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1. Introduction

Due to the current importance of dynamic analysis for civil engineering

structures, especially with regard to seismic loading, there has been a re-

surgence of interest in approximate methods for integrating the equations of

motion. For many years the emphasis has been on the approximation of the

spatial deformation of these structures, using morre sophisticated finite

element models, and including the effects of geometric and material nonlinear-

ity [1]. Some of this emphasis is now being aimed toward the understanding of

the characteristics of direct integration operators.

In order to be precise about the scope of this review, the distinction

between forced structural vibration and wave propagation is made. Structural

vibration problems are almost always dominated by low-frequency components of

the response, since the energy requirements for exciting the higher modes are

so severe. This is fortunate for the analyst, since the deterioration of the

accuracy of the frequencieL and mode shapes makes the computed results ques-

tionable for these higher modes. It would seem reasonable, therefo-e, not to

spend needless time and effort trying to make the computed solution accurate

with respect to these modes.

High.-frequency response is very important for many wave propagation

problems, however, especially where discontinuities in velocity or acceleration

persist. If the response in the region around the discontinuity is of inter-

est, the analyst will be forced to use a time step of integration so srall that

explicit integration methods, such as central-differencing with a lumped mass

matrix, become attractive. It should be noted that wave propagation problems

without velocity or acceleration discontinuities are handled quite nicely by

the same techniques that are used for structural vibration [23.
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In this review, several alternative methods for carrying out the step-

by-step integration of the equations of motion of a structural system will be

discussed. In the next section, the characteristics of general structural

systems are emphasized so that the criteria for choosing a particular inte7.ra-

tion operator can be understood on these terms, Then, three of the most popu-

lar methods are analyzed and compared. Following that is a discussion of the

relationship between these popular methods and a class of methods referred to in

the literature as stiffly-stable [3]. Finally, recent results on the applica-

tion of these results to nonlinear problems are summarized.

II. Structural System Characteristics

The governing equation of interest is given by

M 0(t) + C i(t) + K u(t) F(t) , (II.l)

where M , C , and K are the mass, damping, and stiffness matrices, respec-

tively; M() , (), and u(t) are the acceleration, velocity, and displace-

ment vectors at time t , respectively; and F(t) is the force vector. An

incremental form of this equation, valid for elastic-plastic constitutive be-

havior and geometrically nonlinear behavior, has been developed iii [4]. This

incremental form is used, in conjunction with "residual load correctior." in

order to solve beam and axisymmetric shell dynamic problems. The governing

equation (II.1) can be derived in a nunT~er of ways, such as by Rayleigh-Ritz-

Galerkin or other finite element methods, but the mass matrix will always be

assumed to be positive definite.

For most structural problems, the twass, damping, and stiffness matrices

are sparse, banded, and symmetric. Attempts to solve kII.l), whether by direct

integration (step-by-step) or by modal superposition, should take advantage of
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these characteristics. The initial conditions for (II.1) involve the displace-

ment and velocity at t = 0 ; therefore, the eirect integration procedure re-

quires at least chis amount of information ;bout the previous time, tn , in

order to predict the state of motion at the current time, tn 1 . Additional

information about the state at time tn , such as acceleration, or about the

state of motion at an even earlier time (say tn_) leads to: (a) special start-

ing procedures for the integration method; (b) extra storage requirements; and

(c) extraneous solutions [5) that may create accuracy or instability problems.

Unless ample justification for the extra information is given, the minimum amount

should be used. To the writer's knowledge, only one such method has been pre-

posed [6], the Gurtin Averaging operator, that is unconditionally stable; how-

ever, the accuracy of the method is low unless small time steps or negative

damping is used.

The characteristics of (II.1) are best defined in terms of its natural

frequencies and mode shapes. For a continuous system, the frequency spectrum

ranges from the lowest, or fundamental, frequency up to an infinite limit point

(there may be zero frequencies if rigid-body modes are present). For a dis-

cretized system, the infinite limit point no longer exists; instead, a frequency

exists that correrponds to the most rapidly varying (in space) mode shape. This

frequency is called the cut-off frequency. If the discretized system is excited

by forcing functions having frequency content above the cut-off frequency, such

as might be induced in a wave propagation problem, noise (random spatial response)

is generated in the cut-off modal response.

Corresponding to each possible mode of vibration and frequency of the

structural system is a period of vibration, or time constant, and the range

of periodicity is a measure of the "stiffness" [3) of the system. T1he largest
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priod is associated with the fundamental ,node and the smallest is associated

with the cut-off frequency or, therefore, the "stiffest" system component. ¶

As Jensen has •ointed out [7J, the integration of (II.1), which is, in

general, a stiff system, presents the analyst with a dilenma. If the time step

is reduced in order tD accu•at.ely integrate the stiff components, then the step

will be much too small for the longer period (lower frequency) responses,

resulting in excessive computer time for the calculations. On the other hand,

if the time step is chosen with regard for the low-frequency response, insta-

bility will result for explicit methods and integration error will give inac-

curate solutions for the stiff components.

Four solutions of interest can be identified here: (a) the exact solu-

tion of the equations of motion of the continuous system; (W) the exact solu-

tion of (II.1), using infinite-precision arithmetic; (c) the exact solution of

(I.1), using finite-precision arithmetic; and (d) the approximate solution of

(I.1), using finite-precision arithmetic and a direct integration operator.

Truncation error, such as the noise referred to above, represents error incurred

from the truncation of a continuous to a discretized system and is the differ-

ence between (a) and (b). Round-off error depends on the de6Tee of precision

of the computational arithmetic and is the difference between (b) and (c).
Integration error is the difference between (c) and (d).

The primary motive for stuidying various direct integration operators

is to understand the nature of integration error, how to control It, and how

to estimate the computing costs of this control. An integration operator [8)

is defined as a transformation on the acceleration, velocity, and displacement

vectors at time t (and, possibly, at earlier times) to the acceleration,

velocity, and the displacement vectors at time tn+l * If the mass, damping,
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and stiffness matrices do not depend on the displacements, or their space and

time derivatives, the transformation is said to be linear. If the transforma-

tion does not depend on the state at times earlier than tn , it is called a

single-step method; otherwise, it is a multi-step method.

Direct integration operators are generally written in the form

Kii(t ) F K ;(tnt I"(
1 * n+l -o n n-

where K and K are the matrices that define the transformation, F is a
1 -0

vector of forcing functions, and

uT(tn)~ < *n+I) Ci(t ) U(tn) (II.3a)
- nti) :((tnl '-(n+l '-n+l

;T (tn9tn.19...) = u(tn a •(t) U (t )'u(t_ )-• (II.3b)
~~~ n n ~n-1

The superscript T indicates the transpose of a vector or a matrix. The

matrices K and K are, in general, functions of the masF, damping and stiff-

ness matrices, as well as the time step size, A t - t o If the matrix

i can be put into upper or lower triangular form, the operator is said to be

explicit; otherwise, it is implicit. The amplification matrix of the operator

is defined by

K -1 K (11.4)
.0

assuming that an inverse exists. Then

;(tn+) G + Au(t tn .) (I1.5)n.. .. n -t.l, '

where

G K -l F

'sil
C~ l -"
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Stability of direct integration operators has been approached in two

ways. Lax and Richtmyer [8) discuss the spectral radius of the amplification

matrix; for structural dynamics, this spectral radius is defined in terms of

the resonant structural frequencies of the system and the integritiou, operator

is stable for all time step sizes that cause the spectral radiub to be bounded

by unity. Dahlquist [9) has taken a different approach, introducing the con-

cept of A-stability for systems of first-order ordinary differential equations.

By this he means that the error introduced into the approximate solution by the

particular integration method remains uniformly bounded for any time step size.

This coincides with the Lax-Richtmyer notion of unconditional stability; i.e.,

the spectral r~dius of the operator is bounded by unity for all choices of

time step size. Dahlquist has proven that linear multi-step methods are

implicit if they are A-stable and that the "trapezoidal" rule has the smallest

asymptotic error of any A-stable method.

III. Operator Comparisons

In this section tche characteristics of the most popular direct integra-

tion operators are disx.ussed and cempared. The central difference operator,

for example, has been shown to be conditionally stable [10] and, in addition,

Krieg [11) has found that no explicit integration operator of order two has a

stability region greater than the central, difference operator. The Houbolt

operator [12,13], on tne other hand, Is uncond'ti•)nally stable [14) and has

been compared to tne centrai kfffere- c,. csatox Ivr accuracy and speed [15].

Both the Newmark [16) and Wiloon Averding [17,18) operators have al-" been

shown to be unconditionally stable [6] and comparisons has been made wi4h a

precise integration operator [19) based on modal superposition. In spite of

this work, however, some direct comparisons seem to be in order.
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The Houbolt operator is obtained by fitting a cubic polynomial through

values of the current displacement (to be found) and the three previous value3.

This necessitates a special starting procedure. Substituting into (II.1) the

first and second derivatives of this polynomial, evaluated at the current time,

results in an equation of motion

(M+11 ArC + 'I At2K ~ 1 2

(M+~. C+-~tK)u 2 AtF12 2 . .n+l 2

+(5.H 3 AtC)u_ - (2M ÷ 3AtC)un. (III.1)

. 1 Mu + .
+ (I . +g .. n-,

Following the sL~oility procedure of von Neumann [20], let

u An d (111.2)

where d is an arbitrary error vector. Then, the characteristic equation

for A is
1+ 1 3111

2 ( 3 2 +- (-+ ) + 0 , (111.3)

where w %A2 t) 2 t n AtM C , w is any of the undamped structural

resonant frequencies, and At is the time step size. The characteristics of

the three roots of this equation (one real, two complex conjugates) can be

investigated in terms of a single degree-of-freedom resonance and a damping

factor in order to determine the extent of artificial damping and periodicity

error. Figure I shows the values of the moduli of these roots, for the Lase nf

zero damping, plotted against the variable w2 (At) 2 . The extraneous root [51,

R3 , causes the greater artificial damping (no artificial damping corresponds
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to R. 1) but it seems clear that at least fifteen time steps (Levy and1

Kroll [13] suggest thirty) are required to maintain the modal amplitude at any-

where near the co-rect value. Figure 2 shows the same roots, plotted against

22small.er values of w2(At) , showing that the extraneous root becomes the major

factor in the artificial damping of the lower modes of structural response.

As an example of the choice of time step size to be used in conjunc-

tion with the Houbolt operator, consider the spherical shell cap under a point

load at the apex as analyzed by McNamara and Marcal [4]. The load is applied

suddenly and maintained at a constant value throughout the analysis. Although

the shell is so thin and shallow that geometric nonlinearity dominates the

dynamic response, some insight into the effect of artificial damping and peri-

odicity error can be gained by comparing the time step used in the nonlinear
-5 .

analysis (At = 10- seconds) with the period,, of vibration for the lowest

(linear) modes. Such a comparison is given in Table I. Noting that the

abscissa of Fig. 2 can be written as (At/2wT) , where T is the period of

TABLE I

Spherical Shell Cap Modes and Periods

Mode Frequency, Hz Period, psec At/Period

1 892.2 1122.0 .00892
2 1165.0 858.C .01165

3 .1853.0 540.0 .01853

4 3092.0 323.5 .03092

vibration, the error due to artificial damping after 1000 time steps for the

fourth mode response is about two percent. This can be considered negligible.

It is unlikely that modal response above the fourth mode will be adequately
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represented, however, unless the geometric nonlinearities increase the periods

significantly,

The Wilson Averaging operator has also been analyzed [6) for artificial

damping and comparisons with the Houbolt operator are shown in Figs. 3 and 4.

While ther' is still strong damping for higher modes, the increased accuracy

of the Wilson Averaging operator is evident. It should be noted, at this

juncture, that the Newmark generalized acceleration operator, with y = 1/2

(a) has a zero extraneous root and (b) has no artificial damping, regardles,3

of the value of 8 [6].

The periodicity error comparisons are given in Figs. 5 and 6. The

best performance is again exhibited by the Newmark operator with 8 = 1/4

(note that 8 = 0 causes the computed periods to be smaller than the exact

periods, in contrast to the other integration operators). Of the two operators

with nonvanishing extraneous roots, the Wilson Averaging operator is again

superior. Figure 7 depicts the influence that real damping has on the artifi-

cial damping in the Houbolt operator. The effect on the complex conjugate roots

is mild, since linearity of the change in damping is indicated for reasonable

values of true damping. More disturbing is the effect displayed by the extrane-

ous root, which shows a nonlinear decrease in damping as a function of increased

true damping, even indicating an instability for large enough true damping.
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IV. Stiffly Stable Methods

Gear [3] has suggested that the requirement for absolute stability

for all components of the solution, regardless of the time constant of the

component, is too restrictive and has indicated a preference for "stiffly

stable" methods, i.e., methods which have regions of stability sufficient to

include frequencies up to the cut-off frequency. From Fig. 8, the character-

istics of a stiffly stable method are: (a) stable and accurate solutions in

the cross-hatched region A; (b) stable, but not necessarily accurate, solutions

in the cross-hatched region B; and (c) solutions of questionable stability and

accuracy elsewhere. Each particular stiffly stable method has its own generic

parameters n , r and C that define the regions of relative accuracy and

stability. The A-stable methods correspond to n = 0

The argument for using stiffly stable methods has been made, for struc-

tural dynamics prO.blems, by Jensen [7]. He suggests that the order of the

stiffly stable method be, varied, depending upon the particular problem being

solved, in order to maintain accuracy for the important components of the

solution. It should be noted that stiffly stable methods of high order have

the disadvantage of implicit backward difference operators such as the Houbolt

operator--namely, that considerable storage space is occupied by the vectors

of past displace:n-ft, velocity or acceleration.

Linear multistep uethods for a system of first-order ordinary differen-

tial equations

f(u,t) (IV.l)

with initial conditions

u(to) u uV.2).. 0



ere iritten in the form [21)

m m
0i u +. = At1 !i i ., n =-1 0 ,1 too.. (IV.3)i n i -n+

where At is the step size, un = u(t 0 + nAt) ,and am $ 0 . If Bm = 0,

(IV.3) is an explicit operator for u and is referred to as a predictor; if
-n+in

Om $ 0 , (IV.3) is an implicit operator and is referred to as a corrector.

Stiffly stable methods fall into the latter, class; therefore, it is of interest

to find out how they compare with implicit, unconditionally stable operators,

such as the Newmark, Houbolt and Wilson Averaging operators.

In order to make this comparison, the equations of motion, (II.1), must

be transformed from n second-order ordinary differential equations into 2n

first-order ordinary differential equations. Jensen [7) has given such a decom-
position that has the advantage of retaining the same size for the system of

implicit equations, i.e., the additional n equations are already in upper or

lower triangularized form.

Thus, define

v(t) M 1(t) + (C + yAtK)u(t) , (IV.4)

where Y 8/m . Then

•(t) : F(t) - Ku(t) + yAtKA(t) .

As an example, suppose that a single-step (m=2) method is being used. Then

- [-- = + !2 At + 82 At (IV.6)
n1 2 n nn

~n .. .. . .. .. . . .. .. j
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or

-• = ÷8A - + YAt (I- .

ni { n 8 .{jn Y t{Jn] (IV.?)

The governing system to be solved consists of equations (IV.4), (IV.5)

and (IV.M). Some care must be taken when evaluating the stability properties

of this operator, however, in that the starting procedure must be taken into

account. Since u(t ) and fi(t ) are the prescribed initial conditions, the

initial values for v(t ) and *(t ) can be found from (IV.4) and (IV.5):

v(t) Mi(t ) + (C + yAtK)u(t) (IV.8)

and

!(to) - Ku(t + yAtK6(t )(IV.9)

Therefore, the second of the partitioned equations (IV.?) must be rewritten,

in general,

v YAt + SAtF.nl .n+l+ n

+ (aM + OyAt 2K) (IV.10)

+ (aC + (ay-O)AtK)u

n4

The governing system to be solved can then be written in the Lax-

Richtmyer form (see (11.2)) for direct integration operators where
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I 0 -YAtI 0

0 i 0 -yAtI

-C-yAtK I -M 0

K 0 -yAtK I

m7

aI 0 8OtI 0

aC+(oy-O)AtK 0 *M+OyAt2K 0

CKo I .. (IV.12)
0

0 0 0 0

and

{Fr) <•0, 8OAtF, o, Fnr 1  , (IV.13)

where I is the identity matrix. Note that

jjT usV ,(IV.14)

Without too much difficulty the inverse of (IV.ii) can be found and

premultiplied by (IV.12). Then the amplification matrix is given by

I,1
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D-1 aM+ciyttC-OYt~t 2K) 0 D1 (iy+O)frtM 0

aC-OAtK 0 am

-1* - -1 2 , (IV.15)
D (aY+8)AtK 0 D- (aM-8AtC-Byst K) 0

-aK 0 -OAtK 0

2 2where D M+yAtC+y At K . This expression confirms the fact that, if y 0 0

nd the mass matrix is digonal, the procedure is explicit. With y = 0 and

a distributed mass matrix, the operator remains implicit, since the mass matrix

must be inverted.

The spectral character of this operator can be investigated by finding

the eigenvalues of the amplification matrix as function of the structural

frequ~ncies.

The characteristic equation for A is

A2(D-1 (aM+atyAtC-yAt2K)- [D-I(aM-OAtC-yAt 2 K) - X1

(IV.16)
2-1 -122+ 2DIKD M(ay+0) At 0.

Two of the eigenvalues are therefore seen to vanish, indicating the presence of

extraneous roots [5) in the operator, as might have been expected. For the case

of zero damping, the remaining two roots are complex conjugates, given by

A1,2 D (aM-yAt ± iAt(ay+O)IK-M ) (IV.17)

or, in terms of the structural frequencies,

I
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a-yW 2  At2± i(ay+8)WAt (IV.18)
1,2 222S 1 + Y W2At2

It would be interesting to compare this result, specialized for the trapezoidal

rule (a = 1, Y 8 = 1/2) , with the conventional integration operators of

structural dynamics. In this case,

1 ±2At2 + iwAt

A4,2  = 1 (IV.19)1 + i W ,At2

4

This result tu.ns out to be identical [6) with the result for the Newmark gener-

alized acceleration method with y = 1/2, 8 = 1/4 . Since the trapezoidal rule

was shonm by Dahlquist [9) to have the smallest asymptotic error of all order

two methods of this class, in addition to being A-stable, it seems unlikely

that much improvement can be made with other values of the parameters.

V. Nonlinear Problems

Other stiffly stable operators of higher order can be formulated

[22-24], but since the storage requirements are large and since these higher

order methods are also implicit, there seems to be little motivation for their

study, uniess it can be shown that the error in the Newmark method is excessive.

Stricklin, etal. [25] have indicated a more serious problem--that the Newmark

method degenerates when nonlinear problems are being analyzed, leading to un-

stable solutions. Both [25) and [4) have adopted the Houbolt method for this

class of-problems in order to take advantage of the artificial damping of

spurious components in the solution due to the transpostion of nonlinear terms

to the right-hand side of (11.1). Others [26,27,19) have suggested the use of

either limited or unlimited modal superposition methods, even for nonl-'near
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problems. (It is worth noting that the Newmark operator has been used very

successfully for stress formulations of the equations of motion [28].)

Boggs [29] has recently shown that the trapezoidal rule (or Newmark's

method) is an effective procedure for solving nonlinear equations, provided that

proper predictor-evaluation-corrector algorithms (PEC) are chosen. Th7is means

that a solution is predicted on the basis of stiffness matrices (initial stress,

initial displacement, and small displacement matrices [30)) evaluated at the

end of the last step; then, these matrices are re-evaluated on the basis of the

predicted solution; finally, a corrected solution is sought. Boggs has found

that an explicit predictor, an evaluation based on the predicted solution, and

the trapezoidal rule corrector proves to be adequate. He also explored iterative

methods which avoided the inversion of the Jacobian (iterative explicit).

In another recent publication. Weeks [31) has evaluated both the trape-

zoidal rule and the H.ubolt operator (as well as central differencing) for

geometrically nonlinear dynamic structural response problems. He found that a

Newton Raphson iterative te:hnique for both operators led to ad,"uate results,

and that the pseudo-load extrapolation procedure [25] caused instabilities for

unconditionally stable operators when larger time steps are used. The extra

storage and cost associated with the Newton Raphson technique makes its use in

practical situations doubtful.

From all available evidence, then, it would seem that the trapezoidal,

or Newmark, operator is the most attractive direct integration operator for

both linear and nonlinear problems. The suggestions of Boggs [29] have very

nearly been applied by McNamara and Marcal [4], who use an implicit predictor

(in this case, the Houbolt method), evaluate on the basis of the predicted

solution, then apply a "load correction" for the next implicit prediction,
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based on the residual error from the equations of motion. This same procedure

should also be applicable in i;onjunction with the trapezoidal rule and would

seem to represent the optimum choice of a direct integration operator, consid-

ering economy, accuracy and stability.

4
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