






















































































paragraph, we discuss the general use of these three arguments; in

the next paragraph, we discuss what CHLOE does with them. When MERSON
is called, H must contain an estimated step size to be taken over the
interval X1 to X2. The sign of H will be changed, if necessary, to
proceed in the proper direction from X1 to reach X2. If the integra-
tion reaches a point x such that x+H exceeds the endpoint, then a
temporary step size is used so that the endpoint is reached exactly.

If input argument Q has a value equal to or greater than 1.0, the es-
timated step size is retained throughout the interval. If Q is posi-
tive but less than 1.0, relative error estimates are obtained by MERSON
at each step along the interval and the step size H will be changed if
necessary; the value of H upon return from MERSON will be the adjusted
step size. If all the relative error estimates are less than Q/32.0,
then the step size H is doubled before return. If any relative error
is greater than Q, then the step size H is halved and computation be-
gins again at the start of the interva. Step size H will be halved
as many times as necessary, unless its value becomes less than a
specified minimum step size: the input argument HMIN. In that event
HMIN will be the adjusted step size. If input HMIN is negative, then
MERSON uses one-hundredth the input step size as the minimum step size.

On line CHLOE 7, the relative error criterion Q is set at the
arbitrary value of 0.0001. On line CHLOE 6, HMIN is set negative, so
that the minimum step size will be .01 times the input step size. As
presently coded, CHLOE makes no use of the adjusted step size returned
in H from one interval to estimate the best input step size for the
next interval. On line CHLOE 22, the input step size H for each in-
terval X1 to X2 is arbitrarily set at one-eighth the interval length.
The manner in which CHLOE determines H, HMIN and Q can be easily
changed by the user to expedite his particular problem.

VIII. COMMENTS ON WRITING SUBROUTINE DE

Subroutine DE must be written by the user for his particular
version of Eqs. (3) and (8). DE is called by MERSON and thus the first

30






reduce to:

S
o
<
-

= l/yZ

g

(10) «

O
<
~N
"

‘B(Ys + Y4 62)Y2

21

(=%

c
—
"

-uzl(yz)2

g

(11) 4

=3

=
N
"

2
-B[(y3 + Y, Gz)u2 + (u3 +ug b )y2]

51

.
where N1 = 1, N2 = 2, N23 = 4, Yy and y, are the dependent variables

and Y3 and Yy, are the constants to be determined.

Suppose that the function 62 is given in the form
2 2 2
§° = Rl + R2 + 2R1R2 cos (R3 + R4z)
where the Ri are known constants whose values may be different for

each set of measured data. Since DC is entered many times in each
computer run, it is usually a good idea to look for step- saving de-
vices when writing DE. Here, for example, we would calculate
2 2
s Tule UL

R6 - 2R1R2

in the program that calls CHLOE and pass RS and R6 (rather than Rl

and Rz) to DE by a COMMON statement.

In the same step-saving vein, it is possible to omit B from sub-
routine DE by proper scaling of the two constants to be determined.
Thus we let

va) =y, V(5) = B.yg = B.Cp,
v@2) =y, V(6) =B.y, = B.Cp,
V(3) =y V(7) = B.ug
V(@4) = u, V(8) = B.u,






and passed to the DE subroutine by a COMMON statement. This
process was illustrated in the previous section.

To illustrate how CHLOE might be used within the calling program,
consider our by-now familiar drag equation problem as written up in
the sample DE subroutine of the previous section. We assume that we
have reached a stage within the calling program where the values of
XA, B and N4 have been determined and where

array A contains the measurements,
vector X contains the values of the independent variable,
vector C contains initial estimates of the four constants Y10°

Yp0» B-Cpo and B.Cpo.

Then the portion of the calling program that invokes CHLOE might look
like this:

DO 4 NA = 1,20

CALL CHLOE (DE,1,2,4,N4,A,X,XA,C,EI,U,R,Y,RMS,IC)

C3 = C(3)/B

C4 = C(4)/B

WRITE (6,100)C(1),C(2),C3,C4

IB = IC +1

GOTO (5,4,3),IB

4 CONTINUE
When CHLOE is first called in the above DO-loop, the vector C

transmits the initial estimates to CHLOE and returns with the values
obtained by the first iteration. Upon each subsequent call, C trans-
mits to CHLOE the values obtained by the previous iteration and re-
turns with the latest values. If the process has converged (IC=0),
the program goes to statement 5 where presumably the elements of out-
put arrays R,Y and RMS will be printed. If the process has broken
down (IC=2), the program goes to statement 3, which could cause the
program to stop, to consider a new case or to take other appropriate
action. If the process has failed to converge in 20 iterations, the
program goes to the statement following statement 4, where again some
appropriate action is taken. The maximum number of iterations allowed

(the terminal parameter of the DO-loop) is, of course, arbitrary.

34





























