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FOREWORD

This is the final report on the Strategic Reentry Technology Program
Phase II (STREET-AII), A two-layer model of high-speed two~ and three-
dimensional turbulent boundary layers with pressure gradient and surface
mass injection is presented.

A complete description of the turbulent boundary layer computer program,
including a program listing, is available in a separate AVCO/SAMSO document.
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A ABSTRACT

A two-layer model of the three-dimensional compressible turbulent boundary
layer is developed which is applicable to flows with preszure gradient and sur-
face mass transfer, The model is based on the small cross-flow approximation in
which the spreading metric is determined by the inviscid streamline pattern. A
modified Mangler transformation is employed which permits transformation of the
boundary layer equations to a two-dimensional form without transforming the
turbulent streses or heat flux. It turns out that the computational speed of the
method is rapid enough to enable equaticns for the inviscid stxeam deflection to
be coupled with the present method for calculations of strong (supercritical)
interactions, such as in the region downstream of the critical point in re-
attaching flows or in regions of strong blowing.

e ke

Solution of the inner (wall) layer for the velocity and enthalpy is ob-
tained using mixing length theory and the thin layer Couette model. This solu-
tion is obtai~ed without using a compressibility transformation and leads to a
generalized law of the wall with mass injection. The stress and heat flux in
the inner layer are found by inserting the law of the wall into the full conserva-
tion equations and integrating away from the surface. In the outer wake layer,
an integral moment method is used along with appropriate matching conditions
with the inner laysr. This veport shows that the dynamics of the turbulent
boundary layer depends on the coupling and interaction of the inner and outer
Nt - layers. In fact, the model is really designed to bring out the nature of this
inner and outer layer interaction.
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Several solutions.and 3xpurimental comparisons are presented. In particular,

»thé efféct of positive and negative pressure gradients on the relative scale of
the inner and outer layers is demonstrated as well as the effect on the stagna-

" tion enthalpy-velocity reletionship. Results are presented for relaxing flows
where C; and (2Cy/C¢) initially are far from their equilibrium values. Solutions
for boundary layers far out of fluid dynamic equilibrium such as flow over an
abrupt expansion g¢ad flow over a wavy wall are also glven.
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The theory is compared with a number of experiments for both uniform and
discontinuous distributions of surface mass injection, Solutions have been ob-
tained for values of M = pgvy/pet. as large as 0.05, which is well into the
range of massive blowing. Results are also presented for ablation and trans-
piration cooling where the injection distribution is determined by an energy
balance along the surface.
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TASK 4.3

A TWO-LAYER MODEL OF HIGH SPEED TWO- AND THREE-DIMENSIONAL
TURBULENT BOUNDARY LAYERS WITH PRESSURE GRADIENT AND
SURFACE »ASS INJECTION.

1.0 INYRODUCTION

Accurate prediction of turbulent boundary layers about reentry bodies is of
critical importance in calculating wall friction and heat transfer, observables
(initial conditions for near wake calculations), communication (guidance, and
telemetry), and reentry aerodynamics in general. Recently, interest in maneuver-
ing and lifting reentry vehicles has placed added emphasis on developing methods
for predicting three-dimensional turbulent boundary layers over bodies at angle
of attack and for predicting turbulent boundary layer separation and reattachment.
Separation occurring on control surfaces and on the leeward side of bodies at
angle of attack are problems of much interest, but are flows for which current
theories are either incomplete or inadequate. For example, the wake-like model
of turbulent separation and reattachmentl has yet to be cxtended to three-
dimensional flows, and the model itself is incapable of treating the important
region downstresrm of the criticzl point in two-dimensional reattaching flows.

The objecrive of thi- task is to produce a method which will yield wall
conditions and boundary layer profiles sufficiently accurate for subsequent
calculations of electron concentration through a three-dimensional turbulent
boundary layer. The work is aimed at computing flow fields around arbitrary
bodies at angle of azttack, with particular emphasis on calculating boundary layers
in strong positive and negative pressure gradients with surface mass injection.

Entropy layer svallowing in regions downstream of a blunted nose is also being
considered.

A two-layer model has been devnloped for this purpose in which an analyti-
cal solution for the inner layer, based on a compressible law of the wall, is
matched with a moment integral method In the outer layer. Solut.on of the inner
layer is obtained without the use of a compressibility transformation. In the
outer layer the explicit appearance of the density is removed from the convection
terms in the conservatics cquations without transforming the turbulent stress
and heat flu:..

The model is based on th>» tacit assumption that the inner and outer layers

" can be treated distinctly, but that as the flow proceeds downstream the two

layers are free to interact with one another. In fact, the model is intended to
bring out the nature of this inner and outer layer interaction. The relative
scale of the inner and outer layers (location of the match point V) is computed
as an integral property of the flow, similar to the calculation of the momentum
thickness and dispiacement thickness, and depends on the upstream history of the
layer. At separation, for example, which now can be predicted by the model if
the pressure distribution is prescribed, f& - 0 ,ym/8 0 and (u/u,) = 0so
that the boundary layer is dominated by the outer layer (or uominatednby the
"wake component' in the terminology of Coles2).. One of the unique features
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of the model is that the stability of the system of ordinary differential equa-
tions can be used to establish upper and lower bounds on the turbulent production

integral,frdu in the outer layer. Stable solutions up to Mach 10 for a wide
range of wall to free stream temperature ratios show that compressibility has

little effect on the properly normalized lateral stress profiles, confirming the
results of Maise and McDorald.3

The computational speed of the method is sufficiently rapid that the whole
boundary layer flow field on bodies at angle of attack can be calculated (except,
of course, the leeward side at large angles of attack). It also appears that

the computational speed is rapid enough to permit calculations of supercritical
boundary layer-inviscid stream inveractionms.

The model is based on the small cross-flow approximation in which the
boundary layer equations are solved along inviscid streamlines. In this coor-
dinate system the cross-flow component of velezity in the layer is uncoupled
from the streamwise momentum and energy equations and can be ignored as long as
the approximation is valid. For flow around bodies at angle of attack, inviscid
streamline patterns and the spreading metric are computed by integrating the
inviscid momentum equation normal to inviscid streamlines on the body using
either axperimental or calculated inviscid pressure distributions.4

o
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2.0 TURBULENT DOUNDARY LAYER MODEL

B Sy
e AT

T At

2.1 EQUATIONS OF MOTION AND COORDINATE SYSTEMS

e bt

If the boundary layer equations are written following inviscid streamlines
and the cross flow in the boundary layer normal to the local inviscid stream-
line direction can be assumed small, the mean flow equations are

an AL,

: R
z T?(pur)i- —ay (pVe) =0 W
f o~ O o dp, dr
Y ——— ~—— 2 e —— (2)
| PRI TP SR T "oy
%
" oH aH 3 -
_— > . L (3)
pu F +pv F (q+ur)

o pp g e ag

where ¢(X’) is the spreading metric determined by the inviscid flow streamline
geometry., Here, because the cross-flow component of velocity is assumed small,
the uncoupled cross-flow momentum equation is ignored and it is further assumed

, that the additional contributions to turbulent stress and heat flux resulting
from fluctuations in the cross flow velocity are likewise small.

Thus,
v —
r = — -
i L= pu’v . (4)
and
. dh 5
- —_—— - v
q 7 P (5)

Clearly, for a body at large angle of attack these stress and heat flux
models will break down in a region on the leeward side because strong cross
flows with additional contributions to the Reynolds stress would have to be in-
cluded along with interaction with the outer flow.

The explicit appearance of the spreading metric in the equations of motion
can be eliminated by means of a modified Mangler transformation. Although it
turns out that r (¥ ) later appears in a constant of integration in the compressi-
ble law of the wall, the transformation is convenient since it is possible to
remove r from the continuity equation without transforming the stress or heat
flux. Letting

riz) dX and dy = _r:x)_ dy

dx =

(6)




with

~ ~ Uy dr
R { "

Eqs. (1) through (3) bescome

d(pu) R d(pv)

e 0
dx dy (8)
du du dpe dr
_ — . - _ 9
pu dx toev d dx * dy
JH JdH d (q +ur)
pu -3;— + pv ay 3y q (10)

where r and q are still defined by Eqs. (4) and (5). Solution of the inner layer
is obtained directly using Eqs. (8) - (10) without further transformation of the
coordinates to remove the explicit appearance of the density. The reason for
this is twofold. First, within the framework of the present model for the inner
layer an analytic solution can be obtained without introducing a compressibility
transformation. Thus, no useful simplification would be provided by such a
trancformation. Second, Maise and McDonald3 have shown that a compressibility
transformation leads to generally poor results for the turbulent stress distri-
butions across the boundary layer even for constant pressure, adiabatic flows.
They also showed poor correlation of experimental velocity profiles using the
transformation for constant pressure flows with heat transfer. More recently,
Lewis, EE*.El'S attempted to generalize Coles' transformation but they also found
significant deviation between experimental velocity profiles and profiles pre=-
dicted using the transformation, especially in the wall layer. They showed that
the discrepancy between profiles increased with increasing Mach number so that
for flow on a flat plate at Mach 6, for example, a difference of 20 percent in
velocity profiles can be expected. Although not all of this discrepancy should
be attributed to the transformation, there appears to be little justification

for using it in the wall layer, particularly in flows with heat transfer and
pressure gradient.

In the outer wake-like layer, however, where we use an integral moment
methed, a simple compressibility transformation is used to remove the explicit
appearance of the density from Eqs. (8) through (10). This can be accomplished
without transforming the stress and heat flux by letting

8, 0 (11)
dX = dx, dY & — —— dy
8, Py
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so that Eqs. (8) through (10) become

B du  9v

Ok w0 (13)
3 ¥ duy a

3 4] U e o dr

b U — V = =

¥ ax T 9y WHI U 33 8. pp OY (14)
)

4 p o . oM 19 *

ax * ey T oy \1tas Y 15)
; Here r and q are still the physical stress and heat flux defined by Eqs. (4) and
ke (5). Eqs. (13) through (15) are used to develop the integral moment equations
3 for the outer layer.

g N With the equations of motion and proper coordinate systems developed for the

4 inner and outer layers, we now proceed to the turbulence model used in the two-
ik layer model.

2 g 2.2 TURBULENCE MODEL

3 In order to develop a scheme for integrating Eqs. (1) through (3), or their

B transformed counterparts Eqs. (8) through (10), it is necessary to have some

%y knowledge either of the relationships betweenr, q and the mean flow quantities

3 ps u H (provided such relationships exist) or have additional independent

: differential equations for r and q. Several model equationsb,7 for the stress

b and heat flux based on the latter approach have been developed recently and,
hopefully, these will provide new insight into the way the stress and heat flux
respond to changes in boundary conditions as the flow proceeds downstream. To
date, however, all these approaches using differential equations for r andq

have had to invoke assumptions for closure of the unknown correlation functions
whichk are either pure hypothesis or whose physical basis has only been demonstrated
in incompressible flows. At moderate Mach numbers, however, say up to Me = 7

there is considerable experimental evidence that the turbulent boundary layer may
be divided into an inner wall layer and an outer wake layer, as in incompressible
flow, In the wall layer the properly normalized experimental velocity and enthalpy
profiles have been shown to be functions of the local wall stress, heat flux and
injection rate and except for the streamwise variations of these quantities are

g g
ST A

Ry

bapie

k. more or less independent of the upstream history of the layer.8,9 This is pre-
3 cisely the result predicted by nixing length theory and the thin layer, Couette
3 model, which leads to a compressible law of the wall and a Crocco integral for

the inner layer. For flows with surface mass injection Danberg and Squire have
shown that this same model accurately predicts the velocity distribution in the




3
3

T

Gopia iy

i
T 3

23

AT Y850

g A B
Resl 42 e

et R

“ e S by 4

AT IES

.‘ﬂu &

v R T St et s Tk b g S SR L= T AR R G

wall layer. 1In fact, the experimental evidence for the Van Driestl0 form of the
law of the wall for M = 0 and the Squire form of this law for M# 0 is now so
strong that the model equations for the turbulent stress either "reduce" to this
law near the wall or are matched to it.

In this paper a first approximation for the velocity and enthalpy profiles
in the inner layer is used in which the lamipnar sublayer and tis:asition layer is
neglected and the flow is assumed to be fully turbulent to the wall., Maise and
McDonald have shown that in this region the mixing length varies linearly away
from the surface, i.e. f =K¥ with K = 0.40, for Mach numbers up to about five.
Thus, with the additional assumption that Pr, = 1 in the first approximation,
the stress and heat flux in the inner layer are

r = pK2Y2(9%/97)2 (16)
= p k252 3T/ ) (9n/dY) a7

The error incurred in computing integral properties such as ¢ and the wall

stress by neglecting the sublayer is small, except, perhaps, in very strong nega-
tive pressure gradients. Second approximation profiles are subsequently com-
puted which include the laminar contribution to the total stress and are not
restricted to Pr, = lor Py =1, -

Even for flows in positive or negative pressure gradients there is consider-
able experimental evidence that the law of the wall gives an accurate represen-
tation of the velocity profile over some distance’;;'n1 away from the surface. If
we accept the generalized law of the wall as being applicable to flows with sur-
face mass injection and pressure gradient, the remaining questions to be answered
insofar as the inner layer is concerned are (a) the determination of the lateral
stress and heat flux profiles, which are required for matching with the outer
layer, and (b) calculation of the distance from the surface ¥y at which the
velocity profile departs from the law of the wall, Following Coles'2 suggestion
for incompressible flows, the stress and heat flux profiles are found by insert-
ing the wall law into the full momentum and energy equations and integrating
these equations away from the surface. In this way the stress and heat flux
in the inner layrr depend on the past history of the layer as well as on local
properties, and are unhooked from a purely local determination through mixing
length and the local velocity gradient.

The determination of the length scale ¥, results from & consideration of
the matching or interaction of the inner and outer layers. Thus, attention is
turned to the outer layer where the evaluation of the stress and heat flux is
much more questionable. Bradshaw concluded, from his measurements in relaxing
incompressible boundary layers, that the stress in the outer layer depends on
the whole history of the layer and cannot be found from local mean flow proper-
ties as in equilibrium layers. Thus, according to Bradshaw and others, the use
of an eddy viscosity or mixing length theory in the outer layer of rapidly ad-
justing flows must be held suspect because for these flows there is no simple
relationship between the turbulent stress and mean velocity gradient. If this
is the case, then the relative scale of the inner and outer layers,sa,, likewise
cannot be determined from the local velocity gradient, as is usually assumed
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in corventional finite difference methods,l1,12 for example, but must be found
from the whole history of the fiow. In the present theory we have attempted to
avoid using a simple local relation for determining?a,. By taking a higher
noment of the momentum equation,?ﬂn is found as one of the integral properties
of flow.

In the present two-layer model it turns out that a relation for the stress
along the match point ¥ is required along with a relation for the "production"
integral in the outer layer

ﬁr/rm) du

The stress along the match point is evaluated using an eddy viscosity normalized
by the constant density displacement thickness, as was suggested by the calcula-
tions of Maise and McDonald. Thus along Y,

'm = Pm @ (980T (18)
where

¢’=Fue

5 , F = constant (19)
Thus, while the evaluation of 7 is subject to some of the objections of "local-
ness", the location of the match point ¥ wherer ~is evaluated depends on the
upstream history of the layer.

Because the turbulent bourdary layer has been divided into two more or less
distinct layers which are free to interact with one another, the present model
might be expected to reveal certain consequences of this inner and outer layer
interaction that are not quite so apparent in other models. Indeed, this turns
out to be true because the two-layer model provides upper and lower bounds on
the magnitude of the turbulent production integral over the outer layer. If
estimates for this integral are made which are too small or too large, integra-
tions of the system of equations downstream develop instabilities where n-+0
for the former and n + ~ for the latter. Thus, we find that the production inte-
gral over the outer layer cannot be assumed negligibly small nor can it be evalu-
ated using a constant eddy viscosity across the outer layer, as was suggested
by Clauser.l3 Both assumptions give unstable solutionms, although the Clauser
assumption is stable for Mach numbers below about 2.5,

Thus we find that the stability of the system of equations, which reflects
on the stability of the interaction between the inner and outer layers, provides
a means nf evaluating the production integral over thsz outer layer. This is a
most useful and important result because the production integral contains the
iufluence of turbulent intermittency at the boundary layer edge and the effects
of long-time stress '"memory"” of large eddies in flows which are far from equili-
brium. By evaluating the production integral as though the density were con-
stant across the outer layer and by using a cubic variaticn of ¢ between ¥y and

3; with ¢ +0 at the outer edge, stable solutions have been obtained up to Mach 10




for wall to free stream stagnation temperature ratios between 0.05 and 1.0.
These results for the bounds on the production integral and the assumptions used
to produce stable solutions verify to some extent the results of Maise and
McDonald who showed that compressibility has little effect on the lateral stress
profiles (when normalized b%the wall stress) up to about Mach 5. A cubic

(3

variation of ¢ for Yo < ¥ < is also consistent with the ¢ variations inferred
by Maise and McDonald3 and Bradshaw.l4

e
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3,0 SOLUTION OF INNER LAYER AND MATCHING CONDITIONS

Experiments In compressible turbulent boundary layers with moderate pressure
gradients and surface mass injection have shown that even at hypersonic speeds there
is an inner (wall) layer in which velocity and temperature gradients normal to
the surface are so large that terms involving x derivatives in the conservation
equations are generally negligible. The lateral extent of this inner layer Y
at any given point ¥ is determined by previous history of the layer and by
local conditions such as magnitude and sign of the preecure gradient or strength
of injection., In large positive pressure gradients or with large blowing the
extent of the inner layer may become vanishingly small, while in negative pres-
sure gradients ?; may approach the edge of the layer.

With mixing length theory used to determine the stress and heat flux, and
a thin layer Couette model of the flow near the wall, a generalized law of the
wall for the velocity and enthalpy with surface mass injection is obtained.
These velocity and enthalpy rrofiles are then inserted back into the full
continuity, momentum and energy equations, which are integrated away from the
surface to give the stress, heat flux and mass flux at the outer edge of the
inner layer. This operation "unhooks" the stress and heat flux from purely local
quantities such as the velocity and enthalpy gradients. The velocity, enthalpy,
stress, heat flux and mass flux at the edge of the wall layer can be obtained
analytically, and these expressions, along with certain auxiliary relations for
normal and streamwise darivatives of the velocity and enthalpy, are used for
matching with the integral method in the outer layer. One of the key features
of the present two layer model is that the integral equations in the outer
layer ultimately determine the lateral extent of the wall layer (or in Coles'
terminology the strength of the wake component); it is not specified implicity
in advance in terms of the eddy viscosity or mixing length variation as in
virtually all other methods.

With the possible exception of boundary layers in very strong pressure
gradients we assume that a wall layer exists in which { = K7 and the velocity
and enthalpy profiles are closely approximated by a Couettn flow model. Neglect-
ing the laminar sublayer (in the first approximation) and setting Pr, = 1, the
equations for the stress and heat flux obtained by integrating the momentum and
energy equations away from the surface are

r(y)-r‘.+pwkunpxy -é? (20)
P ~ aﬁ') dh )
=q. ~T ¢ ¥ (H- 2¥2 (.
q(y) = qy =W #(y) + py Ve (H~Hy) = p Ky 7\ (21)

Dividing the second equation by the first and integrating the result gives a
Crocco integral, which is always valid in the inner layer, independent of pres-
sure gradient or surface mass injection.

HH, = 1+B®&/%) (22)
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or !
b/ = 1+ B(B/3) - A% (V/%))2 S (23)
where )
A? - (me/(1+m)] (H,/H,) : ' o - (24)
i
B = [2m/(1+my)) (H/Hy) (5t/Cp) . ' (23)

Substituting for p=p, (hy/h) in the expression for r(y) , defining Ms pw Vo / Pe Ve
and integrating from the edge of the laminar sublayer to any point ¥*s=7Vu./y,
with €= u/u » gives

’

i ' . !

¢ 1/2 —
I d¢ - (1+me)_H.1 .-é- A : b 1

H ~y }
1/2 e :
b /)y + Mol , s '
which can be written, after changing the limits of integration
3 i ! F
d ) -~ - . \
(hy, /b))~ 172 ] ¢ = = T B
o [(h/hy) (Cp + MO ’ oo
where B is the empirical "constant" : ) \
] [l
€, : ' .
5 Voo s -1/2 ) .. 4§ t : ;
B = - < fn v, + (hy /8, ) 7 !
o [(h/hy) (Cp + MO ! y

Whereas in incompressible flow B25, the experiments of Danberg and Squire at |
supersonic speeds have demonstrated that B 1s a function of M and Hy/H, , which
can be approximated by the curve fits*: ! . Ty

0<M, < 35: B/Byag = 1 - 0.6x103 M (¥,/3.5)3* Lo

B0 .
M, > 35 : B/Byng = 1~ 06x103M
1 t
with '
M,>5: Byag = 5 +8(1-Hy/H,), :
' |
HW L‘c .
. B l = =}l !
Me<3: Byz0 = 5+ 8 H, 5 . . 1 H ‘
1)
i 1 |
— ]
‘A lmt-:c exesepolation of B data presented in Danberg was used for Ho/H, 0. 5 Profile data is desperately needed -'i
to vetisy {or =udify) the values of B (and values of @, Section 6.0) that are indicated for highly cooled walls. §

-10- ‘ ' -




H

Defining* '

& = (B-B2 +442) /04, C; = (B + B2+ 442)/242
!
§

C3 = /M, k% = (Cr-C1)/(Cy + 62), sin @ w (Cy- £)/(Cy - ¢;)

i 1
and since ta §* = tayt + n L/
the .compressible law of the wall becomes
he/hy 12

' 1
~2 ||, (0,00~ F (B, k)] = o fn [(C;)2 Re, )
v A%Mcy v cp | ¢ K t y

- 1 L -
: . + == ~—~ + B (26)
. H K r
) |
where
! [} l
. 0 '
i a6 . : v
F(6,k) = Jr . .
. 1/2
! . 0 (1 - %2 sin2 6) / (27)
] 1
' + - n1/2
yt = ytx,./vw A(C¢?) Re, (28)
(3y-1)
1 - ——
Ps Po % H, (1+0) 2(y-1)
Rey;n! — — (l+me) e ¥
Po \! Ho H, ) (29)
P . _
For M=0,k =0and the elliptic int;egrals F(0,k) reduce to arcsin functions, and
the law of the wall is given by the Van Driest '"generalized" velocity

distributip_n.lo Evaluating the law of the wall at y, gives the velocity ratio
(u/ue) = U along the match point. Actually, what we require for matching with
the oufer layér is the streamwise derivative .of (u/v,) , which is found by
* differentiating the law of the wall. "

! !

With the velocity pro'file given by the law of the wail and the enthalpy
profile given hy the Crocco int:e(gral in the inner layer, exact expressions for
the stress and heat flux at y, can be obtainéd by integrating the momentum
and energy equations away from the surface, i.e.,

; ! ! i

*Fot lage blowing, sin? 0 and k2 are redefined, i.e. k2 % (Cy +C;)/(C; - C;) and sin? 8 m (C, ~ £)/(c, +Cy) 50
that kz is always less than one. )
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- where the integrals in these expressions are evaluated using Eqs. (23) and (26).
i For example, if

Ym Ym u

! u u u m

3 hh = P &y end Jo = P — - — | dy
. 0 Pw Ve A Py Ve \ Y Ye

then

n Ik

(30)

e

ot
5T AN

MR T R s

., Py e
G e

Y

0

i explaf ()]

M 1/2
p/2 —
(b/h,, 1+ S 3

which can be integrated repeatedly by parts if

a = K(u./u,),

Z = exp [af(§)]
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jj = & forJy, j; = E(E-Ty) for Jp

to give

g (&) 1 4 { s .
[B(E)dz = explaf(6)] ! g(§) - L) + 216 Y T (32)

1
where—~0(3fl/2) < <1, By approximating h/k, ® hp/h, in f(£) and g(§) and

a

M M =

(l oy f)': (1 b Um> in f(£) the above secries truncates with the term 0(a~l)
f f

for j, , and 0(a=2) for J, so that¥

[ 1 | Y% Ym Mo \1/2
1 = - | —} —— 1+ — Uy (33)
/by K\ % | (b /b)) G
u [ _\12 2 M
I A N N Y R A I ()
Y | (hy/hy) t k2 \ f
] ¢t . 0

The expressions for J; and J, are the key results for the evaluation of the
stress, heat flux and mass flux in the inner layer. With J; and j, given by
Eqs. (33) and (34) the evaluation of rp, and (q +ur )m is straightforward
(although somewhat lengthy) and the results are given in Appendix 1.

Solution of wall layer for the velocity, enthalpy, stress and heat flux has
been obtained analytically in terms of the given wall and edge conditions
(M, Hy/H, and M ); three "parameters" (y , C; and St ), and two empirical
"constants" (K and B). By matching this inner solution with an integral moment
method for the outer layer the three "parameters"y, , C; and St are determined.
In addition to u/u,,H/H, , r and q, du/dy and dH/dy are also matched. These
expressions are given in Appendix 1 along with certain other auxiliary expres-
sions (such as dU,/dx, dH,/dx, etc.) required for the matching.

*These approximations yield identical results for the leading tetm of the series as the exact expressions for f and g,
and ate uscd here merely to simplify the task of differentinting J,.
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4,0 MOMENT INTEGRAL METHOD FOR OUTER LAYER

In order to determine the relative scale of the inner and outer layers, y,,
and the quantities r, and q, , which are related to the quantities of interest,
namely C; and St, in the equations given in Apperdix 1, a moment integral method
is used in the outer layer. In this layer independent two-parameter families of
profiles are chosen for u and H. The "free" parameters of the profiles are
determined implicitly by matching with relations obtained for the inner layer
(law of the wall and Crocco integral) for u-and H and che lateral and streamwise
derivatives of these quantities along the unknown match pointyln . The profiles
selected are power-laws of the form

U=U/M, =1-a-T)(-7", a>0 (35)

H=HH, =1-0-H)1-7)", a>0 (36)

so that very "full" profiles without overshoot are possible with n,m>>1 . In
order ror a Crocco integral to exist in the outer layer m must equal a but in
general this will not be true, In fact, in terms of the more conventional

definitions
2m, St (37)
: Cy = —qg/(Hy~H,) p v, = (1+m,)(1-H,/H,)
5 e
’ E'f a 2rw/pe ue2 = 2Cf (38)

it is easy to show, using Eq. (A 1~2) and the definition of B that a Crocco
integral (m=n) exists in the outer layer only when the Reynolds analogy holds,
i.e., when CHs:e‘/z .

In the above profile families
n = (Y-Ym)/8 (39)

where § is the thickness of the outer layer in the transformed coordinate

y
Y-Y e ?
- - — d s
_'m o Po y (40;
Ym

Because the momentum and energy equations are satisified exactly in the inner
layer using the law of the wall (Eqs. (Al-5) and Al-6) ), no new information
would be obtained by integrating the conservation equations and vei..lty woment
across the inner layer. The momentum integral, first velocity moment and energy

integral for the outer layer are obtained by integrating the transforned con-
servation equations from Y =Y, to Y = Y, +4.

-15=
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Momentum Integral - Quter Layer

dﬁ "'()’+1)
m- dn dé 2(y=-1) -
=54 Pyt gt /e em) YT Ly gy 6D
1 dm 8 dMe s,
-.(l-ﬁm) —_— =T = (El—ls-lz)— — - / r
Po Up dx M, dx \ Uez a0, m
First Velocity Moment - Outer Layer /
- ~(y+1)
dUp dn a8 2 (y-1)
Y T 2
TOAy g * 0L S 4 I 1o+ (p/py) (14 my) + M(1-T,2)
/ . Y
- 1 dm 8 e (‘;2)
- Q-0 —— —] = (2E)-Lk-2L)— —°
( i )(po Ue dx (2F2~% 3) M, dx
.0 _
-2 2 m (Uy + a))
Ue” 2, p,
Energy Integral - Quter Layer
dUp, da aé dH, dm
-883 iz + 884 — 4 34 —d—; + 881 +882 K
=(y+1)
2(y-1) - - 1 dm
+(pg/po)(14mg) “ VT M (i~Hy) - (1-Hy) - (43)
o Ue x
E 8 dMC 1 ‘e U
4 M, dx Po Ue He/ " Po 85 He nom

where the integral functions Aj,Bj, E; andI; are given in Appendix 2, The
equations for m/pU, and the normalized strees and heat flux aty, , obtained
from the inner layer, are given in Appendix 1. The term involving the integral

of rhe turbulent stress across the outer layer in the velocity moment (the
turbulent production) is

-16-




1
r au
a, = ' '_m —;— dg (44)
0

According to the work of Maise and McDonald, there is virtual’; no effect of
compressibility on the normalized otress distrvibution, r/r , across the turbu-

lent boundary layer. Thus, we can evaluate 7/r, as though the density is con-
stant, 1i,e,,

. e\ (8U/ay)
( )(a‘ﬁ/an),, (45)

m

o
Since ¢ - 0 at the edge of the layer, the lateral variation of ¢ in the outer
layer can be approximated by

N (46)

where, according to measurements by Bradshaw and the analysis of data for super-
sonic layers by Maise and McDonald, o has a value around 2 or 3. On the basis of
stability of solutions over a wide range of Mach numbers we tentatively select
the value w =3. (See discussion in Sections 2 and 8.)

Finally, a relation for r_ is obtained in terms of the eddy viscosity and
velocity gradient at the matcﬁlng point y, . Following the suggestion of Herring
and Mellor and the results of Maise and McDonald, the length scale for the eddy
viscosity is the constant density displacement thickness

%
8i. = [ (1~ u/u,l,) d;'.’ (47)
(]
and
@ = Fu, 3;', F =~ 0.018. (48)

Then, since
m * Pa‘m (aﬁ'/a‘;‘)m

and(8?76?3m ifr known from the solution of the inner layer, the normalized
stress along y 1is given by

-17-~




(y+1)

2 ~ 30 F.(5*/8)a%n
———\ @ = (n/p)? (14me)” . -
Ue® 2e po (A, + m, (Fy~T,%)) (49)

With the three integral equations for the outer layer, the above equation
forr, , and the matching relations from the inner layer, the system of ordinary
differential equations can be integrated downstream. Since the solution of the
inner layer involves three "parameters" (Cp St and yp), and the unknown in the
outer layer is &, these four quantities must be specified at the initial station
in order to form all other quantities (n, m, etc) .and all the initial streamwise

derivatives.

~18-




5,0 INITIAL CONDITIONS AND INTEGRAL THICKNESS

Instead of having to specify y, and & along with C; and St at the initial
station ¥=0, it is more convenient to specify 6 and §, , the momentum thickness
and thickness of the layer. From the equations for J1 and Jo in the inner layer
and the integral functions in the outer layer one obtains the following:

y+1

< 2(y~-1

§ 8 = Ym + (pg/pg)(1 +m,) =1 ((1+m)Ej-m 1518 (50)
Um (1- I.Jm) Ym cfl/z Ym -
N 0 = + QUy -1 By - 2/KDCy B2
v (by /By ) Kby /b2 " 77° m (51)
b : y+1
2(y-1)
r é + (po/ps)(l +me) Y [Il - 12]8
', Uy Ct 12 Ym Bo
< 8 = | 1- ] oy b ——
o (by/h,) K (b, /b,) 1/2 (52)

y+1

2(y-1
‘3 + (py/pg) (1 +m,) =1 ((1+m)Ej-m Ih-] 18
3 _
3 & = yu(1=Tp) + (Crhy /b )2 (v B /K) (33)
E y+1
e P 2y <1
1 f[2) e m TP Mamd By Ep - metly~1918
Ps
; Also,
B = (M), &= (/L)F, 0. (/)T (54)

By specifyingC; , Cy» 8. and ¢ at the initial station, the above expressions and

matching conditions are used to calculate the remaining unknowns: y, 2Ups8,m,
Ny, H Y and B,
m
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6.0 FINAL VELOCITY AND ENTHALPY PROFILES

Since at hypersonic speeds the peak boundary layer temperature can occur

well within the wall layer, accurate velocity and enthalpy profiles near the
wall are required,

In order to avoid the logarithmic singularity at the surface

given by the law of 'the wall, the laminar sublayer and transition layer are in-
cluded in the determination of final profiles (as well as arbitrary laminar and

turbulent Prandtl numbers) so that W= 0 at 7=0.
cluding the laminar contribution to the total stress and heat flux in the
expressions for r(7 ) and q(7)in the wall layer and by using the Van Driest
variation for the dimensionless mixing length ¢ , i.e.,

® = K7 [1-exp(=F*/a)]
where
oy, a) =T, 0/v,.

This is accomplished by in-

(55)

(56)

For adiabatic flows with M = 0, a is a constant and equals the incompressible

value a = 25,

For cold walls_and M # 0 the experimental velocity profiles of

Danberg and Squire show that B decreases with increasing injection and indicate

large variations in «a.
is discussed below.

Introducing the normalized wall layer variables

~
ut =

/8, ht= h/h,, T o= ?x'r‘;/v‘,

+

the differential equations for ¥% and h* obtained from the equations for the

total stress and heat flux become

o2 [ 4% dut ~ .~
— | — + h? - = 1+ (V, /) ut
h+ d"'i- dy+
o ~ /~
¢2 du-\fdn* h*  dht (vg /uy) He
h* Pr, dy*J\dy* P, dyt Hy ‘
m p. H v, ut
e e ‘e ~ w ~ e H
- Ce |1+ vt o+ (v, /0) | — ~1
l+m, Py Hy 'Kr voor Hy,

with boundary conditions, ¥ =0 : %" = 0 ;1"

=lo

The determination of a from these experimental profiles

(57)

(58)

The differential equations for W™ and h* need only be solved at selected
points in the flow field where accurate profiles near the wall, including the

sublayer, are required.

Since both boundary conlitions for the two first order

equations are known at the wall, the solution does not require iteration and is

=21~
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performed as an auxiliary calculation in the downstream integration of the two-
layer equations,

The asymptotic integral of the equation forW* for 7*>>1 is

Rord's

u
f 4 C e . (59)
AR UNEALTSIES K

which, for a given value of a and solution of the differential equations for ¥+
andh*, can be solved for B. By iterating on an assumed value of a and matching
the computed B with the experimental values reported by Danberg and Squire the

variation of a with Hy/H, and M for various Mach numbers was obtained. (See
Figure 1.)

EXPERIMENTAL B FROM: M, Hy/H, ay s0
|

STEVENSON © 25

1.8 { 25
0 SQUIRE: {35 1 25 7] .
65 Q76 3l ,

08

vlo o0s

N
04+ \‘1& _
M.-s.s.u,/u..os.‘f;\

02— < | |
My* G-S.H\/H.aoys-_Tk Mg *35,H /Hel ‘
1 | :
00 Ol 91‘2 a3 |
Vo | 2(Ha/Hg)14m,) 2 e ) |
i Gy ( PeY ,

Figure 1 @ VARIATION WITH M,, H, v,y OBTAINED FROM
EXPERIMENTAL VALUESOF B
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Eqs. (57) and (58) determine ¥* and h* as functions of 7* in the inner

layer, i.e., 0 <¥* < Y} . The profiles of ¥/4,, h/h, and H/H, as functions
of ¥ are found from

T/% =T Uy gyl V2

e (60)
Wh, = h* (hy/h,) 61
HMH, = (1+m)~! [(h/h) + m, (F/82) 2

where

-1
(3y-) l+o
Ps\ [fo2% - H
7oy —>< ) M(14mg 20D <_) (cpy/?2
Po ] \ Ko Hy (63)

In the outer layer Tx'/?x'e = U and H/H, = H are calculated using Eqs. (35) and
(36) and (h/he) is computed from Eq. (62). The distance Y is found from Eq. (11).

y+1 n
~ Po L
~ 2( -1
Y =V *+ <—Ps> (T+m) y=1 <_r>8 / (h/hy) dg (64)

0
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7.0 COMPUTER RESULTS AND EXPERIMENTAL COMPARLSONS

7.1 Results for Zero Injection

By specifying initial values for %, 9, E% and Cy, and also the unit
stagnation Reynolds number, where if p~77

yp+l
2(y-1)

o
Po 2o te = (ue/ve) [ (ps/Po) Mg (14 m¢)

ff Eqs. (23), (26), (50), (51), (a 1-1) and A 1 2} are solved simultaneously to

give all the necessary starting conditions, A set of nine nonlinear differential
equations is then integrated to give the solution downstream of the initial

k: etation, These differential equations are the momentum, first moment and energy
b equations for the outer layer, the equation for fm from the _inner layer, and

- equations obtained by differentiating the relations for U,, Hp, m, n and B with

2 respect to x. The method used to solve the system, which is linear when solving
s for the derivatives, uses Gauss eliminaction with partial pivoting, with an
iterative routine to improve the solution,15 A comparison of this method of
solving systems of linear equations with other techniques is given in Reference

] l16.

For zero pressure gradient, nonadiabatic flows the average computing time
on an _IBM 360-75 machine is about 15 seconds for Rey to increase by a factor
of 102, Tals is approximately the computing tim2 required by finite differ-
ence methods to calculate a single station.ll As of the date of completion
of this report, computer runs have been made for adiabatic and cold walls
(0,05 < Hy/H, < 1) up to Mach 10, relaxing flows where C; and/or C are far
from their equilibrium values initially, boundary layers in strong positive and
negative pressure gradients and flows with a varying spreading metric. Compari-
sons have been made with several of the ex?eriments for incompressible flows
‘i reported at the AFOSR-Stanford conferencel/ and results for Ei, 0 and §+/¢ com~
A pare quite well with most of these experiments. For example, Figure 2 shows a
comparison with one of the more interesting experiments -- the relaxing flow
from a positive pressure gradient reported by Bradshaw and Ferriss. Momentum
balance considerations show that the first experimental value for (atx = 4.4 ft.)
is probably too small. If the initial ¢ had been taken to be about 0.475 in, the
N theoretical curve would have just about passed through the five values of ¢
measured farther downstream.

e
St et (s

PEYSY

Figure 3 shows that Eqs. (57) and (58) yield quite accurate results for the
P velocity profile in the wall layer with surface mass injection, provided that

o emprical values of the additive constant P are available. These regults show
that not only is the linear law of the wall, (Eq. (59)), still in evidence with
- blowing but that the value of y+* where the profile deviates from a linear law
can be represented reasonably well, Here f(ut) is the integral on the left hand
A side of Eq. (59).

The variation of the equilibrium flat plate E; with Rey and M, is compared
with several experiments in Figures 4 and 5. These results (with the exception
of the experiments by Lee, et. al.) are for adiabatic flow, however, the theory
predicts a relatively weak effect of wall cooling on skin friction. At Mach 6

% -25-
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and Reyg =104, for example, E%rforlﬂw/ﬂe = 0,05 is only about 15 percent greater
than the adiabatic value of C¢. At these same conditions the Reynolds number
based on 4* for a cold wall is about one-third the value for an adiabatic wall.
I : .
Figure 6 demonstrates the existence of an equilibriun Cj variation with Rey

. and ghe approach to¢ this equilibfium variation if the initial E} is too large or

too small, A similar typé of relaxation for the heat transkfer and total enthalpy
profile is shown in Figure 7. For these solutions the initial C; was set equal
jto the equilibrlum value but the initial value ‘of the Reynolds analogy parameter

.ch/E; was set at values other than one. This resulted in an initial H versus

u profile which was nonlinear in the outer layer. The solutions shown in Figure
7 demonstrate the relaXation of the Reynolds analogy parameter back to one, and
rélaxation of an initially pertutbed H versus u profile back to a linear Crocco
integral for the whole layer. (See schematic inserts of profiles in Figure 7.)
Relaxing flows, of thls ;sort have been measured on wind tunmnel walls downstream
of tpe nozzle throat. ! )

Figuré 8 shows results for E?, 91 Up, and the Reynolds analogy parameter
for a boundary layer in a region where dp/dx: > 0 followed by a region where
dp/dx < 0L The edge Mach number decreases from 2.6 to 1.3 over the first 50
inches and then increases to 2.6 again at x = 100 inches., In each case the
results are compared with a splution for M, = constant = 2.6, In the region of
positive pressure gradient the wall layer thickness decreases but then increases
as dp/dx < 0. This behavior is reflected in the variation of ﬁﬁ, which shows
that fiedr x = 100 inches most of the velocity variation acrass the boundary layer
occurs in che wall layer. [hus, the two-layer model is seen to predict the kind
of behavior hypothesized by Coles? in his paper on the law of the wake,

] ! -

‘Figures 9 and 10 show comparisons of the theory with datal8,19 for two-dimen-
sional flows in negatiye pressure gradients at initial Mach numbers of 1.5 and 3.9,
respectively, while Figure 1l.shows a comparison with the method of Bradshaw for
alflow in zeto pressure gradient at Mach 3, followed by a region of strong
adverse pressure gradient. Both methods predict that the flow separates, i.e.,
Ei - 0. For the two-layer model the solution was stopped when C; decreased to
2 x 1077 at' x = 67,8 cm. In this region Uy » 0 and the layer was composed
almostlentirely of the outer layer, again demonstrating the kind of behavior
predicted by Coles.

]

Comparison with data obtainéd by Lewis20 for boundery layers in an initially
positive followed by a negative pressure gradient are shown in Figures 12 and 13.
In the "strong" pressure gradient case, the Mach number varied from 4 to 2.57 to
4,17 over a distance of about 34 inches. In the "moderate" pressure gradient
case the Mach number varied from 4 'to 3.2 to 3.8, The experiments were performed
with :a outer hollow cylinder and an inner axisymmetric pressure generating body.
The boundary layer data was taken on the inside surface of the outer cylinder in
order to eliminate effects produced by longitudinal curvature, The curves for
0* and ¢ are ccmpared with predicted variations for zero pressure gradient in
both Figures 12 and 13, The local decrease in 3* in the region of strong posi-
'tive pressure gradient (Figure 12)' demonstrates the supercritical behavior of
turtulent bouniary layers at high Mach numbers. TFigure 14 sliows the predicted
shln fric:ion variations for the two cases. Despite the relatively large peak
pressure atio of about 8 in the strong pressure gradient case, the theory pre-
odicts th. t the skin frictigp coefficient is reduced by only about 50 percent
from the local flat plate C;.
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Figure 15 shows several solutions (various initial values of C; ) for the
experiments ccnducted by McLafferty and Barber,21 which were performed on a two-
dimensional curved compression ramp., The Mach number decreased from 3 to 1.8 in
a distrnce of 3 inches, and the boundary layer was tripped upstream of the ramp
by normal injection. Thus, E& initially was probably slightly less than the
equilibrium value of 1,8 x 10~ -3, Figure 15 shows that for an initial E} = 1,75 %
10-3 the flow remains attached (McLafferty and Barber reported that the flow did
not separate) but for an initial Ct = 1.5 x 10~3 the flow separates at x = 2,73
inches. In the latter case the strong pressure gradient did not permit relaxa-
tion back to the equilibrium Eﬁ so that flow separation on the ramp could have
been produced if the injection upstream of the ramp had been stronger.

Comparison of the theory with data taker on an axisymmetric curved compres-
sion ramp is shown in Figures 16 and 17. In this case the Mach number decreased
from 5,75 to 2, 6 and the spreading metric increased by a factor of 1.7. Figure
17 shows that Cf actually increases slightly due to the metric-effect (the two-
dimensional results show only a 40 percent decrease in Cj at the trailing edge)
and the layer does not even come close to separating. Both theory and experiment
show a substantial increase in the wall heating (Figure 17).

Comparisons with data on a waisted body of revolution at M, = 1.4 and 2.4
are shown in Figures 18 and 19 which indicate large effects produced by the
spreading metric, particularly on the momentum thickness variations.

Figure 20 shows some results for relaxing flows produced by taking a given
initial turbulent boundary layer profile and letting it relax downstream over
conical bodies with different cone angles. These solutions illustrate, for
example, the behavior downstream of a sphere-~cone junction. The solution for
B = 90 degrees is representative of the flow over the windward side of a
sphere-cone at large angle of attack, i.e., the effective cone angle § = §.+a
is 90 degrees, where 6. is the cone half angle. The solutions were all obtained
for a boundary layer initially in equilibrium for a constant metric (flat plate
or eylinder), with 8 /ty = 0.1, Thus, the solution for 8 = 0 degrees remains
in equilibrium for ¥ > §' The results for B > 0 degrees all show that the
momentum thickness grows more slowly withX than if B = 0, while the skin fric—
tion coefficient increases with increasing B at a given point downstream of %Xj,.
In fact, for large B (see results for 8 = 90 degrees) the momentum thickness
actually decreases at the beginning of the relaxation, Far downstream the
curves for Rey (and also Cf) for B8 > 0 degrees all coalesce into a single

cﬁfve,.which is displaced from the f3 = 0° solution by a constant factor in
Rew_% AR Table I shows results obtained for the various values of B8 at

Reg = 3 x 10% from which it is evident that the boundary layers for 8> 0°
are virtually identical to the brundary layer for g8 = 0° if Rc(;_;')for

0
B > 0° is about twice the value of Reg 3 for g = 0°, This is a well known

result for flow over sharp counes and flat plates in equilibrium.24

Some results computed for a turbulent boundary layer around a sphere~cone
nosetip at @ = 0 and 20° angle of attack (windward side) are shown in Fig-
ures 2la, b, ¢. The solutions were performed by starting 15 degrees from the
stagnation point with a transition Rey = 200 and several values of Eﬂo.
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For these conditions the solutions became independent of the starting value of
Cf at about 35 degrees from the stagnation point. The solutions demonstrate the
relatively slow growth of 9 and 5e along the windward side at angle of attack.
Along the windward meridian E} increases by about 35 percent as a increases
from 0 to 20 degrees. Also, 2(41/Cfis less than one in both cases which is
characteristic of turbulent boundary layers in negative _pressure gradients.

(See Figures 7 and 8c.)

TABLE |

EFFECT OF CONE ANGLE FOR A GIVEN INITIAL PROFILE
(SOME RESUL1S AT EQUILIBRIUM FAR DOWNSTREAM OF INITIAL
STATION. Mg =2.6)

~

B ° Re (‘;'_‘;'o ) Cf Rea' Rc‘gt

0 | 3.81 x 107 1.314 x 1073 3.02 x 104 1.22 x 10°
15 | 8.35 x 107 1.323 x 10-3 3.04 x 104 1.22 x 10°
30 | 8.49 x 107 1.322 x 10-3 3.06 x 10% 1.23 x 10°
60 | 8.41 x 107 1.325 x 103 3.02 x 10% 1.22 x 105

90 8.45 x 107 1,324 x 10-3 3.03 x 104 1.22 x 10°

In Equilibrium, Boundary Layer on a Cone is Equivalent to that on a
Plate if Cone Reg™ 2.2 x Plate Re,

Figure 22 shows some results for Eﬁ as a function of Re, calculated for

relaxing flows at a_constant Mach number of 9.37. Several solutions with various
starting values of C; and 2(3{/Cf were performed to obtain a qualitative com-
parison with experiments performed by Laderman and Demetriades?3 in the boun-
dary layer on the wall of a wind tunnel, The various initial conditions were
used to try and ascertain the effect of the strong negative pressure gradient

at the nozzle throat on the downstream properties of the boundary layer. The
experimental profile data of Laderman and Demetriades was taken at a station

160 inches downstream of the nozzle throat and shows a nonlinear stagnation
enthalpy versus velocity profile characteristic of turbulent boundary layers on
wind tunnel walls. This nonlinear profile has been interpreted as evidence that
the layer is still in a state of relaxation produced by the strong negative
pressure gradient at the nozzle throat.

The theoretical solutions were started at an arbitrary value of Rey = 1.5 X

104 and were stopped when Re, reached the value 3.68 x 104, which is the value

measured by Laderman and Demetriades at the 160-inch station. The solutions
show that even over a streamwise distance of about 805 inches (corresponding to
the increase of Rey from 1.5 x 10% to 3.68 x 10% and a value of 0 = 0.29 in, at

-39~




Reyp = 3.68 x 104) the value of E; at the end of the runs is still dependent upon

the initial conditions of a and ZCH/gf . Thus, it appears likely that the data
of Laderman and Demetriades are for a layer relaxing to equilibrium and that
because the throat in their experiments was located at x ® 690 inches (Figure
22), their reported value of C; = 0.46 x 10-3 is probably larger than the equili-
brium flat plate E; at Reg = 3.68 x 104, Because the flow is still relaxing and

data was presented at only one streamwise station it is impossible to give a

B! precise comparison between experiment and theory. For example, it is nrussible

4 to match the experimental values of 6 = 0,29 iqL and 6* = 2.29 in. measured at
F. x = 160 inches with various pairs of values of G and 2¢y/C;  at the intital
station. One such pair: G, = 0.6 x 10-3 and (2Cy/Cg), = 0.76 resulted in the

L% values: C¢ = 0,37 x 10-3, 0 = 0.29 in,, & = 2.31 in., 3, = 5.53 in, at

Reg = 3.68 x 104, while the values measured by Laderman and Demetriades were
C; = 0.46 x 1073, 0 =.29 in., 6* = 2.29 ir., and §, = 6.01 inch. At these con-
ditions the theory predicted that wall layer extended out toy_ = 1.74 in. where
the values of u/u, .and H/H, were computed to be 0.794 and 0.7§§, respectively,
(The value of 2Cy/C; at Rey = 3.68 x 10% was 0.815). The profile data measured
by Laderman and Demetriades gave u/u, = 0.77 and H/H, = 0.74 at y = 1.74 in.
However, a valid comparison would require data to be obtained at two and prefer-
i ably three streamwise stations so that the relaxation process could be duplicated.
f As a matter of reference, f°£ the M = 9.37 results presented in Figure 22, 2
perturbation of the initial C¢ by 20 percent resulted in a perturbation of C; by
5.5 percent after a streamwise relaxation distance of 160 inches or an x/0, =
1.36 x 103, Consequently, it appears that virtually all data obtained on side-
walls_of wind tunnels contain upstream relaxation effects in Eﬂ as well as in
2Cy/Cy and some of these data may be far out of fluid dynamic equilibrium.
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In order to test the present turbulent boundary layer model In a highly
nonequilibrium flow situation, a solution was performed for flow over a wavy
wall, Experiments by Bertram, 55._35.26 for turbulent boundary layers over wavy
walls at Mach 6 have demonstrated significant surface pressure and heating vari-
ations (by as large a factor as 2) along a wave train. Maximum heating was
measured on the forward face of each wave while minimum heating was obtained on
the rearward faces. In order to compute the turbulent boundary layer develop-
ment over waves with wave length of the order of the boundary layer thickness,
the solution was obtained as a quasi boundary layer-inviscid flow interaction.
The boundary layer at the start of the wave train is in equilibrium (dp/dx = 0)
for M, = 3.6 and Reoo = 4,5 x 103, The equilibrium boundary layer profile at

5

B .
By S ISR A AR 1Y

k3
W

S

AL

these conditions was used as the initial condition for a rotational characteris-
tics calculation of the surface pressure distribution along the waves. The
turbulent boundary layer development over the waves was then computed using the
surface pressure distribution generated by the characteristics solution, Figure
23 shows the results obtained for a wave train with wave length equal to the
initial boundary layer thickness and wave amplitude equal to 0.004 times the
wave length. The notation max., min, along the x coordinate refers to the peaks
and troughs of the surface waves.

e oz
oA Y

ey <k

The response of the momentum thickness to the periodic surface pressure
variation (or edge Mach number variation shown in Figure 23) is characteristic
of supercritical layers, increasing when dp/dx is negative and decreasing when
dp/dx is positive, giving a periodic variation of ¢ withx. The results for &
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and §, are also periodic with roughly the gsame phase as ¢, As expected, the
heat flux is virtually in phase with the surface pressure with the average being
! : gomewhat higher than for a flat plate. However, the average skin friction

) coefficient is less than the flat plate value and the streamwise variation

3 revealsilocal minima in Cf just upstream of the points of’ both maximum and

P : minimum in surface pressure. This peculiar variation of Cf with x may be a

v result of the supercritical response of the layer.

}
The influence of the additive Fonstant B in the generalized compressible
! law of the wall on the turbulent boundary layer over a sharp 20° cone at
Mach 5.7 is:illustrated in Figure 24, A decrease in B, which could be the result

-k ) of an increase in surface roughness,lo produces an increase in the integral
J: i thickpesses 6, 6‘, and 8 , and an increase in Cf as well, Because the boundary
i . layer solutions shoyn in Figure 24 are in equilibrium for x 3 10 inches, with

! 2Cy/C; = 1, the Stanton number also increases with decreasing B. For rough
e walls
)’

:, , i . By = B - Au /vy, ) . |

Yél ; where B is the "constant" for smooth walls. For roughness densities of the order
& ) 4 to 10.

[.\ ] i

b 1 !

. * Aul 1 ‘

v e T !

T ] :

| ! i ! ' _

: iwhere y¢ 1s the roughness height, These expressions were used to relate ¥, to
B; for: the results shown in Figure 24, Evidently, a roughness height of 0.01¢

v inch produces an increase in LT by a factor of about 2.5 above the smooth wall

A value.

N '

b e

i ! Calculations showing the effect of a sudden expansion on turbulent boundary

!

¥, . layer ‘heating are compared with some measurements in Figures 25, 26, and 27,

N ] T The experiments were conducted at a frec stream Mach number of 5 in a hypersonic
& ] wind tunnel at the U.S, Naval Ordnance Laboratory. The measurements were per-

E ’ formed on a sharp 50 8 degree biconic model und:are reported in Reference 27.

) The results presented in Figures 25 through 27 are for three values of the free
stream unit Reynolds number. As indicated by the heat flux levels reported in
! Reference 27, the boundary layer was' fully turbulent over at least half of the
50 degree cpne for all three Reynolds numbers.

iz

e

'ﬁ : At the 50 and 8 degree cone junction both experiment and theory show a sud-

b Iden decrease in heating, howevetr, the data shows that for a certain distance
3 ‘after the expansidn the heating falls well below theoretical predictions. At
& the two highest values of ‘Réynolds number (Figures 25 and 26) the heating drops

B ! to about 30 percent of the theoretical prediction at the end of the expansion

A but after a certdin distance downstream (about 65 times the boundary layer thick-
3 ness 'before the expansion for the tase shown in Figure 26) it increases to about
3 ! 1the level predicted. At the lowest Reynolds number (Figure 27) the heating

*A continuous turbulent boundary Ipyes sdlution over the sudden cxpansion was obtained o, assuming that the complete

k- expagnsion from 0 = 50°(M = 1.15) w0 0 = 8°(M = 2.73) takes place over a steamwisc distance of 0.16 in. or about

Y i [ S local boundagy luyer thxckncsscs (8 = 0 032 in. nhead of the expansion).
)
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"drops suddenly at the expansion, as in the other two cases, but then continues
to decrease at a fairly rapid rate along the 8 degree cone. At the last data
point (¥/R = 1,93) the heating is only about 25 percent of that predicted by the
theory. Apparently, the decrease in heating across the expansion is controlled
by the pressure gradient for these cases because q/ql at the start of the &
degree cone is approximately the same for all three Reynolds numbers.,

The behavior of the heating data in these experiments suggests that the
turbulent boundary layer on the 50 degree cone partially or ‘even completely
relaminarlzed in the sudden expansion at the junction of the 50 and 8 degree
cones. The abrupt increase in q at some distance downstream of the expansion at
the two highest Reynolds numbers suggests a retransition of the laminarized
layer. Evidently, at the lowest Reynolds number retransition occurred downstream
of the last heating gage so that the flow remained laminarized for at least 90
boundary layer thicknesses (based on the layer thickness just upstream of the

. expansion).

. Several experiments 28,29 5n turbulent boundary layer laminarization in in-
conipressible flows have demonstrated that during a strong expansion the sidden
reduction of turbulence production in the wall 1ayer produces a departure of the
velocity profiles from the law of the wall, WhenW* is plotted against ¥+ the
profiles shift progressively upward away from the law of the wall as the flow
proceeds through a sufficiently strong expansion. Launder and Jones?8 have sug-
.gested t".at this upward shift in the velocity profile and the simultaneous in-
crease in the laminar sublayer thickness can be charactevized by an increase in
_the parameter e in the relation for the variation of mixing length through the
“ stblayer and transition layer, Eq. (55). As shown in Figure 3, an increase in a
produces an increase in the additive "constant" B in the law of the wall so that
one of the observed features of laminarization can be simulated by permitting B
to increase: with ¥ through an expansion. Figures 26 and 27 show results obtained
by lettlng B increase linearly with ¥ through the expansion (AX = 0.162 in.)

- from the initial value of 6.1 (for Hy /H, = 0.4) to selected values (52 = 18, 25
and 32) at the end of the expansion. Along the 8 degree cone following the
-expansion, B = Bz = constant., These results demonstrate that a decrease in heat-
ing below the. turbulent prediction is consistent with an increasing B (or _
increasing a) in the expansion. By modeling the variation of a rather thanB
through strong expansions, and by including the contribution of the laminar
,sublayer in the relations for mass, momentum and energy flux in the wall layer,
it should be possible to reproduce even more closely some of the features of
laminarization and retransition displayed by the data in Figures 25 through 27,

n7.2 Results for Uniform and Discontinuous Distributions of Surface Mass Injection

The predicted variation of Cf with Rey for various blowing rates in incom-
pressible flow is shown in Figure 28. The results show that at a given Rey, Cf
decreases steadily to zero as M increases. Values of Cf as low as 10-15 have
been computed for M = 0.05 and Reg = 105 so that with the two-layer model there
is ro evidence of an Emmons type singularity for massive blowing.

Although the experimental data for C { with surface mass injection is highly

scattered, Squire8 has attempted a best fit of data obtained by McQuaid30,
Jeromin3l and Squire8 at M. = 0, 2.5 and 3.5, which is compared with the theory
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in Figure 29. Following Squire and others, the Ckao ratio is plotted versus
the usual injection parameter' ZM/C% . Both the experiments and theory indicate

that the decrease in Cf at a given value of the blowing parameter is less severe
as the Mach increases.

One possible reason for the large scatter in C} data with blowing is shown
in Figure 30, where we have compared predictions with the data of Danberg? at
Mach 6.7. When plotted in the standard way, i.e., cx/c; versus 2M/Ct. , the
theory reveals a significant variation with the local Rey, which apparently has
not been accounted for in past presentations of data. The theory also predicts
a variation in the E&/Cf ratio with wall to free-stream stagnation enthalpy
ratio, as shown in Figure 30.

- The effect of surface mass injection on the form parameter H= 8 /0, where

5" and 6 are the displacement and momentum thicknesses in transformed, Howarth co-
ordinates is shown in Figure 31. The data extends over a Mach number range of 0
to 6.2, and was compiled by Fernandez and Zukoski32. Results of the two-layer
model were obtained for M, = 0 and are seen to agree quite well with the data up
to the largest value of M (0.013) for which there are measurements at M, = 0.

For M > 0.015 the theoretical curve diverges rapidly from the data, which, for
these large blowing rates was all obtained for M, = 2.5, Thus, it is not clear
whether the divergence of the curve from the data signals the failure of the two-
layer model for large blowing rates or a breakdown in the Howarth transformation
in collapsing all compressible profiles to a constant density form.

An increase in the physical §'/0 ratio with increasing blowing is predicted
at all Mach numbers. For example, Figure 32 shows a comparison of results at
Mach 6.7 with data obtained by Danbérg?, while Figures 33 and 34 show comparisons
with the streamwise variations of § and & measured by Jeromin3l at Mach 2.5 and
3.5, respectively.

Figure 35 gives a comparison of predicted momentum thickness variations with
the measurements of Martellucci33 for uniform injection through a 7.25-degree
half-angle cone at M, = 8, All solutions were started at¥= 8.4 inches, which
was the station at which injection began on the model. This station also corres-
ponded approximately to the point where boundary layer transition began in the
experiments, having evidently been tripped by the injection, while the end of
transition was located at about ¥ = 16.5 inches. Two solutions were performed
for M = 0, starting with 9' = 0.003 and 0.004 inch, to test whether the down-
stream a'variations would be strongly influenced by the initial conditions for
Cf, % and 8 » which were not measured at X = 8.4 inches and, therefore, had to
be assumed. 'The two solutions for M = 0 are seen to converge rapidly to a more
or less unique ¢ variation with¥ , indicating that the solutions have relaxed to
equilibrium for X > 25 iuches. It is assumed that the solutions for M # 0 have

also achieved equilibrium and are virtually independent of the starting conditions
for ¥ > 25 inches.

Figure 35 shows that forM = 0 and the two lowest injection rates the theory
predicts values of & well below the data, while for the two highest injection
rates the results are in good agreement., Since the measurements were all obtained

o~
! Examination of the equations fot the two-layer model (Appendix 1) shows thac the proper injection parameter is ZM/Cf.
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with the porous sintered steel
model, the wide disagreement be~
tween the experiments and theory
for M = 0 is apparently caused

by surface roughness (see, for
example, Figure 24). But as M
increases, producing larger
bourdary layer thicknesses com-
pared to the roughness height,
the influence of surface rough-
ness evidently disappears. These
results demonstrate that the
combined effects of mass injection
and surface roughness can be
important and will require
further study to produce reliable
boundary layer predictions,
especially for very cold walls
where effects of surface rough-
negs are magnified and where
there is little or no data on the
effect of Hg/He and M on the addi-~
tive constant B in the law of the
wall, It is also quite likely
that roughness effects are re-
sponsible for must of the scatter
in Cf and Cy data with surface
mass injection.

Solutions for discontinuous
blowing distributions in in-
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compressible flows are compared with some measurements by McQuaid30 and Simpson34

in Figures 36 and 37.

For the step decrease in blowing data on McQuaid, the solu-

tion was performed by constructing a continuous ramp function for M, which de-

creased from 3.4 x 10~3
momentum thickness.

to zero over a streamwise distance equal to the local
The initial abrupt increase in C shows that at the first

station the theoretical solution is out of equilibrium, with Cf being below the

theoretical equilibrium value.

Cf then reaches the equilbrium value and then de-

creases with x to the point where the injection stops.

A continuous ramp function was used to increase M from zero to 0.002 over
a gtreamwise distance equal to the local ¢ in the solution given in Figure 37.
The solid curves show the behavior of the solution for M = 0.002 downstream of
x s 37.5 inches, while the dashed curves show the behavior if the blowing had

remained equal to zero.

Velocity profiles with surface mass injection (see Section 6.0) are compared

with jncompressible data of McQuaid30
at Me = 3,5 in Figure 39.

Jeromin31

in Figure 38 and with data obtained by
In both cases a , which is determined by

matching B computed from Eq. (59) with the empirical relations for B given in

Section 3.0, decreases steadily with increasing M (see Figure 1).
, depending on Hy/He and M, ,
that the laminar sublayer vanishes.

sufficiently large value of M

At some
a » 0, which implies

For incompressible flow a vanishes at

M= 0.0l so that in order to maintain a = 0 for M = 0.01 B would have to increase

with increasingM.

-50-

This conjectured behavior of B for large blowing is just
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opposite to the variation of B with M which was established from the data of
Squire and Danberg for small blowing at supersonic speeds.

As M increases above 0.01, the velocity profiles obtained using the law of
the wall in the inner layer, rather than Egs. (57) and (58), become highly in-
flected, with most of velocity increase taking place in the outer part of the
boundary layer. This behavior was also found in the analyses of turbulent
boundary layers with massive blowing in References 35 and 36 and in the experi-
ments reported in Reference 32,

7.2.1 Ablation and Transpiration Cooling: Solutions for Flows with the Mass
Injection Distribution Determined by an Energy Balance at the Surface

A crucial feature of flows with ablation or transpiration cooling is the
interaction mechanism between the rate at which gas is sublimated or evaporated
into the boundary layer and the heat flux which reaches the solid or liquid
surface. In this situation the mass injection rate is determined by a local
energy balance at the surface and the blowing parameter M becomes an additional
dependent variable in the system of simultaneous differential equations,

I1f H; is the effective heat of ablation or evaporation, which includes the
heat capacity, i.e., Hj = Hy+ G AT , where H, is heat of sublimation or
evaporation, then

(65)

~F
9w = Py Vw Hi

For negligible gas radiation and negligible conduction in the liquid or solid,
¢y, is the convective heat flux. Combining Eqs. (37} and (65) gives

M = Ho/H; (1 - Hy/H) Cy (66)
From Eqs. (25) and (37)

Hy/H,

Cy= ———— B (67)
H™ 0-H/m)

C¢

Substituting Eq. (67) into (66) and differentiating with respect to the stream-
wise distance x gives (assuming H; is independent of x)

aM  Hy dB dC¢
— e — (G — — (68)
& H [ i

By using Eq. (66) as an additional initial condition, and by adding Eq. (68) to
the system of simultaneous differential equations, the coupled "feedback" problem
of the effect of blowing on the heat flux can be computed as part of the down-
stream integration scheme. The use of Eq. (68) obviates having to perform
lengthy iterations for the proper matched boundary conditions on M and Cy at

each point along the surface so that the computing time is about the same as if
M is a specifi.. function of ¥ .

=53




Figure 40 shows some results computed with the coupled energy balance at the
surface for a 0.25~inch radius spherical nose at hypersonic flow conditions. The
stagnation pressure behind the normal shock is 40 atm, the free-stream stagnation
enthalpy is 2,600 Btu/lb and the wall temperature is 1000° R, resulting in
Hy/H. = 0. 092. At these conditions, y = 1.23 and ¢ = 0.5 for equilibrium air.
The Mach number distribution around the sphere was computed assuming isentropic
flow and a static pressure distribution given by

Plpe, = 0.77 cos2 6 + 0.23

The solutions were all started at 10 degrees from the stagnation point using

more or less arbitrary initial conditions for 4 3;, Ce,Cye Solutions ob-
tained using different sets of initial conditions gave results for Cf and Cy

that were virtually independent of the initial conditions for angles greater

than 25 degrees from the stagnation point. Figure 40 shows the effect of the
parameter Ho/Hi on distributions of the blowing parameter M and the nondimensional
heat flux. As the parameter H./H; increases the rate at which material is ablated
or evaporated into the boundary layer increases, resulting in a net decrease in
the heat flux which reaches the gas~solid or gas-liquid interface.

| I [ b I

Ry0.251, £ g/, *10% ,py, 240 atn, —

0.04p—~ 80

He 2,600 B1u/Ib.,H,,/H, #0.092

0

0 0.2 0.4 0.6 0.8 [Re) 1.2 1.4
82-3404 X/Ry

Figure 40 BLOWING AND HEATING DISTRIBUTIONS AROUND
A SPHERICAL NOSE WITH COUPLED ENERGY
BALANCE AT THE SURFACE
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8.0 CONCLUDING REMARKS : v

All results reported in this report have been obtained By evaluating the
turbulent production integral over the outer layer using a cubic variation of ¢
between y, and §, (w= 3 in Eq. (46)). Stable solutions, in the sense that the
power-law exponent n in the outer layer velocity profile remains bounded, have
been obtained for negative and positive pressure gradients, with cold and
adiabatic walls, up to Mach 10, It is really quite remarkable that the evalua-
tion of the production integral with a simple cubic variation of ¢ produces
stable solutions for such : wide range of flow. conditions. For incompressible
flow in zero pressure gradient, for example, a constant value of the production
integral a, equal to 0.18 gives a downstream solution of the type n+ «, while a
value ¢, = 0.09 gives a solution in which n - 0. Moreover, these instabilities
occur after a streamwise distance of only about 10 boundary layer thicknesses,
Despite this rather sensitive dependence of the streamwise variation of n on the
magnitude of a , the values of Cf along the integral curves differ by less than !
one percent for a, = 0.18 and a, = 0,09. Clearly, then, the stability of the
interaction between the inner and outer layers is much more sensitive to the
level of turbulence production in the outer layer than is the streamwise develop-
ment of the layer as a whole. In other words, as long as 2 way of calculating
a, can be found which keeps the inner-outer layer interaction stable (n finite),
the results for C <), 7 (X), etc. should be within a few percent of the results
of all other stable solutions obtained with slightly different methods of cal-

' culatinga, + This is true whether a, is computed using eddy viscosity or other,
more sophisticated, stress models,

K

Solutions for boundary layers in strong expansions have exhibited instabili
ties of the type n -+ = for @ = 3 so that the cubic variation of ¢/ ¢, obviously
cannot be considered "universal." Because for this type of instability (n- o)
a,, and hence w, must be decreased to produce stable solutions, a quadratic or |
even linear variation of ¢/¢, across the outer layer may be required. An
example of the unstable behavior in a strong negative pressure gradient is shown
in Figure 41. The calculations were performed for a flow in which the inviscid
Mach number increases linearly from 1.5 to 4.5 over a streamwise distance equal
to 660 times the initial boundary layer thickness. &olutions were performed for
w=1, 2 and 3, starting with an initial boundary layer in equilibrium for zero
pressure gradient at Rey = 104, As indicated in the figure, n grows to 103 for
w=3 and 2 at x/§, = 390 and 430, respectively. Both solutions are unstdble

with n increasing exponentially at these values of x . The solution for'a = 1 1is
stable throughout the expansion, with n = 27.6 at the end of the rum. ! Despite
the wide difference in the stability characteristics of the solutions, Figure 41
shows that the maximum difference in Cf along the integral curves for the three
values of w is only about 4 percent. A stable solution is found by lowering the
value of o (decreasing a,) from 3 to 1 but the effect of this operation on the
boundary layer solution is practically negligible. Consequently, it appears

that the two-layer model can provide quantitative results for the streamwise \
variation of the turbulence production in the outer layer simply on the basis of
the stability of the inner—outer layer interaction, Solutions obtained using
finite difference methods and prescribed lateral variations of mixing

length or eddy viscosity have also shown that the overall boundary layer develop-
ment is rather insensitive to assumed levels of intermittency at the outer edge.
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Hewever, tt‘les;e methods are incapable of providing 'much insight into the inner-
they, are presently formulated.

iouter, layer interaction, at least as
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APPENDIX 1

MATCHING CONDITIONS

In addition to the law of the wall for Uy and the Crocco integral for
H,/H,» matching relations for (du/dy )y and (JdH/dy) , are required to determine
the exponents n and m of the power-law profiles in the outer layer. These are
given below along with the expressions for r,, (g +ur ), and m the mass flux
in the inner layer. These expressions are applicable to a boundary layer

growing into a rotational (variable entropy but constant stagnation temperature)
inviscid flow,

From continuity of (du/dy) at y,:

y+1
Po 2(y-1) -(hm/he)3/2 Lo 12 B, 172
B e — (i+a,) . (A 1-1)
(J .
P. Ka yll

From continuity of (dH/dy) at yn:

(H,/H,) Ba®n
m A ——

TR Hm A 1-2)
where

}'{m - (H'/He)(l +B'l-1m) , hm/he = ﬁm + m, (ﬁm"ﬁmz) (A 1-3)

N _\ 12
B = 1+ E;" Up (a 1-4)

Stress at y, (obtained by differentiating 5 and inserting results into
relation for r :

y > 1
2(y-~1) %
(Po/py) (1 +m) o Tm] T C¢ = \
Ue”™ 2 05
4T, d ¥ dcg dB dM (A 1-5)
eo1 + ag2

*G03 gp ot eudTyr A0 gy >

dM, d Ps -
+ agg = + agy Ie —;— + MU
0
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where

h By C¢V2 y, G, (B-242T,) T,M | 2raM ]
O T by /) (n /b 12 2 (i /gy ) 282 C; X2
By c(2 T, 2B, G
%2 (hm/hw)l/z K2
B3 Up ¥ NT, 2302 Ym 2y, NTy
.- 1 - + -
%03 20 R 2 2 B2 ¢ 2 X2
a =
04 2(hm/hw)3/2
B3 ﬁtnz Ym 2y Uy
a05 | o
2p°2 (hm/h‘)l/z cf1/2 K2
« ) Un _ Ym . 4Ct ¥ ﬁoz I— [ e
% % N, (1+m)(by/b) N, (1+m,) x2u, y-1) T+m)
= 172 - 72
Un Ym Bo (H,/H,)C¢ By=-1) m me (H./Hy) Uy,
- - +
KN, (1+m, ) (b /by | =1 (d+m)  (14m)?  (y/hy) '
Uy Y B (H./H,) C 1/2 P
agr =|- m ‘m Fo Henwf +(2/K2)nym'3°2 =
K (1 +m,) (hy/hy) Ps
B, H, /H, 172
Bs = X | Tvm
Heat flux at y, (from equation for q+ur)p):
! q + -—::——' ﬁ T, =
Po Ue He " Po 8o He il
U, dyn dCy dB dM (4 1-6)
i § By 212 o a4 3 Y I
dM, d Ps — :
. —_— ]+ a St + ajg MU,
i Ul S VAl P 18 19 MUn




e Doty
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p g endy s
N o A

vhere

a12

13

214

a1s

16

@17

218

219

By

B,

— 2— ——
P By 12y U, (B-2A2T) T, M

1- + +Bry, M
Po (b, /h,) /2 2 (b, /hy) 28,2 ¢ m

1-3y
+ (14m) 20=1) 5 B

b [ BLC2T )
B — - —-T/Z-'- + 32 ﬁo Cf
Po B (hy/hy,)
P F ﬁ y T M -,
e — |- 1 Un ¥a 1- :' +B2B0% Y = By v MU/’
[~ 1-3 =
Ps 20-3 (1.3 1 G B o
= — [Aem) 201 (3T vy + 372
P L 2(hy, /hy,)
Ps '-ﬁ G B ﬁm2 Ym
= o | 2 Ym Yn ,":u:\ o /hw)l/z C 1/2

Ps B2 'm poz /y+l ﬁl Cfl/ZU 3 Ym (He/H) (y=1) M,
1
(1+m) Z(hm/hw)s/z (l"'me)z

Y
1_:fw/He)l/2 BCfI/Z Ty ¥ B, Loms Y= . 2y m,
- KM, (b /h,)1/2 € y=1] (I +my)
- - l/zm — 4 B2 G ﬁoz Ym
(hy,/hy,)
1-3y

v———————

= 2(pg/py) my (14m,) 2Cy=1)
~(y+1)
= (pg/py) (14me) 2(r=1) (u /)

= /B2 (em) Y™ (B g /k)

: ={y+1)
~ 2 (H,/H,) (1+m,) 20-1)  (B/x?)
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The mass flux in the inmer layer is

o -
. ’ 2(y=-1) Up
n/p, U, = XA ] pudy = (pg/p,) (1 +m,)

0

Also, from the definition of B

dB Ho \ [2m, \|2(st/Cp) M, a [ st

R, = 4 — —
dx H,, l+me M, (1 +m,) dx dx C

The velocity ratio ﬁm along the match point y =y, is found frou the law of
the wall, Eq. (26). Differentiating this equation with respect to x results in

a21 ix + a22 —dx—+ 023 Ii- a24 Ti-;+ a25 ;

dM, da2 P 4 [ ps 1 dr dB
— — T ——— g | ot— - — — e —
* % a7 dx Kpg dx \ p, Kr dx dx

where, for k2 = (Cy-Cp/Cy + Cp) <1,

ag) = (Cy He/HY)™Y3 [(Cy - U (@, - cpl=1/2 0F /96 .G
ap = ~/Kyq

az3 = (1+mg) A2 Cog/Cop + Cp3/M —~ 1/2KC;

B Cy; B Cas  Coell +meIM

Ay = —————— + | 1 ¢

+

(B2 + 44

ays = =Cp3 C/M2 + (C3+ Cy = C/M) Cyg (1 + my) AZ/Cyy

i

2 2y Me 1
226 (}"‘I)MCA M<C3 + CZ)CZG/CZI - 1l v v

l+me o
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7= T, C3+C) - — [B+ 172
Pt 24 (BZ + 4A2)
2 2
C22(B”+ 249 Cas 5 B2+ 242
- - +
1
A4(Bz+ 4A2) /2 2'A4 <82+ 4'A2)1/2

and

Ca1 = Hy/HIY? [(1+m) A2M(C; + CI2

ok 9k

= 11/2
- (C2~Up) / <85F> C21/2 ( a"f\
g —— - 4 e e
(Co=C(Up-Cp¥2 N30 /eG  (—cpl/2(cy-cp \ 99 Je0

C22 = = (Cap Hy/H )~/ (C3+ CV2 (C, - cpl/? <a—‘f> U -
fom §=0

R, g

dk
\ Um

Ca3 = (Co1 Ha/H™ /3 § (Cy - cpV/2 (34 =32 <ﬁ> o (:’_?_)
£= ak £=0
Cog = ap

Cas = Cz3 + (Coy Hy/H™ V3 (=) = 1/2 <—)
=0

— — / ‘
- l(Cy - Up)(U,, - cp1=1/2 (f—ff) l '
£ |
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Cx = ?(6§=Gm' k)~ 5(0&0 k)

oF -1/2

9 202

35 [1 ~k* sin<6)

9 66,0-0-:3F06,k k sinf cosf

ak (1 kY 1/2

(1-k?[1 k2 sin20)

and 60,k 1g the elliptic integral of the second kind

0
&,k = f[l -2 sinz0]1/2 dé

0

Also,

aa2 (y - DM, dM
dx

¢

(Hy/H)(1+m)2  dx

Differential equations for dH,/dx, dn/dx, dn/dx and (1/p, Ug) (dn/dx) are also
required as part of the system of equations to be solved, and are obtaired by
differentiating Eqs. (A 1-1), (A 1-2), (A 1-3), and (A 1-7), respectively,

Since all the differential equations obtained from the matching conditions
are somewhat lengthy, a system of redundant checks has been built in to the com-
puter program. The values of Up,Hp, n,mand m/p, U, calculated from the system of
simultaneous differential equations are compared at each station with the values
obtained from the associated algebraic equaticns for these quantities.

Two additional redurdant checks are provided by overall momentum and energy
integrals over the whole boundary layer.

The momentum integral equation is

d0 LY 2 0 dMe  Op, g [ ps E}
-;-;=-<2+-5-Me)-'—:—-—-—-—————— +-3-+M (A 1-10)

e S—— . S———— w———

dx Me(14my) dx ps dx

d0g Op(l ~MD dM,  Ogpy 4/ 0s H,,
— .- . (1--}{—— (g + M) (A 1-11)
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where

which, when evaluated using the two-layer model, is

- 1
[1-(H,/H)(1+BU)J; ], B 2 RALE
0 - ~-[— ) AVARY (A 1-12)
E (hw/he) (1+me) ( Ps ) ( +me) E4 8

Values of 6 and O obtained by integrating Eqs. (A 1-10) and (A 1-11) are
compared with values computed using Eqs. (51) and (A 1-12) at each station,
Special computer runs have been made using double precision computations with
exceptionally tight error control in the simultaneous linear equation solver and
in the Runge-Kutta integration. For these runs the algebraic relations for vari-
ables along the match point and for & and 0 agreed with the results computed
from the differential equations to within nine significant figures.
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Integral functions for integral moment equations in outer layer:

Rk ey

E: 22a* 1

7 Al = -

3 zg 2n+1 n+l

‘;., ? a* 222
Ge ¥ Ay =

@+D?  @a+1)?

™

-3&‘2 Ga* 2
Ay = + -
3 3n+1l 2n+1 n+l

Pl
B
3
13
b
s
A
:

« ,, A 3a03 6a*? . 2a*
:‘. X 4 = -

’, Go+? (20412 (n+1)?
: 5 1 a*

' 1 m+1 (m+n+1)

: T . a-iy a* (1-Hy)
5 B2 = 2 2
2 e (m+1) (m+n+l)

&

E 5T (1-Hy)

. § By = ————

§ 3 (m+n+1l)

Uy R

ke i -

B ~a* (1 -Hy)

Eb By =

9 K (m+n+1)?

N

. 1 -
= | _ (1~ Fiy)
E B E; = Hdpg = 1- ——

g XX
TR

1 ] i
- - as (- et (1-Hy)
S 1- - +

SO Ey = Uldy = n+1 m+1 m+n+l
0

o ;

: »

~69~

g om0 s WA Pia e P




Ey = u2fidy -

<

200 a2 (=T  2e0(1-Hy)  at2(1-Ty,)

- + - + -
a+l 2n+1 m+l m+n+l 2n+m+1
ﬂ
- - - a® 1
Es = U(H~1)dnp = (1=~ -
4 J ( Ydn = (1-Hp) m+a+l m+1
0
1
f ) o
Iy = Udp = 1 -
1 o " n+l
1]
pl1
2
- 2a¢ a*
2
I, = Udy & 1= e 4 e
2 = " a+l 2041
0
p! 2 3
3 L] 3.. a‘
13 ™ U3d7] = l——L -
J n+l 2n+1 3n+1l
0
rl
I T4 L 6ar? et
= = 1~ + +
4 J " n+l 2n+1 4n+1
0
1
" at ar?
1 "= -1)d = -
o} ) U Ydn n+l * 2n+1
0

2 2a* 3a‘2 a*3
-1)dn = - -
Ydn n+l * 2n+1 3n+1
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APPENDIX 3 !
ENTRAINMENT AND OTHER SWALLOWING RELATIONSHIPS

For flow around blunt bodies at angle of attack the streamline lccations and
metrics are calculated using the method developed by Fannelop and Waldman?., 1In
this calculation the local entropy (or stagnation density ratio ps/p, ) is related
to the mass flow entrained by the boundary layer between neighboring inviscid .
streamlines, If ';‘e is the mass flow entrained by the boundary layer between two
inviscid streamlines, which are separated by a distancer,

e X . '
ﬁ1e=x'/'p'|fd7 -'[pw?"wtd"x' : (4 3-1)

|
] H

It is assumed here that no mass is inject:e& or ablated into the bounddry
layer upstream of ¥ = 0 which is the station where the turbulent boundary layer
begins. Eq. (A 3-1) can be written

. —(y+1) { - /2 x ' ;
m Upny Ce/' “yabB ' .
: =(-is-> Mc(l+me)2(y-1) i i =2 "j Mdx l +M 01

Po 3L Po z (hy/he) K(hm/he)l/2 \ !
(A 3-2)
i
The local Reynolds number base on momentum thickness is .
vy y+1 :
Ue Po3 [ Ps o= ~ 1
Rews —— = e ——\) M (l+mg 20-D 7§ ) (4 3-3) )
6 Ve ko Po .
i
. !
vhile the local heat flux and shear stress along the surface are
l l '
+1 H .
q [ - w
T (-—s> M(1+mg) 20=D (1‘_>CH C (A 3-4)
Ho 3, P Po He
T, p ..:Z. ]
Y . -;- <—-s-) Mez (l+me)7"l Ef ) i : (A 3-5)
Po ao2 Po
I
' 1
! $
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