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Missile ballistics, Lebedev, A.'A.,-Gerasyuta,
N. F., "Mechanidal enginegring," 1970, p. 244.

This book 1s devoted to an examination of the
. methods of solving certain problems of the
t ballistics of long-range missiles. Consilderable
: attention is allotted to questions of the inter-
action of various parts of the rocket and the
control system, and also to the interdependent
(. solution of problems of ballistics, dynamics,

\ coptrol and firing, to the subordinate require-
ment of optimizing theé basic characteristics of
the missile — maximum range and firing acocureacy.
The flight conditions of the missile, the ¢harac-

: teristics of the missile as a gulded mechanical
! i system, the general equations of motion of the
rocket, setting data for firing, maximum range,
.launching dynamics anél separation processes, the
i dynamics of the unguided nose section, missile-
deflection,! the selection of the ‘optimum trajec-
' tory are examined. - _ _
This book is intendel for engineers and
sclentists who are invnived with questions of
' missile design and resc<arch and missile control
systems. It will also be useful to students
} Y, pursulng a&vanceducollego courses 1in. correspond- -
ing speolalities, - ‘ ' S
]

ot , | 96 1ilustrations. 9 ta&les{,§3i biblio-
ot - 'gr§phic entries. : o
_ ‘ +¢ & \ |

V- ! . 3 L ’
., . Reviewed by Ductor of Physico-Mathematisal Seienves G. S. Narimanov

™ : i 4
o H

~ 3{Translator's note: The Russian term 1 more at dispersion].
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FOREWORD

This book examines some problems of the ballistics of long-range
guided missiles. The selection of these problems was influenced by
- the monograph "Ballistics of Long-Range Guided Missiles" by R. F.
Appazov, S. S. Lavrov and V. P, Mishin. The authors of this book
have first of all attempted to develop those aections of_balliatics
which were only covered briefly or oompiete;y‘omitted in the mentioned
_ monograph. L o o

_ In:the'practicallﬁork_or_ensineers 1nvolVeq in designing any
products, the necessity of ¢~ving and correlating numerous inter-

~ dependent problems and questions for the purpose of ensuring diverse
. and usually inconsistent technica}l abecifieations, imposed or a -

~ product 1is characteristic, In this case the solution of anj.design
problem is begun, as a rule, by tﬁe engineer by compiling or sub- E
stantiating a rational mathematical model of' the product, sufficiently
-ecomplex for cottaining the correst ansuar7§o the posed queation, and
at‘the~aame time sufficlently simple, so that the expenditures of
laboyp and'time-cnrthe calculations are not excessively great,

In sonnection with the introduction of contemporary cot, uter
technology into engineering ~  practice making 1t possible to solve
very complex technical problems, the importance of operations in the
compiling and substentiating mathematical models has incressed and
thefespendltures'or 1ator by engineers on those types of operations
‘have becomie greater. Considering what has been stated, in stating
the main problems of ballistics (investigating the motion of a sissile -

FID-NT-24-1176-71 vii
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in the transitional phases of the trajectory, investigating the mution
of the nose section, calculating the dispersion of the nose section
impact points, selecting of the type of missile trajectory, determining
the setting data for missile launching, ensuring the maximum firing
range) the authors intend:

1) to show the characteristics of a long-range guided
ballistic missile as a very complex object of dynamic design and to
show the connections between ballistics, dynamics, control, riring,
strength, construction and operational questions;

2) to examine the mathematical mcdels employed in solving

"~ various ballistic problems, to show the dependence of the relationships
. considered in the models on the purpose of the investigation and the
design specifications imposed on a missile, =and also to show the
necessity of taking numerous random perturbing factors into
_consideration.

" The calculation methods and the results of actual solutions of
ballistic problews are not examined in this book =t 1s assumed that.
the basic method of obtainlns the numeri»al results are by ealeulationa
- on digital uanpntera._

The preeentation of the above. enum&rated problﬂ&s and questions
is carried out using long-range valllstic missiles uith 1iquid-

-.of dynamic design are aubssantlnlly sirplified, which in turn pakes
1_1t p@asisle to siapliry ‘the. presontatian and the stuﬂy of the naeerial

o m mxs t:aok.

In their wpﬁk.bn thingcok'&hé duthors constantly obtained

,_{_ rraendly'aacaeraaion frosm their many courades, to whots they wish to
- expresa their deep appregistion, Tie authors are alsce grateful to the |

, revienar. Daetar»ur Phyaien»sathcautiual Seien»es 0. S. Narinanov -

PRI TR o vn

'*;fpropellant engines as e:amples whose thrus& is governed. By exnninlng B
. “long-range miassiles, 1t i3 possible to very graphically show the effect

- -of various factors on the solution of balllstie problems. Since
::,?liquid~pragﬁilaht wissiles, with controlled thrust have comparatively
"jsiaple QELLPOT ¥ steus, sany interrelations batueen various questions -

K 1
A

ISR I R
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for a number of useful remarks, which made it possible to improve the
contents of their book.

It is requested that opinions and suggestions concerning this
book be sent to the fellowing address: Moscow, B-66, No. 1 Basmannyy
Alley, 3, "Mechanical engineering” publishing house.
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CONVENTIONAL DESIGNATIONS
{for missile and nose section)

speed of souna in the atmosphere; semimajor axis of
terrestrial ellipsoid;

semiminor axis of terrestrial ellipsoid;

ccefficients of drag, 1ift and side force
respectively;

coefficients of axial aerodynamic force;
coefficients of normal aerodynamlc force;
coefficient of transverse aerodynamic’ force;
diameter of maximum cross section;

eccentricity of terrestrial ellipsold;
resultant of complete aerodynamic force and the

- attractive force;

GTOFU'}
g -

FID=MT-24-2176-71

gravitational constant;
force of gravity (weight of the object);
iaunch weight of the missile;
attractive force of the earth;
weight of fuel; '
welght per-second rate of fuel consumption
(o=%)
at 1/’
acceleration due to gravity;

acceleration due to gravity on the surface of the
earth;

acceleration due to attractive force (gravity);

height of the center .of mass of the object over the
surface of the terrestrial ellipsoid;

controliing functional;

e v R L8 D €7
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Jxl' Jyl’ le - moments of inertla relative to the body axes Oxl,
Oyl, Ozl, coineiding with the main central axes; 3
J < acceleration of the center of mass of an object.in

a relative (terrestrial) coordinate system;

Ja - absolute acceleration of the center of mass of an
object;

Ju - centrifugal acceleration;

c " coriolls acceleration;

K -~ ratio of oxidizer weight to fuel weight;

L - missile flight range;

1 - length of the object;

M - Mach number;

M - moment of force; mass of' the earth;

Mxl’ Myl’ le - moments of bank, yaw and piteh respectively}

m - mass of the object;

h - mass flow rate per second through the nozzle exit
eross sectlon;

Myeqs myl’ B,y - coefficlents of bank, yaw, pitch moments respectively;

P -~ rocket englne thrust;
P - the specific rocket engine thrust;

p - alr or gas pressure;

q - dypamic pressure;

7 qy - generallized coordinates of a missile;

&;‘ ‘ Qy - dynamic pressure taking wind velocity into account;

R -~ radius of the terrestrial sphere; complete aero-
dynamlic force; .

Re ~ Reynolds number;

r - distance between the center of mass of the object
g + and the center of the earth; -

- area of maximum cross secticn;

- apparent path;

- absolute air or fuel temperature in °K;
time; '

- moment of the btermination of powered-flight phase
(separation of nose section);

: - ground speed of the center of mass of the object
1y ' (when ‘there is no wind, it colncides with airspeed);
& the volume of fuel or fuel system;

%
< I 4 3w, W
)

3
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V“ - velocity of the center of mass of the object relative
to the atmosphere (and also relative to the earth
when there is no wind);

W - wind velocity relative to éhe earth;
w - apparenl missile velocity;

X - drag;

1" axial force;

3

- coordinate of the center of mass of the object along
terrestrial axis 0x3,

Xx__ -~ distance from the apex of the obJect to the
controlling engines or other control elements;

X, - distance from the apex of the object to the center
) of presasure;

X, - distance from the apex of the object to the center
ot mass (center of gravity);

Y - 1ift;
- normal forue;

yg - coordinate of the center of mass of the objJect along
terrestrial axis Oya;

Z - side force;
Z1 - lateral force;

Zy = coordinate of the center of mass of the object along
terrestrial axis Oza;

A - geodetic azimuth of the direction of firing
(Chap. VII and VIILi);

o -~ angle of attack; H'lar compression of terrestrial
ellipsoid;

- angle’ of attack ta.ing wind velonity into ace¢ount;

- aspeciric gravity; angle of bank;
- angle of deflection of che control elements;

o Sp» §_ =~ angle of deflectlion of the control elements by piteh,
yaw and bank respectively;

: 61, 62, 63, Gu ~ angles of deflection of the control elements;

W
‘B--. angle of sldesliip;
y
8

L - coordinate of the ¢enter of mass of the missile along
inertial exis 0Of;

n - angle of bank of missile relative to initial launch
coordinate system; coordinate of the center of mass
of the missile along inertial axis On;

@ - angle between the veloeclty vector and the loeal
herilzon;

FTD=MT=24-1176<71 xii
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angle between airspeed véctor Vw and the local
horizon; .+

angle of pitch;
geocentric and geodetic longitude;

angle of yaw of a missile relative to the initial
launch coordinate system; coordinate of the center
of mass of a missile along inertial axis Ot

air density;

angle of pitch of a missile relative to initial launch
coordinate system;

geodetic latitude;

geocentfic latitude;

azimuth of the projection of the veloeity vector
on the horizonal plane;

angle of yaw firing azimuth (Chap. II);

azimuth of wind direction;

projections of the angular velocity vector of the
object on the body axes Oxl, Oyl, Ozl;

angular spin rate of the earth.

xiil
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INTRODUCTION

By ballistic missile is customarily understood a guided flight
vehlcle with a rocket engine, intended for the dellvery of a payload
~ over long distances along an assigned open flight path, the greater
part of which is an unpowered flight path.

‘Characteristics of ballistic missiie trajectories. Depending on
the forces acting on a ballistic missile, 1ts flight path can be
divided into three sections (Fig. 0.1):

A ~ powered-flight phase, i.e., the flight phase wilth the engine
system operating , in which, as a rule, missile flight control is
belng carried out;

B - unpowered-flight phase, in which the misslile moves as a free
body. Usually this phase occurs at a comparatively high altitude,
where the aerodynanmic forces are very low and the missile moves
practically only under the effect of gravity;

C - descent phase in the dense layers of the atmosphere, in which
the aerodynamic forces have a sign!ficant effect on missile flight.

Since in phases B and C the engine system 18 not working and the o
rocket is affected only by gravity and aerodynamic forces, the
corresponding flight path is ballistic, but the B-C flight phase itself
of a ballistic missile is called the passive, or ballistic phase.

FID=MT=24~1176-71 xiv




missile motion at the beginning of unpowered flight (l.e. at the end

S \ R

Fig. 0.1. Trajectory of a
ballistic missile.
~ KEY: (1) earth.

The unpowered-flight phase is determined by the parameters of

of the powered phase): by the coordinates of the center of mass of
the misslle and by the pfojections of its veloeity. In particular,
the coordinates of the point of impact of a rocket on the surface of
the earth depend on the parameters of the motion of a missile at the
end of the powered-flight phase and on a number of other factors, for
example, on the condition of the atmosphere in the descent phase, on
anomalies in the gravitational field of the earth, etec. Thus, in 9
order that a missile carry out the mission assigned to it, it is
necessary at the end or"the powered-flight phase that it have
completely definite values of the parameters of motion of the center
of mass of the missile.

Rocket complex. The preparation of ballistic missile for launch-
ing 1is performed by a missile oomplez which ensures the carrying out
of the prelaunch cycle of operations and the launching of missiles.
Included in a missile complex, besides the missliles which are the
means for dellvering warheads to a target area, are:

1) launching installations with aggregates of operational
equipnient, servicing and communications systenms;

2) the launch control system with the control center and
communications;

PTD=MT«24~1176-71 : xv




3) the aiming’syst@m and the outboard [that which is not onboard]
flight guldance equipment.

The characteristics of missile complex in many respects are
Qetermined by the type of launch positions. Depending on the
conditions of missile application and the requirements, imposed for
protecting the launch positions, various types of launches can be
employed; from moblle ground-based launchers, from silo-launching

‘structures, ete. : i

The basic characteristics of a missile complex are range and
firing accuracy, warhead effectiveness, capability of overcoming
antimissile systems, combat readiness, reliability, service life, .
production and operational economy, ease of servicing. These
characteristics are iﬂtimately connected with each other and, as a
rule, are conflleting.

A missile complex is a complex system consisting of a large
number of elements connected with each other. However the complexity
of a missile complex is due not only to the large number of inter-
connections. It is very significant and characteristic that the
connections between the individual elements of a complex are
qualitatively different and c=ach of them has an individusl importance.
The latter means that the malfunction of only one connection can
disturb the launch or the normal flight of the missile.

In creating a missile complex its elements are examined as parts
of an entirety and each of the elements is developed so as to ensure
the‘required characteristics of the complex as a whole.

A missile and its component systems. Contemporary ballistic mis-
3iles are distinguished by the divéraity of their structural shapes. ' .
They can be single- and multistage with sequential ("tandem" config-
uration) and parallel ("packet" configuration) stage arrangement, used
as a liquid or solid fuel working body, etc. The difference in the
designs depends upon the purpose of the migsile and the requirements,
imposed on it, and also on the level of the development of technology.
These conditions also determine the scleotion of the structural layout

FTD=MT=24-1176-71 xvi




of a missile, type of propellant and engine, mégpod of launch, ete.

7 According to the type of propellant employed ballistic missiles

'~ are divlded into liquid- and solid-propellant rockets. With respect
to specific thrust impulse liquid rocket propellants have advantages
as compared with the existing solid propellants. A significant
advantage of liquid-propellant rocket epgines 1s the possibility of
multiple starting and stopping and also'the possibility of controlling
the thrust magnitude in flight for reducing the flight path deflection
of a missile during the powered-flight phase. '

Solid-propellant rockets as compared with liquid-propellant
rockets, as a rule, have a simpler design. However as a result of the
large deviations in the basic characteristics of solid-propellant
engines (thrust and welght flow rate per second) great deflection in
missile flight path in the powered-flight phase from their optimum
values occurs. This gives rise to complication of the flight control
system. Subsequently we will examine the individual questions
connected with missile design, as illustrated by liquid=-propellant
rockets.

Intercontinental balllstic missiles, as a rule, are made multi-
staged, most frequently two-staged with sequential stage arrangement.
Such missiles consist of three sequentially positioned parts: the
separable first stage part, the second stage housing and the nose
section (Pig. 0.2). In flight after a missile has attained the
-assigned velocity (or upon hurnout) the control system issues the
command for the shut-down of the first-stage engines, stage separation
and the atarting of the second-stage engine. At the end of the
powered-flight phase upon a comnand which is shaped by the control
system on the basis of information about the parameters of missile
metion, the second-stage engines are shut down and the nose section
is separated from the seconi-stage housing.

Each of the stages of a liquid-propellant rocket, as a rule,
consists of a fuel compartment, a compartment for positioning of
.1natrunent§ and the control system apparatus and a tail section for -
' accomodation of the engine system. To ensure the operation of the
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Fig. 0.2. Diagram of a two-stage liquid-propellant

‘KEY: (1) 1st stage separating part; (2) 2nd stage
housing; (3) nose section; {4a) 2nd stage (4b) 1st

engine system a number of special systems is included in this stage:
pressurization of the fuel tanks, synchronous emptying of tanks.

The fuel tank gresburizigg system 1s intended for creating
pressure excesses in the tanks before starting the engines and during

The system for the synchronous emptying of the tanks 1s installed -

to regulate the volumetric expenditure of the fuel components.
systen shapes command signals in such a way, 50 as at the moment of
‘engine shut-down during riring for maximum possible range to ensure
complete coensurption of both propellant components.
. the absence of this system as a result of an unavoidably arising
deviation in the ratio of the weight consumption rate per second of
- the propellant components toward the end of the operation of the
‘engine systems in one of the rocket tanks the unused working ,
propellant auppiiea roaain. which lead %o a reduction in the maximum

In the case of




" the vicinity of the target with the required &couracy.

"'complex is developed on the basis of the tactioal-tcchnioal apecifienq
’tions. which define its purpose, technicll and operational characteris- .

: charaoteristics of a missile 1& is posaible to. include range and
.' f1rtng accuracy, type of payload and its ugight,&the ‘possibility o ¢
- its overcoming the means of antimtssile defonbe.ﬁlaunch welight,
type of launch, engine model and propellant eonponents, the runber ot
_rocket stages, the type of tlight concrol systtm, combat readinaas. Voo
) and t‘euabinw. - : . : o

. ’phaaes‘ In the first phase varicus types of exploratory prodedures
~and preliminary investigations are carried out, a large nuibeﬁ of
- -diverse vapriants of uissile eoaplex layouts is exanined. The prohleis
of this phase tre evaluating the possibilities of creating & nissdle '
. complex, satisfying the asaigned taetieo~tcchni¢:l ﬁequir@ueots, the

L PMbMeel76e7y . Mk -
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The level monitoring . sxstem'serves for the remote monitoring of
the oxidizer and fuel levels in the tanks during servicing and for :
giving commands to the servicing units at the end of servicing. The
level monitoring system also makes it possible 'to periodically monitor
the levels of the propellant constituents in the tanks during th;

prolonged storage of a fueled rocket. , | 1

Each stage of a missile has control ¢lemenis whose derlection for
the creation of controlling moments is accomplishéd by control acguators.
At the present time a large number of diverse balliistic missile control
elements is known, among which the most frequently used are turnlng

combustion chambers. \

1 1
. * } * :
The flight control system is the totality of instruments and '
devices which ensure in accordance with the executed: aiming the
controlled flight of a missile and the 1mpact of its hoae sectipn in

[

¢
The basic stages in tho dovolopnont of a nissi!o complex.! -Nissile

ties, and the interaction of its eonponent parts. Anong the blsic

The proeéss of dev&loping a nlssile vqnplex 1neludsn a nuaber of

" igee, -for easwple, buok (201,
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selecting of an optimum vdariant (or vériaﬁts) and the obtaining of
origipal data ror babic planniﬁg, whioh are abeent in the tactico-

~techn1cal requirements, and also estimating ‘the cost for carrying out

all'‘the operations and their execytion times. i

1 . . ¢
} Of the 1arg? number of questions, usually examined during pre-
liminary planning, let us take note, fbr example, the following:
aelection of the missile Jlayout, evaluation of the weight and
centering [e.g] eharacteristics, selection of the propellant com-

~;ponﬂnts, selection of the main and control engines.

The result of the first,phase opeiations is 8 pre-draft design
of the missile.. In the pre-draft design, preliminary materials on
ball;sti%s (f1ight-path, calculations), aerodynamic characteristics,
strength, controllability, micsile syability. etc., are presented,

Furthersore, materials on the possibility of using existing ground

" equipment, and also the existing production capacities are presented.
. L) - l . . ; . . . ) . L.

i
‘Y

 The necond developuont phase 1s the bacte dcctgning whiah t by

;trldition is rraquontly called sketok destgning. Before the beginning
. of this phase the individual tactical and teohnical data of the missile
~ complex, the composition and the chlraetoriatics or 1ta basto parts
:u$e made more precise. . . . .

(

In the basiec dasisning phase inndepth stnd:es of all queseion»

"ubnnoeted with the ereauinx of & missile and the zround equipment of
~ the complex are carried dut. Por this, besides calculations, labora-
tory 1nvestagations and oxperiunntal sdjustment of various units,
i'su&nsxenblles and systons are exployed.  Thus, for instance, labora-

' *'rgeory {nvestigations and ddjustient of the instruments and subn-neiblieiﬁ

. of the conirol syiteg, ground equipaent, strength testing of the
hausxng. tarks and’ the individual units of iie nissile, baneh tasting
.ol the engints. experimental investigatitns of the vibratieun of '
tluia in spe tanks, etea. are earrled outs

~ The pr@bl&u pr this phnsa or operations 1 the preparation or

vilia,imtertalt for the iuru&ng out or teehn&euiudfuvxug doeulontataon

L
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and the manufacture of prototypes of a missile and the ground equip-
ment .,

The next phase in the creation.of a miss:le complex is the working
out of technical-drawing dooumentation and the manufacture of proto-
types. It 1s difficult to separate this phase in time from the basic
designing phase because the turning out of the technical-drawing
documentation and the manufacture of individual units and systems is
frequently carried out in the basic design period. 1In particular this

pertains to equipment and units having a prolonged technological
manufacturling cycle.

The next phase of operations 1s the ground adjustment of proto-
types of the materiel (individual elements and systems) using test
stands, etc. Thilis phase to a greater or less extent can also
coincide in time with the previous phases.

The final phase 1s the final adjustment and evaluation of the
prototypes by flight testing. Thilis phase of operations 1s preceded
by the preparation of the documentation, necessary for carrying out
the flight testing and, especilally, by the turning out of instructions
rfor all the types of operations carried out on the test range. It
is expeclally necessary to note the working out of questions of
ballistic ensuring of the flight tests (the selection of the test
range, the firing rcutes, the impact area of the separating elements
of the missile and of the nose sections, the selection and validation

of the flight control programs, flight-trajectory calculations and
control system adjusting data). . .

The flight testing of prototypes 1s intended for checking
conformity of the actual and assigned technlcal-flight characteristics
of a missile, control equipment, ground equipmeﬁt, for finding ways
of improving them, etc. This phase plays an important role in the
creation of a missile complex. On the basis of the test results the
necessary changes are introduced into the design of the compiex. Thus
this phase 1is usually called the flight-design testing phase. In the
course of testing operational questions are dclined more precisely,
the operational reliabi1lity of all systems and units 1is evaluated,
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optimum flight paths are determilned.

|

an evaluation of the operation of the missile complex as a whole is
carried out, operational documentatlion is prepared.

The plachof dynamic planning'in developing a missiie complex..
In creating a missile complex and, especially, the missile itself a
very large role is played by dynamic planning which maiﬁiy 1nvolvesl
the solution of problems of ballistics, dynamics, control and firing.

The basic characteristicés of the missile and its layout are determined
from the results of dynamic planning. ‘ ’

In solving a question conderning the possibllity of creating a
missile which satisfles the assigned tactido-technical spécifidations;
a large number of ballistic calculations is carried out, on the basis
of vhich the most rational variants of the léyout scﬁeme and the basic
design parameters of the missile, the weight and c.g. charécteristics,

Questions about the possibility of ensuring the controllability
and stability of a missile are solved by means of research on its
dynamic layout. The latter is described by differential equations of
perturbed motion the coefficients of which are determined by the lay-
out scheme and by the design parameters of the missile, and also by

the parameters of the motion of the missile along the optimum flight
path.

By examining the diverse variants of the solutions, the most'
rational dynamic and therefore,wlayout scheme of the missile 1s
selected. In this case it 1s necessary to overcome a number of
inconsistencies. It 1s possible, that the layout scheme of a missile
which satisfies the ballistic, technblogiqal-designfand operational
specifications,‘will not satisfy the controllability and stabllity .
specifications. For instance, a decrease in the rigidicy of a missile
for the purpose reducing i1ts weight leads to a reduction in the
frequencies of the elastic vibrations of a missile, which creates -
significant difficulties in ensuring flight stability. The use of
sufficiently effective control elements (control combustion chambers,
jet vanes, etc.) always gives rise to a reduction in the specific
thrust of arn engine system or to an increase in the "dry" welght and
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thus, negatively affects the energetic possibilities of the missile.
In connection with this the determination of the most rational missile
variant, its layout scheme, servielng methods, cost, development timre,

~ete., to:a great extent depends on how correctly the problems of the
dynamic planning of a missile are solved. ‘

- In the basic design phase the role of dynamic planning is still
greater.f In this phase it 18 necessary to give a comprehensive .
answer to the question of the sufficiency of the accepted solutions
with respect to ensuring the assigned range and firing aceuracy,
controllability and stablliiy under all possible operating conditions
for the missile being planned, i.e., under all geophysical launching
conditions, in diverse meteorological conditions, deviations in the
parameters of the missile and. guidance equipment from the rated valuea,
variations in the missile assembly, etc.

5 : 'The'presence of & laréé numbér of perturbing factors (variance in
: ' the,gﬁmospheric parameters, propellant and design parameter character-
istics, errors in the operation of assembly units and systems, etc.)
causes deviations in the paremeters of missile motion from the rated
values. This'faut pvedetermineé the use of probadbility and statisﬁical
methods in solving many problem* ‘of the dynamic planning of a missile
(for instance, in ensuring assigned maximum firing range, in evaluating
nose section impact point dispersion, etec.).

[y

. o In solving the prcblems of thé dynamic planning of a missile

' complex the methed of complex develepnent manifests itself brightly,

3 . - in which a complex 1s consldered zs a single unit. In dynamic planning
' B it 1s necessary to find rational -compromise solutions for numerous
interdependent Questionsﬂ Thus, for insténce, the selection of the
control method affects the layout and the power englineering of a

b ) missile; the selection of flight paths 1s connected with the energy

2 characteristics of the missile, the temperature and strength limitations, -
- * the firing accuracy requirements, the type of control system

' (autonomous or electronic), and also the keep—away areas intended

ﬁ. for the falling of the . e¢parating parts of the first stages, and by
o many other factors: the selection of the site for the mounting of
gyroscopic instruments is connected wilh the question of ensuring ‘the

\
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stability of an elastic missile; the selection of the method of stage
separation and the separation of the nose section - with the
speclfications imposed on the characteristics of the engine systems;
the selection of the number and site for installing devices damping
the osclllations of the liquid propellant in the tanks, - with the
layout of the missile and its energetic characteristics.

The role of dynamic planning in developing a silc launching

structure is great. In this case an analysis of the diverse variants

of missile motion in a silo structure (free motion and motion
along guldes) cvan be carried out, the necessary diameter of the silo

~shaft, inside which the missile moves, the sizes of the gas flow

passage cross-sectionals areas and -other data, necessary for the
planning of & silo structure, are determined.

In selecting a variant of a silo structure for use, besides these
data, the ‘characteristics of the reliablility of the exit of a missile
from the silo, the cost of the silo structure and other factors are
taken into account. ‘

The intimate ihterrelationship between the various questions of -
the dynamic planning of a missile complex makes 1t necessary to carry
out the planning In several phases, correlating the obtained results
for each of them with all the co4operators. It is necessary to.
approach the sclection of the command instruments and the other
equipment of the control system with great care because of the great
conplexity of thelr manufacture and their relatively high cost.

Computer technology is broadly employed in solving dynamic

'plannihg problems. Specifically, the calculations of the powered and

unpowered flight paths of nose sections and the separating parts of
missile stages and other ballistic calculations are conducted with the
ald of electronic digital computers (UBM = EDC).

- In analyzing the stability of motion, the basic method of
inveatigation is the simulation of perturbed missile motion on
electronic analog computers (ABM - EAC) using real onboard control
equipnent. This method makes it possible to obtaln a rather complete

PTD=MT=24-1176-T1 L XXLV -




plcture of the actual progesses occurring in flight.

Recently for investigating the stability of missile motion
analog-digital complexes (AUH = ADC) are beginning to be widely used
which are a combination of analog and digital computers with the
actual equipment of a flight control system. Such a complex makes it
possible to much more efficlently, comprehensively and at a high
techniceal level solve the problems of the dynamics of missile motion...
One of the problems solved with the aid of an analog-digital complex,
is the problem of determining the worst combinations of parameters of
missile and control system equipment and the checking of the reliabil-
ity of ensuring the stable motion of a missile under various adverse ’
conditions.

. The use of electronic computer technologv makes 1t possible to
carry out missile flight simulation, taking the majority of random
factors into account, i.e., in other words, for a given model of a
random process (missile flight) to obtaih a number of executions of
this process ~ the "electronie launching" of a missile and to evaluate,
for example, the nose section impact point dispersion.

Besldes the calculations on digital computers and simulations on
analog computers, graphical—analytical'methods of investligation are
broadly employed 1n dynamic planning, especlally in the preliminary
design stage. The use of graphical-analytical methods requires a
significant simplification of the dynamic layout of a misslile. From
the number of necessary numerous simplifications 1t 1s necessary to
indicate linearization of the equations of motion of the missile and
the replacement of the variable coefficlents of these equations with
constant coefficlients (the method of "freezing" coefficients). Thus,
for instance, in the preliminary investigation of the stabllity of
motion of the missile the noted simplifications are assumed, in order
+~ *hen use the frequency method or the root-locus technique, The
linearization of the equations during the investigation of firing
accuracy makes 1t possible to use the appropriate methods of the
probability theory., When it is not possible to disregard the non-
linear properties of a misslle or control system, such methods of
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. approximation, as thé method of harmonic balance or the method of
. statistical linearization are employed. The graphical-analytical

methods make it possible for the engineer to penetrate deeply into the
essence of the phenomenon being investigated, which facilitates a more
successiul subsequent solution of the problems of dynamic planning with
the aid of more precise methods using digital and analog computers and
digital-analog comnlexes.

The basic pfoblems of missile ballistics. Missile ballisties
solves the following basic problems. ‘ ’

1. The investigation of the dependenée of the flight character—
istics nf a missile, and primarily of its flight range, design para-
meters for the purpose of selecting the most advantageous combination
of these parameters (ballistic design).

2, The determination of flight path and other basic character-

" . istics of the motion of a missile with known design parameters and
 control system with assigned aiming data (ballistic test calculations).

3. Determining the initlal data for the nose sectlon design and
investigating nose section dispersion (the problem of nose section
ballistics). '

4., Ensuring maximum aiming firing range under conditions of the
effect of various perturbing factors - variance in design paranmeters,
variations in the ambient flight conditions and others (ensuring
maximum firing range).

" 5. Investigating the effect of various perturbing factors on the
powered-f'light phase and, especially, the errors of the control system
elements on nose section impact point dispersion (investigating
missile deflection).

6. Determining aiming data from the glven coordinates of the
launch point and target (compilation of flight mission).

FIDwMTm2lull76-T1 xxvi




3
A
N

B

T e

D

ey

)

G

7. The selecting of the optimum flight path which ensures the
best use of the missile's capabilities (selecting the control program).

8. Determining the initial data for the flight-design testing of
missiles and analyzing the results of these tests.

All these problems are intimately connected with the solution of
a number of other questions relating, especially, to:

— aerodynamics (determining aerodynamic forces and aerodynamic
heating of the surface and structural elements of a missile or nose
section); :

— structural dynamics (calculating the elastic vibrations and
the vibrations of the 1liquid in the fuel tanks);

— missile control (ensuring the stability of motion and
controllability of a missile taking into account the elastic vibrations
and the vibrations of fluid; selecting the design and the basic
parameters of the control system);

— the dynamics of non-steady-state modes — launch and the processes
of stage separation and separation of the nose section (ensuring the
separation and the controllability of the misslle during these phases);

— calculating of the missile design for strength (determining
structural lcads for varlous flight paths).

Ballistic design plays a very large role in the development of a
missile when selecting the design layout of the missile, its
arrangement and the values of its structural and energetic character-
istics, in the very best manner conforming to the specifications,
imposed on the missile, At the prosent time ballistic design has
developed into an independent discipline. In connection with this,
this book does not Include ballilstic design. The basic questions of
ballistic design are examined, for example, in book [2].
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Ballistic test calculations and, especially, the calculation of
the nose section unpowered flight phase, is not of direct interest for

the present book dedicated to the complex solution of the basic problems

of ballistics, especially since the methods and the characteristics of
these calculations are also presented in book [2].

Ballistic calculations for flight-design testing are inseparably
corinected with these testing methods. The latter are a separate
discipline, requiring independent exposition.

Thus, included within the scope of this book are such ballisties
problems, as nose section ballistles, ensuring maximum firing range,
investigating missile deflection, determining the setting data for a
rocket launching, selection of c¢ptimum trajectory. Furthermore, this

-book touches upon certaln other related questions.
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CHAPTER I

MISSILE FLIGHT CONDITIONS, PECULIARITIES
g$s¢E:ISSILE AS A GUIDED MECHANICAL

The solution to any ballistios problem begins with the compilation
of a mathematical model (dynamic layout) of missile flight which 1is
described more or less by the complex equations of missile motion.

The mathematical model i> determined, in the first place, by the posed
problem, depending on which model of flight conditions the investigator
selects, the mechanical model of the missile itself, the model of the
forces and moments, applied to the missile, etc, The success of the
investigation depends on how rationally the mathematical model of
missile flight is composed. The basic information about the flight
conditions of the missile and the characteristics of the missile as a
guided mechanical system, which must be kept in mind when compiling

the mathematical nmodel of missile flight in ballistics problems are
presented below,

1.1. MOTION, SHAPE AND GRAVITATIONAL
FIELD OF THE EARTH

The Motion of the Earth

‘"he earth carries out complex motion whlch mainly consists in the
following components.

1. Rotation around its axis from west to east with a period of

23 h 56 min 4.091 s = 86164.091 s of mean solar time, or 24 h =
» 86400 s of sidereal time; the angular veloeity of rotation in thils
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The vector of the angular velocity of the earth 53 is directed
along the axis of rotation from the south pole tq the north pole in
accordance with the rulés of signs for right-handed coordinate systems.

2. Annual revolution around the sun with an average orbitaﬁh
‘.".’,

velocity of 29.893 km/s. "
0*"‘”“‘
o~

'
Vu-~'

3. Nutational oscillations of the terrestrial axis with a period
of about 18.6 and with an amplitude, not exceeding 9.2".

i, Precessional motion relative to the axis of the ecliptic with
& period of 25,800 years.

5. Motion together with the solar system relative to the other
stars.,

In investigating the flight of a ballistic missile all these
components of terrestrial motion, except diurnal rotation, are not
taken into account because their effect on flight path is extremely
small. It is assumed that the center of mass of the earth moves
rectilinearly and unirormly and the earth rotates uniformly around
its axis whose direction does not vary. The phenomena connected with
the rotation of the earth, play an extremely large role in missile
dynamics. Thus, in calculating the flight paths of missiles it is
necessary to consider the forces of inertia caused by the diurnal

rotation of the earth. ' _ -

As & result of its rotation the earth is an oblate spheroid, in
which the distance between the poles is less than the diameter of the
equator. This fact together with other deviations in the shape of the
earth from spherical shape and the non-unifors distribution of masses
inside the earth make it difficult to determine the magnitude and the

- direction of the attractive force of the earth acting on a missile,
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The Shape of the Earth

The earth is a body of complex shape. The surface of the earth
with all 1ts irregularities is called the physical surface of the
earth. All kinds of geodetic measurements are being carried out on it

i for the purpose of obtaining initial data for seclving various geodetic
problems. The physical surface of the earth 1s practlically impossible
to describe mathematically, because it cannot be used as a surface for
processing the results of the measurements. As such a surface it is
necessary to use a body surface which most closely approaches the

earth as a whole in shape and dimensions, and whose surface 1s expressed
by a mathematical dependence suitable for practical use. Of the
geometric bodles which describe the shape of the earth, the body which
has received the name gecid most closely approximates the actual earth,
In order to define this body let uas recall the concept of equigravita-

tional potential surface [level or equipotential surface of the ecarth's
gravityl. ' '

As 15 known, the diurnal rotation of the earth creates centrifugal
inertia which acts on a body located on the surface of the earth. '
Thus, 1t is not possible by experimental means to separate centrifugal ,

_inertia from the force of terrestrial attraction, The resultant vector |
of these forces is the vector of the force of gravity (Pig. 1.1) whose

direction in space oan be determined with the aid of a plumb line or
~ level. ' | o ' ‘

AEquigravitatienal potential surface is a surface, at each point
“of which the normal to the surface is collinear to the direction of
the force of gravity. A geold 1s a body, limited by an equigravita-
tional potential surface which coincides with the surface of oceans

. 4 (undisturbed by tides and waves) and extending under the continents
: (F1g. 1.2). The surface of a geoid is continuous, closed and does
. not have shurp creases and folds.. Since the direction of the force

of gravity depends on the attracting action of masses non-uniformly
distributed inside the earth, then the surface of a geold is extremely

complex and cannot be described mathemsatisally. For this reason the

geold 1s replaced by & sispler body in such a way that ite surfuce
differs as little as possible from a geold, and the carrying out of
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calculations on }his surface does not present significant difficulties.
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Fig. 1.1. Diagram of the application of
attractive force, centrifugal force and
gravity.

Fig. 1.2. The physical surface of the

earth, a geold and a general terrestrilal
ellipsoid.

KEY: (1) the physical surface of the earth;
(la) geold; (2) the center of mass of the
earth; (3) General terrestrial ellipsoid;

{4) the Equatorial cross section of a geold;
(5) Equatorial cross section of a terrestrial
ellipsoid.

As a first approximation it 1s possible to consider the earth a
sphere whose volume 1s equal to the volume of the earth. The radius
of such a sphere is R = 6,371,110 m. In some ballistics problems this
approximation satisfies the required calculational accuracy, in others,
for example, in preparing flight tests and in analyzing results of a
launch such an approximation introduces a large error in determining
nose section impact points.

In most cases a geold 1s replaced with sufficient practical
accuracy by an elllipsoid of revolution obtained by revolving an
ellipse around 1ts minor axis. Such a properly oriented ellipsoid,
which in the very best manner approximates the surface of a real
geoid, is called a general terrestrial ellipsoid (see Filg. 1.2).




A general terrestrial ellipsoid is defined on the basis of the
following conditions: : . :

1) the center of the ellipsoid coincides with the center of mgss

of the earth and the plane of its equator Ais parallel to the equatorial

plane of the earth; | . ]

2) the volumes of the ellipsold and theé geoid are equal;

' {
3) the sum of the squares of the deviations (with respect to
helght) of the surlace of a general terrestrial ellipsoid from the | ‘
surface of a geold should be minimum. '

The determining of the dimensions of a genéral terrestriai
ellipsold is one of the basic problems of geodesy. At the presené
time this problem is still not completely resolved because the
appropriate measurements (geodetic, astronomical and gravimetrié),
being employed as the initial material for the solution to: the 1ndicated
problem, have still not been carried out on: all the continents. All
the available dimenslons of the general terrestrial ‘ellipkoid are
approxlmate and to one or another degree differ from the dimensions of
the real general terrestrial ellipsoid.; Subséquently we will pr?ceed
on the basis of the followlng approximate values af the parameters
determining the dimensions of thé general terrestrial:ellipsoid: 3

— semimajor axis (radius of the equator) a = 6,378,137 m;

.. a=b _ -
— compression a = el 298 55> whqre b the semiminor axis of

the general terrescrial ellipsold.

' ! ‘

The surface of even an accurate (with respect to'dimensipns)'
general terrestrial ellipsoid, correctly oriented with respect to the
earth, can deviate from the surface of the geold with respect to
helght by tens of meters. In the opinion of a number ‘of scientlists,
the greatest values of these deviations are located within thé limits
of #150 m. 1In certain cases for the purpose the reducing the errors
in the replacement of a geoid by the general terrestrial e1¢ipqoid the
concept of reference-ellipsoid 1s introduced. '

5
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A rcfarqnac-cllzpaocd is an ellipsoid ‘of revolution with
apprOpriate dimenqions, qriented in a derinite manner relative to the
earth and to whose surface the resulta of geodetic operations on an
investigated part of the terrestrial surface (in a given country)

pertain.. The following conditions are imposed on the orientation of
a reference-ellipsoid: , '

+

. : \ o
a) the greatest proximity of the surface of the reference-ellipsnid

to the surface of the geold only on the examinéd part of the terrestrial
surface} . _ ! b

; '
b) the parallelness of the axis'of revolution of :the reference-
ellipsold and the axis of rotation of the earth (coincidence of 1its
cénter of mass with the center of mass or the earth 1is not mandatory).
On the terpitory of the USSR for the dimensions of the reference-
ellipsoid it 1s possible to use the dimensions of the Krassowskl
ellipsoid, namely . the semimajor axis a = 6,378, 245 m; compression
a = 1/298.3. The center of the Krassowski ellipsoid 1s removed
a certain distance fvom the center of mass of the earth. 'Clarke,
Kayford Everest ellipsoids are also used as reference ellipsoids.
| !

Coordinate Systems Defining the Position
of a Poin} on the Terrestr1a1 Surface

The. following coordinate systems are used for defining the
position of a point on the terrestrial surface, a mathematical

description of the gravitational fleld of the earth and a number of

other problems. ' !

|
The geocentric coordinate system (Fig. 1.3)." The position of

Vpoint M on the'surface of the Krassowski ellipsoid is determined by

the two coordinétes A and ¢u._ |

Longituda-l ~ the dihedral anglc between the planes of the prime
(Greenwich) meridian:and thn local meridian, passing through point M.
East longitudes, l.e., the longitudes of phe points located to the east
of the Greenwich meridjan, are.considered positive, and the western
longitudes - negative. '

v
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Fig. 1.3. .The geocentric
coordinate ‘system: NABS - the
prime‘ (Greenwich) meridian;
NMLS: -~ local meridian; QBLQ -~
equator; -180° < A < 180°,
_900 -<_ ¢u i,goo

Geocentric latitude ¢u ~ the angle included between the equatorial
plane and radius-vector r, drawn from the center of the ellipsoid
through point M. North latitudes, 1.e., the latitudes of the points
located to the north of the equator, are customarily considered
positive, the south latitudes - negative.

The geodetic coordinate system (Fig. 1.4). 1In this system point
M on the surface of the Krassowskil ellipsoid has the following two
coordinates: geodetic longitude XA which is defined in the same way
as in the geocentric coordinate system, and geodetic latitude ¢r which
is the angle included between the equatorial plane and the normal to
the surface of the ellipsoid at point M. The geodetic azimuth of
direction is the angls ¥ computed clockwise from the northern direction
p of the geodetic .neridian of the given point to assigned direction 7.
The geodetic coordinate system has found extensive application in
ballisties for determining the launch and target coordinates.

Geocentric and geodetic latitudes are connected with each other
by the relationship

sin (Pr—n) = €2 sin @r oS Pg,

where e - the eccentricity of the meridlional ellipse of the general
terrestrial ellipsoid.




Pig. 1.4. The geodetic

coordinate system: NABS - the
prime (Greenwich) meridian;

NMLS - local meridian; QBLQ -
equator; pp - a tangent to the
local meridian of the Krassowski
ellipsoid at point M;

-180° < A < 180°, -90° 5_0'_ £ 90°.

_ _ ' The astronomical (geographic) coordinate s stem, In contrast to

j- geodetic coordinates determined on the basis of geodetic measurements

~ and pertaining to the gurface of the ellipsoid of revolution,
_astronomical coordinates are determined on the basis of astronomical
‘observations and pertain to the surface of the geoid.:

o In this coordinate system astronomical (geographic) latitude is -
defined as the lngle'QA between the'piumb line at a given point and

- the equatorial plane. Astrononical {geographic) longitude is the.
angle iA between ﬁhe plane of the prime nsridxan'indith: plane of' the
“astronomical weridian, passing through the plumd line at & given point.
The refercnce directions and the signs of astronosical latitude and

- longlitude are deternined in the same way 48 for geocentric and geodetic
ecordinates. ' ' ' ' :

Astronoaical letitude and longitude do not colncide with the
f.feerrenpondih; geodetic values, since in the general case a norasl to
" the geoid and to the ellipsoid do not coincide with each other. The
Ny afigle included between a norsal to the cllipscid and the plumb line at
§ ° ° the point being examined 1s called complete plumb-line deflection.
S . fhe wesn plusb-line deflection with respect to the surface of the
~ earth 1s about $%, the maxinmum dbout 1%,

P
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The Gravitational Field of the Earth

LN

- According to-Newton's law of gravitation every particle with mass
M attracts another particle with mass ﬁ'ﬁith a force of gravitational
attraction- (gravity) GT, determined by the dependenee

. T  Gy=- ﬂﬁ o, @

where £ = 65.41.1071% —E_ - gravitationsl constant; r - the
kgf*s - .
"distance between the particles

During the flight of«a missile the attractive forces of the earth
‘and the other celestial bodies act on 1t. For ballistle missiles '
whose flight paths lie in the immediate proximity of the earth, the
attractive forces of the celestial bodies are extremely small (thus,
- the attractive forces of the nmoon and sun give rise to an insignificant
variation in the acceleration due to the attractive force and plumb-line
deflection; the effect of the remaining celestial bodies is still

less). In connection with this we will subsequently examine only the
gravitational field of the earth,

5

Attractive force is conservative, i.e., having a force function.

fhe force function of a material particle with mass M is called
. Newtonian potential and is equal to

3 A  u=fHM, @)
Iy ; r )

where r - the distance from the material particle to the point in
1 " space being examined.

) . . . ) .
%A " The Newtonian potentlal of an arbitrary body with mass M can be
i written in the form

\: . . ‘ . dm

b : ' Lf=afs———-,
i ' r . 1.

; | T (1.3)

.ﬁ where r - the distance from the péfticle,having mass dm, to the polnt
5% in space being examined.
i
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e I R 'hAs a first approximation, if it 1s considered that the mass of
g , . the earth 1s concentrated at a point or distributed inside the sphere
B s0 that- the density at all points, equidistdnt from the center of the
= sphere, is identical, the potential function of the earth is written

= _in the form of (1.2). In this case value r 1s the distance from the
' centér of the earth. '

"'Using the property of force function, it 1is possible to determine
the projections of the attractive force of a particle of unit mass on
”, » the axis of a certain coordinate system Oxyz:

oo . [/ _w .
Bra="3"1% grr:"";;" gn—-a?.- (1.4

K

In particular, the projection of the attractive force on radius-
vector r 1is determined by the expression

a M
= ___ M (1.5)
g"f ar . '2 ‘

In this case the acceleration imparted to the particle of unit
mass by a spherical earth, is directed to the center of the earth, and

is equal to e "
- - g‘;’= —L"" -
£ r : (1.6)
- The product of the gravitatlional constant f and the mass of the

‘earth m is constant and for approximate calculations can be taken
equal to: fM = 3.986004: 101u 3/s .

The normal potential of the earth. In general form the problem
‘of determining potential function U for the real earth having a complex
shape and non-uniform distribution of mass, is extremely difficult. .
In gravimetry it 1s customary‘to represent the potential of the earth
in the form of an infinite series '

B | U= Py eing)+ 8 Pelina) e (1D)
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in which the assoclated Legendre polynomials aré determined by the

. expressions:

4’ . . . . 3 . .

| ':: pgo(S'ﬂ ?n):"-':-*z—' Sln2?“ -——2- s

) Py (sin ‘?u) - Sfﬂ‘? —— sin2 9n+-—-

- etc.

Being limited in expression (1.7) by the terms which are the
main spherical functions of the zero,'second énd fourth orders, a
convenlent formula,fo# attractive potential is obtained called the
normal potential of the earth:

_ow  3an( oo 1\ Baw (g, ---sm= -—)'1.8
v r L9 ﬂ(sm a 3)+8 rs (sncp. ' %t (1.8)

where 849 850 8yg " the constant coefficlents dependent on the
angular velocity of rotation w_ and the parameters of the accepted

3
* model of the earth:
3 | Ao =fM;
g 9
= — g0t (Lot Ly 2 4a);
' 8 7
;‘r a = saind s "—‘-az—"-. a
* =58 (3 )
‘? . 2
A . wa
i p= 23 a=2 b:
: £y

gy - the gravitational constant at the equator.

The normal potential of the earth corresponds to the potential
of a certain spheroid which represents an ideallzed earth, and
differs somewhat from the potential of the earth. This difference is
expressed in the form of an anomaly in gravitational field and is
taken into account in accurate caleulations.

The normal potential of the earth's attraction depends only on
the distance r to the point in question and the geocentrlc latitude
¢u. The intensity vector of the normal gravitational fleld 1s always
located in the plane of the meridian, passing through the axls of




rotation of the earth and the point in space being considered. This

vector g, of the acceleration due to the forces of normal attraction
can be assigned two components:

E}l and §}2 lying in the plane of the
meridian (Fig. 1.5), in-thls case ' '

a,. b4 (1-9)

or.

g =243 % @ sintg,~ 1)+ *

+35 L] (531!1‘? ---—-sln’cp.-]- ——) (1.10)

3
go="3 ;‘r’f‘-sin 2tpn+——2- % €05 9, (7 sindg,—3 sin g,).

The relative error in these formulas is comparatively small (it
does not exceed 3'10'5) and is entirely permissible In solving the
majority of ballistics problems connected with flight-trajectory
calculation and with preparing aiming data for firing.

In deriving the equations of motion of a missile it is
convenient to examine the following two components of acceleration
due to attractive force (see IMig. 1.5):
center of the earth; g
the earth,

Brps directed toward the
w_direched parallel to the rotation axis of

i

3

B

o
3
.

R o e XA

3
(e

Fig. 1.5. The components
of acceleration due to
gravity.

KEY: (1) normal to the
ellipsoid.
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" In order to find them, it is necessary to separate, in turn, the

meridional compohent of acceleration due to attractive force Bro into
two components in the direction of radius-vector r and the rotation
axls of the earth:

En==8n'8 %

. 4 - 3
gt" ‘“?I'.

(1.11)

Component E;l is directed opposite to component E}l’ Thus

& r= gtl""g;l‘ (1.12)
" We will finally obtain
gr =2~ 2 2 Geinrg,— 1)+
422 28 g sintg, ~ 14sintg, + 1) (1.13)
g,..-3 <L sin ?u""‘"" —-slmp,(?sln’g,—ii) (1.14)

If especlally high calculational accuracy is not required, then
1t 1s possible to be iimited to the first terms of the expanrion in
the series, i.e., to take ‘

gu=“-9'¢--— 22 (5sln? g — 1% (1.15)
=3 3 ,
g‘l’ 3 r sm,l (1.16)
where
 89==3,9861679. 104 u¥cext; m3/s?

—-a,.-zs 32785. 1024 .u'/ccx' m/s




1.2. THE ATMOSPHERE.

The flight of a ballistic missile in the initial and final
phases of its traJectory occurs in the atmosphere. Aerodynamic forces
arising here substantially depend upon the parameters of the atmos-
phere -~ density, pressure and alr temperature. These parameters, in
turn, depend upon the flight altitude, the géographic latitude of the
site, the season, time of day, and a number of other factors, for
example on the degree of solar activity. "

) For determining the design parameters of a missile, calculating

é, trajectories and other investigations carried out in dynamic designing,

'ﬁi the tables of standard atmosphere (SA) are usually used which give {
'é certain mean values of the parameters of static atmospheric conditions

E depending on altitude. Deviations in the atmospheric parameters from

. standard values, and also wind are atmospheric perturbances which

L ? affect missile flight and, especially, the dispersion of the impact
. points of 1its nose section.

4 : The standard atmosphere SA-64 has been écoepted in the USSR for
= altitudes up to +200,000 m (GOST 4401-64)., For altitudes of 200,000~
: 300,000 m the atmospheric characteristics, recommended by the co-~
ordination commission of the Academy of Sciences of the USSR on the

N compilation of the GOST for standard atmosphere, are given in this
—;' same GOST.

! "For scolving problems of dynamic design, besides the standard
' % Z ' values of atmospheric parameters, it is also necessary to know the
% : ranges of the possible deviations in these parameters, which
‘ correspond to a definite level of probability, and for various
- conditions both not allowing for the season and the site on the

‘ terrestrial sphere and also taking them into account. Furthermore,
3 for more precise investigations it is necessary to know the
: statistical dependences between the random deviations of each
parameter at different altitudes, between the deviations in different
- parameters at a given altitude, eta,

2 L
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Various methods of describing the perturbations in atmosphere
parameters are possible. Let us examine. one of ¢hem. Temperature
T and atmospheric density p can be ghpresented in the form

T(A)=T¢ (8)+ AT (A);
L et =t ® [l +E (n)]

(1.17)

(1.18)

where T, (h) and o, (h) — the standard values of temperature and

density, AT(h) - the deviation in temperature from the standard

temperature; 33 (h) — the relative deviacion in air density from the
cT

standard air density.

For assigning random functions AT and Ap/ocT it is possible to
use the method of canonical expansions [5].

With respect to the case in quastion atmospheric parameters as
random functions of the aluvituda of a point above the surface of the
oarth are represented in the form of & canonical expansion in the
following manner:

AT (lx)-u AT(&)-}»Z AT, (8) o

= , (1.19)
)L ) 4 z L W)es |
twp &t (1.20)
where KT(h),EZTfh) - avorage deviacions SA values corresponding to
the point in question; AT&(h). -;;(h) - gertain nonrandom deviation
from the mean deviations AT (h) and %E: (h).

Such a recording of the parameters of a "random atmosphere"
corresponds to its representation in the form of the sum of a certain

humber of m "atmospheves" with the random coefficients b, and c,.

15
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These coefficients and the coordinate functions ATi(h) and a-i (nh)
cT
are determined on the basis of cumulative statistical data which

characterize the state of the atmosphere. A rather accurate
representation of the random parameters of the atmosphere 1s given by
an expansion, including 10-11 terms.

The use of the method of canonical expansions of random atmos-
pheric parameters makes it possible to solve various problems which
arise during the designing of missiles. One of most frequently
encountered problems is the problem of evaluating the statistical
characteristics of atmospheric parameters taking into account the
random character of the variation in the coordinates and the flight
time of the missile (the geographic coordinates of the motion of the
missile and the flight time were unknown earlier). A typical example
of this type of problem is the problem of missile deflection. The
structure of the canonical expansion in this case reduces to
determining the unknown random variables and the coordinate functions.
for a rather extensive area from the data obtained by meteorological
sounding of the atmoaphere.

In missile design another group of calculations (for instance,.
when evaluating the strength of an apparatus) is encountered, the
_purpoze of which is the study of the characteristiocs of an cbject for
the worst (extreme) flight conditions and an evaluation of the effect
of maximum deviations. The most important of the calculations of this
type are the calculations at points which correspond to the greatest
{in value) deviations in thermodynamic parameters. Since there can
be different combinations of large deviations, it is possible to
recommend two sats of functions: one corresponds to typickl adberae
winter conditions, and the second - to summer conditions. The lowest
temperatures and the greatest densities near the esrth and the lowest
densities of high altitudes are characteristic of an adverse point in
winter. In summer the adverse point is characterized by very high
temperatures and low densities near the earth and high densities in -
the stratcsphere. : 4
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In certain cases for the purpose of simplifying calculations
instead of using canonical expansions for extreme conditions 1t is
possible to use the maximum values of atmospheric temperature with
respect to altitude. As maximum temperature distributions in this
- case temperatures for the so-called "standard days" — the maximum
temperatures of a warm day and the minimum temperatures of a cold
day — are taken.

% The corresponding maximum values of relative air density are
determined by the equation of state and the differential equation of
equilibrium,

Wind characteristics are determined by analogy with the deter-
mination of random atmospheric parsmeters. In solving the first type

3 ~of problems a systematic wind of constant direction [prevailing wind)
2, 7 (from west to east) and a random wind component are distinguished.
gﬂ ' In caloulating the controllability and the atrength of a missile an

envelope of wind speeds withAreapeot to height, which oorronponds to
maximum values, ia used. '

!;3. AERODY&AN!C-FORCES AND NOMENTS.

The aerodynanie forces arising dnr&ns the motion of a missile 1n-
3 ~ the atmosphere, can be reduced to one resultant force R, passing
- through the center of mass of the missile and the so-called total
: ' " asrodynanic force, and resultant moment N, acting velative to the
center of mass of the missile and called totaul asrodynamie moment,
The vilue and the direction of vectors K and N depend on a number of
~factors, including the Grientation of the missiie relative to the
velocity vector of the airstream, incident on the missile, air
. density, etc. v

1

_ In flight vehicle dynamies for detersining the orientation of a
- vehicle relative to the airaspeed vector and expanding force K and
mwoment N along the coordinate axes wind and body systems of ccordinate
~ nxes are usually used.




*w-

- The body syatem of coordinate axes Oxlyls1 is a Cartesian,

b rectangular, right-hand system of coordinate axea, fixed relative to
the missile or nose section (FPig. 1.6). The axes of this system are
called body azsa for short,

The origin of the coordinates of a body system is placed at the
- center of mass of the missile; axis 0z; 1s directed along the
longitudinal axis of the missile in the direction of the nose section;
axis oy, is placed in that plane of symmetry of the miasile which at
the moment of launch coincides with the plane of firing — with the
plane Ox,y, of the initial launch coordinate system'. If aiming is o
accomplished without turning the missile on the launching device,

then for plane Oxly1 any plana of ayllntry of the missile can be
taken.

P
S CaSg A B N T AT

Pig. 1.6, Missile wlth boay coordinate axis
aysta. - -

- For the nose section the directions of the axes Oy, and Oz, ére
. 1 convengently selected in such a way that on the nose section connected

: with the rocket, axis Oy, 1s orlented in the direction of scabilizer -
I11, and axis Oy - 1n the directicn of stabiliszer IV (Pig. 1.7). | .

teee Sect 2.1.
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. Pig. 1.7: Nose section )
with a body coordinate
axis system.

§

The wind toordinats axis system Ox, .y . 2,. — Cartesian, g
rectangular right-handed (Pig. 1.8). The origin of the coordinatea of
_ .~ this system coincicdes with the center of mass of the niaane. axis . -’
: ‘ ' Oxn is directed along velocity vector V of the niasne relative to

- the air medium; axis Oy,, lies in the plane of aymtry of they
missile 5‘131 , » i

[ = : i )
Pig. 1.8. A wind eoordimte .
axis systen. '

.. "

H

The orlentation of the wissile relative to tiue airspeed’ vector
. ‘v‘ in the general case is determined by the angles of attack o ahd
. -smesup 8, i.e., by angle § — between the velocity vector V and | o
B the plane of symmetry of the missile 0:131 and by angle o — batueéa b
L the projection of the velocity vector ¥V, on the plane of ‘symmetry of
»L . - " the mizeile Oxlyl and the longuud:lm uis or the nssne Oxl.

1 - R The tnnﬂomnw to the,a‘rbitmy pont-ién of ;thz body axes
i  relative to the wind axes 1s accomplished by means of two rotations .
= by turning the body axes relative to axis Oyi by inglegor sideslip
8 and then relutive to axis Oz, by argle o (Pig. 1.9). )

g
B e




~Fig; 1.9. Transformation
| from wind to body axes.

'The cosines of the angles between the body and wind axes are
given in Table 1.1. ; ‘ a

1
Table ;1.1.: The cosines of angles between body and wind axes.

| 5(1)' Ocn bxn . | 0 yu . Oz,
Oxy ' cosacosS . ,_Sna | —cosasinp
' Oygr ! | ~sinacos8 cosa sina sinf

- Oz l : sinf ’ o | ~ cosp

|
KEY: (1) Axes.

. : i
| The total aerodynam;c forpe R, depgndent on angles d and B,
13 usually broken down into the components X, Y, Z for wind coordinate
axes or into components X,, Y,, 2, for body axes:
’ 1 : R=X—|—?+2—7,+71 +2|. i (1.21)
: Since, the projection of force R on the wind axis OxII is always
negative, it is customary to examine the oomponenta X and xl of
force R with respect to’ negative directions of axes OxII and Oxl.
Thus, the proJections of force R on these axes. — the drag and axial
| force are requctively equal to:

! Rey=—X; Rey=—X;.

120 . !
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A ballistic missile (without fin stabilization or with a
cruciform fin assembly) is practivally an aerodynamically axisymmetriec
body. ~Ir¢§he axis of a misslle is directed along the airspeed vector
(o = B = 0), then the flow of the missile will be symmetrical relative

to its axis and therefore, forces Y and Z (or Y1 and Zl) will be
equal to zero.

If the axis of a missile forms a certain angle with the airspeed
vector, then the flow will be symmetrical relative to the plane,
passing through the axis of the missile and the alrspeed vector. In
this case the total aerodynamlic force, and consequently its component
also, for example 1lift Y or normal force Yl, will be located in this
plane. Hence it follows that for an aerodynamically axisymmetric
misslle the dependehces of force Z and Zl on angle B are analogous
to dependences Y and Yl on a. Moreover, it 1s generally possible not
to examine the angle of sideslip B8, iIf the angle included between the
longitudinal axis of the missile and the alrspeed vector is taken for
the angle of attack and the position in space of the plan, passing
through the axis of the missile and the velocity vector 1is determined.

"Subsequently we will proceed 'precisely in thils way.

On the basis of the theory of aerodynamic similarity aerodynamic
forces are usually expressed in the following manner:

X=c,48; "~ Xy=cgS: }

Y=cy4S: Yi=¢4S, (1.22)

V2
where q::q-%;- — dynamic head; p — alr density; S - characteristic

area of the missile, usually the area of the maximum cross section;
¢, and cy; ¢, and ¢ - dimensionless aerodynamic coefficients.

Aerodynamic coefficients depend on the shape of a missile, the
orientation of a missile relative to the airspeed vector (i.e., on
angle a) and on- the criteria of aerodynamic similarity - Mach number

| %4 Vwl
M=-% .14 Reynolds number Reme—=
la v "

where a — sound propagation velocity in air; ! —~ the characteristie
dimension of a missile, usually its length; v - the kinematle

21
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coefficient of air viscosity.

Using Table 1.1 for the case B = 0 and taking into account that
the negative directions of the axes OxII and'Ox1 correSpond'tb the
positive values x and Xy, We obtain

c,=c,cosq—c,slna;'}

c;==¢,sinat-c,cosa, (1.23)

Since during the flight of a missile in the atmosphere angle a
is small — of the order of a few degrees, it 1s possible to consider
that cos d = 1, and sin a = a. Then we will obtain the expression of
(1.23) in the approximate form

ﬁzq-qm}

ComzCut-cy (1.24)

The aerodynamic characteristics of the missile are studied'in
detail in specialized literature and thus we will not dwell on them

b2re in any great detail. Let us only note the basic features of the

aerodynamic characteristics of a missile.

Aerodynamic investigations show that at small angles of attack
(a < 10°) the coefficient of axial force c, depends little on the
angle of attack, and the coefficients of 1lift ¢

and normal c, forces
are proportional to the angle of attack:

y

Cymcha; Cim=cRat, (1.25)

where c; and c: — partial derivatives depending on the corresponding
coefficients for angle of attack.

The derivative of the coefficient of normal force c: depends,
mainly, on M number (Fig. 1.10). In the transonic speed range for
a missile (M = 1) this coefficient has a peak value, and with a
further increase in M numbers diminishes, tending toward a certain
constant value.
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Fig. 1.10." The approximéﬁe dependence of
aerodynamic coefflcients c,. and
cﬁ on M number.

The coefficient of axial fofge e, depends substantially 6n the
shape of the misslle, the angle of attack, M and Re numbers. The
approximate form of the dependence cT(M) is shown in Fig. 1.10. Since
the speed of sound and the kinematic coefficlent of viscosity v
depend on altitude, then at a given velocity VW M and Re numbers, and
with them and coefficients c2 and ¢, vary with_altitude,‘6oefficient

‘ n
c?® weakly, and coefficient cr substantially.

n
It must be noted that the coefficlent of axial force also depends
on rocket engine operation. When the engine is not operating axilal
force Xl Increases bty the magnitude of the corresponding increase in
wake drag.

Considering what has been sald above, it 1s possible to .state
that aerodynamic forces depend upon the shape and the dimenslons of
the missile, the angle of attack, and the flight velouclity and altitude.

The total aerodynamic moment acting on a missile, is usually
broken down into the components for the axes Oxl, Oyl, Ozl. These
components Mxl’ Myl’ and le are respectively called bank, yaw and
pitch morents.

The value and direction of total aerodynamic moment depend on a
number of factors, among whish the characteristies of missile motion
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relative'to the a2ir medium have a significant value -~ the orientation

_§; of the missile relative to the velocity vectors of the center of mass

Lj " and the angular velocity of the missile and the magnitudes of these -

3 velocities V, and . : '

3 Let the center of mass of a nonrotating missile lie on its -

R RS

longitudinal axis at diétance X, from the tip of the nose section, and
- the center of pressure be located at a distance x; from the tip of the

é: missile. Then the value of total aerodynamlic moment relative to the
f : center of mass will be equal to

' MwmcngS (¥r—xa) (1.26)
E: or at small angles of attack

.'1"=—"C:q8(x“-xd)a. (1.27)

This moment as well as total aerodynamic force, acts in the

- plgne, passing through the longitudinal axis oﬁhthe missile and the
K veloeity vector. ’

The position of the center of pressure in the general case

- depends on the shape of the misslle, X number and the angle of attack.
Figure 1.11 shows a typicai displacement of the center of pressure of
a missile with varlation in M number. "It can usually be consldered
that the position of the center of pressure remains constant, if the
5 angle of attack varies in a certain small vieinity of its zero value.
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Fig. 1.11. The position of -
the center of pressure of a :
missile depzsnding on M number.
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~ ‘When the missile 1s rotating, atmospheric drag is manifested,
mainly, in the form of aerodynamlc moment of resistance to rotation.
This moment, called damping moment, 1s always oriented in the directlon,

- opposlite to the rotation and tends to céncel the angular velocity of

rotation.

Damping moment depends on the value of angular velocity as well
.as on its orlentation relative to the missile. Usually'the damping -
moment vector is broken down with respect to the body axes into
components, proportional to angular velocity relative to the corre-
sponding axes: ‘

e=m 108 Byt
My, = %1 qS vV Ogpr
My =m 98 L ap (1.28)
ap )] v w
[ ] 1 F
Myy=my ‘qS-‘;- Oa10
where D gand I — the diameter and the length of the missile respectively.

Each of the dimensionless coefficients M, ﬂﬁ?ﬂ mgtt s
always negative. The values of these coefficients in the flight range
of angles of attack depend, mainly, on the geometric shape of the
missile, its centering [position of its c¢c.g.] x_ M number.

1.4, CHARACTERISTICS OF ROCKET ENGINES.

The basic characteristles of a rocket engine are its thrust P,
specific thrust Pyn’ propellant consumption per second ﬁgo and 1its
propellaqt components ratio K.

As 18 known, the thrust fqrce of a rocket engine P 1s connected
with 1ts mass consumption per second m, the exhaust velocity of the
products of combustion w, the gas pressure at the nozzle exlt sectlon

Pys the atmospheric pressure p and the area of the nozzle exit oross
section Su by dependence

P=mw+ (pg—p)Sa. | (1.29)
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_As 1s evident, thrust force depends upon altitude. At sea level,
where p = Pgs thrust force has 1ts least value - '

Po"mw+(P —P0) Se, (1.30) -

and in a vacuum — its greatest

Py=mw+ peSa=Po+poSa. (1.31)

The increase in thrust force with a change in atmospheric
pressure from Py to zero can attain 25% of thrust PO at sea level.

The dependence of thrust force on altitude can be written in
the form

Pw= Pp—pS,. ' (1.32)

The ratio of engine thrust to mass oonsumption per second is

;; oo usually called specific thrust:

4 | o P ag . mp - ngo' (1.33)
iff Specific thrust 1s the thrust force created by an engine during
b the combustion of 1 kg of propellant in 1 s, and characterizes the
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efficiency of the engine system. Specifie thrust in a vacuum. is
determined by the formula

O N D b
AR e Cgea 7

PotpSe
P,‘o'a ” +£L . (1.31‘)
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Using the concept of specific thrust in a vacuum, expression (1.32)
can be rewritten in the ferm

b Pamg“P" n==p .S. (L) (1.35)
33,- The following formula for determining thrust is also finding
. " application in design practioce:

P"Apa"'l’sm o (1.36)
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where p, - the combustion chamber pressure of the engine; A — the

proportionality factor whose magnitude 1s determined on the basis of
engine: bench tests.

On the basis of expression (1.36) it is possible to write the
appropriate formulas for determining specific thrust, for example:

P, == ;JﬁL.
AT g (1.37)

The convenience of formulas (1.36) and (1.37) consists in the
fact that thrust and specific thrust are connected in them by a linear

dependence with the combustion chamber pressure whose magnitude is ' @
measured by bench tests.

The propellant components ratio K = éou/ér characterizes the
propellant mixture composition. Here éou and §_ are the mass con-

sumption rates respectively of the oxidizer and the fuel per unit of
time.

Knowing the total propellant consumption in one second
G.,omu;ngo and the magnitude of parameter K, 1t 1s possible to

determine the mass consumption per second of oxidizer and fuel by the
formulas:

0.""‘“"'"'(""‘ oron: l

+1
1 . . (1.38)
Oraﬁ'i' wonar j

Rocket engine thrust substantially varles in time under transient
conditions (in starting and switching down the engines). The
dependence of thrust on time (the transient characteristics of a
rocket engine) is represented in Fig. 1.12, As is evident, the
combustion chamber pressure, and thus, the thrust force also attain
thelr optimum values not immedlately after starting of the engilne.

A certain time passes from thc moment of the introduction of the
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command for starting the engline before the beginning of ignition.
Thrust practically appears at the moment of ignition.

Gdyooo—-.----
lﬂir—b-------

6t

Fig. 1.12. The varilation ln the thrust force
of a liquld-propellant rocket engine

[(HPA = LPRE] during the time of a rocket flight:
1 — command for starting; 2 — ignition; 3 -
separation of the rocket from the launch padj;
4.5 — optimum thrust phase; 6 — command for
engine shut-down; 5-6 — the aftereffect [thrust
trailoff] phase,

Upon switching off of an engine the thrust does not also dis-
appear instantaneously — a so-called, aftereffect phenomenon is
observed. After the command for engine shut-down due to the after-
burning of a specific quantity of propellant a certain thrust continues
to be oreated whose lmpulse, called the aftereffect impulse, is
expressed by the formula

tpad |
lop== J P(‘)d‘o

where tK ~ the time cf the introduction of the command for engine
shut-down;.tP.o - the momznt of time corresponding to zero thrust.

The aftereffect impulse is a random variable whose variance can
constitute up to 15% of the mean value of this impulse (12]. This
feature of the transient englne characteristics affects the conditions
of stage separation and the separation of the nose section of nissiles.




The variance in the value of the impulse attereffect depends on
the time Variancg corresponding to zero thrust, and the thrust
variance whiéh, in turn, depends on the pressure variance in the
combustion chamber,.the variance in parameter K and other factors.

1.8, THE MISSILE AS A BODY OF VARIABLE COMPOSITION.

The Mass of a Missile, the Position of the Center

" of Mass, Inertia Moments.

In connection with the continous burning of propellant the mass
of a missile varies during flight and it can be found from the
expression

.
ma-_-mo--det, , (1.39)
where m = dm| _ dm _ the mass consumption per second; ¢t = 0 - the
dt dat P p H

moment of engine activation; my — initial mass of the rocket.

Mass consumption per second m consists of the mass consumption
per second passing through the combustion chambers of the main engines,
through the exhaust pipes of the turbopump unit [THA = TPU] as well
as through the combusticn chambers of the cohtrolling engines.

Usually during flight variations take place in the mass con=-
sumption rate per second, caused by a variation in the engine operating
mode, and also by various random factors. The most significant
variations in consumption per second occur in the transient modes of
engine operation (activation, switching to smaller thrust, complete
shut=-down).

The position of the center of mass of a missile, determined by
coordinate X, (Fig. 1,13), and the moments of inertia of a missile
vary in proportion to propellant burnup. These values can be taken
into account dependent on the mass of a missile, 1i.e.,

xe(m); Jey(m); Jya(m); Jus(m).
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Pigure 1.14 for example contains graphs which illuatrate the
nature of the variation in mass and moment of inertia relative to the
transverse axis for the first stage of a two-stage rocket.

Fig. 1.13. The variation in
the dimensionless coordinate
of’ the center cf mass of a
single-stage rocket

iT = x,/1 during the time of
flight: tp ~ the moment of

engine shut-down.

b
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Fig. 1.i4. The variation in
mass and inertic moment of a
two-stage rocket during the

time of flight: cp,“, = the

moment of the preliminary
comnand; t_ - the moment of

stage separation.

The Principle of Composing Equations of Motion
of a Missile as a Body of Variable Composition,

During the flight of a rocket with the engine operating emission
of the products of combustion takes place and the composition of the
rocket is continuously varying. In examining the motion of a rocket,
it is convenient at each moment of time to include in its composition
only those material particles which at that moment are located inside
the specific volume oocupied by the rocket itself, When the problem
is composed in this way the rocket with the engine operating is a




system of variable composition, to which 1t is hot possible

to directly apply the theorems of the dynamics of rigid bodies.
However, based on these classi~al theorems, 1t 1s possible to prove
analogous theorems for a system of variable composition and to
establish the principle for composing the equations of motion of a
rocket.

Rejecting the proofs presented, for example, in book [6], let us
examine the principle for composing the equations of motion of a rocket.

The equations of motion of a reaction flight vehicle at an
arbitrary moment t can be wriitcn in the form of the sguations of the
motion of a sclid body which is obtained as a result of the
"solidification" of reaction vehicle at this instant, if we include
the reactive forces among the forces, applied to this fictitious
solid body.

Thus, the vector equation of the motion of the center of mass of
the rocket tan be written in the form

‘V . .
--t .
m =S F i+ 3P © (1.40)
Here ;m = ﬁ(t)-- the mass of che“rook§c at moment of time t; 7
gEL - the acceleration of the tenter of mass in an 1nereial ooor-:

a
dinateo 533?‘*!!! zrl = the sum of the external forees. app‘ied to the

rocket; S‘ﬁ, ~ the sum of the regotive forces,

By the external forces, acting on a ruobet, are meant such forces,
as gravity Hr’ total aerodynam;e-rorce R, the force Gf the inter-
action of the rocket with the launch pad or with a separated svage.

As is evident, the composing of equations of motion of a body ol

" variable composition reduces to the determinstion of the reactive

forses, which is a rather complex protlem. The main one of these
forces 15 the reactive force mw, which cannot be directly measured.
Thus it is customary to deteraine the thrust force of a rocket engine




by formula (1.29), in which is included the force caused by atmospheric
pressure and by the gas pressure at the nozzle exit section (pa - p)Sa.
Although this force 1s external, it is combined with the strictly
reactive power ﬁw, since during the testing of an engine on a stand
the force acting on the stand mounts, determined by dependence (1.30),
is measured. Accordingly the force (pc - p)sa is eliminated from the
number of external forces 2:?1.

Besides thrust force P, determined by formula (1.29), the
following are included in the composition of the reactive forces:

1) the forces caused by the nonsteady-state of the motion of the
propellant and the products of combustion relative to the missile body;

2) the Coriolis forcss caused by the moticn of propellant and the
products of combustion in a rocket rotating relative to an inertial
~goordinate system;

3) tho forces caused by the displacement of the centpr of mass of
a rocket relative to itz housing. o '

‘The enumerated forces are very small in comparison with thrust
determined by the formula (1.29), and their direct measurement 13
" not possidble, Depending on the assumptions made, different authors
obtain different theoretical expreasions for them. In ballistics the
indicated small reaciive forces are usually disregarded and the
tirust forces of rocket engines are deterwined by the expression (1.29),

The vector»eqﬁation of the rotary motion of a rocket relative to
the center of mass is composed in an analogous manner:

LR 3 Firy+ 3y,

Here K — the main moment (relative to the center of mass of the
rocket) of the moments of the particles of a “sclidified” missile
' relative to the axes, passing through the centeb of mass of the
rocket and moving translationally with velocity ¥, relative to the
Anertial systenm;

(1.41)
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» 1.6. PER?URDING-FORCES'lID NONENTS.

}aﬁ‘,’- the main moment (relative to the center of mass of the

rocket) of all the external forces acting on a missile, with the
exception of the forces of atmospheric pressure and gas pressure in

vl ¥
the nozzle exit section; }Eﬁl,; - the main,moment !(relative to the

centef of mass of the rocket) of the thrust force of a rocket engine,
and also the forces caused by the motion of the propeillant and the
gases inside the rotating missile, by the nonstesdy-state of thie
motion and by the displacement of the center or mass ot the rocket
relative to its h using. o T '

t

Subsequently for the sake of simplifying the equations of rotary
motion of a missile relative to its center of: mass we wil; disregard .
the moments of forces caused by the nonsteady-state of the motion of

the propellant and the gases inslde the rocket and by the displacement !

of the center of mass of the rocket relative to tts housing. since
these momenba are rather small, '

. 1t is necessary to nete that significant (in value) monments .
caused by oscillations of the fluid in the tanks of the missile
‘ocour when a free surface exists. However with an appropriate

“selection of the parameters of a gtablligation system the os¢lllations
of the missile due to the mobility of the fluid in the tanks are small

and thelr effect on the misslle erajeotory is 1nsignifiennt. In this

connection we will omit the study of moments caused by the interaction '

of the fluid with the missile badv, espoulally because these guestions

- are the subject of investigation by special sestions of missile

dynamies.}

in actual flight perturbing forces and moments causea by variousu
'pertuvbins taccors always act on a alssile, ‘

tsee, For exasmple, works {1}, {17]. .
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In composing a mathehatical model of a missile Flight and its
1n6eaﬁigation it is not ‘possible to take all theiie perturbing factors
into account. Depending on' the actual conditions it is necessery to
congider only those of them which gubstantially affect the solution
of the given problem. :Thus here we will limit ourselives to only a
brief survey of the basic groups of perturbing factors, presenting a

, move detailed examination of them in the appropriate sections of this

book. i
4
:  Such pertuvbing factors as the deviations in the parameters of
a missile and its engines (tha weight of the missile, the thrust force
of the main engines, the ruel consumption per second and others) fron
thelir opcimum values, are caused. mainly, by production errors in the

T manufaoture and the assembly of elepents and subassemblies making up

a nissile. and by the variance in the propellant characteristics.

Thesc deviations in the parameters of a missile and engines from the

ptimum values and such maqufuctuying errors, as thrust eccentricity
in the main engine, missile asymmetry, body misalignment, eto., cause
the appearance of random perturbing forces {the forces ot sravity.
reaative and aerqdynaniq rorce&) and their moments.

i H

&

<

The atmesphqré is another source of perturhance$.< Deviations in
the. paranetera of the atmosphere from standard valaes give rise to
the appearance of perturbing adrodynaris fobces and woments and to
the devigtion in thrust from the cptimum value. Wind effeots on a

wissile alsov caude the perturbances 1ln gervdynamie forces and noments.

,Atuospherie perturbances are & #and ‘o process and are aaeordinsly

deseribed by r&ﬁaom fuﬁat%ans.

.
1 H

All these perturbing rorges and moments are appl;cd direetly to

_ the miszalle. Eesides these, perturbing r@roea anﬂ aoaents ariging as

& result of various errors in control elemert deflection are alvays

acting. - The comnon sources of Such pért;rning effects are noises,
”’errérs in the operation of equipment ond deviatibng 1s the paraseters

of the equipuent from thele Sptinuie values, lesding to “arisus false
signais 1n the control elenents. As & regult perturting forces and

. momenta appear which avre, gﬁwﬁraily speak:né.‘randsu variables,
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Perturbing factors, acting directly on a missile and on the
control processes, finally, lead %o a reduction in maximum flight
range and to deflection of the flight paths of the missile and nose
sections. '

1.7. CONTROLLING FORCES AND MONMENTS.

The control of the translational and rotary motion of a missile

. 18 2asried cut by varying the controlling forces and moments which
“arc oreated with the rocket control elements upon commands from the

control system. The selaéotion of the type of control elements and
their effectiveness iz one of the most important questions in the _
dynamic designing of a missile. Its solution is direotly connected
with the selection of the structural layout of a missile.

COn&rolling Forces.

In the saﬂﬁrsl ease the folloving forces act on a m!ss:le during

flight: graviey , toval asrodynamic force K and engine thrust
force P. During the launcning of » missile launch pad resction rorees
E can alao awh on it

For varying the flight path of a aissilé_it is necessary o vary
the magnftude and the direction of the resuitant forces indicated

'fabove. Since 1t 18 not posaidle Lo alffect gruvity, ?light control s
practically acecsplished onlyx by varying the cagnitude and the

direeiicn of Uie resultant R of thrust forces of the engines amd of
the qerodynasie forecs. The resultant § csn be broken down into two
au&tﬁn&nta §§ aml ﬁ directed respectively alang velocity veetor V
and gérpendioular ta it (P13. ;.15).

Tangentisl component ﬁi, cqual an vazvi'ﬁé;{”"" R |

can sepve to é&gulaSQ flight velceit;. The vartaiion is taégvnhiix
component ﬁ for vallistiz rockety “s attained by varying the Lhrust .
of the aain englnes (for ‘nstaacé, Wy pregulaiing the propellant

3%
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"are possible. For bailistic rockets, in order to obtain a sorsal

‘ consumption per second, if the engine is liquid-propgllant) and by

activating or shutting down various engines.. That part of thrust
force AP which can be used for regulating missile speed, let us call
tangential controlling force.

e , | Pig. 1.15. Forces acting
, - = - 1 .~ ona rocket in flight.

R

L~

Normal force R is equal to the aum of the projections of total '
aerodynamic force and thrust forces in the plane, norma‘ to the
trajectory:

N.-P.+R.-'P;+7+Z. a (1.#5) |

Iza eolponent 10 the f:ring plaue ﬁ we call nornal eontro&li.g

“’rorea. a

ay analegy'uxth normal controlling force let us introduce the

o eeneept 6f lateral controlling furce N N which is - projection of
-'frcree N, on & purpendion luv to the g;aae of rl'ght.,

By oreating the reQulréd {15 aaanitﬁae and direction) tangential,
ﬁoﬁﬁil and lateral eontroll;ng foroes , it 1s possible to. ensure an : _ .
assigned tliaht trajectovy of & rocket. R o A;J

Various iéthﬁds of ereating nortal and lateral contrd'ling forces

force of different sagnitude, it 13 necessury to vary the sngle of

-attack in the plane of light a’. tufdng the rockwt around ity center
7. -of mass. When a rocket has an angle of atlack o ’. the noresl forece 1s
'jeqsm to (P1g. 1.16) : ' ‘
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- Ny=Psinay+¥=(P+e5)ay. (1.44)
In order to obtain lateral controlling force, it is necessary to

give the rocket angleé of attack a, in the plane, perpendicular to the
firing plane. '

X
o<
- x,
‘. '..\ g
7]
Frosx
"~

Fig. 1.16., Diagram of the
onset of normal controlling
force in a rocket.

fsina

Rocket Control Elenments. Controlling Moments.

As was stated above, to obtain the required (in magnitude and
direction) normal fbrce it is necessary in a specific manner to
regulate the orlentatlon of a rocket relative to the velocity vector.
This problem 1s solved by creating controlling moments which rotate '
the rocket around its axes Oxl, Oyl, and Ozl. The corresponding
motions are usually called roll, yaw and pitch motlons. For producing
controlling moments there are control elements on the rocket. The
latter create comparatively small aerodynamic or reactive forces, whose
moments relatlive to the center of mass of the rocket are sufficient
for controlling the angular motions of the rocket.

. For varying normal and lateral force rotation of the rocket around
its Oyl and Oz1 axes with the ald of yaw and pitch control elements is
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employed. These same control elements are necessary for stabilizing
the required orientation of a rocket in space. For stabilizing a
rocket with respect to roll! still other elements controlling roli

are necessary, creating controlling moment relative to the longitudinal
ax's Oxl. And finally a conirol element is necessary for varying the
thrust force of the main engines, If it is necessary to regulate

rocket velocity.

At the present time the followihg basic types of elements are
employed for controlling ballistic missiles:

1) air vanes;
2) jet vanes;

3) turning combustion chambers of the main engines (one or
several);

4) turning nozzles of the maln engines;

5) special adapters at the nozzles edge (spherical, cylindrical
with an oblique edge and others);

6) slotted nozzles;

7) extensible flaps cperating in the engine jet perpendicular
to the flow;

8) the blowing of generator gas or the injJection of a fluid into
the supersonic part of the nozzle of the main engine;

9) multi-chamber main engine operating in a boosting-throttling
mode;

lRotation relative to the longitudinal axis Ox1 for varying the

lateral controlling force of ballistic rockets 1s not employed.
However for simplifying the control system it 1s necessary that rocket
flight oceour without rotation around this axis, i.e., without roll.
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séi ‘ 10) controlling engines (fixed and turning);

: f- 11) controlling nozzles {turning and fixed);
E 12) combined control element (for instance, air and Jet vanes or
'ﬁ - air vanes with the main chambers operating in a boosting-throttling

All the enumerated control elements can create controlling yaw
and pitch moments, however not all of them are suitable for producing

,E{ rolling moment. It 1s not posslble to obtain rolling moment, if for
;.E pitch and yaw control, for example, one turning engine is used, or, if
: %i the forces creating pitching and yawlng moments, are directed aiong

3 the longitudinal axis of the rocket. In these cases for roll control

it 1s necessary to use the special controlling engines whose thrust
g acts in the transverse plane.

In all other cases, when there are not less than two pairs of

pitch and yaw control elements, creating transverse forces at a
. certain distance from the longitudinal axis, for producing rolling

3 .. moment differential control of the control elements 1s employed. The
B latter can act symmetrically, creating pltching or yawing moment, or
asymmetrically, creating rolling moment. With a combination of the
indicated operations pitching (yawing) moment and rolling moment
can also be simultaneously created.

The magnitude of the forces created by the control elements,
depends on the displacement of these elements (most frequently
angular) or on the propellant consumption per second, if misalignment
of the thrusts of the main engines is used for control.

) Let us examine the definitlon of the forces created by the
control elements, and of controlling moments as an example of control
of rocket motion with the aid of four controlling engines.

In many contemporary rockets control of rocket motion in the
ﬁ powered-flight phase is accomplished by four controlling engines.
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The location of these engines and the directions of their deflection

“taken as positive, are shown in Fig. 1.17. We will consider its

turning counterclockwise as positive deflection of a controlling
engine, if it is looked at from-the direction of the corresponding
axis, 1l.e., in Fig. 1.17 deflections of engines II-IV downward, and
engihes'I—III to the right will be positive.

Fig. 1.17. Diagram of the
onset of controlling moment
upon deflectlon of the
controlling engines.

Agsumling the thrusts T of all four controlling engines equal, let
us write the projections of thelr resultant on body coordinate axes

in vhe form:

T =T (cos 8, -+ c0s 3;4-cos 3;4-cos ,);
Tyi==T(sind,4sin,); ' , (1.45)
Toa= —T(sind; 4-sind,,

where 61, 62, 63, su — respectively the angles of deflection of
controlling chambers I, II, III, and IV.

Apparently, the controlling moments in this case will be equal
to: '
My =T, (sind +sind) —sin8,~sin3,);
My = =Tl (sIn 8,4 sin By); ' (1.46)
My = ~Tl,(sin3;4-sIn3)),
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where vy = the distance from the longitudinal axis of the rocket to
Vthe‘longitudinal axes of the controlling chambers; Zy = X

T~ X8

~distance from the center of mass of‘the rocket to the axes of rotation

of the controlling engines.

In these expressions the thrust force of éhe controlling engine -
1s determined depending on its parameters by formula (1.35).

Rocket Controilability.

Ensuring the controllabllity of a rocket is one of the major
problems of dynamic design which reduces to the selectlon of the type
and the effectiveness of the contrcl elements., We will estimate
control element effectiveness by the maximum controlling moment
My max® created by deflecting the control elements, and by the
corresponiing angle of deflection of these elements Gmax'

™e selectlon of the type and effectiveness of control elements
is carried out taking into account the possibllity of the design
realization of the following conditions:

1) a sufficient amount of controlling moments (with certain
reserves) for compensating for the perturbing forces and moments;

2) minimum energy losses during controlling.

The energy losses during controlling and, as a consequence of

this, the reduction in firing range are due, mainly, to two causes,
namely:

1) the installation of control elements gives rise to a reduction
in the specific thrust of the englne system;

2) the installation of control elements causes an increase in
the "dry" welights of rocket stages (because of the weights of the
control elements themselves, thelr driving mechanlsms and the energy
sources for the latter).
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Overestimation of control effectiveness can lead to unjustified
design complications and large energy losses for the rocket. In
connection with this the problem of correct determination of the

necessary control element effectiveness acquires very vital importance. -
In solving this problem it is necessary to correctly estimate the
perturbing forces and moments and to rationally select the dynamic “

rocket layout.

All the perturbing factors affecting the selection of the control
elements, can be divided into the fcllowing groups:

1) wind;

2) technological errors in the manufacture and the assembly of
a rocket;

3) rocket layout asymmetry.

At the present time voluminous statistical material has been
accumulated characterizing the wind field of the earth.

Wind velocity W can be examined as a vectorial random variable
wlth a nonzero mean value, The systematic component of wind velocity
WCHCT is oriented from west to east. The magnitude of a random
component of wird veloclty whose direction is equiprovable, is subject

to the normal distribution principle.
Another group of perturbing factors 1s caused by technological
errors in the manufacture and the assembly of a rocket; the basic ones

are the followlng:

1) blas and misalignment of the axes of the nozzles of the engine
gystem relative to the mounting base;

2) bias and misalignment of the mounting base relative to the
correct position;

42




I
) é‘.
o

- N ‘
TR R i A ST

DETRera
S

3) difference in chamber thrusts and a possible variance in
engine thrusts;

k) elastic deformation of the engine system mount;
5) bias and misalignment of the Joined missile sections;
6) errors in the installation of the stabilizers.

Technologlical manufacturing and assembly errors in a rocket can
‘be considered subject to the normal distribution principle. In
connection with this perturbing effects from each of the enumerated

factors can also be considered distributed according to the normal
distribution principle.

Asymmetric layout of a missile glves rise to systematic perturbing
forces and moments:

1) perturbing moment due to welght asymmetry;

2) perturbing forces and moments due to asymmetric positioning
of the exhaust nozzles of englne turbine-pump assemblies;

3) perturbing forces and moments due to elastic deformation of
the engine system mount caused by 1ts asymmetric loading.

To each group of perturbing forces and moments acting on a
precedling stage of a rocket, there corresponds a group of initial
perturbations for the following stage. Initial perturbations due to
the stage separation process can be considered random and distributed
according to normal distribution principle.

Thus, for evaluating effectiveness of control elements the
oomplex of Independent perturbing effects, applied to a missile during
flight, which can be reduced to one systematic and to n random
independent (between thenselves) effects with the normal distribution
principles.

k3




During the varicus flight phases the role of the perturbing
factors 1s not identical.

The basic perturbing factor for single-stage rockets and for the
first stages of multl-stage rockets 1s the wind.

Perturbing forces and moments caused by manufacturing and
assembly errors in a rocket and by layout asymmetry (both systematic
and random), considerably less than wind forces and moments, do not
play a substantial role when evaluating effectiveness of control
elements. Thus for preliminary determination of the necessary angles
of deflection of the control elements of single-stage and the first
stages of multi-stage rockets 1t 1is sufficient to estimate the effect
on a rocket of wind {taking into account its variation with height).

For second and subseguent stages of misslles wilth a separation
height of more than 40 km the basic perturbing factors are manufacturing
and assembly errors and asymmetry of missile layout. The effect of
wind in these cases is unimportant.

In the initial flight phases after the separation of the stages
it is necessary to consider the effect on the deflections of the
control elements of the initial perturvations caused by stabilization
errors in the previous stage and by the stage separation process.

For the preliminary selection of the type and the effectiveness
of contvol elements it is possible to determine total perturbing
moment

m / L]
A’a!"-‘-"z l"nlﬂm"*“/ z‘wzf” (1.47)
e Jui

and to start with a reserve of 10%, which 1s
] A
“1’ mll"_‘:"u)'amu > l |1M.3- ( 1 8 )

Proceeding from this value of negessary controlling moment and
taking the design characteristics of the missile into account, it is

by
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possible to select the type of control elements.
necessary to carry out evaluation of controllability (in other words,

After this it is
to estimate the sufficient amount of controlling moments), using the
dynamic layout of rocket motion examined in Sect. 2.4,

The order of calculations for determining the deflections
(loading) of the control elements in the first and subsequent stages

of a misslile is given below.

The Order for Carrying Out Calculations for the First Stage.

A. The deflections of the control organs are determined:

1) due to the effect of the systematic component of wind
velocity Gw H
CHCT
2) due to the effect of the random component of wind velocity

6 *

¥en'
3) due to the effect of the perturbing factors caused by layout
asymmetry 6“0;

4) due to the effect of perturbing forces and moments caused by
technological errors in the manufacture and the assembly of a missile

8.

The total deflection of the controcl elements is determined
b=ty V a?,u+a?.. (1.49)

C. The loading of the control elements is compared (taking into
agcount the possible random deviations in the parameters of the
missile, the guldance equipment and the atmosphere - by introducing
a margin of safety 1.1) with the maximum possible deflection

B,

1L g3, (1.50)
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The Order for Carvying Qut Calculations for the Second
and Subsequent Stages.

During determining control element loading in second and sub-
sequent stages the combined effect on the motion of a missile of

wind, technological errors, layout asymmetry, ard also initial per-
turbations is considered.

The initial perturtations due to stabilization errors at the end

of the flight of a previous stage cause the following deflections of
the control elements:

~ systematic component que:=3%'w,+3=c;
6 a0
- random component dw . .

Random perturbations due to the stage separation process lead to
deflection of the control elements ag.

The order for carrying out the caloculations.

A. The component deflections of the control elemunts are
determined:

1N éckc, - que to the effect of the algebrale aum of the perturbing
forees and nmoments rasulting from the gystematic ccomponent of wind

velocity and the layout asywmetry durdng the initial perturbances
0
8

L3
cucr?

2) 6w - due to the effect of the randon component of wind
Han

velocity with zero initlal perturbations;

3) Gn - due to the offect of persurbing forces and moments
caused by technological errcrs, with zero initial perturbations;

A 0 0o .0
§) §,. §. , & = duae to inltilal perturbations § s., 8.
Woaon ™ By Wen' 0 0
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B. The total deflection of the control elements is Qetermined
i

b=t +)/ 0% TRy aa T T, (1.51)

H . £

C. The loading of the control elements 1is composgd (taking into
account the possible random deviations in the parameters of the
missile, the guidance equipment and the atmosphere) with the maximum
possible deflection: t

RRLIE S W ‘ ' (1.52)

If this condition is not fulfilled, correction of earlier
selected control effectiveness characterized by magnitude Ns is !
carried out.

1.8, THE ROCKET FLIGHT CONTROL SYSTEM. _ ' '
The Problems and the Makeup of a Control System. : i

A rocket flight control system controls its motion in the
poweréd-flight phase, ensuring flight in a rather close vicinity of
the required flight path, and separation of the stages and nose,
section of the rocket at the nccessary moments of time.: This very
general formulation of the problems of a Plight control system can be
somewhat more soncretely defined by separating the overall problem
into the problems of guidance and stabilization. r ‘

The problem of rooket stabilization, and more precize, the
controlling of 1ts motion around the center of maas, reduces to
-controlling the orientation of the rocket axes in space and to main-
taining the required orientation. This problem is solved by a group
of devices located onboard the rocket, — by the automatio angular
stabilisation equipmant. :

Due to feedback the rocket and tihe automatic angular stabllization

equipment form a single dynamic system, in which the rocket is one of

u?
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the links. Henceforth by stabitisa;ioh.a&atqm we willl understand the
closed automatic system consisting of the rocket and the automatic
angular stabiliz?tion equipment. ! T ‘

° i
) Usually a rocket is stabilized (oriented) relative to all three
!(connected with 1t) coordinate axes, Accordinglylthe;stabilization
systenm consists of three .channkls: piltch, yaw; énd roll.

The problem of missile guidance (controlling the motion of the
center of mass) %educeS;to the control of the.three components of the
" velocity of the center .of mass (longitudinal, normal, and lateral),
separation of the stages and the nose section in such a way that the
parameters of the motdon of' the center of mass of the rocket at the
moment of the separation of the nese section ensures the free flight
of the latter along the required bbajsucoryc ‘The automatic centrol
syatem, solving this proclem, we cusgomarily call the guidance syotem.

In general & gutaancé sysb@m!00ﬁ51383§0f three channels for con-
téqlllng of laseral, nopmasl ang longitudinal somporients of velocity
and channels aonﬁrﬁll§ng Lhe séparatign of the stsges apd the nose
section. The Pirst three channels operate with the use of feedback
-end form together with the vooket a elosad vhree-ghannel dynamle
3yaten.

_ Control of the gonargation ﬁf'thﬁ_rﬁckeé parys 15 accomplished

by an open ryston (withaut recdback): on the basis of the {nforaation
about the motion af the venter of the mass of the rocket in the _
powered~filght phage the moment »f tisme is Jetermined at which it ¢
hesesaary to separate the apprcpriéta part of, the rodket knd 4 series
0% single tnstructicong %s glven for shutting down the aﬁgine systen
and For the separation ol thlz part.

o i !

RS 8 result oY the presetive of twe different rlight phases of &
ballissio missile - powgred-and unp@weréderlight phases the maaln
problem of suldance iz controllibg the separation of the nose section
- of the rocket In such & way that the nose sect ton thereafter careying
outl free flight, ifspacts ia 1he viclalty of the target on the surlace

' :
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of the earth with the reguired accuracy. ' The execution of this task
is ensured by the channel controlling the separation of the nose gection
which 1s a group of devices which shape the signal for the shutting
down of the engine system and fnr the separation of the nose section
at that moment of iime, when a certain runction of the parameters of
. the motion of the rocket attaims a value which ensures with the
required accuracy the transit of the flight path of the nose section

- to the target whose positio#-r@l&tive to the rocket launch site is
known. ' : ’ h

In order that at the moment ol separatior of tha nose sectien
the paramoters of rocket motion are lodzted in such & %Rffiéieu&ly
small area which ensures the normal operation of the channel con-
trolling the separation of the uode section, 1t is neuaasa“y to con=-
trol the velociss comporant af the yoeket.

The chanﬁel controliing lateral velacity sslintains the flight
~of the podket during the power&ﬁs“&ight'fﬁﬂ;ﬁ ia the indicated plane
of Tiring. This is necessary 350 thad’ %ﬁk vﬁ»ﬁﬂitg vegtor of the
pagket at the moment of sspavaaiaF af tka shse section has the
_nscegaarj divection with respsdl to asimuth. Sinee this channel
strives to reduce lateral drift to zers - the deflection of the
rogket from the plane of Piidsg, then 1t also can be ealled the
lateral drift stavliizasios chasmel or the channel of lateral
stabilizasion. S : -

' “ﬁ@ shannel contrulll ng‘ﬁﬁfﬁal veloclty ensures the flight of '
TEhe pOSRe: in the p.are of Piring alohg the aselgned flight path o
that at the moment of «éparatiau of thet noge $ection the veloolity
yestar nf %hé rockei tas the neee&sary dir«et:ou in the plane or
ing. . .

_ The thanniel vontrelling velosity enisurcs the vtequirsd principle
‘ot varying Flight velseity. The control of veloclty 1s accompiished
for the purpose of reducing the paragetele Qomdin of the sotion of the
canter of #ass of the rockiet 1 the plane of firing, at whieh
aration of the adse sSection 1s pussibic for inpacting on the

8
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aszalgned target. The channel controlling velocity can be absent, if

it is possikle to ensure the required accuracy of firing without

velogity cantrol.

Each of the three closed chaninels controlling the components of
rockey velocity usually carry out the following functions.

1. It obtains and processes information concarning the parameters
of rocket motion, on the basis of which the guldance signals are

worked out.

2., It tranpsmits the guldance signsls on board the rocket, if

these signals are developed by off-board equipment.

- 3. It converts the guldance signals into lateral, normal and
‘tangeatial controlling forces. ' :

Sinve lateral and nortal controlling forces are created by

_varying the angular position of the rocket relative to its velocity
veator, 1.¢.,, by varying ihe angles of attack and sideslip, then for

controlling these forces two channels of the angular stabilization
systom ape uaed_- the piteh and yaw channels., In Sthis case the
angular stebilization systes simultancously esecutes two functiona:

1) 1% estverte the guldanes signale into lateral and normal
sontrelling fovrges; '

2) 1t stabliiiéérduraﬁg the effect of perturbations the shguier
porition of the vocket assighied by the puldanse signais. '

Thus, the two ohawse;l o0 lue atgular stghilization systes arve
design elewuéﬁ; af e th-. LAt 6 gnar 3Ts ol Bhe gutdance
syatem, ?ﬁ#é, the channel « - Lliiing the angle of piteh i part ol
£h2 ghiizael econtws” o o noomal velosity, and the channel stabilizing
the angle of yaw o included 1n the channel controlling latsral
valoeity. Thesd teo channels of the angular stabllization sysien are
¥1Eh respest to the guldonde systes a certaln coaplex “object of

LIRS TR
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For the normal guidance system operaticn it 1s usually necessary
that a rocket flight occur without roll. With rocket folling the
guidance signals will be executed inaccurately as a result of a
reduction in ncrmal controlling force N as compared with 1ts required
value Ny \Ny* Ny cos n) and the appParance of lateral controlling
force NC Ny sin n, which causes deviation of the center of mass of
the rocket from the plane of firing. The problem of preventing rocket
roll under the effect of external perturbations is solved by the roll
stabilization channel. This channel is not included in the-guldance
system, but it facilitates 1ts operation.

The principle of nose section separation control 1s based on the
assumption a2 nose section can hit one and the same target point (at the
end of the unpowéred~flight phase), moving both along the optimum
trajJectory and along an infinite set of other possihle trajectories.
Because of fthis it 1s not at all mandatory for hitting a target, that
the parameters of rocket motion at end of the unpowered-flight phase
be equivalent to thelr optimum values. It is possible to separate
a nose section at that iInstant, when the totallty of parametic
deviation of rocket motion from their optimum values will ensure the
subsequent motion of the nose section along one of the trajectories,'
leading it to the target, Thls problem 1s also solved by the
appropriate channel of the rocket control system,

Peculiarities of Rocket Control Syscems With Controllable
and Uncontrollable Thrust.

The principles of ballistic missile control system construction
are determined by the rocket flight conditions and by the character-
istics of its deslgn, by the missions which are assigned to this system,
and by the specifications, Imposed on it, and also by the level of
development of the corresponding fields ot technology. In particular,
a large role 1s played by the fact, of whether the megnitude of engine
thrust 1s controlled or is not controlled. Rockets with engines which
make 1t possible to vary the thrust level, are more refined objects
of zuntrol. They can accomplish flight along & {light path,
sufficiently close to the optimum, and thus, execute nose section
separation with small parametric deviatlons at the end of the
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powered-flight phase from the optimum values. This makes it possible
to obtaln a relatively high firing accuracy when using comparatively
simple guidance systems and instruments.

For ensuring a rocket flight along a trajectory, close to optimum,
it 1s possible to measure three components of the acceleration of the
‘center of mass and to compare them (or integrals of them, 1.e., three
velocity components) with the programs of their variation which are
stored as functions of time in a program unit (or in an onboard
computer).

By contirolling the normal forces by varying the orientation of
the rocket and by the thrust levei by boosting or throttling the
engine, it is possible to accomplish a predetermined flight trajectory
with an accuracy determined oanly by the characteristics of the control-
system equipment. The narrow "tube" of perturbedrtrajectories obtained
in this case makes it possible to construct a comparatively simple
automatic device for controlling the separation of the nose section,
that works in a standby mode and affecting nelther the rocket motion
process Iin the powered-flight phase, nor the operation of the contrel
system. The algorithm of the operatlion of this automatic device can
be comparatively simple, not requiring a complex computer,

It 1s rather simple to -obtaln a channel controlling normal
velocelity, maintaining the assigned program of its varlation. A
characteristic of this program 1is the gradual variation in normal
speed during the course of tens of seconds (the flight duration of
a rocket stage). The representation of a program in the form of a
frequency spectrum shows that thls specetrum occupies in practice the
frequency band from zerc to several tenths of a radian per second.

For accurate reproduction of such & program high speed operation is

not required from the channel controliing normal veloclty and a
stabllization mode 1ls more characteristic of it than 1s a control mode.
In connection with the noted fact for rockets with controllable thrust
the channel controlling normal speed, ensuring an assigned program of
its variation, can be called the nosmal etabilisation channel,




‘Thus, for rockets with controllable thrust the optimum flight
path in the powered-flight phase 1s assigned by programs controlling
the projections of veloecity for some three directions and by programs
controlling the angles of pitch, yaw and roll, and a guidance system
is intended for controlling a rocket in the powered-flight phase along
- a trajectory, as close as possible to the cptimum. This problem is

solved by three channels of the guidance system, which include the
channels stabilizing the angles of pitch and yaw, and also a channel
stabilizing angle of roll.

The examined approach to constructing a guldance system transfers
a significant part of the problem of ensuring required firing accursey
to rocket and engine system designers. The guidance system 1in this
case receives a simple instrument formulation due to the complicating
of the rocket design.

The rocket, in which the thrust level of the engine system 1s

not controlled, for example solld-propellant rockets, can noticeably
deviate from the optimum trajectory. However the reducing to zero
during the whole duration of the powefed—flight phase of the
parametric deviations in rocket motion from the optimum values is not
an end in itself. The basic problem of a rocket control system is
minimizing the deflection of the point of impact of the nose section
from the target. An ideal guldance system should employ the parametric
information about rocket motion in such a way as to ensure at the end
of the flight the impact of the nose section on the target. The
success in solving this problem by a real guidance system depends on
how completely the algorithm for converting the information about

. rocket motion into the guidance signal controlling rocket orientation,
considers all possible factors affscting impact accuracy.

Thus if an attempt 1s not made to ensure the smallest deviations
in the parameters of rocket motion from the optimum valués, which 1s
more or less possible ln rockets with controllable thrust, then
control of the normal and lateral veloelties and of nose sectlon
separation 1s accomplished in accordance with rather complete
algorithms ensuring the required diszpersion of the nose section,
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despite the substantial deviations in the parameters of rocket motion

from the optimum. In this case for :shaping the guldance signals and

for nose section separation a large number of computational operations i
is necessary which are performed by a digital computer: onboard - in

an inertial system or ground-based — in a radlio-controlied system. It

is not difficult to see that for ensuring assigned nose section

dispersion a less refined object of control (with uncontrollable

thrust) requires the employment -of a more refined guidance system

using a digital computer.

Inertial Control Systems for Rockets With
Controlled Thrust

On the basis of an analysls of the control systems of various
ballistilc missilesl 1t 1s possible to visuallze a certain typical
inertial guldance system for a rocket with contrcllable thrust. As
1t was already noted, such a rocket does not require complex control
algorithms, and thus 1ts guidance system does not contain complex

computers.

The basis of a guidance system is a gyrostabilized platform
(GSP) which preserves in flight in the powered-flight phase of the

" trajectory the direotlons of the axes of the initial launch co~

ordinate system.

The Control Program

During the flight-of a rocket in the powered-flight phase of the
trajectory three projections of the apparent veloclty of the center .
of masa of the rocket and the angles of turn of the body axis of the
rocket relative to the axes of the inertial (initial launch) coor=-
dinate system, are measured, l.e., the angles of pitch ¢, yaw £ and

roll n.

For establishing the components of the apparent velocity of the
center of mass of a rocket as reference directions 1t is possible to

lsee, for example, the books [12], {13], (261, [27], (291, [30].
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use: the direction of body axis Oxl, coinciding with the longitudinal
axis of the rocket: the direction of axis Oy¥, coinciding with the
reference (programmed) direction of body axis Oyl; the direction of
axis Ozo, coinciding with the normal to the plane of firing Oxoyo, or
the direction of body axis Ozl.

The programs of lateral velocity W:O’ of the angles of yaw and
roll are usually considered zero. The program of normal speed 1s also
very simple to select as zero. Then the flight path will be assigned
only by two programs: w:1 and ¢¥%,

The program of varlation in pitch angle, assigned in the form of
a dependence on time, 1is distinguished by the simplicity of its .
instrument execution. Other means of assigning a plteh angle program
are also possible., For instance, a program can be assigned in the
form of the dependence of pitch angle on the projection of the
apparent velocity on the longitudinal axis: ¢¥* = ¢*(wx1). The
execution of the program in thils case 1s accomplished by a program
mechanism in accordance with the actual value of the apparent flight
velocity.

Angular Stabilization System

A system of angular stabilization maintains the required
orientatlion of a rocket determined by the zero values of the angles of
yaw and roll and by the program value of pitch angle. Thls system
has three channels: pitch, yaw and roll, constructed in an anaiogous
manner. Certaln differences in the operatlon of these channels are
due to their interaction with the corresponding channels of the
guldance system. :

A characteristic of the channels for stabilizing yaw and roll 1s
differential deflection of the control surfaces for creating rolling

moment, which means using the same control drives and control elements

for creating yaw and roll moments.,

Since a rocket 1is dynamically axigsymmetric, the channel for
stabilizing the angle of yawing usually has the same structural
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layout, as the channel for stabilizing pitch.

The block diagram of one of the channels of an angular stabili-

zatlion system is shown in Fig. 1.18. Let us examine the equations

of the links, included in this diagram.

Nomenple  Posttnd o veura |1y [Fozeig] €
formemicpe Ll By doew s LBy NFyceles brepmg
Nem {Cuznadpy mmy |Sn50805 | many 2ubdd |hess y2c:
wi iy LA mBuik 1YY
(2) (3) (u) Lunds (6) (7) 03?.7"35 (9) o
(5) gﬁpﬂﬁﬁ.’*ui (10 )
(8)

Fig. 1.18. Diagram of an angular stabilization channel.

Key: (1) Error. (2) Potentiometer. (3) Error signal.
(4) Correcting filter. (5) Control signal. (6) Amplifier.
(7) Control drive. (8) Position of the control elements.

“(9) Rocket. (10) Angle of yaw.

The gyrostabllized platform with an angular error sensor 1is a
practically inertialess link, the unique characteristic of which 1s

the transmission factor KA, i.e.
us == Kze, (1.5%)
where ¢ = ¢* - ¢; € = £; € = n - for the plteh, yaw and roll channels
respectively.
The ampiLlflers included in the amplifier-converter dlagram, and

alsc the converters of the signal type — modulators and demodulators,
are characterized by a very small dynamic lag, which in analyzing a

stabilization system can be disregarded. Then

The;hydraulic ocontrol drive taking the moment of load into account
is characterized by the equation of the aperiodic link

Tpad+ 8= Kpaly. (1.55)
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Other drive layouts are possible; other equations will correspond
to them.

For correcting the dynamic properties of a system various types
of RC-filters can be used. The equatlions single-link differentiating
and integrating filters can be written in the general form as

Equations of two-link differentlating and integro-differentiating
filters take the following form: ‘ .

Toly+ 2Tty + u,= Ko (3t RgTolle+-8). (1,57

The given equations are employed in selecting the type of
correction and the basic parameters of eachh of the channels of an
angular stabilization system. However in soélving various problems of
the dynamic rocket design 1t 1s possible to enllist transitional
processes of stabilizatlon and to examlne only the established modes
of stablllzation, using the following simplified equations;

control drive

8= Kpaiys (1.58)
single~link differentiating fllter
uy ==Ky (tetts+1.); (1.59)
integrating filter
]
Ke [ . .
U, =—= |ttt Sudt I
y T.(“"'c ‘ ) - (1.60)

two=link differentiating fllter

by == Ko (volhs + ZoTotta 1+ th); (1.61)
integro=-differentiating filter
s
Ko [.ac .
. —_— 2Byt a.dt). e
“’"’2;,1‘,(’“"*' S a+>¢- ) {1.62)

ST




Using equations (1.58)=(1.62), it is possible to compose for each
- of the channels of a stabilization system an approximation equation
‘connecting the deflection of the control elements with the parameters
of angular rocket motion.

-For correcting the dynamic characteristics of channels stabilizing
piteh and yaw it is usually necessary to use elther a two-link
differentiating, or an integro-differentiating filter. Then, for
example, for a channel stabllizing angle of pitch we have the equations

dy=a,Ap-+a; Ap+a; Ag, (1.63)
or
8,=a,A<p+a§ Aé-l-a;,j'Acpdt. ‘ (1.64)

The equations for the channel stabilizing the angle of yaw are
written in an analogous manner.

For correcting the dynamic characteristics of a channel stabllizing
angle of roll it is sufficient to employ a single-link differentiating
filter. In thls case we obtain

Sh=am+a;n (1.65)

The Guidance System,

The channel regulating apparent velocity (the PHC [AVR] system)
is intended for maintaining the program value of the longitudinal
component of apparent veloclity by boosting or throttling the main
engline system. Veloclity control is accomplished for the purpose of
reducing the variance in the motion parameters of the center of mass
of the rocket; this necessary for simplifying the algorithm of engine
system shut-down.®

IThe AVR system can be absent, if it is possible to ensure the
required firing accurasy without equipping the rocket with this
system.
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The regulation of the longitudinal component of apparent velocity
can be accomplished in the following manner (Fig. 1.19). AVR is
introduced into the system, and then program'wzl(t) is reproduced
onboard the rocket. This function (the storage and the reproduction

- of the program onboard the rocket) is carried out by some program

unit.
Jamece
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!
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. ) '
! i
. e t i
Harepy ey Vs, P '
-pp - i 1
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‘ 1
(6) -777“J s gt
“Tu " Mlueamens

(8)

Fig. 1.19, Diagram of an apparent veloslty regulating
channel.

KEY: (1) Pregsure sensor. (2) Program signal sensor.
(3) Amplifier-converter. (U4) Drive. (%) Combustion
chamber. (6) Speed meter. (7) Rocket. (8) Engine.

A speed meter 1s a gyroscoplc integrator mounted on the missile
body so that its axis of sensitivity is parallel to the longitudinal
axis of the rocket; it emits to the comparing device in the form of a
corresponding signal the measured value of the apparent veloclty Wave
To the comparing device there also comes a signal of the programmed
value of the apparent velocity ":1’ (The gyroscopic integrator and
the comparing device can be combined in one instrument - the apparent
veloeity error sensor). A signal, proportional to the mismatch, is
supplied to the amplifier-converter, where it is amplified and con-

verted into a signal controlling the actuating clement of the AVR
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system. The actuating device can be for instance, the engine reduction
screw drive. The turning of the reduction screw varles the flow rate
per second of the propellant components into the turbopump unit. As

a result of thils the per-second flow rate of propellant golng into the
combustion chambers leads to a change in pressure in the combustion
chambers and thus, in the thrust of the engine system.

The thrust incregses, if the actual velocity L 1s less than the
programmed velocity wxl‘and vice versa. As a result an automatic
closed AVR system 1s obtained, in which the rocket is included as the
object of control.

For improving the dynamic properties of this system correction
methods, well known 1n the theory of automatic control, can be
employed: the introduction of derivaiives from the error signal Aw x1
into the control signal, the vtilization of internal reedback, etc.
One of the possible means 1s the introduction of internal feedback
with respect to pressure in the combustion chambers. In this case the
error signal of the apparent velooity Upe is added with the feedbaock
signal with respect to pressure in the combustion chambers (see
Fig. 1.19).

The lateral stabilization channel. The channel controlling the
lateral component of velocity maintains the flight of the rocket,

during the powered-flight phase of the trajeotory, in the assigned

plane of firing. 'This is necessary in ordsr to as simply as possible
ensure the required direction with regpeoct to the azimuth of the
velocity vector of the rocket at the moment of engine shut-down.

The channel controlling lateral velocity ensures during the
powered-rlight phase of the rocket with the necessary accuracy the
zerc values of the lateral component of velocity and of lateral
drift, 1.e., deviations of the center of mass of the rocket from the
plane of firing. In accordance with this problem the examined
guidance system channel is usually called the chkannel (Or system)
of lateral astabilisation (BC = [LS]).
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In an inertial system of lateral stébilization the mEasuriné
instrument (accelerometer or gyrointegrator) 1s mounted on the rocket
in such a way that 1ts axis of sensitivity is dirgcted elther along
body axis Oz1 (in the case of immobile mounting of the meésuring .
element relative to the rocket body), or perpendicular td the plane
of firing, i.¢., along the initial launch axis Ozo (with the mounting
of the measuring element on the GSP). The inertial system of lateral
stabilizatien 1n this manner ensures during the course of the powered-
flight phase of the rocket with sufficient accuracy the zero.values
of the lateral component of a?parent velocity w, and the integral in

"time from this velocity $:=i.§ w‘(t)dr, i1.e., the :-.:.ppamarnt:,pat:hl in t':heA
lateral direction.

}

A signal, proportional to the apparent path in the lateral
direction Sy is obtalned by twofold integration of the accelerometer
signal or by single integration of the gyrointegratop signal. Inte=-
gration can be accomplished with the aid of integrators of:various '

types, for example an electrolytic integrator or an integrating RC-
circult.

¥

The problem of se¢lecting the type of correction and the basic
parameters of the lateral stabilization:c¢ircuit 1s sqlved proceeding
from the conditions of ensuring the asaigned guidance accuracy
characterized by Lhe magnitude of lateral drift, and the required’
dynamic properties of the c¢ircuit, characterized by the quality of the
transitional procesec. ln an inertial lateral stabllization system

for correcting the dynamic characteristice of the system a signal,
proportional to the lateral womponent of apparent veloolty 1s used.

In this case the deflection of the control eclements 13 described by
the approximate equation

}=a,2 +3; 2, (1.66)

1n which it 1s assumed that: ZS®W, 2528,

The normal stabilization chapnel of a rocket guldance system, as
woll as the lateral stabilization cbanncl, consiats of two olrcults:
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th normal stabilization circuit and the pitch angle stabilization
cireuit. It operates in an analogous manner to the inertial lateral
stabilization: channel. The difference consists only in the fact that
‘the programmed values of the angle of pitch are not zero. The angle
of pitch ¢#(t), corresponding to fiight’along an optimum trajectory,
is assigned by the program mechanism and is put into practice Ly the
hngle of pitch stabilization circuit. : '
\ |

A programned variation in pitch angle gives rise to a corresponding
variation in the normal compbnent of velocity. . In connection with
;this in'the simplest guidance systems the control of the normal velocity
of motion of the oenter of mass was replaced by control of the angular
position of the rocket with respect to pitch. However the monitoring
of the angle of piteh in certain cases 18 insufficient for ensuring
saall deviationlin the parameters of the motion of the center of mass
of the rocket in the nlane of firing. Control of the normal component
of velocity in addition to control of the angle of pitch makes it
posaible to reduce the indicated deviabion.
! In the simplest case cortrol of normal veloocity reduces to the
stabilization of the gzero values of the normal component of apparent
velooity w., (along body ¢xi8 Oy, OF in the programmed direction) and
the integral fob tima due to this velocity

.
Syum J w, (t)ds.

The 1nformaeicn. necessary for normal'seabilization, gomes from
the inertial measuring clement — the acce;eromeber of gyrointegrator.

If the measuring element of the normal stabilization sytteam is
mounted on a OSP; then with the aid of the angle of pitch progran
mechanism 1t is turned during flight so that 1ts axis of sensitivity
is always perpendiculer to the programmed direction of the longl~
tudinal axis of the rocket. !

}

¥

¢
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The equation of the deflection of the control elements of a

rocket for a steady-state process of normal stabilization takes the
form ‘

Yy=asyta, v, (1.67)

The automatic eguipment controlling nese section separation.
The inertial guldance system examined here, which includes lateral
and normal stabilization channels and an apparent velocity regulstini
channel, ensures rather small dispersion of all the coordinates and
of the components of velocity of the genter of mass of the rocket and -
thus makes it possible to simplify the tutomatic equipment contralling
nose section separation. This automatic cquipment contains missile
apparent veloaity meters mounted on GSP, - avcelerometers or gyro-
integrators oriented in an appropriate sanner., The information frum
the metera concerning the projections of the apparent velceoity and
the epparent path goes to a computer for the shaping of a signai ?ér
engine ystem shut=down and for nose sectien separation. )

The eontrol algorithm, the ccrresponding systesatie and ine
strumental errors and thelr effect on nose section dispeysion are

examined in Chapter V.

Nissile Inertinl Control Systems with
Uncontro\luh!e Thrust -

Let ug visualise 4 cevtain typleal inertial control syntem with-
an anboard digital computer for a rocket with uncontrollable thrust,
for which let us take into account the dAlagrams of the control 3ystes

- of various rockets. Such & control system, natnrally, sonsiats of

guldance and stabilization systets.

The stabilization system receives the inforwation, necessary for
shaping the contrel signsl ¢olng to the control drive, from the
guldance system and from the meters «eazuring the parameters of rocket
gotion: the angles of piteh, yaw amd roll, the angles of attadk, the

angular veliocitiea, the acceleratiocns of the center of mass. Thus,
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for instance, besides thé usual stabilization systems with angles of
pitch, yaw apd rol}’ ﬁetgrs stabilization systems with angular velocity
and linear QGQ54*”6Gi0n sensors can be used.’

5?%&.atabilizaticn-ﬂys#em is digital, i.e., the controlling

;,5igna;s are shaped by digital filters, which makes it possible to
- gubstentislily improve the dynamic properties of the system.

the guidance oystem equipment consists of an inertial measuring
system {navigation system), which determines the velocities and the
ceardinates of the rocket, and an onhoard computer shaping the guldance
¢ignals and the engine shut-down signal. '

The inertial measuring system is set up,aeazgnu;se as a single
uqit, which 1nnludes: - o

-3 thrne-aesreewot-rreedoa gyrcatabilized 91a:rorn with the

_analog stabilization eirault clements;

= goteps for senuurlng rocket motion parameters (angle,
acceleration or center of mass velocity. sensors).

The output signals of the inertlal) measuring system 1n digital
form go to the onboard computer witlch determines the velocity
coxponents and the cocidinates of the rocket, It solves guidance
cquationsz and calts cignals in digital fosm to the stabilization
sydtem, o stage separation, énglie shut-down, ete.

Three gccelerseeters mountsd on the GSP, simuitanecusly perform
the functions ¢f norsal and lateral velocity eontrel systea sotars
and automatic range control equipsend meters, and 3lss ine funstions
of stadilization systenm =eters 1P the Jagse of the corresoonding cone
struction of the latter. Actually the autcmatic range ennkrol equip-
ment as an independent unit iz eliminated, specific meters for normal
and lateral velocities &re absent and as a result the nuabder of meters
1s reduced o three.

64




for instance, besides the usual stabilization systems with angles of
piteh, yaw and roll meters, stabilization systems with angular velocity
and linear aceeleration sensors can be used.’

The . stabilization system 1s digital i.e., the controlling
signale are shaped by digital filters, which makes it possible to.
bubstantially improve the dynamic properties ofvthe system.

- The guidance syetem equinment consists of an inertial measuring
system (navigation system), which determines the velocitlies and the
coordinates of the rocket, and an onboard computer shaping the guidance
signals and the engine shut-down signal. '

The inertlal measuring system 1s set up designwise as a single
unit, which includes:

-~ 8 three~degree-of-freedom gyrostabilized platform with the
~analog stabilization circuit elements;

- meters for measuring rocket motion parameters (angle,
acceleration or center of mass velocity sensors).

The output signals of the lnertial measuring system in digltal
form go to the onboard computer which determines the veloecity
components and the coordinates of the rocket, it solves guldance
equations and emits signals 1n digltal form to the stabllization
system, for stage separation, englne shut-down, etc.

Three accelerometers mounted on the GSP, simultaneously perform
the functions of normal and lateral veloclty control system meters
and automatic range control equipment meters, and also the functions
of stabilizatien system meters in the case of the corresponding con-
struction of the latter. Actually the automatic range control equip-
ment as an independent unit 1s eliminated, specific meters for normal
and lateral veloclties are absent and as a result the number of meters
13 reduced to three.
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With such guldance system construction the totality of its. equip-
ment 1s a rather general-purpose device which makes it possible to use
it in various rockets without substantial alterations. . ) !

1.9. BA°IC CHARACTERISTICS OF A ROCKET AS
A DYNAMIC SYSTEM

NS g e

Before going on to the composition of a mathematical model of
controlled rocket flight, let us note the specific characteristics of
a rocket as a dynamic system.

A rocket together with its control system forms a dynamlc closed
system, the processes in which (rocket motion, the elastic oscillations
of the rocket and the oscillatlons of the liquid propellant in the
tanks, the converslon of.electric signals, the deflectlions of the

control elements and others) are described by a complex system of
differential equations.

N

It 1s possible to examine the followlng components of rocket
motion;

bR .
1) the motion of the center of mass; '

G e Vs At BT

2) the motion around the center of mass;

3) the elastic oscillations of the housing (flexural oscillations é
in two planes, longitudinal and torsional oscillations); . ;

4) the oscillations of the liquid propellant in the tanks relative
to the mlssile body with the presence of free propellant surfaces.

It is possible to consider a roocket as absolutely solid only as a
first approximation. 1In the general case the flexural vibrations of
the missile body can lInteract with the oscillations in the control
gystem and with the osclllations of the liquid propellant. When the
frequencles of the oscillatlons are rather close to each other, when
investigating rocket motion 1t is necessary to consider the inter-
relation of the corresponding oscillatory processes.
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The motion of the center of mass of a rocket is unsteady and the
parameters of the rocket and the parameters of its motion very sub-

stantially vary during flight. The variations in the mction parameters

are connected with the great propellant consumption per second and the
displacement of the rocket with variable speed in the atmosphere, the
density of which sharply drops with height. As a result of the large
fuel consumption such characteristics of the rocket, as mass, the
inertial moments and the position of the center of mass (see Fig. 1.13-
1.14) vary. The variation in flight altitude (Fig. 1.20) and atmos-
pheric density in conjunction with the sharp variation in the velocity
of motion of the rocket (Fig. 1.21) give rise to a very specific
character of variation in the magnitude of dynamic head (Pig. 1.22).

Fig., 1.20, Variation in
the flight altitude of a
single-stage rooket.

R

”e
»
”»
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Fig. 1.21. Variation in
the flight velocity of a
single-gtage rocket.
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With variation in M number the aerodynamic characteristics of the
rocket vary, in partiocular, Sy — the coeffictent of tangential force,

o: - derivative from the coefficient of normal force with respect to
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during flight.

For multistage rovkets, busides the indicated vaviations in
continuous character, there ar¢ alsc Intermittent variations in the
rocket parameters and motlon parameters connected with the separation

3
T }
angle of attack, Xy~ the relative goordinate of the center of pressure :
(P{g. 1.23). In connection with the fact that in the last seconds of }
the powered-flight phase, as a rule, the engine system goes over to a f
low thrust mode; in this phase of motion there 1s an abrupt change in ?
thrust level and axial overload (Fig. 1.24 and 1.25). ?

?

b 7 .
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Plg. 1.22. Vartation tn Fg. 1.23, Variation in ]
dynamlic head during the : - tha position of the center i
Tiight of a single~stage - of pressure of a single- k
rocket, e _ .70 stage rocket during flight. o

F - o %

] C ¥
[ ] ) !
‘,‘P_ t.. :, = R . ’ ’ *eo :'—i é
_ , 1
Fig. 1.28, Variation ism f . Mg, 1,25, Variation in %
the engine thrust of a S axial overload of a single~ §
single-stage rocket | atage rocket during rlight. 3
. | . ]
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the noted characteristics of these equations.
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of a used-up stage and the beginning of operation of the engine system
of the following stage (see Fig. 1.13 and 1.14). Figure 1.26 for
example presents a graph 1llustrating the nature of the variation in
overload for a two-stage missile.

n,

v

. t.. l, \d ‘

Fig. 1.26. Variation in the axial overload
for a two-stage missile during flight.

Intermittent parametric variations can take place both at moments

of stage separation and at moments of the separation of the structural

eleaents of rocket jettisonable after its exit from the dense layers

_ of the atmosphere (the nose section fairing, elements of the taill

section and others), As a result of the variations in the rocket
parameters and the parameters of its motion during flight the dynamic
properties of the rouket as an object of control (control element
effectivenass, the reaction of the rocket to the deflection of the
control elements and others) ere substantially changed.

The systen of dilferentlal cquations, rather completely describing
the Flight of a gulded rocket, has a very high order and is & nonlinear
stochastic simultaneous system of equation:. Let us briefly examine

The motlion of a focket as an absolute solid body, consisting of
the motion of the ceénter of wass and the motion around the center of
mass, is characterized by 4ix degrees of freedon and 1s Mppropriately
described by a system of differential ecquations of the 12th order.
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- The elastlc propertles of a rocket design and the presence of free

1iquid-propellént surfaces considerably lncrease the number of degrees
of freedom of such a mechanical system, as a rocket. The numerous
elements of the control system affecting the motion of a rocket increase
even more the number of degrees of freedom of the dynamic system

formed by the rocket and by 1ts guldance equipment.

Generally speaking, all processes in nature are described by
nonlinear equations, and ilnear equatlons give only a model of a
process, more or less corresponding to reality. So the equations of
motion. of a rocket are in general nonlinear. Among the many nonlinear
dependences in the equations of motion of a rocket it is possible to
indicate, for example, the nonlinear dependences of aerodynamic forces
and moments on the parameters of motion, the limitation in the
deflections of the control elements, the characterlstles with

saturation and with zones of insensitivity of the control system
elements, and others.

The stochastic nature of the differential equatlons 1s conditioned
by the action of numerous random pertvw@atigns on the process of the
rocket's flight. '
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CHAPTER I1
GENERAL EQUATIONS OF MOTION

In deriving the equations of motion of a ballistic missile it
is assumed that the rocket is an absolutely rigid body, i.e.,, the elas-
ticity of the rocket and the presence of liquid-propellant in the tanks
are not considered. '

2.1. VECTORIAL EQUATIONS QOF ROCKET MOTION

The motion of a rocket can be considered as the sum of translatory
motion, determined by the motion of the rocket, and the rotation of the
rocket about this point as fixed,

The motion of the center of mass of a rocket is determined by the
equation

m ‘%—a?-i-ﬁ. O (2a)

where m » m(t) - the mass of the rocket; Va - the vector of the absolute
velocity of the center of mass of the rocket, i.e., velocity relative

to an inertial coordinate system; F - the main vector of all the exter-
nal forces, applied to the rocket; F - the main vector of the reactive
forces.

Absolute acceleration J, » dVo/df can be represented in the form

10
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7a=7+?e+7¢" (2.2)

where J - relative acceleration; Ie - translatory acceleration; Ic -
coriolis acceleration,
Consequently, the equation of motion of the center of mass of a

rocket relative to a certaln moblle coordinate system will take the
form

mj=F+ B+ (—mje) + (—mjc), (2.3)

where (-mjé) and (-mfe) - respectively the translatory and Coriolis
inertial forces,

Let, for example, the motion of a rocket be examined in a coor=
dinate system rotating together with the earth with angular velocity
53. The origin O of this coordinate system is located at the center
of the earth; axes Ox and Oy lie in the equatorial plane; axis 0z con=
incides with the axis of rotation of the earth, The relative acceler~
ation J will then be the acceleration of the center of mass of the
rocket relative to the earth., Since

N T -

and J, = 0 and daaldt = 0, then the translatory acceleration is
To=wy X (g X7). o (2.9)

The Coriolls acceleration arising due to the rotation of the earth
when relative velooity V exists, 1s determined by the dependence

Je=2 (a3 x V). (2.6

Pormulas (2.5) and (2.6) preserve their form for any coordinate
system conneoted with the c¢arth,

The equation of motion of the center of mass of a rocket in a
coordinate system rotating together with the earth, i1f it 1s assumed
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that J = dV/dt, can be rewritten in the following form: . '
m ——-==i' +P-mj,—-mj,. ' 2.7

Let us now examine an arbitrary mobile coordinate system with its
origin at the center of mass of the rocket. Let §§ - the angular velo=
city of rotation of the axes of this system relative to the terrestrial
axes. Then ‘ . .
P A : ‘

- : (2.8)
where 3§~ = the loecal derivative of vector V with respect to time,
characterizing the rate of variation sl the veetor in the mobile coor—
dinate system being examined.

Thus, the vectorial equation of motion of the center of mass of
the rocket can be written in the form * ;

m (%';EQ{-Q'XV)-?F\-}»P-MZ— M - (2.9)

The rotation of the rocket relative to its center of mass i3 de-

:teruined by equation (1.41) wrxtten in the form

uzm. L 2.0

where E « the main moment of momentum of the rosket, or 1%s angular

‘mometitum; ER - the main moment of all the external forces reletive to

the center of wnass of the rocket (1nc1ud1ns the .reactive rorces). t

in determining the sain moment of momentum usually ‘the rotation
of the earth i3 disregarded. examining the cerrestrial axes as inertial
axes,

According to the theorem of local derivative ! _ '

ik &R | = n
- +8x K, | (2,11)

?J

whepe gf“ - 15 the local derivative of vector K,

-3
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3 . dt 26 T8X K— IM. (2.12)

'Projecting equations (2.9) and (2.12) on various coordinate axes,

|
it 1is possible to obtg;n varicus forms of scalar equations of the motion

of a'rocket, These equations can also be used for composing the equa-

tions of motiPn of the nose section.
f The position of the center of mass of an object - a rocket or a
nose section - in vectorial form is determined by radius-vector r,

drawn from the: origin of the coordinate system beling examined to the
center of mass of 'the object,

; . '
The kimematic eqUation of the motion of the canter of mass of an
object in vectorial form has the aspect

ar
—— R

2,
; - ' (2.13)

where V = the velocity veotor or the object relative to the coordinate
system in question. . ‘

Thg orientation of 2ae object in spacé relative to the seleected
coordinate system 1s' determined by the three Eulerian angles: x, A, u,
*The kinematic equaticn of the rotary motion of the objeet connects
angular velocitles of ¥, X, § with angular velooity of the object W:

: .+¢4 p. (2.1%)
Projecting equations: (2.13) and (2,14) for the selected coordinate
axes, 1t s possible:to obtain sqalar Kinematic equations,

In solving tallistic and dynamic problems of a rocket and 1ts
nose segtion various coordinate systems can be used., In many instances

the successful selection of the coordinate system significantly sim-

plifies the research. For studying'flight Carteslan rectangular right

handed coordinate systems are commonly used and spherical coordinate
systems corresponding to themn,
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2,2 EQUATIONS OF MOTION OF A ROCKET IN
;gggECTIONS OF COORDINATES ON TERRESTRIAL

The investigation of rocket flight can be considerably simplified
by the successful selection of a coordinate system. It is practically
always more advisable to obtain equations of the rotary motion of an
object by projecting the corresponding vectorial equation on axes con-
nected with the object. However the selection of a coordinate system
for composing scalar equations of the motion of the center of mass of
an object in many respects depends on the particular problem, Thus,
for instance, in investigating the controlled motion of a raocket in
the powered=-flight phase of the trajectory it is advantageous to examine
the motion relative to terrestrial axes.

Coordinate Systens

Terrestrial Coordinate System

The axes of this system Ox gty (F1g. 2.1) are rigidly connected
with the earth and they participate in its diurnal rotation. Por short
they are called terpsetrial azes.. ' '

-—

o il

Pig. 2.1, Terrestrial system of ¢sordinate axis: N «
launch point; HABRS « prisme {Greehwich) aerddlan; HNLS -
local wmeridian; 3, - deoccentric latitude of polat N; A -
longitude of point Nj g¢ - tangent to the local seridian
at point N; ¢ - iautwch aslimuth. -

1%




The origin O of the coordinates 1s located at the launch point;
axis Oy3 i1s directed along the radius-vector drawn from the center. of
the general terrestrial ellipsoid through the launch point; axis Ox3
forms with the plane of the local meridian angle ¥, called the Launch

Azimuth; axis 023 1s directed so that the ccordinate system is right-
handed.

Launch Coordinate System

The launch coordinate system 0Xx .y .z, (Plg, 2.2) is also conracred
with the earth and rotates together with it, The origin of the ~aarw
éinates is located at the launch point; axis ch is directed upward
along the plumb 1line, l.c., it 13 opposite to the direciion of the
ferve of gravity; axis Oxc forms with the plane of the local meridian

the launch azimuth angle ¥; axls Ozc corresponds to a right-=handed
coordinate system,

. H

Fig. 2.2. Launch coordinate axis system: N - Launch
poins; HABS « prime (Oreenwich) meridian; NMLS -
iocai serddian; &, - astronomical latitude o point

" N3 3~ longlitude of polnt N; ce - tangent to local
teridian at point M; ¥ - launch azlsuth,
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At launch the body axes of the rocket are oriented along the axes
of the launch system (Fig. 2.3). The logitudinal axls of the rocket
Oxl coincides with axis ch; the transverse axis Oyl is oriented in
the directlion, opposite to axis Oxc; axls Ozl 1s directed along axis

Oze;
A Fig. 2.3. The orientation of
: the body axes at the launch
\ of a missile.

\
& &8

Initial Launch System of Coordinate Axes

- The axes of an initial launch coordinate system OxoyozoAat the
moment of launch coincide with the axes of the launch system, Sub-

gequently the axes of the initial launch system do not vary thelr

initial directlion relatlive to inertial space, and the axes of the

launch system, riglidly coineoted with the earth, turn during time t by
angle wgt around the axis of rotation of the earth.
coordinave system is an inertial coordinate system.

An Initial launch
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3 Direction Cosine Matrices j
i The Cosines of Angles Included Between the 3
v Axes of Body and Initial Launch Coordinate i
5 Systems

i

E The orientation of a rocket relative to an initial- launch coor- .
. dinate system 1s determin=sd by the three angles included between body ;

0x and initial launch Ox,y,z, coordinate systems (Fig. 2.4):

1"1%1
by the angle of yaw § -~ between the projection of the longitudinal
axls of the rocket Ox1 to plane Oxoz0 and axis Oxo; )
by the angle of piteh ¢ - between the longltudinal axlis of the ;
rocket Ox1 and plane Oxozo; ’
by the angle of roll n - between transverse axis Oy1 and the plane,
passing through axes Ox1 and Oyo.
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-%’ . The cosines of angles included between axes of body and initial
éﬂ launch coordinate systems are given in Table 2.1,
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Fig. 2.4, The orientation of the body axes relative to
the inltial launch axes.
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Table 2.1
axes ) * Oxq Oyo ] Oz
Ox; cosEcosy 1  sing —sinEcosy
-
—cosEsingcosn + cosaing 4
On + sin§sing cosgcosn +sinésinpcosy
cosEsingsiny cosk cosy —~
02 J-sincosn cosgsinn —singsinpsing

Let us find the cosines of the angles included between the axes
of initial launch and body coordinate systems. For this through the
center of mass of the rocket -~ the origin of the body coordinate system,
let us draw axes Oxcyozo parallel to the axes of the initial launch
coordinate system. Let us turn this system by angle & around axis

Oyo_ so that plane Ox'y! passes through axis Oxl. Let us designate the
obtained system by Ox'y'z!,

It 1s convenient to write the formulas for coordinate transforma-

tion in matrix form. Designating the matrix-column with the elements
x', y', z' through [X'], i.e., .
xl
;'lz y' ’
zl

and with the elements Xgs Vgs Zps through [X'], we obtain the following
formula for transforming from system Oxoyoz0 to system Ox'y'z':

x| =T %), (2.15)

where matrix I‘E of the transformailon from coordinate system Oxoy0 to

2
Q
gystem Ox'y'z' takes the form
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cost 0 —sint
M=l 0 1 0 {. (2.16)

sint 0 cost

Let us bturn system Ox'y'z' around axis 0z' by angle ¢ so that axis
07" coincides with axis Oxl; let us designate the obtained system by
Ox"y"z", The corresponding formula for the transformation of the coor-
dinates upon-turning the axes by angle ¢ will take the form

Y] =|',[35']. (2,17}
where )
cosp sing O

Fg==fl ~sing cose Off. (2.18)
| ¢ 0 1

By turning axis Ox"™ around by angle n we bring axes Oy"' and Oz"!
into line with axes Oy, and 0z,. The transformation of system Ox"y"z"

to system Qxlylzl wlll be =ccomplished by formula

[x]=r, [¥], (2.19)
where -
| t 0 0]
F,=l|0 cosn sinq. . (2.20)

0 —sinn cosy

-Substituting (2,15) and (2.17) into dependence (2.19), we obtain
the matrix equation of the transformation from initial launch axes to
body axes:

[:‘-'x] =TIyl [}o] =[ [;o]n (2.21)

in which matrix I' 18 a table of direction cosines, i.,e., of the cosines
of the angles included between the axes of initlal launch and body

79

T e A CAL AL B

KREIEAR




2o n N
SR LA 1Y,

i

coordinate systems (see Table 2.1):

=

COs i cos¢ sing ~sinkcose (2.29)

=|Isin¢ sin n—cos & sing cos ) cos ¢ cosrcostsiny+siné singcos rff,
ljsing cos n+cos§ sin ¢ sin y—cosgsinn cos § cosy—sin Esingsin r
Cosines of Angles Included Between Axes

of Initial Launch and Launch Coordinate
Systems

At the moment of rocket firing the initial launch coordinate sys-
tem Oxoyoz0 and the launch coordinate system Oxcyczc coincide., During
the flight of a rocket the launch coordinate system will turn together
with the earth relative to 1ts initial position by angle w3t’ where
't - rocket flight time (Fig. 2.5).

¥ Flg. 2.5. Transformation from
Y, X, X an inltial launch system to a
% launch system of coordinate
axes.,
- ' 117~ =N
MAS] 2

In order to accomplish the transformation from a rotating launch
coordinate system to an initial launch system, let us draw five sequen-
tial turns of an auxillary coordinate system which colneides with the
launch system. The first turn of this system let us draw around axis
ch by angle ¥ so that the azimuth of axis Ox' becomes equal to zero.
Let us turn the obtained system Ox'y'z'! around axis Oz' by angle ¢I‘ 80
that axis Ox" becomes parallel to the axis of rotation of the earth,
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and axis Oy" - parallel to the equatorial plane. Now we can carry out
turning by angle w_t. For this let us turn the new system Ox"y"z"

around axis 0x" by angle w4t so that plane Ox"ty"' posses through axis
0yy+ Let us further turn system 0x"y"z" around axis 0z" by angle - ¢
so0 that axis OyIV colncides with axis Oyo. By turning by azimuth angle

¥ around axis OyIV let us line up system OxIVyIvzIv with the 1nitial
launch system Oxoyozo.

The transformations of the coordinate systems carried out are des-
cribed by matrix equation

[w]=a[x], (2.23)
in which the transformation matrix A takes the form
S B 3y | ‘
A=y By By, (2.29)
| Bﬂ %n Bm

and ﬁhe coefficients of the matrix
‘ 8y1==€052 ¢ c0s? ¢, (1 — cO8 wgt) |- cOS wgt;

8 == C0s P sin g, cos ¢, (1 — cos wyt) — sin cos ¢, sinwyf;
By = == §in Y 08 $c0s? @, (1 — O wgf) — sln ¢, sl wgh;
8ip==cos ¢sine, cos ?c (1 —coswgt)+-sin Y cos g, sin wgfs
8 =sin?g, (1 — cOs wyf) 4 cos wyts
U= —slnysing, cosg,(1.—cos uyt)+- cos  cos g, sin W H
g1 = —sin g cos § cos3 g, (1 —cos mgt) -+ sin g, sln wghi
b= —sIn¢sing, cos g (1 — cos uyf)— cos ¢ cos g, sinugl;
Sy =sin?§cos?o, (1 coswyf) fcosugf,

The Cosines of the Angles Included Between

the Axes of the Launch and the Terrestrial
Coordinates System

The transformation from a launch Oxcyczc to a terrestrial Oxayaz
coordinate system can be accomplished in the following manner (Fig,
2.6), Let us turn the axes system which coinoldes first with the

3
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launch system Oxcyczc, around axis ch by angle y so that the azimuth
of axis Ox' becomes equal to zero. Let us further turn system Ox'y'z!?

- around axis 0z! by angle y = ¢r - °u s0 that axis Oy" coincides with

axis Oya. By turning around axis Oy3 by angle ¥ in the opposite direc-
tlon we line up the intermediate system Ox"y"z" with the terrestrial
system Oxayaza.

Fig. 2.6, Orientation of terres-
trial axes relative to launch
coordinate axes,

The matrix equation of the transformation takes the form

[}c] =E[:€alo (2.25)
where
sinfy+cos?ycosy —cos¢siny sin¢cos¢(l —cosy)
E= cos¢siny cosy —~singsiny ‘ (2.26)

sinpcosy(l—cosy)  singsiny cos*¢4-sin?$cosy

The Cosines of Angles Included Between the
Axes of Initial Launch and Terrestrial
F*T-T—TT-——-—————-——-———- .

oordinates Systems

Matrix B of the transformation from a terrestrial coordinate sys=
tem to an initial launch coordinate system can be found by multiplying
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the transformation matrixes above obtained from a launch to an initial
launch coordinate system (A) and from a terrestrial to launch coor-
dinate system (E), As a result we will obtain

[%o]=Alx]=AE[x,]=B[x,), (2.27)
where
13 Bia Byy
B=AE=/ 3 Bx . (2.28)
du Bu 3

and the matrix coefflclents:

P11 =009 €08 3, COS 9, (1 ~ cOs wgf) -} (cOs? cOs y +- sin? ¢) cos wf4-
<sin¢cos(sin ¢, —sin 9,) sinwyf;
B2 =cos ysing, cos, (1 —cosu,t)-}-cos?slnycosw,t—
—sin¢cos g, sinugf; .
Ba== — cos ysin $cos g, (1 ~ cosm3!) cos ¢, }-cos ysind, 1 —cosy) X
X coswgt—~(cos?§ sing, |- sin?¢ sin ¢,) sin wyfs
Bia= coscos @, sing, (1 — cos ugf)~cos Psiny cos uyf
+singcos g, sinayts
Brn=sing,sing, (1 —coswyt) 4 cosy oS mgf;
Bu== —singcosg,sine, (1 ~cosayf)4-sinysiny cos wyt 4
+ €0S § COs 9, SIn wyf;
Big== —sin{ cos § cos ¢, cos 9, (1 — cos uyf) -
+siny cos (1 —cos v' cos wyf -(sin? ¢ sin g, 4~ cos ¢ sin ,) sin wyt;
Pay== —sin§sineg, cos g, (1 — coswgt)—sin §siny cos vyt —
— COs § COSs ¢, SIn wgfs
fay=sin?} cos ¢, cos g, (1 — coswyt) 4 (sin?§ cos y + 05 §) COS gt -}
-+ sin ¢ cos (sin g, — sin ¢,) sin wyf.
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The Cosines of the Angles Included Between
the Axes of Body and Terrestrial Coordinate

Systems

The matrix of transformation from a terrestrial to a boedy coordin-
ate system can be found by multiplying matrixes T and B. As a result
we will obtaln

[}1]=r[;o]=’rnl}sl =’A[;sl- (2.29)
where
ay @ O
A==|'B= 03[ 0” au » : (2030)
- Gy Gy Oy

and the matrix coefficients:
0y1==Pyy cos 9 cos§ 4-B,; sinp-— 3y, sink cos g3
@y =Py, ( — cost siny cos 4 sin & sinn)-|- By, cos pcosn 4
+3u(sinpcosnsink 4-costsinnj;
a,, =3, (cosksingsinn+sin cos n)—Jy cos psinn
+ 35 (—sinksingsinn4-cost cos n);
Ujp==3,,c089COS § -+ Y sing—fysint cosy;
gy == 31 (~ cO8 E sIn ¢ cos 4 sin§ sln n)4-Bsy cos g cOS -
+-Bo(sinpcosnsint -costslnn);
a,=35(costsing sin n-sint cos n)=p;y cospsiny 4
+-85(~sintsingsinn-cost cosn)
@)3= 313,08 9COs § -+ 3,3 817 9 — By sint cos ¢}
Uy 35~ cosEsing cos n4-sint sinn) |- By cosp cosn4
35 (sln p cosnsint 4- cos & st )
a,,:-,&,,(cosEs!nvsinn-}-slnEcdsn)-ﬂucouslnq-l-
+-8y(~sint singsinn- cost cosy),
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: Kinematic Equations

§ For investigating rocket flight it 1s necessary to have kinematic
ﬁ' - equations describing the variation in the angular coordinates of the

%f rocket ¢, & and n depending on the projections of the angular veloclty
Ev - vactor of the rocket on the body axes Weys wyl’ Wy o

%a In order to obtain the indicated equations, let us examine Fig.

g 2.4 given earlier, from which it follows that the angular velocity vec-
§A tor E 1s directed along axils Oyo, vector 3 - along axis 0z', and vector
. R - along axis 0x,.

T ‘The angular velocity vector ol a rocket W can be represented as
4 the sum

_A ;=§+9.+;\‘ (2.31)

The cosines of the angles included between vectors E. ;. and ﬁ.
and the body axes are glven in Table 2,2, Using this table, we find

that the projections of the angular velocity of the rocket on the body"
axes are equal to:

24

e
0N
e

. 3

' ' ' n“ +‘"3'“93

- a8 9 nw; )
- @y 2 COSPCO8 < slnn (2.32)
| u.-u-:'%-cosn-wcos.slnn.

;§~ The kinematic equations of tane motion of the center of mass of

3 ' " the object we obtain, by projecting expression (2.13) on terrestrial

b axes:

x db dz,
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Table 2.2 !
axes T - -
¢ v |
- 4
Ox; s'ny 0 1 ' {
On €08 ¢ cos 1) ¥ny 0. ‘ ‘
Oz —cospsinn {  cosy 0 ' .

i

Resolving Forces and Moments with Respect
to Coordinate Axes

i s
Let us find the components of the 'forces and moments acting on a
rocket with respect to coordinates axes, taking into account that the
equations of motion of the center of mas3 of the:rocket are brojected
on terrestrial coordinates axes, and the equationa of rotation - on
body axes, o ‘ :

For determining the components of thrust roroes and aerodynanle
forcas it is necessary to know the flight altitude, and for deteruining

~ the components of attractive forces - the goocentric latitude depending

on the coordinates of the rocket in terrestrial axes "3" Yg» 35.. Lot
us give the appropriate formulas, ” '

Pirst let us break down Anto components with respect to terreatrial
axes the radius-vestor r of the cegter of mss of the rocket relative
to the center of the earth. Let 13, yg, and 33 be the unit vectors of -
the terrestrial axes (Fig. 2.7). Then A !

reexg 3R+ y) 13 + 3%, B R TR

where &, - distance from the center of the earth to the launch point,

datersuned by the forumula

Ry=a yi-a . (2.35).
Vi—eTeodey’ .
H
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e - the eccentricity: of the meridional cross section of the general
,terfestriai ellipsold; ¢u0 - the geocentric latitude of the launch point
which can'be determined, knowing the geodetle latitude, using the
formula ; ! t

i

PO ™ P Y Pe—Usin27,. (2.36)

Fig. 2.7. Coordinates of the
center of mass of a rocket in
terrestrial axes and the '
flight altitude.

The flight altitude is detersined by the dependence
A=r—R, — (2.

Fwhere r - the distance fioe the center of the earth to the rocket,
equal to '

r=V L RT P S (2.8
"R - distance alcng radius-vector P from the center of the earth to 1ts
surfuce, ¢qual to \ o o -

]

s ““.-..a(l asine,). A

a 1 .
The geccentrlc latitude of the point 1n space, at which the rocket
15 located, 1s deteriined by the assigned cooidinates of this polnt in

&1

e, i




the terrestrial coordinate system by the formula
£, + & ’
siny, =-’!cosgcosq'+_“"_'£!.gm?‘.- -}sln(ocos,* 12.40)

Upon resolving the attractive force of the earth with respect to
terrestrial axes we will examine two components of the acceleration
due to terrcatrial attraction: §Tr - directed toward the center of the

earth and ET» - directed parallel to the axis of rotaticn of the earth,
The expressionsrfbr their values were given above [see formulas (1.13)

and (1,14)]),

Having combined centrifugal acceleration 3 - -3 with the accel-
eration due to terrestrial attraction ar. we obtain the acceleration
due o sravity

E=Ertle | @A
Taking into account that centrifugal accelepration
Jom= =0y X0y X F)mptalrcosn, C(2.52)
wirere ¥° - the unit vector of geocentric axes Oy (Fig. 2.8), let us
resolve centrifugal acceleration, and also the acceleration due to

terrestriul attraction, intov iwo components - aleng radius P and along
‘the axis of rotatlon of the earth (ue Fig. 2.8):

i-===V’
(2.43)
..aeuysin,_.
'Tuen the coxpone~*s of acceleratich due to gravity will be equal
tos ' .
Bretllyy —~wf, - |
. & »7 ' 014 . ,' | , (2.“.)
o= tuar _3‘".-

The cosines of the angles included between these cowponents of
acceleration due to ;ravlty and the terrestrial axes are glven in Tadble
" 3‘
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Fig. 2.8 The resolution of the acceleration due %o
gravity and centrifugal acceleratior into components
with pespect to the direcetion toward the center of
the earth and with respect to the axls of rotation
of the earth.

fahl@} 20 3

axes . Oxy N Oz,
’ _ r ¢

s g | S Ly
: B : S |

The 'pijn@ns of gravily on the terrestrrlal axes are detersined
by the forsulas: .
< - ./ ]
G, 3e= ~mg, 2 mg, 23,
o Retp -
Opa= —~mg, 00— mg. 20,

2 Oy
a'li‘ -ugl‘;"""c‘-:—;’-

In omder to determine the componetits of Coriolis aceeleration,
let us rirast resolve the angular veloclity vector of the earth Es into
cofponents along the terrestrial axes, First let us resolve it into
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two components in the meridian plane (Fig. 2.9): on the vertical

g y3=135IN Prg
and_horizontal

(03 p == W COS g

Fig. 2.9 Resolution of the
anguiar veloclty of the

rotation of the earth into

1ts components along terrestrial
coordinate axes.

The horizontal:oomponent in 1ts turn can be resolved along axes
Ox3 and Oz3 into components:

¥ rg =03 COS Py COS i

@y 5y == — W3 COS ¢y SiN Q.
Thus, vector Ea can be represented in the form

(g =3 (COS Pyg COS ¥ 81 9,053 ~ COS 70 518 $Z3). (2.46)

Using expressions (2.6), (2.34) and (2,46), let us find the resolu-
tion of Coriolis accelera lon _ C '

E
Je==2 (03X V) =2 wgpy w3yy w34 (2.47)
Ves Via Vis
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along the terrestrial axes. Then we will obtain:

—~Jexz= biaV iy, +01sV s 5

N . “jds =bﬂvxa+b23-‘,x3: (2.48)
| -E . -.j (:'83 = bﬂv.33+ bﬂv'a"
E where
' big== —by = —2u;cos¢,, s.in ¥

(2.49)
3 biy=— by = — 203 sin g,; .'

oy ==byy==2u3 COS @y COS §.

For determining the projections on the terrestrial axes of force
N s L.e., the resuitant of thrust force, aerodynamic forces and the
forces created by the control elements, let us first resolve these
- forces along the body axes, and then, using the matrix of the cosines
of the angles Included between the axes of body and terrestrial coor-
dinate systems, let us find the desired projections of the forces,

: k Thus, if the components of the forces in questlon are represent
'éﬁ, along the body axes in the form of the sums:
| ‘-. Na=Pa+Tat+ X
| | Np=Tn+V¥s (2.50)
' Nzl=Tzl+ Z!o

then the sums of the projections on the terrestrial axes of thrust force,
aerodynamlic forces and the forces created by the control elements, are
determined by the formulas:

N 3=Nyu -+ Npag+ N,yay
N, 3=N 40,3+ Nyeoy+ Nuoy,.

It remains to find the expressions for the normal and transverse

. components of aerodynamic force Yl and Zl.
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Resultant of tnese forces (?1 + 21) 1s perpendicular to the longi-
tudinal axis of the rocket and lles in the plane of the angle of attack,
passing through the velocitv vector and this axis. Let us introduce
the unit vectors: xl, directed along longitudinal axls Oxl, and v°,
directed along the velocity vector, and let us write in vectorial form
the direction of force (Y + 2 ). This force is perpendicular to
vectors xl and Ve x x1 and thus, coincides in directlon with vector

(ve x xl) x x1 (Fig. 2.10).

Fig. 2.10, Por determining the
direction of aerodynamic trans-

verse force Nl - Yl + zl.

i.

The modulus of the vectorial product Vo x x1 1s equal to sin assa.
The modulus of vector (VO x xl) X x1 is also equal to o because the
vectors VO x xl and x1 are mutually perpendicular. Having noted this,
let us represent the transverse force in the following manner:

ot ZymcgSIT X DX A]. (2.52)

L order to determine the componengs ofoveotor (Y + 2 ) on body

~axez, let us make use ofothe equality x1 - yl x zl and convert the

vectorial product V° x xl to the form

X \1=0° X (1 X 21)= g1 (v°21) = 21 (0°}1). (2.53)

Taking the obtalned expression into account let us convert the
double vectorial product

9e
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Y i) - -~ —. ym. @ —o Y
. ('U X &)X 2= [yx (’v°~’-1)-—11 (‘v yx)] Xx1=
= — - — g - (2.54) _
E o ="z X x1—- (v7p) 21X X = = (v72) 21— (2°1) . ;
Then expressian (2.52) will take the form
; . V1= 2=~ c39S(v° ) 71 — €39S (2° 1) . (2.55)
. Thus s the forces Y1 and Zl are determined by the expressions:
ks ' ' il Yo
. \ ‘ . » . Y1- —CnQS('U yl)ylv , (2,56)
. b
Zl=-—t‘nqS ('v 21)21.
\; - - ,_O
T Scalar products (v°§;) and (V°zZ,;) can be considered as the values
e . .
. of angies of attack ay and a, in the planes Oxlyl and Oxlzl.
f§ As can be seen from Fig., 2.11, if angles oy and a, are small, then
.
A (v°) =c0s.(v°, 1) = c05(90°}-0,) = —sinv, = —c,;
(v°21) = cos (v°, 71) =sin ¢, 0,
. ?‘ L
%
§ Y0 ' ’2.‘0 ,
3 3
\(at 70 -
.é 0 b 4
ﬁ oty
[ -
(950

Fig. 2.11l. For determining angles of attack

Gy and uzo
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Taking formula (2.56) into account, we obtain the following
expressions for the aerodynamic forces:

Yi=chqSa,; } '

(2.58)
Z,= —cnqSa,. -

‘ In order to find the expressions of angles ay and uz,_let‘us de-
termine the direction in - space of the velocity vector V of the cen-
ter of mass of the rocket. For this let us examine coordinate systenm
Ox3y323 whose origin coincides with the center of mass of the rocket,
and the axes are directed parallel to the axes of the terrestrial
system. -

The direction of veloclty vector V relative to the terrestrial
coordinate axes let us determine by the following two.angles (Fig,
2.,12): ' '

1) By angle ¢ between the projJection of the velocity vector v
on plane 0x425 and axls Ox4 and

2) by angle t between veloclty vector V and plane Oxaza.

y, . Flg. 2.12, Orientation of the velo-~
’ city vector of a rocket relative
\J to the terrestrial coordinate axes,
[]
)} —-2,

2

The projections of the veloceity vector on the terrestrial axes
are equal to: ' '
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V,3= V cos tcos 3;
- ' V== — V cossins,
) The cosines of the angles included between the veloclty vector v
and the terrestrial axes are given in Table 2.4,
Table 2.4
axes Ox, Oy, 0z,
V. €0S TCOS ¢ sint —costsine
Knowing the cosines of the angles included between the body and
the terrestrial axes “i,j’ and also between the veloclty vector and the
terrestrial axes (see Table 2.4), let us determine angle of attack ay:
._U;,- _;A_‘ Y,
0y=—(v° 1) = —cos (v*, X3) cos (1, x3)—
A A A _.A
— ) o Dy o B
—cos (¥*,* y3) cos (41, ya)—cos (¥°, 23)cos (g1, 23),
or
Qu== =0y COS T COS 3 — gy sin v4-ay cos v sino, (2.60)
In an analogous manner let us find angle g,
. @,==Qy COSTCOS 34-Ayy SinT—ay cost sine, (2.61)
In these expressions angles t and ¢ are determined by the
: formulas:
Vy. Vy A
t==arcsin _‘-;L-_»aat(:sln /.....i._.._:;:.____-'-'!-—“-——-;
(4
' “a"'"a'*'v:a
ssarctg| — ),
V,a

following from the relationships of (2.59).

95




Let us now determine the projections of the moments of force on

the body axes. The moments of normal and transverse aerodynamic forces
we will obtain, using expression (2.58):

A Mys= — Z, (%, — X =268 (X, — Xg) @yt

. (2.63)
My=Y, (xr""xd)‘-'"‘-'u‘ls (Xe—xg)ay.

Since the axial aerodynamic force and the thrust force of the main
engine are directed along the longitudinal axls, passing through the
center of mass of the rocket, the moments of these forces are equal
to zero, The aerodynamlc damping moments and the controlling moments
are determined respectively by formulas (1.28) and (1.46).

System of Equations of Motion

Let us project equation (2.9) on terrestrial coordinate axes.

Let us first represent the forces F+P-—mi., acting on the rocket, in
the form

—Mfe+-F4 PN +3. (2.64)

Here F-R-{-U, - resultant of the total aerodynamic force and the force
of attraction; P - (THA = TPU), and the forces of the controlling

engines; G - gravity; N = R + P = the resultant of the total aerody-
namic forces and the thrust forces.

The equations of motion of the center of mass of a rocket in pro-
Jections on tervestrial axes will take the form:

{4
"'“;fb"Ahg‘F‘Lg"ﬁﬁhqﬁ
dv (2.6%)

m — e Ny, Opy = )y}

v, .
m "‘;':1“ Nl’ + 0,,""‘“}3,«

To these eguations 1t is still necessary to add the three kine-
matic cquatlions of motion of the center of mass of a rocket of (2.33).
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Let us project the equations of the rotatlion of the rocket around
the center of mass (2.12) on the rocket body coordinate axis rotating
relative to the terrestrial axes with angular veloclty 0. Let Wyps
myl’ w,q = projections of the angular velocity of the rocket @ on its
body axes. The prolections of the vector of angular momentum K on
these axes are respectively equal to Jx1tyy, Jyl(l)ylo Jaon, Then, projecting

expression (2.12) on the rocket body axes, we obtaln the so-called
"dynamic Euler equations":

d@x‘

n— -’m) Wy Wy = 2 Mxlv

dw
“ ==tV —J ) g0y “'EMUD (2.67)

d“:l

In oy —t (S :a)“’n"’m=2 M.

The relationships between the projections of the angular velocity
of a rocket on the body coordinate axes Weys "’yl’ Wy and angles ¢, §,
n, which determine the orientation of the rocket relative to the ini-
tial launch axes, are determined by the kinematic equations of (2.32),

The system of equations (2.32), (2,33), (2.65), (2.66) ocan ve
used for describing the motion of an unguided rocket, but for a guided
rocket it f2 5till not closed., The fact is that an unguided rocket
as a solid body has six degrees of freedom, With respect to this its
motion 1a described Ly the system of l2-differentiul equations of the
first order (2.32, (2.33), (2.6%), (2.66) whieh 23 closed because the
forces P, Xy, Y,, Z,, acting on the rocket, ‘and their moments N,
ayl' M - relative to the body axes are uniquely determined by the para- -
weters of the rocket motion and the number of unknown runctions

X3 U3 23 Vs Vg Vag 0 5 0, w5y, wy, @y (2.67)

13 equal to the number of differential eguations. In this case, if
randoa perturbations are absent, the flipght path 18 coipletely deter-

#ined by the initial conditions - by the values of the kinematic para-
motors of motion at the {aitial motent of Ciwme:

X3l yalk). (kN .- .. weylly). (2.65)
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Guided rocket, if we disregard its elasticity and examine 1t as
a mechanical system, already possesses in general 12 degrees of free-
dom: the six degrees of freedom for the motion of the center of mass
and protation around the center of mass and the slx degrees of freedom
of the corresponding control elements. In the particular case exam-
ined above, in Section 1.7, when normal controlling forces are created
by the rotation of the rocket around two axes, the rocket has four
control elements: the elements controlling the rotary motions of
pitch, yaw and roll and engine thrust. The system of 12 differential
equations (2.32), (2.33), (2.65), (2.66) in this case is not closed
because the projections of the forces and moments, going into the right
sides of the equation, depend on the displacements of the elements
controlling the motions of pitch 6°. yaw Gn’ roll 6E and engine thrust
6P.

If we apart from the initial conditions assign variation with
time of values 6’(t), Gn(t), Gg(t), §p(t), then the missile trajectory
will be determined by this. In actual flight the displacements of the
control elements are accomplishud by the control system depending on
the flight mission being carried out, So that the problem of deter=
mining flight path can be carried out, it is necessary to add the
equations describing the processes in the control system and connecting
the displacements of the ocontrol elements with the parameters of rocket
motion to the system of equations of rocket motion (2.32), (2.33),
(2.65), (2.66). ‘These equations can take a completely different
specific form depending on the operating principle and the control sys=-
ten layout, '

In the most general form the equations of the control system can
be written in the following mannep:

Fy[318), X300 ws(t) 23(0), 9(2), §(8), m(e)]=0: )
Fal3 (), 23,0, ya(0) z3(8), 2() (), n(0)]e=0; | | (2.69)
F sl‘% “)v Xy id), ys(e). =3¢, e(0), E(0), ﬂl"l”‘”
F o3 () x5 (1) 4310)s 2500), o(£) Eut)s n(0)]==0,
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where Fl, Fos F3, and Fy - functionals of the functions enclosed in
the square brackets,

Sixteen equations (2.32), (2.33), (2.65), (2.66), (2.69) now make
up the closed system determining the 16 unknown functions:

X3 Y3 23 Vg Vs, Viae 0y,
@y, 0y, 9, 5N, 3,. BQO &, 8p0

In this case the trajectory of guided flight (the solution of the
system) is determined -by assigning the initial conditions and the
actual connections (2.69) imposed on the rocket motion by the control
system.

2,3 THE EQUATION OF MOTION IN PROJECTIONS
ON SEMI-WIND COORDINATE AXES

The obtained above general equations of motion in projection on
terrestrial axes oan be used in principle for solving any technical
problems., However 1t is always advantageous to introduce into the
equations under investigation these or other simplifications whose
essence 1s intimately connected with the content of the actual problem.
Because of this it is frequently convenient in investigating the
dynamices of a rocket or a nose section to use the equations of motion
in projections on semi-wind axes.

Coordinate Systems

Oevcontric Coordinate System

This coordinate system with its origin at the center of the earth
and with 1t3 axes connected with the earth, was already used asbove in
studying the earth's gravitational fleld. The reference planes in the
coordinate system in question are the equatorial and the prime
meridian planes. ‘

The position of the center of mass of a rocket in this case can
be determined either by three Carteatian coordinates x, y, 2, or which
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is more convenient, by three spherical coordinates A, °u’ r.
Longitude XA and geocentric latitude O are reckoned, as was .shown
above, in Fig. 1.3. Coordinate r 1s tﬁe distance from the center of
the earth to the center of mass of the rocket. : ;

i ! \

Wind and Semi-Wind Coordinate Systems

In some problems of dynamics the equations of motion of the cen-
ter of mass of a rocket are conveniently written as projections on '
coordinate axes connected with the velocity'véctor V of the rocket, !
The origin 0 of the coordinates of such a systen 13‘1oca§ed at the
center of mass of the rocket; axis Ox is directed along the velocity
vector V i.e,, tangentially to the trajectory ‘in the direction of
flight; axes Oy and 0z lie in the plane, normal to the rlight path.

In this case in flight dynamics axis Oy is selected both in the plane
_ of symmetry of the object Oxly1 and in the vertical plane. Thé first }
= coordinate system we will call wind, the aecoqd - semi-wind, ,

3 3 Local Geographical Coordinate System L

The origin of this coordinate system Oxryr r (Fig. 2.13) cgincidga
with the center of mass of the object; axis Ox is’ drawn parallel to
" the tangent toward the meridian of the site northwards axis Oyr 18
3 directed along radius~vector T; axis Oz is parallel to the equaqor.*.al
3 plane, :

[}

H

Fig. 2.13. Local geographical

NG
Y coordinate system,

i
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Seim-Body Coordinate System

i The origin?or the semi-body:coordinate system Ox'y'z' (Fig. 2.14)
. coincides with the ¢enter of mass of the object; axis Ox' is directed
along the longitudingl axis of the object fn the direction of the nose;
axis Oy' is perpendicular to the ;plane, passing through the velccity
vector and the longitudinal. axis of the object; axis Oz' completes the
system to the right, o

Fig, 2.14, éemi-body system of coordinate axes,

Direciion Cosinés Natrices

. - ‘ i kY
The Cousinen of Angles Included Between
the Axes of Boag and semi-Wind Coordinate
~ Systems
. L]

In order to determine the cosines of the angles included betweeu
‘these cuordinate axes, let us examine the sequential turns of the semie
wind coordinate system Oxyz until 1ts coincidence first with the
somi-body Ox'y'z!, and then with the body 0x71%) coordinate systoms

(Pig. 2. 15).

' a
1

The transformation from a semiewind coordinate system Oxyz to &
semi-body Ox'y'z' can be accomplished by two sequential turns: first
by angle ¥ around'axis Ox, and then Ly angle of attack o arouand axis
"Oy" in acdordance with Fig. 2,15.°

i
1 ]
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Fig. 2.15, Transformation {from a semi-wind coore
dinate system to a body coordinate system.

The matrix of direction cosines included in the equation of the
transfornation of coordinates

(*i=2(d. @
has the form | | |
cosa sinaslup —sinacosp
Z=]| 0  cosp sap 8. - (2.1)
fsia —cosasinp cosacoss |

" In order to change from & semi-wind coordinate system to body, it
18 necessary to carry out one additional turn < to turn the seu1~bcdy
coordinate axes Ux'y's'! by angle v around axis Ox!',

As a result we obtaln the following coordinate transformation
equation:

[x]e=n[], | (2.72)
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where the matrix of the direction cosines H takes the following form:

§ cosa sinasinp ~sinacosp
_ sinasiny  cospcosv— slnp cos v+
R= —cosasinpsine  J-cosacospsinv.

(2.73)
sinacosvy —cospsinv— ~sing sigv -

~—cosasinpcosy  <-CuUsaCOSp COS

Cosines of The Angles Included Between the
Xes_of Semi-Wind and Local Ueographical
foordinate Systems

Let us carry out sequential turns of the local geographical coor-
dinate system Oxryrzr by angles ¥ and © until the coincidence of theo
direction of 1ts axes with the semi-wind coordinate syatem Oxy:z
(Pig. 2.16). As a result we obtain: '

[J=Alx]: S
.cosTcos® sin® —sin¥cosOf |
A=l —cosUsin® cos® sa¥sin® |- 2.15)

sia® 0 cos¥

Fig. 2.15. Transformation from

a lvoal geographical coordinate
syster to 4 semi-wind coordinate
s atom, ' ' -

The equations for transforming from a loeal geographical ccordin-
ate systesm to & semi-wind system, and from the latter Lo body and
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_ semiébody'systems take the form

K=zl =2zAx); (2.7¢) '
. [w]=H[x]=8Alx]. (2.77)

Equations of Motion

For deriving the scalar equations of the motion of the center of
‘mass of an objeet (a rocket or nose section) let us project vectorial
equation (2.9) on the axes of semi-wind coordinate system Oxyz. In
this case we will determine the position of the center of mass in a
geocentric spherical coordinate system by geocentric latitude ¢u’ by

longitude A and by radius-vector T, drawn from the center of the earth
" to the center of mass of the objJect.

Let us determine the projections of relative, translatory and
Coriolis accelerations on the axes of a seml-wind coordinate system,
The semi-wind coordinate system rotates relative to the earth with .
< angular veloclty & whibh we will represent in the form of the sum of

i the angular velocitlies of the rotation of the semi-wind axes relative
.‘f to geographlical axes and of geographical axes relative to certain
} terrestrial axes. As the axes connected with the earth, 1t is con=-
venient to take geographical axes Oox‘_oy(_oz'_0 at a certain initial
moment of flight, for example at the moment of the firing of a rocket
or at the moment of separation of the nose section from the rocket
body (Flg., 2.17). As a result we will have (see also Fig. 2.16)

g S S

B 043t g, (2.78) .

e o P

Let us find the projections of vector Q on semi-wind uxes, First

¥

let us express angular velooities'{ and ¢u by projections on the axes
of a geographical coordinate system (see Fig, 2,17)

S
&
9

| A=) (}:COS%-'!-;:SW ?n) i (2.79)

? | . é‘“";;buo

104

PR Vot BT




o

b,
By
h
", '

S

L S

I A
Bk HAR A P R

8

et
ERRER

Fig., 2.17. Varlation in the orientatlon of local geo-
graphical axes during the flight of a rocket.

P

In order to éxpress i and éu by projections on seml-wind axes, we
E: use formula (2,74). Then we will obtain:

4 | N =i [?.‘ (cos ¢, sin ¥ cos 6 -sin ¢, sin 8) -
b

3 +4°(— cosgycos ¥ sin@ 1 sing, cos0)+-2*(cos usin V)i (g0

[ ]

9y == — &y [X*(—sln ¥ cos 8)4g* (sin ¥ sin 8) - Z°cos ¥,

.

Vectors ¥ and 0 we express by proJections on semi-wind axes, using
Plg., 2.16:

—
-

V= (5° sin 84-y* cos 8);

»
-
¢ 1y . »

6=02",

T

R LPRRS

(2.81)

- pan
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Thus, the projections of vector a on semi-wind axes are determined
by the following expressions:

2, =Ai(cosg, cos ¥ cos 2 +sing, sin )4 |
+ ¢, sIn ¥ cos 04-¥ sin 6;
2y =1 (—cos g, cos ¥ sin 8-}-sin iy COS 0)—

—3,sI0 ¥ sin @+ cos ©;

(2.82)

Q,= A cosy, sinW—~g,cos ¥ 48,

Now it 1s possible to find the projections of relative accelera-
tion, Taking into account that

;0 ;o io
dt dt d¢ (2.83)
-7;‘!-=\7}0; V‘==V; V,=V‘=0. .
we will obtain: _
;:=V3 ‘ ‘ )
71'-V9¢=V (xcos?nsmw — @, COS W+6);
Jyom =V Qe —V [A(—cosp,cos ¥sin 84 (2.84)
-+ sin g, cos 6)—g,8in ¥ sin 0 4-¥ cos 6], ‘

Let us express angular velooities‘i and ;u by velocity V. PFor
this let us find the projections of veloocity V on geographiocal axes
X. and 2 (see Pig. 2,16):

VeemV cosOcosW;

- Vyem =V cosOshh ¥, (2.85)

-Having resolved the meridianal component of velocity Vx'_ into
sphare radius r, and the latitudinal component of V" into small circle
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r cos ¢u, we obtain:

Pu =-¥- cos ¥ cos 8;

. (2.86)
i==_~~!; sin W cos O

r 03 9y

Substituting dependence (2.86) in the formulas of (2.84), we
obtain the final expressions for the projections of the acceleratlon
of the object relative to the earth on semi-wind coordinate axes:

. .-i.c“v‘
-~ s V’ .
Jy=V8—="-cos 6; , (2.87)
Jo=—~Vicos 6-{--‘%(37.3&1‘?&:03’6.

Let us now determine the projections of Coriolis acceleration on
semi-wind axes. As 1is known,

»
-

| vz |
7.=2;;XV-2 War Wyy Wy, ' (?'88)
v 0 0

Let us find the projecticns of the angular velocity of the earth
“3 on semi-wind axes, using the expressions of (2. 80) because the direc-

tion of vector u, coincides with the direcstion at A {see Fig. 2.117).
Then wve will cbtain

.

:3““'“31?(('039. cos ¥ cos 04 sing, sln 8)4- |
4-5°(—cosy, cos ¥ sin O - sing, cos 8) 4- * (cos y, sin ¥)), (2.89)

The projections of Corilolis aeeeleration oh semi-wind axes ape
determined by the expressions:

Jex=0k
Jey== Wy, =2V e, cos g, sin ¥;
Jes= — 2V ey =2V u;(cos ¢, ¢Os ¥ sin O —sing, cos ).

(2.90)
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Let us determine the projections of acceleration due to gravity
on semi-wind axes. The direction cosines of vectors g. and g, will be
the same as for vectors ¥ and 53 respectively [see formulas (2.81) and
(2.89) 1, but with opposite signs. Then we will obtain:

8= —grsin0 —g,(cosg, cos ¥cos® +4-sing, sin0);
8= —g, 088 —g,(—cosp, cos ¥ sin 8 +-sin g, cos B); (2.91)
Br=gacosgsin®, .

Let us now find the proaectiéns of'totaljaero¢ynamic force R on
semi-wind axes. Let us resclve this forceiinto:ita components along
semi~-body axest ' '

‘?ﬂ*""z(?')‘-f—z’?’*.. AR (2.92)
Now using Batrix (2.71), we abta1u~'-}:

Ry -X.cosa-z sinﬁ; Y S
R.m(wx.ﬂnc-i-Z'msa)smp. o (2.093)
R,u(&',ﬁnu«-Z'cmc)cesp, B '

Drag X and lift Y aye connected uzen 311@1 forae xl and labernl
foroe 2' by the following velationshipa*, f‘ e 7
-X--—X.mw--z.”slna,} B (‘3.95)'
Y e — X, sinu-}-2' cos3, - -

which are cbtalned with aid of Table 1.1, 1f ons considers that 2° e
Yl when u = 0. Thus, w» have another . variant of the pm:ecncna ol

_*total aemdymnic rorne on aem-und axes:

R:“"'*’“& o t2.esy
‘ﬂg--—)'cosau - .

The pvojec%tgns ot th& r@snltant R of thrust force, a&rcdynan&e
forces ard the fbfce& createﬁ by the control elements, o aeui-uind
axes take tha fora: ' :
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N=(Pu+T )M+ T+ Ty —4X;
Ny=(Pa+T ) Ma+TyMaa+ Tyylla ¥ sinps (2.96)

N E é(p xl + T.n) Ny + Tm"l”‘l" T“'la‘.-"' Y cosp,

where nyy = the matrix elements (2.73).

Thus, the projections of all the terms of the vectorial equation
of motion of the center of mass of an object (2.9) on semi-wind axes
are determined by the formulas (2.87), (2.90), (2.91) and (2.96).

The dynamic equations of the motion of the center of mass of an-
object in projections on semi-wind axes take the form:

V"‘!;"-&S‘n 08— g.(c0s 9, cos ¥ cos O+ slng, sind); |
BNt o fe
O 4 _-’;Lcose V( Cosv.cos'lsln_a-}.

v , _ (2.97)
+sing, cos 0)-}--; cuswh,cos'.ﬂn!': .

N v
¥ xe -t +-:~;- '“9"""' + tg’.slnlfcosﬁ-l-

+9's(¢089-¢°3'&9—sln,.). S

It s necessary to supplement these eguations with the kinematic
equations of the motion of the center of mass of the object in a
geocentric spherical coordinate system:

o= {»-costcow;

eV Ma¥ene
r ‘“".
r==Vsn@

: ' (2.98)

and with the formula for determining flight altitude h, on which aerc-
dynamic forces depend:

— 2.
A=r—a / 1 —e? (2.99)

1 —elcongy
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Let us write the equations of motion around the center of mass in

projections on body axes [see formula (2.67)]:
de . K
In "}';i"‘ (In ~Jp)uye, =M,

dw .
"Ul ‘—":"'L'T‘(Jn _Jcl"“:l“ﬂ=zMﬂ: (2.100)

dw '
In '—"':"‘ ~(In—J 1) Oty =2 TMy,.

4

For the projections of aercdyramic moment instead of the expres-
sions of (2.63) it is now necessary to take the expressions:

Al = ehgSa{x, — Xzt COS W, l (2.101)
M, = —ci@Sa(x,~ Ag)slav,

, Let us compose the kinematic relationships connecting the time
derivatives of angles u, @, v with the projections of the angular

velocity of body Wee gy Waye

The gngular velority of the body axes & is made up of the angular
velocity © of the semi-wind axes relative to the terrestrial axe: and
the angular vrlocity &' of the body axes relative to the semi-wind
ares: : - :

wiafe, - (2.102)

Angt lar velocity &' can be represented in the form of the .sum

o mptat. (2.103)

By projecting vector &' on body axes, we obtain (see Fig. 2.17):
, g, =P CO8 Q4%

v, =dcosv4psinasine {2.104)

wy, = —asinv{-p sinacosv,

For determining the projections of angular velocity 5 on body
axes let us use its projections (2.62) on semi-wind axes and the table
of the cosines of the angles included between semi-wind and body axes,
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written in the form of the matrix of (2.73)

My My Ny E
H= nn n” nga . (20105)
Na My My

Then we will obtain

-

Q0= 2+ M2y + M42,5
C Q=M 0, My + M2, (2,106)
Q=2 M0+ M10Q.

Taking expressions (2,102), (2.104) and (2.106) into account, we
find:

0y =My 2+ M43 Qy - My@, ¥ cOs 0}
0 =Ny @+ 12y + M@, - COs v-1-psinasin g (2.107)
0y =Ny 2; + N8y + N8, — asinv)-psinacos v,

Substituting the values of the cosines Nyy from matrix (2.73)
and solving the equations of (2,107) relative to u, a, v, we obtain:

@ ==y, COS V—ug, sin v—2, cosp—~Q, sinp;

. sinv cos¥
w=% sina T 1 sina ~2,1-8ctgusinp— (2.108)
—2, ctgacosp;
V= =y, Cly asinv—au,, clgacosv- -2, slap 4.0, 08

sina sina *

.

In these equations the values of nx, ny, and §i, are determined
by the formulas of (2.82)

Equations of (2.97), (2.98), (2.100) and (2.108) make up a system
of equations of the motion of an unguided object, For desoribing the
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controlled flight of a rocket they should be supplemented by control
system equations. ¢

2.4 BASIC SIMPLIFICATIONS OF EQUATIONS
OF MOTION !

Depending on the problem being solved the general equations of
motion obtained above can be more or less substantially simplified.
Since the selection of one or-another type of simplifications is
inseparably connected with the actual conditions of the problem, we
will examine the simplification of the equations of motion in appro=-
priate sections of this book. Let us limit ourselves here only to
certaln general remarks and to one example of the simplifications of
the equations used in ballisties,

Taking Trajectory Phase into Account

In the first place in composing equations of motion it is neces-
sary to consider, which phase of the trajectory 1s being examined.

During the powered=-flight phase the motion of a rocket should be
examined taking control into account. Since we are interested in
rocket flight relative to the earth, and the control system of a rocket
is usually inertial, it is necessary to examine the motion of its
center of mass in terrestrial coordinate axes, and the orientation of
the rocket = in inertial axes, i.e., in initial launch axes, This
fact makes it possible to use more or less simplified equations based
on the general equations examined in Section 2.2.

In examining motion in the unpowered-flight phase beyond the
limits of the atmosphere the investigation of trajectory is facilitated
by the absence of thrust force, aerodynamic forces and forces created .
by the control elements, and also of the moments of all these forces,
However due to the great range, altitude and flight speed 1t is neces-
sary to consider the variation in acceleration due to gravity and the
effect of the rotation of the earth,

During the phase of the descent of the nose section into the
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the atmosphere a large role 1s played by the aerodynamic forces and
moments. Since flight in this phase is ungulded, there 13 no need to
rely on an inertial coordinate system and for the investigation 1t 1is
possible to use various simplificatlions of the equations of motion in
projections on seml-wind axes.

"Quasi-Steady-State" Motion

The motion of a rocket or of a nose section, as well as the matinn
of any body, can be represented in the form of the motion of the cen-
ter of mass of the object and of its rotation around the center of
mass., The presence of control during the powered-flight phase makes
it necessary to examine the motion of the center of mass of the rocket
together with the motion of the rocket around the center of mass.

During the descent of a nose section in the atmosphere it 1is also neces=
sary to examine the oscillations around the center of mass together
with the motion of the center of mass,

Standard for rockets is an investigation of the motion of the cen-
ter of mass with simplified equations of the control system and of the
rotation of the rocket,

The control system equations depend substantially on its structure
and the composition of its elements. Thus their actual simplifications

cannot be examined in this book. The most substantial simplifications

consist of replaecing control system equations with equations of ideal
controlling connecgtion,

- Let us oxamine the simplification of the equations of rocket
rotation,

The left sides of the Euler equation of (2.67) with controlled
rocket rlight, 1f we eliminate such non-steady-state flight modes, as
launch, stage coparation and nose section separation, are close to
zero, thus in investigating the motion of the center of mass the left
sides of the Euler cquation are usually disregarded and these equations
are written in the form of steady-state equations of the moments of
force acting on the rocket, relative to the rocket body axes., Thus
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the transitional processes in rotary motion are disregarded énd the
docket is examined with a control system i1deal in the.sense, that upon
deflection of the control elements the angle’ of attack instaﬂtaneouﬁly ‘_
assumes the "steady-state" (balanced) value [21] corresponding to the
equilibrium equation of the moments. : ;

: Simplification of Direction Cosine Matrices '
The. following commor simplification in equations of rocket motion

consists in simplifying the expressions of the cnsines of the anglés

3 included between the coordinate axes, Thus, for instance, in oa;culap— ;

Jg ing the optimum trajectory of a ballistis missile it is posaible to

] set the angles of roll n and yaw £ equal to zero, Such a possibllity

is brought about by the fact that a system controlling flight, by

getting rid of perturbations, tends to reduce these angles to gero, Lo

: as a result of which their actual values are small. Let us thus assume

cos nasl, sin naen, cos Earl, sin EmE. g o '
We will also disregard the products of ang!esht and n, Then we

will obtain the approximate matrixi I of the cosinks of the angles in-

cluded between the initial launch and body axes in the following form:.

= ‘cosy  slnp  —~tcose )
5  pasf ~sing  cosp  uftsing
| t4-qsing —ncosy 1 ¥

ot

In an analogous manner we will obtain the spproximate matrik. of °
the cosines of the angles 1ne1uded betveen the body and terwestriai R
axes, Lo _ S

Resolving General Notion iuto Lcneitudlua!
and Lateral Notion ) , ;

A substantial simplification of a systea of eguations of rnék@tf; :‘—';'s
motion is attained, when 1t {3 possible to break this system down into g
_tWwo independent groups of cquations descriding the motdon of & rocket ..
in two mutually perpendicular planes {21], 'The main possibility for o
such a breakdown 1s due to the“dynanle symaetry Of a rocket relative
‘to its longitudinal axis Ox;. o ‘
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Let us represeht the general motion of a’ rocket as made up of
longitudinal motion, in which parameters Vg, Vya, X3, 43, 021, @, vary,
and lateral motion, in which parameters V3,23, wxi, 0y, &0 vary.

. Ip the general case there 1s interaction between these two motions.
Let us g¢xplain the conditions, under which each of the two motions in

qu'estion » can occur independently of the other.

' !
Lateral parameters of motion Vsa. Vva. X3y Yg» Ox1, P; Will not be

- included in the equations describing the variation in the longitudinal
. barametera o!‘ motion Vzao 33’ We1, Oy, & N, if the channels stabi-

lizing the &ngles of yew and roll and lateral drift. are operating
ideally: In practice it is possible to exclude the parameters cof
lateral motion fx*om the equaﬁions of rocket motion in plane Oxayg, whien

the lateral paramet.ers Vis, 5. m,u, oyt & % are rather small. Then we

,obtain the ron‘oaing system of equallons of rocket moticn in the Ox.y,

 plane: T
. .. l : - o ) ~ .
L ‘“’ e ., i 3
.- S . ‘: Ia+e"*mjﬂla;
| 'ms-—-ﬂ“v N,
, : _-“’ n'i‘on“mlu,»
S :.‘,3,:' ---3—‘ V

d,
a Vs “;?’“Vw

ln "‘-““‘ “_,M“v | -—LIHO",

""'al‘v“’z B it s01=0,|
Pl 500 g3, wi0]=0. | -

" “the equations of lateral motion in the general cuse take the form:.
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I -f:-‘—-a“M,. "'(-'n“lm"'m“m 6 (2.110)

an , 4t
oy - 2 + % sing;

=48 Sy
= cosgcosnJ- % slnw;

Fol&(), 2 (38 £(¢) n({0)]==0;
F (38, z(2), §(®), 1 (£)]=<0.

It 1s not possible to exclude all the parameters of longitudinal
motion from these equations. Thus for independent investigation of
lateral motion it is first necessary to determine all the necessary
longitudinal parameters, for example, by solving the equations of
(2.109).

—

Linearizing Equations

_The.method of lirearizing equations is very widespread in all the
technical seiences (see, for example, book [21]). In rocket ballisties

- and dynamios this method is most frequently used in investigating the

dispersion of nose sections, for evalusting the controllability of

rockgta nnd nany other prcblems.

lif ing Equations for Evuluct!ng
Roc ot ontrollability

'?or detersining the maxicum deflection of :he control dlements,
necessary to compensate Pfor perturbing forses and moments, 1let us com-

- pose simplified equations of rooket motion, examining 1t &3 an abso-~
- lutely rigid solid body. For this purpose let us resolve the general
. motion of a rocket into longitudinal and lateral motions and let us
_ “exenine only the lateral motion, since the maximum perturvations are
- '¢§¢aea by cross wind.. - ’

Lot us siﬁpisfy ‘the system of equations of lateral notion {2.110),
hav&ng tiade the. following uamum.
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1. The projections of gravity and Coriolis force on the 023
axis are negiligibly small.

2., We will assume angles ¢, &, n, 6¢, 6€, Gn, a, B to be small;
we will consider the cosines of these angles to be equal to unity, the

sines of the angles - equal to the angles; we will disregard the pro-
ducts of these aagles.

3. Let us linearize the forces and moments, representing them
in the form:

X=X,
Yi==(X+4Y)a:
Z s (=X +ZN)p= — (X + VB
- My = MuB+ My

;n-1“}4L+J“:ﬁn
. PeaPr s P4-4T;

T2y |
T,g-‘ﬁ#—.-m.
B, We r@preﬁeuﬁ angle 6 in the form

gas—»wu-—-}‘

Then, taiing the perturbing forces and wmoments zy, NByl Naz
1nto a@count on the right sides of the equations (2.110), we obt ain.

FwaitagtontaattZi)
“Eamagz4-out-aute+ Man
=ayi oyt +agly - Has,.

{2.211}

Yere
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o (2.112)
— 27("1""".‘(3) . — M.: . ) .
a“._. . aﬂ‘“ M
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M} 47
a =.—-_-‘-—-" a 3 r' .

: Let us write as control system equations the lineralzed equatilons
,=§§ of the channels stabilizing yaw, roll and lateral drift, composed in:
accordance with the procedure examined in Section 1.8:

r%/?‘

8g=dge+a‘ 5:!-6;;]80'!-}-0,2-!—4; é: (2.113)
. by=aylit-ag b | |

k- : The total deflection of the control elements is -equal to:

8 =¥ +3; (2,114) |
3;-.—-3;--8‘, i

~ As a result of so;?ing the obtalned system of equations of rocket

motion with a given sét of perturbations the deflections of the con- .
trol elements 61(t) and 03 (t) necessary for compensating for these per-
turbations are determined, and they are compared with the maximum ' R
posslble deflection 0unx:?0.- If the values cf the angles of deflece -

g tion of the control elements are less than the maximum possible angle'

3 (with a certain margin {8;>0), then in this case the control elements
k" are effective:

% -'.IGJ'FQulﬁgmmﬁ }
. A AR

(2,115)

e 118

s ottt



CHAPTER 111
TRANSITIONAL TRAJECTORY PHASES

0f all the questions of rocket ballistics and dynamics it is pos-

~ 8ible to segregate, as independent, the questions of the dynamics of

the transiticral traJecfory phases -~ launch, stage separation and nose
saction separation. These questions are connected by the similarity

of thelr dynamic processes and by ldentity of the formulation of their
problems.

Sharp variations in the thrust of the main engines, propellant
consumption per second, and also the operating modes of the control
.system are characteristlc for transitional trajectory phases. Further.
more, the perturbations acting on a rocket in these phases are specific,
From the point of view of mechanics, the investigation of the tran=
8ltional trajectory phase is the solving of problems concernirg the
‘relative motion of two or several bodies, especlally, a rocket relative
to the-launch pad, of the two separating parts of the rocket relative
to each other, etc. In all the problems Lt is necessary to determine
the forces acting on the rocket, and the parameters of relative motion

taking into account the actual design features of the rocket and the
operation of its systems.

The standard methods of launch, stage separation and the separa-
tion of other objects are examined below; the equatlions of motion of
rockets and separating parts are given; it 1s pointed out, which questions
of dynamics are solved in rocket designing., The expositlon employs a

119

Llberc b s R e i e A R R o




(DA e BB N Tk o

i i T
RS i

SRR D

et I .
AR A R R S e e

two-stage rocket as an example executed according to "tandem" layout.

'

3.1. ROCKET LAUNCH
Free Launch from an Open Ground-Based Launch Pad

Pree rocket launch 1s carried from a launch pad located on the
surface of the earth. The rocket stands freely on the pad and when
the englne thrust attains a value, greater than the launch welght of
the rocket, the latter 1lifts off from the pad.

The basic problem of dynamic design with such a launch setup are
determining the perturbing forces and moments acting on the rocket,
and investigating the perturbed motion of a rocket in the initial tra=-
Jectory phase for the purpose of selecting the stabilization system
parameters and evaluating the controllabllity of the rocket.

During free launch from an open ground-based launch pad the per-
turbing forces and moments acting on a rocket are caused by:

= ¢ross wind;

- errors in the manufacture and the assembly of the rocket and
the englne system;

- the time differential in starting and the thrust differential of
the engines of the engine system (or of the combustion chambers of one

"~ engine).

The perturbing forces and moments can be determined by the. form=
ulas given in [22].

Let us write the equations of motion of the center of mass of a
rocket as projections on the axes of the coordinate system, the origin
which when t = (0 coincides with the center of mass of the rocket; axis
Ox is directed vertically upward; axis Oy - 1s opposite to the direc-
tion to the target; axis 0z - so that the coordinate system is right-
handed (Fig. 3.1)
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z . Pig. 3.1. Coordinate system for
caleculating rocket launch from
an open ground-based launch pad.

We will determine the orientation of the rocket relative to this
coordinate system by the angles of pitah @, yaw ¢ and roll y which are
formed similar to angles ¢, n, and {, determining the orientation of
a rocket relative to an iaitial launch coordinate system (see Fig.
2.4), In this case the kinematic equations connecting the projections
of the angular velocity of the rocket OWxi, Oyl @y with the angular
veloclties V.' ¢', b' will be analogous to the kinematlc equations of
(2.32). From these equations it followa that with rather small angles

¥, & and angular velocities v and 0 the approximate equalities
ocour:

»® . .
Vel Y, Oy Y 0y =0,

Let ua simplify and more accurately refine the general system of
equations of (2.65)=(2.66) with respect to the conditions of the pro-
blem in question. 1In this case let us make an aqsumpti.on about the
fact, that angles Y, ¥, O and angular velocities ¥ and @ and also the
angles ol deflection of the controlling engines 6;.'60 and & are small.

It is evident that in the case in question it 1s possible to disregard
the Corlolis forces.

In determining the projections of the forces on the selected uxes
let us take into account that:
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= in unperturbed (vertical) flight drag is the only one of the
aercdynamic forces acting on the rocket;

- the Coriolls forces are negligibly small;

- the forces and moments created by the controlling engines, are
determined by the formulas of (1.45) and (1.46);

- the operation of the control system is described by the equa-
tions of (1.63), (1.65), (1.66), (1.67).

Taking into account what has been said the equations of motion of
the rocket take the form:

.m§=Pa-—a—X3 | 1
my=Py0+2T8 1V
an3==-559-2ra;4~2L:
SV =ATr b+ Mur,,
Sy§=2T (X, = %,)8; + My}
ltlb‘-zr(xr""‘:u) b+ My,
h=ay+a;vi
dy=ap+6;9+a58+a,2+a; 2
Y=asd 0,6 4ay¥+a,y+a; i
8, =By -3y
U =2+3;
4=y —3;
Y=Yy 8. J

(3.1)

[1

Here m = m, -55\(1:)“ - the mass of the rocket; PymP 4T - the
total thrust of the engine system, and P - the thrust of the main
engine; T - the thrust of the controlling engine; VY,, Z. = the pro-
Jections of the vector of the perturbing forces acting on the rocket;
M.,,.. M.,.. M... « the projections of the vector of perturbing mo-
ment acting on the rocket;a,, @3 Gyeon Gy, a, the transmission coeffi-
cents of the control system of the rocket.
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The system of equations of (3.1), as a rule, can be solved only
by numerical methods on analog or digital computers, In thls case,
since the initlal conditions and the perturbations acting on the rocket
are in general random, the method of statistical testing is usually
used for the solution, Sometimes for reducing machine time the solu-
tion of the indlcated system of equations 1s found for the worst com-
bination of perturbing forces and moments acting in a certain plane.
Furthermore, since the posltion of this plane for investigating launch

dynamics in a vertical phase 1s neutral, ln most cases the problem is
solved for the plane of pitch.

As a result of the solution the following launch problems are dis-
tingulshed: necessary control element effectiveness, the rational
values of the transmission coefficlents of the control system, the
statistical characteristics of the phase coordinates of the rocket,
the design parameters of the launch pad and others.

Free Launch from a Silo

The free launch of a rocket from a silo complex ..s accomplished
in the same way as a launch from an open ground-based launch pad, only
the launch pad is located inside a silo complex, Free launch from a
8ilo inposes particular requirements on a rocket, the silo complex and
the control system as part of ensuring shock-free egress from the
silo - 1t requires very high accuracy in stabilizing the motion of the
rocket in the silo trajectory phase and the specific relationship of
the diameters of the sllc and the rocket. The basic questions of
dynamic rocket deslgn in launching from a silo are: evaluating the

. necessary effectiveness of the control elements, selecting the para-
meters of the control system and determining the overall dimensions
of the sllo complex, For this it is necessary to know the parameters

of the perturted motion of a rocket during its egress from a silo.

_ The dynamic procedure of a free launch of a rocket from a silo
is identical to the dynamic procedure of & free launch from an open
ground=hased launch pad. However during the motion in the silo addi-
tional pprturbations act on the rocket caused by the gas-dynamic
forces due to the gas streams coming from the nozzles of the englnes.
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Furthermore, as the rocket makes its .egress from the silo the wind
begins to act on 1t. The formulas for calculating the wind perturba-
tions acting on the rocket, are the same as before (see appendix on
application). However the coefficients of normal aerodynamic force
Acn and the coordinate of the cgnter of pressure X4 in this case depend
not only on the angle of attack, but also on the length of the part of
the rocket which has exited from the silo., For calculating the para-
mepers of perturbed rocket motion during free launch from a silo the

same system of equations can be used, as for a launch from an open
ground-based launch pad.

Launching from a Silo on Guides

The launching of a rocket from a silo on guides ensures the shock-
free egress of the rocket from the silo and does not impose such rigid
specifications on the silo complex and the rocket control system, as
during free launch from a silo.

In launching from a silo on guides along with the evaluation of
the effectiveness of the rocket control elements and the selection of
the control system parameters 1t is also necessary to determine the
reactions acting in the support girdles of the rocket during its motlon
along the guldes. PFurthermore, it 18 necessary to select a scheme of
control gsystem activation (lift contact or egress contact response),

ensuring minimum loads (reactions of the guides) and initlal perturba-
tions.,

Below are examined the equations of rocket motion for one of the

" possible variants of the design execution of the guides and support

girdles of a rocket: the rocket moves in the silo along two vertical
guldes, with which it is connected by two elastic support girdles
(upper and lower) which are two diametrically positioned lugs. The
perturbations acting on the roocket, are the same as in free launching.
In composihg the expressions for the reactions of the support girdles
i1t 1s necessary to consider the basic design features of the rocket
and of guides; the clearances between the lugs and the guides, the
preliminary compression of the spring of the lugs and the restriction
of their motion, the elasticity of the rocket body under the lug, etc,
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In a first approximation in investigating the launching of a
rocket along guides the flexural vibrations of the housing, the vibra-

tions of the guldes, and also the possible displacements of the silo

launch Jjacket are disregarded. For composing the appropriate equations

of rocket motion let us use a right-handed coordinate system whose
axes are oriented in the following manner: Ox 1s directed upward along
the vertical, Oz lies in the plane of the guideé; Oy 1s perpendicular
to this plane (Fig. 3.2). The equations of the motion of the rocket

along the gulides are derived in an analogous manner to the equaﬁions
of (3.1)

Fig. 3.2. Diagram for composing the equations of motion
of a rocket during launch from a silo along guides: Kk -

angle included between the plane of the guides and plane
0x,2
1°1°

The distinctlive feature of the problem in question as compared
with the previous one is calculating the elastic reaction forces aris-
ing a8 a result of the interaction of the elastic lugs on the rocket
with the guides (Fig. 3.3). These reactions are functions of the roc-
ket coordinates y, 2z and in many respects they are determined by the
elastic properties of the material, from which the lugs are made.

Let us introduce the follwoing designations (see Fig 3.3):

Ri(2), R3(2) - the radial reactions on the upper and lower support
gridles respectively;




B
i
35
o
2
&

L

L

Fig., 3.3 Raaneing- foraces of the supports acting on
-a rocket during launch from a silo along guldes.

R Ru(y) - the tangential reactions on the upper support
girdle; : _

Ra{y), Ru(y) - the tangential reactions on the lower support
girdle; . '

| l.; ly - the distance to thr gravity center of the object from the
upper and lower support girdles respeciliely; '

% - the angle inziuded biétween the plane of the guldes and the
yaw plane.

The equations of sotioni of the rocket soving long guldes has the
form: '
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g E=Py—G—X; ]
my==: P50 - 9T (3 cos x—3, sinx) - .
. + R} Ria— Ry = R +-Y
2= — Pyy-2T (8, cos x4 3y sinx)-}-
) + - RS +Z.: ' '
y JaV=4Tr 3¢+ (Rii — Ria— R+ Ri) ry - May,:
\ :2 " —
3 Sy 9= (%= x,) ¥4+ . | (3.2)
Fl(Ri+Ri) - (R RV ] sinx -
’ — (R34 R&L) cos nf My,
R+ Ria) !, +(R% + R )] cos x4
R REL) stn et My,
Oé_ As in the case of a free launch of a rocket, to these equations
§ it 1s necessary to add the control system equations deseribing the
A deflections of the control elements dy, 3, % depending on the parameters
3 of rocket motion.
fA The solution of the system of equations obtained in this way is
3 ' more complex than the systems of (3.1), and also, as a rule, it is
; found with the ald of computers by the method of statistical testing.
ii 3.2, STAGE SEPARATION AND NOSE SECTION
L SEPARATION
) Stage Separation
g . The phase of motion of a rocket from the moment of the 1ssuance
g of the main command for shutting down of the engine system of the pre-
3 vious stage to the moment, when the separated part cannot affect the

; subsequent flight of the rocket, we will call the stage separation
3 phase. PFor the stage separation of multistage rockets set up according
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to a "tandem" layout, two basic setups of séparating sygtems can be
employed:!®

i
1) cold separation (or separation by braking), 1n which the sep-

arating part is braked by special means after breaking the conneetion S

between the stages, and the main engine of the subsequent_stage_&s‘s
started after a safe interval is attained between the stages;

2) hot (or fire) stage separation, in which the engine of the
subsequent stage is started before the breaking of the connections
between the stages and the separating part is vepelled by the gaa Jet
of the subsequent stage engine.

t < -k
With any separation system it is necessary to ensure the contin-
uous controllability of a rocket during the separation phuse, The
method of carrying out of this specification depends ‘upon the type of
control elements. '

Cold stage separation (Fig. 3.4) is possible and more acceptahle
for rockets, the control of which is accomplished with the aid of
special controlling engines. The controlling engines of the subsequent
stage can be activated before shutting dowr the controlling engines

of the separating part. In this case continuoua rocket controllability '

is ensured during the scparation phase.

Hot stage separation (Fig. 3.5) is possible in principle on any:
rockets with sequential stage connection, -however it requires speclal
design of the adapter between the stages and of the rear'section of
the following stage. Hot separation is advantageous for the rockets, ,
the control of which is connected with main engine operation (Jet vane
control, control of main engine combustion chanber osceillation, ém-
trol of the blowing of generator gas into the supercritical part of
the engine nozzle). With such control elements the continuous control-
lability of a rocket in the separation phase 1s pousible only during

' ]

A
B

Certain intermodiate schemes are also possible,’ however we will -
not dwell on these,
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- the starting of the main engine of the

. sSubsequent stage before breaking 3
the connections between the stages.

P

2

7?,,\/

I 34 5 t
] )
; ' : | . ’ P!, .

| \ Fig. 3.4. Diagram of cold stage separation. Approximate

! , command sequence for: 1 - shutdown of the main engine

‘ ' : of the separating part; 2 - sStarting of the controlling
engine of ‘the subsequent stage; 3 - shutdown of the
controlling engline of the separating part; 4 - breaking
of the connections between the stages and the starting
of the retro-solid-propellant rocket engines; 5 -

, Starting of ;the main englne of the subsequent stage.

S
ey s B RY T s ST TR e R R LT SOPR PR S P g NP P

1 L”
3 4 ’ 8 to

Fig. 3.5. Diagram of the hot separation. The approx-
' imate sequence of commands for: 1 - throttling the
\ y engine of the separating part; 2 - starting the engine
| , .+ of the subs sequent stage; 3 = breaking the connections

between the stages; U - shutting down the engirie of
the sepaqating'part

Another requirement for separation systems is the ensuring of

reliable separdtion, by which is understood separation without
!
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. ¢olliding of the rocket parts. For reliable separation it 1s neces-
- sary to ensure sufficient energy, used for separating and spreading

the rocket parts a safe distance apart, theircontinuous controllability

" in the separation phase and correct selection of the moment for break-

ing the ccnneqtilons.,

During separation the deviations in the parameters of the mo-

" tion of the subsequent stage from the optimum values and the deviations

in the parameters of the relative motion of the¢ rocket pares from the
ated values should have as smoli disporelusn as possible. This rev
Quirement is determingnt ls selecting an actual scheme of separation.

The cited requiremerts for separation Systens, as it i3 eaey w0
see, are interconnected, The degree of tho cumplexity of the executlon
of these requirements depends upowm the values of the perturbing forees
and mooents acting on the parits of the rocket durdng the separatlion
phase., Thus when developing s rosket and & stage Jeparation systes
various measures sre spoeified which lesd to & reductien in the pers

turbing foress and sopAnt:, Ir particular, when selecting the flight
.path of & roaket the valuss ¥ the dyneniv pressure wel the acgle of

attack aze limitrd An tne sephratlon chgse, g 1t Surh, the selestian
of a ratichal separation scheme sabiss U0 passible U5 lacrohse the pers
miseible values of dynamie pivasuse and ngie of stcask of the roeket
1t the sepaiation phoce any thus mesuzs the specifleetlons lesosed oh
thé'shaﬁe'ér the rooRet tialestery. S

The preeﬁas of stage sasgrazzga con give rlas to potlosadls losaes

in the saxisum firing range, I8 cusneetion with enieh the Segelrement

of vedueing these lcsses it al.ayn (Hposad o separatlon systems. s
order to decredse the reduction 1n rasge due to gravitational langes

it pocket speed 1ln the é&ﬁaratsaﬁ $hase Lt 3SR LRSEREy T dmture thal
the separation process dcxurs With giwal PRpidiiy.  Vowster Tve sbrlge
ing of the tise of Separslion yMegulees ar &ﬁi*ﬂ:\n Ry fnrgﬁs. -
separating the rocket Parts, whiush give~ rige *+ gn lndfesse N V«rw
turbing Torces and sOMENte. RealioT cfued T PRduiiion 3o SR onbe
$1sts in increasing the seigﬁ; B Yhe rosket gue Lo i delght of Lhe
separatio; syste,
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Craaning of the contentions bobwesth the stuges) the nodessiiy

Pinally, a number of specifications are imposed on the design of
separation equipment. Among these it 1s possible to note compactness
and small overall dimensions of separation devices, safety and simpli-
city in operation and others.

In the light of the above cxamined specificaiions lel us note the
besic pNos and cons of cold and hot seporation systems, These syatem:
can be made 1o different variasnts,

Rbove, Flg, 3.4 gives one of the pessibls variants of o6ld sep-
arstion, in which o brakiag the separsting pars solidepreprlilant
fetrarcekets (I} are used.

The bgolc gdvantames oF the gold separation Tyatend are! fepiratioe
aader the ¢ffest of small forees with amall perturbing forees and noe
SRRty and asall welight of the separation devices (retro=s3olldepyope’ lant

rogket englines with St lachemwnt flttlage). Included spong the weficlen=

sien oF thls gystenm are! the geospasaslively eomplex asparstion scheme
and the pesuerion In firisg range due o prolongsd separstlos time,

e of the possible sehg&&% af hat %évaﬁstiﬁr 14 nhown in Fig.
a8, Tha savandiges afrﬁﬁa het geparzilion systems aretr $he speed of
separstinn, whieh pea-lchlly doeg not . 4 ta gravitationel losses $h

range; the almpllslyy of the spparstiorn odesy and ch@ gorsaid aes

guener; the laoresaned reliadiiity <f ke aaﬁfting of the enging of the
FubBugueht #ade $ee 10 the avial Rfrelerstlon oredted by the oyrorating
efgine of the fepraratisyg part.  The ée?l efpcietd of bat gsraratias  ped
Large perearbatioma, obtylned by the Seauenl Btage Jdurtug terearal s
the furd safsasptlon by the ongine of the subrequen. atage Ceforw ke
£y pras

3
tevking the pastd oF the wvekel Pro® fhe o Pent o the ges fot i ihe

spereting englie,

Prosesding fruty She o) long ¢f sumuring the abeve exinined
spocifiontions, the fvilowing peobled  are usually 2ol ad i6 ths
dynamic dealigntag »F a separatlon systen:
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1)  the basic selection of the scheme and the meadéffor stage

separation;

2) the selection of tﬁe'basic.parameters (éharacteristics) of
the separation system; '

'3)  the selection of the sequence of moments of the transmission

of instructions by the contro1 system for executing the separatlon
operations; ; ‘ '

L) ensuring the reliability of the separation process, the sta-
bility and the controllability of the subsequent stage. '

The baslc method for solving the enumerated problems is the inves-
tigation of the relative motion of the separating parts of the rocket.

In composing the equations of motion of the parts of a rocket for
investigating the separation process'it is necessary to conclder the '
following forces and moments which are acting on the separating parts
of the rocket: gravity; the thrust force of the engine systems; the '
thrust forces of retro engines or nozzles; the forces and moments cre-
ated by the control engines; aercdynamic forces and moments; the forces
and moments from the gas-dynamic effect of the engine jet of the sub=-
sequent stage on the separating part (during hot stage separation); .
the perturbing forces and moments.

The perturbing forces and moments, significently affecting the
process of stage separation, are due to the following factors:

= Wwind effect;

- the errors made in the menufacture and the assembly of the pro=-
cket and the engine system;

~ the eccentricity of the center of mass of the rocket caused by -
the design peculiarties of the rocket layout;
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‘modes;

= the: misalignment 6f the line of engine thrust effect caused by

-?the e;astic deformaoion of the engine system mounting,

= the théust differéntiél’e‘ thefeag:nes (or the. combustion cham-

bers of one engine) -on the steady-state and transitional Operation 2

-

-

= the thrust differential of the.retro engines or nozzles;
- the aftereffect  [thrust trailoff] impulse of the engines.

The calculating fcrmulas*foy determining the enumerated perturbing

forces and moments are given in [22]. For the sake of simplifying the

investigatibn“of the separation process the effect of the'liquid prof'

: pellant in the tanks the flexural and 1ongitudinél osclllations of

.the sepavating parfs of a rocket, the variation with time of the mass,
inertigl moments and the positions of the. centers of mass of the separ-“
'ating parts are usua‘ly disregarded.

" In ﬁrdér'tb evaluate thé parameters of the relative'motion of the

"separating parts of a rocket, it is sufficient, as a rule, to limlt

oneself to an examination of the longitudinal and lateral motlon of
the rocket,

For describing the‘motioh of the separating pafts_of a rocket
arter the breakiﬁg of the eonnectlons between them it is convenient
to use an inertilal coordinate system Oxysz, moviné with a vélocity,
equal to the veloclity of the rocket at moment of the beginning of the
separation process (t = 0)., At moment of time t = 0 the origin of the

 coordingte system O coincides with the center of mass of the entire

missile; axls Ox coincides with the longitudinal axis orf the rocket;
axis Oy 1s divected upward and forms a vertlcal plane with axls Ox.

Let us deslgnate by 01 1Y, and O XY 5 the coordinate systems, con-
nected with the saparating part and the subsequent stage respectively

and formed by the standard rules,

The actual form of the equaticns of motlon of the separating parts
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" of a rocket depends upon the setup of the separation system and the
flight conditions at the time of separation. Thus let us show the
basic pecullarities of investigating a separation process as lllustra-~
ted by dynamic separation schemes formed by taking the above glven
assumptions into account. Furthermore,ilet us assume that at the ini-
tlal moment of separation the angles of attack and the angular velocity
of the rocket are equal to zero, The remaining assumptions will be
apparent from the systems of forces acting on the separating parts,
and the explanations for the equations of motion.,

During cold stage separation let us assume that the retro-solid- !
propellant rocket engines begin instantaneously operating in a steady-
state mode and the reactions at the site of the Joining of the stages

.~ from the moment of the starting of the solld-propellant rocket engines
‘are equal to zero. Then the'equations of movion of the separating

~ parts of the rocket in the plane of pitch taking into account all that
-was stated above for the systems of acting forces shown in Figs. 3.4
and 3.6, have the form:

-For the Separating Part
My =( = Pry— Xy X))~ (VY ) 4, — Oy o 0
M= Ppy— Xy X)) by (¥, + )~ Gycos b (3.38)
J :151 =Mz + Mas;

For the Subsequent Stage
MoXy=(P32— Xg)=(Y7+Yo) 8, —Cysin by 1
Mayy=(Pra— X3) 8-+ (Va+ ¥ )+ 2T s, — Gy cos By
Jagby= Mg Myz, 4 Mas,;
. o By, ==By, (% wa). J

(3.30) -

i , Here % - the angle of pitch of the rocket relative to the loecal
' horizon at the initial moment of separation; 8" &2 - the angles of
deflection of the longitudinal axes of the separating part (1) and the
o s{xbsequent stage (2) from axis Ox of the inertial coordinate system;

' v Pa(t) - the thrust of the engine system of the subsequent stage;
Py (8) - the thrust of the retro engine; T, - the thrust of the
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subsequent stage controlling engine; X, ¥,,, | 8 Msz,, Mye, - the per-
turbing forces and moments acting on the separating parts of the rocket
My and My - aerodynamic moments; Mys,= 2T(x,,— X,,9)85, - control-"
ling moment,

Flg. 3.6. Diagram of forces in an investigation of
cold stage separation.

As a result of solving of the system of equations of (3.3) with
the aid of a digital computer it is possible to calculate the relative
motion of the separating parts of the rocket, which makes it possible
to select the basic parameters of the separation system and to ensure
the necessary reliability of the separaticn process,

Usually the problem of determining retro impulse for a gliven safe
distance between the parts of a rocket at the end of separation is
solved: Xgeu (tx) =% () —-XQ(tx) .

At a glven distance 1%,3(A0 the necessary magnitude of breaking
impulse It depends on the duration of separation tx+ The greater is
tx, the smaller is IT and the welght of the retro solid-propellant
rocket engines and therefore the smaller is the reduction in range
due to the installation of the solid-propellant rocket engines., On
the other hand, with an increase in fx the losses in range due to gra-

vitation increase., Thus such a value of IT 1s selected, at which the
reduction in range 1s the smallest.
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In order to check the reliabllity of separation, we usually plot
the trajectory cf the relative motion of the most dangerous point of
the plane of Jjoinlng of the objects and on the basls of the obtained
results we draw a conclusion about the possibllity of the separation
of the objects without colliding.

An investigation of the separation process also specifies an
evaluation of the stability and the controllability of the subsequent
stage durling the separation phase, for whichthe maximum angles of

deflection of the Umax and of the controlling engines bo,m, are
determined,

For obtaining the most complete and the most reliable conclusions
about the »eliability of separation and about the stabllity and the
controllability of the subsequent stage an investigation of the rela-
tive miutlion of the parts of the rocket must be carried out taking into
account the statlstical characteristics of the perturbations.

For hot separation the effect of the gas-dynamic forces on the
separating parts of a rocket 1s very characteristic., The gas~dynamic
forces causéd by the effect of the gas jet of the engine of the sub-
sequent stage on the separating part, 1s convenlently examined as the
geometric sum of the axial and lateral components (Fig. 3.7).

Fig., 3.7, Diagram of the forces in ilnvestigating
the hot stage separation,
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Axlal gas-dynamic force Xy 1is caused by the pressure of the en-
gine Jet on the separating part. The lateral displacement and the
turning of the part being separating relativeé to the subsequent stage,
and also the perturbations of the gas Jet ltself as a2 result of the
deflection of the control elements glve rise to the eccentricity e of
the axial force relative to the longitudinal axis of the separating
part. These phenomena cause the transverse gas-dynamic force }}1.

The effect of the reflected gas jet on the subsequent stage can
be described by axial force k&z with eccentriclty e

A characteristic feature of gas-dynamic forces 1s their compara-
tively great value. Thus, axial force X; in the initial moments of
separation is comparable with the thrust force of the engline system
of the subsequent stage P2. This fact is also used for the rapild
separation of stages. However the moment of axlal gas-dynamlc force
ereates the conditions for the acute turning (tumbling) of the separ-

ating part and of its collision with the engines of the subsequent
stage,

With a glven rocket design the magnitudes of the gas~dynamlc
forces and the lines of their action (X, Yr, X2 €1, €2)are deter-

mined by the relative position of the separating parts of the rocket,

"i.e., by the parameters Xoq=Xs—-Xi, Joru=Yzr =41 and Qopu=0¢—0. It

is very difficult to determine these dependences by calculation, Usu-

ally they are determined by experiments or they are obtained by analogy
with existing rockets.

The equations of motion of rocket parts after the breaking of con-

nections in hot separation for the case examined by us (see Figs. 3.5
and 3.7) take the form:

For the Separating Part
ml:‘.'t"""(pn =X =X =V YY) ¥ —G,sin by
MG (Pr= Xy = X O b (V o+ Yk Vo) =y cost | 34
LBy Myt My, + X ey |- Y et (Xy = Xae, )i
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For the Subsequent Stage

MoXy=(Py— X+ Xp)=(Vo+Ya . yd) 8 — Gj: sin 83
Mo ==(Py—= Xy X ) bh (V- Y g+ Y ) — Gecos b (3.4p) '
. | T Sam= Myat Myz,+ Maz,— X o8
| | Bpa=8p2(Bs 42). J

It is assumed here that the controlling moment of the subsequent
stage Myz, is the moment of force sz, created by the deflection of
the gas Jets of the main englnes, for example, by the blowing of gen-
erator gas into the supersonic part of the engine nozzle. Thls force
and moment depend on the angle 0, of deflection of a certain control
element. The last equation of system (3.4b) is the equation of the
corregponding channel of the control system of the subsequent stage.
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o When selecting the basic parameters of a hot separation system, i

. besldes evaluating the reliability of the separation of the rocket

parts, and also the stability and the controllability of the subsequent

stage, the sequence of the moments of transmission of instructions is

determined, Stage separation begins, when the acceleration of the

subsequent stage exceeds the acceleration of the separating panrt, 1i.e.,

when &g = {9—it >0, From this condition the moment of the trans-

mission of the command for connection breaking is determined., With

the given transitional engine characteristics Pl(t) and Pz(t) the :

beginning of stage separation depends on the selection of the moment f

of the starting of the engine of the subsequent stage with respect to

the moment of the shutdown of the engine of the separating part. A

. too early beginning of stage separation leads to a reduction *a range |
due to the unused thrust impulse of the separating part, and a too :

4 late beglnning can make the starting of the vngine of the subsequent

b stage difficult due to the absence of longitudinal acceleration. Fin-

»f~ ally the time sequence of the moments of transmission of instructions

ﬁ is established on the basis of the results of investigations of the

3 } rellability of separation, of the stability and controllability of

fﬁ: the subsequent stage and of the reduction in range.
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Nose Section Separation

The phase of motion of a rocket from the moment of the transmis-
. sion of the main instruction for the shutdown of the engines of the
subsequent stage of a rocket to the departure of the nose section a
sufficient distance from the rocket body we will call the nose section
of [4 = NS] separation phase.

Separation of the NS can be accomplished:

- by the braking of the body of the separating stage with special
braking elements (solid-propellant rocket engines, retro-nozzles oper-
ating on pressurized gases in the tanks of the separating stage);

TETRY

x - by repelling the NS and the body of the separating part with
thrusters (spring, pneumatic and pyrotechnic);

- by accelerating the NS with special engines., Specifications
ars imposed on separation systems to ensures

- minimum values of perturbations on the velocity of the KNS,
affecting the dispersion of its points of impaet;

- aufficiently small values of angular veleoeity of the N3, causing
M the appearance of large angles of attack upon reentiy into the atiose-
phere;

- reliable separation of the N3.

i

The realization of these specifications ensures small dispersion
of the points of impact of the NS and normal ap»ration of all the sys-
- toms of the NS equipment,

In the dynamic design of a NS separation system the following
problems are usually solved:

‘T | - selection of the operation mode and the method of shutting down
the engine system at the end of the powered-rlight phase;
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- selection of the scheme and means of separation;
= selection of the basic parameters of the separation system;

- selection of the sequence of instructions for the separation
phase; '

- ensuring the reliability of the separation process (the absence
of collisions of the NS with the rocket body).

The energy characteristics of the separation equipment are se-
lected so as to ensure reliable breaking of the various connections
between the N3 and the rocket body taking aftereffect thrust into ac-
count and to impart to the Separating parts of the rocket a specific
relative velocity, excluding the possibility of the overtaking of the
N3 by the rocket body (in the case of the incomplete compensation for
aftereffect impulse), '

_ For reducing the diapersion of the points of impact of the NS due

to variance in the aftereffect [thrust tralloff) impulse two-stage en-
gine shutdown can be employed, After the prelininary instruction for
engine shutdown the feed of propellant is reduced and thrust force is
ascordingly reduced to & certain intermediate value, and only after the
sain instruction is the engine shutdown (Fig. 3.8a). This measure
leads to a noticeable reduction in the aftereffect impulse and there-
fore, %o 3 reduction in the magnitude of its variance and also to a
reduction in the effect of the time errors ip carrying out the main
iastruction. -

_ ‘Besides two-stage engine shutdown, other measures for reducing t
the variance in aftereffect impulse are ewmployed. For instance, Vernier
chgines are mounted on a rocket, i.,e., engines with small thrust which
create couparatively small ascelerations of the order of 0,5g [12].

A3 such engines, evidently, it 1s possible to use the controlling
engines,
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Fig. 3.8. Possible schemes of nose section separation: a)
throttling of the rocket engine and separation of the NS
by a thruster: 1 - preliminary instruction; 2 - main in-
struction; 3 - breaking of the connections between the NS
and the rocket body and repelling of the NS by the thruster;
b) using engines with low thrust for reducing the after-
effect impulse and braking the rocket body with solid-
propellant rocket engines: 1 - preliminary instruction

for shutting down the engine system (cutting off the main
engine); 2 - main instruction for shutting down the engine
gystem (cutting off the controlling engline, breaking the
connectlions between the NS and the rocket body, starting
the retro-solid-propellant rocket engines).

To eliminate the effect of aftereffect impulse on the separation
of the NS from the rocket body it 1s expedient simultaneously with the
carrying out of the main Instruction to activate the engines braking
the rocket body (see Fig, 3.8b).

For investigating the process of the separation of the NS from the
rocket body the same dynamic scheme in principle is used, as in inves-
tigating the procevs of stage separation by braking (see FPig. 3.6 and
the equations of 3.3). Of course, the actual form of the equations of
motion of the NS and the rocket body depends on the design features of
the separation equipment and the conditions of the problem in question,
By solving more or the less complex equations of motion of the NS and
the rocket body, the reliability of separation is evaluated and the E
perturbations of the velocity and angluar velocity of rotation acquires '
after the termination of the separation process as a result of the ef- -
feot of various perturbations, are determined,

For a NS with & disoriented reentry into the atmosphere the initial
angular veloolty has as significant effect on the angle attack of NS
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upon its reentry into the atmosphere and thus, on maximum transverse .o
accelerations., Thus in designing a separation system for such NS con-
siderable attention is given to limliting those components of the angular :
veloclty of the NS along the body axes which leéad to the appearance of
large angles of attacks of the NS during reentry into the atmosphere. :
The initial angular velocity of a NS also e:fects‘the possibility of *
NS detection and selection by the antimissile*systep of the enemy.

i i

For a NS with oriented reentry into the'atmésphere the 1n1tiql

angular velocity determines the weight of the working medium,,necéssary |
for damping the angular veloclty of the'NS, and thus decreases to a |
greater or lesser extent the maximum firing range.

; : L

When using the rotation of a NS around the longitudinallaxia for
orientating the NS in space the angular velocities of pitch and yaw
reduce orientation accuracy. \ | ' . ‘

The angular velocity which is received by a NS after separation
from a rocket body, is due, in the first place, to the errors in the
angular stabilization of the rocket (with respect to angular velocit&)
in the moment of the beginning 9f separation gnd, in the second place,
to the perturbations acting on fhe NS during separation. ' _

The composition of the perturbing factors is ascertained taking .
the actual structural layouts of the NS and the separation system into
acecount, As an example of possible pertuprbing ractors it 4s posaible : !
to indicate the variance in the forces of the separation mechanisnms,
eccentric application of the foroce of a thruster relative to the cen- : 1
ter of mass of the NS, the thruat differential in the separation o¢ne-
gines, the variance in the explosive bolt impulses, che'asymmatry*or i '
the plug-type connector setup, ete,

g For an approximate evaluaticn of angular velocities iﬁstead of . 1
solving the equations of motlon of the NS in the separation phase 1c
15 possible to use the formula
. ' .
i ® '
1 (3.5)
"“""375 My(0)dt, ‘ !

A
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whére.m1 and J,:- angular velocity and the ;pertial moment of the NS
relative to the i-thiaxis; My - the perturbing moment relative to
tpe'i-th axis dqé to the J<4th perturbing factor.

} .

: The obtained statistical characteristics of the components of the
angular .velogity df the NS along bo&y aXes Wy, ”yl’ w,y are used for
determining the angles of attack during disoriented reentry of the NS
into the atmosphere, and also for evaluating the consumption of the

worﬁing medium for damping the angular veloclity of NS with oriented
reentry into the atmosphere.

143

i S e e,

T AR S

ks oo




CHAPTER 1V
THE BALLISTICS OF AN UNGUIDED NOSE SECTION

The flight path of a nose section [4 = NS] from the moment of
its separation from the body of tne last stage until 1ts impact onto
the surface of the earth can be arbitrarily divided into two phases:
nonatmospheric and atmospheric. The height of the arbitrary limiv
of the atmosphere depends on the problem being solved, the charac-
teristics of the NS, the flight range, etc. In the nonatmospheric
flight phase the NS moves practically only under the effect of
gravity. In the atmospheric phase, besides gravity, aerodynamic
forces are also acting on the HNS.

The ballistics of NS has been called upon to solve the following
basic problems:

1) determining the loads acting on a NS in the atmosphere, which
is necessary for calculatirg the strength of a NS;

2) determining the dispersion of the impact points of a KS due
to perturbations in the atmospherilc phase;

3) determining the parameters of “w2 motion of a NS at character-
istic points in the trajectory for the provlem being solved.

The loads on a NS, the parameters of its motion and the dispersion
of the impact points mainly depend on the conditions of the reentry
of the center of mass of the N3 inte thea atmosphere (the velocity and
the angle of inclination of the velsclty wector 4G the iccal nortcon?,

144




s

Best Available Copy

the magauitude of the maximum angle of attack at this moment, the
characteristics of the NS (aerciynamic, weizht, geometric and
centering {c.g]), the atmospheric parameters and the random variances
in the enumerated parameters and characteristics. The investigation
of these depondenzes makes 1t possible to formulate specifications for
the 2onditions of reentry into the atmosphere and for the chazracter-
istics of a1 NS when developing rockets.

The mathematlcal models of motion and the fundamental elements
or these macels used In NS ballistics taking the flight conditton:
and the characteristics of the problems being solved into account
constitute the main content of this éhapter. Common to 211l the models
of NS motlcn being examined 1s the simplifying assumptiecsi, that a

NS is an aerodynamizally axisymmetric body, the eilipsoid of inertis
o whizh iz an ellipscid of revolution.

4.1. THE MOTION OF A NOSE SECTION IN THE NON-ATMOSPRERIC
PHASE OF ITS TRAJECTORY 2

The accepted division of the flight path of a NS intogﬁ
sections ic arbitrary because in actuality aerodynamic for,
acting i the non-atmospheric phase. However in thismp
magnitude is negligibly small in compariscn with gr i

isregarded are the gravitatlonal moments, :ne‘at?
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LT At
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the celestial bhodies, light pressure, electroy
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red separately.

the moticn of the center &f mags
renter of mass are iavescig
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tvoi yotem nnd the calculatlonal accuraczy of the NS trajectory.
Thas pinpeint accuraey in caleulating the trajectory cf a NS foi¢ de-
termining the 2iming date is absolutely necessary. 3uch accuraey is
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satisfied by the system of equations of (2.97), (2.38), (2.100),
(2.108) which for the motion of the center of mass of a NS, if angle ¥
is reckoned clockwise, takes the form:

V= —g,sin@— g.(cos ¢, cos ¥ cos B }-sing, sin B);
8= —%cos@—-%‘-(—lcos?ncos‘l’ sin@® 4
4 sin g, cos 6)-{-—‘{—’- c0s 8 + 20, cos @, sin 7,

. £, COSpuSin® vy ‘
o ~~tgo sin¥ cos §— (4.1)
v cos 6 + ; o

— 203 (v05, cos ¥ 1g @ —singy);

4
¢, ==— cos ¥ cos 8;

’
V_ sinWcos 0 .
r €08 9 )

’ .-‘-T-‘VSiﬂe.

b=

The accuracy of the calculations of the trajectory of a NS by
these equations 1s determined only by the accuracy, with which the
components forces of gravity 8y and g, are known.

Another problem of ballistics is determining the parameters of
the motion of the center of mass of a NS during 1ts reentry into the
atmosphere. In solving thls problem the non-centrality of the
terrestrial gravitational fleld and the non-sphericity of the
terrestrial surface can be disregarded., Thus, 1t 1is convenlent in-
stecad of integrating the eguations of (4.1) to make use of the known
results of elliptical theory being used for the absolute motlion of a
NS (i.e., motion relative to a certain inertial coordinate system),
and then to go to motion relative to the earth, having calculated the
mtatlion of the earth by introducing appropriate corrections into the
values of veloelity V, slope angle cof traJectory ©, azimuth ¥ and
longitude A, For this let us examine the motion of a NS relative to
an ‘absolute" coordinute system Osxayaza, not partlcipating in the
diurnal rotation of the earth. Let us place the origin of the



coordinates O3 at the center of the earth; let us direct axis 03xa
alorg the axis of rotation of the earth toward the north pole; let

. us place axis Ogya in the meridianal plane, bassing through the

launch point at the moment of launch. We will consider the terrestrial
gravitational field central.

Let us designate the parameters of motion
' relative to the absolute coordinate system by V

a® Ga, Wa, Aa’ Then i
the system of equations of (4.1) takes the form.
Ve=—gsin89,; ,
0,= --E,——cos 9,«{--‘-:-!— cos 0,
a
j —Ye tgo sin', cosO,;
2 = £ Pu SIN X 4 COS Oys
. (4.2)

é,,:—Yr-‘- cos ¥, cos 6,;

*

3=V, sin T, cos 8,
er cosgy

r= V,sin8,,

ATt s LN R34 0 OSPALE ) LA €73 Rk

]

where it is possible to take: g = 9.81 (R/r)2 m/s2 - acceleration
due to gravity; R = 6 371 21C m — the mean radius of the earth.

Using Fig. 4.1, let us determine the connections between the
parameters of absolute (Va Oa Wa) and relative (V, 0, ¥) motion.
The horizontal component of veloclty V cos O 1s geometrically added
to linear velocity wyr cos ¢q due to the rotation of the earth. Thus,

the modulus of the horizontal component of the absolute velocity of ?
;;' the center of mass of a NS 1s equal to

A B WS ST et Sy Lo Tt et bt Ll

Varop=1 (V c0s 8 cos T -(V cos 8 sin ¥ +w,r cOs ¢, P,

i

< s
SRRV DIVE
e

_*;’—"’."‘f‘ "";f’—“f,s:.'rﬁ e

Since the vertical component of velocity V ain © does not change

due to the rotaticn of the earth, the absolute velocity of the center
é of mass ils equal to

o

Sy
R

V=V (Vsin 0 (V (0s 8 Sos VT (1 Cos 0 s W F agr cos 308, (4.3)

i
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The angle of slope of vector V; to the local horizon is equal to

g Vsin® .
. 8, =arcsin v, b

Angle WE in an absolute coordinate system 1s determined from

equations:
50 cos’ o
cos¥,=— *m—:y cosOcos¥ = %
V (Vcos0cos¥)2 4 (V cos Osin ¥ - wgr c0s 9y)2
. y 4,
sin W, = V080 sin¥ 4 w3r cos ¢y . (4.5)

V (V cos 0 cos ¥)2 + (V cos O sin ¥ -+ wgr c0s 9g)?

Fig. 4.1. PFor determining
the parameters of absolute
motion of the center of
mass of a nose section.

Since because of the rotation of the earth the polnt of inter-
section of radius-vector r with the surface of the earth 1s displaced

along the psarallel, ‘
Pu.0 == Pye : - (4.6)

Let us determine the longltude of the center of mass of a NS in
an absolute coordinate system by formula

Ay =g (£=£). Ty

If in the first two equations of system (4,2) we replace co-
ordinates V_ and ©, with the e%id of kinematic relationships:
r=V,sin@,;
ry=V,cos8,,
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where k — the angle included between radius-~vector r and radius-

vector r. at the beginning of the unpowered-flight phase, then after

scme transformations we will obtain certain equations of the
elliptical theory:

r—ry}=—gi

d o 2yv—
dat (r?7)=0. (4.8)

As a result of integrating the equations of (4.8) we obtain the
equation of the flight path in the form of an equation of a conical
section _
P
r=
l—ecos(x.f-'x_) '

(4.9)

where Ky = the angle corresponding to the peak of the trajectory;

p=:recos?®) — a parameter of the cross section
e=Y1 -(2—;): cos?é', — the eccentricity of the cross section:

For a NS e < 1, 1i.e., the trajectory of a N3 is elliptical.

Knowing the parameters of the motion of the center of mass of

a NS relative to the earth at the beglnning of the unpowered-flight
phase ‘

tl' Vuv" Gm \Flu ruo ? l
e }]
"o (4.10)
let us now determine the parameters of motion of the center of mass
of a NS at the moment of reentry into the atmosphere, 1.e., at the

height of the avrbltrary limit of the atmosphere hO.

From the fermulas of (4.3), (4.4), (4.5) and (4.7) let us find
the parameters of the absolute motion of the center of mass of a NS

at the beginning of the unpowered-flight phase: V

Aa.u‘

a.n? @a.H’ VB.H’
Then usling the formulas of the elliptical theory let us
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determine the parameters of motion of a NS at altitude ho =rg- R:

V.o=|/V3...+2fM(-‘—— ! ); (4.11)

o I'n
9.0-_—. — arccos (M) : (4.12)
Vaore '

Yo=2arctg{{e,r,tg 8, +V(eso 126, )2+ (4.13)
+[2r0(1 +tg2 ea-n)—(ru"}'ro) 8“] ("u"“"o) su} : {2"()(l _ng el-u)‘-_
'—(l‘"—l—fo)eu}]; . A

to—t,,= 'y ty CO8 ea.u {tg e..n___

Va.u- 2—1y
~1g8,y— S [arc‘sinl .
08,0V (2—tu)ta e
+arcsinl:'"] v 3 } (4,14)
1—e?

After this from spherical triangle ABC (Fig. 4.2) let us obtain
the spherical coordinates of a NS in absolute motion at the moment of
reentry into the atmosphere,

Pup==arcsin(sine, , o8 xoH-cos ¢, siny,cos ¥, ). (4.15)

Longltude Ao varying within the limits of from 0° to 360°, is

determined by formulas:
sinyosinWy n
S e '

€03 9x0

€08 Y0 — 8in o, xsin Fuo_
€OS iy, n COS Po )

sin ("ao“" l.u):
(4.16)

‘ Cos (MO == Aa. I)=

Azimuth ‘l’ao which also varies within the limits of from 0° to
360° 1s determined by formulas:

sin (180 — ¥, ) = S8 9uunsin Vo ,
0 €08 $u9 '
cos((80 =W o)=sin ¥, , sin (\g—2,.) X (4.17)

X 8ln g, —cos wo.u cos ("00 - lml)-
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Fig. 4.2. For determining
the coordinates (during
absolute motion) of the
center of mass of a nose
sectlon at the moment of
reentry into the atmosphere.

Finally, using formulas, anslogous to the formulas of (4.3),
(4.4), (4.5), and (4.7), let us determine the parameters V., ©., ¥

0 "0 0
of the motion of the center of mass of a NS relative to the rotating
earth: )

Vo=V (Vs 8y COS T ygR (V49 €08 Byg sin ¥ g (4.18)
¥ —ugr 208 9402 (V g9 810 Byl
hg=Ryg= 03 (fy=="1,); (4.19)
) V.o Slll e.o
eo“-“ﬂl’CSlu-——-—v-;‘—-— . . (4.20)
Angle ¥o is determined by the formulas
V 02
cos Wo"—‘ a) CO8 9,0 cos w{oﬁ :
. V (Vaocas 84908 ¥y0)3 + (V0 cos 8,0 8in Wyg — w3r 08 9yp)? 4 )
2l
L si -— .
sin wo — Vo cos e_.g sin W,o — w3” €08 9o .

- V(V.o €08 8,39 c08 Wy0)3+4 (Vo cos 049 sin Wyg — w3r cos gxg)?

The Motion of a Nose Section Around Its Center of Mass

The motion of a NS around 1ts center of mass during the non=-
atmospheric phase of the trajectory is investigated for the purpose
of determining the parameters of this motion during reentry into the
atmosphere.
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Fig. 4.3. The parameters of motion of a nose section
around 1its center of mass during the non-atmospheric
phase of the trajectory.

In connection with the fact that NS usually have an axlsymmetric
shape, thelr main inertial moments Jyl and le differ insignificantly.
Thus 1In analyzing the motlons of a NS around lts center of mass both
in the non-atmospheric and in the atmospheric¢ phase of the trajectory
it is assumed that the lnertial moments Jyl and le are equal to each
other.

We will obtain the equations of motion of a NS around its center
of mass in the non-atmospheric phase of the trajectory, having set
the moments of force equal to zero and J » le in the dynamic Euler
equations (2,100):

yl

-’.ﬂ‘;‘.ﬂ =0
Ju';m == Vo =20; (§.22)

""‘;ﬂ =Sy J:J‘"n“m ==(,

This case of motion of a rigid boly arcund its vonter of mass,
called regular precession, 1s well studied in classical mechanies (4],
The longitudinal axis of a NS in flight ip the non-atmospheric phase
of the trajectory moves uniformly along the surface of a right
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circular cone (cone of precession) whose axis coincides with the vector
of angular momentum K preserving constant direction in space (Fig. 4.3).
The direction of a vector of angular momentum of a NS, the half-angle
of a cone of precession and the angular velocity of motion of the
longitudinal axis along the surface of a cone of precession (the
angular veloclty of precession) are determined by the initial con-
ditions corresponding to the moment of separation of the NS from a
rocket bedy: by the orientation of the longitudinal axis and the

vector of angular veleclty.

Let us introduce the following designations (see Fig. 4.3):

Ky = the angle included betweegyn the vecters of angular momentum
K and of velocity V;

the half-angle of a cone of precession}

the angle included vetween the planes of angles 3 and Kaj
:§ - the angle included bLetween the planes of angles %10 and Kb

Ky - the angle included between the plane of angle K, and the
plane of firing, ' '

the modulug of angular momentum 12 determined by the values of
the projections =f angular velovelty on the axig of a body coordinate
system: '

K=V Sawhnd Lot oh 2

Let us determine the orientation of angular momentum with respect
to plane Oxiyl pﬁcceedsng an thae adaumption that at the moment of
separation of a #3 Irom a rooket this plane i3 parallel o the plane
of firing: '

X ) . M:" . 1
iy, e o ’

am—-

4 2 ’
l; wou t S

\
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The components of angular momentum le and Kaua in the non-
atmospheric phase of the trajectory do not vary and are equal to:
R Kﬂ='~-’,;ﬁ,|';' ..' (4.25)

Kegn=Jn ‘“3l+‘°3l' (4.26)

The parameters of motion of a NS around its center of mass at the :
moment of reentry into the atmosphere (h = ho) we willl determine in
the following sequence.

1. Angles Ky, and K3 (angle BAD) we will obtain from spherical
triangles ABC and ABD:

%y, == BICCOS (COS %, COS @, — sin 2, sin a, 208 %,,); (4.27)
’ H in
in 2y =21 (0n+ 26)Sin 24n
sinxzy
w0 (b4.28)
. _cos(u. + = (0S8 210 COS Xa
COS x3= Slnnsgsinag .
where
2= arccos-K—,’;-‘- =const,

2. Angle K10 at the moment of reentry into the atmosphere we
will obtain from spherical triangle ABD:

x;9==arccos [cos x, cos (a, -+ AB)— | (4.29)

— sinx, sin(a, - AB)cos x,,],
where

A9===9.—-9°+7,o§ (4.30)

Xg ~ the angular flight range of a N.S.

Then
K == K €08 25q. (4.31)

3. Angle r30 we willl obtain proceeding from the fact that the
longitudinal axis of a NS Ox, moves along a cone of precession with

constant angular velocity
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X

2y = .
In _ (4.32)
Then

g ="au 23 (fp—L.), (4.33)

where_to - tH — the flight time of a NS 1n the non-atmospheric phase
of its trajectory, determined by formula (l.14).

Thus, we obtained the values of angles K1g> Ko K3o at altitude
of the reentry into the atmosphere.

Knowing these angles, it 1s possible to determine from spherical
triangle ABC (Fig. 4.4) the initial angle of attack

@y ==AarCCOS (COS %)y COS X, -}-5in 23y SIN %, COS 2g). (4.34)

Fig. 4.4, For determining
the angle of attack of a NS
at the moment of reentry
into the atmosphere.

z,¢

Disregarding angular veloclty K, as compared with K3, we obtain
that angular veloclty ag is equal to

dnryp Sin 2q Sinzap
1&’0’

%= sinag

(4.35)

Thus, by assigning the initial conditions of the motion of the
center of mass: VH, OH, WH, T ¢u 0o AH and the motions around the
center of mass Ays Uy Vs wxi“’ wyl"’ ”zln’ at the moment of the
beginning of the unpowered-phase of the trajectory, it is possible
by the obtained formulas to determine initial conditions aq and o,




for solving the equation of motion of a NS aﬁound.its center of mass
in the atmospheric phase of the trajectory. |

H i
i

As the calculations by formula (4.34) show, the ahgle of éttack ‘ '

of a NS upon reentry into the atmosphere in the general case can )
take any values depending on the relationship between the components ! |
of angular velocity of a NS at the moment of its separation from the T

last stage of a rocket. !

1

4.2. THE MOTION OF A NOSE SECTION IN THE ATMOSPHERIC
PHASE OF THE TRAJECTORY

General Characteristics of the Motion ‘of a NS in the . : ;
Atmosphere '

!

The atmospheric phase of the trajéctofy begins at the arbitrary
limit of the atmosphere, whose altitude depends upon th? prob}eq
being solved, the characteristics of the NS, the flight range, ete.
Thus, for instance, the beginning of the noticeable effect of ?he ; "
atmosphere on the parameters of motion of a NS during long-range
firing corresponds to heights of about 80-100 km. In connection with

this an altitude, equal to 80 km [10], [26], 1s usually taken as: the '
arbitrary boundary. :

Initially as a result of the effect of comparatively smali (in
magnitude) aerodynamic moments the precessional motion is disturbed
and the statically stable NS begins to carry out thrée-dimensional
oscillations around its center of mass. As a result of the rather
rapid increase in the restoring and damping aerodynamic momernits thé am=-:
plitude of the oscillations not.iceably decreases aith the decrease
in altitude. Tt 15 condlw icrally possible to consider that with an : *
amplitude of the oscillations of the angle of attack, smaller than ' !
1°-2°, a NS i5 stapilized, i.e., its axis is oriented along the
velocity vector of rlight to within 1°-2°. The altitude of the be-
ginning cf the stabliized flight of a NS depends upon its character- '
istics a2nd the condition: of itc reentry into the atmosphere and can
be found within various limite. , ' '

o
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The conditions of motion of the center of mass of a NS in the

atmosphere substantially differ from the conditions of the motion of

a rocket in the powered-flight phase. Thus,-1n the dense layers of the

atmosphere the dynamic head and the longitudinal acting on a NS differ
by tens of times, the trinsverse acceleration — by hundreds of times.

The flight of a NS is also characterized by considerable heating of
its surface. :

For calculating the strength ¢f a NS it 1s necessary to know the
maximum loads acting on a NS in flight. The basic data for determining

_thése loads are the peak values of accelerations (axlal and transverse),

the amplitude of the angle of, attack and the dynamlc pressure. These
characteristicls with assigned design parameters of a NS are determined
by the conditions of the reentry of the center of mass of a NS into
the dense‘layeré of the atmosphere, and the latter — by the shape of
the fﬁight path of the rocket in the powered-flight phase, by the
limits of the firing range and by the geophysical conditions of rocket

1

launch., , ! ;

With a decrease in‘the ahgle of attack énd in the velocity of

reentry of tHe center of mass into the atmosphere the longitudinal
‘and transverse loads acting on the NS decrease. For the purpose of

limitdng the loeds acting on a NS speclal measures are taken in de-
signing a NS for reducing the maximum angles of attack of a NS at the
moment of reentry into the atmosphere. The problem of ballistiecs,
apart from préparing data'for calculating strength, consists in
evaluatiné the efflect df the components <f the angular velocity of a
NS at the moment of separation firom a rocket on the magnitude of the
angle of attaok upon reentry into the atmcsphere and in preparing

réecommendations for eliminating adverse combinations of these

components.
i

In accordance with the indioated provlems of the bhallisties of
a NS methods of calcu]ating the trajeutories c¢f NS in the atmosphere,
determining the limiting flight modeus employed in evaluating the

strength of a NS, and calculating the deflection of a NS in the
;atmospheric phase ‘are examined below.
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Initial Equations of Motion ar¥ Their Simplification

During the moticn ~f o §y 1o the atmospheric phace cf the ira-

jectory the flight range a.ic suratlon are comparatively small, in

connection with which the 2arin 2an Ye examinad as a noen-rotating

sphere with a central gravivat!lsnal fleld.

Due to the heauln,: of tn» ourface of o N3 daurding fiight in the
atmosphere ablatlon of the

of air takes place,

ieatanield scverirs by the oacoming fiuw
45 3 resull of which tne mass, shape and dlimen-
sions of the N5 and thur, the inertial moments, the position of the
center of mass and the aercdynamic characteristics of the NS vary
during the course of flight. In investigating the motion of a NS
et us consider that the reactive forces and moments due to the
ablation of the heatshield coating are negligibly small.

The equations of motion of (2.97), (2.98), (2.92) with respect
to the motion of the center c¢f mass of a NS in the atriosphere, taking

into account the above accepted assumptions, are converted to the
form:

V=....."_*_‘l§._.gsin9: . 1
m
; S g |4
A =242 sinp— =2 cos 0 +— cos 0;
mV s |4 cos 8+ r
R cuqS \ 4 .
Yoz — 2 —cosp— sin ¥ cos 83
mV cos ® p+—rtg%,
5, =~ c0s ¥ cos O (4.36)
r
,____i_’__ sinWcos® | )
Tr €0S P ’
h=V sin 8;

L=¢,Rcos$4IR sinjcos e,
2== —p, R sin§-4-AR cOs § COS ¢y

where L — the distance covered by the NS on the are of the great
eirele in the planc of riring; ¥ — the azimuth of the velocity vector
of the N&, rockoned 2lockalre; ¢ = the azimuth of firing; 2z - the



~ '\ - .. 13 '
geflectlion of the center of mase of “he MO frum the plane of firing.

tne rotary motlicon »f an object around its center

{2,108} for the ¢ase of the flight of a NS in the
armosphere take the form:

The equations of
of mase (CLI000 ang

L . ose .
Jn‘”:t"‘“"lth't*“‘ui'

-

I a1 U:; - d )0y, = Mo Mays
' -’n..sl —(/xy ‘J:l)“:l"ﬂ: o1+ Mas,i

A==, COS Vemto,, SINv—=0, COSp -2, sinp;

=ty :‘::: —2,42,ctgasinp— (4.37)

; ¥ —Q, ctgacospy;

V=00, =0, ctg asinv—o,, cigacos v—

s
—Q” Sinu +9 cos u

N } 4
sinag | sina

where M_,, Myl’ M,, — the moments of the aerodynamic forces (see the

formulas of (2.101); M M M -~ the aerodynamic damping

AX,’ TAYy? Az,
moments determined by the formulas of (1.23).

, In solving the basic problems of the balliistics of unruided NS
it is usually sufficient to examine the particular case of the motion
of a N3 in the atmospheric phase of the trajectory, when the longi-
tudinal and transverse axes of the NS Ox1 and Ozl are moving in the
plane of firing.

. The equations of such motion, which 1s customarily called

é longitudinal, can be obtained from the equations of (4.36) and (4.37),
if the considerations presented in Sect. 2.4 are taken into account,
and, in particular, if it Is assumed that u = 90° and v = 0°. Then
thé parameters of motion of a NS in the planc of firing can be
determined by golving the followirg nonlinear system of equations:
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V:-. €x¢S --gstnO;
n

} 6995 2 ..Y...c056°
9_-,'mV .VCOSe+r‘ 4

h==Vsin® = (4.38)
, ,1-'===R_-‘-:--cos9; |
= edS | 4 oa.
==y = ~-.cosO
a “ij wV 4“, ' H
gy == £gS e — x4) magSt

I 21 ° J“

It should be noted that during motion in the atmosphere the
trajectory of the center of mass of a NS due to the effect of 1ift
is periodically deflected from a certain center line (Fig. 4.5) by
the frequency of the oscillations of the anglerf attack.

Fig. 4.5. The effect of
¢ the 1ift force of a nose
sectlon on the trajectory
of its motion in the
atmospheric phase.

KEY: (1) Trajectory of a
NS; (2) Center line of the
trajectory.

Ereinee tumys N
( 2 ) NEL2AMEDLG \
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Let us examine further possible simplifications of the equations
of motion of a N3 in the atmosphere. Let us reduce the two latter
equations from system (4.38) to one equation relative to the angle of
attack a. In this case let us make the following simplificatlons:

1) disregarding the effect of flight path curvature due to the

force of gravity on the variation in the angle of attack; let us set
in the 5th equation of system (4.38) %cosezo;
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2) the dependence of damping moment on angular velocity we shall
consider to be linear, assuming

¢
sn o =
my,,qSI —m;{h "V

Wyys

3) taking into account that the angle of attack varies many times

. ’ more rapidly than the parameters of the motion of the center of mass _ !
and that coefff'icient_ c-y’with sufficient accuracy can be considered
proportioral to the angle of attack when a < 6-Q°, let us calculate

'_g_.(cqu — €98 da
dt mv)“ mv dt '

4) let us disregard the effect on the angular acceleration of a i
NS of component ;

PR

. {
Y 'yt ; - '
& m,t ¢SP 4408 as compared with ‘-—-—-————-—-‘f‘qs (x: xd).

3 InV mV . : e

B Then we will obtaln a second order equation which describes the i

osclllation of the angle of attack

- v @S2 . S (Xr—xa) _
oyl 1V ‘() l:l )

Ia

(4.39)

. In
where m;,=m;f‘~02~j; — the coeffleient of damping taking into

account the flight path curvature due to the 1i1ft force of the NS,

The system of equations of motion of a NS in the atmospheric
" phase of the trajectory can now be written in the following form:

! V=—M_gs]ne' ] ' :
P ’
s 3=,00(0)4S __ & v .
e o % cos 04 - cos 8; ;
h=V sin8; (4.40)
£==R-‘-:-cos6:
G s, IS8 oo (a) IS K xa)
@y, = v @=—c,(a) ™ 0. |
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The solution of this system of equations requires comparatively
large expenditures of time because the frequency of the oseillations
of the angle of attack of an NS is great (can attain 10 Hz) and
during the numerical 1ntegration of the system of equations of (4.40)

-1t is necessary to select an integration step ten times finer than in

integrating the’equations of motion of a NS with a zero angle of

‘attack. TFor thils reascn the simplification of the system of equations

of (4.40) is used by separating it into the equations of motion of the
center of mass and into the equation of the oscillations of the angle
of attack. 1In this case, in order to take into account the effect of
the oscillations of the angle of attack on the motion of the center
of mass of the NS, the aerodynamic coefficients for angle of attack
“cp averaged for the perlod of osclillations are calculated.

If the oscillations of the angle of attack are considered to be
harmon;c, i.e.

a=A sin of,
)
and the aerodynamic coefficlents equal to: cx=-cxo+ka’; '»'y=cyao

then

ety = | (et EA IR 0 1) dt =

Sty a

_

=Cp+ '%2"“‘0:(7%:)"3

cy(@ep)= -71—,- ¢y sinotdt=0=c,(0),

Cerdny

Thus, Gep==A/V'2 in calculating c, and %p = 0 in calculating
cy. The appropriate system of equations of the motion of the center
of mass takes the simpler form: '
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A _.ii €4(Gep)— g sIn 6
9’=-..3:cos 8+-Y-c056; ,

v r 5 (h.41)
h=V sin8;

L'=-§-V cos 0

and can be solved independently of the equation of the oscillations

o of the angle of attack, if the amplitude of these oscillations is
: given,

Let us now examine one of the methods of the approximate solution

of the equation of the oscillations of the angle of attack (4.39),
;{ ‘ making 1t possible to determine amplitude A and frequency w of the

o osclllations of the NS.

For angles of attack a 5 60° the coefficient of the normal force
of the NS can be with sufficlent accuracy considered as a linear
function of the angle of attack: ﬁhf=C:G~ Then the equatlon of the
oscillations (4.39) is written in the form

DS

‘: . (13 . Sl’ . a qs u u
@ me T2 g e (= k)12 g =0, (4.42)
S A Vig w5y d Ia

4

i Such a linear differential equation of the second order with
'ﬁ variable coefficients has the following approximate solution:

3 . : ‘ t t

g . SB_( 4 .. t

3 = —Lexp|-—=— {'-L mt _dt]sin ‘mdt i,

- 4 w P Ay J VAP J + (4.43)
g 3 ) 0

'Q

i where A, and w, = the initial values of the amplitude of the angle
9 of attack and of the frequency:

4 )

b i g/ —a9S (xr—xd)

. 0= Tn - the frequency of the osclillations of the

By 2 .

i angle of attack; £ — the initial phase; M}, — the coefficient of
g

B
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: A
damp’ng (computed for angle of attack Oc,',z'--";'_z:,-) averaged for the
oscillation period. )

Thus, the amplitude of the angle of attack at moment of time t
is determined by the formula

— !
N ay SE € 9
A0=4, I/Te""( |V m““’m)' o)

Calculating the Transverse Displacement of the Center
of Mass of a Nose Section

Let us examine the equations of motion of a NS taking into
account the displacement of the center of mass relative to the
longitudinal axls. Such a displacement of the center of mass Y.
leads to an increase in the balance angle of attack AaT, whose
magnitude can be determined from the condition of equilibrium of the
moments of axial force Xl and the additional transverse force AYl
(Fig, 4.6):

V1A, (X, = Xg) =X, ys=0.

We wlll hence obtaln

”f cc
AQy == —
G Xy—Xd o} (4,45)
Y 3, y'm
1 .
| X "
» \\ .
74 N S—/ 1 Cay
’! x’: 0 £ ,l’
i
/ -
2, z'-m

Fig. 4,6, For determining the additional
aerodynamic moment acting on a nose section
ag a result of the displacement of 1ts center
of mass relative to the longitudinal axis.
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In order to take into account the effect of the transverse dis-
placement of the center of mass on the motion of the NS, it is
necessary to introduce into the dynamic Euler equations projections of
the additional aerodynamic moment brought about by the indilcated dis-
placement of the center of mass. Beslides thls, in the general case :
the calculation of the turning of the main central axes of inertia ?
due to the transverse displacement of the center of mass can be re- '
quired.

Let the center of mass of a NS have the coordinates Xps Yoo 25
relative to the optimum body axes (see Fig. 4.6). In this case the
projections of the additional aerodynamic moment on the axes of the
body coordinate system willl be equal to:

FOPR—

Mre, =Y 2, — Z_lyré
My, =X23 (b.46)
My, = "'X 1Y

Let us determine the components of aerodynamlc force X Z

’Y’
using the components of total aerodynamlc force R along semi-boéy
axes [see formula (2.92)] and the directi.m 2osincs between the
semi-body and body axes. Then the expressions of the additional
moments relative to the body coordinate axes- Oxlylzl, caused by the
displacement of the center of mass of the NS, take the following

form:

l,

Mre,=0,gS(~2,sin v y.cos v)i
J!ry‘ =c‘qu,:

Mg, = = CedSYz (h.47)

Substituting these moments in the first three equations of
system (4.37), we obtain the equations of motion of a NS taking into
account the transverse displacement of the center of mass of the NS.

In the equation of the two-dimensional oscillation cf a NS (4.39)
due to the displacement of the center of mass an additional term appears

.08
=2V i+l

In
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Taking Wind into Account

Usually wind velocity 1s asslgned a vertical wB and horizontal
wer components ana a horizontal component direction - wind az;muth
ww. The angle reckoned clockwise from the northern direction of the
meridian to the direction from which the wind blows 1s usually called
wind azimuth (Fig. 4.7). The vertical component of wind velocity
directed upward is considered positive, that directed downward -
negative.

Taking the velocity of the center of mass of the NS ¥ as the
absolute velocity, wind velocity W as drift velocity, and the velocity
of the center of mass of the NS relative to the alr taking wind into

account (the so-called "alirspeed") Vﬁ as the relative velocity, we
can write

V=Vg+ W.
vt (4.48)

Fig. 4.7. The wind velocity
vector and 1ts projection
-2 on the axes of a geographical
coordinate systenm.

The direction of velocity V in a terrestrial geographical co-
ordinate system 1s given by two angles: by azimuth ¥ and by the angle
of inclination to the horizon ©. By analogy the direction of air-
speed we will assign the angles Ww and ew (when there is no wind,
angles ?w and ew coincide with angles ¥ and 0).

For determining angles Vw and ew let us project the vectorial

equality (4.48) in the horizontal and vertical plane (Fig. 4.8).
From Fig, 4.8a it 1s evident that
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Vo=V Vit Wop+ 2V, Wopycos(¥mtigh (b9
:j . tg ‘p ’__Vrop sin w + Wrop Sin 4“7 .

é; w ) Vrop (‘OS‘I" +.Wrop QOS'{IW !

. - Ve psin ¥ + W,q. sln byp

sin Wy, =2 — 2, (4.50)
5 L Wrip .

y .
: W Ve

%
2 Vs 5

o W

‘ 0 Yy 00

! [

b)

Fig. 4.8, For determining the angles of
orientation of the airspeed vector relative
to geographical coordinate axes: a)
horizontal plane; b) vertical plane,

where
Viop==V cos 6.

From Fig. 4.8b it follows that:

Ve l-"v?,,.+ Weep+ 2V 10pWrop COS (Y i)+ (V, = W% (4.51)

; . | 8y =arcsin 4-‘-;;—'- ’ (4,52)
¢ where
V.‘——_ V Sm 9.

Let us determine the position of veotor Vw in a wind coordinate
system with the aid of angles £ and n, where § - the angle included
between vectors V and Vw; n = the angle between the plane determined

by vectors V and Vw and by coordinate plane Oxy (Fig. 4.9). From
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spherical triangle ABC we find:

§==arccos |sin By sin © -}-cos By, cos 8'cos (¥ —¥))i
sin (Vy — ¥) cos Oy :

sinf=

Cos V==

sin¢
__8in 8 — sin 6 cos

3

- cosOsiné

(4:53)

(4.54)

Let us determine the angle of attack of a NS taking into account.
the wind effect G (the angle included between the longitudinal axis
of the NS and the airspeed vector Vw), for which let us examine

Fig. 4.10. From spherical triangle ABC we will obtain

where

COS @y ==COS @ COS § -~ sinasintcos g,

= 180°=p—(90°—=1)=90°+N —p,

(4.55)

Knowing the angle of attack oy and veloocity VW’ it 1s possible

to determine the axial and normal aerodynamic¢ forces:

where

Xiw=c:(0p, My) 013'3}
YViw=cy(ap, My)gwS,

2
IH',wal&L; Ve
a

(4.56)

(4.57)

Normal forece Yw i3 directed perpendiocular to axis 0"1 in the
plane of the air angle of attack ay, constituting with the plane of

angle a angle t (1 = 0-180°). Let us determine angle i from spherical

triangle ABC:

sinyemging

COS (==

(1] 14

cos € —cosap cosa

sinagiau

1RR

[}
.

(4.58)
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The components of agrodynam%c force with respect to axes of a

-"Semi-body coordiﬁate system are equal to: i

' 1 . xwlexv; H . ! . !
I
Zy=~Y,pcost,
?0_ ' .
Y A [ .
y Oy' 1 | .
) . Fig. 4.9. The orientation
. - of the airspeed vector
: ' relative to a semi-wind
! '- ) coordinate system,
: v\ * .
C
! ) X '
e 3! i
o
LA

tg,'

, ¢ Plg. 4.10. For determining

section taking wind effeotc
' into account.

Let us determine the projections of the aerodynamic forces
taking wind effect into Account on the axes of a semi-wind'coord;nate
system, using diredtion cosines written in matrix form (2.71):

the angle of attack of a nose

e R A ERE
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X=Xy cosa =Y,y costsina; : ]

Y =Xysinasinp—Y,y sintcosp4 ¥,y costcosasinp;

(4.60)
Z=« X,ysinacosp—Y,y sintsinp—

—Ywcostcosacosy, -

Let us express the projections of the aerodynamic forces taking
wind effect into account on body axes through their components with
respect to semi-body axes. Then we will obtain:

X1=Xg';
Y ==V sintcosve—V;y costsinv; (4.61)
Zy =Yy sintsinve¥y COS L COS Y,

These components of aerodynamic force cause the aerodynamic
moment whose projections on the axes of a body coordinate system
taking expressions {(i.46) into account have the form:

1“}:'-’33}“~21Mﬁ
My =2 X 2ywe Zy (g XV
Moy = XYyt Vy (g =X}

(4.62)

It 1s also nocessary to determine aerodynamic damping moments
taking wind effect into acoouut:

Mg, = 1251 (Myg) -9-"-;-,’;9-'-' :

. (§.63)
Mug=mop (Mg) _!;_‘i"l. .

Substituting the obtained expressions ol aerodynamic forces and
moments (4.60), (4.62) and (4.63) into equations (2.97) and (2.100),
we obtain the dynamic eguations of wmotion of a NS taking wind effect
and the displacement of the center of mass ol the NS into account.

 These equations together with the kinematic irelationships (2.98),

(2.99), and (2.108) mzke up the system of equations of the motion of
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a NS in the atmosphere taking wind effect and the displacement of the
center of mass of the NS relative to the longituding} axis into account.

Prom such a general system in particular cases simpler systems of

equations can be obtained. The assumptlions made in this case, are

determined by the conditions of the actual problem being solved.

Initial Conditions of Motion

For solving differential equations of the three-dimensional of
motion of a NS, for example equations (4.36) and (4.37), it is

necessary to know twelve parameters of the motion of a NS at an

initial moment of time. These initial conditions are taken from the

results of the calculations of the parameters of the motion of a
rocket in the powered-f{iight phase of the trajectory and of the pro-
cess of the separation of' a N3 from the last stage. For a two-
dimensional case of motion of a NS in the atmospheric phase of the
trajectory [the ejuations of (4.38) or (4.40)] the number of the
initial conditions of motion is reduced to aix.

In firing a rocket over various distanves from minlmum to
maximum under various geograpiical launch conditions the parameters
of the motion of the center of mass of the NS at the moment of reentey

into the atmosphere form a certain reglon of the initial condlitlons:
of motien. '

If 1t 1s assumed that the reentry of the NS into the stmosphere
oceurs at a certaln arbitrary altitude g and the inlc¢la) distance
of the atmospherie phase of the trajectory corresponding te this
altitude, i set egual to terd (Lg s 0), then we will obtuin the

reglon of the {nitial conditions vo, 0 of the motion of the center
‘of ®mass of the N3 at altitude hge

Figure 4.11 depicts one of ivhe possitle reglons of the inttlal
conditions of wmotioni of the center of fass of the KIS at altitude of

reentry into the atmosphere. In the given region of initlal con-

,dlbiensjvo. eo 1ine 1-2 corresponds to firing over tinimud range,

1ine 3-8 — over maxismum, line 2-3 corresponds to firing eastwards,
1-4 = to Firing westwards.
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Aanmaig Fig. 4.11. The region of
~INEY -

R the initial conditlons of
@&fo?ﬁ}§§k motion of the center of
AR mass of a nose section upon

. §§§§§§&Q§§§§ reentry into the atmosphere.
.:;;g;;;di;;ii KEY: (1) Deg; (2) m/s.
¢ o :

(2) \, './m

In the case of two-dimenslional osclillations of a NS in the
atmosphere the Initial conditions of the oscillations of the NS are
glven by the two parameters: % and do. Instead of these two
parameters it is possible to assign only one parameter ®gs because for
any pair of initial conditions o{ oscil%§tions aq and &0 # 0 1t 1is
always possible to select such a@p and @g=0, that the amplitude of the
angles of attack of NS will be the same as under the initial con-

- ditions o, and do # 0. Thus in solving practical problems, for

example 1n investigating maximum transverse overloads or maximum de-
viatlions in the parameters of motion or & NS due to oscillations of the
angle of attack, 1t 1s convenlent to give the initlal conditions of

the oscillations in the form aoaaa:) and &;=0,~ so that with all possible
values, of ¢ and do the angles of attack'of a NS do not emerge with

the given probability B beyond the limits of the envelope of the angles
~ of attack obtained when ap==ao and &g = 0.

. For this certain values of aqﬂ are assigned, envelope of angles
‘of attack A(t) 1s determined and the probability of the appearance of
angles of attack, not exceeding value A(t) 1is found. If the obtained
"probabllity is small, a new value of a{o 1s s~lected, smaller than
the brevious one, the indicated probability is agaln determined, etc.

For determining probability B(G{) of the appearance of angles
of attack, not exaeeding the calculated values of A(t), 1t is possiblé
to propose various methods. Let us examine two of these: the method
baved on using the distributive laws of random values g and do at
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the moment of reentry intc the atmosphere (the method of deriving the

regions of the adverse initial conditions of oscillations), and the
method of statistical testing.

The Method of Deriving the Regions of Adverse Initial
Conditions of Oscillations

Let us call the adverse initial conditions of the oscillations
‘those initial conditions of a, and do, in which the angles of attack
emerge at corresponding altitudes beyond the limits of envelope A,
obtained for the accepted initial conditions of @, Gg =0 (when

—-hb) All the remaining combinations of ao and “0 are favorable.

The determination of the probability of the appearance of favorable

initial gg&?itions of oscillations is carried out in the following
sequence:

1) the parameters of the motion of a NS in the atmospheric phase
of the trajectory for the accepted calculated initial conditlons of

oscillations Gb. o-_O q= qb are calculated and dependences A(t),
n(t); v(t) are determined; '

2) from the region of the possible initial conditions of
oscillations at the moment of reentry into the atmosphere at an
altitude of hO a number of values of LY &O is assigned and, in-
tegrating equation (4.39), such values of ay, &, are selected which
lead to oscillations in the angle of attack with amplitude A(t).

Such initial conditions of Gps d are equivalent to the initial
conditions ao and uo_.O

A locus of equivalent initial condlitions of oscillations forms
in the rcgian of the possible values of parameters in ay and &
lines limiting the region of the adverse initial conditlons of the
oscillations. The approximate form of the region -of adverse initial
conditions at altitude h0 is depicted in ®ig. 4.12 (region D of the
adverse initial conditions of oscillations is shaded);
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3) the probability P of the fact that the initial conditions of
g do fall into region (D) of the adverse initial conditions of
cscillations 1s determined:

P={ 7@ ddagtis,

where f(a,, (}6) — the distribution density of the probabilities of
random variables ¢, and &,.

o, 200d 2)

+

orey

-MT

Fig. 4.12. The approximate form of a region
(shaded) of adverse inltial conditions of
oscillations of a nose section upon reentry
into the atmosphere.

KEY: (1) deg/s; (2) deg.

Let us assume that the angle of attack of a N3 at altitude h0
obeys the law of uniform probability density f(ao) = 1/360° (1.e.,
the NS performs two~dimensional motlion and in the course of unpowered
flight makes several revolutions), and the angular velocity — the.
normal distribution law:

(.*o-m&.)'
- ]
. %.
f (00)= ! € « v

SV 2
and random varilables a, and dG are independent, l.e.,

S (0 G)= f (ctg) f ().
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Then the probanility of the appearance of adverse initial
conditions of oscillations is determined by the formula

p=gio—{{e o dugdiy

In calc lations using this formula region D is broken down into
a number of elementary regions Di with width Aao by straight ilnes,
parallel to axis Cio. Then the probability of adverse initial con-
ditions of osclllations of the NS will be equal to:

P=2 P;

- : ,
Agy &0'_""';0 Oou ™y
pi = (D { = — (I) ( L}
2.360 [ \ V2 ): W2 /i

where n —~ the number of elementary reglions Di; ¢ — Laplace's functlon;
do and d — the ordinates of the middles of the upper and lower
boundar*cs of elementary region D1 respectively.

7 With values oy and ao, corresponding to a reglon of favorable
initial conditions, the motion of the NS occurs with angles of attack,
‘not - exceeding calculated A(t). The probability of such motion is
equal to '

B=1-P,

The value of probability B obtalned by tuls method is approximate
because the-actual distributive law of random initial conditions

f(ao, &0) can differ from the accepted one. Furthermore, this method
doeas not make it pousivle to take the random variances of the
chargeteristics of the NS and of the parameters of the atmosphere into
account. For determining a more precise value of probability B it ls
possible to employ other methods, for example the method of statistical
testing.
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The Method of Statistlcal Testing

For determining probabillity B of favorable initilal conditions of
g oscillations of a NS by tae method of statistical testling on digital
E computers N calculations of the parameters of the motion of the NS
¥ are carried out with random combinations of parameters of the NS,
the atmosphere, wind characteristics and other factors determining the
angular motion of the NS. Then the distribution function f(A) of the
amplitude of the angles of attack of the NS at certain altitude h is
constructed and with this distribution function the probability B of
the fact that the calculated value of the amplitude of the angles of
attack A(h) will not be exceeded is determined.

For the purpbse of reducing the expenditures of machine time 1t
1s necessary to use more of the less simplified equations of motilon
of the NS, introducing various assumptions, which practically do not
effect the maximum angles of attack, for example, the assumption that
the motlon of the NS is two-dimensional.

P R AT
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CHAPTER V.

¥ DISPERSION OF NOSE SECTION IMPACT POINTS

5.1. GENERAL ASPECTS

As a result of the effect of various perturbations the actual
trajectory of a rocket and its nose section never colncides with the
optimum and the point of impact of a nose sectlion 1s unavoldably
g‘ deflected from the precalculated aiming point by a certain random
variable, This phenomenon is called dispersion.

In firing against ground-based targets the random deviation of
the point of impact of a nose sectlion from a target is characterized
by two random variables — by the abscissa and by the ordinate of the

point of lmpact on a certain coordinate plane called the plane of
dispersion.

7
e AR i Tl S sl A AL AT s MLl s

¥ Let us define the plane of dispersion as a plane tangent to the
terrestrial ellipsoid drawn through the target. On this plane let us
construct the Cartesian coordinate system OLZ (Fig. 5.1)., On the
figure there are designated: A ~ the launch point; 0 — the target;

* the trajectory AK*O — optimum, corresponding to the calculated time
of separation of the NS t:.

e T e e R R T S e e

NS

e

Leaving the surroundling conditions constant, let us vary the time
of separatlion of the NS; for a certain moment of time tK = t: + AtK
the flight path will be AKO'. The locus of the intersection of the
optimum trajectories which are characterized by different moments of

T A T

171




the separation of a NS, with the plane of dispersion willl occur in

the form of a certain curve 00'. Let us draw 1in the plane of 4
dispersion through point 0 an axis, tangent to curve 00', and let us
orient 1t in the direction of an increase in range; let us designate
this axis OL and we reckon range error AL along it. In connection

with the fact that axis OZ is perpendicular to axis OL, small variation
in time tH gives rise to the deflection of the point of impact of a nose
section from a target along axis 0Z by a magnitude of the second order
of smallness as compared with magnitude AL, 1.e., the derivative of

the lateral coordinate of the point of impact of a NS with respect to
time tH is approximately equal to zero. This characteristic is very
convenlent 1n dispersion calculations.

. Fig. 5.1, Coordinate
system for determining the
dispersion of nose section
impact points: O — the
origin of the coordinates
(the impact point of a
nose section under optimum
conditions, or the target).

The coordinate system CLZ, constructed by the lndicated manner,

"we will call an arbitrary coordinate system,

All the perturbing factors at'fecting the dispersion of nose
sections, can be divided inte two groups. Included in the first
group are perturbing factors acting in the powered-flight phase of
the trajectory, in the second - the perturbing factors acting in the
unpowered-flight phase,

In the powered-flight phase of trajectories, where the motion of
a rocket 1is gulded, the deviations of the sctual values of the
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parameters of motion from the calculated values are due, mainly, to

control system errors. In the unpowered-flight phase, where the
. ' motion of a nose section is unguided, the perturbing factors are the
errors made in the manufacture of the NS, differences in the actual ;
composition of the atmosphere from the rated and variances in the f

initial conditions (upon reentry into the atmosphere) of motion of the |
NS around its center of mass.

‘ - The difference in the conditions of motion of a rocket in the
E ' 'powered-flight phase and of its nose section in the unpowered-flight
phase leads to a different approach in determining firing accuracy
and in developing measures 1lncreasing this accuracy.

- For reducing the dlspersion of nose section impact points brought
about by deviations in actual motion of a rocket from the optimum in
the powered-flight phase of the trajectory, the ideal control system
should completely take into account the deviations 1ln the parameters
of motion of the rocket from the optimum and compensate for these
deviations in such a way as to reduce thelr effect at the end of the
flight of the NS to the target to zero. However, unavoidable errors
in the operation of individual elements of a control system, caused

by manufacturing inaccuracles and by operating conditions, give rise

j to errors in determining the coordinates and the projections of

ZE ' rocket speed. Furthermore, for the purpose the simplifying equipment
4 (for reducing its weight, cost, increasing its reliability, etec.)

' the algorithm for processing data concerning the motion of the rocket
is frequently simplified, which alsc gives rise to certalin inaccuracles
in determining the parameters of motion of a rocket.

T =
W Foloviats o

1k
e

It is natural, that success in solving the problems of a NS

. impacting on a target by an actual control system depends on how

completely the control algorithm takes into account &ll possible
3§ factors arfecting firing acouracy. Incompleteness in taking into
\ account the perturbing factors affecting firing accuracy by the
control system, gives rise to the appearance of so-called "systematic
error." This error arises as a result of the tact that parameters,
not directly connected with the flight range of a NS — the components
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of apparent velocity and apparent path, are controlled by guidance
systems instruments. If a certaln perturbation caused a variation in
trajectory, then deviation in the impact point of the NS appears
despite the fact that the parameters controlled by the guldance system
at the moment of NS separation are exactly equal to the required values,
An example of systematic error is the error caused by the disregarding
the effect of lateral deviations in firing range. For reducing
systematic errors it 1s usually necessary to complicate the control
algorithm and consequently, the control system itself.

As with any automatic device, a control system has a certain
instrumental error, which includes the following components:

measuring equlpment errors — zero drift, transmlssion coefficilent
inaccuracles, gyroscopic drifts, initial orientation errors;

computers error — roundoff errors, approximation errors,
functional unit errors (adders, multipliers, integrators), coordinate
transformer errors.

When a control system 1s made more complex its instrumental
error usually increases. Thus, for a correct approach to selecting
algorithms for controlling the range and the heading of a NS both
instrumental and systematic errors should be taken into account.

5.2. NOSE SECTION DISPERSION, CAUSED BY PERTURBATIONS
IN THE UNPOWERED-FLIGHT PHASE OF THE TRAJECTORY

During the motion of nose sections in the unpowered-flight phase
of the trajectory the main perturbing factors causing deviations of the

. points of impact from the optimum, act in the atmospheric section.

Included in these, in the first place, are the following:
- variances in the atmosphere parametera;
- wind;

- deviations in the characteristics of the NS (weight, geometric,
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centering [ec.g.], aerodynamic and others);

— variances in the initial conditions of the angular motion of
a NS in the atmosphere.

Let us examine the effect of each of the clted perturblng factors.

Of the atmospheric parameters variances in density and alir
temperature have a basic effect on impact point dispersion. A
peculiarity of these perturbing factors is the fact that in various
phases of NS motion in the atmosphere they have, as a rule, different,
sometimes even values opposite 1n sign. For 1lnstance, in winter time
the density of the atmosphere near the surface of the earth is higher
than normal (standard), and at altitudes of more than 6-10 km - below.
Negative deviations in atmospheric density at high altitudes cause
positive deviations in flight range; positive deviations in density
near the surface of the earth — negative deviations in range. The
total deviation in flight range due to variance in atmospheric
denslty depends on the characteristics of the NS and on the actual
values of the atmospheric parameters.

For calculating nose seotion dispersion it 1s possible to give
the deviations in the density and the temperature of the atmosphere,
which are random functions of altitude, in the form of a canonical
expansion (see Sect. 1.2).

Wind effect can cause deviations in NS impact points both with
respect to range and direction. Wind velocity and direction are also
the random functions of altitude which for calculating NS dispersion
can also be given in the form of a c¢anonical expansion.

Let us group the deviations in NS characteristies from the
optimum with respect to thelr effect on the deflections of impact

points in the following manner:

- deviations in welight (0), in midsection area (S) and in the
coefficient of aerodynamio drag (°x) from the caleulated values
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(variance in the so-called ballistic coefficient oy = ch/G); '
—~ transverse displacement of the center. of mass of a NS relative
to the geometric axis of symmetry. ‘ '

Deviations in the other characteristics of a nose section (for
instance, inertial moments, length and others) insignificantly affect
impact point dispersion.

An increase in the ballistic coefficlent o, causes negative
deviations in range, a decrease — positive. Transverse displacement

of the center of mass of a NS ry== |/ y3+zf causes motlon of the

NS with a certain balance angle of attack (4.45), the orientat%on of
the plane of which relative to the plane of firing depends on the angle
" of spin v at a given moment of time.' In connection with the fact that
during the motion of unguided nose sections the value of angle v is
arbitrary, the deviations in the impact point due to transverse
displacement of the center of mass can be both with respect to range
and direction.

For & NS, rotating around the longitudinal axis, the effect of
the transverse displacement of the center of masses on impact point
digspersion is substantially reduced and for a certain value of
angular spin it can be practically reduced to zero. '

During the motion of a NS with angles of atvtack arising du2 to
disorlented reentry into the atmosphere, an increase ococurs in the
aerodynamic drag of the NS, which gives rise to a negative deviation
in range, the value of which depends on the amplitude of oscillations
of the angle of attack; in this case the smallest negative deviation
in range éorresponds to motion with fero angles of attack, the
greatest negative deviation — to motion with a maximum amplitude of
the oscillations of the angle of attack (corresponding to a given .
probability). -

For calculating N3 dispersion due to the factors acting in the ‘
unpowered-Clight phase of the trajectory, 1t 1s possible to carry out
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numerical; inteération (with a digital computer) of the system equations
of the perturbed motion of a NS of the type of IR 36) (4.37),

, 1individually evaluating the effect of every perturbing factor on the

coordinates of the impact point. y !

Assuning that the indicated perturbing factors are independent of
one another, and the deviationsg in the impact points are proportional
to the maghitudes of the perturbations, the maximum values of the
deviations in NS impact points are determined by geometric summing of

, the maximum deviations caused by each perturbing factor:

A.L=VTAL(A9. ATF-[aL W[l (¢ f F ;
+lAL(’r)P+lAL(“o' o
8.Z2=V{aZTWIF-HaZ(r .

(5.1)

13

' Por & stricter and more exact determination of the deviations in
the coordinates of NS impact poihts due to the faetors acting in the
vﬁnppwered-rlxght phase of the trajectory,!it is posaible to use other
statist ieal math&ds._ror e;ample the methad of @tatistical testing.

#

5. 3 IHERTIAL CONTROL OF THE FLIGHT RANGE AND DIRECTION
_OF ﬂOSE SECT!OR

i
For-ulationsof the Problem
) In fnavestigating an inertial system for pguldling a rocket it 13
advantageous to examine it relative to an inertial coordinate aystem.
. In this casé the dependence of the parameters of the motion of a
rocket on the measurable components ob acceleration i3 considerably
simpgitied and the analysis of gnidanée.system errors is facilitated.
§ s - 7
. Let us place the origlin of the 1nert1a1 coordingte system at the
center of the earth, and let us ortent the doordinate axes parallel
to the coyrespond:ng axes of an Initlai launch coopdinate system.
Between the purameters of rocket motion, assigned relative to inrrilal
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and launch coordinate systems, the following relationships occur:
’g‘-":r_ﬁo:
V-= Vc""”axf.

where Fe, T ~ the radius-vectors determining the position of the
center of mass of the rocket relative to the launch point and relative
to the center of the earth, respectively; RO - the radius-vector
determining the position of the launch point relative to the center of
the earth; V, VA - the velocity vectors of the center of mass of the
rocket determined relative to launch and inertial coordinate systems,

respectively; 35 — the angular veloclty vector of the diurnal rotation
of the earth.

Let us define firing range as the distance measured along the arc
of the great circle between the launch point and the intersection of

the descending leg of the flight path of the rocket with the surface
of the terrestrial ellipsoid.

As 15 known, firing range is uniquely determined by the parameters

of rocket motion relative to a launch coordinate uystem at moment ¢
of NS aseparation

L Lfx(t), 9(h). 2(te). Vilds Vo (te). Valta))

or by the parameters of rovket motion relative:to an inertial co-
ordinate system al the wmoment of NS separation and by the duration
t, of the rocket Plight up to this moment

L=l [E (AN L] &) Cte, Vi (A V% (AN Vi (tq.‘o L} (5.2)

Subsequently to reduce notatlion let us also use the
following designations for the parameters of motlon:

H

. Qu==t, gy=1, ¢y, én'-“’-‘-*vl- 763="v1- 0.3-"—“VC.

If An expression (5.2) 1t 13 assumed that'th& parameters of the

end of the powered-flight phase iare egual to their calculated
(optitum) values:
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g1 (t)=q (t;‘§ ‘
Q)=qi(t) | (5.3)
fu=i:,. |

that we will obtain the calculated firing range

L'=Ligittd. ai(th, 4. (5.4)

In fulfilling the conditions of (5.3) the separation of the NS
can be accomplished at calculated moment of time t:. However, in
actual flight due to the effect on the rocket of the perturbing
factors the paramet:rs of motlon at the cialculated moment of time
t: will diffrer from the caleulated purameters and, thus,

Ligata, Guitl) L1 # L - |

Condition (S.Q} apparently, does not determine the values of
each of the magnitudes qi(:“). éiltu), L5 it only requires, that for
achieving range L* thelr set satisfy relatlienship {5.4}; generally
speaking, there can be an infinite number of guch sets. On the other
rand, for sach actual trajectory of a powered-flight phase because of
the unique conditions only one set (q,(t.), éi{t“). t,} corresponds to
‘caleulated range L*. These conslderations indieate one of the methods
- of controlling firing range: 1t 13 netessary te stop the powered- _ !
f11ght phase of the trajectory, more precigsely apeaking, to separate '
the NS, at icment t = ¢, when funetion L[ql(e), Qx“" t] reaches
the desired value of LY, The realization of the fndlcated sethod can
be accomplished with the ald of & ceértaln sgsten of measuring and
computing devices detersining the durrent vilues of q,{(t) and qiit)
‘with subsequent caleulation of function L[qi(t), él(t), t] and by
continuous comparison of 1tg current value L with assigned LT, At
the zoment of time, when the equality is rulfilled

Ligi(t), ga(?), =L°, (5.5)

instruction 1s suppllied lor the separation of the nose sectlon.
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Let us now formulate a general statement of the problem of
selecting the time for NS separation. This moment should be deter-
mined from the current valués.of the measured parameters of motion
of the center of mass of the rocket.' With a computer of greater or
lesser complexity it is possible to calculate the value of certain
function J from the current parametsrs of motion and to separate the
NS, when this value becomes equal to the required value. Function J,
with the aid of which the moment of NS separation is determined, we
will subsequently call the controlling functional, or simply the
funetional. (In a numeer of works the terms "ballistic function",

or "controlling fun::ion" are also used).

The value «f thé eontrolling functional at a certain moment of
time should be directly connected with the magnitude of the firing
error which would arise, if NS separation occurred at this moment
of time. The control system should emit the signal for NS separation
when the functionali attains the value corresponding to the zero
(practically minimal) value of the aentioned error.

One of the possible controlling functionals is the firing range
itself expressed by the current coordinates of the rocket and the
projectiuns of its veloclty:

=g, g0, 8 (5.6)

Using ﬁhis expression, 1t 1s possible to represent firing error
in the form

AL < Lgi(t)s di(te), td—L¥=dp—Tp". (5.7)

The control equations (5.7, and the firing error (5.7) correspond
to functional (5.6). If we separate the NS at the moment of the
fulfillment of condition (5.5), then, naturally, there will be no
range error due to perturbatlor- in the powered-flight phase.

_ However, the possibilities of plottiﬁg functional (5.6) are
limited, especially, by the Jimlted operating speed of computing
equ’oment. Thus, the functloral is usually used which 1s obtained as
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a result of the expansion of function L[ci(t s di(t ), t, ] into a

Taylor series in the vizinity of the calculated values of its
arguments.

Let qg(t) be the calculated variation in the i-th parameter of
motlon with respect to time and t: be the calculated moment of time

of NS secvaration; qi(t) — the actual variation in the i-th parameter
..and ¢~ the actual moment of NS separation (Fig. 5.2).
. ’ . -

q;
- K |
= ;
Sl
- . o
Agi(t) ‘] \j’\
X ;
g,(t) |§i(ex)ate
qi*(t, t: te
t datete— T

Fig. 5.2. For determining the complete
and isochronal variations in the
parameters of rocket motion.

The difference

AG(E)=q,(t)—~q1 () (5.8)

we will call the total variation in parameter qy .

RS R

Analogously

AG (8=, (t)—q1 (£, (5.88)

With an accuracy of terms of the second order of smallness
relative to the total variations we have

ALeslmLe= "‘ AH— Loan -2 AC-I— AVe'I-

(5.9)
+ AV\+ Avﬁ+ gl
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where AtH = tK - t: - the varlation in the moment of time of NS
separatioen.

The partial derivatives in this expression (ballistic co-
efficients) are determined for the calculated values of variables
g*(t:), n*(t:),..., Vg(t:), t: (usually by calculations on a digital
computer.

Analogous to expression (5.9) the deflection AZ of the point of
impact of the NS from the firing plane 1s written

AZ= AE-I- A'H— AC+ AV;+

(5.10)

Taking the expressions for variations (5.8) into account, let

us write the conditlons for the equality to zero of relationship
(5.9) and (5.10) in the form

AL=J;—J;=0 nm J,=Ji; (5.11)

AZ=Jy=J7=0 um Jy=J2, - (5.12)
where

JL-Z o ,()+21€.q,(:)+._;,

=3
: (5.13)
L » o
JL-Z = ,(.,)+Z -9Lq;(t.)+ t
p
3 ]

Jy == ¢ )

z E"" q,(>+ m 25
(5.14)

s s
Jz== Q£+ qi(fx)
Il 3 J=1 a‘”
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Functional JL we will call the funetional flight range control,

and JZ — the funetional of flight heading control. Values Ji and J%

we will call the adjustment values of the corresponding funtionals.

. If the difference in the actual motion of a rocket from the
calculated motion is small, i.e., the variations in (5.8) are small,
then upon separation of the NS at a moment of time which 1is the root
of the equation (5.11), the deflection of the NS from the target with
respect to range due to perturbations in the powered-flight phase will

. be a magnitude of the second order of smallness.

It 1s possivle to always find such a moment of time of NS
separation, when equality (5.11) is fulfilled; generally speaking it
is not possible to attain the fulfillment of equality (5.12), only
by varying the time of NS separation. 1In order that thils equallity 1is
fulfilled, it 1is necessary at the moment of NS separation to impart

to the rocket a certaln lateral component of veloclty. The required
value of this velocity component can be obtained by supplying the
corresponding signals to the lateral stabllization channel.

For calculating functionals (5.11) and (5.12) during flight it
is necessary to know the components of %he veloclty vector and the
rocket coordinates. The determining of these data in a launch
coordlnate system with the ald of measuring devices set up on the
earth (as is done 1in radio~command guidahce systems), 1s completely
feasible with the required accuracy. However, when using inertial
guldance systems these parameters cannot be directly measured. Thus
when developlng inertial systems it is very important to select a
controlling functional of a rather simple type, ensuring the requlred
accuracy of range and firing direction control.

Let us examine one of the possible ways of simplifying con-
trolling functionals, sultable for any type of the guldance system.

As can be seen from relationship (5.9) and (5.10), the deviation
of the NS impact point with respect to réhge AL depends not only on
-the varlatlions In the parameters of motion of the center of mass of
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a rocket in the firing plane (Af, 4n, AVg, AV ), but also on the
variations in the parameters of the lateral motion of the rocket
(az, AVC). The deviation of the impact point with respect to

direction AZ, in turn, depends not only on the variations in the
parameters of lateral motion (AZ, AVC)’ but also on variations in
AL, An, AVE’ AVn. In spite of this, in rocket control systems with

regulated thrust a system of independent range and firing directipn
control can be used,

Let us examine the order of magnitndes of balllstic derivatives

for the case of the firing of a ballistic missile a distance of about
10 000 km:

3
&VE 5000—60“) S, ae ]'—2’
‘—w—;zISOO—-%OO 85 | Bn—-z2-10:
o .~
5‘_,._,\,10() —~200 s, _ E~0.1-—~0.5.

As can be noted, the range derivatives for the parameters of

lateral motion a%ﬁ-,-sg are substantially less than the corresponding
¢

range derivatives for the projections of veloclties and for the co-

ordinates characterizing the motlon of a rocket in the firing plane.

Analogously derivatives 5%2., 5%2_' .%E.. 9Z  are substantially less
4 oz £ 1

o
than 6V L B ét

Independent control becomes possible due to the rather exact
operation of the systems controlling apparent valocity, and normal

end latersl stabllization of the motion of the rocket center of mass.

In this case the variations in the parameters of motlon of the rocket

center of mass at the moment of NS separation remaln within such 1limits,

which for ensuring assigned firing accuracy there is no need in the
controlling functional to consider the effect of variations Ag, AV

14
on range error, and variations A§, An, Avg, Avn on headling error.
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As a result flight range is determined by NS separation at the moment
of time, when the followlng equality is fulfilled

L= (5.15)

where
oL oL oL \, oL oL .,
| Je=gt 045 Ot Ve Ota- Ve O+ 56
=T (B () V) (5.16)

OL y,00,0y ¢ OL o
—i-'gfr;' Vy (tx)'l-';; te.

In this case the necessary heading of the NS 1s ensured by the
fulfillment at the moment of its separation of the following con-
dition imposed on the lateral component of velocity:

Jo(t)=Jz, (5.17)

where

0z 0z .
‘,Z (tx)":'b'c' c(lx) +§T‘ VC (tg)t
Jz==0. ‘

(5.18)

In the simplest guidance system the heading of a rocket and its
nose section 1s assigned by the prelaunch orientation of the
corresponding measuring elements and 1s maintained with the required
accuracy by the rocket lateral stabllization system (see Sect. 1.8);
the corresponding principles of lateral motion control have the form

Let us now reduce control equation (5.15) to the form which
makes 1t possible to obtain the Information necessary for the
calculations directly from the inertial measuring devices.
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The Equation of Range Control in Apparent Parameters
of Motion

The operating principle of inertialAmeasuring systems 1s based -
cn the measurement of accelerations and the utilization of the inertial
properties of gyroscopes. The direction in space of the axes of a -
 certain inertial coordinate system is fixed with the aild of gyroscopes.
By measuring the projections of rocket acceleration for any directions
in inertial space and integrating the measured values, it 1s possible
to obtain the projections of the veloclty of the rocket and the
components of the path which the rocket has covered and therefore,
the coordinates of the rocket.

As 1s known, inertial accelerometers can measure the projections
of the so-called apparent, but not of the actual acceleration of that
point of the rocket, in which they are located. The apparent
acceleration vector of any point 1s called the vector of the difference
between the acceleration relative to an inertial coordinate system
and the acceleration due to gravity:

éa'i?—f. (5.20)

Standard single-axils accelerometers measure the projection of
the apparent acceleration vector W in the direction of their axis of
gsensitivity X, i.,e., value

ﬁ;=\7x—gh (5.21)

where Qk - the prejection on axis X of the acceleration of the
accelerometer housing relative to an inertial coordinate system;

' g, ~ proJection on the same axis of acceleration due to gravity.

The indicated condition is due to the effect of gravity which on the
basis of Einstein's General Theory of Relativity cannot be distinguished
from inertia. This glves rise to the fact that acceleration due to
gravity 1s recorded by &n accelerometer as the acceleration directed
opposite to the projection of the gravity vector on the axis of
sensitivity of the instrument.
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Besides accelerometers, for inertial guidance purposes integrating
accelerometers are also used. Integrating gyros are broadly employed
in them. The rate of angular precession of 'an integrating gyro w is
proportional to the component of apparent acceleration along the axis
of precession &A' The output signal of the integrating gyro
characterizing the angle of precession

¢ t
9=§u(‘t)dt=K§zbl(1)dr=Km, (5.22)

is proportional to the component of apparent velocity along axis A:

Wx=€!i’x(‘t)d‘t (21 (0)==0). | (5.23)
L

Iterated integration of the integrating gyro output signal ¢,
accompllished even by another instrument, will give the value of the
apparent path with respect to the direction of X:

. |
s;==5 w (t)dx (5 (0)=0" (5.24)

In acvordance with expressions (5.20), (5.21) and (5.24) it is
possible to introduce the concepts of apparent velocity vector and
apparent path vector by representing these vectors in the form:

)

D)= j w()ds=V () - jE(t)dﬂ
(5.25)

s()= Sa(r)dm j V(x)de— S )‘ g(x)dvdt

when 2(0)=0 u s(0)=0.

The coordinates and the components of the velocity of the center
of mass of a rocket can be calculated, if in the equation of motion
of the center of mass determining absolute acceleration:

r=0 =w+g () (5.26)
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where T — the radius-vector of the center of mass of the rocket;

the right side and the initial conditions (the coordinates and the
projections of the velocity of the launch point are known. With the
ald of three accelerometers (or integrating gyros), oriented relative
to the inertial axes and mounted at the center of mass of the rocket,
1t 1s possible to calculate the three components of apparent
acceleration w (or velocity w)., For calculating components of accel-
eration due to gravity dependence g(r) .should be given,

Equation (5.26) can be solved by one of the numerical methods
(by the iterative method, etc.). For automatic computation of function
T(t) it is possible to use the circuit (Fig. 5.3) which 1s called an
automatic compensation circuit. This circuit is rather complex, thus
it 1s advantageous to use a number of simplifications. Thus, for
rockets moving along trajectories, close to optimum, function g(t) can
be calculated first. In this case the autocompensation circuit becomes
open with program input of the correction for acceleration due to
gravity (FPig. 5.4).

w(t) [

+

#t)

glr)

g, 5.3. The closed circuit for
taking gravitational acoeleration
into account.

Y %

“B1y) of 1t 4w
p J )
gl

Fig. 5.4, The open circuit for taking
gravitavional accelerution into account.
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Determining the variations in the actual parameters of motion
Aqi(t) and Aéi(t) with the aid of inertlal measuring systems with the
use of autocompensation circults complicates and lncreases the price
of the control system. At the same time it turns out, that with
rather small deviations in the perturbed motion of a rocket from the
calculated it 1s possible to go over to the apparent parameters of
motion, directly obtained by the inertial measuring system. For this
the concept of tsochronous variations in the parameters of motion of
the rocket is introduced.

Examining dependences qi(t) and qg(t) at any moment of time
t(0 < t < t}), let us define isoohronous variation q,(t) at moment or
time t as

AMi)=q)—g¢). (5.27)

In particular, at moment t“ we have
A (b)=q;(t)— g1 (4. (5.28)

Let us establish the connection between complete and isochronous
variations at arbitrary moment of time ta’ for which let us extra=-
polate dependence qg(t) for a certain moment of time, which somewhat
exceeds value t:. having assumed, for example, that the engine at
moment of time t: was not shut down. In accordance with expression
(5.8) we have

801(t)=:(6)=qi ()= i (L)~ Gi () + i (W) —ai (). (5.29)

Considering At“ to be a small value and disregarding magnitudes
off the second order of smallness, we obtain

a1t~ i (ex) == gp (t2) Al | (5.30)

Thus, from expressions (5.28), (5.29) and (%.30) it follows
(see FPig. 5.2) '

A9:(t)=4,0:(t.)4-: (t:) A, (5.31)
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The total variation in parameter di is expressed by isoéhronqus
variation in a similar manner: : '

A (B = A () + 1 (£2) AL, (5.3,

Let us now transform (taking isochronous variations into account)’
the expression for AL, which corresponds to the simplified control
equation (5.15): L

oL oL |
'55““‘ An+ AVt+ AV.+ = Al (5.33)

Substituting expressions (5.31) and (5.32), we obtain

AL’-’-‘ *’2’!"' NG (i.)+§‘- 8Vy (‘:H'y"‘ ak)+
wom w+[ 7, Vil - T+
ot vl +°‘ VA + Sla

(5.34)

_ Considering dependence (5.21), let us represent expression (5.34) .
in the form ' : ' '

u--aa-,—n,vg(f.w AV V()5 Ak )+ i
| .;_,._ am (z,H. (:.) + W""ﬁ (t.)]Af& .
+ %3’:(‘&)4‘37':3! (‘l)‘f’ V.(fn)"" V\(")'*“‘"'] (5’3'5) C |

The esxpression in the second sguare brackets in dependence (5.35)
1s identically equal to zero &s a range derivative for time of [light
An the unpowvred#ligm phase of the trajectory. Then

blomggt SV G-V s+ Sk )+ a0+ 5.96)
+ W;W(’-)‘Fw;'q(‘s)]“n ' ' “
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Let us examine the 1sopﬁron9us variations of the components of
acceleration:

' aVe=Awet- 00
P AV = Ayt Agdy
! ot '
1 H
The appearance of 1sochr0nous variations in apparent acceleration
Atwe and 8, w 1s -directly connected with the deviation in forces of
nongravitatienal erigin and the mass of the rocket from the calculaced
values; the lsochronous variations’ in acceleration :due to gravity
Atge and Atgn caused by phe fact that the trajectory of perturbed
flight 1s higher (or lower than) the calculated trajectory. For .
.rookets. whose perturbell trajectories are close to the calculated ones,
the isgchronous variations in acceleratiecn due to gravity are small.
In- thls case 1t is possible to take:

. Ath(f)zAcﬂt(‘) |
.y'f —.oo;onro‘t o -‘ (5.37) .
L anO=as.

The assumption made makes 1t possible to write dxpression {5.36)
in the form g !

8

HAL-@‘?'-‘»A'M(A)-!-' om0+ a0 +
4 a0 i

[] - »

(5.36)

Let us henoce elxélnate gnknoﬁﬂ éalué at;, iaking inte account
that in accordance with expressions (5.6), {5.31) and {5.32)

8w (1=, (B)+ 9 (¢2) At merw (1) - wi (£2);
2wy (t)= 8y (1408, (12) ot ~wy (1)~ @ (£2).

Kl

(5.39)

.
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Then instead of expression (5.38) we will obtain

A’-=£f -2t (b)+ 57— e "‘(‘u)-l-—-A,ss )+ -
42 ™ A:sq(f;)—- a(h)-»—--—u, (:,) | (5.40)

The control equation in this case can be represented in the form

W )5 D (4 (5 A (=
= %" w (‘:)‘l-ga'!"- w, (t0) (5.81)
or .
Jemad*(22), (5.42)
where ' '

J(t)~=-;%";mm+° -w)+ o Ga o T CINNCREY
| Al (WP v;(l.)-l- u.(l.). . (5.44)

The control equation 1s now reduced to a form, which makes it
possible to realize it, without resorting to complex caleulations
on boiard the rocket. '

Instrument Executfon of the Range Control Equation

Let us examine the basle syetem of instrusent execution of the
equation of firing vange control &5 1llustrated by equation (5.41).
Tne basis of the system (Fig. 5.9) 1s the gyrostabilized platform
(rin = G38p3; the axes of the inertial coordinate system assigned by
ft are directed alotig the axes of the initial launch system. Two
intégrating gyroscopes (MM « (0] are Bounted on the (SP, whose axes
of sensitivity are directed along the axes Of and Cn. Purthermore,
there is the storage deviee (3Y = 8D), inite which the values
necessiry for the ¢alculations are introduced: baliistic derivatives,
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computed values sg(t) and s:(t) programmed. with respect to time and
the computed values of the controlling funetional. The values, input
into the storage device, depend on the geophysical conditions of
firing.

(/]
] » 5 .
. i ()
~ : . 1‘ :
i} '
» . ;
®, r‘ 'l! '
t (1)
) ' a3
- L LS e
» t ~ A%
3 [ et 19
" :
' ' .
] ]
' ]
) ]
4 ’
1
} '
L2 W T sogowbuvansewel f .-
.’.-- ] b.—unﬂn-uﬂui -
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Lusu‘okﬂn.‘ebuna-an--un‘
*

?;g. 8.5, Diagram of the instrumental executlon
of the control equation.

KEY: (1) Instruction for NS sepuration.
There 13 alzo a vomputer [CPN = CJ, contalning:

~ integrators shich carey cut iterative integration of the IC
readings for the purpose the obtaining the spparent coordinates;

~ subtractors which shape the isochronous variations ataa, ats";
-~ multipliers;

- an adder;

- a comparator, continously carrying out during the time of the
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powéred-flight phase compariscn of the current values of the con-
trolling functional J(t} with its calculated value J¥. At moment,
"~ when the equality J(t) = J¥, is fulfilled, the computer shapes the
instruction for engine shutdown and nose section separation.

Let ﬁs now examine the possible ways of simplifying instrumental
‘execution of the equation of firing range control.

Of practical lmportance is the possibility of reducing the

nimber of antomatic range control elements by the proper selection of
the orlentation of the axes of sensitivity of the accelerometers of
the integrating gyro accelerometers. It turns out, that it is possible
to reduce by half the number of integrating elerents as compared with
the method of setting up the control equation presented above. For
this purpose the axes of sensitivity of the accelerometers (inte-

grating gyro accelerometers) snould have a special orientation -
N parallel to certain directions, constant for the actual case of firing.

.In order to determine these directions to set up the appropriate
functional, let us examine thd pbdjections of apparent velocity
wg, wn as components of a certain vector ﬁ, which 1s characterized by
a modulus l-&;l—-:]/wg-}-'w: and by argument argi=arctgw/wg.-

r——

Let us similarly construct vector Ats with modulus |Ats[ =

— -5 —— Ass
= A,8§+A,s',ft and argument arg A8==arctg '375% .

In a éimilar’maﬁner iE-is also possible to examine ballistic
derivatives as projections of vector K with modulus || =

oL \2 oL \3 oL joV, '

= 5‘{;2‘) +(5V-) _and argument ) =.arcig and of vector

N ' 7190 \3 ; (9L \2 LoV ‘
M with modulus |V = “/(‘5&‘) +(5"'"‘ and argument u =‘arctg%%‘g ..

Using the designations and the known rule for recording the
scalar product of two vectors by tneir projections introduced in this
manner, let us rewrite expression (5.41) in the form '

Aw () +Mas()=2w" (t;). (5.45)
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On the other hand, the scalar product can be represented in the
form

ab=|albs - . f

where ba ~ the projection of vector b in the direction of a.

SVPRNTN

On this basis let us represent control equation (5.45) in the
form

&} s (&) [5] A s, (1) =<[B) 2 (£2)s . (5.46)

'i., where
E i !
b o, ()= (£) cosA{-wy (f) sind; ]
3 AgSs ()= Ase(f) cos pf- A5,y () sinp, (5.47)
:}‘ Control equation.(5.46) can be standardized relative to
E A coefficient |X|, as a result of which it takes the form
E | 0 () pAse () =1 (£3), (5.48)
E ' where - 1

pr.:

|

Bi

,
=
=l =l

Thus,

Aer =t pasnO=s (04 f [y (0=} 01 549

i
¥
‘
|
N
i
*
4
;
{
i
}
:

Jr-a=2; (£3). C (5.50)

E . The examined modification of the controlling functional is
called the A-u~-functional. ff can be shown that the directions,
assigned by angles A and u, are the optimum ballistie\directions in
the followlng sense. The devliatlons in the apparent ;éiocity of a
B rocket along the direction of vector & and the deviations in the
f»{ . apparent path along the direction of vector M maximally affects the

- range errors, and the deviations in apparent veloclty and apparent
h path along the normal to the corresponding direction do not cause
g range errors.
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A block diagram of the insirumental execution of the control
equation using the A-p-functional, is shown in Fig. 5.6. This
diagram is simpler than the previous one (see Fig. 5.5) due to the
elimination of one of the integrators and the reduction in the volume
of the memory. Angles A and y of the setting'of the axés of
sensitivity of integrating relative to axis 0f of the inertial
coordinate system, program ws(t), parameter p and the calculated value
of the centrolling functional w§(t§) are determined by the geophysical
firing conditions.

...................... -
f con :
k! J ]
LR By SN '
' \Korands
b3 -
X Al Tug omae
Yol e - I \newue 19
i i

-

Fig. 5.6. Diagram of the instrumental executilon
of the control equation using the A-u-functional.

KEY: (1) Instruction for NS separation.

5.4. NOSE SECTION IMPACT POINT DISPERSION CAUSED
BY CONTROL SYSTEM ERRORS

The Basic Formulas for Calculating Nose Section
Impact Point Dispersion

N
Let us rewrite exprezsion (5.34), taking into account that the
isochrounous varlations in moments of time tH and t: are equal to
each other to within an accuracy of values of the second order of
smallness:

AL-- AgV e (¢ M) + A:Vu (¢0) + A;E (¢ x) + At"l (¢ %) +

+ [ Vi) 4 W;v; (WER- % (tx) +5Va (t.)+ ke

(5.51)
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It is readily noted that expression

Ve (r.g) + v () + 5 Vil +

.,(x) LA 552

--1s the value at the moment of NS separation of the total firing

rangewderivative with respect to flight time in the powered-flight
phase.

Let us designate the first term in expression (5.51)

Al (tx) =3 A¢VE (tx)‘]‘ A,V () +
(5.53)
Ati(tt) + At"l (tx)

and let us call it the isochronous firing range deviation. This
value AtL(t:) is the deviation in the impact point of the NS in the

.case of flight along a perturbed trajectory upon separation of the
NS at calculated moment of time tz.

Taking into account what has been saild, let us wrlte expression
(5.51) in the form

CAL=AL () L) AL (5.54)

Deviation AtH can be found, by varying the control equation
J(tH) = J*(t:). Then we will obtain

AT (8)=AyJ (te)+J° (t2) AL, =0, (5.55)

..(tg) (fl‘) ; .

AtJ(t:) — the lsochronous variation in the controlling functional.

where

Let us hence find deviation

A:!(t.)
e (5.56)

t‘“
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Using relationships (5.54) and (5.56), 1t 1is possible to represent
range deviation in the form

ALaA,L'(t:.) E t"; A,J (tx) , (5.57)

Repeating the arguments carried out, it 1s possible to obtain an

analogous expression for the deviation in NS lmpact point with respect
to direction

AZ=AZ ()42 (6) abee (5.58)

According to the definition of the arbitrary coordinate system
Z = 0 and for this system we have

AZ=pA,Z, (5.59)

where

_ oz . 4 '
A,Z==-3V; AVe (t:)'i*%"- Af (‘:)3 (5.60)

if we disregard the effect of the varlations in the parameters of
motion 1n the filring plane on the deviations 1n direction Z.

The Effect of Control System Errors on the Dispersion
of the Parameters of Rocket Motion

»

Let us examine the effect of instrumental and systematic errors
of the control system on rocket flight accuracy in the powered-
flight phase of the trajectory.

Let us use the followlng coordinate systems:
~ inertial coordinate system O&ni;

— body coordinate system Oxlylzl, characterizing the actual
directlons of the axes of a rocket in perturbed motion;
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— reference coordinate system Ox3y323, giving the directions of
the body axes of the rocket during flight along the optimum trajectory.
Thé directions of the reference axes relative to the axes of the
inertial system are shown in Fig.'5.7. Axis Oz3 1s directed parallel
. to axis 0g, and axes Ox3 and Oy3 are turned relative to axes 0§ and

On by programmed angle of pltch ¢*. As is evident, the body co-

ordinate system colincides with the reference system during the flight
of the rocket along the optimum trajectory.

Flg. 5.7. Orientation of
the reference ccordinate
system relative to the
inertial system.

Let us find the interrelatlionship between the components of the
apparent acceleration vector determined by the measuring elements of
the longitudinal [PHC = RKS], normal [HC = V8] and lateral

stabilization [BC = L8] systems and the projections of this vector
on the reference coordinate system.

Let the measuring element of the RKS system, for example the
A longitudinal acceleration integrating gyro which we will call the
'§ ) velocity error sensor [APC = VES], be mounted on the rocket in such
% a way that its axis of sensltivity 1s oriented in the direction of
_ﬁ rocket axis Ox,. This instrument measures the projection of the

: apparent acceleration vector on the longitudinal axis of the rocket
&xl and carries out 1ts integration:

, ,
R th"“; th(")d." (5.61)
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Let us assume that the measuring elements of the VS and LS systems
are mounted on a GSP in such a way that during optimum flight the axis
of sensitivity of the VS system measuring element is directed along.
the Oy3 axis, and the axis of sensitivity of the LS system measuring
element -~ along the 0z3. Since the axes of sensitivity of these
elements during the whole time of controlled flight are directed
perpendicular to the 0x3 axis, then the effect on the VS and LS
systems sensing head readings of the longitudinal component of the
apparent acceleration vector ﬁx3 is eliminated in this way and the
deviation of the Ox1 axlis from the reference diﬁection is recorded.

The directions of the reference axes Ox3y323 are materialized on
the rocket by the directions of the axes Oxry‘_zr of the GSP and by the
programmed turning of the base of the ahgle of pltch sensor. 1In

optimum flight the axes of the GSP Oxryrzr are directed parallel to

the corresponding axes O§nZ of the inertizl (initial launch)
coordinate system (Fig. 5.8).

x, Flg. 5.8. Orientation of
. the axes of the gyro-
L stabilized platform Ox_ y._z_

relative to the inertial
(initial launch) coordinate
system O&ny in optimum
flight Oxlylz1 — the body

axes of the rocket at launch.

In actual flight the directions of the GSP axes 0x2y222 in the
general case do not coincide with the directions of the axes of the
inertial coordinate system. The deviation of the Oxe. Oya. 022 axes
from the optimum direction are caused by:

-~ aiming errors {turning around axis Oy2 of the OSP suspension);
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— errors in setting the GSP at the moment of launch, i.e.,
errors in the GSP actuating system (turns around the Ox2 and 022 axes);

L e e kA

-~ gyroscopie drifts during flight.

In perturbed flight the error in the executlion of the direction
of reference axis Ox3 is determined by:

- errors in the getting of the GSP at the moment of launching;

— errors in the assigning of the angle of pitch which are made
up of errors of the program unit and errors in assigning and re-
producing the program;

— GSP drifts around the axis of pitch 0z,. i

The deviatlion in the direction of the axis of sensitivity of the é
VS system measuring element from the direction of the Oy3 axls 1is A
caused by the same errors. §

The deviation in the direction of the axis of sensitivity of the
LS system measuring element from the direction of the 023 axis is
caused by:

- aiming errors;

- errors in the setting of the LS system measuring element i
relative to the aiming prism platform;

- 3SP drifts around the Oxr axls.

{ When errors exist in the orientation of the RKS, V3, and LS
% systems measuring elements errors occur in the measurement of the
{- components of apparent acceleration QKB’ &y3’ “23' For determining
these errors let us examine Fig., 5.9. ©The direction of the axis of

sensitivity of the VS system measuring element is determined by

207




! axis Oyz, and its orientation errors -~ by angles o and B; the

i direction of the axis of sensitivity of the LS system measuring

| element 1s determined by axis 022, and its orientation errors - by
angles y and X.

Fig. 5.9. The orientation
of the Ox2y222 coordinate

system, executed as a
reference system, relative
to the Ox3y323 reference
system.

Table 5.1 gives the direction cosines of the Oxl, Oya, Oz2 axes
relative to the Oxa, Oy3, 023 axes, determined to within an accuracy
of second order smallnesses (such accuracy is entirely sufficient for
practical purposes). From Table 5.1 it follows that projections of
the apparent acceleration vector on the Oxl. 0y2. 022 axes and on the
0x3, Oy3, 0z3 axes are found in the following dependence:

KEf: (1) axes.

_ ! 6,,=@3,+6”Aq—.¢')“’; ‘ (5.62)
i 'bn“ ""ﬂ.’np‘*""u:}'an“? (5.63)
W=+ 0, — Wl T 5,60
%_ Table 5:1.

(1)0¢cn Ox; Oys 02,

:é ' Oys iy - -

E' Oz, ‘ e 4 e 1
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The projections of the apparent acceleration vector Qy3, &23 and
angular deflections Ad, ¥, a, B, v, X in optimum flight are equal to
zero, and in actual flight they arise due to the effect of perturbing
factors., All these values are small control system errors. Thus
products of the type &y3A¢, &sz, Q23u car be disregarded as second
order of smallness values. Then the projections of the apparent
acceleration vector on the reference axes Ox3y3z3 are determined by
the following expressions:

';’:a‘—'"é’n: (5.65)
Wyy="Vya 4 10,5} (5.66)
Wy =103~ W,y Ys (5.67)

Hence we will obtain the deviations of the projections (in

question) of the apparent acceleration vector from their optimum
values:

AWa=AW, (5.68)
Ac'.'p"ﬂc‘i'n“l"naﬁ _ (5.69)
A0, AW W, 3Y. (5.70)

Let us now find the values or' the deflections from the optimun
values of the projections of the apparent acceleration vector on the
axes of an inertial coordinate system. The indicated valuen can ve
easily obtained, using known formulas for transforming from a body
to an inertial coordinate system:

A Wi==A0,,CO8 9" — A, sing"; (5.71)
A@y=Aw,,5ine’} 4,0, cosp"; (5.72)
8/®=40, | (5.73)

and relationshipsa (4.68)-(5.70).
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3 We will finally obtain:

Aﬁi’g=A,&’,;COS?‘-A;&MS!II??—&Js‘nv'i' (5.78)

AL b AT I

A =A@, sIng* - A,W,3COs 9°}- W B cO8R%  (5.75)

) ‘ i [ ] [ ] ) B .

1 A=A, W, Y. '(5.76)
.E { integrating expressions (5.74)-(5.76), we obtain the isochronous
} ‘ variations in the projections of the apparent velocity vector on the
3 axes of an lnertial coordinate system: '

- . t S )

- At"“‘J A0 COS §°dt -5 ApWpsing’ds—

_ . (5.77)
g - J w,d sinp*ds;

; ¢ e :

- Ac"\“J A, sing’ds +£ 4, Wy COsp°de |-

S _ t

» | ' (5.78)
| o A J w,,8 cosy’dy;

""""5 Ai0pdt— 5 ® s, (5.79) - -
Iterative integration will give the isochronous variations in
the apparent path for axes of the inertial coordinate system:

3 ¢ -
m-ig,.‘dq ~ (5.80).
M‘us Agw dv: (5.81)
M"‘I Ajwdr. (5.821
Equations (3. 17)-{5.82) are integrated under zero initial

3 condit tons.
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As:uming that the effect of gnavity on a rocket in perturbed and :

i ' optimum flights is practically identical {such an assumption is 3
: . , permissible because the deviations .in perturbed motion from optimum 2
3 are rather small), it is possible to approximately assume: ’

o . . i - .8
. i ! 1
g' ' ) In equations (5.77)-(5.82) dependences,&x3(t) and ¢*(t) correspond
’} v to flight upder optimum conditions. The remaining parameters
‘ : Atﬁxltt), Atiyz(ﬁ), A‘Qza(t);_a(y)m v{t) are determined by the effect
: : of the perturbations. The methods for determining them for the baslc
) types of control system errors are examjned below.

S R

¥ ' i . .
1. The instrumental eyror of the RKS aystem meter is malnly .
determined by the variance in the transmission sgefficient of the

- - meter and thus s proporcionnl %o the meusured value, 1.¢.,

\'"i . i - .

o L B (f) =adall), |

2 " where n -a dimenaional eéefriaient.

E? . . 2. The error in aotivating the RKS systed meter it tasen into
S aacount in the 1n1tial conditicns, i.e., it 12 assumed that

S B (VL) T

E. £ The error in assigning »he apparent VQlociﬁy progras 1¢ taken ‘ E
3 into account in ah analogous wanhef, ‘
E: 3. The systematic error ln assigning the angle of piteh 49 3
- . ' progra® 13 one of the coisponents of angie 8. Among the other %
2 - constant components of angle 8 are: the angle of pitch program uait §
g erpor, che error in actuatina the B8P arvund the plteh axis, the %
- error. in settina the V8 systea ueaouring elemont. %
1 . Aimxng ercor, the errors in actuating the OSP around the yaw 2
:» " and &pin axes, the efror in setting the LS systes avasuring element 2
3 are, in an analogous wmanner, taken' 1nty account as constant cokpotwnts i;
™ ' of angle v. . ’ g
3 ! ¥
3 1 . ) 211 '§

B ey




|

4. The error in activating the RKS program t.

As can be seen from Pig. 5.10, this error leads to a shift in
curve wxl(t) along the abscissa axis by constant value t. Expanding
wxl(t) n N;l(t-t) into a series by degrees of ¥, we obtain as a first
approrimation 3w ,(t) = -ri;l(t).

*

Flg. 5.10. Tha effect of
the error in activating
the PR3 program on the
longitudinal component of
apparent velocity.

The error in activatins the pitch proeran is taken into account
iﬁ an analogous ﬁahner '

| p(:)_--«é'm,

_ %, ‘The 3§38 drifts due to the effect of eonstaat uonants can te
aéauﬁea propeptional 1o ting:

Pl)=9t
Yf)=d,slng's
20 =y, cony,

where §.. V., QP ~ tespectively the rates of OSP drifts around the

piteh, yaw, and spin axes.

6. OGP drifts tue to the statistical lack of talance of the
gyrosblocks.

212




r o et s bt

It is necessary to n~te the following characteristic of drift of :
the GSP gyroscopes., For gyroscopes mounted for stabilizing a GSP 2
. equipped with stabilizing engines, the perturbing moments with respect :
to the axes of sensitivity of the gyroscopes are compensated for by
stabllizing mcements and do not give rise to drifts. However the
harmful effect of the perturbing moments with respect to the axis of
precession ls preserved and produces drifts of the GSP relative to the
axis of sensitivity.

Let us examine the expression for a corresponding error as
illustrated by a pitch gyro-block installed at angle *re to the Oxr
axis (Fig. %.11). In this csse the component of apparent acceleration
causing drift, is equal to &xl sin {8pg -¢*), and the magnitude of
drift {s determined by the expression

w/!. |
$(f)= " s W, 30 (30— )T,
. “ V :

3 _ vhere ig = th? rate of drift of the GSP around the piteh axis under
3 ~ the effect of aceeleration due to gravity. ‘

o

Fig. 5.11. For deternining
the apift of the U5P )
gyroscopes.

REY: (1) Axis of sensitivisy,

: The G3P drifts arcund the yaw and spin axes are detersined in an
3 analogous manner. '

R i SR R ot 2
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Calculating Dispersion

Examining expression (5.57) as a recording of a certain
realization of the random deviations of the parameters of motion, let -

‘us transform it, having clearly distinguished the systematic errors,

the instrumental errors of the GSP_and the other instrumental errors:
S (5.84)

—-%—-A,,.J?—A.L-FA,L;{‘A,L.' -

Let us write the expression for the actual realigation of random
deviation for the following in an analogous manner:

AZ=A,Z+A,Z+A,.Z. (5.85)

Terms A”L and AHZ in these formulas are due to the instrumental
errors of the instruments shaping the main instruction for NS
separation, and the instruments of the lateral stabllization system.

As follows from expressions (5. 84) and (5.85), the calculation
equations for determining the instrumentai errors have the form:

A"L’“""TA“J‘ (5.86)

0Z 0z
AL = AV e+ — Ans
a SenT g T (5.87)

where A J ~ the instrumental error in calculating controlling
funotional Js Atuvc’ 4,,% — the instrumental errors in determining the
lateral component of veloclity and the lateral coordinate.

Terms A_L and A_Z in formulas (5.84) and (5.85) represent the
deviatlons in the NS impact points due to the instrumental errors of
the GSP: '

A,.L-—-A,,-L-—- Atrvt‘l"ov L 'l+ ,w ABrVC'l'
(5.88)

L oL .
+%E‘Alre+'5;]' Atr‘]"";'&"Alr v
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AZ=p L= Alr ¢ gv ov_ At ﬂ+av AerC'l"

oz az (5.89)
_F :

™ Atre an

Alr‘l'*’ Att

The instrumental errors of the GSP Atrvg"“’ 8¢ are calculated
by formulas (5.77)-(5.82). ‘ '

The first terms in formulas (5.84) and (5.85) ave the_systemaﬁic
errors brought about by the approximate nature (incompleteness) of ;}f§
the controlling functlonal.

Let functional (5.49) be accepted for range contrel. Comparing
it with exact functional (5.6), we detect the following systematic
errors brought about by simplifying the functional.

1. The error due to neglecting terms higher than the first-
order of the expansion of function L into a Taylor series which can
be approximately evaluated using formula

| .
R-'ijl » 04: Aq.Ag;. R

2. The error due to disregarding the isochronous variations in
gravity

[ [
, oL ¢ aL
ALy= 57 \ Agedt - 7-‘ Agndt+
0 ) O

s
(5.91)

.3. The error due to diéregarding the effect of deviations in
the parameters of lateral motion on firing range




oL oL
1,298 Ay, L or
4 dvg ST LT M (5.92)

If the direction of fiight of the NS 1s ensured by fulfilling
conditions (5.17) or (5.19), then the systematic error for firing
dire‘.tion is defined as

AZ, _MA,Vg A,V.. 4 o' A,:+--.m. (5.93)

The'formulas given above can be used for calculating individual
component errors which are then added up. by the rulea for. summing
1ndependent random values, for example,

AIL =“/253L{ .
§ e

"The total dispersion due ta instrumental and systematic errors

. of a control system and the perturbations during the unpowered-

flight phase of atrajectory we find by formulas:

ALl=V ALl a0+ a2 A L% . (5.94)
© 0 AZ= Y ALIHAL A ML ALY, (5,95)

_in which AnL and Anz are detérmined by formulas (5.1).
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. CHAPTER VI

OPTIMUM ROCKET FLIGHT PATH IN THE POWERED-FLIGHT
PHASE

The selection of the contrel programs 1s an integral part of
rocket design and development. This is due to the fact, that the
design, tactical-flight and operational characteristics of a rocket
to a significant degree depend on the flight path determined by the
programs or by the control algorithms.

The composition of rocket flight control programs can be diverse
e and depends on the purpose of the rocket, its deslgn characteristics ;
; and on the control system. For rockets with controlled thrust

ﬁ : the programs of pitch angle and of the projections of apparent veloc~
 '§; ' ity in certain direction can be included in the main control programs.

ke ek st

The selection of the optimum configuration of the flight path
;N of ballistic rockets with zero program values of normal and lateral
gg velocities, angles of yaw and roll reduces to the optimizatlion of

i two control system programs — programs of apparent velocity and pitch
ffk . angle regulation.

. The program of apparent velocity regulation, is equal to
.
g GPyy — €448
. 'w,,(t)mg T,
4 ; my — mt
A ’
1% it is practically completely determined by the baslc design and energy
,@n characteristics of the rocket - by the thrust-welght ratio, by the
fs
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thrust of the engine systems of the stages, by the fuel consumption
per second and to a lesser extent by the configuration of the tra-
jectory. For this reason, and also as a reéult of the rather narrow
limits of thrust level regulation the problem of selecting an optimum
. program of apparent veloclity regulation does not have vital importance.
Thus for a rocket with assigned design parameters the determining of :
control programs reduces to the selecting of an optimum pitch angle v !
- program which is an independent problem in this case. .
A number of works has been dedlicated to the sdlving of the prob- '
lem of ballistic missile pitch angle program., However, in the over- o
- whelming majority of these the selection of a program is examined '
disregarding the actual limitations imposed by the technical specifi-
cations on the control program, the configuration of the trajectory
and flight conditions of the rocket.

‘The purpose of the present chapter is mainly to present the

E englneering approach to the selecting of the optimum configuration

" of the trajectory or, in other words, of the optimum program of pltch
angle variation for long-range rockets with liquid-propellant engines.

k: - 6.1, SPECIFICATIONS IMPOSED ON A PITCH ANGLE
i PROGRAM AND THE METHODS FOR SELECTING IT

Such flight-tactical characterlsties, as maximum firing range,

N nose section dispersion, and also skin temperature, rocket body and

nose section strength, controllability in the powered-flight phase,

W ' etc., depend on the flight path configuration assigned by the pitch
k- angle program. Thus the selectlon of a rocket pitch angle program

] " should be carried out taking into account the specifications imposed

. on the flight path configuration, together with the selection of

4 control element effectiveness, body skin thicknesses, by strength

v calculations, etec. The disregarding of the complex approach to the

b selection of pitch angle program can lead to a substantial reduction

l in the tactical-flight characteristics of a rocket.

One of the basic specifications, imposed on a pitch argle pro-
gram, 1s the ensuring of maximum firing range. A pitch angle f
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program éatisfying this condition and all the other specifications
imposed on it, is called maximum range program. Another important

specification, imposed on a pitch angle program, is the requirement
of ensuring minimum nose sectilon dispersion.

Both requirements — the ensuring of maximum range and minlimum
dispersion, are almost always incompatible. Minimum dispersion, as
a rule, does not correspond to maximum range flight. By reducing
rangé it is possible by an appropriate selection of pitch angle pro-

' gram to diminish dispersion. Thus long-range ballistic missiles can
be equlpped not with one, but with several programs. One of these
is the maximum range program (or a program close to it). It is

fe intended for firing for maximum range or ranges close to it. Another

program 1s the so-called minimum dispersion program, This program
= is used for firing for minimum and intermediate ranges. Nose section
‘ dispersion in the rocket flight using this program 1s less than in
flight with a maximum range program.

The flight path of a rocket when using a minimum dispersion pro-
gram 1s steeper (less flat) in comparison with a flight for maximum
range. There can be several minimum dispersion programs. “.ach of
these has 1ts own sphere of appllcation.

§ Besides the two indicated specifications, still other specifica-
? tions are imposed on & pltch angle program, which are determined by
ﬁ the operating conditions, the purpose of rocket, the characteristlics
3 of the control system, etec. However these speclficatlions, as a rule

i . do not depend on which program is used — maximum range or minimum
! dispersion.

Among the mentioned specifications there are also those which
e are common and typical for long-range ballistic missiles. There are

'g§ those, which are determined by the specifics of a given missile or

its individual systems and are not always mandatory for any misslle.

Among the common and typlcal specifications imposed on a program
ﬁ it is possible, to include, for example, the following.

Ly 5
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1. A missile launch should be verfical;,the duration of the
vertical phase of the trajectory should not be less than assigned,
usually determined by the launch conditions.

2. The pitch angle program should be a continuous function of
time;! the programmed velocities and the accelerations of the turning
of the axis of rocket should be acceptable for instrumental execution.

3. The temperatures of the missile body skin and the programmed
angles of attack in the high ram-pressure phase should be acceptable
from the point of view of strength.

4, In the rocket flight phase in the dense layers of the atmo-
sphere acceptable conditlons should be ensured for controllability
(with a reduction in the slope of the trajectory maximum ram pressure i
increases and, as a consequence of this, the perturbatlons caused by
the effect of such perturbing factors, as wing, aerodynamic asymmetry
of the configuration, etc., increase).

5. The rocket flight condltions in the stage separation phase
should be acceptable for ensuring rellable separation.

6. The parametric domain of the reentry of nose sections into
the atmosphere should be acceptable from the polnt of view of strength,
temperature regimes and the operating conditions of the autcmatic
equipment of the nose sectlon.

ErZasnet Sast i

frius

4 An example of the particular spepirications imposed on a progranm
i due to the specifics of a rocket, is the specifications imposed on g
3 the pitch angle program control system:

p: a) the angle included between the line of radio sightirg and
R the plane of the local horizon at the point of the location of the

: In this case there is meant the requirement of the continuity
b of function ¢(t) with its "ideal" (without gaps) assignment in the !
sontrol-aystem equipment. 5
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ground-based antenna (angle of elevation BH) should not be less than

permissible B l.e.,

H min?
ﬂu?ﬂnmln? (6,1) 1

b) the angle included between the line of radio sighting and the
longitudinal axis of the rocket 86 should be located within certain
limits, l.e., satisfy the inequality

P
g

~6mln‘<§6 <‘:"amx. (6.2)

The enumerated specifications impose more significant limitations
3 on a maximum range program., This is due to the fact that any depar-

' tures from the optimum program executing the maximum range, caused

by the above enumerated requirements, g ve rise to a reduction in

maximum range. Among the number of such specifications whose effect

on the configuration of the trajectory and the maximum range program

is determinant, it 1s possible to include the speclfications ensuring

., acceptable dispersion, strength and controllabllity.

e i e Mt ot

Thus, for reducing rocket dispersion it is necessary to increase
the slope of the trajectory. With an increase in the slope of the
trajectory the values of the partlal derlvatlives of range and lateral
deflection with respect to the parameters of rocket motion at the
moment of nose section separation decrease and, as a consequence of
) this, dispersion is decreased; furthermore, the dispersion of nose
] sections in the atmospheric descent phase of the trajectory 1s de-
oreased. With an increase in the slope of the trajectory the loads
acting on the missile body (mainly, due to the reduction in ram
pressure), and the temperature of the body skin (due to the fact that
the time of motion in the dense layers is decreased) decrease.
Finally, with an increase in the slope of the trajectory the ram
pressures and the values of the perturbing moments decrease, which
facilitates rocket control. On the other hand, a consequence of an
inorease in the slope of a trajectory is a reduction in maximum range.




When selecting a program of minimum dispersion the specifications
of acceptable temperature rcgimes, controllabllity and a number of
others becomes superfluous because-the trajectory in this case, as a
rule, takes precedence over the trajectory of maximum range. Further-
more, when selecting a minimum dispersion program a certa’a freedom
of action in varying the program is possible. The fact is that a
certain variation in the program in one or another direction for ful-
filling the specifications and limitations, imposed on 1t, leads, as
a rule, to an insignificant variation in dispersion.

In connection with what has been said it can be concluded that
the greatest difficulties arise when selecting the maximum range
program. Thus a further examination of the requirements imposed on the
pitch angle program is carried out with respect to maximum range
program,

The necessity for ensuring the first of the above enumerated
requirements is due to the simplicity and the convenience of vertical
launch. In this connection vertical launching of long-range rockets
is generally accepted.

The flight time in the vertical phase of a trajectory ts(or the
path covered in the vertical flight phase) can be varied in selecting
the flight program. The minimum permissible duration of vertical
flight is determined by the conditions of launch safety. The duration
of the vertical phase 15 selected as short as possible because the
greater it is, the steeper is the trajectory (the velocity losses in
overcoming gravity are in.reased) and the more difficult it 1s vo
accomplish turning of the rocket in the subsequent phase (large angles
of attack are required) (2],

The second requirement is due to the possibifiities of instpumental
execution of pitch angle programs. It is evident that the techniocal
implementation of discontinuous pitch angle programs is generally
impossible, because the two angular positions of the longitudinal
axis of the rocket differing from one another by a fintte angle,
correspond to one and the same moment of time., Thus it 1is possible
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to discuss only the very high velocities of the turning of the longi-

tudinal axls of a rocket. The magnitude of this velocity is limited

by the technical capabilities of the controi-system equipment. With

non-fulfillment of the indlcated limitation the accuracy of execution

. by the pitch angle program control system deteriorates. The limiting
of the veloclty of the turning of the axis of the rocket plays a
significant role with a large rocket thrust-weight ratio, in which
the duration of the powered-flight phase 1s short. The necessary
velocities of turning of the rocket axls in this case can attaln
great values.

The pitch angle program has a subsvantial effect on the magnitude

3 of the transverse loads and the temperature of the body skin. With

a raduction in the slope of the trajectory the velocity of movement

and the time of the rocket sojourn in the dense layers of the atmo-

sphere increase. A consequence of thls is an increase in the temper-

ature of the housing skin and in this connectiun a reduction

in the strength margins. Furthermore, with a reduction in the alope

of the trajectory the effect of che perturbing factors (wind, variance

in atmospheric density, ete.) on the strength of the housing is in-

E creased. And finally with a reduction in the slope of the trajectory

? in rocket flight in the dense layers of the atmosphere the values of

? the programmed angles of attack increase and, as a consequence, the

@ values of the transverse loads increase. As a result the thieknesses

' of the body skins and the "dry" weight of the rocket are increased.,
The loss in maximuwn range due to an itnerease in “dry" welght in this
gase can be more than the gatn in range duc to the variation in the

. program in the atmospheric phase. '
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For long-range missiles and 1la particular for intercontinental
ballistic missiles the requirement of reducing body skih thlckness
and “dry" welght almost always limits the domaln of the possible

f' values of pitch angle in the dense layers of the atmoaphere to the
t' condition of small {close Lo Zero) angles of attack. The requirement
§ of smallness of angles of attack 18 the more significant, the greateyr

- 1s the thrust-weight ratio of the rocket. In the case of small values
3 ' of thrust-weight ratio the velocity of the rocket increases slowly
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and the rocket passes through the danse layers of the atmosphere at :
comparatively small velocities. With an increase in thrust-weight
ratio the velocity of a rocket increases more rapidly and the rocket
passes through the dense layers of the atmosphere at high Gelociéies.
In accordance with thils the transverse loads caused by the angles of
attack, increase with an increase in thrust-weight ratio '

The flight path of a rocket in powered-flight phase affects the
controllability of the rocket and conditicns of stage separation,
With a reduction in the slope of the flight path in the powered-flight
phase the perturbing forces and moments increase, the required control
element effectiveness increases and the conditions of stage sepaéation
deteriorate. Furthermore, the controllabllity of a rocket and the
reliability of stage separation depend on the programmed ansles!or
attack, and with an increase in the latter the controllability .7 the,
rocket and the reliability of separation deteriorate. Thus for en-
suring for rucket controllability and stage separation reliability
it 1s expedient to increase the slope of the trajectory and to decrease
the programmed Angles of attack during flight in the dense layers of
the atmosphere. iowever in this case, as a rule, the maximum firing
range decreases. . '

he greatest difffouities arise in ensuring rocket controllability
at the beginning of the motion of the second stage. This is due to
the fact that for reducing the weight of the second stage control
eloments 1t 1s expedient to select the latter from the condition of

ensuring contrcllability in the rareried layers ol the atmospheres,

since the great&r’part of rlight of the second stage practically oc-
curs in airless space. For this reuson for snsuring rellable stage
separation and controilabllity of the second stage 1t 15 necessary to
1init the magnitudes of the perturbationa acting in the stage separa~
tion phase and at the beginning ol motion of the second stage. The
solution to this problem 13 more cosplex for rockets with the low stage
separation altitudes {h < 40 ku), when the aerodynamic perturbation
are comparable with the perturbations due to errors in the manufac-
ture ard She assembly of a rocket. Por rockets with short first

stage flight duration the fulfilloent of the indicated requirement
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can lead to a significant reduction in maximum range.

i
+

Signifiocant losses 1n'range conr scted with ensuring. the require-
ments of reliable stage separation, second stage controllability,
acceptable temperature regimes of the body and its strength, give
rise to the necgessity for selecting the pitch angle program jointly
with the selecticn of the stage §eparation configuration, contrql
element errectiveness and skin thicknesses. The necessity of en~
suripg acceptable temperatuve regimes of a missile body 'skin in the
first place makes 1t necessary to consider trajectorlies executing the
quimum range of dockets with a high thrust-weight ratio.

13
.

For ensuring the énrengtb‘and the controllability of a rocket

*and reliabllity of stage separation.there is imposed on the pltch

angle program the roquirement of smxllness of the angles of attack
during roeketﬁrlishb in the dense layers :of the atmosphera. .in this
phase the piteh angle program is vsually taken so that the programmed
gles of attack are egual to zero. The loss in maximwn range due %o
the necessity of fulfilling eonditien o = Q, ror rock@ts with a
comparatively large pﬁaereduflight phiase ‘@uration 43 small; with a

_ veduction in the powered-rlight phase duration loss in maximus range

‘incrvases. S : :

¥ - B
‘The Flight paths of a nose.sectlon in the atmosphere, overloads,
terperature reglues and the strength’ of the nose section body ape
painly determined by the parameters of motisn of the center of nass

: of the nose section at. the moment of 1tz reentry. into the atdosphere’

- by the velocity of the ugse sectlon V, and by the angle of reentry
Gy, In Firing under various geodetlc conditions (latitude of the
launch paint and firing azimuth) For saximuws aud tinimias ranges using

_the accepted pitch angle prograss (saxisud rangs, wislsws dlspersion)

the paraneters ol motion ol The center of Mass al the mosent of reeniry

of a wose sextion tnto the utnasykare." In thﬁ case when the rocket

YWhe angle of attack at the woment of reentry imto the atfcsphere
which also determines the transverse overleads, 1s not examined here,

since its dependence on the pitch angle progran cn be ‘dlsreganrded.

[]
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is equipped with several programs, this reglon includes the regions,

obtained using each of the indicated programs. The approximate form

of the reglon of reentry of the center of mass of a nose section into
the atmosphere using two pitch angle programs (maximum range and min-
ilmum range and mininum dispersion) 1s given in Figure 6.1.

The upper boundary of the given region (line 2-3) corresponds to
employment of the minimum dispersion program, the lower line l-4) -
the maxim.m range program. The boundary of the reglon, passing
through puolints 1 and 2, corresponds to firing for minimum range using

the mentioned pitch angle programs, through points 3 and 4 - to firing
for maximwa possible range.

With on fneresae in velocity VU and in the absolute valve of the
reentry angle E@el the lopgitudinal and transverse accelerations in-
crease and, &s aonaeguence, the walght of the nose section. 7The worst
(from the polnt of view of nose sectlon strength and the efflciency
of its autosatic ec:ipment) conditions of reentry into the atzospherw
gorraspond to polnt 3 of the givwun reglon. On the other hand, with

2 redustion in ths wbsolute value ot angle Qﬁ the required weight of

the hestshield covesriug i locreosed, which is Jue to the increase in
the riight tisy of ahé nuug segtacn in th&,ataosph@re.

he ueundar.aa of tbé regi@r ef the paraseters o? the reenlry
of the eeniter of sasy of the hose gection into the atmo&phﬂre a3 a
sale, are due S0 Lhe saxibus peraissidie values ol lengitudinal and

lateral acociavations. The laster are deternlned by the strength

and by the gsadlticns of norsal operation of the autumatic equipment
of the nois gectlion and, Plaally, = oy the level of the developasnt
of technoiogy at the time of the gesigning of the rocket. The pitch
angle progras of @ baAlistic tissile should be s;eb, @h&% tHie pa“%ﬁ*
eters of Gotion of the nose sectioh ¥y and ©, eai:fy th asaisnéﬁ
reglon of $%: bevntey nto the éﬁﬁﬁapheré‘ -

Reguiresents igpssed on Lhe pitch srgle prugram with respect o
ensuring iisited vaives of the angle af*c.avatleﬁak and she oabocard
angle s, oi the ilne of radid sightlag are caused by the Gperational

w . .




~th . Fig. 6.1. The region of the re-
1 3 entry of a nose section into the
43 atmosphere: a) region of reentry
‘\7 L. ) corresponding to the maximum range
program; b) region of reentry cor-
responding to the minimum disper-
sion program.

characteristics of the radio contpol system. In harnieular. the re-
Quirement for limiting the range of the possihle v.lues of the ungle
of elevation by the condition BN_EB SM ain 18 connected with the fact
that with a reduction in the angle of elevatior of the line of radloe
sighting 8, the measuring errors of the radio control sysiem in the
parameters of motion of the rocket due to an lnerease in the effecs
of the heterdgeneity of the atmosphere, its turbulesce, refraction,
8 , ete. on measuring aceuracy lnepease. For this reasan,_lr the posgible

§ . values of the angle of elevation B,» are not limited downward, then

' the measuring errors of the radie ceatrol syatem of the parasesers of

totion, and aise of the d&viatiaﬁ SF the acde setlion lmpact palnts
frod the target whoen using flat trajectorles vill be large.

The requiresent for limiting the range of variiation in the one
board angle of the line of radic sighting i brought aboud by using
narvow cnvoard and ground-based antenna radiation pasterns. (As s
Raoowr, with an lnerease in the width of the antenna radlation patier.
the region of space 13 increased, in which the tadly waved aie prop-

agated and accordingly the prébabaaity of detecting of radlo emissios
i@_iﬁ@r@ases. ‘furtheréicre, with An invredse in the width of the |
- radiation pattesn the power requlrement of the radlo transsltier i3

P ¥ . tnereased. ) '

In connectlion with this the range of the var’iastion i the ufcard
angle of the line of radio sighting is usuaily amall. & certaln pasrs
«f thiz range 1s experded on the gselllations of the feceket arousd its
cenitee oF #ass. I in the radlo control phase programused piteh taro-

g of the rocket of an order of several degress 1s éxcouted, then the
remaining (avallable) range of vasiation in angle B, 18 small (1zss

2 ¥
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than 5%). In connection with this in the program'of a rocket flight,
in which separation of the nose section is accomplished upon instruc-
tioa from the radio control system limitation of pitch turning of the

rocket is specified in the radio control phése. Usually this phase
of the trajectory is rectilinear.

One of the requirements, imposed by an autonomous rocket control
system on the pitch angle program, ls the llmitation of the maximum
angle of pitch turning of the rocket in the powered-flight phase to
a maximum of 85°-90° (in firing for ultra-long ranges the angle of
piteh turning can exceed 90°). .If the programmed angle of rocket
turning exceeds the indicated 1imit, then the structure of the gyro-

: scoplc instruments 1s complicated, thelr overall dlmensions and weight
. ; are increased. :

The pitch angle program ensuring execution of all the requlrements
.f imposed on it, we will henceforth call the optimum program. For
selecting pitch angle programs various methods can be employed.

% In general the selection of the optimum pitch angle program is

' a complex variational problem. The solution to this problem by clas~
‘ sical Euler-Lagrange methods 1s fraught with severe difficultles.

z Even in the simplest case, when a rocket flight occurs in alrless

ﬁA space, these methods lead to the necessity of solving a boundary
value problem for a complex system of differential equations. For
the atmospheric flight phase the problem becomes still lengthier due
| to the necessity of selecting a pitch angle program taking into ac=-
’f- count the requirements demanded by the control system and the rocket
design, which were discussed above.

Actually these requirements in the individual phases of a tra-

Y, Jectory will so narrow the sphere of the possible variations in the

: piteh angle programs, that for these phsases the solution to the vari-
.9 , ational problem dves not have practical significance. Furthermore,
. ‘ the design execution of the rocket body and the systems, composing
1t, imposed restrictions on the parameters of motion (for example,

on the angle of attack in the sphere of high ram pressures and on

the stage separatlon phase, on ram pressure in the stage separation
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phase, etc.). Under these conditions in attempting to solve a prob-
lem by classical methods of the calculus of variations such crude

. assumptions are unavoldable, that the effectiveness of these methods
comes t©o naught.

TN

The considerations presented above led to the development of
engineering methods of selecting cptimum trajectory, on the basis of
: which lie the ideas of the direct methods of splving varlational
problems. One of these methods is examined in Section 6.3.

In conclusicn let us note, that there are great prospects in the
: development of methods of selecting the optimum trajectory of rocket
motion for the new methods of the theory of optimum processes which
make 1t possible to find solutions of optimization problems taking

g ] into account the limitations of the possibie values of motion param-
E ' “eters or rocket characteristics [19], [25], [28].

¥
oY

K- : 6.2, OPTIMUM PITCH ANGLE PROGRAM IN THE NON-ATMOSPHERIC
. ’ PHASE OF A TRAJECTORY

' 3 ' The flight range of a nose section 1s determined by the parameters
.1'2 1 of motion of the center of mass of a rocket at the moment of the
z ] separation of the nose section from the last stage of the rocket,

i.e., at the moment of the introductlon of the main instruction:

53 X
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L=L(g). (6.3)

:3 . The parameters of motion of the center of mass of a rocket at
5¢ , the moment of the introducticn of the maln instruction qy (1 = 1~6),
in turn, are determined by the pitch angle program ¢(t):

9i=q:{p(f)] (i=1=-8).

Thus, the flight range is determined by the program of ¢(t):

. L=L{p(1)}
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The necessary condition of the extremum of Ffunctional (6.3) can
be written in the form ‘

6
BL(q,)-.—;E-gi- ¥g,=0. (6.4)
Pl |

Here az¢aqi — the ballistic range derivatives with respect to the
parameters of motion at the moment of the introduction of the main
instruction; qu (1 = 1-6) — the deviations in the parameters of
-motion of a rocket to the moment of the introduction of the maln
instruction, caused by variation in the pitch angle program 8¢(t).

The pitch angle program ¢(t), satisfying condition (6.4), real-
izes the maximum firing distance. We will carry out the determina-
tion of this program under the following asspmptions:

i) the effect of the rotation of the earth on the parameters of

motion of thé rocket in the powered-flight phase is small and it can
be disregarded;

2) the aerocdynamic forces are equal to zero;

3) the gravitational field in the powered-flight phase ls plane-
parallel, the acceleration due to gravity is constant (it does not
depend on altitude).

The equations of motion of a rocket in the powered-flight phase

of its trajectory in a terrestrial coordinate system in thls case are
written in the form:

v ,==-.-§~ cos o (£);

5 P
Vy=—sling()—g (6.5)

X=V 8

!;==Vy.l
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The parameters of motion of a rocket at the moment of the intro-
duction of the main instruction t, can be determined by integrating

the equation of (6.5):

Aol

|

v,x=v,°+g
]

Vo=Vt g‘ (—:T sin?(ﬂ—g) dt;
0

p
—_ £
— cos¢(¢)d

‘x ¢ ‘ )
X=X+ v,ot,+g (ﬂ-;"-’- cos ¢ () dt) di=
. 0 \0 . .

-

=Xo+ V rolx +S‘(tx - t)—:;- cos ¢ (1) dt;

]
.
Y=Y+ Vyoht+ \ (b = £) (—:—- sing(f)— g) dat.
0 ) s

Time tH in these equations 1ls a constant value,

L (6.6)

Thus the varia-

tions in the parameters of motion at the moment of the main instruc-~
tion and the varliation in the flring range with variation in the pitch

angle program will be written in the form:

[N

sing (£) 3¢ (¢) dt;

H
>,
Wy =\ <-cose(t)d () ds
!“ C p
S (b =)= sing i) o (t) d;
; _.
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3y, = j"‘«,_a £ cose(dtp(0s

3 =), Wt () ot (32, Bt () b=

| =5[ ~(%).% sine(te()+(52) £ cose(tp(l— [ (67
-(Z). {-(t.—-t)sinv(t)w)%

+(%":’-)‘-£— (t,-t)cosg(t)&p(t)] dt.

3 Considering the arbitrary nature of variation 84¢(t), it is pos-
L _ sible to show that ‘e necessary condition of equality to zero varia-
“ tion in range 8L is the equality to zero of the integrand at any point
of the trajectc y of the powered-flight phase:

E: oL ‘
4 — — i
- [(ox ), —&+ (av,) ]s ne )+
i ) (t—1) (-..) ]cos =0, (6.8)
1:
R g The last equation directly glves the dependence of the optimum
?i" " pltch angle program on flight time:
. oL L
| (ay ) (e ‘H'(afr
. ge()=-—7 . (6.9)
=0+ (557 )
L | (éx ). T v )

- This formula 1s suitable in principle for programming the pitch
’ angle of ballistic missiles in firing for any range, 1f the accepted

assumptions are fulfilled. Let us examine these assumptions in more
detall.




The first assumption, apparently, has insignificant effect on
program ¢(t), since the parameters of motion in the powered-flight
phase weakly depend on whether or not the rdtation of the earth is
taken into account in equations (6.5). Moreover, the effect of the
rotation of the earth on the appearance of program ¢{(t) with variation
in firing range and iIn the geographical conditions of the rocket
launich (the latitude of the launch site and the firing azimuth) is
taken into account in formula (6.9) by corresponding variation in
the derivatives

oL oL oLk
Ve ' Wy tox '

The second aésumption can impose substantial restrlctions on the
possibility of using formula (6.9). For rockets with a firing range
of up to 1000-1500 km the powered-flight phase of the trajectory, as
a rule, lies in the dense layers of the atmosphere. The determination
of the optimum pitch angle program using this formula unavoldably
leads to error. For intercontinental missiles the greater part of
the powered-flight phase (approximately 60-70%) lles in the rarefied
layers of the atmosphere, and in this part of the trajectory the
optimum control program is close to program (6.9).

The third assumption is rather well fulfilled in firing for
short and intermediate ranges, when the altitude of the powered-flight
phase does not exceed 80-100 km, and the range angle at the moment
of the mailn instruction does not exceed several degrees. The condl-
tion of the constancy of acceleration due to gravity in this case is
fulfilled with an error of 2-3%, and the condition of plane-
parallelness the gravitational fleld — with an error of 1°-2°, For
intercontinental rockets the cited errors increased by two or three
times.

The errors in determining the pitch angle program due to these

errors can be reduced, if the acceleration due to gravity 1in calculat-
ing the powered-flight phase 1s taken equal to lts mean value 1in this
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phase, and the equations of motion (6.5) are written in the coordinate
system O'x'y', the origin 0' of which 1s located on the surface of the
earth at a distance x(tK)/2 from the launch point in the line of fire;

axis O'x' is directed at a tangent to the surface of the earth in the
firing plane; axis O'y' — along the vertical.

The equation of the optimum pitch angle program ¢'(t) in this’
coordinate system takes the form ‘

- o o (),

tgo' ()=
oL
( > ) (e t)+(,,3" )
X Ik x'/x

where 3 L/ x', 3LAYy"', 3 LA Virs 2L/ Vy, — the ballistic range deriva-

tives with respect to the parameters of motion in the coordinate
system O'x'y'.

(6.10)

The conversion of the pitch angle program to a coordinate systum
@ located at the launch point, can be accomplished using formula

o(t) =9 ()—,

g‘ where X — the range angle from the launch point to the origin O' of
@ conrdinate system QO'x'y!'.

L It 1is necessary to note that the determination of the optimum
pitch angle program using formula (6.9) is an iterative process,

k. since the partial range derivatives with respect to the parameters
of motion of the center of mass of the rocket at the moment of the
i main instruction are unknown. Flrst the calculation of the trajectory
with the pitch angle program selected as a first approximation 1s
carried out and derivatives (3LA X),, (BLAY),, BLAV,),, (aL/avs,)H
are determined. The ballistlic derivatlives obtained during the first
£ calculation, are used for determining the second approximation of

k. the pitch angle program already using formula (6.9). Then the cal-
culation of the powered-rlight phase 1s repeated, etc. The rate of

,.,
g
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convergence of the iterative process depends on the closeness of the
first approximation of progranm ¢1(t) to the optimum program.

6.3. THE METHOD OF SELECTING PITCH ANGLE
PROGRAMS

General Aspects

As 1is known, the solution to a variational problem by the direct
method conslsts in the following stages.

1. The construction of the minimizing sequence of functions
yi(t): yl(t), yg(t),..., yn(t), possessing the property:

Hm £ (a0 =min /(y ) =1 (P () (6.11)
where I(y(t)) — the optimizing functional.

Curve yo(t) is limiting curve of the aequence{yn(t)} and the
solution to the variational problem.

2. The proof of existence for the sequence {yn(t)} of limiting
curve yo(t).

3. The proof of the legltimacy of the maximum transfer (6.11).

With respect to the problem of selecting of optimum pitch angle
programs it 1s necessary to find such a sequence {¢n(t)}, which would
ensure the extremum of certaln functional I(¢(t)), for example the
maximum distance L(¢(t)).

The methods of constructing sequence [¢n} can be rather diverse.
However the most expedient is the method bused on the representation

of sequence {¢n} in the form of a sequence of families of programs
depending on the parameters Al, Az, ey An:

o (¢, M), ea(t, Ay, Ag)yeon, on (¢, M.....},ﬂ).
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If program ¢n(t, Al, coay An) depends on one unknown parameter
(n = 1), then the family of such programs is called uniparametric,
with two unknown parameters (n = 2) - biparametric, ete.

Qur problem will be to determine such a program of ¢ (t, Al, ey
A ), which would approximate function ¢ (t), realizing the extremum
of functional L(¢(t)), L.e., would ensure insignificant difference
in the value of functional L(¢ (t)) from the extremum of functional
L(¢ (t)) on the condition that program ¢ (ty Ay eens A ) satisfies
all the requirements lmposed on the conriguration of the trajectory
by the rocket design and by its control system, and the expenditures
of time on searching for the optimum piteh angle program ¢n(t, Al,
cees xn) are acceptable for practice.

The selecting of the sets of programs'{Qn} is to a known extent
arbitrary, however, as was already mentioned earlier, the requirements
imposed on the configuration of the trajectory and the pitch angle
program so narrow this "arbitrariness," that even the initial set of
programs for the individual flight phases becomes almost determined.
The selection of the sets of programs 1s limited to a class of con-
tinuous functions, since the pitch angle program should be continuous;
in the high ram pressure phase the appearance of the set {¢n} is
determined by the condition of small angles of attack; in the reglon
of the main instruction from the radio control system — by the condi-
tion of the constancy of the pitch angle, etc.

When selectling the sequence of programs {¢n} there is no need to
carry out the proofs of existence for this sequence of limiting curve
¢°(t) and for the validity of the maximum transfer (6.11). In fact,
the sphere of possible variations in the pitch angle programs taking
into account the requirements presented in Section 6.1, is completely
limited. The initial aet of programs ¢i(t Aps eeen Ay ) and the
optimum pitch program ¢ (L) lies in this narrow sphere. Thus even
without mathematvical proof it 1s obvious, that with an increase in
the number of parameters Anand when selecting their optimum values
from the permissible sphere the program ¢n(t, Ays voes xn) from the
examined sequence of sets of continuous functions will approach the
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optimum program.

Further, for fulfilling equality (6.11) it is necessary that funce
tional L(¢,(t)) be continuous in a class of continuous functions !
¢n(t, Ais vons An). When the optimizing functional is the firing
range, the continuity of function L[¢n(t, Ais eves An)] is obvious.

ﬁ Finally, it 1s necessary to note that for practice there is no
need for the strict fulfillment of equality (6.11), and the fulfill-
ment of thls condition with a certain ercor ALn, which corresponds

to the permissible loss in maximum range: \

P TR T I

G

LIG(8)]—Ll@n(t, My-... An)]< AL

% 4 Sets of Pitch Angle Programs

! The powered-flight trajectory of a roucket can be arpitrarily
k divided into three phases:

1) the subsonic velocity phase (0-ty);

2) the trans-and supersonic velocily and the high (q > 800-1000 !
kg/m ) ram pressure (t,-tII) phase;

3) the low ram pressure phase or the non-atmospheric phase

(bt
i} * The Ist Phase. The configuration of the subsonic phase of the
3 trajectory weakly affects maximum range and rocket dispersion. In

. connection with this the pitch angle program in this phase is selected

from the condition of a safe period for the starting of vertical
- flight Ly permissible piteh turning of the rocket and censuring
1 small angles of attack at the point of linking of the lst and gnd
; phases.

The pitch angle program In the 1st phase after vertical flight




(ta <t < tI) can be selected in the form of a cubical parabola

(Figure 6.2, a) or two straight lines (see Figure 6.2, b):

or

@1 (1) =at+bt3+¢ when H<t<th

@ -%--—-;p‘(!—t') when ¢ e LHN
‘ =3

o1— qilt=4) when ¢ I H,

4 4

1 n

‘ F2

% )

LA ) T ¢t
a) b)

Fig. 6.2, ‘The pitch angle program in the
initial phase of the trajectory: a) in
the form of a cubical parabola; b) In the
form of two segments of straight lines.

(6.12)

(6.13)

Coofricients a, b, ¢, in the parabola eguation and the slope of

the straight lines are detemined by condition a = 0 when t = tys by
the value of pitch angle ¢, at the same moment and by the permissible
magnitude of the rate of pitch.

The 2nd Phase.

The basic requirements, imposed in this phase on

the pitch angle progrom, spart from ensuring maximum range and the
assigned dispersion, are the ensuring of limited transverse accelera-
tions, accepiable temperature regimes, rocket controllability and
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stage separation rellability. The set of programs in this phase is
characterized by the cohdition of ama 1 angles: of attack which can
be;wribten in the form ! ' '

{:,(f\r:-—-v‘:-cos 25(8) wilen (f <! Sy ' (6.14)

t I

The integration of equation (6.14) glves the following expres-

- sion for the pitch angle program in the 2nd phase:

S

t
. : IV"“!

‘nlti=areyg fe ( --)-——- ENTRT)

H

. - 13
" Thus, the pitch angle progrem of 3 rocket ensuring the small

- values of angles of attack in area of high ras prassures, depends on

the initial value of piteh angle ¥1 and the ratlo g/V., Taking into
acoount that ratiq g/V practically dous not depehd on the variations

An the riight path within certain lamits, 1t is possible to consider

that the piteh angle program of a rogiet in the decond phase ls de-

termined by parapeter By The selegtion of the magnitude of this

pa?&maber should be carried put taking into agrount the above enuser-
édArequirements. ' |

,The 3rd Phase.” The budic regulrenents Impused an the piteh angle
progras in this phasd are the ensuring of meXimwn riring rahge and
the aasigned didpersion and In Ageessaly ades.the ensuring of the

accepliable conditiona for radig control system operatien.

During Tlight in a vacuws the marimu: range is ensured by the
progran deterined by expression {6.9). Tbis 'pitch angle program can
be accepted as optitwum, 1f no other gpweiific restrictions are ieposed
on the rora of the program in the third fiight phase.. In sccordance
with vxpression {6.9) the plich angis in this phsge decreases roughly
with constant angular veloelty 2.

i However with such & plteh angle program the ensuprlag of the
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normal conditions for radio control system operation are made difficult.

Purthermore, it 1s necensary to considér that the variation in
the pitch angle of the rocket in the powered-flight phase by 90° (in
firing for long ranges) complicates gyro-instrument design [l2].

Considering the above cited considerations, it is possible to
construct the following sequence of possible pitch angle»prcgrams:

1) the configuration of the trajestory is characterized by condi-
tion a = { from ¢ = ¢ up to tba end of the powerad»fiigxt phase {one-
parameter set e, °I)]' -

2) from ¢ = 0;, to a certaln moment of time the p?ug am 18
characterized by the condition a = 0, subsequently the pltch angle is
constant ¢ = ¢ [biparametric set oft, $1, 9,013

3) frot the £light phase whon o = O until the sriginment of a

certaln value 9 = ¢ -the angular rate of piteh - the saximally per-

wiasivle l#l Soan? ..ui:..&q.xentq - % {shroc-paranetric set
1, 91, G, 9) - ' |

Bach of the enwserated seis, e¢xcept the Pirst, rather fully re-
adizes nexliows ronge with ssaigned dispersion. From the poiat of

view of simpilelty of instinwwent rualization the second family 1s

preferablie; in This case the replaseswnt of the energetically optimum
piteh angle progrss in the 3Ird filght phase by a program with constant
angle ¢ = ¢ ‘Sakes it possible to ellminate the above mentioned
dericiencies in the opbitius progras with insignificant loss 1n maxi-
fGEE range. '

The Selection of the Optimus Para-eters of the Pitch

lngle Program

In accordance with the direot methods of the calculus of varia-
tions the detemination of the optimum parameters of the piteh angle
program should de carrlesd sut by investigating the optisizing func-
tionals (the range, dispersion, ete.) [for the extiresua. ilowever the
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ude ¥ the common methods of determining the extremal values of the
parameters of the program ls not possible as a result of the complex

, * " dependence of range and dispersion on the purameters . and ¢, In
*; : this connaction the graphical-analytical metnsd of determining the
£ . optimum values of parameters ¥y and L which consists in the fellows

ing, is preferable.

g ) a

A certain set of curves 9(¢t, 11ty By #lt, ¢pa, :ué)’ cany §
¢(t, 1 . ) is sulected, every ~ur\* of which shouid satlsfy the '

: additional PgQﬁlfﬂmuﬁvS, fmposed on the proream. In solving tue system
,%' of equatiovns of motiun of the racksl in the puvwored-[flight and
féi unpowered=-light phases of the trajuetoey, Lhe dupendences of the
optimizing funotionals I($it}) range, tlaperzlion, stvue.), and alse of
? other characteristics of the rocker yrar iastaneg, the overloads ef
éf the nose sectlen, angles of radio sightlng and @Eherﬁ“@n'thé parun=-
ﬁ : eters of programs ¢;, @, 4re sbuained. The cvialned dependences are
= ; represoented graphically and are used for selectiag the optimum values
- i of the parameters of the piteh angle prograd, whieh reduces o the

fol lawing stages.

L. Detersiaing the ;*rlﬁg range and ihe dispersion of the ndae
aeotions depeading on bhe parageters of the piteh angle progras.

Z. SCaleulating the Yelpsratures sun she thicknssses of the
body coverings, the "dry"™ welghlte of the iorltes tages, ¢pndisl elv«
pent effvebivenyds, the reilabliiity of #lage deparatlon, radige-lines

5 of=3ight, overlosds acting un the node deoiitn, 368 alke sthes
- . characteristics {or various ¥Valued oF £l. rrogian paraseisy,.,
X ;
X . 3. Catstrueling the o - inle pegloh g raveneled wErilation :
. for whe plesth angde zregyc ChRpe L wiAh propeel Lo roedtet and %
- CONRIOY 3¥T. s ULalg. . :
< _ 0 Soiestlily ot pllawl velver of the pregiar paramcters shidh
»2 ryespoid 0 okl Tlving rahge wilh Lhe seslgned disdpersion.
!
‘%:' 3 As av erarpile let us exaning the orde. of gelectiag the oplisay
r g
E:
: & ..
~ o
e 4
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parametric values of the pitch angle program for a rocket with as-
signed firing range LO. In this case for clgrity and simplicity of
discussion, from the complete complex .f requirements (see Section
6.1) we will consider only the requirements of ensuring radio-line-of-
sight (6.1) and (6.2) and permissible overloads.

The approximate dependences of range and dispersion, angles of
radio—lihe—of~sight, angles of departure and reentry of nose section
into the atmosphere on the parameters of the pitch angle program are
given in Figures 6.3-6.11. From an examination of these graphs 1t is
possible to draw the following conclusions.

%
!:. -3
L,
i
17
0

{
0,851 w el R
)
Fig. 6.3. Fig. 6.4,

Fig. 6.3. The dependence of maximum firing range on program param=
eters ¢; and ¢, (¢Il Shpy s eeerney < ¢IS)

Fig. 6.4. 'The connection between the values of program parameters
¢I and L which ensure maximum firing range.

The combinations of program parameters corresponding to maximum
range and to minimum dispersion, do not coincide with each other.
The angles of departure ccrresponding to minimum dispersion, are
larger than the angles of maximum range; with an increase in the
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angle of departure maximum range decreases. Of the conditions of
radio-line~of-sizht requirement (6.2) is the most essential.

-8, -
Ny L
[,
1]
093 —
%
Fig. 6.5. Fig. 6.6.

Fig. 6.5. The dependence of maximum firing range on program
parameter ¢I with optimum values of angle ¢K.

Fig. 6.6. The dependence of the angle of reentry into the
atmosphere @O on program parameters ¢I and ¢H.

An example of a permissible regilon of program parameters obtained
taking the dependences given above into account, 1s shown in Figure
6.12. In this figure the curves, corresponding to equal ranges, are
indicated by dot-and-dash lines, and the curves of equal dispersion -
by solid lines. The selecting of the cptimum values of parameters
¢I and ¢K from the permissible region reduces to selecting such com-
binations of these parameters which at the assigned disperslion cor-

- respond to maximum range.

The examined method makes it possible to solve the problem of
determining the optimum pitch angle program in a complete formulation
taking all the technical specificatlions and limitations ianto account.
Moreover, this method also has a number of other advantages.

In designing it is frequently necessary to solve the question of
variation in the optlmum pitch angle program with varlation in any
characteristics of the rocket or the speciflceations lmposed on itf.
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In this case for selecting a new program the results cf the previous |
investigations can be used. Moreover, by using these results, 1t is

possible to forecast the trend of the variation in the program with
variation in the rocket characteristics.

The method makes it possible to find the solution of the problem
of optimizing pitch angle program with any accuracy.. This fact 1is
very important because at various stages in the design and the devel-
opment of a rocket it 1s not always necessary to know the exact solu-
tion of the optimizatlon problem; a rough approximation is sometimes
sufficient. The presented method in thils case 1s very effectlve,
since 1t makes 1t possible to find the solution with the accuracy
which is required at the various design stages.

9. ) ’ P'
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Fig. 6.7. Fig. 6.8,

Fig. 6.7. The dependence of the slope angle of the trajectory
at the moment of the maln instruction eH on program parameters
¢I and ¢H.

Fig. 6.8. The dependence of the angle of radio-line-of-sight

BH on program paraveters ¢I and ¢H: BH -~ the angle included

between the line of radio-line-of-gsight and the plane of local
horizon at the point of the location of the ground-based an-

tenna; B, min = minimum permissibie angle BH, determined by

the permissible measurement error by the motlon parameter radlo
cantrol system.
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Fig. 6.9. The dependence of onboard angle B, of radlo-line-
of-sight on program parameters oy and ¢, ¢ 86 ~ the angle in-

cluded between the line of radio-line-of-sight and the longi-
tudinal axis of the rocket; 86 max? 85 min the maximum and

minimum permissible values of the onboard angle of radio-line
of-sight determined by the width of the radiation pattern of
the cnboard ground-based antennas; I and I1II -~ the boundaries
of the region of parameters ¢I and ¢H, guaranteeing the loca-

tion of angle BG within the range 86 min < 66 < 86 nax under
all geographical launch conditions: -——— the value of angle
86 at the moment of the maln instruction: -.-+.- the value

of angle 66 at moment of the begining of operation of the
redio control system.

Blg. 6,10, The dependence
between program parameters
¢I and ¢H, ensuring during

firing for maximum and mine-
Imum ranges permlssible
values of the onboard angle
of radio-line-of-sight.
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Fig. 6.11. The dependence of
range dispersion and lateral
dispersion on program param-
eters ¢I and ¢K: S0 - the

area of the dispersion ellipse
taken as unity.
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Fig. 6.12. The permissible region of program parameters
¢I and ¢H: I - boundary of the reglon with respect to

permissible overload; II — boundary of the region with
respect to angle Bc min’ IIT - boundary of the regilon

wlth respect to angle 66 max’ IV - boundary of the re-
glon with respect to angle BH min’ the line of equal
areas of dlsperslon wlth respect to area SO’ taken as

unity; -«=«- the line of identlcal firing ranges with
respect to range Lo, taken as unity.
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CHAPTER VII
SETTING DATA FOR ROCKET LAUNCHING

For launching a gulded mlssile it is necessary to carry out
operations connected with preparing the missile systems and the ground
equipment for launch. With respect to these operations it is pcssible
to separate into an individual group the operations with regard to

preparing the so-called "setting data" of the missile control system
and of the ground equipment.

By setting data we understand the data which is intended for pre-
launch adjustment of the instruments of the control and aiming systems,
ensuring the following of the optimum flight path by the [NS] (I'4) to
the target. The composition of the setting data ls determined by the
aiming method, by the type of control system, by the form of the con-
trol functional, by the stage separatlon system, etc.

The present chapter briefly examlnes the approximate composition
of setting data and the methods of determining them for a rocket with
an lnertial control system.

7.1. METHODS OF PREPARING SETTING DATA

In praparing the initlal dats fcr firing long~range misslles the
coordinates of the launch and target points are considered given rel-
ative to the accepted shape of the carth:; latitude L longitude A
and altitude h. With certaln launch coordinates it is sometimes
convenient to glve the target coordlnates by means of the azimuth of

Ao
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the launch-~target line Ac¢ and range Lc¢’ glven on a spherical earth.

The basic initial data for firing are the value of the range
control functional J, programmed into the flight control system and
determining the time of the introduction of the command for the shut-
down of the last stage engine, and the firing azimuth AO, employed
for aiming the rocket. These data are also called the basic settings.

The preparing of the data for a rocket launch is not completely
culminated by the determining of the basic settings. Depending on the
design of the rocket control system (in particular, on the range
control principles and of the direction of firing), on the arrangement
of the subassemblies and systems mounted on rocket, and also on the
characteristics of their operation, besides the basic settings, the
auxiliary settings can alsc be determined, namely:

a) the setting for the preliminary instruction for englne shut-
down (in shutting down the engine in two stages);

b) the settings, determining the moments of stage separation (for
multistage rockets), for throtting the englne in the case of an in-

crease in overload above permlssible overload, etc.

Thus, for example, for a rocket with a range control functional
of the type of (5.49)

[}
<
J=m +p£ (@ w}) dt
for turning the conSrol system devices the following settings are

necessary:

4) the value of functlon J at the moment of the execution of
the prelimingry and the main commands;

b) the values of angles A and u and parameter p, depending on
range, geographical conditions, ectec.

243

ot el 4 S

1 Lty AT



2
i
¢
:
3
:

G Sy

AL e N AR AN

The initlal data for firing (basic and auxiliary settings) are
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formulated in the form of an appropriate document.

It is necessary to note that the totality of tactico-téchnical ;
requirements, imposed on one or another type of rocket, and alsu the %
actual construction of the flight control system, ensuring the execu- ;
tion of these requirements, determines the wariety of methods of pre-
paring the initial data for flring. The detziled development of
these methods can be carried out during the designing of a rocket
taking 1ts actual characteristics into account. Thus only general ;
concepts of the methods of calculating setting data for firing are f
given below. ;

It 1s possible to distingulsh two methods of obtainlng basic
settings:

1) calculating the "falling" trajectory for the given coordinates
of the launch point and the target (integrating the equations of
motion ol the rocket);

2) calculating the baslc settings with the aid of firing tables
(with flnal formulas).

The first method of determining basic settings can be used in
the early preparation of initisl data. Wlth rather rellable and
operatlionally convenlent speclal slectronic computers lntended for
calculating "falllng" trajectory, it can also be used in preparing a
rocket for launch.

The second method makes 1t possible wlth rather simple calcula-
tlons, usually carried out by '"manual calculation" methods, to obtain
the baslic settings both In advance and during the preparation of a
missile for launch, The rellabllity of the obtalned results is :
ensured by cnecking the calculationrs. 1uv should be noted that for ;
rockets with lung firing ranges the use of firlig tables becomes N
difflcult due to thelr great volume.
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Of great interest is the preparing of initial data for firing
with the aid of speclal-purpose electronic computers [EC] (3BM).

It is possible to present the following operating principles of
such machines.

1. From the given coordinates of the launch point and the target
slte rocket flight control programs (pitch program, apparent velocity
program and others) are selected. The selection of the programmed
functicns of the control system can be carried out by an earlier
worked out algorithm, for example, with the use of methods presented
in Chapter VI. For the selected control programs by calculating the
"falling" trajectory the necessary settings of the rocket flight con-
trol devices are determined.

2. For the possible firing conditions the set of rocket flight
control programs selected earlier is input into the machine "memory."
In preparing the data it 1s necessary depending on the firing condli-
tions from the glven set to jelect the corresponding rocket flight
control pregrams and by calculating the "falling" trajectory to de-
termine the setting of the control devices.

3. The setting of the rocket flight control devices, and also
the control programs are calculated earlier and depending on the
launch conditions are input into the machine "memory" in the form of
coefflclents of certaln known functicns., The machine carries out the
calculation of all the necessary settings with comparatively simple
final formulas (similar to calculating settings in compiling firing
tables).

The enumerated operating principles of special-purpose electronic
computers have thelr advantages and disadvantages.

The first method is the most universal. But, on the other hand,

the volume of computaticnal operations with this method 1s so great,
that for carrying it out a special-purpose electronic computer will
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ﬂ%A be required possessing the features of a general-purpose permanently !
i fixed consolas computer. ;
The second method is based on calculating "falling" trajectory
% with selected control programs and requires solving of a complex
i -
% system of equations of motion. For solving such a problem the special~
%% purpose electronic computer should also possess all the possibilities
ﬁ of a general-purpose fixed console computer. 1t 1s not possible to
§ make such a machine simultaneously satisfying the requirements making §
.§ ' it suitable for military application (compactness, transportability, ' b
4 servicing ease and others). '
ii ' The third method makes it possible to carry out the preparation
f of the data for firing with final formulas with a comparatively small
-§ : number of simple operations. This method 1s the most acceptable for
} the use of speclal-purpose electronic computers. ?
. The final data on bacic settings, obtained with the ald of fir- '
F! ] :
. ing tables (or upon solving the "tfalling" trajectory), are formulated ;
i _ in the form of an appropriate document, the approximate form of which : :
E 1s the followlng. ;
4 I. Initial bata 4
- 1. Spherical range Lg,... §
-
{ﬁ 2. Spheplical azimuth of the launch-target line Ac@"’ §
3 5
3 * LI. Data for Launth E
* 1. Aiming Azimuth Ag... 1
3 4
;f 2. Value of the control funetlondgl J...
7.2. CALCULATING “FALLING" TRAJECTORY
.mi ‘ The caiculation of "fulllng” tragucter, s enrriva out for the
¥ E purpose of determining almlng aelmulo i tiee o0 introduction of the ?
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preliminary and main instructions for shutting down the engine’ensur-
ing the transmission (with assigned accuracy) of optimum trajectory
from the launch point to the target. Since the moments of time of
the introduction of the preliminary and main instructions are usuaily
connected by the relationship

box=lnx+AL,
where At = const (for optimum trajectory), the problem reduces to de-
termining only the azimuth and the time of the introduction of the

main instruction.

The basic initial data for calculating "falling" trajectory are
the following:

1) the characteristics of standard atmosphere, the gravitational
fleld of the earth and the shape of earth;

2) the aerodynamic, gecmetric, centering ([c.g.] and weight char-
acteristics of the rocket;

3) the engine characteristics;

k) the control system characteristics (including delays in acti-
vation of the instruments); '

5) the engine opuration time schedule;

6) the program of varlation in pitch angle and apparent veloclty
with respect to €light time;

7) the geodetic coordinates of the launch and target points.
The system of differentisl equations describing the motion of

the center of masc of the rocket in the powered-~flight and unpowered-
flight phzces of the trajectory 1a composed taking intc account the
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Fequirements for the permissible magnitude of errors in determining

data for launch. :
i The calculation of "falling" trajectory is based on the numeri- |
2 cal iﬁtegration Of the system ci' equations of motion of the rocket é
4n the powered-flight and unpowered-flight phases of the trajectary. : E
[ The ensuring of impact on the assigned ta:rget is accomplished by : \
‘ selecting the optimum time' (and the value of functional J correspond-

1 ing to it) of engine shupdown and alming a:imutq. o

: - f

The calculation of talling tragechury can be carried cut in two _
stages in the following manner: ;

1. Given: the approximate aluing ngimuth Ao', the coordinaue ' 3
of the launch point:(T,} and the range L. !t is necessary to deter- é
. mine the time of introduction of the watin instruction, necessary for ‘

obhaining assigned range L with the assigned! aimxng azimuth io .

e o SRt oy
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2. The coordinates of the launch and target peints (T, T ) : §

: 4nd the time of the introduction of the main instructlon detorminad '%
§ , in the rirst stage are glvgn. It is necessary to determine the ;
§ - precise azimuth, ‘and then the final value of the time of the intro- _ ¥

duction of the main {nstruction,

! In carrying’ out the caleculstions in the first stage for the ate
signed launch poelnt, the accepted approalmate value o the firing _ :
azihuth &nd the two randomly selected values of the time of the tn- ' 3
. troducgtion of the maln iastruction 8y and by the coginat sy of the
impact polnts (T, and Tz) are determined. From the assigned coopdie
nates of the launch polnt and the cbrained cocrainates of the lapact
points geodetic ranges L and L are determindd, Subseguently the

time of the ailn 1natructiox is mad¢ nwere precise by linear intera

pulation

t,r_—t,~} -L"l-'—‘-- (L-L,). : 1 7.1)




The calculation of the powered-and unpowered-flight phases is
earried out for obtained time t3.

The time of the introductinn of the main instruction is again
made more precise using the fomula given above. In this case it is
assumed, that

b=ty fh=],

where t — that one of the moments of time tl and ta. for which ALI,
equal to

ALi= |L—Li| {i=1; 2), (7.2)

will be less

_ This darinitiaing 13 carried out until the rollos;ns inequality
i is satisfled

al, <s(, (1.3

where e(lL) — the assigned accurney of “falling™ trajectory caicula-
tion (for pange).

The calculatlons ir the second stage are carried out for the
purpose of determiring slaing azimuth. For tho two values of the
time of the introductiun of the muln instruction 3 and ty, calou- 3
latea under cofidition (7.3), and the given azimuth Ay, the coordi- _ 3
nateq of the impact points Tl(’rl' kl) and Ta(ora. Az) and the dls- §
tance U belween the target point and a line, passing through points
T, and iy are deternined. The definitizing of the initial value of

1
azimuth 15 carried out with formula

A.—Aé+5%-‘. (7.4

where «0/93 1y calculated by the gethod of numerical diffe-~entiation.
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4 - The seleﬂtiuﬂ of aim_sa azimuth ie fluallized upon satisfying
N crondition’ ' ' ' '
§
e o
18] <a(A), (7.5)
] wirgre €(&) -~ iLhe gssigned avcuracy of the caleulation of “falling"
; Lrajectory with respect to asimuth.
;
: After se(ecting the aiming azlmuth the calvulation of "falling®
: LraJestory i3 carried out using the value of this azliuth for the
; final detersination of the time of the lolsvducticn of the waln ln-
: struction, 1.2,, the checking «f comditlen (T.3}.

7.3, CONPILING FIRING TABLES

Tabular and Actual Conditions of Rociet Lavach

The principle of oo etplitng riring tadlcs onhE %8 4% the Fule
lowing., ine ldeslized conciilong of rocec® iiwnrh - Lhe so»0allzd
Labulae canditliong, Por which ihe ceteralngtl « of dasn for fising
dows nhat pretent any spedirfic dirfMlcuitiesy st exaslined, The dif-
Ferente An the 205Uzl launah Qondilicnd frsw the Yabuisdr conditiona
i3 LaRken wite acogunt ¥ cai;ui@ssng erregtiicag. The determining
Of the sorteciiznd 4ha 1Relr Yabe.atiic iz tie crnyert of She probies
af coipliling firing tav.ei,

Gauslly they Yoy ¢ #3Ke trnkel "oty ) wxdiens & that the
possible devistlona is he aT%Gail Isav L wor.itions Trumr e Yabudad
apnditiond {lel us $pal fhooe weiatisne maMathing Tactivsd ave

' 3at by B, RWEEVEr \ i.ne
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tred 3)3ten can have Sy ttengliv oFourt Repentsal on tha #agnituee
s Say vy e Toeasw - .- . [T v ~ -0 <
of thy perturbing lastorm:s. hed, W0 T e oornlogams Lo comtiLihg
firing tabler iz selaemmatiug e < te 0 ¢
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Since it is not expedient (and also sometimes not possible) to
compensate for all the perturbing factors by the control system,
another problem in compiling firing tables is the study of the effect
of certain perturbing factors on the deviations in the NS impact
points from the target and the compensation for them by corrections
to the basic settings corresponding to the tabular conditlons.

The'mos£7important of these factors are the geophysical ¢condi-
_tions of rocket launch. The basic problem in compiling firing tables

. is the‘Obtainingfoflcorrections~in the setting data, taking the geo-'

physical conditlons of launch into account.

Moreover, in complling firing tables the necessity of introducing
corrections can arise taking into account control loop instrumental
errors, deviations in the launch welght of the rocket and in specific
thrust, anomalies in the gravitational fleld and other perturbing
factors., All these corrections in the basic setting data (with the
exception of the geophysical conditions of launch) are small values
(within the limits of a few kilometers) and their introduction into
the firing tables can be due only to an attempt to increase firing
accuracy. In connection with the fact that the calculation of small
corrections does not present any fundamental difficulties and is not

always necesséry, we will examine the questions connected with the
calculation of these correctlons.

By tabular it 1s possible to understand the following conditions:
a) The earth is a non-rotating sphere with radius R = 6371 km;
b) acceleration due to gravity is directed toward the center of

the earth and in magnitude is inversely proportional to the square

of distance from the center of the earth, i.e., it obeys Newton's
law;

¢) the acceleration due to gravity on the surface of the earth
is equal to the normal value 8y = 9,81 m/sz;
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d) the launch and target points are located on the .surface of
.the earth;

e) wind 1is absent, and the remaining metecrological elements
correspord to standard atmosphere; ‘ '

f) all the basic parameters of a rocket correspond to rated
values; o

g) anomalies in the gravitational field are absent.

Under tabular condltions the basic settings depend only on the
firing range (firing azimuth is determlned from purely geometrical
conditions and is equal to the launch-target line).

Actual firing conditions differ considerably from tabular condi-
tions. The effect of these differences on flring accuracy (with the
exception of the geophysical conditions of launch) énd the solution
of question of the necessity of taking them into account in the
basic settings depend on the control system characteristics. In
general in calculating basic settings depending on geophysical condi-
tions it 1s expedient to take into account the rotation of the earth,
the non-sphericlty of the earth and the non-centrality of the gravi-
tational field.

Calculating basic settings

Since the method of determining setting data can he worked out
only by taking into account the actual characteristlcs of a rocket,
then for example let us examine a rocket equipped with a longitudinal
acceleration integrator, the axis of sensitivity of which 1s directed
at a certain constant angle A to the initial horizon at the launch
point, by the system regulating apparent velocity and by the
normal and lateral stabilization systems. The instruments of the
normal and lateral stabilization systems and the sensing heads of the
longitudinal acceleration integrators are mounted on a gyrostabilized
platform. The programs of varliation in pitch and apparent velocity
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are considered given and do not depend on the firing conditions. The
range control functional is determined by the magnitude of apparent
velocity Wy in direction A: J = wx.

Let us examine the calculatlon of the basic settings J and AO
depending on geophysical conditions.

The problem consists in determining the range control functional
J and the firing azimuth Ay from the known geodetic coordinates of the
launch point ¢r0, AO and the target ¢ru’ Au.

Firing tables are rather convenient for practical use, 1f the
spherical firing range Lc¢, the spherical azimuth of the launch-target
line AC¢ and latitude ¢r0 in them are taken as Input values.

Values Lc¢ and Ac
mined by formulas:

from known ¢r0’ Ao and ¢

ry?

o Au can be deter-

L g =Rarccos[sIng,ysing,, - CO8 Py COS Py y COS (A=N)l:

.6
A p=arcsin sln()&“-ko)—c-‘-’i';-:'—'-'-'—* ' (7.8)
‘ sht—fg

R

in which the geocentric latitude of the launch point cr the target
point is connected with the geodetlc latitude of the corresponding
point by foraula :

2
9q ==arctg (-f;; tg?r) ) (7.7)

where a and b — respectively the semimajor and the semiminor axes of
the terrestrial elllpscid.

The dependence of settings J and A0 on Ac¢ and ¢r0 for assigned

L _, can be represented in the form of the following serles:

co
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J=Jy+ 1@+ Jo @yt .+ Su O } (7.8)

M=o F K+ Kb K

where N and M — the number of the selected members of the expansion;

¢i_and TJ — the spherical functions from ¢r0’ Acm'

The coefficients of the expansions Jl’ sees JN, Kl’ ey KM are
calculated according to the appropriate formulas on the basis of data,
obtained by numerical integration of the series of the reference
trajectories. As a result the values of coefficients Ji(Lc¢) and
Ki(Lcm) are obtained for all reference ranges of the range interest-
ing us. :

The values of magnitudes Jiand Ki for the intermediate (between ?
reference ranges) ranges placed. in the firing tables, are determined
by quadratic interpolation of dependences Ji(Lc¢) and Ki(Lc¢)'

The interval of'thelinserted ranges 1s selected so that the er- _
ror due to llnear interpolaﬁion of the tabular ranges 1n calculating !
the basic settings does not ‘exceed the permissible.

For. the final sclution to the question of the number of the mem- ;
bers of bhetéxpansion inserted into the firing tables the effect on !
firing range and lateral deflection of the last members of the expan=-
silon 1s investigated.

Evaluation of the necessary number of members of the expansions |
ié carried out proceeding from the required accuracy in obtalning
magnitudes J and AO on the basls of analyzing of the remalning members
of the expanslons, defined as the difference in the corresponding
values of functional J'(¢ro, AO) and the deviation in directlon
AA'(¢rO’ Ao), calculated by numerical integration, and of the values
of functional J"(¢r0, Ao) and the deviation in direction AA"(¢rO, AO).
calculated on the basis of the firing tables.

As a criterion of accuracy it ls possible to take the condition
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when the systematic errors in determining the impact points of nose
sections due to the rejection of terms of the expansions of higher
orders do not exceed certain permissible values.

In conclusion a number of check computations of the basic settings
1s carried out with respect to the firing tables and by solving the
equations of motion of the rocket. A comparison of the data obtalned
in this way, makes it possible to judge the correctness and the accu-
‘racy of the compilation of the firing tables.

System of Calculating and Formulating Firing
Tables

1. The calculation of coefficlents qu and pHi of the expansions
of the parameters of the end of the powered-flight phase q, and p,
depending on the geodetic conditlons 1s carried out using formulas:

N1 )
%w=q"+ 3 90 (P Ao
{m] |
N ‘ (7.9)
Pi=, PRV (90 Ao),
111

where gQu= (.ﬁ“ Yy Vx W Vy K); I’n’-’(zu. Vnc)-

The appropriate formulas and results of the solution of the
differential equations of motion of the rocket in the powered-fliight
phase the trajectory are used for a number of combinations((¢ro, AO).

i i

The results of the calculations of each parameter Qy and P,
in argument tK (from tH min to tH max) are formulated in the form
of a table.

2. Calculation of the parameters of the e¢nd of the powered-
flight phase for the selected comblnations (¢r0, AO). Formulas (7.9)

and J = Wy the results of calculations of qu and p“i, the
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recommended combinations (¢r0’ Ao) are used. The results of the cal~
culations are formulated depending on argument tH in the form of
Table 7.1. '

Table 7.1,
tx (Ao¥ro)2 Xx Yx Vi Vi / x | Vu
(Ao, Pron
t:‘nlln . o 0 s e s
‘.(AO- Pr0)m
(Ao, Proh
twax e s s 4 o @
" . . L] . : L]
(A0 Prodm

3. Calculation of spherical range Lc¢’ the spherical azimuth of
the launch-target line Ac¢ and of the correction in spherical azimuth
AAcm = Ao - Acw‘ o

Formula (7.6) and the results of the calculation of the param-
eters of the end of the powered-flight phase (xH, Yo Vx W Vy W J,
2, V, “) are used. ,

The coordinates of the impact point ¢?u’ Au are determined by
solving the differential equations of motion of the rocket in the
unpowered-flight phase for all m of the initial condltions (the pa-
rameters of the end of the powered flight phase). In this case longl-
tude AO can be arbitrarily assigned and can be taken constant for all
calculations. The results of the calculations are formulated in the
form of Table 7.2. ‘

4, The formulation of firing tables. For each reference value
of range Legh entered in the table, coefficlents ure determined.
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These coefficients for ranges lying between values Ji’ Ki, are deter-
mined by quadratic interpclation. The results of the calculations
can be formulated in the form of Table 7.3.

Table 7.2
(Aoy 9o oo (Ao, $r0)m
fx :
Acp | Lep [AAcp | / . Acp | Lep [AAco] 7
e
txa
* @ .t:::; . @
Table 7.3
L ol ol ol & |
b ey 0 1 ; N K 3 o o Kng
XN M udi B M arurm | aun Mun
KMCeK | cex | cex ¢k | il min wdn
Lmln
(1]
Ly l

For evach range (or a certain scope of ranges) the necessity of
taking into wccount all N coefficlents of Ji and M coefficlents of K1

on the basls calculating the remaining members is estimated, When
possible a portion ol the coefflolents is not taken into account.

The final number of coefficlents depending on range are inserted
{nto the Ciring tables in a given form. Moreover, coefficlents chare-
acterizing the effect of small perturbing factors on the basic settings
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are also placed in the firing tables.

From the above examined system of compiling firing tables it
follows that the basic settings are not directly their output values.
To obtaln baslc settings it is necessary to carry out a number of
calculations whose results depend upon geophysical conditions, and
also can depend on certain official rocket data (for instance, launch
welght), meteorological conditions (for instance, the temperatures of
the propellant components) and others. The greater part of the cal-
culations (the calculation of geophysical conditions, official rocket
data) can be carried out beforehand with a certain problem and certain
rockets intended for its execution.
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CHAPTER VIII ’ !
MAXIMUM FIRING RANGE

8,1. THE CONCEPTS OF MAXIMUN FIRING RANGE : )
AND GUARANTEED PROPELLANT RESERVES | o

]

The contemporary long-range ballistic missiles are intended for
delivering & nose section over long distances, including intercontinen-
tal distances. Because of thls the questions connected wiﬁh ensuring
the necessary firing range, are of significant interest, !

i

Each actual type of rocket is designed for a definite scope of
ranges, the boundary points of which are respectively called minimum
Lmin and maximum Lmax firing ranges. In firing for ranges going be-’
yond the boundaries of this scope, a rocket can not satisfy these or
other technical specifications. Thus, for instance, in firing for
ranges exceeding maximum range, the following abnormalities can arise:

i

- deficiency of propellant components;

¥

- 1088 of strength by the individual sgructural elements’ due to
an increase in the overloads at the end of the powered-flignt phase

in the atmospherioc part of the unpowered-flight p@ase of the trajecdtory; '

1
- loss of strength by the nouse section due to an increase in aero-
dynamic heating in the atmospheric phase of the trajéctory; )
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‘firing conditions, we will call optimum L

bt b o 44wt mue e mimssman

| . !
! - an increase in the dispersion of the nose section impact points
.above the permissible values, etc.

. H .
It is evident that for an ideally designed missile limitations

" of this type should simultaneously set a limit to a subsequent increase

in range. “For inétancé, there is no sense in having a reserve of heat-
shleld covering, 1f it cannot be used due to a Qericiency of propellant
or loss of rocket strength. - '

1
1

Subséquently we will examine only those limitatlions on firing
'range which are due to the possibility of a deficiency of propellant
eompopents. Thus let ug assume that the optimum trajectory and the
basic deaign parameters of a rocket are already selected so as to

. ensure the greatest firing range.
’ . i

. * N
Maximum firing range 1s a complex functional due to the parameters

and functions characterizing the design of the rocket, the engine, the
control system, the control program, tﬁe conditions of launch and
'rlight, ete, The maximum possiple firing range of an individual roce
ket, corresponding to the actual conditions of launch and flight, we
customarily call rated flight range meq Rated range cannot serve
ab design charaoberis'.c of a rocket ensuring a given spread of firing
ranges, since under actual production and operating conditions the
basic parameters of a rocket and the oondicions of rocket launch and
flight (firing conditions) are not scnblo. but vary within certain
limits, ‘

The design parameters of a rocket and the firing conditions age
cepted in calculations as standard paramoters, we will call optimum

(usually they correspond to their averaéeustatisclcal characteristics).

The flight range, corresponding to optimum rocket characteristics and
non® Doviations in the
characteristics of a4 rocket and in PMiring conditions from optimum
values, determining the deviations in vated ranee from optimut, we
will call porturbing factors,

In accordance with the random character of perturbing factors the

reglon 6f thelr vaplation and the range of the variation in rated

N L}
§
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range can be determined only with a certain probabllity 1 - €. Appar-
ently, for given probability & two boundaries of variation in rated

ranges exist: maximum L;'.'é,, corresponding to probability P (L}L;":,_.’,)__
[ §
la

279, and minimum "'e;,, corresponding to probability P (l.< ,;".';‘,
l

-, (Pig. 8.,1). Since the designer should rellably ensure the

I‘iring of a rocket in the given spread of ranges, including the attain-
ing of maximum range L max® then in designing a rocket 1t 1s necessary
to proceed from condition Lm.- Lmw+ In this case for an entire
ensemble of rockets of a specific c¢lass the reserves of propellant
ensure the shutting down of the engine upon command from the control
system with a probability of P=]—Y, 1.e., the achievement of the
assigned maximum range L max i3 ensured with a given prubabtility, It

is evident, that with probability P<l-—-‘—- in rocket launches for
Lmax depending on the actual combination of the perturbing factors

the running out of propellant or of on2 of its components can occur,
which leads to spontaneons engine shutdown, This fact 15 impermissible
because of the considerable increase in NS impact point dispersion.
Thus the shutting down of che engine of single-stage rockets and of
the last stages of multistage rockets i3 always narried out upon
instruction from the control system.

,P'-_

[ 3

A W 1 \d

T ‘m . . i an.l.'.l b o Lm ‘

Fig. 8,1, For deteminmg maximum firing range by
the method of statistical testing.

tience, maximum range L, 1s the minimun value of rated range
L,.“ » which can te attalned by & rocket, ir the propellant reserves
available on 1% ensure with an assigned reliability P=l—t. shutting
down ¢f the engine upon instruction from the control system (i.e,, upon
achievement of & specific value of the control functional). Accord=-
ingly, the maximum value of the control functional an 13 this greatest
value of the functional whose achlevement 13 ensured dy the available
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propellant reserves with an assigned level of reliability.

According to thid definition by the maximum firing range of a
multistage rocket it is necessary to understand that maximum range
which can be attained, if the propeilant reserves available on each
stage ensure with an assigned reliability the shutting down of the
engine of the last stage upon instruction from the control system.

Let us examine in more datall the connection between maximum
firing range and the amount of propellant which can be used for the
operation of the engine system., Let us visuallze a roeket flight for
maximum range under optimum conditiona. In thiez flight for the crea-
tion of thrust certaln amounts of the propellant components will be
used .p which we will call the optlimum werking reserves of the pro=
pellant components. In actual flight, in order to attaln that same
range, an additional amount of propellant c¢an be required to compensate
for the effect of pserturbing factors, for example for overcoming the
additional drag, caused by head wind. So that maximum firing range is
guaranteed by the shutting down of the engine upon control command with
a reliability of L»ui-», it 15 necessary to have on beard a vrocket,
additional (ubove working) propellant reserves, necessary to compens
sate for the effect of the perturblng factors with tha same level of
relfabllity. These addivional reserves are called guaranteed propel-
lant cemponent reserves.

Let us exatmine in more'detail the concept of guaranteed propel-
lant reserves. Lot the ririag of a series of rockets for one and the

 same mazleum range L bo carried out. In order to attaln this range

utider diverse firing ecnditions with the effect of various random
factors, 1t 1s necoasary to expend in each flight a dirferent ampunt
of prepellant. ‘The propéllant preserves, necessary for flight over an
assigned range, are the randod varlables, subordinate t5 a certain low
of probability distribution (Fig. 8.2), In order that the assigned
flight range L is attathed with a relfavility of l"?f'("a" in
order that Lon - ), 1t 13 necessary to fucl the rocket with & cer-
tain amount ur pmpeumn O, ensuring this level of rellability.

OF the total propelliant reserve Opla let us distinguish the none
working reserves Grow and the optimum working teserve Q:..,.
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Fig. 8.2. Tankage breakdown with respect to pro-
pellant function classification. -

- _ Working reserves are used as the working medium of the engine for
- ensuring maximum firing range during flight under optimum conditibns.

Non-workigg;reserVes include the propellant which cannot be used
ﬁ ; in flight as the\wprking medium of the engine, but must be loaded on
g the ‘rocket to ensure normal functioning of the engine system (propel-
§A. . 7Vlaqt4used for engine prinming; propellant necessary cavitationless
operation of the pumps; the residual non-intake propellant; propellant
expénded‘béfore launch, etc.).

7y The difference

i | O OB (Ot Gl = O

B A will rebresént the guaranteed propellant reserves.

o , During opbimum fligh§~for range L = an the guaranteed propellant

/ B reserves remain in the rocket tanks, Hence a simple method emerges

1 - for determining'the_value of maximum range ~ from the calculation of

: N optimum traJectory!of & rocket carried out with the unused guaranteed

reserves, The entire camplexity of the problem of eétimating maximum -
b range by this method 1s.transferred tu the calculation of the guar-

ﬁ; ) ":f " anteed reserves. - The degree of reliability-in ensuring maximum range

& B . .

'é. © 18 equal in this case tn the degree of reliabllity accepted in calcul-
5 ating the guaranteed reserves. . '
E:' ' The guaranteed propellant reserves are ballast reducing the max-
3 tmum firing ramge. Actually the most important parameter determining
g - rocket flight range, is the ratio of propellant welght burned in the
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ﬁ?' powered-flight phase (i.e., the working propellant reserve), to the
gross weight of the rocket. This ratio 1s greater the smaller is the

. unpowered-flight phase weight of the rocket, which is the sum of the

‘ welghts of the airframe and the engines, the nose section, the control

3 system and the guaranteed propellant reserves. Other things teing

' equal the maximum flight range will be shorter the éreater are the

guaranteed propellant reserves.

For this reason it is inexpedient to consider the effect of all
the perturbing factors only under the designation of guaranteed

:; reserves, The greater number of factors examlned as random pertur~

,} bations and taken into account in calculating guaranteed reserves, the
greater 1s the weight of the rocket with assigned maximum firing range.
A rocket, in which the guaranteed reserves would ensure one and the
same maximum range when firing both eastward and westward, as well as
in winter on the coldest days and in summer on the hottest days, etc.,
would be extremely overweight and inconvenient in operation, Thus 1t
is advisable to determine the portion of perturbing factors with suf-
ficient acecuracy before rocket launch and to take them into account

in calculating the tankage breakdown by a corresponding selection of
the working propellant reserves, Thus, for instance, in calculating

| tankage breakdown it is possible to consider the temperature (the
specific gravities) of the propellant components and the officiall
value of parameter K - the ratio of the weight per-second expenditures
of propellant components.

Although the taking into account of the perturbing factors in
calculating the tankage breakdown of the rocket propellant components
makes 1t possible to more completely take advantage of the energy
capabilities of the rocket; 1t 1s far from expedlent to take all the
known factors into account in calculating tankage breakdown. It is
& evident that the greater the number of factors taken into account in
E preparing a rocket for launch, the more difficult 1t is to ensure the
operational simplicity of the rocket and lts high combat readiness.

15 !The value of parameter K, obtained from the data of engine bench
N tests,

269

]
?4 B . O LT P e e e N .- v - . T Y AN NI AT
¥ R LA




e A Y I M ¢ LS TR T e 8 TN RGN T YT AT T TR T VS AR Y T T S T

o o e e =

Thus a number of perturbing factors is taken into account by intro-
ducing corrections either into the value of maximum firing range (for
instance, the effect of geodetic launch conditions), or into the degree
of reliabillty of ensuring maximum range.

In this way, the effect of perturbing factors in ensuring max-
imum firing range can be taken into account:

- by designating the guaranteed propellant reserves;

~ by selecting the tankage breakdown of the working propellant
reserves;

- 2y introducing corrections into the value of maximum firing
range or lnto the degree of its reliability.

In accordance with what has been sald it is expedient to divigde
the system of perturbing factors affecting maximum firing range into
two groups. Included in the first group are certain perturbing fac-
tors whose effect on maximum range is taken into account before launch
(in the tankage breakdown of the rocket propellant, in the corrections
for the value of maximum range and in an appropriate selection of the
target). Included in the other group are the random factors whose
effect 1s compensated for by the presence on the rocket of guaranteed .
propellant reserves. |

=Ty

e
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Maximum range can be found by calculation during designing. The
value of maximum range obtalned by calculation, we will call the cal~
culated maximum firing range.

It 1s expedient to subdivide the problem of determining caloculated
maximum range into two problems: the calculation of maximum range for
certain optimum firing conditions and the taking into account of the
effect of firing conditions on maximum range.

It is possible tu accept, rbr example, the following condlitions
as optimum:
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geodetic latitude of the launch polnt ¢.q = g5e
- the aximuth of ‘aiming direction Ay = 0°

- the standard atmosphere parameters;

~ the temperature of the propellant components, equal to the
temperature accepted for optimum in selecting the control programs.

The final determination of maximum firlng range can be carried
out from the results of the agréement of calculated maximum range with
the data of flight tests, which also makes 1t possible to take Iinto

account, 1n ac.ition to »ropellant deficiency, the other limitatlons
on maximum firing range.

The calcuiation of maximum range in the general csse can be
carried out by using the method of statistical testing. For this n
calculations of rated range for random combinatlons of random vari-
ables of perturbing factors are carried out and the value of maximum
range with assigned degree of reliability P is determined by statisti-

cal processing of n values of ranges corresponding to the complete
propellant burnup (see Fig., 8.1).

Since the method of -tatistical testing requires conslderable
expenditures of time (including machine time), 1t is muci simpler and
more convenient to determine the value of maximum range from a calcul-
atlion of an unperturbed rocket trajectory carried out with unused

" guaranteed reserves. The degree of reliabllity in ensuring maximum

range in this case is equal to the degree of reliavility accepted in
calculating guaranteed reserves,

The initial data for caleculating maximum range with thls method
is the launch and final weights of each rocket stage.

The launch welght G01 of each i-th stage under optimum firing
conditions is determined with the formula

aoz""‘ocyx l+agou i + nggll + a::l‘:l l""o::g;l .'*‘auu; l"l" Oo.lul-lv (8.1)
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where - CE&n, - the weight of the optimum working propellant reserve;
Cﬁgh; - the welght of the guaranteed reserves; Gﬁgbl -~ the weight of
the non-working propellant reserves; (heas - the propellant expended
before launch; (mexi - the weight of the working pressurizing medium;
Geyet - the "dry" welght of the separating part of the 1-th stage;

Gy,143 - the initial weight of the filled (1 + 1)-th stage;

From this expression the values of the final weights corresponding -
to the complete burnup of the working propellant reserves and to the
unused guaranteed reserves are determined., Then taking into account
the values of the launch and final welghts of each stage of the rocket
the powered-and unpowered-flight phases of the trajectory are calcu=-
lated under optimum fliight conditions. The value obtained as a result
of calculating the value of range 1s taken as the maximum firing range.

As is evident, the examined method 1s suitablé only for maximum
range verifylng calculations, when the guaranteed propellant reserves
are already known. Thus calculation methods are of interest which
make 1t possible to determine maximum range and the guaranteed pro-
pellant reserves corresponding to it, depending on the perturbing
factors,

One of these methods 1is based on calculating perturbed misslle
trajectories., This method is methodically simple, but it requires
O definite expenditures of machine time for the multiple solving of a
gystem of differential equations of motion of the rocket. Another
approximate method is based on expanding the expression for firing
range into a series for the parameters characterizing the motion of
the center of mass of the rocket, with the rejection of terms higher
than the first (or second) orders of smallness.

The characteristics of the determination of the guaranteed pro.-
pellant reserves, the determinations of the tankage breakdown of pro-
pellant components and the calculations of the effeot of firing
conditions on maxi.um range will be examined below. A rational solu-
tion of these interdependent questions taking into account the design
fetures of the rocket and the control system and the operating
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conditions of the rocket is a necessary condition for ensuring required
maximum firing range.

8.2 GUARANTEED PROPELLANT RESERVES

The problem of evaluating guaranteed propellant consists 1n deter-
mining the amount of propellant which is necessary for compensating
for the effect of the worst combination of perturbing factors. In
calculating guaranteed propellant reserves it 1ls necessary to determine:

4 - the composition maximum values and the probable characteristics
of the perturbing factors, besides the factors which are arguments of
tankage breakdown or are taken Into account by introducing corrections
into maximum firing range;

- the effect of each perturbing factor on maximum firing range
(for evaluating the significance of a perturbing factor);

- the amount of propellant, necessary for compensating for the
total effect of perturbing factors with thelr worst combination on
maximum firing range, i.e., guaranteed propellant reserve,

The basic perturbing factors taken into account in determining
guaranteed propellant, reserves, can be subdivided into the following
groups, complled according to general criteria:

- deviations in "dry" welght;

-~ deviations in propellant weight;

- deviations in engine parameters;

deviations In atmoaspherlc parameters;

control system errors;

deviations in the initlal parameters of motion.
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The actual-list of perturbing factors depends on the design
features of the rocket, its operating conditions, etec.

Equations of Motion of the Rocket

For evaluating guaranteed propellant reserves let us examine a
simplified system of equations of motion of the center of mass of a
rocket in the firing plane during the powered-flight phase of the

trajectory:

&V - p—X . Y

=8 gslnﬁ.

40 _Pad4Y g .

il St A

ie . (8.2)
—{#—z *

% VecosO;

dys Vsi
R sin 8, o J

which let us supplement with the simplified system of control equa-
tlons - with the equations of the regulation of apparent veloecity and
pltch angle:

. 'V. ‘
Vi l"gslnedt-‘w,x(’)? | (8.3)

a-8=¢"(f)

and with the equatlion of variation in weight

f
Q=Gy— I Odt, (8.4)

In these equations 1lift is caloulated taking the 1lift of the con=-
trol elements into account with the aid balancing equation Mz s 0,
l,e., with formula

Ys my XX
Xpg = K¢
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The aerodynamic forces are determined taking wind into accourt!®

Xe=ic, (aw, Y—;‘Z—) qwS:
4

Parameters Ai characterizing rocket design, the engine system the
control-system and the flight conditlions are introduced into the right
sides of the equation. Thus, for instance, it 1s possible to wrilte

G=X\— 6{ Mty P==d)—) -3
' 2
X=he,-> Vi,
Q

where Al = G0 -~ the launch weight; A2 = ¢ - flow rate per second; A3 =
P"m- specific thrust in a vacuum; Ay = i%i - coefficient 1in the

formula for drag; As a Sap0 - the coefficient of the altitude perfor-
mance of the englne,

The devliatlions 1n parameters Ai from thelr optimum values Ag;
A*l =).‘—7\7,

and also*in ghe %nit%al condltions VO, 00, Xy yo from the optimum
values VO, @0, Xgs ¥g!

AVO==V°‘-‘ V;|o s ey Ayo'&'yo_'y;

are the disturbing factors.

lHere 1 - the coefficient taking rocket deformation into account.
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The Effect of Small Perturbing Factors on
Maximum Firing and the Components of Guaranteed
Propellant Reserves

A Rocket without a RKS System

For evaluating the effect of perturbing factors on maximum firing
range let us make use of the known expression for deviation AL in range
L from its optimum value L¥*;

Al=L—['= AV+ A9+ Ax-l—-——-Ay (8.5)

Here L¥ = L(VYy, O, Xk, yx)s 1.e., the optimum flight range, is
determined by the optimum values of the parameters of motion at the
calculated moment of time of NS separation t,,‘;g{-;-... . oL _ the
partial derivatives determined either in the quadratures of [2], or
by numerical methods for optimum trajectory and the calculated moment
of time t *; AV,..., Ay - deviations in the parameters of motion
V(te)seens y(tx) at moment t,  of NS separation from their calculated

values

V(£ eons o° (22

Perturbations AV, wy AY arise as a result of the effect of perw
turbing factors Mi’ Certain perturbing factors also vary the moment
t, of NS separation, determined by control equation J(t ) = J*. How-
ever we will not examine the effect of this fact on maximum range,
assuming %—L‘—At,,z 0. Expression (8.5) makes it possible to determine
as a first approximation the variation in maximum range with the vari-
atlion in the parameters of motion at the moment of NS separation due
to the effect of perturbations Mi‘

Assuming values AAi to be emall and being limited to linear termn
of the expansion, we obtain

o
AVJNE- LNyeses Ay‘n-%A[“ (8.6)

Yooy x B
where the values of derivatives Oll a ' -&_;-' o\ correspond

to the optimum trajectory and to calculated moment of time t“'. We
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will not dwell on the method of determining these derivatives, since
it is examined in book [2].

Substituting the dependences of (8.6) the expression for the
deviation in maximum range (8.5), we obtain

oL
AL = Ak, (8.7)
where
oL __az. o % oy

The approximate variation in certain of the coefficlents dL/dA1
with respect to rocket flight time is shown in Flg. 8.3.

L it
2| 06 ;
| e
e | «f

aL
TGN

{tk= sec
Fig. 8.3 Derivatives dL/OM depending on rocket
flight time in the powered-flight phase of the
trajectory.

Designations: %%; - %%3 » ﬁ? = égy

The loss in distance A11 due to the effect of perturbing factor
Axi can be compensated for by the operation of the

engine system during
the course of time At“i, equal to

L
A‘Il-'el—!" (809)

a1

B . o 2




P L

R R

where : ‘
L—-"—--——-O OL -aL. )
b Vit é+ +a”y (8.10)
i H
- the derivative, which takes into account the variation in firing
range with varlation in engine operating time (in a small vicinity of
moment t *), and the values of all the magnitude in the expression for
this derivative are determined f'or the optimum parameters pr motion
v'(tK*),...,y‘(tK*). i
The propellart expended during the additionai time At“i::
AGRL =0l (8.11)

. * ' \
where ¢ = 0'(tN), is the component of the guaranteed propellant recerve
which compensates for perturbation Aki for ensuring optimum maximum
firing range L%,

The components of the guaranteed propellant component reaerves
are distributed in accordance with the formulas.

AGY, a=k—;— AGiea.

AOr? = E;-l-l. AGi,..

A Rocket with a RKS System

In this case the effect on the motion of a rocket of the over-
whelming majority of perturbing factors 1is compenaatbd for by a cor-
responding variation in engine thrust by varying the propeliant sonw
shmption per second 6. The indicated fact makes it possible to
substantially simplify the determination the components ot-che guaran-
teed propellint resepves, having placed at the basis for the caloula~
tion the equation of the ideal operation of the RKS system:

P—x,a% Wit ’ (8.13)
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This one equation already makes 1t possible to determine the com-
ponents of the guaranteed propellant réserve AOtou.u as perturbations
in the final weight of the rogket AG “i? brought about by perturbations

in the thrust, and drag forc.es dur to the effect of perturblng factors
AAi

The effect of the perturbing factors on the losses in maximum
range (whén a guaranteed reserve ‘does not exist, ) can then be deter-
mined on the basis of the following considerations., An overexpenditure
of propeéllant by mdgnitude AO,,,(!,) due to the effect of perturbation
M leads to premat:ure engine shutdown (due to burnout) at moment
l..‘alu “‘A!g‘ (Fig,. 8. l&) and to a loss in range

0 AL=ial ,=z£9.u_--- AG, (8.14)

I

whuere %a%‘- the depyivative determined for the optimum trajectory

. . ]
and t2. . : .

¢
& )
¢'(1)
H 5’“ 'n‘l ¥
‘u » - ) . Jﬂﬂ.
X Joretg $'113) i
] ) ) .i
P

Fig. 8.4, Ror determining the yuaranteed pro-
pellant Peserve for almcket with a mgs systemn,

1

. The componient of guaranteed propellant poscerve AG::!.:, necessary
in orderr to ensure engine shutdown upon the 8ignal from the control
system, will be ! -

G‘fiﬁ..—-- - A, ' (8.15)

;
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Let us examine 0G,/dA; using as an example the method of detere
mining derivatives. Let us consider that an engine system consists of
the main and the controlling engines; the regulating of apparent
velocity 1s brought about by varying the flow rate per second of the
maln engine,

Let us investigate the effect on the final weight of a rocket of
the following basic design parameters:

\=0, - the launch weight of the rocket;
A’ p“" . .

=Fyaa - the speciric thrust of the main engine;
AympPl, .- the specific thrust of the controlling engines;

A‘né’- tue propellant flow rate per second through the con-
trolling .engines.
» M

Lot us represent the expresslon x_‘ér’engine systen thrust (1.35)
in the form '

PP Gt Pl = (S LSV L. (8.16) f

Taking Into aceount that : _ :
A0 0, | (8.17)
a .

we will obtain A
P ...p;z.‘-';‘-:--P;:';.é'+:>;.,.6'—(s.p.)'“-;’:—(s.p,)?~£-. (8.18)

‘Differentlating equation (8.13) for parameters A,, we have
| P Wy . (8.19)
—— ==o.
Ay Ay ¢
Derivatives JPJO), are detersined by differentiating the expres-
sien for thrast (8.18). Thus, for inatance, for Ay=Gjy we have

9P o pme 9 (4G
Gy ""ac.(a ’
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Carrying out analogous operations for other Xi
order of differentiation, we obtain:

oP ocu

v b —pynn

3Gy

i o)’

P — poc:' d (6;:?“ ) + G

_‘”’32?. ™

Substituting the obtaine

mining the derivatives 9GO\

ya.o

op ocw 4 LY 1Y,
P)&I di (OPg..,)-*-G [

oP P;a o ( ?‘g‘) uu ot P}'u.a. |

o

d expressions of

In the rorm:

and varying the

(8.20)

-

the derivatives of (8.20)
into equation (8.19), we obtain the differential equations for deter-

;i',(f_'?,.),.,.ﬁ_'.,,:‘!f.;.o; |
i dt \3Gq | 4 3Go
dt 8U, & fu ;:.‘n Pn.u _:
"5»( %‘ a__ 61 . (3.21)7 ?
dt dP’ g t”’.”‘. P"..
L(ﬁ)+ ‘Uﬂ __QG Pyan -1. 4 %
e 60' ”.’ 6&’ "..' J ' - : }

The iritial eonditiens for sslving the differentiul equations of
(8.21) are the following:

' - - 22) 20 viore fulods
g | 1 71-0 (8.22)
- =0
; Bach of the eguations of (E 21 gs & Inear differential eguacion
< B of the lst order e
o a f o v, o0 ;
et o A Gun————. S -

the sclution of which givesd the denlred dertvstives of the flnal weight
with mespect Lo the desigh parasetesrs of ihe rocket '

23




i - i\f "" 9} (Pt

-d -' _u{\ Be“dt+(oh )x o]l' )

where
Q= xl (tx) *
ePSE,
Using Tsiclkovsky's formula
'ﬁ’-'xl (tu)‘: ""Pyxuglﬂt"xv

where )
G(ty) G

the= Gy G '

(8.24)

(8.25)

(8.26)

(8.27)

we will obtain approximate expressions for 0Gy/0); in the final form:

ac gt )
m p
. 60,: _ Gocnao (p. —p )
5P;i" Oy (nocn P;. I'l) L] K
— e ———0 P F"
ap;‘.n p;:nn__ P;xn ( (3 K)
G, __ Go (me — 1)
oY~ &Y v
* y

(8.28)

where n--—’;g-:-,}"— ~ the ratio of the specific thrusts of the englne system

yan
as a whole and of the mailn engines,

I¥ controlling enrines are absent, then
a0y Gy

a—

Inp, =—
Pya,u : PyA.'l

Inp,,
a‘oyl." PK FK

In Fig. 8.5 the al.»roximate variation in derivatives '0‘0‘0"

during the time of flight t = t is shown.
ya.n

ro
o
N

B oS gl s )

(8.29)

and
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€ian - 064
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" teee= sec
Fig. 8.5. Derivatives 0G/dhx depending on. rocket flight time

in the powered-flight phase of the trajectory.

we_ _ kgf
Designation: Sen Sec

Expressions (8.28) and (8.29) are approximate due to the use of
Tsiolkovsky's formula (8.26). With an increase in range the accuracy
in determining the guaranteed reserves is increased with the aild of
thesc expressions. The most precise results of expression (8.28) and
} (8.29) are given for the second and all the subsequent rocket stages
whose flight occurs practically in alrless space.

Total Guaranteed Reserves

- The determining of total guaranteed propellant reserves ls carrled
out taking the following circumstances into account (for generality we
will examine multistage rockets).

1. The guaranteed reserves of the l-th stage are czlculated on
. the basis of an assigned reliability of ensuring maximum range {(for
single-stage rockets) or of an assigned rellability of engine shut-

down upon the command of the control system (for multistage rockets),

2, The dlstribution of the guaranteed reserves with respect to
the rocket stages is carrled out so that the losses in range will be
minimal. 4 .

3. It is assumed that the degrees of rellabllity in designating
the guaranteed reserves of each of the propellant components are equal
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to each other and are egual to the degree of reliability of engine
shutdown upon instruction from the control system.

L, It is assumed that the perturbing factors obey the normal
distribution law, with the exception of certaln perturbing factors,
the probability nature of which is more accurately characterized by
the law of uniform probability density distribution.

Included In these, for exampie, are:-

- the deviatlions in the specific gravitlies of the oxidizer and
fuel due to variation in the chemical composition of the fuel during
its storage;

- the deviation in parameter K due to the difference in the tem-
perature of the propellant components from the optimum,

5. 0f the totality of possible values of a perturbing factor
characterized by the distributive law, only those random values are
examined which adversely affect flight range.

6, The maximum values of the perturbing factors and of the com-
ponents of the guaranteed reserves correspond to the degree of relie-
abillity of ensuring maximum firing range B. Thus, with probahility B

AN} S aaus -
(8.30)

ra
Aoro?ul < uﬁ”,

where u - the argument of Laplace function ¢(u), corresponding to
probability ¢ = B; % and of* - the standard deviations in the i-th
perturhing factor and the corresponding component of the guaranteed
reserve, )

% 4 Taking the indicaved circumstances into account the value of the
total guaranteed reserve of propellant component (oxidizer of fuel)
of a glven rotket stage 1s determined by the formula
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ay*? =1 / S (aGii), (8.31)
{ .

G)*=u 1/2 (5*) = adly?, - (8.32)
' .

or

where J - the subseripi of the nropellant component (ok [ox] or r [£]);
032 - the standard deviation in the total recerve of the J-th propel-
lant component.

Let us note that formula (8.31) for determining the total guaran-
teed reserves of oxidizer and fuel is approximate, since 1t 1s based
on the assumption, that all the components AG?p obey the normal dis-
tribution laws. If in the total guaranteed reserves the portion of
components, obeying the law of uniform density, 1s significant, it is
more correct to carry out the composition of the various distribution
laws in accordance with the methods of the probahility theory. The
reliability of the series of premises, on which the calculations of
the guaranteed reserves are based, cannot be reliably checked in the
design stage. 1In particular, it can turn out, that the assumption
concerning the normal distribution laws of such perturbing factors,
as variance in parameter K, errors in propellant loading and others,
is only approximately satisfied: the values of the perturbing factors
accepted in the calculations are insufficiently rellable; the principle
of summing such components of the guaranteed reserves, as the deviation
in parameter K, with the remalning components will be subject to addi-
tional substantiation, etc., As a result of thls the calculated values
of the guaranteed reserves and the calculated maxlimum range corres-
ponding to them cannot be highly reliable. Thus 1t is advisable to
somewhat increase the calculated values of the guaranteed reserves.
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The Distribution of the Guaranteed Reserves
Among Rocket Stages

The Shutting Down of the Engine Sycstem
cr a Separating Stage Upon Command from
the Control System

On multistage rockets the shutting down of the engine systems of
separating stages can be carried out upon instruction from the control
system upon the achlevement by the rocket of the presceribed value of
the controlling functional,

The shutting down of an engine system in such a manner assumes
the presence in the separating stages of guaranteed reserves, necessary
for compensating for the effect of perturbing factors (deviations in
specific thrust, welght and aerodynamic characteristics and others)
and ensuring with the required reliability the shutting down of the
engine systems of the separating stages with assigned values of the
controlling functional. The effect of the perturbing factors acting
on the rocket after stage separatlion, 1s compensated for by the guaran-
teed propellant reserves which are located on the subsequent stage.

For a multistage rocket the degree of reliability of ensuring
maxlimum firing range is

B=B,Bs...B..By, (8+33)

where I - the number of the stage; n - the number of stages; Bz - the

reliabllity ct ensuring the maximum value of the control functional of
the I-th stage on condltion that the (I - 1)=th stage has attained the
maximum value of the functlional,

Letius examine the proolem of determining for the assigned value
B of such values of B, which, satisfying condition (8.33), ensure the
greatest marimum range. For solving this problem we will examine the
deviatlion in maximum range from the value corresponding to that case,
when the guaranteed propellant reserves at each stage ensure the
achleving of a control functional with a level of reliability ¢(u¥) =
Bs With values of the degrees of rellabllity Bzaé B the guaranteed
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propellant reserves of the I-th stage vary by value

AGP? =oPAu; | .

Au=u(B))—u(B), ‘
where u(BZ) - the argument of the Laplace function corresponding to
degree of reliability BZ; cg? ~ the standard deviation in the guaran-
teed reserve of the l-th stage, determined in accordance with formula
(8.32).

The variation in maximum range due to the variation in the guaran-
teed reserves of each stage by value AG?P 1s determined by expression

ALai{(b—‘;%)‘ [4(B)—u(B)] oi?’} . (8.35)
1lw)

where (%) - the derivative of maximum range with respect to the
x/1

final welight of the I-th stage.

Relationship (8.35) expresses the dependence of the increase in
maximum range on the degrees of reliability of ensuring the control
functionals of all the rocket stages, and taking into account expres-
sion (8.33) and on the degree of reliability of ensuring maximum range.

In view of the small number of stages (I = 2=-3) the investigation
of expresslon (8.35) for the extremum can be readily carried out by
numeriocal methods., Figures 8,6 and 8.7 show the approximate variation
in the maximum-range of a two-stage missile depending on the degree
of reliabllity of ensuring it.

The Shutting Down of the En?ine System of a
Separating Stage upon Propellant Burnout

For reducing the guaranteed propellant reserves on multistage
rockets the method of shutting down the engine systems of the separ-
ating stages (excluding the last one) upon complete propellant burnout
(or of one of the propellant components) can be used., The shutting
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down of the engine systems upon burnout makes it possible to usé the
quantities of the guaranteed propellant reserves in the separating
-stages (excluding the last one) as working reserves., In this case the
compensating for the effect of the perturbing factors acting on the
rocket during flight in the powered-flight phase of the trajectory,
1s carried out in the last rocket_stage. The placing of guaranteed
reserves only on the last stage makes it possible to more rationally
use the propellant reserves and due to this to considerably improve

the energy possibilities of the rocket (to 1ncrease maximum firing
range or the payload weight, ete.).

3
Fig, 8.6, Variation in maximum firing range
depending on the rellabllity of ensuring it.

ALy,

alLts,

/ 8,08

5

Pig, 8,7, Variation in maximum firing range

depending on the rellability of ensuring the
controlling functionals with the rellabllity
of ensuring the controlling functionale with
the relisbility of ensuring maximum range B,

The shutting down of the englne systems of separating stages can
be carried out with respect to the first burned out component upon a




signal from the fuel residue sensors or from the sensors of the simul-
taneous tank emptying system.

An evaluatlion of the advisabllity of shutting down the engine
systems of rocket stages upon propellant burnout can be carried

out by comparing the maximum firing ranges ensured by various means of
engine system shutdown.

‘Reducing the Guaranteed Reserves by Regulating
the Expenditures of the Propellant Components

An increase in maximum firing range can be attailned by installing
a speclal propellant component metering system on the rocket.

If special measures are not taken, then during the operation of
the rocket engines devliation from the optimum value of parameter K
always appears (l.e., the ratio of oxidizer and fuel expenditures), as
a result of which the situation can arise, when one of the propellant
components will be completely consumed before the moment of the intro=-
duction of the command for shutting down the engines during firing for
maximum range. To elimlnate this situation it is necessary to have
onboard the rocket an additional amount of the first and second come
ponents, This additional amount of propellant constitutes a great
part of the guaranteed reserve and, in order to decrease it, it is
expedient to use some system for regulating the propellant component
expenditures ensuring the required ratioc of propellant components,

For the purboeé of more rational use in flight of the propellant
reserve avalilable onboard the rocket, simultaneous tank emptying systems
are finding broad application.

This system is intended for regulating the relative volumetric
propellant component expenditure, It includes propellant component
level sensors, installed in each of the tanks, a computer which works
out the instructions, and actuating elements,

The installation onboard a rocket of a simultaneous tank emptying
system makes it pussible to:
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- substantially decrease the guaranteed propellant reserves and
thus, to inerease the maximum firing range;

- reduce the requlrements lmposed for the accuracy of adjustment
of the engine system with respect to parameter K and for the accuracy
of filling the rocket with propellant components;

-~ simplify the preparation of the initial data for fllling the
rocket with the propellant components.

As a result of installating onboard the rocket of a propellant

component flow regulating system the maximum firing range is changed,
which is due to:

- the reduction in the guaranteed propellant reserves;

= the increase in the "dry" weight of the rocket due to the
installation of the control system;

=~ the reduction in the specific thrust of the engine system,

A reduction in the guaranteed propellant reserves occurs due to
the component of guaranteed reserves intended for compensating for
the variance in parameter K. With the installing of a simultaneous
tank emptying system this component i1s eliminated, and the incomplete
expenditure of one of the components is due only to an error in the
control system,

3

For evaluating the advisability of installing one or another prow
pellant proponent flow regulation system the total gain in firing
vange oan be determined by the formula

Az.--a-.g-”'z:(o,.,+o:f:—o"’)+3-a‘-’-f:(0'f'- ay) +

oL
+ 0Pys.e (P;ﬂ"' P’l.l)o

(8.36)

where O,, - the weight of the control system; 0.',':, G™ - the weight
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: of the guaranteed propellant reserves with the presence onboard the
sk rocket of a control system and with its absence; P;‘Z. --P,,,‘Il - the
: difference between specific thrust of the engine with a control system
exists, and without 1it; ‘dL-'. - the partial range derivatives
. aacyl aatonl

with respect to "dry" weilght and propellant weight respectively.

: . Despite the fact that the welght of the rocket is increased due

§ to the welght of the control system, the total passive weight of the 5
? rocket 1s decreased due to the significant reduction in the guaranteed '
: propellant reserves, as a result of which the maximum firing range is ;
substantially increased. '

8.3, DETERMINING TANKAGE BREAKDOWN

By filling method we will understand the principle of determining |
the breakdown of the propellant components loaded onboard the rocket,
and not the method of the technical realization of this prineciple. :
The £illing method influences not only the energy characteristics of i
the rocket and its operational convenience, but also the design of the
control system and the rocket as a whole, for example for a number of
control programs due to the permissilbe limits of boosting and throts
tling of the engine and by varying the launch weight of the rocket
with the presence of the apparent velocity control system,

In connection with this an important problem arises with respect
to selecting the method of determining tankage breakdown, in the very
best manner satisafying the requireménts of reliable ensuring maximum
firing range and operational convenience of the rocket.

Nethods of Determining Tcnkagu Breakdown
and the Requirements, Imposed on It

It is possible to formulate the following baslc requirements,
taking into account which should be selected for the method of deter- i
mining tankage breakdouwn: ' §

- the most complete utilization of the energy capabllities of
the roocket;

291




- convenience and operational simplicity of the rocket under field
conditions, reducing to a minimum the time, necessary for determining
tankage breakdown in the prelaunch period; - ' _ Y

. §

- maximum simplification of the design of the rocket, contrel

system and engline system,

Besides these requirements, when selecting the metﬁod of calcu-
lating tankage breakdown another series of initial conditions is
assumed which is due to the design characteristics of the rocket and
its subassemblies, and also to the specifics of field operation. Thus,
for instance, for all filling methods the following:conditions are
usually taken as initial: ‘

- the launch weight of the rocket should not go deyond the pers
missible 1imits which are determined, for example, with the presence
of a . RXS system, by the maximum permissible filling of this system or
in the absence of such a system, with the maximum permisaible value ’
of tlight range reduction;

- the guaranbeed and non-working propellant component reserves °
are determined for their optimum temperature and are assumed constant
-in weight (or in volume) in the operating range of the propelilant
cozponent temperature variation; '

-« the maziaum propellant component rilling doses should not exceed ¥
the available volumes of the propellant systems (tanks and conduits)

under all operating conditions; l

7 « the working reserves of oxidicer and fuel should be in a ratio
which makes it possible to coupletely use them up:

« the propellant compohent f1lling doses are selected for max-
isum firing range and resain constant in the taken firing range spread.

Bosides the indicated conditions, it is possible to name addl-~ °
tional requirements, only characteristic¢ of an actusl given method of
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f1lling and of 'a type of rocket. These additional conditions will be
examined below with the characteristics of the basic methods of filling,
i i N

» Among the number or possible methods of filling it is possible to
distinguish the following basic ones.

i
i R

1)  "individual® filling;

+ t '
H .

'2)  filling with weight doses; ,
31 filling with volume doses,
! : _ - _
' Let us briefly examine the charaoﬁeriatics of these methods,

With the individual method the filling doses are determined by
taking into account certain actual characteristics of individual
rookets, the propellane camponents and the firing conditions so that
it s possible to wmore completely use the volumes of the fuel systems
and to obtain a gain in flight range. It 15 evident that it 1s also
possible to propose a large number of possible individual filling
methods dlrfering from egehother in the number and the wmakeup of the
perturbing factors belng considered. In principle it is possible to
work out such an individual £illing method which will make it possible
to take into socount everything known at the moment of the onset of
the deviation in the paraaatars affecting the energetic characteristiocs
of the rockes, (the tenperature'or the oxiditer and fuel, valus of

iparameter X of the ‘shgline, the volumes of the fuel aystens, the dry

welght of the roeket etc.). Howaver the ennsidering of a large num-

" ber ol perturbing factors with an individual filling method reguires

the execution of a considerable volume of coiputational operatiens in
the prelauneh period and increaseés the time lor preparing the missile
rer Jaduncii, Noreover, the individual filling method also has the
following deficléncy connected with the operation of the rocket.

Since with a given method maximum utilizatlon of the avallable tank
volunes 13 assumed, the tiise for positioning the fillled alssile on
the 1aunéh pad 1 limited because the vartation in an;’ent tetperature
can lead to an increase .or a decrease in the tonperature of the pro-

pellant coapouents and to a variation 1n their volumes and, as
]

n
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consequence, to the overfilling of the fuel systems or to an uncal-
culated operating regime of the engine system in flight. Por the
indicated reasons the use of the individual filling method is advan-
tageous only for carrier rockets.

From the point of view of operation and the readiness of a rocket
for launch most expedient are the methods of servicing a rocket with
working propellant reserves, not dependent with respect to weight or

volume on certain perturbing factors.

With the weight method of servicing the welght of the propellant
components loaded into the rocket is constant in the given temperature
range; the distribution cof the fueling doses between oxidiger and fuel
15 carried out in such a wanner, so as to ensiys equivalent losses in
. range with possible variations in temperature up to the boundaries of

a given range. (Variation in temperature affects the weight ratio of

‘the per-second propellant component expenditures X ana thereby value
of the unused remainders of oxidizer and fuel),

However the appilcation of sueh a servicing method gives rise to
the necessity during the deslgning of a rocket of specifying for addi-
tional tank volumes providing for the possibility of the expansion of
the volumes of the loaded propellant compouents 1n a given temperature
range. Such a method of servicing 1s especially undesirable for
ground-based 1auﬁeh§§; when the range of possible temperature varia

tions of the propellant corponents 18 rather broad (about 100°C), and

- & sysiem of thertostatle control 1s not specified,

 Por rockets, equipped with RKS systems, the advantage of the
welght Fueling method 13 the fact that the necessary limits of engine
boosting and throttling in view of the absence of perturbetions in
launch weight are narrower than in the case, when the weights of' the
fucling dodes depend ch the tespersture of the propellant components.

With the volume method rocket fueling with propellant components
is carried out with constant volume doses of oxidizer and fuel under
@1l rocket operating cotiditiocnis; the ratio of the volumes of oxidiger
and fuel 15 sclected {roa the condition of complete expenditure of the
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working propellant reserves under optimum conditions.

The fueling method affects the necessary volumes of the propellant
systems and through them the rocket design. The interconnection be-
tween rocket characteristics and the engine system, the system of per-
turbing factors and the fueling method can be traced using as an
example the determination of the necessary volumes of the propellant
systems, '

Determining the Necessary Volumes of
Propellant Systenms

Let us carry out a determination of the necessary volumes of pro=
pellant systems proceeding from a given value of the optimum launch
weight of a rocket {or stage) Ggy+ Using formula (8. 1). let us find
the weight of the optimum working propellant reserve Gma. after all
the other qomponenbs of launch weight GO have been determined.

The weight fueling doses of oxidizer and fuel are determined by
- formulas:

N A ' (8.37)

swhere R « the ratic of the weight per»secbnd propellant component expen-
ditures under optimun condxtxans.

The maximum possible volutie fueling doses Vf:' and VI are cal-
¢ulated taking the fueling method into account. Since the weight
wethod provides the loading of weight doszes of oxidizer and fuel inde«
pendent of thelr tesmperature, the maxismum possible Fueling volutes are
determined for the maximus tempuorature of a given range:

: {8.38)
V"" .__J_—
a"u’““

3

3

2,
~he

where ) - the propellant component subscript (on [ox]) or - [r]).
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With the volume fuelihg method the maximum volume fueling doses
are equal to the optimum: A )

maz Gy .
22— .(8.39
7 (8.39)
.To the maximum possible volume fﬁeling doses it is necessary to
add the minimally permissible .free volumes -in the tanks, necessary for
normal operation of the pressurlzation system l’:ﬂu, and also the vol-
umes AVJ, necessary for variations in the fusling doses due to random

factors - errors:in fueling (metering) the propellant components and
errors in manufacturing the propellant tanks.

Finally the necessary volumes of propellant systems are determined
by the formula

VPP=Vi=+Vaiiav, (8.40)

Determining Fueling Doses with Assigned -
Propellant System Volumes

To increase maximum firing range it 1s n-cessary to as completely
as possible use the volumes of the propellant tanks. Let us examine
how 1t is possible to solve this problem wlth weight and volume methods
of fueling a rocket with propellant components.

Foy the wovking range of temperature variation in the propellant
components T72<Ty<Tj* let us determine the rated volumes of pro-
pellant systems (let us disregard the effect of temperature on the
volumes of the ma;n propellant iines VMJ):

V’}“'(TG‘)=V61(T“)+ Vul""' Vg;"‘AVlu (8. ul?

whare Vej(Tox) - the volume of the propellant tanks depending on tem-
perature:

V(T a)=ViP (1430 (T — T

aJ - the coefficient of linear expansion of -the taﬁk material.

Let us find the ratio of the working reserves of the propellant
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components K5=G§JG¥, which is mainly determined by the rated volumes
of the propellant systems:

« Tex) an Yox (T ox)

IDI

VESUT ) Tog (T o) — G22P JosCex)

Tox
Ks(Tod = p . (8.42)
VI (T 1, () -5 20 o TeCon)
r r °

Parameter Rk(?Bn) is necessary ir order to determine, which of
the propellant component tanks is limiting depending on propellant
temperature. The temperature range of the propellant components, in
which the rated volume of:the oxidizer system is limiting, is deter-
mined from condition K{Tox)>&s(Tox). If K(Tox) <Ks(Tox)s then the
volume of the fuel system is limiting.

Let us determine the loading of propellant component doses with
the weight method in the following manner.

Using the formula (8.41) we find the rated volumes of propellant
systems at maximum possible temperature l/f“'(Tmax). The ratio of
working propellant component reserves determined by these rated volumes,
is equal to
VE:"’ (Tmax) Tex (Tmax) — Gg? ""G::’

Ko(Taw)= VR (Tmax) Tr (Tiaz) — G¥°P -G

(8.43)

It 1s natural to assume the non-working and the guaranteed pro-
pellant reserves with the weight fueling me_thod in the working temper-
.ature range is constant in weight,

Let us compare value K5(Tmax) with the optimum value of parameter

K. For the case, when K"™M3Kq(T ), we compute the welght fueling

doses of propellant components in the following manner:

the welght fueling dose of oxidizer
0" (T) V”“(me)vou(rmx): (S'M)
the welght of the working oxidizer reserve

Gox(T)) =G, (T)— Go? —G%; (8.45)
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the weight of the working fuel reserve

GP ()
G’.’(r)=—°;";,;—: : (8.46)
the welght fueling dese of fuel _
G(T)=G%T) + GI* -G, (8.47)
For the case, when Kf“'<:ﬁ3(Tmax), we calculate the weight fueling

doses in a similar manner, first determining the fueling dose, then
the working fuel reserve and finally the working oxidizer reserve and
the oxidizer fueling dose.

With the volume method the determination of the fuellng doses 1s
carried out in the following manner. The rated volumes of the propel-
lant systems and the ratio of the rated working component reserves are
calculated by formulas (8.41) and (8.42). )

when K"™>Kg(T"™) the weight fueling doses of oxidizer and fuel
are determined by formulas:

© Gu(N=V&" (T vax (T): (8.48)
Gnk (T) ot G:GP ,__G;:P
0,. (T) = X (7‘; + G:GP + ol"ap. ( 5.49)

When K"*<Kg(T"™™) the determination of the weight fueling doses
1s carried out in a similar manner, with the exception of the order:
of calculating the doses: first the fuel dose 1s calculated proceeding
from the rated volume of the fuel system, and after that the oxidlzer
dose,

With the volume method of calculating the fueling doses with a
temperature increase the welight of the propellant belng loaded
decreases, which gives rise to a certain reduction in maximum range.
However the volume method of fueling makes it possible to use a tank

simultaneous emptying system, which increases the maximum firing range.
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8.4, THE EFFECT OF FIRING CONDITIONS ON
MAXIMUM RANGE

As was noted above, certaln perturbing factors are not considered

in calculating the fueling doses and the guaranteed propellant

reserves. The effect on maximum range of such factors, as geodetic

and meteorolcgical condiftions can be considered by introducing appro-
priate corrections into the value of maximum range. For this reason
maximum range is a function of certain firing conditions.

Most frequently the arguments of maximum range are the tempera-

tures of the propellant components of the time of rocket launch and
the geodetic launch conditions,

The effect of propellant temperature on maximum range (or on the
maximum control functional) 1s manifested in two ways: through the
variation in the engine parameters as well as through the variation
in the engine parameters as well as through the variation in the com-

ponents of thg,fueling'doses, and it can be approximately evaluated
..»>with the aid of the expressions given below.

' 38 OPyan S 06, 35 oGy , oS 9Q ) N (8
AS-—-“‘"( — + l (3 — . ( .50)
oP ya.n -‘,?T oG oT 0Gy or aax‘ oT (T Tnon)

With the presengé.of an apparent velocity control system

AS:::: 63‘”((?0& 000 ‘l"‘ wl( -L‘ an BP".,, +
9G¢ \oGo oT oT . ' 0Pygn OF

3G, 90" .
"l" oGy "5}‘) (T"‘Tnou)v

(8.51)

where S - the firing distance L or the value of the control functional
g; %Pyn, 00 : - the derivatives of specific thrust and of the
or - of ' ToT

per-second expenditures of the engine system and the controlling

engines with respect to propellant temperature;-sfl; §§¥,_ derivatives

of the launch and final weights of the rocket (stage) with respect to
propellant temperature.

With large deviations in the launch and final welghts more
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accurate results, than with the use of formulas (8.50) and (8.51), can
be obtained by mathematical modeling of rocket motion on a digital
computer, '

A substantisal effect on maximum range is rendered by the geodetic
launch conditions which are characterized by the values of the geodetic
latitude of the launch point ¢r0 and the azimuth of the aiming direc-
tion AO. The dependence of maximum range on the geodetic launch con-
ditions Lygp(@ro, Ao) 1s used for determining rocket operational zone,
within the limits of which the rcaching of targets is possible. This
zone can be found as a result of caleculatling the trajectories of the
.powered~- and unpowered-flight phases with various values ¢r0'and Ao,
and also using the final formulas of elliptical theory. In the latter
case 1t 1s necessary to disregard the variation in the parameters of
the trajectory in the powered-flight phase because of the rotation of
the earth. o

The characteristic dependence of the variations in maximum range
“on the geodetlc firlng conditions for rocket conditions 1s represented
in Fig. 8.8, '

T ALY% . : Fig. 8.8, Variation in
o maximum firing range
. under various geodetic
& ‘P"’s. . conditions .
‘;Z”" : Key: (1) grid.
re

?;““
0 ‘

. (1) .
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In the case of rocket launches under various geodetic conditions
variation in the values of the guaranteed propellant component reserves

.1s also possible, in order not to permit substantial variations in

the maximum firing range and in the reliability of ensuring it. Thus,
for instance, for rockets, not having RKS systems, during launches in
a westward direction the value of guaranteed reserves should be in-
creased, and during launches eastwards - decreased with respect to the
value of the guaranteed reserves calculated for launches in a northerly
direction. Another approach is also possible, when for constant max-

“imum range the value of the guaranteed propellant reserves 1s main-

talned constant under all geodetic firing conditions and the varlation
in the reliabllity of ensuring maximum range 1s consildered.
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