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ABgrTeacT

\‘An experimental and analytical program was conducted as a step in a systematic
engineering parametric study to establish the necessary engineering criteria for the
prediction and prevention of flow decay in operational nitrogen tetroxide systems.
Tests were made with both green and red-brown nitrogen tetroxide over ranges of secven
initial propellant temperature, temperature drop beforc rcaching
the test section, time during which the temperature drop is imposed, filter pore size,
local velocity through the filter, total volume per unit filter area of propellant
passing through the filter during a test, and iron saturation condition. .

Flow decay was observed under some test conditions and was absent under other
The raies of decay ranged up to 2.8 %/min, although the mean rate was
about 0.5 %/min for all tests in which any significant flow decay occurred.

It was possible to deduce information about the effects of these eight maijor in-
However, it was found that the effects of these
parameters are generally not simple or independent of each other; they exhibit many
In addition, there are often threshuld effects for flow decay (i.e.,
an identifiable boundary between a range of variables for which no flow decay occurs
and a range for which flow decay occurs at varying rates). These thresholds are not
sharp, and further depend upon the interactions of the independent variables.

dependent variables on flow decay.
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FOREWORD

The research reported herein was sponsored by the Air Force Rocket
| Propulsion Laboratory, Director of Laboratories, Edwards Air Force
f Base, California, under Contract F04611-71-C-0034, The monitoring

agency was LKDP; the contract monitors were Capt. A. McPeak and
Lt. J. J. Bon.

This program was conducted by members of Chemical and Material
Sciencies, Rocketdyne Advanced Programs Department. Dr. E. A,

i Lawton served as Program Manager, and Mr. M. T. Constantine and

1 Dr. R. C. Mitchell served as Responsible Scientists. The technical

f efforts were performed by Dr. R, C. Mitchell, Messrs. J. V. Lecce
and K. W. Fertig, Drs. R. I. Wagner and J. Hon, and Mr. M. Robertson.

This report contains no classified data abstracted from other re-
ports. It has been assigned the Rocketdyne Report No. R-8950,

This report has been reviewed and is approved.

.

J. J. Bon, 1lst Lt, USAF
Project Engineer
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ABSTRACT

An experimental and analytical program was conducted as a step in a syste-
matic engineering parametric study to establish the necessary engineering
criteria for the prediction and prevention of flow decay in operational
nitrogen tetroxide systems. Tests were made with both green and red-brown
nitrogen tetroxide over ranges of seven other parameters: initial propel-
lant temperature, temperature drop before Teaching the test section, time
during which the temperature drop is imposed, filter pore size, local velo-
city through the filter, total volume per unit filter area of propellant
passing through the filter during a test, and iron saturation condition.

Flow decay was observed under some test conditions and was absent under
other conditions. The rates of decay ranged up to 2.8 %/min, although the
mean rate was about 0.5 %/min for all tests in which any significant flow
decay occurred.

It was possible to deduce information about the effects of these eight major
independent variables on flow decay. However, it was found that the effects
of these parameters are generally not simple or independent of each cther;
they exhibit many interactions. In addition, there arc often threshold ef-
fects for flow decay (i.e., an identifiable boundary between a range of
variables for which no flow decay occurs and a range ror which flow decay
occurs at varying rates). These thresholds are not sharp, and further de-
pend upon the interactions of the indeperndent variables.
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NOMENCLATURE

Filter area

Free area of filter available for flow

Discharge coefficient (defined by Eq. 8)

Filter nominal pore size 7

Pressure drop across the filter, psi

Calibratidn value of H (i.e., for a clean filter), psi
Constant in Eq. 3

Flow decay parameter defined by Eq. 11, gal./sq in.

Flow decay parameter defined by Eq. 10, gal./cq in.

Constant in Eq. 3

Flowrate, gal./min

Calibration flowrate (i.e., for a clean filter), gal./min

Best estimate of the value of Q2 (i.e., flowrate at time t2) if
H2 = H1

Reynolds Number fcr filter, DQp/Au

Time, min

Temperature, F

Initial propellant temperature, F

Temperature drop (To minus temperature at test section during
flow), F

Vlz/A (total amount of propellant per unit filter areaz which has
passed through the filter), gal./sq in.

Volume of N204 flowing through filter between ty and t,, gal.
1 - Q/Q*, fractional drop in flowrate between the cleun filter
case and the case of interest

1 - Qé/Ql, fractional flow decay at constant H

General random variable

X/(ty - ty)

(Wz - Wl)/(t2 - t1)
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GREEK .j
£ Random error term 1
u Viscosity ;
|
ui Mean value of the ith variable; true value of the outcome of the |
ith experiment f
o] Density i
Standard deviation
P!
LITERAL

cov(a,b) Covariance of a and b i

E(y) Expected value of y

GB Two-level variable with assigned values of 1 when green N204 is

used and -1 when red-brown N204 is used

RL Two-level variable with assigned values of 1 for rapid cooldown ;
and -1 for long cooldown

SAT Two-level variable with assigned values of ) for N204 which is .
doped with iron pentacarbonyl to ensure iron saturation, and -1
for N204 tested as received

var(a) Variance of a i

SUBSCRIPTS

o Initial value, at t = 0 as with clean filter ]
Value at time t,

2 Value at time tz (t2 > tl) {

[



INTRODUCTION

The phenomenon of flow decay is defined as a spontaneous decrease in the flow-
rate through a constant pressure flow system. Flow decay in nitrogen tetrox-
ide systems is a function of the in situ formation of solid or gel-like mate-
rials that can obstruct the flow through valves, filters, orifices, or any
other flow element with a constriction of small size. There are several
ferric nitrate derivatives which can be deposited to produce flow decay, such
as nitrosyl tetranitratoferrate, NOFe(NO;),, and partially hydrated or hy-
drolyzed ferric nitrates, Fe(NO3)3.h(0H)y, . xH20. These materials are solu-
ble in nitrogen tetroxide at levels of the order of a few parts per million
(as irnn). While there are many factors which can influence the corrosion
processes that produce these compounds in solution, the extensive exposure

of all nitrogen tetroxide to iron during the manufacturing and shipping proc-
esses can be expected to form these materials in approximately equilibrium
amounts.

Rocketdyne has conducted a number of previous investigations of aspects of
flow decay, beginning in 1964 (Ref. 1 through 4). Laboratory investigations
and observations of flow decay in field systems have also been made by a num-
ber of other companies and agencies. A useful summary of past work is given
in Ref. 5. The previous studies have provided some understanding of the
underlying mechanisms and many of the important parameters affecting nitrogen
tetroxide flow decay. However, in general, they have not provided informa-
tion that could permit prediction of the occurrence or absence of flow dccay.
The fulfillment of tins technology void would provide the basis feir cagineer-
ing control of this potential system failure mode through Jciinition of re-
quired system design criteria and/or system management concepts.

This program was intended to be the initial step in a systematic engineering
parametric study to establish the necessary engineering criteria for the
prediction and prevention of flow decay in operational nitrogen tetroxide
systems. Its goals were to establish experimental techniques ard data analy-
sis techniques to give startistically reproducible nitrogen tetroxide flow
decay data, and to provide an interim guide to the gross effects of major
parameters on N-J, flow decay. A fundamental assumption underlying the pro-
gram was that anv commercial nitrogen tetroxide will have the potential of
undergoing flow decay, if suitable conditions are present during flow.
Therefore, the philcsophy was to disengage corrosion studies (i.e., varia-
bles which primarily affect the formation of iron compounds in solution) from
these investigations of deposition of flow decay material.

In this program, the first task (Phase I) was to develop a test plan to be
used in performing flow decay tests., In the second task (Phase I11), flow
techniques and apparatus developed and used in previous Rocketdyne progranms
were modified and used to perform parametric tests, following the sequential
experimental design outlined in Phase I. The third task (Phase 11I) comprised
the analysis of test results to de€ine sets of conditions under which flow
decay will or will not occur in specific system components, and to develop a
preliminary basis for establishing criteria to avoid this faiiure mode.
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FLOW DECAY TESTS

EXPERIMENTAL SYSTEM

An experimental flow bench system was built and used for study of the flow de-
cay phenomena under Contract AF04(611)-11620 (Ref. 2) and later refurbished
and modified for use under Contract F04611-68-C-0070 (Ref. 4). For the cur-
rent program, the flow bench was vefurbished again and a number of changes
were made to the system tc satisfy current requirements. Changes included in-
stallation of larger propellant tanks, an agitator in the main propellant
tank, ard improved instrumentation.

A schematic diagram of the flow system is presented in Fig. 1. The main tank,
or run tank, and the catch tanks comprise the cnd points of the N,04 flow
path. The main tank is a 10-gallon flanged spherical stainless-steel vessel
contained within a temperature-conditioned, stirred-water bath. The catch
tank indicated on the schematic is actually two S5-gallon stainless-steel
cylinders connected in parallel; no temperature control was provided for these
tanks. Both the rua and catch tanks are connected to a pressurization and
vent system which supplies gaseous nitrogen for pressurization. The pressure
control system maintains both the tank being emptied and the tanks being
filled at constant pressure auring any flow process. The controls for setting
the pressure levels are operated remotely.

All materials of construction in the flow bench are compatible with N;04. The
tanks, valves, fittings, and fluid lines are fabricated of type 304, 316, 321,
or 347 stainless steel. Valve seats and stem packings are made of either

Teflon or Kel-F. Teflon tape is used as the thread lubricant on pipe fittings.

Two paraliel test sections are provided. The flowrate is adjusted, in general,

by selecting and setting the desired run and catch tank pressures. However,
each flow path has a serw-operated, remote-control metering valve located
downstream of the test section which can be used for additional control. For
about 90 percent of the tests, this valve was kept full open. Between each
test section and the main tank is a heat exchanger. The heat exchangers con-
sist of a length of 1/4-inch stainless-steel tubing in an open water bath.
Each heat exchanger bath is agitated and the temperature is held constant by
operating an on-off valve that controls the flov. of coolant water from a re-
frigeration bath. A standpipe returns the over.low from the heat exchanger
bath to the refrigeration bath. Ball valves are provided to route the pro-
pellant flow through the heat exchangers or arounl them before entering the
test sections. Also, bail valves are provided to select either the run

tank standpipe outlet port or the bottom outlet port, depending on whether
the run was a rapid cooldown test or a long or slow cooldown test,
respectively,

Aftev vompleting a run, propellant can be discharged to a waste storage tank
or recycled to the main tank through a bypass line that can be filtered or
not, as desired. In this program, the recycled propellant was never fil-
tered. A 40-micron filter was installed in the system feed line to filter all

new propellant coming into the flow bench from the storage cylinders (see
Fig. 1)
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The test sections consisted of small stainless filters of the woven-

wire type. These filters are commercially available units obtained from
Western Filter Company, Inc., Los Angeles (basic part number 19310). A spe-
cial feature of this filter is that it can be ="'‘'ed to or removed from the

1 E system with minor effort, Thus, it was parti¢ ly suited to the needs of
¢ this program. With the exception of cne filt e (a SO0-mesh wire screen),
4 all the filters used in this program were in ti. ucron range. The filter
{ sizes used are listed below:
}
E M. cron Rating
E Size, microns Nominal(a) Absolute(b)

. 2 2 10

et 5 s 15
; 10 : 10 : 25

; v 40 S 40 60
' 50 mesh 280

: (395 to 98 percent of particles above
: this size are removed

t (b)IOO percent of particles above this
size are removed

: INSTRUMENTATION

Nitrogen tetroxide flowrates were measured in each of the parallel test sec-
tions by Fischer-Porter, radio-frequency-type turbine flowmeters. Propel-
lant temperatures were measured in the main tank and in the line between
the heat exchanger outlets and the test sections {as shown in Fig.l ) by
iron-constantan thermocouples and a Pace 150-degree veference junction.
Also, thermocouples were installed in the main tank bath and both heat ex-
changer baths to assist in setting the desired test conditions. Pressures in
the main and catch tanks were determined with Taber pressure transducers.
Pressure drops across the test sections were measured with Data Sensor differ-
i ential pressure transducers. These flowrates, temperatures, and pressures
i were recorded on five Hewlett-Packard Mosely dual-pen strip chart recorders.
Through use of selector switches, heat exchanger bath temperatures could be
read on the recorder used for indicating propellant line temperature, but
were not recorded during the actual test runs.

. a— e

TEST PLAN

gy e L ae e

A test plan was developed and approved by the Air Force Prcject Officer be-
fore the experimental work was started. It was designed as a sequential
plan to: (1) incorporate features to minimize the required number of tests,
(2) take into consideration the changeover time between subsequent tests,
and (3) allow flexibility in investigating problem areas as they would be
identified during the test program.

i g

f The major independent variables to be controlled and measured were: propel-
lant composition, test section hardware, iniilal propellant tempcraturc,
temperature drop before reaching the test section, time during which the

4
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temperature drop is imposed, initial flowrate, and saturation condition
(i.e., whether the Ny04 was used as received, or doped with a small amount

of iron pentacarbonyl to ensure iron saturation). A large matrix of poten-
tial tests was prepared with a preliminary selection of the combinations of
test conditions and order in which test sets would be conducted., However, it
was recognized at the outset that: (1) the conditions for the test sets to be
made, (2) the number of tests within each test set that would be required to
obtain the necessary information (including replications to help resolve
complex and unusual behavior), and (3) the order of test sets would differ
somewhat from those given in the matrix as a result of sequential decisions
{based on information from earlier tests) which would be made during the
actual test program. This preliminary test plan outlined many more poten-

tial tests than realistic estimates would predict could be performed during ]
the program; best efforts were made to make as many of these tests as
possible.

bt daley

During the program, tests were made with variations of all seven of the major
independent variables originally selected. These variables, and the levels

or ranges of values employed are summarized in Table I. g
TABLE I. [INDEPENDENT VARIABLES IN EXPERIMENTAL TESTS
~ Variable Number of Levels Range of Values )
N,0, Composition. 2 Green and red-brown 1
Test Section Hardware 7 2-micron through 50-mesh o
, filters
Initial Propellant 3 50, 75, and 100
: Temperature, F y
' Temperature Drop, F 7 0 through 34 |
) ' (approximate)
; 1
] Time for Temperature 2 Short (during fiow) and long
f Drop (approximately 2 days)
k
b Initial Flowrate, gpm 5 0.14 to approximately 0.5
: approximate) b
[ Saturation Condition 2 As received, or doped with a 3
[ small amount of iron {
entacarbonyl
| P b4

OPERATING PROCEDURE

The run tank was charged with nitrogen tetroxide from the appropriate storage
cylinder, through a 40-micron filter in the fill line.

For certain test series, 2 contractual requirement was to use propellant
saturated with flow decay material. To ensure that saturated conditions ex-
isted, a small quantity (an amount corresponding to ''onc saturation dose' of
iron using the approximate solubility data trom Ref. 6) of iron pentacaroponyl
was reacted with the nitrogen tetroxide in the run tank to form nitrosyl
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tetranitratoferrate, the flow decay compound. The iron pentacarbony!l was
placed in a microliter syringe with a 24-inch long needle and injected
directly into the run tank. A septum and ball valve arrangement was de-
signed and mounted on the top flange of the run tank for this purpose. The
tank contents were agitated during this addition.

8oth long and rapid cooldown tests were conducted in this program. In the
"rapid" cooldown tests, the propellant was allowed to stand in the run tank
for a minimum of 2 hours at a given initial temperature, T , before a test
was started. The main tank agitator was turned on periodically to help equal-
ize the temperature. The heat exchanger baths were then adjusted to the de-
sired temperature. Final prerun preparations consisted of setting the ball
valves in the flow system to achieve the desired flow path. If the propel-
lant was to be subjected to a temperature drop before entering the test sec-
tion, it was flowed through the heat exchanger where it would undergo rapid
cooldown. If the propellant was bypassed around the heat exchanger, i.e.,
no temperature drop was imposed, the run would be a zero temperature drop
test buc still a part of the rapid cooldown test series.

For the long (or slow) cooldown tests, new propellant was transferred from
the storage cylinder to the flow bench and allowed to stand at a selected
starting temperature, T_, for at least 2 hours. Then the propellant was
cooled slowly over a period of about 48 hours to recult in the desired tem-
perature drop. The propellant was maintained at the final temperature for
at least 2 hours to ensure that temperature equilibration was reached. The
run was then conducted with the prapellant undergoing no further temperaturc
changes before entering the test section.

To begin a run, the main tank was pressurized to the selected level with gas-
eous nitrogen. The catch tank was then pressurized and the vent regulator
was set to the proper pressure. Flow was started by activatirg the remote-
operated ball valve at the catch tank inlet. Flowrates through the test sec-
tions were adjusted as necessary by making changes to the vent regulator
pressure setting and/or the main tank pressure setting. With the exception
of a few runs (i.e., runs with very low flowrates) the metering valves were
wide open. In most cases, runs or a series of runs were car-ied to provel-
lant depletion. At this point, the propellant was either returned to the
main tank through the bypass line, or dumped in a waste storage container.

NITROGEN TETROXIDE COMPOSITIONS

Two types of nitrogen tetroxide, red-brown and green, were used in this pro-
gram. A standard nitrogen tetroxide, l-ton shipping container was emptied,
cleaned, and sent to the Western Test Range (WTR) and another to the Eastern
Test Range (ETR) to be filled with 10C gallons each of red-brown N, O, and
green N,O,, respectively. A sampling system was designed, assemblé&d, and
used to take samples for chemical analysis from each of the two propellant
supply tanks after they were returned. These samples were analyzed by
Rocketdyne using conventional ''wet' techniques (per specification MIL-P-
26539C, and in some cases MIL-P-26539B) except for the water analyses, which
utilized nuclear magnetic resonance ("H nmr) techniques with N304~H20 stan-
dards carefully prepared and sealed in precision nmr tubes during an earlier
Rocketdyne program.
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Information also was obtained from ETR and WTR on their chemical analyses of P
the propellant sources from which the propellants shipped to Rocketdyne were ‘
taken. Information from WTR showed that the N204 in the ready storage

vehicle (RSV) used for the 2 June 1971 filling of Rocketdyne's supply tank

was loaded on 20 and 21 August 1970. The WTR chemical analysis results were

obtained for a sample taken from the RSV on 1 June 1971. Results of chemi-

cal analysis were received from ETR for a propellant sample taken from the

RSV used to fill the supply tank used in this program. The ETR sample was

taken on 19 April 1971, which is reasonably close to the time (17 June 1971)

that the supply tank was filled. The results of these chemical analyses are

sumnarized in Table II.

TABLE II. CHEMICAL ANALYSIS OF NITROGEN TETROXIDE USED FOR TESTS

J it auitad st A lete 4

Component Red-Brown N,0,, wt. % Green N,0,, wt. % i
NO - 0.54(® 0,630
H,0 0.048(® 0,055 0.0608)  9.10(%)
| N,0, assay 99,9 (1) 99.4(®) | g9 o(¢) ‘
NOC1 - 0.03(), 0.02(¢) |
}
(a)Rocketdyne analyses; (b)WTR Znaiyses; (C)ETR analyses ]
It can be seen that there is fairly good agreement between results of the 1
various analyses.

There was some coicern about the implications of the low NO concentration
: measured for the green NpO4 relati-ve to the lower limit of the current MIL
! specification (0.60 wt. %). ETR ubtained an NO content of 0.63 wt. % com-
pared to 0.54 wt. % obtained by Rocketdyne. The two analyses were made
within a short interval of time and therefore both can be considered appli-
cable analyses. An average of the two points gives a value of 0.59 wt, %
which is approximately equal to the lower limit of the current MIL specifi-
cation. All of the other component concentrations are within the MIL-P-
26539C limits.
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EXPERIMENTAL RESULTS AND ANALYSIS
DERIVED FLOW DECAY PARAMETERS

The ideal experiment to measure flow decay would hold the driving force (pres-
sure differential) across the test section exactly constant. Unfortunately,
this would be extremely difficult. In this program, the main tank and catch
tank pressures were controlled during a run at constant levels (as discussed
in the Flow Decay Test section), within the operating band of the pressure
regulators. The net effect on pressure drop across the test section (H),

the resistance across the test section increased (i.e., flcw decay was occur-
ring) could cause H to decrease, remain constant, or increase. This possible
range in trend is a result of the complex interaction of several factors:

the actual increase in resistance across the test section caused by deposi-
tion of flow decay material; changes in the pressure drop in the remainder of
the flow system, as the flowrate changes; and fluctuations in main tank and
catch tank pressures, within the normal operating bands.

These relationships are partly illustrated in Fig., 2. ‘The lowest of the
three curves is the calibration curve (corresponding to a completely clean
filter) and was generallvy known from the calibration measurements at the
beginning of a run. Points 1 and 2 represent values of Q and H measured at
two times during a run. In this case, Hp is shown as greater than H;, al-
though this is not always true (as discussed in the previous paragraph). The
two dashed curves through Points 1 and 2 represent the hydraulic character-
istic curves for the filter with the degree of clogging pres~nt at each time
but, since it is not possible to "freeze" the filter at a given point, it is
not possible to determine these two curves experimentally.

Several methods and parameters were considered to reduce the basic experimen-
tal data to & common basis, in order to permit direct comparisons between
runs and for use in correlation analyses. The final choice, and most mean-
ingful parameters to characterize the amount and rate of {low decay are de-
fined as

Q- Q
Y=g (
1
L (2)
2 1

where t) and t; are times corresponding to Points 1 and 2 during a run, Q
is the measured flowrate at time t,, and Q,' is the best estimate of the
value of Q2 if H were held constant at the value H; (i.e.. Point a in

Fig. 2). Therefoure, Y is the best estimate of the rate of fractional de-
crease in flow that would occur if the driving force across the test section
remained exactly constant during a test.

Each filter tect section, with the axception of those used on Rims 1 through
39 and 160 through 165, was {'aw calibrated with N204 to be used in that
particular test series. These sets of calibration data points were fitted
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very well by the equation

e = k(Qn)" (3)
where the value of n for various filters was very consistent and appro;imately
equal to 2. The value of k did vary among the different filters. Typ1cg1
pressure drop versus flowrate calibration curses for several different f11tcr
test sections are shown in Fig. 3. In Fig. 3, to distinguish between filters
having the same nominal pore size but different filter areas, the letter "H"
or "F" was added to the micron rating.

It is assumed that Eq. 3 also represents hydraulic characteristic curves for
partly clogged filters, with n still equal to 2, but with different values
of k. Equ “ion 1 can then be written as

X 1 Q2<H1>1/2 (4)
Ql H2

v e —— S Py e F ey

This equation was used to reduce the experimental data to a common basis.

Another parameter that is of some value in analyzing flow decay data was de-
fined as
W = 975;12 (5)

and represents the flowrate defect, or fractional drop in fleowrate between the
new filter case and the point of interest. Values of W at various stages in
a filter's history can be compared, e.g.

Wy - W,
e (6)
2 1
It can be shown that Y and Z are related approximately by the expression
2=y .
& = Q——* 7)

1

A third parameter was derived for use in examining the experimental flow decay
1 data, as outlined below. The flowrate can be expressed in terms of a dis-
charge coefficient, C, and the filter area, A, as

_ H
Q = CAY/ 5 (8)

The discharge coefficient will increase as the rilter becomes partly clogged,
and is a function of many variables that influence the deposition of flow
decay material, including a filter Reynolds Number, which can be defined as

.. Db
o - )

If it is assumed that C is propcrtional to the free filter area, Af, (i.e.,
total area of openings available for flow)} at any time. and that the amount

of effective free filter area that is clogged by flow decay material (if at
all) is proportional to the quantity of N,04 per unit filter area that has
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flowed through the filter, then the following equations can be developed

L t
C t
1 - 2— = — Q(t)dt (10)
c.zf
c, -C t
1 2 L [2
— = K[ Q(t)dt (11)
(o) tl
S A 2
L =7 C (12)
12 0

where Eq. 11 and 12 apply for constant H (i.e., C_is the same for both t
and ty) and V, is the total volume of N,0 passigg through the filter be-
tween time t) and time t;. Combining Eq. g and 12, plus defining Qo as the
new filter (i.e., calibration) flowrate results in

- L]
_ A Ql QZ
L = Vv Q* (13)
12
It can be shown that X and L are related approximately by the expression

L 2AX
=P, - -0

(14)

ANALYSIS OF EXPERIMENTAL ERROR

Only a small amount of flow decay occurs with the tvpe of filters and condi-
tions being used in these tcsts; therefore, a number of experimental error
analyses were made to provide guidance in the data reduction work. After con-
sidering both the precision of various experimental measurements and the
precision associated with each of several techniques for extracting numbers
from the recorder charts, it was possible to choose a convenient technique
giving an acceptable precision in the final data values (i.e., flowrate and
pressure drop across the test section plus corresponding values from the
filter calibration curves at various times during a run)., The error analy-
sis techriques and results are outlined in the following paragraphs.

A group of n experiments is considered in which uj represents the true value
of the outcome of the ith experiment. It is recognized that there is experi-
mental error at each step and thus the observed values correspond to a ran-
dom variable y; such that

in which €; is the random error term, It is assumed that the e, are all in-
dependent and have expected value zero. If it is further assumed that they

12
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are normally distributed, then a S5 percent confidence interval on u, is

Y. *1.96 g, (15)
1 i
where oi is the standard deviation of Yi {(and hence of ei), i.e.,

2
J.
1

2
N = . - I's ) -
var(y,j = E(y; - E{y¥))

= E(Giz)

Thus, knowing the variance of y; allows establishment of error bounds on the
experimental outcome.

In the current situation, y; is a function of several independent variables.
Dropping the subscript i for convenience, this can be written as

y = f(vy,oov)

where v ,...,v, are the values of the independent variables (recorder chart
readings, for example), and which are subject to experimental errors. In
general, the moments of y (mean and variance) are functions of the moments of
the v;. Computing these moments can be a very arduous task unless f is ex-
treme{y simple. In many cases, this can not be done in closed form; there-
fore, it may be necessary to resort to numerical integration or possibly the
use of Monte-Carlo techniques.

m

However, if the variances of the v; are small, approximate moments of y can
be computed by expanding f in a generalized Taylor's series about the means
of the Vi Thus, ‘a first-order approximation to y is given by

m

‘ ' of
y = f(uy,..oom ) + & o= (x, - k)
1 n j=1 B\j j 3
where the uj are the means of Vj
E(v.) = u
LVJ)
It follows that
. moof
E(y) = £(u, u) + T == E(v, - u.)
., 9V, j j
=l 77
= (U, ) (i6)
' 2
var(y) = E(y - E(y))
m 2.
of
= E[ z = (v, - u.)]
n n
af af
s I T E(v, - u,)(v, - u,) (17)
R=1 j=1 Vg vy L TR
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If it is assumed that v, is independent from vy, then,

]
2 0 .
g. =
E ) ‘ ? J
V, = U V, =~ U.) = |

Therefore, the final result is

K
4
¢
H
j
?
!
]
3
:
{

m
var(y) = & (3—) cj7 (18)
j=1 J

Comparing Eq. "3 with Eq. 15, it can be seen that the problem of determining
a confidence interval for the experimental outcome has been reduced to esti-
mating the variances of the independent variables.

R L it ity

Equation 18 wa:z evaluated with X as the dependent variahle (i.e., ¥ = X) and
using the expression in Eq. 4 to define f. The final evaluation of this

: equation was made with the following values for the means and variances of

L the experimental variables.

Independent
Variable (vj)

Nominal
Mean Value

Estimated
Variance (oj )

Q, and Q

H1 and Hz

0.25 gpm

7 psia

tl - t2 10 minutes --

t t

‘ 1 and tz --

The estimated maximum experimental error (95% level) in each case is two
times the square root of the estimated variance. With these values, and
using Eq. 18, the estimated standard deviation of X is 0.0035 (i.e., a
change of 0.35% in flow). This estimated value is essentially independent
of the time interval (tp - t;) because of the small experimental error in
measuring time. This value was then used in various statistical tests ap-
plied to the data to determine whether flow decay occurred or not. For ex-
ample, experimental runs for which the values of X are greater than 1.282 ¢
(i.e., 0.0045) can be said to represent cases of flow decay (X > 0) at the
90 percent confidence level. This value of 1.282 o is the deviation from
the mean corresponding to a confidence level of 90 percent for a one-sided
test (normal distribution).

e
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DATA REDUCTION AND DERIVED RESULTS

o sy

Values of Q and H were taken from the recorded traces for each run at several

i times: (1) as near to the beginning of the run as practical, (2) at the end
é of the run, and (3) at one or more intermediate times, especially inc!

vedd e -
“aay ancsusny

any inflection points within a run. Generally, the slopes of the Q and H
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traces were fairly constant for at least several minutes at a time. A r.m-
puter program was written and used to calculate values of various paramecers
(X, Y, Zy, 25, W, V, L, Re) for each significant time interval within each
run. A comp{ete set of this computer output js given in the Appendix. These
derived results were then used with a variety of techniques to organize,
generalize, and correlate the data,

One of the first efforts in crganizing the derived results was to develop a
large matrix showing a brief indication of the results of each experimenta!
run. A summary of results for all the flow decay tests conducted in this pro-
gram is given in Tables III, IV, and V. The test conditions for the runs are
given along the side and top of each table and are for the most part self-
explanatory. 1o differentiate between filters having the same pore si:ze but
different filter areas, the letter "H'" or "F" is added to the pore si:ze
rating. The temperatures listed are nominal values; the actual values for
each run are given in Appendix A.

Each box in these tables contains information about the tests chat were run
under the conditions represented by the values of the seven independent
variables corresponding to that particular box. The first number (or group
of numbers) in each box is the test run number(s). The second entry is a
simplifisd indication of whether or not that particular run produced flow
decay. The word '"yes" indicates that the values of X and Y were high enough
to indicate that flow decay occurred (i.e., to reject the hypothesis that

X and Y are equal to zero) at the 90 percent level of confidence. The

error analysis and estimated standard deviation of X and Y as outlined in
the Analysis of Experimental Errcr scction were used to establish the accep-
tance region for the above test at the 90 percent level of confidence. The
word '"'no" is given as the second entry in a tox if the value of Y is low
enough to indicate that no significant flcw decay occurred (for this purpose,
the minimum level of significant flow decay was defined to be Y = 0.05 %/min)
at the 90 percent level of confidence. The abbreviation "Unr" is given if
the values of X and Y do not permit placing the result in one of the first
two categories. The third entry in each box is the value (or range of
values) or Y, in %/min. In some instances, where two or more runs were made
under a given set of test conditions, some runs did and other runs did not
exhibit flow decay. In these instances, the table box is divided into two
or three sections and the appropriate information is given for each group

of tests in the format described above.

. There are many observations that can be made and conclusions that can be

' drawn from Tables III, IV, and V. Many of thess are ingcorporated in the con-

: clusions and discussions of the effects of the independent variables, which

! are given in the remaining sections of this report. However, several re-

v sults should be noted at this point, including the following. There were
no cases of validated flow decay with filters as coarse as 4U-micron.
(This was also true for 50-mesh.,) There were five runs (numbers 1, 3, 4,
10, and 167) in which the results, considered without the other experimental
results, would indicate valid flow decay. Houwever, in each of these cases,
there are other, more compelling reasons to conclude that true flow decay
will not occur under those conditions. For each of these five anomalous
runs. there are much larger numbers of data pointe at the same conditions
{and others with, e.g., higher temperature drops and, smaller filter pore

15
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sizes) for vhich flow decay was not present. Therefore, it is judged valid
to conclude that flow decay will not occur under any of the conditions tested
with filters of nominal pore size &t least as large as 40 microns.

she .S

There are other trends that can be observed merely from examination of these
tables. The incidence of flow decay (and the rate of decay) is increased

by increasing the temperature drop and by decreasing the filter pore size,
Although some additional trends may be suspected from examination of these
tables, caution should be exercised since the situation is more complex than
it may appear at fiist. There are other independent variables that are not
explicitly listed in Tables TII through V. These include initial flowrate
(which was measured, but is not shown in these tables) and the "history
parameter,' V, which expresses the total amount of propellant per unit filter
area which has passed through the filter. Another complexity arises because
there appear to be many intevactions among the various independent variables.

. e -+

L T TR Y, T TR TR ST Gatiiiidl e diedha

Part of the project was devoted to going beyond the yes-no level of informa-
. tion about the .incidence of flow decay, and to perform correlations to es-
P -tablish at least a preliminary basis for representing the amount of flow de-
cay that occurred under various experimental conditions. Because of the
large number of independent variables and complexity of the flow decay phen-
omenon, it was necessary to rely on other statistical plus multiple regres-
sion analyses. These are described in the next section.

e

MULTIPLE REGRESSION ANALYSIS

Multiple regression techniques were used to analyze the data. This type of

analysis provides - onvenient tool to determine if various independent
- variables have a 1t effect on the outcome of a test. This tech-
j nique 1is also va’ Jetecting cross effects or interactions between
7 the independent » In particular, a step-wise multiple regression
was performed, in arious combinations of the independent variables

were allowed in the .. _.:ssion, and selections were made to delete variabies
that were of low value in tne regression and to add (or retain) variables

that were of high value (i.e., contributed sigrificantly to reducing the re-
sidual sum cf squares).

e e

To provide some guidance for the regression analyses, theoretical analyses
were made of the physical processes that may be occurring during flow decay.
] However, since the actual complex mechanisms of flow decay are only partly
understood, and are generally not very amenable to analysis, it was necessary
to perform most of the regression efforts in an empirical manner. Approxi-

; mately 100 sets of step-wise multiple regression analyses were made; each
case comprised a series of approximately S5 to 50 steps in which various com-
binations of the independent variables were permitted.

W e

The nine primary independent variables considered in the regressions were:
Reymolds number (Re); nominal filter pore size (D); temperature drop (AT);
initial temperature (T ); the average flowrate per unit filter area (Q/A);

?V), which expresces the total volume of propellant

; ' per unit filter area that passed through the filter during the run; and
£
E_

the hictnry parametar

~

MetOsamaid St Ty 1

three 2-level parameters. The 2-level parameters were: (1) the type of

19




N204 (green or red-brown), (2) whether or not the propellant was doped with
a small amount of iron pentacarbonyl to ensure saturation or was tested as-
received, and (3) whether the temperature drop was imposed rapidly (during
flow) or slowly (over approximately 2 days). The two possible levels for
each of these three parameters were assigned values +1 and -1, respectively,
for use in the regression analyses. In addition to these nine primary in-
dependent variables, a large number of combinations of theses variables were
also allowed as possible independent variables.

Regression analyses were made for the total set of test data and for many
partitioned subsets of the data. There are over 1,000,000 combinations of
the nine primary variables with the nominal number of levels tested for each
during this program. Therefore, it can be readily seen that it was impor-
tant to examine the data, where possible, for subsets in which there are
fewer independent variables and hence, fewer possible combinations of condi-
tions. The subsets included such groupings as: all runs for which there

was significant flow decay; all runs with green N,04 for which there was
significant flow decay; all runs with green N,04, tested as-received, sub-
jected to a rapid temperature drop; etc. The multiple regression results for
the subsets were more useful than those for the total set of data in deducinyg
effects and interactions of the independent variables.

To demonstrate the ability of multiple regression analysis techniques to
extract information from complex data, the following simple example from the
multiple regression analyses performed during this project is discussed in
some detail. Several aralyses were performed for a partitioned subset of
the test data consisting of Runs 120 through 128 and 130 through 134. For
these runs, the filter pore size and initial temperature were held constant
at Su and S0 F, respectively. Moreover, the propellant for all runs was
red-brown N304, saturated with respect to iron, and was cooled rapidly. The
only parameters that were allowed to vary were AT, V, Q/A, and T.,. It had
heen found from previous analyses that inclusion of Re did not improve the
regression as compared with the use of Q/A and D aleune. For these particular
runs, V and Q/A were highly correlated and therefore V was also dropped as
an independent variable. It then follows that the rate of flow decay, Y,

is some function of only AT and Q/A plus experimental error. Typically in a
regression analysis, it is assumed that the dependent variable (or some
transformation of it) is normally distributed with constant variance but
with mean depending on the independent variables, i.e.,

ECY) = £(AT, Q/A) var(Y) = o2 (19)

where E = expectation and var = variance. Assuming that f is reasonably
well behaved, it can be approximated by an expansion about nominal values
of AT and Q/A. In this case, the expansion to be considered is

f (AT, Q/A) = a, + a, AT + aK(Q/A - 1.5) + a, AT(Q/A - 1.5) (20)

1
The a; are the unknown regression coefficients and are to be estimated using
the standard least sauares criterion. Under the model assunctions given.
these estimates will be optimum i the sense that they have minimum mean
squared error loss among all possible invariant estimates (lLhose estimates
invariant under change of scale or locatior. of origin). They are also mini-
mum variance estimates among all unbiased ones.
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Equation 20 car be used for several purposes. First of all, the hypothesis

H: a, =0
o i

can easily be tested against the alternatives

Hl: a, #£0, H2: a, > 0, H3: a, <0
using the standard F-statistic. The confidence at which this hypothesis can
be rejected gives a measure of the confidence with which it can be concluded
that the parameter for which a; is a coefficient has an effect upon flow
decay. The sign of the estimate of a; gives the indication of the direction
of this effect.

From the regression analysis, the estimates of the coefficients a;, a,, ag,
a4 are 0.12, 0.025, 0.093, and -0.003 respectively. The coefficient a, is
considered to represent the main effect of the variable AT (defined here as
the slope of the regression curve at the nominal values of AT and Q/A).
Since a; > 0, the regression equation predicts that a temperature drop will
tend to enhance flow decay. The standard deviation of this estimate is
given as 0.013. Thus, it can be said that this effect is real, with a high
degree of confidence; in fact, the hypothesis that aj = 0 can be rejected
at a 92 percent confidence level. Similarly, the value of az as 0.093 in-
dicates that (for AT = () the effect of Q/A is to enhance flow decay. The
confidence with which az = 0 can be rejected is again quite high (93 percent).

In this example, a cross effect between AT and Q/A was allowed through in-
clusion of the term a, AT(Q/A - 1.5). The value of -0.003 for a4 indicates
that the effect of AT is decreased as Q/A is increased. This follows from
the fact that

Y
AT = 2 Y Ay (Q/A - 1.5)

= 0,025 - 0,003 (Q/A - 1.5) (21)

Similarly, tne effect of Q/A is decreased as AT is increased. The standard
deviation of a; is 0.008. The hypothesis that a, = 0 can be rejected only
at a 28 percent level of confidence. This is quite low; therefore, caution
should be exercised in drawing any general conclusions ccncerning the ex-
istence of the negative cross effect between AT and Q/A.

A plot of the data points and regression curve predictions for this case

is given in Fig. 4. The positive Q/A effect for any given AT is seen by
noting that the family of curves all have a positive slope. The positive
AT effect is seen by noting that each curve in the family has a higher AT
indexing it than the one immediately below it. Finally, the small cross ef-
fect between AT and the Q/A variable is evidenced by the changing slope of
the three curves plotted.

Results of several of the more useful multiple regression analysis cases for
partitioned subsets of the data are given in Tables VI and VII. The case
numbers giver in these tables do not mean that these were the first 2ight
analysis cases that were run.
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For a given case, a single entry in a column of Table VI indicates tha* the
variable in that column was held fixed at the value shown for all tests in-
cluded in that subset. (Conversely, all test data for the specified condi-
tions were included in the subset.) If three numbers are given, this indi-

cates that the variable was included in the set of independent variables. The

top entry is the estimate of the regression coefficient, the second is the
estimate of its standard deviation, and the third is the level of confidence
at which the hypothesis can be rejected that the regression coefficient is
zero. For example, in Case 5, the estimate of the regression coefficient for
the variable GB is 0.41, its standard deviation is 0.07, and there is 99.9
percent confidence that this coefficient is not zero.

The value of a given coefficient can be interpreted as the effect of the
independent variable which it represents. More precisely, the effect is
the slope of the regression curve evaluated at the nominal values D = 7
microns, AT = IS F, T, = 75 F, GB = 0, SAT =0, RL =0, V =15 gal/sq in.,
and Q/A = 1.5 gal/min-sq in. (except for Case 2 for which the nominal AT
value used was zero). In some instances, there is an extra term added to
the coefficient. For example, the coefficient for AT, Case 5, is given as
0.020 -0.008 GB. This is to be interpreted as (0.020 - 0.008) = 0.012

for green NyO4 and (0.020 +« 0.008) = 0.028 for brown NyO4. Ihe estimate of
the standard deviation and confidence level apply to the 0.020 portion
only. Evaluation of the 3tandard deviation corresponding to the values
0.012 and 0.028 would involve an expression requiring the variances and
covariances of the AT and AT « GB terms, that is

o =g vg s 2cov(a,, a (22)
a 1

)
1 3 3
where a) is the coefficient of AT, a, is the coefficient of AT for GB = 1,
and a; is the coefficient of AT . GB. These computations were not per-
formed, in general,

The conclusions that were drawn from all of the regression analyses are dis-
cussed in the final subsection, Effects of Independent Variables, which fol-
lows the considerations of threshold effects.

THRESHOLD EFFECTS

It has been observed that there often appears to be a ''threshold" effect
for flow decay i.e., an identifiable boundary between a range of the varia-
bles for which no flow decay occurs and a range for which flow decay occurs
in varying amounts. Such thresholds are probably not sharp, and certainly
depend on the interactions of the indeperdent variables. Investigations

of threshold effects were made during this program. Descriptions of gen-
eral threshold behavior, techniques for deducing threshold values from the
experimental data, and examples of threshold effects are described in this
subsection.

The experimental model assumed in Ea. 19 .s capable cf describing a broad

range of real situations. Iits application, however, depends upon the
ability to characterize the functional form of E(Y) in terms of parameters
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(regression coefficients), which can be estimated from the data. In
the present situation, however, very little is known from physical grounds
concerning the behavior of flow decay as a function of the various inde-
pendent variables that have heen defined. In the example presented in
the Multiple Regression Analyses subsection, it was assumed that f is an
analytic function of its variables and hence can be .approximated by a trun-
cation of a generalized Taylor's series expansion about the nominal values
of those independent variables. This expansion was assumed to be valid
only in a region where there was positive flow decay. The reason for this
restriction is due to the possible threshold effect for flow decay. If
Y is used as the dependent variable denoting flow decay, v = (v o0V )
denotes the vector or test conditions and ¢ denotes the region of n- space
for which there is positive flow decay, then the threshold that is being
discussed is the boundary of c. In particular, the expectation of Y,
called f in Eq. 19, can be written as

) ‘0 vece

f(v) =

lgev) vec

in which g is a positive function and ¢ is the complement of c. The test
data appear to bear out the existence of the region ¢' (region of no flow
decay) and hence Eq. 23 is probably an accurate description. Clearly, f
cannot be approximated by a series expansion for all v because it is not

analytic. However, it is assumed to be continuous. This continuity assump-

tion makes it possible to estimate the boundary of c¢ from estimates of g
by finding those v such that g(v) = 0, thus the boundary of c, dc, is given
by

= {v]ig(v) = 0} (24)

It is actually the function g that is being approximated by a truncated
series expansion, The coefficients of this expansion are estimated in the
regression analysis previously discussed. Since g is only defined on c,
those points not in ¢ must be deleted from the regression analysis. The
problem here, however, is that the boundary of c is not known a priori;
therefore, it is difficult to decide on the basis of the value of a partic-
ular v whether or not that data point should be deleted from the regression
analysis. The problem is circumvented by using only those points for which
there is probable true flow decay (i.e., Y > () at a specified level of con-
fidence) and hence it is probable that v € ¢ (i.e., v is a member of the
set ¢).

Two examples of this threshold phenomenon are described. The first is Case
5 in Table VI. For this case, the initial propellant temperature was held
fixed at 75 F; the N,04 was saturated and cooled rapidly. These restric-
tions leave 14 of the orlg1na1 26 data points in this case. Of these, 2
had a filter diameter of 10 microns; the remainder had a S-micron filter.
It therefore seems useful to analyze the case for D = § microns because
this is where the highest confidence in the estimated regression curve

can be placed. The following variables are left to vary: temperature

drop (Ar), history parameter (V), and average flow per filter area (Q/A).

(23)
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The regression equation for Case S thus reduces to 5
Y = 9,035 + 0,0228 (AT - 15) + 0.0008 (AT - 15)2 - 0.0250 (Vv - 19) :
+1.526 (Q/A - 1.5) - 0.0010 (AT - 15) (V - 15) :
+ 0.0176 (AT - 15) (Q/A - 1_.5)2 (25)
where D is set equal to S microns and GB is set equal to 1 (i.e., green
N>04). Those values of AT, V, and /A for which Y in Eq. 25 is zero will
thus approximate a portion of the boundary of c when the variables take on :
the previously prescribed values. : :

In practice, however, this approximation is only valid when Eq. 25 repre-
sents a reasonably good fit of the data. Further, since the values of AT,
V, and Q/A for which Y is zero will lie outside the region for which data
was used to estimate the coefficients of Eq. 25, then extrapolation errors
’ may be introduced. Thess will be minimized for those cases in which the

! data used are ''close' to the threshold. This appears to be the case for
the present example,

Figure 5 is a plot of those data points used to estimate the regiession
curve for which the NpO4 was green and the filter diameter was 5 microns.
Further, only those peints for which AT was less than or equal to 20 F

are displayed. Also shown are representatives of the regression equations.
To avoid:constructing 1 four-dimensional graph (Y = f(AT, V, Q/A)), the
following mechanism was used to plot Y:

1. The vertical axis is the rate of flow decay, Y

2. The horizontal axis is the average flow per filter area, Q/A
3. The family of curves is .indexed by the temperature drop, AT
4

The histury parameter was mapped cnto the Q/A coordinate through
linear or quadratic mappings

Step 4 may require further comment. The line for AT - 0, e.g., is the re-
gression line which would ideally pass through both AT = 0 data points

: {triangles) in the case of a perfect curve fit. The lower AT = 0 point has
.o associated with it a V of 10.0 and a Q/A of 0.88. The upper point has a

: value of V = 26,5 and a value of Q/A = 2.01. The straight line in the V,
(/A plane given by

e ——

LT T TR

V =10.0 + 14.6 (Q/A - 0.88)

passes through these two points. The straight line labeled AT = 0 in

Fig. 5 is then obtained by substituting Eq. 26 into Eq. 25 as well as
setting AT = 0 in Eq. 25. The resuit is a linear relationship between Y and
Q/A. Equivalently, the AT = 0 curve in Fig. 5 may be thought of as a pro-
jection onto the Y, Q/A plane of a line on the regression surface in the
three-dimensioral space .(Y, V, Q/A)- (see Fig. 6). This line on the regres-
sion surface (line AC in Fig. 6) connects the twe points which are given by
the regrescion astimates of the lower and uppar AT = 0 points (paints a

ard b in Fig. 6). 1In general, there are an infinite number of lines con-
necting these two points and which lie on the regression surface. The one
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chosen here is that which projects as a straight line onto the V, Q/A plane
(line AB in Fig. 6).

The line plotted in the V, Q/A plane (line DE in Fig., 6) cant : seen to in-
tercept Y = G for Q/A near 0.75. This intercept is the threshold value of
Q/A predicted by the regression surface for V = 7.7. It can thus be seen
that the plotting procedure used for Fig. 5 will depict thresholds for Q/A.
The information not represented in Fig. S is the value of V at which these
Q/A thresholds lie.

The AT = 5 curve has three data points associated with it. These three points
determine a quadratic relationship between V and Q/A. The AT = 10 curve

again vses a linear transformation. For AT = 20, there are three points and
hence a quadratic function would suffice. However, it was easier to picture
the regression curves by using two separate linear mappings. The (a) curve

is meant to approximate the AT = 20 points (diamonds) at Y = 0.36 and Y = 1.35,
while the (b) curve approximates those at Y = 0.10 and Y = 1.35.

Admittedly, this procedure of graphing the data and regression curves in two-
dimensions is somewhat artificial. However, it does serve two extremely
important functions. First, it shows that the data are reasonably well fit
by the multip’s regression equation (Eq. 25). Secondly, it provides a
visual check on how well an extrapolation of the regression curve to zero
might truly represent the thresholds of the independent variables.

Figure 7 represents the functional relationships between AT, V, and Q/A at
the threshold. These are found by setting Y = 0 in Eq. 25. It can be seen
that, for each given V, Q/A is nearly a monatonically decreasing function of
AT. Conversely, for each V, AT is a decreasing function of Q/A. That is,

as the flow per filter area is increased, it is necessary to go to to smaller
temperature drops to avoid flow decay. The lack of pure monotonicity may be
due to a modelling error in not defining the exact types of interactions
possible. Nevertheless, the goodness of fit depicted in Fig. § indicates
that the thresholds presented in Fig. 7 are reasonable approximations.

Case 1 in Table VI is considered for a second example of the threshold phen-
omenon for N204 flow decay, as predicted by a regression curve. Attention
is restricted to that subset of the data used in Case 1 that employed a
rapid cooldown for the temperature drop. Figure 8 is a graph of these data
as well as the regression surface given in Table VII, and evaluated for
rapid cooldown.

Plane ABCD is a three-dimensional representation of this regression equa-
tion, giving fiow decay Y, as a function of V and Q/A. 1In the group of
runs used for this case, the following variables did not vary: 4T = 20 F,
To = 75 F, D = 5 micron, and use of as-received (ASIS) brown N204. Line
BC iries in the plane of the V and Q/A axes and reprssunts the intersection
v{ the regression plane with the Y = 0 plane. Similarly, lines AD and CD
lie in the planes formed by the V and Y axes and the Q/A and Y axes, re-
spectively, and represent the intersectiors of the regression plane with
these plares. Although the plane formed by the regression curve is shown
in Fig. 8 as ABCD, the plane extends beyond AD.
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The regression equation predicts that no flow decay will occur if the data
f point has V, Q/A coordinates that fall between line BC and the origin of the 4]
3 axes. These values of V, Q/A are below the threshold where the regression
curve predicts flow decay. All other positive values of V and Q/A are at 1
or above the threshold values and therefore flow decay would be expected.

EFFECTS OF INDEPENDENT VARIABLES ' ;

Theire are a number of trends and effects of the independent variables (all
of which represent or are derived directly from the test conditions) which 3 %
can be deduced from the test data and the results of the regression analy-
ses performed on the data. The major effects are discussed in this sub-
section., The reader should continually keep in mind that extreme caution
must be taken in extrapolating any effects and trends to different rflow
situations and conditions. The flow decay phenomenon is very complex and
is affected by a large number of independent variables. The complexity
is increased by the substantial interaction effects between the variables.

BN s oSy Ew T AR, AT TR

P It is readily apparent that the effect of the parameter AT is, in general, o
positive. That is, flow decay is increased as the temperature drop as in- ;
creased. This conclusion follows, e.g., from regression Cases 2, 5, and 7 i
(Table V™" for which the estimate of the AT coefficient is more than two i
standard deviacions from zero. Case 4 also lends credence to this conjec- :
ture of a positive AT effect although the confidence level is only 0.62.

The negative coefficients for Cases 3 and 8 are not significant because they
fall well within the range of estimated errors. Case 6 is a little more !
subtle. The data indicate that the slope is positive (0.002 + 0.011 = 0.013) i
, for saturated conditions, while negative (0.002 - 0.011 = -0.009) for un-

. saturated conditions. If the standard deviation of the -0.009 estimate is

: computed, however, it is found to be 0.01. Thus, again, the negative coef-
i ficiert could be attributed to data scatter. Conversely, the positive coef-
ficients of Cases 2, 5, and 7 cannot be attributed to data scatter and
hence the conjecture of a positive AT effect is upheld,

——
& ot g

e b e

The filter pore size effect on the other hand is generally negative, mean-
‘ing that flow decay is decreased as the pore size of the filter is in- {
creased. This conclusion follows from Cases S, 7, and 8 for which the
hypothesis that the diameter coefficient is zero can be rejected with 0.98,
0.83, and 0.28 levels of confidencc, respectively. Admittedly, the 0,28
level is very low but the trend is still apparent,

At n T ot e

PRSP

A possibie anomaly in the effect or D may appear from close examination of
Case 5. The estimate of the diameter effect for green N204 is -0.061
-0.063 = -0.124, while for brown N204 it is -0.061 + 0.063 = 0.002. The
standard deviations of these estimates are 0.04 and 0.016, respectively.
Cases 7 and 8 on the other hand give estimates of -0.046 and -0.023 for the 3
D coefficient for brown and green N,0,, respectively. It is jossible that
the differences between these cases could be attributed to chance. How-
ever, it is more probable that the apparent anomaly is due to a modelling
error. For example, there may be some cross effects due to the initial tem-
Cases 7 and 8 were analyzed acsiming that there were none.

mdddition s
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This could account for a difference since T, = 75 F for Case S while Cases 7
and 8 included data with various initial temperatures. Moreover, this argu-
ment is not limited to temperature although this is the only parameter that

was held constant in Case 5 and allowed to vary in Cases 7 and 8. Cross ef-
fects between D and V or D and Q/A could also be present, causing biases to

be introduced since the values for V and Q/A varied over somewhat different

ranges among the different cases.

When the N720O4 is green, the data indicate that the effect of the filter his-
tory parameter, V, is generally negative (i.e., the rate of flow decay de-
creases as the total amount of propellant which has passed through the fil-
ter is increased). In particular, Cases 3 and 6 show this effect with high
confidence levels (0.59 and 0.84, respectively). Case 8 lends supporting
evidence with a 0.67 level of confidence. Case 5 alsc indicates a negative
V effect when no-cross effects between V and GB are assumed. However, it is
apparent from studying the brown NyO4 runs that there is a cross effect. In
fact, Cases 4 and 7 indicate that the effect of parameter may be zero; beth
compute V coefficients well within 0/4 of zero. Case 1, on the other hand,
indicates a significant positive effect for V when the N;04 is brown and
tested as received. This case must be considered cautiously, since it is
based on a small number of data points and small errors in model assumptions
can have a large effect.

In general, however, the investigations concerning the effect of V show that
there is a definite change in the behavior of flow decay depending on whether
green or brown M,0; is becing considered. Case 5 indicates that green N,0,
enhances flow decay because the GB coefficient is positive. However, this
result must be scrutinized more carefully. It should be recalled that all
the slopes were computed at specified nominal values (the mean values for the
entire set of test data) of AT, Q/A, V, etc., This normalizing was done to
make it possible i1o compare the different cases directly. The problem is
that although these are nominal values for the entire data set, they may be
atypical for a particular subset. The result is that when cross effects
between the variables are assumed, the main effects become essentially an
extrapolation of the data from its own nominal value to that of the prespeci-
fied ones. This may not cause any prcblems if the cross effects are small,
but if they are large, erroneous results might be computed. This may be the
situation for Case S. A large cross effect is computed between GB and Q/A;
the coefficient of GB (Q/A - 1.5) is 1.09. For this particular data set,

the average value of Q/A is 1.1 and not 1.5 (the mean value for the total
data set). Therefore, at the average Q/A, the effect of GB is 0.41 + 1.09
(1.1 - 1.5) = -0.025. The large coefficient for GB at Q/A = 1.5 may be the
result of an extrapolation error in going from Q/A = 1.1 to Q/A = 1.5. The
general trend at the nominal value of this data set is really negative. This
negative effect means that green N;04 experienced less flow decay than brown
N20s4. 7This conclusion is further substantiated by direct comparisons between
sets of test data for which the only difference in the nine basic independent
variables considered was between green and red-brown N504.

In any case, it is certainly apparent that the GB variable has a large effect
on the ather variahles. In essence; this means that the flow decay phenom-

enon behaves differently depending on whether green or brown N;04 is used.
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As another example, the effect of the temperature parameter also appears to g
be mixed depending upon whether or not green or brown N,0, is used. For ‘
green N,0,, Case 3 indicates « positive T, effect (with an estimated value of
0.005 for the coefficient and 0.53 confidence level of a non-:zero coeffi-
cient). For brown N,O4, Case 4 predicts a negative effect with a -0.0026
estimate and a 0.47 confidence level. Because of these relatively low con-
fidence levels, these trends should be considered with caution. Cases 7

and 8, on the other hand, predict the same trends for the T_ parameter but

at higher confidence levels (-0.019 at 0.999 for brown N,04 and +0.013 at
0.71 for green N;04). {
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The iron saturation parameter appears to have a positive effect on flow de-

cay for green N7O4. Case 6 substantiates this by estimating 0.40 for the

coefficient of SAT and giving a 0.87 confidence level that this coefficient ;
is not zero. For brown Np0O4, it is only possible tc make indirect compari- .
sons between as-received and doped propellant. Regression Case 1 (brown !
N204 tested as received) gives a constant term of 0.81. This term is the

flow decay predicted by the regression curve at the nominal values of ,
' =15, Q/A = 1.5, and RL = 0 (i.e., vepresenting an average of the +1 and !
-1 values assigned to green and brown N204, respectively).

o p—_

Case 7 considers brown, saturated N;O4. The regression curve predicts a

value of Y = 1.01, when evaluated at the nominal parameter values specified

by Case 1 (i.e., D = 5 microns, AT = 20 F, To = 75 F, V = 15 gal./sq in.,

Q/A = 1.5 gal./min-sq in.). Thus, there appears to be a net positive effect j
for the saturation parameter for brown N704 as well as green N>04. Case 4

might also be used to get a further estimate of the saturation parameter for

brown N204. The problem here is that Case 4 holds the diameter fixed at 10

microns, while Case 1 holds it fixed at 5 microns, and there is no direct es- H
timate of the effect of this diameter difference for these two cases. 1

The regression curves indicate that the cooling rate parameter enhances flow ;
decay. However, this effact is predicted only at very low confidence levels 1
(Case 1 predicts a 0.003 coefficient and a 0.07 confidence level; Case 4

pred.cts a 0.12 coefficient and a 0.39 confidence level). These low levels j
are at least partly due to the fact that most of the runs with long ccoldowns
did not exhibit any significant flow decay; very few long cooldown runs with
significant rates of flow decay were available for use in the regression
analyses.

TrtE o pes
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The last main independent variable that remains to be considered is the flow
parameter Q/A. The effect of this parameter is generally positive (i.e.,
increasing Q/A increases flow decay). For green N»04, Cases 2, 3, 5, and 6
predict this effect with the very high confidence levels of 0.93, 0.97,
0.999, and 0.99, respectively. Case 8 predicts the same effect at a 0.60
level. For brown N;04, the data are more mixed. Case 1 predicts a positive
effect for rapidly cooled N;04. This estimate is 0.88 with a standard de-
viation of 0.65. The estimate when a long cooldown is used is -0.50 with

a standard deviation of 0.45. However, the results for this case are quite
tenuisus because of the small number of long cocldown tests for which flow i
decay was ohcerved (only three pointe) and kecouse o€ the large RL Q/A o1

...... pointe) and because of ¢ z Q
cross effect,
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3 A deviation of just one of the long cooldown points could have a very large
effect on the predicted equation. Thus, modelling errors, e.g., not being
able to identify all of the independent variables, could have a disastrous
effect in this particular case.

<y

Case 4 predicts a negative Q/A effect for brown-N04. Again, this is only
at a relatively low level of confidence (0.55). The only high confidence
level for the Q/A coefficient for brown N204 is given in Case 7. Here the
estimate of the coefficient is 0.62 with a level of confidence that it is

not zero of (.99,
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Flow decay is a very complex phenomenon. There are many independent variables L
that affect the incidence and amount of flow decay. The effects of these para-
meters are generally not simple or independent of each other; they exhibit many |
interactions. In addition, there are often threshold effects for flow decay (i.e., . |
an identifiable boundary between a range of variables for which no flow decay oc-
curs and a range for which flow decay occurs in varying amounts). These thres-
holds are not sharp, and further depend upon the interactions of the independent
variables.

I

A rnumber of major effects of parameters on flow decay are outlined in the follow-
ing paragraphs. The reader should keep in mind the complex nature of flow decay,
and that these are only intended to be interim conclusions. Extrefme caution must
be taken in extrapolating effects and trends to different flow si-uations and
conditions.

———r e n o A i ot

Increasing the filter pore size has a significant effect in preventing or reducing
flow dJecay. It appears that flow decay will not occur, under the conditions
tested during this program, with filters with nominal pore size at least as large
as 40 microns. There were a few tests that might appear to be exceptions to this ,
generalization, however, they are judged to be outliers. Decreasing the filter :
pore size, below its threshold, increases the rate of flow decay.

Keeping the temperature drop {(from the initial propellant temperature) as small :
as possible is another important factor in preventing or minimizing flow decay.

However, some cases of flow decay were observed with no temperature drop. There

is often a non-zero temperature drop threshold below which no flow decay occurs.

The amount or rate of flow decay increases as the tenrerature drop is increased

above its threshold value. In some ranges of conditions, there is approximately

a linear relationship between rate of flow decay and the temperature drop.

Decreasing the local velocity through the screen decreases the amount of flow de-
cay, at least over the range tested during this program. The actual velocity-
related parameter considered was Q/A, for which the range of values was about 0.7
to 4.7 gal/min-sq in. There appear to be strong interactions between Q/A and
many of the other independent variables. Use of a filter Reynolds Number was not
particularly advantageous in the data correlation efforts.

oy

P

Comparisons between green and red-brown N,0, were not without complications.
There appeared to be a number of sizable gi ferences in the effects of other vari- {
ables between the two types of propellant, especially in the effects of Q/A, ini-

tial temperature, and the history parameter V. However, direct comparisons |
between sets of test data for matched conditions (i.e., sets for which the only

difference in the nine basic independent variables considered was between green

! or red-brown N,0,) indicate that tre green N,0, tested exhibited somewhat lower

o . 24

rates of flow decay than did the red-brown N,%, tested.

. e

Rapid temperature drops (during flow) seem tou cause somewhat more flow decay than |
occurs with the same temperature drop imposed slowly over a period of approximately

: 2 days. However, this effect was less important than the effects of such

H variables as T, D, and Q/A (all symbols are defined in the Nomenclature section).
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The effect of initial temperature was less consistent between differing types of
N-O4 when the propellants were doped with iron pentacarbonyl to ensure saturation.
With green N,04, increasing T, increased flow decay, while the opposite trend was
observed with red-brown Noly.

There was some difference between the amount of flow decuv for the as-received
propellants and for the propellants doped with a small amount (one saturation
dose) of iron pentacarbonyl to ensure iron saturation. The differences seemed to
be regular and more a matter of degree than substantive differences in type of
flow decay behavior. Therefore, the data for doped N;0, represent slightly con-

servative results as applied to the particular nitrogen tctroxide propellants that
were used in the testing.

In addition to these general cffects of the test conditions, more detailed infor-
mation is contained in the body of this report which will be of value to indivi-
duals evaluating the potential of flow decay in operational nitrogen tetroxide
svstems. The following purtions of the report should be particularly examined
for this purpose: Tables IIl through VII and Fig. 4 through 8, the text accom-
panying these tables and figures, and Appendix A. For example, a user could
select from these test results those which match closely the conditions for a
system being considered; then, use the results and trerds for those data to help
in evaluating tne flow decay potential for the application of interest.

This program was intended to be the initial step in a systematic engineering
parametric study to establish the necessary engineering criteria for predicting
flow decay in operational N,0; systems. Although many complexities were en-
countered in this initial step, it was possible to develop experimental tcch-
niques and data analysis techniques to give statistically reproducible .-\'204 flow
decay data, and to deduce from the data the gross effects of major parameters.
It is recommended that these efforts be continued to complete the systematic engi-
neering parametric study. Subsequent efforts would build upon the results of
this program and culminate in a design guide for predicting the occurrence or
absence of flow decay and establishing design and system management criteria to
avoid this problem.

The tests during this program were intended to investigate gross effects of those
parameters that were expected to have the greatest influence on N,0 flow decay.
The recommended future tests woulc extend the work to delimit more precisely the
ranges of these operating and design parameters under which flow decay will and
will not occur, determine the effects of additional parameters (e.g., concentra-
tions of NO, Hy0, and other impurities in the N;04, plus other types of flow
constrictions), and investigate more thoroughly the interactions between various
parameters. Completion of this systematic engineering study would form the basis
for engineering control of this potential syst-m failure mode by defining required
system design criteria and/or system management concepts to avoid flow decay.
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APPENDIX: COMPUTER PRINTOUTS OF DERIVED RESULTS

The computer output given in this appendix lists for each test run values of
several derived parameters for each of the possible pairings of the data
points taken from the recorder traces. The particular data points are in-
dicated by the two time values shown in the second column. The third and
fourth columns list values of X and Y (defined, with other symbols, in the
text and in the Nomenclature section). The fifth column lists wvalues of W
for each of the time values given in the seccnd column. The abbreviated
labels near the right side of the table give, in this order: (1) type of
N204 ("B" for red-brown and "G" for green), (2) saturated (''S'") with iron or
tested as received (left blank), (3) cooled rapidly ("R") or over a long
time (L"), (4) the filter size (normal pore size in microns, followed by
"B or "H" to distinguish different filter areas; generally, the filters
marked H" had roughly one-half che area or filters marked "F", although
actual areas were used in all calculations), (5) the initial temperature,
and (6) the temperature drop. For Runs 1-38 and 160-165 calibration tests
were not made for the clean filters. Consequently, wl, w2, Z, and 1/L are
not defined. This fact is indicated by the abbreviation "N/A" in the appro-
priate locations in the tables.
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