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Scattering of HF radio waves by a
spherical electron cloud

Milton M. Klein
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(Received March 18, 1971; revised August 16, 1971.)

Numerical and analytic solutions in the ray-optics region have becn obtained for the
scattering of HF radio waves by a spherical electron cloud with a Gaussian distribution of
electron density in the radial direction. The results show that a highly overdense or hard cloud
has a wide range of backscatter angles for which the cross section is almost constant with a
value close to that of an equivalent conducting sphere (critical radius size), A slightly overdense
or soft sphere has a much narrower range of almost constant cross section whose value is pro-
portional to the fourth power of the critical radius and considerably below that of an equivalent
conducting sphere. In the region of forward scatter, all sphere: have essentially the same cross
section, independent of hardness. For underdense spheres, the cross section is generally the
same as that characteristic of forward scattering except in the region of maximum deflection
where the cross section increases very sharply. It is found that when an underdense sphere
becomes critical, the maximum deflection is 90°, whereas an overdense sphere retains its
maximum deflection of 180° at the critical density. For overdense spheres, the analytic results
are in good agreement with those obtained numerically; but for underdense spheres, they are

not in good agreement at the higher electron densities.

1. INTRODUCTION

In recent years, studies of the upper atmosphere
have been conducted with artificial ionized clouds
obtained by the release of barium vapor at high alti-
tudes. To help in the understanding and interpreta-
tion of experimental data, a theorctical study is being
made of the scattering of radio waves by an artificial
¢lectron cloud.

Because the electron cloud, which is several
kilometers in cxtent, is considerably larger than a
typical wavelength in the HF band, the method of
geometrical optics has been utilized. For those fre-
quencies at which the effect of the magnetic field is
not negligible, a detailed ray-tracing technique such
as that furnished by the Haselgrove method [Hasel-
grove, 1955] must be employed. If, however, the
magnetic field can be neglected, the scattering may
be computed directly, at least for the case of spheri-
cal symmetry, with increased accuracy and consid-
erable reduction in computational labor.

Our present investigation is concerned with the
frequencies at which the magnetic field is negligible.
We shall assume that the distribution of electron
density is spherically symmetric and, as indicated by

Copyright ® 1972 by the American Geophysical Union.
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diffusion theory, has a Gaussian form in the radial
direction. The collision frequency within the cloud
is generally small compared to the incideat fre-
quency; thus absorption may be neglected in our
calculations.

2. ANALYSIS

A ray initially a distance b from the z axis is
deflected through an angle 8 at a given position 7,
¢ within the cloud, and is scattered through an angle
6 as it emerges from the cloud (Figure 1). For a
spherically symmetric plasma, the scattering is inde-
pendent of meridian angle and can be described in
terms of the scattering angle 8 in the plane of in-
cidence and the impact parameter b, The relation be-
tween b and 4 may be obtained from the scattering
integral for the two-body central force problem
[Goldstein, 1950a] and the analogy between particle
dynamics and ray optics [Goldstein, 1950b], or by
direct consideration of the scattering of a ray by a
spherically symmetric plasma [Kelso, 1964]. We may
express this relation in the form

r—0_ b S ar
2 B (”a_’c _"'bz’z_)ﬂi 9))
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Fig. 1. Sketch showing ray puth and scattering parameters,

where p is the index of refraction, r the radial posi-
tion of the ray, and r, the turning point or reflection
point, that is, the location at which the ray starts to
move away from the center of the sphere. For a
Gaussian distribution, the electron density N and the
index of refraction have the form

N/ Nows = €xp (—r'/a") )
and

=] = N/N, =1 — exp[(r..' —r)/a’ 3)
where g is the Gaussian radius and the subscripts
max and cr refer to maximum and critical values,
respectively. It is convenient to change the variable
of integration to x = a/r and to take a as the unit of
length to yield

r -
= b_/ T, b‘r’)“' 4)
and

=1 ~expx, ‘~x79 5)

The differential cross section in the direction 8, « (8),
is then calculated by

o(8) = (4xb/sin 0)(db/d0) (6)

Equations 4 and 6 can always be solved numeri-
cally for a given variation of u* with x. An approxi-
mate analytic solution may be obtained, however, if
the function u* may be fitted with reasonable ac-
curacy by a linear or quadratic function of x, since
the integral in (4) can then be expressed in terms of
elementary functions. The properties of the cross
section and its dependence upon the governing
parameters in a given region of interest can then be
clearly exhibited. For a highly overdense plasma
(large r..), the turning point occurs at a large value

af rso that x varies very rapidly over a small range
of x well inside the intlection point which occurs
X = (2/3)': We do not expect, therefore, the de-
tails of the variation to be very important and should
obtain a reasonably accurate solution. However, for
a slightly overdense plasma (small r.,) at small im-
pict parameters, the turning point occurs at a smull
value of r with a consequent slow variation of p? over
a wide range of v which includes the inflection peint.
The manner of variation is important here, and we
anticipate more difliculty and less accuracy in obtain-
ing approximate solutions. Since o ruy penetrates
very little into a highly overdense plasma and deeply
into a slightly overdense plasma, it is convenient to
refer to these cases as *hard’ and ‘soft® spheres, re-
spectively, When the plasma becomes underdense,
the turning point is, as in the slightly overdense case,
small at small impact parameters; and, in addition,
the scattering is now con‘ined to the forward region
(0 = 90°). We may therefore consider the under-
dense case as a ‘very soft’ sphere and expect diffi-
culties in obtaining an approximate solution.

3. ANALYTIC PROCEDURE

In view of the somewhat different treatments re-
quired, the overdense (hard, intermediate, and soft)
and the underdense spheres are treated separately.

3.1. Hard sphere. We consider first a typical
hard sphere with r, = 2, for which a plot of u*
against x is given in Figure 2. Because of the rapid
drop in p®, it is more accurate to use a single
quadratic term than a combination of lincar and
quadratic terms and write

uo= | XS )
wo= = ale — xg) X2 X

where x; is the point at which the parabola starts and
is determined by noting where u? for the Gaussiun
has not yet decreased significantly from unity. The
constunt a; may be evaluated by noting that u = 0
at X, = 0.5 to give ax = 44.5. A plot of p* for the
parabola shows that it is in good agreement with the
exact curve over the entire range.

The scattering integral can then be written s

—"“_b[ bz.el/'

du

+ 4 [ (_; — Bu _——E‘_‘I")WI (8)
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Fig. 2. Plot of u2 for hard sphere (r.. = 2) and approxi-
mation by parabola,

where 4 == | — b%xp?, B = 2b*x,, C = a. + b*, and

v = X - Xg is the variable of integration.
Performing the integration and noting that the

quadratic vanishes at the turning point, we obtain

=l R B 4 — e
2 = sin" bhx, + @ + b'J)I/E

(; — sin ' Ez"q__;ﬁ'_'bzgzﬁi/i) 9)
For a hard sphere, a; is large compared to b° over
most of the scattering range, except ncar forward
scattering where b achieves its maximum value of
1/xa. We may then neglect the second arc sine term
in (9) and write

=l
2
Solving for b and taking b/«y'/* as small compared
to unity, we obtain

g . b
2 = sin ' bx, + ’; i (10)

s/
b = X[l + (x/2)a.x.5)"* sin (6/2)] i)

which yiclds the cross section

o(0) = —; I + (x/2) csec (6/2)anx) (12)
x,* [I + (x/2)sin (8/2)a.x,") ") -

An analysis of (9) and (11) shows that the cross-
section formula given by (12) is valid for hard

spheres from the backscatter region to about 30° in
the forward-scatter region. Therefore, to complete
our calculation, we require the cross section for
small scattering angles in the forward direction.

Because we are interested in small values of 4 and
hence values of x where the clectron density is small,
we approximate ¢ by the linear function

ph =1 = any — x) (13)

where v, is a cutoff position at which the electron
density is negligibly small. The coefficient a, is de-
termined from the slope of the u* versus x curve at
s that is,

dy, = “(z,lxull) exp ('rer. - ."o-’) “4)
The scattering integral is then

r— 0 .
5 = sin bx,

sl dx
vof g = (Lt

- ao(.r>— Xo) — b‘xﬁr/'
For large impact parameter, x; is closc to xp; we
may therciore approximate 1 — b%x® by 2(1 ~ bx)
to give

r—-0

sin ' by,

il

-

- dx
+ b [ 2 F awxs) — 26 + ag)x]”*

= sin ' by, + [267(2b 4+ a))(2(1 — bxy)]'*
The term bx, is close to unity; therefore, we can write

sin™ b, X 7 = (21 ~ b))
E (16)

6 7] e )
5= (l + ;.,—x—.,) [2(1 = be)l”’

which yiclds the cross section

(6 = =% (1 +—2—)' - _ri(, + 2 ) an
Xo doX,

b
QAnXo x, 8 0

It is interesting to note that no change is produced in
(16) if we use in addition to the linear tenn in (13)
a quadratic term by(x — xo)* This result is not un-
expected; the integrand is linear in the small quantity
| - bx and, therefore, terms of higher order than the
first in the small quantity (x — xo) arc negligible.
Because the cross section becomes infinite for
zero-scattering angle, it is convenient to adopt a cut-
off value for the impact parameter so that a large but

P N
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finite cross section is obtained. A reasonable require-
ment is to take the electron density No/N., at xo be-
tween 10-? and 10-%, Using (5) and (14) we express
the cross section at § = 0 by

. 17} _.."2!._)
a(b) = X (l + No/ N (18)
where x, is determined by

Xo-2 = xcr“’ + log (h’cr/Nﬂ) (’9)

3.2. Intermediate case. If the sphere is mod-
erately hard, the critical value x, will bc somewhat
greater than the point of inflection which will affect
the right side of the curve. We take as typical cx-
amples r, = 1 and r., = 1/2 for which plots of u*
against x are shown in Figures 3 and 4. For the case
re. = 1 (Figure 3) we sce that, aside from the bend-
ing in the region x == 1, the curve is almost a straight
line over the remaining region. Although it is possible
to use a parabola over the initial portion of the curve
and a straight line over the remainder, the resulting
formulas become sufficiently complicated to make
analysis and numerical calculation difficult. We shall,
therefore, use a straight line starting at x = 0.54,
p =110 x; = 1.0, per = 0. The initial portion of
the curve from x = 0.54 to x = 0.6, while not ac-
curate should not affect the remainder very much
since it is a small part of the integral in (4) over
most of the range. Furthermore, because it is above
the exact curve in the initial region, this should com-
pensate somewhat for the straight line being, on the

iD = .\_ e S
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s = LINEAR
.8 APPRONIMATION
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Fig. 3. Plot of u? for moderately hard sphere (rer = 1)

and approximation by single straight line.
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Plot of x? for moderately soft sphere (r., = %)
and approximation by two ctraight lines.

Fig. 4.

average, slightly below the exact curve in the re-
maining region. Our straight line can be written as

2

= |

M x S x 20

#7=l—a|('\'“‘-\’l) X2 x
for which the scattering integral yields

- 0 A
"—2— = sin”’ bx, +§
et a + 2b2x|
ST F 40 + e @Y

The arc sine terms may be combined in a simple
manner and the parameter b solved for explicitly as
a function of scattering angle. We obtain

x:7% cos (6/2)
-1/2
-[1 S (1 + —1—) sin’ 9] (22)

ax, a,x, 2

b =

which yiclds the cross section

a(8) = i [—— 1 + 2/ax, ]2
.\']‘ 1 + 4/a|x|(l + l/a.x,)sin“ (0/2)
23)

An analysis of (19) shows that when the turning
point = 0.6, the corresponding angle is less than
30°; thus the cross-section formula can be used to at
least 30°. The cross section near zero scattering can
then be obtained from (17).

As the critical radius decreases to 0.5, Figure 4
shows that the right-hand portion of the u* — x curve
becomes concave upward so that the curve may no
longer be fitted accurately by a single straight line. It
is possible, however, to obtain good accuracy by the

S
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use of two straight lines of different slopes meeting at
x = 1.4, The cross section corresponding to turning
points within the region of the first straight line may
be obtained from (23). When the turning point lies
beyond the region of the first straight line, the contri-
bution to the scattering integral fron: the second line
must be considered. Because of the discontinuity in
the slope, the integral loses its simple structure and
can no longer be solved in simple analytic form for
arbitrary b. However, for small b (large scattering
angles), the integral assumes a simple form and can
be conveniently solved. For turning points beyond x.
the scattering integral is

=0 a2,
3 = sin bx, + sin o F 4550 + ar 7
_ sin—l _— al .'*' 2b2x, _
la,' + 46°(1 + aix)))"*
LN a, + 2b2x-,
T T T s + a2

For small b, the arguments of the arc sine terms may
be expanded to first order in b* to yield

= ¢in™' bx, + sin"(l - j—lzg ug"')

r— 0

2
_ gin™! _zb:) L (_’_b_:' )
sin (l - + sin” {1 ait (25)

1 2

where we have used

INGEX DOF REFRACTION,

SOQUARE OF
a

—— e LINEAR APPROXIMATION

“lu =1 — a0y = x))
Expanding the arc sine terms for small b, we obtain

=0 _r R ﬂ]
o2 -(b[x.-l-alx'(l 42) + % (26)

which yields the cross section

mwlf JL+—m—m+M]'

o2 [}
(27)

valid for large scattering angles.

3.3. Soft sphere. When the critical radius is
small, the initial moderate decrease in n? is followed
by a very slow decrease, as shown in Figure 5 for

= 1/8. It becomes difficult and inaccurate, there-
fore, to use a combination of two simple curves.
However, we have found it feasible to use a straight
line for the initial portion of the curve, and an
approximate method of integration for the latter
portion,

A reasonable fit up to x = 1.4 may be obtained
with a straight line from x; = 0.5, u* = 1.0, to xo =
1.4, The cross section may then be obtained from
(22) and (23) as long as the parameter » does not
go below the value corresponding to x; as the turn-
ing point, that is, b = po/x,. The calculation then
yiclds a maximum scattering angle of about 69°.

For values of x beyond x; we split the integral at
a suitable point x, where x; is not far from x,, but

GAUSSI&N

4 ] ] T [ ]

Fig. S. Plot of a2 for very soft sphere (r.» = 's) and approximation by straight
line for initial position of curve.
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such that x;? is somewhat larger than unity and write

I=1n+1 (28a)
where
Rl b dx

= O =l oy 2
h j P (280)

o bdx R
h (= - " 28¢
l j:. (# — b.\-)l/ (28¢)

The integral /; may be evaluated approximately by
noting that p has not changed very much in the in-
terval and, therefore, may be taken as constant. We
obtiin

1

bxy _ sin’ (29)

J v b,
() (W)
where () is an average value in the interval. To in-
tegrate Iy, we assume x,* is sufficiently greater than
unity so that a series expansion of p? may be used.
We then have

1, = sin

2

W= —expix.,’—xH (30a)
> x -, 7t (30b)
The integral 72 now takes the form
o bx,. x d.
I, = f P _xtb':;"‘-'z;i')“i'/z (31
and may be integrated to yield
r 1.1+ 2bx,.’x
I=7%-5 ' a ¥ 4}—{432—).172 (32)

For values of 8 greater than and near »/2, the b*
term in the numerator is comparable to unity whercas
the b* term in the denominator is much greater than
unity. It is not until 8 is in the range near » that the
latter term becomes comparable to unity. We find it
convenient, therefore, to calculate near »/2 and near
». For 8 near =/2, the arc sine terms in /, and [, arc
small compared to unity, and we may write our scat-
tering integral as

x/2 — 0= (A4 — )b —(2x.8)" (33

where 4 = 2[x; + (x3 — x2)/(w]. Solving for b, we
obtain

- artmfi- e (G-

S 1 [ 2
+4‘—'—‘:—f“—’]} (34)

Vs

which yields the cross scction

g |

D sin 0 \',, (A_;—?;.’)2

{9+ [ +222277)
(- 422"

In terms of b, the cross section has the simpler form

[SAE ]

)

(35)

o(8) = 8w X b"_
) sm9l+’(A—\)r,,

For large scattering angles, the argument of the
arc sinc term in the I integral is no longer small
compared to unity; thus the preceding simplification
cannot be used. We therefore write the scattering in-
tegral in the form

(36)

1+ 2%, x
(a+ 4 .,b)‘“

and take the cosine of both sides to yield

r— 0= Ab+ cos ' (37

2
== cos (Ab) -Li_—z—‘LL“ 8

cos (r — 0) (1 F 4x b)'”

/ 2\
— 2bsin (Abk.,’ (I——-f-x;x 0 )

Since Ab is a small quantity, we may expand cos
(Ab) and b sin (Ab) to first order in b* and solve
for b to obtain

b = sin(r — 6)/2x..'[B + cos’ (x — O)]'"* (38)
where
B _A _ .\'_?i_)”:, _A:
= .\'..,2 (l .",,2 ‘u + 4xn
The cross scction is, accordingly,
0(0)__ zr_ (I+B)cos(r—0) (39)

YIB+ cos’(a - 0)]

For backscatter, we obtain the interesting limiting
form (neglecting the small quantity B)

(40a)
(40b)

|
o(8) = =/x,,
Fogy = ’n.

where 7 is the radius of a conducting sphere having
the same cross section as the Gaussian sphere.

3.4. Underdense sphere. When the maximum
clectron density of the plasma is below the critical
frequency. the index of refraction has a minimum
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value greater than zero. The general shape of the
curve is similar to a soft sphere, with the minimum
value approachcd asymptotically for large x. In view
of the tediousness of our method for very soft sphercs,
we usc a perturbation technique in which we assume
in first approximation that the deflection of the ray
path may be ncglected. For a spherical plasma, the
relation between index of refraction and the angle «
between the radius and the ray direction is given by
Bouger’s rule [|Kelso, 1964]

ursina = b 41)
The variation in « due to change in u is
F 2
do = 4200 de) (42)
2u dr

where we omit the change in « due to the explicit »
term since this gives its variation due to the angular
change in r (note that for fixed » and hence no de-
flection, the variation in r gives precisely the change
in a). Since da is referred to a fixed position of r, it
gives the deflection of the ray at this point. The total
deflection of the ray is then obtained by integration
over the ray path. If we assume the path is unper-
turbed then tan o« = b/z, r* = b* + 2%, and the in-
tegral can be cast in the form

bf" 1 d(yz)dz
6 = > -3 =
QS o u” dr r

(43)
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a relation similar to that obtained in classical mechan-
ics [Bofum, 1951] if we take 4* us close to unity. For
our Gaussian sphere u° - | — pe™"" where p -
N...'N,,. yic\ding

6 = pb’e"' f" fv,.hlu'
& I g

where u = z/b. Since p is less than unity, we may
expand the denominator to effect the integration and
obtain

- du

SYSRTYNO
e

(44)

6 = r”"cb(l + :,5.‘75 + 3(175 + ) (45)

where ¢ = pe ", which yields the cross section
4Il/1b{ [ 2 2, €
U(O)Nsino c(|—2b)+(l-4b)2.,,

2 -1
+ (1 = 6% i + ]} (46)

For underdense spheres, the scattering angle vanishes
at b = 0 as well as at large b so that b is a double
valued function of 6; accordingly, the contributions
from the two values of b must be added numerically
to obtain the total cross section, The scattering in
the forward direction may be calculated by the pro-
cedurc for overdense sphercs. However, since p is
less than unity, we express (*9) directly in terms of

VarACT PARAMETER, b

[+] 30 60

—le e )

120
SCATTERING ANGLE §, DEGREES

150 180

Fig. 6. Variation of impact parameter with scattering angle for overdense spheres
for several values of critical radius.
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Fig. 7. Variation of effective radius with scattering angle SCATTERING ANGLE §, DEGREES
for several values of critical radius. Fig. 8. Plot of ratio of effective radius to critical radius
against scattering angle for overdense spheres with critical
radius as the parameter.

p by
X0 = In(N,./No) — In o' (47) Paramcter and cross section with scattering angle,
with the cross section expressed in terms of rerr. The
4. RESULTS AND DISCUSSION results obtained by the analytic procedure were gen-
The results obtained by the numerical procedure erally very close to thosc obtained numerically. To ]
for overdense spheres are presented in Figures 6 and  indicate the agreement obtained, we have also plotted L

7, where we have plotted the variation of impact in Figure 7 the analytic solutions for rey for a hard
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Fig. 9. Variation of impact parameter with scattering an-
gle for underdense spheres for several values of density ratio.
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sphere (r., = 2) and for a very soft sphere (r., =
1/8).

Figure 6 indicates that for hard spheres, except
for the forward-scattering region, the impact param-
eter is almost a linear function of scattering angle.
As the critical radius becomes small, the impact pa-
rameter decreases rapidly in the forward-scattering
region, resulting in very small values for all scatter-
ing angles greater than 90°.

Figure 7 shows that hard spheres have an almost
constant cross section over a fairly wide range of
backscattering angles, and r. is only slightly less
than r... For r., = 0, the cross section becomes van-
ishingly small from 0 = 90° to 180°. We have in-
dicated this result by a vertical line at 90°. The small
values of r. for a soft sphere in the backscatter re-
gion are due to the great depth of penetration, and
consequently small vilue of the impact parameter b
required for a given scattering angle. The rate of
change of impact parameter with scattering angle is
accordingly very small in the backscatter region, re-
sulting in low cross sections. We thus have a transi-
tion region in which re decreases very rapidly until
the scattering angle becomes quite large. This result
may also be seen from the form of the u° versus x
curve for a very soft sphere (Figure 5) and the scat-
tering integral. As the turning point gets closer to the
center of the sphere, x; becomes larger and the inte-
gral starts to increase rapidly because of the large
contribution from the region of small p values; the
valu: of b then begins to decrease rapidly with a
sharp drop in cross section. For large values of the

turning point, however, the integral is quite large and

further increases in the scattering angle have very
little effect upon db/d#, resulting in a slowly decreas-
ing cross section.

In the region of forward scatter, we note that the
curves for different r., coalesce, th~ process occur-
ring at smaller angles for larger r.,. This result occurs
because the forward-scattered rays penetrate the
outer edge of the cloud where the electron density
and its gradient are small, and do not differ signifi-
cantly for different critical radii. The scattering there-
fore depends principally upon the impact parameter
and very little upon the critical radius. For large val-
ues of r.,, however, the clectron density is affected
to some extent by the critical radius unless the im-
pact parameter is taken sufficiently large. (See equa-
tion 19, where we note that large r., may have some
effect unless the cutoff density No/N,, is taken suffi-
ciently small.) The curves for large .., therefore,

coalesce more slowly than do the smaller r,, curves.

Sincc. in backscatter, the effective radius roy is
very close to r., for large r., and decrcases as r.,*
for small r., (see equation 40), it is of interest to see
whether a simple exponential law can be used to rep-
resent the backscatter results. A plot of log (1 —
Fett/Ter) against r.. shows that the backscatier results
may be fitted with good accuracy by a straight line
whose equation is

1 - r..,/r., - e-l.Olnr (48)

This reli:tion gives the proper dependence of 7., upon
re. for small r,, and satisfies the requirement that
Fett/Tcr is close to unity for large r.,. To show the re-
lations between reye and r.. for all scattering angles,
we have plotted in Figure 8 the ratio re/r., as a
function of sca‘tering angle for several values of r...

LOG Pty

-2 1 |
(] 30 60 90
SCATTERING ANGLE 8, DEGREES

Fig. 10. Variation of effective radius with scattering angle
for underdense spheres for several values of density ratio.
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The curves cross near 8 = 108 and rq¢ ., indi-
cating thut, in this scattering region, all Gaussian
spheres may be replaced by a conducting sphere of
radius cqual to the criticul radius.

The variation of impact parameter with scattering
angle for underdense spheres is shown in Figure 9
where, in contradistinction to the overdense case,
small deflections arc obtained at small as well as at
large values of the impact parameter. The results ob-
taincd by the perturbation procedure are in fair agree-
ment with the more exact calculations at small values
of the density ratio p, the agreement lessening as o
increases. The more exact calculations show a steady
decrease of b at maximum defiection with increasing
p. whereas the corresponding value of . by the ana-
lytic method is relatively insensitive to an increasc in
». The two sets of curves are therefore considerably
displaced at higher values of p, with consequently
inaccurate cross sections. Attempts to improve the
perturbation results by an iterative procedure in
which the orbit is not neglected have not proved
very successful. We have therefore not presented the
analytic results for the cross sections.

The cross-section results arc presented in Figure
10, where we have added the contributions from the
two values of b. The contribution from the large
value of b is generally much higher, except near 6,,,..
where both b values give very large contributions.
The vertical iines in Figure 10 indicate the points of

muximum deflection at which the cross section is in-
finite. As anticiputed, the curves for diffcrent , cos-
lesce in the forwurd-scattering region, with merging
occurring at lower values of 8 for smaller p. This
may be casily scen by noting that the value of 7, de-
pends more strongly on p when it is small (see equa-
tion 47).

For the purposc of compuarison and discussion with
respect to the critical density region, some of the im-
puct parumeter results tor overdense and underdense
spheres are presented together in Figure 11, We note
that, as the density approaches unity, the upper
branch for the underdense region merges with the
forward-scatter portion of the overdense curve. In
addition, the lower branch of the underdense curve
goes to b = 0 with a maximum deflection of 90°,
while the backscatter portion of the overdense curve
also goes to b = O for the rcgion 90° to 180°,

We thus have a discontinuity in maximum scatter-
ing angle at the critical density, with 90° obtained
when the approach is from underdense values and
18(" when it is from the overdense side.

The cross section approaches zero in the buck-
scatter region as the density becomes critical from
the overdense side (see Figure 7) whereas because
of the infinite slope in the impact parameter curve,
it becomes infinite at 90° from the underdense side
(Figure 9).

These peculiarities in the scattering near critical
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Fig. 11.

Plot of impact parameter against scattering angle for underdense and over-

dense spheres showing limiting forms at critical density.
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SCATTERING BY A SPHERICAL ELECTROCN

density are due to the use of a geometric optics model
for the calculations. The nature of the scattering in
this region may be exhibited in terms of a simple
model for the electron density which has the proper
asymptotic form near the center of the cloud (large
x). We write

2

M

A

1 — pa'x’ 0<x < x,

5 3 (49)
m I —p-+ %' X 3

v

where a simple parabolic fit has been chosen for
small x and an inverse square behavior for large .
The coefficients @ and ¢ muy be cvaluated in terms
of a specific density distribution.

The scattering integral now reads

£ 0= G et 8
2t = (1= p)
s ; -sinTt o _——;-)iTi;b"Egl-";" (50)

For b close to zero the first term is negligible indicat-

ing, as expected, that the scaitering
parameters is determined by the inte
center of the sphere. For b = 0 we «

r— 0= (x/2) —sin ' [(1 — p)/I

which yields 6 = 0° for underdense

180° for the overdense case. At the

the limiting value as b approaches

addition, the model gives the require:

of b versus ¢ near § = 0 (underdens

180° {oveordense).
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