
A
D

?
4

3
8

7
8

'tv"ï'1 " i*.

S
CM

CÛ BRI
[AD

MEMORANDUM REPORT NO. 2184

CHLOE: A FORTRAN SUBROUTINE FOR

:ITTING ORDINARY DIFFERENTIAL EQUATIONS TO OBSERVED DATA

by

James W. Bradley

April 1972

D D C
-¡P?—

il JUN 26 1972

iISIbLi t, ¿iü!

Approved for public reime; distribution unlimited.

u S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating or
sponsoring activity is prohibited.

Additional copies of this report may be purchased from
the U.S. Department of Commerce, National Technical
Information Service, Springfield, Virginia 22151

BfrMMOS
mruminm...

□

•in. i uR- mw INW

ñ

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

inmssrai
OOCUMINT CONTROL DATA -RAD

U. S. Army Aberdeen Research and Development Center
Ballistic Research Laboratories
Aberdeen Provine Ground. Maryland 21005

UNCLASSIFIED
a*. «HOUR

a. MB *091T TITLE

CHLOE: A FORTRAN Subroutine for Fitting Ordinary Differential Equations

to Observed Data.

■- AUTHOAts* fpiMtaaa». aMW* MNal, Im(mm)

James N. Bradley

• ■ ftKPONT DAT«

April 1972 49 1 5
•«. comtmact om omamt mo.

A.MMOJBCTMO. RDTftE 1T06110A2A33D

0.

A

M. Oftl«INATOR*t HBAOIIT NUMSBUIAt

Memorandum Report No. 2184

Ãti. mpnti)

10. O10TMI OUT ION STATBMBNT

Approved for public release; distribution unlimited.

11. •»ONaOniN« MILITARY ACTIVITY

U. S. Army Materiel Command
Washington, D. C. 20315

This paper presents and documents a FORTRAN subroutine for applying
Goodman's method to any given system of ordinary differential
equations. The method determines those values of the parameters
and initial condition!* of the system that best fit the solution
curves to observed daca. No a priori knowledge or assumptions
regarding the form ol the solution are required.

DD .^-1473 Met*«*« om pmm •«»». • jam m. mmcm ••
LWTfc tum «Narr u*à.

■•Mrttr CUaalAcattaa

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2184

APRIL 1972

CHLOE: A FORTRAN SUBROUTINE FOR
FITTING ORDINARY DIFFERENTIAL EQUATIONS

TO OBSERVED DATA

James W. Bradley

Exterior Ballistics Laboratory

Approved for public release; distribution unlimited.

RDT8E Project No. 1T061102A33D

ABERDEEN PROVING GROUND M A R Y L A N

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2184

JWBradley/esb

Aberdeen Proving Ground, Md.

April 1972

CHLOE: A FORTRAN SUBROUTINE FOR

FITTING ORDINARY DIFFERENTIAL EQUATIONS

TO OBSERVED DATA

ABSTRACT

This paper presents and documents a FORTRAN subroutine for apply¬

ing Goodman's method to any given system of ordinary differential

equations. The method determines those values of the parameters and

initial conditions of the system that best fit the solution curves to

observed data. No a priori knowledge or assumptions regarding the

form of the solution are required.

Preceding page blank
3

liWiPPWiWîüf

TABLE OF CONTENTS

I.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.

ABSTRACT .

TABLE OF SYMBOLS .

INTRODUCTION . .

STATEMENT OF THE PROBLEM .

THE INCREMENTAL EQUATIONS .

ALGORITHM .

THE ARGUMENTS OF SUBROUTINE CHLOE .

COffiENTS ON THE VERSION OF FORTRAN USED .

COÍWENTS ON THE MERSON SUBROUTINE .

COWENTS ON WRITING SUBROUTINE DE .

COMMENTS ON WRITING THE PROGRAM THAT CALLS CHLOE

COUNTS ON CONVERGENCE .

REFERENCES .

APPENDIX A: Subroutine CHLOE .

APPENDIX B: Subroutine MERSON .

APPENDIX C: Subroutine MATINV .

DISTRIBUTION LIST ..

Page

3

7

13

14

18

20

22

27

28

30

33

35

39

41

43

45

47

Preening page blank

TABLE OF SYMBOLS

(A. 1, the measurement matrix; a CHLOE input argument
im

im

ale ■

B -

C *

the measured value of at xm

arithmetic or logical expression

a known constant in the drag equation, Eq. (9)

(Cj, _ CN23); th® vector constants Cinitial

conditions and parameters) to be determined; a

CHLOE I/O argument

r + C * drag coefficient, Eq. (9)
''■'DO 02 *

'DO

UD2

CHLOE

. c,
N2

'N23

zero-yaw drag coefficient

yaw drag coefficient

a subroutine for performing one iteration of Goodman's

process

yi(xo), ... yN2(xo) “ the initial conditions of S

Pi* ?N3 “ the unknovm Parameters S

D
(D), a vector of N23 elements, obtained in Step 2

&

DE

of Goodman's process

the name of a subroutine defining the system of

equations S2, Eqs (3) and (8); an input argument of

CHLOE and MERSON

DER
• a vector of N22 elements containing the derivatives

defined by Eqs (3) and (8); an output argument of

DE and MERSON

i.

E

an element of vector D, defined by Eq. (13)

(E), an N23 x N23 matrix obtained in Step 3 of
in

El

Goodman's process

E"1, the inverse of matrix E; a CHLOE output argument

an element of matrix E, defined by Eq. (14)

fjt) dyj/dx, a given function of x and of the dependent

variables and parameters

- E'V a vector of N23 elements obtained in Step 4
of Goodman's process

Preceding page blank

■Ml mm. IÜÉHII i—.m

■ an element of vector G; the change in c, produced
by one iteration of Goodman's process

H ■ a Merson I/O argument: the estimated step size at

input; the adjusted step size upon return

HMIN ■ a MERSON input argument: the minimum step size

allowed (.01 times the estimated step size if HMIN
is negative)

IC » a CHLOE output argument indicating convergence (0),

non-convergence but hope remains (1). or all is
lost (2)

MATINV ■ a matrix inversion subroutine called by CHLOE

MERSON ■ an integration subroutine called by CHLOE

N1 « the number of measured dependent variables in S;
a CHLOE input argument

N2 » the number of dependent variables in S; a CHLOE
input argument

N3 » the number of parameters in S to be determined

N4 * the number of measurements taken on each of the N1

measured variables; a CHLOE input argument

N22 » N2+N2; a DF and MERSON input argument

N23 - N2+N3; the total number of constants in S (initial

conditions plus parameters) to be determined; a
CHLOi input argument (*50)

Pi » •• Pflj ■ the unknown parameters of S

Q ■ a relative error criterion for the integration; a
MERSON input argument set on line CHLOE 7

R “ (Rim), the NlxN4 matrix of residuals of the fit; a

CHLOE output argument

RMS ■ a vector of N1 elements containing the root-mean-
square error of the fit to each measured variable;
a CHLOE output argument

Rim " the residual of the fit to the i-th variable at x
(measured minus computed value) ra

8

/

S «“ the given system of N2 first order ordinary differen¬

tial equations; Eq. (3)

SIGN1 () ■ the signum function of a real or integer argument

S2 • a system of twice N2 first order ordinary differen¬

tial equations consisting of a system r. and the
corresponding incremental equations, Eqs. (3) an (J

t ■ time, a dependent variable in the drag equation;

Eq. (9)

t ■ the measured value of t at z
m

t ■ the value of t at z
o °

U - fU . 1. an N23xNlxN4 array obtained in Step 1 of
v fcuir ’

Goodman's process; a CHLOE output argument

U . - an element of array U; the computed value of ui at

íim X based on the t-th integration of S2
nr

u ■ Ay * the change in y^ for a given change in the

constant vector C; the t-th incremental variable

V * a vector of twice N23 elements containing the
dependent variables, the constants to be determined

and the incremental variables of S2; a DE input

argument

VI, ... VN* arithmetic or logical variables

V- the magnitude of the velocity vector; Eq. (9)

V ■ the value of v at z
o °

W. « a weight associated with A.
im

X - (Xj, ... xN4); a CHIOE input argument

XA ■ xQ; a CHLOE input argument

XB - the value of the independent variable x when DE is

called by MERSON; a DE input argument

XI « a MERSON I/O argument; at input, XI contains the
value of x at the start of the integration interval ;

upon return, X1*X2

9

X2 . th. value of x at th. .nd of the MERSON intepatlon
interval ; a MERSON input argument

x - the independent variable of S2
x - che value of x at which initial conditions are to be

0 determined ; x can coincide with a point of ,

between any two points of X or fall outside the in¬
terval Xj to xN4

X. « the values of x at which measurements were taken;

x. < x2 <xn4

Y of
V at X ; a CHLOE output argument
7 j m

yNi . the measured dependent variables of S

yN2 - the remaining dependent variables of S

yN23 . Oj, .■ PNJ ■ the unknown paranetere of S

Î . distance; the independent variable in the drag

equation, Eq. (9)
I . a value of t at which a time measurement was taken

*“ . the value of t at which initial time and velocity
0 apply in the drag equation

y . a relative error bound for
1 vergence, E„. (17); set to 0.001 in line CHLOE

AC ■ (ACj, ... Acn23^

. (1,0.0, ... 0). (0,1.0, ... 0), ... (0, ••• 0,1)

. the initial conditions for the incremental
equations, Eq. (8)

¿c. - an arbitrary change in the current v.lue of V
*■ assigned the value 0 or 1; Eq. (12)

df, -f) (x.y.tdy,.yN23 * ‘yN23’ -f)(Xl>,l.yN23

Í . magnitude of the complex yaw, Eq. (9)
e . th. sum of th. squares of th. residuals of th. fit,

Eq. (5)

INDICES

i * 1, 2, ••• N1

j ■ 1, 2 , .• N2

k ■ 1, 2, ... N3

1 ■ 1, 2, .• N23

m » 11 2, ... N4

n ■ 1, 2, ... N23

11

...

I. INTRODUCTION »

This paper discusses a relatively new approach to an old problem.

We are given the form of a system of ordinary differential equations

(linear or non-linear) involving unknown constant parameters and un¬

known initial conditions. We are further given a set of measurements

on one or more of the dependent variables. The problem is to determine

those values of the parameters and initial conditions for which the

solution curves are the least squares fit to the measured data.

The traditional approach assumes that the measured variables can

be adequately represented over the interval of interest by conveniently

chosen closed-form expressions containing the desired parameters and

initial conditions. The values of the unknowns are then determined by

a straightforward least squares fit of the expressions to the measured

data (or by an iterative differential corrections process when the ex¬

pressions are non-linear in the unknowns).

Ideally, these closed-form expressions satisfy the given system

of differential equations. In practice, however, the exact solution is

usually unknown or too complicated to be of any use and the expressions

we work with satisfy a simplified system of differential equations in

which all the troublesome terms have been linearized or discarded.

Clearly, there are situations where it would be desirable to by¬

pass all closed-form pseudo-solutions and work directly with the given

differential equations. That is, we need a mathemav.ical technique that

could determine — directly from the differential eqtations and without

any knowledge or assumptions concerning the form of the solution - those

values of the parameters and initial conditions that fit the solution

curve to the measured data in a least squares sense.

In Reference 1*, Goodman presents an iterative technique to do

very nearly what we want. (A similar technique has been described by

Chapman and Kirk2,3 for a systém of equations describing

^ëfë?&nôëê~cô:ë~Tt8Ïëa~ôn~pcïgêrW^^

Preceding page blank '

the yawing motion of a missile in free flight.)

The puipose of this report is to present, describe and illustrate

the use of the FORTRAN subroutine CHLOE for carrying out Goodman's

method on any given system of ordinary differential equations. Goodman

considers discrete or continuous measurements on a single dependent

variable. We will limit our attention to discrete measurements only

and generalize his results to handle measurements on more than one vari¬

able.

For the reader who is indifferent to the mechanics of FORTRAN but

who might have use for the technique, it should be pointed out that the

next three sections are FORTRAN-free. These sections comprise a rela¬

tively informal presentation of Goodman's metlod, subject to our slight

generalization. The responsibility for this particular form of pres¬

entation and for the accompanying remarks is, of course, the present

author's.

The remaining sections, V through X, are written for a potential

user who knows - but s not necessarily an expert in - FORTRAN. Most

FORTRAN programmers are not computer specialists; they are workers in

other fields who have learned FORTRAN on the side. Accordingly, we

have not hesitated to offer explanations and advice for the non-profes¬

sional programmer.

II. STATEMENT OF THE PROBLEM

Assume that our given ordinary differential equations have been

reduced to a system S of first order equations. We introduce the fol

lowing notation:

N1 ■ the number of measured dependent variables in S.

N2 ■ the total number of dependent variables in S.

■ the number of initial conditions to be determined.

(We will not consider the situation where one or

more of the initial conditions is fixed.)

N3 * the number of parameters to be determined.

N4 * the number of measurements taken on each of the N1

measured variables. (It is assumed that the same number

of measurements, at the same values of the independent

variable, have been made for each measured variable.)

We further assume that

(1) 1 * N1 * N2 * N23 CN4

where N23 « N2 ♦ N3

■ the total number of unknowns (initial conditions plus

parameters) to be determined.

Subscripts and indices used throughout this paper will consistently

have the following ranges:

i = 1, 2, ... N1

j = 1, 2, ... N2

k = 1, 2, ... N3

Í, = 1, 2, ... N23

m = 1, 2, ... N4

n = 1, 2, ... N23

However, for the convenience of the reader these ranges will usually be

repeated in the text wherever the subscripts appear.

We could write our system S in the form

* fj(x» Yj. y2> ••• Yn2> Pi* P2’ PN3^

y.(x) = c. j * 1, 2, ... N2
I V o' J

where

yl* y2’ *'• yNl

yNl+l’ yNl+2* yN2

Pl* P2* PN3

Cl’ C2’ CN2

are the measured dependent variables

are the remaining dependent variables

are the unknown parameters

are the unknown initial conditions

if PIMP «P

However, the notation of Eqs. (2) can be simplified if we regard the

parameters pk as additional dependent variables, subject to the condition

that dpk/dx ■ 0. Thus we introduce two additional notations for the

parameters :

yN2+k “ Pk

- - pk N2+k

The system S then assumes the form

dy<

k » 1, 2, .

(3) dx
Yj. y2

Vv» = Cj

yN2-*-k “ CN2+k

, N3

yN2?^

j * 1» 2»

k = 1, 2,

N2

N3

where the initial conditions and parameters are represented by the con¬

stant vector

C * (Cj, ^2» •* * cN23^

We will not go into any rigorous discussion of the mathematical

properties the system S must possess. It is sufficient for our pur¬

poses to assume that the functions fj are analytic over the interval of

interest.

We are given a set of measurements, which we represent by the N1 x

N4 matrix A - (A.J, and a vector X - (xj of the corresponding N4

values of the independent variable. That is,

A. = the measured value of y^ at x
im

i « 1, 2, ... N1

m » 1, 2, ... N4

X1 < X2 < <*N4

where we assume

(4)

16

The points x need not be evenly spaced. It is permissible but not
* n

necessary that any one of the points xm coincide with the point xq at

which initial conditions are to be determined; xq could fall outside

the interval (Xj, xN4) or between any two points.

We define the NI x N4 matrix R - (Rim) as follows:

R. ■ residual of the fit to the i-th variable at xm
in

« A^m - (the computed value of y^ at x^)

For any vector C, we can obtain a matrix R by numerical integration of

our system S.

The problem is to determine the vector C producing an R that mini¬

mizes the quantity

N 4 Nl

Equation (5) involves two assumptions. First, we have assumed that

each measurement A. is equally important (or equally unworthy); other-
xm

wise the quantity Rin|2 would be multiplied by a weighting function Wim.

This assumption is not essential; Eq. (5), the equations that follow and

subroutine CHLOE can be modified (there is a temptation to say "easily")

to include weights. Of course, we hope - and may even take some pre¬

liminary action to insure - that the measurements contain no "outliers"

(maverick points whose values are so far wrong that they would completely

invalidate the results). The second assumption is inherent in the least

squares approach. The quantity e to be minimized does not involve the

vector X. Thus, we imply that all errors of measurement are contained

in the matrix A; the vector X is assumed to be error-free.

17

III. THE INCREMENTAL EQUATIONS

For any given vector C there corresponds a set of solutions

Eqs. (3). If we change the initial conditions and parameters, that is,

if we replace

C£ by Cl + ACt’ £ ^ N23

a new set of solutions + Ay^ will apply. The differences Ay^ in the

two sets of solutions will satisfy the incremental equations

(6)

where Af.
3

d (Ay.)

—cnr Af.
3

Ay.. (xo) - Ac^

AyN2+k = AcN2+k

fj (x. Yj + Ayj, ... rN23

j - 1, 2, ... N2

k * 1, 2, ... N3

+ AyN23^

-fj (X. W

We approximate the increments Af^ by the differentials df^ :

(7) Af. * df.
3 3 ¢(5¾)

Ay*, 3 « 1. 2, ... N2

and introduce the simplifying notation

u* - Ay*, 1 * 1, 2, ... N23

The incremental equations (6) then assume the form

(8)

du.

■ £(¾) ■■
yv * Acj

V+k Ac N2«-k

j * 1

k - 1, 2

N2

NS

h'hat we might call the zero-th step in Goodman's technique is to write

down these N2 incremental equations. In general, they will involve

some or all of the variables y^ (j • 1, 2, ... N2) and hence if

18

numerical solutions of Eqs. (8) are required — and in Goodman's method

they will be — the equations must be integrated simultaneously with the

original system, Eqs. (3).

To help fix ideas, consider a relatively simple example:

equation

(9)

where

dv

Jz

z

V

distance

^ * magnitude of the velocity vector

the drag

B ■ a given constant (the ratio of a dimensionless relative

density factor to the diameter).

2
Cq * Cjjq ♦ CD2 6 ■ drag coefficient

6 ■ magnitude of the complex yaw (a given function of z

involving known parameters).

We are given a set of measurements (z , t) and are asked to determine
6 v m’ nr

the values of the two parameters and C
D2 ’

In this example, we are free to choose z or t as the independent

variable; since 6 is given as a function of z, it is convenient to let

z be the independent variable. Then our dependent variables are

yl * 1

y3 “ CD0

y4 “ CD2

Here N1 - 1, N2 » 2, N3 * 2 and N23 « 4.

the form of Equation (3), becomes

00)

‘‘n i
M —mm

dz y„

dy2
“IT - B<y3 + y4 6

2,

Equation (9), rewritten in

19

which can be solved r.uiserically for any given constant vector

c - (y^V• Y,v y4) “(to' vo' So* Sz3

Finally, our incremental equations for this example are

du.

(11)

'1 “2 .

“3T" "(7P‘

du
- -B[(y3 > y4 62) u2 ♦ (u3 ♦ u4 62) y2]

which can be solved (simultaneously with Eqs. (10))for any giv n in¬

cremental constant vector

AC - (Uj (z0), u2 (z0), Uj, u4)

IV. ALGORITHM

In this section we list the steps constituting Goodman' method;

the motivation for these steps may be found in Reference 1. In the

CHLOE subroutine listed in Appendix A, the corresponding steps are

clearly indicated.

Assume that we have obtained by some rational means a first es¬

timate for the values of the constant vector C. Further assume that we

have written down (correctly) the incremental equations. Let S2 de¬

note the system of twice N2 differential equations consisting of the

original system S and the incremental equations, that is, Eqs. (3)

and (8).

Step 1. Using the constant vector C, integrate the system S2

a total of N23 times. For the l-th integration, l « 1, 2, ... N23,

the incremental constants are taken to be

(12)
Act . 1

Ac 0, njfc £

20

Thus for th. simple example of the previous section, E,s. (10) and (11)

would be numerically integrated four times, once each for

AC - (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)

What we are after are the resulting values of yi and ut, i * 1, 2, ... Nl,

Kt the measured uoints x^. These computed values of yi yield the matrix

of residuals, R - (Rim), introduced in Section II, where we defined

R „ A — (the computed value of yat tm)
im im

Na danote the computed values of ui by the three-dimensional array

“ ' W.i, ’
where

U tim
the computed value of u. at xm, based on the t-th

integration of S2

t, ■ 1, 2, ... N23

i - 1, 2, ... Nl

m ■ 1, 2, . •. N4

Step 2. Evaluate the components of a column vector D - (0^),

1-1,2,... N23, where

N4 Nl

(13) Dt “ / / Ri® U*i,n

Step 3. Evaluate the elements of an N23 x N23 symmetric matrxx

E = (l ln) , where

N4 Nl

(14) 'In '1 l Uî,im Unim

£.■1,2, ... N23

n ■ 1, 2, ... N23

21

/

Step 4. Evaluate the components of a column vector G ■ (G^),

I * 1, 2, ... N23, where

(15) G « E_1D

and E 1 is the inverse of matrix E.

Step 5. Obtain new values for the components of tht constant

vector C:

(16)

(c J
Jrnew 'Void * Gl

t - 1, 2, ... N23

Step 6. Test for convergence of the process. There are several

criteria that could be used. One of the simplest, and the one used in

subroutine CHLOE, is the requirement that

(17> lGtl s 7 ¡^Inow,

where y is some pre-selected positive relative error bound. An alter¬

native criterion is given in Section X. If the criterion fails, return

to Step (1) and repeat the entire process.

We can go around in this loop until convergence is achieved,

until an obvious divergence has arisen or until a specified number of

iterations have been performed.

V. THE ARGUMENTS OF SUBROUTINE CHLOE

Subroutine CHLOE (listed in Appendix A) is called by the state¬

ment :

CALL CHLOE (DE.Nl,N2,N23,N4,A,X,XA,C,EI,U,R,Y,RMS,IC)

Here and throughout the rest of this paper, the usual convention applies

to FORTRAN real and integer variable names: integer names and only

integer names start with I, J, X, L, MorN. The first eight arguments

of CHLOE are inputs:

DE ■ the name of the subroutine that defines the set of twice N2

differential equations indicated in Eqs. (3) and (8). This

name must be declared in an EXTERNAL statement in the program

22

that calls CHLOE. Details of subroutine DE will be discussed

in Section VIII.

N1 ■ the number of measured dependent variables; Nl*l.

N2 ■ the total number of dependent variables; N2*N1.

N23 ■ the number of unknown constants (initial conditions plus

parameters) to be determined; N23*N2. Note: N23 (and hence

N2 and Nl) should be no greater than 50. This restriction

can be relaxed only by making appropriate coding changes.

N4 * the number of measurements taken on each of the Nl measured

variables; N4>N23.

A * the NI X N4 matrix of measured values of the dependent

variables, where A(I,M) is the measured value of y. at xm.

X ■ the vector of the corresponding N4 values of che independent

variable x, where

X(1)<X(2)<...<X(N4)

XA * the value of the independent variable at which initial

conditions are to be determined. XA may (but need not)

equal any element of vector X.

The next argument - in a sense, the crucial argument - serves as both

input and output.

C - a vector of N23 elements. Upon entry, C contains a given

set of estimates for the N23 constants to be determined,

where

C(i), .C(N1) are estimates of the initial con¬

ditions on the measured variables

C(N1+1).C(N2) are estimates of the initial con¬

ditions on the remaining dependent

variables

C(N2+1), ... C(N23) are estilantes of the unknown para¬

meters .

Upon return from CHLOE, the vector C contains the next

(and hopefully improved) set of estimates as determined by

one iteration of Goodman's procedure. (The final argument

23

of CHLOE, IC, indicates whether or not these returned

estimates are adequate.)

The remaining arguments are outputs. The output arrays EI, U, R and

RMS described below are obtained by CHLOE during the course of an iter¬

ation, whereas new values of C are not obtained until the end of that

iteration. Thur we might anticipate that these output arrays are based

on the input C values rather than on the C values returned. This is

indeed thTsituation so long as the convergence test has failed; the

output arrays in effect lag one iteration behind C However, if the

convergence criterion is satisfied in the last step of a given iteration

CHLOE will not return immediately to the calling program; first it will

perform enough steps of an additional iteration to update the output

arrays so that they correspond to the final C values.

The desirability of this up-dating feature could be debated. If

the final change in C is small enough, the corresponding changes in

the output arrays will presumably be small too. It's a question of

whether or not these final small changes in the output arrays are worth

the machine time taken up by an extra, •'catch-up" iteration. At any

rate, the feature is accomplished by the statement COTO 24 on line

CHLOE 51 and can be eliminated by deleting that statement.

The CHLOE output arguments are as follows:

EI ■ an N23 x N23 matrix that is the inverse of the matrix

E defined by Eq. (14). The matrix El was made an ar¬

gument of CHLOE mainly for the convenience of using

adjustable dimensions for E in the subroutine. However,

El is not entirely without interest. In the usual least

squares process, an estimate of the RMS error in the

l-th calculated constant is obtained by multiplying

the estimated RMS error of the fit by the square root

of the fc-th diagonal element of the inverse of the

matrix formed by the coefficients of the normal

equations. We assert that the diagonal elements of the

inverse matrix El play a similar role in Goodman's

24

technique. (Goodman doesn't discuss error analysis

in Reference 1 and we have seen no proof of this asser¬

tion.) In particular, if there is only one measured

variable (Nl-1), then we assert that an estimate of

the RMS error in the fc-th determined constant is

afforded by the product

RMS(1)«SORT(E1(1,1))

where RMS(l) is defined below in the discussion of the

next to last argument of CHLOE. It has been our some¬

what limited experience that while these estimates are

not always significant in themselves, the values ob¬

tained by two or more similar runs (runs using the same

differential equations but different sets of measure¬

ments) are useful for comparison .

U * an N23 x NI x N4 array defined in Step 1 of the algo¬

rithm. Array U was made an argument of CHLOE solely for

the convenience of using adjustable dimensions for U

in the subroutine.

R ■ the NI x N4 matrix of residuals of the fit:

R(I,M) = A(I,M) - Y(I,M)

where matrix Y is defined next.

Y = the N2 x N4 matrix of computed values of the dependent

variables, where

Y(1,M),, Y(NI,M) are the computed values of

the measured dependent vari¬
ables at X(M).

Y(N1+1,M), ..., Y(N2,M) are the computed values of

the remaining dependent

variables at X(M).

RMS ■ a vector of N1 elements containing the root-mean-square

error of the fit to each measured variable:

N4

25

/

IC ■ a convergence indicator:

IC ■ 0 if the process has converged; that is, if

JC^retum ” entryláY^C^retunJ

L ■ 1, 2, ... N23

The constant y could have been made an input argument
to CHLOE: instead, it was arbitrarily decided to assign

Y the value 0.001 within the subroutine. This is done

on line CHLOE ? by the statement EPS - .001. The user,

of course, can s^ostitute any other positive value if

he chooses. When IC-0, the output arrays EI,U,R,Y and

RMS were obtained from the final C values.

IC-1 if the process has not yet converged, but more

iterations are possible. The output arrays EI,U,R,Y

and RMS were obtained from the input C values rather

than from che C values returned.

IC«2 if the process has somehow gone astray to such an

extent that matrix E of Step 3 is singular. A sub¬

routine MATINV (see Appendix C) will then cause the

phrase SINGULAR MATRIX to be printed. In this event,

the matrix inversion of Step 4 is impossible and the

process has broken down. No further iterations should

be made. The input C values are returned in C and the

output arrays U, R, Y and RMS are based on these input

C values.

26

VI. COMMENTS ON THE VERSION OF FORTRAN USED

In addition to subroutines CHLOE and DE, two subroutines called

by CHLOE must be included in the over-all program:

(a) MERSON, an integration subroutine listed in Appendix

B and discussed in Section VII.

(b) MATINV, a matrix inversion subroutine listed in Appendix

C.

Subroutines MERSON and MATINV were obtained from the Computer Support

Division of the Aberdeen Research and Development Center (ARDC).

In the listing of the subroutines in the appendices, we have

conserved space where feasible by writing two or more statements on

a line, separating the statements by $ signs. This convention is

wide-spread but not universal.

Subroutines CHLOE, MERSON and MATINV were written for use on

ARDC's BRLESC I and BRLESC II computers (see Reference 4)- Although

the compilers in these two computers implement a FORTRAN which is

not quite "standard" and not quite FORTRAN IV (and indeed not quite

the same on the two computers), it is believed that the above-mentioned

subroutines have been restricted for the most part to standard state¬

ments and features. However, there are at least four exceptions.

(a) the use on lines CHLOE 19, ... 20, ... 21 and ... 28

of subscript expressions which are the sums of two integer vari¬

ables. In general, the BRLESC I/II compilers will accept as a

subscript any integer expression not involving subscripted vari¬

ables. Some compilers may impose more restrictions on the sub¬

script expression.

(b) the use on lines CHLOE 5 and MERSON 24 of the predefined

signum function SIGN 1 (). This nonstandard function accepts a

Single argument, real or integer, and assumes the real value

-1.0, 0.0, or 1.0 for negative, zero or positive argument, re¬

spectively.

(c) the use on lines MERSON 4, ... 16, ... 18 and ... 19 of

multiple arithmetic or logical assignment statements linked by

equal signs. In a statement of the form

VN ■ ... ■ V2 ■ VI ■ ale

where ".l." denotes an arithmetic or logical «pression and the

other quantities are the names of arithmetic or logical varia les.

respectively, the result of the expression is stored tn VI. V2. ...

VN in that order.
(d) the us. on lin. MERSON 7 of a PRINT statement (which

will b. used only if N2 exceeds 501. On most computers, but not

on BRLESC l/II, this nonstandard statement will print data

on-line printer.
Tbe only other output statement in the three subroutines - and the

on. likely to be used - is the SIN01UR MATRIX reprimand on lines

MAT1NV 9 Mid ... 10. Here the integer 6 in the statement WRITE (6 1

may have to be changed to specify the proper output unit at

installation.

VII. COMMENTS ON THE MERSON SUBROUTINE

The MERSON subroutine (listed in Appendix B and described in

Reference 5) uses a method proposed by R. H. Merson »f Austra la o

integrate a system of first order ordinary differential equations.

The method is a fourth-order member of the Runge-Kutta family, re

quiring five function evaluations over each integration step.

MERSON was chosen from the three differential equation sub¬

routines available at Colter Support Division because t seemed

the easier to use of the two that allow the integration step

be adjusted automatically to obtain a predefined accuracy.

MERSON is called in line CHLOE 23 by the statement

CALL MERSON (DE.N22.X1 ,X2,V,DER,H,HMIN,Q)

„her. N22 is twice N2. To call MERSON 1. t. Imt.grate the set of N22

differential equations defined in subroutine DE over an in^a ^

X2. When MERSON is called, argument V must contain the valu

28

dependent variables at XI. Upon return from MERSON, V contains the

values of the dependent variables at X2 and argument XI contains the

value of X2. Arguments V and DER, which are passed by MERSON to sub¬

routine DE, will be discussed in Section VIII.

The scheme used by CHLOE for calling MERSON can perhaps best be

described by an example. Suppose array X consists of six points:

X(l), ... X(6) and that XA, the point at which initial conditions are

to be determined, lies between X(3) and X(4). (CHLOE, of course, de¬

termines where XA falls among the elements of X.) Then CHLOE will call

MERSON six times, as follows:

H X2

1 XA X(3)

2 X(3) X(2)
3 X(2) X(l)

4 XA X(4)

5 X(4) X(5)

6 X(5) X(6)

Before the first call, CHLOE will set V to the estimated values of the

dependent variables at XA. For the second and third calls above, V

will automatically have the right input values; they are the values

returned by the previous call. For the fourth call, CHLOE will reset

V to the estimated values at XA.

We can see from the above description that in general MERSON will

be called N4 times (or N4-1 times if XA coincides with a point in X).

All of this, of course, is for a given set of initial conditions. The

reader will recall that the system of equations must be integrated

N23 times, once for each set of initial conditions specified by Eq. (12).

Hence, for each iteration of the CHLOE routine (that is, for each time

CHLOE is called), MERSON is called N23 x N4 times.* This approach may

be prohibitively time-consuming if the user's equations are laborious

and/or his data points are numerous. CHLOE's selection of integration

intervals might then be modified by the user to suit his needs.

Other (and simpler) changes the user may wish to make in CHLOE in¬

volve the last three arguments of MERSON: H, HMIN and Q. In this

*

In the final iterationt MERSON is called twice N23 x N4 times if
convergence ie achieved.

29

partgrtph, we discuss the general use of these three arguments; in
the next paragraph, we discuss what CHLOE does with thea. When HERSON
is called, H aust contain an estiaated step size to be taken over the
interval XI to X2. The sign of H will be changed, if necessary, to
proceed in the proper direction froa XI to reach X2. If the integra­

tion reaches a point x such that x*H exceeds the endpoint, then a
teaporary step size is used so that the endpoint is reached exactly.
If input arguaent Q has a value equal to or greater than 1.0, the es­

tiaated step size is retained throu^out the interval. If Q is posi­

tive but less than 1.0, relative error estiaates are obtained by MERSON
at each step along the interval and the step size H will be changed if
necessary: the value of H upon return froa MERSON will be the adjusted
step size. If all the relative error estiaates are less than Q/32.0,
then the step size H is doubled before return. If any relative error
is greater than Q, then the step size H is halved and coaputation be­

gins again at the start of the interva. Step size H will be halved
as aany tiaes as necessary, unless its value becoaes less than a
specified ainiaua step size: the input arguaent HMIN. In that event
HMIN will be the adjusted step size. If input HMIN is negative, then
tSRSON uses one-hundredth the input step size as the ainiaua step size.

On line CHLOE 7, the relative error criterion Q is set at the
arbitrary value of 0.0001. On line CHLOE 6, HMIN is set negative, so
that the ainiaua step size will be .01 tiaes the input step size. As
presently coded, CHLOE aakes no use of the adjusted step size returned
in H froa one interval to estiaate the best inpxit step size for the
next interval. On line CHLOE 22, the input step size H for each in­

terval XI to X2 is arbitrarily set at onereighth the interval length.
The aanner in which CHLOE deteraines H, HMIN and Q can be easily
changed by the user to expedite his particular problea.

VIII. COMICNTS ON WRITING SUBROITTINE DE

Sid>routine DE aust be written by the user for his particular
version of Eqs. (3) and (8). DE is called by MERSON and thus the first

Statement of DE must have the form pi ascribed by MERSON:

SUBROUTINE DE ÍN22.XB.V.DER)

The first three argumei...s are inputs and must not be altered by DE:

N22 * twice N2 ■ the dimension of the argument DER

XB « the value of the independent variable x when DF is called

by MERSON

' - a vector of twice N23 elements containing the dependent

variables, the constants to be determined and the incre¬

ments of system S2 in the following order:

V(l),.. V(N2) • ylt yN2

V(N2+1),.. V(N22) - Uj, u^2

V(N22+1),.. V(N22+N3) - yN2+i».- yN23 * Pi*-’Pn3

V(N22+N3+1),.. V(N23+N23)* ^j^+l*** llN23

The final argument is the output:

DER ■ a vector of N22 elements containing the derivatives of the

N2 dependent variables and their increments as defined by

Eqs. (3) and (8):

DER(l).,DER(N2) « dyl ,.... ,^N2 -
dx dx

DER(N2+1),.,DER(N22)- dUl .,?^N2
dx dx

The vectors V and DER must be declared in a DIMENSION statement in DE.

As mentioned in Section V, we must have N2fN23550. Hence the dimen¬

sions of V and DER (twice N23 and twice N2, respectively) must not ex¬

ceed 100 without making appropriate changes.

The body of subroutine DE consists of the statements defining

the elements of vector DER in terms of the elements of vector V. It

may happen that certain known constants appearing in the equations will

take on different values for different cases. These constants should

be assigned FORTRAN names in the program calling CHLOE and passed to

DE from that calling program by a COMMON statement.

To illustrate these general remarks, consider Eq, (9), the drag

equation. We have shown that the original and incremental equations

31

reduce to:

(10)

IT

dy

3T"
2 - -BC/j ♦

(11)

^ - -BKXs ^ ^4 *^^“2 * f“3 * “4

where N1 - 1, N2 > 2, N23 ■ 4, and yj «re the dependent variables

and yj and y^ are the constants to be determined.

Suppose that the function 6^ is given in the form
6^ - ♦ 2RjRj cos (Rj ♦ R^z)

where the R^ are known constants whose values may be different for

each set of measured data. Since DE is entered many times in each
computer run, it is usually a good idea to look for step-saving de­

vices when writing DE. Here, for example, we would calculate

Rg - Rj^ ♦ Rj^

h - 2R1R2
in the program that calls CHLOE and pass R^ and R^ (rather than R^

and R2) to DE by a COMCN statement.

In the same step-saving vein, it is possible to omit B from sub­

routine DE by proper scaling of the two constants to be determined.
Thus we let

V(5) . B.yj - B.Cpo

V(6) - B.y^ - B.Cp2

V(7) - B.Uj

V(8) - B.u^

V(l) - yj

V(2) - y2

V(3) - Uj

V(4) - u.

- - -

/

The conplete DE subroutine might look like this:

SUBROUTINE DE(N22,XB,V,DER)
DIMENSION V(8),DER(4)
COMMON/CC/R3,R4,RS,R6
DELSQ - R5 ♦ R6»COS(R3 ♦ R4*XB)
CD ■ V(5) ♦ V(6)*DELSQ
DER(l) ■ 1.0/V(2)
DER(2) - -CD*V(2)
DER(3) - -V(4)*DER(1)**2
DER(4) - -CD*V(4)-(V(7) ♦ V(8)*DELSQ)*V(2)
RETURN
END

Each time the program returns from CHLOE, the argument

of the latest values for

CO) - y10

will consist

C(2) ■ y20

C(3) - B-Cjjq

C(4) - B.Cd2

To obtain the desired values and CD2, we must divide C(3) and C(4)

by B in the program that calls CHLOE, as shown in the next section.

IX. COÜ4ENTS ON WRITING THE PROGRAM THAT CALLS CHLOE

In the program that calls CHLOE:

(a) the subroutine DE must be declared in an EXTERNAL statement

(b) the eight array arguments of CHLOE

A(N1 ,N4), X(N4), C(N23) , EI(N23,N23),

U(N23,N1,N4), R(N1,N4) , Y(N2,N4), RMS(Nl)

„ust be declared in a DIMENSION statement. Usually for a given

problem the values of the dimensions N1.N2 and N23 are fixed and

known, whereas the value of N4 varies from case to case within

that problem. In that event, some number equal to or larger than

the largest anticipated number of measurements should be used for

N4 in the DIMENSION statement.

(c) any known constants of the differential equations whose

values may change from case to case are assigned FORTRAN names

33

and passed to the DE subroutine by a CO»MON stateaent. This
process was Illustrated in the previous section.

To illustrate how CHLOE aight be used within the calling program,
consider our by-now faailiar drag equation problem as written up in
the sample DE subroutine of the previous section. We assume that we
have reached a stage within the calling program where the values of
XA, B and N4 have been determined and where

array A contains the measurements,
vector X contains the values of the independent variable,
vector C contains initial estimates of the four constants yjQ,

^20'

Then the portion of the calling program that invokes CHLOE might look

like this:
DO 4 NA • 1,20
CALL CHLOE (DE,1,2,4,N4,A,X,XA,C,EI,U,R.Y,RMS,IC)
C3 • C(3)/B
C4 • C(4)/B
WRITE (6,100)C(1),C(2),C3,C4
IB • IC ♦!
GOTO (5,4,3),IB

4 CONTINUE

When CHLOE is first called in the above DO-loop, the vector C
transmits the initial estimates to CHLOE and returns with the values
obtained by the first iteration. Upon each subsequent call, C trans­

mits to CHLOE the values obtained by the previous iteration and re­

turns with the latest values. If the proces . has converged (IC-0),
the program goes to statement 5 where presumably the elements of out­

put arrays R,Y and RMS will be printed. If the process has broken
down (IC-2), the program goes to statement 3, which could cause the
program to stop, to consider a new case or to take other appropriate
action. If the process has failed to converge in 20 iterations, the
program goes to the statement following statement 4, where again some
appropriate action is taken. The maximum number of iterations allowed
(the terminal parameter of the DO-loop) is, of course, arbitrary.

Probably 20 is a practical upper limit; if the process hasn't converged

by then, it isn't likely to.

X. COMMENTS ON CONVERGENCE

One difficulty with the CHLOE convergence criterion given by Eq. (17)

is that if the value of any constant to be determined is "small" (for

example, if some initial condition is zero), we may achieve a perfectly

satisfactory fit several wasteñ iterations before the criterion is sat¬

isfied - if, indeed, it ever is. In this situation, some more appropriate

criterion is needed.

For example, an input vector DMAX of N23 elements could be added to

the arguments of CHLOE, where

DMAX(L) - maximum absolute change in C(L) from one iteration

to the next that satisfies the criterion

The value of each DMAX(L) would be defined in the program that calls

CHLOE. Lines CHLOE 49 and ... 50 would have the form

IC ■ 1$ DO 22 L « 1,M23 CHLOE 49

IF(ABS(D(L)).GT.DMAX(L))GOTO 23 CHLOE 50

More sophisticated tests could be devised for special situations.

Assume now that CHLOE contains an adequate and efficient convergence

test. Troubles with convergence are not necessarily over. The CHLOE

user will encounter one of several outcomes:

1. The routine will fail to converge

a. by returning values in C that jump around from iteration

to iteration in apparently random fashion;

b. by returning progressively wilder values in array C;

c. by oscillating between two (aad occasionally more) sets

of values in array C. That is, after a number of itera¬

tions we achieve a set of constants C^ which, when sent

to CHLOE, returns as set Cß and when Cg is sent to CHLOE,

we get back C^ again. In some cases, it might be worth

while to code into the program that calls CHLOE a routine

35

to recognize this oscillation and break out of the cycle.

2. The routine will converge to the wrong answer. Wrong answers

and divergence usually occur for any one or a combination of three

reasons.

a. The set of differential equations used may be inadequate

to describe the observed variables. Any values obtained

for the constants then have little or no physical meaning

or at best require careful interpretation. This condition,

of course, is not the fault of the procedure; it is part

of the job of the user to apply the proper equations to

the measured data.

b. The noise in the measured data may be so great that one

or nore and possibly all of the constants simply can not

be well-determined.

c. The initial estimates of the constants to be determined

may be too far from the "correct'’ values. We can regard

the quantity e of Eq. (5) as a scalar point function of

the point C, where we seek the point that gives c its

absolute minimum value. If we start too far from this

desired point, the process may settle for a closer point

that gives e a relative (but not the absolute) minimum,

or the process may wander off helplessly in the wrong

direction and never find its way back. The user will

often find that some initial estimates in his problem

are much more critical than others. Convergence seems

to depend almost solely on these critical estimates;

the remaining constants can have relatively poor first

guesses with impunity.

In general, divergence is to be preferred t0 wrong answers be¬

cause we can clearly recognize divergence. There are no sign¬

posts — except possibly the size of the errors of the fit and the

strange values obtained for the constants (provided we know what

constitutes a strange value) - to warn us that we have obtained a

spurious set of results.

36

3. The routine will converge to the right answer. The reader

may have grown a little disenchanted with the process during the

reading of 1. and 2, above. He shouldn't; all this emphasis on

divergence and wrong answers has painted far too bleak a picture.

Given the right equations, good data and good initial guesses,

the process should yield consistently good results. Moreover, in

some situations, the process (or one very like it) is the only

approach available; it is the "only game in town."

REFERENCES

Theodore R. Goodman, "System Identification and Jn
Algorithm Using a Newtonian Iteration Procedure, Quarterly ot
Applied Mathematics, 24., No- 3* 249-255 (1966).

Cry T. Ch.p..n and Dorai B. Kirk, "A Method for Extrectiog Aero-
dynamic Coefficients From Free-Flight Data,' AIAA Journal, 8_, No. ,

753-758 (1970).

Charles H. Murphy, "Comments on 'A Method for Extracting Aerody-
namic Coefficients From Free-Flight Data'", AIAA Journal, 8, No. ,

2109-2111 (1970).

Lloyd N. Campbell and Glera, A. Beck, BRLESC 1/1! FOUTRAh Aberdeen
Research and Development Center Technical Report no. 5, AD No.

704343 (1970).

Monte W. Coleman, MERSON Intégration RouVng-'
1970 (one of a series of informal notes issued by the Computer
Support Division, Aberdeen Research and Development Center).

Preceding page blank
39

APPENDIX A

SUBROUTINE CM.OE IOE,NI,N2,N23,NA.A,X,XA,C.EtU.A.V.RNS«IC I ••••• »
EXTERNAL DE CMLOE 2
DIMENSION Am.NAI,XINAI.CIN23l,EIN23.N23)tU(N23,NI,NAI, CHLOE 3

D RI NI»NAItVIN2>NAI.RMSINII«VI 10011OER1100)«DI 1001 CHLOE A

STATEMENT FUNCTION
FIJI • 1.0 - ABSISIGNIIJll CHLOE 5
FIJI ■ 1.0 IJ ZFuot, 0.01J N0N2ER0I

M1-N1» M2'N2t M23-N233 MA-NA» N22-M2*M2» MT-M2A1» HMIN>-t.t IC-2 CHLOE 6
0-.0001» EPS-.001 <*<■<>* 7

0« DESIREO POUND FOR RELATIVE ACCURACY IN MERSON SUBROUTINE
EPS- RELATIVE ERROR BOUND FOR CONVERGENCE TEST

DETERMINE
XL- NO. OF POINTS IN <RRAV X LESS THAN XA
KR- NO. OF POINTS tRRAY X GREATER THAN XA

IF XA COINCIDES MITH ' INT IN X. THEN THE ELEMENTS OF
U. R ANO V FOR THAT ARE OBTAINED AT ONCE.

24 DO 1 M-1.M4» IFIX« 113.2.1
1 CONTINUES KL-M4» KK-u» GOTO 6
2 KL-M-1» KR-M4-M» DO 4 J-lr M2» IF I J.GT.M1IGOTO 4

RIJ.MI-AIJ,MI-CIJI» DO 3 L-1.M23
3 UIL.J.MI-FIL-JI
4 VU.MI-CIJ)» GOTO 6
5 KL-N-1» XR-N4-XL

CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE

STEP 1. F^R EACH L IL-I.2..N23I• DO AS FOLLOMS. FROM INITIAL
POINT XA, INTEGRATE LEFT TO POINT XIKLI AND STORE THE REQUIRED VALUES
IN ARRAYS U, R AND V. THEN INTEGRATE FROM XIKLI
STORE THE RESULTS, AND SO ON TO XII). RESETTING INITIAL CONDITIONS,
INTEGRATE FROM XA TO THE FIRST POINT ON THE RIGHT, FROM THERE TO
THE SECOND POINT AND SO OK TO XIN4I.

6 DO 15 L-1.M23 __
IFIKL.EO.OIGOTO T» IA—1* IB-0» LK-KL* GOTOB

7 IA-1* IB-M4»1* LK-IB-KR
8 Xl-XAS DO 9 J-1.M2» VIJI-CIJI
9 V(N2*JI-F(L>Jlt IFIM23.LT.MTIGOTO 11

DO 10 K-M7,N23S VIM2«KI-CIK)
10 VIM23«K l-FIL-KI
U X2-XILKIS H-0.125PIX2-X1I

CALL MERS0NIDE,N22,X1,X2,V,DER.H,HN|N,QI

IFIL.OT.I IGOTO 13« DO 12 J-l.M2
IFIJ.GT.M1IG0T0 12« RIJ,LKI-AIJ,LKI-VIJI

12 YlJ,LKI-VIJI
13 DO 14 1-1.Ml
14 UIL.I.LKI-VIN2MI* LK-LK41A» IFILK.NE.IBIGOTO 11

IFIIA.ED.IIGOTO 13« IFIKR.NE.OIGOTO T

19 CONTINUE

CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE
CHLOE

8
9

10
11
12
13
14

13
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Preceding page (dank
41

EVALUATE THE AMS ERROR OF THE FIT IN EACH MEASURED VARIARLE

CHlOE)1
CHLOE)2
CHLOE))

RA-FL0ATINA-N2))« 00 17 l-t.Nl» RN-0.0» DO té M-t.M
lé RM-RM4RII.M|«*2
17 RMSIIl-SORTI RM/RA»

STEP 2. CCMPUTS THE VECTOR 0.

CHLOE)4
CHLOE)9
CHLOE)6
CHLOE)7

DO 10 L*l.M2)» niLI-0.0
DO 18 M-1.M4
DO 18 1-1.Ml

18 D<U-0(L)»A< I.MttUU.I.M)

STEP). COMPUTE THE SYMMETRIC MATRIX E

CHLOE)8
CHLOE)9
CHLOE 40
CHLOE 41
CHLOE 42
CHLOE 4)
CHLOE 44

DO 20 N-1.M2)
DO 20 L-N.M2)» FIL.HI-0.0
no 19 M-UM4
DO 19 1-1.Ml

19 EIL.NI-EIL.NI-UIL.I.MIPUIN.I .Ml
IFIL.EQ'NIGOTO 2C« ECI.LI-EIL.NI

20 CONTINUE

STEP 4. C:mpuTE THE VECTOR G » (E INVERSEI4D.

CALL MAT|HVIE.M23,D.M2),1,DETI
UPOV RETURN, D IS REPLACED BV G, E IS REPLACED BV E INVERSE.

CHLOE 46 IFIIC.EQ.O.?R.DET.EO.O.IGOTO 2)

STEP 5. UPDATE THE VECTOR C.

CHLOE 47
CHLOE 49

DO 21 L-1.M23
21 CILI-CILI*01L »

STEP 6. TEST FOR CONVERGENCE.

IC-1» 0' 22 L-1.M2)» RA-EPSPABSICILII
IFUBSIOILII.GT.RAIGOTO 23

22 CONTINUE» IC-0» GOTO 24
IF CONVERGENCE HAS BEEN ACHIEVED IIC-OI. THE STATEMENT GOTO 24
CAUSES AN ADDITIONAL RUN THROUGH STEPS 1 TO 4 SO THAT ThE
CUTPUT ARRAYS MILL BE BASED ON THE FINAL C VALUES.

2) RETURN» END

42

/

SUBROUT INE MERSrN(FUNC*N.*.Z|V,Fh
OIMENSICN Y(l).Mil » OINENS.'ON T(100UGI100 » iS(100)
LOGICAL HC»BE»BH»BR*BX t NT-Nt 2Wt HMI>HNINt ET-ABS(E)
IF1MNI.LT.0.0)HH1.0.Cl*ABSIH) $ BH-BR>BX>.TRUE.
BC-O.O.LT.ET.ANO.ET.LT.l.O t E5-ET*5.0
IF4(2T.GT.X.AND.I'.LT.O.O).OR.(2 T.LT.X.ANO.H.GT.O.OI)H»-H
I FI NT .LE. 100) GOTO 100t PRINT l.NU STOP

. 1 FORMAT 1RUN ERROR• HERSON, N»»I1C)
100 XS-X I DO 110 J* 1 »NT f GU)-Y(J)
110 CONTINUE
200 HS>HS Q>X«H-2TS RE*.TRUE.

IFKO.LT.O.O.ANU.H.GE.O.OI.OR.IC.GT.O.O.ANO.H.LE.O.O)) GO TO 210
H«2T-X$ BR*.FALSE.

210 H3«H/3.0 $ DO 510 ISW«l,5 » CALL FUNC(NT»XtY»F) t CO A50 1*1.NT
C*H3*F(lit GOTO!301•302«303» 304.305)» !SW

301 T(I >*R*G» GOTO ACC
302 R-0.5*(C4T(ï))* GOTO AOO
303 S(H-R*3.0*QS R»0.375A(R*T(I)1(GO TO AOO
30A T(I)*R*TII)♦A.O*OS R*1.5*(R-S(1))* GO TO AOO
305 R*0.5*(OtT(I)11 0*ABS(2.0*R-1.5*(Q4S(I)))
AOO Y (I)*G(11*R S IF 11SW.NE.5) GO TO A50 $ IF (.NOT.BC»GOTO A50 » R-E5

IFIABS(Y(I)).GE.C.001)R*R*ABS(V(I))
IFI(O.LT.R).OR..NOT.BX»GOTO A20 » BR-.TRUE.» BM*.FALSE.» H*0.5*H
IFIABS(H).GE.HMI)GOTO AlO t H*S1GNI(H)*MNI» BX*.FALSE.

A10 DO All J*1»NT » YU)-GU)
All CONTINUE » X*XS» GOTO 200
A20 IFIO.GE.0.O3125*R)BE*.FALSE.
A50 CONTINUE S GOTO(5C1 » 510.503.50A.5101•ISN
501 X*X*H3$ GOTO 510
503 X*X*0.5*H3» GOTO 510
SOA X*X>0.5*H
510 CONTINUE t IF(.NCT.BC) GO TO 521

IFI.NOT.IBE.ANO.BH.AND.BR)) GO TO 520 A H*2.C*H » BX*.TRUE.
520 BH*.TRUE•
521 IFIBRI GO TO 100 t H*HSt RETURN » END

I
PERSON 2
PERSON 3
PERSON A
PERSON 5
PERSON *
PERSON T
PERSON a
PERSON 9
PERS0N10
PERS0N11
PERS0N12
PERS0M3
PERS0N1A
PERS0N15
PERS0N16
PERS0N1T
PERS0N1B
PERS0N19
PERS0N20
PERS0N21
PERSON22
PERS0N23
PERS0N2A
PERS0N25
PERS0N26
PERS0N2T
PERS0N28
PERS0N29
PERS0N30
PERS0N31
PERS0N32
PERSON33
PERS0N3A
PERS0N35

43

ËNttlftÉI ÉÍ1Í AM mmMk mamãÊÈÈÈÊÊi

APPENDIX C

SUBROUT INE HAT INV(A.NtCtNWAX,K«OET)

\\ Â’.'ÎHi «’»»’ION .. '0 « * « » »

lîiEvrî/^r.^îs,
FORMAT*tloH SINGULAR MATRIX» »

GO TO N5»I8»91

oÖ^^J-UNN * IFU-J» ll’Jt7î“L.. N,
li îl-iiJ.I» » AIJ.I»-0.0 » DO 14 L-1.N4
14 AI4»H*A(J»LI“T1*A(I»L»
15 GO TO NT,116«IT»
16 cu»-cu»-ti*cii»
17 CONTINUE
21 CONTINUE
22 RETURN » END

3
4
2
6
T
B
5

TO 22
» 00 6 J*l,N3

•••6 I
PATINV 2
MAT INV 3
PATINV 4
PATINV S
MATINV 6
PATINV T
PATINV •
MATINV 9
PATINV10
MATINVli
PATINV12
PATINV13
PATINV14
PATINV15
MATINV16
PATINV1T
PATINV18
PAT1NV19
PATINV20
MATINV21
MAT INV22

45

àiMaitiiKHHHittiiaa MWk

