

BEST
AVAILABLE COPY

[RICLASSIPIED

Sroany Siibess :
DOCUMENT CONTROL DATA-R& D

(3ecwede classclication of title, body of 0bsrraci and indesing annsietion sel bo ontered when the oversl! repert {s clacstiiod)

'T-:,mcmn TinG AC TiVITY (Covpevere suther, 18, AEPORT JIECUMITY CLABIIZICA 110N
Project MAC Unclassified
Massachuset:cs Institute of Technology 6. cmoue

None

} REFPORTY TITLE

RELATIVIZATION OF THE THEORY OF COMPUTATIONAL COMPLEXITY

¢ OCICRIPTIVE KO TES (Type of repert ond Mnchusive daine)

—m&-ﬁhﬂlh_*mixmnt
S AUTHOMIN(15t neme, middie inlilel, laet neame)

Nancy A. Lynch

3. ACPONTY DATE 6. YOTAL HO. OF PasEs 5. n0. OF mE Py
June, 1972 125 31
[$e. CONTRACT OR GRANT nD. %6. CRIGINATOR'S REPORT NUWBE MID)
NCO014-70-A- 0362-0001 MAC TR-99
s onosecY no. N/A f V"-) ‘ ==
e. H/A 5. g,v.nl- -:-ouv ORI (Any on«hp@_{‘;{.‘;i 'D;u:i';od ~_
« N/A 1Y JUR 26 ﬁ '
10. OISTRIGUTION STATEMENT 5N] |
Distribution of this document is unlimited TRV _J
steibuio |ceerr sl
1 SYPPLEvENTARY HOTES 12. SPONBORING MILITARY ACTIVITY
tNone Office of Naval Research

19 aestmacy

Blum's machine-independent treatment of the complexity of partial recursive
functions is extended to relative algorithms (as represented by Turing machines
vith oracles). We prove relativizations of several results of Blum complexity
theory. A recursive relatedness theorem is proved, showing that any two relative
complexity measures are related by a fixed recursive function. This theorem allows
us to obtain proofs of results for all measures from proofs for a particular measure.

U!’ctudy‘6onplex1ty-detcra1nod reducibilities, the parallel motion to complexity
classes for the relativized case. Truth-table and primitive recuraive reducibilities
are reducibilities of this type.

We—-formalisze the concept of a set helping the computation of a function. Basic
properties of the "helping™ relatior are proved, including non-transitivity and
bounds on the amount of help certain sets can provide.

Several independence results (results about sets that don't help each other)
are proved; they are subrecursive analogs to degrees-of-unsolvability theorems, with
similar proofs using diagonalization and priority arguments. In particular, we
discuss the existence of a "universally-helped set," obtaining partial results in
both directions. The deepest result is a priority argument, which produces sets
preserving an arbitrary lower bound on the complexity of a set.

Pll Redacted

e e R ————]
DD "3™.1473 (Pace 1) I CLASSIFLED

$/% 0102:-014-6600 curity Clasaification

— A ¥ _
ty Class on '

ia -
b = Linn A Lin ® Linn €
aoLE LAd LI-19 ¢ LAS nRoLt LA 4

recursion theory

computational complexity
relativa algorithm
Oracle Turing machine
raducibilites

helping

priority arguments

| I —
DD °¥.1473 teacx) :E’ UNCLASSIFIED

(PAGE 2) Security Classification

-2 -

ABSTRACT

Blum's machine-independent treatment of the complexity of partial
recursive functicns is extended to relatjve algorithms (as repregented
by Turing machines with oracles). We prove relativizations of several
results of Blum complexity theory,. such as the coamprefsion theorem. A
recursive relatedness theorem is proved, showing that any two relative
complexity measures are related by a fixed recursive function., This
theorem allows is to obtain proofs of results for all measures from proofs
for a particular measure.

We study complexity-decermined reducidiliting, the parallel notion
to complexity classes for the relativized case. Truth-table and primitive
recursivs reducibilitiszs are reducibilities of this type, while other
commonly-studied reducibilities are not.

We formalize the concept of a get helping the coaputation of func-
tion (by causing a saving ir. resource whken used as an oracle in the
computation of the function). Basic Properties of the "helping” relation
are proved, including nNon-transitivity and bounds on the amount of help
certain sets can provide.

Several independence results (results abhout Sets that don't halp each
other's computation) are proved; they are subrecursive analogs to degrees-
of-unsolvability theorems, with similar Proofs using diagonalization and
Priority arguments. In particular, we discusc the existence of a
”univcrlally-helpcd set ,” obtaining partial results in both directions.
The deepest result ig a finite-injury priority argument (without an

Our methods of Proof .nclude proof for a simpie measure (e.g. space)

and appeal to recursive relutedness, diagonalization and priority techniques,

and heavy use of arguments about the uomain convergence of partial
recursive functions in order to define total recursive functions.

3
ACKNOWLEDGEMENTS
I would 1like to thank Albert Meyer for his investment of

time, enthusiasm and ideas.

I an also grateful to Amitava Bagchi and Michael Fischer for

their interest and suggestions.

Finally, I am {ndebted to my husband Dennis for his patience
and encouragement, as well as help with the cooking during the

final stages of preparatiun of the thesis.

Work reported herein was supported in part by the National Science
Foundation and in part by Project Mac, an MIT research program spon-
sored by the Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Number NOOO14-70-A-0362-0001.
Reproduction in whole or in part is permitted for any purpose of the

United States Government.

2,
3.
4.
5.
6.

7.

CONTENTS

. Introduction

Notation, Axioms and Basic Regults
Complexity-Determined Reducibilities
Helping

Universally-Helpud Sets

Sets That Don't Help

Suggestions for Further Study

13
35
57
80
88

115

1. Introduction

Blum [B1] introduces an axiomatic frameworl for discussing the
complexity of partial recursive functions of integer variables. In
this thesis, we use a parallel approach for the case of relative
algorithms (i.e. partial rscursive functions of ome integer and one set
variable, as represented by Turing machines with oracles D) [Rol)).
Our extension of Blum's ideas allows us to discuss axiomatically
several problems impossible to formulate from the original set of

axioms.

For example, we can formalize the idea that one function helps
the computation of a second function; we can also give some meaning to

""the complexity of a nonrecursive function."

The axioms we give include as special cases the "natural" measures
on relative computations, namely the time and space measures on oracle
Turing machines. Thus, the axiomatic statements of our various
theorems are also true when interpreted for the specific measures. If
we were to state and prove our theorems directly for the time and
space measure, the results would be more precise and the proofs more
intuitive. However, the axiomatic proofs are much shorter and cleaner;
therefore, our general policy in this thesis is to state and prove
results axiomatically, giving intuitive remarks about time and space

wherever possible.

In Chapter 2, we present our axioms for relative complexity and
prove some basic resuits suggested by theorems of non-relativized

complexity theory.

6
The first important result is that any twvo measures satisfying

the axioms are recursively related; the proof is by Konig's lemma.

This theorem is important primarily because it provides an alternative
method of proof of general-measure theorems. Certain types of theorems
may be proved easily for a particular measure (usually space) 2nd then
the recursive relatedness between space and other measures can give

the general result. We employ this method occasionally.

We nmote that the standard results of complexity theory, such as
speed-up, compression and gap theorems fHH) all have full relativiza-
tions with proofs exactly like the usual proofs. Several partial
relativizations are also true; we prove some which are of interest or
will be of later use. In particular, we prove & relativization of
the combining lemma (HH], which states that the complexity of a compu-
tation is closely related to the complexity of its subcomputations.
This will imply some later results; it is the first example of our use
of a method of proof which we call the ndomain-of-convergence' method,

and which is used in axiomatic proofs throughout the thesis.

In Chapters 3-6, we study questions natural to treatment within

relative complexity theory.

A notion which parallels that of a complexity class fMcC] [McCMe]
ip the relativized theory i« that of a “complexity-determined reduci-

bility," which we study in Chapter 3.

To any class C of functions corresponds:
[(A,B)lA is computable from B within measure equal to some function in ()

For certain classes C, this provides a reasonable reducibility.

7

Truth-table reducibility [Rol) and the relation "primitive recursive
in" [K) are examples of reducibilities of this type, while other

commonly-studied reducibilities such as mamy-one and one-one reduci-

bilities (Rol) are not.

We show that neither truth-table reducibility nor primitive
recursive reducibility can be completely specified by a aingle_bound
function (i.e. a singleton class (f). However, each may be so specified’
on any countable class of oracle sets, as we show by 5 relativization
of the Meyer-McCreight union theorem [McC) 'McCMe). For example,
there is a function t such that:

(A stt B ¢ A is computable from B within measure t)

for all arithmetical sets A and B.

By selecting special classes of functions Cf, we may define
new complexity-determined reducibilities; for example, by letting:
C = (A-recursive functions) |
for some set A, we define a reducibility somewhere between truéh-table
and Turing reducibility, which we call "s-reducibility." By

considering all sets A, we arrive at a hierarchy of reducibilities.

A relativization of the compression theorem shows that: o
(VA,B) I (A-reducibility = B-reducibility) © (A-recursive functions
and B-recursive functions are the "same size")].
This fact reduces questions about the reducibility hierarchy to
purely recursion-theoretic questions; we prove several results about |
this hierarchy, for example, that there exist Turing-incomparable

!
sets determining the same reducibility.

9
Independence results (theorems that state that certain sets do

not help the computation of certain recursive functions) are amalogous
to theorems about functions having & certain lower bound on their
complexity; diagonaliration is the only tool we have for proving them.

We prove a version of the following statement:

"There exist pairs of complex recursive sets that don't

help each other's conpufation."

We:use a diagonalization method in the pr?of, based on work by Meyer,
M.J. Fischer ‘and Trachtenbrot; priorities are used., We first construct
a set. with no interdependence between the values of its characteristic
function at different arguments. We then spli; this set into two

pieces and argue that neither piece can help the other's computation.

This result illustrates proof techniques which will be used in a
more complicated fasnion in Chapter 6. It has several interesting
corollaries, including the fact that "helping'" is not a transitive

]
relation.)

Since the independent sets are, constructed by a diagonalization,
{t is difficult to understand much about them. - A more interestiig
result woyld arise if we could arbitrarily fix ome of the sats.

Th:s,’in Chapters 5 and. 6, we ask the following gquestion:

wﬁich is true?

21) There is a recursive set A whose computation is helped
by'all sufficiently complex re ursive sets B (a "universally-

helped set"), or!

1

10

(2) For all recursive sets A, there exist arbitrarily

complex recursive sets B that don't help the computa:ion of A.

We obtain some partial results in both directions, using dif ferent

interpretations of "helping."

In Chapter 5, we produce the stronmgest results we can to obtain
the first answer. We note that the complexity axioms are sufficiently
general to be satisfied by various '"pathological'' measures; specifically,
that any recursive set will be a "universally-helped set" in some
relative complexity measure. From here on, we use a mechanism for

eliminating such trivial cases.

We go on, in theorem 5.2, to construct sets which are not
"universally-helped," but which are "almost universally-helped,"” in
the sense that thicy are helped by all recursive sets whose complexity
is "nicely determined." More specifically, for amy recursive function
h, we obtain a recursive set Ah such.that the computation of Ah'l
characteristic function is helped on infinitely many arguments by any
recursive set whose complexity is (to within accuracy h) equal to a
running time. This is the strongest result we have obtained in the

direction of answer (1).

In Chapter 6, rre work in the opposite direction, begimning with
® recursive set A and constructing sets B ot helping A's computation.
As before, we use diagonalization and priority techniques in obtaining

our results. There are two major results in the chapter.

The first theorem, theorem 6.2, states the following:

11

1f we liave & recursive set A and a recursive function t
wvith the property ti.a: every Turing machine computing A's characteristic
function requires more than tA space on an {nfinite set of arguments,
then there are arbitrarily complex recursive sets B such that every
B-oracle Turing mschine computing A's characteristic function still

requires more than tA space on an infinite set of arguments.

The proof idea {s due to Machtey [Mal] and involves a diagonali-

sation with simple priorities.

The second theorem, theorem 6.3, utates that, provided ve
restrict our attention to functions t vhich are running times, ve
have a similar result to theorem 6.2 for & different type of lover
bound) Namely, if we have & zecursive set A and a total running
time s vith the property that every Turing machine computing A's
characteristic function requires more than t, space on almost all
arguments, “hen there ave arbitrarily complex recursive sets B such
~hat every B-oracle Turing machine computing A's characteristic

function still requires more than t, space on almost all arguments.

This theorem is the deepest result in the thesis. The
diagonalisation required {s considerably more cosplicated than that
requized for theorem 6.2, and {nvolves a finite-injury priority
argument {n which there {s no apparent recursive bound on the number

of times a requirement may be {njured.

The {ndeperdence results serve to demonstrate that there exist
arbitrarily complex pairs of recursive sets wvhich are recursive for

vdi fferent reasons."’

12
There is, of course, no conflict between the resuits of Chapters

S and 6, ac ve shov.

Open problems are interspersed throughout the thesis as they
srise, and sre collected in Chapter 7. Also, in Chapter 7, we present
additional open problems and directions for further research. Ome
particular direction mentioned is that studied by Symes in ISy],
vhere he considers helping not only by oracle sets, but also by
partial functions. In general, ve would like to formalize other
wotions of "helping,” specifically those vhich represent the way in

wvhich a subroutine "helps" the computation of a function computed

by & computer program.

13

2. Yotation, Axioms and Basic Results

We assume familisrity with the notation used by Rogers (Rol],

We use "(v&)" and "s.e. (x)" to mean “for all bu: a finite
rumber of x.'' When no confusion {s likely, we simply write "s.e."

("almost everyvhere").

Similarly, "(gx)" or "{,0. (x)" means "for infinitely many x,"

and we write "1.6." to mean "infinitely often."

We write "a = b" to mean Ii -b ifaxzbd

[o if & <b.

The composition "g o t" where t s a function of one variable

and g 18 a function of two variables, will i{ndicate Ax(g(x,t(x))].

"Rn" represents the set of total recursive functions of n integer

variables.

"R“(A)" represents the set of total A-recursive functions of n

integer variables,

"Pn" represents the set of partial recursive functions of n

integer variables.

"Pn(A)" represents the set of partial A-recursive functions of n

integer variables.

We write "1" for divergence and "I" for convergence of compu-

tations.

14
"|kJ" represents the intege: part of k.
For any 1. A, if q:i(A)(x)t, ve use the convention that

®, (A)(x) = @, By convention, ® < «, and n < ® for any n € N,

The motions of "relative algorithm'" amd of an emuserationm of
relative algorith=s ("1()) are amply descridbed in [Rol, 29,2].

Specifically, we use the following:

Definition 2.1: A sequence (@1()] of relative algorithms is called
"acceptable" {f:
() @) tncludes all relative algorithas
(2) Universal Property:
@ e @, Noan 1@ @) -9, Yoo
(3) s-m-n Property:

W e @, N rpLxA B Vo0 = 1B .
We discover by methcds analogous to those used in [Ro2] that:

Lemma 2.2: Let (@1()] and (&1()] be any two acceptable
orderings of relative algorithms. Then there exists a recursive
isomorphism r such that:

i By » =8, M.

Lemma 2.2 vill make our theory independent of the particular
formalisa chosen. We will generally refer to the development in
fRol) or to the mution of an oracle Turing machine when precision

is required.

We now define a "relative complexity measure."

)

b R Tl

15
Definition 2.3: A relative complexity wseasure Q() is a collection of

partial functions from N to N, (OI(A)], one for each (i,A), satisfying
the following two conditions:
(1) (Yi,A) (domain ¢1(“) - domain 01(“)1

(2) Therz exists t(), a relative algorithm, such that:

A
- 1 164 M-y
(vioxsy’A) ¥ <i,x,y>) =
[0 othervise
We abbreviate q:vim) as @, and Qi(m as 01. The functions 01
are often referred to informally as "running times." There is no

confusion here with the usual GC8ael rumbering notation, as (@1(6)

)

is an acceptable Godel numbering for the parcial recursive functions

[RO2]}.

A note on our choice of axioms: axiom (1) is surely reasonsble,
but it may be thought that axiom (2) is stronger than ve ought to
assume. However, both axioms are satisfied by all natural measures
on relative computations (1.e. time and space on oracle Turing machines) .
Also, axiom (2) is plausible in that it merely requires the

existenca of a single nunified description' of any measure.

Thus, for the time measure, axiom (1) says that a computation
takes a finite amount of time i{if and only i{f it converges, and axiom
(2) says that wa can effectively tell if a computation halts in a
given number of steps. For the space measure, axiom (1) says that
a computation uses & finite number of tape squares 1f and only if
it comnverges, while axiom (2) says that we can effectively tell if a

computation halts without exceeding & given amount of workspace.

16

Later in the chapter, we verify that these axioms hold for time and

space measures.

These axioms are extremely simple, and similar to Blum's axioms
for partial recursjve functione [Bl]. We will see in the following

chapters thet they are quite powerful,

We refer to (Sy, Chapter 3] for some interesting results using
these axioms. In particular, we shall use the fact that QI(A)(x) is
a partial recursive function of x, uniformly i~ A and 1., That {is:

(@) (A, 1,%) [0, P(<t,) = 4 D),

In spite of the theory's independence of the particu’ar
formalization of relative algorithm, enumeration and measure, it is
desirable to keep in mind the natural measures (time and space on
orac'e Turing machines). The particular oracle Turing machine model

we will use is as follows:

Each Turing machine has four semi-infinite tapes: an input tape,
an output tape, an oracle tape and a worktape. The first three are
marked in binary, with the exception that the input tape has a marker
to indicate the end of the input. The worktape has k possible symbols,
for some number k which depends on the machine., We assume for
definiteness that the input and output heads cannot move left. Also,
the machine cannot write on its input tape or read from its output
tape., There are otherwise no restrictions on the operation of the

machine, other than the usual Turing machine constraints [Rol].

This Turing machine is designed to be used in conjunction with an

17

"oracle" for any set. (Aa X-orscle is an unspecified agent having

information about set X.) This is done as follows:

In addition to its other states, the Turing machine may have a
state called "INTERROGATE." When the machine enters this state, it
asks the oracle whether the number currently written on the oracle
tape is a member of the oracle set. The oracle gives its answer by
causing the machine to enter either of two diffcrent states. The
oracle tape is then automatically erased, the oracle tape head reset

to the first tape square, and the computation is allowed to continue.

Each oracle Turing machine may be described by a flowchart or
some other finite description. The machine's description is inde-
pendent of the particular oracle set used, so the same oracle machine
may be used with any oracle. The finite descriptions may be

h machine

enumerated in a natural way. We identify ¢h() with the n'
description in this enumeration; our enumeration is "acceptable,”

and so there is no notational incons!stency with usage in [Rol].

We now define two measures on this machine model:

£

, time measure

For any i, x, A, we define TI(A)(x) to be the total number of steps
executed in the cumputation qh(A)(x). Here, each oracle interrogation

counts as a single step.

It is clear that the axioms for relative complexity are satisfied;

for instance, to discover if TI(A)(x) =y, W(A)(<1,x,y>) must construct

¢)

the machine ? , then simulate qh(A)(x) for y steps to see if it

18
converges.

$O)

, Space measure

Por any i, x, A, we define si(A)(x) to be the maximum of the
number of worktape squares visitéc and the number of oracle tape
squares visited during the computation wi(A)(x), provided that ¢E(A)(x)l.

Otherwvise, we let Si(A)(x) = o,

Axiom (1) is satisfied by definition. To see that exiom (2) is
also satisfied, we note that for any i, x, y and A, if q&(A)(x)
operates for (i)(iy)(y)(Zy)(y)(log x) steps wichout exceeding space
y, it must be in an infinite loop and hence will not converge. This
bound arises since if the machine is ever twice in the same state, with
the same worktape contents, the same worktape head positionm, the same
oracle tape contents, the same oracle tape head position and the same
input tape head position, it must be in an infinite loop. The six

factors in the above expression represent bounds on the number of

different possibilities for each of the six items.

Thus, to see if Si(Ab(x) = y, we need omly simulate qk(A)(x) for

(i)(iy)(y)(Zy)(y)(log x) steps to see if it converges.

We note that our machine model has linear speed-up (HLS] for
machines that don't use their oracle tapes. That is, given any ¢ >0
and any such machine qk(), we can effectively find qh() . qk() such

that for all sets A, € °* Si(A) 2 sj(A) a.e.

We also note that the space measure has tlie following property,

sometimes called the "parallel computation property': {LR]

19

There exists a recursive function 1 such thet for all 1 and j,

9, (x) 1f §,(x) £ 5,0

(x) =
qh(i’j) ¢3(x) otherwise
and sﬂ(i,j)(x) = min(Si(x),Sj(x)).

This property, which essentially allows us to re-use the same

tape squares for different portions of a computation, often makes it

very easy to prove theorems for the space measure. It also causes

some results for space measure to be sharper than those for other

measures. We will point out such cases vwhere they occur.

Theorems concerning the complexity of partial recursive functions

(B1] [HH] [McC] all have straight forvard full relativizations with

proofs parallel to the original proofs. For example, from Blum's

speed-up theorem [Bl] we obtain:

Proposition 2.4: (relativized speed-up theorem)

(YA) (Ys € RZ(A))(Sf ¢ RI(A), £ 0-1 valued) (Vi)
(0, = & = @ (e, = £ A o0 M) < 4P a.eal.

(That is, for every program for f using an A-oracle, there is

an a.e. much faster program also using an A-oracle.)

The proof is exactly like the usual proof of the speed-up theorem,

using a relativization of the recursion theorem in place of the

recursion theorem itself.

More interesting and useful are partial relativizations of the

results on complexity of partial recursive functions. Following are

20
several eramples.

Our first theorer asserts that any two relative complexity mea-
sures are related by a fixed recursive functio:u. Its usefulness
lies in enabling us to draw conclusions about one relative measure
from hypotheses about another relative measure, as we do in some of

the results following the theorem.

Theorem 2.5: (recursive relatedness)

If §() and Q() are two relative complexity measures on the
same acceptable Godel numbering {q&()}, then there exists r € R2
such that:

(VA,1) [Qi(A) <ro Sl(A) a.e.]

and (VA,1) [91“) <Tro 61(‘” a.e.].

Proof: We require a lemma which is a direct consequence of Koniz’s
lemma ("Endlichkeitslemma," [Rol,Ex. 9-40]) and which will be used

in several later theorems as well,

Lemma 2,5.1: Suppose we have a recursive function f of k integer
variables and one set variable. Suppose that f is total.
Suppose finally that (Vxl,...,xk) [f'(xl,...,xk) = max f(xl,...,xk,A)].

AN
Then f' ¢ R.

Proof of lemma 2.5.1: The computation of f'(xl,...,xk) may be carried

out as follows:

Generate a "computation tree" for the function f(xl,...,xk,A) as

A ranges over all subsets of N. Each branch of the tree must terminate,

21
since f(xl,...,xk,A) converges for all sets A, Therefore, the entire

tree is finite and we will eventually finish generating it. We can
then take the maximum of the outputs on all branches as the value of

f'(xl,...,xk).

Proof of theorem 2.5, continued: ﬁy symmetry, it suffices to obtain

re R2 satisfying the first inequality.

We define r(x,y) = max p(i,x,y), where
i<x

p(i,x,y) = max p'(i,x,y,A), and
AN

3, P 16§ P00 =y
P'(iastsA) =
0 otherwise.

p' is a total recursive function of three integer variables and

one set variable. Therefore, by lemma 2.5.1, p € R3. Thus, r ¢ R2.

" To see that r has the required properties, we consider a par-
ticular A and i.

1f gl(A)(x) diverges, the inequality holds by convention.

1f s;(A)(x) converges and x = i, then:
cte, 8, W) 2 971, 8, P 0,0
2 §1(A)(x), as required.

QED

Remark 2.5.2: The recursive isomorphism between any two acceptable

enumerations of relative algorithms (lemma 2.2) allows us to conclude
the recursive relatedness of relative complexity measures on two

different enumerations. Specifically, we obtain:

22
TLE Bpi()} and 'm ()} are any two acceptable enumerations of

relative algorithms, with relative complexity measures §() and 3()
respectively, then there exists a recursive isomorphism f and a
functionr € R2 s: :h that: - . 1

W&ﬂ[i()Srog a&J

f(i)

and (VYA,1) [6) < ro 61() a.e.]."

£(1)

The proof is a simple modification of the proof of theorem 2.5,‘

using the recursive isomorphism whose existence is given by lemma 2.2,

Theorem 2.5 and remark 2.5.2 provide an alternate method to
general axiomatic proof for certain types of theorems about relative
complexity measures. The method is to prove the theorem for ome
specific measure, and then apply theorem 2.5 (or remark :2.5.2) to
obtain the result for all measures. We will use this new éfoof
method in some cases; as an example of its use, wu give the following

corollary to theorem 2.5 and remark 2.5.2.

The result has two parts; in part (1) we see that (just as in the
non-relativized case) there exist arbitrarily complex funct;ons.
However, in contrast to the non-relativized case, part (2) thws
that inherently eomplex functions camnot be 0-1 valued. In fact,

their complexity must result from the size of the function values.
First, a definition:

Definition 2.6: Assume B is a set, f € R, and g is a total function

of one variable.

2
"comp®) £ > g 1.0, (are.)" 3means

(¥1) wi@) -f = @1(5) >g 1.0. (a.e.)].
ncomp) £ < g means
@y w,® - a8, ® <y,
ncomp® £ < g 1.o. (a.e.)" means

| ' @) R, e a8 ® gt (ae)

"Comp £ > g 1.0." means

comp® £>g 1.0., and similarly for the

other abbrev;ations.

Ff f = C, for some set A, we may write "Comp A" in place of

"Comp f. " . ' |

'We are now ready to state and prove the corollary:

Carollary 2.5,3: Let Q() be any relative complexity measure. Then:

(1) (VE, £ total)(dg, g total) (YA)

(A)

[Comp g>f a.e.].

(2) (Yh, h total) (@£, f total)(Vg, g total)

(A)

(g <hae) = @) (Comp®g s £ae))

1
Proof: (1) Let r be the function obtained by applying.theorem 2.5
to Q() ard T(). We may'assuhe without loss.of generality that r is
monotone nondecreasing in its second variable.

2r(x,f(x)) +1

Given £, 1_e£ g(x) = :
1f qof("‘) Ep— clearly (Vx)If, B (x) > r(x,£(x))], since it

requires x(x,f(x)) + 1 steps mer?ly'tﬂ output the result in binary.

But r(x,éj(“)(x))'z TJ(A)(x) a.e., by ek 2.5,

Thus, 'r(x,aj(“)(x)) > £(x,£(x)) a.e.

QJ(A)(x). > f(x) a.e., as réquired.

24
If the relative complexity measure 0() is on an enumeration

of relative algoriiims other than oracle Turing machines, we apply

remark 2.5.2 in place of theorem 2.5 and obtain the same result,

(2) Let r be the functicm obtained by applying theorem 2.5 to
0() and S(), again chosen to be monotone nondecreasing in its
second variable,

Assume h is given.

Define f(x) = r:(x,x2 + hz(x)).

Now consider any g with g < h a.e.

Let A = (<x,g(x)>|x € N.

It is straightforward to design a machine Q)J() such that
mJ(A) = g and for which SJ(A)(x) < x2 + hz(x) a.e. For instance,
the machine Q)J (A) on argument x can operate by successively computing

<x,0>, <x,1>, <x,2>,..., and asking if each is in A. If so, the

machine terminates with the appropriate output,

The bound xz + hz(x) results from the particular form of the
pairing function used [Rol, 55.3].
But then QJ(A)(x) < r(x,sJ(A)(x)) a.e., by theorem 2.5.
< r(x,x2 + h2(x)) a.e.
= f(x).

So ’j (A)(x) £ f(x) a.e., as required.

As in (1), 1f the relative complexity measure Q() is on an
enumeration of relative algorithms other than oracle Turing machines,
ve apply remark 2.5.2 in place of theorem 2.5 and obtain the same

result.

QED

25
Informally, corollary 2.5.2 shows that (1) functions must be

as complex as their size, and (2) given the proper oracle, a function

need be no more complex than {ts size.

Henceforth, vhenever we use this new method of proof. we will
appeal to ''recursive relatedness'; {t will be understood that we
intend this to mean ve are applying theorem 2.5 or remark 2.5.2,
wvhichever is appropriate, in a fashion eimilar to that used {n the

proof of corollary 2.5.3.

The nmon-relativized compression theorem (Bl] asserts the
existence of a recursive "compression function" h such that vhenever
wve are given any total running time 01, wve can obtain a 0-1 valued

function not computable i{n measure < & , but computadble in

i.
measure < h o 01.

Lesma 2.7 is a relativization of this result; it asserts the
existence of a recursive ''compression function h such that wvhenever ‘
ve are given any total function g, Wwe can obtain an oracle set B and
a 0-1 valued function not computable from a B-oracle in measure g,

but computable {n measure ho g.

This lemma will later be used to prove theoream 3.6.

Lemma 2.7: Assume ve are given a relative complexity measure 0().
Then (Zh ¢ Rz)(Vg. g total)(¥B,A)
(1) comp®a > g t.0.

and (2) Conp(B)A < ho g.

Proof: Given g, ve define B = (<x,g(x)>|x € N}.

Define:

- (B) (8) . .
CA(x)) 1 9“1(,;) (x) if 0“1(1) (2} < g(n;,

0 othervige

A 1a thus defined from B by a diagonalization vhich insures that
the first condition 1{a satisfied. To verify the aecond condition,

ve must define h.

First, define a relative algoritha OJ() as follovs:

(1 ‘o (x)(x)(x) 1f @) [<x,2> € X] and
1
¢, X®ixy 2 ysfex, 2> € X),
. x) ™, (x)
(xox)<pj (x) = é 0 if 63')[<K"> €X) and
(X)
’nl(x) (x) > us[<x,2> € X]},

L] otherwise.

\

(A note on this definition: the existence of the relative
algoritha ¢ given by axiom (2) of defim{tior 2.3 ismediately implies

that the tests for {nequality may be made effectivaly {n x and X.)

Now define h(x,y) = max h'(x,y,X), vhere
XSN

’jm(x) 1f <x,y> € X,
h'(x"'x) =
0 otherwvise.
h' {s total recvvsive in x, y and X, since:

X, y>CX = oj(x)(x)l

- 05(")(;):, by axiom (1).

Therefore, h ¢ Rz, by lemma 2.5.1.

For the particular g, A and B under consideration, we compare

27
the definftion of CA vith the definition of qaj() and conclude that

(B)
GJ - CA'

Also, since <x,g(x)> ¢ B for all x, it follc - that:
h(x,g(x)) 2 h'(x,g(x),B)
- !i(B)(x) for all x, as required.

QED

Remark: We note that the proof of lesms 2.7 actually provides a
result considerably stronger than that stated. Namely,
"(Vhl € !12)(3’112 € Rz)(Vg, g total) (VB) (GA)
lCo-p(”g < h1 oga.e. = (1) Coap(B)A >g i.0., and

(2) Conp(B)A < hz o ga.e.)."

To prove this result, we can either modify the given proof of lemma
2.7, or note that the result holds for space measure and use recursive

relatedness.

The condition “Co-p(B)g < hl o g a.e." 1s an axample of an
"honesty condition" - one which specifies that a function has a
running time wvhich is approximately equal to its size. lonest
functions (a generalization of running times, as we will later show)

are extensively studied in MeMo].

Honesty conditions will turn out to be necessary hypotheses
for many of our later theorems, particularly in chapters 5 and 6.
There, for simplicity we will usually require that a function be a
running time, whereas a less restrictive honesty hypothesis would

have been sufficient.

28 i

In lemma 2.7, the first conclusion may be sharpened to assert
that Conp(B)A > g &.e., rather than merely i.0. This is done by

introducing two additional tricks into the construction.

The first is a sharper form of diagonaligzation in the construction
of A vhich makes g an a.e. lower bound on A's complexity. The hasic

construction is due to Rabin and may be found in [HH].

Rabin's method defines CA at successively larger values of x, in
order. Thus, computing CA(x) for am’ x requires first computing
g(0), g(1),..., g8(x). In order to keep the complexity of A as small
as possible, we introduce the second modification, due to B.um: we
compute cA on arguments not in order of size of the arguments, but

in order of size of the values of g.

Since both of these ideas will be used in the succeeding chapters,

we give the detailed comstruction:

Theorem 2.8: Assume we are given a relative complexity measure §().

Then:
(@h € R,)(Yg, g total and g = Ax(x])(¥B,A)
(D cm(B)A > g a.e,,

and (2) Conp(B)A <ho g

Proof: GCiven g, we define B as lLefore.

()

We define a relative algorithm vy as follows:

For any X, y(x) will be defined in stages; thus, to compute

Y(X) (x), we begin executing stages in the definition of y(x) until |

29
the value of y(x) (x) becomes defined. At each stage, at most one

additional integer is added to the domain of y(x).

During the construction, an index { will become "cancelled"

®) 4oy X

when we have insured that y' '’ # ®,

Stage n in the definition of y(x):

Find the smallest integer y for which there exists an integer
x £ y such that y(x) (x) vas not defined at sn earlier stage and

<x,y> € X, and for this y the smallest x.

(It 1is possible that this search may not terminate, in which
cass y(x) will diverge at all arguments for which it has not already

been defined.)

When <x,y> has been found, we find the smallest uncancelled

1 € x such that Qi(x) (x) <vy.
T7f no such 1 exists, define y(x) (x) = 0.
(x) c o X)
If 1 does exist, define vy "(x) = 1 - P, (x) and cancel 1i.

In either case, go on to stage n + 1.

END OF CONSTRUCTION

Verification: We let A be a set such that Y(B) = CA' (This 1s

possible since y(n) is 0-1 valued and total.)

We claim Cm(B)A > g a.e.

For if not, then for some i, ¢1(B) - CA and 61(3) <g i.0.

30
But after some stage n in the comstruction of Y(B) = CA’ all the
indices smaller than i which ever get cancelled have already been
cancelled. But for some x such that CA(x) is defined after stage n,
¢, P <gm,
80 thuc we will defime:
(B)

CA(x) =12 9, (x), a contradiction.

To verify the second conclusion, we choose j such that.mj(2. y(),
define h and proceed exactly as in the proof of lemma 2.7.

QED

Remark: As for lemma 2.7, the property of B that we actually require
in this theorem is that B makes the function g homest (i.e. g can be
computed from a B-oracle within measure approximately equal to g).

We can thus obtain the more general result:

"(Vhl € R,) (Sh2 € R,)(Vg, g total and > Ax[x])(VB) @a)
lComp(B)g < h1 o ga,e. @ (1) COmp(B)A > g a.e., and

(2) Comp(B)A < h2 ©~ g a,e. "

A formal proof of this remark uses techniques wc have not yet
developed, namely & method of proof we will call the "domain-of-
convergence method." 1In Chapters 4 through 6 we will discover
ourselves repeatedly using this type of method to prove theorems.

A restricted form of the idea of domain-of-convergence arguments
may be stated in the form of a lemma, a relativization of the
combining lemma [HH]. The statement of a lemma sufficiently general
to imply all the later results is necessarily cumbersome; we will

therefore jpresent it in something less than its full generality.

31
In the form of lemma 2.9 below, the relativized combining

lemma implies some of the later results (corollary 2.9.1, lemma 4.7,
lemma 6.2.1). Several others (thzorems 4.8, 6.3) will use essen-

tially similar methods.

The lemma relates the complexity of a computation to the
complexity of its subcomputations. As in [Rol, §5.6], we let Dk

represemt the finite set with canonical index k.

Lemma 2.9: (combining lemma)

Assume we are given a relative complexity measure §() and a
function ¢ € R b2 such that:

(Vilo"°o1mojlo52’x’A)

g Pt ... ney Peine,
1 m 1

5 xy4)

(A)
(”c(il,...,im,jl,jz) xHI.

Then there exists g € R2 such that for all A,

gemax(8, Mo, b, Peoe @) 6o

1 m Jl

> (A) (x)

' L] Ll L]
€y seee sty sl L

Proof:

Note: This rroof is still valid if j and k are eliminated, or it c 1is
also a function ¢I additional parameters which don't affect the

convergence implication.

Define g(x,y) = max 8' (x,¥,115000510537435)
:lka for ksm, jlsx, jzsx

where 8'(ano11’°°-oimojltjz) = ma::Ng"(x’Yoilo°°-oimoJI’JZ’A)’ and

32

(@)
Qc(il,...,im,jl’jz) (x) 1f (Yk =m)
)
[.1 Sy]’
k
and

8"(x9y’i ’---,i ,j ,j ’A) @ <
1 m’~1°2 Qj (Djz)(x) z iy
1

L 0 otherwise.

It is easily seen that g" 1is total recursive in m + 4 integer
variables and 1 set variable. Therefore, by lemma 2.5.1, g' €R_,,,

so that g € R2'

To see that g has the desired properties, we note that 1if
X < max (11,...,im,jl,jz), then:

8‘*-“‘*"11(A)(“)--'--°1m(A)(*)'°jl(Diz)(“)‘) >

8" x,max(d, D).l 8 <A>(x),¢jl<°32>(x)3,11,...,

1 m
im’jlijzoA)
- ’c(il,...,im,jl,jz)(A)(x), as required.

QED

As a simple example of the use of lemma 2.9, we give the following
corollary. The result, a relativization of the compression theorem,
18 closely related to lemma 2.7. Here, however, we fix the oracle

(8)

set B in advance and work with B-recursive functions ¢1 , Whereas
in lemma 2.7 we work with any total function g and find a set which

makes g honest.

Honesty is relevant for this corollary as well. We begin with

33
any B-recursive function ¢£(B), but we only obtain a set A with

complexity approximately equal to 51(8)(3 B-honest function) rather
(B)

than CPi .
Corollary 2.9.1: Assume we are given a relative complexity measure 5().
Then (3h ¢ Rz)(VB)(Vt, P (B) total) (JA) such that:

i
(B) (B)

Comp® 7A > ¢£ i.0.

and Comp(B)A <ho, li(B) a.e.

Proof: We define a relative algorithm Y() as follows:

For all {, x, B,

,
1s in(x)(B)(x) if Qi(B)(x)l and

VPt = 4 N ORI AR
0 1f wila)(x)s and

(B) (B)
aﬂl(x) (x) > Qi. (x),

® 1£ o, B ot
.

By the relativized s-m=n theorem, there exists ¢ € R1 such that

Y (B) (<i ’X>) = CPC (1) (B) (x).

Now it is clear that (Vi,x,B)lvi(B)(x)l (B)(x)‘]-

= %W

We may now apply lemma 2.9 and assert that:

) (@ € RYVLBIME, P 28 P el

1)

We now fix 1 and B as in the hypotheses, and let CA = ¢c(i)(8).

This is possible since the hypotheses imply that ¢c(1)(3) s 0-1

valued and total.

3%

By the diagonal construction defining 1it, CA satisfies the

first conclusion; the second conclusion follows from (*).

QED

Many of the interesting pertial relativizations of the speed~up
theorem [Bl] may be expressed in terms of '"helping"; we discuss in
these terms the amount by which possession of an oracle speeds up the

computation of a function. This type of question forms the subject

matter of Chapters 4, 5 and 6.

A relativization of the union theorem (McC] will be given in

Chapter 3, together with some interesting consequences.

35
3. Complexity=Determined Reducihilities

Just as we study complexity classes within non-relativized
complexity theory [McC] [McCMe], we may consider resource=bounded
relative computation. A fixed resource bound defines a kind of

"reducibility" as follows:

Definition 3.1: For any relative complexity measure Q(), any sets
A and B, and any total function f of one variable,

"A <; B (§<))" means Comp(B)A S f a.e., where complexity

18 measured in Q().

More generally, 1if (3 is any class of total functions of one
variable,

A 5o8 (0" means (@ €C)ia <, B (80)]

We read this notation as "A 18 fe-reducible to B'" and "A is
C-reducible to B," respectively. When no confusion is likely, we

omit mention of the mcasure we are using, and write siamply "A Sf B"

and "A Sc B."

Several commonly-studied reducibilities usually defined via
"natural" (i.e. non=complexity-theoretic) restrictions on the method
of computation may be expressed as C-reducibilities for appropriate
choices of the class (’, and thus may be regarded as complexity-
determined. In ﬁarticular, truth=table reducibility [Rol] and the
relation "primitive recursive in'" are complexity-determined

reducibilities, while many-one and one-one reducibilities are not.

We first consider primitive recursive reducibility. We write

A Sp B" to indicate that A is primitive recursive in B, and "f s; B"

36

to indicate that f is primitive recursive in B [K].

Theorem 3.2: Let (= {primitive recursive functions of one

variable}. Then (VA,B){A S% B ¢ A St,B (T())].

t

Proof: We use the type of T-predicate used by DaVis_[D], modified '

slightly for our Turing machine model.

As in [D], we see that:

(VB)[Kz,x,y[TB(z,x,y)] is primitive recursive in B].

An examination of the encoding used in the T-predicate shows:

that there exists f, a primitive recursive functicn of three variables,:

such that:

3 .
(VB,w,x,y,Z)[(Tz(B)(x) <x) = (Iy < f(z,x,w))[T (z,x,y)]].

3 [

(That is, some code number for the computation is effectively bounded

by a function of the number of steps in the computation, the input and

the index of the machine.)

§
1 1

We now define, for every set B, a function 8g of three variables

as follows: (Notation is from [K].)

]

J’U(uy < f(z,x,w)[TB(z,x,y)]) 1f y exisgs;

gB(z,x,w) = !
L 0 otherwise

(Intuitively, gB(z,x,w) represents the output of the computation

wz(B)(x), provided TZ(B)(x) < w.)
gB 1s obriously primitive recursive in B, for any set B.

Now assume we have sets A, B with A Sb B. This implies:

.

| : : 37 ' /
' (41, &h a primitive recursive function of one variable)

fey 10, A @0, P .

Then the definition of g'B shows that C, = Xxfgn(i,x,h(x))], and
the function on the right-hand side of this equation is primitive

recursive in B, !

Thus,' A Sg B = A < B. L :
The converse is proved using the following lemma:
' I

!
Lemma 3.2,1: '(VB) VEYI (£ Sp B) = (dp, & primitive recursive function)
] ' . J
p = £]].

(That is, any function primitive recursive in any set is mno larger than
] , : \ . 1
some primitive recursive function.)

_ Proof of lemma 3.2.1: We carry out a straightforward proof by induction

(]

on the definition of the class of functions primitive recursive in B.

In particular, Cl'3 < Axf1], which is primitive recursive. The
olt:he_r base functions for the induction are themselves primitive recursivc.

: ' ' o]
I The two induction steps (composition and recursion) follow without

?lifficult:y if we note that:
' .

(VE, primitive recursive)(df', primitive recursive)'

| [(£' =2 £) A (f' is monotone increasing in each of its variables)]
I

» ‘For example, we verify the recursion step:

1 ' 3

Assume that h is a function of k + 1 variables with h Sp B.

Vo ——L

Assume that g 1s a function of k - 1 variables with g Sp B.
‘ .]

38
Assume h < P and g < pg’ where Py, and p8 are each primitive

recursive and monotone increasing in each variable.

Assume a function f is defined Ly primitive recursion from g and h:

(We write "x" to indicate "xl,...,xk.")

£(0,x) = g(x)

(Yy) £(y+1,x) = h(y,£(y,x),x)

Now define Pe a8 follows:

Pe(0,X) = p (x)

() pe(y+Lx) = p (7,P¢(y,X),%)

It is easy to verify that Pe is primitive recursive and £ < Pgs

as required,

Proof of theorem 3.2, continued:

We again use inductinn on the class of functions primitive recursive

in B.

An oracle Turing machine with a B-oracle can obviously compute
CB rapidly. In particular,

(31) (3p, a primitive recursive function)[@i(n) =Cp) A (Ti(n) spl.

The other base functions are primitive recursive, and so are

computable in primitive recursive time. [C]

The two induction steps ave straightforward; we verify the

primitive recursion step, leaving the composition step to the reader:

39
Assume ve have f, g and h as in the proof of lesma 3.2.1. As

inductive hypothesis, we assume:
@nre,® - A @ ® s
(@ emoa @ ® s

vhere p8 and Py, ore primitive recursive and monotone increasing in

and @ENie

each variable.

By lemma 3.2.1, there exists f', s primitive recursive function

such that £ < f',

We define a primitive recursive function p. as follows:
Pe(0,X) = pg(x)
(VY) Pf(y'.'lux) s pf(YDx) + Ph(y'f'(y';) v;)

We claim that the primitive recursive function Pe + x, oot X +y
{s an upper bound for the time required to compute £, 1f further details

on this induction step are desired, see (C], [Al], [RD}, IRRW] or IMeRD].

Corollary 3.2.2: Theorem 3.2 is true for S() in place of 1‘().

Proof: s() &nd 1‘() are related, in the sense of cheorem 2,5, by a
primitive recursive function, as wve can show by an argument similar to

the looping argument in the discussion of S() in Chapter 2.
Remark: Theorem 5.2 is false for some pathological measures.

We now consider truth-table reducibility [Rol]. A result of
McLaughlin fMcL)] combined with theorem 2.5, gives the foliowing

complexity-determination result for truth-table reducibility:

40
Pronosition 3.3: Fix any relative complexity messure,

Let C - Rl. Then:

(YA,B) AS B = A%cBJ.

On the other hand, many-one and one-one reducibilities are not
determined by a complexity restriction, in any relative complexity
measure. The reason is that there are paira of sets computable from
each other in a very small amount of resource but vhich are not many-
one reducible to each other (for example, anmy nonrecursive recursively
enumerable set and its complement). Thus, for natural measures, it ia
obvious that many-one and one-ome r _ucibilities are not complexity-

determined. For general measures, however, a little work is required:

Proposition 3.4: Fix any relative complexity messure. Let C be any

class of total functions of one variable. Then it canno: be the case
that:

(YA,B € RI) fA sm B ® A <p B]l.

Proof: Assume the contrary: let C determine many-one reducibility

for measure Q().

By consideration of T() and remark 2.5.2, we see that:

(X))
(Fs e RPAD[®, T = C) A (¢ s 9]
But K ‘m E, so that (V¢ ¢ C)lc(x) < s(x) {.0.).

To obtain a contradiction, it suffices to show that:
@A,B)1(A <_ B) A comp®)A > 8 a.e))

But this follows from the following lemma:

41
Lesma 3.4.1: Fix any relziive complexity measure. Theu:

(Vs € Rl)(VB recursive) (ZA recursive)

tcomp®a > 5 a.e.].

Proof of lemma 3.4.1: We note that ¢, e ™

def , (B)
81--@1

satisfy the requiresients for an acceptable Godel numbering and a Blum

complexity measure.

Then the existence of arbitrarily complex (a.e.) recursive sets
in any Blum weasure [Bl] gives us a set A such that:
: - § >
@1 CA N s a.e.

A
vhich translates into the desired result by the definitions of pi and 81.

Proof of proposition 3.4, continued:

Now select any infinite, coinfinite recursive set B, and use
lemma 3.4.1 to obtain an appropriate set A. We can easily obtain A
infinite and coinfinite, and s0 A !1 B. But Conp(B)A > 8 a.e., giving
the desired result.
QED

Corollary 3.4.2: Proposition 3.4 is true for one-one reducibility in

place of many-one reducibility.

Proof: Implicit in the proof above.

Open Question: 1Is it true that:
(Vs € Rl)(VB infinite and coinfinite) (ZA '1 B)

rcomp®A > 5 a.e.] ?

42
Having shown that primitive recursive and truth-table reduci-

bilities are complexity-determined, we ask if it is possible to ex-
press them even more succinctly; for instarce, is it possible to
characterize each by a single resource bound function rather than a class

of functions?

This question immediately suggests that we would like an analog

to the union theorem [McC], and so we prove the following:

Theorem 3.5: (relativized union theorem)
Assume we have a sequence of total functions [ti},-with:
Vi,n) lti+1(n) 2 ti(n) lc
Let T be a set such that Xi,n!ti(n)] ig8 recursive in T,
Also assume that we have & sequence {Bi} of sets, and a set B
such that: ki,n[CB (n)] 1is recursive in B.

i
I(B Join T) guch that:

Then there exists a function £ € R
B
1,014, PP < £ae) = @@, P 5 g a0
(This means that for amny Bj’ the class of functions computable
with oracle Bj within measure £ is exactly the union of the classes of
functions computable with oracle BJ within measure tk’ the union being

taken over all tk.)

Proof: The comstruction of f is carried out in stages, with £(n)

being defined at stage n.

We define an auxiliary function g(i,)j), whose values may be changed

at successive stages. The significance of g(1,)) 1is as follows:

" " (B,)
We "guess" that Qi 3 (x) = tg(i,j)(x) a.e,

43
Stage n: (Define f(m).)

For all (1,]) such that i + jJ = n, define g(i,]) = n.

. (8,)
Let E=((1,)|1+)<sn and &) (0) > tgct, 1) ™)

Define: tn(n) {IfE=¢
 f(m) =
mh('i,j) eEtg(i’j) (n) otherwise.

For all (i,j) € = redefine g(i,j) = n.
Go on to stage n + 1.

EMD OF CONSTRUCTION
Verification:

Assume we have i. j, k and we know that Qi(Bj) < tk a.e, We would
like to conclude that Qi(Bj) < f a,e.; it therefore suffices to show

that (Vk)ltk < f a.e.].

1f not, then for some k we have f(n) < tk(n) on infinitely many

arguments n > k.

At stage k, there can only be finitely many pairs (1,)) with
g(1,]) <k. We let F be this finite set of pairs. After stage k,
no pair (i,]) ever has g(i,)) become defined to be less than k. There-

fore, 1f g(1,]) <k at some stage after stage k, we know that (i,]) € F.

Now 1if f(n) < t:k(n) on infinitely many arguments n > k, then for
these n, f(n) is defined to equal tg(i j)(n) for some (1,]) € F with
4

g(1,]) < k. But then at stage n, g(1,}) is redefined to equal n.

44
Since F is a finite set, this can only occur finitely often

before no pairs (1,j) remain with g(1,3) <k.

Therefore, we have (Vi,§)

f(ﬁk)(Qi(Bj) <t ae)= (Qi(Bj) < f a.e.))

Conversely, assume we have (i,j) with (Vk)[§i(Bj) > &y i.0.].
Then each time we define g(1,3), we will subsequently reach a stage n

where:
(B,)
Qi ¥ m > ts(i.j)(“)'

At this stage n, (1,j) will be in ret E, so the definition of
f will insure that Qi(Bj)(n) > f(n). We will &lso redefine g(i,}).
But it is easy to see that this must happen for infinitely many
arguments n, so that:

@i(Bj) > f 1.0.

Thus, we have:

LD ITE, PP > 6 10 = @, B > £ 1.1,

It 18 clear that f is recursive in B join T.

QED

We now apply theorem 3.5 to the cases of truth-table reducibility

and primitive recursive reducibility.

Corollary 3.5.1: Consider any countable collection of sets (Bi] with
B as in theorem 3.5. There exists f ¢ R.‘l(B L such that:

(Vi,A)T A <., B, ® AS B]

Proof: We define a sequence (ti} as follows:

45
-
Let t (x) = !max (9 (x)'Cp (y)} for all y < x} 1if this set is
i N st J J
nonempty

0 otherwise

“~

These t, have the properties required for theorem 3.5, with

T = K.

Also, (Vr € Rl)(ﬂj)[r <t, a.e.]

]

(V§) (@ € Rl){tj <r a.e.]

Thus, by proposition 3.3, if C= (ti}’ then

(YA,B)IA S B ® ASeBl

Application of theorem 3.5 now gives the desired result.

QED

Corollary 3.5.2: Assume we are working with S() or T(). Consider

any countable collection of sets (Bi}’ with B as in theorem 3.5. There
exists f € RI(B) such that:

(LA)[A S B @ AS. B

i

Proof: Let (pi} be an enumeration of the primitive recursive functions
such that hi,x[pi(x)] i{s recursive. Then define:

ti(x) = max p,(x).

yst
(ti} satisfies the required properties for theorem 3.5, with

T=¢.

{ a.e.], and

(V) @) 1y < py ace.l.

Clearly, (Vi)[p1 St

46
Applying theorems 3.2 and 3.5 gives the desired resul:.

QED
Thus, we see that fzr any countable collection o oracle sets
(e.g. recursive sets, arithmetical sets), truth-table reducibility
is determined by a single resource bound function on any measure, and
primitive recursive reducibility is determined by a single resource

bound function on measures T() and S().

The mext question we consider is whether any single function can
determine either of these two reducibilities on all pairs of sets.
This we show to be impossible; thus, the countability hypothesis in

corollaries 3.5.1 and 3.5.2 cannot be eliminated.

Theorem 3.6: There is no function f of one variable such that:

(VA,B recursive in f)[A e B® A<, B)

Proof: Assume such a fum:vion f exists.

We claim that (Vr € R)If>r ace.].
For if not, then (dr € Rl) [r2 f 1.0.].

But then, by Rabin's diagonal method, there exists a recursive
set A such that Comp A > r a.e. We have A See @, since A is recursive,

but clearly —(A Sf ®), a contradiction.

Now consider the function h whose existence is asserted in lemma 2.7.
We may assume without loss of generality that h is monotone increasing

in both variables.

Define a function g as follows:

47
max[ylh(x,y) S £(x)) 1f the set is nonempty
g(x) =
0 otherwise

We claim that (Vr ¢ Rl)[g >r a.e.]. This is easily concluded

from the facts that Vr € Rl)ff >r a.e.] and that h is recursive.

We now apply lemma 2.7 to obtain A and B such that:
[(A Shog B) A (A s8 B)].

But (A sﬁog B) implies (A Sf B) since ho g < fa,e.

(A Sé B) implies —(A Stt B), since g 1s almost everywhere

greater than each recursive function,

Thus, f does not determine truth-table reducibility on all pairs

of sets.

QED

Theorem 3.7: Assume that we are working with space measure on oracle
Turing machines. There is no function f of one variable such that:

(VA,B) A sp B & A <¢ B].
Proof: The proof is analogous to that of theorem 3.6:

We claim, if such an f exists, that:

(Vr, primitive recursive in one variable)[f > r a.e.].

For if not, then:

(&r, primitive recursive in one variable)If < r i.0.}. We may
assume without loss of generality that r is monotone nondecreasing.
But then, by a Rabin diagonalization argument, there exists a recursive

set A such that Comp A > r a.e.

48

However, by a result of Cobham [C] and an examination of the
diagonalization, we see that:
(1) (s, primitive recursive of one variable)ltp1 =C, A S; <8 a.e.].
We thus have A Sp @, but (A Sf ?).

If we let 8() . S() in lemma 2.7, it is possible to obtain a
function h satisfying the conditions of the lemma which is primitive
recursive. We construct B and A as in lemma 2.7, and define g as in

the proof of theorem 3.6.

As before, we obtain:

(Vr, primitive recursive in one variable)ig > r a.e.].

Thus, as before, A <

gB A (AS) B).

Therefore, f does not determine primitive recursive reducibility
on all pairs of sets.
QED

Remark: An analogous proof also holds for T() in place of S().
Open Question: 1Is theorem 3.7 true for all Blum measures?

Open Question: Examine other natural reducibilities, such as bounded
truth-table reducibility, or any of the others mentioned in [J1], to

see if any are complexity-determined.

We have seen that some reducibilities with "natural' definitions
may be alternatively described by a complexity restricticn. Conversely,
it is possible to define new reducibilities by a complexity restriction.

In the remainder of this chapter, we give an example of such a definition,

49
and examine some properties of the resulting reducibilities.

Definition 3.8: For any sets A, B, C, we say "A is C-reducible to B"
(A 5, B) provided:
.o (C)
A SQB for (_ Rl .

We write "C-reducibility" to indicate [(A,B)IA Sc B}.

Thus, any set C determines & new reducibility, namely, the
collection of pairs of sets computable from each other in C-recursive
measure. The reducibilities are clearly measure-invariant, by

theorem 2.5 and remark 2.5.2,

Strictly speaking, anything we call a "reducibility" ought to be
reflexive and transitive, properties which do mot hold for general
classes C . However, our C-reducibilities are reflexive and transitive:

reflexivity is clear, for any C. We demonstrate transitivity:

Lemma 3.9: For any sets A, B, C and D,

[(As; B A BS,D) = A <, D

(©)

Proof: By measure invariance of C-reducibility and closure of R1
under finite modification, we obtain:
e oo B (8)
@1)(@cy €Ry)IC, =@, A S T Seq], and

©ye. =, @ (D)
@5) @y € Ry DICy =0, A 8,70 Syl

We describe an oracle Turing machine which computes C, using

a D-oracle:

The Turing machine computes CA according to procedure @ 1(2) , but

the values about which we query the B-oracle get written on a second

50

track of the worktape instead of the oracle tape. Then, to decide

their membership in B, we use qoj(D), with our D-oracle.
How much space is required by this mnew machine?

For input x, the machine uses S 1(3) (x) to carry out the computation

Cpi(B) (x). In addition, the largest argument for which we might'peed

(B)
si (x)’ so we might also require:

(B)
O, o

to compute CB is 2

s. @y, s.Py,...,s

]]

Thus, the space needed is bounded above by the maximum of:

= (B)
Si(B)(x),Sj(D)(O),....Sj(”)(Zsi (xy,
which is bounded above by the maximum of:
cl(x),cz(O),...,c2(2c1(x)).
(©)

But this maximum is a function in R1 5

Thus, A <, D.

QED

We remark that results similar to theorems 3.6 and 3.7 m:ay be

obtained for these reducibilities as well.

There are simple relationships between these reducibilities and

others:

Proposition 3.10: * (a) For any set C, A Stt B = A SC B = A ST B.

(b) If C is a recursive set, A SC B @ A Stt B.

Proof: Immediate from proposition 3.3.

51
We would like to have a structural .description of C-reducibility

as an alternative to the complexity definition. !We obtain the following

partiallresult in this direction:

Remark 3.11: Assume C SC B. Then. (VA)

|]
A B ® £ € RI(C))!x €A © tt-condition f(x) is satisfied by B)

(For notation, seé [Rol)). |
H

H]
¢ !

(This says that, provided the oracle set has a shfficiently high
' 1

degree of unsolvability, any reducibility of our type may be described
. 1 0] |

by thelability to construct a truth table for the computation with the

lhelp of the appropriate oracle.) !
| !

Proof: (=) Similar to McLadghlin's proof [McL]. The condition C <c B
: ! |

!
is not needed for the proof in this direction.

l
,(v) We assume that'C <, B, Specificaily, that :

. C
CC =C.'J1(B), Qi(B) < g wvhere g € Rl(c).

We assume also éhat:

| [x €A ® tt-condition £(x) is satisfied by B].

3

We show that CA is'COmputable from B in C-recursive time. The

, procedure we will use for computing CA using a B-oracle ig as follows:

"Given input x, we compute f(x). f is recursive in C, so
we simulate a machine computing f from C; we usé‘&i(B) to

obtain andwers to questions about membership in C.
H 1 A

Once we have the truth-table f(x), we then ask ;he B-oracle
|

about membership of each argument in the truth table and use the

52
answers to find the value of CA(x) from the truth table."

How much time {8 required by this procedure?

If we assume that f -raj(c), then we can obtain f(x) in time
approximately bounded by: zTi(C)(x)
1,9 + L 8y,
y=0
since the largest value y for which we might n<ed to compute Qi(n)(y)
is 2T1(C)(x). Clearly, this sun is bounded by a total C-recursive
function.

Once we have f(x), it 1s not Gifficult to show that the remaining
time required to obtain CA(x) by asking the appropriate questions about

membership in B is bounded by a C-recursive function.

Thus, the total time is bounded by a C-recursive function, so
A SC B.
QED
Each set determines a reducibility. We may obtain a "hierarchy
of reducibilities" between truth-table and Turing reducibilities,
ordered by a comparability relation. Using a relativization of the

compression theorem, we conclude that comparability is exactly

determined by size of functions:

Theorem 3.11: Assume we are given two sets, C and D. Then

[(VA,B)IA s, B = A< B]j® [(VE ¢ Rl(c))(zg € RI(D))[g 2 fa.e.])

Proof: (=) Obvious.

53
(%) Acsume (3f ¢ Rl(c))(Yg ¢ RI(D))(g <f t.0.]).
Then by a direct relativization of the compression theorem,

= ’t(C)

(3A recursive in C) (Vi) Rpi(c) «C > f a.e.].

A

It 1s easy to show that A SC C but —(A SD C), a contradictiom.

QFD
Corollary 3.11.1: For any sets C, D,

(C '.r D) = (Cereducibility « D-reducibilicy).

In the remainder of this chapter, we ask about the converss of
Corollary 3.11.1. That {s, {f sets determine the same reducttiliry,

need they be Turing equivalent? In certain cases, the amnrver 1y yes:

Definition 3.12: A set A {s weaklv majoreducible {f there exists
£ € RI(A) such that:

(Vg)ig = £ = A {s recursive {n gl.

This definition {s weaker than, although simi{lar to, the definition

of "majoreducible" used and studied extensively by Jockusch {n J2].

Theorem 3.13: 1If sets C and D are veakly majoreducible, then:
(C-reducibility = D-reducibility) = (C .'l‘ D).

Proof: If C-reducibility = D-reducibility, then by theotem 3.11 and
closure of RI(D) under finite modification, ve have:

(V¢ ¢ Rl(c))(Eg c al‘n))lg > £].

By weak majoreducibility of C, C is recursive in g for the

appropriate choice of f.

Therefore, C ST D.

Symmetrically, we have D ST c.

QED

Corollary 3.13.1: 1If gets C and D are recursively enumerable, then

(C-reducibility = D-reducibility) « (C ET D).

Proof: It follows immediately from work of Jockusch in [J2] that all
récursively enumerable sets are majoreducible (his definition) and

hence weakly majoreducible. The reason is as follows:

Suppose C is a recursively enumerable set. If C is finite, f 2 0

satisfies definition 3.12.

Otherwise, let (CI} be an effective enumeration of C without

repetitions.
Define f(n) = ue[(Vy)(y > 2 = cy >n)].
It is easy to show that f ¢ Rl(c).

If g 2 f, we may compute Cc(n) by listing C for g(m) steps to see
1f n turns up. Thus, C is recursive in g, so is majoreducible.
QED

Note: Examination of the pfoofs above, combined with the Friedberg-

Muchnik theorem [Rol, §10.2) shows that there exist pairs of recursively
enumerable sets C and D determining incomparable reducibilities; that
is, (3A,B) 1 (A sc B) A ={A SD B)]

and (3A,B)[(A <, B) A —(A < B

Ve have thus shown that for a large collection of sets, if any pair

55
determines the same reducibility, the two sets must be Turing equivalent,

However, this is rot true in ger . In fact:
Proposition 3.14: Given amy set C, there exist two sets A and B such

that A|B and A-reducibility = B-reducibility = C-reducibility.
T

We omit a detailed proof because it ig quite long and not very
different from other proofs in the literature. There is a modified
version [Mal] of Spector's splitting-tree construction of minimal sets
[Rol, §13.5] which produces & nonrecursive set A which is "small" rather
than minimal: cthat {is,

e e R, ®y@g e r g 2 1),

In outline, in the proof of proposition 3.14 we simultaneously
construct two "small" sets, A and B, by modified splitting-tree

constructions, with two added changes:

(1) We encode C into both sets at the begimning of the construction.
(2) We alternate the splitting-tree construction with a straight-

forward diagonalization making A and B Turing incomparable.

The resulting sets A and B are such that:

e er, @y e R,) 1g 2 £ ace.) since C < A,
and
(Vf ¢ RI(A))(Sg € Rl(c)) fg 2 f a.e.) by the construction,

and similarly for B.

Thus, by theorem 3.11, A-reducibility = B-reducibility =
C-reducibility,
QED

-56
Open Question: Given any nonrecursive set A, is it always possible to

find a set B such that A|B but A-reducibility = B-reducibility?
T

Open Question: What are necessary and sufficient conditions on sets

A and B for A-reducibility to equal B-reducibility?

Although pairs of sets can have the same reducibility and still be
Turing-incomparable, there do exist limits on what Turing-reducibility

relationships sets can have and still determine the same reducibility.

For example:

Proposition 3.15: 1If C-reducibility = D-reducibility, then we cannot

' <
have C T D.

Proof: Assume C' ST D.

Let g(n) = max [Cpi(c)('n)l 0Sisn A cpi(c)(n)l].

L]
g € Rl(C), so g € RI(D).

But clearly (Vf ¢ Rl(c))fg = fi.0.].

So by theorem 3.11, C-r:ducibility # D-reducibility.

QED

Open Question: In [J1]), Jockusch develops the properties of various
types of truth-table reducibilities, e.g. contaimment properties of
degrees. Explore the answers to these questions for C-reducibilities
for various sets C. For example, does C-reducibility have any

properties significantly different from truth-table reducibility?

57
4, Helping

Intuitively, we have the idea that some sets B help tc compute
some functions f. That is, when we use B as an oracle, we can reduce

the complexity of f below what it could have been without the oracle B.

In this chapter, we try to formalize this idea. We use the word
"helping" in informal discussions only, and give precise meanings to
several interpretations. We also give several basic results about the
existence of sets which help or don't help the computation of certain

functions.

Definition 4.1: Assume B is a get, f € R1 and h is a total function of
two variables.

"B h-improves f 1.0." means:

EINR,® < A = = next, Bt @ L)

J]

"B h-improves f a.e." means:

(31)(Vj)[q91(B) =f AR £ = h(x,Qi(B)(x))< §j(x) a.e.]].

]

We remark that these definitions do not provide us with notions
of helping that are transitive or symmetric. Appropriate counterexamples

will be found as corollaries near the end of this chapter,

An alternative way of measuring the amount of help given by a set
B to a function f is to ask which lower bounds on the complexity of f
are maintained after introduction of the B-oracle. To speak about
this kind of "helping" we use the definitions of Comp(B)f and Comp f,

etc., Iintroduced as definition 2.6.

58
To place these definitions in some perspective, it is helpful to

note a relationship between "A Sp B" and "B h-improves A':

Assume A is mot primitive recursive. Then for any primitive

recursive function p of one variable, we know that Comp A>pi.o. [C]

But if A Sp B, then for some primitive recursive function q of
one variable, Comp(B)A < q a.e. Because the primitive recursive
functions are closed under composition, h 0 ¢ is primitive recursive

and therefore Comp A = ho qi.o.
But since Comp(B)A < q a.e., we know that B h-improves A.

We note that the amount of help a recursive oracle B is able to
give the computation of a function is restricted by the complexity
of B. This is because any program using B as an oracle may be converted
to ome not using the B-oracle, by directly computing the answers to
the oracle queries. The complexity of the mnew program is bounded as

follows:

Theorem 4.2: There exist g,, &5 € Rq with the following property:

For all B, i, j, if CB =9, then there exists k such that:

®, = ij(B)
(B)
and 3, (x) < g, (x,? (x) ,max § (y)) ea.e. (%).
« e 0sysg, (3,18, P)

Proof: Although this proof does mot exactly fit the statement of
the combining lemma, we mote the essential similarity of the proofs;

we call this type of argument a "domain-of-convergence" argument.

59
We use the following general lemma:

Lemma 4.2.1: Fix any acceptable enumeration of relative algorithms Bpi()}
and any relative complexity measure 8). Then:
(8g € Ry) (Vi,x,y) (VA,B)

rAn (0,...,g(1,x,y)} = BN (0,000,8(1,x,)}) =

@ Pwsy o ¢ Pmsy a @D sy =

(A)

®; M =0, P

Proof of lemma 4.2.1: Let {Ti()} be the standard enumeration of oracle

Turing machines.

Axiom (2) for relative complexity measurec will allow us to conclude
the existence of a relative algorithm a() such that:
B 1 1r8 @y sy,
(Vi,x,y,X) o7/ (<t,x,y>) =
0 1if not.
Therefore, by lemma 2.2, there exists an oracle Turing machine Tj()
such that:
T, ®ctmyy = J1o1e8 Wiy <y,

0 if not,

Now fix 1, x and y. Let f be the recursive isomorphism (lemma
2,2) between the two Godel numberings.
Define g(i,x,y) = max g'(1,x,y,X), where g'(1,x,y,X) is defined

XSN
as follows:

60
3' (1,x,y,X) =

prame

the largest number whose membership in X is

questioned in oracle Turing machine compu-

tation T.1 () (<1,x%,9>) if T.1 X) (<i,x,y>) =0,

the largest number whose membership in X is

questioned in either computation

Tj(x) (<i,x,y>) or computation Tf(i) (x)(x) if Tj(x)(<i,x,y>) = 1,
Lemma 2.5.1 shows that g € R3

Now assume that AN {0,...,8(i,x,y)} =B8N (0,...,8(1.x,7)}.

Then by definition of g', we have that:
A B
r, Wy = 1) (<t,%,5>)

(A) . A, - (3)
ad (0, P xy) =D 2 Ty) =Ty)
But by definition of T, and £, this implies the lemma.

Proof of theorem 4.2, continued: We let g, = the function g from lemma 4.2.1.

The s-m-n theorem allows us to define a partial recursive function

Poca,by 28 Eollove:
(y 12 @ o, M =y, and (W gy(a,x,8,D @)
Para,by® = ¢ weA ® g =1 and
WEA ® @) = 0)
= otherwise

.

By the definition of g in lemma 4,2.1, the function de(a b) must
?

be well-defined. It is easy to see that it is partial recursive.

61

Intuitively, for oracle Turing machines, ma(a b) is simply the
]

function computed by qoa(), where we use the partial recursive function

®p in place of an oracle,

We now define gl(x,y,z) = max g'(x,y,:,l,b,A), where:
a,b<x,ASN

~

ey ® 168 By oy

max [Qb(w)} = 2z, and

0swsg, (a,x,y)
g' (xsy’z’asboA) = <

(Vv < g, (a,x,y))
(w €A ﬁmb(w) =1) and

(w £ A ® @, W) =0),

L 0 otherwise,

By the definition of q’cx(a by’ we see that the listed conditions
’
are sufficient to insure the convergence of Qd(a b) (x), and so by
]

lemma 2.5,1, g € R3.

We now fix a = j, b = {,

We claim o(j,1) daf k has the required properties:

If x 2 max (1,§), then:

8108, ®) (x), max
0<y<g,(J,x,%

s'(x,ﬁj(n)(x),mnx
0sysg, (J,x,8

¢ () =
 Pooyt

Q (y)’j’i’B)
j(B)<x)) :

2 Qa(a,b) (x), since all the listed conditions

in the definition of g' are satisfied.

QED

62
Open Question: Can we obtain a version of theorem 4.2 for oracle sets

B which are nonrecursive? That is, can we find any way to bound the
amount of help a nomrecursive set B can give to the computation of a
function (for example, relative to B's Turing-reducibility properties,

or to B's complexity relative to some set)?

We next show that for any sufficiently complex recursive set A,
there exist arbitrarily complex recursive sets B that do help the

computation of CA; in fact, which reduce it to triviality.

We may further specify that the set B be ''compressed" (i.e.
B's complexity is very closely determined, to within a fixed amount

h depending on the measure only).

Theorem 4.3: Let §() be any relative complexity measure. There is a
function h € R2 with the following property:
Let t be any total, monotone nondecreasing running time.
Let A be any recursive set guch that Comp A < t a.e.
Then there exists a recursive set B with:

Comp B>t a.e.

Comp B< ho t a.e.

and A< B,
P

(Note: As mentioned in the remark following lemma 2.7, this is an

example of a theorem which uses an honesty hypothesis.)
Proof: The proof is a domain-of-convergence argument.

We carry out the construction in stages, using a Rabin diagonal

construction with one modification: we introduce new programs into the

63
construction slowly, so most drguments are not needed for the

diagonalization. We use the remaining arguments to encode A ina

gsimple way. The idea is similar to that used by Paterson in

theorem 4.6.

We define a function f as follows:
£(0) = 0, £f(n) = Lvnl - 1 for all n 2 1.

By the s-m-n theorem, we can define a partial recursive function

de(a,b) (where o € R2) according to the following construction in

stages:
Stage n: (Define Cpot(a,b) (n))

Find the smallest uncancelled i =< f(n) such that Qi(n) < Qb(n).

(We diverge if Qb(n)f.)
If no such i exists, define cPa(a,b) (n) = cpa(f('n)).

I1f i exists, define de(a 1:.)('n) =1- cpi(n) and cancel 1i.
1]

Go on to stage n + 1.

END OF CONSTRUCTION

Now assume we have A, t as in the hypotheses. If we choose a*,

b* with &, = t and @, = C, and &, =t, then we claim that Cp = @yax pw)

has the desired properties:
B is clearly a recursive set.

As in the proof of theorem 2.8, we can show that Comp B>t a.e.

6/
To show A SP B, we note the following:

For any n, consider all x with (n + 1)2 Sx<(n+ 2)2. For all such
x, £f(x) = n. There are 2n + 3 such values of x. However, before stage l
(n + 2)2, we only cancel indices < n. 7hus, only n+ 1 of the values
of x may have CB(x) defined by a cancellation. For the remaining

n + 2 values of x, we have CB(x) = CA(n).

Then for any n, (n+2)2-1

1 1if C,(x) 2 n+ 2,
(x=(mt)2 B

CA(n) = ¢
10 otherwise.

Therefore, A Sp B.

It remains to show Comp B < ho t a.e.; to do this, we must first

define h:

Let h(x,y) = max h'(x,y,a,b), where:

a,bsx
$ (x) 1if (wsx)[& (w) sy A & (w) Sy],
B (x,y,8,b) = ¢ XD ; :
0 otherwvise.

The conditions on the right in the definition of h' are sufficient

to insure that @)(x)l, so that h' € R, and thus h € R,.

a(a,b 4 2

Now if we fix a = a* and b = b*, we see that for x = max(a*,b%*),

h(x,t(x)) = h'(x,%, , (x),a*,b¥)

b*

= ch(a*,b*) (x) a.e., as required.

QED

65

H
Remnrk: If we do not require the compression of set B, a much simpler

construction suffices

Definition 4.4: For any X, Y, we define X ® Y as follows:

x)I(x €XBY) * ((x €XAx:¢Y):V (x EYAx £X)].

Then if we take suffieiently large t' € R, relative to t, we can
i

obtain C recursive with Comp C > t' a,e., and let B = C join (A & C).

This set B has two properties
: I

A< B '

P

and ' - 'Comp B > ta.e.

This second property is easily shown for space measure, using the

| | .
parallel computation property, and recursive relatedness gives the result

for general measures.

1

Results in this chapter have so far been rather intuitive and
[
natural; less so are results stating "independence" of sets (for

example, demonstrating the existence of pairs of recursive sets which

do not help each other's eomputetion)r

Solutions to problems of this latter type turn out to be analogous
to work on degrees of unsolvability [Sa] [Rol, 310.2, Chapter 13] in the
p |

foilowi_n'g sense: !
' ’ i ' 'I
Independence proofs proceed by a diagonalization (the only general

tool we have thus far for proving buch results). The diagonalizations
I)
require a countable sequence of conditions, or perhaps two different

countsbie sequences of conditions, to be satisfied. Satisfaction of

these various conditions may cause conflict. To insure that each condition

66
gets satisfied, we establish before the construction a 'priority

ordering” of conditions; in our theorems, this is a simple numerical

ordering.

We allow the satisfaction of a condition to be interrupted only
by switching to an attempt to satisfy a higher-priority condition.
It follows that once we begin trying to satisfy some condition, we must
thereafter succeed in satisfying either that condition or ome of higher

priority; thus, all conditions will eventually bacome satisfied.

Our arguments use priority more complex that the "initial segment"
priority constructions in {Rol, Chapter 13]; we do construct our sets
by determining values first on initial segments, but we also carry
with us "tentative commitments" to definition of the set at arguments
a finite distance beyond the defined initial segment. It is only a
finite distance beyond, so we are not using the full power of splitting-

tree arguments, for example.

Our comstructions differ from those in [Sa] and [Rol], however,
since we are constructing recursive sets., Our constructions are always
effective, and wve insure definition of the functions we construct at

all arguments.

After a degree-of-unsolvablility priority construction, arguments are
usually presented showing what oracles are used in the constructionm,
and thereby placing the constructed set in its proper Turing degree.
We are working with a subrecursive analog of these comstructions; we
are generally interested in the complexity of the resulting set. Thus,

we generally follow our constructions with arguments showing what

67

subcomputations vere used in the computation constructing our set,

thereby placing the constructed set in its proper complexity class.

We now aim to prove an independence theorem. In order to make
the proof as compact as possible, we first introduce definitions
designed to allow us to discuss the independence of the values of &
0-1 valued function at i{ts different arguments. In theorem 4.6, ve
give an exsmple of a simple theorem using this definition. Lemma 4.7
shows the existence of a 0-1 valued recursive function wvhose values
at {ts different arguments are independent, vhile theorem 4.8 shows
how to split this type of set into two sets vhich don’t help each other’s
computation, thus giving & complexity-theoretic anslog to the Friedberg-

Muchnik theorem [Rol, $10.2].

Definition 4.5: Assume A is & recursive sct and g 1s a total function

of one variable. Then:
"Co-p[“A > g a.e." means:

(A~

e, A M@ - = ¢, 4w > g0 s,

"Co-p[”A < g a.,e." means:
@10 e, XM - c,om1 A ¢, 4w < 500 s

The following theorem, due to Paterson (P], shows the abundance
of 0-1 valued functions whose values at different arguments are

strongly dependent. This settles a question raised by Trachtenbrot [T1].

Theorem &4.6: There exist r € R,, h € R, with the following property:
Whenever t is a monotone increasing running time, there exists a

recursive set A such that:

68
Comp A > t a.e.

Comp ASho ta,e,

and Co-p'”A <r a.e.

Proof: We define the set A, depending on t; ve indicate how to

construct r and h aftervards.

We define A by a construction in stages. As ve do so, ve camcel

indices 1 such that we knov &, ¢ Cye
Yy
Let f(y) = laJ.
Stage x: (Define CA(x))

See if there exists uncancelled i < f(x) such thst 01(x) £ t(x).

1. If so, define CA(x) =1 3qai(x).
Cancel {.
Go on to stage x + 1,
2. 1f no such 1 exists,
2.1, 1f |[y|y <xamy € A]| ts even, we define CA(x) - 0.
Co on to stage x + 1,
2.2. Otherwise, define CA(x) = 1,
Go on to stage x + 1.

END OF CONSTRUCTION

A is clearly recursive. We leave the reader to verify that

substage 1, insures Comp A > t a.e.

verification of the second claim depends on the construction of

the oroper h, which may be done by a domain-of-couvergence argument.

69
To verify the third claim, we use the following procedure for

obtaining cA(x) from CA on other arguments:

For all x, B, define:
0 if there are more arguments y, x+1 < y < 2x for which
vi(n)(x) -J |((0....,y] = (x)) N B| 1s even than for which
[((0,....y) - (x)) N B| s odd,

1 otherwise.

Yo

That is, we use the fact that most arguments y with x + 1 < y < 2x

were used not to cancel indices, but to maintain parity.

From this procedure, it is easy to construct the function r for
the time or space measure. Recursive relatedness then gives the result
for general measures.

QED
Open Question: 1Is theorem 4.6 true without the monotonicity restriction?

Having some familiarity with the way a function's values at differernt
arguments may interrelate, we now go on to produce a set A whose values
at different arguments are independent. This result in announced by
Trachtenbrot in [T2]. He gives no proof, however; the proof here is

due to Meyer.

Lesma 4.7: (Trachtenbrot): There exists g € R2 with the following
property:
For any sufficiently large total rumning time t, there exists a

recursive set A with:

70

Comp ASgo ta.e.,

and Co'a-p[A]A >t a.e.

Proof: We would like to insure:

1@, AV < e 1) = o P O RN NE

As before, we use cancellation; we cancel an i{ndex i when we've
insured that:

@ e, A0V 0 4 ¢, 0.

In addition, at amy time during the construction, a single index
may be “tentatively cancelled."” 1If an index i is tentatively cancelled,
it means that we are in the process of attempting to cancel {1 by
defining A according to an appropriate ntentative commitment.'' If we
succeed in defining A in this way, we will then cancel i; otherwise,

the tentative cancellation of { will be removed.

We will use the s-m-n theorem to define a partial recursive
function q’a(a)’ according to a construction in stages. For Qa = t,
the function cpa(.) will turn out to be the cA of our theorem. We use
the parameter & to allow us later to obtain the desired recursive

function g by a domain-of-convergence argument.

We will have stages numbered 0, 1, 2,..., where at stage n, we
will define q’a(a) (n). The stages are not executed in consecutive

order, however. The order in which the stages are executed is deter-

mined as follows:

At any time when we are ready to decide which stage is mext to be

executed, the next stage will be stage n if and only 1f:

71

1. Stage n has not yet been executed,

2,4 Qa(n)l,

3. For any m for which stage m is not yet executed,
&, (n) <& (m),

and 4, If Qa(n) = Qa(m) for any m for which stage m is not yet

executed, then n < m.

(That is, stages are executed in order of size of values of Qa.)
This trick is similar to that used in theorem 2.8.

We now describe stage n of the construction:

Stage n: (Define %(a) (n))

Find the smallest i < n that is not yet cancelled and such that:
(a) if some index j is tentatively cancelled, then i < j, and
(b) there exists E such that:
(bl) (Vxlstage x has already been executed)/x € E & ma(a) (x) = 1],
(b2) E < [xlx < h(i,n,@a(n))} , where h is the function whose existence
is asserted by lemma 4.2.1,
(b3) n £ E,
and (b4) ¢, (m) < & ().
1. If such an i, E exist, remove any previous tentative cancellation and
tentative commitment.

(E)

Define ma(a) (n) =1 = Py (n).

1.1. 1f (Vx s h(i,n,@a(n))) [stage x has already been executed], then

cancel i and go on to the next stage.

72
1.2. Otherwise, tentatively cancel i and make a ''tentative com-

mitment to define q’a(a) so that:
(Vx|x < h(1,0,8,(M) A x# 1) By () = Cp)].

Go on to the next stage.
2. If no such 1 exists,

2.1, If some index j is tentatively cancelled, consider E from its
tentative commitment.

Define @)(n) = CE(n).

o(a

2.1.1, If for a, n arising from j's tentative commitment,
we have (Vx < h(j,n,ﬁ‘(n))) [stage x has already been
executed], then remove j's tentative commitment. Change
i's tentative cancellation to a cancellation.

Go on to the next stage.
2.1,2, Otherwise, just go on to the next stage.

2.2. If no index j is tentatively cancelled, just define q:a(.)(n) = 0.

Go on to the next stage.
END OF CONSTRUCTION

Now assume we have t as in the hypotheses. If we choose a* with

Q‘* = t, then we claim that CA = cpa(‘*) has the desired properties:

A is a recursive set:

1f we assume that t = Ax(x], then we may easily show that after
each stage, the next stage may be chosen effectively. Also, the search

for E in substage (b) of each stage will terminate. With these facts,

73
the execution of successive stages is an effective process.

Comp[A]A >t a,e.:

We make an important observation about cancellations:

Fact: If an integer k is tentatively cancelled at some stage, then at

that stage or later, some integer < k will become cancelled.

Proof of fact: Iy induction on k.

Now for any index 1, suppose that (Vx)Kpi(A-{x})(x) = CA(x)].

Then it 1s not difficult to show that { is never cancelled,
For 1f 1 were cancelled, it means that at some stage x we set up a
tentative commitment for i which was eventually fulfilled, so that
for some x, E as in substage (b), we defined:

c, () # o, B (x)

But by lemma 4.2.1 and the definition of E, we can conclude that:
A=
9, B x) =, A0y,

so that C, (%) #mi(A-{xl)(x).
Thus, i can never be cancelled.

There is some stage in the construction such that all cancellations
of indices smaller than i that will ever occur have already occurred
by that stage. By the fact above, it follows that at subsequent stages,
condition (b) must fail to be satisfied for index {. But then lemma

4.2.1 implies that Qi(A'(x])(x) > t(x) a.e.

Comp A<go t a.e.:

74
We see that (Va,x) @a(x)l = ma(a)(x)l].

Thus, by the combining lemma, an appropriate function g exists.

QED

Remark: The following related result has been obtained by Meyer using
similar methods (It has also been announced by Trachtembrot in IT2],

but without proof.):

"For any g € Ry» there exists a recursive set A such that:
e N6 = e = @, -c, A
80,8,(0) = 8, 40D (9 4 eyy).m

In other words, the values of CA at its different arguments are
independent in the sense that, for any procedure for CA which uses
information about CA on other arguments, there is a faster procedure

for Cy which does not use amy such information.

As a result of lemma 4.7, we now obtain the desired independence

result:

Theorem 4.8: There exists h € R2 with the following property:
For any sufficiently large total rumning times t:B and tc, there
exist recursive sets B and C with:

Comp B<ho t_a,e.,

B

Comp C <ho t_ a.e.,

c

Comp(C)B >t a.e.,

B

and Comp(B)C > t. a.e.

Proof:

75
We use the following lemma:

Lemma 4.8.1: There exists k € R2 with the following property:

(V@i)(SSJ) [Sj 2 61 a.e. and Sj <ko Qi a.e.].

(That is, for any measure function, there exists a8 larger "gpace

function" which is not much larger.)

Proof of lemma 4.8.1: By recursive relatedness, there exists a

function r relating S() and §(). Without loss of generality, we
may assume that A<x,y>[r(x,y)] is a space function and r is monotone

nondecreasing in both variables,

Assume f is the recursive isomorphism between the Godel numberings

of the two measures.

Then r o sf(i) is easily shown to be a8 space function, and if we
let k = Kx,y[t(x,r(x,y))], then recursive relatedness gives the

required properties.

Proof of theorem 4.8, continued: Lemma 4.8.1 shows that if we prove

the theorer for 8pace measure on oracle Turing machines, recursive

relatedness will give the general result.
It remains to prove the theorem for S().

Definition 4.8.2: If f and g are ary functions, we define "f join g"

by: (¥x) £ join g (2x) = f(x)

f join g (2x + 1) = g(x).

If tB and tc are space functions, then ty Jjoin tc may also easily

76

be shown to be a space function. We may apply lemma 4.7 to
tB join te and obtain a recursive set A with:

Comp A<g o(tB join tc) a.e.,
[A]

and Comp "'A > tB join tC a.e,

We write A = B join C, and claim that B and C have the required

properties:

(C)B >t a.e.:

Comp B

Otherwise, (Hi)[¢&(c) a CB and Si(c) < tB 1.0.].

But then we can convert mi() to a program which computes CA

fast on infinitely many arguments, namely:
(DL () (o, A D (e C,(x)) and
(Hx)(SJ(A-{x})(x) < ty Jjoin t, (x))].

(A]

But this contradicts Comp ™ ""A > tB join tC a.e.

(B)

Comp C>t_a.e.:

~

By symmetry,

Comp B<hot, a.e., and Comp C<Shot, a.e.:

B c

Define h(x,y) = g(2x,y) + g8(2x+1,y), where g is the function
arising from lemma 4.7. We claim this function h has the required

properties:

Comp A< go (tB join tc) a.e. implies that:

(?1)[¢& = C, and S, <go (tB join tc) a.e.].

But then o, may be easily converted to a program for CB which

cn argument x, requires space g o (tB join tc) (2x)

77
= g(2x,tB join tc(2x))

= 8(2x,t3(x))
= h(x,tB(x)), as required.

The other case is symmetric,

QED

The earliest independence result in the literature which can be
stated in terms of existence of two recursive sets not helping each
other is due to Axt [A2]). Axt states the existence of recursive sets
A and B such that neither is primitive recursive in the other. His
proof does not use the complexity formulation of "primitive recursive
in"; it 1s an initial segment diagonal construction similar to theorem
IV in [Rol, Chapter 13]. With the complexity formulation (theorem 3,2)

we may obtain Axt's result as a corollary to our theorem 4.8.

We now use theorem 4.8 to obtain counterexamples to transitivity

and symmetry of helping.

Corollary 4.8.3: For sufficiently large functions k, the relations

"k-improvement a.e." and "keimprovement 1.0." are neither transitive

nor symmetric.

Proof: We will describe three sets which provide a counterexample to

all four properties.

We choose rumning times t:B and tc with tB much larger than tc.

By theorem 4.8, we may obtain B, C and h. We then consider the

three sets B, B join (B®C), and C. We note the following relation-

ships between the sets:

78
1. (B k-improves C i.0.)

2. =(C k-improves B i.0.) i
3. B k-improves B join (B ® C) a.e.
4. B join (B ®C) k-improves I a.e.
5. B join (B @ C) k-improves C a.e.

6. —(C k-improves B join (B ® C) i.0.)
1. and 2. are clear by theorem 4.8, if k > h.

3. is true because a B-oracle reduces the complexity of B join (B & C)
on even arguments to triviality and on odd arguments to the complexity
of C. Since tB is much larger than tc, this is a large reduction in
the complexity of B join (B ® C) a.e. To formalize this argument, we

can use a proof for the space measure and recursive relatedness.
4. 18 trivial,

5. 18 true since:

(Vx) [Co (x) = C ,(2x) ® ¢ y(2x + 1.

B join (B ® C B join (B @®C

6. If C k-improves B join (B ® C) i.0., then either C k-improves
B join (B © C) on infinitely many even arguments or infinitely many
odd arguments. However, the independence of B and C obtained from
theorem 4.8 shows that improvement cammot occur on infinitely many
even arguments. Thus, C k-improves B join (B ©® C) on illmfinitely many

odd arguments.

It then follows that C k'-improves (B & C) i.0., for scme k' which

is only slightly smaller than k. We show that this is impossible:

79

Consider the space measure. By definition of k'=-improvement,

(31)(V1)m1(0) *Crec. B®C

S k'('x,si“r')(x)) < 5,00 1.0.11,

o o, =C
Ay

By the parallel-computation property of s¢),

(Hj)f¢j=cnmc'and SjShOtBa.g.]. '
: Combini'ng the two facts,

(Hi)rqoi(m -c amd k' (5,5, @) <ho t(x) too.l.

B&C

We can use mi(c) and a program P for Cc with S1 Sho t:c a.e.,

and thereby obtain a program @m(c) = C with k' o S © Sho ty i.o0.

But for k' sufficiéntfy large, this contradicts the hypothesized

i

independence of B and C. ,

For general measures §_(), we obtain the same result if we require

k to be much larger than the measure-invariance function r obtained

! ’
by applying theorem 2.5 or remark 2,5.2 to Q() and S().

The following diagram summarizes our results:

! ' no ke-improvement

p-improves u.e; ~N - k-improvel;l.e.%

B B join (B @ C) c

k-improves a.e. LJ k no k-improvmnﬂ

no k-improvement

Checking the diagram, we see that we have a counterexample to all

four properties .

QED

80
5. Universally-Helped Sets

In this and the next chapter, ve ask if it is possible to improve
on theorem 4.8. Specifically, theorem 4.8 proves the existence of two
{ndependent recursive sets by a diagonalization. This leaves op~n the
possibility that independent sets are pathological; we would 1like to
know if we can obtain a stronger result which allows us to fix one of

the two sets arbitrarily.
We are thus led to ask the following (informal) question:
Which is true?

(1) There is a recursive set A whose computation is helped by
all sufficiently complex recursive sets B (a vyniversally-helped set"),
or,

(2) For any recursive set A, there exist arbitrarily complex

recursive sets B that don't help the computation of A.

Remark 5.1: We first note that any recursive set will be universally-
helped in an appropriate measure: Fix any k € R2' monotone increasing
in both variables. Let our model for computation be oracle Turing
machines. Define a measure Q() as follows:
A s, M 1f @y < 0y €A,
¢ M =t A

i o ko Si()(x) otherwise.

Now consider a "stronmgly k-compressed” set A; in other words,

assume that there exists a total function t with:

(vi)mi =C, = 8 >t a.e.l,

81

and (31)lq:1-cA A Sisko t a.e.].

We claim that in measure 0(), A is keimproved by amy set B ¥ ¢.

The reason is as follows:

We have (C-Ii)i&:p1 = CA A s1 <ko t a,e.].

Let cpj() be the Turing machine that acts exactly like @y but

never asks any questions of its oracle. Then:

(VX)RpJ(x) = CA and Sj(x) - s1 <ko ta,e.].

Consider any set B ¢ ¢. Then® w2 C,-

J

Also, QJ(B) = SJ(B) = s1 a.e.

Thus, QJ(B) <ko t a.e.

Howvever, (V).)it';)1 -cA = ’1 =ko ko S1

.’ =ko ko taoeol-

1

Therefore, B k-improves A a.e,

QED

Pathological measures such as those above show vhy we will require

a "simulation overhead function" g in the various theorems of Chapter 6.

In the remainder of Chapter 5, we work within an arbitrary
complexity measure and produce a recursive set A vhose computation is
helped by oracles for all sets whose complexity may be compressed
between "honest" bounds (bound functions whose running times are closely

related to their sizes.) We refer back to the remark following lemms 2.7.

82
Further discussion of honesty may be found in [McC] [McChe] and MeMo] .

We note that theorem 4.3 has already given us that every recuraive
set A is helped by arbitrarily complex recursive sets B. These sets B,
however, were constructed in a very special wvay, to encode A. In the
next result, the sets B are mot encodings of A, but may be described

by a restriction (more-or-less) independent of A.

The function g i{n theorem 5.2, as well as in the thecvems in
Chapter %, will depend only on the relative complexity measure 0() ve
are considering, and will represent a fixed amount of extra resource
needed to carry out certain simulations., For measures 1ike space,
ve may often think of g as any function wvhich majorizes (is greater
than) linear functions; for other measures, we wmay still regard it as

small relative to the othcr functions we are considering.

First, ve require a definition:

Definition 5.2.1: For amy h € R, define a recursive set A, as follows:
Write x = <xl,x2,33>.
12 (19, (x,)) 1f & (x) < h(xyx4),
- xy 2 x, 2 e
A 0 othervise.

(The use of the "<" is only to keep C 0-1 valued.)
An

Theorem 5.2: (universally-helped set)

There exists g € Rz with the following property:

For all k, h € Rz. k(x,y) 2 y, and all total running times t,
any set B with:

Comp B>go ko go t {,0.

83
and Comp B <ho ta,e.

k-improves A.h if.0.

Proof: We give three lemmas defining functions 8y 85 and 84 vhich
represent extra resource required to combine certsin processes in the
proof. The g in the statement of the theorem will be a combination of

81+ 8, snd gy- We use domain-of-convergence arguments.

Lemma 5.2.2: There exists 8 €Ry such that whenever 01 is total,
there exists 01 = 01 with:
31(x.0j(x)) 2 Oj(x) a.e,
(Note: This says that running times are honest. See the remark

following lemma 2.7.)

Proof of lemma 5.2.2: B, the axioms for relative complexity measures

and the relativized s-m-n theorem, it is essy to see that there exists
& recursive function & such that:

v1,8,0 04, ®) =0, P).

a(l)

We define gl(x,y) = max g'(x,y,a), vhere:
asx

$ (x) ify=29% (x),
g'(x,y,a) = "o .
0 otherwvise.

The second lemma gives an upper bound on the amount of resource

needed, with a B-oracle, to compute cAh:

Lemma 5.2.3: There exists 8, € R2 with the following property:
For any h € Rz, any cet B and any total running time t for which:

@)@, =Cyp A (B sho tae)],

84
it must be true that:

@nie,® - e A ¢, Pctixem) 55,0 @) el

Proof of lemma 5.2.3: We let (FIJ be a canonical enumeration of all

functions defined on a finite domain. That {s, we assume that

hi,xlFi(x)] is partial recursive and A{,x|C F (x)] 1s total
i

domain

recursive.

Using the relativized s-m-n theorem, we define:

F.(x) if x € domain F.,
x) cx(xz) {f x £ domain F. and Xy = b and
® (x) = <
a(a,b,c,d) ©.(x.) = x
d*"2 g
@c(x) otherwige.
"
Now define gz(x,y) ® max gé(x,y,a,b,c,d), vhere:
a,b,c,d<x

Bé(x’Yv‘vb’cvd) - -xmgg(ann.nbnc’d’x)o and:
X

(X)
¢ (<, x0,(x)>) 1f & (x) < g,(x,Y),
'g(x)y..,b,c’d'X) = a(.ibic'd) d d 1

0 otherwise.
Lemma 2.5.1 {s used to show that 8, is recursive.
We now fix a,b,c,d,X as follows:

Let F. be a finite function giving values of CAh on all

arguments of the form <{,x,t(x)> for which Qi(x) > ho t(x).
let b = {, the given index for CB'

Let ¢ = an index for a program for C, .

A

85
Let d be an index for t with the property that Qd(x)

< gl(x,t(x)) a.e, (by lemma 5.2.2).

Let X = B.

® ¢

It is now easy to verify that cpa(a b,c,d) - Ah
Bt Dt |

Also, if x 2 max(a,b,c,d), then:
gy(x,t(x)) 2 gi(x,t(x),s,b,c,d,B)

© ’a(.'b'c'd) (B)(q’:xr@d(x)» a.e., as required.

The third lemma provides us with an upper bound for the amount

of resource needed to comnvert a program for cAh into a program for CB:

Lesma 5.2.4: There exists) € R2 having the following property:
Fez any h € Rz, any set B any total rumning time t, and any 1, §, 1
for which:
®, = CB) A (91 Sho t a,e.)]),
and @ = cAh’
it must be true that:

ED) [, = Cy) A (8,(x) < 85 (x,max(g, (x,t(x)),8, (<1,x,t(x)>))) a.e.)].

J

Proof of lemma 5.2.4: We use the s-m-n theorem to define:

F.(x) if x € domain F..

® (x) =
a(a,b,c,d) (D, %9, (x)>) otherwise.

Now define ga(x,y) = max g'(x,y,a,b,c,d), where
a,b,c,ds<x

g'(x,y,a,b,c,d) = .a(‘:b.c.d)(x) 1f $,(x) <y and & (<D,x,0,(x)>) <y,

0 otherwise.

86
Clearly, 84 € R2'

Nov fix a, b, c and d as follows:

Let F. be a finite function giving values of CB on all

arguments x such that Qt(x) >ho t(x).
Let b = §{,

Let c = §,

Let d < an index for t with the property that ’d <go t a.e.

(by lemma 5.2.2),

It is easy to see that Q’a(n b,c,d) = CB'
¥y

Now 1{f x 2 max(a,b,c,d), then:
33(x.mnt(t;1(x.t(x)).‘J (<t,x,t(x)>))) =
3'(x.ux(gl(x.t(x))."j(<1.x.t(x)>)).l.b.C.d)

’a(a,b,c,d)(x) a.e.(x), as required

Proof of theorem 3.2, contimsed:

We now define g = ux(gl.gz.ga).
Let @ " cB wvith 01 <ho t a.c.

Then by lemma 5.2.3,

@nre,® - &) A ¢, P etxem>) gt ae).

But lemma 5.2.4 implies:
(Vj)l(mj - cAh) = (!J(<1.x.t(x)>) >ko go t(x) {.0.)],

since otherwise, we obtain a contradiction to the lower bound on B's

- I

87
complexity.

But this clearly shows that B k-improves A.h i.0.

We have thus described an interesting situation: we have sets

QED

which are helped by all sets whose complexities are compressed between

honest bounds. and the extent to which they help depends on how

tightly compressed their complexities are.

Nevertheless, there are many sets whose complexities are mot so

compressed; sets wvith speed-up are one example.

Open Question: Are there recursive sets which are h-compressed, but
not betwveen honest bounds? Specifically, is it true that:

For all g, h € Rz, there exist sets A and functions t € R1 such
that Comp A > t a.e. and Comp A S go t s.e., but such that for mno
total running time t’ is it true that [Comp A > t' a.e. and

Comp A < hot’ a.e.]?

We can ask similar questions for Comp A > t i.0. and Comp A > t'

88

6. Sets That Don't Help

In this chapter, we present two theorems which have the opposite
intuitive interpretation to the main result of Chapter 5. Both
theorems begin with & recursive set A and a lower bound on the com-
plexity of A, and conclude the existence of arbitrarily complex sets

B that "preserve" the lower bound on A's complexity,

In both theorems in this chapter, a function 8 18 used, representing
& minimal amount of helping which the set B is allowed to give to A's
computation. The functions 8 &re necessarv because of *he existence of
pathological measures such ag those given in remark 5.1. As before,
each function g will depend on the measure only 2nd may therefore be
considered to be very small compared to the other functions we are

considering.
We begin with a definition:

Definition 6.1: We say that a property holds "for arbitrarily complex
recursive sets' {f:

(Vr € Rl)(SB recursive) /Comp B > r a.e. and B has the desired property].

In the first theorem, we consider an i.o. lower bound. Intuitively,

theorem 6.2 makes the following statement:

"For any recursive set A vhose complexity exceeds a known lower
bound {.0., there exist arbitrarily complex sets B such that the

complexity of A with a B-oracle st111 exceeds the lower bound {.0."

The method of proof is similar to that used by Machtey [Ma2, theorem

N I

-

89
4.9) in his proof of the result:

"If f and g are recursive functions with £ not primitive recursive,
then there exists a recursive set C such that f {s not primitive

recursive in C."

We remark that for the sets B of our construction, it {s stiil

possible that B may greatly help A {,o0.

Theorem 6.2: There exists g € R2 with the following property:
For any tA € Rl’ and any recursive set A with:
Comp A > go tA f.0.,
there exist arbitrarily complex recursive sets B with:

Conp(B)A > ¢t, 1.0
Proof: We obtain g from the following lesma:

Lemma 6.2.1: There exists g € R2 with the following property:
Whenever A {s a finite set, r € Rl’ and Q)i(A) =ra.e.,
there exists § such that:
qaj = r (on all arzuments),

and ej <Sgo éi(A) a.e.
Proof of lemma €.2.1: Follows from the combining 1emma.

Without loss of generali.y, we may assume that g 1is monotone

increasing in both variables.

Proof of theorem 6.2, cont{inued:

We choose tB € Rl arbitrarily. tB will be a lower bound on B's

complexity.

90
We will define B in stages, with CB(x) being defined at stage »>.,

During the construction, we cancel indices of programs we know to
differ from CB' In the course of the construction, integers a, b and

c will be defined and changed from stage to stage, where:

& keeps count of how many conditions of a certain type we have
so far succeeded in satisfying,

b (= nl(a)) indicates which B-oracle program we are currently
examining, and

c keeps track of a tentative commitment to an extension of the

already-defined initial segment of B.
We let Bx = (y < xly € B}.

We start with a = b = 0, ¢ undefined. (That is, we have not
yet satisfied any of the conditions we would 1like to satisfy, we are
exlmining<no(8), and we have no tentative commitment to an extension

of the 8lready-defined initial segment of B.)

Stage x:

See if there exicts { < a such that { {s not yet cancelled and

Qi(x) < CB(x).

1. 1f so, consider the smallest such {.
Let CB(x) =143 wi(x), and cancel {.
Let ¢ become unde fined,

Go on to stage x + 1.

2. If no such { exists, define CB(x) = 0,

See 1f c 1s

2.1, 1If so,

2.1.1.

2.1.2.

91
defined.

see if ¢ = x.

1f ¢ = x, redefine a = a + 1,
b= “l(a)v
c = undefined,

and go on to stage x + 1.

I1f ¢ ¥ x, just go on to stage x + 1.

2.2. 1f ¢ is not defined, see if there exists an argument y such that

a<ysxand either Qb(nx)(y) > £, (),

a ,Pm e o, P fo o).

2. 2. 1.

2.2.2.

1f so, let h be the function whose existence is asserted

in leoma 4.2.1 and consider h(b,y,tA(y)).

2,2,1,1. 1f h(b,y,tA(y)) is < x, then redefine:
a=a+1l,
b= “1(.)o
¢ = undefined.

Go on to stage x + 1.

2,2.1.2. 1f h(b,y,tA(y)) > x, then define c = h(b,y,tA(y)).

Go on to stage x + 1.

1f no such argument y exists, just retain the values of
a and b and go on to stage x + 1.

END OF CONSTRUCTION

92

Verification of the construction:

The key claim is that the variable a in the construction must

{ncrease without bound. Suppose it does not.

This would mean that eventually & would reach a stable value, say

a Thereafter, neither 2.1.1 mor 2.2.1.1 will be executed.

ol
Eventually, we will reach a stage high enough so that 1. can no

longer be executed (since there are only finitely mamy { < a). There-

after, 2. must always be executed.

Subsequently, 1f c is ever defined, then there is mo way for c to
become undetfined. Thus, we would be forced to execute 2.1 at every
stage until we are compelled to execute 2.1.1, a contradiction. Thus,

¢ is subsequently never defined.

But this implies that 2.2. must be executed at every stage from
some point on. However, 2.2.1.1. cammot be executed, and 2.2.1,2. cammot
be executed since ¢ cammot become defined. Therefore, from some stage oOm,

no argument y satisfying the conditions in 2.2. will ever be found.

fut this means that for bo = ﬂl(ao):

@x) (Yy 2 -o)v@bo“x)m = ¢, () A Gbo“x)) £ 5]

But then lemma 6.2.1 gives a program Q'Jj such that:
qaj -cA and QJ sgot, ae.,

contradicting the hypotheses of the theorem.

Thus, ve see that a must increase without bound.

93
Comp B > tB a.e.:

For any index 1, {f 51 < ty i.0., then clause 1. will eventually

-become executed for i, insuring that Py b Cg-

Conp(B)A > tA:i.o.:

Assume the contrary: (Sl)lcpt(n) = CA) A (Gt(n) <t, a.e.)].

A

Then there exists some least integer .0 such that nl(no) = { and
(Vy 2 no)lft(B)(y) < tA(y)]. When a is first set equal.to a8, at some

stage, c is undefined, by 2.1.1. or 2.2.1.1.

Since a grows without bound, it follows that eventually 2,2.1. must

get executed at some stage x when a = a,

But this {mplies that:
@y,ay 5y <014, P9 > 6,0 v

14, <0 A P f e,

Moreover, eventually thereafter, either 2.2.1.1, or 7.1.1. must get
executed, unless prior to fﬁelr execution, clause 1. i{s executed. But
if this happens, then ¢ again becomes undefined so 2.2.1. must again
get executed. 1. can only intervene finitely many times, since there are
only finitely many indices less than a5 Thus, we can assume without loss

of generality that 1. does not intetrvene.

But in this case, we insure. that:
@ 2 218, D) > £, vV 10, D) < 6, 4 6,V £, M1,
by lemma 4.2.1., which' i{s a contradiction.

QED

94
Remark 6.2.2: We note that, for the space measure S(), the function
Ax,yly) will suffice to satisfy lemma 6.2.1 and hence theorem 6.2,

provided that t, is nontrivial (i.e. t, 2 Ax{x]). The method for

A
showing this is mot the method of the given proof of the lemma, but
rather a direct proof by analysis of oracle Turing machine space

measure; information about A and about the finitely-many exceptions to

Wpi(A) = r" may be stored in the Turing machine’'s finite control.

In fact, if we are interested only in the space measure, it is not
only possible to sharpem our recsult, but to simplify its proof as well.
This is because of the following fact about s(), not true for general

measures:

Fact 6.2.3: (VA, f, Yt € R, with t 2 Ax[x])

(A)

1

1f si(") <t a.e. and c,ai is total, then:

(Hj)l(c;)j(A) -qgi(A)) A (sj(A) < t everywhere) .

Fact 6.2.3 implies that for S(), we need only insure:
(B) _ (B)
(V1) @y) lo, C, = S M>tM1,
rather than:

@ e,® -c, = 5Py >gm.

This eliminates the need to consider each B-oracle program infinitely
often during the construction; we need only consider it once. Thus, the

need for variable b is eliminated.

Theorem 6.2 provides the following corollary about primitive recursive

reducibility:

95

Corollary 6.2.4: 1f A is any recursive set which is not primitive

recursive, then there exist (in any measure) arbitrarily complex sets B

such that A #p B and B ‘p A.
(Recall that Sp means "primitive recursive in ")

Proof: We show the result for the space measure; clearly, recursive

relatedness gives the general-measure result.

Since (Vh)[h is primitive recursive © h Sp ®), the proof of
corollary 3.5.2, with each B1 = @, shows how to obtain a recursive
function f such that:

(Yh) Ih {8 primitive recursive © Comp h < f a.e.].

Thus, Comp A > f {.0.

By theorem 6.2 for t, = f and space measure (where g = Ax,y(y],
as in remark 6.2.2), we obtain arbitrarily complex sets B such that

COIp(B)A > f 1i.0.

We claim that f is greater than or equal to each primitive recursive
function of one variable, a.e. For if not, then:

(Zh, a primitive recursive function of one variable)h > f i.0.].
The time and space measures on oracle Turing machines may be shown to
be recursively related (in the sense of theorem 2,5) by a primitive

- is clearly primitive

recursive function r. Then the function 2% °
recursive. However, it requires time = r o h to compute the fumnction
on all arguments, since it requires that much time just to output the

answver. Therefore, it requires space = h to compute this function on

almost all arguments, by recursive relatedness. Therefore,

96

5O > fi.o., a contradiction, Thus, f must be greater than

or equal to each Primitive recursive function of one variable a,e.

But then Comp(B)A > f i.0. implies that A camnot be computed using

a B-oracle in Primitive recursive Space, so A $p B by theorem 3.2,

By making B sufficiently complex, theorem 4,2 shows that we canp
obtain Comp(A)B > fi.o. Thus, by theorem 3.2, B ¢ = A,

QED

We would like to compare theorem 5.2 with theorem 6.2 to demonstrate
that there is no conflict between them. We mote that theorem 5,2
produces gets Ah which are helped infinitely often by all sets B whose
complexities are "compressed" around rumning times, Theorem 6.2 does
not produce sets B with such a restriction on their complexities. For
proper comparison, we would therefore 1ike a Stronger, "compressed"

version of theorenm 6. 2.

We may obtain such a strengthened version of the theorem if we are
willing to allow Some additional assumptions: namely, we assume that
tB 1s a rumming time, and that tB is monotone and much larger than the

complexity of tA and the complexity of A,

New Assumptions: EL 5K (e, =) A ((g=2) A (, =)
A (VX)ftB(X) 2 maX(tB(x-l),Qi(X),Qk(X))J]

The new Statement of the theorem is ag follows:

Proposition 6.2 5:

There exists g € R2 with the following property:

. -

97
Whenever we have tA, tB € R1, A a recursive set, Comp A > g o tA i.o.,

and the New Assumptions satisfied, then there exists a recursive set B

such that:
Comp B > tB 8,y
Comp B<go tB a,e.,
and Comp(B)A >t, i.0.

A

Proof: Uses the construction in theorem 6.2, and a domain-of-comvergence

argument to estimate the complexity of B. We omit the details.
We require ome further lemma before making our comparison:

Lemma 6.2.6: In any measure @(), there exist arbitrarily large

monotone increasing rumming times.
Proof: Let us fix any t € R1.

We use the recursion theorem (Rol] to defime:
r
0 ifx=0,

0 =4 or if (@ (= DY and (F,(x) > max(e(),8,(x - D))

3 ® otherwise.

It is easy to show that wi must be total and @i has the required

properties.
We now note the following:
Let us use the function g found in proposition 6.2.5.

Define gz € R2 as Mx,ylg(x,g(x,y))]. Then we may obtain, by theorem

5.2, a set Ag' which is i.o. gz-improved by all recursive sets B whose

98

complexity is weakly g-compressed around a rumning time. (That is,
there exists a total running time ts such that Comp B > ta i.o. and

Comp B =< go tg a.e.)

Now we claim that there exists a recursive function ty which is
a "good" i.o. lower bound for Ag,'s complexity, in the semse that CA '
can be computed a.e. in measure mot much greater than ty (This is ’
true provided g' is honest, an assumption we may make without loss of
generality. An examination of the proor of theorem 5.2 shows that:
i, x,y> 18" (x,5)]

approximates an i.o. lower bourd for the complexity of Ag" and that

C, can actually be computed a.e. in measure mnot much greater than

gl
this function.)
Using lemma 6.2.6. to obtain the appropriate function ty, we
may apsly proposition 6.2.5 to the function ty and obtain a set B.

What is B's relationship to Ag,?

B must gz-improve Ag' i.o., by theorem 5.2. On the other hand,
since B preserves the i.o. lowe¥ bound tA (at least to within amount g),
it is impossible that B gz-improve Ag, a.e. Intuitively, B gz-improves
Ag' i.o. and B fails to gz-improve Ag, i.0. There is, of course, mo

conflict here.

We mote that theorem 6.2 has a real relationship to "improvement"
only in the case where ty is actually a "good" lower bound for A's
complexity (i.e. CA can be computed a.e. in measure mot much more than

t In the case of sets A having such "good" lower bounds, theorem

A)

99

6.2 allows us to conclude (tor sufficiently large k) the existence

of sets B for which it is false that B k-improves A a.e.

However, not all recursive sets have such good" i.0. lower
bounds. For example, sets whose characteristic functions have sufficient
speed-up canmot have good i.o. 1nwer bounds. For this type of set,

theorem 6.2 gives us no information about improvement.

Open Question: Can we obtain a more symmetrical version of theorem 6.2,

in which A also preserves a lower bound on B's complexity?
This question may be precisely formulated in several different
ways. One example is as follows: Is it true that:
There exists g € R2 with the following property:
Whenever we have tA’ tB € Rl’ A a recursive set, Comp A > g o tA i.o.

and the New Assﬁmgtions gatisfied, then there exists & recursive set B

sucn that:
Comp(A)B > tB i.o.,
Comp B < go tB a.e.
and Comp(B)A > ty i.o.

Open Question: For any recursive set A, we have managed to find sets B
which preserve amy single i.o. lower bound t, un A's complexity. Can we
find, for each A, a single set B which preserves all i.o. lower bounds
which happen to be total running times)? Further discussion of this

question will appear in Chapter 7.

The next theorem, theorem 6.3, is similar to theorem 6.2, but the

kind of lower bound we are considering is an a.e. lower bound instead

100
of an i.o. lower bound. Theorem 6.3 is almost a companion theorem to

theorem 6.2; it does require the additional assumptions that ty is a

running time, and that tA is sufficiently large, however.

A note on the type of priority construction used for this theorem:
the proof is a finite-injury priority argument with no apparent recursive

bound on the number of injuries of each condition.

Theorem 6.3: There exists g € R, with the following property:

2

For any total rurning time tA such that tA 2 AxTx), and any recursive

set A with:
Comp A > go tA a.e.,

there exist arbitrarily complex recursive sets B with:

Comp(B)A > tA a.e.

We choose a function ts to be an a.e. lower bound on B's complexity.

Without loss of generality (as we see from lemma 6.2.6 above) we may

assume that tB is a monotone increasing running time.

We describe a construction which will give us the required set B,

a0 b and A. We use the s-m-n theorem. The parameters

a, b and ¢ in the construction are to be thought of as follows:

working from t

Qa will be tA’

8, will be tg,

P will be CA'

Definition ofiwﬁ(a b.c) (wvhich will turn out to be CB for a, b, c as above)

bei
¢B(a,b,c) will be defined in stages, with wB(a,b,c)(n) eing

101

defined at stage n.

During the comstruction, we keep track of two types of cancellation,
which we call l-cancellation and 2-cancellation. We l-cancel an index i
when we have succeeded in defining mB(a,b,c) in such a way that:

@x,9) (10 1 (G| (0, s3] =B o o |00, = 0, P00 #0001,

These‘l-cancellations will be usad to insure Comp(B)A > t, a.e.

We 2-cancel an index i when we have insured that mi # mB(a,b,c)'
Indices i get 2-cancelled when @i is less than tB sufficiently many

times. This will insure Comp B > tg a.e.

Once an index is l-cancelled or 2-cencelled, it remains so at all

later stages.

Also, at any particular time during the construction, we may have
some "tentatively l-cancelled" indices. If an index i is tentatively
l-cancelled, a pair of integers (xi,yi) will be defined such that if
we ever discover that CA(xi) # Yyo then i will become l-cancelled. If
we ever discover that CA(xi) =¥y then the tentative l-cancellation will

be removed.

The same index may become tentatively l-cancelled and lose its
tentative l-cancellation repeatedly, the values of (xi,yi) changing
with each tentative l-cancellation, but we will see that (in the cases
in which we are interested) may index can only become tentatively

l-cancelled finitely often.

Finally, at any time during the comstruction we may have a

"tentative commitment for (an index) i". A tentative commitment for

102

i1 is a quadruple (i,xi,yi,zi), where z, is the canonica. index of a 0-1

valued function Fz with finite domain such that:

i
(VC) 1(C,|domain F. =F) = @, Dx) =1y)]
C z, z, i i i’
and F_ 1s an extension of the finite portion of ¢ defined at the
z B(a,b,c)

i
time of the tentative commitment to 1. The tentative commitment is

designed to allow us to subsequently tentatively l-cancel i, if possible.

We will eventually fulfill the tentative commitment for i, at
which time i becomes tentatively l-cancelled, unless we are interrupted
by the 2-cancellation of an index smaller than (i.e. of higher priority

than) 1, or by a new tentative commitment for an index smaller than 7.

In both the following constructions, we will speak of the '"first"
members of certain collections of finite sets; it is to be understood

that the ordering we are using is lexicographic.

At the beginning of Stage 0, there are no l-cancellations, tentative

l-cancellations, or 2-cancellations, or tentative commitments.

Stage n: (Define mB(a,b,c)(n))

1. Compute Qb(n) and @b(n - 1).
(If either diverges, thenmp(a b,c) will diverge.)
Yy
Let X = (x < @b(n)lab(n - 1) <8 (x) < 8 ().

See if either of the following, (a) or (b), holds:
(a) There exist i, x, E such that:

(al) 1 < n, 1 18 meither l-cancelled nor tentatively l-cancelled,

and if there is a tentative commitment for some j, then i < j,

e VRSN

103
(a2) x € X,

(a3) E & [yly < h(i,x,@a(x))] (where h is the function whose
existence is asserted in lemma 4.2.1), and:

(Vy Sn- 1) I'y EE ® @B(a’b’c)(Y) = 1]’
and (k) Qi(E)(x) <8 _(x).

(b) There exists i < n, where 1 is not 2-cancelled, and if there is a
current tentative commitment for some j, then 1 < j, and:

Qi(n) < @b(n).
1.1. If neither (a) nor (b) holds,

1.1,1. If there is no current tentative commitment, define

mB(a,b,c)(n) = 0 and go on to substase 2,

1 1.2, If there is a tentative commitment (j,xj,yj,zj), let

= Fz (n). Go on to substage 2.

h|
1.2, If either (a) or (b) does hold, fix 1 to be the smallest index

Pa(a,b,e)

for which either (a) or (b) is true.

1.2.1. If 1 arises from (a), choose the x such that Qa(x) is
smallest (1f two are equal, choose the smaller x), and
for this x choose the first set E such that (i,x,E)
satisfy (a). Ramove any previous tentative commitment,

and make a new tentative commitment for i,

w,x0, P2,

where z, is the canonical index of the function:

F, ™ cpliyly < max(n,h(t,x,8,(0))}.

1046 - ‘
Define cPB(a,b,c) (n) = in(n), and go on to Subsfage 2,

t
' t

1.2.2, 1£ 1 arises from (b) but not from (a), define:
@B(a’b’c) (n) =1 < CPi(n),
and 2-cancel 1. Remove any previous tentative comm:tment

1
i

and go on to substage 2.

1
i

2, See 1f there is a current tentative commitment (i,xi,yi,zi) such Ehat

n 2 max (domain F).
2

2.1. If so, tentatively 1-cance1 15 associating (xi,yi) mith the

tentative l-cancellation, : :)

Remove the tentative commitment and go on to substagé 3.

2.2. If not, then Just go on to substage 3.

3. For each tentatively l-cancelled index 1 with an associated pair of

integers (xi,yi), see if § (xi) < (n)
3.1, If not, then make no change. ‘
3.2, If so, then: '

3.2.1, Ifipc(xi) = ¥y» Temove 1's tentative lrcancéllation. !

3.2,2. If<pc(xi) # ¥y» remove 1's tentative l-cancellation and

l-cancel i

Go on to stage n + 1,

END OF CONSTRUCTION
r

It is easy to verify that if Qb is totalt then for any a, c € N,

]

' 105 ,

}] .
R and CpB(a b) ig 0-1 valued.

Cp[i(z’ b c)

‘ %, b* ok : = = = =
Now choose a*, bk and ‘c* such that L .tA_’. % = tg and @, = Cy-

1

def ' ;

25 CB - lCp[i(a'k,trk,cv'c)'

1

We claim that this set B has the required properties. The key
step in the proof is the claim that mo index gets 1-cance11ed i.0. If we

assume this for the moment, the rest of the proof is straight forward:

It is easy to see that:Comp B > tB’a.e., as in earlier proofs: if
Q <ty i.0., then i will be 2-cance11ed once a11 the finitely-many
, higher priority indices which are aver 'going to be 2-cance11ed are so
cancelled, and once all the (finitely many) tentative l-cancellations of
higher priority indices have been made. When i is 2-cancelled, clause

1.2.2. guarantees that Py ¥ C

e
i

|
' We now claim that comp®a > t, a.e.

| o i
For if not, then there is an index i such that Q’Ji() - CA and
s (B < ! :
Qi | tA i.o.

)

' Such an i could mever be l-cancelled during the?constrhction of B,

for this would meah that for some finite set E and some argument X,

c (x) f mi()(x) . by the l-cancellatiom,

i
=¢’1(B) (x) by lemma 4,2.1, and clauses 1.2.1. and 2.1.

Therefore, each tentative 1-cance11:lation of 1 will eventually be
. I !
removed by clause 3.2.1. : !

We will eventually reach some staée e in the construction of B such
' ! ' :

106
that ‘“er stage e, mo j < i becomes tentatively l-cancelled or

2-cancelled. Beyond stage e, clauses (a) (b) and 1.2 insure that no
index smaller than i cén prevent a tentative commitment for i from being
made, nor can an index smaller than i interrupt such a tentative com-

mitment for 1.

Thus, whenever i satisfies clause (a) at some stage n > e, and 1 is
not already tentatively l-cancelled at stage n, 1 will become tentatively

l-cancelled at stage n.

But by lemma 4.2.1, 61(3)(x) s tA(x) implies the existence of a set L
such that (i,x,E) satisfies clause (a). Since §i(B)(x) < tA(x) i.0., 1
will satisfy clause (a) i.0., and so must become tentatively l-cancelled

i.o0.
But we have assumed that no index i is tentatively l-cancelled i.o.
Thus, Comp(B)A > t, a.e.

It remains to show that no index can become tentatively l-cancelled
infinitely often. In order to do this, we construct (by the s-m-n theorem)

a function with five parameters, my(a,b,c,d,e)'

The parameters are to bes thought of as follows:

§a = tA’
@b = tB,
©, =Cp,

d = the first index which becomes tentatively l-cancelled infinitely

many times, and

e

107

e = the number of a stugz beyond which no index smeller than d ever

becomes tentatively l-cancelled or 2-cancelled. We assume e > d.

Then(py(a,b,c,d,e) will represent a program for CA requiring measure
<go tA (for an appropriate function g). We will let this be the g in
the hypothesis of the theorem, so that we here obtain a contradiction

to "Comp A > g o tA a,e,"

Definition Of(py(a,b,c,d e):

To compute §)(x), we proceed_as follows:

v(a,b,c,d,e

If 8, (0t or (Yn)1e_(x) > @b(n)], then® . 4o g ey @1

Otherwise, let n = umféa(x) < @b(m)].

1. If n< e, let cpy(a’b’c’d’e)(x) =Cpc(x)-

2. If n > e, then perform stages 0 through n - 1 in the comstruction

of © At the point immediately after completing stage

B(a,b,c)”
n - 1, see if either there is a tentative commitment (d,xd,yd,zd)

or d is tentatively l-carcelled.

2.1, If either condition is true, let ®)(x) = @c(x).

yv(a,b,c,d,e

2.2, Otherwise, see if some tentative commitment (d,x',y,z), for
x # x' would be made at clause 1.2.1. of etage n in the

construction of @ That is, see if:

B(a,b,c)’
(Ex' <2 ()M@ (n-1 < 8 (x') <8 (x) V
(3,00 =8 (x') and x' <x)] A

"B € (yly S h(a,x", 8 x'HNTWySsn-D(yeE »

108
P8ea,b,c) M =D A @, B (xy = & (x"))111.

2.2.1, If so, let pr(a,b,c,d,e) (x) =CPc(x)-

2.2,2, If not, then see if (dE & {yly < h(d,x,‘Pa(x))})
TVy < n-1 € & =1) A
(y()n)(y €E cPB(a,b,c)(y))
E
@7) < & (0)1,
(We are checking to see if at stage n in the con-
struction of B, a tentative commitment (d,x,de(E) (x),2z)

was made.)
2.2.2.1. 1f not, let cpy(a’b’c,d,e)(x) =Cpc(X)-

2.2.2.2. If so, consider the first such E and let:

_(®)
Py(a,b,c,d,e) @ =Py (x).
END OF CONSTRUCTION

We now assume (as indicated briefly before the construction of

CpY(a b,e,d,e) that a*, b*, c*, d* and e* are fixed as follows:
t Bt Aol g]

Qa* K t:A’
Ppx = tpo
cp«:* = CA’

d* = the first index which becomes tentatively l-cancelled infinitely
many times during the construction of %(a*,b*,c*)’ and

* =

e the number of a stage in the construction of CpB(a*,b*,c*) after
which no index smaller than d* ever becomes tentatively

" l-cancelled or 2-cancelled. We assume e* > d*,

We claim cpy(a*,b*,c*,d*,e*) = CA'

109

For all clauses except 2,2,2,2,, qoy(a*,b*,c*,d*,e*) = cpc* = CA'

We must check what happens if clause 2.2.2,2. defines ¢
(E)

v(a*, b, cx, dx, ex) (¥

to bede* (x).

If 2,2,2.2. is executed in defining some q’y(a*,b*,c*,d*,e*) (x),
then it means that there is a stage n > e* in the construction of

- .
CpB(a*,b*,c*) at which d*, x and some set E satisfy the conditions in

1. (a) of that comstruction.

d* must be the smallest index for which either (a) or (b) is satisfied

because we are already past stage e*.

Thus, in stage n of the construction of CpB(a* b, c*) ? clause 1.2.1,
3]

must be executed for i = d*.

But since clause 2.2.1. of the construction of my(a*,b*,c*,d*,e*) (x)
was not executed, it must be the case that no other argument x' could
interfere with a tentative commitment (d*,x,yd*,zd*) being made at stage
n in the definition of q’B(a*,b*,c*)’ and so some tentative commitment

(d*,x,de*(E)(x),zd*) will be made.

Eventually, this tentative commitment for d* will cause d* to
become tentatively l-cancelled, since n > e*, When d* becomes
tentatively l-cancelled, :t w:1l be associated with the pair of integers

(x,('pd*(E) (x)).

Since d* becomes tentatively l-cancelled infinitely often during
the construction of CpB(a*,b*,c*)’ this tentative cancellation must
eventually be removed. This can only happen because of clause 3.2.1.

at some stage m > n in the comstruction of CpB(a* b, c#)? but 3.2.1. gets
b} ’

110

executed only if:

E
_CA(") =de*((< = Py(ar,br,c, ax, ex) (X

This establishes the claim that CA = pr(a*,b*,c*,d*,e*)‘

Next, we would like to show that:

< =
Q\((a*,b~k,¢-;*,¢]~k,e,1r) g o Qa* (=go tA) i.0.
To do this, we must first define g.

~ Let g(x,y) = max g'(x,y,a,b,c,d,e), where we will define
a,b,c,d,esx
g' below. The idea behind the definition of g' is the following: we

list enough conditions, each recursive assuming the preceding ones are

satisfied, to insure that ¢)(x), and hence ¢

v(a,b,c,d,e) @,

converges. On the other hand, we don't put in so many restrictions that

Y(a:b’c’d’e

we exclude any of the cases we're interested in (i.e. we only list

properties actually satisfied by a*, b*, c*, d* and e¥*).

Here, we basically follow the construction of ¢ (x) and

v(a,b,c,d,e)
select which of the conditions om a*, b*, c*, d* and e* were needed for

the convergence of pr(a*,b*,c*,d*,e*) (x).

We define g'(x,y,a,b,c,d,e) = (x) provided all the
)

$
v(a,b,c,d,e
following conditions are satisfied:

l, e>d,
2.y =29 (),

3.8, (y) 2 ﬁa(x),

111
4, Let n = umea(x) s Qb(m)]. Then:

4.1. n > ¢,

4.2, Immediately after performing stage n - 1 in the comstruction

B(a,b,c)’ there is no tentative commitment (d,xd,yd,zd),

and d is not tentatively 1-cance11ed,
(Note: This ig an effective test since we know that for any

m < n, Qb(m) < Qa(x), 80 that<pb(m)4. This suffices to

insure that @B(a,b,c)(m)l')

4.3. There is o x' satisfying clause 2.2. of the construction of
cpv(a,b,e,d,e)(")° Precisely,
TEx' S8) IM(E (0 - 1) < 8 (x

") < Qa(x)) v (Qa(x) = Qa(x')
and x' < x)] A

'(EE € (2]z < h(d,x',8 (x'))}) (V2 < n -1y

EEE S P, ®@ =D A @ B 8, =111,

4.4, (8g < [z,z < h(d,x,Qa(X))})

EEn-Deer ep 0@ =A@ B 2,G)).

If oue of the conditions fails to be satisfied, we define:

8'(x’}’sasbsc,d, e) = 0.

Now by defini tion,

8(x,8,, (%)) 2 B'(%,2 (%), 8%, bk, c*,d%, e%) g.e.

(&%, b, cx, dx, ex) (X) for all x such that

& tentative commitment (d*,x,yd*,zd*) 1s made at some stage after stage

e* in the construction of B,

But since we have assumed that d* getg tentatively l-cancelled

112
infinitely often, this laiter equality must occur for infinitely many X.

<
Thus, we have Qy(a*,b*,c*,d*,e*) g o Qa* i.o.

But since ch(a*,b*,c*,d*,e*) = CA’ this contradicts the hypothesis:
Comp A > go tA a.e. The-efore, our assumption that d* was tentatively
l-cancelled infinitely'often was wrong, and so we conclude that mo

index. gets tentatively l-cancelled infinitely often in the comstruction

of Pp(a, b, c¥)’ : SR

Remark: Part of the difficulty of the preceding preof arises from the
fact that there is mo evident effective way to estimate how many

tentative commitments for an index may be removed. The resemblance to
finite injury priority arguments without recursive bounds on the number

of injuries is readily apparent.

We now wish to discuss the relationship between theorems 6.3 and
5.2. As in the parallel discussion for theorem 6.2, we require a

"compressed" version of the theorem:
We obtain:

Proposition 6.3.3: There exists g € R2 with the following property:
Whenever we have total rumning times t, and ty with ty monotone
j.ncreasing, and a recursive set A with Comp A >go t, a.e., and if
tA = Ax'x1, then there exists 2 recursive set B such that:
Comp B > ty a.e.

Comp B < go ty a.e.,

and Comp(B)A > t, a.e.

113
' v x €
Proof: It is easy to verify that (Vx,a,b,c)'x domaintpﬂ(a,b,c)

whenever (0,1,...,x} < domain Qb].

Thus, by a simple domain-of-convergence argument, we may find a
function g' € R2 such that:
< 1]
QB(a,b,c) g'o @b a.e.
whenever Qb is monotone increasing, and the proposition follows

immediately from theorem 6.3.

QED
Having this stronger version of theorem 6.3, we may now note the

following:
Let us use the function g found in proposition 6.3.3.

As before, define g2 € R2 to be Ax,ylg(x,g(x,y)]. Then we obtain,
by theorem 5.2, a set Ag, which is 1i.o0. gz-improved by all recursive
sets B whose complexity is weakly g-compressed around a running time.

(That is, there exists a total rumming time t, such that Comp B > tB i.o.

B

and Comp B < go t_ a.e.)

B

Now assume that there exists a recursive function tA which is a

"good'" a.e, lower bound for Ag,is complexity, in the sense that CA

g'
can actually be computed a.e. in measure not much greater than tA.

If such a function N exists, we may apply proposition 6.3.3. to
ty and an appropriace ts and obtain a set B. What is B's relationship to

(MY
g

B must gz-improve Ag, i.0., by theorem 5.2. On the other huard,

since B preserves the a.e. lower bound tA (at least to within amount g),

114
it is impossible that B gz-improve Ag, i.o. But this is a contradic-

tion.

Hence, we see that the assumed existence of the "good" a.e. lower
bound was false, so Ag, can have no "good" a.e. lower bound on its

complexity.

Open Question: Can we obtain a more symmetrical version of theorem

6.3, in which A also preserves a lower bound on B's complexity? (This

is stronger than theorem 4.8 because the set A may be fixed arbitrarily.)
One way of formulating this is the following:

Is this true:

"There exists g € R2 with the following property:

Whenever we have total running times tA and tB with tg monotone
increasing, and a recursive set A with Comp A>go t, a.e., then there
exists a recursive set B with:

Comp(A)B > t, a.e.
Comp B = go tB a.e.

and Comp(B)A > ty a.e." ?

Open Question: For any recursive set A, we have found sets B which
preserve any single a.e. lower bound t, on A's complexity, provided tA
is a rumning time. Can we find, for each A, a single set B which
preserves all rumming time a.e. lower bounds? Further discussion of

this question will appeer in Chapter 7.

Open Question: 1In theorem 6.3, can the hypothesis that tA is a rumning

time be eliminated?

115

7. Suggestions for Further Study:

make

7.2,

7.3.

In this chapter, we collect open problems from Chapters 3-6 and

further suggestions for additional work.

. In theorem 6.3l_c§37the "rumming time' hypothesis on ty be eli-

minated? That is, can we prove the following theorem:

"There exists g € R2 with the following property:

For any ty € R1 (with ty = Ax'x1), and any recursive set A
with Comp A > g o t, a.e.,
there exist arbitrarily complex recursive sets B such that:

Comp(B)A > ty a,e." ?

Can we strengthen theorem 5.2 to omit or weaken the complexity
restrictions on B?
For example, can we prove:

"For all k €R there exist sets A and functions t € R1 such

2’
that:

(YB) IComp B > r a.e. = B k-improves A i.0.7" 7

There are other possible formulations of the same (intuitive)

question.

pPart of the intention of introducing the notion of "helping" was
to give a formal interpretation of the way in which a subroutine
helps the computation of a function. (The oracle set plays the
role of a subroutine). Intuitively, it appears that a definition
of "helping" which accurately reflects this situation should be

transitive, contrary to corollary 4.8.5. We see that the difficulty

116
arises because the 'helping sets" we consider in the counterexample
are in fact unlike subroutines because they encode the entire function
whose computation they are supposed to help (i.e., we say B join

(B © C) helps the computation of c).

We would 1like some way of eliminating this difficulty. Can
we makqhgome suitable restriction on the kinds of sets allowed as
oracles (e.g. restrict their complexity relative to that of the
function being kelped) to make our notion of helping a transitive

one?

If we intend, as above, to give a formal interpretation of

the way in which a subroutine helps the computation of a function,
then we should not restrict our attention to set oracles, but
rather we should have a model for computation which allows help

from arbitrary partial recursive functioms.

Some work in this direction has already been done by Symes in
his thesis fSyl. Symes has defined an acceptable ordering of
"subroutine operators" which work not in conjunction with an
arbitrary set oracle (as do relative algorithms), but rather in
conjunction with a partial recursive function. Complexity axioms

in the style of Blum are then developed for these operators,

Consideration of the kind of complexity restrictions needed on B in
theorem 5.2, and elsewhere in the thesis, leads us to inquire about
the relationships between the different types of complexity

restrictions.

7.5.

7.6.

117

For example, we ask which of the following statements are true:

7.4.1. (3g € R2)(Vh € R2)(3A,3t € Ry)
Comp A >t a.e. and Comp AS go t a.e.,

but such that for no total running time t' is it true that:
Comp A > t' a.e. and Comp ASho t' a.e.

__("A is strongly compresscd but not between honest bounds.")

7.4.2. (8g € R2)(Vh € R,)(dA,Tt € R

2 V)

Comp A> t {i.0. and Comp A< go t a.e.,

but such that for no total running time t' is it true that:
Comp A>t' {.0. and Comp A S ho t' a.e.

("A 18 weakly compressed but not between honest bounds.")

Can we obtain a version of theorem 4.2 for oracle sets B which are
nonrecursive? That is, can we find any way to bound the amount of
help a8 nonrecursive set B can give the computation of a functior. (for
example, relative to B's Turing-reducibility properties, or to B's

complexity relative to some oracle set)?

For any recursive set A, theorem 6.2 gives sets B which preserve any
single 1i.0. lower bound t, on A's complexity. Can we find, for each
A, a single recursive set B which preserves all i.o. lower bounds

on A's complexity (or, more restrictively, all i.0. lower bounds
which happen to be rumning times)? This would imply that B failed

to help A, in a somewhat more natural sense than theorem 6.2,

For example, it might be possible to somehow take into account

all i.o0. lower bounds on A's complexity, and hence construct B by

7.7'

7.8.

118
working from all the i.o. lower bounds rather than a single ome.
t !

For amy recursive set A, we have found sets B which preserve any
single rumming time a.e. lower bound on A's comple"ity. Can we
find, for each A, a single set B which preserves a11 a.e. lower

bounds, (or all rumming time a.e. lower bounds)?

!

A serious drawback to the idea of taking into account all a.e.

lower bounds on A's complexity is the following clain of Meyer Mel:

!
!

"There exists a recursive set A guch.that no sequence of
total functioms {p,} gatisfies the following prbperties:

(a) Xi,x'pi(x)] is recursive, }

(b) (Vi) 'Comp A > p, a.e.)

() (Yr €R)T(Comp A > r a.e.) = @3)(py > r a.e.) 1"

We do not know whether a similar result holds for. i.0. lower bounds.

: L
In Chapter 6, the sets B which don't help A, fail to help it in that .

they preserve a given lower bound on A's complexity. It would be nice
to be able to sharpen theorems 6.2 and 6. 3 to involve k-improvement:

by applying them to a gsingle "best possibleﬂ lower bound on A's

complexity.

. [
Unfortunately, Blum's speed-up theorem (B1] tells us that for

some recursive functions, mno lower béund is clpselénough to the !
actual rumming time of a program for that function to 1;sure that
the resulting set B does mnot k-improve A. That is, some recursive
functions do not have their complexities well- described by a single

lower bound furctiom. : |

119

However, it can be shown MeF) that the:complexity of amy recursive

1

function may be described by a sequence of recursive functions

{p,} called a ﬁcomplexity sequence,' having some nice properties:
i , P
(a) Ki,xfpi(x)] is recursive,
(b) Each Py is a total rumning time,
' }
i (c) (Vi)fh ° Py 2 Pis1 a.e.] (for some h depending on the

! measure only).

Using the concept of a "complexity sequencé," Meyer has
I i

obtained a version of theorem 4.8 in which neither of the sets B
’ ,

or C k-improves the other for any montrivial k.
A

.}n,the hope that this method will extend to other problems
; ') :
(notably the questions in Chapter 6), it would be nice to better
understand how the complexity of recursive functions can be character-

.ized in terms of tomplexity sequences. '
For example, two specific questions:

7.8.1. 'Does every recursive functioh f have a 0-1 valued recursive
¥
I :
function g with "approximately" the same complexity sequence?
This means that there exists a function h € R2 depending on
;thelmeasupe onlj, for which:
C8 (fi], a complexity sequence for f), and
i !
(C8 [gi}, a complexity sequence for g)
: | ;
reY . > e.Y N (Y q 2 .e.)].
TV (g o €2 gy ae) A (g EED o g, £, a.e)]
7.8.2. Give neéessary and sufficient conditions on a :e¢quence of

functions that it be a complexity sequence.
! i ; :

H

120
For example, in L], we have two sets of sufficient condi-
tions, wliere each set of conditions includes a synchroni-
zation condition (i.e. infinitely many of the functions in
the sequence are large and small at the same arguments).
However, we can show that synchronization conditions are
not mecessary in the following strong sense: we can obtain
functions f with effective i.o0. speed~up B2] such that no

complexity sequence for f can be synchronized.

7.9. Many other questions about helping besides those in Chapters 4-6
may be asked, some of which are probably answerable by methods
similar to thuse used in Chapters 4-6. There are different for-

malizations of the same intuitive questions, but some examples are:

7.9.1. Does there exist a "universally-helping set"?
Specifically, is it true that:
(Vh € Rz)(ﬂA, a recursive set)(Vt, total running times) (VB)

f(Comp B>t a.e. and Comp B < ho t a.e.) @ (A h-improves B)] ?

7.9.2. Can a set always be helped in a "controlled" way?
Specifically, is it true that:
(Yh € Rz)(V total running times t, t' with t > t')(d recursive
sets A,B)
f(Comp A >t a.e.) AN (Comp A<ho t a.e.) A (Comp(B)A > t' a.e.)

A Comp®A <ho t' a.e)] ?

7.10. Is theorem 4.6 true without the monotonicity restriction? Namely,
is it true that:

"There exist r € Rl, h € R2 with the following property:

121

Whenever t is a rumming time, there exists a recursive set

A with:

Comp A >t a.e.,

Comp A< ho t a.e.,
and ComprA]A <r a.e’" ?

7.11. Can we obtain more symmetrical versions of theorems 6.2 and 6.3,

in which A also preserves a lower bound on B's complexity?

One example of a precise formulation of this question for
theorem 6.2 is the following: 1Is it true that:
"There exists g € R2 with the following property:
Whenever we have tA’ tB € Rl’ A a recursive set, Comp A
>go tA i.o., there exists a recursive set B such that:
Comp(A)B > tB i.o.

Comp BS<go t_ a.e.

B

and comp®A > ¢, 1.0, 2

A

7.12. This thesis deals almost exclusively with results about functions
in Rn and Rn(A). It would be interesting to consider similar
results in P and Pn(A). For example, questions 7.4 and 7.8 may

be rephrased for partial functionms.

We may use Symes' definitions Syl for programs with partial
recursive functions in place of oracles, and reformulate our

questions about helping in these terms.

7.13. 18 is pdssitle to strengthen proposition 3.14 in the following way:

"Given any nourecursive set A, it is always possible to find a

7.14.

7.15.

122
set B such that:

A|B and A-reducibility = B-reducibility!' 2
T

Is bounded truth-~table reducibility, or any of the other redu-
cibilities mentioned by Jockusch in his thesis J1] complexity-

determined?

In his thesis, Jockusch develops the properties of various types
of truth-table reducibilities, such as contaimment properties of
degrees. Explore the answers to these questions fof C-reducibili-
ties for various sets C. For example, does C-reducibility have

any properties significantly different from truth-table reducibility?

A1)

rA2]

'B1]

'B2]

rcl

V)

THH]

THLS]

1J1]

ry21

K]

IR1

Lyl

Mall

Ma2]

123

BLBLIOGRAPHY

Axt, P. Enumeration and the Grzegorczyk Hierarchy, Zeitschrift fur
Mathematische Logik und Grundlagen der Mathematik, 9, 1963,
ppo 53"65.

Axt, P., On a Subrecursive Hierarchy and Primitive Recursive Degrees,
Transactions of the A, M. S., 92, 1959, pp. 85-105.

Blum, Manuel, A Machine-Independent Theory of the Complexity of
Recursive Functions, JACM, Vol. 14, No. 2, April 1367, pp. 322-
336.

Blum, Manuel, On Effective Procedures for Speeding Up Algorithms,
JACM, Vol. 18, No. 2, April, 1971, pp. 290-305.

Cobham, Alan, The Intrinsic Computational Difficulty of Functionms,
Proceedings of the 1964 International Conference for Logic,
Methodology and Philosophy of Science, Jerusalem, Aug. 26-Sept. 2,
1964, pp. 24-30.

Davis, Martin, Computability and Unsolvability, McGraw-Hill, 1958.

Hartmanis, J. and Hopcroft, J. E., An Overview of the Theory of
Computational Complexity, JACM, Vol. 18, No. 3, July, 1971, pp.
444-473.

Stearns, R. E., Hartmanis, J., Lewis II, P. M., Hierarchies of
Memory Limited Computations, IEEE Conf. Record on Switching Circuit
Theory and Logical Design, 6, 1965, pp. 179-190.

Jockusch, Carl G, Jr., Reducibilities in Recursive Function Theory,
PhD thesis, Department of Mathematics, M. I. T., June, 1966.

Jockusch, Carl G., Jr., Uniformly Introreducible Sets, Journal of
Symbolic Logic, Vol. 33, No. 4, Dec. 1968.

Kleene, Stephen Cole, Introduction to Metamathematics, Van
Nostrand, 1959.

Landweber, L.H., and Robertson, E.L., Recursive Properties of
Abstract Complexity Classes, accepted for publication in JACM.

Lynch, Nancy, desk drowver.

Machtey, Michael, private communication.

Machtey, Michael, Augmented Loop Languages and Classes of Com-
putable Functions, to appear.

[MecC]

[McCMe]

[Mcl]
[Mel

[MeF]

[MeRD]

[MeMo]

(P]

(RD]

[RRW]

[Rol]

[Ro2]

[Sal

[sy]

[T1]

[12]

124

McCreight, Edward M., Classes of Computable Functions Defined
by Bounds on Computation, PhD thesis, Department of Computer
Science, Carnegie-Mellon University, July, 1969.

McCreight, E. M. and Meyer, A. R., Classes of Computable Functions
Defined by Bounds on Computationm, Symposium on Theory of Com-
puting, Marina del Rey, May, 1969.

McLaughlin, T. G. Private communication.

Meyer, Albert R., private communication.

Meyer, Albert R. and Fischer, Patrick C., Computational Speed-up
by Effective Operators, Journal of Symbolic Logic, Vol. 36, No. 4
Dec. 1971.

Meyer, A. R, and Ritchie, Dennis M., A Classification of Functions

by Computational Complexity: Extended Abstract, Hawaii Int'l
Conference on System Science, Jan. 1968.

Meyer, A. R. and Moll, Robert, Honest Bounds for Complexity Classes

of Recursive Functions, MIT Project Mac publication, April, 1972.

Paterson, Michael, private communication.

Ritchie, Dennis M., Program Structure and Computational Complexity,
PhD thesis, Division of Engineering and Applied Physics, Harvard
University, 1967.

Ritchie, R. W., Classes of Predictably Computable Functions, Irams.
A, M. S., 106, 1963, 139-173.

Rogers, Hartley Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill, 1967.

Rogers, Hartley Jr., GSdel Numberings of Partial Recursive Func-
tions, JSL, Vol. 23, No. 3, Spptember, 1958, pp. 331-341.

Sacks, Gerald E., Degrees of Unsolvability, Annals of Mathematical
Studies, No. 55, 1963, Princeton, N. J.

Symes, David M., The Extension of Machine-Independent Computa-=

tional Complexity Theory to Oracle Machine Computation and to

the Computation of Finite Functions, PhD thesis, Department of
Applied Analysis and Computer Science, University of Waterloo,
Oct., 1971.

Trachtenbrot, B. A., On Autoreducibility, Dokl. Akad. Nauk.SSSR,
Vol. 11 (1970), No. 3.

Trachtenbrot, B. A., private communication.

125
BIOGRAPHICAL NOTE

e o e — W Pl Redactsd

- She attended P.S. 192, where she won the annual spelling bee
in 1959,

She attended Hunter College High School from 1961-1964, and Brooklyn
College from 1964-1968. At Brooklyn College, she held a New York State
Regents Scholarship and a National Science Foundation grant for summer
study. She was elected to Pi Mu Epsilon, Phi Beta Kappa and Sigma Xi.
She served in numerous offices, including those of president of the
Brooklyn College chapter of Pi Mu Epsilon and editor of the school's
mathematics journal,

She received her B. S. in June, 1968, summa cum l..de,

She began graduate work at M. I. T. in September, 1968, as an
N. 8. F. fellow. Her final year of graduate study was completed as a
Project Mac research assistant,

During her attendance at M. I. T., she became Nancy Lynch, worked
for a short time on the LOGO Project (for computers in education) and
learned how to ski.

She has accepted an appointment as Assistant Professor of
mathematics et Tufts University, Medford, Mass., beginning in September,

1972,

Pll Redacted

