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ABSTRACT

The classic single echelon inventory model is restruc-
' tured as a two echelon prchlem in which demand and resupply
are deterministic. Using cost minimization as the objective,

three models are developed which address the problems of

(1) no stockouts allowed (Eoé), (2) backorders allowed, and

(3) finite production with nc stockouts allowed. General

ORI

solutions for the optimal policy are obtained in the EOQ and
finite production models. In the backorder model, the ana-

lytical argument is limited to the case in which only time

dependent backorder costs occur. Algorithms are developed

. for solving problems for all three models, and selected para-

meéter values are used to test the behavior of the models.
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I. INTRODUCTION

Traditional ihvehtory analysis addresses the single
echelon inventory problem. 1In this problem, customer demands
are received and issues are made from a single outlet. The
outlet in turn is replenished from a single source.

Unfortunately, most real world inventory systems are not
this simple. A major manufacturer, for example, usually has
a production and distribution system that includes (1) fac-
tories, (2) factory warehouses, (3) regional warehouses,

(4) local warehouses, and (5) retail outlets {[Hadley and
Whitin]. Such a system is an example of a multiechelon inven-
tory system., Each level of the system is a separate, distinct
echelon, Figure 1 depicts graphically this organization. The
United States Navy with its organization of inventory control
points, supply centers, supply depots, shop stores, tenders and
underway replenishment ships provides an example of a large
multiechelon inventory system. ;

In defending their single echelon models Hadley and Whitin
argue that, eveﬁ though most real world systems are multi-
echelon, it is cften true that the system need not be treated
as multiechelon. They conténd that a different organization
frequently operates each level (echelon) of the system. 1In
the example of Figure 1, a factory and its associated ware-
houses might be operated by an equipment manufacturer whereas

the regional warehouses might be separate privately owned
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Figure 1. Typical Multiechelon Inventory System

distributorships not under the administrative control of the
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manufacturer. In like manner, the local outlets might be

Rl R Vi

individually owned retail stores. Thus we would have a sys-

ALY, P

P
’

) tem comprised of several single echelons which are linked by

a physical dependence but separated by administrative

controls.

While it is clear that there are many examples of multi-

e

echelon systems that can be treated as a series of independent
fingle echelon problems, it should be equally clear that there
is a large class of syztems which must be treated as strongly

dependent multiechelon.
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: It is the objective of this thesis to develop and investi-

adgmlid ., X

gate the behavior of multiechelon models constructed from the

o

O\

classic single echelon inventory models. Specifically, the

it o

following deterministic single-echelon models of Hadley and

Whitin will be restructured as two-echelon models:
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a. No stockouts allowed (Economic Order Quantity),

b. Backorders allowed,

¢. Finite production with no stockouts allowed.
Like their single echelon éounterparts, these two-echelon

models will be single item, single scurce models.
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II. THE TWO ECHELON MODEL WITH NO STOCKOUTS

In any study of inventory theory, one of the first models
investigated is the deterministic demand model with no stock-
outs allowed; often referred to as the Economic Order Quantity
(EOQ) model., While it is true that complete deterministic
demand is almost never known, it is felt that the mathematics
of this model provide a good starting point for any inventory
analysis. Further, it is felt that the deterministic model
will provide an insight into the operation of a stochastic
demand model. It is considered appropriate, therefore, to
begin this multiechelon analysis by considering a two echelon

extension of the classic EOQ model.

A. MODEL FORMULATION

The two echelon model is based on the following
assumptions:

1. The upper echelon always replenishes its supply from
the same outside scurce. The lower echelon always replenishes
its supply from the upper echelon.

2. The upper echelon is always able to meet the demand
of the lower echelon.

3. External customer demand always occurs at the lower
echelon,

4. The external demand rate is deterministic, continuous,

and constant with a value of A units per year.
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5. MNeither backorders nor lost sales are allowed.
6. Procurement lead time (PLT) is negligible.

* 7. The oxrder quantity at the upperogghelon, Q2, is an
o o

integer multiple of the lower echelon order quantity, Q1.

Let. n = Qz/Q1 ; then this assumption requires n > 1 and

P T NI,

.integer.

3 The optimal policy throughout this thesis will be that

i which minimizes average annual variable system cost, subject
to the constraint(s) of the model. The form of the average
annual variable system cost will be developed by first deter-

’

mining the system cost per cycle, and then dividing this cost

Vr N et bt e

by the cycle length. The total system variable cost per cycle
is the sum of the individual echelon variable cycle costs,
Kl(c) and Kz(c). The cycle length is defined as the time be-
tween receipt of two successive orders at the upper echelon

{echelon two).

The cost per cycle at echelon two is comprised of an

ordering cost, an inventory holding cost (IHC) and a purchase
cost. The ordering cost is assumed to be a constant cost per ;
order which includes the administrative costs associated with
inventory review and order (contract) preparation. This cost
is independent of the quantity on hand or on order. The IHC

includes a warehousing cost, an obsolescence cost and a fore-

HEE LR e can .

gone opportunity cost, It is assumed to be a function of the

inventory on hand and to be expressable by

LT0 R B o i AR b ter ey h

IHC = Izc{:zz(t)dt,
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Figure 2., Two-Echelon EOQ Model.

where 1, is the average cost per dollar invested in inventory
per unit time, C is the item unit cost, T is the cycle length,
and d&(t) is the on hand inventory at echelon two at time t.
The purchase cost is assumed to be independent of the quantity
produced, and can be expressed as Q,C where Q, is the gquantity
procured.

The variable cost per cycle at echelon two can now be

expresscd as

11
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Ky(c) = A, + CQ, + Izc%‘otz(t)dt (2-1)

The height of the on-hand inventory at echelon two is
: Q2 - Ql = [n"l] Ql

at the beginning of the cycle since Q, is ordered, arrives

AR L i Ty L

immediately, and is partially used to meet an immediate demand

of Ql units. The next demand at echelon two is for an amount

ETos e T

5 Ql which occurs Ql/R time units later. Similarly, another
! demand of Q, occurs after Ql/k additional time units have

passed. The on-hand level at echelon two continues to de-

: crease in steps of Q until it reaches zero. It remains at
zero for the last Ql/x time units of T. The area under the

on-hand inventory curve for one cycle of echelon two is

TATBALP X ATRF IR # g

3 therefore

i} t Q, n-1 - :
a Sk atwrae = o I no, = nln-1] g2
: \ n= i

; From (2-1), tbe total variable cost per cycle at echelon

two is

I,C nin-1} Qi
Kz(c) = A, +CQ, + X . (2- 2)

From the assumption that Q2 = an » where n is integer,

3 it follows that the cycle length at echelon two is equal to n

N AW i DNk b kead . tw et

reorders. at echelon one. Therefore, from Figure 2,

KabRasbed )

’ Q nQ
3 R (2-3)

The average annual cost at echelon two is obtained by

dividing (2-2) by (2-3) which yields

12
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A\ Izc[n-l]Qi
KZ = 6—2-— + CA + 202 v

or, as a function of Ql and n,

A\ I,CQ, [n-1]
- 2 2771 _
K2 = -—-—an + CA + > . (2-4)

Developrent of the cost per cycle at echelon one follows
an argument that is analogous to the echelon two development,
except that there is no purchase cost incurred at echelon one.
Also, from the assumption that Q2 is an integer multiple of
Q » it follows that in each cycle there are n reorders at
echelon one, i.e., Kl(c) is linear in n. Thus the cost per
cycle can be written as

nI,c03
K;(€) = ndy + ——— . (2-5)
When (2-5) is divided by (2-3) the average annual variable
cost is

AL I,CQ
k. = .1

1 9, 5 . (2-6)

The total average annual cost of the system, K, is the sum
of (2~-4) and (2-6).

A\ I,C0 A I1.C[n-1]0
K = 1 + 171 + 2 + CA + -2 1

The model has assumed that ~he unit price is independent
of the guantity ordered. Therefcre the C term in (2-7) is a
constant, and can be dropped from (2-7) resulting in (2-8)

being the average annual variable cost.
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A I.CQ A\ 1,C[n-1]Q
K - 1 + 1 1 + ...Z_ 4 2 1 . (2..8) y

3 B. OPTIMAL POLICY
Determining the optimal inventory policy involves finding
the values of Q1 and n (call them Qi and n*) which minimize

(2-8) for a given set of model parameters., To find this

policy, rewrite (2-8) as

T AT T TR T F

A [, +.1,[n-1]71CQ
K(Q,,n) = [A; + 33] %I + 3 22 2 (2-9)

.
.
k
o
5
4
H
4
bl
-
3
:

Then since K(Ql,n) is convex in Q1 for fixed n, Qi(n) must

satisfy the equation

VP LR Rt b

A [, + I,[n-1}]C
A 2 :
R U LB = 0, ;
3 1 Q i
¥ or
EE A, 1/2 3
4 * (n) 2)\[A1 + H-] (2-10) i
Qy(n) = |—= e . - 3
§E 1 [I; + I,in-1]IC %
§ After substituting (2-10) for Q, in (2-92) and collecting %

et 2L,

terms, (2-9) takes the following form:

A, 1/2 3
K(Q;(n),n) = {2A[Al + H~][Il + Izln-I]]C} ' 3
or 3
zxAzllc
* = e r———
K(Ql(n),n) ZAAlIlC + =

3
3
.’:;
b
3
Z
3
i
¥
o
4
2
3
g

+

n-1 1/2
227, I,Cln-1] + 2AA,I,C[== . (2-11)

2
w

(Eq. (2-11) [Hadley and Whitin]). In fact, it is readily seen

Note that the first term in (2-11) is equivalent to K

that each term in (2-1l1) contains a form of this classic

formula. Let

2 _ .

J
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Then (2-11) can be rewritten J

2

K 1/2

. _ Core2 . 21, .2 . 2 -1

K(n) = K(QI ,n) = {Kw + == + K),n-1] + K, [5-1} .

(RN SO LA it S i ol i e

(2-12)

T
+

It is immediately seen that (2-12) is positive for all

Ll Lo

feasible values of n (n 2 1). Further,

A R Rt
-

If the assumption that n is an integer is temporarily re-

lim K(n) = [K2 + K?,_l]l/2 ' ’

n+1l v :

and for very large values of n, §

g

1/2 3

' l. K(m) =+ K;,n 2 5 o, i
: K
4 . aK (n) 12 3
., xm., F2

: 2 3/2 ' ;

on 4n 3

;

laxed the slope of K(n) can be readily investigated by

considering ;
2 2
K21 Koz 2
Y RSP
3K _ n n < (2-13)
| 172 .
2K (n)

. If (2-13) is positive when n = 1, then it follows that it
is positive over all n, and the optimal value of n is n* = 1,
If (2-13) is negative when n = 1, then there exist values of
n such that K(n) is less than K(l). However, since it has

been shown that (2-13) is positive for very large n, it follows

i AR LT Shonr forohL Pl 30 b PN AT iAo oA 0 e T s et

that n* is finite, and satisfies

-
B
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' 3K
i = A
. o 0. %
z 2 2 11/2

K21 = ¥22 ;

1 . n* = 2 . (2"14) S
: K12 | ,5
% A further consideration of the case where (2-13) is nega- E
E i
] tive at n = 1 reveals that ;
E 2’k :
X 3n° H

L]

2 4
over the range of n values from 1 to beyond n*. Let the value §

of n where ' E

3

2

2 H

on 3

] ;
~ A 2

be denoted by n. Then in the range 1 < n < n the function 3

4 ~ 3‘;
3 K(n) is convex. For values of n > n, (2-12) is not convex. §
E However, (2-13) will always be positive. Therefore n*, given :

1
by (2-14), is the optimal non-integer value of n. The reader %
will note that the above arguments indicate that (2-12) is é
pseudo~convex, %

Since K(n) is pseudo~-convex over all n, it follows that %
K(n) is also pseudo-convex on the integer values cf n. If n¥* ?
is not an integer, then the optimal integer value of n will be f
either n (the smallest value greater than n*) or n (the é
largest value less than n*). The integer optimal will be the 3
value of n corresponding to K* = min [K(n) , K(n)] . é

In summary, the optimal inventory policy is found as E
follows:
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1. Compute K21' K22' Kl2 .

2 2 2
21 ~ Kap 2Ky, -

n optimal = 1. Go to step 8.

2. Test K

2 2 2

3. If K21 - Ky, < K12 then compute n* using (2-14).

4. If n* is an integer then n optimal = n*. Go to

step 8.

5. If n* is not an integer, compute n and n.
6. Compute K(n) and K(n) from (2-12).

7. K* = min {K(n ,K(n)} and n optimal is the value of n

corresponding to K*,
8. Compute Qi from (2-10).
C. NUMERICAL EXAMPLE

As an illustration of the algorithm, consider the follow-

ing problem where

I1 = 0,75 Az = $200.00

12 = 0,50 A = 100 units/year

Al = $25.00 C = $100/unit
Begin by computing Kij = 2XAinC .

K3, = 3.0 x 10°

kK2, = 2.0 x 10

K3, = 2.5 x 10°

2 2 _ 6 .2 _ 5
Next compare K21 K22 = l.OIx 107 > K12 = 2,5 x 107,

17

If this inequality. holds then




TINTH YR T

so compute n* using (2-14). The value is 2.0 which is
integer. Therefore n optimal = 2. Using (2-10) the optimal

order quantities are

Qi 166.67 units

and

Q3 166.67 x 2 = 333,34 units.

D. PARAMETER ANALYSIS
The primary obj:ctive of this analysis was to observe the
effect of parameter variations on optimal n. The values of
four of the five parameters were fixed and the value of the
remaining parameter was allowed to vary. The process was then
repeated for each of the other parameters so that the effect
of each could be observed.
. Representative graphs of optimal n versus a given para-
meter are illustrated in Figures 7 through 10, In Figure 7
it is seen that n optimal is inversely related to A,. lHoQ-
ever, as noted in Figure 8, there is a direct relationship
between n optimal and A,. Further, a comparison of Figures
7 and 8 reveals that, for the parameters selected, n optimal
is much more sensitive to P, than to A,.
Figures 9 and 10 indicate the relationship of n optimal
to I1 and 12, respectively. The results indicate that n
optimal is directly related to I, inversely related to I,
and that n optimal is more sensitive to a change in holding

cost at echelon two than at echelon one.

18
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‘An analysis of the effect of demand rate on n optimal
revealed that n optimal was completely insensitive to A over

the range 5 £ A £ 10,000,
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III. FINITE PRODUCTION AT THE SECOND ECHELON

An additional two echelon variation to the deterministic
models treated (Hadley and Whitin] addresses the problem of
finite production. This model would have application in any
situation where the upper ec’ elon manufactures as well as

warehouses a given product.

A. MODEL FORMULATION

The model, shown graphically in Figure 3, assumes that
-echelon two produces the needed material at a constant con~
tinuous rate of ¥ units per unit time (¢ 2 A). The cost A2 is
now considered to be a set up cost which is incurred each time
a new production run is initiated. This set up cost is inde-
pendent of the gquantity produced. The rest of the assumptions
are identical to those of the EOQ model.

The model will,'as in Section II, seek optimal values of
Ql and Q, which minimize the average annual system cost. This
cost is the sum

K = K; +K,,

where K, is the avexage Annaal cost at the ith echelon. 1In
Section II it ras shown that

R
‘."‘ + -Z'Ilcol ]

&L

[ ]

K1 =

| &

To develop K, it is necessary to define the cycle length

as

T = tl + Tp + Td P ' {3-1)
20
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5 where t; is the time from the beginning of the cycle until the ’ y
g start of production, Tp is the production length, and T4 is g
4 3
¥ ’ the time required to deplete the inventory at echelon tw» :
- after production stops (see Figure 3). Note that 5
e, = A2
i N {
0 g
T = 2 3
P e
5
and ‘%
(%
Td = X - v -, §§
i3
; Define i as the number of times that the quantity Q is e
g ‘ demanded at echelon two during the production period, Tp. 1t i
g . 3
3 ) can be seen that é
. £, 4T (-) 3

s i s [=p—f) (3-2)
where t = =, P 3
P2
As in Section II, the variable cost per cycle at echelon ii
two, KZ(C), will have the form i:
[
3 I
Ky(€) = A, + I,c [fhit) at . (3-3) 7
tl 3
3 From Figure 4 it follows that 3
3 c=[2('(:) dt = £(i) + g(i + 1) + h(i + 2), 3
1 ]
.
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] where f£(i) is the area under the first i saw teeth, g(i + 1) ]
3 is the shaded area shown in Figure 4 and h(i + 2) is the area
E E remaining under the curve.
9
- J
,/{

on-hand inventory
—

4 i
-Ql ,
‘C.I

Time"

E ‘ Qsle 9=
2 | \'r*kx_l_l

- Figure 4. Finite Production Model, Area Under the Inventory

et 3T i, AN AL e st 4 3 G ol 0 6 P

E | Curve at Echelon Two.

; ;

3 ;

e From Figure 4 it can be shown that g

¢ @} 1i-1] ofv  Qd[y-a1li-1) [i-2)
= + + (3-4) i

S £(1) —
3 2y 22 212

p: and

A Qi (n-i] (n=i-1]
h(i) = o (3-5)
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From Figure 5 the area g(i + 1) is found to be

-2 m-11?  oferit-1) |
2V 2).2 5

g(i +1) =

. 02 titn-i11 o} {111 1ya0) (3-6)
+ X * X2 y

= In-1] - @ & 1i-1]

Figure 5. Finite Production Model. Area Under
i+ ISt Saw Tooth.
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Substituting (3-4), (3-5) and (3-6) into (3-3) yields

© 12CQ§ xzcoiwli-ll
K. (C = A, + +
2 2 20 2A2

. I,00f [n~i] [a-i-1]  T,coltn-1;2

2A 2\

) 1,00291i-1] 1,002 [i[n-11]

+
22 A
I,Cli~1] [y-A]
+ . . (3-7)
A

After dividing (3-7) by the total cycle length and collecting
terms K, can be written

A\ 'IZCQlln—l] 12CQlk[n-2]

The system average annual variable cost is found by summing

Kl and K2 .

A
A [I.+I,[n-1] - I =[n-2]JcQ
K@ m) = [ap+2] + —2 P 2V L (3-9)

B. OPTIMAL POLICY
The development of an algorithm for determining the optimal
inventory policy in the finite production model follows an
argument that is identical to the one discussed in Section II,
Since (3-9) is convex in Q, for fixed n, Qi(n) must satisfy
9K(Q; /1)

e, T v
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1 a
1 218, +=21A '] 1/2
E ClI,+I,[n-1] Izwln"zﬂ
T wWhen (3-10) is substituted for Ql in (3-9) then
2 K2
: _ 2 21 2 11 o Ao
9 K(n) = [Kll + 5 + K12 [[n~1] m[n 2]1)
3 K2, 1In-1] - §In-211{1/2
3 n
? where K?. = 2\A.1I.C. ;
k. i) 17j k
It is apparent that (3-11l) is positive for all values of n. j
Further,
. .2 2 20 L L2\
4 lim K(n) = Kll + KZl + K12$ + K22117 .
* n"'l .
‘ and for very large values of n,
: 1/2
1. K(n)+k;,n'2% > 0,
~ K
3 9K 12
3 2. "a"ﬁ -+ —mz > 0 ’
] n :
2, K
3. 250 5 <o, C
on 4n ‘
‘1 If the assumption that n is an integer is temporarily
b 1
relaxed the slope of K(n) can be investigated using , ;
2 2 2
, K21, 2 A, Ka2 2Ky,
] 3t K-l 4 5T - —
- 9K _ n n yn (3-12)

n 2 K(n)l/2 )
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be finite and satisfy

If (3-12) is positive when n = 1, it is also positive over
all n and it follows that the optimal value of n is n* = 1,
If (3-12) is negative when n = 1, then there exist values of
n such that K(n) is less than K(l1). However, since it has

been shown that (3-12) is positive for very large n, n* must

oK

w5 0
or
n* = , (3-13) ;
where
a2 _ 2 -2X
Ry = Kt
and "
82 2 P=A

A further consideration of the case where (3-12) is nega-

~

tive for n = 1 will show that

2

@
=

Q’J
v
o

n

over the range of n values from 1 to beyond n*, Let the value

of n where

& dard 2R el

2

-
=

5

n

be denoted by n, and it follows that in the xange 1 s n < n

K(n) is convex. TFor values of n > n K(n) is not convex, but

1
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(3-12) is positive. Therefore a* is the optimal non integer

value of n and (3-11) is pseudo-convex,

Since (3-11) is pseudo-convex over all n, it follows that
it is also pseudo-convex on the integer values of n. So if

n* is not an integer, then the optimal value of n will cor-
respond to
K* = min[K(n), K(n)] .

The optimal policy algorithm can now be written.

2 ~2 52
1, Compute K21, 322, and K12 .

2. If Kgl < ﬁgz + ﬁz then n* = 1, Go to step 8.

12
3. If K2, > R2. + K2. then compute n* using (3-13)
. 21 22 12 Somp g .

4. If n* is an integer then n optimal = n*., Go to step

5. If n* is not an integer compute n and n.

6. Compute K(n) and K(n) from (3-11).
7. K* = min[K(n), K(n)] and n optimal is the value of n

corresponding to K*,

8. Compute QI from (3-10).

C. SPECIAL CASES OF y
When ¢ = A
Alk.+IZCQl_+A2A IZCQl

+
Ql 2 an 2 '

K{(n) =

and
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1im K(n) = Ql ¢ L2 1.
1

n-+e

Thus it is seen that if the production rate is equal to the
demand rate, the optimal policy is to start the production

line and never let it stop.

As one would expect, when ¥ > ©

AL\ I.CQ AN
lim K(n) = 1 + 12 1 + é
Yoo Ql ney
12CQ1[n-l]
+
e,

and it is immediately seen that this model degenerates to

the EOQ model of Section II.

D. NUMERICAL EXAMPLE

Consider the problem where

I, = 0.50 c = $100/unit
12 = 0,20 Ay = $50/unit
A = 25 units/year A, = $200/unit
p = 75 units/year
First compute Kij, ﬁ%z and ﬁiz.
kK2, = 5.0 x10° K2, = 1.25x 10°
k2, = 2.0 x 10° R2, = 6.67 x 10
k%, = 5.0 x 10° RZ, = 3.33x 10
29

(3-14)
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2 5

2 .05 ~2 2 _
Next compare K21 with K22 + Klz" K21 = 5.0 x 10

R i g

so compute n* using (3-13). The value is 3.64 which is not an

3 ‘ integer. Therefore n = 4 and n = 3.

From (3-11)

K(n) $685.00,

$694.00,

K(n)

and n optimal is 4. Using (3-10)

Qi = 7.2 units

p— i e

g and

g Qg = 28.8 units

é ;
4 E. PARAMETER ANALYSIS

: Figures 1l and 12 illustrate the effect of production rate

§ : on optimal n. If the holding cost at echelon two is small :

then optimal n was relatively insensitive to a change in ;

production rate (Figure 1ll). However, the results of Figure

12 show that this sensitivity increases as I, increases.
The responses of this model to parameter variations were

identical to the responses observed in Section II,
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IV. THE TWO ECHELON MODEL WITH BACKORDERS PERMITTED

A, MODEL FORMULATION

The EOQ and finite production models were based on the
assumption that all demands would be immediately satisfied.
This assumption will now be relaxed in orders to investigate
a system in which all demands are ultimately satisfied, but
where it is permissible to accumulate backorders at the lower
echelon. No backorders are allowed in echelon two.

In this model demands which occur when the lower echelon
is out of stock are backordered against future procurement.
When the procurement arrives these backordered demands are
met, and any excess-quantity is placed in stock. Fach back-
order at echelon one results in a cost of the form w + %,
where m is a fixed charge and T is a time dependent cost.

As noted, if there were no costs associated with incurring
backorders ([Hadley and Whitin], then it would be optimal to
never have any inventory on hand. Conversely, if the back-
orders are sufficiently expensive, then the optimal policy
would be to never incur any. However, for an intermediate
range of backorder costs, it will usually be optimal to incur
some backorders toward the end of the cycle.

With the exceptions noted in the preceding paragraphs, the
model is predicated on the same assumptions used in Section II.

Define s as the number of backorders at echelon one when

an order is received. Then from Figure 6 it follows that the

-
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on hand inventory at echelon one immediately after receipt of

an order is (Q1 - g) units. It is assumed that Q, 2 s. Then

the echelon one on hand inventory varies from (Ql - 8) to

zero.
Echelon II
aQZ-Q] 3
0
+
-]
g |
c i
ord e
f
o
o
5 Time -
f—— no; ——
x
>y
H
0
H
)
E Echelon I
L) N .
I \ N N I\ ,\[\
o]
2
g Time
N N \\ N Y
I« —»
A

Figure 6. Two-Echelon Beckorders Allowed Model.

The optimal policy continues to be that which minimizes

average annual variable system cost subject to the model
constraints. Since the model does not permit backorders at
the second echelon, the average annual variable cost at
echelon two will be identical to eqguation (2-4), which for

convenience is restated here.
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Azx . I2C?1[n—1]

X2 = mq; 3 (4-1)

Development of the echelon one variable costs follow
identically the single echelon backorders permitted model of
Hadley and Whitin. In the interest of brevity, this develop-
ment will be omitted and the results (equation 2-17) [Hadley

and Whitin] merely stated.

2
AjA IlplQl-s] 1 %sz
K, = + + = [ms + ] . (4-2)
179 FIoN 0 )

Summing (4-1) and (4-2), the average annual variable cost

is
2
AL AA ICIQ-s] 1 s
9 n) ) Q K
Idcojln-ll
+ .

B, OPTIMAL POLICY

The optimal solution seeks the values of the decision
variables Qi, s*, and n* which minimize (4-3) subject to the
constraint that all demands are ultimately satisfied. To do

this, note that (4-3) can be rewritten as

ICQ 2
. A\ 1l _ m™s . Xs _
K = 6; + —2—— IlCS + -q— + -261-— R (4-4)

where

X = Ilc+?r,

A = A + ’

22
n

1
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%
% Then from
) ' K
% - 0
3
. : it follows that
I,6Q, - ™
s = 21 xl ' (4~5)
z or
, ™ + Xs
3 Q = —. _ (4-6)
: Ilc
Next,
] K _ =28\ , IC _ 2ms _ X2 _ ,
T 90y 20,2 2 202 202
1 1 1

)
: results in
1 1/2 .
2R T Q. = ’;AA + 2ms + xs? (4-7)
3 1 L ic
2. To solve for Qi and s* in terms of n and the system parameters,

substitute (4-7) into (4-5) and (4-6). After collecting terms,

the resulting equations are

1/2
2,2
Q) = |BE-ZAL (4-8)
ICX -~ Il C
and ?
1/2 s
. _ 4C Jamx - 182 ™ }
ICX - Il C

The expressions (4-8) and (4-9) can now be back substituted

A N W DA Dt s o N e

for Q, and s in (4-4) to yield an expression for the average
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annual variable cost, K, 'as a function of n and the system
parameters. After regrouping the terms this expression can

be written

{IC[1,C+n}-15C°] [2AX[1,CH] TN €] I.CmA
1 1 1 1
Kn) = - + sl
H1C4-ﬂ] 1=

(4-10)

Equations (4-8), (4-9), and (4-10) are valid only if
ZAAIC'- nzxz > 0. Otherwise an analysis similar to that of
Hadley and Whitin is required for the case when 7 and T are
positive. Such an analysis is beyond the scope of this thesis,

Because of the complex form of K(n) given by (4-10) as a
function of n no attempt was made to evaluate whether or not
K(n) was convex ox pseudo-convex in n when m and T are both
positive. However, an example is presented later in which an
optimal value of n > 1 is obtained for m and T positive.

If n = 0 (4-10) reduces to

I 1/2
lC

K(n) = [28\IC - ZAAIlC —§~] ¢ (4-11)
To expand (4-11), let

k2. = 2AA.I.C 4-12

ij = Ryl (4-12)
Then,
1,2 2 Kglx
K2,xIn-11 K2, I, C 1/2
o . K¢ I, C - e
n 11 71 n '
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and.since X = IlC + 7, K(n) reduces to ¢
¢ 2 -~ 2 -
: K m K m
S K(n) = 2, Kiz[n-ll
: I,C4m n[IlC+w]
4 : ngln-l] 172 ;
3 . . + commm————— . (4"13)
. n :
B g
= Following the analysis of Section II, it is immediately 3
% | seen that (4-13) is positive for all feasible values of n, and g
;! that :
’ E ~ ey 1'/:‘4 A - %
% K27+ K27 .
k lim K(n) = - by
1 n+1 I,C+ P
4 © 4
g Also, as n gets very large E
1 1. K(n)=K nl/2 5 ' :
oK 12 3
- . 2. n 172 >0 ' 9"’
3 2n 3
2 K ,
§ 3. XX, <o,
on 2n 3
i3
Assume, for the sake of argument, that n is continuous ;3
3
for all n > 1. Then 3
3
2 2 X
“K7a1 . k2. 4 S22 j
2 [x C+?r]n2 12 n:Z 3
r = 2 72 (4-14) i
3n K (n) 3
) and it is obvious that for n = 1 (4-14) is non negative if and i
only if E
;
3
3
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: I,C
. ] 2 2 2 1 -
- |
| If (4-15) holds, then (4-14) is positive for all n., This
f; implies that over all n, the slope of K(n) is positive, and
3
E i n* = ln
l
Ei IF (4-14) is negative at n = 1, then there exist values
f; of n such that K(n) < K(l1l). However, it has been shown that
=
n for very large n, (4-14) is positive, and it follows that n*
is finite and satisfies
9K _
m - 0
or
- i ~ A l 2
- k2,5 - K2, 1y + |7
e n* = 3 — (4-16)
2 K}, [1,C + 7] j
L
f 2 To complete the argument, note that when (4-14) is
= . negative at n = 1,
2
a_g. >0
on
over the range of n values from 1 to beyond n*, Let the value
of n where
| 3%k _
i —2 = 0
i on
i
{

be noted by ﬁ, and it follows that K(n) is convex over the
range 1 < n < n. For values of n > ﬁ, (4-13) ié not convex,
but in this range (4-14) is always positive. Therefore n*

given by (4-16) is the optimal non integer value of n. The
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reader should again note’ that the above arguments indicate
that (4-13) is pseudo-convex.

Since K(n) is pseudo-convex over all n, it is also pseudo-
convex on the integer values of n. Therefore, if (4-16) does
not yield an integer value then the optimal value of n can be
found by evaluating K(n) and K(n) as in Section II.

An algorithm for finding the optimal policy (in the case

where m = () can now be stated.

2 2 2

l. Compute K21' K22' and K12 .
2. mest k2, ¢ (K2, + K2,1(1 + 1] . If the inequalit 52
- 1€ 21 = Yf12 22 Ca inequ Y (.

holds then n optimal is 1. Go to step 8.

I.C

] : 2 2 2 1 :
- 3. If “21 > [Ki2 + K22][l + —5-] then compute n* using

s o

(4-16) .

et STl s % Y

4, If n* is an integer then n optimal = n*, Go to step 8.

e LI,

5. If n* is not an integer compute n and n.

6. Compute K(n) and K(n) from (4-13).

7. K* = min[K(n) and K{n)] and n optimal is the value of °
n corresnonding to K*,

8. Compute Qi from ?

A, }

f (A, + =l 1/2 i

Qi (n) = A A 4 ::
lS[IlIZC[n-l] + 1,7 + I,7(n-1]] :

and s* from
I,C 03'11/2
IlC + tJ

s*(n) =

A B od W AR AT Fia A e

fa Yo AT E 0 St i,

[
1
1]
for
)
1
k& )
s

Stk 0y 0k YN 3t




C. NUMERICAL EXAMPLE

Consider the problem where

I1 =

-
1

>
L]

>
"

Begin

2
Next compare K21

0.75 T o=

0.25 T o=

$25.00 A =

$100.00 c =
by computing Kij = ZAAiI

k2, = 1.5 x 10°

K2, = 5.0 x 10°

K3, = 1.25 x 10°

2 2
<[K12 + Kzzl[l +

$5.00
$100.00/year
100 units/year

$100/unit

.C.
J

IlC

—=]. The inequality does

L

not hold so compute n* using (4-17). The value is 1.69 which

is not an

and

integer. From (4-13)
K(n) = $735.00
K(n) = $620.00

Therefore optimal n =

are now found to be

1. The values of Qi ' Qg , and s*

Qi = 12.9% units
05 = 12.9 units
s* = 8,16 units.
39
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D. PARAMETER ANALYSIS )
{ As noted previously, computational difficulties preclude

an analytical treatment of the general form of the backorder

model. However, the response of the model to parameter

variations can be approximated. This can be accomplished by
.considering separately the two functions (3-1l) and (3-2) and
1 ignoring, for now, the integer restriction on n.
» Equation (4-1) can be rewritten

Azk IZC[Q2 - Ql]

g K2=Q2+ z ,

and since the second term is never negative, it is obvious

P .

that K2 is convex in 02 . Using the Hessian it can be shown

that (4-2) is convex in Q and s if and only if

22 A [1,C + 7] 2 [M)2 . (4-18) ;

. Then ,i
2 z

. Ay I,CclQ, - s] oy
T s Al | o Lms + 152 ;

0 20, 07

R

AL I.CIQ. - Q.1 B
+ 2 2_ 2 1 (4-19)
Q2 2

is convex if and only if (4-18) holds.

It can be shown that when (4-19) is not convex the optimal

I PR, HC-EVER WA SPNTS DRI

inventory policy will be realized when backorders are not
allowed (s* = 0). Thus if (4-18) does not hold, the problem

can be solved by setting s* = 0 and using the algorithm

de.cribed in Section II to get Qi ané n¥,

PR
o N vt RIS N B U B3 SN B 0 F 7 £ e ATk
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For the case where (4-19) is convex, optimal Q. 02 and

3 can be found from

. . (4-20)

Equation (4-20) will be satisfied when

rzx [nA, + A,][I,C+7) - nudr? 1/2
_ 1 2 1l
F = = 5 - . (4-21)
n[IlC + 71 + IIIZC [n-1] + Izcn[n-l]
Ilch(n) - TA
s*(n) = - ' (4-22)
Ilc + 7
and g
o
Q3(n) = nQy(n) , (4-23)

and the optimal policy can be found from the following

algorithm.

l, Setn=1.

A Bt s i ATRAT AN A EPn L et

2. Compute Q}(n), s*(n), Qj(n) and K(n) using equations ;

(4-21) through (%-23) and (4-19). : ;

3. Set n = 2 and repeat step 2.

rbte st busy

4. If K(1l) < K(2), stop; n* = 1 and the optimal policy

Aren Loxra

is known.

5. If K(2) <« K(1), set n = 3 and repeat step 2.

6. Continue solving K(n) by increasing n in steps of 1

Snnst v ks

until K(n+l) 2 K(n). Stop as soon as K(n) < K(n+l); n* =

current valie of n and the optimal solution has been found.
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The algorithm described in the preceding paragraph was
uced to observe the effect of parameter variations cn optimal
n. In general, the results were similar to those observed in

the EOQ model. For example, n optimal varied inversely with

A, and I, but directly with A, and Il'

1
The sensitivity of n to the various parameters was highly

dependent on the selected values of the backorder costs. For
example, Figure 13 illustrates the relationship betweeﬁ optimal
n and I, in a situation where the backorder cost is small.
Figure 14 illustrates this same example with a high time de-
pendent backorder cost. The difference in the sensitivity is
obvious.

Figures 15 and 16 illustrate the relationship of optimal n
to a change in Az. In Figure 15 the backorder costs were low,
and optimal n was insensitive to a change in AZ‘ In this
example optimal n remained at two, and s* increased as A,
increased. When the time dependent backorder cos: was high
optimal n varied directly with A2 (FPigure 16). However, the
change in optkmal n was not nearly as large as in the EOQ model.

Figures 17 through 20 illustrate the relative magnitude of
Qi ' 05 , and s* as Az and 12 are allowed to vary. The breaks

in these curves occur at points where optimal n changes.
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A V. RECOMMENDATIONS FOR FU™ I{ER STUDY

The analysis of the backorders permitted model should be

I TN AT

completed for all values of the backorder costs m and T in-
cluding the case where 7 > 0 and T = 0, Hadley and Whitin
discuss this case in their single echelon development and

conclude that if T o= 0 then s* is either 0 or infinite,

Initial investigations indicated that in the two echelon inodel

there could exist a finite value of s* > 0 when % = 0. How-

ever, this investigation was not completed and no conclusions

were reached.

It is felt that the analytical argument used throughout

Ry T

the paper could be applied to the general backorder case where

. 7 and T are ooth greater than zero. However, the complexity of

L YAAAN st Ln g it et 2

the equations would greatly complicate this development.

The models discussed in this thesis should be extended to
more than one activ}ty at each echelon. 1If it can be assumed
that all activities within a given echelon ordef at the same :
time, then it is particularly easy to include multiple activ- g
ities within an echelon. For example, assume that there are g

K activities in echelon one. Then in the EOQ model K1 would

Y 47 NS 5 A B s il

* take the form
: kA Ay T44C055 {
; Kl - 2 Q + 2 > :.I
i=1{ Qi '

Ili' and C are constant

If the values of the parameters Ai' Ai'

for all i, i = 1,...,k, then the expression for Kl reduces to

-4

a

]

3
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the trivial case of

K! = kKi'

where Ki is found in Section Il1. The expression for K2
remains unchanged. ;
The problem of multiple activities at the top echelon is
usually not a very interesting one, since each top echelon
activity is usually responsible for supplying specif{ied activ-
ities at the next lower echelon. Therefore, unless the model

provides for lateral resupply actions, the problem of multiple

1 activities at the top echelon can be reduced to the sum of a

%?; series of independent problems, each containing one top

N NG 2

; echelon activity.
A A related problem which should be investigated is the ex-

tension of the models to more than 2 echelons. In the case

2k RENE S0 it 4 U S A e

where each echelon is limited to one activity, this extension
would not be difficult. Indeed, given the assumption that there

is an integer ratio between the quantity ordered by successive.

2 neD il bk LI R 4ohen Y

echelons, the model would probably take the form

FEPTEAS

m
K = jzlxj ,

where the relationship between the Qj's is
| Q =m*'9Q

F == . = O O
Q3 = my *Qy=mn,°ny *Q

ot e , .
R B ATNADE S (o lafokt f Bt L Tt (A ANS

j=1
Q. =n, , *Q _,= 1T no0,, 1
3 j-1 j-1 j=1 1 1l ;
and nK is an integer for all k, k = 1,...,j-1. Because of the A
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%;
: :
: ;
§ integer property of the nk's, the solution technigue outlined ;
3 in Chapter II could be used to solve recursively for K. §
-4 A‘
3 ) If the m-echelon problem allows ki activities at the ith g
3 echelon, i = l,...,m, then for large values of ki andé m, the é
3 ) sheer magnitude of the problem would make its solution ex- E
g k
E tremely difficult. In fact, it is doubtful that the proce- E
; dures suggested in this paper could be utilized for a problem E
: of this type. However, if the model is small enough, one §
%

. 4

1 could at least get a "feel" of the model's behavior. 5
|
] y
E i
3 é
| z
E ) i
!

| ]
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VI, SUMMARY

Three of the deterministic models of Hadley and Whitin

have been restructured as two echelon models. Equations for

the average annual variable cost are derived, and standard

mathematical programming techniqgues are utilized to £find the
optimal inventory policy. The optimal policy is defined as
that which minimizes average annual variable cost subject to
the constraints of the model.

General solutions are obtained for the EOQ and finite
production riodels. Because of the complexity of the cost equa-
tion the analytical solution of the backorders permitted model
is limited to the case where m = 0. However, a technique is
developed which can be used to find the optimal policy in the
general case.

A parametric analysis is conducted for each model in order

to study the behavior of the models under parameter variations.

The behavior of the curves of n optimal for the EOQ and finite
production models were identical except that the finite produc-
tion model enjoyed a significant cost advantage. The behavior
of the backorder model was very dependent on the magnitude of
the backorder cost. For example, if the model had a low time
dependent backorder cost then parameter variations had little
effect on the optimal behavior of the model. However, if the
backorder cost was set sufficiently high then the model's

behavior was similar to that of the ECQ model. Figures 7
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through 20 illustrate the behavior of the three models under

varying parameter values.
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Figure 17. QI ' QE and s* A, Backorder Model
with Low Backorder Costs.
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