -l + ] 2 u"(1)} (5.10)
i=0

where p is a point in R3 and A 18 chosen to be small., This may be interpreted ‘
as a soft landing problem by selecting the p vector to be

g=1 0 (5.11)
20

and A= 1073, Comparing the results of this problem to those obtained in
Section 5.2 will provide more insight into the dual nature of the control,
Twenty Monte Carlo runs were carried out for the C.E. control, the dual
control, and the optimal control with known parameters. Again, the last-
mentioned serves as an unachievasble lower bound to the optimum performance.,
The results are summarized in Table 5.4 and Figs. 5.9-5.11,

Conceptually, the soft landing is a "harder" problem than the one con~
sidered in Section 5.2. Here, we want to "hit" a point in the state space,
while in Section 5.2 we wanted to "hit" a surface. Therefore, it should be

expected that the average cost is higher than in the previous example.
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TABLE 5.4

SUMMARY OF RESULTS FOR THE SOFT LANDING EXAMPLE

OPTIMAL CONTROL C.E. CONTROL DUAL CONTROL
CONTROL
POLICY WITH WITH WITH
KNOWN PARAMETERS | UNKNOWN PARAMETERS| UNKNOWN PARAMETERS
AVERAGE
COST 15 104 28
MAXIMUM COST
IN A SAMPLE OF 35 445 62
TWENTY RUNS
STANDARD DEVIATION
OF THE COST ? 114 11
EXPECTED MISS
DISTANCE SQUARED 28 192 32
WEIGHTED
CUMULATIVE
CONTROL ENERGY 1 7 12
PRIOR TO

FINAL STAGE
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This is seen to hold true, as showa in Tables 5.3 and 5.4, for the dual
control and the optimal control with known parameters. However, for C.E.
control, it does not hold true. This may look strange at the first sight,
but careful analysis of the simulation results will offer an explanation
for this,

In the following, the results of this example are examined in more
detail, later, the comparisons of this example and that described in Section

5.2 are made.

Table 5.4 indicates the improvement of dual control over C.E. control,
both in average performance and reliability. The terminal miss distance
squared for the dual control is very close to the unachievable lower bound
given by the optimal contrdl with known parameters. To achieve this small
miss distance, the dual control invests considerable energy for learning
purposes. This can been seen in Fig, 3.11 where it is shown that a large
amount of energy is invested at the initial time to promote future learning.
As a result, the parameters are estimated very quickly (in about eight steps).
After the parameters are adequately learned, the dual control smoothly hits
the final point p {see Fig. 5.11). Again, note the delay in learning the

parameters 91 62, and 6

) 3

The C.E. control, on the other hei:, being only passive in learning,
learns much slower, with the result that the terminal error is an order of
magnitude higher than that of the dual control. As a consequence, the miss
distance squared is substantially larger than that of the dual control. The
C.E. control learning in el, 62, and 63 is enhanced by the process noise,
whereas the learning in 64, 65, and 66 is regulated by the control. In the
C.E. case, this is very small in the initial period and builds up very
quickly after time eight. Notice in Fig. 5.10 that the C.E. control did

quite a bit of learning after time eight, but this learning is passive.
To understand the passive and active learning of the C.E. and dual

control, the results of the soft landing example and the previous example
will be compared. First compare the two C.E. controls. Note that the C.E.
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control energy used in the soft landing example (we shall call this the
second example) is much more than that used in the interception example (we
shall call this the first example). Note from Figs. 5.9 and 5.11 that up to
about k=12, the C.E., control uses about the same cumulative energy

for the two examples. The fact that the final mission is different has not
yet become important enough to change the control strategy. As a consequence,
the learning for both cases is almost the same up to this time. In the first
example, since the final destination is a surface, the controiler can wait
almost until the final time to applv a control to achieve the control objective,
and therefore the C.E. control is still applying little energy after time
twelve. The learning of the parameters 94, 95, and 96 is only slightly
improved. However, for the second example, since the final destination is a
point in the state space, the control must work "harder" to achieve its
objectivs (transferring from one point to another arbitrary point requires
three time units). Therefore, the control energy after time twelve increases
very quickly for the second example. This results in a much better estimation
on the galn parameters, Since the learning in the first example is poorer than
in the second example for the C.E. control, a higher cost is accrued in the
first example than in the second. Note that even though the second example is
a "harder" problem, a better performance value is obtained. This is primarily
because "accidental" learning is enhanced by the difficulty of achieving the

final mission.

For dual control, quite a different control strategy at the beginning
rather than at the end of the control interval can be noticed. The fact
that a different end condition has to be fulfilled 1s propagated from the
final time to the initial time. For the second example, the dual controller,
realizing that the final mission is much more difficult to achleve, decides
to invest wore energy in the beginning, because learning is very important in
this case to achieve a satisfactory final objective. Note the "speed" of
learning in the second example compared with the first example (see Figs. 5.6,
5.7, 5.9, 5.10). The dual control regulates its energy in learning: in the
first example where learning is less important, it does not insist in learning
by applying large controls in the beginning; in the second example, the
learning is much more important and thus more energy is utilized for the learn-

ing purpose, For both examples, the expected miss distances squared are
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comparable, thus, the increase in cost in the interception example is primarily

due to the increase in accumulative input energy. This demonstrates the active
learning characteristic of the dual control.

5.4 Remarks

(1)

(2)

A comparison of the computation time required by the dual control
with that for C.E. control gives some idea of the computation
feasibility of the proposed algorithm., For the scalar cxahplo, the
dual control requires, on the average, about twice as much time as
the C.E. control per time unit, Note that in this example, we
actually have a 3-dimensional problem. For the other two sxamples,
it was found that the computation time for the dual control is on
the average, approximately seven to eight times that of the C.E.
control., Here, we actually have a 9-dimensional problem,

However, judging from the improvement over the C.E. controi, the
extra computation time is worthwhile, '

Note that the relative time between the dual control and the C.E.
control increases as we have a higher dimensional problem. This

1s due to the fact that with higher dimension, the computation of

the approximate optimal cost-to-go is relatively more time consuming,
Thus for applications to classes of problems with high dimension,
some improvement of the present algorithm is needed.

The C.E. control is actually a very crude suboptimal mothod.v More
sophisticated algorithms have been suggested in the literaturo[Lzl.
One suggested approach is to have weighted C.E. control. This
control is obtained having a bank of Kalman filters tuned at
different parameters which adequately cover the parameter set, and
an "optimal" (which is actually a C.E.) control generated for each
Kalman filter in the bank, and finally all these controls are
combined in a weighted manner. We must stress that this strategy
does not possess active learning, and thus we would expect

behavior similar to that in the C.E. control examples, probably
with some improvement,
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As seen from the above examples, active learning is the main
characteristic which will yield a satisfactory performance, and
therefore one can predict, with high confidence, that assuming the
on-line estimation algorithm to be the same, such a suboptimal
algorithm will be inferior to the dual control presented above.
Horeover, if a serial computer is used, the computation time for
the weighted C.E. approach would be equal to L times the C.E.
approach computation time (both assume using the same estimation
algorithm), where L is the number of Kalman filters. If there are
six parameters, and each is quantized into only two levels, we
have a total of 26 Kalman filters, and thus the computation time
is about 65 times the C.E. approach computation time; this 1s much

more time-consuming than the dual control approach.

The use of parallel computers may reduce the time for the weighted
C.E. control approach, since this control law is parallel in
structure. On the other hand, careful study of the present algorithm
may show that it also possesses a parallel structure, though not in as

obvious a manner.

The active learning feature of this algorithm distinguishes it
from the other approaches in the literature. The examples not only
demonstrate that the dual control gives good performance, but more

importantly it illustrates why it gives good performance.

The present algorithm can be modified and refined so that it can
eventually become feasible for real-time computation for a large

class of problems. This is discussed further in the next section.

The present algorithm can be used as a base for evaluating and
comparing the performing of different ad hoc suboptimal algorithms.
Even though the algorithm is still suboptimal, because of its
active learning characteristic, it is felt that the algorithm is

quite close to yilelding the optimum performance.
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VI. POTENTIAL APPLICATIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

In this section, different classes of problems that are potential
fields of application for the dual control theory developed in this study
are indicated, and suggestions are made for areas of future research that are
direct extensions of this work.

6.1 Applications

The dual control theory is applicable to general adaptive control problems
where learning of the unknown environment and/or the state and parameters of
the system under control is important in obtaining a good control strategy.

The concept of active learning, which is introduced and developed in this
study, is most important for these problems. Some of the problems that might

benefit from the application of the dual control theory are listed below.,

(1) Automatic Landing System ~- The objective here is to bring a plane,

approaching a land base, t~ land safely as quickly &s possible.
This requires knowledge of the position, velocity, and acceleration
of the plane, as well as some unknown parameters (perhaps due to
battle damage, imperfect preflight adjustment of the autopilot

sensitivities, component degradation) in order to perfurm a safe

landing.

(2) Interplanetary Missions -~ Here, learning of the unknown environmental

parameters is needed for controlling the vehicle.

(3) Low Altitude Missions -- In the final stage of a low altitude mission,

an aircraft might want to fly higher to gain information; on the other
hand it will be more exposed to enemy detection. In this situation,
a tradecff between gaining information and safety of alrcraft exists

and must be regulated.
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Homing Interception -~ A homing interceptor equipped with a con-
formal array of an on-board radar is described in Fig. 6.1. From
the figure, it can be seen that there are larger measurement errors
for the head-on line-~of sight, After collecting information about
the position, velocity, and acceleration of a target from the on~-
board radar, the homing interceptor is to guide itself attempting
to intercept the target, Thus starting toward a target with
uncertain position and velocity, the interceptor must follow some
trajectory that will perform active learning in order to increase

the probability of successful intercept.

6.2 TFuture Research

The results obtained in the initial effort toward the "practical

stochastic control theory open up new areas for future research where the

concept of actively adaptive control should play a central role. These new

areas are outlined below.

(1)

(2)

Improvement of Present Solution Procedure -- The method deviloped

in this study is still not practical for some classes of problems
where the dimensionality of the state and control vectors is large.
Efforts should be spent in modifying and improving the present
method so that it becomes tractable for a much larger class of
problems. The approach would be to study carefully the present
method and use it as a refersnce in obtaining simpler algorithms

which retain the active learning feature.

Free Eud-Time Problemg ~~ Only fixed end-time problems have been

considered in the present study. But in many practical situations,
e.g., interception and soft landing, the final time is not pre-
specified but is chosen in some optimum manner. Therefore, after
having gained understanding on the {ixed end-time, the free end-
time problem should be studied. The concepts and tools developed
in the present study can be easily extended to become applicable

to the free end-time problem.
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(3) Control and/or State Constraints Problems -- Throughout this study,
no constraints on the control and the state were assumed. But,
in actual applications, this assumption sho&ld be relaxed.
Extension of present results to this class of problems is not
straightforward but the concept of active learning will be helpful
in both formulation and method of solution for this class of
problems,

(4) Measurement Contrcl Problems ~- A large class of control problems,

not directly covered by the classical theory of stochastic control,
is the measurement control problem. This class of problems takes
the general form of the block diagram shown in Fig. 6.2. The
unique feature of the diagrar is the measurement control which
specifies how and when measurements are made., If the plant and
the measurement system3 are both linear and the cost is quadratic,

(k1]

Meier, et alEMB], and Kramer showed that optimum measurement
control affects only estimation and therefore, solved the problem
via the separation principle. Suchk a result corresponds to the
classical stochastic control of linear systems with quadratic
criteria, where the optimal control has only a control purpose

and the solution can be solved by the separation theorem. In

the general nonlinear situation, both the measurement control

and the plant control have the dual properties of trying to improve
estimation and control. For this reason, the problem is called the

duval measurement control.

Examples of dual measurement control problems arise in many
Air Force problem applications. Three important cases occur when
there are constraints on the total number of measurements allowed,
when there are constraints on the types of measureuents made, or
when there are costs associated with making measurements. In the
first situation, which occurs when there are only finite resources
available to meke measurements and each measurement uses up a
given amount of resource, an optimal scheduling of measurements

in real time is sought. The second eituation is illustrated by a
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radar with limited peak and average power. Within these constraints
the quality of position (range) and velocity (doppler) measurements
cca be traded off by varying the radar pulse shape. In the third
situation, a good example of measurement cost is when the use of

a radar will gain information about an enemy but will also give the
enemy information about the radar location. In this case the
information given to the enemy may be represented as a cost of
making the measurement that must be traded off with the benefits

of making those measurements,

For this class of dual measurement problems, the concept of
active learning is very important. The understanding gained in the

present study will provide a fundamental framework for future study.

Dual Control and Input Design for Identification--This study

was concerned with the controlling of a system where learning of
parameters is only an indirect objective. Part II of this con-

[

controlling is only an indirect objective. Therefore, these two

tract, M5] is concerned with learning unknown parameters where

separate problems are actually two faces of the same problem. It

would be of interest to investigate the interrelation of these two

problems.
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VII. PUBLICATIONS UNDER THIS CONTRACT

The following publications are results from Part I of this contract.
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(1) "Dual Control of Stochastic Nonlinear Systems," by E. Tse,
L L. Meier, and Y. Bar-Shalom (1971 IEEE Decision and Control
Conference, Miami Beach, Floridsa).

X
w

Abstract

In stochastic control of nonlinear systems, estimation

and control are dependent--the control, in addition to its

B R L T V. P NGRS P YV VPR SN I

effect on the state of the system, affects the estimation
performance. A method for obtaining a dual control sequence
is discussed that leads to a one-step optimization problem

5 o
|2 g S

and a centrol strategy called the one-step dual control.

An example problem is used to indicate the performance im- |
provement when using the one-step dual control instead of

the separation control policy.

(2) "On the Dual Control of Stochastic Discrete-Time Systems,"
by E. Tse, A. J. Tether, Y. Bar-Shalom, and L. Meler (Fifth
International Hawaii Conference on Systems Science, Honolulu,

January 1972).

Abstract

The dual nature of the control for stochastic nonlinear
systems is stressed in formulating a stochastic control problem.
Two methods for obtaining dual control sequence are discussed.
The first method is the off-line optimal nominal selection,
the second is called the one-step optimal dual control. An
example is given which indicates that the one-step optimal dual
control has great improvement over the control strategy obtained

by imposing separation.
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"Wide-Sense Adaptive Dual Control of Stochastic Nonlinear
Systems," by E. Tse, Y. Bar-Shalom and L. Meier (to appear
in IEEE Trans. on Automatic Control).

Abstract

A new approach is presented for the problem of stochastic
control of nonlinear systems., It is well known that, except for
the Linear-Quadratic problem, the optimal stothastic contrcller
cannot be obtained in practice. In general it is the curse of
dimensionality which makes the strict applicatior of the principle
of optimality infeasible. The two subproblems of stochastic
control, estimation and control property, are except for the
Linear~Quadratic case intercoupled. As pointed out by Feldbaum,
in addition to its effects on the state of the system, the control
also affects the estimation performance. In this paper, the
stochastic control problem is formulated such that this dual property
of the control appears explicitly., The resulting centrol sequence
exhibits the closed-loop property: it takes into account the past
observations and zlso the future observation program. Thus in
addition to being adaptive, this control also plans its future learning
according to the control objective. Some preliminary simulation results

illustrate these properties of the control,

"An Actively Adaptive Control for Linear Systems with Random
Parameters via the Dual Control Approach," by E. Tse and

Y. Bar-Shalom (submitted to 1972 IEEE Decision and Control
Conference; also to be reviewed for IEEE Transactions on
Automatic Control)

Abstract
The problem of controlling a linear system with random
parameters is being considered. An algorithm is obtained which
seems to be appropriate in computational feasiblity for this
class of problems. The algorithm possesses active learning
characteristics in the sense that it regulates its adaptation
(learning) in an optimum manner. Simulation studies are carried

out in terms of two third-order examples. The example problems
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provide additional insight into the active learning characteristic
as coupared to the passive learning possessed by certainty equiva-

lence and many other suboptimal algorithms.

The following publications are supported partially .y this contract.

(1) "Parallel Computation of the Conditional Mean State Estimate for
Nonlinear Systems," by E. Tse (The Second Symposium on Nonlinear
Estimation Theory, San Diego, 1971).

Abstract

This paper discusses an approach fo» approximating the

conditional mean state estimate for nonlinear systems. 7The
approach is motivated by realizing that some recent advances

in computer organization, in particular parallel processing,
; could be used to reduce the computation time if the problem

¥y is appropriately formulated. It is shown how the estimation

problem can be formulated properly so that this advantage can

N

3 ¥
g ’ be utilized. Specific approximation methods are described in

some detsil.

podl st

(2) "Modal Trajectory Estimation and Parallel Computers," by
3 R. E. Larson and E. Tse (The Second Symposium on Nonlinear
Estimation Theory, San Diego, 1971).

Abstract

For nonlinear estimation, different estimation methods

3 F SR AT e

are appropriate depending on the estimation criterion being
used; and different sufficient information statistics must
be updated and stored in real time., For modal trajectory
state estimation, i.e., estimation of the maximum likelihood
trajectory in state space, the problem can be solved using
the idea of dynamic programming; in this case the cptimal

return function serves as the sufficient statistic. Since

there are a number of parallel operations that occur in the
evaluation of the dynamic programming recursive formula, the
the use of a parallel computer could grestly reduce the com-

F puter time and memory required for obtaining the modal trajectory
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estimate. The purpose of this paper is to discuss the
modal trajectory estimation method and how various algorithms
for implementing dynamic programming in a parallel processor

can be used to reduce the computational burden.

"The Third Order Extended Kalman Filter," by L. Meier (The
Second Symposium on Nonlinear Estimation Theory, San Diego,

1971)

Abstract

The Extended Kalman Filter accurate to the third order
about a nominal is derived and compared to the extended
Kalman filter accurate to second order. It is found that
to be accurate to third order the covariance equation must
b¢ solved in real time; whereas for second order accuracy

it may be solved a priori.

"Parallel Computation of the Modal Trajectory Estimate,"
by R. E, Larson and E. Tse (Fifth International Hawaii

Conference on Systems Science, Honolulu, January 1972),

Abstract

For modal tr-jectory state estimation, i.e., estimation
of the maximum likelihood trajectory in state spa