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ABSTRACT

A method of estimating the magnitude-squared coherence
function (spectrum) for zero-mean processes that are wide-
sense stationary and random is presented. The estimation
technique utilizes the weighted overlapped segmentation fast
Fourier transform (FFT) approach. Analytical and empirical
results for statistics of the estimator are presented for the
processes. Analytical expressions are dfiwved in the non-
overlapped case. Empirical results show a decrease in bias
and variance of the estimator with increasing overlap and
suggest that a 50-percent overlap is highly desirable when

cosine (Hanning) weighting is used.
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ESTIMATION OF THE
MAGNITUDE-SQUARED COHERENCE FUNCTION (SPECTRUM)

I. INTRODUCTION

The complete probability structure of the zero-mean processes x(t) and 1

y(t), which are wide-sense stationary and Jointly Gaussian, is specified by the

spectral density matrix,

r Zxx(f) 1xy(f)

Mxy(f) J (1.1)

(byx (f) (byylfM

where

Sis the (real) auto power spectral density function of x(t),
'~ I xx-

,wyy(f) is the (real) auto power spectral density function of y(t) , and

bxy(f) is the (complex) cross power spectral density function of x(t)

and y(t) and consists of a real or coincidental (CO) spectrum and an imaginary

or quadrature (quad) spectrum.

A simplifying ratio is the complex colerence function (spectrum),

4,() M
xy~ f) = Xy (1.2)

xx yy

: : or, more commonly, the magnitude- squared coherence function,)
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I~ 2 (1.3)
lyxf If~

(Dxx(f) Oyy
4

The term "coherence" can imply Eqs. (1.2), (1.3), or the positive square root

of Eq. (1.3).

Equation tj. 3) possesses a number of useful attributes: First, it always

falls between zero and one. Second, it is zero if the processes x(t) and y(t)

are uncorrelated. Third, it is equal to unity if and only if there exists a linear

relation between x(t) ajd y(t).2

These attributes are of particular significance in sonar systems where a

waveform received at two spatially separated elements of a hydrophone array

may be corrupted by additive noise uncorrelated from the first to the second

element,

Unfortunately, the difficulty in estimating the true coherence has plagued

31modern statisticians. An analytical expression was derived by Goodman for

the probability density function of the estimate of magnitude coherence il I
when several independent observations (or segments) of the processes are

available. A closed-form solution for the cumulative distribution function, as

a finite sum of hypergeometric functiens, can be found by propir identification

of variables In the work of Fisher. 4 The application of Fisher's work to this

problem is believed original in this thesis. Earlier, statistics for coherence
4 5-7

estimation were found in tables, and graphs, and traisformations to be

performed on the coherence estimator were suggested so as to "normalize"

(make Gaussian) the density function. 8,9
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Certain empirical studies have also been conducted. Haubrich suggested

that the total time series under investigation be segmented into a number of

"shorter segments overlapping one another by 50 percent and that a triangular
7

weighting function be applied to each segment. Tick showed empirical exam-

ples of the types of estimates to anticipate when the true coherence is 0.2 and

3mean lagged product techniques are used. Benignus empirically showed the

bias and confidence intervals to expect when n independent segments are proc-

essed using a rectangular weighting function. 10

Current techniques for coherence estimation involve applying the fast
11

Fourier transform (FFT). Some of the latest published results on coherence

estimation are limited in scope to processes that have relatively flat spectra. 10

The problems associated with nonflat spectra can be avoided through judicious
12-14

choice of a time-weighting (or windowing) function. The use of a weighting

function is necessary for data not spectrally flat and should be prudently ;selected

for unknown data. In coherence estimation, the application of a weighting func-

tion results in wasted data (loss of stability and increase of bias) unless: over-

lapped processing 14 is employed. In underwater acoustic environments, which

require weighting functions and good spectral resolution, but which remain

stationary only for limited amounts of time, such wastage can not be permitted.

This thesis ompirically determines the effect of overlap processing on the

estimated magnitude-squared coherence function when cosine (or Hanning, after

Julius von Hann) weighting has been applied.

The empirical method for determining the effect of overlap has been limited

in scope to a cosine weighting function, a finite time history, and a desired
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4

frequency resolution (half-power) bandwidth. Under these canditions, estimates

of bias and variance of the estimate of magnitude-squared coherence have been

made for two values of coherence. The behavior of these statistics as a function j
of increasing overlap is presented and is believed original.

4-1 I



II. COHERENCE FUNCTION(SPECTRUM) AND ITS USES

SThis chapter defines the coherence function (spectrum). Additionally, it

reviews those terms necessary for its definition or helpful in its estimation.

Finally, this chapter presents some examples of the uses of coherence to lay

a background for why this particular function is meaningful.

II. A. COHERENCE FUNCTION

The essense of the coherence function is a collapsed power spectral density

matrix. To fully appreciate the Intricacies of its definition, it is first necessary

to review some basic concepts. They include the correlation matrix, wide-

sense stationarity, ergodicity, Gaussian assumption, and power spectral

density matrix.

II. A. 1. Correlation Matrix and
Wide-Sense Stationarity

The general correlation function between zero-mean processes x(t) and

15
y(t), which are real and nonstationary, is defined by Davenport and Root, as

follows:

Rxy(t 1 t2) 2 E [x(t1) Y(t2 )] (2.1)

5

S,4
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which depends on the absolute time instants t1 and t2 . If the cross-correla-

tion function depends only on the time difference r = t2 - t1 and does not

depend on the time origin, that is, 1f

R X (t, t + 7 X = ) 4 (v 'x't) t + T) 1 (2.2)

then the processes are called wide-sense stationary, It is not necessary for

Rxy( r ) to be an even or an odd function.

Similarly, the autocorrelatlon function In the wide-sense stationary case

becomes

RxxX 7 (2.3)

which is an even function. The autocorrelation futction of the process y(t) is

similarly defined.

The correlation matrix for the wide-sense stationary processes x(t) and

y (t) may now be defined by

RRx(y( I) (2(r) .

Ryx(r) Ryy(r)

When two zero-mean random processes have a correlation matrix that

depends only on the time difference, It is meaningful to talk about the Fourier

transformation of the correlation matrix. 16
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11. A. 2. Ergodicity

Random processes can be characterized by an infinite number of waveforms.

Each of these waveforms is referred to as a sample or member function of the

random process and is itself infinite in duration. 1 7 Statistics of an order higher

than the correlation function can be computed by averaging over the ensemble of

all sample functions. These statistics can also be computed from any one of the

sample functions.

If all the higher order statistics, when computed from any one of the sample

functions, are the same as the ensemble average over all the sample functions,

then the processes are called ergodic. In particular, the correlation matrix

computed over any one sample function is the same as the correlation matrix

compu•2.,d over an ensemble of sample functions. It should be noted that it is

possible for the correlation matrix to be the same wien computed over different

sample funct!,ns and yet for some higher order statistl.2 to differ when computed

over different sample functions.

It is important for the results presented in this thesis that the correlation

matrix be the same when computed over different sample functions. This, in

essence, allows the correlation matrix (or its linear transformations) to be spec-

ified with probability one from one sample function. If the correlation matrix

does not differ when computed over different sample functions, the processes

are still called ergodic, but now some qualifying adjective must be applied to

denote the strength of the ergodicity. 18 This author chooses to use the adjective

"wide-sense" to specify the strength of the ergodicity. Processes that are wide-

sense ergndic are also wide-sense stationary.
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II. A. 3. Gaussian Asumption

If two zero-mean processes are jointly Gaussian and wide-sense stationary,

then their correlation matrix dictates all higher order statistics. 16

II. A. 4. Power Spectral Density Matrix

Several important concepts have preceded this section: First, in order to

mathematically determine the power spectral density matrix, the processes

must be stationary (in the wide sense). In practical estimation situations ergo-

dicity is presumed, and only one time-limited sample function is collected for

each process under investigation. It is desirable, but not necessary, that the

two processes be jointly Gaussian. When the two processes are both stationary

and jointly Gaussian, then knowledge of their correlation matrix completely

specifies the statistics of the processes.

Given the zero-mean processes x(t) and y(t) , which are real, stationary,

and jointly Gaussian, a complete characterization for the probability structure

of the processes is specified in terms of the power spectral density matrix

M (f) :
xy

M XY M A(2.5)
Myf= L (Dyx M yy (f)

The power spectral density functions composing the elements of the power

6 spectral density matrix are the Fourier transforms of the associated correlation

functions. The cross power spectral density function is

. .............. .'
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!A

XY) R. (2.6)

-CO

In general, this function is complex since Ry r() is not necessarly odd or

even.. Similarly,

( fxxMt f CO Rxx(7) e'J 2 rf ddr (2.7)

-CD

which is purely real since Rxx(7) is even.

II. A. 5. Definition

The complex coherence function for two wide-sense stationary processes

is a normalized complex cross power spectral density function given by

Oxy~f)

v (f) • (2.8)xybxx() yy

Since ( XY(f) is complex,

=xy(f) Cxy(f) + J Qxy(f) (2.9)

Further, )D (f) and )y (f) are nonnegative, real functions of f ,
yxy

4xx(f) >0 (2.10)
S I
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and

Dyy M

The magnitude of the complex coherence function (or, simply, the magnitude

coherence) is

4(f)xy(f) 
I

x = . (2 .12)

It follows directly that the square of the magnitude of the complex coherence

function (or, simply, the magnitude-: squared coherence) is

SI •)x(f)I 2

IY' () xy(f I%,•y((f)2.13a)

C 2(f + Q (f)
(2. 13b)

• xfc • (f)

Oxx M DyyM

Although the term "coherence" can imply Eqs. (2.8), (2.12), or (2. 13), It

usually refers to Eq. (2. 13).

i'or ease of notation, the dependence on f is often not specified; for

example,
2 2C2 + Q2xy xy

= . (2.14)112y l Oxx 0 yy

:1
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I. B. USES OF COIIERENCE FUNCTION

The magnitude-squared coherence function for the zero-mean, wide-sense

stationary processes x(t) and y(t) is useful in several ways, which will be

proved in the following sections. First, for two processes that are linearly

related, the magnitude-squared coherence function is 6nity. Second, for two

independent processes, the magnitude-squared coherence function is zero.

Third, under the assumptions to be presented, the magnitude-squared coherence

function serves as a signal-to-nclse measure.

II. B. 1. A Measure of System Linearity

The magnitude-squared coherence function can be used to measure system

linearity. 12 In Fig. 1 consider the linear system with input x(t) , impulse

response h( r) , and output y(t) . The output y(t) is expressed by the con-

volution integral

y(t):=f Co h(r) x(t-,)dr (2.15)

x(t) y(t)

Fig. 1. Linear System with Impulse Response h(T)

\ I
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The frequency-domain equivalent is a multiplication obtained via the

Fourier transformation:

Y(f) = H(f) X (f) (2.16)

If x(t) is a sample function of a stationt, random process, 2 then J

4x (f) = H(f) Dxx(f) (2.17) 4

and

yyf) H(f) H*X(f)xx(f) = H(f)Iylf) (2.18)

Since the magnitude- -uared coherence defined by Eq. (2. 13) can be

written as

•xy(f) •*y(f)

S My(f)2 =x y (2.19)

, xxf •yy~f

application of Eqs, (2. 17) and (2. 18) yields

xy1H(f) f V f (2.20)

Consequently, the magnitude-squared coherenceo between the input and output of

a linear system is unity.

i A

SmA
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II. B. 2. A Measure of Correlation

If the zero-mean processes i(t) and y(t) are independ;,nt, 1hey are also

uncorrelated and orthogonal; that is

RXY(7)= E (x(t)y(t +r) = ESx(t)] E Cy(t + r )I 0 , (2.21)

Rxy(f) OD Rx(-v)e-J2 d7 0 , (2.22)

and

IT(f) 02 = V f (2.23)

Hence, if the two processes are independent or uncorrelated with zero mean,

the magnitude-squared coherence between them is zero.

II. B. 3. A Measure of Signal-to-Noise Ratio

Consider a signal, s(t) , passed through two linear filters and received

at two sensors where it is corrupted by uncorrelated additive noises. The

received waveform P t each sensor is then passed through two linear filters, as

shown in Fig. 2.

Assume that s(t) , nl(t) , and n2 (t) are uncorrelated; that is,

E [n 1 (t) n2 (t+r )]=0 , (2.24)

E nt) s(t +, = (2.25)
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and

E n s2(t)+SO ) =0 (2.26)

Tnen,

r itThenn ()

Ham(f)= (f ) , (2.27a)

=-[4S2(f) rnln1 (f)] H1 (f) 2 (2.27b)

and

H2 (2

Fig. ~ ~ ~ H1 f 2. Sina2t2s7eeieca)woSnsr

(D (fW (f) H1(,)1 (2. 27a)

0 y y MOr r(f) H2 2(f)j2 (2. 28a)

2 2
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and

=r 5f jH,,'!) 12+4nn2(f)]IH2(f)I2 ; (2.28c)

ylY2(f)= H1 (f) H2 (f) 1rlr2( (2. 29a)

H (f) H- If) (f) M (2. 29b)
1 2

and

-- H P(f) H(f) Ha(f) NM(f) 8ss(f) ; (2.29c)

2 *12f~

,2 2 (f) I H a(f)

Y12( 2I (D r

[1(f) H 'nJ][ss(f)j HIb + n + (fD

(2.30a)

and

= Hr lr2 (f) i2 
(2. 30b)

Equation (2.30b) is independent of both Hl1 (f) and 112 (f) ; that is, the

coherence between the two received waveforma is not changed by linear filtering.

Thero ar' two special cases of Eq. (2.30a) that are of interest: First,

when

4,n n (f)= nn (f) =•) (f) (2.31)
1n 1  2n2

and

H n (f 2n H)f 2(.2

..................
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(as, for example, if

H(f) =e-J2 if a (2.33)

and

Hb(f) = e-j 2 1f ' b (2.34)

corresponding to time delays 7 and r'b a directional signal), then

2

y ) 2ssf (2.35)

M~f + c(D )

and

- - (2.36)
Onm(f) 1- ylY2 M

Second, when

n1(t) = 0 (2.37)

On n2(f=) n(f) , (2.38)
£22

and

a~)2 (2.39)

then

2

12 =D (2

Y2(f) [4s(f÷ + 4inn (f)] oss(f)

and
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(Dss MfI yly2(f) I2
-f .2(2.41)

D(f) 1- I 7yl2(f)1 2

19 12

This is a generalization of work done by Roth, Carter and Arnold, and

Knapp.
2 0

V!

t I,



III. COHERENCE-ESTIMATION PROCEDURE

The procedure for estimating the coherence or magnitude-squared coherence

futctions for wide-sense ergodic (and, hence, wide-sense stationary), zero-

mean random processes x(t) and y(t) is discussed in this chapter. (References

within this chapter to x(t) and y(t) apply to those specific processes with the

noted characteristics, that is, zero-mean, wide-sense ergodic.) The basic ob-

jective is to obtain estimates of the elements of the spectral density matrix,

M Dxx(= 1 (3.1)

0' (1) 4'f) M[.yx yyfJ

in order to form the magnitude-squared coherence estimator.

The estimation procedure described is the direct method, which is discussed

21 22 13 10 14
In part by Welch, Knapp, Bingham, Benignus, Nuttall, and Carter

12
and Arnold. It includes cosine weighting and overlapped processing and is

11
used because of the computational advantage of the FFT.

Briefly, the method implemented consists of obtaining two finite-time series

from the random processes being Investigated. The time series are segmented

Into n segments, each having P-data points. For example, from each process

there may be 32 segments, each segment having 4096 points. The segments may

be overlapped or disjoint. Each segment is multiplied by a weighting function,

18

_ _,... . . . . ,. . . __.. , . 1.
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and the FFT of the weighted P-point sequence is performed. The Fourier

coefficients for each weighted segment are then used to estimate the elements

of the power spectral density matrix. The power spectral estimates thus

obtained from each set of weighted sequences are then averaged over all the n

segments. Next, the resultant estimates are used to form the magnitude-

squared coherence. 12

III.A. QUANTIZED SEQUENCE OBTAINED
FROM WEIGHTED SEGMENT OF DATA

0

Consider the time-limited sample functions of processes x(t) and y(t)

(specified in Chapter III.). Let the sample functions be further constrained so

that they have the same bandwidth. This may come about as a result of (1) the

physics of the exporiment, (2) the bandpass characteristics of some recording

device, or (3) the intentional introduction of bandpass or low-pass filters to

prevent aliasing. Analog to digital (A/D) conversion of the signals is now accom-

plished by sampling the two analog signals at a frequency, f Hz, greater than
S

twice the bandwidth of the signals. This technique yields two quantized se-

quences of numbers or time series. The quantization error decreases as the

number of bits in the quantizer increases. (Errors as a result of quantization

are beyond the scope of this work.)

Let these two time series from processes x(t) and y(t) , which are drawn

continuously for convenience, be depicted as in Fig. 3.

The method of overlapped weighted segmentation requires that before

estimating the coherence between x(t) and y(t) , both x(t) and y(t) be
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0 Ttotal

Ttotal
0 T total

Fig. 3. Two Time Series from Processes x(t) and y(t)

multiplied by a series of real weighting functions, ws (t) , or sampled and

quantized versions thereof, as in Fig. 4.

T Ttotal

a- (a+T Tt0 taT

WS W

Wn(t)1

(n-1)a (n-i1)a+T

Ttotal

Fig. 4. Overlapped Weighting Functions (Modified from Knapp 2 2)

The method implemented computes a P-point discrete Fourier transform

(DFT) for each of the weighted segments. The frequency-domain equivalent of

multiplying each segment by a weighting function is a convolution of the true

%,C
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spectrum with the Fourier transform of the weighting function. Hence, the

weighting function should be judiciously selected in order that the true spectrum

be least distorted.

The factors affecting the selection of the segment length andwindow shape are

1. w (t) should be relatively easy to compute.s

2. T tota should be large in order that the amount of averaging be
T

sufficient to reduce th-, bias and variance of the spectral estimates.

3. d Ws(t) should be continuous for n=0, 1, 2, . .. , up to some

dt
reasonable limit, since this ensures that the sidelobes of the Fourier transform

of w5 (t) die off rapidly.

4. The Fourier transform of w (t) should also be narrow in the main lobe

(narrower than the finest detail of the true spectral density matrix of processes

x(t) and y(t)). Generally, this lobe is narrowed by increasing T.

The specific selection of a weighting function involves a number of tradeoffs.

A commonly used weighting (or windowing) function is the cosine (Hanning)

function defined 13 by

WS ½ -cos 2 2 t- )a.(s-1)a_<tT+(s-1)a,

0 ,elsewhere.

The percentage overlap from Fig. 4 is, simply,

T •
PO =(3.3)

0 a>T\5
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Therefore, for example, if T = 1 and a = j, then po 50 percent. Whereas

if T = 1 and a = 3/4, then po = 25 percent.

Note that if a > T there would be no overlap, and each segment would be

virtually independent of the previcus one (except for correlated edge effects).

All theoretical results here are concerned with the case of independent segments,

that is, no overlap. A detailed analysis of the effect of overlapped weighted

segmentation for estimating u.uio power spectral density functions is given by

Nuttall.
1 4

III. B. COHERENCE ESTIMATOR

Let x, where p=0, 1, 2, . . . , P-i denote the P-point sequencesp

obtaiued from the sth weighted segment of process x(t). In estimating the

coherence function, it is necessary to evaluate a transformation, of this weighted

sequence. The FFT is a fast algorithm for evtaluating a special case of the

Z-transform of a finite sequence of numbers. The two sided Z-transform of

an infinite sequence is defined by

OD
Xx(Z) , (3.4)

p--p

where z equals any complex variable. 2 3

Evaluation of the Z-transform at P equally spaced points around the unit

circle for a P-point sequence yields the P-point DFT:23

P- 1
p-2i - f2wf/P

x e-k (3.5)Xs(fk) = spe

_-_,_..
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where x is the finite weighted sequence, p =O, 1, .. , P - I, and
sp

s=1, 2, o . . , n . Equation (3.5) can be evaluated for k 0,1,. . . ,P-i,

with a fast algorithm requiring on the order of P log2 P complex multiplications

and additions.' 1

Similarly, a vector, Ys(fk , is formed for each segment (that is,

s= 1, 2, . . ., n)

The estimate of the auto power spectral density function of x(t) at the kth

frequency, obtained from the sth weighted segment, is given by

• (fk) = [ X* , where A t 1/f (3.6)
s P

Similarly,

and the estimate of the cross power spectral density fimction is

Equation (3. 8) can be rewritten in terms of the real and imaginary parts,

C (f) -Re IX(f)'r* ( (.9

and

pXys(fk) 'm (fk) (3.10)
s P ISV Y
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Next, the estimates of the elements of the power spectral density matrix

are obtained by averaging over the number of segments, n. The estimate of

the magnitude-squared coherence follows directly:

[A C:XYsk n F'~ QXYs22

IV(f) .... (3.11)
nn

s .= 1 ~ k)] n F' 0yy~k)
8=1=1 S

where k Indexes the discrete frequency of interest and n is the number of

overlapped tiegments.

The estimate of magnitude coherence is

+9( (3.12)

It is of practical interest to note (as pointed out by Jenkins and Watts ) that

an alternate and seemingly reasonable form of the estimate yields

n X(f Y) 2

2 1 X a a(fk) j2'(3.13a)

s=1 s~k) S* fk)Ys(fQ Y*Bfk)

and

n Xsk( YSkX(f k) Y(fk)
=1. (3.13b)

X s= (fk) X*(fk f)Y(R.
n s:• k x sY s(f k) Ys(fk

This fact is so basic that it is often not discussed. However, it points out

that regardless of the value of the true magnitude-squared coherence, = 1.0
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when n = 1. Consequently, the estimate is, in general, biased; the actual bias

2)depends on I 2 and s. In practice, n should be large, as will be shown.

tM



IV. STATISTICS OF ESTIMATE OF COHERENCE

Goodman, in his Eqs. (4.51) and 4.60), derived an analytical expression
for the probability density function of the ma itude-Coo eenoe e i i,

based on Eqs. (3. 11) and (3.12). His results were based on two zero-mean

processes that were stationary, Gaussian, and random and had been segmented

into n independent observations (that is, nonoverlapped segments). Each seg-

ment was assumed large enough to ensure adequate spectral rezolution. Further,

each segment was assumed perfectly weighted (windowed), in the sense that the

Fourier coefficient at some kth frequency was to have "leaked" no power from

other bins. However, Hannan24 points out that the statistics do not hold at the

zeroth or folding frequencies.

The material in this chapter ralating to magnitude-squared coherence is

believed to be new (Carter ard Nuttall 25 ) and is a direct extension of Goodman's

work. 1 All of Goodman's original assumptions hold. Statistics of the magnitude-

coherence estimator are given in Appendix A.

WV.A. PROBABILITY DENSITY AND CUMULATIVE
DISTRIBUTION FUNCTIONS

The first-order probability density and cumulative distribution functions for

the estimate of magnitude-squared coherence, given the true value of magnitude- A
squared coherence and the number, n, of indepondle' segments processed,

26

\ 1.
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are presented in closed-form. The expressions are evaluated and plotted.

IV. A. 1. Probability Density Function

The conditional probability density function for the estimate of magnitude-

squared coherence, ^fj2, between two processes, given v2 and n is9

P I 2Yi (1 _1/*,1-2

Equation (4.2) can be shown (Appendix A) to be Goodman's result. 1The

density function, Eq. (4.1), can be rewritten using Eq. (15.35) of Abramowitz

in the following alternate forms:

a nd4ayIInIypdn ^ 42
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-1, 12_n~ 2)=2)1 2 n

0 (,ii,,) 2  2 F 1, ( (1_ - 1_ ;1n, 1 -n). (4.4) I
Equations (4.3) and (4.4) are desirable because 2FI(- n, 1 - n; 1 ; y 2)

can be expressed as an (n - 1)st order polynomial (Abramowitz, Eq. (15.4.1)P).

A special case of the density function occurs when T 120.0. In that event,

P ^ 2 1 Y2=0.0 n- ) 2 n-2

7 in, 0 ( -1 (4.5)

IV. A. 2. Cumulative Distribution Function

4
Fisher, working on statistics of the estimate of the squared correlation

coefficient, derived the probability density for that random variable. He inte-

grated the result and achieved a ,closed-form solution for the cumulative distri-

bution function; specifically the solution was a finite sum of 2F1 functions,

each one a finite-order polynomial. Although these statistics are for a C.iferent

problem, proper identification of variables yields exactly the integration for-

mula needed to find the cumulative distribution of the estimate of magnitude-

squared coherence, namely,
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1.I.,,I n., - 2•o•1.ii IV 1

k, 2 1 - n;1l(4.6)

In the special case when YI = 0, the cumulative distributionfunction

becomes

2 12=.o.o) , (12_I12)ky in, =-,(4.7)

which can be simplified to give

P (1^ 12 n 1 12 0.o) =- ~1t 4 ) D 4 8
( n,i ly (4o.8)

Equation (4. 8), when differentiated, yields the probability density function,

Eq. (4.5).

IV. A. 3. Computer Evaluation

The probability density function, Eq. (4.4), can be evaluated readily

on a large digital computer in floating-point arithmetic. Evaluation for

100 values of 1712 between 0.0 and 0.99 requires computing

100 (n - 1)st order polynomials for each value of I7I2 and n. The

Lao ý1
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SET VALUES OF n AND 1y2
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SET VALUE OF 191
TO 11e STUDIED

COMKIJTE ýCONýSTANTS

COMPUTE 2F,1(1n,1-n;1I;IY1Y12

COMPUTEANDSAVE P(Ii 21 n,IYI2)
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cumulative distribution, Eq. (4.6), can be similarly evaluated. The density

function and the cumulative-distribution function were computed as illustrated

in Fig. 5 for ten values of I Y 12 and for n =32, 40, 48, 56, and 64. (The

computations and 100 plots were done on the UNIVAC 1108 in less than 5 min-

utes.) Example plots are included in Figs. 6 through 13.

One example of how these plots can be used is as follows: Magnitude-

squared coherence, I9 2 , is estimated by averaging over 32 disjoint seg-

ments of data (that is, n = 32). Suppose the estimated value is approximately

0.3, then from Fig. 7

Prob (L <It1 jn 32, I'y1 0.3)

and
=l~f~p (1^12In 3  H, 12 =0. 3) 1I1j2

(4. 9b)

Equation (4.9b) could be set equal to, for example, 0. 9, and the value of

L, from Fig. 6, is 0.2.

The upper limit is found from

(1^1I2 <U~ 1I3JI2=o3
Prob lyn =32, 0.3

f fU (1̂1I 2  y1,,2 )I 2  (4.10)tPy n=32, 7 0.3 )d , (.0

which could be set equal to, for example, 0.9, and the value of A, from Fig. 7,

is 0.43. Hence, ¾
Sk• • •' i !. . . ,: . . .. ..-- . ....... .7 - ...
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0 43
"p in=32, -0. 3)d = 8 .(4.11)

On the basis of Eq. (4.11), the probability that the estimator falls in the

range (0.2, 0.43) is 0.8, given that the exact value of the unknown parameter

was 0.3 and that 32 disjoint segments were used.

Proper use of the cumulative distribution function yields confidence intervals

for the estima.te of magnitude-squared coherence or any "one for one" trans-
"I '12

formation of !t, such as the positive square root or 10 log10 I - 1. (See,

for example, Cramer27 or Carter and Nuttall. 25)

IV. B. mth MOMENT OF DENSITY FUNCTION

The mth moment of the magnitude-squared coherence is given by

[(l 2 m) In 12] =f p0 i ]121n, 12'() 12) 1 2-

(n - ) .F 1 (n, n;y1;e2
0

2 21

where uise has been made of the density function, Eq. (4. 1) .

* 28
Application of Eq. 7.512(12) by Gradshteyn yields
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E [( AI2 m n,I7I2]=.(.1242)n r n) r(m +1)A
r (n +m)/

.3 F2 (m + 1, nl,fn; m +n, 1; J~12). 43

The three-two hypergeometric functions denoting three numerator terms

and two denominator terms are given by

Fo (a)k(b)k(c)k z

3F2 (a,b,c; d, e;sz) (4.14)
k--0 (d) k(e) k k!

where the (a) notation is Pocbhammer's symbol26 defined by

.. ak rl(a +k)(a) k a (4.15)

r (a)

The mth moment for the estimate of magnitude-coherence is given in Appendix

A.

These results can be verified through proper identificatt•n of variables in

the work of Anderson, 2 9 who extended Fisher's original work4 on the squared

correlation coefficient.

IV. C. BIAS AND VARIANCE

This section deals with the bias and variance of the estimator y1^1 2

Exact and approximate expressions are presented. In addition, computer

evaluation of the exact expressions is presented to lend meaning to these results.
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IV. C. 1. Dias "14

Consider now the first moment of the probability density function for the

estimate of magnitude-squared coherence. This moment can be written

E [1172In, 2 n' = ''' 3 F(2,n,n; n+1,1; -Y (4.16)
n32

if I.12 =1.0, 3 F2 = oD; therefore, the evaluation of Eq. (4.16) Is not

meaningful. When**. ']2 = .0 F = 1.0, which yields

E 171 n, - (4.17)
"n

Tedious manipulation of Eq. (4.16) (Appendix B) yields the simpler result:
A1

E~)Y2I, 72)= 1+ n ---'1 Y 1 ]" (1, 1; n+2;172)

n n+1 2FI ,.+2 (4.18)

n n~+1 2

An extremely useful approximation can be made by expanding Eq. (4.18) to

obtain

E(I^12 LI2\.I n 112 (n-1)11

,I =- + - .. (I,12)
n n+ 1 (n+1)(n+2)

I

(n -1) 2 21
+ + --- •(4.19)

(n + 1)(n + 2)(n + 3)

Computation of higher order approximating polynomials Is also easily performed

and is based on an analytical expression for E(171 2 2n"

(JI 2
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The bias or expected estimation error is defined as

Bias E 2IJ 1)-I (4.2ý0)Ek. ,i • .• l. .,n-,tv I) •. -.'o

From Eq. -(4. 18), an exact expression for the biasAis

"Bias 1 + 1 2 F1 1, 1;n+2;,I -1 . (4.21)
-n n+ 1

'Expanding, Eq. (4.21) gives the approximation

B 12) (n ( + (n1))2. 2 12) 3
o n n+ 1 (n + 1)(n + 2) + 1)(n + 2)(n + 3)

(4. 22a)

B , B0 >0

Bias T- (4.22b)

0 , 0 B<0

As an example of using this approximation for i = 8, the exact bias lies in the

range (0.0, 0. 125), depending on ;2 and the maximum difference between

Eqs. (4. 21) and 4. 22) is 0. 0027 at i 7 1 2 = 0. 86. For large n, Eq. (4. 22a

and b) reduces toBi s Z 1 . 2 24. 
2c

It should be noted (see, for example, Eqs. (4. 22a) and (4. 22b)) that

linr (Bias)= 0
n -- C (4.23)

therefore, the estimator may be referred to as asymptotically ,mbiased.

V4
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An empirically determined bias was found by Benignus10 to be

Bias =(4.24)
n

which fits the true curve for I ' 12= 0.0 and I Y 2 =1.0 .

It is suggested that the higher order polynomial expression for bias,

Eq. (4.22c), analytically derived, be used (as opposed to Benignus' result,10

Eq. (4.24)), especially for small n. However, it can be shown that Benignus'

restzlt is an upper bound on the bias for any n.

Aformula for the bias of f 2 owing to insufficient sbectral resolving

power(for example, FFT too small) is given by Jenkins and Watts, 8 but is

beyond the scope of this thesis. The formula for bias derived above assumes

sufficient resolving power.

IV. C. 2. Variance

The variance of the estimator, namely, the second moment about the mean,

is given by

VaiaceV E (•2) 2] E(" 2!]

Variance [- (4.25)

The second moment of the density function is, as a consequence of Eq. (4. 16),•n
1, 2) i 12 _2 (1_-1_Y_12).

n, 3 F2 (3, n, n;n+2, (4.26)
° n(n + 1)

When 17 = 0.0 , Eq. (4.26) yields the result
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10 01 n(n i 1)

An exact expression for the variance of 1912 is obtained from Eqs. (4.16),

(4.25), and (4.26). The result is

3F2 ( nn 2, 1;2)n
V n(n + 1) 3F2(3nnn+2, 12

For the special case of 'Y 12 = 0.0

2V n-1 _,1.2=0.0 (4. 29a)

nln + n) n2(n + I

and

2 for large n and . (4.29b)
n

In order to avoid tedious and error-prone hand manipulation, computer-

aided formula manipulation30 of Eq. (4.26) was used to yield an approximation

for the variance of 2. The result is

i 'n A ..
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3 2 2In20 n+ 1,12-2 2n3-n -2n+3 )1 1 22

n(n + 1) n + 2 (n + 1)(n + 2)(n + 3)

n _-6n 3-_n 2+10n -8 1
+2 - )

(n + 1)(n + 2) (n + 3)(n + 4)

5 4 3 2 /
+ 13n -15n -113n +27n +136n-120 _Y 12 (4.30a)

(n + 1)(n + 2)2 (n + 3)(n + 4)(n + 5)

or

V (4.30b)

0 V <00

As an example of using the approximation given by Eq. (4.30) for n =8,

the exact variance lies in the range (0.0, 0.031), and the maximum error due

to the approximation in Eq. (4. 30) is 0.0067 at I 2 = 0.83, This result is

8
a generalization of the third-order approximation by Jenkins and Watts, which

"1^2
has no zeroth order term; that is, it assumes no variance of | 2 when

In particular, for large n and 1y12 t 0 Eq. (4. 30) reduces to

-v( -j) (4.31)
n

whtch has a maximum value of 8/27n at ', 1/3.

MmiI 10 im



47.

Hence, the variance of the estimator in the case where j 7j2 is unknown

(but nonzero) decreases inversely proportional to n.

IV. C. 3. Digital Computer Evaluation
Of Bias and Variance

Practical experience in estimating the magnitude-squared coherence

function leads one to anticipate ,;ertain bias and variance problems. For a

given number of segments, n, when I 7 12 = 1.0, neither a bias nor a

variance problem exists; however, when I 7 12 = 0.0, the average value

estimator always appears greater than 0.0. Further, when I Y 1 2 is about

0.3 to 0.4, the variance of the estimator appears much greater than when

1Y 12 = 0.0. Primarily because this and the behavior of the estimator with

increasing n can not be readily sensed from Eqs. (4.21) and (4.28),

a computer program has been written to evaluate and plot those functions (see

Fig. 14). The results, Tables 1 through 5 and Figs. 15 through 26, dramat-

ically portray the behavior of these complicated (but readily evaluated) functions.

Tables and graphs of this type have been prepared in the past by Amos and

5Koopmans.

"J ' .4' °+ " • 'L ' '+ . . . .. .. . . . . .. . . . " " J + ' • . . . -
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TABLE 1

BIAS A1D VARIANCE OF hi FOR n =32

]2 E(I1 2 ) Bias E [(fl4 2 g 2  Variance

quOO0u .3150-01 031U50-01 .18939-02 o91738-03
.40000-01 oboS70-0O .28070-0J *75808-02 .28377-02
.aOU00-01 *lub58+00 .26b79-01 .15823-01 *44634-02
*lZUoo+0OO 14438+00 .24678-01 ,26654-01 .58089-02
.16000+00 *ld227+00 .22Zb7-01 .40110-01 .68888-02
*20000+O0 9202b+O0 *20247-01 ob6227-01 *77162-02'
,24000+00 .2*832+00 @18518-01 .75041-01 #83127-02
.28u00+00 .24b48+00 916482-01 .96590-01 *86886-02
*32000+00 *33474+00 #14 738-01 912091+00 .88694-02
.36U00+00 .3(309+00 .13088-01 .14805+00 .88513-02
4.0000+00 .41153+00 .11b33-01 .17803+00 .86732-02
.44000+00 .04007+00 .10072-01 .21091+00 *83462-02
.48U0000 .*4871+00 .87068-02 *24672+00 .78895-02
,52UOO+00 *52?44+O0 .74379-02 .28551+00 .73225-02
.9boooooi o5o6 27+00 .62661-02 .32732+00 .66654-02
.b0UO0+00 960519+00 .51920-02 o37220+00 .59391-02
.64UO+00 .64422+00 *42165-02 .42018+00 .51651-02
.b8000+00 .ob334+00 .33402-02 .47132+00 .43659-02
.72000+00 .74256+00 .25640-0k .b2566+00 .35644-02
.76000+00 .*71u9+00 .18b86-02 .b8326+00 .27845-02
.80000+00 .80131+00 .13147-02 .64416+00 .20509-02
.84000+00 .804084+00 .84326-03 .70841+00 .13891-02
.88000+00 .8a047+00 .47491-03 .77606+00 .82562-03
.92000+00 .94021+00 .21019-03 .84717+00 .38801-03
.96000+00 .96005+00 #4d847-04 .92180+00 .10573-03
.10000+01 .10000+01 .00000 .10000+01 .00000

I
-;• ... .. "' ... .. .. •; , - " • -2:: :5 -" '-!2: L2 2 _'-I



50

TABLE 2

BIAS AND VARIANCE OF 2 FOR n =40

Iy12 E(1412 ) Bias E [( 142)]2 Variance

OOOO0 o2b000-01 925000-01 .12195-02 .59451-03
*4000O-01 *63085-01 *23085-01 .61677-02 ,21880-02
,80000-01 91U124+00 o21243-01 .13784-01 o35342-02
.12000+00 ,14947+00 .19474-01 .24099-01 *46458-02
016000+00 917778+00 #17779-01 *37141-01 .55357-02
o20000+00 .21616+00 .16158-01 *52942-01 962074-02
.24000+00 o24l61+00 ,14b12-01 .71532-01 .67043-02
.28000+00 92v314+00 913141-01 ,92942"01 o70106-02
.32000+00 o3174+00 .11745-01 *11721+00 *71507-02
46u0O+0O0 *37042+00 .10425-01 *14435+00 o71391-02

.40000+00 *40918+00 .91808-02 917442+00 .69912-02
•44000+00 o44801+00 ,•A0137-0Z 920744+00 967223-02
So48000+00 ,4d692+00 .69239-02 .24344+00 *63484-02

.52000+00 *52591+00 .59117-02 o28247+00 .58859-02

.b6000+00 #504 98+00 ,49776-Oa o32455+00 053515-02
s60000+00 #604 12+00 .41222-02 *36973+00 *47625-02
.64000+00 .6.335+00 .33459-02 *%1803+00 941364-02
.68000+00 #66265+00 @26490-02 946950+00 934916-02
.72000+00 .72203+00 .20322-02 952418+00 .28465-02
.76000+00 *76150+00 .14960-02 .58210+00 .22204-02
,80000+00 98i 1 04+00 .10408-02 @64330+00 ,16329-02
o84000+00 .84067+00 .66704-03 .70783+00 #11044-02
.88000+00 o8b038+00 .37527-03 977572+00 *65547-03
,92000+00 99017+00 916560-03 *84701+00 *30789-03
.96000+00 .96004+00 .37304-04 992176+00 ,84845-04
.10000+01 1u000÷01 .00000 .10000+01 .00000
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TABLE 3

BIAS AND VARIANCE OF I172 FOR n =48

17 I E(1 12) Bias E [(I• 2T 2  Variance

*00000 .U 8333-01 .20833-01 #85034-03 .41631-03
*40000-01 .5v'31-01 .19231-01 .b2853-02 .17769-02
.80000-01 *9tb91-0i .17991-01 .12468-01 *29247-02
.12U00+00 o.I'621+00 .16213-01 922425-01 .38710-02
.16000+00 *1/480+00 .14797-01 .35181-01 .46273-02
.Ouoo0tO0 .Z344+00 .13443-01 .50764-01 .52054-02
.24000+00 t2b215+00 ,12153-01 .69199-01 *56175-02
.28000+00 .29093+00 .10926-01 *90513-01 *58758-02
#U3000+00 *34976+00 .97b16-02 .11474+00 959929-02
.36000+00 *3o866+00 #86615-02 934189+00 .59816-02
.40000+00 .40763+00 .76254-02 *17201+00 .58552-02
.44000+00 *4.b65+00 .66538-02 .20513+00 .56269-02
9480U0+00 .o4b75+00 .57469-02 .24126+00 .53106-02
o 52000+00 *5,d491+00 949051-02,.28045+00 #49201-02
.56000+00 .56413+00 *41286-0, ,32271+00 .44700-02
.60000+00 *60342+00 .34179-02 .36809+00 .39746-02
.64000+00 .64277+00 .27732-02 .41661+00 .34491-02
.68000+00 .6u219+00 .21948-02 .46830+00 .29088-02
.72000+00 ,72168+00 .16832-02 o52320+00 .23691-02
.76000+00 .7o24+00 .12386-02 .58133+00 .18e462-02
.80000+00 .8U086+00 .86127-03 .64274+00 .13565-02
.84000+00 .84055+00 .55169-03 .70744+00 .91652-03

.88000+00 .88031+00 .31001-03 .77549+00 .54359-03

.92U00+00 .99014+00 .93637-03 .84691+00 .25541-03

.96U00+00 .9003+00 .29739-04 092173+00 .71213-04

.10000+01 .91000+01 .00000 910000+01 .00000
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TABLE 4

BIAS AND VAIUANCE OF 1412 FOR n =56

Iv 12 E(1412 ) Bias E C112 Variance

•.00000 ,11857-01 .17857-01 *b2657-03 .30764-03
*40000-01 bo4o80-0l .16480-01 .46844-02 .14944-02
.80000-01 *99157-01 .15157-01 .11549-01 924943-02
*12000+00 *14389+00 *13887-01 #21244-01 *33178-02
*16000+00 *1/267+00 s12671-01 .33791-01 *39751-02
.OUO0O+00 *21151+00 *11blo-Cl *49213-01 *44769-02
.24000+00 92:040+00 .10402-01 o67535-01 948339-02
.28000+00 *2*935+00 *93494-02 .88780-01 .50571-02
*32000+00 .32835+00 *83bl4-02 *11297+00 .51577-02
.360O0+00 .3o741+00 .74084-02 .14014+00 .51470-02
4000O0+00 .40652+00 .65206-02 *17030+00 .50366-02
*44000+00 .44569+00 .56884-02 .20348+00 OW8M83-02
* .48000+00 .4d491+00 .49119-02 .23970+00 .45642-02
.52000+00 *52419+00 .941913-02 .27900+00 942264-02
.56000+00 .50353+00 935270-02 .32140+00 .38376-02
.60000+00 .60292+00 .29190-02 .36692+00 .34103-02
•64000+00 .64237+00 .23678-02 .41559+00 .29575-02.68000+00 .*6187+00 .18735-02 .46744+00 924926-02

.72000+00 .74144+00 .14364-02 *52250+00 .20288-02.76000+00 *7o106+00 .10566-02 .58079+00 .15800-02.80000+00 .80073+00 .73449-03 .64234+00 411601-02

.84000+00 .84047+00 .47025-03 .70717+00 .78333-03

.88000+00 .86026+00 .26403-03 o77533+00 .46438-03

.92000+00 #92012+00 .11579-03 .b4683+00 .21832-03•9600U+00 .96002+00 o24268-04 .92171+00 *61738-04.10000+01 .10000+01 .00000 _10000+01 000000
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TABLE 5

BIAS AND VARIANCE OF ^t 12 FOR n 64

1,1 2  E(1412 ) Bias E [( f12) 2  Variance

OOOO0 .1jb2b-01 *15b25-01 .48077-03 .23663-03
.40000-01 .b644b-01 .14418-01 .42499-02 912886-02
.80U00-01 .99428-01 s13258-01 .10871-01 .21743-U2
.12uoo+oo *13214+00 .12145-01 .20365-01 .29030-o2
.JbO0+O0 .11108÷00 .11080-01 .32752-01 .34842-02
.20000+00 .o2 0 06+00 .10062-01 .48053-01 .39273-02
• 24U00+00 *24909+00 .90924-0e *b6289-01 :42422-02
.e8000+00 *2u817+00 *81707-02 *87481-01 944386-U2
o32000+00 .3,J30+00 .72971-0k o11165+00 .45267-02
.36uug+O0 ..3b47+00 .64720-0k .13882+00 .45166-02
.O4000400 .4u570+00 .5695b-02 .16901+00 .44187-02
44U000+00 .44497+00 .49676-02 .20224+00 .42434-02

.48000+00 .*44 29+00 .42887-02 .23854+00 .40016-02
o.2U00+00 .5* 3 a6+00 936589-02 .27792+00 .37041-02
.56000+00 .5.508+00 *30763-02 .32042+00 *33619-02
.bOO00+O0 .6V255+00 .25473-02 .36605+00 .29862-02
.64000+00 .b4207+0O .20658-02 .41484+00 925886-02
.68000+00 o6o163+00 .16342-02 .46681+00 .21806-02
.72000+00 974125+00 .12b27-02 .52198+00 .17740-02
.76000+00 .7oO92+00 .92125-03 .58038+00 *13809-02
•80000+00 .8u064+00 .64025-03 .64204+00 *10133-02
.84000+00 o8,+041+00 .40970-03 .70697+00 .68399-03
.88000+00 .8d023+00 .22980-03 .77521+00 .40543-03
.92000+00 .*9010+00 .10040-03 .84678+00 .19082-03
.96000+00 .9o00U2+00 .20237-04 .92169+00 .54669-04
.10000+01 .1U000+01 .00000 .10000+01] .00000

S I | • , • ... m, "•''• ....
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V. EXPERIMENTAL INVESTIGATION
OF OVERLAP EFFECTS

An experiment has been conducted to study the effect of overlap of data on

the estimate I The analytical results presented earlier relate only to the

case of independent segments (that is, the case of zero percent overlap). This

experiment examines the effect of different amounts of overlap on bias and

variance of I ' 2•

Intuitively, it seems that the application of nonoverlapping weighting func-

tion does not make the best use of the data when forming the estimator 1/* (fk) 12
• 12

This inefficiency is similar to the wastage in forming auto power spectral

lp lg b lr t 12 w
density functions shown by Nuttall. When I is formed without over-A% I
lap, larger bias and larger variance result than when I (f 2 is formed from

the same data with overlap. Because this inefficiency can not be permitted in J
many practical situations of interest (for example, underwater acoustic environ-

ments), it is desirable to know how much the bias and variance can be reduced

and at what expense this reduction can be achieved.

V.A. METHOD

The method of achieving the desired objective is straightforward in concept.

Data are generated with an accurately prespecified value of magnitude-squared

coherence, l 2 which is independent of frequency, f. Since the data

66
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have been generated so that the magnitude-squared coherence is independent of

frequency, the sample mean and variance of '•f2 can be empirically deter-

mined for the given overlap by averaging over frequency. These data can then

be reprocessed at several different overlaps to form estimates of bias and I
variance.

V. A. 1. Data Generation

Consider the zero-mean, wide-sense stationary, Gaussian waveforms

n (t) and n2 (t) that are statistically independent and have power spectral

density functions (,P (f) and 4(bn(f), respectively. Statistical independence

dictates that they be uncorrelated; that is,

Rnn2()=E nlt)nIt+? =0 . (5.1) (

In order to generate two processes with magnitude-squared coherence

33
independent of frequency, let (Nuttall and Carter31

x(t) =r (t) + Gnlt) (5.2)

and

y(t) = (2 (t) + Gn(t) (5.3)

2 11
Ft

The cross-correlation of x(t) and ylt) Is '

R(r) E nf1 (t) + Gn2(t (t + r) + Gn (t+ r) (5.4)

e." 414N2
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Expanding, dropping terms that go to zero, and taking the Fourier transform of

Eq. (5.4) yields

•x(f) = GOnln(f) + C4~n (f) .(5.5)

xy nPl fn 2I

The autocorrelation of x(t) is

Rxx(r)=E 1[nl(t)+Gn2 (t)] [nl(t+T)+Gn2 (t+r)]1 . (5.6)

Expanding, dropping terms that go to zero, and taking the Fourier transform of

Eq. (5.6) yields

2
0 (f) + G n f) (5.71)xxf 4)n 1 nI2

Similarly,

0yy(f)= On f)+G2 (f) • (5.8)

2 2

Thus, the magnitude-squared coherence between x(t) and y(t) is

2 y r(f) f=G d (5f9)

11.~) G ( ~2I412 (f)+G (n11

"Now introducing the assumption that M, (f) = '2(f) = (f)
On nf Din nn2 2
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2 2 2_17~4 xyf)2 4G•(f)= 4G2
(f)G2) nnG 2  (5.10)

which is Independent of frequency.

In order to prespecify a desired magnitude-squared coherence, I 7 d 12

between x(t) and y(t) , the gain G of Eqs. (5.2) and (5.3) must be selected

by solving Eq. (5. 10):

G -
0 11(.2

d 0I II 0 d

0 Y7d 12=0.0

Under the assumptions made, a prespecified desired value for magnitude-

squared coherence can be generated. Because the generated processes will

later be used to empirically determine a very smi11 quantity (bias),it is

important that the generated value of coherence is indeed the desired value. In the

actual generation of two processes, the assumption 4n~n(f) = 4nn(I) may be

violated; therefore it becomes important to determine how sensitive Eq. (5.10) is

to this assumption. Consider then

= 1+ a(f)= 1 . (5.12)

n n(f)
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It is easily shown' by substituting Eq.(5. 12) into Eq. (5.9) that the value

of magnitude-squared coherence generated, 19t2, Is

31+

yg 2 Yd 2+A 12[d (5.13)

where 7 d deired value of I2 and the dependence of f is dropped

for convenience.

The error in the generated value isV÷

IA2  2

Evaluation of Eq. (5.14) to third order in 4 yields

g 1 I'y I'y 1 'd (I-Al(5.15)

This quantity is maximum at I = 2 and, hence, the maximum error is

approximately

Max error A) 2 (1-). (5.16)

Therefore, for example, when A = 0.01, the maximum error is approx-

-6irnately 6 x 10 ; for A = 0.05, the maximum error is approximately

1.5 x 10- 4 (A table of .arrors versus t das computed from
d•

Lcq. (5. 14), --ields results similar to the given approximations.)
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The processes generated according to Eqs. (5.2) and (5.3) have been

shown to be relatively insensitive to minor differences in the power spectral

density functions of the original uncorrelated waveforms n (t) and n2 (t).
12

The procedure for generating variable-coherence time series can briefly

be summarized as follows: One Gaussian noise source uncorrelated from

point to point was used to generate a tine-limited sample function of n (t) and,

later, of n2(t) . (This method eliminates the need for two identical filters.)

The waveforms were band-limited using a low-pass filter and digitized. The

digital data were then stored on magnetic tape in a format compatible with over-

lapped processing. Digital versions of x(t) = nI(t) + Gn 2 (t) and y(t) = n2 (t)

+ Gn 1 (t) were generated from digital versions of n1 (t) and n2 (t) for two

values of xy I (Investigation for other values of true magnitude--squared

coherence appeared to be unnecessary.)

A Hewlett Packard Noise Generator, Model No. HP3722A, was used for

data generation with the following settings:

Sequence Length: Infinite

Bandwidth: 5 kHz

Gaussian rms: 0. 6 x 3.16 volts (open circuit).

The output power density function is flat to within ± 0.3 dB, provided the

input power voltage fluctuates no more than + 10 percent. This corresponds

to a A, in Eq. (5.12), of 7.152 x 10-2 and a maximum error in the generated

magnitude-squared coherence, from Eq. (5. 16), of 3 x 10-4. For example, if

'.d 1 = 0.5000 one could expect 0.5004 > Ig > 0.4996, making it
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impossible to measure extremely small bias.

The data were low-pass filtered through a two-section Krohn-hite filter,

which was 6 dB down at 1200 Hz and rolling off at 96 dB per octave. These

band-limited data were A/D converted with a Control Data Corporation (CDC)

15-bit converter. Sampling was done at f = 4096 Hz.
5!

V.A. 2. Analysis Program

The FORTRAN program (coded by G. C. Carter, C. R. Arnold, and

J. F. Ferrie, of NUSC)(1) implements Eq. (3. 11); (2) generates data with known

coherence from two incoherent sources according to Section V. A. 1; and (3) corn-

putes the sample mean, bias, and variance of the estimator, as described below.

A summary flowchart of the program is presented in Fig. 27. The cosine

weighting function was coded by A. H. Nuttall, of NUSC. Singleton 32 oded

the mixed radix FFT. The FFT size used was 4096 dicta points (1 see), which

yields 2048 positive frequencies and direct current. Frequencies beyond 1000 Hz

were discounted in making estimates of bias and variance to protect against

(1) unknown noise in the digitizing system and (2) difference in the two auto

power spectral density functions.

Estimates of the bias are performed according to

F 1000/ 2 1  
2Biap =, ly (fk 2 _I"Y, , (5.17)

1000 kJ-I

and estimates of the sample variance according to
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"10 2

Var = -' -Bias (5.18)
999 k=l

Results of the experiment are described in the next section.

V. B. RESULTS

Results of the experiment for a Joint set of data, each (32 x 4096) sampleb

long, are included in tabular and graphic form. Confidence bands for the

estinmates of bias can be determined from the estimates of variance. However,

it must be realized that 1000 samples (frequencies) were used to determine the

average, and that each sample is correlated tothe extent of approximately 0.5 with

neighboring estimates (empirical results). This agrees with analytical results
114

provided for auto spectral estimates. 14

It is apparent from the results (Tables 6 and 7 and Figs. 28 through 31)

that the bias and variance of ) l 1y2 can be reduced through the use of over-

lapped processing. For example, when I 2 = - . 0 , the variance of the

estimator with 50-perce t overlap equals 31 percent of the variance of the

estimator with 0-percent overlap. With 50-percent overlap, the bias is 55 per-

cent as large as with0-percent overlap. Similarly, when I~y 12 = 0.3 , the

variance is 53 percent of the 0-percent overlap estimator, and the bias is

50 percent as large. It also can be 'jeen from the results that 62.5-percent

overlap is similar to having processed twice as much data with 0-percent over-

lap. There is one possible exception: The bias for Ih ^ 2 = 0.3 is 36 percent

as large as the 0-percent overlap estimator. This is better than 50 percent,
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TABLE 6

EMPIRICAL RESULTS FOR hIy2 = 0.0 AND n = 32

Percent No. FFTs Bias Variance

0.0 32 .3156 x 10-1 .9463 x 10-3

12.5 36 .2834 x 10-1 .7130 x 10-3

25.0 42 .2370 x 10-1 .5197 x 10-3

37.5 50 .2043 x 10-1 .4069 x 10-3

50.0 63 .1749 x 10-1 .2929 x 10-3

62.5 83 .1582 x 10-1 .2480 x 10-3
75.0 125 .1571 x 10-1 .2463 x 10-3

TABLE 7

EMPIRICAL RESULTS FOR 1,y 2 =0.3 AND n = 32

PercentPierlap No. FFTs Bias Variance

0.0 32 1.442 x 10- 2  .8007 x 10-2

12.5 36 1.093 x 10-2 .7770 x 10-2

25.0 42 .959 x 10- 2  .5965 x 10-2

37.5 50 .717 x 10- 2  .5067 x 10-2

50.0 63 .597 x 10- 2  .4441 x 10-2

62.5 83 .515 x 10- 2  .4063 x 10-2

75.0 125 .494 x 10-2 .4020 x 10-2
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which would be expected from twice as much data.

Quite naturally, there is an increase in computational cost associated with

overlapped processing. Specifically, the number of FFTs to be performed

(a measure of the computational cost) increases with the percent overlap spec-

ified (Fig. 32). The number of FFTs required for 50-percent overlap is ap-

proximately twice the number for 0-percent overlap.

Increasing the overlap from 50 percent to 62.5 percent, requires 32-per.-

cent more FFTs, but the variance of the estimator becomes only 80-95 percent

of its value at 50-percent overlap. In most cases, the improvement to be

derived from using 62.5-percent overlap, as opposed to 50-percent overlap,

will not warrant the increased computational costs, and should be used only

when stringent variance and bias reduction requirements are demanded.

9,,

9;!
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VI. CONCLUSIONS

A detailed analytical analysis of the statistics for estimating the magnitude-.

squared coherence function (spectrum) has been made. When such estimates

are made, time-limited sample functions of long duration, which are stationary

(in the wide sense) over the period of observation, must be available. Expres-

sions for the probability density, the cumulative distribution, and the Wias and

V2'III
variance of *f have been presented for the case where no overlap procegs-

irn Is used. Evaluation of these expressions, which are dependent on both the

true value of coherence and the number of observed segments, n, dramatically

portrays the requirement that n be large.

The application of a cosine-weighting functl:ia in order to redt:4e errors due

to sidelobe leakage wastes the available dam. As shown empirically, proper

use of the data in terms of reduced bias and variance of the estirn.ator can be

achieved through overlapped processing. It appears that a 62. 5-percent over-

lap is roughly equivalent to having twice as much data available. The reduced

bias and variance of the estimator achieved through 62.5-percent overlapped

processing can be realized almost entirely through a 50-percent overlap. The

computational cost associated with 50-percent overlap is not unreasonable.

With 50-percent overlap, variance and bias reductions are achieved that are

similar to reductions resulting from processing twice as much data with 0-percent

overlap. This significant gain to be obtained from 50-percent overlap processing

82



83

should not be overlooked in estimating the magnitude-squared coherence function

(spectrum) when cosine (Hanning) weighting is used and data are limited.

I



APPENDIX A

STATISTICS OF
MAGNITUDE- COHERENCE ESTIMATOR

Goodman, in his Eqs. (4.51) and (4. 60 derived an analytical expression

for the probability density function of the coherence estimate, ^ .1 His

results are based on two zero-mean processes that are stationary, Gaussian.

and random and are segmented into n independent observations (that is,

n nonoverlapped segments). Each segment is assumed perfectly windowed,

as defined in Chapter IT. The probability that the estimite of

coherence would take on some value, , conditioned on the true coherence

being equal to 1 ' I and upon n independent observations, was given by

Goodman as

nn-

rn (n) r (n - i)

, ar • f 7j 2(A. 1)

k-=o r 2 (k+ 1)

where r(n) is the Gamma function, namely,
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(n) e x dx and r(n)-(n- ) r(n-1).

2 24

00

This probability density function is also given by Hannan. However, this

form of the density function is rather cumbersome. A work by Enochson and

9
Goodman suggests that it may be written in terms of the hypergeometric function.

It is first necessary to observe, from Abramowitz and Stegun, 26 that2 k) 121 -1 2
OD 1,2(n+k)(.I2I2 k

2Fl(n,n;l; J1 21 2 12  . (A.2)
r (n) k=o F (k + 1) k

Further, when k is an integer,

k.= r(k+1) . (A.3)

26(See, for example, Abramowitz and Stegun. ) Thus, Eq. (A. 1) is

)2(r n ) r(n )
pCOl' ' n r= 2 • (n k- 1, y1 2n 11 ̂ ' / 12n kn

" r n (0(A.4)

or, more simply, substituting Eq. (A. 2) into (A. 4) ,

(i1 _ 1 12( n (1-;_Jl2) I 2)n-2p( 1 1 )= 2 1 -7 (n- 1)

*2 F, (, n;l • (A. 5)
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This form of the density function, Eq. (A. 5), is more favorable than the form

in Eq. (A. 1) because the hypergeometric function is well documented.

The mth moment of magnitude coherence can be shown, as in Eq. (4.13),

to be

pl (l'•mln, Jy1)= (1_ 1 7 1 2)n r (n)r I 2+ 1)

r (n +M2

3F2 L +1, n, n; Ln +n,1 1;J- 2). (A. 6)

Exact expressions for the bias and variance follow directly in a manner

parallel to that in part IV. C.

It is instructive to show the relation between the biases of estimates of the

magnitude coherence and the magnitude-squared coherence. Define the biases

as follows:

B,~ ~l-y (A.?7)

and

B2 E .(A. 8)

Because the variance of Ij I must be nonnegative,

E 1 2.I1

(
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Using Eqs. (A. 7) and (A. 8) yiei('•z

Thus,

B2 ' I+ 2B (A. 11)

For example, conrsilde- the case -' 1.0. Now B=0.0, B2 =0.0,

and Eq. (A. 11) hold with qoiality. Consider also -y j = 0.0 . Then

E( 'YjIn, yI=0.0) = (A.12)
r (n + 1/2)

26

Using Eq. (6.1.47) cf Abramowitz and Stegun, Eq. (A. 12) yields for larg-,: n

E (1911a, I vI=o0.o 0) (3/2) = - F /n(A. 13)

For ITIY 1 2 o, Eq. (4.21) gives

B2=- , Iy1=0.0. (A.14)
n

Thus, the inequality holds and Eq. (A. 11) becomes

-> 1-1 ,f=0.o . (A. 15)
n 4 n



APPENDIX B

DERIVATION OF A SIMPLIFIED EXPRESSION
FOR THE EXPECTATION OF THE

ESTIMATE OF MAGNITUDE-
SQUARED COHERENCE

The major steps in deriving a simplified expression for E $J. 21 n, I - 1)

are presented here.

According to Eq. (4.26),

(1 _ Y 2) n.
In,Y2= 3F2 2, n,(n; n+ 1;- I (B. 1)

n

which can be manipulated into the form

E (1^12 n1 -Y I) (, J.Y12 )n CO (n) k(k+ l) 1-i 2k

n, - .(B. 2)
k=0 (n + k) k

Adding and subtracting n from the numerator term in Eq. (B. 2) yields

L-- 0kk k--O (k +n) k!

Recognizing that 3)

1 (n) k-- ) = - (B.4)

k+n n(n+ k
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it follows that

E(I~2InII2)(lnII2\ (n)k(b)k nI1 )

ki k
o, • ,1-nkn

"k= (B.5)k=0O (n + 1)k k!

Ak

In terms of F functions, Eq. (B. 5) becomes

E(1^ 12 In,~ 1 =( 7 2) [Fn b; b;f17 2)

+'--- 2 F1 nsr.nf;n+l; K?' 2 (B.6)
n

By using Eq. (15. 1.8) of Abramowitz and Stegun, 26 Eq. (B. 6) reduces to

- n-n

1 2F1 n;n+ 17 2 (B. 7)
n

Simplifying and applying Eq. (15.3.3) of Abramowitz and Stegun, 26 Eq. (B. 7)

can be further reduced to

* ( n)(

(B.8)

"\~
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Finally, by applying Eq. (15.2.6) of Abramowitz and Stegun, with a = 1,

b =1, and c = n + 1, Eq. (B. 8) can be manipulated into the form

A12 2) 1 n-1 22
E (92 n,I112 =-+---- - I 1; n+2; 12 . (B.9)n n + 1 2F

AW!

'I|
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