
-- ·-

BEST
AVAILABLE COPY

UNCLASSIFIED
Srtuoli CUmtiotuwi

OOCmiHJ COHJKOL DATA «10

Proj«_t MAC
HAs«^chu««t.» Institut« of Technology

> ■c*ea« »iTtt

«•" npi» n jij,MMMTI

UncUsslfi«d
I» ••Ou»

Non«

RELATI\aZATIOH OF THE THKOl» OF OOHPOTATIONAL COMPLEXITY

1»! If I. I» »I

Nancy A. Lynch

| •«•«•I 0*T«

i

JUM, 1972

N00014-70-A- 0362-0001
» •■oj«t T «o N/A

•• M/A

' N/A

»• »o'»». MO or »••■■
125

i*.

31
M o*>a<Naro*-(«cvoaT »uwaf •>•■

MAC TR-99

' D D C
^TT^^p?rr^i773^T^r^^T33rsri7r:.j^r

Distribution of this docuasnt is unlimited

I
i

I1M
Non«

Llül5'iiüLbuy''iLl J
If •»OMtOaiN« Mll.lT*«V «C TlVIT.

Offios of Nsvsl Rssssrch

■m5T*m——■ ■

Blum's Btichins-indspsndunt trsstawnt of ths conplsxity of partial rscursivs
functions is extended to relative algorithms (ss represented by Turli« machines
with oraclss). IN prove reistIvltations of ssvsral rssults of Blum complexity
theory. A rscursivs rslstsdnsss theorem Is provsd, showli« that sny two relative
compUxity msasures ars rslstsd by s flxsd rscursivs function. This theorem allows
M to obtsin proofs of rssults for sll measures from proofs for s particular measure.

WS study complexity-determined rsduclbllltlss, ths parallel notion to complexity
classes for ths rslstlvlssd csss. Truth-tsbls and prlmltlvs rscursivs rsduclbllltlsa
are rsduclbllltlss of this typs.

Ws foraalUe ths concept of s sst helping ths computation of a function. Basic
propsrtlsa of ths "hslplng'* rslstior srs proved, including non-transitivitv and
bounds on ths amount of hslp csrtsln ssts can provide.

Ssvsrsl Independence rssults (rssults shout ssts thst don't hslp ssch othsr)
srs provsd; they srs subrecuralvs analogs to degrees-of-unaolvsbility theorems, with
simllsr proofs using diagonal I sat ion and priority arguments. In psrticulsr, we
discuss ths existence of a "unlvsraslly-hslped sst," obtslnlt« psrtlsl rssults in
both directions. Ths dsspsst result is s priority argument, which produces ssts
preserving an arbitrary lower bound on the complexity of a sst.

DD ;r..1473
S/* OIOt-014 ««OO

(PAGE 11
"gCL -'LASS IFI ED

ntv CUsiificalton I

■cttrify Cl—UteattJr

recursion theory

coapuCatlonal complexity
relativ« «Igorltha
Oracle Turing aachina
r>«duclbllltaa
helping
ptlorlty argunanta

no L l • ' lOt» •' HOL t • • rr

DD .^..1473 'BACK»
(PAGE 2)

;r UNCLASSIFIED
5«curilT Cl««»lflr«Ilon

- 2 -

ABSTRACT

—-SrUg* Ü'iL ';"; ?S2 - g- c^pi^ity of p.ru^
by Turin, ^chi^. with or^U.) J! !"!! •i?orfth- »- "pr«.,nt.d
«.ulf of Blu. co^lexitv th!ö^ I " "UtiviMtion. of 8.viai

thoor- .11«,. m to obt.i„ J2Ä SSJ^TS fUnCtl0n- Thi8

fur . p^tlcul^ «.Mur.. ««ult. for »U mmtmxxxmM from proof«

- JmSS 3SS,8?rÄSS,2JlMt t,,• •-»- —
«-oniy-.tudi«. «ducibum« „. „« '*ta '""' •*"• o"1"

tic it^SCT-llTAri -P<'t*"0" - '«"-
co^put.tion of th. function) 8-^ ^ ** ^ or*cl* *■ *■

o«rt«in MH cw provid.. "'n,ltivity «^ **^i on th. «ount of h.lp

S.v.r<»l ind.p.nd«jc« r.«alt« fraani*-. -u^ ^
oth.r'. co^ufti^n) «. mmSbtST^ Sü! ••t* ^^ <k>n,t «• -^
of-un.olv.bllity SJirSfc ALT! '^"^-^ "•iog. to d.gr...-
Prlority .rgumit.. "^rti^ll^i^r00'' "T109 di^cn.U^tion S
-unlv.r.^lv-h.lp.d set ^IhÜ* f S'— th# ■■<■>■■■■ of .

•PPT.nt r.cur.iv. bound on STSSL'STS f9^1' (wl"»out «
pr...rving . „bltr^ Z^ISZ ^V^.^^of.^0" ••t'

«d cryti^riaigj^i?^«^—(..g. .p^.,
.nd h..vy u.. of uqxmnta ^^ ^^ "^^ ^ Priority fchniqu...
r.cur.iv. function, in ord.r to <tof!n^i i conver9«nc« of pwrti.l n 0ra.r to d.fin. tot.1 r.cur.iv. function..

\

ACWICWLEDGliMEWS

I would Ilk« co thank Albort Meyer for hit inveetnent of

tlae, «nthuiiatin «ad ideas.

I •■ alto gratoful to Aaicava B«gchi and Mlchaal Flachar for

Choir 1ntere«t ana SuggooCloTW.

Finolly, I «a indebted to ay husband Datmii for his patience

and encouragement, aa voll as help wich Ch« cookli« durli« ths

final stagas of preparation of Ch« Chosls.

Work reported heraln was supported In psrt by the National Science

Foundation and In part by Projact Mac, an MIT research program ipon-

sorad by the Advanced Research Projects Agency, Department of Defense,

under Office of Naval Research Contrsct Number NOOOU-70-A-0362-0001.

Reproduction In whole or In part Is permitted for any purpose of the

United Ststes Government.

^

4

COOTENTS

1. Iiitrodi»ctfoii

2. Motatloti, Axiom« «nd B««lc lUeult«

3. C«»pl«xlty-D«t«rmin^i ReduclbllltlM

4. H«lpiT«

5. Utiiv«r««lly-Helpto<l S«ti

6. 8«ti Ihat Den't H»lp

7. SuggMtlon« for Furthor Study

S

13

35

57

80

88

115

1. Introduction

Blum fBl] Introduces «n axiomatic fraaawork for discussing the

complexity of partial recursive function» of integer variables. In

thi» thesis, we use a parallel approach for the case of relative

algorithms (i.e. partial r-^ursive functions of one integer and one set

variable, as represented by Turing machines with oracles fD) fRol)>.

Our extension of Blum's ideas allows us to discuss axlomatically

several problems impossible to formulate from tie original set of

axioms.

For example, we can formalite the Idea that one function helps

the computation of a second function; we can also give some meaning to

"the complexity of a nonrecurslve function."

The axioms we give Include as special cases the "natural" measures

on relative computations, namely the time and space measures on oracle

Turing machines. Thus, the axiomatic statements of our various

theorems are also true when interpreted for the specific measures. If

we were to state and prove our theorems directly for the time and

space measure, the results would be more precise and the proofs more

Intuitive. However, the axiomatic proofs are much shorter and cleaner;

therefore, our general policy in this thesis is to state and prove

results axlomatically, giving intuitive remarks about time and space

wherever possible.

In Chapter 2, we present our axioms for relative complexity and

prove some basic results suggested by theorems of non-relativised

complexity theory.

6

Th. flr.t l.port«t»t re.ult It that .ny tvo Matures ••tl.fyli«

th« «1«- «r« r«cur.lv«ly rtl.ted; the proof Is by Kcmlg's \em*.

This theor« is l^ort.nt prl-rily b^.use It provide, en .Iterativ.

«ethod of proof of ge«er.l-e.s«re theorems. Cert.ln types of theorems

My be prov«! easily for . particular -wsure (uaually space) e«! thet,

the recursive ralatedness between space •«! other measures c.t. give

the general result. We employ this method occ.slonally.

We note that the standard results of complexity theory, such es

.peed-up. compression and g.p theorem. tHH) all have full relatlvLa-

tlons with proofs exactly like the usual proofs. Sever.l partial

relatlvl«atlons .re also true; we prove some which are of Interest or

will be of later use. In p.rtlcul.r. we prove . rel.tlvl..tlon of

the combining Imm M. which .t.te. th.t the complexity of . compu-

t.tio« 1. cicely rel.ted to the complexity of It. .ubcomputation..

Thl. will imply .ome l.ter results; It Is the first ex«nple of our u.e

of . method of proof which we c.ll the "dom.ln-of-conv^rgence" method,

and which 1. u.ed In .xloin.tlc proof, throughout the the.l..

In Ch.pter. 3-6. we .tudy question, n.tur.1 to tre.tment within

relative complexity theory.

A notion which parallels that of • complexity cla.. FMcC] fMcCMe]

ir the rel.ti-l.ed theory U th.t of . "complexity-determined reduci-

blllty," which we .tudy i« Chapter 3.

To any cl... C of function, correspond.:

{(A,B)|A 1. comput.ble from B within mc.ure equal to some function In O

For certain cl.s.e. C, thl. provide. . re..on.ble reduclbillty.

7

Truth-table reduciblllty fRol) and the relation "prl«ltlve recursive

In" TK) are examples of reduclblllties of this type, whiTe other

coniDonly-studied reducibilities such as many-one and one-one reduci-

bilities FRol] are not.

i
We show that neither truth-table reducibility nor primitive

recursive reducibility can be completely specified by a single bound

function (i.e. a sit«leton class C). However, each may be so specified

on any countable class of oracle sets, as we show by a relativisation

of the Meyer-McCreight union theorem fMcC) 'McCMe). For example,

there is a function t such that:

(AS B • A is computable from B within measure t)

for all arithmetical sets A and B.

By selectii« special classes of functions C , we may define

new complexity-determined reducibilities; for example, by letting:

C ' {A-recursive functions)

for some set A, we define a reducibility somewhere between truth-table

and Turing reducibility, which we call "A-reducibility." By

considering all sets A, we arrive at a hierarchy of reducibilities.

A relativiaation of the compression theorem shows that:

(VA,I»)r(A-reducibility - B-reducibility) • (A-recursive functions

and B-recu:sive functions are the "same siae")].

This fact reduces questions about the reducibility hierarchy to
i

purely recursion-theoretic questions; we prove several results about

this hierarchy, for example, that there exist Turing-incomparable
i-

sets determining the same reducibility.

!
I

•■

9
Independence rceulte (theorem« that «tete chet certain «et« do

not help the computation of certala recurelve function«) are analogou«

to theorem« «bout function« having a certain lower bound on their

complexity; dlagonallratlon 1« the only tool we have for proving them.

We prove a ver«lon of the following «t«tenient:

•

"There exl«t pair« of complex recursive «et« that don't

help each other'« computation."

1

X

Vc use a dlagonall«atlon method In the proof, based on work by Meyer,

M.J. Flacher and Tr.chtenbrot; prlorltle« are u«ed. W« flr.t con«truct

• «et with no Interdependence between the v«lue« of It« ch«r«cterl«tlc

function at different argument«. W« then «pllt thl« «et Into two

piece« and argue that neither piece can help the other'« computation.

Thl« reeult lllu«trate« proof technique« which will be u«ed In a

more complicated faehlon In Chapter 6. It ha« «everal lntere«tlng

corollarle«. Including the fact that "helping" 1« not a tran«ltlve

relation. ,
I 1

Since the Independent «et« are conatructed by « dl«gonall«atlon.

It 1« difficult to undtrstand much about them. A more lntere«tlug

re«ult would «rl«e If we could «rbltrarlly fix one of the «et«.

Thu«, In Chapter« 5 and 6, we a«k the following que«tlon:

. . '
Which 1« true?

(1) There 1« a recursive «et A who«e computation 1« helped

by all «ufflclently complex re ur.lve «et« B (a "unlver..lly-

helped set"), or

10

(2) For all recursive sets A, there exist arbitrarily

complex recunlve aet« B that don't help the coapute^lon of A.

We obtain «one partial results in both directions, using different

interpretations of "helpinB.M

In Chapter 5, we produce the strongest results we can to obtain

the first anawar. Ve note that the complexity axioms are sufficiently

general to be satisfied by various "pathological" measures; specifically,

that anx recursive set will be a "universallyhelped set" in some

relative complexity measure. From here on, we use a mechanism for

eliminating such trivial cases.

We go on, in theorem 5.2, to construct sets which are not

"universally-helped," but which are "almost universally-helped," in

the sense that tliey are helped by all recursive sets whose complexity

is "nicely determined." More specifically, for any recursive function

h, we obtain a recursive set A. such that the computation of A-'s

chsracteristic function is helped on Infinitely many arguments by any

recursive set whose complexity is (to within accuracy h) equal to a

running time. This is the strongest result we have obtained in the

direction of answer (1).

In Chapter 6('re work in the opposite direction, beginning with

s recursive set A and constructing sets B not helping A's computation.

As before, we use diagonal!satIon and priority techniques in obtaining

our reaults. There are two major results in the chapter.

The first theorem, theorem 6.2, states the following:

It
If we '.ave • recuriive ««t A and « recursive function C^

with th« property i'-it «very Turing ■•chlm computing A't charactorlstlc

function requires «ore than t space on an Infinite set of arguaents,

then there are arbitrarily complex recursive sets B such that every

B-oracle Turing ««chine co^utlng A's characteristic function still

requires more than t. space on an Infinite sat of arguawnts.

The proof Idea 1« due to Machtey ntoll «ml Involvee a diagonal 1-

tat ion with slnple priorities.

The second theorem, theorem 6.3, «itatea that, provided we

restrict our attention to functions tA «hlrh are running tines, ne

have s slallsr result to theorem 6.2 for a different type of lower

bound t . Namelv. If we h/ive a recursive set A and a total running

time t. with the property that every Turing machine computing A'«

characteristic function requires more than tA space on almost all

arguments, ^hen there ere arbitrarily complex recursive sets B such

'.hst every B-oracle Turing machine computing A's characteristic

function still requires more than tA apace on almost all arguments.

This theorem Is tho deepest result In the thesis. The

diagonal1satIon required ia conalderably more complicated than that

required for theorem 6.2, and involves s finite-Injury priority

argument in which there Is no apparent recursive bound on the number

of times a requirement may be injured.

The Indeperdence results serve to deraonatrare that there exist

arbitrarily complex pairs of recursive sets which «re recursive for

"different reasons."

\

12
Tttcr« la, of coun«. no conflict bocwoon the result« of Chaptort

S and 6, •« wo «how.

Opon problcB« arc Intortpor««) throughout th« the«Is •• thoy

•rls«, and arc collactad in Chapter 7. Mao, in Chapter 7, «• praaant

additional opan problaaa and diractiona for further research. One

particular direction aantionad is that studied by Syaes in 'Sy).

«hare ha considers helping not only by oracle sets, but alao by

partial functions. In general. we would like to fornaliaa other

totiona of "helping." specifically those which repreaant the way in

whic'i a subroutine "helps" the cooputation of a function computed

by a coaputcr prograa.

13
2 Wof tton. Kxlomm apd i*iic Kmault»

«• «sauM fMilUrlCy with Ch« notation uaod by Rogara ftol).

Ua wm H(^«)•, and "•.«. («)" to MM "for all but a fimt.

tumbar of *." Whan no confuaion la likaly. «• alaply writ« ••••.••

(••al«oat avarywhara").

Sl^larly. "(1«)" or Ml.o. (K)" mmm -for Uflnlcoly Mny x,-

•od «• writ« Mi.o.H to Man "Inflnltaly ofton."

«a writ« "• i b- to «MO f« - b If a > b

[0 If • < b.

Tb« co^oaltlon "g o t" «hara t Is a function of ona variable

•nd g 1« • function of tuo varUblaa. will Indicate \Kfg(x,t(x))).

""n" «■•?«••••«'• th« sot of total racurtlv« function« of n Integer

v«rl«bl««.

"^n " «■•Pr«»»nta th« a«t of total A.r«curalv« functions of n

Intogar variable«.

"V r«Pr«a*nt« ^s sst of partial rocurslvs functlom of n

Integer verlablaa.

MFn " repreaenta the set of partial A-racurslve functions of n

Integer varlablea.

H« writ« "T" for divergence and "i" for convergence of coaqm-

tstlons.

M
"UÜ" r«pr«««i»ti th« IntM^ part of k.

For «ny 1 A. If qp^U)», »• «»•• ***• eonwntlon that

•4 <A) (K) - •• ly coiw«itloB, • < •, a«d B < • for any B € H.

Tha »tloM of "ralatlva algorlth»" and of an ««»—ration of

ralativa algorittaM (qj^ H ara a^ly daacribod In tRol, ^9.2).

Spwlfically, «• uaa tha following:
-

Doflnltlon 2.1: A ■•quonc« [V^ ^ of ralatlv« alforlth— U callod

"•ccaptabla** if:

(1) l*** h 'nc1««1«« •11 '«UtlT« algorithm

(2) Unlvaraal Proparty:

(St « ^i SXH^A) ft(A)«l.Ä» ••t
<l>«I

(3) aiMn Proparty:

(V* e (0)^ >))|b € R^m.n.A) R>,(l)
(A)(«) ' t^^^.*»!.

V« discovar by methods analogous to those usad In fRo2] that:

imm* 2.2: Lot {(p^)) and ((»^ ^ b« any ti#o accsptabla

orderlies of ralativa algorlthM. Than thar« «tists a recursive

isomorph Ism r such that:

(»*(i)*t(1)
<A)-VA)'-

LenM 2.2 irlll make our theory Independent of the particular

fonallsa chosen. W« will ganarally rafar to the developoant In

fRol) or to th«« nation of an oracla Turing machine when precision

18 required.

We now define a "relative complexity measure."

15
D.flnltloP 2.3 A r.Utlv. cocplwlty .—.ur« #<>!.• MUMMM of

prtUl functlo«. fro. II to H. (f^l. om for ^h (l.A), .•tl.fyli*

the folloving two condition«:

(1) (tl.A) fdoMln qpl
(A) - do^ln ^ 1

(2) Tb.« «d.t« ^), • roUtlvo •Igorlth., •uch that:

fl If f/^C«) - T
Ori.x.y.A) t^^i.x.y^ • < w _ x * •7, 10 othonrli«

•r« oft« rtforrod to Infon-lly M "running tl-o«." Th.ro 1. no
(0)

confusion hor. with tho u.iul cSool nuaborlrg notation, •• («Pj 1

1. a. wc.pt.bl. Göd.l nu-b.rlng for th. p«r 1.1 rwur.lv. function.

rRo21.

A not. on our cholc. of .xlo-: «lo- (1) ll .«r.ly rw.on.bl..

but It wy b. thought th.t .xlo« (2) 1. .trongor th.n w. ought to

...u... Hovov«. both «lo«. .r. ..tl.fl.d by .11 n.tur.1 -w.urw

on r.l.tlv. co^ut.tlon. (1... tl«. .«1 .P". on orwl. Turing wchln..)

Al.o. «lo- (2) 1. pl.u.lbl. in th.t it wr.ly r^ulr.. th.

.xl.t.«:. of . .ingl« "unlfUd dwcrlptlon" of .ny ».«•«..

Thu., for th. tlo. »w.ur.. .xio« (D -ft th.t . co-puftlon

t.kM . flnlt. «ount of tl«. if .nd only If It convorg... .nd .xl«

(2) ..y. th.t H c.n .ff.ctlv.ly t.U If . co-put.tlon h.lt. in .

giv.n nu-b.r of .fp.. For th« .p.c. w.ur.. .xio« (I) «.y« th.t

. co^mt.tlon u... . flnlt. nu-b.r of t.p. .qu.r.. if .nd only if

It convorg... vhU« «1«- (2) "•■ th*t we •" «t**^ "11 lf '

co^totion h.lt. without .xcding . giv.n .«ount of work.p.c..

X

16

Lattr In the chapter, «• verify that that« axioM hold for tine and

•pace naaaurai.

These axiooa ara extremely simple, and alallar to Blua'i axioaa

for partial racursfva function« (Bl). We will see In the following

chapter« thet they are quite powerful.

We refer to (Sy, Chapter 3) for some interesting re«ult« using

the«» axioms. In particular, we «hall use the fact that # ^(x) is

a partial recursive function of x, uniformly 1" A and 1. That 1«:

(aa)(VA.l.x) [(Pa
(A)(<l,x>) - l/^Cx)!.

In «plte of the theory'« Independence of the particular

fonallsatlon of relative algorithm, enumeration and measure, It 1«

desirable to keep In mind the natural measures (time and «pace on

orac1" Turing machine«). The particular oracle Turing machine model

we will use 1« a« follows:

Each Turing machine ha« four «eml-lnfInlte tapes: an Input tape,

an output tape, an oracle tape and a worktape. The first three are

marked In binary, with the exception that the Input tape ha« a marker

to Indicate the end of the Input. The worktape ha« k possible symbols,

for some number k which depend« on the machine. We assume for

deflnltene«« that the Input and output head« cannot move left. Also,

the machine cannot write on It« Input tape or read from It« output

tape. There are otherwise no restrictions on the operation of the

machine, other than the usual Turing machine constraints [Rol).

Thl« Turing machine 1« designed to be used In conjunction with an

17

"oracl«" for any «et. (Aa X-orscU 1« «n ungpeclfled agent having

information about set X.) ThU li done as follow«:

In addition to Ita other ttatea, the Turing machine aay have a

•täte called "INTERROGATE." When the machine enters this state, It

asks the oracle whether the number currently written on the oracle

tape is a member of the oracle set. The oracle gives its answer by

causing the machine to enter either of two different states. The

oracle tap« is then automatically erased, the oracle tape head reset

to the first tape square, and the computation is allowed to continue.

Each oracle Turing machine may be described by a flowchart or

some other finite description. The machine's description Is inde-

pendent of the particular oracle set used, so the same oracle machine

may be used with any oracle. The finite descriptions may be

enumerated in a natural way. We Identify «p ^ ' with the nth machine
n

description in this enumeration; our enumeration is "acceptable,"

and so there is no notational inconsistency with usage in [Rol].

We now define two measures on this machine model:

T^ . time measure

For any i, x. A, we define T^^x) to be the total numbe'- of steps

executed in the '-imputation cp v '(x). Here, each oracle interrogation

counts as a »ingle step.

It is clear that the axioms for relative complexity are satisfied;

for instance, to discover if ^^(x) - y, /A)(<i,x,y>) must construct

the machine cp ^ , then simulate cp * '(x) for y steps to see if It

18

converges.

S . space measure

(A) Por any I, x, A, we define S^ '(x) to be the «axlaum of the

number of worktape squares visitor and the number of oracle tape

squares visited during the computation (L' '(X), provided that cpi (x)i.

Otherwise, we let Sl
(A)(x) - ".

Axiom (1) Is satisfied by definition. To see that axiom (2) la

also satisfied, we note that for any I, x, y and A, If ^ (x)

operates for (l)(ly)(y)(2y)(y)(log x) steps without exceeding space

y, It must be In an Infinite loop and hence will not converge. This

bound arises since If the machine Is ever twice In the same state, with

the same worktape contents, the same worktape head position, the same

oracle tape contents, the same oracle tape head position and the same

Input tape head position, It must be In an Infinite loop. The six

factors In the above expression represent bounds on the number of

different possibilities for each of the six Items.

Thus, to see If Si
(A)(x) - y, we need amly simulate cp1 (x) for

(l)(ly)(y)(2y)(y)(log x) steps to se« if It converges.

We note that our machine model has linear speed-up (HLSl for

machines that don't use their oracle tapes. That Is, given any e > 0

and any such machine cp^ ', we can effectively find «pj ■ ^ 8uch

that for all sets A, e • S^ 2 l,W a.e.

We also note that the space measure has the following property,

sometimes called the "parallel computation property": fLR]

19

There exist« « recursive function T\ euch thet for all I and J,

U^x) If S^x) s S^x)

^(l.J) X | «p (x) otherwise

*** STI(I,J)<X) " ■l"»Cii«»,jW)'

Thlt property, «hlch e.eentlally allows us to re-use the ssme

tape squares for different portions of a computation, often makes It

very easy to prove theorems for the space measure. It also causes

some results for space measure to be sharper than those for other

measure«. We will point out such cases «here they occur.

Theorems concerning the complexity of partial recursive functions

[Bll [HHl (McC] all have straightforward full relatlvlsatlons with

proofs parallel to the original proofs. For exsmple, from Blum's

speed-up theorem [Bll we obtain:

Proposition 2.4; (relativized speed-up theorem)

(VAXVs « R2
(A))(af « \Wn * 0-1 valued)(Vl)

H^k) I) -«JXfj^ - f ^(".«j^«» s *i(A)(x) a-e-)1'
(That is, for every progrsm for f using an A-oracle, there Is

an a.e. much faster program also using an A-oracle.)

The proof Is exactly like the usual proof of the speed-up theorem,

using a relatlvlzatlon of the recursion theorem in place of the

recursion theorem Itself.

More interesting and useful are partial relatlvlzatlons of the

result, on complexity of partial recursive functions. Following are

\

several examples.

Oui first theoreir asaerts that any two relative complexity mea-

sures are related by a fixed recursive function. Its usefulness

lies in enabling us to draw conclusions about one relative measure

from hypotheses about another relative measure, as we do in some of

the results following the theorem.

Theorem 2.5; (recursive relatedness)

If i and « are two relative complexity measures on the

same acceptable Go'del numbering lep ^ '), then there exists r e R2

such that:

(VA.i) t^00 ^ r o (^ a.e.]

and (VAti) [t^ < r o i^ a.e.].

Proof; We require a lemma \itiich is a direct consequence of Konis'a

lenma ("Endlichkeitslemma," [Rol,Ex. 9-40]) and tfiich will be used

in several later theorems as well.

Lemna 2.3.1; Suppose we have a recursive function f of k integer

variables and one set variable. Suppose that f is total.

Suppose finally that (Vx^...^) [f^ xk) - max f(x1 x^A)].

Then f' e R. .

Proof of lemma 2.5.1; The computation of f'(Xj,...,xk) may be carried

out as follows:

Generate a "computation tree" for the function f(x1 ^»^ a8

A ranges over all subsets of N. Each branch of the tree must terminate,

21

since fix. 'Sc»^ converges for all sets A. Therefore, the entire

tree is finite and we will eventually finish generating it. We can

then take the maximum of the outputs on all branches as the value of

f VX1» • • • »"l»' *

Proof of theorem 2.5. continued; By symmetry, it suffices to obtain

r t R» satisfying the first inequality.

We define r(x,y) - max p(i,x,y), v*iere

p(i,x,y) - max p'ClfX.ytA), and
Mi

(VA>(x) if J^W-y
p'(i,x,y,A) - <^

| 0 otherwise.

p* is a total recursive function of three integer variables and

one set variable. Therefore, by lemma 2.5.1, p e Ky Thus, r e Rj.

To see that r has the required properties, we consider a par-

ticular A and i.

If 9 ^(x) diverges, the inequality holds by convention.

If * ^(x) converges and x ^ i, then:

rfet^OM sp'd.x.^^A)
s * ^(x), as required.

QED

Remark 2.5.2: The recursive isomorphism between any two acceptable

enumerations of relative algorithms (lemma 2.2) allows us to conclude

the recursive relatedness of relative complexity measures on two

different enumerations. Specifically, we obtain:

27. ■Ma

"If {V^) *t>d [V,^ ') are any two acceptable enumerations of

relative algorithm«, with relative complexity measures *(and «

respectively, then there exists a recursive isomorphism f and a

function r e R2 «• :h that:

(VA.i) r«t
W ^ro lf(1)

(A) «.*.)
I

and (VA.i) ^f(1)
(A) ^ro %™ a.e.]."

• i

The proof is a simple modification of the proof of theorem 2.5,

using the recursive isomorphism whose existence is given by lemma 2.2.

■

Theorem 2.5 and remark 2.5.2 provide n alternate method to

general axiomatic proof for certain types of theorems about relative

complexity measures. The method is to prove the theorem for one

specific measure, and then apply theorem 2.5 (or remark 2.5.2) to

obtain the result for all measures. We will use this new proof

method in some cases; as an example of its use, wu give the following

corollary to theorem 2.5 and remark 2.5.2. j

The result has two parts; in part (1) we see that (just as in the

non-relativiaed case) there exist arbitrarily complex functions.

However, in contrast to the non-relativiaed case, part (2) shows

that inherently complex functions cannot be 0-1 valued. In fact,

their complexity must result from the siae of the function values.
i

First, a definition:

Definition 2.6: Assume B is a set, f e R1 and g is a total function

of one variable.

i i

• ■

23

"Conqr ' f > g l.o. (a.e.)" meana

(Vl) tp^V - f * l^ > g i.o. («...)].

"Co^)(B) f « g" means

, ' '(31) pp4<») - ? A lt« Sg).

"Comp^8' f s g l.o. (a.a.)" means

(31) ffit^ - f A f^^ $ g l.o. (a.a.)l.

"Ccmp f > g l.o." means

(0)
Ccmp f > g l.o., and similarly for the

other abbreviations.

If f - C. for some set A, we may write "Comp A" In place of

"Comp f." . I

We are now ready to state and prove the corollary:

Corollary 2.5.3: Let $(' be any relative complexity measure. Then:

(1) (Vf, f total)(Sg, g total)(VA)

fComp(^ g > f a.c.].

(2) (Vh, h total)(Sf.f total)(Vg, g total)

Kg s h a.e.) ■ (SA) (Comp(A)g s f ^.e.)].
! i

I

Proof: (1) Let r be the function obtained by applying theorem 2.5

to •''•■It''. We may assume without loss of generality that r Is

monotone nondecreaslng In Its second variable.

Give« f. let g(x) - 2r<x'f(x)) + \ , ' ,

If V,(A) - g, then clearly (Vx) f^ (A) (x) > r(x,f(x))], since It

requires i(x,f(x)) + 1 Pteps merely to output the result In binary.

But r(x,* (A)(x)) ^ t (A)(x) a.e., by theorem 2.5.
i J J

i

i

J

(A),

• .^'00 > f<x) ••••• as required.

Thus, r(x,«/ ;(x)) > r(x,f(x)) a.e.
J

If th« raUtiv« complexity measure #() 1« on an enumeration

of r«Utlv« «IgorlfchM other Chan oracle Turli« machlneg, we apply

remark 2.5.2 In place of theorem 2.5 and obtain tha same raault.

(2) Lat r be tha function obtained by applying theorem 2.5 to

♦ and S , again chosen to be monotone nondecreasln* In ita

second variable.

Assume h Is given.

Define f(x) - r(x,x2 + h2(x)).

Now consider any g with g < h a.a.

Lat A - {"^,g(x)>|x € H).

It la straightforward to design a machine */ ^ such that

«Pj - g and for which S^^x) S x2 + h2(x) a.a. For Instance.

the machine qs^ ; on argument x cen operete by successively computli«

<>c,0>, <*,!>, <«,2> and asking if each Is In A. If so, the

machine terminates with the appropriate output.

2 2
The bound x + h (x) results from the particular form of the

pairing function used fRol, 4 5.3].

But then *s
(A)(x) * rCx.Sj(A)(x)) a.a.. by theorem 2.5.

« r(x,x2 + h2(x)) a.a.

- f(x).

So •j (x) * f(x) a.a., aa required.

As In (1), If the relative complexity measure f^ ^ Is on an

enumeration of relative algorithm« other than oracle Turlt« machines,

we apply remark 2.5.2 In place of theorem 2.5 and obtain the seme

result.

QED

Informally, corollary 2.5.2 show« that (1) function« auat b«

«• coaplex aa thalr also, and (2) given the proper oracle, a function

need ba no «ore complex than Iti als«.

Henceforth, whenever we uaa thla naw aathod of proof, wa will

appeal to "recur ilve reUtedne««"; it will ba understood that we

intend thla to «aan va ara applying chaoraa 2.5 or reaark 2.5.2,

whichever la appropriate. In a faahlon tlallar to that uaad In tha

proof of corollary 2.5.3.

The non-ralatlvltad coopraaalon thaoraa (Bl) aaaarta th«

exiitence of a recursive "comprettion function" h such that whenever

we ara given any total running tlaa ♦ , wa can obtain a 0-1 valuad

function not computable In aaaaura s ♦., but computable In

aura < h o # .

2.7 la a ralatlvlaatlon of thla raault; It aaaartt tha

axlatanca of a racuralva "compressloti function" h such that whenaver

we ara given any total function g, we can obtain an oracle aet B and

a 0-1 valued function not computable from a B-oracla In aaaaura g,

but coaputabla In aaaiura hog.

This lensna will later be uaad to prove thaoraa 3.6.

Lemma 2.7: Assume wa ara given a relative complexity aeaaure ♦ .

Then (3h € R2)(Vg, g total)(Sg,A)

(1) Comp(B)A > g l.o.

and (2) Comp(B)A «hog.

Proof: Given g, wa define B - (<x,g(x)>|x C K).

36

D«flM

cA(.) f -9
(,)(.) it ♦. «).

oth«rvli«

A U thu« dsflmd fron B by • dlagowliMtiov which incur*« rh«t

Ch« fir« condition it Mtisflad. To vwrify th« ••cond conHitijn.

v« HMC d«flM h.

rirtC, d«fiM a r«UCiv« «Igorith« r ') M follow«

1 -9

(VK.DOJJ^U) -
0

^^B) If (a«)f<it.g> CX) and

If (3t)f<*.i> c X) and

•n (K)^^ >M«f<«,«> «X).

orhcrvlM.

(A not« on Chit deflnttlon: Ch« «xlttrac« of Ch« r«lailv«

algorttha t ■»«•» by «zloa (2) of dofinlClot 2.3 iNMdtaColy LapliM

that ch« caaca for iM^uallcy aay be «Mda affaccivaly In x and X.)

Now dafina Ms.y) - «ax h*r«.y.X). «hara

.m{) if <*.y> c x.
h'(»,y,l) - { J

othanria«.

h* la total racrraiva in s, y and X, alnea:

/>(*).

• ♦.(X)(K)i, by axio« (I)

Tharafora, h c R2, by \mmm, 2.S.I.

For cha particular g, A and 6 undar conaIdaration, wa coa^ara

27

the definition of C with the dofinition of 9 K) and conclude that
— J

•1 " v

Alao, ainca <ii,f(x)> e B for all x. It folio that:

h(x,t(x)) i h'Cx.Kx),!)

- t/ '(x) for all %, aa required.

QED

Rraark: We note that the proof of lenna 2.7 actually provides a

raault considerably stronger than that stated. Namelv.

"(Vhj € R2)(ih2 € R2)(Vf, g total)(YB)(aA)

fC0Bp(B)t « hj o g a.a. • (I) Co«p(B)A > g i.o., and

(2) COBP(B)A < h2 o g a.a.J."

To prove thla raault, we can althar modify tha given proof of 1«

2.7, or note that tha raault hold', for apace measure and use recuraive

ralatedneea.

The condition "Conp 'g < h. o g a.a." la an <ataaple of an

"honesty condition" - one which specifies that a function has a

running time which it approximately equal to ita •is«. Honest

functions (a generallaation of running tinea, as we will later «how)

• re extensively studied in 'MeMo 1.

Honesty conditions will turn out to be necessary hypotheses

for many of our later theorem», particularly in chapters 5 and 6.

There, for alnpllcit we will usually require that a function be a

running time, wheieas a leas reatrictive honesty hypotheaia would

have been auffie lent.

In IHM 2.7, th« flrtt conelu»Ion a»y be «harpened to «isert

that Co^(B)A > f «.•., r«th«r th«n merely l.o. Thli !• dorn by

Introducii« ti#o •ddltlon«! tricks Into th« construction.

Th« first Is s shsrpsr fora of dlsgonsllsstlon In ths construction

of A uhlch makes g sn s.S. lowsr bound on A's coaplsxlty. Ths hsslc

construction li dus to Rsbln snd «sy bs found In fHH).

Rabin's method defines CA st succetslvsly Isrgsr vslues of K, In

ordsr. Tlius, co«putli« CA(x) for stc x rsqulrss first computing

g(0), g(l) g(x). In ordsr to ksep ths coaplsxlty of A ss small

ss possible, ws Introducs ths second modification, dus to B^um: ws

computs C. on arguments not In ordsr of ilss of the srgunsnts, but

In ordsr of site of ths valuss of g.

Sines both of thsss ideas will bs utsd In ths auccssdlng chsptsrs,

ws give th« detailed construction:

Theorsm 2.8: Assume ws srs glvsn a relstlvs complexity msssurs ♦

Thsn:

(3h e R2)(Vg, g totsl snd g s \xrx])(3B,A)

(1) Comp(B'A > g s.S.,

snd (2) Comp(B)A i h o g

Proof: Glvsn g, ws define B sa before.

Ws define • rslstlvs slgorlthm y •■ followa:

For sny X, y™ will bs dsflned In stsges; thus, to computs
/■y\

Y(X)(x), ws bsgln sxscutlng stage« In the definition of y until

-

the value of Y(X)(X) becomes defined. At each srage. «t most one

additional integer 1« added Co the domain of y •

During th« con*Cruetion, an Index i will become "cancelled"

when we have Inaured that y ^ ^j •

Stag« n In tht dtflnltlon of v ;

Find th« smalleat Integer y for which there exists an integer

(X)
x < y such that y (x) vat not defined at an «arii«r «tag« and

<kly> e X, and for this y th« smallest x.

(It is possible that this search may not terminate, in which

CM. y will diverge at all arguments for which it has not already

been defined.^

Whan <x,y> has been found, w« find th« smallest uncancelled

I « x such that #l
(X)(x) « y.

If no such i «xists, dsfin« y(X)(x) - 0.

If i does «xist, dsfin« Y(X)(X) - 1 i (pl
(X)(x) and cancal i.

In either case, go on to stag« n + 1.

E» OF CONSTRXTION

V«rification: W« let Ab«« set such that y' ' - CA. (This is

possible sine« Y(B) is 0-1 valuad and total.)

We claim Comp(B)A > g a.«.

For if not, than for SOD« i, cp^ ' - CA and *1
(' ^ g l.o.

30

But after some stage n In the construction of Y - C , «11 the

Indices smeller then i which ever get cancelled have already been

cancelled. But for some x such that C (x) is defined after stage n.

*t
WW ig(x).

so th-c we will define:

CA(x) - 1 -(p1
(B)(x), e contradiction.

To verify the second conclusion, we choose J such thet qj ' - y ,

define h and proceed exactly as in the proof of lemaa 2.7.

QED

Remark: As for lemma 2.7, tht property of B that we actually require

in this theorem is that B makes the function g honest (i.e. g can be

computed from a B-oracle within measure approximately equal to g).

We can thus obtain the more general result:

"(Vh1 e R2)(3h2 e R2)(Vg, g total and i \xrx])(VB)(3\)

rComp(B)g s h1 o g a.e. =* (1) Comp(B)A > g a.e., and

(2) Comp(B)A s h2 o g a.e.]"

A formal proof of this remark uses techniques wo have not yet

developed, namely a method of proof we will call the "domain-of-

convergence method." In Chapters 4 through 6 we will discover

ourselves repeatedly using this type of method to prove theorems.

A restricted form of the idea of domain-of-convergence arguments

may be stated in the form of a lemma, a relativisatlon of the

combining lemma fHH]. The statement of a lemma sufficiently general

to imply all the later results is necessarily cumbersome; we will

therefore present it in something less than its full generality.

31

In the form of lemma 2.9 below, the relativized combining

lenme implies some of the later results (corollary 2.9.1, lemma 4.7,

lemna 6.2.1). Several others (theorems 4.8, 6.3) will use essen-

tially similar methods.

The lemma relates the complexity of a computation to the

complexity of Its subcomputatlons. As In TRol, ^5.6], we let D

represent the finite set with canonical Index k.

Lemma 2.9: (combining lemma)

Assume we are given a relative complexity measure i and a

function c c R.0 such that:

(.1.I.«.(1.J.IJ2|X,A)

[(CD1
(A)(x)i A ... Af (A)(x)i Acp (Di2hx)l)

1 ml

* Kd i i i)(A)^)^-
Then there exists g C R« such that for all A,

g(x,max(# (A)(x) f (A)(x)f» ^J^«))
I m h

* • ,. . / '(x) a.e. (x).
c\11»•••11_»Ji»J 2'

Proof:

Note: This proof Is still valid If J and k are eliminated, or It c Is

also a function cf additional parameters which don't affect the

convergence Implication.

Define g(x,y) -max g'Cx.y.l,,...,! .J.»^^
lk<x for k*n, J^x, if* l

where g,(x,y,l1 ^»Ji»^ ' max «"^»y«1! lin.J1.J2»
A)» *nd

X

32

\a i i i /A)(x) if (Vk ^

«"(x.y.ij ijjj.Jj.Jj.A) "
and

», ^J,^) ^y
Ji

otherwise.

It Is easily seen that g" Is total recursive In m + 4 Integer

variables and 1 set variable. Therefore, by lemna 2.5.1, g' C R—44t

so that g f R2.

To see that g has the desired properties, we note that If

x 5e max (11 IJJJ.J^JJ)»
then:

g(x,inax(». (A)(x) i. (A)(x),*. ^^(x)]) 2
11 m Jl

g"(x,iBax{l. (A)(x) •. (A)(x),*, ^J^Ol»,!,
h n Jl 1

l-n'h'h'V

(A), • , / '(x), as required.

QED

As a simple example of the use of lemma 2.9, we give the following

corollary. The result, a relatlvlzatlon of Che compression theorem.

Is closely related to lemna 2.7. Here, however, we fix the oracle

(B)
set B In advance and work with B-recurslve functions tp. , whereas

In lemna 2.7 we work with any total function g and find a set which

makes g honest.

Honesty is relevant for this corollary as well. We begin with

y

(B)
33

any B-recurslve function 9^ , but we only obtain a set A with

complexity approximately equal to »^^(a B-honest function) rather

than q. (B).

Corollary 2.9.1: Assume we are given a relative complexity measure *^ ',

(B)
Then (Sh C R2)(VB)(Vl, «^W total)(SA) such that:

Comp A > cp l.o.

and Comp(B)A i h o «1
(B) a.e.

Proot: We define a relative algorithm Y as follows:

For all 1, x, B,

f

Y(B)(<l.x>) -

and 11 Vx)<B)(x) lfcpi(B)(,t)i

V(x)(B)^^l(B)(x).
If cpi^

B)(x)i and

*ni(x)
(B)(x)>cp1(

B>(x).

If cp/^Cx)!.

By the relativized s-m-n theorem, there exists c C R. such that

Y(B)(<l.x>) -cpc(1)
(B)(x).

Now (B), It Is clear that (Vl.x.B) [cp^^xM =» cp
c(l)

(B)
(x)i].

We may now apply lenma 2.9 and assert that:

(B), (B), (*) (Sh C R2)(Vl,B)[h(x,»1
VD'(x)) s »c(1/

;(x) a.e.l.

We now fix 1 and B as In the hypotheses, and let C4 - cp #-%
A c(l)

(B)

This Is possible since the hypotheses Imply that cp

valued and total.

c(l)
(B)

Is 0-1

By the diagonal construction defining it, C. satisfies the
A

first conclusion; the second conclusion follows from (*).

Many of the interesting pertial relativizations of the speed-up

theorem [Bl] may be expressed in terms of "helping"; we discuss in

these terms the amount by which possession of an oracle speeds up the

computation of a function. This type of question forms the subject

matter of Chapters 4, 5 and 6.

A relativization of the union theorem [McC] will be given in

Chapter 3, together with some interesting consequences.

35

3. Complextty-Determtned Reducthllltles

Just as we study complexity classes within non-relativized

complexity theory [McC] [McCMe], we may consider resource-bounded

relative computation. A fixed resource bound defines a kind of

"reducibility" as follows:

Definition 3.1; For any relative complexity measure •' , any sets

A and B, and any total function f of one variable,

"A ^f B (*
v /)" means Compv 'A* f a.e., where complexity

is measured in 9 .

More generally. If C is any class of total functions of one

variable,

"A ^ B (•(V means (Sf cC)[A ^f B (»
(^l

We read this notation as "A is f-reducible to B" and "A is

C-reducible to B," respectively. When no confusion is likely, we

omit mention of the measure we are using, and write sLnply "A £, B"

and "A ^ B. "

Several commonly-studied reducibilities usually defined via

"natural" (i.e. non-complexity-theoretic) restrictions on the method

of computation may be expressed as C-reducibilities for appropriate

choices of the class C, and thus may be regarded as complexity-

determined. In particular, truth-table reducibility [Rol] and the

relation "primitive recursive in" pre complexity-determined

reducibilities, while many-one and one-one reducibilities are not.

We first consider primitive recursive reducibility. We write

"A ^ B" to indicate that A is primitive recursive in B, and "f < B"
P P

36

to indicate that f is primitive recursive in B [K].

Theorem 3.2: Let C = (primitive recursive functions of one

variable). Then (VA,B)(A ^ B • A £ , B (T^ ')|,

i I

Proof: We use the type of T-predicate used by Davis [D], modified

slightly for our Turing machine model.

As in [D], we see chat:

(VB)[\2,x,y[T (z,x,y)] is primitive recursivf. in B].

An examination of the encoding used in the T-predicate shows

that there exists f, a primitive recursive function of three variables,

such that:

(VB,w,x,y,z)[(Tz
(B)(x) * x) ^ (3y ^ f(z,x,w))[TB(z,x,y)l].

(That is, some code number for the computation is effectively bounded

by a function of the number of steps in the computation, the input and

the index of the machine.)

We now define, for every set B, a function g of three variables
B

i

as follows: (Notation is from [K].)

,(■,>,«) = <
Uday * f(z,x,w)[TB(z,x,y)]) if y exists

otherwise

(Intuitively, gD(z,x,w) represents the output of the computation o

co (B)(x), provided T **'{*) *= w.)
z z

g_ is ob'iously primitive recursive in B, for any set B.

Now assume we have sets A, B with A ^ B. This implies:

1 37
(3l, Eh a primitive recursive function of one variable)

f^A"^00) A O^HTi00^ *h(x)]].

Then the definition of g,. shows that C. » \xrg_(i,x,h(x))], and
D no

the function on the right-hand side of this equation is primitive

recursive in Bu •

, Thus, A Sg B =» A s: B.

! • ' P ■ '

The converse is proved using the following lemma:

Lemma 3.2.1: (VB)(Vf)r(f SB)5» (Sp, a primitive recursive function)

fp ^ f]].
i i

(That is, any function primitive recursive in any set is no larger than
i < .i

some primitive recursive function.)

Proof of lemma 3.2.1; We carry out a straightforward proof by induction

on the definition of the class of functions primitive recursive in B.

In particular, C_ s \xfl], which is primitive recursive. The

other base functions for the induction are thanselves primitive recursiv».
!

. , I
I I I

The two Induction steps (composition ftnd recursion) follow without
' i

difficulty if we note that:
' i

(Vf, primitive recursive) (Sf , primitive recursive) ■

[(f ^ f) A (f is monotone increasing in each of its variables)]

i

For example, we verify the recursion step:

■

Assume that h is a functicn of k + 1 variables with h i B.
P

Assume that g is a function of k - 1 variables with g « B.

.1 '

l

38

Assume h s Pv •«, 8 fi P , where p. end p ere each primitive

recursive and monotone increasing in each variable.

Assume a function f is defined by primitive recursion from g end h:

(We write "it" to indicate "x^x..")

f(0,x) - g(x)

(Vy) fCy+l.x) - h(yff(y.x),x)

Now define p, as follows:

pf(0,x) - p (x)

(vy) pf(jH-l,x) - ph(y,pf(y,x),x)

It is easy to verify that pf is primitive recursive and f i p ,

as required.

Proof of theorem 3.2. continued:

We again use induction on the class of functions primitive recursive

in B.

An oracle Turing machine with a B-oracle can obviously compute

C rapidly. In particular,

(31)(3p, a primitive recursive function)f (9,(B) - C-) A (T (B) s p)). IB 1

The other base functions are primitive recursive, and so are

computable in primitive recursive time. [C]

The two induction steps are straightforward; we verify the

primitive recursion step, leaving the composition step to the reader:

Aiauae w« have f. g and h as In the proof of !•■■• 3.2.1. A«

inductive hypothaal«, wo aaai

(«i)'«Pl
(B) • s) A (T/^ « Pg)l

and (3j)f«»j
(B) - h> A (f^ « f^) 1

where p and p are primitive rocurtlv« and aonoCom Increasing In

each variable.

By leona 3.2.1, tbara axUt« f. a primitive rocurslva function

such that f s f.

We define a primitive recursive function pt aa folloira

Pf(0,K) - Pt(«)

Ch) pf(y*i.«) " pf(y.») + 1^(7.''(y.«).«)

Wo claln that tho prladtlvo rocurslva function pf •♦• Kj +.. .♦ ^ ♦ jr

Is an uppor boutrf for tha tlao roqulrod to c<»puto f. If furthor dotalls

on this induction stop ara dasir^l. saa fCJ. fAlJ. flDl. rmi] or fMoM).

Corollary 3.2.2: Thoora« 3.2 is truo for 8() in placo of T

Proof: s() a^ T^) aro rslatad, 1« tha sens« of choora« 2.5, by a

prlBltlva racurslva function, as wa can show by an arguaant similar to

tho loopli« argument in tha discussion of S in Chaptar 2.

Rmark: Theorao i.2 is falsa for SOM pathological nsasuraa.

Wo nw» consldor truth-tabla roducibility (Roll. A roault of

McLaughlin rifcL) coafcinod with thaora« 2.5, givoa tha following

cuoploxity-dstorsdnation rosult for truth-tabla raducibility:

40
Prooo«ltl<m 3.3; fix any r«l«tlv« co^laslty Maaur«.

Let 2 m ly Thm:

(TA.l) rA<tt 1 • A <CH.

On the other hand, »any-one and one-one reduclbl11tlee art not

determined by a complexity reatrlctlon. In any relativ« co^lexity

raeaeure. The reaaon la that there are pa Ira of aete computable from

each other In a very email amount of reaource but which ere not many-

one reducible to each other (for example, any noorecuraive recuralvely

enumerable aet end ita complement). Thua, for natural meaeurea, it la

obvious that many-one and one-one r ucibilitlea are not complexity

determined. For generel meaaurea. however, a little work la required:

Propoaltlon 3.4; Fix any reletive complexity measure. Let C be eny

clasa of total functions of one variable. Then it cennot be the case

that;

(YA.B e R^ fA «^ B • A S^Bl.

Proof: Assume the contrary: let C determine many-one reduclbillty

for measure f

By consideration of T() and remark 2.5.2, we see that:

(3. c^HaiH^00 - CK) A (l^^sa)).

But K ^ K, so that (Vc € C)fc(x) < a(x) i.e.).
■

To obtain a contradiction, it suffices to show that:

(aA,B)r(A s B) A (Compv 'A > a a.e.))

But thia follows from the following lenina:

41

3.4.1: Fix any relativ« cowpUxlty a*««urt. Thru:

(f» C l.)(VB r«curilve)(2A recur«Ive)

rC(MV(B)A > • a.«.].

Proof of lenaa 3.4.1: We not« that I4| *** <P1
<B)

| | djf # (B)

aatiafy tha raqulr«Mnti for an accaptabla Godal numbering and a Blum

complexity maaaur«.

Than the existence of arbitrarily complex (a.a.) recursive sets

in any Blum measure fBl] gives us a set A such thet:

»i " CA • •i > * •'••

w+ilch treiMlaeea into the desired result by the definitions of "i and •-,

Proof of proposition 3.4. continued:

Now select eny Infinite, coinfinite recursive set B, end use

lemrae 3.4.1 to obtain an appropriate set A. We cen easily obtain A

infinite end coinfinite, and so A ^ B. But CompK 'A > s a.a., giving

tha deaired result.

QED

Corollery 3.4.2: Proposition 3.4 is true for one-one reducibility in

piece of meny-one reducibility.

Proof: Implicit in the proof above.

Open Question: Is it true that:

(Vs € RjHVB infinite and coinfinite) (SA ■1 B)

rComp(B)A > s a.a.] 7

42

Hrnvii« shown th*t primitiv« recursive «nd truth-table reducl-

blllties are complexity-determined, we esk If It is possible to ex-

press them even more succinctly; for instance, is it possible to

cherecterite each by a sli^le resource bound function rather than a class

of functions?

Thl« question imnediately suggests that we would Uke an analog

to the union theorem fMcC], and so we prove the following:

Theorem 3.5: (relativised union theorem)

Assume we have a sequence of total functions (t^, with:

(Vi,n)rt1+1(n) ^ t^n)].

Let T be a set such that X-l.nft^n)] is recursive in T.

Also assume that we have a sequence {Bj} of aets, and a set B

such that: \l,nrc_ (n)1 is recursive in B.

Then there exists a function f c R^3 ioiri T/ such that:

(Vl,J)r(«1
(BJ) ^ f *•«•) " (ak)(*1

(BJ) * tfc •.••)!•

(This mean« that for any B , the class of functions computable

with oracle B within measure f 1« exactly the union of the classes of

function« computable with oracle B within measure tk, the union being

taken over all t^.)

Proof: The construction of f 1« carried out in stage«, with f(n)

bell« defined at stage n.

We define an auxiliary function g(i,j), whose values may be changed

at successive stages. The significance of g(i,jN is as follows:

We "guess" that »^Vw * '«(l,!)^ *•'•

_ _ . /

43

Sfge Ti: (Define f(Ti).)

For «11 (1,J) euch that 1 + J - n, define g(l,j) - n.

Let E - {(l,j)|l + J ^ n end ♦i(BJ)(n) > tgdj)^» •

Define:

f(ti)

t (n) If E - 0
n

min t f. .v(n) otherwise.
(1,J)€E 8U,:,;

For «11 (l,j) e •: redefine g(l,J) - n.

Go on to stage n + 1.

W OF CONSTRUCTION

Verification;

Assume we h«ve i. j, k «nd we know th«t *1
(Bj) s ^ «.e. We would

like to conclude thet «^V < f «.e.; It therefore suffices to show

that (Vk)rtk ^ f a.e.].

If not, then for some k we have f(n) < t^n) on Infinitely many

arguments n > k.

At stage k, there can only be finitely many pairs (1,J) with

g(l,J) < k. We let F be this finite set of pairs. After stage k,

no pair (i,j) ever has g(i,J) become defined to be less than k. There-

fore, if g(i,j) < k at some stage after stage k, we know that (i,J) c F.

Now if f(n) < tk(n) on infinitely many arguments n > k, then for

these n, f(n) is defined to equal '-(i «)« for •ome ^»^ e F wlt:h

g(i,j) < k- But then at 8ta8e n, g(l,J) is redefined to equal n.

•

44
Since F ia « finite set, this can only occur finitely often

before no paira (i,J) remain with g(i,j) < k.

Therefore, we have (Vi,J)

KSfkH^V s ^ a.e.) • &&)> * f ..e.)]

Converaely, assume we have (i,J) with (VkH*1
(BJ) > t i.o.].

Then each time we define g(i,J), we will subsequently reach a stage n

where:

•t * <■»> W.»«-

At thia stage n, (i,j) will be in ret E, so the definition of

f will insure that $1
(BJ)(n) > f(n). We will ulso redefine g(i,j).

But it is easy to see that this must happen for infinitely many

arguments n, so that:

♦i(BJ) > f i.o.

Thus, we have:

(Vi,J)r(Vk)(*i
(Bj) > t^ i.o.) • («1

(Bj) > f i.o.].

It is clear that f is recursive in B join T.

We now apply theorem 3.5 to the cases of truth-table reducibility

and primitive recursive reducibility.

Corollary 3.5.1: Consider any countable collection of sets {B.} with

B as in theorem 3.5. There exists f e R (B :}oln K) such that:

(Vi,A)r A stt Bi *» A sf BJ.

Proof: We define a sequence {t } as follows:

r
t.(x) - Jnax {!P.(x)|<p (y)i for all y s x) if this set is
1 \ *<4 J J

Tionempty

0 otherwise

These t. have the properties required for theorem 3.5, with

T - K.

Also, (Vr e R1)(3j)rr ^ t a.e.]

(Vj)(5ir e R^ft s r a.e.]

Thus, by proposition 3.3, if C - [tj] t then

(VA,B)rA ^j.,. B « A seB].

Application of theorem 3.5 now gives the desired result.

QED

Corollary 3.5.2: Assume we are working with S(J or T('. Consider

any countable collection of sets (B.), with B as in theorem 3.5. There

exists f e R^ ' such that:

(Vi.AHA ip Bi • A sf »jJ-

Proof: Let (p.) be an entnneration of the primitive recursive functions

such that \i,xrp.(x)] is recursive. Then define:

t.(x) ■ max p,(x).
1 jü J

(t.) satisfies the required properties for theorem 3.5, with

T » 0.

Clearly, (Vi)rpi ^ tj a.e.], and

(Vi)(3j)rti s pj a.e.].

46

Applying theorems 3.2 end 3.5 gives the desired result.

QED

Thus, we see that for any countable collection of oracle sets

(e.g. recursive sets, arithmetical sets), truth-table reduclbility

is determined by a single resource bound function on any measure, and

primitive recursive reduclbility is determined by a single resource

bound function on measures T and S ',

The next question we consider is whether any single function can

determine either of these two reducibilities on all pairs of sets.

This we show to be impossible; thus, the countability hypothesis in

corollaries 3.5,1 and 3.5.2 cannot be eliminsted.

Theorem 3.6; There is no function f of one variable such that:

(VA,B recursive in f) f A * B «» A s B],

Proof: Assume such a funr.vton f exist».

We claim that (Vr e R^ ff > r a.e.].

For if not, then (3r c R1)[r * f i.o.].

But then, by Rabin's diagonal method, there exists a recursive

set A such that Comp A > r a.e. We have A € 0, since A is recursive,

but clearly -i(A ^0), a contradiction.

Now consider the function h whose existence is asserted in lemna 2.7.

We msy assume without loss of generality that h is monotone increasing

in both variables.

Define a function g as follows:

g(x)

47

»«(ylhCx.y) ^ f(x)) if the set 1 s nonempty

otherwise

We cleim th.t (Vr e R^ fg > r ..e.]. This Is easily concluded

fron, the facts that (Vr , R^ rf > r ..e.j .„„ that „ l8 recurslve

We now apply lama 2.7 to obtain A and B such that:

r(ASh.8 B) A^ASg B)J-

But (A ^hog B) i^P"" (A sf B) since ho g s f a.e.

-i(A sg B) Implies -^A ^ B), since g Is almost everywhere

greater than each recursive function.

Thus, f does not determine truth-table reduclblllty on all pairs

of sets.

QED

The0rem3-7: A88Uffie that we *" working with space measure on oracle

Turing machines. There Is no function f of one variable such that:

(VA.BHA SB « A if B].

Proof: The proof Is analogous to that of theorem 3.6:

We claim. If such an f exists, that:

(Vr, primitive recursive In one variable)ff > r a.e.].

For If not, then:

(3r, primitive recursive In one variable)rf s r l.o.]. We may

assume without loss of generality that r Is monotone nondecrea.lng.

But then, by a Rabin diagonallaatlon argument, there exists a recur.lv.

set A such that Comp A > r a.e.

However, by a result of Cobham fC] and an examination of the

diagonalliatlon, we see that:

(3i)(38, primitive recursive of one variable) »p. » C. A s. s s a.e.].

We thus have AS 0 but -i(A s^ 0).
p f

If we let *(J » S^ in lenrnia 2.7, it is possible to obtain a

function h satisfying the conditions of the lemna which is primitive

recursive. We construct B and A as in lemma 2.7, and define g as in

the proof of theorem 3.6.

As before, we obtain:

(Vr, primitive recursive in one variable)fg > r a.e.].

Thus, as before, A s, B A -i(A ^ B).
f P

Therefore, f does not determine primitive recursive reduclblllty

on all pairs of sets.

QED

Remark: An analogous proof also holds for T^ ' in place of S^ .

Open Question; Is theorem 3.7 true for all Blum measures?

Open Question: Examine other natural reducibilities, such as bounded

truth-table reduclblllty, or any of the others mentioned in TJl], to

see if any are complexity-determined.

We have seen that some reducibilities with "natural" definitions

may be alternatively described by a complexity restriction. Conversely,

it is possible to define new reducibilities by a complexity restriction.

In the remainder of this chapter, we give an example of such a definition,

49

and examine some properties of the resulting reduclbill ties.

Definition 3.8: For any sets A, B, C, we say "A is C-reduclble to B"

(A £ B) provided:

A s« B for C- *! •

We write "C-reduclbility" to Indicate {(A,B)|A ^ B].

Thus, any set C determines a new rcduclbility, namely, the

collection of pairs of sets computable from each other in C-recurslve

measure. The reducibllltles are clearly measure-invarlent, by

theorem 2.5 and remark 2.5.2.

Strictly speakii«, anything we call a "reducibilit:" ought to be

reflexive and transitive, properties which do not hold for general

classes C . However, our C-reduclblllties are reflexive and transitive:

reflexlvlty is clear, for any C. We demonstrate transitivity:

Lemna 3.9: For any sets A, B, C and D,

[(A sc B A B sc D) • A ic DI,

(C)
Proof: By measure invarlance of C-reducibillty and closure of 1^

under finite modification, we obtain:

(ai)(ac1 eR^HC^ -qp^

(aj)(ac2 e R1
(c))rcB =9^*" A sy

We describe an oracle Turing machine which computes CA using

a D-oracle:

(E)
The Turing machine computes CA according to procedure (pi ' , but

the values about which we query the B-oracle get written on a second

(C)w^ -- W A s <D) «•,!.

I

50

track of the worktape instead of the oracle tape. Then, to decide

their membership in B, we use (p (', with our D-oracle.

How much space is required by this new machine?

For input x, the machine uses S^ ''(x) to carry out the computation

Pt**'(«), In addition, the largest argument for which we might need

«3 (B)^
to compute C is 2 i wl so we might also require:

•,«<«. S/
D,(i) s/'Vi'"«)).

Thus, the space needed is bounded above by the maximum of:

sWoo.s/1»«» YB'r2si(B)<'>).

which is bounded above by the maximum of:

c1(x),c2(0),...,c2(2
Cl(x)).

(C)
But this maximum is a function in R^

Thus, A sc D.

i
■

i

QED
■

We remark that results similar to theorems 3.6 and 3.7 may be

obtained for these reducibilities as well.
i

;

There are simple relationships between these reducibilities and

others:

Proposition 3.10; (a) For any set C, A ^ I =» A ^ B =» A ^ B.

(b) If C is a recursive set, A ^ B «» A Stt B.

!
Proof: Immediate fiom proposition 3.3.

I 51

We would like to have a structural description of C-reducibility

as an alternative to the complexity definition. We obtain the following

partial result in this direction:

Remark 3.11: Assume C s B, Then (VA)

A sc B « (3f e R1
v Ofx e A » tt-condition f(x) is satisfied by B]

(For notation, see FRol]).

' i

(This says that, provided the oracle set has a sufficiently high

degree of unsolvability, any reducibility of our type may be described

by the ability to construct a truth table for the computation With the

help of the appropriate oracle.)

i i i

Proof: (=») Similar to McLaughlin's proof fMcL]. The condition C s B

is not needed for the proof in this direction.
i

1

I (♦•) We assume that C *c B, specifically, that :

C-V". I^M where geR^).

i

We assume also that:
i

Tx e A » tt-condition f(x) is satisfied by B].

We show that CA is computable from B in C-recursive time. The

procedure we will use for computing C using a B-oracle is as follows:

!

"Given input x, we compute f(x). r is recursive in C, so

we simulate a machine computing f from C; we use qo ^ ' to

obtain answers to questions about membership in C.

Once we have the truth-table f(x), we then ask the B-oracle

about membership of each argument in the truth table and use the

■ ■ i

'i
i I

It"

1

52

answers to find the value of CA(x) from the truth table.•'

How much time Is required by this procedure?

If we assume that f - QJj
(C), then we can obtain f(x) In time

approximately bounded by: (c)

2^1 ^
T (C)(X) + E g(y),
J y-0

since the largest value y for which we might med to compute 9 (B)(y)

I ^(x) l
18
 2 * • Clearly, this SVJ> Is bounded by a total C-recurfclve

function.

Once we have f(x), It is not difficult to show that the remaining

time required to obtain CA(x) by asking the appropriate questions about

membership in B is bounded by a C-recursive function.

Thus, the total time is bounded by a C-recursive function, so

ASc B-

QED

Each set determines a reduclbillty. We may obtain a "hierarchy

of reduclblllties" between truth-table and Turii« reduclbilitie«,

ordered by a comparability relation. Usit« a relatlviaation of the

compression theorem, we conclude that comparability is exactly

determined by site of functions:

Theorem 3.11: Assume we are given two sets, C and D. Then

f(VA,B)rAScB - A SD B)] « r(Vf eR1
(C>)(3g €R1(D>)fg i f ..».))

Proof: (•-) Obvious.

(-) AOOUM (If c tj^XY, e t^Hg < f t.o.I.

TYfn by • dlr«ct rclatlvlMtlon of thm coaprcaalon thcorca.

(SA wmmttm u QOH^^ - cA « i.^ > f ..,.).

It Is May to show chat A sc C but ^(A Sp C), a contradiction.

QKD

Corollary 3.11.1; for any aata C, D,

(C 'T D) • (C-raduclblllty - D-reduclbi 1 Ity) .

In the remainder of thla chapter, we ask about the convara* of

Corollary 3.11.1. That la. If aata decenalne the aaaa raducfbillKy,

naad thay be Turing äquivalent' in certain caaaa, the anr^er t* yaa:

Definition 3.12: A aet A la waaklv maloreduclble if there eaiata

f C 11
(A) such that:

(Vg)rg ? f - A la racuraiva in g).

Thia definition la weaker than, although alnilar to, the definition

of H■aJoraducibla,, uaad and studied extenalvaly by Jockuach in fJ2).

Theorea 3.13: If aata C and D ara weakly aajoredurlble, then:

(C-raducibility - D-raduclbility) • (C ■ D).

Proof: If C-raducibility - D-reducibility, then by theoiaa 3.11 end

cloaure of »1
(D) uHer finite Modification, we have:

(Yf Ct^xa, CRlW)rg» f).

By weak oMjoraducibility of C, C ia racuraiva in g for the

appropriate choice of f.

.i

Therefore, C ST D.

Symnetrlcally, we have D s C.
T

QED
Coroll«rY 3.13.1= if Mt8 C and D are recur,lvely eilunierablef then

(C-reduciblllty - D-reduclblllty) » (c B D)#

Proof: It follows imedlately from work of Jockusch It, rj2] that all

recursively enumerable sets are majoreducible (his definition) and

hence weakly majoreducible. The reason is as follows:

Suppose C is a recursively enumerable set. If c is finite, f ■ 0

satisfies definition 3.12.

Otherwise, let {c^ be an effective enumeration of C without

repetitions.

Define f(n) - u«r(Vy)(y > « =, c > n)]>

It is easy to show that f e R ^C\

see If g ^ f, we may compute Cc(n) by listing C for g(n) steps to

if n turns up. Thus, C is recursive in g, so is majoreducible.

QED

Note: Examination of the proofs above, combined with the Friedberg-

Muchnik theorem TRol, ^10.2] shows that there exist pairs of recursively

enumerable sets C and D determining incomparable reducibilltie»; that

18' (3A,B)f(A Sc B) A -<A SD B))

** (SA,B)r(A Sp B) A -n(A ^ B)].

We have thus shown that for a large collection of sets, if any pair

55

detenaln«« the s«ae reduciblllty, the two sets must be Turli« equivalent.

However, this is rot true In ge? ü
-. in fact:

Proposition 3.14: Given eny set C, there exist two sets A «nd B such

that A|B and A-reduclblllty - B-reduclblllty - C-reduciblllty
T

We omit a detailed proof because It Is quite long and not very

different from other proofs In the literature. There Is a modified

version fMal) of Spector's ipllttlng-tree construction of minimal sets

fRol, .13.5] which produces a nonrecurslve set A which Is "small" rather

than minimal: that Is,

(Vf eR^xag e R^fgi f).

In outline, In the proof of proposition 3.14 we simultaneously

construct two "small" sets, A and B. by modified spllttlT«-tree

constructions, with two added changes:

(1) We encode C Into both sets at the beglimlt« of the construction.

(2) We alternate the splitting-tree construction with a straight-

forward dlagonallaatlon making A and B Turing Incomparable.

The resulting sets A and B are such that:

(Vf c R^xag c Rl<
A)) rg a f ..e. i Bivc€ c ^ At

and

(Vf € R1<A>)(3g e R^C)) rg ^ f a... J by the construction,

and similarly for B.

Thus, by theorem 3.11, A-reduciblllty - B-reduclblllty -

C-reduclblllty.

QED

56
Open Question; Given any nonrecursive set A, is it always possible to

find a set B such that A|B but A-reducibility = B-reducibility"?
T

Open Question: What are necessary and sufficient conditions on sets

A and B for A-reducibility to equal B-reducibility?

Although pairs of sets can have the same reducibility and still be

Turing-incomparable, there do exist limits on what Turing-reducibility

relationships sets can have and still determine the same reducibility.

For example:

Proposition 3.15: If C-reducibility = D-reducibility, then we cannot

have C ^ D.

Proof: Assume C ST D.

Let g(n) = max (»^'(a)] 0 s i <: n A (p (C)(n)i).

I«!^, sog eR/D).

But clearly (ft e R^) rg > f i.o.].

So by theorem 3.11, C-r^iucib-l lity t D-reducibility.

QED
•

Open Question: In fjl], Jockusch develops the properties of various

types of truth-table reducibilities, e.g. containmenc properties of

degrees. Explore the answers to these questions for C-reducibilities

for various sets C. For example, does C-reducibility have any

properties significantly different from truth-table reducibility?

57

4. Helping

Intuitively, we have the Idea that some sets B help tc compute

some functions f. lhat Is, when we use B as an oracle, we can reduce

the complexity of f below what It could have been without the oraclo B.

In this chapter, we try to formallae this Idea. We use the word

"helping" In Informal discussions only, and give precise meanings to

several Interpretations. We also give several basic results about the

existence of sets which help or don't help the computation of certain

functions.

Definition 4.1; Assume B Is a set, f e ^ and h Is a total function of

two variables.

"B h-Improves f l.o." means:

(aiHVj)^0» - f A r^ = f - hCx^Wyx) i.o.]].

"B h-lmproves f a.e." means:

(31)(Vj)^0» -f A (^ -f - Mx^Wwxyx) a.e.]].

We remark that these definitions do not provide us with notions

of helping that are transitive or symnetrlc. Appropriate counterexamples

will be found as corollaries near the end of this chapter.

An alternative way of measuring the amount of help given by a set

B to a function f Is to ask which lower bounds on the complexity of f

are maintained after Introduction of the B-oracle. To speak about

this kind of "helping" we use the definitions of Comp(B)f and Comp f,

etc.. Introduced as definition 2.6.

\

58
To place these definitions in some perspective, it is helpful to

note a relationship between "A *f B" and -I h-improves A":

Assume A is not primitive recursive. Then for any primitive

recursive function p of one variable, we know that Comp A > p l.O. FC]

But if A ^ B. then for some primitive recursive function q of

one variable, cLp^A - , a.e. Because the primitive recursive

functions are closed under composition, h o c, is primitive recursive

and therefore Comp A > h o q i.o.

But since Comp(B)A ^ q a.e., we know tbat B h-improves A.

We note that the amount of help a re. arsive oracle B is able to

give the computation of a function is restricted by the complexity

of B. This is because any program using B as an oracle n*y be converted

to one not using the B-oracle. by directly computing the answers to

the oracle queries. The complexity of the new program is bounded as

follows:

^ , -> TWP exist ■ K„ e R„ with the following property: Theorem 4.2: There exisc g^, ^ 3

. -n * < 1 if C =0,, then there exists k such that:
For all B, i, J, i1 '-g ▼j«

cpk=^
(B)

rB"). v $ (y)) a.e. (x).

BMt, Although this proof does mt exootly fit tho st.temeot of

the coebl^,« le-, m »t. the eeeentlal sl.U.rlty of the proof»;

„e oell this type of erg-e« e "..on-it-of-converge«^ .rg-«eot.

59
We use the following general lenma:

Lemma 4.2.1; Fix any acceptable enumeration of relative algorithms [cp (>)

and any relative complexity measure •' ', Then:

(ag • R3)(Vl,x,y)(VA,B)

KAO (0,...,g(l,x,y)) = BDfO g(l,x,y))) =»

«•^(«Mj - I^W^y) A (#/A>(x)^y •

3l
(A)(x) ^/^(x))))],

(), Proof of lemma 4.2.1: Let (T^ 'j be the standard enumeration of oracle

Turing machines.

Axiom (2) for relative complexity measures will allow us to conclude

the existence of a relative algorithm a() such that:

^ (X)
(n...j.x) .««i...« . I1 lf 'i (x) s "•

0 If not.

Therefore, by lemma 2.2, there exists an oracle Turing machine T ()

J
such that:

TjW^l.x^) = |l If ^(x) * y,

0 If not.

Now fix 1, x and y. Let f be the recursive Isomorphism (lemma

2.2) between the two Godel numberlngs.

Define g(l,x,y) = max g'Cl.x^.X), where g'd^y.X) Is defined
X = N

as follows:

60

g'(l,x,y,X) -

the largest number whose membership in X is

questioned in oracle Turing machine compu-

tatlon T^^i.x.y:*) if T^(<it7C,y>) = 0.

T^^i.x.y^ or computation T /JN
(X)(x) if T4

(X)(<i,x,y>) = I.

the largest number whose membership in X is

questioned in either computation

r ^(<i,x,y>) or computation Tf(1,

Lemma 2.5.1 shows that g e R3

Now assume that A n (0 g(i,x,y)) =Bn (0 g(i.x,y)}

and (T4
(A)(<i.x.y>) - 1) - (Tf,n

(A)W - T .(B)(x)).

Then by definition of g', we have that:

t.(A)(<i,«,J>) = Tj
OI>«l,x.J>)

Wi<l,X,1>) - 1) - (Tf(1)
(A)^ " 'f(l)

But by definition of T, and f, this implies the lennna.

Proof of theorem 4.2. continued; We let g2 = the function g from lemma 4.2.1.

The s-m-n theorem allows us to define a partial recursive function

op , .v as follows:

'y if (Ik) <Pa
<A)(x) = y, and (Vw s g2(a,x.»a

(A)(x)))

,(x) - J (w e A *» (pb(w) = 1) and
^a(a,b)v S D

(w ^ A « (pb(w) = 0)

otherwise

By the definition of g in lenma 4.2.1, the function qpa(a)b) must

be well-defined. It is easy to see that it is partial recursive.

61
Intuitively, for or«l. Turipg „.chi«». ^^ l8 9imply ^

fanction computed If #/>, where *e use the partial

(Pb in place of an oracle.
recursive function

w. mm »Mm g^x.y,., . «, g.fx.y,.,.,,,.*,, ^.r.,

Va.b)^) "«a^Cx) .,. and

g'Cx.y.s.a.b.A) - ^ OswSg2(a,x.y) b

(Vw s 82(«,x,y))

(w e A »qt)b(w) - 1) and

(w ^ A «^(w) = 0),

otherwise.

By the definition of^^, ve 8ee that the ll8ted conditloii8

are sufficient to insure the convergence of *a(a>b)(x). and so by

lenma 2.5.1, 81 e R3.

We now fix a « j, b - i.

def We claim «(j.i) air k hai, the requlred propertie8.

If x a mex (i,j), then:

g^x.« (B)(x),,nax
j

g'Cx,* (B)(x),max i (y) 1 Bv

^ *a(a,b)(x)» fli,,ce fll1 ^e listed conditions

in the definition of g' are satisfied.

QED

.

62

Open Question; Can we obtain a version of theorem 4.2 for oracle sets

B vhich are nonrecursive? That is, can we find any way to bound the

amount of help a nonrecursive set B can give to the computatior of a

function (for example, relative to B's Turing-reducibllity properties,

or to B's complexity relative to some, set)?

We next show that for any sufficiently complex recursive set A,

there exist arbitrarily complex recursive sets B that do help the

computation of C.; in fact, which reduce it to triviality.

We may further specify that the set B be "compressed" (i.e.

B's complexity is very closely determined, to within a fixed amount

h depending on the measure only).

Theorem 4.3: Let $^ be any relative complexity measure. There is a

function h e R2 with the following property:

Let t be any total, monotone nondecreasing running time.

Let A be any recursive set such that Comp A s t a.e.

Then there exists a recursive set B with:

Comp B > t a.e.

Comp B ^ h o t a.e.

and A £ B.
P

(Note: As mentioned in the remark following lemma 2.7, this is an

example of a theorem which uses an honesty hypothesis.)

Proof: The proof is a domain-of-convergence argument.

We carry out the construction in stages, using a Rabin diagonal

construction with one modification: we introduce new programs into the

63
construction slowly, so most arguments are not needed for the

diagonaliMtion. We use the remaining arguments to encode A in a

simple way. The idea is similar to that used by Peterson in

theorem 4.6.

We define a function f as follows:

f(0) = 0, f(Ti) = LVnJ - 1 for all n ^ 1.

By the s-m-n theorem, we can define a partial recursive function

■ (where a € R0) according to the following construction in
^a(a,b) v •

stages:

Stage n: (Define qDa(a b)(t0)

Find the smallest uncancelled i ^ f(n) such that ^(n) * \(n).

(We diverge if fb(n)t.)

If no such i exists, define «^^(tO -^(W).

If i exists, define pa(a)b)(n) = 1 - ^W and cancel i.

Go on to stage n + 1.

END OF CONSTRUCTION

Now assume we have A, t as in the hypotheses. If we choose a*,

b* with V = t and ^ = CA and $a* *t, then we claim that CB = ^•.fc*)

has the desired properties:

B is clearly a recursive set.

As in the proof of theorem 2.8, we can show that Comp B > t a.e.

To show A £ B, we note Che following:
P

2 2
For any n, consider all x with (n + 1) ^ x < (n + 2) . For all such

x, f(x) = n. There are 2n + 3 such values of x. However, before stage

2
(n + 2) , we only cancel Indices ^ n. Thus, only n + 1 of the values

of x may have C (x) defined by a cancellation. For the remaining

n + 2 values of x, we have C (x) ■ C.(n).
15 A

Then for any n, (n+z)2 1

t
CA(n)

f1 if
x=(nfl)

otherwise.

2 CB(x) ^ n + 2,

Therefore, A ^ B.
P

It remains to show Comp B ^ h o t a.e., to do this, we must first

define h:

Let h(x,y) = max h* (3c,y,a,b), where:
a.b^x

h«(x.y,a,b) = i a(a'b) b •
0 otherwise.

The conditions on the right in the definition of h' are sufficient

to insure that sp , . x(xU. so that h' e R. and thus h e R„.
Qf(a,b) 4 2

Now if we fix a » a* and b ■ b*, we see that for x 2 max(a*,b*),

h(x,t(x)) s h'(x,$bvt(x),a*,b*)

' fa(a*,b*)(x) a-e-' a8 "q"1"«1-

QED

I

1

'■ • • '

I 65

Remark: If we do not require the compression of set B, a much simpler

construction suffices:

I

Definition 4.4; For any X, Y, we define X ® Y as follows:

(Vx)r(xexeY) • ((x e X A x ^ Y) V (x e Y A x M))].

Then If we take sufficiently large t' e R. relative to t, we can

obtain C recursive with Comp C > t' a,e., and let B - C join (A ® C).

This set B has two properties:
i *

i A s: B
P . 1

and Comp B > t a.a.

• i

This second property Is easily shown for space measure, using the

parallel computation property, and recursive relatedness gives the result

for general measures.

Results In this chapter have so far been rather Intuitive and

natural; less so are results stating "Independence" of sets (for

example, demonstrating the existence of airs of recursive sets which

do not help each other's computation):.

Solutions to problems of this latter type turn out to be analogous

to wo-k on degrees of unsolvabillty fSa] FRol, tl0.2. Chapter 13] In the

following sense:
'I l . .

Independence proofs proceed by a diagonalIsatlon (the only general

tool we have thus far for proving such results). The diagonalizations

require a countable sequence of conditions, or perhaps two different

countable sequences of conditions, to be satisfied. Satisfaction of

these various conditions may cause conflict. To Insure that each condition

66

gets ««tlsfled, we establish before the construction ■ "priority

ordering" of conditions; In our theorems, this Is a simple numerical

ordering.

We allow the satisfaction of a condition to be Interrupted only

by swltchlt« to an attempt to satisfy a higher-priority condition.

It follows that once we begin trying to satisfy some condition, we must

thereafter succeed in satisfying either that condition or one of higher

priority; thus, all conditions will eventually become satisfied.

Our arguments use priority more complex that the "Initial segment"

priority constructions In fRol, Chapter 13]; we do construct our sets

by determlnlT« values first on Initial segments, but we also carry

with us "tentative comnltments" to definition of the set at arguments

a finite distance beyond the defined Initial segment. It Is only a

finite distance beyond, so we are not using the full power of splitting-

tree arguments, for jxample.

Our constructions dlffe from those In (Sa) and fRol), however,

since we are coiutructli« recursive sets. Our constructions are always

effective, and we Insure definition of the functions we construct at

all arguments.

After a degree-of-unsolvsbillty priority construction, arguments are

usually presented showing what oracles are used In the construction,

and thereby placli« the constructed set In Its proper Turing degree.

We are working vith a subrecurslve analog of these constructions; we

are generally Interested In the complexity of the resulting set. Thus,

we generally follow our constructions with arguments showing what

67

•ubcoaputatlons v«r« ua«d In th« coeputatlon conatrucclns our ««t,

thereby placing th« com true ted set In Its proper complexity clMS.

We now aim to prove en Independence theoraa. In order to make

the proof ea coopact as possible, we first Introduce definitions

designed to allow as to discuss the independence of the values of a

0-1 valued function at ita different arguments. In theorem 4.6, we

give an example of e simple theorem uaing this definition. Immm 4.7

shows the existence of e 0-1 valued recursive function whose values

et ita different arguments are independent, while theorem 4.8 shows

how to split this type of set into two sets which don't help each other's

computation, thus giving a complexity-theoretic enalog to the Priedberg-

Huchnik theorem fRol, MO.2].

Definition 4.5: Assume A is e recursive set end g is a total function

of one verlebla. Then:

"Comp,A,A > g a.e." means:

(nHKYxXP^'^U) -CA(x))J - (♦/^"^(x) >g(x) a.e.)).

"ComprA,A « g a.e." meena:

(SiHKVxXtp^'^Cx) - CA(x))l A (^"^(x) < g(x) a.e.)|.

The follow!T« theorem, due to Peterson IP], shows the ebundence

of 0-1 valued function» whose veluea at different arguments are

strot«ly dependent. Thla settles a question reised by Trechtenbrot fTl).

Theorem 4.6: There exist r € Rlf h C R2 with the following property:

Whenever t is e monotone Increaaing running time, there exists e

recursive set A such thet:

\

A > t •••.

A •• h t •.«.

and Co^»fA,A < r •.«.

Proof: W« define th« iet A, depending on t; we indlcete be» to

construct r «nd h «ft^nwrd«.

We define A by • coMtnictlon In »tege«. A« »• do »o, •• cancel

indices i such thot w« know ^j 4 CA.

I
L«t £(y) - IAJ.

Stsg« x: (Define CA(«))

See if th«r« exists uncsnc«ll«d I « f(K) such that ^(K) < t(K).

1. If so, d«fin« CA(K) - 1 iq^OO-

Cancel i.

Go on to stag« x -f 1.

2. If no such i exist«,

2.1. If |(y|y < x «wl y £ A)| Is ovou, w« dafin« CA(x) - 0.

Go on to stag« ■ ♦ t«

2.2. Othanrlaa, daflns CA(x) - I.

Go on to staga % + \.

Elf) OP COKSTRlKmOH

A is clo«rly racursiva. Wa la«va tha reader to varify thot

substag« 1. Insures Coop A > t a.«.

V«rmc«tion of th« second clous depends on the construction of

the proper h, which si«y be done by e donain-of-couvergence «rguaent.

69

To verify th« third claim, we use the followli« procedure for

obtaining CA(x) fron C on other arguments:

Tor all x. B, define:

0 If there are more arguments y, x+1 s y s 2x for which

Pj (x) -< |({0 y} - («)) n B| IS even than for which

l((0 y) - («)) n B| IS odd,

1 otherwise. [■
That lo, we use the fact that most arguments y with x + 1 i y s 2x

were used not to cancel Indices, but to maintain parity.

From this procedure, it la easy to construct the function r for

the time or space measure. Recursive rclatedneas then gives the result

for general measures.

QED

Open Question: Is theorem 4.6 true without the monotonlclty restriction?

Hsvlng some familiarity with the »»ay a function's values at dlfferett

argumtnts may Interrelate, we now go on to produce a set A whose vslues

at different arguments are Independent. This result In announced by

Trachtenbrot In rT2). He gives no proof, however; the proof here Is

due to Heyer.

4.7: (Trachtenbrot): There exists g e R, with the followli«

property:

For any sufficiently Urge totsl running time t, there exists a

recursive set A with:

y

aod ComP

70

Comp A ^ g o t *.e.

ik^h > t •.«.

Proof: We would Ilk« to iMur«:

(YDKI^V) - t(x) l.o.) - (^(^-^(x) ^(x))].

As before, we u.e c.ncell.tlon; we cancel en Index 1 when we've

Insured that;

(Sboep^-^oo i*cA(x)).

I„ .ddltlo«. «t any tl^e during the construction, a .lt«le Index

„.y be "tentativaly cancelled." If m index 1 is tentatively cancelled.

it »ean. that we are in the procea. of attempting to cancel 1 by

defining A according to an appropriate "tentative co^nitment." If we

.uccaad in defining A in this way. we will then cancel 1; otharwi...

the tentative ca«.llation of 1 will be removed.

We will uae the .-m-n theorem to define a partial recursive

function O^. .ccordi* to a construction in stages. For 1. - t.

the function .a(a) will turn out to be the C, of our theorem. We use

the palter a to allow us later to obtain the desired recursive

function g by a domain-of-convergence argument.

u ~i n l 2 where at stage n, w«
We will have stages numbered 0. 1, ^,.... *"«

«in ««-W»- ■" "•8•, '" ",t *"""'' ln CO,,"CUtlV,

ord.r. ho«v.r. Tb. order In -ich eh. .«g« .r. mm** » —

mined as follows:

„ .w tl« *m -. .r« r..dy to docld. «hlch .t.g. I* — » »•

MMi. th. mm «no »in »• •"«« • l£ -• OT,, lE:

I

71

1. Stage n has not yet been executed,

2. *a(n)i.

3. For any m for which stage m is not yet executed,

and ♦• If *a(
n) ■ ^("O for «ny m for which stage m is not yet

executed, then n ^ m.

(That is, stages are executed in order of size of values of $.)
a

This trick is similar to that used in theorem 2.8.

We now describe stage n of the construction:

Stage n: (Define qj^. (n))

Find the smallest i ^ n that is not yet cancelled and such that:

(a) if some index j is tentatively cancelled, then i < j, and

(b) there exists E such that:

(bl) (Vx|stage x has already been executed)fx e E • (p , .(x) - 1],

(b2) E c (x|x s h(i,n,*a(n))}, where h is the function whose existence

is asserted by lemma A.2.1,

(b3) ~ t E,

and (b4) f^^n) * «a(n).

1. If such an i, E exist, remove any previous tentative cancellation and

tentative commitment.

Def ine qpa(a) (n) = 1 -(^^(n).

1.1. If (Vx s h(i,n,* (n)))r8tage x has already been executed), then

cancel i and go on to the next stage.

72

1.2. Otherwise, tentatively cancel i and make a "tentative com-

mitment to define cp^.v so that:

(Vx|x s h(i,n,«a(n)) A x »< n) l<Pa(a) (*) = CE(x)].

Go on to the next stage.

2. If no such i exists,

2.1. If some index j is tentatively cancelled, consider E from its

tentative commitment.

Define qpa. . (n) - CE(n).

2.1.1. If for a, n arising from J's tentative commitment,

we have (Vx ^ h(j,n,ta(n)))Fstage x has already been

executed], then remove j's tentative commitment. Change

J's tentative cancellation to a canuellation.

Go on to the next stage.

2.1.2. Otherwise, Just go on to the next stage.

2.2. If no index J is tentatively cancelled. Just define (pa(a)(n) - 0.

Go on to the next stage.

EM) OF C01BTRUCTI0N

Now assume we have t as in the hypotheses. If we choose a* with

* ^ - t, then we claim that CA - <Pa(,*) ^•
8 the d«*^«0 properties:

A is a recursive set:

If we assume that t 2 \xfx], then we may easily show that after

each stage, the next stage may be chosen effectively. Also, the search

for E in substage (b) of aach stage will terminate. With these facts.

73
the execution of successive stages is an effective process.

Comp JA > t a.». •

We make a„ Important observation about cancellations:

ft* If an integer k Is tentatively cancelled at some stage, then at

that stage or later, some Integer ^ k will become cancelled.

Proof of fact: 3y Induction on k.

Now for any Index 1, suppose that (Vx) pp^x))(x) = c (x)]#

Ihen It is not difficult to show that 1 is never cancelled.

For If 1 were cancelled. It means that at some stage x we set up a

tentative commitment for 1 which was eventually fulfilled, so that

for some x. E as in substage (b). we defined:

CA(x) ^/^(x)

But by UH. 4.2.1 and the definition of E. we can conclude that-

so that CA(x) ^^^(x).

Thus, 1 can never be cancelled.

There 1. some stage In the construction such that all cancellation,

of Indices smaller than 1 that will ever occur have already occurred

by that stage. By the fact above, it follows that at subsequent stages,

condition (b) must fail to be .ati.fled for index i. But then 1,

4.2.1 implies that »/^«^(x) > t(x) a.e.

Comp A S g o t a.e. :

74

We see that (Va.x) to (x)i =» cp , N(x)i].

Thus, by the combining lemma, an appropriate function g exists.

QED

Remark: The following related result has been obtained by Meyer using

similar methods (It has also been announced by Trachtenbrot in fttj,

but without proof.):

"For any g e R2, there exists a recursive set A such that:

(ViHaVxXip^-W^x) -CA(x))) - ((3j)((p. .CA A

gCx.S^x)) s f^-W^x) a.e.))]."

In other words, the values of CA at its different arguments are

independent in the sense that, for any procedure for CA which uses
A

information about CA on other arguments, there is a faster procedure

for CA which does not use any such information.

As a result of lemma 4.7, we now obtain the desired independence

result:

Theorem 4.8: There exists h e R2 witi the follow!t« property:

For any sufficiently large total running times t_ and t_, there
B C

exist recursive sets B and C with:

Comp B s h o t a.e.,

Comp C s h o t a.«.,

Comp(C)B > t a.e.,

«nd Co!np(B)C > t a.e.

Proof:

75
We ute the following lemma:

-Le[nma 4-8-1; *** exl8t8 k • R2 with the following property:

(VV^j) f S^^a.e. and Sj . k o $. a.e.].

(That is, for any measure function, there exists a larger "space

function" which is not much larger.)

Proof of lemma 4.8 1: By recursive relatedness. there exists a

function r relating S< > and |< >. without loss of generality, we

may assume that \<x v>\ rfv vM <» at ^,y>lr(X,y)] is a 8pace functlon and r ls monotone

nondecreasing in both variables.

Assume f if the recursive isomorphism between the GSdel numbering«

of the two measures.

Then r o Sf(1) is easily shown to be a space function, and if we

Ut k - \x.y[r(x.r(x.y))]. ^hen recursive relatedness gives the

required properties.

UaaULäSam LL continued: Lemma 4.8.1 shows that if we prove

the theore. for space measure on oracle Turing machines, recursive

relatedness will give the general result.

It remains no prove the theorem for S(\

Definition 4.8.2: If f and g are any fu„ctlongf m deflne „f join gl.

by: CVx) f join g (2x) - f(x)

t Join g (2x + 1) - g(x).

If tB and tc are space functions, then t^ Join tc may also ea.lly

76

be shown to be a apace function. We may apply lemma 4.7 to

tB join tc and obtain a recursive set A with:

Comp A s g o(tB join tc) a.e.,

n Joln ^
and Comp[A,A > t join t„ a.e

We write A - B join C, and claim that B and C have the required

properties:

(C)
Compv 'B > tB a.e.:

^ . r ^. • (C) Otherwise, (3l)[cp ^ - C and S.(C) s t l.o.].
Dig

But then we can convert cp^) to a program which computes C

fast on Infinitely many arguments, namely:

(3j)[(Vx)(cpj
(A-tx}>(x) - CA(x)) and

But this contradicts Comp^^A > t join t a.e.
B C ' '

(B)
Compv 'C > tQ a.e.:

By symmetry.

ComP B fi h o tB a.e., and Comp C s h o t. a.e.:

Define h(x,y) - g(2x,y) + g(2x+l,y), where g Is the function

arising from lemma 4.7. We claim this function h has the required

properties:

Comp A s g o (tB join tc) a.e. Implies that:

CDfe^ - CA and Sl s g 0 (tB Joim tc) a.e.].

But then ^ may be easily converted to a program for C_ which
B

en argument x, requires space g o (t join t.) (2x)

,

77

" 8(2x,tB Join tc(2x))

- g(2x,tri(x))

" h(x,tB(x)), as required.

The other cast Is symmetric.

QED

The earliest iiKiependence result in the literature which can be

stated In terms of existence of two recursive sets not helping each

other is due to Axt JAl). Axt states the existence of recursive sets

A and B such that neither is primitive recursive in the other. His

proof does not use the complexity formulation of "primitive recursive

In"; it is an initial segment diagonal construction similar to theorem

IV in FRol, Chapter 13]. With the complexity formulation (theorem 3.2)

we may obtain Axfs result as a corollary to our theorem 4.8.

We now use theorem 4.8 to obtain counterexamples to transitivity

«nd symmetry of helpli«.

Corollary 4.8.3: For sufficiently large functions k, the relation,

"k-lmprovement a.e." and "k-improvement i.o." are neither transitive

nor syianetrlc.

Proof: We will describe three sets which provide a counterexample to

all four properties.

We choose running times t, and ^ with tB much larger than t .

By theorem 4.8, we may obtain B, C and h. We then consider the

three sets B. B Join (B ® C). and C. We note the following relation-

ships between the sets:

■

1. -i(B k-improves C l.o.)

2. -i(C k-improves B i.o.)

i

3. B k-improves B join (B ® C) a.e.

i
4. B join (B 0 C) k-improves B a.e.

!

5. B join (B ® C) k-improves C a.e.

6. -i(C k-improves B joiTi (B ® C) i.o.)
i

1. and 2. are clear by theorem 4.8, if k > h.

3. is true because a B-oracle reduces the complexity of B join (B ® C)

on even arguments to triviality and on odd arguments to the complexity

of C. Since tB is much larger than t , this is a large reduction in

the complexity of B join (B ® C) a.e. To formali« this argument, we

can use a proof for the space measure and recursive relatedness.

4. is trivial.

5. is true since:

(Vx)rcc(x) . CB joln (1#c)(2«) ® CB join (B ec)(2x ♦ I)].

6. If C k-improves B join (B ® C) i.o., then either C k-improves

B join (B ® C) on infinitely many even arguments or infinitely many

odd arguments. However, the independence of B and C obtained from

theorem 4.8 shows that improvement cannot occur on infinitely many

even arguments. Thus, C k-improves B join (B ® C) on infinitely many

odd arguments.
■

It then follows that C k'-improves (B ® C) i.o., for some k' which

is only slightly smaller than k. We show that this is impossible:

i i

(3l)(Vj)ft)i^
; - CB®C «^ ^j ^ c

Consider the space measure. By definition of k'-Improvement,

(C)
"^ ^j -B 0 C

k,(x,s1
(q)(x)) * Ma) l.o.l].

; By the- parallel-computation property of S ,

(3j) FqOj - CB ^ c and Sj i h o tB a.e.].

' Combining the two facts,

(ai)Rpi
(C> -CBec and k'(x,Si

(C)(x)) ^ho tB(x) l.o.].

(C) We can use «p. and a program (p. for C with S. ^ h o t a.e.,

(C) (C) and thereby obtain a program qo v ' « Cn with k' o S v ' sho t_ l.o. m B m o
i I

But for k' sufficiently large, this contradicts the hypothesised

Independence of B and C.

For general measures i , we obtain the same result if we require

k to be much larger than the measure-invarlance function r obtained
f y ()

by applying theorem 2.5 or remark 2.5.2 to f and s .

The following diagram sunmarites our results:

no k-improvement

k-improves a.e. ^ * k-improves
-^-^

/^-—K-improves a.e. >. •-

B B Join (B © C) C

k-improves a.e. y v no k-lmprovement-'

 no k-improvement

Checking the diagram, we see that we have a counterexample to all

four properties.

QED
i i

\

5. UniverBallY"Hclped ^^

1. thl. .«1 the .ext copter, we ..k if U U po..ibl. to l-aprov.

on theorem 4.8. Speclflc.Uy. theore« 4.8 prove, the exl.texKe of tvo

indepet^ent recur.ive .ets by . dt^on.li..tion. Thl. leeve. op^ the

poeelblllty th.t ItHepet^t set- ere pathologlc.l; ve would like to

know If we c.« obteln . stronger reeult which .How. u. to fix one of

the two sets arbltr.rlly.

We .re thus led to ask the following (infonn.1) question:

Which Is true?

(1) There Is . r.cur.lv. set A whose comput.tion Is helped by

.11 .ufflclently complex recursive sets B (. "unlvers.Uy-helped set").

or,
(2) For .ny recursive set A. there exist .rbltr.rily compl«

recursive sets B th.t don't help the comput.tion of A.

Ren.rk 5.1: We first note tUt .ny recur.ive set will be unlvers.Uy-

helped in .n .pproprl.te meesure: Fix .ny k . I,, mm*m l^reeslr,

in both v.rl.bl.s. Let our mi* for comput.tion be or.cle Turlr«

machines. Define . me.sure %{) .s follows:

s (A)(x) if (Sy s x)fy € A],

ko ko Sl
(A)(x) otherwise.

Now consider . "strongly k-compressed" set A; in other words.

...ume th.t there exists . tot.l function t with:

(Vi)Rpl -CA ■ Si > t ..e.l.

1^«

81
and (21)^-^ A Si<koca.«.].

We cUla that It» BMSUT« I* *, A U k-l«prov«d by «ny Mt B ^ 0.

The re««on Is •• follows:

Us hsvs (ai)Pip1 - CA A si < ko t :;].

: et r ' ^ be the Turli« mschins thst sets exactly llks Qpj but

never asks any questions of its oracle. Then:

(YX)Pp (X) ■ CA snd 1-^ - 81 < k o t a.e.).

onsider e«y set B ^ 0. Then«). - C^.

Also. •/■> - S™ - Si a...

Thus, • (B) ^ ko t a.e.

However, (Vl) «Pj - CA - f j - k o k o Sj

* l.-kokot a.e.}.

Therefore, B k-i«proves A s.e.

QED

Pethologicsl measures such ss thoss sbove show why we will require

s "siawletion overhead function" g in the verioua theorsas of Chapter 6.

In the reminder of Chapter 5, we work within an arbitrary

complexity measure snd produce s recursivs set A whose co«putstion is

helped by orsclss for sll ssts whose complexity msy be compressed

between "honest" bounds (bound functions whose ruimirg times srs clossly

relsted to their sises.) We refer back to the remark following Iowa 2.7.

\

Further dUcuMKm of bomaty My b« found In rHeC) fMcCtte) nnd fltoHol.

We not« that thooro« 4.1 ha» «IrMdy »lv«i u« that «vory rocurtlv«

set A la holpad by •rbltrarlly co«pl« rocuralvo ««et B. Tboo« ••t« »,

oowovor, w«r« conatmctod In • vory ipeclal w«y, to «ncod« A. In tho

next roult, tho ■•to B are not ancodlnga of A. but nay ba daacribad

by a raatrlction (aora-or-laai) indapandant of A.

Tha function g In tbaoraa 5.2, aa wall aa In tba thacraaa In

Chaptar 6, will depend only on tba ralatlva complexity aaaaura t wa

ara conaldarli«, and will rapraaant a flaad a«>unt of aatra raaourca

needed to carry out certain aüaulatlona. for aiaaauraa Ilka •paca.

m «ay oftan thli* of g aa any function i^ilch aajorlaaa (*a graatar

tban) llnaar functlona; for othar aaasur««, wa «ay itlll regard It aa

«Mil ralatlva to tba otbtr functlona wa ara conaldarlng.

Plrat, wa raqulra a definition

Definition 5.2.1: For any b € R2 define a racuraiv« «at A,^ aa followa:

Wrlta x - ^J.XJ,»^.

{1 i (I i «P, (Kj)) if ♦, («2) * W4»V«

0 otbarwlta.

(Tha uaa of tba "•» la only to kaap C 0-1 valuad.)

Th«>raa 5.2; (unlvaraally-balpad aat)

Tbara axlata g c Rj ^^ th* follo*flT18 ProP#rty:

POr all k, b c R2i k(x.y) > y, and all total running tlwaa t,

any aat B with:

Cowp B > g o ko go t 1.0.

C. (x) -

83

B < h o t «.«.

k-l«prove« A, l.o.

Proof: We give three leset defining functlone g.t g, and g. which

repretent extra resource required to combine certain proceesea In the

proof. The g In the etaceaent of the thaoraa will be a coablnatlon of

g.(g, and g . We uae donaln-of-convergence arguaanta.

La— 3.2.2: Thara exlata g. c t auch that whenever f la total,

chare axiata 9. - ♦ with:

(Vota: Thle aaya that running time» ara honaat. Saa tha raaark

follovli« Immm 2.7.)

Proof of la—a 5.2.2; By tha axlona for ralatlva complexity aaaauraa

and tha ralatlvlaad a-a-n thaoraa, it li aaay to aaa that thara axiata

a racuraiva function a auch that:

(Vi,B,«)ff1
(B)(x) '9a(i)

(l)W\'

We define g.(sty) - max g'U.y.a"), where:
a«x

g'Cx.y.a) - * ♦a(a)
(,t) "f ••««•

0 otherwlae.

Tha second lenrae give« an upper bound on tha amount of raaourca

needed, with a B-oracla, to coaputa C :

Laaaa 5.2.3: Thara asiata g- € R with the following property:

For any h e R aqy cat B and any total running tiaa t for which:

(3l)f«pl - CB) A (l1 « h o t a.a.>).

8A

It aust b« true that:

(«j)r«PJ
(B) - C) A (^^(^.K.tCx)^ « g2o t(x) •.•.)!.

Proof of 1— 5.2.3: W« let [T^ b« • canonical enumeration of all

function« defined on a finite domain. That is, we •saumc that

\l.x'F.(x)l is partial recursive and X.l,KfC. , _ (x)) is total
» oonain r

racurslva.

L'«lng tha reletlvnad i-a-n theorem, ve define:

9 (X)(x) V-.b.c.d)

Pft(x) If x € domain F^,

(^(Xj) if x t domain F and x1 - b and

® (x) otherviae.
c

Now define g7(x,y) • max gUx.y.a.b.c.d), where:
a.b.c.dix Z

g'(x,y,a,b,c,d) -max f,'(x,y,a,b,c,d,X), and:
XCH ^

g||(x.y,a.b,c,d,X) - <
f»(atb.c.d)(X)(<b'x'Vx)>) lf fd(,l) * h0^«

0 otharvlaa.

2.5.1 la uaad to «how that g« ," recur five.

We now fix a,b,c,d,X as follow«;

Lat F be a finite function giving valuaa of C. on ill

argumanta of tha form <i,x,t(x)> for which # (x) > h o t(x).

Lat b ■ 1, tha glvan Index for C .

Lat c - an Index for a program for C. .
\

85

Let d be an index for t with the property that t.(x)

I g^s.td)) a.e. (bj Imam 5.2.2).

Let X - B.

It la now easy to verify that qs.. . .» ' - C4 .

Alao, If x 2 aaxCa.b^.d), then:

g2(x,t(x)) i f5(x,t(x),a,b,c,d,B)

(B)
" a(a,b,c,d) (<b.«f9,

d(«)
>) ••••. *• required

The third leona provides ua with en upper bound for the aaount

of resource needed to convert e program for C. Into a prograa for C :
\ B

5.2.4; There exists g. c R2 having the following property:

Fr. eny h C R2, any set R, «nv total running time t, and any it), 1

for which:

r •| - CB) A (^ «ho t a.e.)).

and (p^ . C ,

it oust be true that:

(ai)fft)l - cB) A (^oo $ i9(a^M(81(mtt(a))tt.(^l>s.tOO>))) a.e.)!.

Proof of 1—aa 5.2.4: We use the s-a-n theorem to define:

if x c dooeln P ,

(x)>) otharwlae.

Now define g3(x,y) - max g'(x,y,s,b,c,d), where
a.b(c,d£x

0 otherwise.

86

CUarly, g3 e R2.

Now fix a, b, c and d as follows

Ut F^ b« a flnlta function giving value« of C on all

x auch that #l(x) > h o t(x).

let b - 1.

Ut c - J.

Ut d - an index for t with tha proparty that #. ^ g o t a.a.
d

(by laaaa 5.2.2).

Iti. M.y to.^thatVatMtd).CB.

Mw» If x » ■•x(a,b,c»d), than:

t3C«.»»«(g1(«,t(K)),l (<i,x,t(x)>))) i

l'(MlB(fe1CBtt(B»atj«ltSttC^>))»M»«*i)

■ #cr(a.btc,d)(,l) ■•••(«). •• raqulrad

Proof of thaorea 5.2. continued:

Wa no» daflna g - ■ax(g1,g2,g3),

LatPj - CB irlth ^ < ho t a.*.

Than by laaM 5.2.3,

(3J)fepJ
(B) -c^) A (•J

<i)«lt«tt(«)>)«ia t« •.•.)!.

But Icona 5.2.4 impliet:

(Vj)f(Oj -C) - (fj^l.x.tCx)^ >ko go t(x) l.o.)],

since otherwise, we obtain a contradiction to the lower bound on B'a

87

conpltxlty.

But thU cl««rly «hcnr» that B k-improv K^ l.o.

QED

uc h«v« thu« d«»crlb«d «n lnt«rMtlng tltuatlon: »• h«v« aets

which «r« helped by «11 Mt« who«« co^»l«xltlM ar« c<»prMt«<l betveen

honest bound«, and th« «tent to which thay h«lp depend« on how

tightly coaprcisad their complexltle« ar«.

NeverthelMt. thar« «r« wmxxy ««ts whot« cooplexit le« are not so

coopre««ed; «et« with «peed-up ar« one example.

Ooan Quaatlon: Ara thara racuraiva «et« which ara h-coapraaaad, but

not batwaan honaat bound»7 Spaclflcally, la It trua that:

For all f, h c t2, thara axlat aata A and functlona t € Rl auch

that Comp A > t a.a. and Coa^ A < g o t a.a., but euch that for no

total runnli« tl»a t' la It trua that fCoap A > t* a.a. and

Cowp A i h ot* a.a. !?

we can aak alnllar quaatlona for Co^> A > t l.o. and Coap A > t' l.o.

88
6' S«t» That Don't Help

In thl. chapter, we pr*.«nt two theorem which have the oppo.lte

Intuitive Interpretetlot. to the »ein reeult of Chapter 5. Both

theor— b^in with a recur.lve .et A a«l . lower bound on the c«-

plwclty of A. and conclude the •xlatenc. of arbitrarily co^I« aet.

B that "preaerve" the lower bound on A', cooplexlty.

In both theor«« m thl. chapter, a functlo« g 1. u.ed. repreaentlt«

a «inl^l amount of helping which the aet I 1. allow«! to give to A',

computation. A. function, g are necea.arv b^auae of ^he exl.tenc. of

P-thologlcal «aaurea auch a. tho.e given In remark 5.1. Aa before,

•«h faction g will dep^rf on the »eaaure only and .ay therefor, be

conaldered to be very Ml] co-pared to the other function, we are

conaiderlng.

We begin with a definition:

Def Uutlon^: We aay that a property hold, "for arbitrarily co-ple«

recur.lve .et." if:

(Vr c R^OB recur.lve) fCo^ B > r a.e. a«J | ha. the de.lred property).

In thr fir.t theorem, we conalder an i.o. lower bound. Intuitively,

theorem 6.2 make« the followli« atatement:

ower "For any recur.lve .et A uho.e complexity exceed, a known 1

bound i.e.. there exl.t arbitrarily complex .et. B .uch that the

complexity of A with a B-oracle .till exceed, the lower bound i.o."

Ttie method of proof i. similar to that u.ed by Machtey rMa2. theorem

/

89
4.9) In hit proof of th« result:

"If f .»1 g .re recur.lve function, with f not prlltlve r.curelve,

th« there exl.t. . recur.lv .et C euch th.t f 1, not Prl«ltlv

recursive In C."

W. remrk th.t for the ..t. B of our contraction. It 1. »till

pos.lbl. th.t B My grwtly help A l.o.

^e0r*,n 6-2: *«• «1«c- 8 € ^2 ■tt* th« following propwty:

For .ny tA € Rj. .nd .ny recursive set A with:

Co«p A > g o tA l.o,.

there esl.t .rbltrarlly complex recur.lve .et. B with:

Comp(B)A > tA l.o.

Proof: Ve obt.ln g from the followli« lene:

lemm 6-2-1: Th#r« •«1«» t € R2 with the following property

Whenever Al.« finlt. .et. r i R^ end *) (A) - r ..«,,

there exists J such th«t:

'j ' r (on ell ersumente),

•«* », * f o !/*>

Proof of !«»> f.7.1: Foilowi fTom tht „mMm laam

Without loss of g««r.ll.y. w. m.y .ssus» th.t g Is monoton.

Increeslng In both variables.

Proof of theorem 6.2. contimni

We choose tB e RI .rbltr.rlly. tB will b. . low.r bound on B's

complexity.

V

90
«. «n M.. , u .t.ge.i .lth sw beiis d>fined M ^

•-tai th. coM.ructlon. ve ,.„., 1I(1ICM cf fntnm ^ ^ ^

«M- ». cB. ,. th. ,„.„. „ th. coll.trucUont lMig€r< a_ ^ ^
c «II b. „.««,, „ ^.^^ froii| .t.ge ^ ^^^ <fctMi

• k..p. cou« ol ho- Mny colldltlOM of . ^„.^ ^ ^ ^^

•o far «ucceeded In Mtl.fying,

' C "!(.,) tndlc.t.. ^ B.or.cU ^^ ^ ^^ ^^^^^

examining, and

c kaap. trwk of , tent.tIva ^^^ ^ ^ <B^^ ^ ^

alraady-d.finad initial «egmant of B.

Wa Ut B^ - (y $ x|y c B).

W. .t^t with a - b . o. c mMmi, (ThÄt Ui W€ htvt Twt

r« MtUtUi any of th. co«,ltlon. ve would Ilka to ..tl.fy. „ .r.

.xa^ming o0<*\ and ve h.ve m tantativ. cc^i^nt to an «taMion

of tha alraady-defin«! Initial .agmant of B.)

fge x:

Saa If there exleta 1 < a such thmt- 4 «. • such that 1 1« not yet cancelled and

1. If »o, conelder tha smallest such 1.

L.tCB(x) - 1 -^(x), .„, CMn:9l 1

Let c become undefined.

Go on to stage x + 1.

2. If no such 1 exists, define (^(x) - 0.
B

i

91

See If c Is defined.

2.1. If so, see If c - x.

2.1.1. If c - x, redefine e - e + 1,

b - TT1(«),

c ■ undefined,

end go on to stage x -f 1.

2.1.2. If c / x, Just go on to stage x + 1.

2.2. If c is not defined, see if there exists an argument y such thst

: x end either I^Vl a & y < x and either %^t?tf) > tA(y),

or (t^Vcy) s tA(y) and 9b
lV(y) »« CA'y)j.

2.2.1. If so, let h be the function whose existence is ssserted

in lerans 4.2.1 and consider h(b.y,tA(y)).

2.2.1.1. If h(b,y,tA(y)) is < x, than redefine:

a - a -f lt

b - ^(a),

c ■ undefined.

Co on to stage x -f 1.

2.2.1.2. If h(b,y,tA(y)) > x, then define c - h(b,y,tA(y)),

Go on to stage x -f 1.

2.2.2. If n> such argument y exists. Just retain the velues of

s snd b snd go on to stage x -f 1.

E» OF C01BTRUCTI0N

92

VertflcattoTt of the construction:

Th. k«y cUl« U that th« vtrUbl« • In th« cotntruction mitt

increase vlthout bound. Suppose It doe« not.

This would MM that eventually • »ould raech ■ stable velue. My

• . "ntereafter. neither 2.1.1 nor 2.2.1.1 will be executed.
i

Eventually, •• will reach a stage high enough so that 1. can no

loT«ar be executed (since there are only finitely «sny 1 < a). There-

aft«r, 2. «ust always be executed.

Subsequently, If c U «war defined, than thare Is no way for c to

beco»e undednad. Thua. wa would be forced to execute 2.1 at avery

stage until wa are cog^alltd to executa 2.1.1, a contradiction. Thus,

c Is subsequently never defined.

But this implf that 2.2. «ust be executed at every stag« from

SOM point on. However. 2.2.1.1. cannot be executed, and 2.2.1.2. catmot

be axacuted since c cannot becon« defined. Therefore, fro« some stage on,

no argument y satisfy.«8 the conditions In 2.2. will a^ar be found.

tut this aaana that for b0 - n
l(«0):

(3x)(Yy > a0)repb ^^(y) - CA(y)) A (#bo
(V(y) * tA(y))l(

But than lemas 6.2.1 glv*a a prograa qp^ such that:

Pi and I « g o tA a.e..

contradlctlT« the hypotheses of the theorem.

Thus , we see that a must Increase without bound.

93

Co«p B > t_ a.«.:

i

For «ny Index l, ftff^ C (L l.o., th«i clause 1. will eventually

become executed for 1, inaurli« that 4). t C .
X B

COBP
(B)

A > tA l.o.:

Assume the contrary: (3t)fCpi
(B) - CA) A (f^ < tA a.e.)).

Then there exists some lesst integer sn such that rtm\ . i end
0 10

(Vy ^ Vf#i (y) ^ 'A^1, Wh•,l • U flrit ••' «f«! to e0 at soM

•tage, c is undefined, by 2.1.1. or 2.2.1.1.

Since s grows without bound, it follows thst eventually 2.2.1. oust

get executed at some stsge x when e - s-.

■

But this Implies that:
i

(3y.a0 < y s x)r(ti<V(y) > tA(y)) V

K^VCy) * tA(y)) A P^Wy) 4 CA(y))l.

Moreover, eventually thereafter, either 2.2.1.1, or ?.l.l. must get

executed, unless prior to their execution, clause 1. is executed. But

if this hsppens, then c agsln becomes undefined so 2.2.1. must again

get executed. 1. can only intervene finitely msny times, since there art

only finitely msny indices less than a0. Thus, we csn sssume without loss

of generality that 1. doe« not Intervene.

i

But in this csse, we insure that:

(3y * •0)f(»1
(B)(y) > tA(y)) V fd^y) S tA(y)) A (lpl

(B)(y) 4 ^(y))}).

by leans 4.2.1., which is a contradiction.

QED

\

Remark 6.2.2: W« note that, for the space measure S(', the function

Xoc.yfy] will suffice to satisfy lama 6.2.1 and hence theorem 6.2,

provided that t. Is nontrlvlal (I.e. tA ^ \xfx)). The method for

showing this is not the method of the given proof of the lenma, but

rather a direct proof by analysis of oracle Turing machine space

measure; information about A and about the finitely-many exceptions to

7p * ' - r" may be stored in the Turing machine's finite control

In fact, if we are interested only in the space measure. It la not

only possible to sharpen our result, but to simplify its proof as well.

This is because of the following fact about S(', not true for general

measures|

Fact 6.2.3: (VA, 1, Vt e Rl with t ^ \xrxl)

If S1
<A) < t a.«. aiido1

(A) is total, then:

(ajHft)/^ -*1
CA>) A (S (A) « t everywhere)).

Fact 6.2.3 laplies that for S(^ we need only inaure:

(ViHSyHo^ - cA - S1
(B)(y) > tA(y)l,

rather than:

(VlXSyXtp^^ - CA - S^y) > tA(y)).

This eliminates the need to consider each B-oracle program Infinitely

offen during the construction; we need only consider It once. Thus, the

need for variable b Is eliminated.

Theorem 6.2 provides the following corollary about primitive recursive

reduclblllty:

95

CorolUry 6.2.4: If A 1« any recursive set which 1« not prlaltivc

recursive, then there exist (in any measure) arbitrarily complex seta B

such that K i B and B ^ A.
P P

(Recall that s means "primitive recursive fn ")

Proof: We show the result for the space measure; clearly, recursive

ralatedncss gives the general-measure result.

Since (Vh)rh Is primitive recursive •» h s 0|, the proof of

corollary 3.5.2, with each B - 0, shows how to obtain a recursive

function f such that:

(Vh)rh Is primitive recursive * Comp h * f a.a.].

Thus, Comp A > f l.o.

By theorem 6.2 for c. - f and space measure (where g - Kx,y(y),

as In remark 6.2.2), we obtain arbitrarily complex sets B such that

Comp(B)A > f l.o.

We claim that f Is greater than or equal to each primitive recursive

function of one variable, a.e. For if not, then:

(3h, a primitive recursive function of one variable)Fh > f l.o.].

The time and space measures on oracle Turing machines may be shown to

be recursively related (In the sense of theorem 2.5) by a primitive

recursive function r. Then the function 2 ' Is clearly primitive

recursive. However, it requires tivm 2 r o h to compute the function

on ell arguments, since It requires that much time just to output the

answer. Therefore, It requires space ^ h to compute this function on

almost all arguments, by recursive relatedness. Therefore,

Comp 2r 0 h > f , „ r i.o., a contradiction Thi.c * "on. Thus, f must be greater than

or equal to each primitive recursive function of
xve runction of one variable a.e.

ButthencV^>fl.0.lnpUestI,atÄ_tbe^uted

.-«.. 1. prtaltive recur8jve spacei so A ^ B ^ ^^^ 3 ^

B, ^ . .umclBitly c(>mpie![j ^^ ^ ^^

QED

We would like to compare theorem 5.2 with thanr. . o
that H, , •0 6-2 t0 den«>nstrate

*-....«.., «ch „. helped lnflniteiy often ^ ^ ^^ B ^
^«tu. „. .,conpreS8ed„ ^ ^^ ^^ ^^ ^ ^

not produce sets B with such a restriction <m ^ •
escriction on their complexities. For

Proper comparison, we would therefore Ufc. « .
eretore like a stronger, "compressed-

version of theorem 6.2.

We ma, obtain such a s^thened version of the theorem if we are

wnU. to allow some additiv actions: namely. we assume that

complexity of tA and the complexity of A.

New As3umpH»r,o. /3i « i-w- _ „ . A y

 (':,,k)r(tA-V A (S-V A (CA=(pk)

A (Vx)rtB(x)äniaxCtB(x-l),fi(x),fk(x))]]

The new statement of the theorem is as follows:

Proposi^mi A 9 >5:

There „!.„ , e R2 wlth the f()1IoBliig ^^^^

/

.. , i —

■1

97

Whenever we have tA, tB e R^ A a recursive set, Comp A > g ^ tA i.e.,

and the New Assumptions satisfied, then there exists a recursive set B

such that:

Comp B > t_ aac«,

Comp B ^ g o t a.e.,

and Comp A > tA i.o.

Proof; Uses the construction in theorem 6.2, and a domain-of-convergence

argument to estimate the complexity of B. We omit the details.

We require one further lemma before making our comparison:

Lemma 6.2.6: In any measure »(', there exist arbitrarily large

monotone increasing running times.

Proof; Let us fix any t e R.,

We use the recursion theorem FRol] to define:

r
0 if x = 0,

9 (x) = J or if [(Cp^x - 1)0 a;nd (^(x) > max(t(x),S1(x - 1)))]

w otherwise.

It is easy to show that qo. must be total and ^ has the required

properties.

We now note the following:

Let us use the function g found in proposition 6.2.5.

Define g2 e R2 as \x,yrg(x,g(x,y))]. Then we may obtain, by theorem

5.2, a set A , which is i.o. g2-lmproved by all recursive sets B whose

..;■■ /

98

coipplexity is weakly g-compressed around a running time. (That is,

there exists a total running time tB such that Comp B > tB i.o. and

Comp B ^ g o tB a.e.)

Now we claim that there exists a recursive function tA which is

a "good" i.o. lower bound for A 's complexity, in the sense that CA ^
8 g

can be computed a.e. in measure not much greater than tA. (This is

true provided g' is honest, an assumption we may make without loss of

generality. An examination of the proof of theorem 5.2 shows that:

\<i,x,y>rg,(x,y)]

approximates an i.o. lower bound for the complexity of Ag,, and that

C can actually be computed a.e. in measure not much greater than
A i
g

this function.)

Using lemma 6.2.6. to obtain the appropriate function tg, we

may apply proposition 6.2-5 to the function tA and obtain a set B.

What is B's relationship to A ,?

B must g2-improve A , i.o., by theorem 5.2. On the other hand,

since B preserves the i.o. lower bound tA (at least to within amount g),

it is impossible that B g2-improve Ag, a.e. Intuitively, B g -improves

A . i.o. and B fails to g2-improve A i.o. There is, of course, no
g

conflict here.

We note that theorem 6.2 has a real relationship to "improvement-

only in the case where tA is actually a "good" lower bound for A's

complexity (i.e. CA can be computed a.e. in measure not much more than

t 5 In the case of sets A having such "good" lower bounds, theorem
A

7

.___ ■ .

99

6.2 allows us to conclude (tor sufficiently large k) the existence

of sets B for which it is false that B k-improves A a.e.

However, not all recursive sets have such "good" i.o. lower

bounds. For example, sets whose chararteristic functions have sufficient

speed-up cannot have good i.o. lower bounds. For this type of set,

theorem 6.2 gives us no information about improvement.

Open Question: Can we obtain a more symmetrical version of theorem 6.2,

in which A also preserves a lower bound on B's complexity?

This question may be precisely formulated in several different

ways. One example is as follows: Is it true that:

There exists g G R with the following property:

Whenever we have tA, tg e R1, A a recursive set, Comp A > g o tA i.o.

and the New Assumptions satisfied, then there exists a recursive set B

suca that:

Comp(A)B > tB i.o.,

Comp B ^ g o t a.e.,

/■Q\
and Comp A > t. i.o.

Open Question: For any recursive set A, we have managed to find sets B

which preserve any single i.o. lower bound tA on A's complexity. Can we

find, for each A, a single set B which preserves all i.o. lower bounds

which happen to be total running times)? Further discussion of this

question will appear in Chapter 7.

The next theorem, theorem 6.3, is similar to theorem 6.2, but the

kind of lower bound we are considering is an a.e. lower bound instead

/

100
of an i.o. lower bound. Theorem 6.3 is almost a companion theorem to

theorem 6.2; It does require the additional assumptions that t Is a

running time, and that t. Is sufficiently large, however.
Pi.

A note on the type of priority construction used for this theorem:

the proof is a finite-injury priority argument with no apparent recursive

bound on the number of injuries of each condition.

Theorem 6.3: There exists g e R with the following property:

For any total running time t. such that t. 2 XxTxl, and any recursive

set A with:
Comp A > g o t. a.e.,

there exist arbitrarily complex recursive sets B with:
(■Q\

Comp A > t a.e.

We choose a function t to be an a.e. lower bound on B's complexity.
6

Without loss of generality (as we see from lemma 6.2.6 above) we may

assume that t is a monotone Increasing running time. B

We describe a construction which will give us the required set B,

working from t., t and A. We use the s-m-n theorem. The parameters

a, b and c in the construction are to be thought of as follows:

§ will be t., a A'

i, will be t,,,
b B

qp will be C..

Definition of cpn/ . N (which will turn out to be Cn for a, b, c as above) p(a. p.c) D ^__

cp . . . will be defined in stages, with cpg, b .(n) being

/

101

defined at stage n.

During the construction, we keep track of two types of cancellation,

which we call 1-cancellation and 2-cancellLation. We 1-cancel an index i

when we have succeeded in defining cp«^ b e^ in such a way that:

(ax,y)(VcV(CcI{0,...,yl = ^p(a>b>c) I f0'• • • »y)) - GP^W ^^(x))].

These 1-cancellations will be usc».d to insure Compv ^A > t^ a.e.

We 2-cancel an index i when we have insured that qpj ¥ cPß(a>i3,c)*

Indices i get 2-cancelled when ii is less than tB sufficiently many

times. This will insure Comp B > tg a'e'

Once an index is 1-cancelled or 2-cencelled, it remains so at all

later stages.

Also, at any particular time during the construction, we may have

some "tentatively 1-cancelled" indices. If an index i is tentatively

1-cancelled, a pair of integers (x^y^ will be defined such that if

we ever discover that CA(x) j y^ then i will become 1-cancelled. If

we ever discover that ^(x^ = y^ then the tentative l-cancell«tion will

be removed.

The same index may become tentatively 1-cancelled and lose its

tentative 1-cancellation repeatedly, the values of (x^y^ changing

with each tentative 1-cancellation, but we will see that (in the cases

in which we are interested) may index can only become tentatively

1-cancelled finitely often.

Finally, at any time during the construction we may have a

"tentative commitment for (an index) i". A tentative commitment for

102

i is a quadruple (i,x ,y ,z), where z is the canonical index of a 0-1

valued function F with finite domain such that:
Zi

(VC)r(cc|domain F^ - Ft) •• (^^(x^ • yj],

and F is an extension of the finite portion ofqp0/ . . defined at the
zi

K ^ß(a,b,c)

time of the tentative commitment to i. The tentative commitment is

designed to allow us to subsequently tentatively 1-cancel i, if possible

We will eventually fulfill the tentative commitment for i, at

which time i becomes tentatively 1-cancelled, unless we are interrupted

by the 2-cancellation of an index smaller than (i.e. of higher priority

than) i, or by a new tentative commitment for an index smaller than i.

In both the following constructions, we will speak of the "first"

members of certain collections of finite sets; it is to be understood

that the ordering we are using is lexicographic.

At the beginning of Stage 0, there are no 1-cancellations, tentative

1-cancellations, or 2-cancellations, or tentative commitments.

Stage n: (Define qpß(a>b>c) (n))

1. Compute $b(Ti) and ^v(n -. 1).

(If either diverges, then(p0/ . v will diverge.)
p(a,b,c)

Let X = {x s $b(n)|$b(n - 1) < §6(x) s fb(n)}.

See if either of the following, (a) or (b), holds:

(a> There exist i, x, E such that:

(al) i ^ n, i is neither 1-cancelled nor tentatively 1-cancelled,

and if there is a tentative commitment for some j, then i < j,

103

(a2) x e x,

(a3) E B {yly ä h(l,x,$ (x))) (where h is the futiction whose s

existence Is asserted In lemma A.2.1), and:

(Vy^n- l)ry CE • «Pp^^ (y) = U,

and (a4) *.(E)(x) ^ $a(x).

(b) There exists i -■ n, where 1 Is not 2-cancel.led, and If there Is a

current tentative commitment for some j, then 1 < j, and:

^(n) s fb(„).

1.1. If neither (a) nor (b) holds,

1.1.1. If there Is no current tentative commitment, define

qPo/ v N(*0 = 0 and go on to substage 2.
ß(a,b,c)

1 1.2. If there is a tentative commitment (j,x.,y.,8.), let

Vo/ v \.(vd m f (n), Go on to substage 2.
ß(a,b,c) z.

1.2. If either (a) or (b) does hold, fix 1 to be the smallest index

for which either (a) or (b) is true.

1.2.1. If 1 arises from (a), choose the x such that § (x) is

smallest (if two are. equal, choose the smaller x), and

for this x choose the first set E such that (i,x,E)

satisfy (a). Remove any previous tentative commitment,

and make a new tentative commitment for i,

where z is the canonical Index of the function:

Fi = CEI{y|y ^ max(n,h(l,x,fa(x)))}.

 r

!

104 .

Define (po. , (rfi - v /«\
ß(a,b,c)VTi; VW» and go on to substage 2.

1 2.2. If £ arl8e8 from (b) but ^ ^^ ^ ^^^

•«I Z-cancel i. RTO0Vi .„, prevlou8 ^^ ^^ ^

and go on to substage 2. '' '

«• - » ««. t.. currM,t tMt.tlve ^^ (i>^ ^(, ^^ ^

n 2: max (domain F).
zl

2.1. If

tentative 1-cancellatlon.

Remove the tentative commitment and go on io substage 3.

2.2. if „ot, then just go on to subs tage 3.

i

3. For e.ch t«,t.tiv.ly I-.«.,,., trä„ t ^ .„ „^^ ^ ^

3.1. If not, then make no change.

3»2. If so, then:

i

3.2.1. lfcpc(Xi) = ht remive i,a tentatlve ^„.^^^ i

3.2.2. If ^(^j ,, yi> remove i,8 tentatlve UcavC6llatiori ^

1-cancel i.

Go on to stage n + 1. i

END OF CONSTRUCTION

It is easy to verify tb.t If % is tt,tal> then ^ ^ ^ ^ e

 ' """' "" 1 I

105

CD \ x SRi a^ßfabc) i«0"1 valued•
1 '

Now choose a*, b*, and c* such that $aA = tA, $b* " ^ and cp^ - A.

o def M ' Let CB = <¥)ß(a*,b*,c*)

i

■ „. cl,i« that this set B h.. the «qat«* properties. The key

step I. the proof 1. the oUle thst » i^ex gets Lcs^eUed l.o. It »e

„.« this for the ^.t, the rest of the proof Is strslghtforwerd:

Xt is essy to see thst Co^p B > tB' a. e., ss 1. earlier proofs: If

, S t I.e.. thea 1 -til he 2.c.«eUed oTCe .XI the finitely-^

„^priority «lees vhleh^ ere .er'.ol^ to he .-cs^eUe. ere so

„«.UM. «- o^e SU the (flolt^y »eny, tent.tlve LcaaceU.tlons of

i TTK^r, i is 2-caTicelled, clause
higher priority indices have been made. When i is 2 c

1,2.2. guarantees that cp^ ^ Cg.

i We now claim that Comp A > tA a.e.

' For If oot. then there Is aa 1-« 1 auoh that ,/« - CA and

s (B) ^ t. i.o.
4 A.

! such an 1 oouH never he L..-.U- Turins the construction of B,

[m this wouXd »can that for sose f«te set E end see .r8u.ent x,

C (x) f ¥ <E)<x) by the l-cancellatlon,

; * .//«(x)
: hy 1— 4:2.1, and clauses 1.2.1. and 2.1.

before, eech tentative l-ca^elletlon of 1 *» eventually he

removed by clause 3.2.1.

» ir, the construction of B such
We will eventually reach some stage e in the cons

i

i

r
/

106

that er stage e, no j < i becomes tentatively 1-cancelled or

2-cancelled. Beyond stage e, clauses (a\ (b) and 1.2 insure that no

■

index smaller than i can prevent a tentative commitment for i from being

made, nor can an index smaller than i interrupt such a tentative com-

mitment for i.

Thus, whenever i satisfies clause (a) at some stage n > e, and i is

not already tentatively 1-cancelled at stage n, i will become tentatively

1-cancelled at stage n.

But by lemma 4.2.1, 5^ ^x) ^ tA(x) implies the existence of a set E

such that (i,x,E) satisfies clause (a). Since ».'-^(x) ^ t (x) i.o., i

will satisfy clause (a) i.o., and so must become tentatively 1-cancelled

i.o.

But we have assumed that no index i is tentatively 1-cancelled i.o.

Thus, Comp('A > t a.e.

It remains to show that no index can become tentatively 1-cancelled

infinitely often. In order to do this, we construct (by the s-m-n theorem)

a function with five parameters, (p , . ..v.
^Y(a,b,c,d,e)

The parameters are to be thought of as follows:

$ = t a V
$ = t b V

^c ■ CA'

d = the first index which becomes tentatively 1-cancelled infinitely

many times, and

/

107

e == the number of a stag a beyond which no index smaller than d ever

becomes tentatively 1-cancelled or 2-cancelled. We assume e > d.

Then<P ,a ^ c d e>
will represent a program for C. requiring measure

£ g o tA (for an appropriate function g). We will let this be the g in

the hypothesis of the theorem, so that we here obtain a contradiction

to "Comp A > g o t a.e."

Definition of qo , , 'i-'V: Y(a.b,c.d e)

To compute 9 , . . Qv(x), we proceed as follows:
Y*.a» D>c>a> e-J

If $ (x)t or (VtOr« (x) > $,(n)], then (p ,0 K „ , a,(x)t. a ab Y(a>b.c»d,e)

Otherwise, let n = |imr$ (x) ^ f (m) 1.

1. Ifn^e, letqPY(a>b>C)dje)(x)^c(x).

2. If n > e, then perform stages 0 through n - 1 in the construction

of Po, b -i • At the point immediately after completing stage

n - 1, see if either there is a tentative commitment (d,x,,y.,z,)
add

or d is tentatively 1-cancelled.

2.1. If either condition is true, let p . . , , (x) = Cp (x).
Y(a,b.c,d,e)v ^cv

2.2. Otherwise, see if some tentative commitment (d^'.y.z), for

x ^ x' would be made at clause 1.2.1, of stage n in the

construction of qO-, . .. That is, see if: ß(a,b,c)

(Sx« ^ $a(x))rr($ (n - 1) < § (x1) < $ (x)) V

($ (x) = $ (x1) and x1 < x)1 A

r(3E £ {y|y ^ hCd.x',§ (x'))}) r(Vy ^ n - 1) (y e E •»

.

—__.

108

VaAc^30 = ^ A ($d
(E)<x,> ^ f

a^
,))ni.

2.2.1. If so. let^(a>b)Cjd)e)(x) -Vc(x).

2.2.2. If not, then see if (3E C {y|y ^ h(d,x,$ (x))})

r(Vy ^ n - l)(y e E « 9p(Ä>1,>c)(y) " D A

(E)
I

(We are checking to see if at stage n in the con-

3d

(§d
w(x) **a(x))l,

struction of B, a tentative commitment (d,x,(p (E)(x),z)

was made.)

2.2.2.1. If not. letqPY(a)b)C)d>e)(x) -^(x).

2.2.2.2. If so, consider the first such E and let:

%a.b,c,d.e)« ^d00^-

END OF CONSTRUCTION

We now assume (as indicated briefly before the construction of

^(a.b.c.d.e) that a*' b*' c*' d* aT,d e* are fixed as follows:

a* CA'

V = tB'

"c* = CA'

d* « the first index which becomes tentatively 1-cancelled infinitely

many times during the construction of qon/ ... _ ^. and
p(a*,b*,c*)

e* = the number of a stage in the construction of <P . after
^ß(a*,b*.c*) aj-l-,:ir

which no index smaller than d* ever becomes tentatively

1-cancelled or 2-cancelled. We assume e* > d*.

We clal^Y(a*,b*,c*,d*.e*)
=V

«. /

109
For all clauses except 2.2.2.2., p _M

^Y(a*,b*,c*,d*,e*) ~ ^c* CA-

We must check what happens if clause 2.2.2.2. defines O ,vv

to be<pd#^^(x).

If 2,2.2.2. is executed in defining some (p , c^
^Y(a*,b*,c*,d*,e*)(x;'

then it means that there is a stage n > e* in the construction of

^ßCaM^.c*) at which d*. x a^ some set E satisfy the conditions in

1. (a) of that construction.

d* must be the smallest index for which either (a) or (b) is satisfied

because we are already past stage e*.

Thus, in stage n of the construction of (pD/ ... t ciause i 2 ,
ß(a*,b*,c*)' ciau8e *•*•!•

must be executed for i = d*.

But since clause 2.2.1. of the construction of (p fms
y(a*,h*,c*,d*,e*)w

was not executed, it must be the case that no other argument x' could

interfere with a tentative commitment (d^.x.y^.z^) being made at stage

n in the definition of V^^^, and so some tentative commitment

(d*,x,qpdA
(E>(x),ä5d^) win be „^

Eventually, this tentative commitment for d* will cause d* to

become tentstively 1-cancelled. since n > e*. When d* becomes

tentatively l-cancelled. It will be associated with the pair of integers

(x,qpd*
(E)(x)).

Since d* becomes tentatively 1-cancelled infinitely often during

the construction of<Pß(a* ^ ^ this tentative cancellation must

eventually be removed. This can only happen because of clause 3.2.1.

at some stage m > n in the construction of (an/ _ but 3 2 1 »c.
^ß(a*,b*,c*)' 3.<. i, gets

no
executed only if:

CA(x) = V
(E)<X) »%a*.b*.=Sd*.e*)(x>-

This establishes the claim that CA = «»Y(t*fb^e#f^^j •

Next, we would like to show that:

fY(a*,b*,c*.d*,e*) ^ 8 0 V (= 8 0 V i-0-

To do this, we must first define g.

Let g(x,y) ■ max g'Cx.y.a.b.c.d.e), where we will define
a,b,c,d,e^x

g' below. The idea behind the definition of g' is the following: we

list enough conditions, each recursive assuming the preceding ones are

satisfied, to insure that ^^^^ (x). and hence %(a}b>c>d>e) (x).

converges. On the other hand, we don't put in so many restrictions that

we exclude any of the cases we're interested in (i.e. we only list

properties actually satisfied by a*, b*, c*, d* and e*).

Here, we basically follow the construction of <p , . v(x) and Y(«.b,c,d,e)v

select which of the conditions on a*, b*, c*, d* and e* were needed for

the convergence of «p , .. ,. . .^ _ (x). 6 ^Y(a*,b*,c*,d*,e*)v ^

We define g'(x,y,a,b,c,d,e) = § b c d (x) provided all the

following conditions are satisfied:

1. e > d.

2- y = §a(x),

3. $b(y) s $a(x))

/

J—■ ' ■

in
4. Let„^mr$a(x)s$b(in)h ^^

4.1. n > e,

4.2. Immediately after performing stage n - 1 in th. o . ■• e«. n i in the construction

^ "PCMK th*" "> » tentative commitment (d,, y (i),

•nd d U not tentetlvely X-cancelled, <•' d' d ■

(■at. m. 1. en effective test since we kno» thet fot e^

m<n>Vm)<Vl0, 80thitVm)(^ .„„^ ^

4.J. There Is no x- „tl.^.,, clau8e ,.,. of ^ COMtructio]i ^

^YCa.b.cd.e)^- Precisely,

('eE * V..b..><«) ■ « ^ cid«>(lt., . v,.))]n.

4.4. (!» = (1|i«hM.,>yll)),)

« one of the condition. Ml. to he sstlsfied. «e define:

g'Cx.y.a.b.c.d.e) - 0,

Now by definition,

8(*.V(*)) *g'(Ma*(x),a^b*,c*.d*,e*) a.e.

■ $
Y(a*,b*,c*,d*,e*)(x) for all x such that

a tentative commitment (d* x v * \ i* ^ K '"»yd*»V l8 "»«de at some stage after stage
«* in the construction of B.

But since we have assumed that d*
gets tentatively 1-cancelled

/

112

l»»l*tely oft«,, thl. Utt« «.u-llty ».t occur for lnf<r,ltely •* ..

Thus, we have $
Y(a*>b*,c*,d*,e*) 8 a*

= r this contradicts the hypothesis:
But since cp^^^^^e*) ^A'

Comp A > g o tA a.e. The-efore. our assumption that d* was tentatively

1-cancelled infinitely often was wrong, and so we conclude that no

index gets tentatively 1-cancelled infinitely often in the construction

QED ofqpß(a*,b*,c*r

Rejgark: Part of the difficulty of the preceding proof arises fro« the

fact that there is no evident effective way to estitnate how tnax^

tentative commitments for an index may be removed. The resemblance to

finite injury priority arguments without recursive bounds on the number

of injuries is readily apparent.

We now wish to discuss the relationship between theorems 6.3 and

5.2. As in the parallel discussion for theorem 6.2. we require a

"compressed" version of the theorem:

We obtain:

p^nosltion 6.3.3: There exists g « R2 with the following property:

Whenever we have total running times tA and tB with tB monotone

increasing, and a recursive set A with Comp A > g o tA a.e., and if

t ^ Xxfxl. then there exists a recursive set B such that:
A

Comp B > t_ a.e.

Comp B ^ g o tB a.e.,

and Comp(B)A>tAa.e.

/

113

Proof: It is easy to verify that (^x.a.b.c) Tx e domain cp

whenever {0,1,...,x1 = domain $,].

ß(a,b,c)

Thus, by a simple domain-of-convergence argument, we may find a

function g' e R2 such that:

ß(a,b,c) 6 b

whenever i. is monotone increasing, and the proposition follows

immediately from theorem 6.3.

QED

Having this stronger version of theorem 6.3, we may now note the

following:

Let us use the function g found in proposition 6.3.3.

2
As before, define g e R- to be >.x,yrg(x,g(x,y)]. Then we obtain,

2
by theorem 5.2, a set A , which is i.o. g -improved by all recursive

sets B whose complexity is weakly g-compressed around a running time.

(That is, there exists a total running time t- such that Comp B > t i.o.

and Comp B ^ g o t_ a.e.)
a

Now assume that there exists a recursive function t. which is a
A

"good" a.e. lower bound for A (is complexity, in the sense that C.
g AgI

can actually be computed a.e. in measure not much greater than t .

If such a function t exists, we may apply proposition 6.3.3. to

t. and an appropriace t and obtain a set B What is B's relationship to

Aa'?

g

2
B must g -improve A , i.o., by theorem 5.2. On the other hand,

since B preserves the a.e. lower bound t. (at least to within amount g),

,■

/

114

it is Impossible that B g -improve A , i.o But this is a contradic-

tion.

Hence, we see that the assumed existence of the "good" a.e. lower

bound was false, so A , can have no "good" a.e. lower bound on its

complexity.

Open Question: Can we obtain a more symmetrical version of theorem

6.3, in which A also preserves a lower bound on B's complexity? (This

is stronger than theorem 4.8 because the set A may be fixed arbitrarily.)

One way of formulating this it. »"He following:

Is this true:

"There exists g £ Rg with the following property:

Whenever we have total running times tA and tB with tB monotone

increasing, and a recursive set A with Comp A > g o tA a.e., then there

exists a recursive set B with:

Comp^ ^B > tB a.e.

Comp B ^ g o t a.e. B
(BV and Compv ;A > tA a.e

n ?

Ooen Question: For any recursive set A, we have found sets B which

preserve any single a.e. lower bound tA on A's complexity, provided tA

is a running time. Can we find, for each A, a single set B which

preserves all running time a.e. lower bounds? Further discussion of

this question will appear in Chapter 7.

Open Question: In theorem 6.3, can the hypothesis that tA is a running

time be eliminated?

/

115

7. Suggestions for Further Study;

In this chapter, we collect open problems from Chapters 3-6 and

make further suggestions for additional work.

7.1. In theorem 6.^ can the "running time" hypothesis on tA be eli-

minated? That Is, can we prove the following theorem:

"There exists g e R, with the following property:

For any t. e R. (with t. ^ \xrxl), and any recursive set A

with Comp A > g o tA a.e.,

there exist arbitrarily complex recursive sets B such that:

Comp(B)A > t a.e." ?

7.2. Can we strengthen theorem 5.2 to omit or weaken the complexity

restrictions on 6?

For example, can we prove:

"For all k e R», there exist sets A and functions t e R1 such

that:

(VB) rcomp B > r a.e. =* B k-lmproves A 1.0.1" ?

There are other possible formulations of the same (intuitive)

question.

7.3. Part of the intention of introducing the notion of "helping" was

to give a formal interpretation of the way in which a subroutine

helps the computation of a function. (The oracle set plays the

role of a subroutine). Intuitively, it appears that a definition

of "helping" which accurately reflects this situation should be

transitive, contrary to corollary 4.8.5. We see that the difficulty

/

116
■

arises because the 'helping sets" we consider in the counterexample

are in fact unlike subroutines because they encode the entire function

whose computation they are supposed to help (i.e.. we say B join

(B ® C) helps the computation of C).

We would like some way of eliminating this difficulty. Can

we make some suitable restriction on the kinds of sets allowed JW-

oracles (e.g. restrict their complexity relative to that of the

function being helped) to make our notion of helping a transitive

one?

If we intend, as above, to give a formal interpretation of

the way in which a subroutine helps the computation of a function,

then we should not restrict our attention to set oracles, but

rather we should have a model for computation which allows help

from arbitrary partial recursive functions.

Some work in this direction has already been done by Symes in

his thesis fSyl. Symes has defined an acceptable ordering of

"subroutine operators" which work not in conjunction with an

arbitrary set oracle (as do relative algorithms), but rather in

conjunction with a partial recursive function. Complexity axioms

in the style of Blum are then developed for these operators.

7.4. Consideration of the kind of complexity restrictions needed on B in

theorem 5.2, and elsewhere in the thesis, leads us to inquire about

the relationships between the different types of complexity

restrictions.

117

For example, we ask which of the following statements are true;

7.4.1. (3g e R2)(Vh e R2)(3A,3t C R^

Comp A > t a.e. and Comp A s g o t a.e.,

but such that for no total running time t' is it true that:

Comp A > t1 a.e. and Comp A ^ h o t' a.e.

 (nh it strongly compresacd but n&t between honest bonnHB.")

7.A.2. (3g e R2)(Vh e R2)(aA,3t e R^

Comp A > t i.o. and Comp A s g o t a.e.,

but such that for no total running time t' is it true that:

Comp A > t' i.o. and Comp A ^ h o t' a.e.

("A is weakly compressed but not between honest bounds.")

7.5. Can we obtain a version of theorem 4.2 for oracle sets B which are

nonrecursive? That is, can we find any way to bound the amount of

help a nonrecursive set B can give the computation of a function (for

example, relative to B'tf Turing-reducibility properties, or to B's

complexity relative to some oracle set)?

7.6. For any recursive set A, theorem 6.2 gives sets B which preserve any

single i.o. lower bound t. on A's complexity. Can we find, for each

A, a single recursive set B which preserves all i.o. lower bounds

on A's complexity (or, more restrictively, all i.o. lower bounds

which happen to be running times)? This would imply that B failed

to help A, in a somewhat more natural sense than theorem 6.2.

For example, it might be possible to somehow take into account

all i.o. lower bounds on A's complexity, and hence construct B by

118

vorkit« from .11 the i.e. lower Wds r«th«r than a single one. ,

i !

7.7. For any recursive set A. we have found sets B which preserve any

single running time a.e. lower bound on A's complexity. Can we

find, for each A. a single set B which preserves all a.e. lower

bounds, (or all running time a.e. lower bounds)?

A serious drawback to the idea of taking into account all a.e.

lower bounds on A's complexity i a thefollowin^im of Meyer 'Mel: "

"There exists a recursive set A such that no sequence of

total functions (ptl satisfies the following properties:

(a) Xi.x^Cx)] is recursive,

(b) (Vi)rcomp A > pi a.e.]

(c) (Vr eR1)r(CompA>r a.e.) * (aj)(pj > r a.e.) I'V

We do not know whether a similar result holds A* i.o. low^r bounds.

i i

7.8. in Chapter 6, the sets B which don't help A, f?il to help it in that

they preserve a given lower bound on A's complexity. It would be nice

to be able to sharpen theorems 6.2 and 6.3 to involve k-improvement,'

by applying them to a single "best possible" lower bound on A'.

complexity.

i

Unfortunately, Blum's Speed-up theorem fBl] tells us that for

some recursive functions, no lower bound is close enough to the

.ctual running time of a program for that function to insure that

the resulting set B does not k-improve A. That is. some recursive

functions do not have their complexities well-described by a single

lower bound furction.

/

I

119

kowever, it can be shown ^MeFl that the complexity of any recursive

function may be described by a sequence of recursive functions

{p.} called a "complexity sequence," having some nice properties:

(a) \i,xrp.(x)l is recursive,

(b) Each p. iis a total running time,

(c) (Vi)rh o p. s p.,, a.e.] (for some h depending on the

' measure only).

Using the concept of a "complexity sequence," Meynr has

i

obtained a version of theorem 4.8 in which neither of the sets B

or C k-improves the other .for any nontrivial k.

i i

In the hope that this method will extend to other problems

(notably the questions in Chapter 6), it would be nice to better

understand how the complexity of recursive functions can be character-

, i«ed in terms of fcomplexitiy sequences.

For example1, two specific questions:

7.8.1. Does every recursive functioh f have a 0-1 valued recursive
i

function g with "approximately" the same complexity sequence?

This means that there exists a function h e R2 depending on

the measure only, for which:

(3 If.}, a complexity sequence for f), and
1 i '

(a (gj}» a complexity sequence for g)
I , i i

'(^(SfjXfc 0 'i* gj a-e-) A (TltXS'jXl» 0 8i ^ f j a-6'"*]'
i i i

7.8.2. Give necessary and sufficient conditions on a .equence oi

functions that it be a complexity sequence.
i I :

y

120

For example, in 'L], we have two sets of sufficient condi-

tions, w'iere each set of conditions includes a synchroni-

sation condition (i.e. infinitely many of the functions in

the sequence are large and small at the same arguments),

However, we can show that synchron!eation conditions are

not necessary in the following strong sense: we can obtain

functions f with effective i.o. speed-up rB2J such that no

complexity sequence for f can be synchronized.

7.9. Many other questions about helping besides those in Chapters 4-6

may be asked, some of which are probably answerable by methods

similar to those used in Chapters 4-6. There are different for-

malisatioro of the same intuitive questions, but some examples are:

7.9.1. Does there exist a "universally-helping set"?

Specifically, is it true that:

(Vh e R2)(3A, a recursive set)(Vt, total running times)(VB)

r(Comp B > t a.e. and Comp B ^ h o t a.e.) ^ (A h-improves B)] ?

7.9.2. Can a set always be helped in a "controlled" way?

Specifically, is it true that:

(Vh e R2)(V total running times t, t' with t > t,)(3 recursive

sets A,B)

r(Comp A > t a.e.) A (Comp A s: h o t a.e.) A (Comp^A > t' a.e.)

A (Comp(B)A s: h o t' a.e.)] ?

7.10. Is theorem 4.6 true without the monotonicity restriction? Namely,

is it true that:

"There exist r e Rp h e R- with the following property:

I

121

Whenever t Is a ruimlTig time, there exists a recursive set

A with:

Comp A > t a.e.,
■

Comp A ^ h o t a.e.,

, fAl and Comp JA ^ r a.e." ?

7.11. Can we obtain more symmetrical versions of theorems 6.2 and 6.3,

in which A also preserves a lower bound on B's complexity?

One example of a precise formulation of this question for

theorem 6.2 is the following: Is it true that:

"There exists g e R2 with the following property:

Whenever we have tA, tB e R^ A a recursive set, Comp A

* 8 o tA i.e., there exists a recursive set B such that:

Comp(A)B > t I.e.
15

and

Comp B £ g o tB a.e.

CA
Comp(^A > t i.o." ?

7.12. This thesis deals almost exclusively with results about functions

(A)
in R^ and R^ . it would be Interesting to consider similar

results in P^ and P^. For example, quastlons 7.4 and 7.8 may

be rephrased for partial functions.

We may use Symes1 definitions rsy] for programs with partial

recursive functions in place of oracles, and reformulate our

questions about helping in these terms.

7.13. Is is possitle to strengthen proposition 3.14 in the following way:

"Given any nonrecursive set A, it is always possible to find a

122

set B such that:

AJB and A-reducibility = B-reduclbilitv" ?
T

7.14. Is bouTided truth-table reducibility, or atiy of the other redu-

cibilltles mentioned by Jof.kusch in his thesis rjll complexity-

determined?

7.15. In his thesis, Jockusch develops the properties of various types

of truth-table reducibilities. such as containment properties of

degrees. Explore the answers to these questions for C-reducibili-

ties for various sets C. For example, does C-reducibility have

any properties significantly different from truth-table reducibility? 7

.■ . /

tmmmmmmmmmmmmmmmgmmmmmmmHm ; .

123

BiBLIOÜRAPHY

TAll Axt, P. Enumeration and the Grzegorczyk Hierarchy, Zeitschrift fur
Mathematische Logik und Grundlagen der Mathematik, 9, 1963,
pp. 53-65.

rA2] Axt, P., On a Subrecurslve Hierarchy and Primitive Recursive Degrees,
Transactions of the A. M. S. , 92, 1959, pp. 85-105.

■

rBl] Blum, Manuel, A Machine-Independent Theory of the Complexity of
Recursive Functions, JACM, Vol. 14, No. 2, April JJ67, pp 322-
336.

rB2] Blum, Manuel, On Effective Procedures for Speeding Up Algorithms,
JACM, Vol. 18, No. 2, April, 1971, pp. 290-305.

TCI Cobham, Alan, The Intrinsic Computational Difficulty of Functions,
Proceedings of the 1964 International Conference for Logic.
Methodology and Philosophy of Science. Jerusalem, Aug. 26-Sept. 2,
1964, pp. 24-30.

TDl Davis, Martin, Computablllty and Unsolvablllty. McGraw-Hill, 1958.

fHH] Hartmanls, J. and Hopcroft, J. E., An Overview of the Theory of
Computational Complexity, JACM, Vol. 18, No. 3, July, 1971, pp.
444-473.

fHLS] Stearns, R. E., Hartmanls, J,, Lewis II, P. M., Hierarchies of
Memory Limited Computations, IEEE Conf. Record on Switching Circuit
Theory and Logical Design, 6, 1965, pp. 179-190.

rjl] Jockusch, Carl G, Jr., Reducibllities in Recursive Function Theory.
PhD thesis. Department of Mathematics, M. I. T., June, 1966.

rj21 Jockusch, Carl G., Jr., Uniformly Introreduclble Sets, Journal of
Symbolic Logic. Vol. 33, No. 4, Dec. 1968.

rK] Kleene, Stephen Cole, Introduction to Metamathematlcs. Van
Nostrend, 1959.

fLRl Landweber, L.H., and Robertson, E.L., Recursive Properties of
Abstract Complexity Classes, accepted for publication in JACM.

rLyl Lynch, Nancy, desk dr"ver.

TMall Machtey, Michael, private communication.

rMa21 Machtey, Michael, Augmented Loop Languages and Classes of Com-
putable Functions, to appear.

124

[McC] McCreight, Edward M., Classes of Computable Functions Defined
by Bounds on Computation. PhD thesis. Department of Computer
Science, Carnegie-Mellon University, July, 1969.

[McCMe] McCreight, E. M. and Meyer, A. R., Classes of Computable Functions
Defined bv Bounds on Computation. Symposium on Theory of Com-

puting, Marina del Rey, May, 1969.

[McL] McLaughlin, T. G. Private communication.

[Me] Meyer, Albert R., private communication.

[MeF] Meyer, Albert R. and Fischer, Patrick C., Computational Speed-up
by Effective Operators, Journal of Symbolic Logic. Vol. 36, No. 4

Dec. 1971.

[MeRD] Meyer, A. R. and Ritchie, Dennis M., A Classification of Functions
by Computational Complexity: Extended Abacract, Hawaii Int 1

Conference on System Science, Jan. 1968.

[MeMo] Meyer, A. R. and Moll, Robert, Honest Bouncs for Complexity Classes
of Recursive Functions. MIT Project Mac publication, April, 1972.

[P] Paterson, Michael, private communication.

[RD] Ritchie, Dennis M., Program Structure and Computational Complexity,
PhD thesis. Division of Engineering and Applied Physics, Harvard

University, 1967.

[RRW] Ritchie, R. W., Classes of Predictably Computable Functions, Trans.

A. M. S.. 106, 1963, 139-173.

[Rol] Rogers, Hartley Jr., Theory of Recuraive Functions and Effective
Computability. McGraw-Hill, 1967.

[Ro21 Rogers, Hartley Jr., Godel Numberings of Partial Recursive Func-
tions, JSL, Vol. 23, No. 3, Spptember, 1958, pp. 331-341.

fSa] Sacks, Gerald E., Degrees of Unsolvability. Annals of Mathematical

Studies, No. 55, 1963, Princeton, N. J.

fSy] Symes, David M., The Extension of Machine-Independent Computa-
tional Complexity Theory to Oracle Machine Computation and to
the Computation of Finite Functions. PhD thesis. Department of
Applied Analysis and Computer Science, University of Waterloo,

Oct., 1971.

[Tl] Trachtenbrot, B. A., On Autoreducibility, Dokl. Akad. Nauk.SSSR,

Vol. 11 (1970), No. 3.

[T2] Trachtenbrot, B. A., private communication.

■ /

125

BIOGRAPHICAL NOTE

The author

 She attended P.S. 192. where she won the annual spelling bee

in 1959.

She attended Hunter College High School from 1961-1964. and Brooklyn

College from 1964-1968. At Brooklyn College, she held a New York State

Regents Scholarship and a National Science Foundation grant for summer

study. She was elected to Pi Mu Epsilon. Phi Beta Kappa and Sigma Xi.

She served in numerous offices, including those of president of the

Brooklyn College chapter of Pi Mu Epsilon and editor of the school's

mathematics journal.

She received her B. S. in June. 1968. summa cum l^de.

She began graduate work at M. I. T. in September. 1968. as an

N. S. F. fellow. Her final year of graduate study was completed as a

Project Mac research assistant.

During her attendance at M. I. T.. she became Nancy Lynch, worked

for a short time on the LOGO Project (for computers in education) and

learned how to ski.

She has accepted an appointment as Assistant Professor of

mathematics at Tufts University. Medford. Mass.. beginning in September.

1972.

/

