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ABSTRACT

A method of estimating the magnitude~squared coherence
function (spectrum) for zero-mean processes that are wide-
sense stationary and random is presented. The estimation
technique utilizes the weighted overlapped segmentation fast
Fourier transform (FFT) approach, Analytical and empirical
results for statistics of the estimator are presented for the
processes, Analytical expressions are dexived in the non-
overlapped case, Empirical results show a decrease in bias
and variance of the estimator with increasing overlap and
suggest that a 50-percent overlap is higkly desirable when
cosine (Hanning) weighting is used.
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ESTIMATION OF THE
MAGNITUDE-SQUARED COHERENCE FUNCTION (SPECTRUM)

I. INTRODUCTION

The complete probability structure of the zero-mean processes x(t) and
y(t) , which are wide-sense stationary and jointly Gaussian, is specified by the
spectral density matrix,
Oyl @y, 0 -

Mxy(f) = ' (1.1)
byx () ¢yy(f)

where
d’xx(‘f) is the (real) auto power spectral density function of x(t},

‘byym is the (veal) auto power spectral density function of y(t) , and
d’xy(f) is the (complex) cross power spectral density function of x(t)
and y(t) and consists of a real or coincidental (CO) spectrum and an imaginary

or quadrature (quad) spectrum.

A simplifying ratio is the complex colierence function (spectrum),

0o 2
Y = ’
Y Ao me, 0

(1.2)

or, more commonly, the magnitude-squared coherence function,
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The term "coherence' can imply Egs. (1.2), (1.3), or the positive square root
of Eq. (1.3).

Equation /1. 3) possesses a number of useful attributes: First, it always
falls between zero and one. Second, it is zero if the processes x(t) and y(t)
are uncorrelated. Third, it is equal to unity if and only if there exists a linear
relation between x(t) and y(t). 2

These attr;butes are of particular significance in sonar systems wheve a

waveform received at two spatially separated elements of a hydrophone array

* may be corrupted by additive noise uncorrelated from the first to the second

element,

Unfortunately, the difficulty in estimating the true coherence has plagued
modern statistlcians.3 An analytical exp;'ession was derived by G<>odman1 for
the prcbability density function of the estimate of magnitude coherence I{V\l
when several independent observations (or segments) of the processes are
available. A closed-form solution for the cumulative distribution function, as
a finite sum of hypergeometric functicns, can be found by proper identification
of variables in the work of Fisher.4 T.he application of Fisher's work to this
problem is believed original in this thesis. Earlier, statistics for coherence
estimation were found in {ables, and graphs, 5-1 and (rarsformations {o be
performed on the coherence estimator were suggested so as to "normalize"

(make Gaussian) the density function. 89
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Certain empirical studies have also been conducted. Haubrich ‘suggested
that the total time series under investigation be segmented into a number of
shorter segments overlapping one 2nother by 50 percent and that a triangular
weighting function be applied to each segment. 7 Tick showed empirical exam-
ples of the types of estimates to anticipate when the true coherence is 0.2 and T
mean lagged product techniques are used. 8 Benignus empirically sh?wed the
bias and confidence intervals to expect when n indopenc;ent s'egments are proc- ;

essed using a rectangular weighting function. 10

Current techniques for coherence estimation involve applying the fast

Fouricr transform (FFT). 1 Some of the latest published results on ccherence

R

estimation are limited in scope to processes that have relatively flat spectra. 10

P P SR TR AN RN

L

g The problems associated with nonflat spectra can be avoided through judicious

choice of a time-weighting (or windowing) function. 12-14 The use of a weighting
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function is necessary for data not spectrally flat and should be prudently iselected

- oo

for unknown data. In coherence estimation, the application of a weighting func-

S

tion results in wasted data (loss of stability and increase of bias) unless: over-

-
Vo
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—

e

lapped processing 14 is employed. In underwater acoustic environments, which

require weighting functions and good spectral resclution, but which remain

.Q
SR R

5

stationary only for limited amounts of time, such wastage can not be permitted.

Gy SA%

This thesis ompirically determines the effect of overlap processing on the
estimated magnitude-squared coherence function when cosine (or Hanning, after

Julius von Hann) weighting has been applied.

. The empirical method for determining the effect of overlap has been limited

e ﬂ‘m s g

in scope to a cosine weighting function, a finite time history, and a desired
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4

frequency resolution (half-power) bandwidth. Under these conditions, estimates
of bias and variance of the estimate of magnitude-squared coherence have been

The behavior of these statistics as a function

<}

made for two values of coherence.

of increasing overlap is presented and is believed original.
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1. COHERENCE FUNCTION{(SPECTRUM) AND ITS USES

This chapter defines the coherence function (spectrum). Additionally, it
reviews those terms necessary for its definition or helpful in its estimation.
Finally, this chapter presents some examples of the uses of coherence to lay

a background for why this particular function is meaningful.

IILA. COHERENCE FUNCTION

The essense of the coherence function is a collapsed power spectral density
matrix. To fully appreciate the intricacies of its definition, it is first necessary
to review some basic concepts. They include the correlation matrix, wide~
sense stationarity, ergodicity, Gaussian assumption, and power spectral
density matrix.

II.LA.1., Correlation Matrix and
Wide-Sense Stationarity

The general correlation function between zero-mean processes x(t) and

y(t), which are real and nonstationary, is defined by Davenport and Root, 15 as

follows:

a
ny(tl' t)) & E [x(tl) &’(tz)] ’ (2.1)

Iy

Fnarvon oo <




which depends on the abeolute time instants t. and t, . If the cross-correla~

1 2
tion function depends ounly on the time difference r = l:2 - t1 and does not
depend on the time origin, that is, if
R t+r) =R (1) 8 E [xOyesn)], @.2)

then the processes are called wide-sense stationary, It is not necessary for
ny( r) to be an even or an odd function.
Similarly, the autocorrelation function in the wide-sense stationary case

becomes

R (1) 4 E[x(t)x(t+r)] , 2.3)

which is an even function. The autocorrelation function of the process y(t) is
similarly defined.
The correlation matrix for the wide-sense stationary processes x{t) and

y(t) may now be defined by

Rxx( T) ny(r)

np

R_(r)

- . (2.4)

lRYX"’ R.(7).

When two zero-mean random processes have a correlation matrix that

depends only on the time difference, it is meaningful to talk about the Fourier

transformation of the correlation matrix, 16
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II.LA.2. Ergodicity

Random processes can be characterized by an infinite number of waveforms.
Each of these waveforms is referred tc as a sample or member function of the
random process and is itself infinite in duration.17 Statistics of an order higher

than the correlation function can be computed by averaging over the ensemble of

b el

all sample functions. These statistics can also be computed from any one of the
sample functions,

If all the higher order statistics, when computed from any one of the sample
functions, are the same as the ensemble average over all the sample functions,
then the processes are called ergodic. In particular, the correlation matrix
computed over any one sample function is the same as the correlation matrix
computzd over an ensemble of sample functions. It should be noted that it is
possible for the correlation matrix to be the same wten computed over different
sample functions and yet for some higher order statist:cs to differ when computed
over different sample functions.

It is important for the results presented in this thesis that the correlation
matrix be the same when computed over different sample functions. This, in
essence, allows the correlation matrix (or its linear transformations) to be spec-
ified with probability one from one sample function. If the correlation matrix
does not differ when computed over different saraple functions, the processes
are still called ergodic, but now some qualifyi:;g adjective must be applied to
denote the strength of the ergodicity. 18 This author chooses to use the adjective
"wide-sense' to specify the strength of the ergodicity. Processes that are wide-

sense ergndic are also wide-sense stationary.
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II.LA.3. Gaussian Assumption

If two zero-mean processes are jointly Gaussian and wide-sense stationary,

then their correlation matrix dictates all higher order statistics. 16

II.A.4. Power Spectral Density Matrix

Several important concepts have preceded this section: First, in order to
mathematically determine the power spectral density matrix, the processes
must be stationary (in the wide sense). In practical estimation situations ergo-
dicity is presumed, and only one time-limited sample function is collected for
each process under investigation. It is desirable, but not necessary, that the
two processes be jointly Gaussian, When the two processes are both stationary
and jointly Gaussian, then knowledge of their correlation matrix completely
specifies the statistics of the processes.

Given the zero-mean processes x(t) and y(t) , which are real, stationary,
and jointly Gaussian, a complete characterization for the probability structure

of the processes is specified in terms of the power spectral density matrix

1
N,l‘y(f) :

O Dy ®
M, 0 4 N (2.5)
O By

The power spectral density functions composing the elements of the power
spectral density matrix are the Fourier transforms of the associated correlation

functions. The cross power spectral density function is

I R |
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In general, this function is complex since 'ny( T ) is not necessarily odd or

even. . Similarly, .

o2y, 2.7

which is purely real since Rxx(r) is even,

II,A,5, Definition

The complex coherence function for two wide-sense stationary processes

is a normalized complex cross power spectral density function given by

&, 0
, y .
7xy(f) a — . ‘ (2.8)
¢, 0 &
Since <bxy(f) is complex,
&, ,@0=C, O+1Q @ . * (2.9)

Further, ¢xx(f) and cbyy(f) are nonnegative, real fynctions of f,

d, 0 20 (2.10)

XX

—ee o e et e - -

B Ve

e

e




5% 3 g

?
4
10
and ’%
o . 2.11
d>yy(f) 2 (2.11) ]
3
The magnitude of the complex coherence function (or, simply, the magnitude ;
coherence) is ]
f k
‘ |9, |
‘ = . . ’
' ‘ny‘f)' : (2.12)
f
¢ 0 O |
?
It follows directly that the square of the magnitude of the complex coherence :
function (or, simply, the magnitude-squared coherence) is 4
k
k
2
f) |
, | €0 |
‘ny(t) = R (2. 13a)
H (f
&, 0 & O |
2 2
Cy* 9, ®
= . (2. 13b)
&, 0 O 0
Although the term "coherence" can imply Eqs. (2.8), (2.12), or (2.13), it
usually refers to Eq. (2.13). i
For ease of notation, the dependence on f is often not specified; for
example,
2 2
c _+
g XY %y i
= . (2.14)
Xy D ¢yy
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II. B. USES OF COHERENCE FUNCTION

The magnitude-squared cohercnee function for the zero-mean, wide-sense
stationary processes x(t) and y(t) is useful in several ways, which will be
proved in the following sections. First, for two processes that are linearly
related, the magnitude-squared coherence function is unity. Second, for twn
independent processes, the magnitude-squared coherence function is zero.
Third; under the assumptions to be presented, the magnitude-squared coherence

function serves as a signal-to-ncise measure.
II. B.1. A Measure of System Linearity

The magnitude-squared coherence function can be used to measure system
linearity. 12 In Fig. 1 consider the linear system with input x(t), impulse
response h(r), and output y(t) . The output y(t) is expressed by the con-

volution integral

o
.v(t>==f h(r)x t-7)dr . (2.15)
-

x(t) y(t)
—>» h(r) }——

Fig. 1. Linear System with Impulse Response h(r)
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12
The frequency-~domain equivalent is a multiplication cbtained via the
;; j Fourier transformation:
2
- Y() = Hif) X (f) (2. 16)
If x(t) is a sample function of a stationr. : random process, 2 then
7 1
4
&, 0= HO® O (2.17)
and
£) = H) H*O) d__(0) = HO D* (@) . 2.18
., 0 = HO) HO D (O = HO D} @ (2.18)
* . Since the magnitude-~uaared coherence defined by Eq. (2.13) can be
‘1 written as
' f * (f
4 . d’xy” Qxy( )
! = [¢
n vxy(f) ; (2.19)
- . 00 0
application of Eqs. (2.17) and (2. 18) yields !
2 1
l 1@ =HO == =1, v (2. 20)
H{)
Consequently, the magnitude~squared coherence between the input and output of
. a linear system is unity.
B
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II. B.2. A Measure of Coryraiation

If the zero-mean processes x(i) and y(t) are independzat, they ere also

uncorrelated and orthogonal; that is

ny(r) =E[xt)yt+7)] =E[x®))Efyt+7}]=0 , {2.21)

(0 0]
] et
¢xy(f) —[ ny(r) e . dr =0 ,

and

2
=0, VI{.
,1xy(f)l

(2.22)

{2.23)

Hence, if the two processes are independent or uncorrelated with zero mean,

the magnitude-squared coherence between them is zero.

II. B.3. A Measure of Signal-to-Noise Ratio

Consider a signal, s(t), passed through two linear filters and received

at two sensors where it is corrupted by uncorrelated additive noises. The

received waveform 2t each sensor is then passed through two linear filters, as

shown in Fig, 2,

Assume that s{t), nl(t) , and n2(t) are uncorrelated; that is,

E [nl(t) ny(t+ 7 )]

1]
(=]

E [nl(t) a(t+r )]

n
[=}

(2.24)

(2. 25)
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e
and 1
E[nz(t) a(t + r)] =0 . 2. 26)
n (1)
s,(t) r{t) = s (t)+n, (1) v, (t) :
-b-Ha(f) + )H‘(f)———> 9
; s(t)
; —p
3 s,(t) ta(t) = s.(t)+n, (1) (t)
' 2 ,. 2 2 Y
A, L»iH, (f) — > H, (f) 2> J
. b ;
;;:' Lg
o .
s g Fig. 2. Signal 3(t) as Received at Two Sensors %
E 3 . §
i ) Then,
EE
, ! b,y 0=, . O |H1(f)|2 . (2.27a)
3 hni 11 11
Y
- i .
Sy =|® + & (f)]l H (f)l (2. 27b)
3 é ] slsl(f) nln1 1 , é
% and :
2 N 2 2
) q = _cbss(f) IHa(f) +<bn1n1(f)] lHl(f)l ; (2.2%¢)

_ 2 :
<by2y2(f) = <br2r2(f) |H2 (f)l \ 2. 28a) g
. [<b8 L O+a ) iﬂ2<f>| 2, (2. 28b)
22 22 J
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and

=[e,,0 8.0

2 2
+ ¢n2n2(f)] ! Hz(f)l : 2. 28¢)

N v \ - - 3 PN i
O I
N S N v S e

=,
<3

o

&, , (0 = HOH OO,

®) , (2. 29a)
Yi¥a 152

STy

2

/
H, () H} 4) <b8152(f) ’ (2. 29b)

i

S % SR A

o

and

H () H3O H O BO &) ; (2..28¢)

2 * 12
) &, | 1,0 B 0]

2 a0 2 '
[cbss(f) EXIE @nlnl‘t)]rbss(f)l B |2 + °n2n2‘f’]

(2.30a)

and
2

v, .. ()

(2. 30b)
152

Equation (2. 30b) is independent of both Hl(f) and H2(f) ; that is, the
coherence between the two received waveforms is not changed by linear fiitering.
Therc ar> two special cases of Eq. (2.30a) that are of interest: First,

when

¢n1n1(f) = ¢n2n2 ()= d>nn(f) (2.31)

and

@)% | 5o 1 @.32)
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(as, for example, if

H (f) = g 127iry 2.33)

and
H (@) =e 277D (2.34)

corresponding to time delays LA and T, fra directional signal), then

2
& 0
‘Yy y (f)l = , (2. 35)
172
[(bss(f) * (bnn(f)]
and
@ lyylyz(nl -
= . .3
£ -
¢, 0O 1 ' vylyz(f),
Second, when
nl(t) =0 , (2.37)
¢n2n2(f)=<bnn(f) , (2.38)
and
' 2 2
lHa(f), = lH.b(f) l =1 , 2. 39)
then
2
; O, O
L I = (2. 40)
172
0,0« ¢ 0] o 0
and

i
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: IIl. COHERENCE-ESTIMATION PROCEDURE

) The procedure for estimating the coherence or magnitude-squared coherence
faiictions for wide-sense ergodic (and, hence, wide-sense stationary), zero-

mean random processes x(t) and y(t) is discussed in this chapter. (References
" within this chapter to x(t) and y(t) apply to those specific processes with the

z noted characteristics, that is, zero-mean, wide-sense ergodic.) The basic ob-

3

jective is to obtain estimates of the elements of the spectral density matrix,

o0 &, @

. Mxy(f) = , 3.1)
- 0,0 DO

? . in order to form the magnitude-squared coherence estimator.

, The estimation procedure described is the direct method, which is discussed

,‘ in part by Welch, 2 Knapp,22 Bingham, 13 Benignus, 10 Nuttall, 14 and Carter

3‘: and Arnold. 12 It includes cosine weighting and overlapped processing and is

B

used because of the computational advantage of the FFT, 1

‘s Briefly, the method implemented consists of obtaining two finite-time series

& from the random processes being investigated. The time series are segmented

:V into n segments, each having P-data points, For example, from each process

there may be 32 segments, each segment having 4096 points. The segments may |
be overlapped or disjoint. Each segment is multiplied by a weighting function,

P,

18
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and the FFT of the weighted P-point sequence is performed. The Fourier
coefficients for each weighted segment are then used to estimate the elements
of the power spectral density matrix. The power spectral estimates thus
obtained from each set of weighted sequences are then averaged over all the n
segments. Next, the resultant estimates are used to form the magnitude-

squared coherence. 12

III.LA. QUANTIZED SEQUENCE OBTAINED

FROM WEIGHTED SEGMENT OF DATA
¢

Consider the time-limited sample functions of processes x(t) and y(t)
(specified in Chapter IIl.)., Let the sample functions be further constrained so
that they have the same bandwidth. This may come about as a resull of (1) the
physics of the experiment, (2) the bandpass characteristics of some recording
device, or (3) the intentional introduction of bandpass or low-pass filters to
prevent aliasing. Analog to digital (A/ D) conversion of the signals is now accom-
plished by sampling the two analog signals at a frequency, fs Hz, greater than
twice the bandwidth of the signals. This technique yields two quantized se-
quences of numbers or time series. The quantization error decreases as the
number of bits in the quantizer increases. (Errors as a result of quantization
are beyond the scope of this work.)

Let these two time series from processes x(t) and y(t) , which are drawn
continuously for convenience, be depicted as in Fig. 3.

The method of overlapped weighted segmentation requires that before

estimating the coherence between x(t) and y(t), both x(t) and y(t) be
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3
, Fig. 3. Two Time Series from Processes x(t) and y(t)
.
multiplied by a series of real weighting functions, LA (t) , or sampled and
‘ quantized versions thereof, as in Fig. 4.
4
i
, wl (') /\
:v ¥ - >>_— 1.
3 T T
,{ total
. wa (1)
e ‘ : AN -4
g a eg+T “ * 1
g ° o 'total
, ° L J
3
w, (1)
3 3 - !
(s-l)a (s-1)a+ Tyotal
4 wnmL
? N\ |
] 7’ 1
(n-1)a (n=1)a+T
{ Ttotal
:»‘ ’
> Fig. 4. Overlapped Weighting Functions (Modified from Knappzz) i
The method implemented computes a P-point discrete Fourier transform
(DFT) for euch of the weighted segments. The frequency-domain equivalant of
multiplying each segment by a weighting function is a convolution of the true
A
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spectrum with the Fourier transform of the Weighting function., Hence, the
weighting function should be judiciously selected in order that the true spectrum
be least distorted.

The factors affecting the selection of the segment lengthand window shape are
1. ws(t) should be relatively easy tc compute.

2, Ttotal should be large in order that the amount of averaging be

T
sufficient to reduce th: bias and variance of the spectral estimates.

n
3. _d ws(t) should be continuous for n=0, 1, 2, .. ., up to some

n
dt
reasonable limit, since this ensures that the sidelohes of the Fourier transform

of ws(f,) die off rapidly.

4. The Fourier transform of ws(t) should also be narrow in the main lobe
(narrower than the finest detail of the true spectral dersity matrix of processes
x(t) and y(t)). Generally, this lobe is narrowed by increasing T.

The specific selection of a weighting function involves a number of tradeoffs.
A commonly used weighting (or windowing) function is the cosine (Hanning)

function defined13 by
H

%1-cos*2r[-£:-§r§'—1)-§] y (s-1)agt<T+(s-1)a,

Wo (t) = (3.2)

0 , elsewhere,

The percentage overlap from Fig. 4 is, simply,

(.'%—.&) 100 , ag<T,

p. = 3.3)

PO e

el R TR INE bt o

sx




Therefore, for example, if T=1 and a =3}, then P, = 50 percent. Whereas
if T=1 and a=3/4, then P, = 25 percent.

Note that if a > T there would be no overlap, and each segment would be
virtually independent of the previcus one (except for correlated edge effects).
All theoretical results here are concerned with the case of independent segments,
that is, no overlap. A detailed analysis of the effect of overlapped weighted

segmentation for estimating auto power spectral density functions is given by

Nuttall, 14
III. B. COHERENCE ESTIMATOR

Let xsp , where p=0,1,2, ..., P-1denote the P-point sequence
obtained from the sth weighted segment of process x(t). In estimating the
coherence function, it is necessary to evaluate a transformaticn: of this weighted
sequence. The FFT ig a fast algorithm for evaluating a special case of the
Z-transform of a finite sequence of numbers. The two sided Z-transform of

an infinite sequence is defined by

©
= -p
X (@) = > XgpZ 0 (3.4)
==
23
where 7 equals any complex variable.
Evaluation of the Z-transform at P equally spaced points around the unit

circle for a P-point sequence yields the P-point DFT:23

pP-1
-j2 = ) p/P
)= ¥ x TBTRPE @.5)
=

. i
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where xap is the finite weighted sequence, p=0,1, ..., P-1, and
§=1,2,...,n . Equation (3.5) can be evaluated for k=0,1,. .., P-1,
with a fasi algorithm requiring on the order of P log2 P complex multiplications
and additio;ls. u

Similarly, a vector, Ys(fk , is formed for each segment (that is,
8=1,2,... 1n).
: The estimate of the auto power spectral density function of x(t) at the kth

frequency, obtained from the sth weighted segment, is given by

Al _ _A_E i ¢ _

cpxxS(fk) = ; [Xs(fk) X8 (fk,] , where At = l/fs . (3.6)
Similarly,

S @)=y ¢)v @) (3.7)

¢YYS K-, | sk s YK |’ "

and the estimate of the cross power spectral density function is

t
3, €)== [Xs(fk) Y;(fk)] . 3.9
g P

Equation (3. 8) can be rewritten in terms of the real and imaginary parts,

N
cxys(fk) - Re [Xs(fk) e (fk)! 3.9)

QL )= m|x )
xyB(k)- - m[X (€)Y (k)] : (3.10)

b
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Nex!, the estimates of the elements of the power spectral density matrix

are obtained by averaging over the number of segments, n. The estimate of

the magnitude-squared coherence follows directly:

13 A 1A ]2

= Zcxy (tk)] + [~ ) Qxy (fk)

A 2 8 s=1

A . e
TR

X o)) [ ) &, k)]

Ng=1

where k indexes the discrete frequency of interest and n is the number of
overlapped segments.

The estimate of magnitude coherence is
, o

Y 6| =+ 1Tl ©.12)

It is of practical interest to note (as pointed out by Jenkins and Wattss) that

an alternate and sesmingly reasonable form of the estimate yields

n 'xs(fk) Y;(fk) lz
- .11; E= (3.13a)

) Xg (Y0 Yotk

and

X (@) Yol ) X2 () Y (5)

n
;1; E =1. (3. 13b)
8=1 )X*(f-k) Y (6) Y2

This fact is so basic that it is often not discussed. However, it points out

2
that regardless of the value of the true magnitude-squared coherence, I{v\l =1.0

’

Ry
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1. Consequently, the estimate Is, in general, biased; the actual biag
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IV. STATISTICS OF ESTIMATE OF COHERENCE e

Goodman, in his Eqs. (4.51) and 4. 60), 1 derived an anzlytical expressjon g
for the probability density function of the magnitude-coherence estimate, "1\ ' ’
based on Eqs. (3.11) and (3.12). His results were based on two zero-mean )
processes that were stationary, Gaussian, and random and had been segmented
into n independent observations (that is, nonoverlapped segments), Fach seg-
ment was assumed large enough to ensure adequate spectral resolution. Further,
each segment was assumed perfectly weighted {windowed), in the sense that the
Fourier coefficient at some kth frequency was to havs "leaked" no power from
other bins, However, Hannan24 points out that the statistics do not hold at the
zerotn or folding frequencies.

The material in this chapter r:lating to magnitude-squared coherence is :

believed to be new (Carter and Nuttallzs) and is a direct extension of Goodman's

work. ! All of Goodman's original assumptions hold. Statistics of the magnitvde-

Sk

coherence estimator are given in Appendix A.

IV.A. PROBABILITY DENSITY AND CUMULATIVE 4
DISTRIBUTION FUNCTIONS :

The first-order probability density and cumulative distribution functions for §

the estimate of magnitude-squared coherence, given the true value of magnitude-

squarad coherence and the number, n, of independ=::' segments processed,

26
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are presented in closed-form. The expressions are evaluated and plotted.
IV.A.1. Probability Density Function

The conditional probability density function for the estimate of magnitude-

A [)
squared coherence, lv'z , between two processes, given l Y ‘z and n , 189
n n-2
~ N
p(‘v ,2|n. ,1‘2) =(n-1)(1-,?,2) (1-,7,2)
~~ ~A
ool ) o bl

)}
A 2
It then follows, knowing |/'Y\| = [' ‘Yi 2] , that

p(ll"\I'“’hl)"P(/‘”Z’n,"ilz )2'/‘)' . (4.2)

Equation (4. 2) can be shown (Appendix A) to be Goodman's result. 1 The

density function, Eq. (4.1), can be rewritten using Eq. (15.35) of Abramowitz26

in the following alternate forms:

p(l’v\l?" n,| ¥ l2)= (- 1)(1-[7 lz)n (1-{?]2)11-2

° (1-l7|2|?!2)1-2n 2I"l(l-n.l--n; l;i‘r |2!/‘;\‘2) (4.3)

and
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212
. (1(',7"/;'7'22 2F1(1-n,1-n;1;|’7l2|/7\|2)'(4'4)
1717}

2 |NN2
Equations (4.3) and (4. 4) are desirable because 2F1(1 -n, 1-n;1; | 7| l ‘7‘ )

can be expressed as an (n - 1)st order polynomial (Abramowitz, Eq. (15. 4.1)26).

A special case of the density function occurs when | ¥ |2=0.0 . In that event,

(IR 0 o0 (1-712) ™. s

IV.A.2. Cumulative Distribution Function

Fisher, 4 working on statistics of the estimate of the squared correlation
coefficient, derived the probability density for that random variable. He inte-
grated the result and achieved a zlosed-form solution for the cumuiative distri-

bution function; specifically the solution was 2 finite sum of functions,

2F1
each one a finite-order polynomial. Although these statistics are for a ¢.iferent
problem, proper identification of variables yields exactly the integration for-

mula needed to find the cumulative distribution of the estimate of magnitude-

squared coherence, namely,

T e e RN,
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n
. n-2 1- ANj2
NCRLE R (e Iy gl
1- l'vl Y |2 k=0 1.-|7|2' ,’7\|2
.zFl(-k, 1-n; 1;| Y |2”,,\|i2) . “ws
In the special case when '7;2=0 , the cumulativg distribution function:
becomes
-2 . . k
p(l/v\lzln, |v|2=o.o)= I{v\,znz (1-l/-r\|2) . 4.7
k=0
which can be simplified to give
. -1
p('g\zln,l“llz--o.o) = 1-(1-]4\'2)“ . @.8)

Equation (4. 8), when differentiated, yields the probability density function,

Eq. (4.5).
IV.A,3. Computer Evaluation

The probability density function, Eq. (4.4), can be evaluated readily
on a large digital computer in floating-point arithmetic. Evaluation for
A
100 values of I‘Y Iz between 0.0 and 0.99 requires computing

100 (n - 1)st order polynomials for each value of I‘Y ' 2 and n, The
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cumulative distribution, Eq. (4.6), can be similarly evaluated. The density

function and the cumulative-distribution function were computed as illu:strated
in Fig. 5 for ten values of I Y |2 and for n =32, 40, 48, 56, and 64. (The
computations and 100 plots were done on the UNIVAC 1108 in less than 5 min-
utes.) Example plots are included in Figs. 6 through 13,

One example of how these plots can be used is as follows: Magnitude-
squared coherence, | {y\l 2 , is estimated by averaging over 32 disjoint seg-
ments of data (that is, n = 32). Suppose the estimated value is approximately

0.3, then from Fig. 7

Prob(L< ,{;,2 n=32,,‘7,2=0.3,)

[04]
/\
- [ (A
L
L /\ /N
=1'f P‘('7,2|n=32,"7|2=0.3) dlvlz ,

-~
(4. 9b)

n=32,"Y|2=0.3) a[7? o

and

Equation (4.9b) could be set equal to, for example, 0.9, and the value of
L, from Fig. 6, is 0.2,

The upper limit is found from
2 2 \
Prob(l‘vl < U' n =32, '7' =0,3) =

Gl

-0
which could be set equal to, for example, 0.9, and the value of A, from Fig. 7,

U

n=32,|7|2=0.3)d|/‘7\|2, (4.10)

is 0.43. Hence,
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0.43 '
.[ p(i¢|2'n=3z,|vl2=o.3) | %=0.8 . (4.11)
.2 '

o >,
T AT T

Al ARTE
e
s e““’%‘@:} 2533

=~ On the basis of Eq. (4.11), the probability that the estimator falls in the
i range (0.2, 0.43) is 0.8, given that the exact value of the unknown parameter

b B

3 was 0.3 and that 32 disjoint segments were used.

v Proper use of the cumulative distribution function yields confidence intervals '
" for the estimete of magnitude-squared coherence or any "'one for one'' trans- 5
3 ~2

g ! Y ! 3
B formation of it, such as the positive square root or 10 log10 ( ! ’\12) . (See, 3
£ kY
b 1 - 1 ;

\ 5 i
': for examyle, Cramer27 or Carter and Nuttall. 2") g
IV.B. mth MOMENT OF DENSITY FUNCTION :
5 1
] :
~ The mth moment of the magnitude-squared coherence is given by :
‘, Ajo M +to 2l i Aig\ 1A

~ 3 (G A N YA N

-0 \:

oo () ol
E F . o

ik OEWALE @.12) |
] :
3 "
*. where use has been made of the density function, Eq. (4.1).
kB 28 2.
& Application of Eq. 7.512(12) by Gradshteyn ~ yields ;

B 3 Bis iy Jmste e dres Lt
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Vr Fm) Fm+1)
Y

F'n+m)

(m+1,mn;m+n,h,7P).(Lm)

The three-two hypergeometric functions denoting ihree numerator terms

and two denominator terms are given by

3F2 (a,b,c; d,

004} (a)k(b)k(c)k 2

k

e;z)=
k=0 (d), (),

where the (a)k notation is Pochhammer's symbol26 defined by

(), 4

T@+k)

.

T (a}

k!

1

(4. 14)

(4. 15)

The mth moment for the estimate of magnitude-coherence is given in Appendix

A.

These results can be verified through proper identificaiion of variables in

the work of Anderson, 29

correlation coefficient.

IV.C. BIAS AND VARIANCE

who extended Fisher's original work? on the squared

A
This section deals with the bias and variance of the estimator l 24 l 2 .

Exact and approximate expressions are presented. In addition, computer

evaluation of the exact expressions is presented to lend meaning to these results.
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IV.C.1. Bias

Consider now the first moment of the probability density function for the

estimate of magnitude-squared coherence. This moment can be written

[‘Y‘ | ] ( H) F’(.:a,n,n; n+1,1;"7l2‘). (4. 16)

- 3’y
g |v|%=1.0, 31-‘2 ;. therefore, the evaluation of Eq. (4.16) is not
meaningful, When \‘Y' = 0,03 3F2=1.0, which yields
( 2] n, |7 —oo) L (4.17)
n

Tedious manipulation of Eq. (4.16) (Appendix B) yields the simpler result;

E(|¢|2"n,|v!2)=-1-+-'l'—1|1|2 F (1,1;n+2;|7l2). 4.18)
' n+1 21

n

An extremely useful approximation can be made by expanding Eq. (4.18) to

obtain

2
(o b e, 220 (1

+1 (n+ 1)n+2)

=
=4

: 3
+ -12: (l ‘le) . (4.19)
(n+1)n+ 2)n +3)

Computation of higher order approximating polynomials is also easily performed

A
and is based on an analytical expression for E(I‘Y | 2' n, I'Y |2) .

T i SN e QPRI b b

U JUE T S gy
2 o G T Y .Jj “
i :,
.




The bias or expected estimation error is defined as

o) -Jol2

Bias a E(z7 ! )

From Eq. - (4.18), an exact expression for the bias.is

Biag =1+ 821 l'rlz 2F1<1' 1;.n+2;,l7|2)' '7'2 .

n n+l

Expanding. Eq. (4.21) gives the approximation

° n nt+tl (n+1)(n+2)
B . B >0
[V} o
Bias ¥ .
0 . B <0

Bl —2-—M2+_l_u£-_11.,(‘.,|2)2 e -1)2!

(n + 1)(n + 2)(n + 3)

43

(4.20)

(4. 21)

g
()"
(4.22a)

(4.22b)

As an example of using this approximation for un = 8, the exact bias lies in the

range (0.0, 0,125), depending on |1"2

; and the maximum difference between

Eqgs. (4.21) and 4. 22) is 0.0027 at !‘Y ’ 2. 0.86. For large n, Eq. (4.22a

and b) reduces to p

2
Blas = }-(1- l‘Y' )
n

It should be noted (see, for example, Eqs. (4.22a) and (4. 22b)) that

lim (Bias) =0 ;
n—s

4. 22¢)

(4. 23)

therefore, the estimator may be referred to as asymptotically mmbiased.
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An empirically determined bias was found by Benignuslo to be

Bas=2(1-|v|% , (4.24)
n

which fits the true curve for | Y '2 =0.0 and |'¥|2 =10 ,

It is suggested that the higher order polynomial expression for bias,
Eq. (4.22c), analytically derived, be used (as opposed to Benignus' result, 10
Eq. (4.24)), especially for emall n. However, it can be shown that Benignus'

result is an upper bound on the bias for any n,

A
A formula for the bias of | Y ' 2 owing to insufficient spectral resolving
power({for example, FFT too small) is given by Jenkins and Watts, 8 but is
beyond the scope of this thesis, The formula for bias derived above assumes

sufficient resolving power.

IV.C.2. Variance

The variance of the estimator, namely, the second moment about the mean,

is given by
2 2
Variance = V = E{(‘/'Y\l 2) ] - [E (I{Y\I 2)] . (4. 25)

The second moment of the density function is, as a consequence of Eq. (4. 16),

2)" .
E[(mz)zl n, |7|2]=2(1‘I“’H F (3, n, njn+2, 1; Mz). (4. 26)

nn +1) 32

0.0, Eq. (4.26) yiclds the result
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~ig |2 , ,
E[(l-rl ) |n,M =o.(}=——-—-—- . @.27)
nn+1l)

An exact expression for the variance of va\iz is obtained from Eqs. (4.16),

4. 25), and (4.26). The result is

(12 l2)"
y=Aally Fé,n,n;n-fz,l;!‘rlz)

n(n+1) 32

“hhﬂ“ .t 2
--l- 3F2(2,n,n;n+1,1;;71> . (4. 28)
n

For the special case of l v |2 =0.0 ,

2 .
V=...._.2.____(.1.) =_2'_':..L_.,|7|2=o.o (4. 292)
n(n + 1) n n(n+1)
and
?-'-Lz , for large n and l‘Y'z:0.0 . T (4.29h)
n

In order to avoid tedious and srror-prone hand manipuiation, computér—

aided formula manipulation30 of Eq. (4.26) was used to yield an approximation
I

N2
for the variance of l K4 l . The result is
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' 1) |1 2 |, |2 ,.200-n"-2n+3 2) 2
nn+1) |n n+2 (n+ 1)(n + 2)(n + 3)
4 3 2 3
+g-n -6n -n +10n-8 (17'2)
(n+1)n+2) (n+3)n+4)
5 .. 4 3,2 , 4
, 130 -15n -;mn +27n_+136n- 120(“'2) (4.302)
m+1)@n+2)"(M+3)n+4)n+5)
oF V.,V >0
0 0o -
Ve . (4.30b)
0, V<o
0

As an example of using the approximation given by Eq. (4.30) for n=8,
the exact variance lies in the range (0.0, 0.031), and the maximum error due
7
to the approximation in Eq. (4.30)is 0.0067 at ! Y l2 = 0.83. This result is

a generalization of the third-order approximation by Jenkins und Watts, 8 which

A
has no zeroth order term; that is, it assumes no variance of , v 2 when

|v |2=0.o.

In particular, for large n and ‘ 7‘2 # 0 , Eq. (4.30) reduces to

v;3|7i2(1-|v|2>2 , (4.31)
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Hence, the variance of the estimator in the case where I Y Iz is unknown
(but nonzero) decreases inversely proportional to n .
1V.C.3. Digital Computer Evaluation
Of Bias and Variance

Practical experience in estimating the magnitude-squared coherence
function leads one to anticipate vertain bias and variance problems. For a
given number of segments, n, when | Y I 2. 1.0, neither a bias nor a
variance problem exists; however, when , Y '2 =0,0, the average value
estimator always appears greater than 0.0, Further, when l Y l 2 is about
0.3 to 0.4, the variance of the estimator appears much greater than when
' Y lz =0.0. Primarily because this and the behavior of the estimator with
increasing n can not be readily sensed from Eqs. (4.21) and (4.28),
a computer program has been written to evaluate and plot those functions (see
Fig. 14). The results, Tables 1 through 5 and Figs. 15 through 26, dramat-
ically portray the behavior of these complicated (but readily evaluated) functions.
Tables and graphs of this type have been prepared in the past by Amos and

Koopmans. 5
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TABLE 1

BIAS AND VARIANCE OF 1§12 FOR n =32

lv |2

B2

Er

Bias

E [(1413) 2

—— e ————— ]
Variance

OUUUOU

80000~01
«80000-01
«12000+00
«16000+00
20000400
«24000+00
«28000+00
¢32000+00
«36V00+00
«40000+00
«44000+00
«48U00+00
«92000+00
«56000+90
«60U00+00
«64U00+00
«68000+00
«72000+00
¢« 76000400
«80000+00
«84000+00
«88000+00
«92000+00
+96000+00
010000401

034250=01
obu870-01
«10U658+00
«14438+00
0 13227+00
02¢025+00
022832400
029648+00
0 33474400
¢ 3/309+00
141153400
«42007+00
48871400
52744400
050627+00
«60519+00
64422+00
+60d34+00
+ 7856400
e T0189+00
«8U2314+00
084084400
+813047+00
09021400
¢96005+00
010000401

031250~01
028070-01
+26579=01
02“378-01
02 22£67=0),
020247=0)
e18318-0)
016482=01
0 14738«0,
013088=02
«11533~01
0 10072=4)
e 87068-02
e T4379=02
062661=02
05192002
42165«02
« 33402=02
025640=0¢
+18886=02
0 13147=02
.8“526-03
BT7H91 =03
021019=03
WHu84T7=04
200000

,18939-02
+ 715808=02
015823~01
+2665Uu=01
40110-01
0 D6227-01
¢ 75041-01}
2 96590=01
«12091+00
+14805+00
«17803+00
021091400
24672400
«28551+00
022732400
1 37220+400
«42018+00
47132400
52566400
«58326+00
+64416+00
o 70841400
0 77606+00
84717400
«92180+400
10000401

091738=03
1 28377=02
HU634«02
+58089=02
1 68888«02

+83127=02
+86886=02
«88624=02
+88513=02
«86732=02
083462=02
¢ 78895=(2
0 713225=02
06665“‘02
059391«02
¢51651=02
«43659=02
1 356H4=02
+27845~02
020509=02
013891=02
08256203
2 38801=03
010573=03
«00000

o 77162=02"

T i N N BN P DL L LR C ST 1S,
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TABLE 2

BIAS AND VARIANCE OF 1#12 FOR n =40

2| B2 Bias | E[(#2)?

Variance

+00000

«40000=01
«80000-01
«12600+00
216000400
+20000+400
«24000+00
«28000+00
+32000+00
«36U00+00
«40000+00
«44000+00
48000400
52000400
+56000+00
«60000+00
+64000+00
«68000+00
« 72000400
+«76000+00
+80000+00
+84000+00
088000+00
«92000+00
96000400
0100004041

+25000~01
¢63085=01
«1U124+400
« 13947400
017778+00
021616400
025461400
0&9314+00
033174400
037042400
«40918+00
44801400
« 43692400
¢52591+00
«50498400
60812400
064335400
068265+¢00
2 72203+00
¢ 70150400
o80104+00
084067400
064038+00
09¢047+00
96004400
010000401

02500001
023085-01
021243=01
«19474=0}
017779=0}
+161538=01
014612-01
0131410}
011745=01
010425~01
091808=02
+20137=02
+69239=02
e59117=02
49776=02
41222~02
e 3345902
0 26490=02
02032202
014960=02
¢10408=02
0166704=03
e 37527=03
016560-03
0 3730404

+00000

e12195-02
¢61677=02
013784=03
0 24099=01
0 52942=01
0 71532=0}
09294201
011721400
e 14435400
2 17442400
020744400
o 24344400
« 28247400
0 32455+00
036973400
o41803+00
46950400
052418400
58210400
64330400
»70783+00
0 77572400
84701400
292176400
210000401

+59451-03
»21880=02
0 35342=02
46U458=02
+55357=02
06217402
«67043=02
¢ 70106=02
e 71507=02
071391202
+169912«02
67223=02
163484«02
+«58859=02
+53515=02
#7625-02
141364=02
03491602
028465=02

122204=02

116329=02
011044=02
1655L7=03
¢30789=03
+ 8484504
200000
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TABLE 3

BIAS AND VARIANCE OF |72 FOR n = 48

b —— ——— = e

lvl2

E{ 1)

Bias

E [(1§12)) 2

Variance

«00000

40000-01
«800060-01
012000*00
«16000+00
.20000*00
«24000+00
+ 28000400
¢ 32000400
«36000+00
«40000+00
«44000+00
48000400
«52000+00
56000400
«60000+00
«64000+400
«68000+060
¢ 72000400
o 76000+010
«80000#00
84000400
»88000+00
«920U00+00
«95000+00
¢10000+01

o 2uB335=01
e5u23l=0l
e 97691=01
012621+00
o1 /7480400
224944400
«25215+00
029093+00
¢ 3¢976+00
e 30866+00
40763400
+44665+00
oH45975+00
052491400
« 56413400
s6UI42+00
064277400
«68219+00
+72168+00
o T6124400
80086400
+84055+00
086031+00
+92014+00
+90003+00
«10000+01

+20833-01
019231=01
¢17091-01
016213-01
014797=01
e 13443=01
«12153~01
010926=01
097616=02
+86615-02
e 7625402
066538=02
5TH69=02
149051=02
o41286~0¢
o 34179=02
02773202
021948«02
+16832«02
012586-02
+86127=03
+55169=03
031001=03
031363703
029739=04
«00000

e 85034=03
1 D2853=02
0 12468~01
e 22425=01}
«35181-01
+530764=01
+69199=014
090513=01
011474400
¢ 24189400
«17201400
20513400
24126400

2 28045+00

¢ 32271400
» 36809400
41661+00
146830400
052320400
¢58133+00
164274400
o 70744400
o 77549400
W 84AR91+00
092173400
+10000+01

4163103
01776902
029247=02
038710-02
W46273=02
05205402
056175=02
+58758=02
05992902
«59816~02
+58552=02
«56269-02
.53106-02

y49201=02

44700~02
0 39746-02
34491 =02
+29088=02
023691-02
118462=02
113565=02
191652-03
05435903
+25541=03
0 71213=04
+00000
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TABLE 4

BIAS AND VARIANCE OF |72 FOR n =56

b — _______ ]

Mk

E(1§1%)

Bias

E [(1§1%]2

Variance

«00000

40000-01
«80000=01
«12000+00
+«16000+00
«20U00+00
« 24000400
«28000+00
+ 32000400
«36000+00
+40000+00
«44000+00
+4%8000+00
52000400
¢56000+400
60000400
«64000+00
«68000+00
« 72000400
«76000+00
+80000+400
«84000+00
+88000+00
+92000+00
+96000+00
«10000+01

1 /857=0)
.50“80'01
095157'01
¢13369+00
017267400
021151+00
+25040+00
028935400
0 32835+00
30741400
40652400
44969400
43491400
526419400
¢50353+00
060292400
64237400
060187400
¢ 72144400
¢+ T0106+00
+80073+00
84047400
+86026+00
092012+00
«96002+00
010000401

017857=0}
¢16480-01
0315187=01
013887'91
01267101
011550=G
010402=0}
09349402
083514=02
o 74084=02
065206=02
1 56884=02
e42119=-02
041913=02
«35270=02
029190=02
0 23678=02
2118735=02
e 14364=02
01056602
e 73449=03
o 47025=03
026403=03
011579=03
0 24268=04
+00000

«62657-03
46844 =02
e11549=01
02124401
0ed3791-01
4921301
067535-01
+88780=0%
011297400
«14014+00
¢17030+00
220348400
23970400
027900+00
0 32140+00
¢ 366924+00
031559400
46744400
952250400
058079400
+60234400
« 70717400
0 717533400
+84683+00
092171400
«10000+401

0e3076J=03
o 14944 =p2
024943=02
0 33178=02
0 39751=02
H476%=02
1 48339~02
050571=02
¢e51577=02
+50366~02
+48983=02
1 45642-02
JH2264=02
0 38376=02
o 34103=02
029575=02
0 2492602
+20288=02
¢15800-02
011601°02
0 7833303
W 46438=03
02183203
26173804
«00000
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TABLE §

BIAS AND VARIANCE OF %12 FOR n = 64

ly12

E(1512)

m

Bias

E [{ 1122

Variance

« 00000

0“0000‘01
«80u0U~-01
«12000+00
+10000+00
+20000+00
«248000+00
«28000+00
«32000+00
036009#00
«40000+00
44900400
+ 48000400
«52000+00
56000400
«60000+00
«64000+00
«68000+00
¢ 72000+00
« 76000+00
«80000+00
+84000+00
+»88000+00
¢92000+00
+96000+00
«10000+0i

01062504
e S+4l4=04
095258=01
010214400
017108+00
021006*00
24909400
020817400
036730*00
¢ 3004 T7+00
40970400
44497400
«Hul29+00
05¢306+00
55308400
6U255+00
ob4207+00
060163400
e 7125400
¢ 70092400
+80064+00
184041400
083023400
09010400
«90002+00
«1v000+01

015625=-01
01“418'01
013258=01
»12145«01
+11080=-01
¢10062=01

2090924=0¢

¢81707=02
¢ 72971=0¢
64T720=02
056955'02
49676=02
42887=02
0 36589=02
0 30763=02
0 25473=02
«20658=02
016342-=02
012527=02
092125=03
064025=03
e 40970~03
022980~03
010040=03
020237=04
«00000

H#8077=03
042149902
«10871=01
+203565-01
e 32752=01
«66289=01
W87481=041
¢11165400
+13882+00
16901400
020224400
023854+00
027792400
0 32042+00
+ 36605400
43484400
«46681+00
0e52198+00
58038400
« 64204400
e 70697+00
077521400
«84678+00
92169400
«10000+01°

023663=03
0 12886=02
0 21743~02
+29030~02
o J4842~02
e 39273=02
W 42422=02
4438602
45267=02
4556602
U64187=02
H2434=02
o 40016=~02
«37041=02
0 33619=02
02986202
0 25886=02
021806=~02
o 17740=02
¢13809=02
¢10133=02
068399=03

4054303 °

01908203
+54669=04
+00000
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V. EXPERIMENTAL INVESTIGATION
OF OVERLAP EFFECTS

An experiment has been conducted to study the effect of overlap of data on
the estimate |’7\l 2, The analytical results presented earlier relate only to the
case of independent segments (that is, the case of zero percent overlap). This
experiment examines the effect of different amounts of overlap on bias and
variance of l (7\'2 .

Intuitively, it seems that the application of nonoverlapping weighting func-
tion does not make the best use of the data when forming the estimator '/‘7\ (fk) |2 .
This inefficiency is similar to the wastage in forming auto power spectral
density functions shown by Nuttall, 14 When ‘/‘/\ (&) l 2 is formed without over-
lap, larger bias and larger variance result than when ‘l‘v\ (fk) |2 is formed from
the same data with overlap. Because this inefficiency can not be permitted in
many practical situations of interest (for example, underwater acoustic environ-
ments), it is desirable to know how much the bias and variance can be reduced

and at what expense this reduction can be achieved.
V.A. METHOD

The method of achieving the desired objective is straightforward in concept.
Data are generated with an accurately prespecified value of magnitude-squared

coherence, I Y g| 2 , Which is independent of frequency, f . Since the data
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have been generated so that the magnitude~squared coherence is independent of
A

frequency, the sample mean and variance of ! Y l2 can be empirically deter-

mined for the given overlap by averaging over frequency. These data can then

be reprocessed at several ditferent overlaps to form estimates of bias and

variance.
V.A.1. Data Generation

Consider the zero-mean, wide-sense stationary, Gaussian waveforms
nl(t) and nz(t) that are statistically independent and have power spectral

density functions @ _ () and @ _(f), respectively. Statistical independence
n.n 1 n,n,
dictates that they be uncorrelated; that is,

Rnlnz(r) =E [nl(t) nz(t + T)} =0 . (6.1)

TR

In order to generate two processes with magnitude~squared coherence

Y
Sglel AR R

independent of frequency, let (Nuttall and Cartersl)

- X(t) =z, (t) + Gn, () (5.2)
i< and

y{t) = nz(t) + Gnl(t) . 5.3)
The cross-correlation of x(t) and y(t) is

R (1) =E [(nlm + an(t)]‘grxz(t +7)+Gn (t+ r)] : 6.4)

Rt
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Expanding, dropping terms that go to zero, and taking the Fourier transform of

Eq. (5.4) yields

0, 0=60, , 0453, , @ . 6.5)

The autocorrelation of x({t) is

Rxx(f) =E X[nl(t) + an(t)] [nl(t +7)+ an(t + r)] ; . (5.6)

Expanding, dropping terms that go to zero, and taking the Fourier transform of

Eq. (5.6) yields

. 2
Oul=®, , B0, @ - 5.7

Similarly,

B, 0= &, , O+ O . 5.8)

22 11

Thus, the magritude-squared coherence between x(t) and y(t) is

]

2
Gh () + G )
l nn nh l
<f>|2= : (5. 9)

|ny [cb 0+ G <f)] [q; M)+ G o <f)]
nlnl v n2n2 nznz nlnl

Now introducing the assumption that 3 n(f) = ‘.b,, n(f) = @n n(f) )
11 22

Sl

e

Jrn

M s

e o At T Pt s e i 8 e i s M 2 e T Gt S e S
PN S

s o e T gt e e e 7 W B

S S

N

P P ot e Rl LS ph Aia s T e

[ 5. TN G kel SR St el L IKTEn et O e 2000
mWxgﬁg&aﬁﬁwﬁaﬁwxﬂzwmﬁm:.:«m;m;:.«,.zsMmmﬁ. Kt b 1




69

2,2 2
1679 ) 4G

2-— T e —— S——
y xya)| - = (5.10)

2 2 2
@+&) ® 0 G+§)

which is independent of frequency.

In order to prespecify a desired magnitude-squared coherence, "Y d ' 2 ’

between x(t) and y(t), the gain G of Egs. (5.2) and (5. 3) must be selected

e,

by solving Eq. (5.10):

o

.

-

G = | Y. | ' . 5.11)

1 -
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Under the assumptions made, a prespecified desired value for magnitude-
squared coherence can be generated. Because the generated processes will
later be used to empirically determine a very sm-ll quantity (bias),it is
important that the generated value of coherence is indeed the desired vaiue. In the
actual generation of two processes, the assumption q;nlnl(f) = ¢n2n2(t) may be
violated; therefore it becomes important to determine how sensitive Eq. (5.10) is
to this assumption. Consider then

o ()

)

(f)
: cb‘“1“1

ne

= 1+A@M=1 , (5.12)
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It is easily shown‘&1 by substituting Eq.(5.12) into Eq. (5.9) that the value

of magnitude-squared coherence generated, ‘ 7g| 2 , I8

2

+ ]

l,'Iz:Iydlz 1 A+2LA _ 6.13)
g 1+A+}4 |7d|

where i’r d iz = desired value of ] 4 |2 , and the dependence of f is dropped

for convenience.

The error in the generated value is
2
1A
2 2 2 2 4
"’gl - [7al®= |7l (1“|7d|) 2 2 (6.14)
| 1+4 +3 l'y | A
’ d
Evaluation of Eq. (5.14) to third order in A yields
2 2 i 2 2\, .2 .
|7g| - l“’d‘ = lydl (l-lydl )a—A 1-a} . (5. 15)

2
This quantity is maximum at I Ty, © 3 and, hence, the maximum error is

approximately

Max error = (;’; A>2 (1-4) . (5.16)

Therefore, for example, when A = 0.01, the maximum error is approx-
imately 6 x 10-6 ; for A =0.05, the maximum error is approximately

2
and A,31 as computed from

1.5 x 10—4 . (A table of arrors versus

T4

Eq. (5.14), —ields results similar to the given approximations.)
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The processes generated according to Eqs. (5.2) and (5. 3) have been
shown to be relatively insensitive to minor differences in the power spectral
density functions of the original uncorrelated waveforms ny (t) and nz(t) .

The procedure for generating variable-coherence time series can briefly
be summarized as follows: One Gaussian noise source uncorrelated from
voint to point was used to generate a ti:ne-limited sample function of nl(t) and,
later, of 112(t) . (This method eliminates the need for two identical filters.)
The waveforms were band-limited using a low-pass filter and digitized. The
digital data were then stored on magnetic tape in a format compatible with over-
lapped processing. Digital versions of x{t) = nl(t) + an(t) and y(t) = n2(t)
+ Gnl(t) were generated from digital versions of nl(t) and n2(t) for two

values of

7xy ' 2 . (Investigation for o‘her values of true magnitude-squared

coherence appeared to be unnecessary. )

A Hewlett Packard Noisc Generator, Model No. HP3722A, was used for

data generation with the following settings:

Sequence Length: Infinite
Bandwidth: 5 kHz
Gausgsian rms: 0.6 x 3. 16 volts (open circuit).

The output power density function is flat to within + 0.3 dB, provided the
input power voltage fluctuates no more than + 10 percent. This corresponds
toa A, in Eq. (5.12), of 7.152 x 10"2 and a miaximum error in the generated
magnitude-squared coherence, from Eq. (5.16), of 3 x 10-4. For example, if

2 > 0.4996, making it

l ‘Yd |2 = 0.5000 one could expect 0.5004 > I'Yg
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impossibie to measure extremely small bias.

The data were low-pass filtered through a two-section Krohn-hite filter,
which was 6 dB down at 1200 Hz and rolling off at 96 dB per octave. These
band-limited data were A/D converted with a Control Data Corporation (COC)

15-bit converter. Sampling was done at f8 = 4096 Hz.
V.A.2. Analysis Program

The FORTRAN program (coded by G. C. Carter, C. R. Arnold, and
J. F. Ferrie, of NUSC)(1) implements Eq. (3. 11); (2) generates data with known
coherence from two incoherent sources according to SectionV. A. 1; and (3) com-
putes the sample mean, bias, and variance of the estimator, as described below.
A summary flowchart of the program is presented in Fig. 27. The cosine
weighting function was coded by A. H. Nuttall, of NUSC, Singleton32 +-oded
the mixed radix FFT. The FFT size used was 4096 data points (1sec), which
yields 2048 positive frequencies and direct current. Frequencies beyond 1000 Hz
were discounted in making estimates of bias and variance to protect against
(1) unknown noise in the digitizing system and (2) difference in the two auto
power spectral density functions.

Estimates of the bias are performed according to

N 1000 A,
Biae = | — 3 Iy(fk)l vz, 6.17)
1000 k=1

and estimates of the sample variance according to

v T e e o oWt et Satrast AW e ANt
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b MULTIPLY DATA SEGMENT
X 8Y COSINE BELL
. ! p
Y BACKSPACE ;
i DATA TAPES COMPUTE 409 !
&h ACCORDING TO POINT FFT :
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3 l
P 7
‘5 PRINT HNPUT PARAMETERS AND RESULTY
-r:‘ _/
3 ®«»
i
A )
L
b Fig. 27. Summary Flow Chart for Thesis
o7
i . Version of FFT Spectral Density
g Estimation Program




b N A
LT Y S

i s e

R

Bt

e
i?"i?\

e

S

e N NS S I o oA R e B MR L R N e

Ty

e SR A

oo

A gt AT o LT

1
74 3
!
{
1000 2 i
N A 2 N :
Var = L 2 [' 7(fk)l - Bias] . (5.18) ,;
999 k=1

PUSCT

Results of the experiment are described in the next section.

3

V.B. RESULTS

Results of the experiment for a joint set of data, each (32 x 4096) samples

long, are included in tabular and graphic form. Confidence bands for the
estimates of hias can be determined from the estimates of variance., However, :
it must be realized that 1000 samples (frequencies) were used to determine the
average, and thateach sample is correlatedto the extent of approximately 0.5 with
neighboring estimates (empirical results). This agrees with analytical results
provided for auto spectral estimates. 14
It is apparent from the results (Tables 6 aind 7 and Figs. 28 through 31) f
that the bias and variance of l'/‘l\‘ 2 can be reduced through the use of over-
lapped processing. For ;example, when I‘Y ' 2. v.0 , the variance of the
estimator with 50-perce * overlap equals 31 percent of the variance of the
estimator with 0-percent overlap. With 50-percent overlap, the bias is 55 per-
cent as large as with0-percent overlap. Similarly, when I‘y l2 =0.3, the
variance is 53 percent of the 0-percent overlap estimator, and the bias is
50 percent as large. It also can be ‘seen from the results that 62.5~percent
overlap is similar to having processed twice as much data with 0-percent over-

lap. There is one possible exception: The bias for h 2 0.3 is 36 percent

as large as the 0O-percent overlap estimator. This is better than 56 percent,




TABLE 6

EMPIRICAL RESULTS FOR [v|2=0,0 AND n =32

5:‘;:;; No. FFTs Bias Variance
0.0 32 .3156 x 10-1 ,9463 x 10-3
12,5 36 .2834 x 10-1 .7130 x 103
25,0 42 .2370 x 10~1 .5197 x 1073
37.5 50 .2043 x 10~1 .4069 x 1073
50,0 63 .1749 x 1071 .2929 x 10~3
62.5 83 .1582 x 1071 . 2480 x 1073
75,0 125 1571 x 1072 . 2463 x 1073
TABLE 7

EMPIRICAL RESULTS FOR [l 2-0.3 AND n=32

T i ——— R E—

g:f;:; No. FFTs Bias Variance
0.0 32 1,442 x 1072 .8007 x 10~2
12,5 36 1,093 x 1072 L7770 x 1072
25.0 42 .959 x 1072 .5965 x 1072
37.5 50 717 x 102 .5067 x 10~2
50, 0 63 .597 x 1072 . 4441 x 10~2
62.5 83 .515 x 1072 .4063 x 102
75.0 125 .494 x 102 .4020 x 10~2
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which would be expected from twice as much data.

Quite naturiaily, there is an increase in computational cost associated with
overlapped processing. Specifically, the number of FFTs to be performed
(a measure of the computational cost) increases with the percent overlap spec-
ified (Fig. 32). The number of FFTs required for 50-percent cverlap is ap-
proximately twice the number for 0-percent overlap.

Increasing the overlap from 50 percent to 62.5 percent, requires 32-per--
cent more FFTs, but the variance of the estimator becomes only 80-95 percent
of its value at 50-percent overlap. In most cases, the improvement to be
derived from using 62. 5-percent overlap, as opposed to 50-percent overlap,
will not warrant the increased computational costs, and should be used only

when stringent variance and bias reduction requirements are demanded.
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VI. CONCLUSIONS

A detailed analyticel analysis of the statistics for estimating the magnitude--
squared coherence function (spectrum) hzs been made. When such estimates
are made, time-limited sample functions of long duration, which are stationary
(in the wide sense) over the period of observation, must be available. Expres-
sions for the probability density, the cumulative distribution, and the bias and

N

variance of | Y

have been presented for the case where no overlap process-
irg is used. Evaluation of these expressions, which are dependent on both the
true value of coherence and the number of observed segments, n, dramatically
portrays the requirement that n be large.

The application of a cosine-weighting functi~a in order to reduze errors due
to sidelobe ieakage wastes the available data, As shown empirically, proper
use of the data in terms of reduced bias and variance of the estir.ator can be
achieved through overlapped processing. It appears that a 62, 5-percent over-
lap is roughly equivalent to having twice as much data available, The reduced
bias and variance of the estimator achieved through 62, 5~-percent overlapped
processing can be realized almogt entirely through a 50-percent overlap. The
computational cost associated with §0-percent overlap is not unreasonable.

With 50-percent overlap, variance and bias reductions are achieved that are
similar to reductions resulting from processing twice as much data with 0-percent

overlap. This significantgain tobe obtainedfrom 50-percent overlap processing
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should not be overlooked in estimating the magnitude-squafed coterence function

(spectrum) when cosine (Hanning) weighting is used and data are limited.
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APPENDIX A
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STATISTICS OF
MAGNITUDE-COHERENCE ESTIMATOR

!

S

g3

Goodman, in his Eqs. (4.51) and (4. 60), derived an analytical expression

e

for the probability density function of the coherence estimate, , {y\ l . 1 His

TR

results are based on two zero-mean processes that are stationary, Gaussian.
and random and are segmented into n independent observations (that is,
n nonoverlapped segments)., Each segment is assumed perfectly windowed,
as defined in Chapter IV. The probability that the estimate of

coherence would take on some value, ‘{y\ i » conditioned on the trus cokerence
being equal to I‘Y I and upon n independent observations, was given by

. Zoodman as

o((3l 1, o) w2l oy

) F@-1)

. g r (1+k)(| , '/\lz\ A
k=0 r?2 k+1)

where T(n) is the Gamma function, namely,
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o .
T (n) =/ e *x" 1 dx and Fm)=(@-1) I'th-1) .
0

This probability density function is also given by Hannan. 24 However, this
form of the density function is rather cumbersome. A work by Enochson and
Goodman9 suggests that it may be written in terms of the hypergeometric function.

It is first necessary to observe, from Abramowitz and Stegun, 26 that

L2 r?‘(n+k)(|‘rlzl/’r\lz)k.

~
2F1(n,n;1;|‘7|2|7'2) == (Aa.2)
F nk=0 IPk+1) k!
Further, when k is an integer,
k!=Tk+1) . (A.3)
(See, for example, Abramowitz and Stegun?s) Thus, Eq. (A.1) is
-2
A Al 2\" A2\ -1
p(l vlll‘rl, n)=2|7|(1-|7| ) (1—|‘r| ) —o=l)
T () [(n)
, . \k
© rz(n+k) (l‘7|2|'Y|2)
. (A.4)

=0 prk+1) k!

or, more simply, substituting Eq. (A.2) into (A.4) ,

F (n,n;l;i’szi{y\lz) ' (A.5)
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This form of the density function, Eq. (A.5), is more favorable than the form |

in Eq. (A.1) because the hypergeometric function is well documented.

The mth moment of magnitude coherence can be shown, as in Eq. (4.13),

to be

m 2
.3F2(-2' +1, n,n; l'rz"l'*n,l;l“!l . (A.6)

Exact expressions for the bias and variance follow directly in a manner

parallel to that in part IV, C.

It is instructive to show the relation between the biases of estimates of the

magnitude coherence and the magnitude-squared coherence. Define the biases

as follows:

- B 4 E(ll‘f\l.) - || (A.7)
and
s, & 5([7F) - 1412 a0

(A
Because the variance of |7 | must be nonnegative,

( l) [E(l )J : (A.9)




AW T O AT b R e T D 1S T e WA R L SRR VTR "Wx

srmd e, wy

e N—
§ 1i/
. 87
§ ,
k. Using Eqs. (A.7) and (A. 8) yieics i
i \

; |

3 2 . A2 2 2 4

B+ || 2<B1+;.\;) =82+28 |7 |+]v|" . (A.10) ;
- ;
, i
- Thus, :

4 B, 38 |v|+8 | (A.11)
¥ = 1 i 1 ',
|
‘g For example, conside~ the case I Y ' =1.0. Now B1 =0.0, B2 =0.0, :

)

’ and Eq. (A.11) hold with ~¢nality. Consider also ,‘y | =0.0. Then :

I'(m) I'(3/2) '
.. E(ﬁ‘ n,|7'=0.0) B et (A. 12)

3 ‘ T +1/2)

\: ; ) 26

. 1 Using Eq. (6.1.47} ¢f Abramowitz and Stegun, Eq. (A.12) yields for larg: n

S ;

(74 3

E Ir@/2)

K 4 /\ ~

: E(|-1| a, |1|=0-0)- =} \r/n. (4. 13)

E

3
b . For |7!2=o, Eq. (4.21) gives

5 132=l [ 7]%=0.0. (A.14)

=

Thus, the€ irequality holds and Eq. (A.11) becomes

15 .z (-1-) : |v|=o.o . (A. 15)
n 4 n
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APPENDIX B

BRSPS AN S

DERIVATION OF A SIMPLIFIED EXPRESSION
FOR THE EXPECTATION OF THE
ESTIMATE OF MAGNITUDE-
SQUARED COHERENCE

N S

o

T x5 ol b e

y 2
The major steps in deriving a simplified expression for E(l'/y\' z‘ n, ‘ Y l )
are presented here. ,

According to Eq. (4.26),

n
1- | 2) , \
E(‘{Y\‘z‘n,|7|2)= L—l——l— F2(2,n,n; n+ 1,1;,“{'2), (B.1) |

3
n

which can te manipulated into the form

' 2k

n,|7|2)=(1"|"|2)n R (B.2)
k=0 (n+k) k!

S (P

Adding and subtracting n from the numerator term in Eq. (B.2) yields

. nlo (@ © (1-n)n) :
E(F'Y\'z n, || 2)= (1 - |v |2) {k‘g‘o—;& |v| % +k§) PN kk' v [
(B.3)
Recognizing that
" (B.4)

k+n n(n+1)k
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it follows that ;
K:
Als ) \ef[© o) @) | 2 (1-n) |
El'vl n,'yl =(1-l‘7| 3 + _
k=0 (b)k k! n
) j
2 ,
© ) 0), , 2/ ! {
. 2 : (B.5) i
k=0 n+1) k! :
k i
;
In terms of ,F, functions, Eq. (B.5) becomes ;

(191 o) <o )" [ o 1)

(2-mn

* R z“"&(“’“m*l:l‘riz)- (B.6)

BB AL NI 8 s i £ R
A L o e

e
(EN

aRS e X ”?‘.f‘

By using Eq. (15. 1. 8) of Abramowitz and Stegun, 26 Eq. (B.6) reduces to

(B0 o) () fltol?)”

1-
+ . 2F1(n,n;n+1;'7'2)]. (B.7)

n
Simplifying and applying Eq. (15.3.3) of Abramowitz and Stegun, 26 Eq. (B.7)

vkl
NELNIRYLkis

i

SRRl AR R

A

5>
.3

can be further reduced to

E(lfr\lz n,,?lz)=1+(1~n)
n

Y Wea e . s aa

(1-,7] 2) oF (1,1;n+1;‘7l2).

(B.8)
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Finally, by applying Eq. (15.2.6) of Abramowitz and Stegun, 26 with a=1,

.
b=1, and c=n+1, Eq. (B.8) can be manipulated into the form
A 1 n-1
E(lvlzln,l-rlz ==+ — |7v|? F (1,1;n+2;l7|2).(3.9)
21
n n+1l
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