
IIIII'·' ~~

11111
1
)

5
111111.

4 IIIII:!!

BEST
AVAILABLE COPY

Securitj^CUÄjlficatjoi^

DOCUMENT CONTROL DATA -R&D
(Security eftlUcallvn of till: body of abtttmel mnd Indtnlng mnnouilm muH be •nfnd whm lha omtall fport I» cliitllltd)

I. ORIGINATING ACTiviTV (Corporate author)

Project MAC
Massachusetts Institute of Technology

2«. REPORT lECURITY CLASSIFICATION
Unclassified

ab. GROUP

N/A
3. REPORT TITLE

AUTONOMOUS, SYNCHRONOUS COUNTERS CONSTRUCTED ONLY OF J-K FLIP FIXDPS

4. DESCRIPTIVE NOTES fJVp« of roporl and Ineluelve date»)

«. AUTHOR(SI (Flril name, middle Initial, laet name)

FRANK MANNING

• ■ REPORT DATE

May 1972

7«. TOTAL NO. OF PAGES

64

76. NO. OF RBFS

6
Sa. CONTRACT OR GRANT NO.

N00014-70-A-0362-0001
b. PROJECT NO. N/A

c N/A

* N/A

M. ORIGINATOR'S REPORT NUMBERISt

»6. OTHER REPORT NO(S» (Any other num
Ihle report) "' "

NONE
10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited

ther numftW^afWy bo anTJMd,

nJE&EIlllÜlHP
••«?—m n BR 11" i EEEÜ Ü m

II. SUPPLEMENTARY NOTES

NONI

•«-"
12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

-*rAr

». ABSTRACTAfhik teport describes research into some properties of autonomous,
synchronous counters constructed with only the simplest form of J-K Flip-Flop.
The research revolved around a system with a special-purpose digital machine and a
general-purpose computer. The special-purpose machine searched through all the
possible counters constructed of five or fewer J-K Flip-Flops for all counters with
a period equal to that specified by the input to the systems. The descriptions of
the counters found were transmitted by the special-purpose machine to the computer.
Software analyzed this output data for various attributes, such as counters that
cycle the same way independent of their starting-state.

Useful information for designers of digital machines, several proofs, and
some insight into counters constructed only of J-K Flip-Flops resulted from this
analysis. ,An exan^le of the useful information is a table which gives synchronous
counters using the minimum number of J-K Flip Flops with no other logic to realize
periodic behavior with P< 31. One proof shows that any synchronous counter that
uses only n J-k Flip-Flops and cycles with a period P = 2n - 1 must have a trap state.

Many other topics and proofs appear in the report.
The work is significant in three main ways. First, the results may be useful

to designers of digital machines. Second, some interesting proofs are presented
and conjectures that may lead to proofs areoffered. Third, a good solution of a
problem is offered in which the interaction of a special-purpose digital machine
and a general-purpose computer is far superior to the exclusive use of either.

%

DD ,'r..1473
S/N 0I02-0I4-660C

(PAGE 1)
Security CU«tlflc«Uon

/

UNCLASSIFIED
itcurtty Clwlflcatlo«

AUTONOMOUS, SYNCHRONOUS COUNTERS

CONSTRUCTED ONLY OF J-K FLIP-FLOPS

Frank Manning

MAY 1972

This research was supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 433, and was
monitored by ONR under Contract No.N00014-70-A-0362-0001.

MASSACHUSETTS INSTITUTE OF TECHNG^JOGY

PROJECT MAC

CAMBRIDGE
-/-

MASSACHUSETTS 02139

/

■'

/.

2 -

AUTONOMOUS, SYNCHRONOUS COUNTERS CONSTRUCTED

ONLY OF J-K FLIP-FLOPS

ABSTRACT

This report describes research into some properties of

autonomous, synchronous counters constructed with only the

simplest form of J-K Flip-Flop.

The research revolved around a system with a special-purpose

digital machine and a general-purpose computer. The special-

purpose machine searched through all the possible counters

constructed of five or fewer J-K Flip-Flops for all counters

with a period equal to that specified by the input to the

system. The descriptions of the counters found were transmitted by the

special-purpose machine to the computer. Software analyzed

this output data for various attributes, such as counters

that cycle the same way independent of their starting state.

Useful information for designers fo digital machines, several

proofs, and some insight into these counters resulted from

this analysis.

This report reproduces a thesis of the same title submitted to
2em ?ar^inent ?f Electrical Engineering, Massachusetts Institute

of Technology, in partial fulfillment of the requirements for
the degree of Master of Science, narch 1972.

«——iäiniiim.in>i»mii*w ■■"■ "■

•3-

ACKNOWLEDGEMENTS

I wish to thank Professor Edward Fredkin for his valuable guidance

throughout the preparation of this report. I also thank Robert Fenichel

and Professor Francis Lee for their useful suggestions about the direc-

tion of this research. Many people helped me with specific aspects of

my work. Chief among these were John Roe in logic design and Jeff

Golden in programming. Other members of the AI Lab were also helpful.

Two people deserve special thanks for their assistance in the prep-

aration of the final version of this report. Madeleine Amyot helped in

many ways, including editing. Anne Rubin did an excellent job as typist.

Thanks for personal assistance and encouragement go first to my

parents, Thomas and Mary Anne Boschert Manning, and also to my friend,

Lynn Talbert.

This research was supported in part by Project MAC, an M.I.T. re-

search project sponsored by the Advanced Research Projects Agency, De-

partment of Defense, under Office of Naval Research Contract Number

N00014-70-A-0362-0001.

,

-4-

TA.BLE OF CONTENTS

Acknowledgements

Abstract

I. Introduction

A. Overview

B. Deilnltlon of Some Terms

C. Scope of Report

D. Previous Work

II. The Experiment

A. Overview

B. The System

C. Runtime Statistics

III. Experimental Results

IV. Proofs

V. Suggestions for Further Research

VI. Summary

VII. Appendices

A. Specific Sequences of States

B. Effectiveness of Permutational Redundancy Tester

VIII. Abbreviation Table

IX. Terminology

X. References

Page

2

3

5

5

6

12

15

18

18

73

36

37

45

54

55

56

56

59

62

63

64

/

I. TNTRODUCTION

A. Overview

„.^ „.Hin« «. -Mn..!.»! ^ ^^ ^ functio„
cod.tn.tio«! logic .1«"«. the output Is an 1

°£ - r-.::: ::::r::::: rir:y— „Xue of .on. Input at p.. ^^tlonal logic da-
ao^thlng about earlUr npu«^ In PJ ^ , sUght

vlces. U^tion ™^2Z Z a va. a.»« ^.
delay. In this sense these device information,

—i -^—Tri: o;:o 1:1 c»^-.
th. bit. *o,a at.ta corrasponds to oua o » ^^
perrlta cor.a and s.»lco„ductorS ara co«only uaad ln£otMtlon

CMa. bav. ^ advantagaa. but tba, do not a«.« «

••—"r.rrrrn^i r":;»^1^... sive memory element is the J ^ rup

- <" -—rrdui ":::":■ eot va^u. »a,onS. .0* a.
Countara are uaed In digital ^ ^^ ^^

the ayncbroniaation of prooaaaaa. Our chi ^ J_K FU?_

synchronoua oountar, wltb only one typo £ ^ ' ^ „„. 3ac.

»„p. Tba apaoiflc natu» of tbaaa -» «^ ^ lt .. and Unlt. of

tlo„. Xb. ^ focusad on finding ^^^ / _„ o£ up „ Hv.

thl. „st.ictad class ^ -f ^ 'va 1 aL.butas. sucb as pa.iodioity.
j-K Plip-nops wara «cinad for varl ^^^ ^

R8.„Ua ft™ tbi. ««ination appear in *^ oM u „

t.r, ** patiod, ft™ on. to * ^7;;^;^; • ^„„,3 and ocbat

lntKcon„.ction of no nor. tban fiv.
J «^J ' also appear tu

4 ►« T v Fllo-Flop counters of arbitrary «- s
insights into J-K Flip r^H

the report.

. /

B. Definition of some terms

The counters studied here are constructed of only one type of logic

element, the J-K Flip-Flop (JKFF)*. Several slightly different JKFFs are

commercially available. In this report the JKFF is viewed as a two-state

device with three inputs and two complementary outputs.

INPUTS OUTPUTS

THE JKFF

The outputs Q and Q are constant until the input to C changes from a

logical 0 to a 1 (CT). When CT occurs, the new value of Q, called

Q(t + 1), is calculated from the values of Q, J, and K when CT occurred

according to the equation

Q(t + 1) = Q(t).K(t) + Q(t).J(t).

Q is always the complement of Q.

Q(t + 1) = (Q(t + 1))

Thus we can partition the output history of each JKFF into discrete por-

tions of time -- 1,2, ... t, t + 1 -- separated by the occurrence of CT.

The equations for the JKFF imply that Q changes from a 0 to a 1 only if

J is 1 when CT occurs. Q changes from a 1 to a 0 only if K is 1 when CT

occurs. When Q is 0, Q is 1. When Q is 1, Q is 0.

J(t) K(t) Oft + n Q(t + 1)

0
0
1
1

0
1
0
1

unchanged
C 1
1 0

changed

TRANSITION RULES FOR THE JKFF

The underline implies that the term underlined appears in the Terminology Sec-
tion, which points to the definition of the term. The parentheses in the prop-
er context imply that the parenthesized term is an abbreviation for the pre-
ceding expression; as such, it appears in the Abbreviation Table.

. 7

•7-

Other Inputs are available in some commercial JKFFs. The most

common of these are the "set" and "reset" inputs. Enabling the set input

at any time forces a JKFF's Q to become a 1 almost instantaneously.

Enabling the reset input similarly forces the JKFF's Q to become a 0.

These inputs will not be considered further in this report. However,

it is useful to note that proper use of the set and reset inputs of a

collection of JKFFs can force them to assume any of their possible states,

This method is often used to start a counter or other machine in a par-

ticular state.

We will use the symmetry property of the JKFF.

A

Clock

B

K2 Q2

C2

32 Q2

D B.

Clock

E A

J2 Q2

C2

K2 Q2

JKFFl TWO REPRESENTATIONS OF JKFF2

JKFP1 is functionally identical to JKFF2 for t i 1 if:

1) Jl and K2 connect to the same source,

2) Kl and J2 connect to the same source,

3) Cl and C2 connect to the same source of timing pulses,

4) Ql is compared to Q2,

5) Ql" is compared to Q2, and

6) Ql(l) - Q2(l).

For JKFFl:

For JKFF2;

Ql(t + 1) = Ql(t).B + Ql(t).A.

Q2(t + 1) = Q2(t).Ä + Q2(t).B.

Complementing both sides of this equation:

Q2(t + 1) - Q2(t).B + Q2,(t).A

: ■.-. ■ T

Therefore if Ql(l) - Q2a), Ql(t) - Q2(t) and Ql(t) - Q2(t) for all tal.

A counter is a device which accepts timing pulses and outputs in-

formation concerning the number of these pulses. Here we study autono-

mous, synchronous counters, constructed of only one type of logic ele-

ment, the JKFF (ASJKCs). Each counter is autonomous because after

it is initialized' its component JKFFs receive no inputs other than

timing pulses to their Cs from any element outside the counter. In

these ASJKCs the C input of each JKFF connects to the source of timing

pulses. This results in simultaneous calculation of the new states of

all the JKFFs in the ASJKC. This synchronous operation contrasts with

that of asynchronous counters, in which changes of state for the com-

ponent JKFFs do not occur simultaneously.

TIMING

PULSE

SOURCE

Jl 1— Jl

Cl

Kl

Ql

Ql

-L
i . . J2

C2

K2

Q2

Q2 1

AN ASYNCHRONOUS COUNTER

For the counter above, the delay through JKFFl that would occur in

physical counter results in asynchronous operation.

TIMING

PULSE

SOURCE

Jl
i Jl Ql

Cl

Kl Ql

J2 Q2

C2

K2 Q2 1 . _■ — '
v

AN ASJKC

Because this report deals with synchronous counters, the connection of

each C to the same source of timing pulses will be assumed; it will not

be mentioned or indicated.

Because ASJKCs contain only one logic element, the only possible

input source for each J and K is the constant 1, the constant 0, a Q of

-9"

the ASJKC, or a Q of the ASJKC. The input source for each input of an

ASJKC is indicated by a connection list (CL) in the form:

a = (Jl Kl J2 K2 ... JN KN)

JV 0—Jl Ql

d
ci
Kl Ql

i

J2

C2

K2

Q2

Q2

0

c
Jl

Kl

Ql

— i —

J2

K2

Q2

02

ALTERNATE REPRESENTATIONS OF CL (0 Q2 Ql 1)

The ASJKC's state at time t is indicated by an ordered list of the

states of the component JKFFs.

S(t) - (QKt) Q2(t) ... QN(t))

Given the start-state 3(1) and CL, we can calculate S(t) for all t ;» 1;

for we can find the input values J(t), K(t) and Q(t) for all JKFFs for

til. For a ASJKC of n JKFFs (n-ASJKC) there are 2n possible states.

For example, two JKFFs imply the 2 =4 possible states

(0 0) (0 1) (1 0) (1 1). In 2n + 1 successive states —

S(l) S(2), ... S(2n + 1) -- at least one state must occur twice.

Assume that the first occurrence of this state was at t = i, the next at

t - J. If j - i CTs took the ASJKC from state S through some path back

to state S, the next j - i CTs must do the identical thing because S(t)

and CL are the same at t - i and t = j. The same argument applies for

S(j) and S(j + (j - D), etc. Therefore, if P = j - i

S(t) - S(t - P) t ^ J

„n
P is called the period of the ASJKC. Because j-i52,P<2.

As we pointed out, an ASJKC begins its periodic behavior before t = 2,l + l.

The period associated with various ASJKCs is of central importance in

this report.

_ ..._

■10-

An ASJKC, like any other counter, miy be minimal, sife, Gray, or

binary. An ASJKC of period P composed of n JKFFs (n, P ASJKC) Is

minimal if n = GI(log2 P) . The counter could not be realized with

fewer logic elements. A counter is safe if it eventually cycles through

the same states after being started in any of the 2 possible start

states. A counter is Gray if only one bit changes for each CT that

occurs during its count. A counter is binary if the following conditions

are true.

1) After it begins its count in S(l) = S, the lowest-order

bit -- the one that changes state most often -- changes each

time CT occurs. Each higher-order bit changes only when all

lower-order bits are 1,

2) Rule 1 applies at all times except at t = xP. When the counter

leaves S(xP), the bits of the counter may change in any way

that results in S(xP + 1) = S = S(l).

A composite ASJKC is composed of two or more ASJKCs each with

P 2 2. These connect to the same source of timing pulses but do not

connect to each other in any other way. The composite counter with a per-

iod of six shown below is composed of two counters. JKFF1 is a counter

with a period of two. The combination of JKFF2 and JKFF3 forms a countei

with a period of three that cycles through the states (0 0), (0 1), (1 0),

and then returns to (0 0). The (1 1) state goes to the (0 0) state, so

the counter is safe.

r J i—
Jl Ql

Kl Ql

J2

K2

Q2

Q2

J3

K3

Q3

Q3

JL 1
i-— i — J 1 —

A SAFE COMPOSITE ASJKC WITH P

GI stands for the "greatest-integer" function. This function rounds
all numbers with a fractional part up to the nearest integer.
GI(2.0) = 2, GI(2.1) = 3, GI(2.99) - 3.

.11-

•O* period of a composite ASJKC is found from the period of its

component ASJKCs in the following way:

1) Factor the period of each of the component AS,IKCs into prime factors.

P1-F1 XF2X P2-F2X F4X •••' etC*

2) Associate with each factor F a number t equal to the maximum

„umber of times F occurs in the factorization of any of the

Ps. F1 -♦ t1, F2-» t2, F3 -♦ t3.

3) The period of the composite ASJKC is the product

p - n (Fn)tn.

For example, the period of a composite ASJKC with component periods of

12, 18, and 27 is found in the following way:

1) 12 - 2 x 2 x 3, 18 = 2 x 3 x 3; 27 » 3 x 3 x 3.

2) 2 occurs twice in the factorization of 12, and 3 occurs three

times in the factorization of 27.

3) Therefore the period of the composite ASJKC is P

P - 22 x 33 - 4 x 27 - 108.

Ho composite ASJKC can be Gray or usefully binary. Because each

component has P ^ 2. at leas, one bit of each component must change

each time. Because there are at least two components, at least two bits

must change each time. Because a Gray counter changes only one bit each

time, a composite ASJKC can't be Gray. In a binary counter t e l^est-

order bit changes each time the counter is not returning to the s art

state. If P > 2, there must be a time when the lowest-order bit is

Zero and the counter is not returning to the start-state. When this is

true, none of the higher-order bits of the counter may change. Since a

composite ASJKC changes at least two bits each ^^ ^-^l

of a composite binary ASJKC is two. Since one JKFF can provi

behavior, a composite binary ASJKC is useless.

A composite ASJKC is safe if and only if its component ASJKCs are

safe.

.

•12-

C. Scope of Report

This report describes research into some properties of ASJKCs. The

research revolved around a system in which hardware searched through all

n-ASJKCs with n «: 5 for all ASJKCs with a period equal to that specified

by the input to the machine. Descriptions of tba ASJKC found were passed

to the FDP-10 general-purpose computer. Software analyzed the output data

for various things, such as safe counters. This interaction of hardware

and software led to interesting experimental data. For instance, if

five or fewer JKFFs are needed to synthesize a safe or at least unsafe

ASJKC with a particular period, an ASJKC with the fewest number of

JKFFs needed to provide that behavior is given in Section III. A method

for using these ASJKCs to build composite ASJKCs is also presented in

that section. The proof in Section IV that shows limits on ASJKCs

arose from the eyperiments. A general method of synthesizing an

autonomous, synchronous machine made only J-K Flip Flops that runs

through a particular sequence of states is presented in Section VII.

Insights into ASJKCs and the problems associated with studying them

appear throughout the report.

The work is significant in three main ways. First, the results may

be useful to the designer of digital machines. Second, some interesting

proofs are presented and conjectures that may lead to proofs are offered.

Third, a good solution of a problem is offered in which the interaction

of a special-purpose digital machine and a general-purpose computer is

far superior to the exclusive use of either.

Synchronous counters are used in most digital machines. Any

courter of period P needs at least GI(log2 P) bits of memory, and the

JKFF is a commonly used memory element. A synchronous counter that uses

this memory element and no other logic element is attractive for several

reasons. Given the choice of a particular commercial JKFF, the ASJKC

allows a very high rate of timing pulses.

X
/

■13-

Combinational

Logic

-0
-1

*

^i

P
r^%

11 '-,

Jl Ql

Cl

Kl Ql

•» 7

J2 Q2

C2

K2 Q2 \
'

AN AUTONOMOUS SYNCHRONOUS COUNTER

This is true because there are no logic gates to introduce delays as

information about the state of the counter travels to the inputs.

When an ASJKC is minimal, no functionally identical JKFF counter

using fewtr logic elements is possible. Even when an ASJKC is not mini-

mal there is a possible economy in using only one logic element. Thus

Section III, in which we present a table of ASJKCs with instructions

telling how to use it to build composite ASJKCs, may be a useful guide

to the designer of digital machines. The implications of some of the

proofs mentioned below may also interest him.

Proofs of the following statements appear in Section IV.

1) There is no minimal binary n-ASJKC with n > 3.

2) Any Gray ASJKC which uses all its JKFFs is equivalent to a ^

switch-tailed shift-register and therefore has a period P = 2n.

*0ur definition of a Gray ASJKC implies that ^^^8^Ca
tKJn^h

PÄrtl'
cipate in the court. Our proof does not apply to n-ASJKCs in which

fewer than n JKFFs may count in Gray Code.

-14-

3) Any n, 2n - 1 ASJKC with n > 2 is unsafe.

4) The constant 1 is useless as an input for n, P ASJKCs with odd

period P > 1.5 x 2n"1.

Other less interesting proofs and mathematical analyses occur throughout

the report. The report also notes trends in experimental data which lead

to conjectures.

Jl

Kl

Q

Ql

J2 Q2

K2 Q2

^

-K Q
..n .^ikj D

GENERAL SWITCH-TAILED SHIFT REGISTER

The report presents a good solution using the interaction of a

special-purpose machine (SIW) and a general-purpose computer in a

problem domain where the exclusive use of either is unfeasible. As

Section II-A shows, the amount of computation necessary is impracti-

cally time-consuming for a general-purpose computer. This implies the

need for a SPM. However, the large amount of output information re-

quires the memory and computational facilities of a general-purpose

computer. The interaction of a SFM and the PDP-10 general-purpose

computer facilitated by an Execuport 300 terminal resolves this conflict.

•15-

D
. «f ASJKCs has taken one of two ai

lt appears that past study of A8JKC. ^^^ whlch

.Cons. --^Tsr^n-eachP.- Kohert
searched for onemlnttnaln. P ASJK ^ ^ bullt a

Peniche! and his "-^^ ^ ^KCs with n . 3 for all

dlgital machine which "«^ ^ perlod. ^ advantage of Lee's
ASJKCS with a period equal to the inp P ^^ of

—h was that it ^^^IpUte information ahout

Fenlchel's approach was that P

the Itaited prohlam araa. ^ through aU

Bacauaa an axhaustlva raarch by = P ^ flo,

„..„a ,-^C an. *-^0. .on ^^^ ^ pro-

OIlly ona toka„ ^«C eo. ^J«
1^^ an ^ wlth . patio* that

p„,ad in an ordarty way. «han It foun , of fM ASJKC and

'...n't haan found aarli«. it " ^ ^^.^ all „„.oda o£
lt. pattod. Tha aaatoh continuad un t^K ^ ^^ ^

.„«taat had haan .onnd « too -h t «a ^^ ^^ ^ ^^

«t find an ASÄC for P - 13 or „„,.„ not „a Mda fro«

..arch wa. not an axhauatlva ona. tha con

thl. ...rch that no 4.W ««C « 4-16 ;S
e
JKC

ue
e;tJon. meIvtlon.d ln

P.nUha!'. approach anawar.d all ^ ^ ^^

—- -»--; - ;f:r
3
ASJr:ith ^.- P«^ .. «-

to ..arch through all 3-ASJKC. ^ ^ ^ ^ was found.

numbar Input to tha mchlna, Pi- it,tt.,ttt. of tha
j -«j aisolavad the CL and .cart »>- the «chine .topped end dlaplay ^ ^ ^^ „.

„inning ASJKC on a bank of light.. ^ ' „„ „ „utln-
^.a thl. mfor-tlon on p.per and '^ ° illowed . 9talUr

ue ». ..arch. Slight »dlflcatlon of ^-h ^^ _ _,„.,
...tch through .-AS.KC.. ^KC. fou«^ n He ^^ ^ ^

£or the properties of being «»^ "^^„^ later In this report

- -*" r..r.. "^^ - °£ the 'too£8 IB sectlon IV
led to many conjectures aou

resulted from these conjectures.

V

_

•16-

Because Fenlchel's machine Is similar to the one described later In

this report, It's Interesting to note Its structure. Once the On-off switch

1 v

Multiplexer
^

*
Test
JKFFs *

/ <

/
/^

CL and State
Proposer

»■

Timer
and

Controller

r
^Finish

Light

L

Output L

.-■-.or
i

Ight Bank

\ \ N \ \ U

1 s t t
4 period On- Continue

Input off Button
Switches Switch

FENICHEL'S MACHINE

is turned on, the Timer and Controller synchronizes the proposal and subsequent

test of ASJKCs. The CL and State Proposer is a counter. Each count

corresponds to a particular CL and start-state. When the test of a

CL and start-state begins, the Test JKFFs are forced into one of their

el^jht possible states according to the commanc of the State Proposer.

The CL Proposer's input to the multiplexer determines whether each input

is connected to a logical 0, a logical 1, or one of the outputs of the

Test JKFFs. After the Test JKFFs are connected appropriately and forced

into a start-state they receive timing pulses from the Timer and Con-

troller. The Timer and Controller monitors the response of the Test

JKFFs to determine whether they cycle with period P. If the latter

does not occur, the CL and State Proposer receives a pulse which signala

■

•17-

it to propose a new combination of CL and start-state. If the Test JKFFs

do cycle with period P, the digital machine stops. Information telling

the CL and start-state which caused success is output on the

Output Light Bank. After the operator copies this information onto

paper, he signals the machine to continue. When the CL and State Pro-

poser reaches its highest count, there are no more ASJKCs to try. The

Timer and Controller turns on the Finish Light.

L

•18-

II THE EXPERIMENT

A. Overview

A system was designed to test all possible n-ASJKCs with n = 4 and

5 for a periodicity specified by the input to the system. A particular

n,P ASJKC test was run if either a safe or an unsafe x,P ASJKC was not

found for x<n. For example, there was a search for 4, 9ASJKCs because

this search could yield minimal period-9 ASJKCs. There was no search

for 5, 9ASJKCs because minimal safe and unsafe 4, 9ASJKCs were found.

The major steps taken by the system in looking for all n, P ASJKCs

are below.

1) Propose all possible Connection Lists (CLs) for n-ASJKCs.

2) Eliminate each proposed CL that is easily shown to be equiva-

lent to a CL that is definitely tested.

3) Determine whether the ASJKC implied by the combination of a CL

that isn't eliminated because of redundancy and the all-zero atart-

state (00...0) returns to the all-zero state from that state in

P units of time. As we'll see, this results in an exhaustive

search through all possible n-ASJKCs.

4) Output each winning a into a PDP-10 file for n, P ASJKCs.

If the file contains 2047 winning CLs, scop output to the

PDP-10 and simply count the number of winning CLs. This

saves time and computer resources.

Some of the steps occur simultaneously for different CLs.

The n, P ASJKC PDP-10 file is later analysed by software. All

files are checked for safe ASJKCs, and some files are examined more ex-

tensively.

Exhaustive search was used in searching for ASJKCs with the prop-

erties of interest for two reasons. First, if any ASJKC with five or

fewer JKFFs had one of the properties of interest, our system found that

ASJKC. This thorough information assures that each entry in the table

of ASJKCs for 2 s P fi 32 represents the minimum number of JKFFs needed

"1

-19-

to realize that ASJKC. This information was also a valuable guide in

formulating the proofs of Section IV. For instance, the experimental

fact that there is no n, 2n - 1 ASJKC with 3 s n ^ 5 led to the proof

that this was the case for all n, 2n - 1 ASJKCs with n a 3. The second

reason for using the exhaustive search was that it necessitated the

interesting job of finding techniques to speed up Fenichel's implemen-

tation of this approach.

The technique of exhaustive search that Fenichel used was adequate

in searching 3-ASJKCs but would have been inadequate in searching

5-ASJKCs. Three general observations led to drastic reductions in the

amount of computation and output necessary for search. First, testing

all CLs with all 2n starting-states is equivalent to testing all CLs with

the all-zero start-state (S(l) = (00 ... 0)). Second, only 2n - 1 of the

2n + 2 possible sources of input to a JKFF in a ASJKC are useful.* This

means that only (2n - l)2n instead of (2n + 2)2n CLs need be proposed.
For n S f2"~l\ ln~. 1

a, \2n+2j * 18 ' rhlrd» because many CLs result in equivalent

ASJKCs some redundant ones need not be tested. This observation led to

a further reduction in tests to about 1/45 of those that would have been

necessary in searching 5-ASJKCs.

Testing each CL with the all-zero start-state is equivalent to

testing each CL with all 2n possible start-states. Consider a counter

started in some state other than the all-zero start-state. Because of

the symmetry property discussed in Section I-B we can relabel all

JKFFs whose start-state is a 1.

Q -♦ Q. Q -» Q, J -» K, K -» J.

If we start this new symmetrically equivalent counter in the all-zero

start-state it cycles with the same period as the first counter. Be-

cause each counter specified by a CL and a start-state cycles in the

The last proof in Section IV shows that for odd periods with
P > 1.5 x 2n-1 only 2n-2 possible sources of input are useful.

•20-

satne way as son« counter specified by a CL with an all-zero start-state,

testing all CLs with the all-.ero start-state results in an exhaustive

search.

C
Jl Ql

Kl Ql

J J2 Q2

K2 Q2

Jl

Kl

Ql

Ql

K2

J2

Q2

Q2

s(i) - (0 i) S<1> ■ (0 0)_

CL .<Q2.1QlQi, CL .(Q2 1Q1Q1)

SYMMETRICALLY EQUIVALENT COUNTERS

The connection of one of the inputs of a JKPF to either of its

outputs or 0 Is uselsss.

Whsn J connscts to ths constsnt 0,

q(t + l) - Q(t).K(t)+Q(t).0 - q(t).K(t).

This 1«PU.. thst If Q «sr bsco«. s 0 It r—ln. . 0. Cons.qu.ntly

tk. Q is .Ith« . oonstsnt 1 or . co.st.nt 0 sftsr th. ASJKC bsgln.
It. HtMi« bshsvlor. ..«us. It dupllctss th. function of oonstsnt.

.Xr.sdy svslUhl.. . Q «Ith Its J oonn.ot.d to 0 Is u..lo... ^osus.

of th. s^tty propsrty, oonnsotlng K to 0 Is slmllsrly us.l... -- ••

soon as Q is 0 it stays 0.
When J and Q of the same JKFF are connected,

Q(t + 1) - Q(t).K(t) + Q(t).Q(t) - Q(t)K(t).

This is equivalent to connecting J to 0, which is useless. Because of

symmetry, connecting K to Q is similarly useless.

i^_^.

-21-

When J and Q of the same JKFF are connected,

Q(t + 1) - Q(t).K(t) + Q(t).Q(t) - K(t) + Q(t).

When J connects to the constant 1,

Q(t + 1) - Q(t).K(t) + Q(t).l = K(t) + Q(t).

Because connecting a JKFF's J to its Q is equivalent to connecting its

J to 1, the connection of J to Q is redundant and therefore useless.

By synmetry. connection of a JKFF's K to its Q is similarly useless.

—%

Jl Ql

Kl Ql

32

K2

Q2

Q2

Jl Ql

Kl Ql £ J2 Q2 K2 Q2

S(l) - (0 0)

CL - (Q7 Q2 Ql (5T)

S(l) - (0 0)

CL - (Q2 52 QT Ql)

PERMUTATIONALLY EQUIVALENT COUNTERS

Because all the ideal JKFFs we consider are functionally identical,

different Connection Lists (CLs) with the all-zero start-state may specify

equivalent counters, as in the case above. Two ASJKCs are permutationally

eouivalent if some renumbering of the JKFFs in one counter implies a CL

and S(l) for that counter identical to the CL and 5(1) of the other coun-

ter. CLs are permutationally equivalent if their counters are permuta-

tionally equivalent. For instance, the K-counters and CLs above are

permutationally equivalent. Relabelling the ASJKC on the left.

JKFF1 - JKFF2. JKFF2 - JKFFl results In CL - (Q2 Q2 Ql Ql) and

S(l) - (00). This is identical to the combination for the ASJKC on the

right. Permutationally equivalent ASJKCs obviously cycle with the same

period. In fact, if the proper outputs are compared they behave id.nti-

Ca ^or an n-ASJKC there are at most n! different but permutationally

equivalent CLs corresponding to all possible relabellings of n JKFFs.

/

•22-

There are fewer permutationally equivalent CLs when some different

labellings result In identical CLs, as In the case below.

J2

K2

Q2

Q2

Jl

Kl

Ql

Ql

J

S(l)

CL

(0 0)

(Q2 Q7 Ql QT)

S(l)

CL

(0 0)

(Q2 QJ Ql QT)

EFFECT OF RELABELLING ONE ASJKC

A way was needed for using the fact of permutationally equivalent

CLs to reduce the number of CLs tested. Because the technique was

applied to (2n - l)2n CLs «W3.5 x 109 as for 5-ASJKCs), it had to

take a short time. It also had to be inexpensive and easy to implement,

Consider the following partition of all possible inputs to a JKFF

in a 5-ASJKC *•

J K

1

Fraction of Times Proposed Arbttrarilv Assianed Priority

1 1 1/81

1 Q 4/81 2

1 Q 4/81 3

Q 1 4/81 4

Q Q(S) 4/81 5

Q Q(S) 4/81 6

Q Q(S) 12/81 7

Q Q(S) 12/81 8

Q 1 4/81 9

Q Q(S) 4/81 10

Q Q(S) 4/81 11

Q Q(S) 12/81 12

Q Q(S) 12/81 13

^'S" means "of the same JKFF that J connects to". S means "of a different
JKFF from the one J connects to". For instance, the entry for
J-Q, K-Q(S) indicates that four out of eighty-one times Jl connects to
a Q and Kl connects to the Q of the same JKFF.

-23-

The assignment of each JKFF of a 5-ASJKC to one of the thirteen

categories does not depend on the renumbering of any of the JKFFs in

that ASJKC. Each 5-ASJKC implies a five-digit, base-thirteen partition

number (PN) corresponding to the input category of each of the five

JKFFs. For instance, CL = (Q5 Q3 Ql 1 1 Q2 1 1 1 Q4) implies

PN « 12 9 3 1 2. The PN is trivially found from the CL. Permutation-

ally equivalent CLs result in PNs with identical digits in corre-

spondingly permuted positions.

This partitioning is used by the system to eliminate most re-

dundant CLs from testing. The PN is treated by the system as a base-

thirteen number with its most significant digit (corresponding to the

input category of JKFFl) on the left. Only when the PN's digits cannot

be permuted to yield a higher number . is the corresponding CL tested. This

is equivalent to saying that each digit of the PN must be greater than or

equal to the digit to Its right for a CL to be tested. For instance,

only the upper of the two permutationally equivalent CLs below would be

tested by our system.

D Jl Ql
Kl Ql r: J2 Q2 K2 Q2

1- J3 Q3 h

K3 Q3

1-

0 0
J4 Q4

K4 Q4

1-J5 Q5

K5 Q5

S(l) = (00000)

CL = (Q5 Q3 Ql 1 1 Q2 1 Q5 1 1)
PN =12 9321 -♦ TESTED

G
r

ji

Kl

Ql

Ql 1-

J2

K2

Q2

Q2

1- J3 Q3

K3 Q3

1-

1-

J4 Q4

K4 Q4

-1- J5

K5

Q5

Q5

L
S(l) - (0_0 0 0_0)
CL = (Q5 Q3 Ql 1 1 Q2 1 1 1 Q4)
PN =12 9312 ^ NOT TESTED

TWO PERMUTATIONALLY EQUIVALENT CLs

•24-

The fact that the digits of the FN of the lower counter <~an t« per-

muted to yield the higher PN reflects the fact that the two Ci<- are permu-

tationally equivalent. The system would test only the upper, higher CL.

This partitioning technique is remarkably good at eliminating

permutattonally redundant CLs. As Appendix B shows, for 5-ASJKCs only

1/45 of the proposed CLs result in testing. For 6-ASJKCs, only 1/141

of the proposed CLs would be tested. Compare this to a technique that

eliminates all redundancies for n-ASJKC CLs by forming an n-digit, base
2

(2n - 1) number from the CL. Because permutatlonally equivalent CLs

do not result in PNs with a simple relationship, it's hard to use a

PN formed in this way to look for redundancies.

The problem with this method is best Illustrated by an example.

Consider the partition of Inputs to a JKFF in a 3-ASJKC shown on the

next page.

•25-

1

Qa)*
Qa)
Q(R)

Q(R)
qa) 1

qa) Qa)
Qa) Qa)
Qa) Q(R)
Qa) Q(R)
Qa) 1

Qa) Qa)
Qa) Qa)
Qa) Q(R)
QCL) Q(R)

Q(R) 1

Q(R) Qa)
Q(R) Qa)
Q(R) Q(R)

Q(R) Q(R)

Q(R) 1

Q(R) Qa)
Q(R) Qa)
Q(R) Q(R)

Q(R) Q(R)

Fraction of Times Proposed Arbitrarily Aliened Prinri^

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

A PARTITION OF INPUTS IN A 3-ASJKC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

"llT II

•5" ZlTa SS le^OBt JKFF fhat the input could connect to.
/R means the rightmost ..,". Fc instance, Q(L) for Jl is 02-
Qa) for J2 is Ql; Q(L) for J3 is Ql. Q '

-26-

This partitioning scheme results in the following PNs for two

permutationally equivalent CLs.

1 Jl

Kl

Ql

Ql

J2

K2

Q2

Q2

"Ü J3 Q3

K3 Q3 I

S(l) =(0 0 0)

CL = (1 Q3 Ql Ql Ql Q2)

PN = 5 7 10

--zzzLJ

D Jl Ql

Ki Ql h.
J2 Q2

K2 Q2

J3 Q3 U
K3 Q3 f

S(l) =(0 0 0)

CL = (Q3 Q5 Q3 Q3 1 Ql)

PN = 18 19 3

TWO COUNTERS WITH PERMUTATIONALLY EQUIVALENT CLs

Although these counters result from permutationally equivalent CLs,

their PNs are not related in a simple way. Consequently with this

partitioning scheme the elimination of redundancies is complex and

expensive. This scheme implies testing of more than j^r ^ | x 7-
120 8 45

of the CLs proposed. This improvement is not significant enough to

warrant choice of this scheme over the simpler, less costly one.

We now have enough information to estimate the time it would take

a special-purpose machine using the base—13 PN to search through all

5-ASJKCs or 6-ASJKCs for ASJKCs of a particular peilod. Make the fol-

lowing reasonable assumptions:

V
.

-27-

1) The timing portion of the machine cycles once every 165 nsec.

This is true for our conservatively designed system.

2) Until the machine finds a CL to test, it proposes and tests

for redundancy one new CL each timing cycle. When it finds

a CL to test, the proposer portion stops proposing until

completion of that test.

3) The average test of a nonredundant CL takes 2 timing

cycles. The average test is actually higher for higher periods.

However, the average for all periods is about 2

4) The time taken to output winning CLs is negligible. Only CL

proposal and CL testing take time.

Iz these assumptions are true the runtime of the machine equals the

sum of the CL-proposal time and the CL-test time. CL-proposal time is

(2n-l)2n x 165 nsec. CL-test time depends on the fraction of proposed

CLs that are tested. For n - 5 this fraction P - 1/45, and for n - 6

F - 1/141. CL-test time is F x <2n - l)2n x 2n"1 x 165 nsec. Therefore,

the total time for a test is about 780 seconds for n ■ 5 and 177 hours

for n » 6. The time to test 6-ASJKCs is long but not impossibly long.

We chose not to spend the extra time and effort to test 6-ASJKCs. The

time to test 5, 25 ASJKCs actually took 815 seconds and took a neg-

ligible amount of time to output 91 winning CLs. This deviation from

the prediction is small and results from the fact that the assumptions

above are not precise, as we will see.

All software schemes which were considered take too much computer

time and consequently cost too much. This is due to the slower cycle

time and lower parallel processing capability of the machines we could

use. Consequently we chose to search for winning CLs with a special-

purpose machine incorporating ideas presented in this section.

The special-purpose machine would have been Inadequate as an out-

put device. For any test we wanted to output all winning CLs less than

-28-

some large number which we later chose to be 2048. A scheme such as

Fenichel's, In which paper marked by a human serves as a memory device

for winning CLs, would have been too slow to handle ths large amount of

output expected. The choice of the PDP-10 as an available general-

purpose computer to handle output was a natural one. It served as a

memory for the output information and enabled simple, quick software

analysis of that output information. An Execuport 300 terminal facili-

tated the linking of the special-purpose machine and the FDP-10. The

Execuport 300 accepted data from its operator-controlled keyboard and

the special-purpose machine. It passed this data over a phone line to

the PDP-10.

_

-29-

B. The System

In the system designed a special-purpose machine (SPM) searches

for n-ASJKCs of a specified period P with n"4or5, läP5 32.

Winning CLs are output to the PDF-10 as 5-character words. As was

mentioned, the SEM was chosen because of Its speed and economy in

computation. The PDF-10 was chosen because as an available general-

purpose computer It provided large storage and software facilities for

output data. The SPM and FDP-10 Interface through an Execuport 300, a

terminal with a keyboard and facilities for connection to the SPM. The

Execuport communicates with the PDF-10 through a standard telephone.

A human operator opens a PDF-10 file. Initiates the exhaustive search,

and closes and names the file when the search Is over.

SIM

a
aaaaaa
a

i

EXECUPORT
I
! 1 ^

|

? |

i
V

- HUMAN
OPERATOR i

^_

r

0
o

OOOOO.C
or

o

cxxxxx
xx

FDP-10

 Input Commands

 Output Information

aaaaaa Timing Pulses

oooooo Information From SIM and Operator

xxxxxx Echo of oooooo

SYSTEM FOR FINDING AND FILING ASJKCs

\

-30-

In the search for a particular n.P ASJKC the following steps occur.

1) The operator turns the SPM's On-off Switch to Off.

He sets the SPM's Input switches to the period P.

2) The operator uses the Execuport to type commands to the

PDP-10 which prepare it to file information.

3) The operator turns the SPM's On-off Switch to On. This

Initiates the exhaustive search. When successful CLs are

found, they are transmitted as 5-character words through the

Execuport to the PDP-10 file. If there are more than 2047

winning CLs, only the first 2047 are entered into the file.

The SPM displays a count of the number of winning CLs found.

4) When the SPM signals that its search is over by turning on a

Finish Light, the operator types commands which close and

name the file. This file is later examined by software.

Below is a description of each component of the system other than

the operator.

Execugort: This transmits information from the operator and the SPM

to the PDP-IO. A 300 bit/second clock in the Execuport determines the

rate of transmission of this information. The ease of communication

between the components of the system that the Execuport allows offsets

the disadvantage of its low Information rate. All information sent to

the PDP-10 from the Execuport is echoed by the PDP-10. The Execuport

prints this echoed information, which the operator uses to monitor the
run.

SPM: The SPM's input is a 6-bit code specifying in binary the input

period P with 1 s P S 32. When the On-off Switch is turned On, the SPH

is Initialized and the search begins. When a successful CL Is found.

It is transmitted to the PDP-10 as a 5-character word. The SPM counts

1

•31-

all winning as and transmits the first 2047 found. When the SFM com-

pletes its exhaustive search, it turns on its Finish Light.

The SPM was designed to handle 5,P ASJKC tests. A trivial modi-

fication — moving a few wires and stopping the machine after It pro-

posed 1/81 of the CLs proposed Tor the 5,P ASJKC tests - allowed 4,P

ASJKC tests.

Redun-
dancy
Tester

ÄfF»
Counter
Lights

73.
Period On-off Fin-
Switches Switch ish

Light

THE SFM

To Execuport

Clock From Execuport

As the SPM diagram indicates, there is a great deal of communica-

tion between components of the SPM. A description of each component and

its relationship to the other component for 5,P ASJKC tests follows.

CL_Pro£08er: This proposes each of the (9) CLs to the Re-

dundancy Tester. The CL Proposer is realized as a synchronous

counter which counts in base-9 from 000C000000 to 8888888888.

Each digit determines the input source for one of the ten In-

puts. The leftmost digit applies to Jl, the next to Kl, the next

to J2, etc. The connection implied by an input digit for one of

the input digits of JKFFN is found in the following way.

"rt* SPM was designed, built, and debugged by the author.

•32-

1) Eliminate QN and QN from the list

(Ql Ql Q2 Q2 Q3 Q3 Q4 Q4 Q5 Q5 i).

2) An Input digit value of X Implies the connection of the

Input to the (X + l)th member of the new Hat.

For Instance, for the Inputs tc JKFF1: 0 -♦ Q2, 2 -» Q3, 8 ■♦ 1.

For the inputs to JKFF2. 0 - Ql. 2 - Q3. fl .. 1. ^ rimer and

Controller provides the timing pulses for the CL Proposer.

Redund«ncy_Tester: This examines the proposed CL for permuta-

tlonal redundancy by partitioning the possible Inputs to each

JKFF into thirteen classes as previously described. The Re-

dundancy Tester is realized with combinational logic. This

logic tells the Timer and Controller whether a CL is redundant

about 100 nsec. after the CL is proposed. The system con-

servatively allows 165 nsec. to pass between proposals of CLs.

CLJfcmoi*: This stores a CL if it passes the redundancy test.

Ihe stored CL controls the interconnection of the Test JKFFs

through the Multiplexer. The CL Memory allows the testing of

one CL while the CL Proposer searches for the next CL to be

tested. This inessential time-saver should not; have been in-

cluded in the SIM because it does not save much time and it

obscures interesting runtime statistics. Without the CL

Memory the total time for proposal and test for period P

of CLs is the sum of the proposal time and the test time. For

5-ASJKCs this equals (9)10 x 165 nsec.x(l + ^). „here N

is the average number of 165 nsec. machine cycles needed to twt

a nonredund..,t a for period P. if the CL Memory is used, the

most time is saved if each nor.redundant CL is followed by 44

redundant ones. The total time for proposal and test then just

equals the time for proposal, which equals (9)10 x 165 nsec.

I

-33-

The percentage of Cine saved by using Che CL Memory Is there-

(N X 100)
fore at mosc (AI + N \ • Since Che average ^teBt for Che

5,P ASJKCs tested Is approximately 16, the CL Memory reduces the

time for proposal and testing by at most about 20$. We guessed

earlier that the Average time for proposal and testing of CLs

Is about 780 seconds. There were 20 searches through 5-ASJKCs,

as the Input period ranged from 13 to 32. The time to test 4-

ASJKCs Is negligible. Therefore the CL Memory saved at most

about .26 x 20 x 780 seconds ** 4060 seconds. Considering the

time needed to wire in the CL Memory, this saving of runtime

was not worthwhile. Another disadvantage of the CL Memory is

that in allowing the times for proposal and testing of CLs to

overlap It makes it difficult to determine experimentally the

precise value of IT „ for different input periods,
test

Multiplexer: This logically connects each input of the Test

JKFFs to its proper source as determined by the CL Memory.

Test^JKFFsj. For each test of a nonredundant CL, these are

connected in a way determined by the CL Memory and started in

the all-zero start-state. The Timer and Controller then pro-

vides timing pulses and monitors the response.

Winning CL.Counterj. This starts with a count of 0 and advances

the count by 1 each time a CL is found that results in the re-

turn of the test JKFFs to the all-zero state from the all-zero

state in P units of time. After 2047 winning CLs are found the

Counter signals the Timer and Controller to discontinue output

of winning CLs to the PDF-10.

•34-

Coder: Information must be sent through the Execuport to the

PDP-10 packed in the form

start bit - 7 bits of information - parity bit - stop bit.

The Coder converts the 10-diglt base-9 number in the CL Memory

into five 7-bit numbers. Each 7-bit number is passed to the

Outputter, surrounded by the proper bits, and transmitted as a

print-character that corresponds to one of the eighty-one

possible connections of the inputs of a JKFF.

Outputter: At a signal from the Timer and Cootroller, this trans-

mits coded winning CLs through the Execuport to the PDP-10. A

300 bit/second clock from the Execuport insures synchronization

of transmission and reception of this data. The Outputter sur-

rounds each 7-bit package of information with start, parity, and

stop bits. The Outputter separates each 10-bit pack of informa-

tion by at least five "pause bits". This pause insures that the

PDP-10 input facilities are ready to handle each transmitted

character.

Timer and Controller^ This coordinates the processes of the SPM.

When the On-off Switch is turned On, it initializes the CL Pro-

poser and Winning a Counter. It then regulates searching and

outputting. When the search is over, it turns the Finish Light

on.

During the search, the Timer and Controller regulates sev-

eral parallel processes. The CL Proposer proposes CLs until it

finds a nonredundant one that the CL Memory cannot accept be-

cause of a CL test in progress. When this test is finished the

new CL is transferred to the CL Memory and the CL Proposer con-

tinues. Test of a CL begins with the transfer of a new CL to

the CL Memory and the setting of the Test JKFFs to the all-zero

start-state. The Test JKFFs receive timing pulses until one

of two conditions occurs.

"*
a

-35-

1) The number of timing pulses sen; to the Test JKFFs

equals the Input period.

2) The Test JKFFs return to the all-zero state.

If both (1) and (2) are true, a winning CL has been found. The

Winning CL Counter Is advanced. If <ts count Is less than 2048

and the Outputter Is ready, the coded CL Is sent to the Outputter

for transmission to the PDF-10. If the Outputter Is busy trans-

mitting a winning CL the new winning a remains in the CL Memory

until the Outputter Is ready for It. Ihe maximum slowing of

SPM runtime by output would occur If the first 2047 CLs proposed

were winners. Runtime with the resultant output would exceed

the runtime of the same search with no output by

2047 x J second * 512 seconds. If only one of conditions (1)

and (2) above is true, the tested CL is a loser. The test is

discontinued and the CL Memory waits for the next nonredundant

CL.

When the CL Proposer reaches the count 8800000000, the Timer

and Controller discontinues the searching and turns the Finish

Light on. Counting from 8800000000 to 8888888888 is unnecessary

because the only nonredundapt CL in this range is 8888888888,

which corresponds to a connection of all inputs to a constant 1.

PDPilO: Ulis stores the winning CLs. When a run is finished the

winning CLs are filed on a disk and given a mnemonic name. Software

later examines this fiU, and outputs for each a data in the form

(Period Safe? CL) .

The "period" entry allows a check of all CLs in the file. This was al-

ways the same as the one predicted by the input to the SPM. Ihe "safe"

entry tells whether the CL results in a safe ASJKC. Following this entry

is the CL in its uncoded form. Software also makes other tests that we

will describe of some files.

/

-36-

0« Runtime ^i-fl^af|,.7

Variations In runtime for different 5.P ASJKC tests are due to

variations In the time to test nonredundant CLs and the time to output

winning CLs. The statistics below demonstrate this fact.

f£Ei2ä Runtime Number of l»nning CLfl Q,,^....

W 1140 seconds 2047

25 815 " 91

32 880 " 0

Runtime is slowed when a winning CL must wait in the CL Memory for

another winning CL to be output. Ihls occurs when winning CLs are found

by the 8* within J second of each other. This high density of winning

CLs occurred for P - 18 and resulted in its long runtime compared to

P - 25 or 32. For the P . 18 case, the last of the fir8t 2047 wlnnlng

CLs was output after .44 of the total CLs proposed had been proposed.

This first portion of the SPM run took twelve minutes, and the rest of

the run took seven minutes.

When output does not cause a bottleneck, variations in runtime are

caused by variations in the time to test nonredundant CLs. Because one

of the two conditions fo* ending one of these tests is that the Test

JKFFs receive P timing pulses, tests take longer for higher P. This is

demonstrated by the fact that the runtime for 5.25 ASJKCs was less than

that for 5.32 ASJKCs. It's difficult to predict the precise effect of

varying P because the proposal and testing times overlap. If the maxi-

mum overlap had occurred in which each nonredundant CL was followed by

44 redundant ones, no variation in runtime would have occurred for

P - 25 and 32. This maximum, overlap obviously did not occur.

.

-37-

IU BVPRRIMENTAL RESULTS

At, ..ctlon dLc«.... d.t. r..ultlng from th. exprl^nt d.-
..rlb.d t. th. prevlou. «ctlon .nd ..rll.r wor. W Rob.rt Fenlch.
L. 1. too »oh d.t. to ** Pfontotlon of .11 of It f...lble or

W**tU. Io.t«d th. «.. i««t». ..P.=t. "« th. d.t. .r. pr."

'""l follo.l„8 t.bU .ho« th. nu^.« of winning as found for
«ch M *C t..t for 13 . P Ä 32. B.«n.. th. proportion of .„ulv.-
1 "t lnt.r. v.rl.. for ..ch p.rlod. thl. t.hl. only ,1«. . rongh d..

If h. r.l.tlv. n-.r of non-.,ulv.l.nt co„nt.r,. A. «'« »«, «
n A JKC corr..pondlng to . P«tlcul.r a My h. .«rfd In .ny on. of 2
"^ tit... E.oh oould r..»lt in dlff.r.nt h.h.vlor. Th.r.for. «oh
TL rU-nt „Id h. t.,t.d. Ho».v.r in .cling -Uh p.r od
P .n ASJKC .nt.r. P dlff.r.nt .t.t.. with th. .» a. E.ch of th...
M"l: Of a .nd .t.t. 1. .,ul,.l.nt to the ^^^
a with th. .U—o .«rt-st.«. ^o coition, of a .n . ^y

b. .,„lv.l«.t to th. .» a with th. .11-.«. .«te. This is tru.
0. «quiy.i«ni equlvalonc.
CL- (02 Q2Q1QI). Sd) * (0 0) or S< ' * ^..f.,. CL (W V x <. ,u-..ro 8tMt-.t.t. as .« dlff.r-
ususlly do«, not occur. If »" th« .n «« , .„. ,„ .v. ,„.
«nt L 5,P ASJKC s««rch ^U «nd P winning O. «,ulv.l«nt to th. s**
ä n P dl f«r«nt .t«rt-.t.t«s. E.ch of th«.« as »y h.,. p.r™t.
IZ* r.dund.nt as which .r« not «ll«ln.t.d hy th« —* " '

d ^ch th«r,for« .PP««r «s winning Os. «.«rsfor« th«r« Is not n
It corrospondonc. h.»««n th. n^r of winning as oun^ d th.
„„^.r of dlff.r«nt Os with .t l««.t P st.rt-st.tes leedlng to

.odlclt, P in feet, one would expect . w-lUr proportion of dlf porlodldty P. in . ^^ c()uU ,,„,

f.r«nt a. in t«.t. for hlghor '• ^"^ ^ tM wlnnlog ^
b.«n «llmln.t.d by softw.« for tiles with f««r ln„r.8t«d

rmrrr. rr.:r,:r-.r,ir™u..
files worth the effort.

-as-

Period Number of mnnlnff rr.

13 18,222
14 41,938
15 22,999
16 12,020
17 1,775
18 4,763
19 479
20 3,569
21 1,395
22 432
23 468
24 508
25 91
26 176
27 159
28 594
29 90
30 1,388
31 968
32 0

Total 112,034

NUMBER OF WINNING CLs FOR 5,P ASJKC SEARCHES

This dat. suggests certain general statements iw.
winning CLs for low periods than for high perLds wT ""
some winnina CL« »M„I. Periods, when a period has

mmng CLs which correspond to composite ASJKC, *tu
of three or fewer JKPP« M, th comP0nents

io" near it IT Peri0d ^ ^ Wlnnln8 ^ th- ^ per-

\

-39-

There ia a large number of winning CLs for P - 31 and no winning CLs

for P - 32.

Software analysis indicates the effect of the fact that P differ-

ent start-states of a winning CL result in periodicity P. Software

analyzed the files for P = 25, 26, 27, and 29 - the four smallest files

with some CLs. The table below shows the different counters for these

periods by showing a CL which results in one of the counters when asso-

ciated with the all-zero start-state.

Number of
Winning CLs

Period Output

25

26

27

29

91

176

159

90

516

Number of
Different
Counters

1

2

1

6

Different Counters

(Q5 Q4 Ql Ql Q2 Q2 Q3 Q2 Q4 Q4)'

(Q5 Q4 Ql Ql Q2 Q2 Q3 Q3 Q4 04)

(Q5 Q4 Ql Ql Q2 Q2 Q3 Q2 Q4 Q4)

(Q5 Q4 Ql Ql Q2 Q2 Q3 Q2 Q4 Q4)

(Q5 Q3 Ql Ql Q2 Q2 Q3 Q3 Q4 Q4)

(Q? 04 Ql Ql Q2 Q2 Q3 Q3 Q4 Q4)

ASJKCs FOR P - 25, 26, 27, 29

The CLs in the table above are remarkably similar. Six inputs

(Jl, 32. K2, J3, J5, K5) have the same connection in all six CLs. Two

inputs (K3, J4) each have one of two connections. TVo inputs (Kl, K4)

each have one of three connections. Software examined all

(2 x 2 x 3 X 3 - 36) possible connections of K3 to Q2 or 02, J4 to Q3

or Q3, Kl to 03 or Q4 or Q4, K4 to Q2 or Q2 or Q3, and the other inputs

to the same outputs as in the table above. TWelve CLs resulted in ASJKCs

T

-40-

th.t did not return to th. .Xl-"ro .«t. «rom the .11-«« -»t.. «.

dld not .x«.ln. th. porlodlolt, of th.,. ASJKC... Ih. oth.r »enty-four

atd r.tum to th. .11-x.ro ,t.t. with p.rlod. of 4, 7, 8. 9. 10. 13. 6

18 19. 20. 21. 24. 25. 26. 27. .nd 29. It would h. lnt.r..tlng to .tody

g.n.r.Ur.tlon. of thl. ASJKC. For ln.t.no.. what 1. th. .ff.ct of In-

„rtlon of .hlft-r.8l.t.r. of v^ylng Unsth b.tw..n th. flr.t .nd ..0-

ond W. of thl. ASJKC. Thl. impli" • <*■ °t "" fonn

C W Ql öl Q2 02 ■ • • ■ Q«.* Vl «n.ii ^ Z Qn-1 Vi^«' " i8

V2« Vi fivI'JLi' "--sor '-'■Y''Qn-2 or ,n-2'
Z 1. Q,., or 0n.3 -r 0n.2.

C Jl Ql

Kl Ql

Jn-3V2
fn-2V2

n-2 Q«.
^

n -1 ^n-1

K„-lQn-l

r-lJn %

n n

L
shift register of
variable length

FIXED CONNECTIONS FOR A GENERAL ASJKC

The files for P - 25. 26, 27 and 29 represent 160

f. 25 + (2 x 26) + (2 x 27) + 29) different combinations of CL and state,

; Z 2 Le Lonahle assumption that no two of these combination.

ftre equivalent to the same CL with the all-zero start-state, then the

average n^er ol permutationally equivalent winning CLs found for
«lft/lfiO.3 2 This is close to the estimated average

these files was 516/160 - 3.^. mis x
of .11 p.r™t.tlon.lly .,ulv.l.nt a. which .r. t..t.d. whloh .n lnt.r

^.ftlon of App«,dl. 8 .„ow. I. .hoot 2.7 If th. ''^"°°U

Id. thnt .v.ry Propo..d CL I. p.n.ut.tlon.lly .qulw.Lnt to 119 dlffor

ent CLs.

/

-41-

The table on Che following page can be a useful guide Co the logic de-

signer. The enCry in Che 'Ylinimum ASJKC" column gives Che CL of whaC our

exhausCive search proves is the n,P ASJKC wich Che smallest n. If chere

is a safe minimum ASJKC iC appears in Che "Minimum ASJKC" column, and

a «- in Lhe "Minimum Safe ASJKC" column Indicates this. If the mini-

mum ASJKC is not safe, an unsafe one is entered in the "Minimum ASJKC"

column and a safe x,P ASJKC with the smallest x Is entered in the

"Minimum Safe ASJKC" column. CLs are in the form (Jl Kl JN KN)

and all CLs give appropriate behavior whon started in the all-zero

start-state. To the right of each CL is an entry which indicates

whether that CL corresponds to a minimal ASJKC. For P ■ 7 the minimum

ASJKC is minimal and unsafe. Because it is unsafe the minimum safe

ASJKC appears in the appropriate column. This minimum safe ASJKC is

not minimal. When a (axbx ...■) appears before a CL, that CL repre-

sents a composite ASJKC with components of period a, b, ...z. FIT in-

stance, for P - 6 the minimum ASJKC shown is a composite ASJKC with

components of period 2 and 3. A "?" Indicates that a particular entry

is unknown. No example of that entry exists for n <; 5.

•42-

*2l2li2J2l2flijil222«J ■
5äS50OOOOO

CM

«nln

&
S
&

&

IS ^ cy ,-1

& ^ fe

1^ «
o-

IS »-
-• cy

CM so
o- o- ^

-lo' IS ^ s s

riff
r» IT»
X X x

£

2 ^ ^
X X

X
CM

X

CM

0)0) M a 0) gg n m « 0) CO •» 0)
« «I « « «I

m on at at
« <u « « o
>*>!>*>- SB

IS
^ .'■v *-s Cy *-s ^-s

^1
c

^> ^\ *-s ^s O'lC

Isssspissis
*. m «n ^

-< r-l -H -• O'CO'^

cy<y -SISIS
ssssis
S-I^SIS
»I-I cRycy

SISISIS SIS & sis 5 s|s& s s s
SSSSSISISSISISS

SISIS^S
es n ,*

r1 ccyi

X x
CM

•fester
^ -SSSSSSSSSSIS

SISSISS-SS-ISJSISSISSS
-SISSSIS^SISSSSSSSS
- S-*^ ^ ^ ^ ^.(il^S-. ^^ s
ccc§csc§sl§l§g-g-g

X X

3
u

o\ ut r> fH oo
x x x-* x

r< •* co ** en

^-ICMCNMCMC^CMfvJ

X ^

^ x

«• CM

r^ 00 ON O i-i eg
CM CM CM en fO o

-43-

The table Indicates that there .'.a no safe or unsafe minimal

ASJKC for P - 13, 16, or 32. The absence of an n,2n ASJKC for

n - 4 and 5 suggests the conjecture that there is no n,2n ASJKC for

«2 4. We have not been able to prove that this is true. The table

also shows that there is no minimal, safe ASJKC for

P - 7, 13, 14, 15, 16, 21, 23, 25, 26, 27, 28, 29, 30, 31, or 32.

As one proof in Section IV shows, there is no safe n, 2n-l ASJKC for

n 2 3.

A composite ASJKC of period P may be formed from component ASJKCs

in the table in the following way.

1) Factor P into prime factors and associate with each prime facfor

F a number t equal to the number of L.mes F occurs.

t. h e2
P - (F^ x (F2) x ... (F2)

2) The composite ASJKC may be realized by any set of component

ASJKCs ouch that each (F) is a factor of at least one com-

ponent's period and each component's period P ie of the form
«I x» x2

p,. " (M X (F,) x ... X (F,) with 0 s x <t and 1<P <P.
B * a i n n c

There may be no set of component ASJKCs that satisfies these conditions,

there may be one set, or there may be more than one set. When there is

more than one set, choice of a particular set depends on other considera-

tions. For instance, a set with the fewest JKFFs or one that results in

a safe ASJKC may be chosen. For example, consider forming a composite

ASJKC with e - 60.

1) 60 - (2)2 x 3 x 5

2) Possible sets of composite ASJKCs are (4 x 15), (5 x 12),

(3 x 20). The unsafe (4 x 15) ASJKC uses fewer JKFFs than the

(5 x 12) or the (3 x 20), so it might be the most desirable

choice for a particular application. The table on the next

page shows some composite ASJKCs for 33 £ P < 64.

\

-44-

Period

33

Comooslte ASJKC Period

49

Composite ASJKC

(3 X ID --

34 (2 x 17) 50 (2 x 25)

35 (5 x 7) 51 (3 x 17)

36 (4 x9) 52 (4 x 13)

37 — 53 --

38 (2 x 19) 54 (2 x 27)

39 (3 x 13) 55 (5 x ID

40 (5 x 8) 56 (7 x 8)

41 — 57 (3 x 19)

42 (2 x 21) 58 (2 x 29)

43 -- 59 --

44 (4 x U) 60 (4 x 15)

45 (5 x 9) 61 --

46 (2 x 23) 62 (2 x 31)

47 -- 63 (7 x 9)

48 (3 X 16) 64 --

SOME C0MP0SID2 ASJKCs FOR 33 i P S 64

■45-

IV .ROOFS

Inquiry into questions rising from this study led to the proofs

presented In this section. These proofs use a mathematical approach

very different from the experimental approach of the last two sections.

All of the proofs use the specification of the particular ASJKC dis-

cussed to make conclusions about the necessary Inputs to the JKFFs.

The fact that each Input to a JKFF may only be provided by the constant

1 or one of the outputs of the other JKFFs In the ASJKC helps lead to

the conclusion reached.

Two of the proofs use the fact that If the output of a JKFF In a

ASJKC Is constant x times, and then changes, there must be at least x

JKFFs In the ASJKC. If QA = 0 from t = 1 r.o t = x and then QA - 1 at

t " x + 1, JA - 0 from t-ltot-x-1 and then JA - 1 at t ■ x. If

QA - 1 from t - 1 to t - x and then QA-Oatt-x+1, KA-0 from

t-ltot-x-1 and then KA » 1 at t «• x. For x i 2, one of the out-

puts of another JKFFB Is p*cessary to provide this Input. But this

needs one of Its Inputs 0 from t=ltot=x-2, then 1 at t - x - 1.

This line of reasoning continues demanding more JKFFs until we get to a

JKFF that has an output that changes from t * 1 to t - 2. This Implies

one of Its Inputs Is 1 at t - 1, and this requirement can be fulfilled by

any of the JKFFs In the ASJKC or the onstant 1. This argument Implies

that If a JKFF Is constant x times In a row and then changes, there must

be at least x JKFFs In the ASJKC to provide necessary Inputs.

Some proofs also use the fact that symmetrically equivalent ASJKCs

cycle with the same period. The proofs are much clearer when we assume

a relabelling of the JKFFs of an ASJKC that results In behavior that

Includes or excludes a particular state.

-46-

AagertIon. There la no minimal binary t-ASJKC wich n > 3.

Proof; Assume there la auch a counter. Because it la minimal,

2 + 1 s P < 2n. Becauar it la binary, the highest-order

bit change* only if one of two conditions occura.

1) All the lower-order bits are 1. This occura at

moat two times during one cycle = P auccesaive statea.

2) The firal atate changes to the atart atate. This

occurs once each cycle and may or may not imply the

char.g«! of the highest-order bit.

TVo mutually exclusive, collectively exhauative possi-

bilities for the binary counter of period P are shown below.

Highest-order Other
Bit Blta

start state r» A

A

A

Ä

1- A

1 1

00

00

w states

l«J w + x-Pa2n'1 + l
0

01

• x states

CASE A: Highest-order bit different in atart atate, final

atate.

■tart state

.47.

Highest-order
Bit

Other
Bits

L A

11--

00- -

00--.

11 —

00 - 0

-n-l
2 states

"SE .: Hl,h..e-ord.r bit .„. tn .e.re „,„ ^
TWO rossiBuinEs „ A „„^ amm UMj

g ^ 2 + I. For Case B, g ,n-l
For n > 3, 2n"1 > 2n'2 + 1.

Therefore for n > 3. g ^ 2n"2 + 1 » * >

M,. ,. ' 8 + ^ B«6««« the highest-order
bit 1. constant g tiMs in . rov .„d then change8t the ASJKc

"".t have .t leest g JKFPS. Therefore n . 8 . a""2 + !
" > 3. Because this atMt»**,„* *,. *
n-ASJKC Wl.h T' •t',B'nt lg nevar ***. • "ininml binary
**MMC with n > 3 is logically contradictory, it can't

-48-

Appendlx A shows how w JKFFs can cycle with a period P through

any sequence of their 2W possible states If they are part of a

(P X w), P ASJKC. In particular, some of the JKFFs of a large

enough ASJKC can cycle through any binary or Gray sequence of states

we can name. Fewer than (P x w) JKFFs are often adequate to realize

a certain behavior. The necessary JKFFs can be found If one can find

the necessary Inputs to each of the w JKFFs. Appendix A explains this

further.

The proof about Gray ASJKCs presented below Is broken Into two

parts. The first part of the proof Is for Gray n-ASJKCs with n i 2.

It Is shown that any such ASJKC that uses all Its JKFFs Is synmetrlcally

equivalent to a switch-tailed shift-register or one of Its permutatlonal

equivalents. The statement that the ASJKC must use fill Its JKFFs dis-

allows ASJKCs In which some o2 the JKFFs never change state. The second

part of the proof shows that any Gray counter with just 1 JKPF Is equiva-

lent to a switch-tailed shift-register.

Assertion; Any Gray ASJKC which uses all its JKFFs is equivalent to a

switch-tailed shift-register and therefore has a period

P - 2n.

Proof; The statement above is true if it is true for n-ASJKCs with

n 2 2 and n - 1.

PartJ^Assertionj. Any Gray n-ASJKC with n i 2 is symmetrically

equivalent to a switch-tailed shift-register or one of its

permutatlonal equivalents and has a period P ■ 2n.

Part_l_Proofj. Assume a Gray n-ASJKC with n a 2. Because of the

symmetry property Its JKFFs can be labelled so that the Gray

ASJKC starts in the all-zero state. This does not affect the

Grayness or period of the counter. Since by definition only

one JKFF can change at a time, the last JKFF to change --

Q -- is 0 at least from t - 1 to t - n. (^ must change at

some time to be useful. In fact, it must change at t-n + 1.

-49-

lf Q is 0 x times in a row and then 1, there must be at least

x JWFs in the ASJKC. Since there are only n JKFFs, ^ «ust

change to 1 at t - n + 1. If we label the ASJKC so that Ql

changes first, Q2 changes second, etc.. then this necessarily

implies the sequence of states and partial ASJKC shown below.

Time

t - I

t - 2

0

0

0

Vl
0

0

0

0

0

0 0 1

t - n 0 1 1

t-n+1 ' I 1 1

Jl Ql J2 Q2

Kl Ql K2 Q2

Q3 Q2 Qi

0

0

0

1

•
■

1

1

1

0

0

1

1

1

1

0

1

Only this counter or a permutationally equivalent one could

result in the proven behavior of Qn(t) for 1< t « n + 1.

Because Ql(t) - 1 for 2 ^ t ^ n + 1. Kl(t) « 0 for

2 s t i n. For n ^ 2, this implies that Kl connects to Qn.

Similarly because K2 must be low from t = 3 to t = n + 1, it

„ust connect to Ql. This argument applies for all x 2 2. so

that Kx connects to Q^. We've now specified the sequence

of states and partial counter shown on the next page.

V

' • -■i

i

•50-

Time

t - 1

t - 2

t «n + l

t-n + 2

t "n + 3

0

0

1

1

1

0

0

0

1

1

&Ä 2! 2i
0 0 0

0 0 1

0 i i

1 1 1

1 i o

1 0 0
• • •
• • •
• • •

0 0 0

Jl Ql

Kl Ql

J2 Q2 —

K2 Q2

Because Ql(t) ■ 0 for n+2st<2n+l and because

n :» 2, Jl(t) = 0 for n + 2 ä t s 2n. Therefore Jl connects

to Q . Therefore the ASJKC Is a switch-tailed shift-register.

Any Gray n-ASJKC with n 2 2 that uses all its bits is there-

fore symmetrically equivalent to a switch-tailed shift-

register or one of its permutational equivalents. We've also

shown that this implies P = 2n.

Part_2_A8sertionji Any Gray 1-ASJKC is equivalent to a switch-tailed

shift-register and has a period P - 2.

Part_2_ft:oof-£- For the one JKFF to count in Gray Code, it must change

state each time. Therefore J connects to 1 or Q, and K

connects to 1 or Q. Section II-A shows that connection of

J to 1 is equivalent to connection of J to Q and connection

-51-

of K to 1 is equivalent to connection of K to Q. Therefore

the Gray 1-ASJKC is equivalent to a switch-tailed shift-

register. It has a period of 2 x 1 = 2.

Because the major assertion is true for n = 1 and true

for n 2! 2, It is true for all n. A corollary of this proof

is that there is no minimal Gray n-ASJKC for n i 4.

Assertion; Any n, 2n - 1 ASJKC with n > 2 is unsafe.

Proof; Assume a n, 2n-l ASJKC. During its cycle through 2n - 1 states

there is one state it doesn't reach. For clarity use the

symmetry property to label the JKFFs of the ASJKC to make

this the all-zero state. This does not affect the period or

safety of the counter. Then for all x, Qx = 0 2 - 1 times,

Q - 1 2n~1 times.
x

If 0^ = J-» K determines its next state. When Qx = ^

there are two mutually exclusive, collectively exhaustive

connections of K that we'll consider.

1) K connects to a Q or Q. Because the all-zero state
x
is the only one not entered during a cycle, in one

cycle

Kx(t) = 0, (^(t) - 1 -♦Qx(t + 1) = 1

Kx(t) = 1, (^(t) = 1 -»Qx(t + 1) = 0

2) K connects to 1. During one cycle
' x

Kx(t) = 1, (^(t) = 1 -♦Qx(t + 1) = 0

2n'2 times,

2n"2 times.

2n"1 times,

If Q. 0, K determines its next state. When (^ = 0

there are*three mutually exclusive, collectively exhaustive

connections of Jx that we'll consider.

1) J connects to a Q. During one cycle
' x

Jx(t) = 0, Qx(t) = 0-»Qx(t+l) = 0

Jx(t) - 1. (^(t) -O-^Ct + l) - 1

2n"2 - 1 times,

,n-2 times.

..

•52-

2) J connects to a Q. During one cycle

Jjc(t) ■ 0' Qx(t) = 0 -»Qx^^1) " 0

Jx(t) - I, (^(t),» 0 ^ Qx(t + 1) - 1

.n-2

,n-2

times,

1 times,

3) J connects to 1. During one cycle

Jx(t) - 1, Qx(t) - 0-4Qx(t + l) - 1 2n"1 - 1 times,

There are six possible combinations of the categories above.

„n-l 1) Kx - 1, Jx = 1 -Qx(t + 1) 0

2) K
x '

l. Jx - Q -»Qx(t + 1) = 0

3) Kx = 1, Jx = Q -> Qx(t + 1) « 0

4) Kx ^ ^ Jx ' 1 -»Qx^41) " 0

5) Kx »* !. Jx ' Q -♦Qx(t + 1) " 0

6) Kx ^ 1, Jx - Q -»Qx(t + 1) = 0

times;

2n"l i on"2 -i ... +2 - 1 times;

2n-l + 2n-2

nn-2

times :

times ;

2n-2 + 2n-2 _ l ^^

2n"2 + 2n"2 times.

Because the all-zero state is avoided during each cycle,

Q(t+1)=02 -1 times each cycle. Therefore the six

categories above imply the six equations below.

Cateaorv Ec luation Occurs When?

1) 2n-1- -a«"1
Never

2) 2n-1. - 2n-1 + 2
n-2- 1 Never

3) 2n-1. - 2"-1 + 2
n-2 Never

4) 2n-l. .2n-2 n = 2

5) 2n-1- = 2n-2 + 2n-2- 1 AU n

6) 2n-l. - 2n-2 + 2n-2 Never

•SS-

These equations show that In a n, 2n - 1 ASJKC with

n > 2 each J must connect to a Q. Tb refore the ASJKC

remains In the all-zero state after ,;irtlng there. This

proves that a n, 2n - 1 ASJKC with n > 2 Is unsafe.

The proof below reduces by one the number of useful Inputs to any

JKPF In a n, P ASJKC with odd period P > 1.5 X 2n" . This fact could be

used to reduce the size of searches for these ASJKCs by a machine like

ours.

Assertion; The constant 1 Is useless as ftn Input for n, P ASJKCs

with odd period P > 1.5 x 2 ~ .

Proof; Consider a ASJKC In which the J of one ASJKC connects to the

constant 1. There are two mutually exclusive, collectively

exhaustive connections of KA that we'll consider.

1) KA connects to the constant 1. Then JKFFA changes

state each time. Therefore the ASJKC must have an

even period.

2) KA connects to one of the outputs of one of the other

JKFFs. Because JA - 1, each time QA - 0 It changes to

QA - 1 at the next Instant of time. Therefore QA only

becomes 0 after QA - 1, KA - 1. Because K connects to

one of the outputs, this car, occur at most 2 " times

during one cycle. Therefore during one cycle QA ■ 0

at most 2n times. P equals the number of times

QA - 0 during a cycle plus the number of times QA ■ 1

during a cycle. Therefore P< (2n' +2n" -1.5x2).

Because the period of the ASJKC Is either even with

JA - KA - i or less than 1.5 x 2n' for JA » 1, KA ^ 1,

JA can't connect to the constant P If the period is odd and

greater than 1.5 x 2n' . Because of the symmetry property,

this Is also true for KA. Therefore our proof Is complete.

-54-

V SUGGESnONS FOR FURTHER RESEARCH

The three beste epproeches described In this report -- herdware-

orlented collection of data, software-aided analysis of data, and

mathematical analysis — can be extended for further study of ASJKCs.

Exhaustive study of 6, P ASJKCs for thirty-six of the periods in

the range 21 i P < 64 could lead to discovery of "minimum safe" or

"minimum unsafe" entries for these periods. These entries are already

known for the other periods in this range. If this study occurred in

the near future it would have to use a SPM. Section II-A contains an

approximation of the runtime of a machine with a basic cycle time of

165 nsec and no CL Memory. The estimated time to search all 6-ASJKC8

for a particular period is 177 hours. Faster logic and less conserva-

tive design could cut this time to below 100 hours. The SPM could also

use the fact that the constant 1 is useless for odd periods P > 48 to

shorten tests for theee periods. The SPM would have to run less than a

total of 150 days to test all 36 periods. This is a long time but it

isn't prohibitively long. The SPM is inexpensive and it can run un-

attended after it is started.

Lee's software approach might find a few unknown entries for n-

ASJKCs with n > 5. The huge space to be searched and the sparseness of

output for several periods for n < 5 suggests that this approach would

miss many existing counters of interest.

Software could also help study generalizations of ASJKCs found

during this research. For instance, the configuration mentioned in

Section IV could be studied. Some useful ASJKCs or proofs about these

general configurations might result from this approach.

Mathematical analysis of ASJKCs Is an Interesting approach that can

be extended. Thf.s has taken the form of proofs concerning the limits of

ASJKCs. This work could be continued. For Instance, a proof proving

or disproving the validity of the conjecture that there Is no n, 2 ASJKC

for n i 4 would be Interesting and also helpful to the experimenter

tempted to search for such a counter. Proofs showing how to synthesize

certain types of ASJKCs would also be worthwhile.

-55-

VI SUMMARY

The report described research into some properties of autonomous,

synchronous counters constructed with only the simplest form of J-K Fllp-

Flop. The study used a system In which a special-purpose digital machine

and a POP-10 generaI-purpose computer Interacted. This system searched

through all the counters of up to five J-K Fllp-Flops for properties of

Interest. Description of some of the relevant design Issues appears

In the report.

Other Information for the designer appears here. Useful counters

of up to five J-K Fllp-Flops are presented with techniques of using these

for synthesis of other counters. A general method Is given for syn-

thesizing an autonomous, synchronous machine, made only of J-K Flip Flops,

that moves through a specific sequence of states. Proofs show some con-

straints on a designer of these counters.

The four proofs resulted from analysis guided by the experimental

results.

1) There Is no minimal binary n-ASJKC with n > 3.

2) Any Gray ASJKC which uses all Its JKFFs Is equivalent to a

switch-tailed shift-register and therefore has a period P - 2n.

3) Any n, 2n - 1 ASJKC with n > 2 Is unsafe.

4) The constant 1 Is useless as an Input for n, P ASJKCs with

P> 1.5 x 2n"1.

•56-

VII APPENDICES

A. Specific Sequences of Statea

A specific sequence of states for each JKFF of a counter Implies

knowledge of what Input values are required for those JKFFs. Sometimes

these Inputs can be provided by the constant 1 or the outputs of the

JKFFs of the counter. This Is true for a minimal ASJKC. On the other

hand, sometimes new JKFFs must be added to the ASJKC to provide Inputs.

These In turn may require new JKFFs to provide Inputs for them. The

number of new JKFFs needed depends on the particular sequence of

states, but the maximum number needed can be calculated for certain

general categories of operation.

Knowledge of the state of w JKFFs from t - 1 to t - y determines

the input value at each time from t - 1 to t - y - 1 for one of the two

Inputs — J or K — for each JKFF. The Input whose value Is determined

may change for each JKFF during this time. The rules for determining the

Inputs to a JKFF are

Q(t) - 0, Q(t + 1) - 0 -♦ J(t) - 0;

Q(t) - 0, Q(t + 1) - I -♦ J(t) - 1;

Q(t) - 1, Q(t + l) - 0 -» K(t) - IS

Q(t) - I. Q(t + 1) - 1 -♦ K(t) - 0.

Sometimes the proper Inputs to a JKFF can be supplied by one of the w

JKFFs or the constant 1. When this Isn't the case, use of only JKFFs

demands the Introduction of new JKFFs to supply appropriate Inputs.

For Instance, consider the following sequence of five states for two

JKFFs and the associated necessary Inputs.

t äi a* Jl Kl J2 K2

1 0 0 1 Oorl 0 Oorl

2 1 0 Oorl 0 0 Oorl

3 1 0 Oorl 1 1 Oorl

4 0 1 1 0 or 10 or 1 0

5 1 1

\

-57-

Jl can be supplleH by the constant 1 end K2 can be supplied by Ql.

There Is no available Input for Kl or J2 with the proper behavior.

Therefore a new JKFF must be introduced if we insist on using only

JKFFs in the counter. The new JKFF3 can provide the correct inputs

for Kl and J2 if Q3(l) - 0, Q3(2) - 0, Q3(3) -I, and Kl and J2

connect to Q3. If J3 connects to Ql and K3 connects to anything,

Q3 will behave properly. The counter below would therefore realize

the appropriate behavior of Ql and Q2 for t - 1 to t - 5.

™

1 - Jl

Kl

Ql

Ql

J2 Q2

K2 Q2

J3 Q3

K3 Q3

_

1 —

S(l) - (0 0 0)

EFFICIENT WAY TO DRIVE JKFFl AND JKFF2

Whenever w JKFFs are required to go through some specific sequence

of y states, a w(y - 1)-ASJKC in which w JKFFs are observed is always

sufficient to realise the proper behavior. At worst a properly

initialised (y - 2)-bit shift-register could provide the proper inputs

for each of the w JKFFs from t - 1 to t = y - 1. The diagram below

illustrates this general method for the sequence of five states of Ql

and Q2 already considered.

S(l) - (00110001)

GENERAL METHOD FOR PROVIDING INPUTS

J5

K5

Q5

Q5

J4

K4

Q4

Q4

J3

K3

Q3

Q3

Jl

Kl

Ql ■

Ql
0 -

1 1 ''I
1 —

0 -

J8

K8

Q8

Q8

J7

K7

Q7

07 —.

J6

K6

Q6

Q6

J2

K2

Q2

Q2

•58-

When w JKFFs cycle with a period P through P specific states

either of the two method, already described can be used to provide

inputs. One can carefully introduce new JKFFs only when they arc

determined to be necessary for providing inputs. On the other hand,

.t worst each of the w JKFFs can have its inputs provided by a properly

initlalired P-bit shift-register with its last bit inputting to its

first bit. Therefore at worst a properly initialized P x w - ASJKC

is sufficient to realize any periodic behavior with period P of w JKFFs,

The two diagram, below indicate two realization, of two JKFF. cycling

with period 5 through the five states of the preceding example.

1-

d
il Ql -<J |— J2 Q2 -,-

Kl Ql I J— K2 Q2

J2

K2

Q2

Q2 1-

J3 Q3

K3 Q3

Q3 —I

03 I

b J4 Q4
K4 Q4

S(l) - (0 0 0 0)

EFFICIENT WAY TO DRIVE JKFFl AND JKFF2

q 1 A

J6

K6

Q6

06

J5

K5

Q5

05

J4

K4

Q4

04

J3

K3

Q3

Q3

Jl

Kl

Ql

Ql

4J
—i 1
_ I

u
no Qio

K10 QIC

J9 Q9

K9 Q9

J8 Q8

K8 Q8

J7 Q7

J7 Q7

J2

K2

Q:

Q:

r h
S(l) - (0 011010011)

GENERAL METHOD FOR PROVIDING INPUTS

-59-

B- Mf«ctlvene«a of Penmlt«^^»nJ^ Rgdundancv T^t^r

Combinatorial mthematlca can be used to determine how many

propoeed CL. for a n-ASJKC are tested when the U-category redundancy

t..t described In Section II-A Is used. During proposal of the

(2n - 1) possible CLs the ba.e-13 M sometimes has digits that are

the same. The number of digits that are the same determine what frac-

tion of CLs that result In PNs In a certain "sameness category" are

tested. For Instance, for S-ASJKCs only 1/120 of the CLs with PNs In

which all digit, are different are tested, because only one of the 120

possible permutations of these digits results In a PN with each digit

except the lowest-order one greater than or equal to the closest lower-

order digit. On the other hand, all CLs with PNs In which all digits

«re the same are tested. The sum of the number of as In each "sameness

category" times the corresponding fraction of time» the members of that

category are tested gives the total number of proposed CLs that are

tested.

A slight modification of the procedure above simplifies the calcu-

lation. We calculate the fraction of proposed CLs tested If the 1.1

category Is dropped. This fraction times the total number of proposed

CLs (2n- 1) "-gives an estimate of the number of tested CLs. The 1 1

category only occurs l/(2n - l)2 of the time for each JKFF. Calculation

of the fraction of proposed CLs tested when there are 12 categories

covering (2n - 1) - l possible Inputs for each JKFF Is therefore al-

most equivalent to considering 13 categories with (2a - I)2 possible

Inputs. Because this simplification eliminates the least probable

category and Increases the probability of digits being the same,

-lightly fewer CLs than the number we'll calculate are actually tested.

The table below shows all possible "sameness categories" for

n - 5 and 6. Ihe number of times each category occurs, the fraction of

this number that are tested, and the resultant number that are tested are

shown. The number of times a "sameness category" occurs Is determined

by applying combinatorial arguments to the eight categories of size

V

-60-

(n - 1) and four categories of size (n - 1) x (n - 2) for each JKFF.

For Instance, the number of times out of (80)5 that a 5-dlgtt FN with

four digits the same and one digit different occurs is equal to the

number of times the four Identical digits are In the category of size 4

plus the number of times they are In the category of size 12. The num-

UCl CVfUOia J.A-TA-TA-.

Number of Fractlon Total
n - 5: CateRorles Occurrences Tested Tested

«11 different (d) 932,904,960 1/120 7,774,208

2 8ame(s), 3d 1,598,668,800 2/120 26,644,480

28, 2s, Id 366,059,520 4/120 12,201,984

3s, 2d 306,954,240 6/120 15,347,712

38, 2s 42,229,760 12/120 4,222,976

48, Id 28,979,200 24/120 5,795,840

58
-

1,003,520 120/120

(80)5

1,003,520

3,276,800,000- 72,990,720

Fraction tested - 72,990,720/3,276,800,000 « 1/45

ited out of (81)5

»(((81)5 x 72,990,720)/3,276,800,000)* 7.8 x 10
Number tested out of (81)

T

.61-

Number of
Occurr^nceg.

327,915,000,000

lf 144,935,000,000

703,181,250,000

42,918,750,000

422,685,000,000

231,075,000,000

8,328,750,000

83,418,750,000

ia, 573,125,000

7,697,250,000

256,125,000

2,985,984,000,000-

Fraction

Tested,

455,437,500

3,180,375,000

3,906,562,500

476,875,000

3,522,375,000

3,851,250,000

416,437,500

2,780,625,000

904,875,000

1,282,875,000

256,125,000

21,033,812,500

EFFECT OF REDUHDWClt TEST FOR n - 5, 6

/

•62-

VIII AHMiyvTATION TABLE

ASJKC: Autonomous, synchronous counter constructed only of

J-K Flip-Flops. Anx-ASJKChas x JKFFs. An x,y ASJKC

has x JKFFs and cycles with a period of y.

CL:

CT:

Connection list.

Clock transition. Thli denotes the transition 0 ^ 1 of

the source of timing pulses to one or more JKFFs. This

signals the recalculation of state for those JKFFs.

Greatest-integer function. This rounds all numbers with

a fractional part up to the nearest integer --

GI(2.0) - 2, GI(2.01) - 3, GI(2.99) - 3.

JKFF: J-K Flip-Flop

GI:

P: Period

PDP-IO: The general-purpose computer used in our experiment.

Mi
Partition number. Each of the input categories of a JKFF

is assigned a different PN.

SPM: special-purpose digital machine.

.

-63-

IX TERMINOLOGY

all-zero state: see page 18

autonomous: see page 8

binary: see page 10

composite ASJKC: see page 10

connection list: see page 9

counter: see page 8

Gray: see page 10

J-K Flip Flop: see page 6

minimal: see page 10

period: see page 9

permutatlonally equivalent CLs, counters: see page 21

safe: see page 10

start-state: see page 9

switch-tailed shift-register: see page 14

symmetrically equivalent counters: see page 19

symmetry property: see page 7

synchronous counter: see page 8

-64-

X REFERENCES

H«nnle, Frederick C, Finite-state Models for Logical Machines.

John Wiley and Sons, Inc., New York, London, and Sydney, 1968.

Scientific American, Information. W. H. Freeman and Company,

San Francisco, 1966.

Caldwell, Samuel H., Switching Circuits and Logical Design.

John Wiley and Sons, Inc., New York, 1958.

Duryee, P. S., "Counter Designs Swing Without Gates,"

Electronic Design. December 6, 1967.

Langdon, Glen G., "A Survey of Counter Design Techniques,"

Computer Design. October, 1970.

Richards, R. K., Digital Design. John Wiley and Sons, 1971,

pp 120-154.

