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I. Introduction

Due to the current importance of dynamic analysis for civil engineering
structures, especially with regard to seismic loading, there has been a re-
gurgence of interest in approximate methods for integrating the equations of
motion. For many years the emphasis has been on the approximation of the
spatial deformation cf these structures, using mor~ scphisticated finite
element models, and including the effects of geometric and material nonlinear-
ity [1]. Some of this emphasis is now being aimed toward the understanding of
the characteristics of direct integration operators.

In order to be precise about the scope of this review, the distinction
between forced structural vibration and wave propagaticn is made. Structural
vibration problems are almost always dominated by low-frequency components of
the response, since the energy requirements for exciting the higher modes are
so severe. This is fortunate for the analyst, since the deterioration of the
accuracy of the frequencier and mode shapes makes the computed results ques-
tionable for these higher modes. It would seem reasonable, therefome, not to
spend needless time and effort trying to make the computed solution accurate
with respect to these modes.

High-frequency response is very important for many wave propagation
problems, however, especially where discontinuities in velocity or acceleration
persist. If the response in the region around the discontinuity is of inter-
est, the analyst will be forced to use a time step of integration so srall that
explicit integration methods, such as central-differencing with a lumped mass
matrix, become attractive. It should be noted that wave propagation problems
without velocity or acceleration discontinuities are handled quite nicely by

the same techniques that are used for structural vibration [2].
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In this review, several alternative methods for carrying out the step-
by-step integration of the equations of motion of a structural system will be

discussed. In the next section, the characteristics of general structural j

systems are emphasized so that the criteria for choosing a particular intezra-

tion operater can be understood on these terms. Then, three of the most popu-

At Aa e

lar methods are analyzed and compared. Following that is a discussion of the

I Alers

relationship between these popular methods and a class of methods referred to in
the literature as stiffly-stable [3]. Finally, recent results on the applica-

tion of these results to nonlinear problems are summarized.

II, Structural System Characteristics

The governing equation of interest is given by
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X

(t) + € 4(t) + K u(t) = F(t) , (11.1)
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where M , C, and K are the mass, damping, and stiffness matrices, respec-

-~

tively; (t) , u(t} , and u(t) are the acceleration, velocity, and displace-
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ment vectors at time t , respectively; and f(t) is the force vector. An
incremental form of this equation, valid for elastic-plastic constitutive be-
havior and geometrically nonlinear behavior, has been developed in [4]. This
incremental form is used, in conjunction with "residual load correctior” in
order to solve beam and axisymmetric shell dynamic problems. The governing
equation (II.1) can be derived in a number of ways, such as by Rayleigh-Ritz-
Galerxin or other finite element methods, but the mass matrix will always be

assumed to be positive definite.

For most structural problems, the wass, damping, and stiffness matrices

are sparse, banded, and symmetric. Atterpts to solve \II.1l), whether by direct

integration {step-by-step) or by modal superposition, should take advantage of




these characteristics., The initial conditions for (II.l) involve the displace-
ment and velocity at t = 0 ; therefore, the direct integration proredure re-

quires at least this amount of information about the previous time, t_, in

order to predict the state of motion at the current time, tn+l .

information about the state at time tn » such as acceleration, or about the

Additional

state of motion at an even earlier time (say tn-l) leads to: (a) special start-
ing procedures for the integration method; (b) extra storage requirements; and
(c) extraneous solutions [5] that may create accuracy or instability problems.
Unless ample justification for the extra information is given, the minimum amount
should be used. ‘ro the writer's knowledge, only one such method has been prc-
posed [6], the Gurtin Averaging operator, that is unconditionally stable; how-
ever, the accuracy of the method is low unless small time steps or negative
damping is used.

The characteristics of (II.1l) are best defined in terms of its natural
frequencies and mode shapes., For a continuous system, the frequency spectrum
ranges from the lowest, or fundamental, frequency up to an infinite limit point
(there may be zero frequencies if rigid-body modes are present). For a dis-
cretized system, the infinite limit point no longer exists; instead, a frequency
exists that corresponds to the most rapidly varying (in space) mode shape. This
frequency is called the cut-off frequency. If the discretized system is excited
by forcing functions having frequency content above the cvt-off frequency, such
as might be induced in a wave propagation problem, noise (random spatial response)
is generated in the cut-off modal response.

Corresponding to each possible mode of vibration and frequency of the
structural system is a period of vibration, or time constant, and the range

of periodicity is a measure of the "stiffness" [3] of the system. The largest
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poriod is associated with the fundamental mode and the smallest is associated
with the cut-off frequency or, therefore, the "stiffest" system component.

As Jensen has ointed out [7], the integration of (II.l), which is, in
general, z stiff system, dresents the analyst with a dilemma. If the time step
is reduced in order to accurately integrate the stiff components, then the step
will be much too small for the longer period (lower frequency) responses,
resulting in excessive computer time for the calculations. On the other hand,
if the time step is chosen with regard for the low-frequency response, insta-
bility will result for explicit methods and integration error will give inac-
curate solutions for the stiff components.

Four solutions of interest can be identified here: (a) the exact solu-
tion of the equations of motion of the continuous system; (b) the exact solu-
tion of (II.l), using infinite-precision arithmetic; (c) the exact solution of
(1Z.1), using finite-precision arithmetic; and (d) the approximate solution of
(I1.1), using finite-precision arithmetic and a direct integration operator.
Truncation error, such as the noise referred to above, represents error incurred
from the truncation of a continuous to a discretized system and is the differ-
ence between (a) and (b). Round-off error depends on the deyree of precision
of the computational arithmetic and is the difference between (b) and (c).
Integration error is the difference between (c) and (d).

The primary motive for studying various direct integration operators
is to understand the nature of integration error, how to control It, and how
to estimate the computing costs of this control. An integration operator [8]
is defined as a transformation on the acceleration, velocity, and displacement
vectors at time t (and, possibly, at earlier times) to the acceleration,

velocity, and the displacement vectors at time the If the mass, damping,
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and stiffness matrices do not depend

time derivatives, the transformztion
tion does not depend on the state at
single-step method; otherwise, it is

Direct integration operators

1 1 -

5 Y(tn+ ) = F+

where Kl and Ko are the matrices

vector of forcing functions, and

on the displacements, or their spuce and
is said to be linear. If the transforma-
times earlier than tn » it is called a
a multi-step method.

are generally written in the form

Kou(t ot 1see0) (11.2)

-

that define the transformation, F is a

-T A ’ b )
At ) =ty | W ae, ) ) (11.3a)
ae e e =Qute) | e Duce) ute pied. (L)

The superscript T indicates the transjiose of a vector or a matrix. The

matrices Kl

and Ko are, in general, functions of the masf, damping and stiff-

ness matrices, as well as the time step size, At =t -t . If the matrix

n+l ¢

K, can be put into upper or lower triangular form, the operator is said to be

<1

explicit; otherwise, it is implicit.

is defined by

The amplification matrix of the operator

Q = 51 50 R (I1.4)
assuming that an inverse exists. Then
u(t ) = G+ Aule,t h..0) (11.5)
where
¢ = KT
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Stability of direct integration operators has been approached in two

ways. Lax and Richtmyer [8] discuss the spectral radius of the amplification

matrix; for structural dynamics, this spectral radius is defined in terms of
the resonant structural frequencies of the system and the integratioun operator
is stable for all time step sizes that cause the spectral radiuvs to be bounded
by unity. Dahlguist [9] has taken a different approach, introducing the con-
cept of A-stability for systems of first-order ordinary differ:ntial equations.

By this he means that the error introduced into the approximate solution by the

particular integration method remcins uniformly bounded for any time step size.

This coincides with the Lax-Richtmyer notion of unconditional stability; i.e.,

the spectral r:dius of the operator is bounded by unity for all choices of
time step size. Dahlquist has proven that linear multi-step methods are

implicit if they are A-stable and that the "trapezoidal' rule has the smallest

asymptotic error of any A-stable method.

III. Operator Comparisons

In this section the characteristics of the most popular direct integra-
tion operators are dis.ussed and ccmpared. The central difference operator,
for example, has been shown to be conditionally stable [10] and, in addition,
Krieg [11] has found that no explicit integration operator of order two has a
stability region grzater than the central. difference operator. The Houbolt
operator [12,13], on tae other hand, iz unconditiwnally steble [14] and has
been compared to the centrar differsmzc <. zpator for accuracy and speed {15].
Both the Newmark [16] and Wilson Averaging [17,18] operators have ale been
shown to be unconditicnally stable [6] and comparisons have been made wi*h a
precise integration operator [19] based on modal superposition. In spite of

this work, however, some direct comparisons seem to be in order.
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The Houbolt operator is obtained by £itting a cubic polynomial through
values of the current displacement (to be found) and the three previous values.
This necessitates a special starting procedure. Substituting into (II.1) the
first and second derivatives of this polynomial, evaluated at the current time,

results in an equation of motion

pay 1 1.,.2

(H 27 AtC + = 7 At f)un+1 = E'At §n+1
+ GH+ 30 - (M + T atCh (111.1)
2 - 2 -'-n - - ~n- -1
tGH g,
Following the sicbility procedure of von Neumann [20], let
wo= ANd (111.2)

where d is an arbitrary error vector. Then, the characteristic equation

-~

for A is
1 11 3 5.3 .,2 3 1.1, .
(1*55"’1-5!1)1 -(§-+-2-H)X +(2+;&—n)k-(-2-*-8—n)—0, (II1.3)
where £ = 2'At) n = AtM lC » ® is any of the undamped structural
resonant frequencies, and At is the time step size. The characteristics of

the three roots of this equation (one real, two complex conjugates) can be
investigated in terms of a single deéree«of-freedom resonance and a damping
factor in order to determine the extent of artificial damping and periodicity
error. Figure 1 shows the values of the mcduli of these roots, for the case of
zero damping, plotted against the variable w2(At)2 . The extraneous root [$],

R3 , causes the greater artificial damping (nc artificial damping corresponds
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to Ri = 1) but it seems clear that at least fifteen time steps {(Levy and

Kroll [13] suggest thirty) are required to maintain the modal amplitude at any-
where near the correct value. Figure 2 shows the same roots, plotted against
smalter values of mQ(At)2 , showing that the extraneous root becomes the major
factor in the artificial damping of the lower modes of structural response.

As an example of the choice of time step size to be used in conjunc-
tion with the Houbolt operator, consider the spherical shell cap under a point
load at the apex as analyzed by McNamara and Marcal [4]. The load is applied
suddenly and maintaired at a constant value throughout the analysis. Although
the shell is so thin and shaliow that geometric nonlinearity dominates the
dynamic response, some insight into the effect of artificial camping and peri-
odicity error can be gained by comparing the time step used in the nonlinear
analysis (At = 1073 seconds) with the period. of vibration for the lowest
(linear) modes. Such a comparison is given in Table I. Noting that the

abscissa of Fig. 2 can be written as (At/21r'1‘)2 , where T is the period of

TABLE I

Spherical Shell Cap Modes and Periods

Mode Frequency, Hz Period, usec At/Period
1 8%2.2 1122,0 .00892

2 1165.0 858,C ,01165

3 .1853.0 540,0 .01853

4 3092.0 323,5 .03092

vibration, the error due to artificial darping after 1000 time steps for the
fourth mode recponse is about two percent. This can be considered negligible,

It is unlikely that modal response above the fourth mode will be adequately
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represented, however, unless the geometric nonlinearities increase the periods
significantly.

The Wilson Averaging operator has also been analyzed [6] for artificial
damping and comparisons with the Houbolt operator are shown in Figs. 3 and 4,
While ther- is still strong damping for higher modes, the increased accuracy
of the Wilson Averaging operator is evident. It should be noted, at this
juncture, that the Newmark generalized acceleration operator, with y = 1/2 ,
(a) has a zero extraneous root and (b) has no artificial damping, regardless
of the value of B [6].

The periodicity error comparisons are given in Figs. 5 and 6. The
bust performance is again exhibited by the Newmark operator with B = 1/4
(note that B = 0 causes the computed periods to be smaller than the exact
periods, in contrast to the other integration operators). Of the two operators
with nonvanishing extraneous roots, the Wilson Averaging operator is again
superior. Figure 7 depicts the influence that real damping has on the artifi-
cial damping in the Houbolt operator. The effect on the complex conjugate roots
is mild, since linearity of the change in damping is indicated for reasonable

values of true damping. More disturbing is the effect displayed by the extrane-

ous root, which shows a nonlinear decrease in damping as a function of increased

true damping, even indicating an instability for large enough true damping.
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IV. Stiffly Stable Methods

Gear [3] has suggested that the requirement for absolute stability
for all components of the solution, regardless of the time constant of the
component, is too restrictive and has indicated a preference for "stiffly
stable" methods, i.e., methods which have regions of stability sufficient to
include frequencies up to the cut-off frequency. From Fig. 8, the character-
istics of a stiffly stable method are: (a) stable and accurate solutions in
the cross-hatched region A; (b) stable, but not necessarily accurate, solutions
in the cross-hatched region B; and (c) solutions of questionable stability and
accuracy elsewhere. Eacp particular stiffly stable method has it own generic
parameters £ , n and ¢ that define the regions of relative accuracy and
stability. The A-stable methods correspond to n = 0 .

The argument for using stiffly stable methods has been made, for struc-
tural dynamics priblems, by Jensen [7]. He suggests that the order of the
stiffly stable method be varied, depending upon the particular problem being
solved, in order to maintain accuracy for the important components of the
solution. It should be noted that stiffly stable methods of high order have
the disadvantage of implicit backward difference operators such as the Houbolt
operator--namely, that considerable storage space is occupied by the vectors
of past displacemsat, velocity or acceleration.

Linear multistep uethods for a system of first-crder ordinary differen-

tial equations

a = f(u,t) (1v.1)
with initial conditions
g(to) =y (1v.2)
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are vritten in the form [21]
m m -
ifl @, u .. o= At {lei Gy oD =-1,0,1,.., {1Iv.3)
= ~ i= ~

where At is the step size, u = u(t° + nAt) , and « 0., If Bm =0,

(IV.3) is an explicit operator for u and is referred to as a predictor; if

n+m
B # 0, (Iv.3) is an implicit operator and is referred to as a corrector.
Stiffly stable methods fall into the latter class; therefore, it is of interest
to find out how they compare with implicit, unconditionally stable operators,
such as the Newmark, lHoubolt and Wilson Averaging operators.

In order to make this comparison, the equations of motion, (II.1l), must
be transformed from n second-order ordinarv differential equations into 2n
first-order ordinary differential equations. Jensen [7] has given such a decom-
position that has the advantage of retaining the same size for the system of
implicit equations, i.e., the additional n equations are already in upper or

lower trianguiarized form.

Thus, define

v(t) = Mu(t) + (C + yatK)u(t) s (Iv.4)
vhere Y = Bm/am .  Then
v(t) = P(t) - Ku(t) + yAtKa(t) . (1v.%)

~ -~

As an example, suppose that a single-step (m=2) method is being used. Then

u ) u Bl 1 82 Q
-za z - =zl 4= pt-zel o+ < Atl-z- (1v.6)
Vintl Gt Vin %2 Vin %2 Vinal
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or
u D] D]
-le = ad-==p <+ BAt{-3~} + yAt|-3- . (1v.7)
Y ntl Y n Y n Y n+l

The governing system to be solved consists of equations (Iv.4), (Iv.5)
and (IV.7). Some care must be taken when evaluating the stability properties
of this operator, however, in that the starting procedure must be taken into
account. Since g(to) and g(to) are the prescribed initial conditions, the

initial values for v(to) and 6(t°) can be found from (IV.4) and (IV.5):

Y(to) yg(to) + (g + yAtg)g(tO) (1v.8)

- ~ ~

and

Y(to) f(to) - §E(to) + yAtE?(to) . (1v.9)

Therefore, the second of the partitioned equations (IV.7) must be rewritten,

in general,

\ 4

il YAt‘.’n+l + SAtgn

+ (oM + ByAt2K)ﬁn (1v.10)

-~ -

+ (aC + (ay-B)AtK)un .

-~ -~

The governing system to be solved can then be written in the Lax-

Richtmyer form (see (II.2)) for direct integration operators where
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(k)1 = I (Iv.11}

e
e

K 0  -yAtK I

r
al 0 gAtI -1
aC+(ay-B)AtK aMByAt3K 0

k1={ - - - ,  (v.2)

o

and
T 2
(r7 = <o, BAE, 0, F > , (1v.13)

where I 1is the identity matrix. Note that

al = <u, v, 8, ¥ > i (IV.14)

Without too much difficulty the inverse of (IV.1ll) can be found and

premultiplied by (IV.12). Then the amplification matrix is given by
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n‘l(an+ayAtc-syAt2x) 0 D’l(ay+e)AtM 0
aC~-gAtK 0 aM 0

[A] = ~ - - . (1v.15)
D’l(a7+B)AtK 0 D°1(aH-BAtC-ByAt2K) 0
-aK 0 ~BAtK ()}

where D = M+yAtC+Y2At2K . This expression confirms the fact that, if y = 0

and the~mas; mat;ix is éiégonal, the procedure is explicit. With y =0 and
a distributed mass matrix, the operator remains implicit, since the mass matrix
must be inverted.

The spectral character of this operator can be investigated by finding
the eigenvalues of the amplification matrix as function of the structural
frequencies.

The characteristic equation for A is

-~

200" (amrayatc-yat?k) - 27 [0~ (aM-Batc-8yat2K) - A]

(Iv.16)
+ 23" xn'lu(ay+s)2At2 =0 ,

-~ - -

1

™o of the eigenvalues are therefore seen to vanish, indicating the presence of
extraneous roots [5] in the operator, as might have been expected, For the case

of zero damping, the remaining two roots are complex conjugates, given by

A, = D™ (am-Byat%K & iAt(ay+8)VET ) (1v.17)
’ -~ - -~ - ~

~ -~ -~ -

or, in terms of the structural frequencies,
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A - a-Byw2At2
1,2

i(ay+8)wAt
2,.2
1+ ywat

. (1v.18)

N 1+

It would be interesting to compare this result, specialized for the trapezoidal

rule (a =1, y = = 1/2) , with the conventional integration operators of

structural dynamics. In this case,

l - %-m2At2 + iwdt
b =

1,2 173 . (1Iv.19)

l‘f'lTh)A't

This result turns out to be identical [6] with the result for the Newmark gener-

alized acceleration method with y = 1/2, B = 1/4 ., Since the trapezoidal rule

was shown by Dahlquist [9] to have the smallest asymptotic error of all order
two methods of this class, in addition to being A-stable, it seems unlikely

that much improvement can be made with other values of the parameters.

V. Nonlinear Problems

Other stiffly stable operators of higher order can be formulated
[22-24], but since the storage requirements are large and since these higher
order methods are also implicit, there seems to be little motivation for their
study, uniess it can be shown that the error in the Newmark method is excessive.
Stricklin, et al. [25] have indicated a more serious problem--that the Newmark
method degenerates when nonlinear problems are being analyzed, leading to un-
stable solutions. Both [25] and [4] have adopted the Houbolt methed for this
class éf-problems in order to take advantage of the artificial damping of
spurious components in the solution due to the transpostion of nonlinear terms

to the right-hand side of (II.1l). Others [26,27,19] have suggested the use of

either limited or unlimited modal superposition methods, even for nonlinear

I
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problems. (It is worth noting that the Newmark operator has been used very
successfully for stress formulations of the equations of motion [28].)

Boggs [29] has recently shown that the trapezoidal rule (or Newmark's
method) is an effective procedure for solving nonlinear equations, provided that
proper predictor-evaluation-corrector algorithms (PEC) are chosen. This means
that a solution is predicted on the basis of stiffness matrices (initial stress,
initial displacement, and small displacement matrices [30]) evaluated at the
end of the last step; then, these matrices are re-evéluated on the basis of the
predicted solution; finally, a corrected solution is sought. Boggs has found
that an explicit predictor, an evaluation based on the predicted solution, and
the trapezoidal rule corrector proves to be adequate. He also explored iterative
methods which avoided the inversion of the Jacobian (iterative explicit).

In another recent publication. Weeks [31] has evaluated both the trape-
zoidal rule and the Houbolt operator (as well as central differencing) for
geometrically nonlinear dynamic structural response problems. He found that a
Newton Raphson iterative technique for both operators led to adcquate results,
and that the pseudo-load extrapolatinsn procedure [25] caused instabilities for
unconditionally stable operators when larger time steps are used. The extra
storage and cost associated with the Newton Raphson technique makes its use in
practical situations doubtful.

From all available evidence, then, it would seem that the trapezoidal,
or Newmark, operator is the most attractive direct integration operator for
both linear and nonlinear problems. The suggestions of Boggs [29] have very
nearly been applied by McNamara and Marcal [4], who use an implicit predictor
(in this case, the Houbolt method), evaluate on the basis of the predicted

solution, then apply a "load correction" for the next implicit prediction,
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based on the residual error from the equations c¢f motion. This same procedure
should also be applicable in «conjunction with the trapezoidal rule and would

seem to represent the optimum choice of a direct integration operator, consid-

ering economy, accuracy and stability.
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