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Numerical and analytic solutions in the ray-optics region have been obtained for the 
scattering of HP radio waves by a spherical electron cloud with a Gaussian distribution of 
electron density in the radial direction. The results show that a highly overdense or hard cloud 
has a wide range of backscatter angles for which the cross section is almost constant with a 
value close to that of an equivalent conducting sphere (critical radius size). A slightly overdense 
or soft sphere has a much narrower range of almost constant cross section whose value is pro- 
portional to the fourth power of the critical radius and considerably below that of an equivalent 
conducting sphere. In the region of forward scatter, all sphere: have essentially the same cross 
section, independent of hardness. For underdense spheres, the cross section is generally the 
same as that characteristic of forward scattering except in the region of maximum deflection 
where the cross section increases very sharply. It is found that when an underdense sphere 
becomes critical, the maximum deflection is 90°, whereas an overdense sphere retains its 
maximum deflection of 180° at the critical density. For overdense spheres, the analytic results 
are in good agreement with those obtained numerically; but for underdense spheres, they are 
not in good agreement at the higher electron densities. 

1.   INTRODUCTION 

In recent years, studies of the upper atmosphere 
have been conducted with artificial ionized clouds 
obtained by the release of barium vapor at high alti- 
tudes. To help in the understanding and interpreta- 
tion of experimental data, a theoretical study is being 
made of the scattering of radio waves by an artificial 
electron cloud. 

Because the electron cloud, which is several 
kilometers in extent, is considerably larger than a 
typical wavelength in the HF band, the method of 
geometrical optics has been utilized. For those fre- 
quencies at which the effect of the magnetic field is 
not negligible, a detailed ray-tracing technique such 
as that furnished by the Haselgrove method [Hasel- 
grove, 1955] must be employed. If, however, the 
magnetic field can be neglected, the scattering may 
be computed directly, at least for the case of spheri- 
cal symmetry, with increased accuracy and consid- 
erable reduction in computational labor. 

Our present investigation is concerned with the 
frequencies at which the magnetic field is negligible. 
We shall assume that the distribution of electron 
density is spherically symmetric and, as indicated by 
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diffusion theory, has a Gaussian form in the radial 
direction. The collision frequency within the cloud 
is generally small compared to the incident fre- 
quency; thus absorption may be neglected in our 
calculations. 

2.   ANALYSIS 

A ray initially a distance b from the z axis is 
deflected through an angle 0 at a given position r, 
4 within the cloud, and is scattered through an angle 
0 as it emerges from the cloud (Figure 1). For a 
spherically symmetric plasma, the scattering is inde- 
pendent of meridian angle and can be described in 
terms of the scattering angle 6 in the plane of in- 
cidence and the impact parameter b. The relation be- 
tween b and 6 may be obtained from the scattering 
integral for the two-body central force problem 
[Goldstein, 1950a] and the analogy between particle 
dynamics and ray optics [Goldstein, 195U6], or by 
direct consideration of the scattering of a ray by a 
spherically symmetric plasma [Kelso, 1964]. We may 
express this relation in the form 
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Fig.  I.   Sketch showing ray path und scattering parameters. 

where n is the index of refraction, r the radial posi- 
tion of the ray, and r, the turning point or reflection 
point, that is, the location at which the ray starts to 
move away from the center of the sphere. For a 
Gaussian distribution, the electron density A' and the 
index of refraction have the form 

N/A'm.« = exp(-rV<r) (2) 

and 

= 1 „   = i - N/Nc, = 1 - exp I(r,/ - rJ)/a'\        (3) 

where a is the Gaussian radius and the subscripts 
max and cr refer to maximum and critical values, 
respectively. It is convenient to change the variable 
of integration to A: = a/r and to take a as the unit of 
length to yield 

r — 

2 

I"' dx 

Jo     (fi    -  0 X ) 

and 

M2 = I - expUor  ' - x") (5) 

The differential cross section in the direction 0, v (0). 
is then calculated by 

»(») = (4ir6/sin eKüb/dß) (6) 

Equations 4 and 6 can always be solved numeri- 
cally for a given variation of ^ with x. An approxi- 
mate analytic solution may be obtained, however, if 
the function /*' may be fitted with reasonable ac- 
curacy by a linear or quadratic function of x, since 
the integral in (4) can then be expressed in terms of 
elementary functions. The properties of the cross 
section and its dependence upon the governing 
parameters in a given region of interest can then be 
clearly exhibited. For a highly overdense plasma 
(large r,r), the turning point occurs at a large value 

jf r so that ju- varies very rapidly over u small range 
of x well inside the intlection point which occurs at 
.r = (2/3)"-. We do not c-;pcct, therefore, the de- 
tails of the variation to be very important and should 
obtain a reasonably accurate solution. However, for 
u slightly overdense plasma (small r,.,) at small im- 
pact parameters, the turning point occurs at a small 
value of r with a consequent slow variation üf p.* over 
a wide range of x which includes the inflection point. 
The manner of variation is important here, and we 
anticipate more ilifliculty and less ace uracy in obtain- 
ing approximate solutions. Since a ray penetrates 
very little into a highly overdense plasma and deeply 
into a slightly overdense plasma, it is convenient to 
refer to these cases as 'hard' and 'soft' spheres, re- 
spectively. When the plasma becontes undcrdense. 
the turning point is. as in the slightly overdense case, 
small at small impact parameters; and, in addition, 
the scattering is now con'ined to the forward region 
(0 S 90°). We may therefore consider the under- 
dense case as a 'very soft' sphere and expect difii- 
culties in obtaining an approximate solution. 

3.    ANALYTIC: FROChUURK 

In view of the somewhat different treatments re- 
quired, the overdense (hard, intermediate, and soft) 
and the underdense spheres are treated separately. 

3.1. Hani sphere. We consider first a typical 
hard sphere with r^ ~ 2, for which a plot of p- 
against x is given in Figure 2. Because of the rapid 
drop in /*-, it is more accurate to use a single 
quadratic term than a combination of linear und 
quadratic terms and write 

ß   ='■  I v s X, 

n' = \ - uA-x - xj)'      x ^ x, 
(7) 

where .ta is the point at which the parabola starts and 
is determined by noting where ß2 for the Gaussian 
has not yet decreased significantly from unity. The 
constant a? may be evaluated by noting that n ~ ti 
at .v^r = 0.5 to give «a = 44.5. A plot of p? for the 
parabola shows that it is in good agreement with the 
exact curve over the entire range. 

The scattering integral can then be written as 

/: 
dx 

'.,   (I - fcV)"J 

+ b f M" 
du 

Bu - Cu'f' (8) 
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Fig. Plot of n- for hard sphere (rc, = 2) and approxi- 
mation by parabola. 

where A -- I - b1.X2*, B = 2b*Xti, C = a. + b\ and 

u - x - X2 is the variable of integration. 
Performing the integration and noting that the 

quadratic vanishes at the turning point, we obtain 

ir_— 
i («a + *T 

■U-S,n WT^ir^bwr'i  (9) 

For a hard sphere, at is large compared to />-' over 
most of the scattering range, except near forward 
scattering where b achieves its maximum value of 
• As- We may then neglect the second arc sine term 
in (9) and write 

2 
= sin bx, + . —„a 

2 a. 
(10) 

Solving for b and taking b/aj1" as small compared 
to unity, we obtain 

spheres from the backscattcr region to about 30° in 
ihc forward-scatter region. Therefore, to complete 
our calculation, we require the cross section for 
small scattering angles in the forward direction, 

Because we are interested in small values of 0 and 
hence values of x where the electron density is small, 
we approximate p by the linear function 

AI' = I - «„(.v - .v„) (13) 

where .vw is a cutoff position at which the electron 
density is negligibly small. The coefficient a« is de- 
termined from the slope of the /t- versus x curve at 
.v»,; that is. 

«n -(2,.v1)')exp Uor ■ - .to ') (14) 

The scattering integral is then 

TT   -   Ö 
bxo 

+ b r  
J..   [1  - aoCt 

dx 
x0) - bW* (15) 

For large impact parameter, x, is close to x0; we 
may therci'ore approximate 1 — b'x* by 2(1 ~ bx) 
to give 

w ~ 6       .    , . 
—-— = sin    o.Vo 

+ b f " J.    1(2 

dx 
1/2 [(2 + «„*„) - {2b + aM 

= sin ' bxn + (26''(26 + a„)l[2(l - hxn)\
U! 

The term bx» is close to unity; therefore, we can write 

sin"' bxa S ' - [2(1 - bxa)\
n 

J= (l + J-) '(2(1 -^B)r 
2      \        aM 

which yields the cross section 

= jL(1 + jLVj^(1.fj_y 
Xo   \        a„x„/       x„   8 \ aoXof 

(16) 

<r(ö) (17) 

b = 
  cos (g/2) 
x,(l + (ir/2KW)"'1's«n (9/2)1 

It is interesting to note that no change is produced in 
777,,,,, (II) (16) if we use in addition to the linear term in (13) 

a quadratic term hu(x - x0)-. This result is not un- 
expected; the integrand is linear in the small quantity 

1 - />.v and, therefore, terms of higher order than the 
(12)    first in the small quantity (x - .to) are negligible. 

Because the cross section becomes infinite for 
An analysis of (9) and (II) shows that the cross- zero-scattering angle, it is convenient to adopt a cut- 
section formula given by (12) is valid for hard    off value for the impact parameter so that a large but 

which yields the cross section 

/«, _ JL I 4- (ir/2) csec (g/2)(W) ' ' 
*m ~ xS (I + or/2)sin (fl/2)(aW)"-,rtIi 

in     na—M—^ 
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finite cross section is obtained. A reasonable require- 
ment is to take the electron density N(,/N„ at x0 be- 
tween 10-' and 10-». Using (5) and (14) wc express 
the cross section at 0 = 0 by 

where Xo is determined by 

Xo 

= *. '+ log (No,/No) 

(18) 

(19) 

3.2. Intermediate case. If the sphere is mod- 
erately hard, the critical value xct will be somewhat 
greater than the point of inflection which will affect 
the right side of the curve. We take as typical ex- 
amples r„ = 1 and rCr = 1/2 for which plots of /r 
against x are shown in Figures 3 and 4. For the case 
rtr = 1 (Figure 3) we see that, aside from U'e bend- 
ing in the region /i a 1, the curve is almost a straight 
line over the remaining region. Although it is possible 
to use a parabola over the initial portion of the curve 
and a straight line over the remainder, the resulting 
formulas become sufficiently complicated to make 
analysis and numerical calculation difficult. We shall, 
therefore, use a straight line starting at x — 0.54, 
M = 1 to jct.r = 1.0, nc, = 0. The initial portion of 
the curve from x = 0.54 to JC = 0.6, while not ac- 
curate should not affect the remainder very much 
since it is a small part of the integral in (4) over 
most of the range. Furthermore, because it is above 
the exact curve in the initial region, this should com- 
pensate somewhat for the straight line being, on the 

Fig. 3.   Plot of M' for moderately hard sphere (r,, = I) 
and approximation by single straight line. 

Fig. 4.    Plot of ii* for moderately soft sphere (/■„ = J) 
and approximation by two straight lines. 

average, slightly below the exact curve in the re- 
maining region. Our straight line can be written us 

2 

X ^ Xl 

M' = I - öi(Ar - x,)       x ^ Xi 

for which the scattering integral yields 

(20) 

ir — Ö .  -i .       ,t —r— = sin     hxl + - 

— sin 
a, + Ib'x, 

[a/ + 46'(l + a^,)]' (21) 

The arc sine terms may be combined in a simple 
manner and the parameter b solved for explicitly as 
a function of scattering angle. We obtain 

* = *,"' cos(ö/2) 

,r1+jL(, + a.)8il,.|]-" 
L       alxl \       a,*,/        2J 

which yields the cross section 

(22) 

*(«) .*' Li + 
1 + 2/a,^, 

4/^,(1 + l/a,.*,) sin" (Ö/2). 
(23) 

An analysis of (19) shows that when the turning 
point = 0.6, the corresponding angle is less than 
30°; thus the cross-section formula can be used to at 
least 30°. The cross section near zero scattering can 
then be obtained from (17). 

As the critical radius decreases to 0.5, Figure 4 
shows that the right-hand portion of the p2 — x curve 
becomes concave upward so that the curve may no 
longer be fitted accurately by a single straight line. It 
is possible, however, to obtain good accuracy by the 
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use of two straight lines of different slopes meeting at 
.t = 1.4. The cross section corresponding to turning 
points within the region of the first straight line may 
be obtained from (23). When the turning point lies 
beyond the region of the first straight line, the contri- 
bution to the scattering integral fron' the second line 
must be considered. Because of the discontinuity in 
the slope, the integral loses its simple structure and 
can no longer be solved in simple analytic form for 
arbitrary b. However, for smaÜ b (large scattering 
angles), the integral assumes a simple form and can 
be conveniently solved. For turning points beyond X2 
the scattering integral is 

T ~   9 .   ., 
•—-— - sin 

.       i    •   -i _ ai + 2b'X3  ft*, + sm    [ai + 464(1 +-— ^p 

a. + 2^. 
S,n    [a? + 4fca(l + a,^.)] 

o., + Itfx, + sin 
[a,1 + 4620xa

a + a■ix.^)\
, (24) 

For small b, the arguments of the arc sine terms may 
be expanded to first order in b2 to yield 

= sin'1 bxx + sin" '('-!M 
sin ('-£) + - - sin 

where we have used 

(■-!-■) "    (25) 

M;     =   1   - fliUj - X,) 

Expanding the arc sine terms for small b, we obtain 

w - e 
n2 = lfcU +—(1 -**.) + —I        (26) L        ex, a., J 

which yields the coss section 

x,     sin 9 

(27) 

valid for large scattering angles. 
3.3. Soft sphere. When the critical radius is 

small, the initial moderate decrease in p* is followed 
by a very slow decrease, as shown in Figure 5 for 
rcr = 1/8. It becomes difficult and inaccurate, there- 
fore, to use a combination of two simple curves. 
However, we have found it feasible to use a straight 
line for the initial portion of the curve, and an 
approximate method of integration for the latter 
portion. 

A reasonable fit up to .* = 1.4 may be obtained 
with a straight line from JT, = 0.5, /r = 1.0, to x* — 
1.4. The cross section may then be obtained from 
(22) and (23) as long as the parameter h does not 
go below the value corresponding to Xt as the turn- 
ing point, that is, b = /^Aa. The calculation then 
yields a maximum scattering angle of about 69°. 

For values of x beyond Xi we split the integral at 
a suitable point x-A where A^ is not far from JTS, but 

Fig. 5.    Plot of v? for very soft sphere (rs, = '/») and approximation by straight 
line for initial position of curve. 
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such that .r.,» is somewhat larger than unity anil write which yields the cross section 

', + /.. 
where 

•  ' J,. UJ - ba.xa)U3 

(28a) 

(28b) 

(28c) 

aid) 
sin e.x„(A - x/f 

(35) 

The integral It may be evaluated approximately by 
noting that ^ has not changed very much in the in- 
terval and, therefore, may be taken as constant. We 
obtain 

In terms of b, the cross section has the simpler form 

STT .\\,'h' 
o(B) = (36) 

. .    i bx* .    i bx. 
/,  = sin    T-r — sin     -— 

iß) iß) 
(29) 

where (ji) is an average value in the interval. To in- 
tegrate I2, we assume .r:t-' is sufficiently greater than 
unity so that a series expansion of n2 may be used. 
We then have 

exp (AT,.,     - x' ) 
1 

*   = I 

*Lx     - xtt 

The integral /2 now takes the form 

(30a) 

(30b) 

,   =   /"' b*uZAx  (3n h      ]..  ix.,'- x2-tb\,
JxY2 l3,) 

and may be integrated to yield 

^-4-  2im    (l+4xrrW
/J (32) 

For values of 9 greater than and near w/2, the b- 
term in the numerator is comparable to unity whereas 
the b1 term in the denominator is much greater than 
unity. It is not until 6 is in the range near ir that the 
latter term becomes comparable to unity. We find it 
convenient, therefore, to calculate near T/I and near 
w. For 0 near ir/2. the arc sine terms in /1 and l3 arc 
small compared to unity, and we may write our scat- 
tering integral as 

ir/2- $ = (A ~ .v.,a) * - {2xr,*by'       (33) 

where A = 2[xi + (Ar3 - ^2)/(/*)!• Solving for b, wc 
obtain 

^]1 + 4 (34) 

sin 9 I + 2M - x/Ujb 

For large scattering angles, the argument of tin- 
arc sine term in the /.. integral is no longer small 
compared to unity; thus the preceding simplification 
cannot be used. We therefore write the scattering in- 
tegral in the form 

a- -  e =   Ab + cos    77 J-A~4.i.i/2 (I + 4.v,r b ) 

and take the cosine of both sides to yield 

2   ?■ a 

(37) 

cos (TT —  0) ,  ,M    '   + 2*t./.Y:.V eosU6)(TT4i?^P 

-Ib^iAb^i^^' 

Since Ah h n small quantity, we may expand cos 
(Ah) and fr sin (Ah) to first order in b- and solve 
for h to obtain 

b = sin Or - 9)/2x„'[B + cos' (T - d)]'" (38) 

where 

B-AII-^T-K + Z-, .r,,r   \ x„ / xrr        4xrr 

The cn>ss section is, accordingly, 

ir   (I + ß) cos (ir - 6) 
am = xj iY+-7o^-~o)]'        (39, 

For backscattcr, wc obtain the interesting limiting 
form (neglecting the small quantity B) 

<r(e) = 1r/xt,
, 

re, 

(40a) 

(40b) 

where r,.,, is the radius of a conducting sphere having 
the same cross section as the Gaussian sphere. 

3.4. Umlerclense sphere. When the maximum 
electron density of the plasma is below the critical 
frequency, the index of refraction has a minimum 

MMHM  ^  
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value greater than zero. The general shape of the 
curve is similar to a soft sphere, with the minimum 
value approached asymptotically for large .v. In view 
of the tediousness of our method for very soft spheres, 
we use a perturbation technique in which wc assume 
in first approximation that the deflection of the ray 
path may be neglected. For a spherical plasma, the 
relation between index of refraction and the angle a 
between the radius and the ray direction is given by 
Bouger's rule [Kelsu, 1964] 

urs'm a = b (41) 

The variation in « due to change in fi is 

tan 0 diti) . .... 
da =  --r-j- —T~ dr (42) 

2M      iir 

where we omit the change in a due to the explicit r 
term since this gives its variation due to the angular 
change in r (note that for fixed n and hence no de- 
flection, the variation in r gives precisely the change 
in a). Since da is referred to a fixed position of r, it 
gives the deflection of the ray at this point. The total 
deflection of the ray is then obtained by integration 
over the ray path. If we assume the path is unper- 
turbed then tan a = b/z, r2 = fc2 + z\ and the in- 
tegral can be cast in the form 

* r 1 
~ 2 L 7 

dUL)d2 
r H*   dr 

(43) 

a relation similar to that obtained in classical mechan- 
ics [Böhm, 1951] if we take p" as close to unity. For 
our Gaussian sphere p - 1 - pe~'' where p - 
AL.. 'N.t. yielding 

= pb < ?  

- I — pr   e 
du (44) 

where u - z/h. Since p is less than unity, wc may 
expand the denominator to effect the integration and 
obtain 

«"'a 1 + + 3' + ) 
(45) 

where c      pe'h'. which yields the cross section 

"«■£?{{"-»■ 2)+(l - 4ft2) ~ 

+ (1 - 6fcV3T7a + •]}"■ (46) 

For underdense spheres, the scattering angle vanishes 
at ft = 0 as well as at large h so that 6 is a double 
valued function of 9; accordingly, the contributions 
from the two values of b must be added numerically 
to obtain the total cross section. The scattering in 
the forward direction may be calculated by the pro- 
cedure for overdense spheres. However, since p is 
less than unity, we express ('9) directly in terms of 

30 60 90 120 
SCATTERING  ANCLE  9,  DEGREES 

ISO ISO 

Fig. 6.   Variation of impact parameter with scattering angle for overdense spheres 
for teveral values of critical radius. 
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30 60 90 120 ISO 
SCATTERING ANGLE Q, DEGREES 

Fig. 7.   Variation of effective radius with scattering angle 
for several values of critical radius. 

by 

x0'
2 = MA'^/No) - In p (47) 

4.    RESULTS AND DISCUSSION 

The results obtained by the numerical procedure 
for overdense spheres are presented in Figures 6 and 
7, where we have plotted the variation of impact 

30       60       90      120      ISO      180 
SCATTEPiNO ANOLE 9, DEGREES 

Fig. 8.   Plot of ratio of effective radius to critical radius 
against scattering angle for overdense spheres with critical 

radius as the parameter. 

parameter and cross section with scattering angle, 
with the cross section expressed in terms of rett. The 
results obtained by the analytic procedure were gen- 
erally very close to those obtained numerically. To 
indicate the agreement obtained, we have also plotted 
in Figure 7 the analytic solutions for r,,M for a hard 

3r 

30 60 
SCATTERING ANGLE 0, DEGREES 

Pig. 9.    Variation of impact parameter with scattering an- 
gle for underdense spheres for several values of density ratio. 
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sphere (r„ = 2) and for a very soft sphere (r,., = 
1/8). 

Figure 6 indicates that for hard spheres, except 
for the forward-scattering region, the impact param- 
eter is almost a linear function of scattering angle. 
As the critical radius becomes small, the impact pa- 
rameter decreases rapidly in the forward-scattering 
region, resulting in very small values for all scatter- 
ing angles greater than 90°. 

Figure 7 shows that hard spheres have an almost 
constant cross section over a fairly wide range of 
backscattering angles, and r,^ is only slightly less 
than r„. For r,r = 0, the cross section becomes van- 
ishingly small from 0 = 90° to 180°. We have in- 
dicated this result by a vertical line at 90°. The small 
values of rM for a soft sphere in the backscatter re- 
gion are due to the great depth of penetration, and 
consequently small value of the impact parameter b 
required for a given scattering angle. The rate of 
change of impact parameter with scattering angle is 
accordingly very small in the backscatter region, re- 
sulting in low cross sections. We thus have a transi- 
tion region in which rfM decreases very rapidly until 
the scattering angle becomes quite large. This result 
may also be seen from the form of the /r versus at 
curve for a very soft sphere (Figure 5) and the scat- 
tering integral. As the turning point gets closer to the 
center of the sphere, xt becomes larger and the inte- 
gral starts to increase rapidly because of the large 
contribution from the region of small p. values; the 
valu J of b then begins to decrease rapidly with a 
sharp drop in cross section. For large values of the 
turning point, however, the integral is quite large and 
further increases in the scattering angle have very 
little effect upon db/dO, resulting in a slowly decreas- 
ing cross section. 

In the region of forward scatter, we note that the 
curves for different rCT coalesce, ihn process occur- 
ring at smaller angles for larger r„. This result occurs 
because the forward-scattered rays penetrate the 
outer edge of the cloud where the electron density 
and its gradient are small, and do not differ signifi- 
cantly for different critical radii. The scattering there- 
fore depends principally upon the impact parameter 
and very little upon the critical radius. For large val- 
ues of rcr, however, the electron density is affected 
to some extent by the critical radius unless the im- 
pact parameter is taken sufficiently large. (See equa- 
tion 19, where we note that large r„ may have some 
effect unless the cutoff density No/N„ is taken suffi- 
ciently small.) The curves for large r,„ therefore, 

coalesce more slowly than do the smaller r„ curves. 
Since, in backscatter, the effective radius r,« is 

very close to r„ for large rCT and decreases as rw" 
for small rcr (see equation 40), it is of interest to see 
whether a simple exponential law can be used to rep- 
resent the backscatter results. A plot of log (1 — 
fttt/ftt) against r„ shows that the backscatter results 
may be fitted with good accuracy by a straight line 
whose equation is 

1 - r.u/r., = e-'0"" (48) 

This reli tion gives the proper dependence of r^t upon 
rcr for small r„ and satisfies the requirement that 
'"effAcr is close to unity for large r„. To show the re- 
lations between rett and r^ for all scattering angles, 
we have plotted in Figure 8 the ratio rrff/rcr as a 
function of scattering angle for several values of r,,. 

o  - 

o 
o 

-2 
30 CO 

SCATTtRINO   ANGLE   6,  DECREES 
90 

Fig. 10.   Variation of effective radius with scattering angle 
for underdense spheres for several values of density ratio. 
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The curves criMs ncur H - 105 ' und r,.„ r,., nuli- 
culing that, in this scullcring region, ull GaUMiiin 
spheres may be replaced by a conducting sphere of 
rndius equal to the critical radius. 

The variation of impact parameter with scattering 
angle for undcrdense spheres is shown in Figure 4 
where, in contradistinr.ion to the overdense case. 
small deflections are obtained at small as well us at 
lurge values of the impact parameter. The results ob- 
tained by the perturbation procedure are in fair agree- 
mem with the more exact calculations at small values 
of the density ratio p, the agreement lessening as i> 
increases. The more exact calculations show a steady 
decrease of b at maximum deflection with increasing 
p. whereas the corresponding value of 1/ by the ana- 
lytic method is relatively insensitive to an increase in 
p. The two sets of curves are therefore considerably 
displaced at higher values of p, with consequently 
inaccurate cross sections, Attempts to improve the 
perturbation results by an iterative procedure in 
which the orbit is not neglected have not proved 
very successful. We have therefore not presented the 
analytic results for the cross sections. 

The cross-section results arc presented in Figure 
10, where we have added the contributions from the 
two values of b. The contribution from the large 
value of b is generally much higher, except near e,iaix. 
where both b values give very large contributions. 
The vertical lines in Figure 10 indicate the points of 

maximum deflection .it which the crot» tcdian i* in- 
finite. A* anticipated, the curve« for different ? «»• 
lescc in tin.' forwurd-MTullering region, with merging 
occurring at lower valbes of 9 (or »iriuller p. Thi% 
may be easily seen by noting thai the value of ru de- 
pends more strongly on ,, when it it small (see equa- 
tion 47). 

For the purpose of comparison and discussion with 
respect to the critical density region, some of the im- 
pact parameter results tor overdense und underdense 
spheres are presented together in Figure 11. We note 
that, as the density approaches unity, the upper 
branch for the underdense region merges with the 
forward-scatter portion of the overdense curve. In 
addition, the lower branch of the underdense curve 
goes to /> = 0 with a maximum deflection of 90'. 
while the backscuttcr portion of the overdense curve 
also goes to t - 0 for the region 90° to 180°. 

We thus have a discontinuity in maximum scatter- 
ing angle at the critical density, with 90° obtained 
when the approach is from underdense values and 
180  when it is from the overdense side. 

The cross section approaches zero in the back- 
scatter region as the density becomes critical from 
the overdense side (see Figure 7) whereas because 
of the infinite slope in the impact parameter curve, 
it becomes infinite at 90° from the underdense side 
(Figure 9). 

These peculiarities in the scattering near critical 
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Fig.  II. Plot of impact parameter against scattering angle for underdense and over- 
dense spheres showing limiting forms at critical density. 
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