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4. . l

aThis boo 'is devloted to aquexaminato of the itr

action of various parts of the rocket and the
control system, and also to the inLterdependent

* solution of problems of ballistics, dynamics,
coptrol and firing', to the subord3inate require-
ment of optimiz~ing the basic characteristics of
the missile - maximum range and firing accuracy.
The flight conditions of the missile, the Oharac-
teristics *of the missile as a guided mechanical
Isystem, the general equations of motion of the
rocket, setting data for firing, rhximum range,
*launching dynamics and separation processes, the
dynamics of' the unguided nose section missile-
deflection.1 the selection of the'opthum trajeo-
tory are examined.-

This bbok is intendel fbr engineera and
scientists who are inv6',ved with questions of
missile ~design and rehdarcoi and missile control
systems. It will also be useful to students

* pursuing a~4vanced .Oollepe courses in. correspond-

96 met jido s olv ing . 9 tanbles o3 biblio-
graphic s ntries.

Reviewed by Doctor of Phyllot-Kathematical Scienues 0. S nt arima-ov
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FOREWORD

This book examines some problems of the ballistics of long-range

guided missiles. The selection or these problems was influenced by
the monograph "Ballistics of Long-Range Guided Missiles" by R. P

Appazov, S. S. Lavrov and V. P. NMihin. The authors of this book

have first of all attempted to develop those sections of. ballistics

which were only covered briefly or completely omitted in the mentioned

monograph.

In :the practical work ot engineer•s involved in designing any

products, the necessity of s-ving and correlating numerous inter-

dependent problems and questions tor the purpose of ensuring diver-se

and usually inconslstent technical specifications, Imposed or. a

product is characteristic. In this case the *olution or any design
problem is begun, as a rule, by the engineer by compiling or sub-

stantinting a rational mathematical model of the product, sufficiently

complex for obtaining the correct answer to the posed question, and

at the same time.ourticiently simple, so that the expenditures of

labor and time on the calculations are not excessively resat.

"In connection with the Introduction of contemporary cov,-uter

technology into engineering practice making it possible to solve

very complex technical problems, the importance or operations in the
compiling and substantiating mathematical models has Increased and

the-ezpenditares of" labor by engineers on these types of operations

have become greater. Considering *hat has been stated,, In stating

the main problems or ballistica (invoetigAting the motion of a aiaslle

4D-*T--24-l76-.1l vi



in the transitional phases of the trajectory, investigating the wncoion
of the nose section, calculating the dispersion of the nose section
impact points, selecting of the type of missile trajectory, determining
the setting data for missile launching, ensuring the uigximum tiring
range) the authors Intend:

1) to show the characteristics of a long-range guided
ballistic missile as a very complex object of dynamic design and to

A show the connections between ballistics, dynamics, control, firing,
strength,, construction and operational questions;

2) to examine the mathematical models employed in solving
various ballistic problems, to show the dependence of the relationships
considered in the models on the purpose of the Investigation and the
design specifications imposed on a missile, 9nd also to show the
necessity of taking numerous random perturbing factors into
conuiderat ion.

The calculation methods and the results of actual solutions of
balltstic problems arc not examined in this book :t Is assumed that
the basic method or obtaining the numerical results are by calculations
on digital computers..

-The presentationi at the above enumerated problems and questions
toI carried out using long-range balliatic missiles with liquid-
propellant engines aa examples whose thrust Is governed. By examining

l~c-anvmisic, t ipossible to very gnaphically show the ettect.

of, vari~ota taotorzý on the solution-of ballistic problems. Since
* 1quid.-pJVl'ýýlrlht b4:ito#;k% with contmcllod thrust have aomparativiely

jr a nai elitae utatay simplified, whbch In'turn makes
it poaoflic to simplify tharanal nd the study of the trl'
in thisabook.

In their vtark an thfl bwok the ;authors constantly obtained
* rendly, cooperation from, their many comraidess, to whom they. wish to

express their deep appreciation. srhe aiuthors- are, also grateful to the

nvIesrTotro Vhie~bhnlcl Siees0S.Uflto



for a number of useful remarks, which made it possible to improve the
contents of their book.

It is requested that opinions and suggestions concerning this
book be sent to the following address: Moscow, B-66, No. 1 Basmannyy
Alley, 3, "Mechanical engineering" publishing house.
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CONVENTIONAL DESIGNATIONS
(for missile and nose section)

a - speed of sound in the atmosphere; semimajor axis of
terrestrial ellipsoid;

b - semiminor axis of terrestrial ellipsoid;

Cx, Cy, cE - coefficients of drag, lift and side force

respectively;

Cxl and c T - coefficients of axial aerodynamic force;

Cyl and cn - coefficients of normal aerodynamic force;

Czl - coefficient of transverse aerodynamic force;

D - diameter of maximum cross section;

e - eccentricity of terrestrial ellipsoid;

F - resultant of complete aerodynamic force and the

attractive force;

f gravitational constant;

K - force of gravity (weight of the object);

Go - launch weight of the missile;

TG - attractive force of the earth;
0 ToTii - weiglt of fuel;

S- weight per-second rate of fuel consumption

I dtI/
g - acceleration due to gravity;

S- acceleration due to gravity on the surface of the
earth;

8T - acceleration due to attractive force (gravity);

h - height of the center .of mass of the object over the
surface of the terrestrial ellipsoid;

J - controliing functional;

".TD-MT-24-l.76-7! x
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Jill JY 1 Jzl " moments of inertia relative to the body axes Oxl,
OYl, Oz,, coinciding with the main central axes;

j acceleration of the center of mass of an object.in
a relative (terrestrial) coordinate system;

ja absolute acceleration of the center of mass of an
object;

"Ju - centrifugal acceleration;

Jc - coriolis acceleration;

K - ratio of oxidizer weight to fuel weight;

L - missile flight range;

I - length of the object;

X - Mach number;

M - moment of force; mass' of the earth;

MX11 My,, Mzl - moments of bank, yaw and pitch respectively;

m - mass of the object;

ih - mass flow rate per second through the nozzle exit
cross section;

mxl, myl, mzl - coefficients of bank, yaw, pitch moments respectively;

P - rocket engine thrust;

P yA - the specific rocket engine thrust;

p - air or gas pressure;

q - dynamic pressure;

qj - generalized coordinates of a missile;

qw - dynamic pressure taking wind velocity into account;

R - radius of the terrestrial sphere; complete aero-

dynamic force;

Re - Reynolds number;

r - distance between the center of mass of the object
and the center of the earth;

S - area of maximum cross section;

s - apparent path;

T - absolute air or fuel temperature in OK;

t - time;

th - moment of the termlnation of powered-flight phase
(separation of nose section);

V - ground speed of the center of mass of the object
(when'there is no wind, it coincides with airspeed);
the volume of fuel or fuel system;

FTD-MT-24-1176-71 xi -.
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V1, velocity of the center of mass of the object relative
to the atmosphere (and also relative to the earth
when there Is no wind);

W - wind velocity relative to the earth;

w - apparent missile velocity;

X - drag;

X I - axial force;

x3 - coordinate of the center of mass of the object along
terrestrial axis Ox3 ;

x - distance from the apex of the object to the
As controlling engines or other control elements;x. I x - distance from the apex of the object to the center

of presoure;
XT - distance from the apex of the object to the center

or mass (center of gravity);

Y - lift;

Y1 - normal force;

- coordinate of the center of mass of the object alongterrestrial axis Oy3 ;
Z - side force;

Z1 - lateral force;

z3 - coordinate of the center of mass of the object along
terrestrial axis Oz3;

A - geodetic azimuth of the direction of firing
(Chap. VII and ViLL);

- angle of attack; -lar compression of terrestrial
"ellipsoid;

a W.- angle of attack taxcing wind velocity into account.,

.angle of sideslp;
y - apecific gravity; angle of bank;

S- angle of deflection of Ghe control elements;

6¢, S, 6n - angle of deflection of the control elements by pitch,
yaw and bank respectively;

61% 62) 63s 64 - angles of deflection of the control elements;

S- coordinate of the center of mass of the missile along
inertial axis Oý;

n- angle of bank of missile relative to initial launch
coordinate system; coordinate of the center of mass
of the missile along inertial axis On;

0 - angle between the velocity vector and the local
"horizon;

M lx

P TD-MT-24-13.76-71 xii
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OW -angle between airspeed vector V and the local
horizon;

- angle of pitch;
A - geocentric and geodetic longitude;

•* - angle of yaw of a missile relative to the initial
launch coordinate system; coordinate of the centerof mass of a missile along inertial axis O0;

P - air density;
* - angle of pitch of a missile relative to initial launch

coordinate system;

Or geodetic latitude;

*q - geocentric latitude;

S- azimuth of the projection of the velocity vector
on the horizonal plane;

S- angle of yaw firing azimuth (Chap. II);

-W azimuth of wind direction;WxlV Wyl, wzl - projections of the angular velocity vector of theobject on the body axes Ox1 , Oyl, 0zl;
W3 - angular spin rate of the earth.

FTD-MT-24-1176-71 xiii
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INTRODUCTION

By ballictio miasile is customarily understood a guided flight

vehicle with a rocket engine, intended for the delivery of a payload

over long distances along an assigned open flight path, the greater

part of-which is an unpowered flight path.

Characteristics of ballistic missile trajectories. Depending on

the forces acting on a ballistic missile, its flight path can be

divided into three sections (Fig. 0.1):

A - powered-fZight phase, i.e., the flight phase with the engine

system operating , in which, as a rule, missile flight control is

being carried out;

B - unpowered-flight phase, in which the missile moves as a free

body. Usually this phase occurs at a comparatively high altitude,

where the aerodynamic forces are very low and the missile moves

practically only under the effect of gravity;

C - descent phase in the dense layers of the atmosphere, in which

the aerodynamic forces have a sign!ficant effect on missile flight.

Since in phases B and C the engine system is not working and the

rocket is affected only by gravity and aerodynamic foroes, the

corresponding flight path is ballistic, but the B-C flight phase itself

* of a ballistic missile is called the passive, or batliatic phase.

PTD-MT-24-1176-71 xiv
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C •Fig. 0.1. Trajectory of a
ballistic missile.
KEY: (1) earth.

The unpowered-flight phase is determined by the parameters of

missile motion at the beginning of unpowered flight (i.e. at the end

of the powered phase): by the coordinates of the center of mass of

the missile and by the projections of its velocity. In particular,

the coordinates of the point of impact of a rocket on the surface of

the earth depend on the parameters of the motion of a missile at the

end of the powered-flight phase and on a number of other factors, for

example, on the condition of the atmosphere in the descent phase, on

anomalies in the gravitational field of the earth, etc. Thus, in

order that a missile carry out the mission assigned to it, it is

necessary at the end of the powered-flight phase that it have

completely definite values of the parameters of motion of the center

of mass of the missile.

Rocket complex. The preparation of ballistic missile for launch-

ing is performed by a misese Ocompt#e which ensures the carrying out

of the prelaunch cycle of operations and the launching of missiles.

Included in a missile complex, besides the missiles which are the
means for delivering warheads to a target area, are:

1) launching installations with aggregates of operational

equipaient, servicing and communications systems;

2) the launch control system with the control center and

communications;

PTD-MT-4T -1176-71 xv



3) the aiming system and the outboard [that which is not onboard]

flight guidance equipment.

The characteristics of missile complex in many respects are

determined by the type of launch positions. Depending on the

conditions of missile application and the requirements, imposed for

protecting the launch positions, various types of launches can be

employed; from mobile ground-based launchers, from silo-launching

structures, etc.

The basic characteristics of a missile complex are range and

firing accuracy, warhead effectiveness, capability of overcoming

antimissile systems, combat readiness, reliability, service life,.

production and operational economy, ease of servicing. These

characteristics are intimately connected with each other and, as a

rule, are conflicting.

A missile complex is a complex system consisting of a large
number of elements connected with each other. However the complexity

of a missile complex is due not only to the large number of inter-

connections. It is very significant and characteristic that the

connections between the individual elements of a complex are

qualitatively different and each of them has an individual importance.

The latter means that the malfunction of only one connection can

disturb the launch or the normal flight of the missile.

In creating a missile complex its elements are examined as parts

of an entirety and each of the elements is developed so as to ensure

the required oharacteristics of the complex as a whole.

A missile and its component systems. Contemporary ballistic mis-

oiles are distinguished by the diversity of their structural shapes.

They can be single- and multistage with sequential ("tandem" config-

uration) and parallel ("packet" configuration) stage arrangement, used

as a liquid or solid fuel working body, etc. The difference in the

designs depends upon the purpose of the missile and the requirements,

imposed on it, and also on the level of the development of technology.

These conditions also determine the selection of the structural layout

ATD-MT-24-1176-71 xvi



of a missile, type of propellant and engine, method of launch, etc.

According to the type of propellant employed ballistic missiles

are divided into'liquid- and solid-propellant rockets. With respect
to specific thrust impulse liquid rocket propellants have advantages

as compared with the existing solid propellants. A significant

advantage of liquid-propellant rocket engines is the possibility of

multiple starting and stopping and also the possibility of controlling

the thrust magnitude in flight for reducing the flight path deflection

of a missile during the powered-flight phase.

Solid-propellant rockets as compared with liquid-propellant

rockets, as a rule, have a simpler design. However as a result of the

large deviations in the basic characteristics of solid-propellant

engines (thrust and weight flow rate per second) great deflection in

missile flight path in the powered-flight phase from their optimum

values occurs. This gives rise to complication of the flight control

system. Subsequently we will examine the individual questions
connected with missile design, as illustrated by liquid-propellant

rockets.

Intercontinental ballistic missiles, as a rule, are made multi-

staged, most frequently two-staged with sequential stage arrangement.

Such missiles consist of three sequentially positioned parts: the

separable first stage part, the second stage housing and the nose

section (Fig. 0.2). In flight after a missile has attained the

assigned velocity (or upon burnout) the control system issues the

command for the shut-down of the first-stage engines, stage separation

and the starting of the second-stage engine. At the end of the
powered-flight phase upon a command which is shaped by the control

system on the basis of information about the parameters of missile

motion, the second-stage engines are shut down and the nose section

is separated from the second-stage housing.

Each of the stages of a liquid-propellant rocket, as a rule,

consists or a fuel compartment, a compartment for positioning of

Instruments and the control system apparatus and a tail section for

accomodation of the engine system. To ensur'e the operation of the

PTD4-•-2.-l176-11 Xvii



(4a) J.&

housing; () nose se tion (4a)I~ 2n(saeb 4))e

stage.

engine system a number of special Systems is included in this stage:
pressurization ot the fuel tankes synchronous emptying of tanks,
checking of the fuel levels and others.

The fuel tank pressurizing slatem Is intended for creating
pressure excesses in the tanks before starting the engines and during
their. operation.

The system for the synchronous emptying of the tanks Is Installed
to regulate the volumetria expenditure at the fuel components. This
system~ shapes aorrAand'uignals In such a way, so as at the moment of
engine shut-down during firing for maximum possible range to ensure
complete consum~ption ot both propellant components. In the case af
the absenae of this system as a result of an unavoidably arising
deviation in the ratio of the weight consumption rate per second of
the propellant components toward the end ot the operation atr the
engine systems in one of the rocket tanks the unused working
propellant supplies remaino which lead to a reduction In the maximum
fitiing range.

Y'TD4-W24.-1176..?l xviii



The level monitoring system serves for the remote monitoring of
'the oxidizer and fuel levels ,in the tanks during servicing and for
giving commands to the servicing units at the end of servicing. The
level monitoring system also makes it possible 'to periodically monitor

the levels of the propellant constituents In the tanks during the

prolonged storage of a fueled rocket.

Each stage of a missile has oont'ot e*Zements whose deflection for
the creation of controlling moments is accompllshhd by control an~uators'.

At the present time a large number of diverse ballistic missile control

elements is known, among which the most frequently used V're tu:'ning

combustion chambers.
I I

The flight control system is the totality of instruments and
devices which ensure in accordance with the executed aiming the

controlled flight of a missile and the impact of its nose section In

the vicinity of the target with the required &ocuraoy.

"The basic stages in the development of a&missile Qomplex.' miasile *

complex -i developed on the basis of the tactical-technical spociticaa

tions, which define its purpose, technical and operational' haracteris-

tics, and the interaction of its component parts. Among the basic

characteristics o" a missile it Is possible to Include range and

tiring accuracy, type or payload and its weight, the possibility of',

Its overcoming the means of antutassile defense, 'launch weight,

type of launch, engine model and propellant components, the number p1`
-.. rocket stages, the.type of flight control system, coibat readlnesa,

and reliability.

The process or developing a missile eqmplex Includes a number ot

Sphases. In the first phase various types of eXploratory prodedures

and preliminary iinvestlgations ae carried out, a large ,usber or

divese variants of missile -comple layouts to eamdned. The problema

of this phase :ore evaluating the possibilities or treating a amissie'
complex, datisfying the assilned tactico-teohnical CequirenePtS, the

'See, .aor example, b-4k [20].

f" . -211-ll76-,7l I.t
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selecting of an optimum v~x'iant, (or viriants) and the obtaining of
origipal data for babic planninig, which are absent in the tactico-
-technica; requirements, and also estimating the cost for carittying out
all'the operationks and their exeoq~tion times.

6f the large numbeit of questions, usually examined during pre-
liminary planning, let us take not~e, fbr example, the following:
selection of the missile layout, evaluation of the weight and
centering Ec-g] ciiaraoteristics, selection of the propellant comn-
tponents,jseleotion of thq inein and control engines.

The result of the first phase operations 15 a pre-draft design
of the missile.. In the pre-draft design, preliminary Miaterials on

ballisti~s (*;light-path, calculations),, aerodynamic characteristics,,
strength, controllability's missile stability,, etc., are presented.

Purthei'mores materkla on the possibility pf using existing ground
equipment, and also the exi1sting pioductio'n oipacitiea are presented.

The second development phase is the batia doseitn~g which by
tradition is frque*ntly called sketak deinPg Before the beginning
of this phase the'1individual tactical and 2technical data of the missile
complex, -tie composition. aW the chtiracterlstics, of Its basic parts
&6-. made more precise.

'In-thebasic dsigning phase In-.depth studies of all questions
Obanvectd with the creating of a ,missile and. the ground equipment of
the complex Are tcrid6uoP his, besides oalculationss labora-.
tory I eostications and experimental adjuastment at Variouas units,

tory investigations avid idjustMent of the Instruments &W- subassemblies

of the cOnWPOl' sy'steq*, gfound equipment, strength testing or the
housing,ý tanks &Madthe, Individual Units or Lt. imiossile bench testing
of the engines, experimental4vetgai of the vibrations ot
tltid toi tie tanks, *tc.# are tarried out.

V'The problem pr this phase of tOpfrations is the preparation of
Vulid jasteriAls ror the turivrla out of toohnitol-drawing 4OOU..ataCio*I
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and the manufacture of prototypes of a missile and the ground equip-

ment.

The next phase in the creation of a miss~le complex is the working
out of technical-drawing documentation and the manufacture of proto-

types. It is difficult to separate this phase in time from the basic
designing phase because the turning out of the technical-drawing

documentation and the manufacture of individual units and systems is
frequently carried out in the basic design period. In particular this
pertains to equipment and units having a prolonged technological

manufacturing cycle.

The next phase of operations is the ground adjustment of proto-
types of the materiel (individual elements and systems) using test
stands, etc. This phase to a greater or less extent can also
coincide in time with the previous phases.

The final phase is the final adjustment and evaluation of the
prototypes by flight testing. This phase of operations is preceded
by the preparation of the documentation, necessary for carrying out

the flight testing and, especially, by the turning out of instructions
for all the types of operations carried out on the test range. It
is expecially necessary to note the working out of questions of
ballistic ensuring of the flight tests (the selection of the test
range, the firing routes, the impact area of.the separating elements
of the missile and of the nose sections, the .selection and validation
of the flight control programs, flight-trajectory calculations and

control system adjusting data).

The flight testing of prototypes is intended for checking

conformity of the actual and assigned :echnical-flight characteristics

of a missile, control equipment, ground equipment, for finding ways
of improving them, etc. This phase plays an important role in the

creation of a missile complex. On the basis of the test results the

necessary changes are introduced into the design of the complex. Thus

this phase is usually called the flight-desion tooting phase. In the
course of testing operational questions are defined more precisely,
the operational reliability of all systems and units is evaluated,
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an evaluation of the operation of the missile complex as a whole is

carried out, operational documentation is prepared.

The place of dynamic planning in developing a missile complex..

In creating a missile complex and, especially, the missile itself a

very large role is played by dynamic planning which mainly involves

the solution of problems. of ballistics, dynamics, control and firing.

The basic characteristics of the missile and its layout are determined

from the results of dynamic planning.

In solving a question concerning the possibility of creating a

missile which satisfies the assigned tactico-technical specifications,

a large number of ballistic calculations is carried out, on the basis

of which the most rational variants of the layout scheme and the basic

design parameters of the missile, the weight and c.g. characteristics,

optimum flight paths are determined.

Questions about the possibility of ensuring the controllability

and stability of a missile are solved by means of research on its

dynamic layout. The latter is described by differential equations of

perturbed motion the coefficients of which are determined by the lay-

out scheme and by the design parameters of the missile, and also by

the parameters of the motion of the missile along the optimum flight

path.

By examining the diverse variants of the solutions, the most

rational dynamic and therefore, layout scheme of the missile is

selected. In this case it is necessary to overcome a number of

inconsistencies. It is possible, that the layout scheme of a missile

which satisfies the ballistfc, technological-design and operational

specifications, will not satisfy the controllability and stability

specifications. For instance, a decrease in the rigidity of a missile

for the purpose reducing its weight leads to a reduction in the

frequencies of the elastic vibrations of i missile, which creates

significant difficulties in ensuring flight stability. The use of

sufficiently effective control elements (control combustion chambers,

Jet vanes, etc.) always gives rise to a reduction in the specific

thrust of arn engine system or to an increase in the "dry" weight and
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thus, negatively affects the energetic possibilities of the missile.

In connection with this the determination of the most rational missile

variant.,its layout scheme, servicing methods, cost,jdevelopment time,

etc., to:a great extent depends on how correctly the problems of the

dynamic planning of a-missile are solved.

In-the basic design phase the role of dynamic planning is still

greater. In this phase it is necessary to give a comprehensive

answer to the question of the sufficiency of the accepted solutions

with respect to ensuring the assigned range and firing accuracy,

controllability and stability under all possible operating conditions

for the missile being planned, i.e., under all geophysical launching

conditions, in diverse meteorological conditions, deviations in the

parameters of the missile and. guidance equipment from the rated values,

variations in the missile'assembly, etc.

The presence of a large number of perturbing factors (variance in

the atmospheric parameters, propellant and design parameter character-

istics, errors in the operation of assembly units and systems, etc.)

causes deviations in the parameters of missile motion from the rated

values. This fact predetermines the use of probability and statistical

methods in solving many problem- of the dynamic planning of a missile
(for instance, in ensuring assigned maximum firing range, in evaluating
nose section impact point dispersion, etc.).

"In solving the problems of the dynamic planning of a missile

complex the method of complex development manifests itself brightly,

in which a complex is co'isidered as a single unit. In dynamic planning

it is necessary to find rational.compromise solutions for numerous

interdependent questions. Thus, for instance, the selection of the

control method affects the layout and the power engineering of .a

missile; the selection of flight paths is connected with the energy

characteristics of the missile, the temperature and strength limitations,

the firing accuracy requirements, the type of control system

(autonomous or electronic), and-also the keep-away areas intended

for the falling of the eparating parts of the first stages, and by

many other factorsz the selection'of the site for the mounting of

"gyroscopic instruments is connected with the question of ensuring -the
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stability of an elastic m.1ssile; the selection of the method of stage

separation and the separation of the nose section - with the

specifications imposed on the characteristics of the engine systems;

the selection of the nunber and site for installing devices damping

the oscillations of the liquid propellant in the tanks, - with the

layout of the missile and its energetic characteristics.

The role oI dynamic planning in developing a silo launching

structure is great. In this case an analysis of the diverse variants

of missile motion in a silo structure (free motion and motion

along guides) %an be carried out, the necessary diameter of the silo

shaft, inside which the missile moves, the sizes of the gas flow

passage cross-sectionals areas and other data, necessary for the

planning of a silo structure, are determined.

In selecting a variant of a silo structure for use, besides these

data, the 'characteristics of the reliability of the exit of a missile

from the silo, the cost-of the silo structure and other factors are

taken into account.

The intimate interrelationship between the various questions of

the dynamic planning of a missile complex makes it necessary to carry

out the planning in several phases, correlating the obtained results

for each of them with all the co-operators. It is necessary to

approach the selection of the command instruments and the other

equipment of the control system with great care because of the great

complexity of their manufacture and their relatively high cost.

Computer technology is broadly employed in solving dynamic
planning problems. Specifically, the calculations of the powered and
unpowered flight paths of nose sections and the separating parts of

missile stages and other ballistic calculations are conducted with the

aid of plectronic digital computers (48M EDC).

In analyzing the stability of motion, the basic method of
.' investigation is the simulation of perturbed missile motion on

electronic analog computers (ABM - EAC) using real onboard control

equipment. This method makes it possible to obtain a rather complete
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picture of the actual processes occurring in flight.

Recently for investigating the stability of missile motion

analog-digital complexes (AQH = ADC) are beginning to be widely used

which are a combination of analog and digital computers with the

actual equipment of a flight control system. Such a complex makes it

possible to much more efficiently, comprehensively and at a high

technical level solve the problems of the dynamics of missile motion..

One of the problems solved with the aid of an analog-digital complex,

is the problem of determining the worst combinations of parameters of

missile and control system equipment and the checking of the reliabil-

ity of ensuring the stable motion of a missile under various adverse

conditions.

The use of electronic computer technologv makes it possible to

carry out missile flight simulation, taking the majority of random

factors into account, i.e., in other words, for a given model of a
random process (missile'flight) to obtaih a number of executions of

this process - the "electronic launching" of a missile and to evaluate,

for example, the nose section impact point dispersion.

Besides the calculations on digital computers and simulations on

analog computers, graphical-analytical methods of investigation are

broadly employed in dynamic planning, especially in the preliminary

design stage. The use-of graphical-analytical methods requires a

significant simplification of the dynamic layout of a missile. From

the number of necessary numerous simplifications it is necessary to

indicate linearization of the equations of motion of the missile and

the replacement of the variable coefficients of these equations with

constant coefficients (the method of "freezing" coefficients). Thus,

for instance, in the preliminary investigation of the stability of

motion of the missile the noted simplifications are assumed, in order

t- 6hen use the frequency method or the root-locus technique. The

linearization of the equations during the investigation of firing

accuracy makes it possible to use the appropriate methods of the

probability theory. When it is not possible to disregard the non-

linear properties of a missile or control system, such methods of
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Ii
-approximation, al the method of harmonic balance or the method of
statistical linearization are employed. The graphical-analytical
methods make it possible for the engineer to penetrate deeply into the
essence of the phenomenon being investigated, which facilitates a more
suceessful subsequent solution of the problems of dynamic planning with
the aid of more precise methods using digital and analog computers and

digital-analog-cQmplexes.

The basic problems of missile ballistics. Missile ballistics

solves the following basic problems.

1. The investigation of the dependence of the flight character-
-I istics of a missile, and primarily of its flight range, design para-

- meters for the purpose of selecting the most advantageous combination

of these parameters (ballistic design).

2. The determination of flight path and other basic character-
SI Istics of the -notion of a missile with known design parameters and

control system with assigned aiming data (ballistic test calculations).

3. Determining the initial data for the nose section design and
investigating nose section dispersion (the problem of nose section

ballistics).

4. Ensuring maximum aiming firing range under conditions of the

effect of various perturbing factors - variance In design parameters,

variations in the ambient flight conditions and others (ensuring

maximum firing range).

5. Investigating the effect of various perturbing factors on the

powered-flight phase and, especially, the errors of the control system

elements on nose section impact point dispersion (investigating

missile deflection).

6. Determining aiming data from the given coordinates of the
launch point and target (compilation of flight mission).

A
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7. The selecting of the optimum flight path which ensures the
best use of the missile's capabilities (selecting the control program).

8. Determining the initial data for the flight-design testing of
missiles and analyzing the results of these tests.

All these problems are intimately connected with the solution of
a number of other questions relating, especially, to:

- aerodynamics (determining aerodynamic forces and aerodynamic
heating of the surface and structural elements of a missile or nose
section);

t sti.uctural dynamics (calculating the elastic vibrations and

the vibrations of the liquid in the fuel tanks);

missile control (ensuring the stability of motion and
controllability of a missile taking into account the elastic vibrations
and the vibrations of fluid; selecting the design and the basic

parameters of the control system);

- the dynamics of non-steady-state modes - launch and the processes
of stage separation and separation of the nose section (ensuring the
separation and the controllability of the missile during these phases);

-calculating of the missile design for strength (determining
structural loads for various flight paths).

Ballistic design plays a very large role in the development of a
missile when selecting the design layout of the missile, its
arrangement and the values of its structural and energetic character-
istics, in the very best manner conforming to the specifications,
imposed on the missile. At the present time ballistic design has
developed into an independent discipline. In connection with this,
this book does not Include ballistic design. The basic questions of
ballistic design are examined, for example, in book (2].
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Ballistic test calculations and, especially, the calculation of
the nose section unpowered flight phase, is not of direct interest for

the present book dedicated to the complex solution of the basic problems

of ballistics, especially since the methods and the characteristics of

these calculations are also presented in book [2].

Ballistic calculations for flight-design testing are inseparably

connected with these testing methods. The latter are a separate

discipline, requiring independent exposition.

Thus, included within the scope of this book are such ballistics

problems, as nose section ballistics, ensuring maximum firing range,

investigating missile deflection, determining the setting data for a

rocket launching, selection of optimum trajectory. Furthermore, this
P!i book touches upon certain other related questions.

FTD-MT-24-1176-71 xxvili

.. -,



CHAPTER I

MISSILE FLIGHT CONDITIONS, PECULIARITIES
OF A MISSILE AS A GUIDED MECHANICAL
SYSTEM

The solution to any ballistics problem begins with the compilation

of a mathematical model (dynamic layout) of missile flight which is

described more or less by the complex equations of missile motion.
The mathematical model ia determined, in the first place, by the posed

problem, depending on which model of flight conditions the investigator

selects, the mechanical model of the missile itself, the model of the
forces and moments, applied to the missile, etc. The success of the

investigation depends on how rationally the mathematical model of

missile flight is composed. The basic information about the flight
conditions of the missile and the characteristics of the missile as a
guided mechanical system, which must be kept in mind when compiling

the mathematical model of missile flight in ballistics problems are

presented below.

1.1. NOTION, SHAPE AND GRAVITATIONAL
FIELD OF THE EARTH

The Notion of the Earth

The earth carries out complex motion whlch mainly consisto in the

following components.

1. Rotation around its axis from west to east with a period of

23 h 56 min 4.091 s a 86164.091 a of mean solar time, or 24 h a

a 86400 a of sidereal time; the angular velocity or rotation in this
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case is respectively equal to

2n -7,292-" 'road/s.
86164,091

The vector of the angular velocity of the earth w is directed
3.,

along the axis or rotation from the south pole to, the nort~h pole in
accordance with the rules of signs for right-haaded coordinate systems.

2. Annual revolution around the sun with an average orbital.

velocity of 29.893 km/s. ',

3. Nutational oscillations of the terrestrial axis with a period "
of about 18.6 and with an amplitude, not exceeding 9.2".

4. Precessional motion relative to the axis of the ecliptic with
a period of 25,800 years.

5. Motion together with the solar system relative to the other
stars.

In investigating the flight of a ballistic missile all these
components of terrestrial motion, except diurnal rotation, are not
taken into account because their effect on flight path Is extremely
small. It is assumed that the center of mass of the earth moves
rectilinearly and uniformly and the earth rotates uniformly around
its axis whose iirection does not vary. The phenomena connected with
the rotation of the earth, play an extremely large role in missile
dynamics. Thus, in calculating the flight paths of missiles it Is
necessary to oonsider the forces of Inertia caused by the diurnal
rotation of the earth.

As a result of its rotation the earth is an oblate spheroid, in
which the distance between the poles it less than the diameter of the
equator. This fact together with other deviations in the shape or the
earth from spherical shape and the non-uniform distribution of masses
inside the earth make It difficult to determine the magnitude and the
direction of the attractive force of the earth actin on a missile.
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The Shape of the Earth

The earth is a body of complex shape. 'The surface of the earth

with all its irregularities is called the physical surface of the

earth. All kinds of geodetic measurements are being carried out on it

for the purpose of obtaining initial data for solving various geodetic

problems. The physical surface of the earth is practically impossible

to describe mathematically, because it cannot be used as a surface for

processing the results of the measurements. As such a surface It is

necessary to use a body surface which most closely approaches the

earth as a whole in shape and dimensions, and whose surface is expressed

by a mathematical dependence suitable for practical use. Of the

geometric bodies which describe the shape of the earth, the body whicti

has received the name geoid most closely approximates the actual earth.

In order to define this body let us recall the concept of equigravita-

tional potential surface [level or equipotential surface of the earth's

gravity3.

As Is known, the diurnal rotation of the earth creates centrifugal

Inertia which acts on a body located on the surface of the earth.

Thus, it is not possible by experimental means to separate centrifugal

inertia from the force of terrestrial attraction. The resultant vector

of these forces is the vector of the force of gravity (Pig. 1.1) whose

direction in space can be determined with the aid of a plumb line or

level.

Equigravitat onal potential surfacer to a surface, at each point

or which the normal to the surface 1s collinear to the direction of

the force of gravity. A ieoid 1i a bouy, litaited by an equigravita-

tional potential surface *hich coincides with the surface of oceans

(undisturbed by tides and wavea) and extending under the continents

(Pig. 1.2). The surface of a geold i* continuous, closed and does

not have sharp creases and folds. Since the direction of the force

of gravity depends on the attracting action of masses non-uniformly

distributed Inside the earth, then the surface of a geold Is extresely

complex and cannot be described matheaatially. For this reason the

geoid is replaced by a simpler body In such a way that its surface

differs as little at possible frou a geoid, sad the carrying out of
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calculations on this surface does not present significant difficulties.

,(1) flt!uprsiccrn 3puv

attrctiv fore, cntriugalforc an

ctveptue ermNwOI ,.OaCOuis

Fig. 1.1. Diagram of the application of
attractive force, centrifugal force and
gravity.

Fig. 1.2. The physical surface of the
earth, a geoid and a general terrestrial
ellipsoid.
KEY: (1) the physical surface of the earth;
(la) geoid; (2) the center of mass of the
earth; (3) General terrestrial ellipsoid;
(4) the Equatorial cross section of a geold;
(5) Equatorial cross section of a terrestrial
ellipsoid.

As a first approximation it is possible to consider the earth a

sphere whose volume is equal to the volume of the earth. The radius

of such a sphere is R = 6,371,110 m. In some ballistics problems this

approximation satisfies the required calculational accuracy, in others,

for example, in preparing flight tests and in analyzing results of a

launch such an approximation introduces a large error In determining

nose section impact points.

In most cases a geoid is replaced with sufficient practical

accuracy by an ellipsoid of revolution obtained by revolving an

ellipse around its minor axis. Such a properly oriented ellipsoid,

which in the very best manner approximates the surface of a real

geoid, is called a generaZ terrestrial e•lipsoid (see Fig. 1.2).
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A general terrestrial ellipsoid is defined dn the basis of the
following conditions:

1) the center of the ellipsoid coincides with the center of mrss
of the earth, and the plane of its equator is parallel to thp equatorial
plane of the earth;

2) the volumes of the ellipsoid and the geoid are equal;

3) the sum of the squares of the deviations (with respect .to
height) of the surface of a general terrestrial ellipsoid from the
surface of a geoid should be minimum.

The determining of the dimensions of, a general terrestrial
ellipsoid is one of the basic problems of geodesy. At the present
time this problem is still not completely resolved because the
appropriate measurements (geodetic, astronomical and gravimetrid),
being employed as the initial material for the solution to the indicated
problem, have still not been carried out on-ali the continents. All
the available dimensions of the general terrestrial :ellipboil areapproximate and to one or another degree differ from the dimensions of
the real general terrestrial ellipsoid., Subsequently we will proceed
on the basis of the following approximate values of the parameters
determining the dimensions of the general terrestrial:ellipsoid:

- semimajor axis (radius of the equator) a F 6,378,137 M;'
-- b 

I

- compression a a 298.25' whqre b - the semiminor axis of'
the general terrestrial ellipsoid.

The surface of even an accurate (with respect to dimensions)
general terrestrial ellipsoid, correctly oriented with respect to tho
earth, can deviate from the surface of the geoid with respect to
height by tens of meters. In the opinion of a number of scientists,
the greatest values of these deviations are located within the limits
of ±150 m. In certain cases for the purpose the reducing the errors
in the replacement of a geoid by the general terrestrial ellipsoid the
concept of reference-ellipsoid is introduced.
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Ar efernoe-eZZtpeoid is an ellipsoid 'of revolution with
appropriate dimehsions, oriented in a definite manner relative to the
earth and to whose surface the' results of geodetic operations on an
investigated part oi the 'terrestrial surface (in a given country)

pertain. The following conditions are imposed on the orientation of

a reference-ellipsoid:
! I

a) the greatest proximity of ýhe surface of the reference-ellipsoid
to the surface of the geoid only on the examindd part of the terrestrial

surface,

b) the parallelness of the axis of revolution of:the reference-
ellipsoid and the axis of rotation of the earth (coincidence of its

c~nter of mass with the center of mass of the earth is not mandatory).

On 'the tergitory of the USSR for the dimensions of the reference-
ellipsoid it is possible to use the dimensions of the Krassowski
ellipsoid, namely:, the semimajor axis a = 61378,245 m; compression

a = 1/298.3. The center of the Krassowski ellipsoid is removed
a certain distance from the center of mass of the earth. Clarke,
Kayford, Everest ellipsoids are also used as reference ellipsoids.

Coordinate Systems Defining the Position
of a Point on'the Terrestrial Sutface

The. following coordinate systems are used for defining the

position of a point on-the terrestrial surface, a mathematical
description of the gravitational field of the earth and a number of

other problems.

The geocentric coordinate system (Fig. 1.3).: The position of

point M on the'surface of the Krassowski ellipsoid is determined by

the two coordinates A and .JQ

SLongitude-, - the dihedral anglq between the planes of the prime

(Greenwich) meridian:and the local meridian, passing through point N.
East longitudes, i.e., the longitudes of the points located to the east
of the Greenwich merid*an, ar-.considered positive, and the western

longitudes - negative.6
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Fig. 1.3. -The geocentric
coordinate system: NABS - the
prime' (Greenwich) meridian;
NMLS - local meridian; QBaL -
equator; l800 < A < 1800,

0 -900 <• 900

Geooentric Zatitude * - the angle included between the equatorial
plane and radius-vector r, drawn from the center of the ellipsoid
through point M. North latitudes, i.e., the latitudes of the points

located to the north of the equator, are customarily considered
positive, the south latitudes - negative.

The geodetic coordinate system (Fig. 1.4). In this system point
M on the surface of the Krassowski ellipsoid has the following two
coordinates: geodetic longitude A which is defined in the same way
as in the geocentric coordinate system, and geodetic Zatitude r which
is the angle included between the equatorial plane and the normal to
the surface of the ellipsoid at point M. The geodetic azimuth of
direction is the angle 0 computed clockwise from the northern direction
pof the geodetic ;aeridian of the given point to assigned direction T.
The geodetic coordinate system has found extensive application in
ballistics for determining the launch and target coordinates.

Geocentric and geodetic latitudes are connected with each other
by the relationship

sin (q'--e 2 sin qr cos qq,

where e - the eccentricity of the meridional ellipse of the general

terrestrial ellipsoid.
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7 1.- Fig. 1.4. The geodetic

prime (Greenwich)meianA N14LS - local meridian; QBLQ-
equator; pp - a tangent to the
local meridian of the Ka'assowski

- (p P 'ellipsoid at point M;
-locc1800 <9 10 0 -go r-90

The astronomical (Keoosraghic) coordinate system. In contrast to
geodetic coordinates determined on the basis of geodetic measurements
anti pertaining to the surftace of the ell~psoid of revolution,
astronomical coordinates are'determined on the basis of astron~omical
observations and pertain to the surface of the geold.

In this coordinate system astronomical. (geographic) latitude is
defined as the angle *Abetween the plumb line at a given point and
the equatorial plane,, Astronomical (geographic) longitude Is the
angle -A between the plane or the prime meridian and the plane or the

At

astronoulcal meridian, passing through the plumb line at a given point*
The reference dircutiowrt and the signs of astronomical latitude and
longitude are detez'nined in the samie way as for geocentric and geodetic
coordinatoei.

Astronomic-al latitudt and longitude do not colnelido with the
corresponding geodetic values, sinoo io the general case A noormal to
ýthe geold and to the ellipsoid do not coineide with each other. fte
angle included between a normal to tht v~lJ psold and the plumb line at
the point being examined Is called complete pluab11ine deflection.

-The at" plumb-line deflect ion with respect to the surtace'of the
*-earth Is about 50, the maslibuf about It.
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The Gravitational Field of the Earth

According to Newtoh's law of gravitation every particle with mass

M attracts another particle with mass m with a force of gravitational

attraction-(gravity) GT, determined by the-dependence
S• . o=_ *f(1.1)

where f = 65.4 1 .10-11 Mg.4 - gravitational constant; r - the
kgf~s

distance between the particles,

During the flight ofa missile the attractive forces of the earth

and the other celestial bodies act on it. For ballistic missiles

whose flight paths lie in the immediate proximity of the earth, the

attractive forces of the'celestial bodies are extremely-small (thus,
the attractive forces of the moon and sun give rise to an insignificant
variation in the acceleration due to the attractive force and plumb-line

deflection; the effect of the remaining celestial bodies is still

less). In connection with this we will subsequently examine only the

gravitational field of the earth.

Attractive force is conservative, i.e., having a force function.

The force function of a material particle with mass M is called

Newtonian potential and, is equal to

.. (1.2)9',

where r - the distance from the material particle to the point in

space being examined.

The Newtonian potential of an arbitrary body with mass M can beý

written in the form

U= MU r~m (1.3)

where r - the distance from the particle having mass dm, to the point

in space being examined.
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As a first approximation, if it is considered that the mass of

the qarth is concentrated at a point or distributed inside the sphere

so that-the density at all points, equidistant from the center of the

sphere, is identical, the potential function of the earth is written
in the, form of (1.2). In this case value r is the distance from the
center of the earth.

'Using the property of force function, it is possible to determine
the projections of the attractive force of a particle of unit mass on

'\the axis of a certain coordinate system Oxyz:

In particular, the projection of the attractive force on radius-
vector r is determined by the expression

at! r (1.5)

In this case the acceleration imparted to the particle of unit

mass by a spherical earth, is directed to the center of the earth, and

is equal to

'3 .(1.6)

The product of the gravitational constant f and the mass of the

earth m is constant and for approximate calculations can be taken

equal to: fM a 3.986004.10 14 m3 /s 2

The normal potential of the earth. In general form the problem

of determining potential function U for the real earth having a complex

shape and non-uniform distribution of mass, is extremely difficult.

In gravimetry it is customary to represent the potential of the earth

in the form of an infinite series

U(r, ff P,0(sin .)+ P4(sfnT)+...,
r r3  0

10



in which the associateJ Legendre polynomials are determined by the

expressions:
P2 (sin • - sln' •,-"--

" 2 2

8 4 8

etc.

I
Being limited in expression (1.7) by the terms which are the

main spherical functions of the zero, second and fourth orders, a

convenient formula for attractive potential is obtained called the

normal potential of the earth:

r 23 ,4J rs 7

where a 0 0 , a 2 0 , a4 0 - the constant coefficients dependent on the

angular velocity of rotation w and the parameters of the accepted

model of the earth:

aoo- .o- )

3 7J

85 2 2

* g3 - the gravitational constant at the equator.

The normal potential of the earth corresponds to the potential

of a certain spheroid which represents an idealized earth, and

differs somewhat from the potential of the earth. This difference is

expressed in the form of an anomaly in gravitational field and is

taken into account in accurate calculations.

The normal potential of the earth's attraction depends only on

the distance r to the point in question and the geocentric latitude

* •. The intensity vector of the normal gravitational field is always

located in the plane of the meridian, passing through the axis of

ii
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rotation of the earth and the point in space being considered. This

vector gT of the acceleration due to the forces of normal attraction

can be assigned two components: i-Tl and F-T lying in the plane of the
meridian (Fig. 1.5), in this case

"or r 0,% (1.9)

or

~~3 14(5 -4 4l• - sln2,%+ 3 l~O

g94 sin 2% + cos?,,(7sfa%,-3 sin ,,).2 r4 2 A

The relative error in these formulas is comparatively small (it

does not exceed 3P10") and is entirely permissible in solving the

* majority of ballistics problems connected with flight-trajectory

calculation and with preparing aiming data for firing.

In deriving the equations of motion of a missile it is

convenient to examine the following two components of acceleration

due to attractive force (see Pig. 1.5): g r, directed toward the

o.nter of the earth; gy directed parallel to the rotation axis of

the earth.

Fig. 1.5. The components
of acceleration due to
gravity.
KEY: (1) normal to the

U ai~ocou4ellipsoid.

fit
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In order to find them, it is necessary to separate, in turn, the

meridional component of acceleration due to attractive force gT2 into

two components in the direction of radius-vector r and the rotation

axis of the earth:

g =g� "g(1.11
910 C"

Component - is directed opposite to component g Thus

9T rm 9T|-- g~irt (1.12)

We will finally obtain

A'~ 2 r4

15 0(21 sn, 14 s•n2

8 A

gO.=3 4sin 5 fsn,%y s,2,-3).r- 2l A--- (1.14)

If especially high oalculational accuracy is not required, then

it is possible to be limited to the first terms of the expanrion in

the series, i.e., to take

A 2 r4
:7 gt,=3 "- sin 1p,

r4 (1.16)

where

a==3,9861679" 10"4 ..u/cej; m3 /s3

- ax=.26,3285.12 lei.M/

13
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1.2. THE ATMOSPHERE.

The flight of a ballistic missile in the initial and final
phases of its trajectory occurs in the atmosphere. Aerodynamic forces
arising here substantially depend upon the parameters of the atmos-
phere - density, pressure and air temperature. These parameters, in
turn, depend upon the flight altitude, the geographic latitude of the
site, the season, time of day, and a number of other factors, for
example on the degree of solar activity.

For determining the design parameters of a missile, calculating
trajectories and other investigations carried out in dynamic designing,
the tables of standard atmosphere (SA) are usually used which give
certain mean values of the parameters of static atmospheric conditions
depending on altitude. Deviations in the atmospheric parameters from
standard values, and also wind are atmospheric perturbances which

afffect missile flight and, especially, the dispersion of the impact
points of its nose section.

The standard atmosphere SA-64 has been accepted in the USSR for
altitudes .p to +200,000 m (aOST 4401-64). For altitudes of 200,000-
300,000 m the atmospheric characteristics, recommended by the co-
ordination commission of the Academy of Sciences of the USSR on the
compilation of the UOST for standard atmosphere, are given in this

same GOST.

For solving problems of dynamic design, besides the standard
values of atmospheric parameters, it is also necessary to know the
ranges of the possible deviations in these parameters, which
correspond to a definite level of probability, and for various
conditions both not allowing for the season and the site on the
terrestrial sphere and also taking them into account. Furthermore,
for more precise investigations it is necessary to know the
statistical dependences between the random deviations of each
parameter at different altitudes, between the deviations in different
parameters at a given altitudo, etc.

14



Various methods of describing the perturbations in atmosphere

parameters are possible. Let us examine one of them. Temperature

T and atmospheric density p can be r•presenfed in the form

T (h) =T•r, (h) + AT (h); (1.17)

/I~~~ Q Ad+o)

where ToT(h) and o (h) - the standard values of temperature and

density; AT(h) - the deviation in temperature from the standard

temperature; U (h) - the relative deviation in air density from the
OCT

standard air density.

For assigning random functions AT and Ap/o it is possible to

use the method of canonical expansions (5].

With respect to the case in question atmospheric parameters as
random functions of the altitud, of a point above the surface of the
earth are represented in the form of a c9nonica expansion in the

following manner:

ATmAr(k)+Y, ITi (A) ba;
4I-

, -,L) - (•-- ,..) + , (h)A e,,

where IT(h),11 (h) - average deviations SA values corresponding to

the point in question; bTj(h), 0-(h) - certain nonrandom deviation

from the mean deviations IlT (h) and (h).• DOT

Such a recording or the parameters of a "random atmosphere"

corresponds to its representation in the form of the sum of a certain

number of m "atmospheres* with the random coefficients bi and c1.

is



Ap1These coefficients and the coordinate functions ATi(h) and -- (h)". •0 CT

are determined on the basis of cumulative statistical data which
characterize the state of the atmosphere. A rather accurate
representation of the random parameters of the atmosphere is given by
an expansion, including 10-11 terms.

The use of the method of canonical expansions of random atmos-
pheric parameters makes it possible to solve v&rious problems which

arise during the designing of missiles. One of most frequently
encountered problems is the problem of evaluating the statistical

characteristics of atmospheric parameters taking into account the
random character of the variation in the coordinates and the flight
time of the missile (the geographic coordinates of the motion of the
missile and the flight time were unknown earlier). A typical example
of this type of problem is the problem of missile deflection. The
structure of the canonical expansion in this case reduces to
determining the unknown random variables and the coordinate functions

for a rather extensive area from the data obtained by meteorological

sounding of the atmosphere.

In missile design another group of calculations (for instance,

when evaluating the strength of an apparatus) is encountered, the
purpoce of which is the study of the characteristics of an object aor

the worst (extreme) flight conditions and an evaluation of the effect

of maximum deviations. The most Important or the calculations of this
type are the calculations at points which correspond to the greatest
(in value) deviations in thermodynamic parameters. Since there can
be different combinations of large deviations, it is possible to

recommend two sets of functions: one corresponds to typical adverse
winter conditions, and the second - to summer conditions. The lowest
temperatures and the greatest densities near the earth and the lowest
densities ot high altitudes are characteristic of an adverse point in

winter. In summer the adverse point is characterized by very high

"temperatures and low densities near the earth and high densities in
the stratosphere.

,(. .. 6



In certain cases for the purpose of simplifying calculations

instead of using canonical expansions for extreme conditions It is

possible to use the maximum values of atmospberic temperature with

respect to altitude. As maximum temperature distributions in this

case temperatures for the so-called "standard days" - the maximum

temperatures of a warm day and the minimum temperatures of a cold

day - are taken.

The corresponding maximum values of relative air density are
determined by the equation of state and the differential equation of

equilibrium.

Wind characteristics are determined by analogy with the deter-

mination of random atmospheric parameters. In solving the first type

of problems a systematic wind of constant direction [prevailing wind]
(from west to east) and a random witd component are distinguished.

In calculating the controllability and the strength of a missile an

envelope of wind speeds with respect to height, which corresponds to

maximum values, is used.

1.3. AEROOYNAMIC FORCES AND NONENTS.

The aerodynamzi forces arising during the motion of a missile in

the atmosphere, can be reduced to one resultant force 9, passing

through the *enter of mass of the minsile and the so-called totat

aerodpmieo for*,# and resultant moment R. acting relative to the

center of mass of the missile and called totaZ atrodVifftwe mnewe.,

The value and the direction of vectors it and ff depend on a number or

factors, Including the orientation of the alsille relative to the

velocity vector or the aIrstre"as, incident on the missile, air

density, etc •

In flight vehicle dynamics for determining the orientation of a

vehicle relative to the airspeed vector and expanding foree ff and

moment 9 along tho coordinaLe axes wind and body systems or coordinate

spxes are usually used.

17!



The body sgstem of coordlnate axes Oxlyls 1 is a Cartesian,

rectangular, right-hand system of coordinate axes, fixed relative to

the missile or nose section (Fig. 1*6). The'axes of this system are

called body az* for short.

The origin of the coordinates of a body system in placed at the

center of mass of the missile axis Ox 1 II directed along 'the
longitudinal axle of the missile In the direction of the nose section;

axis 0y1 Is placed in that plane of symmetry of the missile which at

the moment of launch coincides with the plane of firing - with the

plane Oxo 0y of the Initial launch coordinate system'. If aiming is
accomplibhed without turning the missile on the launching device,

then for plane Ox 1y, any plane of yametry of the missile can be

taken.

Pig. 1.6. Kisslle ~ith body cooodbiate "16
Systes.

Por the nose sectIon the direations of the axes Oyl and 0ea are

conveniently seleeted in such a mey that on the nose Section connected
With the roM'et, a"is Oi Is otentod In the direction of stablitter
III and axis Os3. - in the direction of stabilizer IV (PiS. 1.7).

ees S&et 2.1.
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A 'Pig. 1.7. Nose sectidn
witth a body coordinate
axis system.

The wind _oordia.. axis gsten Oxy -
rectangular right-handed (Fig. 1.8). The origin of the ooordinatoe of
this system colncides with the center of Mass of the missile; axis j
Oxii Is directed along velocity vector #W of the missile relative to

the air medium; axI6 Oyl, lies In the plane or a3y'metry of the,
missile OX 1y

PIX. 1.8. h wind coordinateS.• • axis systea. •.'

Irvi

Th* orlentation or the siasile relative to the alrapeed' veotor
in the Ceneral -1 Se is deteilned 'by. the ancles of attack oýnd

sideolip 6B, i.e., by angle 1 - between the velocity vector mWand,
the plane of symet.y of the sisaile Ox 1y, end bv angle a - botuen
the projeetton of the veloci4y veatorv on the plane of tsymmetry or
the sls-ile Osyi and the longlftudlhal ais of the #43ssle OX.

Ite taararfoation to the .abitw"Y position of •thi body axes
telative to the wind axes is auoiopli*hed by means of two rotation*
- by tumnfig the body axes relative to aXis Oy. by ingle of s8de0l8p
0 and then relative to axis OX1 by ar)Le a (Fig. 1.9).
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-Fig. 1.9. Transformation
*• from wind to body axes.

S •..

zu9

'The cosines of the angles between the body and wind axes are

given in Table 1.1.

Table 1.1.: The cosines ot anglesbetween body and wind axes.

( 1)OC. 0 x,. Oy Oara
Ox, cos acosP s_ __a, -COSGa SIR

Oyl --sin a € pcos a sit a sin

Oi, I n1 0 I cost
KEY: (1) Axes.

The total aerodynamic forge R, dependent on angles a and 0,

is usually broken down into the components X, Y, Z for wind coordinate

axes or into components X1 , YI, Zl for body axes:

R-- -+V+!-Z Y, +Z. (1.21)

Since, the proje6ction of force g on the wind axis Oxii is always

negative, it is customary to examine the components X and X of
force R with respect to negative directions of axes Ox., and OxI.
Thus, the projections of force R on these axes.- the drag and axial
force are respectively equal to:

Ra,---X; Rt'--Xk.
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A ballistic missile (without fin stabilization or with a

cruciform fin assembly) is practioally an aerodynamically axisymmetrlc
body. If 'he axis of a missile is directed along the airspeed vector

(a = 0 = 0), then the flow of the missile will be symmetrical relative

to its axis and therefore, forces Y and Z (or Y1 and ZI) will be

equal to zero.

If the axis of a missile forms a certain angle with the airspeed

vector, then the flow will be symmetrical relative to the plane,

passing through the axis of the missile and the airspeed vector. In

this case the total aerodynamic force, and consequently its component

also, for example lift Y or normal force YI, will be located in this

plane. Hence Jt follows that for an aerodynamically axisymmetric

missile the dependences of force Z and Z1 on angle B are analogous

to dependences Y and Y on a. Moreover, it is generally possible not

to examine the angle of sideslip 8, if the angle included between the

longitudinal axis of the missile and the airspeed vector is taken for

the angle of attack and the position in space of the plan, passing

through the axis of the missile and the velocity vector is determined.

Subsequently we will proceed precisely in this way.

On the basis of the theory of aerodynamic similarity aerodynamic

forces are usually expressed in the following manner:

X=cqS; XY=cqS; (
wher~cuqS; .cnqS; }(1.22)

where' q-- 2 - dynamic head; p - air density; S - characteristic

area of the missile, usually the area of the maximum cross section;

c and cy; c and cn - dimensionZee8 aerodynamio coefficiente.

Aerodynamic coefficients depend on the shape of a missile, the

orientation of a missile relative to the airspeed vector (i.e., on

angle a) and on- the criteria of aerodynamic similarity - Mach number
M~vE and Reynolds number Re-'wl
ja v

where a - sound propagation velocity in air; Z - the characteristic

dimension of a missile, usually its length; v - the kinematic
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coefficient of air viscosity.

Using Table 1.1 for the case 0 " 0 and taking into account that
the negative directions of the axes OxIi and Ox1 correspond to the

positive values x and xl, we obtain

e,=cx cos a--cusln a;

c=c., sin a+c+ qcos a.J (1.23)

Since during the flight of a missile in the atmosphere angle a

is small -of the order of a few degrees, it is possible to consider

that cos a z 1, and sin a = a. Then we will obtain the expression of

(1.23) in the approximate form

C'V CXU+ Cr (1. 24.)

The aerodynamic characteristics of the missile are studied in

detail in specialized literature and thus we will not dwell on them

h3re in any great detail. Let us only note the basic features of the

aerodynamic characteristics of a missile.

Aerodynamic investigations show that at small angles of attack

(a < 100) the coefficient of axial force c depends little on the

angle of attack, and the coefficients of lift ca and normal cn forces

are proportional to the angle of attack:

A,--Cia; ei-- lla, (1.25)

where 0a aand ca - partial derivatives depending on the corresponding
y n

coefficients for angle of attack.

The derivative of the coefficient of normal force cn depends,

mainly, on M number (Fig. 1.10). In the transonic speed range for

a missile (M : 1) this coefficient has a peak value, and with a

further increase in M numbers diminishes, tending toward a certain

constant value.
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Fig. 1.10.- The ap'proxim~at'e dependence of
aerodynamic coefficients cand

Qa T.

c non M number.

The coefficient of axial force a depends substantially on the
shape of the missile, the angle of attack, M and Re numbers. The

approximate form of the dependence cT (M) is shown in Fig. 1.10. Since

the speed of sound and the kinematic coefficient of viscosity v

depend on altitude, then at a given-velocity V~ M and Re numbers, and
awith them and coefficients c~ and cT vary with altitude, coefficient

C9m

c n weakly, and coefficient c T substantially.

It must be noted that the coefficient of axial force also depends

on rocket engine operation. When the Engine is not operating axial

force X increafes by the magnitude of the corresponding increage in

wake drag.

Considering what has been said above, it is possible to .state

that aerodynamic forces depend upon the shape and the dimensions of

the missile, the angle of attack, and the flight velocity and altitude.'

SThe total aerodynamic moment acting on a missilt, is usually

broken down into the components cn or the axes O~l, 0!l, Oz,. These

components Y yand co an t zl are respectively called bank, yaw and

pitch mom~ents.

Vlte value and direction of total aerodynamic moment depend on a

nuthbr or factor, among whuiph tnhe charpcteristics of missile motion

______ mislteageo atcadtefih3vlct n lue



relative to the air medium have a significant value - the orientation

of the missile relative to the velocity vectors of the center of mass
and the angular veloity of the missile and the magnitudes of these
velocitles V. and w.

Let the center of mass of a nonrotating missile lie on its
longitudinal axis at distance xT from the tip of the nose section, and
the center of pressure be located at a distance xd from the tip of the
missile. Then the value of total aerodynamic moment relative to the
center of mass will be equal to

M-mc~qS (e-x4). (1.26)

or at small angles of attack

Mcq (x,- xd)a. (1.27)

This moment as well as total aerodynamic force, acts in the

plane, passing through the longitudinal axis of the missile and the

velocity vector. -

The position of the center of pressure in the general case
depends on the shape of the missile, ? number and the angle of attack.
Figure 1.11 shows a typical displacement of the center of pressure of

a missile with variation in M number. It can usually be considered

that the position of the center of pressure remains constant, if the

angle of attack varies in a certain small vicinity of its zero value.

Fig. 1.11. The position of
the center of pressure of a
missile depending on M number.
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When the missile is rotating, atmospheric drag is manifested,

mainly, in the form of aerodynamic moment of resistance to rotation.

This moment, called damping moment, is always oriented in the direction,

opposite to the rotation and tends to cancel the angular velocity of

rotation.

"Damping moment depends on the value of angular velocity as well

-as on its orientation relative to the missile. Usually the damping-

moment vector is broken down with respect to the body axes into

components, proportional to angular velocity relative to the corre-

sponding axes:

* - q s (1.28)
. _ . T oy., , (

Va1

where D and I - the diameter and the length of the missile respectively.

Each of the dimensionless coefficients mf, m in i

always negative. The values of these coefficients in the flight range

of angles of attack depend, mainly, on the geometric shape of the

missile, its centering [position of its c.g.) xT M number.

1.4. CHARACTERISTICS OF ROCKET ENGINES.

The basic characteristics of a rocket engine are its thrust P,
specific thrust P y, propellant consumption per second mg0 and its

propellant components ratio K.

As is known) the thrust force of a rocket engine P is connected

with its mass consumption per second di, the exhaust velocity of the

products of combustion w, the gas pressure at the nozzle exit section

Patnthe atmospheric pressure p and the area of the nozzle exit cross

section S5 by dependence

P rWt+ (pas-P) So. (1.29)
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As is evident, thrust force depends upon altitude. At sea level,

where p p PO, thrust force has its least value

P. -nW+ (p.-po)S. (1.30)

and in a vacuum - its greatest

Pf16 +Pas's= PO+,post. (1.31)

The increase in thrust force with a change in atmospheric

pressure from pO to zero can attain 25% of thrust PO at sea level.

The dependence of thrust force on altitude can be written in

the form

P'MPX--pS&. (1.32)

The ratio of engine thrust to mass consumption per second i-s

usually called specific thrust:

74 .90 • " (1 .33 )

Specific thrust is the thrust force created by an engine during
the combustion of 1 kg of propellant in 1 s, and characterizes the

efficiency of the engine system. Specific thrust in a vacuum is

determined by the formula

rao so-h "'(1.34)

Using the concept of specific thrust in a vacuum, expression (1.32)

can be rewritten in the form

~or ~*~ ga (.35)

The following formula for determining thrust is also finding

application in design practice:

P-ApepS, .(1.36)
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where pH - the combustion chamber pressure of the engine; A - the

proportionality factor whose magnitude is determined on the basis of

engine: bench tests.

On the basis of expression (1.36) it is possible to write the

appropriate formulas for determining specific thrust, for example:

.o "(1.37)

The convenience of formulas (1.36) and (1.37) consists in the

fact that thrust and specific thrust are connected in them by a linear

dependence with the combustion chamber pressure whose magnitude is

measured by bench tests.

The propellant components ratio K = /6/r characterizes the
pLopellant mixture composition. Here aOK and 0 r are the mass con-

sumption rates respectively of the oxidizer and the fuel. per unit of

time.

Knowing the total propellant consumption in one second

VGloGan= Mg and the magnitude of parameter K, it is possible to
determine the mass consumption per second of oxidizer and fuel by the

formulas:

K +

Rocket engine thrust substantially varies in time under transient

conditions (in starting and switching down the engines). The

dependence of thrust on time (the transient c-haracteristlcs of a

rocket engine) is represented in Fig. 1.12. As is evident, the
combustion chamber pressure, and thus the thrust force also attain
their optimum values not immediately after starting of the engine.

A certain time passes from the moment of the introduction of the
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command for starting the engine before the beginning of ignition.

Thrust practically appears at the moment of ignition.

i II

6

Fig. 1.12. The variation in the thrust force
of a liquid-propellant rocket engine
[)PA - LPRE] during the time of a rocket flight:
1 - command for starting; 2 - ignition; 3 -

separation of the rocket from the launch pad;
4-5 - optimum thrust phase; 6 - command for
engine shut-down; 5-6 - the aftereffect [thrust
trailoff] phase.

Upon switching off of an engine the thrust does not also dis-
appear instantaneously - a so-called, aftereffect phenomenon is
observed. After the command for engine shut-down due to the after-
burning of a specific quantity of propellant a certain thrust continues
to be created whose impulse, called the aftereffect impulse, is
expressed by the formula

1 pa4

KKwhere tK - the time of the introduction of the command for engine

shut-down; tPOO - the moment of time corresponding to zero thrust.

The aftereffect impulse is a random variable whose variance can
constitute up to 15% of the inean value of this impulse [12]. This
feature of the transient en&ine characteristics affects the conditions
of stage separation and the separation of the nose section of missiles.



The variance in the value of the impulse a'tereffect depends on
the time variance corresponding to zero thrust,, and the thrust

variance which, in turn, depends on the pressure variance in the

combustion chamber,.the variance in parameter K and other factors.

1:6. THE MISSILE AS A BODY OF VARIABLE COMPOSITION.

The Mass of a Missile, the Position of the Center

of Mass, Inertia Moments.

In connection with the continous burning of propellant the mass

of a missile varies during flight and it can be found from the

expression

M=Mo-- A , (1.39)

whee dm dm

where J- - the mass consumption per second; t * 0 - the

moment of engine activation; m0 - initial mass of the rocket.

Mass consumption per second i consists of the mass consumption
per second passing through the combustion chambers of the main engines,
through the exhaust pipes of the turbopump unit [THA - TPUJ as well

as through the combustion chambers of the controlling engines.

Usually during flight variations take place in the mass con-
sumption rate per second, caused by a variation In the engine operating
mode, and also by various random factors. The most significant
variations in consumption per second occur in the transient modes of

-* engine operation (activation, switching to smaller thrust, complete
shut-down).

The position of the center of mass of a missile, determined by
coordinate xT (Fig. 1.13), and the moments of inertia of a missile
vary in proportion to propellant burnup. These values can be taken

into account dependent on the mass of a missile, i.e.,

x.(M); 'at (m); I,(,).
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Figure 1.14 for example contains graphs which illustrate the

nature of the variation In mass and moment of inertia relative to the

transverse axis for the first stage of a two-stage rocket.

Fig. 1.13. The variation in

the dimensionless coordinate
of the center of mass of a

* single-stage rocket

x T = xT/L during the time of

flight: tp - the moment of

__....__ _ engine shut-down.

Fig. 1.14. The variation in
mass and inertiL moment of a
two-stage rocket during the
time of flight: tp.k, - the

moment of the preliminary
command; t - the moment of

p
stage separation.

The Principle of Composing Equations of Notion
of a Missile as a Body of Variable Composition.

During the flight or a rocket with the engine operating emission

of the products of combustion takes place and the composition of the

rocket Is oontinuously varying. In examining the motion of a rocket,

it is convenient at each moment of time to include in its composition

only those material particles which at that moment are located inside

the specific volume occupied by the rocket itself. When the problem

is composed in this way the rocket with the engine operating is a
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system of variable composition, to which it is'hot possible

to directly apply the theorems of the dynamics of rigid bodies.
However, based on these classit'al theorems, It is pe-saible to prove

analogous theorems for a system of variable composition and to
establish the principle for composing the equations of motion of a

*- rocket.

Rejecting the proofs presented, for example, in book [6], let us
examine the principle for composing the equations of motion of a rocket.

The equationa of motion of a reaction flight vehicle at an
arbitrary moment t can be wriittn In the form of the tuatlon= of the

motion of a solid body which is obtained as a result of the
"lssolidification" of reaction vebiclo at this instant, if we include

the reactive forces among the forces, applied to this fictitious

solid body.

Thqs, the vector equation of the motion of the center or mass of
the rocket can be written in the form

Here m - m(t)- the mass of the rocket at moment of time t;

Jr-the acceleration of the center of mass in an Inertial scor-

.dnato aj•mg F - the sum of tho external foroes, applied to the

rocket; - the sum of the reactive forces.

By the external foroes, acting on a r%:Zot, are meant such forces,
as gravity •, total aerodynamic force It. the force 4;# the inter-
action of the rocket with the launch pad or with a separated au.ge,

As Is evident, the composing of equations of motion or a body or

variable composition reduces to the determination of the reactive
foroet, which is a rather complex protlem. The main one of these
forces is the reactive force mw, which cannot be directly measured.

Thus it is customary to determine the thrust rorce of a rocket engine
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by formula (1.29), in which is included the force caused by atmospheric
pressure and by the gas pressure at the nozzle exit section (p - P)SQ"
Although this force is external, it is combined with the strictly
reactive power rw, since during the testing of an engine on a stand

the force acting on the stand mounts, determined by dependence (1.30),
is measured. Accordingly the force (p. p)S is eliminated from the
number of external forces

Besides thrust force P, determined by formula (1.29), the
following are inoluded in the composition of the reactive forces:

1) the forces caused by the nonsteady-state of the motion of the

propellant and the products of combustion relative to the missile body;

2) the Coriolis rorces caused by the motion of propellant and the
products of combustion in a rocket rotating relative to an inertial

coordinate system;

3) the forces caused by the displacement or the center or mass of

a rocket relative to ita housing.1..
The enumerated forces "e very small In comparison with thrust

determined by the formula (1.29)6 and their direct measurement i3
not possible. Depending on the assumptions made, difrferent authors

obtain different theoretioal expressions for them. In ballistics the

thrust forcea. or' rocket engines are determined by the expression (1.219).

The vector oquation of the rotary motion of a rocket relative to P

the center of mass is composed In an analogous mannert

Here [ - the main moment (relative to tiie center of mass of the
rocket) of the momenta of the particles or a *salidifiedO missile

relative to the axes, passing through the center of mass of the
!rooket and moving translationally with velocity V relative to the

Iner~tial system;

32



- the main moment (relative to the center of mass of the

rocket) of all the external forces ac•ting on a missile, with the

exception of the forces of atmospheric pressure and gas pressure In

the nozzle exit section; - the malnmoment i(relatite to the

center of mass of the rocket) of the thrust force of a rocket engine,

and also the forces caused by the motion of the propellant and the

gases inside the rotating missile, by the nonstead?-state of thie

motion and by the displacement of the center of mass of the rocket

relative to Its using.

Subsequently for the sake of simplifying the equations of rotary

motion of a missile relative to its center of:mass we will disregard,

the moments of forces caused by the nonsteady-state. of the motion of

the propellant and the gases Inside the rocket and by the displacement

of the center of mass of the rocket relative to its housing, since

these moments are rather small.

It is necessary to note that significant (in value) moments

caused by oscillations of the fluid In the tanks of the missile

occur when a free surface exists,. However with an appropriate
$selection of the parameters of a atabilization system the osqIllatIon.

or the missile due to the moitlitty of the fluld In* the tanks are small1

and their effect on %#he mituile trajectory is insignfticant. In this

connectlon we will omit the study or moments caused by the Interaction

of the rlutd with Q& missile body, espezailly• because these questions

are the subjoct of Investigation by apecial-aections of missile

1.6. PERTURSING FORCES AND MOMENTS.

In actual flight perturbing foreces and moments caused by veriousl

perturbing factors always act on a alssle,

'See, ror exavple, works (11, [171.
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In composing a mathematical .meoel of i missile •light and its

investigation It is not possible to take all thet;e perturbing factors
Into account. Depending on' the actual conditigns it is necessary to
confider :only those of them which qubstantially affect the solution
of the given problem. .Thus here we will limit ourselves to only a
brief survey or the basic groups of perturbing factors, presenting a
more detailed examination of them in the appropriate sections of this
book.

Such perturbing factors as the deviations in the parameters of
a missile and its engines (the weight of the missile, the thrust force
of the main engines, the fuel consumption per second and others) fromI I

their optimum values, are caused, mainly, by production errors In the

manufacture and the assembly of elepents and subassemblies making up

a missile, and by the variance in the propellant characteristics.
These deviations In the parameters of a missile and engines ro- the
optimum values akd such manufacturing errors, as thrust eccentricity
in the main engine, issi1le asymmetry4, body misallgnment, etc., cause
the appearance or random perturbing forces (the forces of' gravity,
reactive and aerQdyna=iq forces) ard their moments.

The atmosphe'e is another source or perturbincea.. Deviatlons In
the parameters or the atmosphere f'rm etandard values give rise to
the appearance of perturbing aes4ynami• fo"'e# and mom.ents and to
the devl-qtlon In thrust ftom the eptin value. WInd cffets on a
013s-1le ••so eiwse tho perturbances In 4erodynanlc forces and woments.
Atmospherio perturbances are a *.%a pracesa wd are aocordingly
described by rAflndows rUnv• 4b.

* All these perturb.ng Coroeg a&P moannto or appl ld directly to
, the missile. 90aete theee, poturving rarae and MOtit's arising ai
a result of variout ertors In 4oatrol elemert deflection art always
acting. - fte comaon sources of ouch perturbing eeets are noises,
err6rs In the oparation of e4uipment atid 4eviatIbna in the paraieters
ofr the equlpment roa toolp _ptiftZ& values leading to tarlous false
"sis"naIs in the'contmrol elttmnts. Ad a reuult perturbi"t forces and
nowento appear ohlh are, rsnr.Pal1y opeaking, randon variables.
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Perturbing factors, acting directly on a missile and on the
control processes, finally, lead to a reduction In maximum flight
range and to deflection of the flight paths of the missile and nose
sections.

1.7, CONTROLLING FORCES AND NONENTS.

The control of the translational and rotary motion of a mlssile
is <-&.r"ried out by varying the controlling for'ces and moments which
am.~ created with the rocket control elements upon commands from the
control system. The selection of the type of control element's and
their effect iveness I&i one of the most important Questions in the

dynamic des~gning of a misaile. Its solution is. directly connected

with the selection of th~e structural layout of a miSsile.

Controll ing Forces.

In the general ttn the following forc63 act on a missile during
flight*% gravityj U totalA ivi-4lnexic force IF and engine thrust
force v.tue1ng th-t luunohine ot #k fisissle, launch pad "eaction foroes
can also 4Qe it.

Pt~ vtrylx14 the flight puth of -a Misai1e it Is neces-sary to vary
tho wiputud and the dreotion of the reaultant focsindicated
above. Sine* it to tt p~aible to affect #rikvIt:$ Mlight control Is

pra~i~ly c~~l1~e4 ni~by vW-iyns the =a1n"ttode &nd the
direcvlch Or Uhl reai tant Uof' thrust forces or the entinds w4 at

t~~dya fl oroos. The vtsultant 1; can. be brokett down i~to 'tW*

W-"WVS I we ti Alv 9 n directed respectively aldna velocity vector
u4'J petbdiouil'd to it (pis. ".15).

-A-ngetoial caompnent lit equal int v*a-1'~ -t..

can servej to regulate tilght vlty Te al~

49 000onent Ut (Or ballidtit rcOcke% I tt~kIned bY vatYINZ khhethrust
ot the aimi engluez (tor lstanc44 biy vou' 1.4 te VpellXI-nt
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consumption per second, if the engine is liquld-propellant) and by

activating or shutting down various engines. That part of thrust
force AP which can be used for regulating missile speed, let us call
tangential controlling force.

"Fig. 1.15. Forces acting
4 on a rocket in flight.

Normal force I is equal to the aum of the projections of total
aerodynamic force and thrust forces in the plane, normal to the
trajectory:

Itsk component in the firinga Plane Nwe call normal controlliig

.- ' anlalogy with normal eontwolling force::let- sa introduoe the

Concept lfateral cnrligoe ,#w ich1s rjaino

force On on AL Pte~endioular Wthe plteatt ht..

BY creating the roqu•red (in magnitude and direatlon) tangential,
wtimll and lateral controlling foroes, .it is possIble to ensure an

aseign~d F~ligt trjeCto01- Of' s MOcke.

Var•ous methods ot •reating normal and lateral contra" ling tones.
.:re possible. For ballitAtie rokets, in order to obtaln a normal

--.toe ot different magnitude, It Is necessary to vary the atngle or
attack in the plane of tltXht a1 , turnIng the ro•ket around Its center

of ass*. Mhen a rocket hMb ,in angle at attaik ay tbie noriwl torfe. is
t4o). to (Pig. 1.16).-. i •; " • -6



No -P sin aj+'Y=(P+c~qS)a. (1.44)

In order to obtain lateral controlling force, it is necessary to

give the rocket angle of attack az in the plane, perpendicular to the

firing plane.

2

FCos ýXI

Fig. 1.16. Diagram of the
onset of normal controlling
force in a rocket.

y0

Rocket Control Elemnents. Controlling Moments.

As was stated above, to obtain the required (in magnitude and

direction) normal force it is necessary in a specific manner to

regulate the orientation of a rocket relative to the velocity vector.
4

This problem is solved by creating controlling moments which rotate

the rocket around its axes Oxl, OyI, and Ozl. The corresponding

motions are usually called roll, yaw and pitch motions. For producing

controlling moments there are control elements on the rocket. The

latter create comparatively small aerodynamic or reactive forces, whose

moments relative to the center of mass of the rocket are sufficient

for controlling the angular motions of the rocket.

For varying normal and lateral force rotation of the rocket around

its OyI and OzI axes with the aid of yaw and pitch control elements is
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employed. These same control elements are necessary for stabilizing
the required orientation of a rocket in space. For stabilizing a

rocket with respect to roll' still other elements controlling roll

are necessary, creating controlling moment relative to the longitudinal

axes Ox1 . And finally a control element is necessary for varying the
thrust force of the main engines, 'f it is necessary to regulate

rocket velocity.

At the present time the following basic types of elements are
employed for controlling ballistic missiles:

* 1) air vanes;

2) Jet vanes;

3) turning combustion chambers of the main engines (one or

several);

S4) turning nozzles of the main engines;

5) special adapters at the nozzle edge (spherical, cylindrical

with an oblique edge and others);

6) slotted nozzles;

7) extensible f'aps operating in the engine jet perpendicular

to the flow;

8) the blowing of generator gas or the injection of a fluid into

the supersonic part of the nozzle of the main engine;

9) multi-chamber main engine operating in a boosting-throttling

mode;

'Rotation relative to the longitudinal axis OxI for varying the
lateral controllinZ force of ballistic rockets is not employed.
However for simplifying the control system it is necessary that rocket
flight occur without rotation around this axis, i.e., without roll.
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10) controlling engines (fixed and turning);

11) controlling nozzles (turning and fixed);

12) combined control element (for instance, air and jet vanes or

air vanes with the main chambers operating in a boosting-throttling

mode).

All the enumerated control elements can create controlling yaw

a-d pitch moments, however not all of them are suitable for producing

rolling moment. It is not possible to obtain rolling moment, if for

pitch and yaw control, for example, one turning engine is used, or, if

the forces creating pitching and yawing moments, are directed along

the longitudinal axis of the rocket. In these cases for roll control

it is necessary to use the special controlling engines whose thrust

acts in the transverse plane.

In all other cases, when there are not less than two pairs of

pitch and yaw control elements, creating transverse forces at a

certain distance from the longitudinal axis, for producing rolling

moment differentiaL controZ of the control elements is employed. The

latter can act symmetrically, creating pitching or yawing moment, or

asymmetrically, creating rolling moment. With a combination of the

indicated operations pitching (yawing) moment and rolling moment

can also be simultaneously created.

The magnitude of the forces created by the control elements,

depends on the displacement of these elements (most frequently

angular) or on the propellant consumption per second, if misalignment

of the thrusts of the main engines is used for control.

Let us examine the definition of the forces created by the

control elements, and of controlling moments as an example of control

of rocket motion with the aid of four controlling engines.

In many contemporary rockets control. of rocket motion in the

powered-flight phase is accomplished by four controlling engines.
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The location of these engines and the directions of their deflection

taken as positive, are shown in Fig. 1.17. We will consider its

turning counterclockwise as positive deflection of a controlling

engine,*if it is looked at from the direction of the corresponding

axis, i.e., in Fig. 1.17 deflections of engines II-IV downward, and

engines I-III to the right will be. positive.

•yl

g .

17 Fig. 1.17. Diagram of the
"" -onset of controlling moment

upon deflection of the
! >0>0 controlling engines.

Assuming the thrusts T of all four controlling engines equal, let

us write the projections of their resultant on body coordinate axes

in uhe form:

T11 = T (COS 81 + COS 8 + CO S b+ COS 4);

rTML=T(sln 8+sin 84); I(1.45
t--- -T (sin 8L-+-sin \

where 61, 62, 6 3) - respectively the angles of deflection of

controlling chambers I, II, III, and IV.

Apparently, the controlling moments in this case will be equal

to:

SMy f= Tr, (sin 8L + sin 82 - sin a3- sin 84);
Mru =- TI,. (sin 8, +- sin 8j;; l 6)

M•.•T=- , (sin 82 + sin, 4),
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where r - the distance from the longitudinal axis of the rocket to

the longitudinal axes of the controlling chambers; Z Z x. - x -

distance from the center of mass of the rocket to the axes of rotation

of the controlling engines.

In these expressions the thrust force of the controlling engine

is determined depending on its parameters by formula (1.35).

Rocket Controllability.

Ensuring the controllability of a rocket is one of the major

problems of dynamic design which reduces to the selection of the type

and the effectiveness of the control elements. We will estimate

control element effectiveness by the maximum controlling moment

My max' created by deflecting the control elements, and by the

corresponding angle of deflection of these elements 6max*

'"he selection of the type and effectiveness of control elements

is carried out taking into account the possibility of the design

realization of the following conditions:

1) a sufficient amount of controlling moments (with certain

reserves) for compensating for the perturbing forces and moments;

2) minimum energy losses during controlling.

The energy losses during controlling and, as a consequence of

this, the reduction in firing range are due, mainly, to two causes,

namely:

1) the installation of control elements gives rise to a reduction

in the specific thrust of the engine system;

2) the installation of control elements causes an increase in

the "'dry" weights of rocket stages (because of the weights of the

control elements themselves, their driving mechanisms and the energy

sources for the latter).
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Overestimation of control effectiveness can lead to unjustified
design complications and large energy losses for the rocket. In

connection with this the problem of correct determination of the

necessary control element effectiveness acquires very vital importance.

In solving this problem it is necessary to correctly estimate the

perturbing forces and moments and to rationally select the dynamic

rocket layout.

All the perturbing factors affecting the selection of the control

"elements, can be divided into the following groups:

1) wind;

2) technological errors in the manufacture and the assembly of

a rocket;

3) rocket layout asymmetry.

At the present time voluminous statistical material has been

accumulated characterizing the wind field of the earth.

Wind velocity W can be examined as a vectorial random variable

with a nonzero mean value. The systematic component of wind velocity

is oriented from west to east. The magnitude of a random
CHCT

component of wind velocity whose direction is equiprobable, is subject
to the normal distribution principle.

Another group of perturbing factors is caused by technological

errors in the manufacture and the assembly of a rocket; the basic ones

are the following:

1) bias and misalignment of the axeo of the nozzles of the engine

system relative to the mounting base;

2) bias and misalignment of the mounting base relative to the

correct position;
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3) difference in chamber thrusts and a possible variance in

engine thrusts;

4) elastic deformation of the engine system mount;

5) bias and misalignment of the joined missile sections;

6) errors in the installation of the stabilizers.

Technological manufacturing and assembly errors in a rocket can

be considered subject to the normal distribution principle. In

connection with this perturbing effects from each of the enumerated

factors can also be considered distributed according to the normal

distribution principle.

Asymmetric layout of a missile gives rise to systematic perturbing

forces and moments:

1) perturbing moment due to weight asymmetry;

2) perturbing forces and moments due to asymmetric positioning

of the exhaust nozzles of engine turbine-pump assemblies;

3) perturbing forces and moments due to elastic deformation of

the engine system mount caused by its asymmetric loading.

To each group of perturbing forces and moments acting on a

preceding stage of a rocket, there corresponds a group of initial

perturbations for the following stage. Initial perturbations due to

the stage separation process can be considered random and distributed

according to normal distribution principle.

Thus, for evaluating effectiveness of control elements the

complex of independent perturbing effects, applied to a missile during

flight, which can be reduced to one systematic and to n random

independent (between thtimselves) effects with the normal distribution

principles.
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During the various flight phases the role of the perturbing

factors is not identical.

The basic perturbing factor for single-stage rockets and for the

first stages of multi-stage rockets is the wind.

Perturbing forces and moments caused by manufacturing and

assembly errors in a rocket and by layout asymmetry (both systematic

and random), considerably less than wind forces and moments, do not

play a substantial role when evaluating effectiveness of control

elements. Thus for preliminary determination of the necessary angles

of deflection of the control elements of single-stage and the first

stages of multi-stage rockets it is sufficient to estimate the effect

on a rocket of wind (taking into account its variation with height).

For second and subsequent stages of missiles with a separation

height of more than 40 km the basic perturbing factors are manufacturing

and assembly errors and asymmetry of missile layout. The effect of
wind in these cases is unimportant.

In the initial flight phases after the separation of the stages

it Is necessary to consider the effect on the deflections of the

control elements of the initial perturbations caused by stabilization

errors in the previous stage and by the stage separation process.

Por the preliminary selection of the type and the effectiveness

of control elements it is possible to determine total perturbing

moment

At• aI TV )~~~a(1.47)

and to start with a reserve of 10%, which is

Ay max .44y~axa>IM.(.~

Proceeding from this value of necessary controlling moment and

taking the design characteristics of the missile into account, it is
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possible to select the type of control elements. After this it is

necessary to carry out evaluation of controllability (in other words,

to estimate the sufficient amount of controlling moments), using the

dynamic layout of rocket motion examined in Sect. 2.4.

, -The order of calculations for determining the deflections

(loading) of the control elementa in the first and subsequent stages

of a missile is given below.

The Order for Carrying Out Calculations for the First Stage.

A. The deflections of the control organs are determined:

1) due to the effect of the systematic component of wind

velocity 6W
CHOT

2) due to the effect of the random component of wind velocity
S. ~6W;

3) due to the effect of the perturbing factors caused by layout

asymmetry 6

4) due to the effect of perturbing forces and moments caused by

technological errors in the manufacture and the assembly of a missile

n6

B. The total deflection of the control elements is determined

C. The loading of the control elements is compared (taking into

account the possible random deviations in the parameters of the

missile, the guidance equipment and the atmosphere - by introducing

a margin of safety 1.1) with the miximum possible deflection

A.4
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The Order for Carrying Out Calculations for the Second
and Subsequent Stages.

During determining control element loading in second and sub-

sequent stages the combined effect on the motion of a missile of

wind, technological errors, layout asymmetry, ard also initial per-

turbations is considered.

The initial perturbations due to stabilization errors at the end

of the flight of a previous stage cause the following deflections of

the control elements:

- systematic component 4 ,

0- random component • &W.

Random perturbations due to the stage separation process lead to

deflection of the control elements 60
p

The order for carrying out the calculations.

A. The component defleotions of the control elemunts are

determined:

1) 4HL, - ue to the effect of the algebraic sum of the perturbing

forces and moments risulting from the systematic component of wind

velocity and the layout ao-yiimetry duz'ine the initial perturbances
60

2) 6 - due to the uffect of the random component of wind

velocity with zero initial portuurbations;

3) 6n -" due to the effect of perturb~ng forces and moments

caused by technological errors, with zero initial perturbations;

4) 6 ct.W 65 ri, a - d-to to Initial perturbations 6W0 6n0 60

H C
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B. The total deflection of the control elements is ýetermined

'., ,s(1.51)

C. The loading of the control elements is composed (taking into

account the possible random deviations in the parameters of the

missile, the guidance equipment and the atmosphere) with the maximum

possible deflection:

If this condition is not fulfilled, correction of earlier
6

selected control effectiveness characterized by magnitude N Is

carried out.

1.8. THE ROCKET FLIGHT CONTROL SYSTEM.

The Problems and the Makeup of a Control System.

A rocket flight control system controls Its motion 1n the

powered-flight phase, ensuring flight In a rather close vicinity of

the required flight path, and separation oW the stages and nose,

section of the rocket at the necessary moments of time,.. This very

general formulation of the problems of a flight control oystem can bo

somewhat more aonordtely defined by sep.sating t.he overall .problem

into the problems or guidanci and 3tabilitation.

The problem of rocket stabilization, and more precise, the

controlling of its motion around the center of mass, reduces to

controlling the orientation of the rocket axes In space and to main-

taining the required orientation. This problem is solved by a group

of devices located onboard the rocket, -by the autornoti a s"Ut4V

*tab~Uat~snuqpadsa~t

Due to feedback the rocket and the automatic angular stabillt•.tion

equipment form a single dynamic aystem, in which the rocket Is one of
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the links. Henceforth by etabitizatioh.yeystem we will understand the

closed automatic system cons~stin'g of the rocket and the automatic

angular stdbilization equipment.

Usually a rocket is stabilized (oriented) relative to all three
(connected with it) coordinate axes, Accordingly thes stabilization
system consists of three 'channbls: pitch, yaw, and roll.

The problem of missile guidance (controlling the motion of the
center of mass) reduces ,to the control of the.three components of the

velocity of the center.of mass (longitudinal, normal, and lateral),
separatlon of the stages and the nose *ectfon in such a way that the
parameters of the motdon of" the center or =ass or the rocket at the
moment of the separation of the nose suction enoures the free flight
of the latter along tho required trjeutory., The automatic control

sbteta, Colving this problem, we cusomarily call the guidance saytem.

In general a gutdanrce system conists or three channels for con-

tte!llng oa lateral, noruwl 8nu lan~itudinl components of velocity

and channels cotnrolling the 36paration of the stages aN the nose

3ection. The firat three channela operate with the 43e of reedback
and form toqether •ith th I'rol¶e, a closid. three-channel- dynamic

Control or th toprLr M47 tho rocket parrts id aCOOinPlih44
by an tpen vtetz (with. v• Ctdeba•k): on tho .basls of the Information

about ti zoltion mt' ti-e conttr or the m&a of the rocket In the

powtwf~ntphave. M4 cmet.nk Mr titme* 'ir Jetamraned at which It ies
nrtiaary to ztparate thle apwrellate part oft the rocket sid t serles

of singlie It.nrusttcns io t•tin for ahutting down the eagine oystem

and for th# separation of this part.

&s a rejult o6 thl presence of two different Mlight phases f a&

ballist.,is m4istle - povelvd-aad ;tnpo'ered-flight placet the main

problem of g,•liance ic oosV.rollmii the setaratlon or thc node section

*of the rocket Jýn such a way that tboe uioje Section thereaftter carrying
Out •ree flight, I$Mncts e thO vicinity of thO target on the surface

4 kaa!. a
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of the earth with the required accuracy. 'The execution of this task
is ensured by the channel controlling the separation of the nose section
which is a group-.of devices which shape the signal for the shlutting

* ~down of the engine system and for' the separation of the nose section

at that moment of tvime, when a certain function or the parameters of
* ~the motion of the rocket attains a value which ensures with the

required accuracy the transit of' the flight path of the nose sectionI
to the target whose position relative to the rocket launch site to;

known.

In order that at the moment off separation of the nose sectionk

the parameters of rotket motion are locaited In %tc-Ah a, tufficiently
small area which ensures the normal operationa of the channel con-

trolline the separation of' thxe nose section) I t 4s neoosq&ary to con-
trol the velocity coczpowr4nt, of th4 rocket.

The channel controlling lateral voI pt tntain3 the flight,
of the rocket during the povervdfih -41ii teidcae ln
orftiring. This is necessary so t!a -the vt lt vector of the
rocket at, ths moment of' separation of' thenoe -section ha-s the
ftocesoary direaction with nv4pni4t to Atlvauth. Since this channel
strivts to reduce iatenal trit .o zero - the deflection oftheI
rockot troz the piano of' falvn-i,then-it also can bo called the
lateral. drift" sttita ionhamwiC. or the camnnel at lateral

* ctabilln +tio.

ThI1 vhkr**w, contri-olllt. nottal Veloci1ty ensurtes the f~laigh ot
the roket inthe ~dne *t tirn along- the a*#igned flightpaho

that at th9 gmoent Or' zeparation of tvht nos(e sectiont the velocity
ve-ctor ot tho rockot hw4 the necessary direction 'in the plane? of

T he- channvel controlling velocity Ottsures the re-quird prinoiple
0j4 varying nlight veloc0ity, h otrlO velocity Isatmplithod

for the Purpose or reducing the Parametric doai or. theatintth
center of mass of the rock.et Afn the plane orf tring, at which

swpaation of' the notte section is possible for impacting on the



I

asstaged tar get. The channel controlling velocity can be absent, if

it is possible to ensure the required accuracy of tiring without

vatoeitty oontrol.,1

iýach of the three closed channiels controlling tho components of

rocket velocity usually carry out the following functions.

S1. It obtains and processes information conrarning the parameters

of rocket motion, on the basis of which the guidance signals are
worked out.

2. It transmit3 the guidanoe sainalz on board the rocket, if

these signals are developed by otf-board equipment.

3. It converts the guidance signals into lateral, normal and
Stanoential contr.ollin. forces

Sinee lateral and normal controlling forces are created by
'vrying the angular position of the rocket relative to Its velocity

vector#, i.e., by varying, he angles of attack and sideslip, then for
Scontrolling these force; two channels of the angular stabilization

*yatm are used - the pitch and yaw channels. In thin ease the

angular attabillnaton system sintultaneouaey executes two functlon•t

1) It czfwwerta the cuidanici signals Into Itrland normal&

2) it stabtlias dur••ng the e'rect or petaurbtlonfs thoe Argulir

ptition ot the ftcket asslceud by tho rfl~anee ;r.•I 1 .

Thn the two cttAflii;".-" Ul atgu~thý #tthilisatkror systen are
* ~doflen eleo~wrt's !.,aV se te. owrt- t te guidance-

"* c y•st~ Th' •-, the channel r itlng0 the angle or pitPb is part o?
* ~ t ~~ 1~1co~t. ~ t-=I vetnflty, and tve chatsnel stabilIIsIng

S- angl# o" 7'aw r. AlncA•e4 In the channel controlling lateral

veloclty. ohee two Chatnels of the an.alar 9tabilitatlon syste*l are

with reflvtvt to the guidande sratn a certain complex *objc~t of2<,.•0 ""-
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For the normal guidance system operation it is usually necessary

that a rocket flight occur without roll. With rocket rolling the

guidance signals will be executed inaccurately as a result of a

reduction in normal controlling force N as compared with its required

value N %'N = Ny cos n) and the appearance of lateral controlling

force N, = N sin n, which causes deviation of the center of mass of

the rocket from the plane of firing. The problem of preventing rocket

roll under the effect of external perturbations is solved by the roll

stabilization channel. This channel is not included in the-guidance

system, but it facilitates its operation.

The principle of nose section separation control is based on the

assumption a nose section can hit one and the same target point (at the

end of the unpowered-flight phase), moving both along the optimum

trajectory and aloi.g an infinite set of other possihle trajectories.
Because of this It is not at all mandatory for hitting a target, that
the parameters of rocket motion at end of the unpowered-flight phase

be equivalent to their optimum values. It is possible to separate

a nose section at that instant, when the totality of parametic

deviation of rocket motion from their optimum values will ensure the

subsequent motion of the nose section along one of the trajectories,

leading it to the target. This problem is also solved by the

appropriate channel of the rocket control system.

Peculiarities of Rocket Control Systems With Controllable
and Uncontrollable Thrust.

The principles of ballistic missile control system construction

hre determined by the rocket flight conditions and by the character-

istics of its de:sign, by the missions which are assigned to this system,

and by the specifications, imposed on it, and also by the level of

development of the corresponding fields of technology. In particular,

a large role is played by the fact, of whether the magnitude of engine

thrust is controlled or is not controlled. Rockets with engines which

make it possible to vary the thrust level, are more refined objects

of .ntrol. They can accomplish flight along a flight path,

sufficiently close to the optimum, and thus, execute nose section

separation with small parametric deviations at the end of the
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powered-flight phase from the optimum values. This makes it possible

to obtain a relatively high firing accuracy when using comparatively

simple guidance systems and instruments.

For ensuring a rocket flight along a trajectory, close to optimum,

it is possible to measure three components of the acceleration of the

center of mass and to compare them (or integrals of them, i.e., three

velocity components) with the programs of their variation which are

stored as functions of time in a program unit (or in an onboard

computer).

By controlling the normal forces by varying the orientation of

the rocket and by the thrust level by boosting or throttling the

engine, it is possible to accomplish a predetermined flight trajectory

with an accuracy determined only by the characteristics ou the control-

system equipment. The narrow "tube" of perturbed trajectories obtained

in this case makes it possible to construct a comparatively simple

automatic device for controlling the separation of'the nose section,

that works in a standby mode and affecting neither the rocket motion

process In the powered-flight phase, nor the operation of the control

system. The algorithm of the operation of this automatic device can

be comparatively simple, not requiring a complex computer.

It is rather simple to obtain a channel controlling normal

velocity, maintaining the assigned program of its variation. A

characteristic of this program is the gradual variation in normal

speed during the course of tens of seconds (the flight duration of

a rocket stage). The representation of a program in the form of a

frequency spectrum shows that this spectrum occupies in practice the

frequency band from zero to several tenths of a radian per second.

For accurate reproduction of such a program high speed operation is

not required from the channel controlling normal velocity and a

Atabilization mode is more characteristic of it than is a control mode.

In connection with the noted fact for rockets with controllable thrust

the channel controlling normal speed, ensuring an assigned program of

its variation, can be called the normal etabiZtiation channeZ.
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Thus, for rockets with controllable thrust the optimum flight

path in the powered-flight phase is assigned by programs controlling

the projections of velocity for some three directions and by programs

controlling the angles of pitch, yaw and roll, and a guidance system

is intended for controlling a rocket in the powered-flight phase along

a trajectory, as close as possible to the optimum. This problem is

solved by three channels of the guidance system, which include the

channels stabilizing the angles of pitch and yaw, and also a channel

stabilizing angle of roll.

The examined approach to constructing a guidance system transfers

a significant part of the problem of ensuring required firing accuracy

to rocket and engine system designers. The guidance system in this

case receives a simple instrument formulation due to the complicating

of the rocket design.

The rocket, in which 1he thrust level of the engine system is

not controlled, for example solid-propellant rockets, can noticeably

deviate from the optimum trajectory. However the reducing to zero

during the whole duration of the powered-flight phase of the

parametric deviations in rocket motion from the optimum values is not

an end in itself. The basic problem of a rocket control system is

minimizing the deflection of the point of impact of the nose section

from the target. An ideal guidance system should employ the parametric

information about rocket motion in such a way as to ensure at the end

of the flight the impact of the nose section on the target. The

success in solving this problem by a real guidance system depends on

how completely the algorithm for converting the information about

rocket motion into the guidance signal controlling rocket orientation,

considers all possible factors affecting impact accuracy.

Thus if an attempt is not made to ensure the smallest deviations

in the parameters of rocket motion from the optimum values, which is

more or less possible in rockets with controllable thrust, then

control of the normal and lateral volnoities and of nose section

separation is accomplished in accordance with rather complete

algorithms ensuring the required dispersion of the nose section,
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despite the substantial deviations in the parameters of rocket motion

from the optimum. In this case for :shaping the guidance signals and

for nose section separation a large number or computational operations

is necessary which are performed by a digital computer: onboard - in

an inertial system or ground-based - in a radio-controlled system. It

is not difficult to see that for ensuring assigned nose section

dispersion a less refined object of control (with uncontrollable

thrust) requires the employment-of a more refined guidance system

using a digital computer.

Inertial Control Systems for Rockets With
Controlled Thrust

On the basis of an analysis of the control systems of various

ballistic missiles' i.t is possible to visualize a certain typical

inertial guidance system for a rocket with controllable thrust. As
14- it was already noted, such a rocket does not require complex control

algorithms, and thus its guidance system does not contain complex

computers.

The basis of a guidance system is a gyrostabilized platform

(CSP) which preserves in flight in the powered-flight phase of the

trajectory the directions of the axes of the initial launch co-

ordinate system.

The Control Program

During the flight of a rocket in the powered-flight phase of the

trajectory three projections of the apparent velocity of the center

of mass of the rocket and the angles of turn of the body axis of the

rocket relative to the axes of the inertial (initial launch) coor-

dinate system, are measured, i.e., the angles of pitch *, yaw t and

roll n.

For establishing the components of the apparent velocity of the

center of mass of a rocket as reference directions it is possible to

'See, for example, the books [12), [133, [263, [27), [29], £303.
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use: the direction of body axis Oxl, coinciding with the longitudinal

axis of the rocket: the direction of axis Oy*, coinciding with the

reference (programmed) direction of body axis Oyl; the direction of

axis Oz0, coinciding with the normal to the plane of firing Ox0 y 0 , or

the direction of body axis OzI.

The programs of lateral velocity wz0 , of the angles of yaw and

roll are usually considered zero. The program of normal speed is also

very simple to select as zero. Then the flight path will be assigned

only by two programs: wxl and 4*.

The program of variation in pitch angle, assigned in the form of

a dependence on time, is distinguished by the simplicity of its

instrument execution. Other means of assigning a pitch angle program

are also possible. For instance, a program can be assigned in the

form of the dependence of pitch angle on the projection of the

apparent velocity on the longitudinal axis: €* *(wxl). The

execution of the program in this case is accomplished by a program

mechanism in accordance with the actual value of the apparent flight

velocity.

Angular Stabilization System

A system of angular stabilization maintains the required

orientation of a rocket determined by the zero values of the angles of

yaw and roll and by the program value of pitch angle. This system

has three channels: pitch, yaw and roll, constructed in an analogous

manner. Certain differences in the operation of these channels are

due to their interaction with the corresponding channels of the

guidance system.

A characteristic of the channels for stabilizing yaw and roll is

differential defleotion of the control surfaces for creating rolling

moment, which means using the same control drives and control elements

for creating yaw and roll moments.

Since a rocket is dynamically axisymmetric, the channel for

stabilizing the angle of yawing uuually has the same structural
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layout, as the channel for stabilizing pitch.

The block diagram of one of the channels of an angular stabili-

zation system is shown in Fig. 1.18. Let us examine the equations

of the links, included in this diagram.

IZ C"

(2) () (6) (7 (9)
((1)

Fig. 1.18. Diagram of an angular stabilization channel.

Key: (1) Error. (2) Potentiometer. (3) Error signal.
(4) Correcting filter. (5) Control signal. (6) Amplifier.
(7) Control drive. (8) Position of the control elements.
(9) Rocket. (10) Angle of yaw.

The gyrostabilized platform with an angular error sensor is a

practically inertialess link, the unique characteristic of which is

the transmission factor K i.e.

where e - c= ; n = - for the pitch, yaw and roll channels

respectively.

The amplifiers included in the amplifier-converter diagram, and

also the converters of the signal type - modulators and demodulators,

are characterized by a very small dynamic lag, which in analyzing a

stabilization system can be disregarded. Then

(1.54)

The hydraulic control drive taking the moment of load into account

is charaoterized by the equation of the aperiodic link

T,..88-X,.I,.(1.55)
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Other drive layouts are possible; other equations will correspond

to them.

For correcting the dynamic properties of a system various types

of' RC-filters can be used. The equations single-link differentiating

and integrating filters can be written in the general form as

rbi, 4-7 ± 7  (rTOh,5 + us). (1.56)

Equations of two-link differentiating and integro-differentiatlng

filters take the following form:

T'iy+22tT,Tcy+uy=Ko(4is 1 +2•,r*u,+u,). (1.57)

The given equations are employed in selecting the type of
correction and the basic parameters of each of the channels of an

angular stabilization system. However in solving various problems of

the dynamic rocket design it is possible to enlist transitional

processes of stabilization and to examine only the established modes

of stabilization, using the following simplified equations;

control drive
6- 4.nt; (1.58 )

single-link differentiating filter

a (Tsui,+• us)*#(1.59)

integrating filter

IT. b* J(1.60)

two-link differentiating filter

(1.61)

integro-differentiating filter

4-ti + 2 + A)(1.62)
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Using equations (1.58)-(1.62), it is possible to compose for each

'of the channels of a stabilization system an approximation equation

connecting the deflection of the control elements with the parameters

of angular rocket motion.

For correcting the dynamic characteristics of channels stabilizing

pitch and yaw it is usually necessary to use either a two-link

differentiating, or an integro-dilfferentiating filter. Then, for

example, for a channel stabilizing angle of pitch we have the equations

8,=a +aj A +a. (1.63)

or

8p=aAp+aj,&j+a$, 4?TA (1.64)

The equations for the channel stabilizing the angle of yaw are

written in an analogous manner.

For correcting the dynamic characteristics of a channel stabilizing

angle of roll it is sufficient to employ a single-link differentiating

filter. In this case we obtain

.The Guidance System.

The channel regulating apparent velocity (the PHC CAVR) system)

Is intended for maintaining the program value of the longitudinal

component of apparent velocity by boosting or throttling the main

engine system. Velocity control is accomplished for the purpose of

reducing the variance in the motion parameters of the center of mass

of the rocket; this necessary for simplifying the algorithm of engine

system shut-down. 1

'The AVR system'can be absent, if it is possible to ensure the
required firing accuraoy without equipping the rocket with this
aystem.
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The regulation of the longitudinal component of apparent velocity

can be accomplished in the following manner (Fig. 1.19). AVR is

introduced into the system, and then programw xl(t) is reproduced

onboard the rocket. This function (the storage and the reproduction

of the program onboard the rocket) is carried out by some program

"unit.

(21)

KE:(1) Prssr 3)nr (2 ) (5)ansgnlsesr

chamber. (6) Se ... r,(7) Rocke t. .... En e..I (8)

Fig. 1.19. Diama s uref an apparent velocity regulating
channel.

KEY: (c ) Pressure senor. (2) Progrmes , signal sensor.(3) Ampliffier-converter. '4) Drive. (5) Combustion
chamber. (6) Speed meter. (7) Rocket. (8) Engine.

A speed meter is a gyroscopic integrator mounted on the missile
body so that its axis off sensitivity i3 parallel t~o the longitudinal

axis off the rocket; it emits to the comparing device in the form off a
corresponding signal the measured value off the apparent velocity :'xl•

To the comparing device there also comes a signal off the programmedj

value off the apparent velocity Wxl. (The gyroscopic integrator and

the comparing device can be combined in one instrument - the apparent

velocity error sensor). A signal, proportional to the mismatch, is

supplied to the amplifier-converter, where it is amplified and con-

verted into a signal controlling the actuating element of the AVR
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system. The actuating device can be for instance, the engine reduction

screw drive. The turning of the reduction screw varies the flow rate

per second of the propellant components into the turbopump unit. As

a result of this the per-second flow rate of propellant going into the

combustion chambers leads to a change in pressure in the combustion

chambers and thus, in the thrust of the engine system.

The thrust increasea, if the actual velocity wxl is less than the
X

programmed velocity wxl and vice versa. As a result an automatic

closed AVR system is obtained, in which the rocket is included as the

object of control.

For improving the dynamic properties of this system correction

methods, well known in the theory of automatic control, can be i|
employed: the introduction of derivatives from the error signal Awxl

into the 'nntrol signal, the utilization of internal feedback, etc.

One of the possible means is the introduction of internal feedback

with respect to pressure in the combustion chambers. In this case the

error signal of the apparent velocity uAw is added with the feedback

signal with respect to pressure in the combustion chambers (see

Fig. 1.19).

The lateral stabilization channel. The channel controlling the

lateral component of velocity maintains the flight of the rocket,

during the powered-flight phase of the trajectory, in the assigned

plane or firing. This Is necessary in order to as simply as possible

ensure the required direction with respect to the azimuth of the

velocity vector of the rocket at the moment of engine shut-down.

The channel controlling lateral velocity ensures during the

powered-flight phase of the rocket with the necessary accuracy the

zerc values of the lateral component of velocity and of lateral

drift, I.e., deviations of the center of mass of the rocket from the

plane of firing. Ii accordance with this problem the examined

guidance system channel is usually called the ohannet (or system)

of £atevzl stabitisaaions (SC s LSJ).
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In an inertial system of lateral stabilization .the measuring
instrument (accelerometer or gyrointegrator) is mounted on the rocket

in such a way that its axis of sensitivity is dirqcted either along

body axis Oz1 (in the case of immobile mounting of the measuring

element relative to the rocket body), or perpendicular td the plane

of firing, i.e., along the initial launch axis Oz0 (with the giounting

of the measuring element on the GSP). The inertial syste•i of lateril

stabilization in this manner ensures during the course of the powered-

flight phase of the rocket with sufficient accuracy the zero values

of the lateral component of apparent velocity wZ aMd the integral in

time from this velocity $=a i.e., the apparent path In the

lateral direction.

A signal, proportional to the apparent path in the lteral

direction Sz, is obtained by twofold integration of the accelerometer

signal or by single Integration of the gyrointegrator signal. Inte-

gration can be accomplished with the aid of integrators ofývarious

types, for example an electrolytic integrator or an integrating RC-

circuit.

The problem of selecting the type of correction and thA basic

parameters of the lateral stabilization: circuit is solved proceeding

from the conditions of ensuring the assigned guidance accuracy

characterized by Lhe magnitude of lateral drift, and the required'

dynamic properties of the circuit, characterized by the quality of the
transitional process. in an inertial lateral stabilization system
for correcting the dynamic characteristics of the system a 3lgnal,

propoztionAl to the lateral component of apparent velocity is used.

In this case the deflection of the control elements is described by
the approximate equation

+4; Ss(1.66)

In which It Is aasumod that: ZW108 ; Z=|S.

The normal atabl!IzatIon chan.nel of a rocket guidance system, as
well as the lateral ztabiltzation ciannol, con3lats of two odrcuits:
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th normal stabilization circuit and the pitch angle stabilization

circuit. It operates in an analogous manner to the.inertial lateral
stabilizationchannel. The difference consists only in the fact that

the programmed values of the angle of pitch are not zero. The angle

of pitch 0#(t), corresponding to flightialong an optimum trajectory,

is assigned by the program mechan1,sm and is put into practice by the

angle of pttch stabilization circuit.

A programmed variation in pitch angle gives rise to a corresponding

variation in the normal component of velocity.. In connection with

:this int the simplest guidance systemi the control of the normal velocity

of motion of the center of mass was replaced by control of the angular

position of the rocket with respect to pitch. However the monitoring

of the angle of pitch in certain cases is insufficient for ensuring

s&iall deviation in the parameters of the motion of the center of mass

of the r~ocket in the plane of firing. Control of the normal component

of velocity in addition to control of the angle of pitch makes it

possible,to reduce the indicated deviation.

In the simplest case cofitrol-of normal velocity reduces to the

stabilization of the zero values of the normal component of apparent

j velocity wy1 (along body ;xzis Oy or In the programzed direction) and

the integral fok time due to this velocity

dr

The information, necessary for normal stabilizattio, comes frM

the iner~tIal measuring element - the accelerometer of gyrointegrator.

If the measuring element of the normal stabilization system Is

mounted on a OSP, then with the aid of the angle of pitch program

mechanism it is turned dur'ing Qght so that its axis of sensitivity

Is always perpendicular to the programed direction of the longi-

tudinal axis of the rocket.
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The equation of the deflection of the control elements of a

rocket for a steady-state process of normal stabilization takes the

form (.7

The automatic equlmemnt controlling nose section 2searation.

The inertial guidance system examined here, which Includeu lateral

and normal stabilization channels and an apparent velocity ret•ulatir

channel, ensures rather small dispertlon of all the coordinatea and

of the componenta of velocity of the center of mass of the rocket w

thua makes it posaible to simplify the eutomatic equipment eontrolling

nose section separation. This automatic equipment contains missle

apparent velocity meters mounted on OSP, - acelerometers or gyro-

integrator- orlented in an appropriate manner. The information fruw

the metero concerntin the projections of the apparent velocity and

the apparent path goes to a computer for the shaping of a signal V-or

eneine syutem ahut-down and for nose 3ection separation.

The control algorithm, the ocovesponding a-t@e&atlov and Vn-

s'.umn•tal errort and their efrect on no*e 4eation di4speion ame

exasinod in Chapter V.* "

missile Inertial Control systems with
Uncontrollable Thrust

L.-t uv v'dualine a etrtain typical inertial control aystem with

an 'nao4M diital. computer for a rocket with uneoatrsllfblt thrust,

r - for which let uui take into account the diagrasw of the eontrol 3y~tez

or various rockett. Such a control system, naturally,, onowsts oir

gu-danoe and Stabili:ation ayste=.

The .zt•ahill.ation.. 3ystes reteives the Anforw~ation, necessary forg

shap•)•i the control oignal 4zn_1f to the control drive, frCo the

g uidance syttem and fteo the metori *ýeaAuelng the paraftetel-s or rftket
motion! the angle of pitch, yau ahi roll, the anglea or attaek, the

angular vo~ottlec, the accelerations or the center of eAes. Thus,
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for instance, besides the usual stabilization systems with angles of
j- pitch, yaw and roll"ter3 stabilizatlon systems with angular velocity

and linear accer•con sensors can be used.'

I j It hf 3stibtlizatlon system Is digital, I.e., the controlling
S•Siga , Are 4hape4 by digital filters, which makes it possible to

subst4attally Improve the dynamic properties of the system.

"T he guidanoee eyiter equipment consists of an Inertlal measuring

sy6tem (navigation system), which determines the velocities and the
cordtivates of the rocket, and an onboard computer shaping the guidance

igrn1ls and the engine shut-down signal.

The Inertial measu.-ing system is set up deaignwlze as a single
unit, which Includes:

- a three-derree-of-treedom gyostabilized platform with the
analog stabilication circuit elenents;

toter4 for teaesurng rocket motion parameters (angle,

tioceleratl•o or center or mass velocity aensorO).

The output signals of the Inertial measurihg syctem in digital
for Igo to the orbotrd computer ••ich determines the velocity

oOslponents ant the cooidinates ot the rocket, it solves gildamee
cquattons und tamlts *•ical. in :*1Ctal ioru to the stabilin.tlon

system, r64- stage Separktion, Ofilrlai shut-down,, etcd.

Three acceleromoters tountM on the OSP, lanuwtaneously perform

the f•ujtionsi a normal and lateral velocity* .ontrol system "et*rs

and autoamatic range control equipmeo"t ters, an4 al&Io iui tions

or Stablliztion syet-a -,eters -Ii the 4s.e 0 f the eOrres*Ondlfg comn-

struction of the latter. Actually the auttoatit range cimtrol equ.p-

sent as an indtpendent unit It ellminAted, specific meters for nhrtal

and lateral velocities aroe ausent and as a result the nuaber of meters

tois rdued to three.
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for instance, besides the usual stabilization systems with angles of

pitch, yaw and roll meters, stabilization systems with angular velocity

and linear acceleration sensors can be used.

The stabilization syster, is digital, i.e., the controlling

signals are shaped by digital filters, which makes it possible to

substantially improve the dynamic properties of the system.'The guidance system equipment consists of an inertial measuring

system (navigation system), which determines the velocities and the

coordinates of the rocket, and an onboard computer shaping the guidance

signals and the engine shut-down signal.

The inertial measuring system is set up designwise as a single

unit, which includes:

- a three-degree-of-freedom gyrostabilized platform with the

analog stabilization circuit elements;

- meters for measuring rocket motion parameters (angle,

acceleration or center of mass velocity sensors).

The output signals of the inertial measuring system in digital
form go to the onboard computer which determines the velocity

components and the coordinates of the rocket, it solves guidance

equations and emits signals in digital form to the stabilization

system, fon stage separation, engine shut-down, etc.

Three accelerometers mounted on the GSP, simultaneously perform

the functions of normal and lateral velocity control system meters

and automatic range control equipment meters, and also the functions

of stabilization system meters in the case of the corresponding con-

struction of the latter. Actually the automatic range control equip-

ment as an independent unit is eliminated, specific meters for normal

and lateral velocities are absent and as a result the number of meters

is reduced to three.
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With such guidance system construction the totality of its equip-

ment is a rather general-purpose device which makes it possible to use,

it in various rockets without substantial alterations.

1.9. BASIC CHARACTERISTICS OF A ROCKET AS
"* A DYNAMIC SYSTEM

Before going on to the composition of a mathematical model of

controlled rocket flight, let us note the specific characteristics of

a rocket as a dynamic system.

A rocket together with its control system forms a dynamic closed

system, the processes in which (rocket motion, the elastic oscillations

of the rocket and the oscillations of the liquid propellant in the

tanks, the conversion of electric signals, the deflections of the

control elements and others) are described by a complex system of

differential equations.

It is possible to examine the following components of rocket

motion:

2ht o h e om
1) the motion of the center of mass;

2) the motion around the center of mass;

3) the elastic oscillations of the housing (flexural oscillations

in two planes, longitudinal and torsional oscillations);

4) the oscillations of the liquid propellant in the tanks relative

to the missile body with the presence of free propellant surfaces.

It is possible to consider a rocket as absolutely solid only as a

first approximation. In the general case the flexuAal vibrations of

the missile body can interact with the oscillations in the control

system and with the oscillations of the liquid propellant. When the

frequencies of the oscillations are rather close to each other, when

investigating rocket motion it is necessary to consider the inter-

relation of the corresponding oscillatory processes.
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The motion of the center of mass of a rocket is unsteady and the

parameters of the rocket and the parameters of its motion very sub-

stantially vary during flight. The variations in the mction parameters

are connected with the great propellant consumption per second and the

displacement of the rocket with variable speed in the atmosphere, the

density of which sharply drops with height. As a result of the large

fuel consumption such characteristics of the rocket, as mass, the

inertial moments and the position of the center of mass (see Fig. 1.13-

1.14) vary. The variation in flight altitude (Fig. 1.20) and atmos-

pheric density in conjunction with the sharp variation in the velocity

of motion of the rocket (Fig. 1.21) give rise to a very specific

character of variation in the magnitude of dynamic head (Fig. 1.22).

I

* Fig. 1.20. Variation in
the flight altitude of a

S! single-stage rocket.

V

I Fig. 1.21. Variation in
the flight velocity of a
single-stage rocket.

With variation in M numher the aerodynamic characteristics or the

rocket vary, in particular, c. - the coefficient or tangential forces

a2 _ derivative from the coefficient of normal force with respect to
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angle of attack, xd - the relative coordinate of the center of pressure

(Fig'. 2,3-). In connection with the fact that in the last seconds of

the powered-flIght phase, as a rule, the engine system goes over to a

low thrust mode; in this phase of motion there is an abrupt change in

thrust level and axial overload (Fig. 1.24 and 1.25).

1 _

Fig. 1.22. Variation In Pig. 1.23. Variation in
dyrtmmi head during8 the tho position of the *enter

MGMsht of a single-sta~e of pressure of a single-

rocket. rocket stage rocket during flight.

cn in . 1.2k. Variatioe , thr P - in i 1.2it . Variation in th
the engine thru~t of a • axial overload of a •nl1.e~-
singlie-stage rooket s•age rocket durihg flight. i
during fligh~t.-. i

F~or, multistage rockets, bohides Vhe indicated va.-iations ir•

continuou.s character, there aro a1lso intermittent varlationO in the

rocxet parametert1 and motion parameters connected with the dep4ration
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of a used-up stage and the beginning of operation of the engine system

of the following stage (see Fig. 1.13 and 1.14). Figure 1.26 for

example presents a graph illustrating the nature of the variation in

overload for a two-stage missile.

0 .
tam t

Fig. 1.26. Variation in the axial overload
for a two-3tage missile during flight.

Intermittent parametric variations can take place both at moments
of otage separation and at moments of the separation of the structural
eleoents of rocket jettisonable after Its exit from the dense layers
of the atmosphere (the nose section fairing, elements of the tail
section and others). as a result of the variations in the rocket
parameters and the parameters of Its motion during fl1ght the dynamic
properties of the rooket as an object of control (control element
effectiveness, the reaotion of the rocket to the deflection or the
control eaements and others) are oubotantially ohanged.

The System of differential equations, rather completely describing
vi €e flight or a guided rocket, has a very high order &ad ts a nonlinear
stoohaatla simultaneous system of equationtt. Let uis briefly examine
the noted characterlstles of those equations.

The motion or a rocket as an absolute solid body, consisting of
the motion of the center of case and the motton around the center of
mass, is char'acterized by six degrees of freedom and Is sw'proprlately
described by a systes of dirferential equations of the 12th order*
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The elastic properties of a rocket design and the presence of free

liquid-propellant surfaces considerably increase the number of degrees

of freedom of such a mechanical system, as a rocket. The numerous

elements of the control system affecting the motion of a rocket increase

even more the number of degrees of freedom of the dynamic system

formed by the rocket and by its guidance equipment.

Generally speaking, all processes in nature are described by

nonlinear equations, and linear equations give only a model of a

process, more or less corresponding to reality. So the equations of

motion of a rocket are in general nonlinear. Among the many nonlinear

dependences in the equations of motion of a rocket it is possible to

indicate, for example, the nonlinear dependences of aerodynamic forces

and moments on the parameters of motion, the limitation in the

deflections of the control elements, the characteristics with

saturation and with zones of insensitivity of the control system

elements, and others.

The stochastic nature of the differential equations is conditioned

by the action of numerous random pert•,J.ntlo~n on the process of the

roclcet's flight.
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CHAPTER II

GENERAL EQUATIONS OF MOTION

In deriving the equations of motion of a ballistic missile it
is assumed that the rocket is an absolutely rigid body, iee., the elas-
ticity of the rocket and the presence of liquid-propellant in the tanks
are not considered.

2.1. VECTORIAL EQUATIONS OF ROCKET NOTION

The motion of a rocket can be considered as the sum of translatory
motion, determined by the motion of the rocket, and the rotation of the
rocket about this point as fixed.

The motion of the center of mass of a rocket is determined by the
equation

(2.1)

where m - m(t) the mass of the rocket; Va - the vector of the absolute

velocity of the center of mass of the rocket, I.e., velocity relative
to an inertial ooordinate system; V - the main vector of all the exter-

fnal forces, applied to the rocket; V - the main vector of the reactive
forces.

Absolute acceleration J. " dVdt can be represented In the form
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Io=7+ + .. (2.2)

where relative acceleration; Te - translatory acceleration; T. "
Coriolis acceleration. -

- -4

Consequently, the equation of motion of the center of mass of a
rocket relative to a certain mobile coordinate system will take the
form

m7-P+P+ (-mJ.) + (-MnM), ( 3

where (-mre) and (-mTc) - respectively the translatory and Coriolis

inertial forces

Let, for example, the motion of a rocket be examined In a coor-
dinate system rotating together with the earth with angular velocity
w 3 . The origin 0 of this coordinate system is located at the center
of the earth; axes Ox and Oy lie in the equatorial plane; axis Oz con-
incides with the axis of rotation of the earth. The relative acceler-
ation T will then be the acceleration of the center of mass of the
rocket relative to the earth. Since

and Jo 0 and d43 /dt - 0, then the translatory acceleration Is

-. The Coriolia acceleration arising due to the rotation of the earth
7 -when relative velocy V exists, is determined by the dpeandence

Formulas (2.5) and (2.6) preserve their form for any coordinate
system connected with the earth,

The equation of motion or the center of mass of a rocket In a
coordinate system rotating together with the earth, If it is assumed
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that T = dV/dt, can be rewritten in the followiig form:

m v +5m m 2.7)

Let us now examine an arbitrary mobile coordinate system 4ith its

origin at the center of mass of the rocket. Let f - the angular velo-
city of rotation of the axes of this system relative to the terrestrial

axea. Then

do dt (2.8)

where - the local derivative of vector V with respeot to time,
characterizing the rtte of variation of the vector in the mobile coor-
dinate system being examined.

Thus, the vectorial equation of motion of the center of mass of

the rocket can be written in the form

The rotation of the rocket relative to its center ot mass i de-

tomined by equation (1.41) written in the form

-- (2.10o)

where , the rAin moment or momentum of the rocket, or its angular
momentum; ER- the main moewnt or all the external forces relative to

the center or #s* or the rocket (Including the .reactive forces).

Xin d.,tetmining the main moment of momentum usually the rotation
of the earth it disregarded, examining the terrestrial axes as inertial

US:

According to the theorem of local derivative

*Iý (2.11)

where O - i the local derivative of vector

7.

72



'Then

dt ~(2.12) -

Projecting equations (2.9) and (2.12) on various coordinate axes,
A it is possible tp obtain various forms of scalar equations of the motion

of a rocket. These equations can also be used for composing the equa-

tions of motion of the nose section.

The piosition of the center of mass of an object - a rocket or a

nose section - in vectorial form is determined by radius-vector F,

drawn from the origin of the coordinate system being examined to the

center of mass of'the object.

The kinematic eqUation of the motion of the center of mass of an

object in vectorial form has the aspect

'dr"

where V- the velocity vector of the object relative to the coordinate

uystem in question.

The orientation of tne object In space relative to the seleoted

coordinate system is' determined by the three Eulerian angles: K, A, 1.

.The kinematic equation of. the rotary motion of the object connects

angular výlocities of T, •, • with angular velocity of the object Z:

Projocting equations: (2.13) and (2.,1) for the selected coordinate

a xes, it ia possible to obtain scalar kinematic equations.

"In solvind ballistic and dynamic problems of a rocket and itz

nose section various coordinate systems can be usod. In many Inatancee

the suecessfnul uelection or the coordinate system significantly sim-

plifies the renearch. For studying'flight Cartesian rectangular right

handed coordinate Systems are commonly used and spherical coordinatc

aystoem corresponding to them.-4
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2.2 EQUATIONS OF MOTION OF A ROCKET IN
PROJECTIONS OF COORDINATES ON TERRESTRIAL
AXES.

The investigation of rocket flight can be considerably simplified

by the successful selection of a coordinate system. It is practically

always more advisable to obtain equations of the rotary motion of an

object by projecting the corresponding vectorial equation on axes con-

nected with the object. However the selection of a coordinate system

for composing scalar equations of the motion of the center of mass of

an object in many respects depends on the particular problem, Thus,

for instance, in investigating the controlled motion of a rocket in

the powered-flight phase of the trajectory it is advantageous to examine

the motion relative to terrestrial axes%

Coordinate Systems

Terrestrial Coordinate System

The axes or this ayst Ox I,33 (Pig. 2.1) are rigidly connected

4ith the earth and they pIrticlpate In Its diurnal rotation. Por short

they ame called ue eretol 9e0e.

-ts

PIg. 2,1. Tenevtri-l system or tordl•ate axis: N-
lawnch point; MAN - prle fGre#nvweh) meri4ian; PIL31 -
local merldlan; #, - deotentrie latitude of point ", I -

,onqItudt or point 1; tO - tangent to the local meridian
at point N; - laufch az iuth.



The origin 0 of the coordinates is located at the launch point;

axis Oy 3 Is directed along the radius-vectoi" drawn from the center of

the general terrestrial ellipsoid through the launch point; axis Ox 3

forms with the plane of the local meridian angle I, called the Launch

Azimuth; axis 0z3 is directed so that the cvordinate system is rl&t-

handed.

Launch Coordinate §ystem

The launch coordinate system OXcYCZO (Fig. 2.2) Is also ccr.rvc

with the earth and rotates together with it, The origin of the c'•'-

dinates is located at the launch point; axis Oyc is directed upwarJ

along the plumb line, iot,., it is opposite to the direction of the

forcue of gravity; axis Oxc forms with the plane of the local merldiati

the launch azimuth angle 0; axis Oc correuponds to a right-handed

coord~inate syutem.

-tt

S1

44O

CA

ii I

• Fig. 2.2. Launeh coordinate ax1sk ayatc: N - Ladnah
Point; NAS prifte (re~nWich) meridifto; NWtS -
lobel twridian; 0A - Ag.trno" eal latitude ot point

M; ongitude or Polnt M; cc - tingont to loeal
0erld,1Lt, at point N; I - launch azimuth.

......... u
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At launch the body axes of the rocket are oriented along the axes
of the launch system (Fig. 2.3). The logitudinal axis of the rocket

OxI coincides with axis OYc; the transverse axis Oy1 is oriented in

the direction, opposite to axis Oxc; axis OzI is directed along axis

Oze.

X1 V, Fig. 2.3. The orientation of

the body axes at the launch
of a missile.

Ye

00

ze

Xfe

Initial Launch System of Coordinate Axes

The axes of an initial launch cooi•dinate system OxoyO0z at the

moment of launch coincide with the axes of the launch system. Sub-

sequently the axes of the initial launch system do not vary their

initial direction relative to inertial space, and the axes of the

launch system, rigidly connected with the earth, turn during time t by

angle w 3 t around the axis of rotation of the earth. An initial launch

coordinave system is an inertial coordinate system.
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Direction Cosine Matrices

The Cosines of Angles Included Between the
Axes of Body anid Initial Launch Coordinate
Systems

The orientation of a rocket relative to an initial launch coor-

dinate system is determined by the three angles included between body

OxlYlZl and initial launch Ox0 y 0 z 0 coordinate systems (Fig. 2.4):

by the angZe of ya• - between the projection of the longitudinal

axis of the rocket Ox1 to plane Ox0 z 0 and axis Ox0 ;

by the angle of pitch * - between the longitudinal axis of the

rocket OxI and plane OxZ.0 ;1 0
by the angle of rolZ l - between transverse axis OyI and the plane,

passing through axes Ox1 and Oy 0 .

The cosines of angles included between axes of body and initial

launch coordinate systems are given in Table 2.1.

S. .

4in

Fig. 2.4. The orientation of the body axes relative to
the initial launch axes.
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Table 2.1- i _ _...
axes f - OZ0 O - z

O, C Cosco, sin I -sJincoK,

Oyl -Cos !•sin ?Cos1 I o os s 1 Co~s 9 sin +l-I

+ Ila sin q/ + sin t sin f Cos 1
Cos -sin sin q f Ws t C" -q

-- 1 Cossuslq 4P3 sin
0•1si - 4 Sitj • O -sin E sin f sin l

Let us find the cosines of the angles included between the axes

of initial launch and body coordinate systems. For this through the

center of mass of the rocket - the origin of the body coordinate system,

let us draw axes Oxoyo 0z parallel to the axes of the initial launch

coordinate system. Let us turn this system by angle ý around axis

Oyo so that plane Ox'y' passes through axis Ox1 . Let us designate the

obtained system by Ox'ytz'.

It is convenient to write the formulas for coordinate transforma-

tion in matrix form. Designating the matrix-column with the elements

X', y', z' through [i', i.e.,

and with the elements x,, YOS zo, through O•t, we obtain the following

formula for transforming from system OxoY 0  to system Ox'y'z':

li=r, LioJ, (.5

where matrix r of the transformation from coordinate system Ox0 Yo0Z to

system Oxtytz' takes the form
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; A

cost 0 -sint

r,-- 0 0 (2.16)
IIsin E 0 Cos t I

Let us 'urn system Ox'y'z' around axis Oz' by angle * so that axis

O• coincides with axis Ox,; let us designate the obtained system by

Ox"y"z". The corresponding formula for the transformation of the coor-

dinates upon turning the axes by angle * will take the form

[] =r['J. (2.17):

where

rOsin p 0S I 0 . (2.18)

C 0 1

by turning axis Ox" around by angle n we bring axes Oy"' and Oz"'

into line with axes OyI and OzI. The transformation of system Ox"y"z"
to system Ox lYlz will be occomplished by formula

where

1 0 cos 0! sin (2.20)

0 -sin-i cosiq

Substituting (2.15) and (2.17) into dependence (2.19), we obtain

the matrix equation of the transformation from initial launch axes to

body axes:

[i,1 =rjr, r[o] =r t;ol (2.21)
in which matrix r is a table of direction cosines, i.e., of the cosines

of the angles included between the axes of initial launch and body
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coordinate systems (see Table 2.1):

I co~cos si? *-ln ~os~(2.22)

lsint sintI-cos sin ?cos c osq cos sin n+sin t sin y cos r

Psn t cos hl+cos t sin ? sin il -cossin q cos t cosy--sin sin ? sin r

Cosines of Angles-Included Between Axes
of Initial Launch and Launch Coordinate
Systems

At the moment of rocket firing the initial launch coordinate sy3-

. tem Ox0 y0 Z0 and the launch coordinate system OxcYcZc coincide. During

the flight of a rocket the launch coordinate system will turn together

with the earth relative to its initial position by angle w t. where
3,

t - rocket flight time (Fig. 2.5).

Fig. 2.5. Transformation from
an initial launch system to a
launch system of coordinate
axes.

t't

In order to accomplish the transformation from a rotating launch

coordinate system to an initial launch system, let us draw five sequen-

tial turns of an auxiliary ooordinate system which coincides with the

launch system. The first turn of this system let us draw around axis

0y0 by angle V so that the azimuth of axis Ox' becomes equal to zero.

Let us turn the obtained system Ox'y'z' around axis Oz' by angle *r so

that axis Ox" becomes parallel to the axis of rotation of the earth,
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and axis 0y" - parallel to the equatorial plane. Now we can carry out

turning by angle w t. For this let us turn the new system OxtyyIzh

around axis Ox" by angle w3 t so that plane 0x"'y"' posses through axis

OyO. Let us further turn system Ox"y'z". around axis Oz". by angle - Or
so that axis OyIV coincides with axis Oy.. By turning by azimuth angle

around axis OyI let us line up system Ox y z with the initial
launch system Ox0 yozO.

The transformations of the coordinate systems carried out are des-

cribed by matrix equation

No[]~=A [e I (2.23,)

in which the transformation matrix A takes the form

821 (2.24)
A- 21 t22 823•.i II8•, •- 8=I

and the coefficients of the matrix

C o•i=cos2 cosc 0(1 - cos w ) + cos W31;

821 COS 9 sin , Cos (?(I - cos (oat)-- sin Cos cO, sin w3;

S83- sill cos cos 2 (1 - cos COW3)- sin y, sin (03j;

&12 COcs + sin ? cos ?r(l - cos w=f) + sin , cos 7, sin w3 ;
822= =S 2 ,(I Cos 03 ) + COS 0y;

P132=- sil ý sin ?, COS ?(I.-- cos oti)+ Cos 9cos ?, sin w.1;

= ;= -- Sin f COS2or(1 - Cos w3t) + sin yp sin owt;
32 = -- sin 9 sin ?rcos,(, -- Cos 0/)-- Cos Cos ,sin-w,,;

P,3=sh1l 2+cos2?v(1 - cos (3) + cosS 04t

The Cosines of the Angles Included Between
the Axes of the Launch and the Terres'tral
Coordinates System

The transformation from a launch OxcycZc to a terrestrial 0x 3 z 3

coordinate system can be accomplished in the following manner (Fig.
2.6). Let us turn the axes system which coincides first with the
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launch system Ox cy czc, around axis Oyc by angle * so that the azimuth
of axis Ox' becomes equal to zero. Let us further turn system Ox'y'zt
around axis Oz' by angle y = - * so that axis 0y" coincides with
axis Oy3 . By turning around axis Oy3 by angle * in the opposite direc-
tion we line up the intermediate system Ox"y"z" with the terrestrial
system Ox3 Y3 z3 .

Fig. 2.6. Orientation of terres-

trial axes relative to launch
coordinate axes.

The matrix equation of the transformation takes the form

[ij=E[;a]* (2.25)

where

sin' +cos 2' cosy V -cos~~siny sinhicos?(l -cosy)

E= Cos sin Y cosy -sintlslny (2.26)

sIn co3' (I-cosy) slnqslny Cos2q+sln2fcosysI

The Cosines of Angles Included Between the
Axes of Initial Launch and Terrestrial
Goor7dnaes Systems

Matrix B of the transformation from a terrestrial coordinate sys-
tem to an initial launch coordinate system can be found by multiplying

82



the transformation matrixes above obtained from a launch to an initial
launch coordinate system (A) and from a terrestrial to launch coor-
dinate system (E). As a result we will obtain

10 I~~x~1AE.-I 3 1=B~i1XA2.7

where

and the matrix coefficients:

A,=ICOS'jCOSfW.COS (?jjI -Cos q)+(cOs2 cos' + st," 2) cos.j+
"+ sin i cos 1(sin ?- sin %) sin ass;

N, = Cost+ slnf O?,. o: (j _ -COS )-C- ;oSin y COS % i.-
-sin fcos - ,.sin)+; .

-cos sin cos I-. cos03()cos y--+cosS+sIn4 t -- cosy) X

X Cos W-(cos2 f sin y+Sint + sin .)a sin %9;
Pjs= costecosfysiny?(l -coswqf)--cosjsin¥cosaq-+

+ sin cos 9 sin ;
= sin f sin fps I-(1-- coawi) + cos V cos ty;
•u -sin cos ?, sin %,( 1 - cos + -•sin f sin Vcos ft +

- cos ý cos % sin t%;

r3=~ -sin coscos ýCOS ,COsM(I -coso&0)+
+ sin Cos co-- 'cos fti +(sin2 f sin + cost sin )sn ty;
•. S -- sin • sin ?,cos ?,,(I - cOs(%s)- sin j sin y Cos o*Vt--

-- Cos f sin *.I;
P&,= sin2 '•cos qp. cos ?.(I- cOSt%t)+ (slnll•cos¥ + cos'• ý)cos ty+

"+ sin ' cos 4 (sin • - sin 4p,) sin w3f.
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The Cosines of the Angles Included Between
the Axes of Body and Terrestrial Coordinate
Sytems

The matrix of transformation from a terrestrial to a body coordin-
ate system can be found by multiplying matrixes r and B. As a result

we will obtain

[ir]= r[o1= rB J8 l =A I-3 !. (2.29)

where
*it all 033

A mrB=vj c 022ai ,' (2.30)

and the matrix coefficients;

0u-,Z=Pa cos , coS 4 +±P sin y.-.S, sin I cos I;
2, = ,(- cost Sin COS 4431 Z sitn ' sh ,, cosv cos q+

+ w (si ? Cos il sin t+ Cos | sin I i
.t, =Pit (cos t sin (p sin +sin I cos q)-%j cos I slnq +

+ai (--sin I sinpsin q+cos t cos i);
11t2M, 12 Cos F Cos t + siny-- sin I Cos y;

.(-coSt sin 9 cos•q + sin I sint1) + ph Cos 9 Cos q +

+[ 6(sln 9 Cos q sinC + cos t sin
(ta =N2(cos t sin ( sin q + snl I cos v)- cos is sin q+

+.(-sin sin sin q+ cc*Cos nc
13 =.P CosnCos t o3sin + -$1. sin ICos;

uv.83 (cos I sin c sin q +sin t cot v 4)-- j€cs osdnq 4

+P6(-s,. 11s1 snl, S +cost cos$
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Kinematic Equations

For investigating rocket flight it is necessary to have kinematic

equations describing the variation in the angular coordinates of the

rocket *, 4 and n depending on the projections of the angular velocity

vector of the rocket on the body axes wxlO Wyl Wszl"

In order to obtain the indicated equations, let us examine Fig.

2.4 given earlier, from which it follows that the angular velocity vec-

tor & is directed along axis Oy0 , vector - along axis Oz', and vector

S- along axis Ox1 .

'The angular velocity vector of a rocket S can be represented as

the sum

(2.31)

The cosines of the angles included between vectors F, I. and ,
and the body axes are given in Table 2.2. Using this table, we find

that the projections of the angular velocity or the rocket on the body

axes are equal to:

de dt

- i Cos 4? Cos s+O. .(232)

The kinematic equations of tWe motion of the center of mass of

the object we obtain, by projecting expression (2.13) on terrestrial

axes:

3-(2.33)
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Table 2.2

axes T I hill
I i IOx3  s'n y f 0 1 •

0 I 01
O costslq T Cos 10

1# 1 "Sit aO I "-°glqI 1Oq ;t

I I

Resolving Forces and Moments with Respect
to Coordinate Axes

Let us find the components of the forces and moments acting on a
rocket with respect to coordinates axes, taking into account that the
equations of motion of the center of mass of the :rocket are projected
on terrestrial coordinates axes, and the equations oa rotation - on
body axes.

For determining the components of thrust forces and aerodynamic
forces it is necesary to know the flight altitude, and for determining
the components of attractive forces - the geoocntric latitude depend-Ing
on the coordinates of the rocket in terrestrial axes x3 . y3 , *3". Lot
us give the appropriate formulas.

Pirst let us break diowni into components with respect to terrestrial
axes the radius-veotor ; of the center of mass or the rocket relative
to the center of the earth. Let X3 Y3  andz3 be the unit vectotr or
the terrestrial axes (Pig. 2.7). Then

where R0  distance from the center or the earth to the launch point,
determined by the formula

r R*~e(2.35).
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e - the eccentricitylof the meridional cross section of the general

terrestrial ellipsoid; *0 " the geocentric latitude of the launch point

which can'be determined, knowing the geodetic latitude, using the

formula

: j,)- .- a slit 2 ?,-(2.36)

Fig. 2.7. Coordinates of the
za• center of mass of a rocket in

terrestrial axea and the
flight altitude.

Th- Cht iltitude I. detemined by the d•pohdance

Vhere r M te dl tancd tf'aq the center-ot the earth to the rocket,,

004~1 tO

. i.

- d~Ll~o ac*~ adiua-.voctoe' f- roi the conter ot the earth to It*
u •u daces 0•"1u to

Rain =-:t a Wl1.U39)

The -goctntt'ic laititude of the point io spAce, at which the rockt

It located, Is deteratised by the a3gioed coordinates ofl this polht in
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the terrestrial coordinate system by the formula

sin7 Cos-cogCos ?0 + $in sin Cos
f ~r

Upon resolving the attractive force or the earth with respect to

terrestrial axes we will examine two components of the acceleration

due to terre-atrial attraction: 4 - directed toward the center of the

earth and STW - directed parallel to the axis of rotation of' the earth,

The expressions for their values were given above [see formulas (1.13)! and (1.14) .

Having combined centrifugal aceeleration * .~with the accel-
eratIon due to terrestrial attraction we obtaiin the acceleration

due to gravity .

Taking into account that centrifugal acceleration

where the unit vector of peoctntric axes by (Pig. 2.8), let us

-solve centr1rugal acceleratlono and alvo the acceleration due to

te~rmtrl1g attraction* into 4wo CoWqMentts al r radius - and ala"u
the a"lI of rotation or the earth (see Pig. 2.8)t

Then the domone-•• f o acceleration due to gravity will be equal

The cooLnes or the anglea included between these comonents of

-. . ateeleratlon due to gravity mW the terrestrial axes am given In Table
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Fig. 2.8 The resolution or the acooloration due to
graviy and oentrifugal acceleration into components
with mpect to the dllretion toward the center of
the eoar.h and with ieapect to the axis of rotation
of the earth.

OOr
* I

'rhe projectis or• lgravity on the terretrialI &sea are deter"Inne,
by• the ro mmu!• .. -

In order to determlne the compatentd of Corlolls acceleration,

let us first. "seolve the angulat velocity vector or the earth i3 into
Scoeponenta= aln the ter�re~rr*.d l axe3a. First lot us reoolvo It Into

coapoentosklon theLt6t
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two components in the meridian plane (Fig. 2.9): on the vertical

a3 p03 St% sin
and horizontal

0)3 .r 03 COS hOs

Fig. 2.9 Resolution of the
angular velocity of the
rotation of the earth into

its components along terrestrial
coordinate axes.

/ ""--'-.

The horizontal co,.iponent in its turn can be resolved along axes

Ox3 and Oz3 into components:
3,..r 3 3¢••0CS•

(0, 3=-( 3cos~~0 os'?;-
23 a -w cos 0 sin D.

Thus, vector 3 can be represented in the form

"t)3 = o(cOs Wo cos ." ..+ sin y,,o -- cos ?,,o siu ýz). (2.46)

Using expressions (2.6), (2.34) and (2.46), let us find the resolu-

tion of Corioli53 accelera Ion

I 3  Y* ; 3V

7c=2(;-3 XV)=2 ~ w3  u3 (2.47)

VX3 V83 V83
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along the terrestrial axes. Then we will obtain:

-- bl,,/, = i3V. -•- 31V ; (2.48)
- . --bs, V.X3 + 023V .3,

where

b1 -- -b 2 1•= - 2w cos p•sin j;

b13 = -- , = --- 203 sin pto; (2.49)

b23=b 2w3 cos %Ocos f.

For determining the projections on the terrestrial axes of force

N, i.e., the resultant of thrust force, aerodynamic forces and the
forces created by the control elements, let us first resolve these
forces along the body axes, and then, using the matrix of the cosines

of the angles included between the axes of body and terrestrial coor-

dinate systems, let us find the desired projections of the forces.

Thus, if the components of the forces in question are represent

along the body axes in the form of the sums:

N.,-1-=T,1 +4 4 +,; 
(2.50)

then the sums of the projections on the terrestrial axes of thrust force,

aerodynamic forces and the forces created by the control elements, are

determined by the formulas:

N, 3 = Nza 11 + N01021+ N,,o 31;

NY 3 = N2 u1 2 + ANg,,,•2 + N91032  (2.51)
N; 3-- ,=,• NXF3+ re' 23• + N80133.

It remains to find the expressions for the normal and transverse
*components of aerodynamic force Y1 and ZI.
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Resultant of these forces (YI + Zl) is perpendicular to the longi-

tudinal axis of the rocket and lies in the plane of the angle of attack,

passing through the velocity vector and thisaxis. Let us introduce0

the unit vectors: Rl, directed along longitudinal axis Oxl, and 1°,

directed along the velocity vector, and let us write in vectorial form

the direction of force (7l + •l)" This force is perpendicular to
- _0

vectors x1 and Vx x and thus, coincides in direction with vector
0 0

X 3i) x xI (Fig. 2.10).

Fig. 2.10. For determining the
direction of aerodynamic trans-

Z+?, verse force N1  YI + Zl"

V -

The modulus of the vectorial product ýO x xI is equal to sin a .

The modulus of vector (ýo x il) x xI is also equal to a because the

vectors Vo x 70 and xI are mutually perpendicular. Having noted this,

let us represent the transverse force in the following manner:

?I + Z, = C.qS[(-V' x-,) x;,*]. (2.52 )

): order to determine the components of vector (YI + ZI) on body
o0 o0 .O

axez, let us make use of the equality x1 a Yl x I1 and convert the

vectorial product X to the form

XX=; X (Y;X Z;)=i Yz) -ii vg) (2.53)

Taking the obtained expression into account let us convert the

double vectorial product
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XII 'I II I II Y

(2.514)

Then expression (2.52) will take the form
"v z,+ ,z-4qs(c )-4qs( •)• . (2.55)

Thus, the forces Y and Z are determined by the expressions:

41= -- qS (°)_ ; 1 (2.56)
Zl=-,,qS (v .,;)z.

00
Scalar products (VOyl) and (VO2i) can be considered as the values

of angles of attack ay and a in the planes Ox 1y and Oxlz 1 .

As can be seen from Fig. 2.11, if angles and a are small, then

cos. (j°, j) • cos (90' + ,• - sin u,, -cos Y1 CC (2.57)

A

•,• ~~Y,>OZ<

Yj>#

0C >

Fig. 2.11. For determining angles of attack
Sy and a .
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Taking formula (2.56) into account, we obtain the following

expressions for the aerodynamic forces:

Y, =c--qSa,; "
z, = -c:qsi,. 1(2.58)

In order to find the expressions of angles ay and _z let us de-

termine the direction in space of the velocity vector V of the cen-

ter of mass of the rocket. For this let us examine coordinate system

Ox3y3 z3 whose origin coincides with the center of mass of the rocket,

and the axes are directed parallel to the axes of the terrestrial

system.

The direction of velocity vector V relative to the terrestrial

coordinate axes let us determine by the following two angles (Fig.

2.12):

1) By angle a between the projection of the velocity vector

on plane 0x 3 z3 and axis Ox3 and

2) by angle T between velocity vector V and plane Ox3 z .

Fig. 2.12. Orientation of the velo-
city vector of a rocket relative

V to the terrestrial coordinate axes.

The projections of the velocity vector on the terrestrial axes

are equal to:

9~4



V •- VCOS T COS *;
x3

V slrnT; (2.59)
V -- V cos t Siu,.

The cosines of the angles included between the velocity vector

and the terrestrial axes are given in Table 2.4.

Table 2.4

axes Ox3  I oz.

I COS V COS a sin T COS r $W a

Knowing the cosines of the angles included between the body and

the terrestrial axes aij, and also between the velocity vector and the

"terrestrial axes (see Table 2.4). let us determine angle of attack 0y:

_ =- _ CO (;A _0 . -

S-cos COS) co , ))-(cot ZA),

or

O -011 COSTCOSi-- =sin T+*3COsCSffn*. (2.60)

In an analogous manner let us find angle az:

Ga,=s= COSTCOS+a- sl+l032OnST - sL0nO . (2.61)

In these expressions angles T and a are determined by the

"formulas:

following from the relatlonshlps of (2.59).
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Let us now determine the projections of the moments of force on

the body axes. The moments of normal and transverse aerodynamic forces

we will obtain, using expression (2.58):

• Mu,,=-i ,(X, - x,)-c~qS(x, - X,)U,;
M(( d (2.63)

Since the axial aerodynamic force and the thrust force of the main

engine are directed along the longitudinal axis, passing through the

center of mass of the rocket, the moments of thesb forces are equal

to zero. The aerodynamic damping moments and the controlling moments

are determined respectively by formulas (1.28) and (1.46).

System of Equations of Motion

Let us project equation (2.9) on terrestrial coordinate axes.
Let us first represent the forces P+,P-mj,, acting on the rocket, in
the form

-m.*+±P+P .Nl+4. (2.6i4)

"Here P--+C,- resultant of the total aerodynamic force and the force
of attraction; P - (THA n TPU), and the forces of the controlling
engines; 5 - gravity; R a R + P - the resultant of the total aerody-
namic forces and the thrust forces.

Th equations or motion of the center of mass of a rocket in pro-
Jections on terr.estrial axes will take the form:

• m -"-N --0,3 -b aiJ _-

'To these equations It Is still necessary to add the three kine-
matic equa'tons of motion or the center or mass of a rocket of (2.33).
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Let us project the equations of the rotation of the rocket around

the center of mass (2.12) on the rocket body coordinate axis rotating

relative to the terrestrial axes with angular velocity 1. Let w
Wyl, wzl - projections of the angular velocity of the rocket Z; on its

body axes. The projections of the vector of angular momentum K on

"these axes are respectively equal to Jz 1  VJxo)M,, J irosl. Then, projecting

expression (2.12) on the rocket body axes, we obtain the so-called
"dynamic Euler equations":

JX !" (z1- JYJwvwt = Vk.~;
dt

j44 J, WS1W -- M,1; (2.67)

The relationahips between the projections of the angular velocity

of a rocket on the body coordinate axes w xis y zl and angles *, 0 ,
n, which determine the orientation of the rocket relative to the inl-

tLal launch axes, are determined by the kinematic equations of (2.32).

The system or equations (2.32), (2.33), (2.65), (2.66) can be

used for describing the motion of an unguided rocket, but for a guided

rocket it Uc still not cloaed. The fact Is that an unguided rocket

an a aolid body has aix degroe3 of freedom. With respect to this its
motion 1ip described by the ayatem of 12-dif"r"eential equations of the

.ist. order (2,321 (2.33)o (2.65)t Q2.66) which la; cloded because the
forceo Po X10 Y10 21, acting on the rocket, and their mnoments NM.

M(' N•It M.elatlve to the body axes are uniuely determined by the para-

w.oterz of the rotket motion and the number or unknovn functions

03-. 93. *Z3 V,3 V0 3. VS. %. . 'Witt-. 4,1. ** (2.61)

Is olual to the number of dirferential equationo. In this case, ir

random perturbatiotos are aboent, the rlrigt path Is comspletely deter-

mined by the Initial eonditions - by the Values of the kinematic para-

miters or aotlon at the Initial Uommet or time:

X34YX)Y (10)- Z3 (10- . 46t 3 ). (2.66)
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Guided rocket, if we disregard its elasticity and examine it as

a mechanical system, already possesses in general 12 degrees of free-

dom: the six degrees of freedom for the motioh of the center of mass

and rotation around the center of mass and the six degrees of freedom

of the corresponding control elements. In the particular case exam-

ined above, in Section 1.7, when normal controlling forces are created

by the rotation of the rocket around two axes, the rocket has four

control elements: the elements controlling the rotary motions of

pitch, yaw and roll and engine thrust. The system of 12 differential

equations (2.32), (2.33), (2.65), (2.66) in this case is not closed
because the projections of the forces and moments, going into the right

sides of the equation, depend on the displacements of the elements

controlling the motions of pitch 6,, yaw 6,, roll 6, and engine thrust

6P.

If we apart from the initial conditions assign variation with
time of values 6 *(t)a 6n(t), 6C(t), 6,(t), then the missile trajectory

will be determined by this. In actual flight the displacements of the
control elements are accomplished by the control system depending on

the flight mission being carried out. So that the problem of deter-

mining flight path can be carried out, it is necessary to add the
equations describing the processes in the control system and connecting

the displacements of the control elements with the parameters of rocket

motion to the system of equations of rocket motion (2.32). (2.33)s

(2.65), (2.66). These equations can take a completely different

specific form depending on the operating principle and the control eye-
tea layout.

In the most general form the equations of the control system can
be written in the following manner:

FIRPM). 930 g(), z9(f. h (l ), 0 (1), W()1=0:

SF,jS,(f, .*,I), p S(W), taCO, yQ). 90 ), 400 O)].-0; (2.69)
Fa lkt) (1X$ (), 93 (0-. 93t V 1(A) 9) q(),]-0
F414PAX3). Y3(41, 441) ~) VWt.ki•), 4(0)=016
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where FI, F 2 , F 3 , and F4 - functionals of the functions enclosed in

the square brackets.

Sixteen equations (2.32), (2.33), (2.65), (2.66), (2.69) now make

up the closed system determining the 16 unknown functions:

-rs, Y31za Vi3, V&3- V93- 4*C,,

In this case the trajectory of guided flight (the solution of the

system) is determined by assigning the initial conditions and the

actual connections (2.69) imposed on the rocket motion by the control

system.

2.3 THE EQUATION OF MOTION IN PROJECTIONS
ON SEMI-WIND COORDINATE AXES

The obtained above general equations of motion in projection on

terrestrial axe3 can be used in principle for solving any technical

problems. However it is always advantageous to introduce into the

equations under investigation these or othor simplifications whose

eusence is intimately connected with the content of the actual problem.

Becauue of this it is frequently convenient in investigating the

dynamics of a rocket or a nose section to use the equations of motion

in projectiona on semi-wind axeos.

Coordinate Sys temns

Opvcontr!_c Coordinate Syste

Thto coordinate system with its origin at the center of the earth

and with its axes connected with the earth, was already used above in

studying the earth's gravitational field. The reference planes in the

coordinate system in question are the equatorial and the prime

meridian planes.

The position of the center of mass of a rocket in this case can

be determined either by three Cartesian coordinates x, y, z, or which
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is more convenient, by three spherical 6oordinates A #u_, r.

Longitude X and geocentric latitude * are reckoned, as was shown

above, in Fig. 1.3. Coordinate r is the distance from the center of

the earth to the center of mass of the rocket..

Wind and Semi-Wind Coordinate Systems

In some problems of dynamics the equations of Totion of the cen-
ter of mass of a rocket are conveniently written as projections on

coordinate axes connected with the velocity vector V of the rocket.
The origin 0 of the coordinates of such a system is~located at the

center of mass of the rocket; axis Ox is directed along the velocity

vector Vs i.e., tangentially to the trajectory in the direction of

flight; axes Oy and Oz lie in the plane, normal to the flight path.

In this case in flight dynamics axis Oy is selected both ih the plane

of symmetry of the object Ox 1y and In the vertical plane. Thi first

coordinate system we will call wind, the second - semi-wind.

Local Geographical Coordinate System

The origin of this coordinate system Oxryr:2 (Fig, 2.13) coincides

with the center of mass of the object; axis Oxr is drawn parallel to

the tangent toward the meridian of the site northwards; axis Oyr Is

directed along radius-vector ; axis Oz is palsallel to 'the equatorial

plane.

Fig. 2.13. Local geogvaphical
coordinate system.
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Seim-Body Coordinate System

i The origin of the semi-body~coordinate system Ox'y'z' (Fig. 2.14)

coincides 1with the genter of mass of the object; axis Ox' is directed

along the "longitudinal axis of the object in the direction of the nose;

axis Oy' is perpendicular to the ;plane, passing through the velocity

vector and the longiti~dinal.axis of the object; axis Oz' completes the-

system to the, right,

* .

*

Fig. 2.14. Semi-body pystem of coordinate axes.

Direction Cosines matrices

The Cou•ine or Angles Inoluded Between' thAes A~ or-Body and SeRWI-R3n Noodinite•

In order to determine the cosines of the angles included between

thesc uoordinate a~es, let us examine the sequential turns of the semi-:
"wind coordinate system Oxyz until its coincidence first with the

* seoi-body Ox'y't:, and then with the body Oxlyl 1z coordinate sysomJ,•

(Pig. 2.15).

':Thd tranaformation from a semi-wind coordinate system Oxyz to a

I semi-body Oxy'c' can be accomplished by two sequential turns: first

.-by ankle v around'axis Ox, and then by angle of attack u aro•nd axio

Oy":in accordance with Fig. ;..15.1

a. 0
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v

Fig. 2.15. Transformation from a semi-wind coor-
dinate system to a body coordinate system.

The matrix of direction Cosines included in the equation ot the
transformtation of coordinates

Pe MZUlil (2.70)

has the torm

tOS saWUsIhl -sin aCos

?!'•: I1•.= -osap €Oslcpl

In order to change from a semi-wind coordInate system to body$ It

is necessary to carry out one additional turn - to turn the semi-body

coordinate axes Oxiy'%# by angle v around axis 0•.

As a result we obtain the following coordinate transformation

equation.,

rx. nit (22.72)
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where the matrix of the direction cosines H takes the following form:

Cos a sinasinRp -sinacosis

sill a sill Cos p Cos v '- slnpcos+ J j
" 11 = ---cosasinpoSih +cosuC os ts sin) (2.73)

Otna cos v -cospFsini-- -OsinpIn v 1
-cOse siUn %osv +cOs ocosPcos'

Cosines of The Angles Included Between the
Axes of Semi-Wind and Local oraHhII
-o-dinate systems

N Let us carry out sequential turns of the local geographical cooa-

dinate system Ox yr z by angles I and 0 until the coincidence of tho

direction of its axes with the semi-wind coordinate system Oxyz

(Fig. 2.16). As a rosult we obtain:

Cos Cose SWe -si Vcos 4
Am -CosrsilI COSO sCos19si (2.75)

FigS, 2.16. Transformtion from
a local goographical coordinate
aystem to a aev4l-vnd coordinate

The equationa for tran3 forcIng from a local geographical coordin-

4te oystem to u semt-wind ayotem, and M4 the latter Lo body a40
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semi-body systems take the form

x=z [ HAZ (2.77)

Equations of Motion

For deriving the scalar equations of the motion of the center of
mass of an object (a rocket or nose section) let us project vectorial
equation (2.9) on the axes of semi-wind coordinate system Oxyz. In
this case we will determine the position of the center of mass in a

geocentric spherical coordinate system by geocentric latitude *.,, by

longitude X and by radius-vector i, drawn from the center of the earth
to the center of mass of the object.

Let us determine the projections of relative, translatory and
Coriolis accelerations on the axes of a semi-wind coordinate system.
The semi-wind coordinate system rotates relative to the earth with
angular velocity Q which we will represent in the form of the sum of
the angular velocities of the rotation of the semi-wind axes relative
to geographical axes and of geographical axes relative to certain
terrestrial axes. As the axes connected with the earth, it is con-
venient to take geographical axes O 0 Yr0 x at a certain initial
moment of flight, for example at the moment of the firing of a rocket
or at the moment of separation of the nose section from the rocket
body (Pig. 2.17). As a result we will have (see also Fig. 2.16)

(2.78)

Let us find the projections of vector 0 on semi-wind axes. First
let us express angular velocities and 0 by projections on the axes
of a geographical coordinate system (see Fig. 2.17)

Xr 'Cos "" Mr+sin?,,; (2.79)

.lo.
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where Xr, Y- z0 - the unit vectors of the geographical axes.

X r Yr

Fig. 2.17. Variation in the orientation of local geo-
graphical axes during the flight of a rocket.

In order to express X and *L. by projections on semi-wind axes, we
use formula (2.74). Then we will obtain:

= [-" (cos , sin W cos 0 + sin ,, sin 0) +
y"(- cos?.cost Vsin 0+ sinp cosO)+_?(cos ffsin W')J;

,,- -, L?(- sin W cos 0)+j" (sin W' sin e)J- ?cos W1.

Vectors and • we express by projections on semi-wind axes, using

Fig. 2.16:

ir=t(?s1n0- *COSO);I
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Thus, the projections of vector 9 on semi-wind axes are determined

by the following expressions.:

.. =)(cos 7 cos" cos-- +s+in sin e)+

+ sn VCos 0+ irsin e;
2u• (cos?,, cos V sin +sin cos e)-- (2.82)

-- sin I sin e + cos e;

2 Cos u sinW, -,-iCcos + .

Now it is possible to find the projections of relative accelera-

tion. Taking into account that

W =• d'__ + 1 X 1.'V'-- + 2, 2'r 2';
ydi di dd dl d V V V(2.83)

Va V1V Va
.. ms ir= ; Vs-V; V#=Va,=o

dt

we will obtain:

j,-VQ.= v COSf% Sin -W Cos V+•);
S7,---V2,m#--V1i(-cosy, cos W&,nO+ (2.84)

+sln V. cos e)-) sIn W stin e+ co eC .

Let us express angular velocities' and #* by velocity V. For'4
this let us find the projections of velocity V on geographical axes
xr and z (see Fig. 2.16):

Va,--VcoSecoSW;
V -s .(2.85)i• ~~~Vat4='- VCOS 0 sin .

-Having resolved the meridianal oomponent of velocity Vir Into
sphere radius r, and the latitudinal component of Var into small oiftle
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r cos * , we obtain:
L4

S V sI cs
(2.86)

V sl'Cos f

Substituting dependence (2.86) in the formulas of (2.84), we

obtain the final expressions for the projections of the acceleration

of the object relative to the earth on semi-wind coordinate axes:

V, - VCos e;
P (2.87)

Let us now determine the projections of Coriolis acceleration on

semi-wind axe3. As is known,

7~~2XI~~ ~t(2.88)

Let us rind the projections of the angular velocity of the earth
Z•3 an semi-wind axes, using the expresslon3 or (2.80) because the direc-

tion or voctor c oincides with the diretton or A (see Pig. 2.11).

Then ve will obtain

%".JX*(Co~OS Y I.COS os 0+sin sine~)+

--y'(- cOs ,c•O s1 sin 0 +siftcos ))+ '(cosySh •, (i.8)9

The projections or Corioli, acceleration on semi-wind axes ae

determined by the expreseions:

Vv, = so•- 2V#% tos 96 sin V; .9o)Jr:~O~(2.90)

ji --2Ve2•V 3, (cos 6 cos V sin- si ,Co ).



Let us determine the projections of' acceleration due to gravity

on semi-wind axes. The direction cosines of vectors jrand 1.will be

the same as for vectors 'V and w3 respectivelg [see formulas (2.81) and
(2.89)),, but with opposite signs. Then we will obtain:

~ -g~in 9-g.(cosyFUCOS Icol 0 +s1RV6 sin 0);,

Let us niow find the projections of total aerodynamic force A? on
semi-wind axes.* Let us resolve thio force-.into its components along
semi-body axes:

~'ra ~Xit')mZ'j'.(2,92)

Nov using matrix (2.71). we ob~tain:

R**ý* -XICOSa-Z'sins )
Rvm(.Xl an G+Z'*COSA)BIp (2.93)
RouA s(X1 ci-Zl' ucas0 ep.

Drag X and lift Y ave connected with As~ for4e ýjan lteral
force V by the following relationships,.

which are obtalned with aid of TObl 1 1, 1ir one o~rnl-de"~ that Z *

Ywhen ua 0, Thusa,ý wo have anothor Variant of the. piojections ot
total aerodynasilo tore* on semi-vind axes-

I4~m Y' -X

Rose-Y IOSp
the projections of the resultant N at thrust force,, aerodynamic

Zarcos &aM the Jto1lce*j created bY tti control eleaents# oi) goai-wind
&lew take the forw.:
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N.=(P,1 + 7'T) ?+ T#1n 1+ T8 q31 -X;
N --(P,1 •" Tx) qn- sinp; (2.96)

. N�5 N (P21 + T,3) t1a + Tgt1%.+ Ta,%" Y COS.

where - the matrix elements (2.73).

Thus, the projections of all the terms or the vectorial equation

of motion of the center of mass of an object (2.9) on semi-wind axes

are determined.by the formulas (2.87)s (2,90), (2.91) and (2.96).

The dynamic equations of the motion of the center of mass or am

object in projections on semi-wind axes take the form:

~m
V A-.g- Oin 9 OS e COS% COST CoS s n 0+ ; IV51O

aV p ~(2.97)

+Sanq.COS )+. co.O-2.3 costysinvo

+ ,(c ,cs Vg 0 V-s ne).

It is toneeary to oupplement these equations with the kinematic
equations of the motion of the center or maas or the object In a

geocentr'ic spherical coordinate syntea:

V - 4
y1mm4 os to$ ;

__ (2.98)

and with the formula I"or determinin flight altitude h, on which aero-
dynamic torces dependt

(2.99)
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Let us write the equations of motion around the center of mass In

Projections on body axes [see formula (2.67)):

"jr d, 41 +( -J.jJ)*#w8=.,-,= fS,

dt,dwol(.10

'.3 tJ -A*3 U~~i~3

For the projections of aerodynamic moment instead of the expres'-

sions or (2.63) it is now nftCessary to take the expressions:

AI.411•=, q. X 1,-X• coS%; ) (2.101)
.t .--cq•#S t. .x4) s v.

Let us compose the kinematic relationships connecting the time
derivatives or angles 1j, a,'v uwith the projections of the angular

velocity of body w aX1 ' ylv I:l

The angular veloztity of the body axes • is made up of the angular

velocity 0 of the semi-wind axes relAtivt to the terrestrial axes and

the angular Ylooalty •o of the body axes relative to the semi-wind
axell:

(2.102)

Anji.-ar velocity o can be represented in the form of the .sum

.+(2.103)

By projectlngt vector o on body axes, we obtain (see Fig. 2.17):

S•~~. ,, ==o ~ i zi
%tGCSV+F113GIflW(2.10J 4 )

*,In0 '.ussaa Oslo VJai, we sin V+pin a Cos

For determining the projections of angular velocity D on body

"axes let us use Its projections (2.82) on semi-wind axes and the table

of the cosines of the angles Included between semi-wind and body axes,
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written in the form of the matrix of (2.73)

11 3 '2 113

Then we will obtain

-= -- %,• + 11,22 + 11,Q..
21 -,,21 2 + 2221U + •.23 2 ; (2.106)

-,= 11,2. + )1,e, + =e.

Taking expresaions (2.102), (2.104) and (2.106) into account, we
find:

,j,, =. ,,- +1),2,g+1 zs.,g+ •'+t cos u;

W1, =4,212z + ,12221+11232,+a COs v+' sin a sin%, (2.107)

wto =,lu2 z+ u%, + nugs. sin v + j sin a cos v.

Substituting the values of the cosines n., from matrix (2.73)

and solving the equations of (2.107) relative to p, a, v, we obtain:

Sa=w,1 , cos v--w,1 sin v-P-ycospi-2,sinp;

sina - ,i (2.108)

- 2 ctg a cos p;

V=wt4uts, ctgasinv- *, ctgacosv.- -Q,+ .- -- I
In these equations the values of nx#, y, and Q. are determined

by the formulas of (2.82)

Equations of (2.97), (2.98), (2.100) and (2.108) make up a system

of equations of the motion of an unguided object. For describing the
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controlled flight of a rocket they should be supplemented by control

system equations.

2.4 BASIC SIMPLIFICATIONS OF EQUATIONS
OF MOTION

Depending on the problem being solved the general equations of
motion obtained above can be more or less substantially simplified.

Since the selection of one or-another type of simplifications is

inseparably connected with the actual conditions of the problem, we

will examine the simplification of the equations of motion in appro-
priate sections of this book. Let us limit ourselves here only to
certain general remarks and to one example of the simplifications of
the equations used in ballistics.

Taking Trajectory Phase into Account

In the first place in composing equations of motion it is neces-

sary to consider, which phase of the trajectory is being examined.

During the powered-flight phase the motion of a rocket should be
examined taking control into account. Since we are interested in
rocket flight relative to the earth, and the control system of a rocket
is usually inertial, it is necessary to examine the motion of its
center of mass in terrestrial coordinate axes, and the orientation of
the rocket - in inertial axes, i.e., in initial launch axes. This

fact makes it possible to use more or less simplified equations based
on the general equations examined in Section 2.2.

In examining motion in the unpowered-flight phase beyond the

limits of the atmosphere the investigation of trajectory is facilitated
by the absence of thrust force, aerodynamic forces and forces created
by the control elements, and also of the moments of all these forces.
However due to the great range, altitude and flight speed it is neces-
sary to consider the variation in acceleratlon due to gravity and the
effect of the rotation of the earth.

During the phase of the descent of the nose section into the
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the atmosphere a large role is played by the aerodynamic forces and

moments. Since flight in this phase is unguided, there is no need to

rely on an inertial coordinate system and for the investigation it is

possible to use various simplifications of the equations of motion in

projections on semi-wind axes.

"Quasi-Steady-State" Motion

The motion of a rocket or of a nose section, as well as the motinn

of any body, can be represented in the form of the motion of the cen-
ter of mass of the object and of its rotation around the center of

mass. The presence of control during the powered-flight phase makes
it necessary to examine the motion of the center of mass of the rocket
together with the motion of the rocket around the center of mass.
During the descent of a nose section in the atmosphere it is also neces-

sary to examine the oscillations around the center of mass together

with the motion of the center of mass.

Standard for rockets is an investigation of the motion of the cen-
ter of mass with simplified equations of the control system and of the

rotation of the rocket.

The control system equations depend substantially on its structure

and the composition of its elements. Thus their actual simplifications
cannot be examined in this book. The most substantial simplifications

consiat of replacing control system equations with equations of Ideal

controlling connection.

* Let us examine the simplification of the equations of rocket

rotation.

The left sides of the Euler equation of (2.67) with controlled
rocket fligLt, if we eliminate such non-steady-state flight modes, as

launch, stage coparation and nose section separation, are close to
zero, thus in investigating the motion of the center of mass the left

sides of the Euler equation are usually disregarded and these equations

are written in the form of steady-state equations of the moments of

force acting on the rocket, relative to the rocket body axes. Thus
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the transitional processes in rotary motion are disregarded and the
rocket is ex~amined with a control system ideal in the, sense, ,that upon

deflection of the control elements the angle'of attack instantaneouk~y

assumes the "stead~y-statelt (balanced) value [21) corresponding to the

equilibrium equation of t~he moments.

Simplification of Direction Cosine Natrices

The. following common simplification in equations of rocket motion

consists in simpli±'ying the expresziiond of the-cosines of the angles

included between the coordinate axes, Thus, for instance, In caJ~culat-

ing the optimium trajectory of a ballistic mi58i19 it is possible to

set the angles of roll ni and yaw C~ equal to zero. Such a possibility

Is brought about by the fact that a system controlling flight, by
getting rid of perturbations, tends to reduce these angles to zero.,
as a result of which their actual values are small. Let us thus Aasume
005 flml, sin) I~nmn, 005 Cil,, sin CwC.

We will also disregard the products or angles C and n. Therf we
will obtain the approximate matrix. r of the cosinis of-the angles in-.
eluded between the initial launch and body axts In the follovingor- 0

U Cosy sing -COS

+ 111 On'? 14 Cosy I

In an analogous manner we will obtain the approxisate matrit' ot'
the coitines of the angles included between the body -andta tsr ý
axes,

Resolving General Notion into Longitudinal
and Lateral Notion

A substantial. simplification or' a systea or e.4atloas or ratiket.
motion is attaint4, -when It is pOssible to break this system doon Into'
two independent groups of equations describing the mation or a tock*%:.
In two mutually perpendipular p~lanea C21]. the mdai possibility for
such a breakdown Is due to the dynamic symmetry 6t a 0o.ket rolati~e
to It$ longitudinal axIS Oxi ..
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:Let us represent the general motion of a:rocket as made up of

longitudinal motion,, in which Oarameters VS39 V.,3, X3# y3# o~x, T, vary.

and lateral motion, in which parameters VS3 123 (OJ, 09,,&Utl Vary-
Izq the gener'al case there is interactio~n between these two motions.
Let us explain the conditions, under which each of the two motions in

question, can occur independently of the other.

Lateral parameters of motion V93s VV31, X3* Y3# 641,9 will -not be
included in the equations describing the variation in the longitudinal

-parameter3.,of motion V83t' *2,3, Wxj Ovi L ' if the channels stabi-
lizing the angles of yaw and roll and lateral drift, are operating

ide~ally. In practi~ce it is possible to exclude the parameters of
lateral motion from the equation a of rocket motion in plane 0xjy,, when

th lt~ral paaees V3  Oxi, atvj, L are rather small. Then we

obt~ th fc~wdng yste orequ~on ofrocket motion in thft Ox3 y3

plane:

I it

d,.

11e qutin of lateral motion in the general ieas take thb form;

dl N+0 4 -A.aj,



wtOwA + d i•-- sta•

,= -Cos (, COSq +-A Sltsi

14 10), Z (' I (t)q q (01 =06.

It is not poajible to exclude all the parameters of longitudinal

motion from these equations. Thus for independent Investigation of

lateral motion it is first necessary to determine all the necessary

longitudinal parameters, for example, by solving the equations of
•:: (2.109).

"Linearizing Equations

The .method of linearizing equations is very widespread in all the
technical sciences (see, foor example, book [21.). In rocket ballistics

and dynamics this method is most frequently used in Investigating the

. dispersion of nose sections, for evaluating the controllability of

rooa"kt and 'many other pr'blew1s.

S S mpliftng Equations far Evaluatingii i Rocket fontrollability

"For detemining the maxitrum deflection of' ýhe control elements,

necessauy to compensate for pezattrbing romes and moments, let us com-

"pose simplified equations of rocket motion,, examining it as an abso-
lutely rigid solid body. Por thLi purpoue let us resolve the Seneral

Sotio f o. a rocket into longitudinal snid lateral motions and let us

exasine only the lateral motion, sin*e the fmximum perturbations aw

caused by arots wrind..

-Let us simplity the system or equatiofts or lateral motion (2.110),

having oade th* foliowing assumptions.
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1. The projections of gravity .and Coriolis force on the Oz3

axis are negiligibly small.

2. We will assume angles *, 6, r, 6 E, 6 n, a s, 8 to be small;
we will consider the cosines of these angles to be equal to unity, the
sines of the angles - equal to the angles; -e will disregard the pro-

ducts of these aagles.

3. Let us linearize the forces and moments, representing them

In the form:

Zos(-X+Z )Pp= -CX +Ya)k

AlM=, =va•P+M'1%
PM,, =P'+4T•h

4. Ve :vepreent anige 8 In the form

'rlen, taking the pertwtlng forces and Molwnts •, •t H , %IN

lnto aocount on the r1ght side* of the eqi.attons (2.110), we obtan?
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Siu• X + Y" , P+ Y"
- - " a- - -

1MV as
r I2

4tt=ye Xr 4 - Y' (Xr --Xd)

----27-x')j (2.112)

Jul J,•V

A10r

Let us write as control, system equations the lineraized equations

of the channels stabilizing yaw, roll and lateral drift, composed in

accordance with the procedure examined in Section 1.8:

8& 41+ a l e+ a41, d + OZ + a; (2.113)

The total deflection of the control elements is equal to:

84 (2.1114)

As a result of solving the obtained system of equations of rocket

motion with a given set of perturbations the deflections of the con-

trol elements 61 (t) and ag(t) necessary for compensating for these per-

turbations are determined, and they are compared with the ,maximum

possible deflection Omaz>O.. If the values of the angles of deflec-

tion of the control elements are less than the maximum possible angle

(with a certain margin 6=,>O), then in this case the control elements

are effective:
•7; I1 I +Ra,...< 8ma:

, ., (2.115)
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CHAPTER III

TRANSITIONAL TRAJECTORY PHASES

Of all the questions of rocket ballistics and dynamics it is pos-
sible to segregate, as independent, the questions of the dynamics of
the transitional trajectory phases - launch, stage separation and nose
section separation. These questions are connected by the similarity
of their dynamic processes and by identity of the formulation of their

problems.

Sharp variations in the thrust of the main engines, propellant
consumption per second, and also the operating modes of the control

system are characteris4ic for transitional trajectory phases. Further-

more, the perturbations acting on a rocket in these phases are specific.
From the point of view of mechanics, the investigation of the tran-
sitional trajectory phase is the solving of problems concerning the
relative motion of two or several bodies, especially, a rocket relative
to the launch pad, of the two separating parts of the rocket relative

to each other, etc. In all the problems It is necessary to determine
the forces acting on the rocket, and the parameters of relative motion
taking into account the actual design features of the rocket and the

operation of its systems.

The standard methods of launch, stage separation and the separa-
tion of other objects are examined below; the equations of motion of

rockets and separating parts are given; it is pointed out, which questions
of dynamics are sQlved in rocket designing. The exposition employs a
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two-stage rocket as an example executed according to "tandem" layout.

3.1. ROCKET LAUNCH

Free Launch from an Open Ground-Based Launch Pad

Free rocket launch is carried from a launch pad located on the

surface of the earth. The rocket stands freely on the pad and when
the engine thrust attains a value, greater than the launch weight of

the rocket, the latter lifts off from the pad.

The basic problem of dynamic design with such a launch setup are

determining the perturbing forces and moments acting on the rocket,

and investigating the perturbed motion of a rocket in the initial tra-
Jectory phase for the purpose of selecting the stabilization system

parameters and evaluating the controllability of the rocket.

During free launch from an open ground-based launch pad the per-

turbing forces and moments acting on a rocket are caused by:

- cross wind;

- errors in the manufacture and the assembly of the rocket and

the engine system;

- the time differential in starting and the thrust differential of
the engines of the engine system (or of the combustion chambers of one

engine).

The perturbing forces and moments can be determined by the form-

ulas given in [22).

Let us write the equations of motion of the center of mass of a
rocket as projections on the axes of the coordinate system, the origin
which when t - 0 coincides with the center of mass of the rocket; axis
Ox is directed vertically upward; axis Oy - is opposite to the direc-
tion to the target; axis Oz - so that the coordinate system is right-
handed (Fig. 3.1)
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z Fig. 3.1. Coordinate system for
calculating rocket launch from
an open ground-based launch pad.

We will determine the orientation of the rocket relative to this

coordinate system by the angles of pitnh 0, yaw 0 and roll y which are

formed similar to angles 4. nr, and C. determining the orientation of

a rocket relative to an initial launch coordinate system (see Pig.

2.4). In this case the kinematic equations connecting the projections

of the angular velocity of the rocket Cx, I, vit O)il with the angular

velocities y, ,, will be analogous to the kinematic equations of

(2.32). From these equations it follows that with rather small angles

S• a and angular velocities * and 0 the approximate equalities

occur:

Let us simplify and mor accurately rfine the general system of

equations of (2.65)-(2.66) with respect to the conditions of the pro-

blem in question. In this case let us make an assumption about the

fact, that angles Y# , 0 and angular velocities i and 0 and also the

angles or deflection of the controlling engines 68,16 and hg are small.
Zt is evident that in the aase in question it is possible to disregard

the Coriolis forces.

In determining the projections of the forces on the selected axes

let u3s tako into account that:
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- in unperturbed (vertical) flight drag is the only one of the
aerodynamic forces acting on the rocket;

- the Coriolis forces are negligibly small;

- the forces and moments created by the controlling engines, are
determined by the formulas of (1.45) and (1.46);

-t- the operation of the control system is described by the equa-

tions of (1.63), (1.65), (1.66), (1.67).

Taking into account what has been said the equations of motion of

the rocket take the form:

"mx=P--O--X;

mny Ps 0+ 2ITa+ Yei;
m-= -P,$--2T&M +Z.;

•i JJ.i = 2 -4rr• + Mjw,
It, 6 2TrAx 4 + M ima

+ +,+(3.1)

%,-• • 1= + ,

Here m- m0 - i(tldt - the mass of the rocket; Pi--P+4T - the
total thrust of the engine system, and P- the thrust of the main
engine; T - the thrust of the controlling engine; Y., Z. - the pro-
"jections of the vector of the perturbing forces acting on the rocket;
MBI. Map, s, mal - the projections of the vector of perturbing mo-
ment acting on the rocket; 4, 4, i4,..., av, 4; the transmission coeffi-

cents of the control system of the rockets
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The system of equations of (3.1), as a rule, can be solved only

by numerical methods on analog or digital computers. In this case,

since the initial conditions and the perturbations acting on the rocket

are in general random, the method of statistical testing is usually

used for the solution. Sometimes for reducing machine time the solu-

tion of the indicated system of equations is found for the worst com-

bination of perturbing forces and moments acting in a certain plane.

Furthermore, since the position of this plane for investigating launch

dynamics in a vertical phase is neutral, in most cases the problem is

solved for the plane of pitch.

As a result of the solution the following launch problems are dis-
tinguished: necessary control element effectiveness, the rational

values of the transmission coefficients of the control system, the

statistical characteristics of the phase coordinates of the rocket,
the design parameters of the launch pad and others.

Free Launch from a Silo

The free launch of a rocket from a silo complex ..s accomplished

in the same way as a launch from an open ground-based launch pad, only

the launch pad is located inside a silo complex. Free launch from a

silo imposes particular requirements on a rocket, the silo complex and
the control system as part of ensuring shock-free egress from the

silo - it requires very high accuracy in stabilizing the motion of the
rocket In the silo trajectory phase and the specific relationship of
the diameters of the silo and the rocket. The basic questions of

dynamic rocket design in launching from a silo are: evaluating the

necessary effectiveness of the control elements, selecting the para-
meters of the control system and determining the overall dimensions

of the silo complex. For this it is necessary to know the parameters

of the perturbed motion of a rocket during its egress from a silo.

The dynamic procedure of a free launch of a rocket from a silo

is identical to the dynamic procedure of a free launch from an open

ground-based launch pad, However during the motion in the silo addi-

tional perturbations act on the rocket caused by the gas-dynamic

forces due to the gas streams coming from the nozzles of the engines.
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Furthermore, as the rocket makes its egress from the silo the wind

begins to act on it. The formulas for calculating the wind perturba-

tions acting on the rocket, are the same as before (see appendix on

application). However the coefficients of normal aerodynamic force

cn and the coordinate of the center of pressure xd in this case depend

not only on the angle of attack, but also on the length of the part of

the rocket which has exited from the silo. For calculating the para-

meters of perturbed rocket motion during free launch from a silo the

same system of equations can be used, as for a launch from an open

ground-based launch pad.

Launching from a Silo on Guides

The launching of a rocket from a silo on guides ensures the shock-

free egress of the rocket from the silo and does not impose such rigid

specifications on the silo complex and the rocket control system, as

during free launch from a silo.

In launching from a silo on guides along with the evaluation of

the effectiveness of the rocket control elements and the selection of

the control system parameters it is also necessary to determine the

reactions acting in the support girdles of the rocket during its motion

along the guides. Furthermore, it is necessary to select a scheme of

control system activation (lift contact or egress contact response),

ensuring minimum loads (reactions of the guides) and initial perturba-

tions.

Below are examined the equations of rocket motion for one of the

possible variants of the design execution of the guides and support

girdles of a rocket: the rocket moves in the silo along two vertical

guides, with which it is connected by two elastic support girdles

(upper and lower) which are two diametrically positioned lugs. The

perturbations acting on the rocket, are the same as in free launching.

In composing the expressions for the reactions of the support girdles

it is necessary to consider the basic design features of the rocket

and of guides; the clearances between the lugs and the guides, the

preliminary compression of the spring of the lugs and the restriction

of their motion, the elasticity of the rocket body under the lug, etc.
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In a first approximation in investigating the launching of a

rocket along guides the flexural vibrations of the housing, the vibra-

tions of the guides, and also the possible displacements of the silo

"launch jacket are disregarded. For composing the appropriate equations

of rocket motion let us use a right-handed coordinate system whose

axes are oriented in the following manner: Ox is directed upward along

the vertical, Oz lies in the plane of the guides; Oy is perpendicular

to this plane (Fig. 3.2). The equations of the motion of the rocket

along the guides are derived in an analogous manner to the equations

of (3.1)

Fig. 3.2. Diagram for composing the equations of motion
of a rocket during launch from a silo along guides: K -

angle included between the plane of the guides and plane

The distinctive feature of the problem in question as compared

with the previous one is calculating the elastic reaction forces aris-

ing as a result of the interaction of the elastic lugs on the rocket

with •he guides (Fig. 3.3). These reactions are functions of the roc-

ket coordinates y, z and in many respects they are determined by the

elastic properties of the material, from which the lugs are made.

Let us introduce the follwoing designations (see Fig 3.3):

R?(z), At(z) - the radial reactions on the upper and lower support

gridles respectively;
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Fig. 3.3 Reacting forese of the 3upports acting an
*a rocket during launch from a silo along guides.

Rit(j) /) the ta"Ontial reactions on the upper support
gir'dle;

~t~), 4~g -the tangential reactions on the lower support

girdle~

l 41 - the distance to thr gravity center of the object rrom the
upper and lower support girdlets Nespecti1Yi;y

% - the angle in-luded between the plane of the guides and the
yaw plane.

The equations of wotion of the rocket moving long guides has the

form:'



I I li . -i n. ..

tnx=4':-O-X;
m'=-- Pz4 -+-2r (&# cos .-- , sinx) +.

m - " 2+r(8&, cOS x%+a& sin 3)+

27 +(/h -- Rt-- + R2-) r 1+ Mi,

4,,'=2Trx,-x,)S+ (3.2)

+ 1(??" + A62) It + (Ri, +IRh) ,] sfn z -
S- tI,~1 + Re2k Cos v' + Ma, 1;

•Ii YJ, 2 r (.,- r, la +
+ l/RI, + A6) it +(R2; + R2:) 41 cos +

-I- A 4 + + I n +t .f.

As in the case of a free launch of a rocket, to these equations
it is necessary to add the control system equations describing the
deflections of the control elements 61, i, • depending on the parameters

of rocket motion.

The solution of the system of equations obtained in this way is

more complex than the systems of (3.1), and also, as a rule, it is
found with the aid of computers by the method of statistical testing.

3.2. STAGE SEPARATION AND NOSE SECTION
SEPARATION

Stage Separation

The phase of motion of a rocket from the moment of the issuance

of the main command for shutting down of the engine system of the pre-

vious stage to the moments when the separated part cannot affect the

subsequent flight of the rocket, we will call the stage separation

phase. For the stage separation of multistage rockets set up according i
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"to a "tandem" layout, two basic setups of 34paratlng syptems can be

employed: '

1) cold separation (or separation by braking), in which the sep-

arating part is braked by special means arter .breaking the connection

between the stages, and the main engine of the subsequent. stage 'is

F started after a safe interval is attained between the stages;

2) hot (or fire) stage separation, in which the engine of thd
subsequent stage is started before the breaking of the connections

between the stages and the separating part is repelled by the gas Jet

of the subsequent stage engine.

With any separation system it is necessary to ensure the contin-

uous controllability of a rocket during the separation phase, The

method of carrying out of this specification depends ,upon the type of

control elements.

Cold stage separation (Fig. 3.4) is possible and more acceptable

for rockets, the control of which Is accomplished with the aid of

special controlling engines. The controlling engines of the subsequent

stage can be activated before shutting down the controlling engines

of the separating part. In this case continuous rocket controllability

is ensured during the separation phase.

Hot stage separation (Fig, 3.*5) is possible in principle on anyn

rockets with sequential stage connection,-however It requires special

design of the adapter between the stages and of the rear' section of

the following stage. Hot separation is advatitageous for the rockets,

the control of which Is connected with main engine "operation (jet vane

control, control of main engine combustion ohanber oscillation, con-

trol of the blowing of generator gas into the supercrittcal part or

the engine nozzle). With such control elements the continuous control-

"lability of a rocket in the separation phase Is possible only during A

'Certain intermediate schemes are also possible,' however we will
"not dwell on these,
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the starting of the main engine of the subsequent stage before breaking
the connections between the stages.

P 

3

Fig. 3.4. Diagram of cold stage separation. Approximate
command sequence for: 1 - shutdown of the main engine
of the separating part; 2 - starting of the controlling
engine of the subsequent stage; 3 - shutdown of the
controlling engine of the .separating part; 4 - breaking
of the connections between the stages and the starting
of the retro-solid-propellant rocket engines; 5 -
starting ofithe main engine of the subsequent stage.

p 4 !

P,,

P ..

Fig. 3.5. Diagram of the hot separation. The approx-
imate sequence of commanos for: I - throttling the
pngine of the separating part; 2 - starting the engine
of the sdbsequent stage; 3 - breaking the connections
between the stages; p 4 - shutting down. the engine of
the separ~ating part.

Another requirement for separation systems is the ensuring of
reliable separation, by which is understood separation without
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colliding or the rocket parts. For reliable separation it is neces.

sary to ensure sufficient energy, used for separating and spreading
the rocket parts a safe distance apart, theiricontinuous controllability
in the separation phase and correct selection of the moment for break-
ing the connections.

During separation the deviations in the parameters of the mo-
tion of the subsequent stage from the optimum values and the deviations
'an the parameters of the relative motion of tho rocket pornts f!rC= the
..' ated value$ should have as 3=11 d.4m aral-• as po~slb le. This rowS quLrement is determinrt ýia aelecting an actual uoteme #>C aeparation.

The cited requiremert., for' *s-paratlon syste:uji, as it I~s v~ary to
3sees mr interconnected, The deg'te of* tho -pleatty of the eeut•o•
of theae requirements depomda, upoo the values of te perturblno Oor~ea

arnd mozents acting on th 'arLs of th* rucket d4.rio4 t~e searation
* phase. Misa when developing a 'j'coA-an mi u stasgv joparat ion flytoz

va*'iouc &seiturts ore. apcfied ~%o&lead to a reductio~n to h.~~ por'.

path of &. rooot. th* vaiwv- dy"t p1*U~* WW tt 4*41le of

attack az, I t X *ped In tne v oatt, hs-.-.. ,, In i tur,. thit.
at' a rattcnhl sepseration q;1~ m i- p. e-a-Mt-I . t i. the ,• -

lit thil a#pafktton P11=0 2944 trw*rdl tboc ajýO1l- lm' e 11%ý

ttio WA00 or til VOtS(O tvavcot -il'~ ~et ~

Sin t.h1 ti l srnanottten Uw Itn fi'ul...•• i ,. c " 1.' •.c' ? t- . ,. ft.hat
of -ut g these ,sse I, , ,.... .... .......... . .
o~4er tti atem~e the r*;Sutio.' it, ra.tig 44c tb gravittoa I~tQ i pso
Ir. rddkoet SpO04 In the phztim Aso i t t *.Ouro that.
the tepaaratlon procese *t-turn Wsit-h ~34-d~~
Ing a the ti-doof rt$Ma to 1"q.'*40 --e

sotaratinlt the rocket parU, ufl- &Ii*'rig -a 4r
tufting 11oicts W%4 sa nte. I oi*~ n rww eww-
Slats In increasitts the we-~to 0* ~~t

separatio.i tystelt.



Finally, a number or specification* are imposed on the design of

separation equipment. Among these it Is possible to note compactness

and small overall dimensions of separation devices, safety and simpli-
city in operation and others.

In the ligt of th.% above omimlneC speoific.t1ons let u5 note tbe

brsle rirs and coans o cold and hot ateparatio* systems. Thse nyste'1

2an be made 1rin d-ltretr+t vriarits.

Above* ?tc. 3.A glvevs c,.na t the posstbl-;e valr•i•a of crd -

$ rati=o n t whtch Vrt ~ra"Ins the sopanttnjg part soillI-pru-pfjllant

rettrov:Owta C are uatl

The 04-31e aftviat&gea or~ the Cola Separation iyiVtttr'4 ale n't tx'.I 4nadcr the ezttcat of =&11l forcea with jC2 w rtutit mo.e nt

rtUt'ninetl :i.9 at~tact t the laipatatto -nolio devbe (rt o d-%oivie'an

-to aofto n or $ltrng Iw~ o*oor trtot Itn

*4ltoaitltfl,- %týTO, t~l~ ~e not 'A 'd :rrntt~C~0Sp

gt4evt; tt#IeC~tt of ttv 'YrAtl. Sd -0h# vo7r-~ Ad o

(tuflbo*; ,ha , t n rt tltty atst-ho ot th Cino orthe
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1) the basic.selection of the scheme and the mearis for stage

separation;

2) the selection of the basic parameters (characteristics) of

the separation system;

3) the selection of the sequence of moments of the transmission

of instructions by the. control system for executing the separation

operations;

-4) ensuring the reliability of the separation process, the sta-

bility and the controllability of the subsequent stage.

The basic method for solving the enumerated problems is the inves-

tigation of the relative motion of the separating parts of the rocket.

In composing the equations of motion of the parts of a rocket for

investigating the separation process it is necessary to con~ider the

following forces and moments which are acting on the separating parts

of the rocket: gravity; the thrust force of the engine systems; the

thrust forces of retro engines or nozzles; the forces and moments cre-

ated by the control engines; aerodynamic forces and moments; the forces

and moments from the gas-dynamic effect of the engine Jet of the sub-

sequent stage on the separating part (during hot stage separation);-

the perturbing forces and moments.

The perturbing forces and moments, significently affecting the

process of stage separation, are due to the following factors:

- wind effect;

- the errors made in the me.nufacture and the assembly of the ro-

cket and the engine system;

- the eccentricity of the center of mass of the rocket caused by

the design peculiarties of the rocket layout;
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-the: misalignment of the line of engine thrust effect caused by

the elastic defolmation of the engine system mounting;

the thrust differential'of the englnes (or the. combustion 'c!am-

"bers of-on•"-engine)..on the steady-state and transitional operation

-- the thrust differential of the retro .engines or.nozzles;

- the- aftereffect [thrust trailoff] impulse of the engines.

The calculating formulas for determining the enumerated perturbing

..forces and moments are given in r22. -For the sake of simplifying the

investigation of the separation process. the effect of the liquid pro-

pellant in the tanks, the flexural and longitudinal oscillations of

the separating parts of a rocket, the variation with time of the mass,

inertial moments and the positions of the centers of mass ofrthe'separ-

, - ating parts are'usually. disregarded.

In carderto evaluate the parameters of the relative motion of. the

separating parts of a rocket, it is sufficient, as a. rule, to limit

oneself to an examination of the longitudinal and lateral motion of

the rocket.

"For describing the motion of the separating parts of a rocket

after the breaking of the connections between them it is convenient

to use an inertial coordinate system Oxyz, moving with a velocity,

equal to the velocity of the rocket at moment of the beginning of the

"separation process (t = 0). At moment of time t a 0 the origin of the

coordinate system 0 coincides with the center of mass of the entire

missile; axis Ox coincides with the longitudinal axis of the rocket;

axis Oy is directed upward and forms a vertical plane with axis Ox.

Let uj designate by 0xlyl1 and 0 2 x 2 y 2 the coordinate systems, con-

- nected with the separating part and the subsequent stage respectively

and formed by the standard rules.

The actual form of the equations of motion of the separating parts
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of a rocket depends upon the setup of the separation system and the
flight conditions at the time of separation. Thus let us show the
basic peculiarities of investigating a separation process as illustra-
ted by dynamic separation schemes formed by taking the above given
assumptions into account. Furthermore, let us assume that at the ini-
tial moment of separation the angles of attack and the angular velocity
of the rocket are equal to zero. The remaining assumptions will be
apparent from the systems of forces acting on the separating parts,
and the explanations for the equations of motion,

During cold stage separation let us assume that the retro-solid-
propellant rocket engines begin instantaneously operating in a steady-
state mode and the reactions at the site of the Joining of the stages
from the moment of the starting of the solid-propellant rocket engines
are equal to zero. Then the equations of motion of the separating
parts of the rocket in the plane of pitch taking into account all that

"-was stated above for the systems of acting forces shown in Figs. 3.4
and 3.6, have the form:

For the Separating Part

mrx 1 =(-iP - x, + x*,) - (Y1 + Yet) I -a, siln B
_ _ ____ _(3.3a)

For the Subsequent Stage

m 2 --(P22 - Xq) -(y + Y,2) 02 O7 sin 0;

m j;,=(Ps2 -X-)o#2+(Y2 -Ye 2)+ 2T2hs-G Cos D
k Jz2•;=A%-2 -M.,s+M-,; (3.3b)

Here 0 - the angle of pitch of the rocket relative to the local
horizon at the initial moment of separation; 8,,D2 - the angles of
deflection of the longitudinal axes of the separating part (1) and the
subsequent stage (2) from axis Ox of the inertial coordinate system;
P2 (t) - the thrust of the engine system of the subsequent stage;
P7 ,(t)- the thrust of the retro engine; T2 - the thrust of the
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subsequent stage controlling engine; X01 , Y9, Y. 2, Af,,,, Ma,, - the per-
turbing forces and moments acting on the separating parts of the rocket;
Me, and M, 2 - aerodynamic moments; Myz,= 2T2 (X12 -X- 3 2 )&#, - control-`
ling moment.

PrI

, Fig. 3.6. Diagram of forces in an investigation of
cold stage separation.

As a result of solving of the system of equations of (3.3) with
the aid of a digital computer it is possible to calculate the relative
motion of the separating parts of the rocket, which makes it possible
to select the basic parameters of the separation system and to ensure
the necessary reliability of the separation process.

Usually the problem of determining retro impulse for a given safe
distance between the parts of a rocket at the end of separation is
solved: XOTH( 4)Xt(tH)X2(tX)-

At a given distance XOTH(tK) the necessary magn'Ltude of breaking
impulse It depends on the duration of separation t.. The greater is
tK, the smaller is IT and the weight of the retro solid-propellant
rocket engines and therefore the smaller is the reduction in range
due to the installation of the solid-propellant rocket engines. On
the other hand, with an increase in tH the losses in range due to gra-
vitation increase. Thus such a value of IT is selected, at which the
reduction in range is the smallest.
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In order to check the reliability of separation, we usually plot

the trajectory of the relative motion of the most dangerous point of

the plane of joining of the objects and on the basis of the obtained

results we draw a conclusion about the possibility of the separation

of the objects without colliding.

An investigation of the separation process also specifies an

evaluation of the stability and the controllability of the subsequent

stage during the separation phase, for whichthe maximum angles of

deflection of the 02mai and of the controlling engines 6 b,,a, are

determined.

For obtaining the most complete and the most reliable conclusions

about the ,eliability of separation and about the stability and the

controllability of the subsequent stage an investigation of the rela-

tive n:Ation of the parts of the rocket must be carried out taking into

account the statistical characteristics of the perturbations.

For hot separation the effect of the gas-dynamic forces on the

separating parts of a rocket is very characteristic. The gas-dynamic

forces caused by the effect of the gas jet of the engine of the sub-

sequent stage on the separating part, is conveniently examined as the

geometric sum of the axial and lateral components (Fig. 3.7).

the hot stage separation.
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Axial gas-dynamic force Xr, is caused by the pressure of the en-

gine jet on the separating part. The lateral displacement and the

turning of the part being separating relative to the subsequent stage,

and also the perturbations of the gas jet itself as a result of the

deflection of the control elements give rise to the eccentricity e1 of

the axial force relative to the ngitudinal axis of the separating

( part. These phenomena cause the transverse gas-dynamic force Yri.

The effect of the reflected gas jet on the subsequent stage can

be described by axial force Xr2 with eccentricity e 2 .

A characteristic feature of gas-dynamic forces is their compara-

tively great value. Thus, axial force Xri in the initial moments of

separation is comparable with the thrust force of the engine system

of the subsequent stage P2* This fact is also used for the rapid

separation of stages. However the moment of axial gas-dynamic force

creates the conditions for the acute turning (tumbling) of the separ-

ating part and of its collision with the engines of the subsequent
•i s t age,

With a given rocket design the magnitudes of the gas-dynamic

forces and the lines of their action (Xrl, Yri, Xr2, el, e2) are deter-

mined by the relative position of the separating parts of the rocket,

i.e., by the parameters XoIKjX2--Xj, yOH-y2"- -I and OOT-•O--'j. It

is very difficult to determine these dependences by calculation. Usu-

ally they are determined by experiments or they are obtained by analogy

with existing rockets.

The equations of motion of rocket parts after the breaking of con-

nections in hot separation for the case examined by us (see Figs. 3.5

and 3.7) take the form:

For the Separating Part

rn ,x,, =(I', -',- X,)- , + Y,1 + Yr,,) -0 sin 80
.•, + .•t (+ Y+ + YJ)_0 Cos 00 (3. 4 a)

Af3 & + is?,c, + Yri (xtt Xdr.)

137



For the Subsequent Stage

. (P. - A'X- .,'r2) -(y2 + Y,2 + Y, 2)A -- O. sin B
in = -(P -- \�A'-i-X,. ,�+)'-Y"'" 2 +Y72 )-G 2cos &g (3. 4b)

Jis= A1,s + M.,, + MAa, - X,2e2;

It is assumed here that the controlling moment of the subsequent

stage z, is the moment of force Yy2 ' created by the deflection of

the gas Jets of the main engines, for example, by the blowing of gen-
erator gas into the supersonic part of the engine nozzle. This force

and moment depend on the angle 64, of deflection of a certain control
element. The last equation of system (3.4b) is the equation of the

corresponding channel of the control system of the subsequent stage.

When selecting the basic parameters of a hot separation system,
besides evaluating the reliability of the separation of the rocket

parts, and also the stability and the controllability of the subsequent
stage, the sequence of the moments of transmission of instructions is

determined. Stage separation begins, when the acceleration of the
subsequent stage exceeds the acceleration of the separating part, i.e.,

when XOTR 2 V2-- X[>O. From this condition the moment of the trans-
mission of the command for connection breaking is determined. With

the given transitional engine characteristics Pi(t) and P2 (t) the

beginning of stage separation depends on the selection of the moment
of the starting of the engine of the subsequent stage with respect to

the moment of the shutdown of the engine of the separating part. A

too early beginning of stage separation leads to a reduction 4.A range
due to the unused thrust impulse of the separating part, and a too
late beginning can make the starting of the engine of the subsequent
stage difficult due to the absence of longitudinal acceleration. Fin-
ally the time sequence of the moments of transmission of instructions
is established on the basis of the results of investigations of the
reliability of separation, of the stability and controllability of
the subsequent stage and of the reduction in range.
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Nose Section Separation

The phase of motion of a rocket from the moment of the transmis-

sion of the main instruction for the shutdown of the engines of the

subsequent stage of a rocket to the departure of the nose section a

sufficient distance from the rocket body we will call the nose section

of [rH = NS] separation phase.

Separation of the NS can be accomplished:

- by the braking of the body of the separating stage with speclal
braking elements (solid-propellant rocket engines$ retro-nozzles oper•-

ating on pressurized gases in the tanks of the separating stage);

by repelling the NS and the body of the separating part with

thrusters (spring, pneumatic and pyrotechnic);

- by accelerating the NS with special engines• Specifications

are imposed on separation systems to ensure; .

- minimum values of perturbations on the velocity of the N3,

affecting the dispersion of its points of impact;

e- ufficiently umall valuou of angular velocity of the HS, cauOing

the appearance of large angles or attack upon reentry into the atz*3-

phere;

- reliable separation of the NS,

The realization of these pecitfications en.ures stall d±operalon

or the pointn of impact or the US and normal oppration of All the *ys-

tems of the US equipment.

In the dynamic design or a NS separatlon system the follovIng

problemw are usually solved:

u- election or the operation mode ahd the method of shutting dovn

the engine system at the end or the powered-flight phaoe;so



- selection of the scheme and means of separation;

- selection of the basic parameters of the separation system;

- selection of the sequence of instructions for the separation

phase;

- ensuring the reliability of the separation process (the absence
of collisions of the NS with the rocket body).

The energy characteristics of the separation equipment are se-

lected so as to ensure reliable breaking of the various connections
between the NS and the rocket body taking aftereffect thrust into ac-

count and to impart to the separating parts of the rocket a specific
relative velocity, excluding the possibility of the overtaking of the

_N3 by the rocket body (in the case of the incomplete compensation for

aftereffeot impulse).

Por reducing the dispersion of the points of impact of the NS due
to variance In the a•ftereffect (thrust tralloff] impulse two-stage en-

gine shutdown can be employed. After the preliminary instruction for
engine shutdown the feed of propellant is reduced and thrust force Ls
accordingly reduced to a certain intermediate value, and only after the

tain Instruction is the engine shutdown (Pig. 3.8a). This measure

leads to a noticeable reduction In the aftereffect impulse and there-
fore, to 3 raductlon In the magnitude or its variance and also to a

reduction In the effect of the tize errors 10 carrying out the main
Instruction.

.besides tvo-stage engine shutdown, other measures for reducing t

the variance in aftereffect Impulse are employed. For instance, Vernier
engines aro mounted on a rocket, I.e., nigines with small thrust which

create comparatively seall atcelerations of the order of 0.5g [12).
A6 such engines, evidently, It Is possible to use the controlling

entineo.
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a) b)

Fig. 3.8. Possible schemes of nose section separation: a)
throttling of the rocket engine and separation of the NS
by a thruster: 1 - preliminary instruction; 2 - main in-
struction; 3 - breaking of the connections between the NS
and the rocket body and repelling of the NS by the thruster;
b) using engines with low thrust for reducing the after-
effect impulse and braking the rocket body with solid-
propellant rocket engines: 1 - preliminary instruction
for shutting down tne engine system (cutting off the main
engine); 2 - main instruction for shutting down the engine
system (cutting off the controlling engine, breaking the
connections between the NS and the rocket body, starting
the retro-solid-propellant rocket engines).

To eliminate the effect of aftereffect impulse on the separation

of the NS from the rocket body it is expedient simultaneously with the

carrying out of the main instruction to activate the engines braking

the rocket body (see Fig. 3.8b).

For investigating the process of the separation of the NS from the

rocket body the same dynamic scheme in principle is used, as in inves-

tigating the proceos of stage separation by braking (see Fig. 3.6 and

the equations of 3.3). Of course, the actual form of the equations of

motion of the NS and the rocket body depends on the design features nf

the separation equipment and the conditions of the problem in question.

By solving more or the less complex equations of motion of the NS and

the rocket body, the reliability of separation is evaluated and the

perturbations of the velocity and angluar velocity of rotation acquires

after the termination of the separation process as a result of the ef-.

feat of various perturbations, are determined.

For a NS with a disoriented reentry into the atmosphere the initial

angular velocity has as significant effect on the angle attack of NB
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upon its reentry into the atmosphere and thus, on maximum transverse

accelerations, Thus in designing a separation system for such NS con-

siderable attention is given to limiting those components of the angular

velocity of the NS along the body axes which ldad to the appearance of

large angles of attacks of the NS during reentry intq the atmosphere.

The initial angular velocity of a NS also effects the possibility of

NS detection and selection by the antimissile system of the enemy.

For a NS with oriented reentry into the atmosphere the initial

angular velocity determines the weight of the working medium,,necessary

for damping the angular velocity of the NS, and thus decreased to a

greater or lesser extent the maximum firing range.

When using the rotation of a NS around the longitudinal axis for

orientating the NS in space the angular velocities of pitch and yaw

reduce orientation accuracy.

The angular velocity which is received by a NS after sepaiation

from a rocket body, is due, in the first place, to the errors In the

angular stabilization of the rocket (with respect to angular velocity)

in the moment of the beginning 9ff separation qnd, in the second place,

to the perturbations acting on the NS during separation.

The composition of the perturbing factors is ascertained taking

the actual structural layouts of the NS and the separation system into

account. As an example of possible perturbing factors it is possible

to indicate the variance in the forces of the separation mechanisms,

eccentric application of the force of a thruster relative to the cen-

ter of mass of the NS, the thrust differential in the separation dn-

gines, the variance in the explosive bo;t impulses, the ,asymmetry of

the plug-type connector setup, etc.

For an approximate evaluation of angular Velocities instead of

solving the equations of motion of the NS in the separation phase it

Is possible to use the formula

(3.5)

1142

J I



!I
where. and JI - angular velocity and the inertial moment of the NS

relative to the i-thlaxis; Mft -"he perturbing moment relative to

the i-th axis due to the J-th perturbing factor.

The obtained statistical characteristics of the components of the

angular ;velocity df the NS along boay axes w•l Wyl Wz are used for

determining the angles of attack during disoriented reentry of the NS

into the atmosphere, and also for evaluating the consumption of the

working medium for dampIng the angular velocity of NS with oriented

reentry into the atmosphere.

. I .

II
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CHAPTER IV

THE BALLISTICS OF AN UNGUIDED NOSE SECTION

The flight path of a nose section ErN = NS] from the moment of

its separation from the body of the last stage until its impact onto

the surface of the earth can be arbitrarily divided into two phases:

nonatmospheric and atmospheric. The height of the arbitrary limit

of the atmosphere depends on the problem being solved, the charac-

teristics of the NS, the flight range, etc. In the nonatmospheric

flight phase the NS moves practically only under the effect of

gravity. In the atmospheric phase, besides gravity, aerodynamic

forces are also acting on the NS.

The ballistics of NS has been called upon to solve the following

basic problems:

1) determining the loads acting on a NS in the atmosphere, which

is necessary for calculatirg the strength of a NS;

2) determining the dispersion of the impact points of a KS due

to perturbations in the atmospheric phase;

3) determining the parameters of '*'e motion of a NS at character-

istic points in the trajectory for the problem being solved.

The loads on a NS, the parameters of its motion and the dispereion

of the impact points mainly depend on the conditions of the reentry

of the center of mass of the NS into the atmosphere (the velocity and

the angle of inclination of the velccity vectur to the loi-al hirfzon),
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the magnitude of the maximum angle of attack at this moment, the

characteristics of the NS (aerodynamic, weight, geometric and

centering. [c.gj), the atmospheric parameters and the random variances

in the enumerated parameters and characteristics. The Investigation

of these dependen:.es makes it possible to formulate specifications for

the conditions of reentry into the atmosphere and for the character-

istics of a, NS when developing rockets.

The mathematical models of motion and the fundamental element?

of these modeli used In NS ballistics taking the flight conditionr.

and the character'istics of the problems being solved into account

constitute the main content of this chapter. Common to Ill the r-adels

of NS motton being examined Is the simplifying assumpt1r4i, that a

NlS Is an aerodynamically axisymmetric body, the ellipsoid of inert'

of whish is an ellipsoid of revolution.

4.1. THE MOTION OF A NOSE SECTION IN THE NOR-ATMOSPHERIC
PHASE OF ITS TRAJECTORY

The accepted division of the flight path of a 1S into ,t

3vctions Is arbitrary because in actuality aerodynamic for

acting in. the non-atmospheric phase. However in this p I

magnitude is negligibly small in comparison with g.

dlsregarde' are the gravitational moments, trne at

the celcstial 'hodies, light prenzure, electro--.

in view of ,heir !nzi•_nifcant effect or. -M

re:.ult o" ,t' absence of forces depenae ':"V

rotary motion of a NS, in the nun.-at . *

the not.1.n of the center of m1,4% and Its rotetlon aroo4 th~e

center of mass are !nv3stlg ed eqratr.t-ly.

The Motion of the C' .ts f Nass of a Nose Section

,.,)wn , t-•. :.tain factors affec.Ing the agreement of the

,m,' r:rrr . with the actual, are the refinement of the con-

r•.,i ,yo er" the calculatlonal accuracy of the NS trajectory.

T1, pinpoint accuracy in calculating the tra.ýectory of a NS fov' de-

termining the aiinrg data is absolutely necessary. 3uch accuracy Is
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satisfied by the system of equations of (2.97), (2.98), (2.100),

(2.108) which for the motion of the center of mass of a NS, if angle V

is reckoned clockwise, taKes the form:

S• "- -~- g, sin O - g=(cos %, Cos W Cos 9 + sin Tu stnEI);

cos Cos ?,2Cos 7 sin O-+V -- V

+ sin t, cos C-)+- cos -+-2w cos ?, sin T;
r

• •. g.•mCOS ?a Sin it

+ p. -tg sin cOs -- (4.1)
V Cos 0 r

- 2%3 ( cos % Cos WV tg 0- sin 4p.);

l- cos cos e;
r

V sin Vcos 0
r COSs•u

"r- V sin 8.

The accuracy of the calculations of the trajectory of a NS by

these equations is determined only by the accuracy, with which the

components forces of gravity gr and g are known.

Another problem of ballistics is determining the parameters of

t'he motion of the center of mass of a NS during its reentry into the

atmosphere. In solving this problem the non-centrality of the

terrestrial gravitational field and the non-sphericity of the

terrestrial surface can be disregarded. Thus, it is convenient in-

stead of integrating the equations of (4.1) to make use of the known

results of elliptical theory being used for the absolute motion of a
NS (i.e., motion relative to a certain inertial coordinate system),
and then to go to motion relative to the earth, having calculated the
r•tation of the earth by introducing appropriate corrections into the
values of velocity V, slope angle of trajectory 0, azimuth 'I and
longitude X. For this let us examine the motion of a NS relative to

an "absolute" coord.n~te system O3 xay z , not participating in the
diurnal rotation of the ear.th. Let us place the origin of the
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coordinates 03 at the center of the earth; let us direct axis 03xa

along the axis of rotation of the earth toward the north pole; let

us place axis 0 in the meridianal plane, passing through the 4

launch point at the moment of launch. We will consider the terrestrial

gravitational field central. Let us designate the parameters of motion

relative to the absolute coordinate system by Va, 0a, 'a' " . Then

the system of equations of (4.1) takes the form.

S,.---- g sin 19,;

a K'6±-, cos a.;rI
tg y. sin V. cos Q.-

r (4.2)

=Va
a aSICos cos o,;

a N,
, ).. =V, sin V', cos_, 0,

Sr Cos (pm

-V. sin 0.,

where it is possible to take: g = 9.81 (R/r) m/s acceleration

due to gravity; R = 6 371 210 m - the mean radius of the earth.

JI

Using Fig. 4.1, let us determine the connections between the

parameters of absolute (V 0a T ) and relative (V, O, 1) motion.

The horizontal component of velocity V cos 0 is geometrically added

to linear velocity w 3r cos 4) due to the rotation of the earth. Thus,

the modulus of the horizontal component of the absolute velocity of

the center of mass of a NS is equal to

V&.roplj (V Cos ) Cos WY)+(V Cos O sin T +wr cos ,)2.

Since the vertical component of velocity V sin 0 does not change

due to the rotation of the earth, the absolute velocity of the center

of mass is equal co

:147

'~4W~' ~ ___________ __________________ ___________.___



The angle of slope of vector Va to the local horizon is equal to

O.-arcsin v.in9
v " (4. 4 )

Angle 'Y in an absolute coordinate system is determined froma
equations:

i ~V Cosq 0 Cos V•
SCOS 1a = .... . .. , ', I

(V (Vcos Cos W)2 + (VcosOsinV + w•rcos u)t

V cos e sin V + w3r cos03 j (4.5)

(VcosecosW)2 +(Vcos sin V + w3 rcosA) 2

V
V, _,

Xlea I

Fig. 4.1. For determining
@ Y:0P the parameters of absolute

motion of the center of
mass of a nose section.

T Vzr

Since because of the rotation of the earth the point of inter-

section of radius-vector r with the surface of the earth is displaced

along the parallel,

•u.' = ."( 4.6 )

Let us determine the longitude of the center of mass of a NS in

an absolute coordinate system by formula

S~(4.7)

If in the first two equations of system (4.2) we replace co-

ordinates V. and 0a with the aid of kinematic relationships:

=V. sin 0,;
ry=V Cos ,,
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where K - the angle included between radius-vector r and radius-
vector rH at the beginning of the unpowered-flight phase, then after

some transformations we will obtain certain 'equations of the

elliptical theory:

r rj2= -g;
di )-O. (4.8)

As a result of integrating the equations of (4.8) we obtain thfc :

equation of the flight path in the form of an equation of a conical
section

? o a(4.9)

where K% - the angle corresponding to the peak of the trajectory;

p=recos2 04 - a parameter of the cross section

e=11•I-- (2-e)cOS2Oa,.- the eccentricity of the cross section:

fm
For a NS e < 1, i.e., the trajectory of a NS is elliptical.

Knowing the parameters of the motion of the center of mass of
a NS relative to the earth at the beginning of the unpowered-flight
phase

tat Vuf ON, Tug, ru,?., X., '
(4.10)

let us now determine the parameters of motion oI' the center of mass

of a NS at the moment of reentry into the atmosphere, i.e., at the
height of the arbitrary limit of the atmosphere h0 .

From the formulas of (4.3), (4.4), (4.5) and (4.7) let us find

the parameters of the absolute motion of the center of mass of a NS
at the beginning oC the unpowered-flight phase: VY S.H' YaH'

x Then using the formulav of the elliptical theory let usa..H*
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determine the parameters of motion of a NS at altitude h 0 =r 0 -R:

VSO {Vv. 2fM(-L .,; (4.11)

SV-ro /x
Oa= arccos (VuacSa)(4.12)

Xo 2 arctg [{sro tg 0..,, 1/(Srortg 0,.a)2+ (4.13)

+ 2ro(l + tg2e 8..)--(r.+rr) aj(r, -ro)s 8 }:{2ro(I -Ltg2 Oa..)

- (rt+t o)s ;

2 (t .

-oarcsin .•. +--
cos e0.nI/ F2- jf) ex

+aresin Is(14.114)
e e2

After this from spherical triangle ABC (Fig. 4.2) let us obtain
the spherical coordinates of a NS in absolute motion at the moment of

reentry into the atmosphere.

U Warcsl (sin " cos ° cos u'" sin xo Cos •V,,)' (14.1.51

Longitude XaO varying within the limits of from 00 to 3600, is

determined by formulas:
sin (X,,o-X,.,) - In 1.o a" VI,.N

Cos 0 (4.16)

COS ?Ift.l jit•ITitO

Azimuth •a which also varies within the limits of from 00 to

3600 is determined by formulas:

sin (180 - -ao) cos fa., Ia
cos Vito

cos(8 0 ) -- 1= sin W..0 sin (,- X4..) X (4.17)X sin f,...-cos W.., €os(X~O-k.,).
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Fig. 4.2. For determining
-. _the coordinates (during

go ~ absolute motion) of theS
center of mass of a nose

' section at the moment of
reentry into the atmosphere.

Finally, using formulas, analogous to the formulas of (4.3),
(4.4), (4.5), and (4.7), let us determine the parameters V0 , Go, T

of the motion of the center of mass of a NS relative to the rotating

earth:

Vo OV(V.o Cos CO cos )2+ (V80 cos 8.o sin W.0- S (4.18)

Y-w- r c oFsY0)2+ osn"o i¢ n Oo(.
o- (4.19)

"oVo sin .00
80= ar"sV a (4.20)

Angle y, is determined by the formulas

cos.V0= V30 Ccos oa0 coa Wo

V(V70 ccs 0.o Cos V;o)2 + (Vo Cos E0o sin '0  -a 41.3Cr c ,o)2 ( ).I.• , VO €°• eO sn •'o - •$r€°sT~o(4.21)
si c0 ~ • .V. . Cos . ' .... . . .. - )3. COB..uos

'V(VVo CoS ')O cos WVo)2+ (Vo0 cos eOa Sin Wo- -3a COB .o)2

The Notion of a Nose Section Around Its Center of Mass

The motion of a NS around its center of mass during the non-

atmospheric phase of the trajectory is investigated for the purpose
of deter-mining the parameters of this motion during reentry into the

atmosphere.
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Fig. 4.3. The parameters of motion of a nose section
around its center of mass during the non-atmospheric
phase of the trajectory.

In connection with the fact that NS usually have an axisymmetric

shape, their main inertial moments J and J differ insignificantly.yl z
Thus in analyzing the motions of a NS around its center of mass both

in the non-atmospheric and in the atmospheric phase of the trajectory

it is assumed that the inertial moments J and J are equal to each

other.

We will obtain the equations of motion of a NS around its center

of mass in the non-atmospheric phase of the trajectory, having set
the moments of force equal to zero and J in the dynamic Euler

equations (2.100):

-xlp ,, --=--0; .

Jt,•u -- (J--/••,p,,-=0;(4. 22 )

This case of' motion of a rigid boy around its .ýanter of mass.
called regular, precession, is well studied In classical mechanics [4].
The lorgitudlinal axis of a NS in flight In the non-atmospheric phase
ofr the trajectory movez uniformly along the surrace of* a right

* 1S2
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circular cone (cone of pre'cession) whose axis coincides with the vector

of angular momentum K preserving constant direction in space (Fig. 4.3).

The direction of a vector of angular momentum of a NS, the half-angle

of a cone of precession and the angular velocity of motion of the

longitudinal axis along the surface of a cone of precession (the

* . angular velocity of precession) are determined by the initial con-

* ditions corresponding to the moment of separation of the NS from a

rocket body: by the orientation of the longitudinal axis and the

vector of angular velocity.

Let us introduce the following designations (see Fig. 4.3):

- the angle included between the vectors of angular momentum

g and of velocity V;

I- the half-anele oC a cone of' pwreozion;

2

- the angle it ludvd oetwoeon th planes of angles oc and K

,- the angrI ltncludfe.d hwefn tile planes of anwwles K 1 0 and ;
3 2

4- 'the angle tr1nudAd btween tht pla=n of angle K 2 and the

plane of firing.

The moduluk of* aw:uvr =,,Am 14 deturmined by the value* of

the proJeetiond of alir of 1:v on the axit oC a bodiy coordinate

3ydtem:

(~4.23)

Let us r tdeter•n•d '.h, orluntaton -of' angular momentum with ,enpect

to plane Oxy i- ,oeet41mig nn the atoimption that at the moment of

separation of -1 13 7rcm n . thiz h lane i. parallel to the plane

ofirng:

W2 2

t9t
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The components of angular momentum Kxl and K Ks in the non-
atmospheric phase of the trajectory do not vary and are equal to:

KzI -JXoi; (4.25)

2.J I W + zI- (4.26)

The parameters of motion of a NS around its center of mass at the
moment of reentry into the atmosphere (h = h 0 ) we will determine in

the following sequence.

1. Angles KIH and K3 (angle BAD) we will obtain from spherical

triangles ABC and ABD:

*I=-- arccos (cos %2 COS a.- sin 22 sin u. cos %.); C 4.27)

n sin(04 +Ae)s nsin ; 1
sin %( 

.

cos cos (a + AO) -COS locos (4.28O)

where 
S11 %So si%

%==arccos -K- = const.
K

2. Angle Ki0 at the moment of reentry into the atmosphere we

will obtain from spherical triangle ABD:

10= arccos[cos xcos (a+ )-- I (4.29)
- sin X2 sin (a.+ AO)cos %4.1.

where

(4.30)

X0 the angular flight range of a N.S.

Then

got-. K COS %to. (4.31)

3. Angle K30 we will obtain proceeding from the fact that the

longitudinal axis of a NS Ox1 moves along a cone of precession with

constant angular velocity
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K
( 4.32)

Then

,V %3v (to-- (4.33)

where to - tH - the flight time of a NS in the non-atmospheric phase

of its trajectory, determined by formula (11.14).

Thus, we obtained the values of angles K10' K2 , K30 at altitude

of the reentry into the atmosphere.

Knowing these angles, it is possible to determine from spherical

triangle ABC (Fig. 4.4) the initial angle of attack

ao=arccos (Cos %locos %2 +sin 1 o sln% cos %xl). (4.34)

X.. ~ Fig. 14.41. For determining
the angle of attack of a NS
at the moment of reentry

, l into the atmosphere.

Disregarding angular velocity K1 as compared with K3, we obtain

that angular velocity a0 is equal to

In%0Sin 1 IRi9ao SI 00 .200(14.35)

Thus, by assigning the initial conditions of the motion of the

center of mass: VH, eH, ,H' rN' *U.' X and the motions around the

center of mass ai, , , v ,W • Wl H y ' at the moment of the
H'UH V9 X1 H -l 1 1 i

beginning of the unpowered-phase of the trajectory, it is possible

by the obtained formulas to determine initial conditions a. and a0
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for solving the equation of motion of a NS at~ound its center of mass I

in the atmospheric phase of the trajectory.

As the calculations by formula (4. 3 4) show, the ahgle of attack

of a NS upon reentry into the atmosphere in the general case can

take any values depending on the relationship between the components

of angular velocity of a NS at the moment of its separation from the '
last stage of a rocket.

4.2. THE MOTION OF A NOSE SECTION IN THE ATMOSPHERIC
PHASE OF THE TRAJECTORY

General Characteristics of the Motion of a NS in the
Atmosphere I

The atmospheric phase of the trajectory begins at the arbitrary

limit of the atmosphere, whose altitude depends ubon the problen

being solved, the characteristics of the NS, the flight range, etc.

Thus, for instance, the beginning of the noticeable effect of the

atmosphere on the parameters of motion of a NS during long-range

firing corresponds to heights of about 80-100 km. In connection with

this an altitude, equal to 80 km [10], [26], is usually taken as-the

arbitrary boundary.

Initially as a result of the effect of comparAtively small (in

magnitude) aerodynamic moments the precessional motion is disturbed

and the statically stable NS begins to carry out three-dimensional

oscillations around its center of mass. As a result of the rather

rapid increase in the restoring and damping aerodynamic moments the am-:

plitude of the oscillations noticeably decreases with the decrease

in altitude. Tt iz conditiornnally possible to .consider. that with an

amplitude of the oscillations of the angle of attack, smaller than
1-O2o, a NS is 3tabilized, i.e., its axis is oriented along the

velocity vector of t'light to within 10-2". The altitude of the be-

ginning cf the itabilized flight of a NS depepns upon its chakactor-

Istics znd the conditions: of' its reentry into the atmosphere and can

be found within varlous liml.te.



• 'I
I °

The conditions of motion of th'e center of mass of a NS in the

atmosphere substantially differ from the conditions of the motion of
a rpcket in the powered-flight phase. Thus,.in the dense layers of the

atmosphere the dynamic head and the longitudinal acting on a NS differ

by tens of times, the transverse acceleration - by hundreds of times.

The flight of a NS is also characterized by considerable heating of

its surface.

For calculating the strength of a NS it is necessary to know the

maximum loads acting on a NS in flight. The basic data for determining
thdse loads are the peak values of accelerations (axial and transverse),

the amplitude of the angle of1 attack and the dynamic pressure. These

characteristic's with assigned design parameters of a NS are determined
by the conditions of the reentry of the center of mass of a NS into
the dense layers of the atmosphere, and the latter - by the shape of

the A4light path of the rocket in the powered-flight phase, by the

limits of the firing range and by the geophysical conditions of rocket

launch. i

Ii
With a decrease in the ahgle of attack and in the velocity of

reentry of t-e center of mass into the atmosphere the longitudinal
and transverse loads acting on the NS decrease. For the purpose of

limiting the loads acting on a NS special measures are taken in de-

signing a NS for reducing the maximum angles of attack of a NS at the

moment of reentry into the atmosphere. The problem of ballistics,

, apart from preparing data for calculating strength, consists in

evaluating the effect df the components cf the angular velocity of a
9S at the moment of separation firom a rocket on the magnitude of the
angle of attack upon reentry into the atmcsphere and in preparing

recommendations for eliminating adverse combinations of these

components.

In accordqnce with the indicated proolems of the ballistics of

a NA methods of calculating the trajectories of NS in the atmosphere,

determining the limiting.flight modes employed in evaluating the

strength of a ,NS, and calculating the deflection of a NS in the

atmospheric phase-are examined be'low.

17



Initial Equations of Motion arw Their Simplification

During the motier. " , t- h axmospheric pha•! cf the tra-

jectory the flight rance a,i(, ',;ratlcn are comparatively small, in

connection with which 'he -,fi m n be *Žxan*An-d as a ncn-rotating

sphere with a central gpavit :r-i eld.

Due to the heat In,- of ' A.fce of a NS lv:ýing ii in the

atmosphere ablation of th,; heat id ... r by the- oncoming fu

of air takes place, as a I•:I- of which tne mass, shape and dimen-

sions of the NS and thu:, the inertial moments, the position of the

center of mass and the aerodynamic characteristics of the NS vary

during the course of flight. In investigating ':he motion of a NS

let us consider that the reactive forces and moments due to the

ablation of the heatshleld coating are negligibly small.

The equations of motion of (2.97), (2.98), (2.99) with respect

to the motion of the center of mass of a NS in the atriosphere, taking

into. account the above accepted assumptions, are converted to the

form:
, V ~~-- -q g sin 0;

.-qS sinp t% CosO+ Cos
mV V r

c.P€qS COc, p +.Ytgsin 7COS 0;
mV cos r

=-cVOs1cos; (4.36)

r
V sinv'cosO
r Cos Ti

I h _--_I/ sin O

L= iR cos ,+XR sinfcosv%;

P R- ssin + *±Rcoss ICos 9.,

where L - the d•:3tani;e covered by the NS on the arc of the great

circle In the plano of" ,'irs; Y - the azimuth of the velocity vector

of..... •$¾ ,tLVL'; •' the azimuth of firing; z -- the



deflect'on e f the' zonter c. m[& cr" .h•. N? fr'.;r tlwe plarne of firing.

The equat .on- ..f the V'otary rnotlcltr, rA' ý4n object around its center

cr• mas•: c'.1 anc ?2.10-C for the caoo of the flight of a NS In the

atmosphpre take the C'c:

.-(/:; a-,) wSX = A'ft + M.,;

.- (J, - J, 1) 6,0r M&, + M.,;

a-=w-, Cos v--,t sin v-- ,cos p-2, sin p;

tor -T -n -;, ctg 2, cos a ip;(-7
-2 z Ctg a Cos P;

V=10-A -W- ctg a sin v--o, ctg a cos v-

-2 n CosL
sin a sina

where Mxl, M Mzl -- the moments of the aerodynamic forces (see the
X1 yl'Z

formulas of (2.101); MAxI, MAy , M -- the aerodynamic damping

moments determined by the formulas of (1.23).

In solving the basic problems of the ballistics of unpuided NS

it is usually sufficient to examine the particular case of the motion

of a NS in the atmospheric phase of the trajectory, when the longi-

tudinal and transverse axes of the NS Ox1 and OzI are moving in the

plane of firing.

The equations of such motion, which is customarily called

longitudinal, can be obtained from the equations of (4.36) and (4.37),

if the considerations presented in Sect. 2.4 are taken into account,

and, in particular, if it Is assumed that u - 900 and u - 00. Then

the parameters of motion of a NS in the plane of firing can be

determined by solving the following nonlinear system of equations:
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exqS -gsin8;.V -- ¢.q- sne
M

4 s cos + +--cos 8;
MV V r

,•V~~' sn;4.38)

• • $ -o•x -•-M-V Cos 0 ;

cnqS (xT-- X1) +m 2 qS!WI., " - + i.,:-

It 6hould be noted that during motion in the atmosphere the

trajectory of the center of mass of a NS due to the effect of lift

is periodically deflected from a certain center line (Fig. 4.5) by

the frequency of the oscillations of the angle of attack.

"Fig. 4.5. The effect of
the lift force of a nose
"of its motion in the

,P( atmospheric phase.

KEY:(1)Trajectory of a
NS; (2) Center line of the
trajectory.

Let us examine further possible simplifications of the equations

of motion of a NS in the atmosphere. Let us reduce the two latter

equations from system (4.38) to one equation relative to the angle of

attack a. In this case let us make the following simplifications:

1) disregarding the effect of flight path curvature due to the

force of gravity on the variation in the angle of attack; let us set

In the 5th equation of system (4.38) KCoseOO;

V
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2) the dependence of damping moment on angular velocity we shall

consider to be linear, assuming

m,•,qSl -m", qSP .

3) taking into account that the angle of attack varies many times

more rapidly than the parameters of the motion of the center of mass

and that coefficient cy with sufficient accuracy can be considered
e proportioral to-the angle of attack when a < 600, let us calculate

d cyqS I/7S da!
dt MV) MV dt

4) let us disregard the effect on the angular acceleration of a

NS of component

J~'s2 enS-iih cqS (xT -xd)
- - as compared with

Jz5 V MV 1

Then we will obtain a second order equation which describes the

oscillation of the angle of attack

_. qsl•.2 .s.c((a) .S(x-xaLd) =-O
";lJv J(439)

where -the coefficient of damping taking into

account the flight path curvature due to the lift force of the NS.

The system of equations of motion of a NS in the atmospheric

phase of the trajectory can now be written in the following form:

S,(Qa),qS g sin 0;

6=WQ-)S cose+V cose;

*hI=VsfnO; (4.40)

L =R L_ cos 0;

. e -c(a) S(x-X)
"" I16V 41
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Tie solution of this system of equations requires comparatively

large expenditures of time because the frequency of the oscillations

of the angle of attack of an NS is great (can attain 10 Hz) and

during the numerical integration of the system of equations of (4.40)

it is necessary to select an integration step ten times finer than in

integrating the equations of motion of a NS with a zero angle of

attack. For this reason the simplification of the system of equations

of (4.40) is used by separating it into the equations of motion of the

center of mass and into the equation of the oscillations of the angle

of attack. In this case, in order to take into account the effect of

the oscillations of the angle of attack on the motion of the center

of mass of the NS, the aerodynamic coefficients for angle of attack

a averaged for the period of oscillations are calculated.

If the oscillations of the angle of attack are considered to be

harmonic, i.e.

a=A sin ot,

and the aerodynamic coefficients equal to: Cx=Cxo+kae; ci=ca,

then

C,(cE,,)=-- '(c.O WA s~l2 w t)dia

A2 A

r

cY(OCc=)- i ¢sinfwtdi=O=Cu(O).
0

Thus, Gop=A/1/2 in calculating c and a 0 in calculating

cy. The appropriate system of equations of the motion of the center

of mass takes the simpler form:

162



S

V r (4.41)

"--V sin e;
L= -R V cos 0

r

and can be solved independently of the equation of the oscillations

of the angle of attack, if the amplitude of these oscillations is

given.

Let us now examine one of the methods of the approximate solution
of the equation of the oscillations of the angle of attack (4.39),
making it possible to determine amplitude A and frequency w of the

oscillations of the NS.

For angles of attack a < 600 the coefficient of the normal force

of the NS can be with sufficient accuracy considered as a linear

function of the angle of attack: :Cn---C:a. Then the equation of the

oscillations (4.39) is written in the form

a,-. mi" S•s _ (X' - x,) 4Ss• _ O. (4.42)

Such a linear differential equation of the second order with

variable coefficients has the following approximate solution:

•.• u--a= AO exp $ mdi) sin d+

1s

where A0 and w0 the initial values of the amplitude of the angle

of attack and of the frequency:

C,2 - qS (X, -Xd)
I ts - the frequency of the oscillations of the

angle of attack; • - the initial phase; M;tt - the coefficient of
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I. A
dampno g (computed for angle of attack 0- averaged for the

oscillation period.

Thus, the amplitude of the angle of attack at moment of time t

is determined by the formula

II
A ( i), A Oe V ZS cp ( .44 >

Calculating the Transverse Displacement of the Center
of Mass of a Nose Section

Let us examine the equations of motion of a NS taking into

account the displacement of the center of mass relative to the

longitudinal axis. Such a displacement of the center of mass y T

leads to an increase in the balance angle of attack Aa T, whose

magnitude can be determined from the condition of equilibrium of the

moments of axial force X1 and the additional transverse force AY1

(Fig. 4.6):
Y'I',& (X x,- Xd) -- XIY, = O

We will hence obtain

A XT,-Xd e (4.45)Y, Y,

I -

z,

Fig. 4.6. For determining the additional
aerodynamic moment acting on a nose section
as a result of the displacement of ita center
of mass relative to the longitudinal axis.
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In order to take into account the effect of the transverse dis-

placement of the center of mass on the motion of the NS, it is

necessary to introduce into the dynamic Euler equations projections of

the additional aerodynamic moment brought about by the indicated dis-

placement of the center of mass. Besides this, in the general case

the calculation of the turning of the main central axes of inertia

due to the transverse displacement of the center of mass can be re-

quired.

Let the center of mass of a NS have the coordinates xT, YT' zT

relative to the optimum body axes (see Fig. 4.6). In this case the

projections of the additional aerodynamic moment on the axes of the

body coordinate system will be equal to:

MT-C, =- 7z:-- Z1YV;

MMI = •Xltz; (4.46 )
AfZ, = -- XJy,.

Let us determine the components of aerodynamic force Xl, Yls Z1 1

using the components of total aerodynamic force R along semi-body

axes [see formula (2.92)] and the direct> riios~ncs between the

semi-body and body axes. Then the expressions of the additional

moments relative to the body coordinate axes 0xlylzl, caused by the

displacement of the center of mass of the NS, take the following

form: M- zC.S'-- sin v + yCOS V);

,11?i •¢,qSz,; 1 (J4.47)
=W, -- c,qSy.

Substituting these moments in the first three equations of

system (4.37), we obtain the equations of motion of a NS taking into

account the transverse displacement of the center of mass of the NS.

In the equation of the two-dimensional oscillation of a NS (4.39)

due to the displacement of the center of mass an additional term appears
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Taking Wind into Account

Usually wind velocity is assigned a vertical W and horizontal

W components ana a horizontal component direction - wind azimuthFop

The angle reckoned clockwise from the northern direction of the

meridian to the direction from which the wind blows is usually called

wind azimuth (Fig. 4.7). The vertical component of wind velocity

directed upward is considered positive, that directed downward -

negative.

Taking the velocity of the center of mass of the NS V as the

absolute velocity, wind velocity W as drift velocity, and the velocity
of the center of mass of the NS relative to the air taking wind into

account (the so-called "airspeed") VW as the relative velocity, we

can write

(4.48)

YE.

Fig. 4.7. The wind velocity
vector and its projection

" --- on the axes of a geographical
coordinate system.

The direction of velocity V in a terrestrial geographical co-

ordinate system is given by two angles: by azimuth T and by the angle

of inclination to the horizon 0. By analogy the direction of air-

speed we will assign the angles TW and ew (when there is no wind,

angles T W and OW coincide with angles ' and e).

For determining angles VW and eW let us project the vectorial

equality (4.48) in the horizontal and vertical plane (Fig. 4.8).

From Fig. 4.8a it is evident that
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Vwrop VV'Vop+ Wop+2VropW o, Cos ( ,W- ); (4.49)
S" . .. ~Vrop sinW+ Wrops~sn '•

Vrop COS. 1 +.Wrnp COSJw

Vr p sin T* + Wr-, sdn •wsIn ' W 9 (4.50)

Wr
rX

VW~0

4t V ,I

a) b)

Fig. 4.8. For determining the angles of
orientation of the airspeed vector relativeto geographical coordinate axes: a)horizontal plane; b) vertical plane,

where

V cos E.

From Fig. 4.8b it follows that:

(4.52)

where

V, V sin 0.

Let us determine the position of vector V in a wind coordinate
system with the aid of angles C and n, where • - the angle included
between vectors V and VW; n - the angle between the plane determined
by vectors V and VW and by coordinate plane Oxy (Fig. 4.9). From
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spherical triangle ABC we find:

t=arccos 14in Ow sin O+cos ew cos ecos(Ww-')I; (Li53)

sin_('w -. W)Cosewsian :

cos1)&si eW - sine cos t" coestq (4..54)

Cos asin t

Let us determine the angle of attack of a NS taking intd account:

the wind effect a (the angle included between the longitudinal axis

of the NS and the airspeed vector VW), for which let us examine

Fig. 4.10. From spherical triangle ABC we will obtain

COSa-w COs a COs I + smn a sin cos, (4-.55)

where
C= 18o0-P-(900-11).90+•-.

Knowing the angle of attack %W and velocity VW, it is possible

to determine the axial and normal aerodynamic forces:

X&W C,1 (a,,, M,,,) q,,WS(4 6
Yiw=&Ca(, Ml,)q,S j

where

aW QVtW(5)

Normal force YiW Is direoted perpendicular to axis OxI in the

plane of the air angle of attack NW. constituting with the plane of

angle m angle 1 (0 - 0-1800). Let us determine angle t from spherical

triangle ABC•

i~~i> ~sint-,$lnl-aa

1 (4.58)
I:Cos Io t e- CsOWo a,,

COSi t as =O~ W
sin Giq $1 1A
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The copponents of a~rodynamic forqe with respect to axes of a
semi-body coordinate system are equal to:

0 J

r~t ai t; (4.59)
Fig. 4.9. The orientation, of the airspeed vector

relative to a semi-wind
4 coordinate system.

Pig. 4.10. Por determining
the angle or attack of a nose
section taking wind effect

t , into account.

Let us determine the projections or the aerodyýnaic forces
taking wind effect Into hceount on the axes of a semi-wInd'coordinate
system, using dlrection cosines written in matrix form (2.71):
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X=Xw cos a-Y 1W cost sin a;

Y Xlwsinlasin p-YWsinatcosp+Y lw gostCosa slnp (4.60)

Z Xw sin a cosp-- Yw sin t sinI--

"-Y"wcostcosacosp.

Let us express the projections of the aerodynamic forces taking

wind effect into account on body axes through their components with

respect to semi-body axes. Then we will obtain:

Y - Yw sin t c os v--Y&w cos t sin V (4.61)

Z, =Ylw sin t sin v- Yw cos t cos v.

These components of aerodynamic force cause the aerodynamic

moment whose projections on the axes of a body coordinate system

taking expressions (4.46) into account have the form:

- 1 (4.62)
Me rX 1 z,- Z, (x,- .VdX

It Is also nootssary to determine aerodynamic damping moments

taking wind effect into acoout.t:

M -ruim" t (Mv) V ."
I V

Substituting the obtained expressions or aerodynamic foroes and

moments (4.60), (4.62) and (4.63) into equations (2.97) and (2.100),

we obtain the dynamic equations of motion of a NS taking wind efreot

and the displacement of the center of mass or the WS into account.

These equations together wlith the kinematic relationships (2.98),

(2.99), and (2.108) =ke up the system of equations or the motion of
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a NS In the atmosphere taking wind effect and the displacement of the

center of mass of the NS relative to the longitudinal axis into account.

Prom such a general system in particular cases simpler systems of

equations can be obtained. The assumptions made in this case, are

determined by the conditions of the actual problem being solved.

Initial Conditions of Motion

For solving differential equations of the three-dimensional of

motion of a NS, for example equations (4.36) and (4.37), it is

necessary to Inow twelve parameters of the motion of a NS at an

initial moment of time. These Initial conditions are taken from the

results of the calculations of the parameters of the motion of a

rocket in the powered-flight phaae of the trajectory and of the pro-

cess of the separation of a NS from the last :stage. Por a two-

dimensional ease of motion of a N3 in the atmospheric phase of the

trajectory [the eOuations of (4.38) or (4.40)] the number of the

initial conditions of motion is reduced to *ix.

In firing a rocket over varlout distances f•om minimum to

maximum under various gographi•al launch tonditions the paramotera

Sof the motioni of the eeonter of fpaa of the NS at the moment of reentry

into the atwaphere form a certain region of the initial conditions.

or meltion.

It it It adaumed that the reentry of the 4 into the atmouphore

oecurd at a certain arbitrary altitude hot and the initia) distance

of the atmospheria phade or the trajqctory torresponding to this

"altitude, i8 30t equal to tero (L0 0), thenl we ill obtain thd

region of the Initial conditiond V0, 0. of the motiati of tho center

of mae s ow' tne M3 at altitudo hO..

Pigure 4.l1 depicts one of th6e PodIble reglont of the in.•tial

conditions of motion •f the center of mass of the NS at altltude of

reentry into the atmoophere. In the IgIen reglon or initial con-

ditlons Vo, %0 line 1-2 correspona. to firing, over- minimum range,

line 3-4 - over maxitum, line 2-ý corredponds to irirng eastwards,

1-4- to firing w•etwardo.
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e i(i)

Fig. 4.11. The region of
the initial conditions of
motion of the center of-- \>)•(\ xmass of a nose section upon
reentry into the atmosphere.
"KEY: (1) Deg; (2) m/s.

(2

In the case of two-dimensional oscillations of a NS in the

atmosphere the initial conditions of the oscillations of the NS are

given by the two parameters: a and 0. Instead of these two

parameters it is possible to assign only one parameter o0, because for

any pair of initial conditions of oscillations a and 0 0 it is

always possible to select such ao and 1=0 that the amplitude of the

angles of attack of NS will be the same as under the initial con-

i....dtions a0 and 4O # 0. Thus in solving practical problems, for

example in investigating maximum transverse overloads or maximum de-

viations in the parameters of motion of a NS due to oscillations of the

angle of attack, it is convenient to give the initial conditions of

the oscillations in the form ao=a and a--. so that with all possible

values, of a and & the angles of attack of a NS do not emerge with

the given prob.ability B beyond the limits of the envelope of the angles

of attack obtained when ato=ao and 40 0.
It

For this certain values of no, are assigned, envelope of angles

of attack A(t) is determined and the probability of the appearance of

angles of attack, not exceeding value A(t) is found. If the obtained
probability in small, a new value of 014 is selected, smaller than

the previous one, the indicated probability is again determined, etc.

For determining probability B(Go) of the appearance of angles

of attack, not exaeeding the calculated values of A(t), it is possible

to propose various methods. Let us examine two of these: the method

baued on using the distributive laws of random values a0 and 40 at
1 7
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the moment of reentry into the atmosphere (the method of deriving the

regions of the adverse initial conditions of oscillations), and the

method of statistical testing.

The Method of Deriving the Regions of Adverse Initial
Conditions of Oscillations

Let us call the adverse initial conditions of the oscillations

those initial conditions of a 0 and 60, in which the angles of attack

emerge at corresponding altitudes beyond the limits of envelope A,

obtained for the accepted initial conditions of a0, o- =0 (when

h-h0). All the remaining combinations of a 0 and 6 are favorable.

The determination of the probability of the appearance of favorable

initial ckditions of oscillations is carried out in the following

sequence:

1) the parameters of the motion of a NS in the atmospheric phase

of the trajectory for the accepted calculated initial conditions of

oscillations qo, (0--, q ;q0 are calculated and dependences A(t),

h(i)" V(t) are determined;

2) from the region of the possible initial conditions of

oscillations at the moment of reentry into the atmosphere at an

altitude of h0 a number of values of a 0 , &0 is assigned and, in-

tegrating equation (4.39), such values of a0, 40 are selected which

lead to oscillations in the angle of attack with amplitude A(t).

Such initial conditions of a0, do are equivalent to the initial

conditions (o and 10--=0.

A locus of equivalent initial conditions of oscillations forms

in the region of the possible values of parameters in a0 and

lines limiting the region of the adverse initial conditions of the

oscillations. The approximate form of the region of. adverse initial

conditions at altitude h0 is depicted in Fig. 4.12 (region D of the

adverse initial conditions of oscillations is shaded);
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3) the probability P of the fact that the initial conditions of

1 a, d. fall into region (D) of the adverse initial conditions of

oscillations is determined:

P ft (a., ~)dcrd.,

where f(o@, a1 - the distribution density of the probabilities of

random variables a and

- Ce.2p OI(2)

Fig. 4.12. The approximate form of a region
(shaded) of adverse initial conditions of
oscillations of a nose section upon reentry
into the atmosphere.

KEY: (1) deg/s; (2) deg.

Let us assume that the angle of attack of a NS at altitude h0

obeys the law of uniform probability density f(a0 ) = 1/3600 (i.e.,

the NS performs two-dimensional motion and in the course of unpowered

flight makes several revolutions), and the angular velocity -the.

normal distribution law:

-
40

and random variables a0 and 0 arE independent, i.e.,

1714
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Then the probability of the appearance of adverse initial

conditions of oscillations i3 determined by the formula

In calc- lations using this formula region D is broken down into

a number of elementary regions Di with width Aa0 by straight lines,

parallel to axis C0O. Then the probability of adverse initial con-

ditions of oscillations of the NS will be equal to:

i-I

2.360 or0 t

where n - the number of elementary regions Di; 1 - Laplace's function;

a00 and A OH - the ordinates of the middles of the upper and lower

boundaries of elementary region Di respectively.

With values a0 and 60, corresponding to a region of favorable

initial conditions, the motion of theŽ NS occurs with angles of att.ack,

not exceeding calculated A(t). The probability of such motion is

equal to
B!- -P.

The value of probability B obtained by tiis method is approximate

because the-actual distributive law of random initial conditions

f(ao, &O) can differ from the accepted one. Furthermore, this method

does not make it possiole to take the random variances of the

characteristics of the NS and of the parameters of the atmosphere into

account. For determining a more precise value of probability B it is

possible to employ other methods, for example the method of statistical

testing.



The Method of Statistical Testing

For determining probability B of favorable initial conditions of

oscillations of a NS by the method of statistical testing on digital

computers N calculations of the parameters of the motion of the NS

are carried out with random combinations of parameters of the NS,

the atmosphere, wind characteristics and other factors determining the

angular motion of the NS. Then the distribution function f(A) of the

amplitude of the angles of attack of the NS at certain altitude h is

constructed and.with this distribution function the probability B of

the fact that the calculated value of the amplitude of the angles of

attack A(h) will not be exceeded is determined.

For the purpose of reducing the expenditures of machine time it

is necessary to use more of the less simplified equations of motion

of the NS, introducing various assumptions, which practically do not

effect the maximum angles of attack, for example, the assumption that

the motion of the NS is two-dimensional.
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CHAPTER V.

DISPERSION OF NOSE SECTION IMPACT POINTS

5.1. GENERAL ASPECTS

As a result of the effect of various perturbations the actual
trajectory of a rocket and its nose section never coincides with the

optimum and the point of impact of a nose section is unavoidably

deflected from the precalculated aiming point by a certain random

variable. This phenomenon is called dispersion.

In firing against ground-based targets the random deviation of

the point of impact of a nose section from a target is characterized

by two random variables - by the abscissa and by the ordinate of the

point of impact on a certain coordinate plane called the plane of
dispersion.

Let us define the plane of dispersion as a plane tangent to the

terrestrial ellipsoid drawn through the target. On this plane let us

construct the Cartesian coordinate system OLZ (Fig. 5.1). On the

figure there are designated: A - the launch point; 0 - the target;
the trajectory AK*O - optimum, corresponding to the calculated time

of separation of the NS t*.

Leaving the surrounding conditions constant, let us vary the time

of separation of the NS; for a certain moment of time t = t* + At
K K

the flight path will be AKO'. The locus of the intersection of the

optimum trajectories which are characterized by different moments of
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the separation of a NS, with the plane of dispersion will occur in

the form of a certain curve 00'. Let us draw in the plane of

dispersion through point 0 an axis, tangent to curve 00', and let us

orient it in the direction of an increase in range; let us designate

this axis OL and we reckon range error AL along it. In connection

with the fact that axis OZ is perpendicular to axis OL, small variation

in time t gives rise to the deflection of the point of impact of a nose

section from a target along axis OZ by a magnitude of the second order

of smallness as compared with magnitude AL, i.e., the derivative of

the lateral coordinate of the point of impact of a NS with respect to

time t is approximately equal to zero. This characteristic is very

convenient in dispersion calculations.

Fig. 5.1. Coordinate
system for determining the
dispersion of nose section
impact points: 0 - the
origin of the coordinates
(the impact point of a
nose section under optimum
conditions, or the target).

The coordinate system OLZ, constructed by the indicated manner,

we will call an arbitrary coordinate system.

All the perturbing factors affecting the dispersion of nose

sections, can be divided into two groups. Included in the first

group are perturbing factors acting in the powered-flight phase of

the trajectory, in the second - the perturbing factors acting in the

unpowered-flight phase.

In the powered-flight phase of trajectories, where the motion of

a rocket is guided, the deviations of the actual values of the
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parameters of motion from the calculated values are due, mainly, to
control system errors. In the unpowered-flight phase, where the

motion of a nose section is unguided, the perturbing factors are the

errors made in the manufacture of the NS, differences in the actual

composition of the atmosphere from the rated and variances in the

initial conditions (upon reentry into the atmosphere) of motion of the

NS around its center of mass.

The difference in the conditions of motion of a rocket in the
powered-flight phase and of its nose section in the unpowered-flight

phase leads to a different approach in determining firing accuracy

and in developing measures increasing this accuracy.

For reducing the dispersion of nose section impact points brought

about by deviations in actual motion of a rocket from the optimum in

the powered-flight phase of the trajectory, the ideal control system

should completely take into account the deviations in the parameters

of motion of the rocket from the optimum and compensate for these

deviations in such a way as to reduce their effect at the end of the

flight of the NS to the target to zero. However, unavoidable errors

in the operation of individual elements of a control system, caused

by manufacturing inaccuracies and by operating conditions, give rise

to errors in determining the coordinates and the projections of

rocket speed. Furthermore, for the purpose the simplifying equipment

(for reducing its weight, cost, increasing its reliability, etc.)
the algorithm for processing data concerning the motion of the rocket

is frequently simplified, which also gives rise to certain inaccuracies

in determining the parameters of motion of a rocket.

It is natural, that success in solving the problems of a NS
impacting on a target by an actual control system depends on how

completely the control algorithm takes into account all possible

factors affecting firing accuracy. Incompleteness in taking into

account the perturbing factors affecting firing accuracy by the

control system, gives rise to the appearance of so-called "systematic

error." This error arises as a result of the fact that parameters,

not directly connected with the flight range of a NS - the components
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of apparent velocity and apparent path, are controlled by guidance

systems instruments. If a certain perturbation caused a variation in

trajectory, then deviation in the impact point of the NS appears

despite the fact that the parameters controlled by the guidance system

at the moment of NS separation are exactly equal to the required values.

Anexample of systematic error is the error caused by the disregarding

the effect of lateral deviations in firing range. For reducing

systematic errors it is usually necessary to complicate the control

algorithm and consequently, the control system itself.

As with any automatic device, a control system has a certain

instrumental error, which includes the following components:

measuring equipment errors - zero drift, transmission coefficient

inaccuracies, gyroscopic drifts, initial orientation errors;

computers error - roundoff errors, approximation errors,

functional unit errors (adders, multipliers, integrators), coordinate

transformer errors.

When a control system is made more complex its instrumental

error usually increases. Thus, for a correct approach to selecting

algorithms for controlling the range and the heading of a NS both

instrumental and systematic errors should be taken into account.

5.2. NOSE SECTION DISPERSION, CAUSED BY PERTURBATIONS
IN THE UNPOWERED-FLIGHT PHASE OF THE TRAJECTORY

During the motion of nose sections in the unpowered-flight phase

of the trajectory the main perturbing factors causing deviations of the

points of impact from the optimum, act in the atmospheric section.

Included in these, in the first place, are the following:

- variances in the atmosphere parameters;

- wind;

- deviations in the characteristics of the NS (weight, geometric,
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centering [ec.g.], aerodynamic and others);

- variances in the initial conditions df the angular motion of

a NS in the atmosphere.

Let us examine the effect of each of the cited perturbing factors.

Of the atmospheric parameters variances in density and air
temperature have a basic effect on impact point dispersion. A

peculiarity of these perturbing factors is the fact that in various

phases of NS motion in the atmosphere they have, as a rule, different,

sometimes even values opposite in sign. For instance, in winter time

the density of the atmosphere near the surface of the earth is higher

than normal (standard), and at altitudes of more than 6-10 km - below.

Negative deviations in atmospheric density at high altitudes cause

positive deviations in flight range; positive deviations in density

near the surface of the earth - negative deviations in range. The

total deviation in flight range due to variance in atmospheric

density depends on the characteristics of the NS and on the actual

values of the atmospheric parameters.

For calculating nose section dispersion it is possible to give

the deviations in the density and the temperature of the atmosphere,

which are random functions of altitude, in the form of a canonical

expansion (see Sect. 1.2).

Wind effect can cause deviations in NS impact points both with

respect to range and direction. Wind velocity and direotion are also

the random functions of altitude which for calculating NS dispersion

can also be given in the form of a canonical expansion.

Let us group the deviations in NS characteristics from the
optimum with respect to their effect on the deflections of impact

points in the following manner:

- deviations in weight (0), in midsectlon area (S) and in the
coefficient of aerodynamic drag (ac) from the calculated values
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(variance in the so-called ballistic coefficient ax xS/G);

- transverse displacement of the center of mass of a NS relative

to the geometric axis of symmetry.

Deviations in the other characteristics of a nose section (for

instance, inertial moments, length and others) insignificantly affect

impact point dispersion.

An increase in the ballistic coefficient a causes negative

deviations in range, a decrease - positive. Transverse displacement

of the center of mass of a NS ru-- causes motion of the

NS with a certain balance angle of attack (4.45), the orientation of

the plane of which relative to the plane of firing depends on the angle

of spin v at a given moment of time. In connection with the fact that

during the motion of unguided nose sections the value of angle v is

arbitrary, the deviations in the impact point due to transverse

displacement of the center of mass can be both with respect to l'ange

and direction.

For a NS, rotating around the longitudinal axis, the effect of

the transverse displacement of the center of masses on impact point

dispersion is substantially reduced and for a certain value of

angular spin it can be practically reduced to zero.

During the motion of a NS with angles of attack arising dua to

diaorlented reentry into the atmosphere, an increase occurs In the

aerodynamic drag or the NS, which gives rise to a negative deviation

in tange, the value of whIch depends on the amplitude of oscillations

of the angle of attack; in this case the smallest negative deviation

in range corredponds to motion with tero angles of attack, the

greatest negative deviation - to motion with a maximum amplitude of

the oscillations of the angle or attack (corresponding to a given

probability).

Por calculating N3 dispersion due to the factora acting In the

unpowored-Clight phase of the trajectory, It is possible to carry Out

182



I |

I I

numerical• integration (with a digital cgmputer) of th,: system equations

of the perturbed motion of a NS of the type of (4.36)-(4.37),
individually evaluating the effect of every .perturbing factor on the

coordihates of the impact point.

Assuming that the indicated perturbing factors are independent of
one another, and the deviations in, the impact points are proportional

to the maghitudes of theA perturbations, the maximum values of the
deviations in NS impact points are determined by geometric summing of
the maximum deviations caused by each perturbing factor:

I' V AL (5,1)

A,,Z Yt&/IZ VAP (Ot: A-Z (dir,.

For h stricter and'more exact determination of the deviations in
the coordinates of ýiS impact points due to the fgctors acting In the
unpowered-fltght phase of the trajectory, tit is possible to use other
statiotitoal methodso ror example the method or attatiatical testing.

5.3. INERTIAL CONTROL OF THE FLIGHT RANGE AND DIRECTION

'OF A NOSE SECTION

Formulation'of the Problem

In Investigating an Inertial tyatem top guilding a rocket it to

advantageous to examine it relative to an Inertial coordInate aystem.

In this Qaaý the dependence~or th. parateters of tw- motion oa' a

rocket on the measurable eomponentp ot acoeleralion Is considertbly
"simplrifed and the analysIs of guidande 3Yotem ermors io facilitated.

"Lot us place the origin oa the Inertial coordinate system at the
center or the earth, and' let uLs orient the doordinate axes parallel
to the corresponding axea of an Initial launch coordinate syatem.

Between the parameters ot rocket motion, assigned relative to Intrtial

ZSI



and launch coordinate systems, the following relationships occur:

where r,, F - the radius-vectors determining the position of the

center of mass of the rocket relative to the launch point and relative

to the center of the earth, respectively; R0 - the radius-vector

determining the position of the launch point relative to the center of

the earth; V, Va - the velocity vectors of the center of mass of the

rocket determined relative to launch and Inertial coordinate systems,

respectively; U3 - the angular velocity vector of the diurnal rotation

of the earth.

Let us define firing range as the distance meanured along the arc

of the great circle between the launch point and the intersection of

the descending leg or the flight path or the rocket with the aurface

or the terrestrial ellipsoid.

A3 lb known, firiin range is uniquely determined by the parameters

or rocket motion relative to a launch coordinate 'ystem at moment t

or HS separation

L-LM,(N). ZYM,). V,(V). VV.(1,)l&P

or by the pqrwwteru of rooket motion relativeito an inertial co-

ordinato zystem at the monuent of NS -eparation and by the duration

t of the rocket ftight up to this moment

Subdequently t0 reduce notation let us also use the

rollowunt designations for the praweteors or motion:

If li expretsion (5.2) It Is aasum-d that the parameters or the

end of the powered-flight phase are equal to their calculated
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q, (t.o-q*8(41;
q1(-(= , (5.3)

that we will obtain the calculated firing range

ca L.=L[q1,), tq]. c5.4)

[ IIn fulfilling the conditions of (5.3) the separation of the NS

.•can• be accomplished at calculated m'oment of" time t:. However, in

Sactual rght due to the effect on| the rocket of the perturbing
) factors the paramet rs of motion at the calculated moment of time

t# will differ from the calculated parametero and, thus,

Liw1 il tX.loc 't .

Condition (5.4) apparently, does not deterAlne the valueo of

each of the magnitudeo Q1(%). 4•1(t,) tx; it only requires, that for
V achieving range LV their aet sati•fy relatlionship (5.4; generally

speaking, there can be an in-inite number or tuch sets. On the other

hand, for each actual trajectory or a powered-flght phase because of
the unique conditions only one aet (qc,(tM), i(t,), tj) corresponds to
calculatoA range LO. These contid•ration, indicate one of the method4

of controliing ftiring range: It Is necetsary to stop the powered-
fligbt phase of the trajectory, more precisely speaking, to separate

the li3. at imooent t - tot, when funcation Qiq(t~1 o4 4i(t), t] reaches
the desired Value of 04 The reaIl•tion of the Indicated tethod can
be accomplished with the aid of a certain tsytnm or meu.ring aind4computing devices determining the current values Of q1 (t) ard 41(t)
with subsequent calculation of Function Lk[4 (t), 41 (t), t) and by

Acontinuous comparison of its current value L with assigned L0. At

the toment of ti", when the equality Is fulfilled

LW)d(O. , OLt
Instruction Is supplied for the Separation or the nose section.
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Let us now formulate a general statement of the problem of

selecting the time for NS separation. This moment should be deter-

mined from the current values of the measured parameters of motion

of the center of mass of the rocket. With a computer of greater or

lesser complexity it is possible to calculate the value of certain

function J from the current parameters of motion and to separate the

NS, when this value becomes equal to the required value. Function J,

with the aid of which the moment of NS separation is determined, we

will subsequently call the controlling functional, or simply the

functional. (In a numoer of works the terms "ballistic function".

or "controlling fun.,.:ion" are also used).

The value .f the qontrolling functional at a certain moment of

time should be directly connected with the magnitude of the firing

error which would arise, if NS separation occurred at this moment

of time. The control system should emit the signal for NS separation

when the functional attains the value corresponding to the zero

(pract±cally minimal) value of the .nentioned error.

One of the possible controlling functionals is the firing range

itself expressed by the current coordinates of the rocket and the

projections of its velocity:

S14 (5.6)

Using this expression, it is possible to represent firing error

in the form

.a q,(ti), 41Or), Q (5.7)

The control equations (5.5., and the firing error (5.7) correspond

to funcuional (5.6). If we separate the NS at the moment of the

fulfillment of condition (5.5), then, naturally, there will be no
range error due to perturbatior, in the powered-flight phase.

However, the possibilities of plotting functional (5.6) are

limited, especially, by the limited operating speed of computing
equloment. Thus, the functioral is usually used which is obtained as
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a result of-the expansion of function L[q,(t.), Yi(tH), tV] into a

Taylor series in the vizinity of the calculated values of its

arguments.

Let q*(t) be the calculated variation in the i-th parameter of
motion roith respect to time and t* be the calculated moment of time

of NS separation; qi(t) - the actual variation in the i-th parameter

--- "tand -,.the actual moment of NS separation ýFig. 5.2).

• "T.

Fig. 5.2. For determining the complete
and isochronal variations in the
parameters of rocket motion.

The difference

Aq, (tQ=q, (I)-q;(t,') (5.8)

we will call the total variation in parameter q..

Analogously

Aqt (ox)= i,(IX)-q, (4,). (5.8a)

With an accuracy of terms of the second order of smallness

relative to the to$al variations we have

(5.9)
S'~~~~O, 7,C,, - A - -A,
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where At tK - t* - the variation in the moment of time of NS

separation.

The partial derivatives in this expression (ballistic co-

efficients) are determined for the calculated values of variables

*(t*), jn*(t*),..., V*(t*), t* (usually by calculations on a digital

computer.

Analogous to expression (5.9) the deflection AZ of the point of

impact of the NS from the firing plane is written

AZ=Al- A+- A+- AV4+

-v, &v,+ - Av,.
(5.10)

Taking the expressions for variations (5.8) into account, let

us write the conditions for the equality to zero of relationship

(5.9) and (5.10) in the form

&L'JL--Ji=O HAN JL=J'6(511

AZ=JZ--J'z=O RAH JZ=Jj, (5.12)

where

JL=Z q, 1)+ qj(t)+. ..'

4&
3 (5.13)

33 *

J q, (1)+• o-jj•Z)i-

at,

J,=OZ

aqj
J-I
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Functional JL we will call the functional flight range control,

and J - the functional of flight heading control. Values J* and J*ZL dJ
we will call the adjustment values of the corresponding funtionals.

If the difference in the actual motion of a rocket from the

calculated motion is small, i.e., the variations in (5.8) are small,

then upon separation of the NS at a moment of time which is the root

of the equation (5.11), the deflection of the NS from the target with

respect to range due to perturbations in the powered-flight phase will

be a magnitude of the second order of smallness.

It is possiule to always find such a moment of time of NS

separation, when equality (5.11) is fulfilled; generally speaking it

-is not possible to attain the fulfillment of equality (5.12), only

by varying the time of NS separation. In order that this equality is

fulfilled, it is necessary at the moment of NS separation to impart

to the rocket a certain lateral component of velocity. The required

value of this velocity component can be obtained by supplying the

corresponding signals to the lateral stabilization channel.

For calculating functionals (5.11) and (5.12) during flight it

is necessary to know the components of the velocity vector and the

rocket coordinates. The determining of these data in a launch

coordinate system with the aid of measuring devices set up on the

earth (as is done in radio-command guidance systems), is completely

feasible with the required accuracy. However, when using inertial

guidance systems these parameters cannot be directly measured. Thus

when developing inertial systems it is very important to select a

controlling functional of a rather simple type, ensuring the required

* _accuracy of range and firing direction control.

Let us examine one of the possible ways of simplifying con-

trolling functionals, suitable for any type of the guidance system.

As can be seen from relationship (5.9) and (5.10), the deviation

of the NS impact point with respect to range AL depends not only on

the variations in the parameters of motion of the center of mass of
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a rocket in the firing plane (AE, An, AVE, AV ), but also on the
variations in the parameters of the lateral motion of the rocket

(Ac, AV ). The deviation of the impact point with respect to

direction AZ, in turn, depends not only on the variations in the

parameters of lateral motion (AC, AV ), but also on variations in

A&, An, AVE, AVn' In spite of this, in rocket control systems with

regulated thrust a system of independent range and firing direction

control can be used.

Let us examine the order of magnitudes of ballistic derivatives

for the case of the firing of a ballistic missile a distance of about

10 000 kin:

OLz6-- -z5000-6000 s , L 1 -- 2;W at

3LLS15OO-2500 s, L 2--10;

.. •-• .. 100- 200 Ls, 1 - ,S

As can be noted, the range derivatives for the parameters of

lateral motion 3--.3L are substantially less than the corresponding

range derivatives for the projections of velocities and for the co-

ordinates characterizing the motion of a rocket in the firing plane.

Analogously derivatives az 6Z MZ 6 are substantially less

than H--

Independent control becomes possible due to the rather exact

operation of the systems controlling apparent velocity, and normal

.nd lateral stabilization of the motion of the rocket center of mass.
In this case the variations in the parameters of motion of the rocket

center of mass at the moment of NS separation remain within such limits,

which for ensuring assigned firing accuracy there is no need in the

controlling functional to consider the effect of variations AC, AV•

on range error, and variations At, An, AVE, AVfn on heading error.
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As a result flight range is determined by NS separation at the moment

of time, when the following equality is fulfilled

A W)Jll (5.15)

where

J1 V, m+ V (t - . f.

In this case the necessary heading of the NS is ensured by the

fulfillment at the moment of its separation of the following cn

dition imposed on the lateral component of velocity:

totfJ: (t5.1+!

where

I (in (5.18)

A J

J•O.

In the simplest guidance system the heading of a rocket and its

nose section is assigned by the prelaunch orientation of the

corresponding measuring elements and is maintained with the required

accuracy by the rocket lateral stabilization system (see Sect. 1.8);
the corresponding principles of lateral motion control have the form

Let us now reduce control equation (5.15) to the form which

makes it possible to obtain the information necessar~y for the

calculations directly from the inertial measuring devices.
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The Equation of Range Control in Apparent Parameters
of Motion

The operating principle of inertial measuring systems is based
on the measurement of accelerations and the utilization of the inertial
properties of gyroscopes. The direction in space of the axes of a
certain inertial coordinate system is fixed with the aid of gyroscopes,

By measuring the projections of rocket acceleration for any directions
-4 in inertial space and integrating the measured values, it is possible

to obtain the projections of the velocity of the rocket and the

components of the path which the rocket has covered and therefore,

the coordinates of the rocket.

As is known, inertial accelerometers can measure the projectibns
of the so-called apparent, but not of the actual acceleration of that

point of the rocket, in which they are located. The apparent

acceleration vector of any point is called the vector of the difference
between the acceleration relative to an inertial coordinate system
and the acceleration due to gravity;

(.9
4 w=V-g.(5.20)

Standard single-axis accelerometers measure the projection of
the apparent acceleration vector w in the direction of their axis of

sensitivity X, i.e., value

(5.21)
where V- the projection on axis ) of the acceleration of the

accelerometer housing relative to an inertial coordinate system;

gX - projection on the same axis of acceleration due to gravity.
The indicated condition is due to the effect of gravity which on the

basis of Einstein's General Theory of Relativity cannot be distinguished
from inertia. This gives rise to the fact that acceleration due to
gravity is recorded by an accelerometer as the acceleration directed

"opposite to the projection of the gravity vector on the axis of

sensitivity of the instrument.
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EBesides accelerometers, for inertial guidance purposes integrating

accelerometers are also used. Integrating gyros are broadly employed
in them. The rate of angular precession of an integrating gyro w is

proportional to the component of apparent acceleration along the axis
of precession w•. The output signal of the integrating gyro

characterizing the angle of precession
1 1

is proportional to the component of apparent velocity along axis Y:

}! ,=•'•C,), (n.(0=0,. •(5.23)

Iterated integration of the integrating gyro output signal *,
accomplished even by another instrument, will give the value of the

apparent path with respect to the direction of 7:

$I..= • i ( )d, (s,(O)= O 1. (5. 24)

In acuordance with expressions (5.20), (5.21) and (5.24) it is
possible to introduce the concepts of apparent velocity vector and

apparent path vector by representing these vectors in the form:

•-• #• • •(5.25)

when ;(0)=0 K s(O)=O.

The coordinates and the component3 of the velocity of the center

of mass of a rocket can be calculated, if in the equation of motion

of the center of mass determining absolute acceleration:

•:r +i# =r•1 (5.26
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where r- the radius-vector of the center of mass of the rocket;
the right side and the initial conditions (the coordinates and the
projections of the velocity of the launch point are known. With the

aid of three accelerometers (or integrating gyros), oriented relative
to the inertial axes and mounted at the center of mass of the rocket,
it is possible to calculate the three components of apparent

acceleration i (or velocity W). For calculating components of accel-
eration due to gravity dependence i(r).should be given.

Equation (5.26) can be solved by one of the numerical methods
(by the iterative method, etc.). For automatic computation of function

F(t) it is possible to use the circuit (Fig. 5.3) which is called an
automatic compensation circuit. This circuit is rather complex, thus
it is advantageous to use a number of simplifications. Thus, for
rockets moving along trajectories, close to optimum, function 1(t) can
be calculated first. In this case the autocompensation circuit becomes

open with program input of' the correction for acceleration due to
gravity (Fig. 5 . 4 ).

Fig. 5.3. The closed circuit for
taking gravitational acceleration
into account.

Put

Fig. 5.4. The open circuit for taking
gravitational acoeleration into account.

194



Determining the variations in the actual parameters of motion

II
Aqi~) ad Ai(t) with the aid off inertial measuring systems with the

use of autocompensation circuits complicat and increases the price
of the control system. At the same time it turns out, that with

rather small deviations in the perturbed motion of a rocket from the

calculated it is possible to go over to the apparent parameters of

motion, directly obtained by the inertial measuring system. For this

the concept of. isoohronoua variatione in the parameters of motion of

the rocket is introduced.

Examining dependences qi(t) and q*(t) at any moment of time

t(O < t < t*), let us define i~oohronous variation qi(t) at moment of
time t as

timtsAq). (5.27)

In particular, at moment t we have

Agq,(4u)a=q,(I) q,(4). (5.28)

Let us establish the connection between complete and isoohronous

variations at arbitrary moment of time t.:, for which let us extra-

polate dependence q#(t) for a certain moment of time, which somewhat

exceeds value t*, having assumed, ror example, that the engine at

moment of time t# was not shut down. In accordance with expression

(5.8) we have

"£g(I$(1)m q(t)--q(ltJu) (I-qlJ--q(). (5.29)

Considering At to be a small value and disregarding magnitudes

of% the second order of smallness, we obtain

(f it,)- W;t)- (~at-, ( 5.30)

Thus, from expressions (5.28), (5.29) and (5.30) It followa

(see Fig. 5.2)

Aq,(t)=£,q,()--() .. ( 5. 31)
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The total variation in parameter 4i is expressed by iso~hronous

variation in a similar manner:

q.is) iA1() +q 0 (5.32)

Let us now transform (taking isochronous variations into account)'

the expression for AL. which corresponds to the simplified control,

equation (5.15):

OL (533)
+•)+ AVI "v" +&V,".+(

Substituting expressions (5.31) and (5,32), we obtain
at. UPVT A = A,8V j+3 sV, (49 + 91(4,

•: ~Considering dependenoe (5.21), let us represent expression (5.34)1

• in the rora
A .•-m AeVaa+V• 4 Yv(. )+Z A (M+

64 4)

. • •,•(+ [• . : + .1,

nThe expresion d n tdhee (ecoId lote brackets rn depereenx e (5.35)

- is identlaally equal to zero as a ran~e derivative tor tiae or tlight
In the fnpowered-fmtght phaie oC the tralectory. Then

at at

A1R~- LV(A+W "'VJýrl

R A,49L

L (____5)
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Let us examine the isochronous variations of the components of

II

acceleration:*A=j1+ gc

The appearance of isochr~nous variations in apparent acceleration

.... " JA..

A and A~w is .direct~ly connected with't~he deviation in forces of
nbngravitational origin and the mass of the rocket fromd the c'alculated
values; the isochronous vaiatinsin accelerationsdo to gravityo

Atg and &tncauoe~d by the fact that the' trajectory of peirturbedI flight is higher (or lower than) the calc~ulated trajectory. For
rockets, whose perturbed trajectories are close to the calculated ones,,I ~ :the a n9ohronous vartations in acceleration due to gravity are small.
In-this casie -it is possible to take:

- ~~~~Ain S ~Aw (1) ;

. C C *

t he adatwn ion made makes It t1e trao eto tpreaoponert .3)

AIwI#W + S0 (is) +~ ~~ij ' (5.3VC$

let us hing o eliminate unknow)h value te taking nto Account

that In accordance with exOl- ionz e .r o (5.31) And (5.32)
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Then instead of expression (5.38) we will obtain

.3L __

aL __* i* ~(5.40O)
- + (( - 0,4 ' W-; (a

The control equation in this dase ,can be represented In the form

JO OL all,=n-t +(W, )+ - s, (t)} + A. M

•_ .(5,Iq1)
or

is Mi's(5.342)
where

U IL W(,+-,I AS,,(*) (5-43)

W4. (5jit 4 )

The conrol equation to tww reduced to a form, which makes It

posaible to reallte it, without resorting to complex. alauIations

on board the rocket.

Instrument Execution of the Range Control Equation

Let us examine the basic --tea•. o instrument execution or the

equatio- of • iring rang# control as illustrated by equation (5.41).

Tie basis or the System (-Pig, 5.5,) Is the gyrostabillsed platform

(rcn - USP]; the axes or the intrtial coorditato System assigned by
it are directed along the axeo or the Initial launch system. No

lntftrating giyroscopes (Ert - 10i are *ounted or. the OSP, whOse axes

or sensitivity are directed along the axes Ot and On. Purthermore,

there is tho atorag*e devitce (BY a $SP, tnto which the values

oecessary for the talculations are Inttrduced: ballistic derivatives,
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computed values s*(t) and s(tY programmed, with respect to time and

the computed values of the controlling functional. The values, Input

into the storage device, depend on the geophysical conditions of

firing.

rotR

Fig. D!ir~ fteit~rmn~ xcto
or te Cotr*Iequaion

I t
I

an adder

a opa-ah r cn o tio h c ingout u tho e

j - int~egrtov.s •lhih carry out, ltcatlve itLgra9on 9f the IO
*readin6. for thle purpoce, the obtainn tt••he. •.p:arent. coordint~res;

* -oubt~ra.tok'o which •hepe t.he i•ochr-onou* Variatior.• A t%,,• ;

- muaut~plierc;

- an adder;

- a com4parator, con~tnoumily •arvylni• out during the •ti~e ot" the
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powered-flight phase comparison of the current values of the con-

trolling functional J(t) with its calculated value J*. At moment,

when the equality J(t) = J4, is fulfilled, the computer shapes the

instruction for engine shutdown and nose section separation.

Let us now examine the possible ways of simplifying instrumental

execution of the equation of firing range control.

Of practical importance is the possibility of reducing the

number of automatic range control elements by the proper selection of

the orientation of the axes of sensitivity of the accelerometers of

the integrating gyro accelerometers. It tarns out, that it is possible

to reduce by half the number of integrating elerients as compared with

the method of setting up the control equation presented above. For

this purpose the axes of sensitivity of the accelerometers (inte-

grating gyro accelerometers) snould have a special orientation -

parallel to certain directions, constant for the actual case of firing.

In order to determine these directions to set up the appropriate

functional, let us examine th4 plý'jections of apparent velocity

wC, wn as components of a certain vector w, which is characterized by

a modulus - 2- V2 and by argument argW=arctgwj/w.-

Let us similarly construct vector Ats with modulus IA-I

ýAjt2ýiS12'and argument arg 4's=aTCtg -

In a similar manner iý is also possible to examine ballistic

derivatives as projections of vector A with modulus IAK =

L.. and argument X =:arctg and of vector
/ ~~~OLIOVt rt,~

M with modulusnd argument P = OarCtgL-

Using the designations and the known rule for recording the

scalar product of two vectors by tneir projections introduced in this

manner, let us rewrite expression (5.41) in the form

S(t) +A).=00 (5.
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• form

where ba -- the projection or vector 9 in the direction of 5a.

aI
i-i

4;formI li• t) INI,.,• t=•- t).c.6

On this basis Jlet us represent control equation (5.145) in the'

form

where ..

W- (t)= Wt (/) COS +UV1 () sn 810

A-S a(1)='AS (f) COS pj A1s8 (t) sini. (5.47)

Control equation (5.46) can be standardized relative to

coefficient 1A.t, as a result of which it takes the form

=,•(t + ,P'&s (t) WX*, (IX) (5.48)

where

V. p= th -!fncin t a esowihtte.ietos

iP

' Thus,

V, -•()= W (t) 1 s,(t-.=•() +P is (1 wx,. t- W (t)] r (5.4 9)

J• I • (t).S* (5.50)
l The examined modification of the controlling functional is

called the X-pa-functional. It can be shown that the directions,

.. assigned by angles X and p, are the optimum ballistic\.directions in

Sthe following sense. The deviations in the apparent v~elocity of a

-- • rocket along the direction of vector A" and the deviations in the
-•'• apparent path along the direction of vector R maximally affects the

range errors, and the deviations in apparent velocity and apparent

path along the normal to the corresponding direction do not cause

range errors.
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A block diagram of the instrumental execution of the control

equation using the X-i-functional, is shown in Fig. 5.6. This

diagram is simpler than the previous one (see Fig. 5.5) due to the

elimination of one of the integrators and the reduction in the volume

of the memory. Angles X and p of the setting of the axes of

sensitivity of integrating relative to axis OC of the inertial

coordinate system, program w*(t), parameter p and the calculated value

of the controlling functional w*(t*) are determined by the geophysical

I firing conditions.

K�E ( no s rio-i -- - - < -

I 5.4. NOSE SECTION IMPACT POINT DISPERSION CAUSED
BY CONTROL SYSTEM ERRORS

The Basic Formulas for Calculating Nose Section
Impact Point Dispersion

Let us rewrite expresion (5-34), taking into account that the
isochrounous variations in moments of time tr and t are equal to

each other to within an accuracy of values of the second order of

smallness:

--- • KEY: (I) IIntuio (fie) + S separtion

i fit ON R E R ORS

Ima t Poitx 0Dispersion V +
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It is readily noted that expression

__It (i:) + 4 (•() +(I v;)+

S. dL (5.52)-} +&~~~-..v; (t:) - -- T -, 77:

- . is the value at the moment of NS separation of the total firing

range derivative with respect to flight time in the powered-flight

phase.

Let us designate the first term in expression (5.51)

&AttL ) +t v U I,1 js
-- 1 ( 5.53 )tq(t;) +ozLW.

and let us call it the isochronous firing range deviation. This

value AtL(t*) is the deviation in the impact point of the NS in the

case of flight along a perturbed trajectory upon separation of the

NS at calculated moment of time t*.

Taking into account what has been said, let us write expression

(5.51) in the form

(5 -5L4)

A )Taking into)-+£ ~ t(t:) A. 55
Deviation At K can be found, by varying the control equation

J(t J*(t*). Then we will obtain

SAJytX)=Aj (t'X)+J' OtO) at=o, (5.55)
where

A tJ(t*) -the isochronous variation in the controlling functional.

Let us hence find deviation

""- (5.56)
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Using relationships (5.54) and (5.56), it is possible to represent
range deviation in the form

AL =A•L(I AJ (t) (5.57)

Repeating the arguments carried out, it is possible to obtain an

analogous expression for the deviation in NS impact point with respect

to direction

AAZ=Arzdin. tt) AO ,. (5.58)

According to the definition of the arbitrary coordinate system

0 and for this system we have

AZAtZ,' (5.59)

where

AgZ= - A1 vc (t:)+ +4 •Alt,) (5.60)

if we disregard the effect of the variations in the parameters of

motion in the firing plane on the deviations in direction Z.

The Effect of Control System Errors on the Dispersion
of the Parameters of Rocket Motion

Let us examine the effect of instrumental and systematic errors

of the cohtrol system on rocket flight accuracy in the powered-

flight phase of the trajectory.

Let us use the following coordinate systems:

- inertial coordinate system O0nC;

- body coordinate system OxlYlyl, characterizing the actual

directions of the axes of a rocket in perturbed motion;
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- reference coordinate system Ox3 y 3 z 3 , giving the directions of

the body axes of the rocket during flight along the optimum trajectory.

The directions of the reference axes relative to the axes of the

inertial system are shown in Fig. 5.7. Axis Oz3 is directed parallel

to axis O0, and axes Ox3 and Oy3 are turned relative to axes O and

i-On by programmed angle of pitch 0*. As is evident, the body co-

ordinate system coincides with the reference system during the flight

of the rocket along the optimum trajectory.

Fig. 5.7. Orientation of
the reference coordinate
system relative to the

X inertial system.

Let us find the interrelationship between the components of the

apparent acceleration vector determined by the measuring elements of

the longitudinal [PHC -J RKS], normal (HC = VS] and lateral

stabilization E6C = LS] systems and the projections of this vector

on the reference coordinate system.

Let the measuring element of the RKS system, for example the

longitudinal acceleration integrating gyro which we will call the

velocity error sensor [APC - VES], be mounted on the rocket in such

a way that its axis of sensitivity is oriented in the direction of

rocket axis Ox1 . This instrument measures the projection of the

apparent acceleration vector on the longitudinal axis of the rocket

xl and carries out its integration:

5(5.61)
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Let us assume that the measuring elements of the VS and LS systems

are mounted on a GSP in such a way that during optimum flight the axis

of sensitivity of the VS system measuring el'ement is directed along.

the Oy3 axis, and the axis of sensitivity of the LS system measuring

element - along the Oz Since the axes of sensitivity of these
3.

elements during the whole time of controlled flight are directed

perpendicular to the Ox3 axis, then the effect on the VS and LS

systems sensing head readings of the longitudinal componont of the

apparent acceleration vector Wx is eliminated in this way and thex3
* deviation of the Ox1 axis from the reference direction is recorded.

"The directions of the reference axes Ox3 y 3 z 3 are materialized on

the rocket by the directions of the axes Oxy zc of the GSP and by the

programmed turning of the base of the angle of pitch sensor. In

optimum flight the axes of the GSP OXrYrZr are directed parallel to

the corresponding axes O~ng of the inertial (initial launch)

coordinate system (Fig. 5.8).

F9g. 5.8. Orientation of
the axes of the gyro-
stabilized platform OXrYrZr

relative to the inertial
(initial launch) coordinate
system OtnC in optimum
flight OxlylZl _ the body

C axes of the rocket at launch.

In actual flight the directions of the OSP axes Ox2 y2 z 2 in the

general case do not coincide with the directions of the axes of the

inertial coordinate system. The deviation of the Ox2 , Oy 2 , OZ2 axes

from the optimum direction are caused by:

- aiming errors (turning around axis Oy2 of the OSP suspension);
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- errors in setting the GSP at the moment of launch, i.e.,

errors in the OSP actuating system (turns around the Ox2 and Oz2 axes);

- gyroscopic drifts during flight.

In perturbed flight the error in the execution of the direction

of reference axis Ox3 is determined by:

- errors in the setting of the GSP at the moment of launching;

- errors in the assigning of the angle of pitch which are made

up of errors of the program unit and errors in assigning and re-

producing the program;

- OSP drifts around the axis of pitch Oz2 .

The deviation in the direction of the axis of sensitivity of the

VS system measuring element from the direction of the Oy3 axis is

caused by the same errors.

The deviation in the direction of the axis of sensitivity of the

LS system measuring element from the direction of the Oz axis is
3

caused by:

- aiming errors;

- errors in the setting of the LS system measuring element

relative to the aiming prism platform;

- OSP drifts around the Oxr axis.

When errors exist in the orientation of the RKS, V3, and LS

systems measuring elements errors occur in the measurement of the

components of apparent acceleration x3' Wy 40' For determining

these errors let us examine Fig. 5.9. The direction of the axis or

sensitivity of the VS system measuring element is determined by
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axis Oy2 , and its orientation errors -by angles a and 0; the

direction of the axis of sensitivity of the LS system measuring

element is determined by axis Oz 2 , and its orientation errors - by

angles y and X.

Fig. 5.9. The orientation
of the Ox2 y2 z 2 coordinate

* system, executed as a
reference system, relative
to the Ox3 y3 z 3 reference

Ui system.

Table 5.1 gives the direction cosines of the Oxl, Oy2 , Oz 2 axes

relative to the Ox3 , Oy3 , OZ3 axes, determined to within an accuracy
of second order zmallnesses (such accuracy is entirely sufficient for

practical purposes). From Table 5.1 it follows that projections of

the apparent acceleration vector on the Ox1 , OY2 , Oz2 axes and on the

Ox3 , OY3 , Oz 3 axes are found in the following dependence:

I= (5.62)

Wr~p W" +(5.63)

W,= + ,3V Via-++ivs (5.64)

Table 5.1.

o I -z
(1)0m 0, on Oy J 0:

SI I~ I
.+.t: (0) axes.
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The projections of the apparent acceleration vector W W and
y3' z3

angular deflections A0, *, c, 8, y, X in optimum flight are equal to

zero, and in actual flight they arise due to the effect of perturbing

factors. All these values are small control system errors. Thus

products of the type wsAO, wZ3  ca be disregarded as second

order of smallness values. Then the projections of the apparent

acceleration vector on the reference axes Ox 3y 3 are determined by

the following expressions:

(5.65)

i,,i J; (5.66)

Hence we will obtain the deviations of the projections (in
question) of the apparent acceleration vector from their optimum
"values:

(5.68)

A8W1-- A48,+ zA (5.69)

Ag~g~uaAjW,--W,. (5.70)

Let us now find the values of the derlectiont from the optimum
values of the projectiona of the apparent acceleration vector on the

axes of an inertial coordinate system. The indicated valuen can be

easily obtained, using known tormulaa ror tranaformin from a body
to an Inertial coordinate uystem:

•iiA,,w =Awcos,'-- Aw•,,s ,'; (5.71)
AWAi, ICOS +A,4. 3 C.s,, (5.72)

and relationshipa (5.68)-(5.70).
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We will finally obtain:

A~W==AUI1 CS AW~~flW si~ny (5.74)

Aa=Ajr1 sifTl*+Ae , COS +ia3 COST'; (5'75)

4.g T,•=Aj~ai•__ir. '(5.76)

Integrating expressions (5.74)-(5.76), we obtain the isoehronou3
variations in the projections of the apparent velocity vector on the
axes of an Inertial coordinate system:

AP, cos *dr-9 sla S~l d'g
(5-77)

ij sla y'dmr

_A#J,=JAt sin ydt +1 AwnCOSedv+

9 (5.78)
;04% Cos Own

AMC (5.79)

tteraLive integration will give the isochronous variations In
tho apparont path for axes or the Inertial coordinate Ss•tea:

£Ainu Adw(5.80)

Rquatios (5.77)-(5.82) ar Integrated under sero Initial
condit low,
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Assuming that the effect of gravity on a rocket in perturbed 'and
optimum flights is practically identical (such an a~ssumption Is

perpaissib~le beca~use the deViations in perturbed motion from optimun,

are rather small), -it ais possible to approxim'ately assume:'

In equations (5.77)-(5.82) dependences. x3 (t) and 4*(t) correspond
rto flight uoder optimum conditions. They remaining parameters

Atit) $tu(t .Bt)m y(t) are dete~rmlined by the effect

of the perturbations. The methods for determining them for the bauic
types of control system errors are examj~ned below.

1L The instrumental error of theýHK sIyotem meter In ma.Inly

determiriid by the variance in the trnait~sion agelfficient of the
meter and thu3 la.'proportional to the meuared values ~,.

~~ I&**I1) -n6.30b
where n - a dimenoional coefficient.

2. The error In &ctivating the A-0 oy~tt mettr it taiten Into

account In the initIal oonditinon, i.e., It Is aa~mad that

The- ork In inast*gnlng the app ront volciy roraas It takeo

3 The 3yate~a~tI error In at Igsilng the angle of pitch at

*progran It one or the com1ponenitu of angie a~. A5von$ the other

constfnt damponnths of' angle 0 are - the aigle or pitch progran untu
error, the #rrolr In adtuatling the 38F around tho pitch aills, the
error;,In settl", the VS dyatea nearul*U4 Clettont.

Aiming error, the orrors In av~u~tlw t-e OSP around the yaw
and ApIn dxed,,the eI~ror In letti~ng thr LS systea measuring element

are,, In ain analo~out vianner, t~aken' Intu account a3, condtant co94Mpenets I
of angle Y. F
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4 . The error in activating the RKS program T.

As can be seen from Fig. 5.10, this erroir leads to a shift in
curve wxl (t) along the abscissa axis by constant value T. ExpandIng

W_ (t) - w* (t-r) into a series by degrees of v, we obtain as a first

Sapproximation Aw (t) --U wl(t

•,"I

Fig. 5.10, The effect of
the error in activating
the PKS program on the
longitudinal component of
apparent velocity.

The eorrot in activatift the pitch program is taken into account

Ini an analogous "rneor

•i. The OS drifts due to the etrect oa contant momento can be
Au•ted proportiOnAl to tizO:

Who"•e r, 0r, ye, - etapectIvely the rates of OSP dkritts auomud the

pitchl, Yale, atw spin ae$.

•,6. 0P drIfts due to tho 4tatlatIoal lack of balance of the

gtyro-locks.
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It is necessary to n.-te the following characteristic of drift of

the GSP gyroscopes. For gyroscopes mounted for stabilizing a GSP

equipped with stabilizing engines, the perturbing moments with respect

to the axes of sensitivity of the gyroscopes are compensated for by

stabilizing mcments and do not give rise to drifts. However the

harmful effect of the perturbing moments with respect to the axis of

precession Is preserved and produces drifts of the OSP relative to the

axis of sensitivity.

Let us examine the expression for a corresponding error as

Illustrated by a pitch gyro-block Installed at angle Ors to the Oxr

axis (Pig. 5.11). In Whls case the component of apparent acceleration

causing drift, is equal to wxl sin (Om -t#), and the magnitude of

drift Is determined by the expression

where 4 - the rate of drlrt or tho OSP around the pitch axi* under

the effect or acceleration due to gravity.

3- 1PmPie. 5.1i, •Po determitning

Lthi dritt or the aP

h 
KEY: (1) Axia vt detnitivity.

IrI
The OSP dvifLW 4rmui tho yav WW~ upith axoz are dotermined In anA

.......u .......



Calculating Dispersion

Examining expression (5.57) as a recording of a certain

- zrealization of the random deviations of the parameters of motion, let

Sus transform it, having clearly distinguished the systematic errors,

* the instrumental errors of the GSP and the other instrumental errors:

• A~~L=-AjL -4- A IJA -AI-

(5.84)

- a.- J A•L + AAL + A/L.

Let us write the expression for the actual realization of random

deviation for the following in an analogous manner:

AZ= Az+Arz+AkZ (5.85)

Terms A L and A Z in these formulas are due to the instrumental

errors of the instruments shaping the main instruction for NS

separation, and the instruments of the lateral stabilization system.

As follows from expressions (5.84) and (5.85), the calculation

equations for determining the instrumental errors have the form:

(5.86)

--N Z (ZAtVc+± Z A1 ýW C(5.87)

where A J - the instrumental error in calculating controlling

functional J; AtHV4, Ate{ - the instrumental errors in determining the

lateral component of velocity and the lateral coordinate.

Terms ArL and Ar Z in formulas (5.84) and (5.85) represent the
deviations in the NS impact points due to the instrumental errors of

dthe GSP :

I.A=A•--a t Ir 4+a',?A T (5.88)
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A rZ--A*iz'.-- t AgrV - &IArV,+ WAV-' . .#c+

(5.89)

The instrumental errors of the OSP A tVC At.ý are calculated.

by formulas (5.77)-(5.82).

The first terms in formulas (5.84) and (5.85) are the systematic

errors brought about by the approximate nature (incompleteness) of

the controlling functional.

Let functional (5.49) be accepted for range control. Comparing

it with exact functional (5.6), we detect the following systematicI errors brought about by simplifying the functional.

1. The error due to neglecting terms higher than the first

order of the expansion of function L into a Taylor series- which can

be approximately evaluated using formula

ALR;=.- a2L- Aqiqjo (5.90)

2. The error due to disregarding the isochronous variations in

gravity

a +
* V A=g - \tgedtA -A g~dt+

0 OLq

•~ 2L. I•Agadt di • Atg,,dldt.

(5.91)
0 0 00

3.. The error due to disregarding the effect of deviations in

the parameters of lateral motion on firing range
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(5.92)

If the direction of flight of the NS is ensured by fulfilling

conditions (5.17) or (5.19), then the systematic error for firing

direction is defined as

Saz.=-v?,, ,.--a••,,+
&Z -• AI,. (5.93)

The- formulas given above can be used for calculating individual

component errors which are then added up by the.rules for, summing

independent random values, for example,

.1/

The total dispersion due to i~nstrumental and systematic errors,

-of a control system and the perturbations during the unpowered-

flight phase oof a.-trajectory we find by formulas:

--- A +.- " ,+ -- ,L2 (5-94)

-AZ.= ] +ArLZ -A.gj-A±aLý (5.95)

.in which AnL and AnZ are determined by formulas (5.1).

""1
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CHAPTER VI

OPTIMUM ROCKET FLIGHT PATH IN THE POWERED-FLIGHT
PHASE

The selection of the control programs is an integral part of

rocket design and development. This is due to the fact, that the

design, tactical-flight and operational characteristics of a rocket

to a significant degree depend on the flight path determined by the

programs or by rhe control algorithms.

The composition of rocket flight control programs can be diverse
and depends on the purpose of the rocket, its design characteristics

and on the control system. For rockets with controlled thrust

the programs of pitch angle and of the projections of apparent veloc-

ity in certain direction can be included in the main control programs.

The selection of the optimum configuration of the flight path

of ballistic rockets with zero program values of normal and lateral

velocities, angles of yaw and roll reduces to the optimization of

two control system programs - programs of apparent velocity and pitch

angle regulation.

The program of apparent velocity regulation, is equal to

GPt , P--cqS
mO-mi

it is practically completely determined by the basic design and energy

characteristics of the rocket - by the thrust-weight ratio, by the
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thrust of the engine systems of the stages, by the fuel consumption

per second and to a lesser extent by the configuration of the tra-

jectory. For this reason, and also as a result of the rather narrow

limits of thrust level regulation the problem of selecting an optimum

program of apparent velocity regulation does not have vital importance.

Thus for a rocket with assigned design parameters the determining of

control programs reduces to the selecting of an optimum pitch angle

program which is an independent problem in this case.

A number of works has been dedicated to the solving of the prob-

lem of ballistic missile pitch angle program. However, in the over-

whelming majority of these the selection of a program is examined

disregarding the actual limitations imposed by the technical specifi-

cations on the control program, the configuration of the trajectory

and flight conditions of the rocket.

The purpose of the present chapter is mainly to present the

engineering approach to the selecting of the optimum configuration

of the trajectory or, in other words, of the optimum program of pitch

angle variation for long-range rockets with liquid-propellant engines.

6.1. SPECIFICATIONS IMPOSED ON A PITCH ANGLE
PROGRAM AND THE METHODS FOR SELECTING IT

Such flight-tactical characteristics, as maximum firing range,

nose section dispersion, and also skin temperature, rocket body and

nose section strength, controllability in the powered-flight phase,

etc., depend on the flight path configuration assigned by the pitch

angle program. Thus the selection of a rocket pitch angle program

should be carried out taking into account the specifications imposed

on the flight path configuration, together with the selection of

control element effectiveness, body skin thicknesses, by strength

calculations, etc. The disregarding of the complex approach to the

selection of pitch angle program can lead to a substantial reduction

in the tactical-flight characteristics of a rocket.

One of the basic specifications, imposed on a pitch argle pro-

gram, is the ensuring of maximum firing range. A pitch angle
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program satisfying this condition and all the other specifications

"imposed on it, is called maximum range program. Another important

specification, imposed on a pitch angle program, is the requirement

of ensuring minimum nose section dispersion.

Both requirements - the ensuring of maximum range and minimum

dispersion, are almost always incompatible. Minimum dispersion, as

a rule, does not correspond to maximum range flight. By reducing

range it is possible by an appropriate selection of pitch angle pro-

gram to diminish dispersion. Thus long-range ballistic missiles can

be equipped not with one, but with several programs. One of these

is the maximum range program (or a program close to it). It is

intended for firing for maximum range or ranges close to it. Another

program is the so-called minimum dispersion program. This program

is used for firing for minimum and intermediate ranges. Nose section

dispersion in the rocket flight using this program is less than in

flight with a maximum range program.

The flight path of a rocket when using a minimum dispersion pro-

gram is steeper (less flat) in comparison with a flight for maximum

range. There can be several minimum dispersion programs. ,ach of

these has its own sphere of application.

Besides the two indicated specifications, still other specifica-

tions are imposed on a pitch angle program, which are determined by

the operating conditions, the purpose of rocket, the characteristics

of the control system, etc. However these specifications, as a rule

do not depend on which program is used - maximum range or minimum

dispersion.

Among the mentioned specifications there are also those which

are common and typical for long-range ballistic missiles. There are

those, which are determined by the spocifics of a given missile or

its individual systems and are not, always mandatory for any missile.

Among the common and typical specifications imposed on a program

it is possible, to include, for example, the following.
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1. A missile launch should be vertical; the duration of' the

vertical phase of the trajectory should not be less than assigned,

usually determined by the launch conditions;

2. The pitch angle program should be a continuous function of

time;' the programmed velocities and the accelerations of the turning

of the axis of rocket should be acceptable for instrumental execution.

3. The temperatures of the missile body skin and the programmed

angles of attack in the high ram-pressure phase should be acceptable

from the point of view of strength.

4. In the rocket flight phase in the dense layers of the atmo-

sphere acceptable conditions should be ensured for controllability

(with a reduction in the slope of the trajectory maximum ram pressure

increases and, as a consequence of this, the perturbations caused by

the effect of such perturbing factors, as wind, aerodynamic asymmetry

of the configuration, etc., increase).

5. The rocket flight conditions in the stage separation phase

should be acceptable for ensuring reliable separation.

6. The parametric domain of the reentry of nose sections into

the atmosphere should be acceptable from the point of view of strength,

temperature regimes and the operating conditions of the automatic

equipment of the nose section.

An example of the particular specifications imposed on a program

due to the specifics of a rocket, is the specifications imposed on

the pitch angle program control system:

a) the angle included between the line of radio sighting and

the plane of the local horizon at the point of the location of the

'In this case there is meant the requirement of the continuity
of function 0(t) with its "ideal" (without gaps) assignment in the
control-nystem equipment.
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ground-based antenna (angle of elevation a) should not be less than

permissible H min' i.e.,

b) the angle included between the line of radio sighting and the

longitudinal axis of the rocket $6 should be located within certain

limits, i.e., satisfy the inequality

~6 min 6•i max# (6.2)

The enumerated specifications impose more significant limitations

on a maximum range program. This is due to the fact that any depar-

tures from the optimum program executing the maximum range, caused

by the above enumerated requirements, g ve rise to a reduction in

maximum range. Among the number of such specifications whose effect

on the configuration of the trajectory and the maximum range program

is determinant, it is possible to include the specifications ensuring

acceptable dispersion, strength and controllability.

Thus, for reducing rocket dispersion it is necessary to increase

the slope of the trajectory. With an increase in the slope of the

trajectory the values of the partial derivatives of range and lateral

deflection with respect to the parameters of rocket motion at the

moment of nose section separation decrease and, as a consequence of

this, dispersion is decreased; furthermore, the dispersion of nose

sections in the atmospheric descent pha3o of the trajectory is de-

creased. With an increase in the slope of the trajectory the loads

acting on the missile body (mainly, due to the reduction in ram

pressure), and the temperature of the body skin (due to the fact that

the time of motion in the dense layers is decreased) decrease.

Finally, with an increase in the slope of the trajectory the ram

pressures and the values of the perturbing moments decrease, which

facilitates rocket control. On the other hand, a consequence of an

increase in the slope of a trajectory ia a reduction in maximum range.
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When selecting a program of minimum dispersion the specifications
of acceptable temperature regimes, controllability and a number of
others becomes superfluous because-the trajectory in this case, as a
rule, takes precedence over the trajectory of maximum range. Further-
more, when selecting a minimum dispersion program a certa-'n freedom
of action in varying the program is possible. The fact is that a
certain variation in the program in one or another direction for ful-
filling the specifications and limitations, imposed on it, leads, as
a rule, to an insignificant variation in dispersion.

In connection with what has been said it can be concluded that
the greatest difficulties arise when selecting the maximum range
program. Thus a further examination of the requirements imposed on the
pitch angle program is carried out with respect to maximum range

program.

The necessity for ensuring the first of the above enumerated
requirements is due to the simplicity and the convenience of vertical
launch. In this connection vertical launching of long-range rockets
is generally accepted.

The flight time in the vertical phase of a trajectory t (or the
path covered in the vertical flight phase) can be varied in selecting
the flight program. The minimum permissible duration of vertical
flight is detennined by the conditions of launch safety. The duration
of the vertical phase is selected as short as posnible because the
greater it is, the steeper is the trajectory (the velocity losses in
overcoming gravity are in•,eased) and the more difficult it is to
accomplish turning of the rocket in the subsequent phase (large angles
of attack are required) [2].

The second requirement is due to the possibilities of instrumental
execution of pitch angle programs. It is evident that the technical
implementation of discontinuous pitch angle piograms is generally
impossible, because the two angular positions of the longitudinal
axis of the rocket differing from one another by a finite angle,
correspond to one and the same moment of time. Thus it is possible
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to discuss only the very high velocities of the turning of the longi-

tudinal axis of a rocket. The magnitude of this velocity is limited

by the technical capabilities of the control-system equipment. With

non-fulfillment of the indicated limitation the accuracy of execution

by the pitch angle program control system deteriorates. The limiting

of the velocity of the turning of the axis of the rocket playb a

significant role with a large rocket thrust-weight ratio, in which

the duration of the powered-flight phase is short. The necessary

velocities of turning of the rocket axis in this case can attain

great values.

The pitch angle program has a substantial effect on the magnitude

of the transverse loads and the temperature of the body skin. With

a :-bduction in the slope of the trajectory the velocity of movement

and the time of the rocket sojourn in the dense layers of the atmo-

sphere increase. A consequence of this is an increase in the temper-

ature of the housing skin and in thia connection a reduction

in the strength margins. Furthermore, with a reduction in the slope

of the trajectory the effect of che perturbing ractors (wind, variance

in atmospheric density, etc.) on the strength of' the housing is in-

creased. And finally with a reduction in the siope of the trajectoryI: in rocket flight in the dense layeru of the atmosphere the Values of

the programmed angles of attack increase and, ad a consequence, the

values of the transverse loadd incarave. Aa a result the thicknesses

of the body skins and the "dry" weight of the rocket are increased.

The loss in maxim~um range due to an increase In "dry" weight In this

case can be more than the gain in range due to the variation in the

program in the atmospheric phase.

For long-range midulleu and In particular for intercontinental

ballistic missiles the requirement of reducing body skin thickness

and "dry" weight almost alwaya limits the domain of the possible

values of pitch angle in the dense layero of the atmosphere to the

condition of small (cloae to zero) anglea of attack. The requirement

or smallness of angles of attack to the more signiI'leant, the greater

Is the thrust-weight ratio of the rocket. In the Caue of small values

of thrust-weight ratio the velocity of the rocket incrOasea slowly
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and the rocket passes through the dense layers of the atmosphere at

comparatively small velocities. With an increase in thrust-weight

ratio the velocity of a rocket increases more rapidly and the rocket

passes through the dense layers of the atmosphere at high velocities.

In accordance with this the transverse loads caused by the angles of

attack, increase with an increase in thrust-weight ratio

The flight path of a rocket In powered-flight phase affects the

controllability of the rocket and conditicns of stage separation.

With a reduction in the slope of the flight path in the powered-flight

phase the perturbing forces and moments increase, the required control

element effectiveness Increases and the conditions of stage separation

deteriorate. Furthermore, the controllability of a rocket and the

reliability of stage separation depend on the programmed angles of

attack, and with an increase in the latter the controllability _r thea

rocket and the reliability of separation deteriorate. Thus for en-

suring for rocket controllability and stage separation reliability

it is expedient to increase the slope of the trajectory and to decrease

the programmed angles of attack during flight in the dense layers of

the atmosphere. However in this case, as a rule, the maximum firing

range decreases.

The greatest dirficulties arise in ensuring rocket controllability

at th• beginning of the motion of the second stage. This is dUe to

the fact that for reducing the weight or the second *tage control

elements it is expedient to select the latter from the condition of

ensuring. contrt.Alabilrty in the rarefied layers of the atmospheres,

since the greater part of flight of the second stase practically oc-

cars in airless dpace. For this reason for ensuring reliable stage

separation and controllability of the aecond stage It is necessary tV

limit the magnitudes of the porturbationa acting In the stage separa-

tion phase and at the beginning of motion of the second stage. The

solution to this problem is more complex for rockets Ulth the low Stage

separation &Mtitudes (h c 0 km), when the aerodynamic perturbation

are comparable with the perturbations due to errors in the manufac-

ture a•rd tht assombly of a rocket. Por rockets with short first

stage flight duration the fulfilluent of the Indicated requireant

I-



I

can lead to a significant reduction in maximum range.

'Signifioant losses in range conrocted with, ensuring the require-

j ments of reliable stage separation, second stage controllability,

Sacceptable temperature regimes of the body and its strength, give

rise to the necessity for selecting the pitch angle program jointly

"wilhi the selection of the stage geparation configuration, contrql

element effectiveness, and skin thicknesses. The necessity of en-

suripg acceptazble temperature regimes of a missile body 'skin In the

ifirt place makes it netzessary to consider trajectories executing the

maximum ?ange of tockets with a high thrust-weight ratio.

For ensuring the strength aqd the pontroliability or a rocket

and reliability of stage separation.there is imposed on the pitch

angle program the requirement of smailnets of the angles of attack

during rocket' flight in the dense layers !of the atmo•phere. IXn this

phase the ptch angle program is tually taken so that the programed

angles of attack are equal to nero. The lots in maimum range due to

the nec'essity of tulrilling condition ot 0, for rockets with aS~~omparativel large powered-.lgtthz phado'Clratidn• !, small;• with a

- reduction in t4e powered-flight phase duration loss in maximum range

increases.-

The flight paths of a noo,-section In the aposphere, overloads,

temperature regimes and the strength or til-heonoe Section body' ae

mainly detemnnedby the parametel of motiorn or the Center ofr MUS

St the note section at-the m~ocent or' ltd. vetnttry into the atzospheret

- by the velocity orthe 4ose sdetIon V and by the angle or reentry

* 00. In firing.- under various geodetid conditions (.atitude or the2

launch point and tiring azuluth) tor nxiatm and aiiui ranges U'ing

the accepted pitch angle pwograW (Zagautit range, W1n12= dispen~rion)

the parameters of motion or the center or a-as ait. the aCmtnt of reentry.
*1into the attosphere fort a .erttl r•g•on, called the roeion of reenntpI

""2 of a "ne ee f insto the ataoepho.- In the caat when the rocket

'The angleof attack at the mcaent orf reentry into the atmosphere
which also determines the transveyre oveorlodo, Is not examined here,
since its dependence on the pitch wngle program c€n be.disregarded.
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is equipped with several programs, this region includes the regions,
obtained using each ot the indicated programs. The approximate form
of the region of reentry of the center of mass of a nose section into
the atmosphere using two pitch angle programs (maximum range and min-
±rnum range and minimaum dispersion) is given in Figure 6.1.

The upper boundary of the given region (line 2-3) correeponds to

employment of the minimum dispersion program, the lower line 21-4) -

the maxlnx'm range program. The boundary of the region, passing

through puints 1 and ?, corresponds to tiring for minimum range using

the mentioned pitch angle programs, through points 3 and 4 - to tiring
for maximum possible range.

With em increase In velocity V0 and in the absolute valve of the
r-eentrl angle 1301 the longitudinal and transverse accelerations ins

creaae and, &as oo~nouquenee, the w'tight of the nose section. 'The worst

(omthe point of view of noue section strength and the efficiency

4f its automatic a spttt cowiitions of reentry into the atmosphere
%:orrespond to Point 3of the Siw n rregiaa On the other hand, with

a2 reduction In thi,- 4bt~oltte valu~e oCf -Atne 0 the required weight of

the hestahlield wtveringi:J~ tn::nedo whicrh Is due to the Increase In

*Tile be~iJ'dartfl of, the, region, or the parwc#eton of the reentry

ofth@ oterter of *asa of the nood settIon into the ataos-phorn, as a

rlat* jut to the rtlute-r peredk4Ib' values, or Longitudinal and
Zateai cI~~ioi4.Thy la.ttor are dvternined by the stivust-h

Aind by UWo orito of nozfl orntiont or the uautciatic equipment

o~f t,4t v&istlfi nd, finally, - .4y the level or' the development

Of teehnol&Zy at thie *,Igo or t11t4 deaigning of the rocket. The pitch
ah~lt prcgrtim ofr a ballistic Mi441tie should be 4~h, t.tt
etofl or 99dttion of the fiose section1 Vand 0C4-v sai fv th4 USbIL~htd

region or I revuntrj *ntt the atmriaphere.

hpi,6qUre0A&nze I&vý4q on ttnt $vttch a�h Proramm unth 'orl M to

ensuring Limited VIA'-Ues z4r the angle Of' c.ato tSand the onboard

* atlas 0C~ the iln tc rsf iNdia sighting" aret iaurwod by the 4etatiwal



-0 Fig. 6.1. The region of the re-

- entry of a nose section into the
atmosphere: a) region of reentry
corresponding to the maximum range
program; b) region of reentry cor-
responding to the minimum disper-
sion program.

I characteri*tics of the radio control syatem. In particular, the re-

quirement for limiting the range of the possi')le vr.lues of the angle
Sof elevation by the condition 8.1 ;P a )4m is connected with the tact

that with a reduction in the angle of elevatior of the line of radio

sighting 8
H the measuring errort of the radio control system in the

.I parameters or motion of the rocket due to an Increase in the offect

of the hetervgeneity of the atmosphere, Its turbulence, refraction,

etc. on measuring accuracy increase. oFor this reason,. If the po*•ible

value's of the angle of elevation a., ar-e not limited downward, then

the measuring errors of the radio control sytttem of tho pAratters, of

notion, and also of the deviation of the tac• aetO"on Impact points

fro the target Fheno using fiat traJefatres )tll be large.

The rquirwpt4nt for limiting the rancv of viriAtion In the on-

"I board aOgle of tne line ot radio sighting 16 brou$ht sO.ut by usingjnar"ow anboard and grodnd-biaced Antenina ndS~ticn pbAtwrno. (As- Is

knownh with an In-ce*ada In the width 6f the 4toennA raedation p lntter

the roel4n or 40ace i" in theuad, in, nwlch the radio •aved are prop-

Agated And aceotringly the probability or detecting 4r radi eed itiione

is ieres~. Purthextore, witih 'an Increase In the width of the
radiation pattefn the powee requirtwent of' the radio tfr~ansmtter Is

O . increased.)

In aonnectlon with this Mhe nunges ts tho vrion In te ronboa"

anale of the line of radio Sighting Is nucually anall. it certa.in part
cof this, range i-s expended on the oacillattont of the rccket. ai-uevSl It&

cevntvr4 or' Aass. if' In the radio control phade prograraed pitch t-4rn-

iig Ot the rocket of an order of several1 degrees Is executed, then the
remaAninPg (available) range of vmdiatwio in angle0 0 Is smaall (list



than 50). Inr connection with this in the program of a rocket flight,

in which separation of the nose section is accomplished upon instruc-

tion from the radio control system limitation of pitch turning of the

rocket is specified in the radio control phase. Usually this phase

of the trajectory is rectilinear.

One of the requirements, imposed by an autonomous rocket control

system on the pitch angle program, is the limitation of the maximum

angle of pitch turning of the rocket in the powered-flight phase to

a maximum of 85°-90' (in firing for ultra-long ranges the angle of

pitch turning can exceed 900). If the programmed angle of rocket

turning exceeds the indicated limit, then the structure of the gyro-

scopic instruments is complicated, their overall dimensions and weight

are increased.

The pitch angle program ensuring execution of all the requirements

imposed on it, we will henceforth call the optimum program. For

selecting pitch angle programs various methods can be employed.

In general the selection of the optimum pitch angle program is

a complex variational problem. The solution to this problem by clas-
sical Euler-Lagrange methods is fraught with severe difficulties.

Even in the simplest case, when a rocket flight occurs in airless

space, these methods lead to the iiecessity of solving a boundary

value problem for a complex system of differential equations. For

the atmospheric flight phase the problem becomes still lengthier due

to the necessity of selecting a pitch angle program taking into ac-

count the requirements demanded by the control system and the rocket

design, which were discussed above.

Actually these requirements in the individual phases of a tra-

jectory will so narrow the sphere of the possible variations in the

pitch angle programs, that for these phases the solution to the vari-

ational problem does not have practical significance. Furthermore,

the design execution of the rocket body And the systems, composing

it, imposed restrictions on the parameters of motion (for example,

on the angle of attack in the sphere of high ram pressures and on

the stage separation phase, on ram pressure in the stage separation
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phase, etc.). Under these conditions in attempting to solve a.prob-
lem by classical methods of the calculus of variations such crude

assumptions are unavoidable, that the effectig-eness of these methods

comes to naught.

The consideration,- presented above led to the development of

engineering methods of selecting cptimum trajectury,.on the basis of

which lie the ideas of the direct methods of solving variational

problems. One of these methods is examined in Section 6.3.

In conclusion let us note, that there are great prospects in the

development of methods of selecting the optimum trajectory of rocket

motion for the new methods of the theory of optimum processes which

make it possible to find solutions of optimization problems taking

into account the limitations of the possible values of motion param-

eters'or rocket characteristics [19], [25], [28].

6.2. OPTIMUM PITCH ANGLE PROGRAM IN THE NON-ATMOSPHERIC
PHASE OF A TRAJECTORY

The flight range of a nos.e section is determined by the parameters

of motion of the center of mass of a rocket at the moment of the

separation of the nose section from the last stage of the rocket,

i.e., at the moment of the introduction of the main instruction:

• L==L(Q). (6.3)

The parameters of motion of the center of mass of a rocket at

the moment of the introduction of the main instruction qi (i = 1-6),

in turn, are determined by the pitch angle program 0(t):

q(=qdt) (i~=1+6).

Thus, the flight range is determined by the program of 4(t):

S=L[f(t)J.
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The necessary condition of the extremum of functional (6.3) can

be written in the form

Lq)=q,=O. (6.4)

Here3 LA - the ballistic range derivatives with respect to the

parameters of motion at the moment of the introduction of the main

instruction; 6q, (i = 1-6) - the deviations in the parameters of

-motion of a rocket to the moment of the introduction of the main

instruction, caused by variation in the pitch angle program 60(t).

The pitch angle program 0(t), satisfying condition (6.4), real-

izes the maximum firing distance. We will carry out the determina-

tion of this program under the following assumptions:

1) the effect of the rotation of the earth on the parameters of

motion of the rocket in the powered-flight phase is small and it can

be disregarded;

2) the aerodynamic forces are equal to zero;

3) the gravitational field in the powered-flight phase is plane-

parallel, the acceleration due to gravity is constant (it does not

depend on altitude).

The equations of motion of a rocket in the powered-flight phase

of its trajectory in a terrestrial coordinate system in this case are

written in the form:

s~TQ g (6.5)

I " ;
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The parameters of motion of a rocket at the moment of the intro-

duction of the main instruction tK can be determined by integrating

the equation of (6.5):

0

o
= vY + P(-V sin o ( t) d r=

0

xxCXO+ VxOtK+ ( COSf cs(i) dt)d (6.6)

=X0+ VxtK + (tMI. ) cospQ () di;

0

STime t in these equations is a constant value. Thus the varia-

tions in the parameters of motion at the moment of the main instruc-

tion and the variation in the firing range with variation in the pitch

angle program will be written in the form:

0a

\ -(6.7)

0

8x= s-y I* )- n. syn (1)8?p(1)di;
0
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tK• a~y.=(t-t)" cos o (t) bpl(f) A

/0 1 (I&pQ.m (6.7)K [ --• (A -• sinqp(t)•e(t)+ Cos f?(t) (t)- .)

-: ~+ O .,~ yK (t--t) Cos'?lt) lto1)]t.
lX

Considering the arbitrary nature of variation 60(t), it is pos-

sible to show that 4 i-e necessary condition of equality to zero varia-

tion in range 6L is the equality to zero of the integrand at any point

of the trajectc y of the powered-flight phase:

_L COS((-=O. (6.8)

The last equation directly gives the dependence of the optimum

pitch angle program on flight time:

(1K- ) +0)
tg () -V- (6.9)

This formula is suitable in principle for programming the pitch

angle of ballistic missiles in firing for any range, if the accepted

assumptions are fulfilled. Let us examine these assumptions in more

detail.
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The first assumption, apparently, has insignificant effect on

program *(t), since the parameters of motion in the powered-flight

phase weakly depend on whether or not the rotation of the earth is

taken into account in equations (6.5). Moreover, the effect of the

rotation of the earth on the appearance of program ý(t) with variation

in firing range and in the geographical conditions of the rocket

launch (the latitude of the launch site and the firing azimuth) is

taken into account in formula (6.9) by corresponding variation in

the derivatives

d VZ aVir Ox ay

The second assumption can impose substantial restrictions on the
• possibility of using formula (6.9). For rockets with a firing range

of up to 1000-1500 km the powered-flight phase of the trajectory, as

a rule, lies in the dense layers of the atmosphere. The determination

of the optimum pitch angle program using this formula unavoidably

leads to error. For intercontinental missiles the greater part of

the powered-flight phase (approximately 60-70%) lies in the rarefied

layers of the atmosphere, and in this part of the trajectory the

optimum control program is close to program (6.9).

The third assumption is rather well fulfilled in firing for

pshort and intermediate ranges, when the altitude of the powered-flight
phase does not exceed 80-100 km, and the range angle at the moment

of the main instruction does not exceed several degrees. The condi-

tion of the constancy of acceleration due to gravity in this case is

fulfilled with an error of 2-3%, and the condition of plane-

parallelness the gravitational field - with an error of l0-20. For

intercontinental rockets the cited errors increased by two or three

times.

The errors in determining the pitch angle program due to these

errors can be reduced, if the acceleration due to gravity in calculat-

ing the powered-flight phase is taken equal to its mean value in this
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phase, and the equations of motion (6.5) are written in the coordinate

system O'x'y', the origin 0' of which is located on the surface of the

earth at a distance x(t )/2 from the launch'point in the line of fire;

axis O'x' is directed at a tangent to the surface of the earth in the
firing plane; axis O'y' - along the vertical.

The equation of the optimum pitch angle program 0'(t) in this'

coordinate system takes the form

StK (0)= (, (6.10O)
YKX

where aL/x', aL/Ay', L/AVx ,, LiAVy, -the ballistic range deriva-

tives with respect to the parameters of motion in the coordinate

system O'x'y'.

The conversion of the pitch angle program to a coordinate system
located at the launch point, can be accomplished using formula

(Pl (f(=9)W-X,

where X - the range angle from the launch point to the origin O' of
coordinate system Ot x'y'.

It is necessary to note that the determination of the optimum
pitch angle program using formula (6.9) is an iterative process,
since the partial range derivatives with respect to the parameters
of motion of the center of mass of the rocket at the moment of the
main instruction are unknown. First the calculation of the trajectory
with the pitch angle program selected as a first approximation is
carried out and derivatives (a L/A x)K, (aLy )' (aL/a VX)H, (KL/aVX))
are determined. The ballistic derivatives obtained during the first
calculation, are used for determining the second approximation of
the pitch angle program already using formula (6.9). Then the cal-
culation of the powered-flight phase is repeated, etc. The rate of
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convergence of the iterative process depends on the closeness of the
first approximation of program 01 (t) to the optimum program.

6.3. THE METHOD OF SELECTING PITCH ANGLE
PROGRAMS

General Aspects

As is known, the solution to a variational problem by the direct

method consists in the following stages.

1. The construction of the minimizing sequence of functions

Yi(t): yl(t), Y2 (t),..., Yn(t), possessing the property:

-Urnll I(y,,(i))=rnin I(ySWt)) (ff ( 10o)), (6.1l1)UM (6.. 1-L)

where I(y(t)) - the optimizing functional.

Curve y 0 (t) is limiting curve of the sequence yn(t)} and the
solution to the variational problem.

2. The proof of existence for the sequence {yn(t)) of limiting
n

curve y0 (t).

3. The proof of the legitimacy of the maximum transfor (6.11).

With respect to the problem of select!.ng of optimum pitch angle
* ! programs it is necessary to find such a sequence (0n(t)0, which would

ensure the extremum of certain functional ;:(¢(t)), for example the

maximum distance L(O(t)).

The methods of constructing sequence [n can be rather diverse.i11
However the most expedient is the method based on the representation

1of sequence {n in the form of a sequence of families of programsn
depending on the parameters l, ..*, X .
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If program Pn(t, XI, ... , Iyn) depends on one unknown parameter

(n = 1), then the family of such programs is called uniparametric,

with two unknown parameters (n = 2) - biparametric, etc.

Our problem will be to determine such a program of n (t, AI ... ,

An), which would approximate function 40 (t), realizing the extremum

of functional L(O(t)), i.e., would ensure insignificant difference

in the value of functional L(O (t)) from the extremum of functional
L(ý0(t)) on the condition that program On(t, A1 , ... , A n) satisfies

all the requirements imposed on the configuration of the trajectory

by the rocket design and by its control system, and the expenditures

"of time on searching for the optimum pitch angle program n (t, XlS

nAn) are acceptable for practice.

The selecting of the sets of programs {n ) is to a known extent

arbitrary, however, as was already mentioned earlier, the requirements

imposed on the configuration of the trajectory and the pitch angle

program so narrow this "arbitrariness," that even the initial set of

programs for the individual flight phases becomes almost determined.I The selection of the sets of programs is limited to a class of con-vi
tinuous functions, since the pitch angle program should be oontinuous;
in the high ram pressure phase the appearance of the set ( n) is

determined by the condition of small angles of attack; in the region

of the main instruction from the radio control system - by the condi-

tion of the constancy of the pitch angle, etc.

When aelecting the sequence of programs {( n there is no need to

carry out the proofs of existence for this sequence of limiting curve

(t) and for the validity of the maximum transfer (6.11). In fact,

the sphere of possible variations in the pitch angle programs taking

into account the roquirements presented in Section 6.1, is completely

limited. The initial set of programs *i(t, A1 , ... , Xi) and the

optimum pitch program *0 (t) lies in this narrow sphere. Thus even

without mathematical proof it is obvious, that with an increase in

the number, of parameters Anand when selecting their optimum values

from the permissible sphere the program On(tt A1, ... , Xn) from the

examined sequence of sets of continuous functions will approach the
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optimum program.

Further, for fulfilling equality (6.11) it is necessary that func-

tional L(O (t)) be continuous in a class of continuous functionsn
*n(t, X *l.' x' ). When the optimizing functional is the firing

range, the continuity of function L[E (t, Xl, ... , x)] is obvious.
n n

Finally, it is necessary to note that for practice there is no
need for the strict fulfillment of equality (6.11), and the fulfill-
ment of this condition with a certain error AL., which corresponds

to the permissible. loss in maximum range:

Sets of Pitch Angle Programs

The powered-flight trajectory of a rocket can be arbitrarily

divided into three phases:

1) the subsonic velocity phase (0-t);

2) the trans-and supersonic velocity and the high (q > 800-1000
kg/m 2 ) ram pressure (t,-t 1 1 ) phase;

3) the low ram pressu.'e phase or the non-atmospheric phase

(t 1 1 -t•).

The 1st Phase. The configuration of the subsonic phase of the

trajectory weakly affects maximum range and rocket dispersion. In
connection with this the pitch angle program in this phase is selected

from the condition of a safe period for the starting of vertical

flight t., permissible pitch turning of thL rocket and ensuring
small angles or attack at the point of linking of the lot and 2nd

phases.

The pitch angle program In the Ist phase after vertical flight

231



(te < t < tI) can be selected in the form of a cubical parabola
(Figure 6.2, a) or two straight lines (see Figure 6.2, b):

4 (1) -at+bt2+c when t*<1<tg (6.12)

or

t- -- i(I--s) when (6.13)

t•-- y*--4l) when I •.

I 1P

V1

4) b)

FPi. 6.2. The pitch angle program lit the
initial phase or the trajectory: a) in
the form of a cubtical parabola; b) in the
form of two egiments of straight lines.

Coeffioients a, b, c, In the parabola equation and the slope or

the straight lines are determined by condition a. 0 when t a t19 by

the value or pitch angle 0, at the dame moment and by the permissible

magnitude of the rate of pitch.

The 2nd Phase. The basic requtrements, imposed in this phase on

the pltah angle program, apart from ensuring maximum range and the

.auigned dispersion, are the ensuring or limited transverse accelera-

tions, accept'able temperature regime*, rocket controllability and
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stage separa~ion reliability. The set of programs In this phase is

characterized by the cohdition of small angles' of atýtack which can

be, written in thp form

, nt)'--•-Cosey(t) wn'e, (tI <1 01t). (6.14)
V

The integration of, equation (6.14) gives the following expres-

sion for the pitch angle program in the 2nd phase:
U -

I.rC

?2(1t)=-arctg hI + -- jjj, (6.15)

I[
Thui, the pitch angle progr.m of a rocket ensuring the amall

values or angles of attaci in ar or a i th rim pr.,ttsures, depends on
the Inititl value of pitch angle 4, and the ratio g/V. Taking into

account that z'atiq g/V practically d•os not depend on the variations

- in the flight path-within aertain llmits, It is possible to consider

that the Pitch angie progtam ofr a 1-o•iktn th• Inq eoc4 phase3 Id do-

tenmined by parametir 4. The itevtl-on of tho r4asnltude of this[parameter should be earried out takalr fintoatu thabvonmr
at"Od requl roments.

'The 3rd Phase." The basic requIrenetnlta impused ol! the pltth angle

program In this phwhý arV. the enaurlnc of maximum rtl'ng ratge and

the addligned diaperslon and In n*aaly a ti e the enurifr orf th

. icceptable conditions for radiQ contrA s• y ,ytem Operation.

DurIng Vlght in a vacuum the mazimý; range IC ensuivd by thte

program detemtined by expresiton 6.9). Tbin, pitch angle program can

be accepted as optm.tu, If no other irpfcicirlc restrictitqn are imp-Yosed

on the Volt of the PjogtaA In tihe third filght phase.. hn accorda•c•

with oxpM-casion (6.9) the pitch 5nUgiv In thill phase degea eavs rotughly

with Constait angular, Velo ity t"

layever With such a pitoh angle progr=m the ensurlng or the
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normal conditions for radio control system operation are made diffiuult.

Furthermore, it is necezsary to consider that the variation In
the pitch angle of the rocket in the powered-flight phase by 900 (in
firing for long ranges) complicates gyro-instrument design (12).

* Considering the above cited considerations, it is possible to
construct the following sequence of possible pitch angle progracis:

1) the configuration of the trajectory is characterized b-y condl-.
tion ca 0 from * a* up to ttc end of the powered-rllgtýt phaso tone-

parameter set 4(t, *Q)3;
2) from ***,to a certain mozent of time the progrAm Irs

characterited by the condition a 0,- subsequently the pitch angle is

contan * *~(biaraetrc et O~tt, $*, #tM,

3) proti the . light phase when a o until tile ;9.ttinttent of a

certain value * it tho angular rate of petitsh -ethg sabo imally per-
.dTh1-blb -0 , * .ubutqtp yi a nft ( et a ric set

bac•h ut the e Otineraud bet#, e ofep the tint, rather fully re-

aliaos taim range wIth o nsslgtfon Pro& the point of'
view ts!' ithetyof iIn0i~Lkaient rv-,hlttlat n the second Ffaiy Is

piNerae; .n1 thils cah the laee**rha of the energetically optla-
pitich angle pir rA in the 23rt- flight ph-ase by a program with -constant
Angle * W c akea It poztible to eliskinate the Above mentioned
ide ri.c ienties -n the opit,1t=n program with inig~nittcant loss In asti-

the Selecti-on of the Optfimum Paraeotets of the Pitch
Angle Program

In accordance with the direict methods or the calculus of Varis
tions the deteztlnatioi uf the Optluwt parameten or the pitch angle
prcgrar Should be carrPtd out by investigating the optimizing func-
tionals (the range, dispemlon, etc.) ror the extreut. HaoVeVer the
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use L? the coawion methods of determining tht extremal values of the

parameters of the program is not possible as a result of the complex
Sdependence of range and dtapersion on the peters k and 0 .In

I this connection the craphlcal-analytical metrAd of determining the

optimum values of parameters 0, and ý,O which consists in the f-llow-

ing, is preferable.

A certain set of curves oPt, o~ >0, Pt ti

0(t 01M, N M i svectd, ver £ which' t~l satisfy the
"::;additio: l . requ.e;-6, imjoted ovn the in,, hnOlt tide dytem

of' equatlwnia of uIotwi-, of' tlhe ZCkfr(tV- ý At O -4vw anid
Wz poweted-flIght phased of the traJtjet!ry Lhe dqpevndenes of thi

* u~~~ptimizing functionalu I(COt) -rainge- ~prttn t, and also of
other eharattr•srbi of h tdce -4 f

the noe sctIOn, an,6los Qof radio 416ht~ng and others on. thv param-
atom or programs4 *I 4re obt~ained. Sýýv -ttalned de-penionced Are
NeprQSonted graphiCAlly and are usdfo-1evtit thle OpimjrW vaUe

or vhid parwmdtora- of. thr pitch angle Pr4grh4o, whie1b NxVU0CC to thoe
following zsdtage.

ctlens depoding On thees f the pltc,- aIng -a -zN

. l t thi .tlv9 lilt th:zc c hu

b odyqVeringa, the '"4rj" wcightar or tnCokr t'Wl otrlee

tMent eticivn leic ~ aij~ iilkt tpri.o, aavZ*w~

choractrotlc -zoIrd arioSv~e 4 j.;.Ua

I' tt-. *t-fpeet to roc,-et and

•,tat iivi ue4 lýNf te jrgieaw pavaneto whien

II to u~axiw&. rirIog IwAng W~t~th~ foraigtved do.ri

As a ewtpit let t.a, esaa~hlbt t.4c ý- ;r' elcctlas h As



parametric values of the pitch angle program for a rocket with as-

signed firing range L0 . In this case for clarity and simplicity of

discussion, from th!e complete complex _f requirements (see Section

6.1.) we will consider only the requirements of ensuring radio-line-of-

sight (6.1) and (6.2) and permissible overloads.

The approximate dependences of range and dispersion, angles of

radio-line-of-sight, angles of departure and reentry of nose section

into the atmosphere on the parameters of the pitch angle program are

given in Figures 6.3-6.11. From an examination of these graphs it is

possible to draw the following conclusions.

L

i~is'

Fig. 6.3. Fig. 6.4.

Fig. 6.3. The dependence of maximum firing range on program param-
eters €I an5

Fig. 6.4. The connection between the values of program parameters
• and ¢ which ensure maximum firing range.

The combinations of program parameters corresponding to maximum

range and to vinimum dispersion, do not coincide with each other.

The angles of departure ccrresponding to minimum dispersion, are

larger than the angles of maximum range; with an increase in the
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angle of departure maximum range decreases. Of the conditions of

radio-line-of-sight requirement (6.2) is the most essential.

i-.

1±P

4 

.-

@.g•-.-.-..- 

-

$t

Fig. 6.5. Fig. 6.6.

Fig. 6.5. The dependence of maximum firing range on program
parameter € with optimum values of angle .

Fig. 6.6. The dependence of the angle of reentry into the
atmosphere 00 on program parameters I and € .

An example of a permissible region of program parameters obtained

taking the dependences given above into account, is shown in Figure

6.12. In this figure the curves, corresponding to equal ranges, are

indicated by dot-and-dash lines, and the curves of equal dispersion -

by solid lines. The selecting of the optimui values of parameters

01 and , from the permissible iregion reduces to selecting such com-

binations of these parameters which at the assigned dispersion cor-

respond to maximum range.

The examined method makes it possible to solve the problem of

determining the optimum pitch angle program in a complete formulation

taking all the technical specifications and limitations into account.

Moreover, this method also has a number, of other advantages.

in designing it is frequently necessary to solve the question of

variation in the optimum pitch angle program with varlatlon in any

characteristics of the rocket or, the speciflcations imposed on it.
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In this case for selecting a new program the results of the previous

investigations can be used. Moreover, by using these results, it is

possible to forecast the trend of the variation in the program with

variation in the rocket characteristics.

The method makes it possible to find the solution of the problem

of optimizing pitch angle program with any accuracy. This fact is

very important because at various stages in the design and the devel-

opment of a rocket it is not always necessary to know the exact solu-

tion of the optimization problem; a rough approximation is sometimes

sufficient. The presented method in this case is very effective,

since it makes it possible to find the solution with the accuracy

which is required at the various design stages.

Fig. 6.7. Fig. 6.8.

Fig. 6.7. The dependence of the slope angle of the trajectory
at the moment of the main instruction 0• on program parameters

•Iand €

Fig. 6.8. The dependence of the angle of radio-line-of-sight
•3 on program parameters ¢I and CK: BH - the angle included
between the line of radio-line-of-sight and the plane of local
horizon at the point of the location of the ground-based an-
tenna; 8N rain - minimum permissible angle 8 H, determined by

the permissible measurement error by the motion parameter radio
4 t<;ontrol system.

To J 4



t%
t'Pi

Cf "s"."." -.. .f:,

Fig. 6.9. The dependence of onboard angle 8 of radio-line-
of-sight on program parameters (p and - the angle in'-

cluded between the line of radio-line-of-sight and the longi-
tudinal axis of the rocket; 0 6 max' mi - the maximum and

minimum permissible values of the onboard angle of radio-line
of-sight determined by the width of the radiation pattern of
the onboard ground-based antennas; I and II - the boundaries
of the region of parameters 4'I and p•, guaranteeing the loca-

tion of angle • within the range < mi < max under

all geographical launch conditions: - the value of angle
b at the moment of the main instruction: ..- the value

of angle • at moment of the begining of operation of the

radio control syatem.

Fig. 6.10. The dependence
between program parameters

and p , ensuring during
P firing for maximum and min-

imumi ranges permissible
-not values of the onboard angle

I . g Ines 
of radio-line-of-sight.
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Fig. 6.11. The dependence ofS. range dispersion and lateral
dispersion on program param-
eters 0I and S0: S - the

area of the dispersion ellipse
taken as unity.

let.

C I (p.u

7,S 7 45 8 5 5 4.5 4-A

, • - . PoM

Fig. 6.12. The permissible region of program parameters
and I - boundary of the region with respect to

permissible overload; II - boundary of the region with
respect to angle a min lI- boundary of the region

with respect to angle a6 max; IV- boundary of the re-

gion with respect to angle 8 min the line of equal
areas of dispersion with respect to area S0 , taken as
unity; ... the line of identical firing ranges with
respect to range L0 , taken as unity.
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CHAPTER VII

SETTING DATA FOR ROCKET LAUNCHING

For launching a guided missile it is necessary to carry out

operations connected with preparing the missile systems and the ground
equipment for launch. With respect to these operations it is possible

to separate into an individual group the operations with regard to

preparing the so-called "setting data" of the. missile control system

and of the ground equipment.

By setting data we understand the data which is intended for pre-

launch adjustment ouf tbe instruments of the control and aiming systems,
ensuring the following of the optimum flight path by the [NS] (FH) to

the target. The composition of the setting data is determined by the

aiming method, by the type of control system, by the form of the con-

trol functional, by the stage separation system, etc.

The present chapter briefly examines the approximate composition

of setting data and the methods of determining them for a rocket with

an inertial control system.

7.1. METHODS OF PREPARING SETTING DATA

In preparing the initial data fcr firing long-range missiles the

coordinates of the launch and target points are considered given rel-

ative to the accepted shape of the earth: latitude or' longitude X

and altitude h. With certain launch coordinates it is sometimes 7
convenient to give the target coordlriatuŽs by mearns of the azimuth of 'I



the launch-target line A and range L given on a spherical earth.

The basic initial data for firing are the value of the range

control functional J, programmed into the flight control system and

determining the time of the introduction of the command for the shut-

down of the last stage engine, and the firing azimuth A0 , employed

for aiming the rocket. These data are also called the basic settings.

The preparing of the data for a rocket launch is not completely
culminated by the determining of the basic settings. Depending on the
design of the rocket control system (in particular, on the range

control principles and of the direction of firing), on the arrangement

of the subassemblies and systems mounted on rocket, and also on the

characteristics of their operation, besides the basic settings, the

auxiliary settings can also be determined, namely:

a) the setting for the preliminary instruction for engine shut-

down (in shutting down the engine in two stages);

b) the settings, determining the moments of stage separation (for

multistage rockets), for throtting the engine in the case of an in-

crease in overload above permissible overload, etc.

Thus, for example, for a rocket with a range control functional

of the type of ( 5 . 4 9 )

t dt

for turning the control system devices the following settings are

necessary:

a) the value of function J at the moment of the execution of

the preliminary and the main commands;

b) the values of angles A and p and parameter p, depending on

range, geographical conditions, etc.
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The initial data for firing (basic and auxiliary settings) are

formulated in the form of an appropriate document,

It is necessary to note that the totality of tactico-technical

requirements, imposed on one or another type of rocket, and also the

actual construction of the flight control system, ensuring the execu-

tion of these requirements, determines the variety of methods of pre-

paring the initial data for firing. The detailed development of

these methods can be carried out during the designing of a rocket

taking its actual characteristics into account. Thus only general

concepts of the methods of calculating settLng data for firing are

I given below.

It is possible to distinguish two methods of obtaining basic

settings:

1) calculating the "falling" trajecitory for the given coordinates

of the launch point and the target (integrating the equations of

motion of the rocket);

2) calculating the basic settings with the aid of firing tables

(with final formulas).

The first method of determining basic settings can be used in

the early preparation of initial data. With rather reliable and

operationally convenient special 'lectronic computers intended for

calculating "failing" trajectory, it c:mn also be used in preparing a

rocket for, launch.

The second method makes it possible with rather, simple calcula-

tions, usually carried out by "manual calculation" methods, to obtain

the basic settingo both in advance and during the preparation of a

missile for launcii. The reliabi.lt.y of the obtalnud results is

ensured by cnecking the calculationz. IL ahuuld be riotcd that for

rockets with lung firing ranges t; e use of fiCia, tablus becomes

difficult due to their great volume.
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Of great interest is the preparing of initial data for firing

with the aid of special-purpose electronic computers [EC] (38M).

It is possible to present the following operating principles of

such machines.

1. From the given coordinates of the launch point and the target

site rocket flight control programs (pitch program, apparent velocity

program and others) are selected. The selection of the programmed

functions of the control system can be carried out by an earlier

worked out algorithm, for example, with the use of methods presented

in Chapter VI. For the selected control programs by calculating the

"falling" trajectory the necessary settings of the rocket flight con-

trol devices are determined.

2. For the possible firing conditions the set of rocket flight

control programs selected earlier is input into the machine "memory."

In preparing the data it is necessary depending on the firing condi-

tions from the given set to 3elect the corresponding rocket flight

control programs and by calculating the "falling" trajectory to de-

termine the setting of the control devices.

3. The setting of the rocket flight control devices, and also

the control programs are calculated earlier and depending on the

launch conditions are input into the machine "memory" in the form of

coefficients of certain known functions. The machine carries out the

calculation of all the necessary settings with comparatively simple

final formulas (similar to calculating settings in compiling firing

tables).

The e~nwnerated operating principles of special-purpose electronic

computers have their advantages and disadvantages.

The first method is the most universal. But, on the other hand,

the volume of computational operations with this method is so great,

that for carrying it out a special-purpose electronic computer will
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be required possessing the features of a general-purpose permanently

fixed consolo computer.

The second method is based on calculating "falling" trajectory

with selected control programs and requires solving of a complex

system of equations of motion. For solving such a problem the special-

purpose electronic computer should also possess all the possibilities

of a general-purpose fixed console computer. It is not possible to

make such a machine simultaneously satisfying the requirements making

it suitable for military application (:ompactness, transportability,

servicing ease and others).

The third method makes it possible to carry out the preparation

of the data for firing with final formulas with a comparatively small

number of simple operations. This method is the most acceptable for

the use of special-purpose electronic computers.

The final data on bazic settings, obtained with the aid of fir-

Jng tables (or upon solving the "falling" trajectory), are formulated

in the form of an appropriate documeit, the approximate form of which

is the following.

1. Spherical range Lc,

2. Spherical aziluth of the launch-targut line. A

II. Data forv L..uunWh

1. Aiming Azimuth A0 ..

2. Value of the control ful.'2ti.'1m.1 .,I

7.2. CALCULATING "FALLING" TRAJECTORY

The C~iculation of "u 1.tr, t" ,'< ,c':,'j i cr~rz'ie, out fo4"r the

S i'•: . .. " ' i•• ":•i " • • • '••• '• ; • ... " " " " .. .



preliminary and main instructions for shutting down the engine ensur-

Ing the transmission (with assigned accuracy) of optimum trajectory

from the launch point to the target. Since the moments of time of

the introduction of the preliminary and main instructions are usually

connected by the relationship

where At = const (for optimum trajectory), the problem reduces to de-i

termining only the azimuth and the time of the introduction of the

main instruction.

The basic initial data for calculating "falling" trajectory are

the following:

1) the characteristics of standard atmosphere, the gravitational

field of the earth and the shape of earth; j

2) the aerodynamic, geometric, centering [c.g.] and weight char-

acteristics of the rocket;

3) the engine characteristics;

4) the control system characteristics (including delays in acti-

vation of the instruments);

5) the engine operation time schedule;

6) the program of variation in pitch angle and apparent velocity
with• respect to elight time;

7)the geodetic coordinates or the launch and target points.

The system of differential equations describing the motion of

the center of mazz of the rocket in the powered-flight and unpoveoed-

flight phases of the trajectory Is composed taking Into account the
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requirements for the permissible m~gnitudie of~ errors in determining
data for launch.

The callculat16n of "tfajlling"l trajectory is bas'ed o!. the numneri-

-ntepowered-flight and unpoi~ered-flight phases of the trajedtory.
Theensrin ofimpact on the assigned razCe't is accomplished by

selecting the optimum time'(and the value of functional J corretipond-
ing to it) of en~ifle shupdown and aiming azimnuth.

The calculation of ralling tra ecLtry cun be carriedi out in two

1. Given: the appropimate aimiing~ sittlilth A0 1 Ui tQ ordinate
of the launch point.,(T ) and the rang~e L is ne-e~iary to deter-

minethetimeof±ntroduction of thu m~iB ificstruction, necessary for
obtaining assigned range L with the a uigned aimaing azimuth A0 '

2. Tecoordinates of the launch and target point~i (TO, T)
adthe time of' the introduotiori of the main int~zruc.tion detozrnined
inthu first stage aro given. It is necusuary 'to detemizne the

precise azimuth,iand th~en the final value of the time of thu intro-
duction oftet-ain instruction'.

In arrying out the calculations In thle. firs-t stage for the av -
signed launch point, thce acceptod appr'oximate value c:' the iripng
azimnuth and the two randomly aalectkd valutz of the time of the In-
?ýroduction of the mhin Instruction, t nd t. thc ("orlnt Oq~ or thle
Impact Puinta (T I and TLi ufre deterii.nto. 1Frcgii the as&uirned uooz'dl-
nates of the launch point "xd the ,ýbtained courciinateia or the imkpact.1 points geodetic ranges L1 and L., stre deteminsind. Subsequently thel

tlime of' the maln inatl'uctied iu madv',mr :'vpre cisuc by linear Inter-
pulatiort



The calculation of the powered-and unpowered-flight phases is
carried out fox- obtained time t 3 .

The time of the introduction of the main instruction is again
made more precise using the formula given above. In this csse it is

assumed, that

where t - that one of the moments of time t1 and t 2 , for which ALi&

equal to

A•amIL-Li (1-1. 2). (7.2)

will be loes

Thia dofinitizing is carried out until the following inequality

is satisried

i: At,(7.3)

wnere c(L) - the asaigned accuracy of Mfallirn. trajectory calcula-
tion (for range).

'Zhe calculations 1r the second stage are carried out tor the
purpose of determIct;in aimlng atimuth. For thii two values of the

time of the introduetiun or the main Instruction t 1 and t 2 . calau-
latea urider condition (7.3), and the Given aSimuth A0., the coordi-
nateS of the Impact points Tl(orlb XI) and T2(*r2 , l•) and the Uis-
tance 0 between the tdrget point and a lineo pasting through points
T and 7' ave determined. Tile deflnitizing ot the initial value of
azimuti I: carried out with formula

where ýD/;A is calculted by the %ethod of numerical difte.-entiation.
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In

SThe selectiun 0.t' * eng azlimuth i , VJialzed upo: satisfying

eondition

I1401a(A). 75

wle w v c•A) - tht asig~nd avcucacy of" the ca~ctý1on•o of "falling"

trajetQo.ry with mr-pect Wo azimuth.

A ftr f.4,teting the al~fin6 41:nuth the luoto of "falling"
trajectory I carried out using thv vt-4te orf tlhi zaimuth tw-rz thw

fin-al dfuterudr.ixtlon Of the z-±ne %:,4 the vu'tvt or tilt &tin in-
atruction, 1,e., the checking tif oondtt (..

7.3. COMPILING FIRINiG TABLES

Tabulor and Actual Conditions of RoCket Laon ch

Trv prinuaItrpi of joty.,.tr~g .. , 42 CxAeInt eL

lowing, rhe Id'-i~lkztni sot4m frec n¶sh It tne 0 a led0

U.Vit jndt4ti I' tln t~~" I.' V~ V r. 10 AC ttats

or n!;Q1pLre s- en, Ltt w;y sp,;•rt .. vr., "Ar-, •:s va n, th- fV-

v$ t ;, ' ;e ' he,.i t 4-1 C 13, 4-. I
r~u~ib~ the:. It', th rvie- ti ht¶t

ron ds t.len dev1 urn in vn -~si a.~ rr- ilg z tt

* c~~~onditira tiet 4e. 4 ii V; t~t e 4t4Z" r- t'4-.r-&K~

to I ~ Qh cftn",y t z. jb ~ p t

i~iV.cr:-l~ts .,1,V *4tVA,)it' t I. rAf the
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Since it is not expedient (and also sometimes not possible) Zo

compensate for all the perturbing factors by the control system,

another problem in compiling firing tables is the study of the effect

of certain perturbing factors on the deviations in the NS impact

points from the target and the compensation for them by corrections

to the basic settings corresponding to the tabular conditions.

The most important of these factors are the geophysical condi-

itions of rocket launch. The basic problem in compiling firing tables

is the obtaining of corrections in the setting data, taking the geo-

physical conditions of launch into account.

SMoreover, in compiling firing tables the necessity of introducing

corrections can arise taking into account control loop instrumental

errors, deviations in the launch weight of the rocket and in specific

thrust, anomalies in the gravitational field and other perturbing

factors. All these corrections in the basic setting data (with the

exception of the geophysical conditions of launch) are small values

(within the limits of a few kilometers) and their introduction into

the firing tables can be due only to an attempt to increase firing

accuracy. In connection with the fact that the calculation of small

corrections does not present any fundamental difficulties and is not

always necessary, we will examine the questions connected with the

calculation of these corrections.

By tabular it is possible to understand the following conditions:

a) The earth is a non-rotating sphere with radius R * 6371 km;

b) acceleration due to gravity is directed toward the center of

the earth and in magnitude is inversely proportional to the square

of distance from the center of the earth, i.e., it obeys Newton's

law;

c) the acceleration due to gravity on the surface of the earth

is equal to the normal value go 9.81 m/s 2 ;
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F
d) the launch and target points are located on the surface of

the earth;

e) wind is absent, and the remaining meteorological elements

correspond to standard atmosphere;

f) all the basic parameters of a rocket correspond to rated

values;

g) anomalies in the gravitational field are absent.

Under tabular conditions the basic settings depend only on the

firing range (firing azimuth is determined from purely geometrical

conditions and is equal to the launch-target line).

Actual firing conditions differ considerably from tabular condi-

tions. The effect of these differences on firing accuracy (with the

exception of the geophysical conditions of launch) and the solution

of question of the necessity of taking them into account in the

basic settings depend on the control system characteristics. In

general in calculating basic settings depending on geophysical condi-

tions it is expedient to take into account the rotation of the earth,

the non-sphericity of the earth and the non-centrality of the gravi-

tational field.

Calculating basic settings

Since the method of determining setting data can be worked out

only by taking into account the actual characteristics of a rocket,

then for example let us examine a rocket equipped with a longitudinal

acceleration integrator, the axis of sensitivity of which is directed

at a certain constant angle X to the initial horizon at the launch

point, by the system regulating apparent velocity and by the

normal and lateral stabilization systems. The instruments of the

normal and lateral stabilization systems and the sensing heads of the

longitudinal acceleration integrators are mounted on a gyrostabilized

platform. The programs of variation in pitch and apparent velocity
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are considered given and do not depend on the firing conditions. The

range control functional is determined by the magnitude of apparent

velocity wX in direction X: J =w

± Let us examine the calculation of the basic settings J and A0

depending on geophysical conditions.

The problem consists in determining the range control functional

J and the firing azimuth A0 from the known geodetic coordinates of the

launch point 40yr X 0 and the target *rL , .

Firing tables are rather convenient for practical use, if the

spherical firing range Lc., the spherical azimuth of the launch-target

line A c and latitude *r in them are taken as input values.

Values L and A from known Cr0 X0 and ry' X. can be deter-

mined by formulas:

R arceos [sin %0 sin . + cos &o COS •A cos (X.-- .)J:
A= arcsln [sin(A,-- ) CO.S (7.6)

in which the geocentric latitude of the launch point or the target

point is connected with the geodetic latitude of the corresponding

point by formula

Titarctg(L t,(77

"where a and b - respectively the semimajor and the semiminor axes of

the terrestrial ellipsoid.

The dependence of settings J and A0 on A and 0 for assigned

L can be represented in the form of the following series:
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J=J 0 J1 01-JA.. .JPJ 0 ; 1(7.8)
where N and M - the number of the selected members of the expansion;

and - the spherical functions from t0' Ac
.1O

The coefficients of the expansions Jl' "''' JN, Kl' ", KM are

calculated according to the appropriate formulas on the basis of data,

obtained by numerical integration of the series of the reference

trajectories. As a result the values of coefficients Ji(Lc¢) and

Ki(Lc¢) are obtained for all reference ranges of the range interest-

ing us.

The values of magnitudes J and Ki for the intermediate (between
reference ranges) ranges placed. in the firing tables, are determined

by quadratic interpolation of dependences J (Lc¢) and Ki(L

The interval of the inserted ranges is selected so that the er-

ror due to linear interpolation of the tabular ranges in calculating

the basic settings does not-exceed the permissible.

For. the final sclution to the question of the number of the mem-

bers of the'expansion inserted into the firing tables the effect on

firing range and lateral deflection of the last members of the expan-

sion is investigated.

Evaluation of the necessary number of members of the expansions

is carried out proceeding from the required accuracy in obtaining

magnitudes J and A0 on the basis of analyzing of the remaining members

of the expansions, defined as the difference in the corresponding

values of functional J'( A0) and the deviation in direction

AA'(r.0, A0), calculated by numerical integration, and of the values
of functional J"(•r0' A0 ) and the Oeviation in direction AA"(ýr0, A0 ).

calculated on the basis of the firing tables.

As a criterion of accuracy it is possible to take the condition
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when the systematic errors in determining the impact points of nose

sections due to the 'rejection of terms of the expansions of higher

orders do not exceed certain permissible values.

In conclusion a number of check computations of the basic settings

is carried out with respect to the firing tables and by solving the

equations of motion of the rocket. A comparison of the data obtained

in this way, makes it possible to judge the correctness and the accu-

-racy of the compilation of the firing tables.

System of Calculating and Formulating Firing
Tables

i i
1. The calculation of coefficients qK and p of the expansions

of the parameters of the end of the powered-flight phase q, and

depending on the geodetic conditions is carried out using formulas:

N--
S¢(D2( +, A);

S~(7.9)
POI IFI To A),

where q1, yK, Vx q, VVK); px= (zi, V2 it).

The appropriate formulas and results of the solution of the

differential equations of motion of the rocket in the powered-flight

phase the trajectory are used for a number of combinations((Or 0 , A0 ).

The results of the calculations of each parameter q and pi

in argument tR (from tH an to tKnlax) are formulated in the form

of a table.

2. Calculation of the parameters of the 6nd of the powered-

flight phase for the selected combinations (0r0 A0 ). Formulas (7.9)
i p

and J w,, the results of calculations of q K and p K the
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recommended combinations (r'0 A0 ) are used. The results of the cal-

culations are formulated depending on argument t in the form of

Table 7.1.

.able 7.1.

-,- a'" i .. . .1 " - "C ... .-
Jfll[rI j I I a

(AO,?rO)! m I I _ _ _ I _ _ _

(Ao.,ro> mI I I __ _I ___ I....I ......

* I ...... i I I__ _I _ _ I I I
(AO, pro), 1 ____K
(A•" ,'pro, J I I I I I

"I (A. ., • r •

3. Calculation of spherical range Lc•, the spherical azimuth of

the launch-target line A and of the correction in spherical azimuth

AAco = A0 -A•0 0

Formula (7.6) and the results of the calculation of the param-
eters of the end of the powered-flight phase (xK, yK, VX K3 Vy KS J)

z, Vz ) are used.

The coordinates of the impact point X4Lý , are determined by

solving the differential equations of motion of the rocket in the

unpowered-flight phase for all m of the initial conditions (the pa-

rameters of the end of the powered flight phase). In this case longi-

tude X. can be arbitrarily assigned and can be taken constant for all
calculations. The results of the calculations are formulated in the
form of Table 7.2.

4. The formulation of firing tables. For each reference value

of range LC@t, entered in the table, coefficients Lre determined.
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These coefficients for ranges lying between values Ji' Ki, are deter-

mined by quadratic interpolation. The results of the calculations

can be formulated in the form of Table 7.3.

Table 7.2

(AO, Yzro)1 (AO. ftg~pg

LC4, ICOAAA I - A c LC*, jAAej I

t42

"KR

Table 7.3
- - - i 4 n

_~ ~ - Cei,' CFO ... I I Ii I I
:......:::. I I I I It

4zivv S I'' S 1IIIn I 1 I I n

For each range (or a certain scope of' ranges) the necessity of

taking into 4ccount all N coefficients of Ji and M coefficients of Ki

on the basia calculating the remaining members is estimated. When

possible a portion of the coefficients is not taken into account.

The final number of eoefiflclents depending on range are inserted

Into the firing tables •n a given form. Moreover, coefficients char-

acterizing the effect of small perturbing factors on the basic settings
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are also placed in the firing tables.

From the above examined system of compiling firing tables it

follows that the basic settings are not directly their output values.

• -~To obtain basic settings it is necessary to carry out a number of

calculations whose results depend upon geophysical conditions, and

also can depend on certain official rocket data (for instance, launch

weight), meteorological conditions (for instance, the temperatures of

the propellant components) and others. The greater part of the cal-

culations (the calculation of geophysical conditions, official rocket

data) can be carried out beforehand with a certain problem and certain

rockets intended for its execution.

_6
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CHAPTER VIII

MAXIMUM FIRING RANGE

8.1. THE CONCEPTS OF MAXIMUM FIRING RANGE
AND GUARANTEED PROPELLANT RESERVES

The contemporary long-range balliotic' missiles are intended for

delivering a nose section over long distances, including interbontinen-
tal distances. Because of this the questions connected with ensuring
the necessary firing range, are of significant interest.

Each actual type of rocket is designed for a definite scope of

ranges, the boundary points of which are respectively called minimum

Lmln and maximum Lmax firing ranges. In firing for ranges going be-,

yond the boundaries of this scope, a rocket can not satisfy these or

other technical specifications. Thus, for instance, in firiing for

ranges exceeding maximum range, the following abnormalities can arise:

- deficiency of propellant components;

- loss of strength by the individual structural elements'due to

an increase in the overloads at the end of the powered-fligpt phase

in the atmospheric part of the unpowered-flight phase of the trajedtory;

loss of strength by the nose section due to an increase in aero-

dynamic heating in the atmospheric phase of the trajectory;
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- ah inerease in the dispersion*of the nose section impact points

.above the permlssible values, etc.

It is evident that for an ideally designed missile limitations

of this type should simultaneously st,: a limit to a subsequent increase
In range. For instance, there is nq sense in having a reserve of heat-
shield covering, if it cannot be used due to a deficiency of propellant
or loss of rocket strength.

Subsequently we will examine only those limitations on firing
range which are due to the possibility of a deficiency of propellant
compopents. Thus let us assume that the optimum trajectory and the
basic design parameters of a rocket are already selected so as to

ensure the greatest firing range.

Maximum firing range is a complex functional due to the parameters
and functions eharacterizing the design of the rocket, the engine, the
control system; the control program, the conditions of launch and

flight, etc. The maximum possible firing range of an individual roe-
ket, corresponding to the actual condZItions of launch and flight, we

oUstomgrily call rated flight r-ange L Rated range cannot serve
as design chazacterist ,c of a rocket ensuring a given spread of firing
ranges, since under actual ýroduction and operating conditions the
basic parameters of a rocket and, the conditiona of rocket liunch and

flight (firing conditions) are not stable, but vary within certain

* limits.b

The design parameters or a rocket and the firing conditions aa-
cepted In calculations as standard parameters, we will call optimum
"(usually they correspond to their average-statistical characteristics).

"* The flight range, corresponding to optimum rocket characteristic- and
firing cond'tions, we will call optimum LHo•. Deviations in the
characteristics of a rocket and in Piring conditions from optimum
values, determining the deviations in rated range from optimum, we
will call porturbing factors,

In accordance with the random character of perturbing factors the
region df t)oiir variation and thb range or the variation In rated
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range can be determined only with a certain probability . - e. Appar-

ently, for given probability & two boundaries of variation in rated

ranges exist: maximum LPco, corresponding to probability P(L•L•,)-
"£ • nd inium .,corresponding to probability P(L•i.l 1 )=

* and minimum aen

- y, (Fig. 8.1). Since the designer should reliably ensure the

firing of a rocket in the given spread of ranges, including the attain-

Ing of maximum range Lmax, then in designing a rocket it is necessary

to proceed from condition , In this case for an entire

ensemble of rockets of a specific class the reserves of propellant

ensure the shutting down of the engine upon command from the control

system with a probability of Paw-" , i.e., the achievement of the

assigned maximum range Lmax is ensured with a given prvba~ility. It

is evident, that with probability P<--L in rocket launches for
2

Lmax depending on the actual combination of the perturbing factors

the running out of propellant or of one of its components can occur,which leads to spontaneous engine shutdown. This fact is iM~ermsgiblo

because of the considerable increase In NS impact point dispersion.

Thus the shutting down of the engine of single-stage rockets and of

the last stages of multistage rocket3 is always carried out upon

instruction from the control oyatem.

Pig. 8.1, Per detertining maximum firing range by

the method of statistical testing.

Hence, maximum range Ltip ts the minimun value of rated range

u#t 0which can be attained by a rocket,, if the propellant reserves

available on it ensure with an assigned reliability Pm•.i•I shutting
2down of the engine upon Instruction from the control system (1.04 upon

achievement of a specific value of the control functional). Accord-

Ingly , the maximum vale or the control functional Jnp Is this greatest

value of the functional whose achievement Is enduied by the available
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propellant reserves with an assigned level of reliability.

According to thid definition by the maximum firing range of a

multistage rocket it is necessary to understand that maximum range

which can be attained, if the propellant reserves available on each

stage ensure with an assigned reliability the shutting down of the

engine of the last stage upon instruction from the control system.

Let us examine in more detail the connection between maximum

firing range and the amount of propellant which can be used for the

operation of the engine system. Let us visualize a rocket flight for

maximum range under optimum condition.. In thia flight for the crea-

tion of thrust certain amounts of the propellant components will be

used _p which we will call the optimum working reuervea of the pro-

pellant components. In actual flight, in urder to attain that sa',e
range, an additional amount of propellant can be required t• Compensate

for the effect of perturbing factors, for example for overcoming the

additional drag, caused by head wind. So that maximum firin range is

guaranteed by the ahutting down of the engine upon control command with

-a rliability of T ,it is necessary to have on board a rockeot,

additional (above working) propellant reseres, necessary to eompen-

aate for the effect or the perturbing factora with tho .ame level of

reliability, These addiional reserve• u called guaranteed propel-

lant componeit reserved.

Let u4 examine In more detail the coneOpt of guaranteed propel-

la nt rrvese . Let the firing of d ieries of rocketa for one and the

oame maxiium range Lmax be c~rr1ed out. In order to attain thlS range
under dlve3-6o rtivng conditions with the etreot of Vviroua rindon

ractor•t It Id noco~asa to expend In each Irlight a diff'erent 3"ount

or propellant. Tht propellant reserved, necessary for flight over av

asilgned range, are the randot% variables, aubordinate tb a certain low

of probability distribution (Pig. 8,2). In order t.at the assigned

flight range L=, is attained with a reliatility ot |---r 1.o., I.

order that 4w L ), it 1i necessary to fuel the rocket with a cer-

tain amount or propellant MOM ewuring this level of -eliab-lity.

Or the total propellant reaerve 0:a let uu diitingulth the non-

working reserve o* and the optimum working rfaerve o{ .
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Fig. 8.2. Tankage breakdown with respect to pro-
pellant function classification.

Working reserves are used as the working medium of the engine for
ensuring maximum firing range during flight under optimum conditioras.

Non-working reserves include the propellant which cannot be used
in flight as the working medium of the engine, but must be loaded on

the rocket to ensure normal functioning of the engine system (propel-
lant used for engine priming; propellant necessary cavitationless

operation of the pumps; the residual non-intake propellant; propellant
expended'before launch, etc.).

The difference

will represent the guaranteed propellant reserves.

During optimum flight-for range L = L the guaranteed propellant

reserves remain in the .rocket tanks. Hence a simple method emerges
for determining the value of maximum range from the calculation, of

S.optimum trajectory of a rocket carried out with the unused guaranteed
reserves, The entire complexity of the problem of estimating maximum

range by this method is~transferred to the calculation of the guar-
anteed reserves.. The degree of reliability-in ensuring maximum'range
is equal in this case ti the degree of reliability accepted in calcul-

ating the guaranteed reserves.

The guaranteed propellant reserves are ballast reducing the max-
irnum firing range. Actually the most important parameter determining

rocket flight range, is the ratio of propellant weight burned in the
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powered-flight phase (i.e., the working propellant reserve), to the

gross weight of the rocket. This ratio is greater the smaller is the

unpowered-flight phase weight of the rocketswhich is the sum of the

weights of the airframe and the engines, the nose section, the control

system and the guaranteed propellant reserves. Other things being

equal the maximum flight range will be shorter the greater are the

guaranteed propellant reserves.

For this reason it is inexpedient to consider the effect of all

the perturbing factors only under the designation of guaranteed

reserves. The greater number of factors examined as random pertur-

bations and taken into account in calculating guaranteed reserves, the

greater is the weight of the rocket with assigned maximum firing range.

A rocket, in which the guaranteed reserves would ensure one and the

same maximum range when firing both eastward and westward, as well as

in winter on the coldest days and in summer on the hottest days, etc.,

would be extremely overweight and inconvenient in operation. Thus it

is advisable to determine the portion of perturbing factors with suf-

ficient accuracy before rocket launch and to take them into account

in calculating the tankage breakdown by a corresponding selection of

the working propellant reserves. Thus, for instance, in calculating

tankage breakdown it is possible to consider the temperature (the

specific gravities) of the propellant components and the official'

value of parameter K - the ratio of the weight per-second expenditures

of propellant components.

Although the taking into account of the perturbing factors in

calculating the tankage breakdown of the rocket propellant components

makes it possible to more completely take advantage of the energy

capabilities of the rocket; it is far from expedient to take all the

known factors into account in calculating tankage breakdown. It is

evident that the greater the number of factors taken into account in

preparing a rocket for launch, the more difficult it is to ensure the

operational simplicity of the rocket and its highl-combat readiness.

'The value of parameter K, obtained from the data of engine bench
tests.
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Thus a number of perturbing factors is taken into account by intro-

ducing corrections either into the value of maximum firing range (fox

instance, the effect of geodetic launch conditions), or into the degree

of reliability of ensuring maximum range.

In this way, the effect of perturbing factors in ensuring max-

imum firing range can be taken into account:

- by designating the guaranteed propellant reserves;

-. by selecting the tankage breakdown of the working propellant

reserves;

- .y introducing corrections into the value of maximum firing

range or into the degree of its reliability,

In accordance with what has been said it is expedient to divide

the system of perturbing factors affecting maximum firing range into

two groups. Included in the first group are certain perturbing fac-

tors whose effect on maximum range is taken into account before launch

(in the tankage breakdown of the rocket propellant, in the corrections

for the value of maximum range and in an appropriate selection of the

target). Included in the other group are the random factors whose

effect is compensated for by the presence on the rocket of guaranteed

propellant reserves.

Maximum range can be found by calculation during designing. The

value of maximum range obtained by calculation, we will call the cal-

culated maximum firing range.

It is expedient to subdivide the problem of determining calculated

maximum range into two problems: the calculation of maximum range for

certain optimum firing conditions and the taking into account of the

effect of firing conditions on maximum range.

It is possible tu accept, for example, the following conditions

as optimum:
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- the geodetic latitude of the launch point rFo 450

- the aximuth of' aiming direction A0 =0

- the standard atmosphere parameters;

- the temperature of the propellant components, equal to the

temperature accepted for optimum in selecting the control programs.

The final determination of maximum firing range can be carried

out from the results of the agreement of calculated maximum range with

the data of flight tests, which also makes it possible to take into

account, in ar.ition to propellant deficiency, the other limitations

on maximum firing range.

The calcuiation of maximum range in the general cbse can be

carried out by using the method of statistical testing. For this n

calculations of rated range for random combinations of random vari-
ables of perturbing factors a•,e carried out and the value of maximum

range with assigned degree of reliability P is determined by statisti-

cal processing of n values of ranges corresponding to the complete

propellant burnup (see Fig. 8.1).

Since the method of tatistical testing requires considerable

expenditures of time (including machine time), it is muc;i simpler and

more convenient to determine the value of maximum range from a calcul-

ation of an unperturbed rocket trajectory carried out with unused

guaranteed reserves. The degree of reliability in ensuring maximum

range in this case is equal to the degree of reliaoility accepted in

calculating guaranteed reserves.

The initial data for calculating maximum range with this method

is the launch and final weights of each rocket stage.

The launch weight G~i of each i-th stage under optimum firing

conditions is determined with the formula

re 1 (8.1)
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where - - the weight of the optimum working propellant reserve;

Ioa - the weight of the guaranteed reserves; aoul1 - the weight of

the non-working propellant reserves; J GC the propellant expended

before launch; 0 ,M - the weight of the working pressurizing medium;

- the "dry" weight of the separating part of the i-th stage;

70,1+1 - the initial weight of the filled (i + l)-th stage;

From this expression the values of the final weights corresponding

to the complete burnup of the working propellant reserves and to the

unused guaranteed reserves are determined. Then taking into account

the values of the launch and final weights of each stage of the rocket

the powered-and unpowered-flight phases of the trajectory are calcu-

lated under optimum flight conditions. The value obtained as a result

of calculating the value of range is taken as the maximum firing range.

As is evident, the examined method is suitabJŽ6 only for maximum

range verifying calculations, when the guaranteed propellant reserves

are already known. Thus calculation methods are of interest which

make it possible to determine maximum range and the guaranteed pro-

pellant reserves corresponding to it, depending on the perturbing

factors.

One of these methods is based on calculating perturbed missile

trajectories. This method is methodically simple, but it requires

definite expenditures of machine time for the multiple solving of a

system of differential equations of motion of the rocket. Another

approximate method is based on expanding the expression for firing

range into a series for the parameters characterizing the motion of

the center of mass of the rocket, with the rejection of terms higher

than the first (or second) orders of smallness.

The characteristics of the determination of the guaranteed pro-

pellant reserves, the determinations of the tankage breakdown of pro-

pellant components and the calculations of the effect of firing

conditions on max..cum range will be examined below. A rational solu-

tion of these interdependent questions taking into account the design

fetures of the rocket and the control system and the operating
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conditions of the rocket is a necessary condition for ensuring required

maximum firing range.

8.2 GUARANTEED PROPELLANT RESERVES

The problem of evaluating guaranteed propellant consists in deter-

mining the amount of propellant which is necessary for compensating

for the effect of the worst combination of perturbing factors. In

calculating guaranteed propellant reserves it is necessary to determine:

- the composition maximum values and the probable characteristics

of the perturbing factors, besides the factors which are arguments of

tankage breakdown or. are taken into account by introducing corrections

into maximum firing range;

- the effect of each perturbing factor on maximum firing range

(for evaluating the significance of a perturbing factor);

- the amount of propellant, necessary for compensating for the

total effect of perturbing factors with their worst combination on

maximum firing range, i.e., guaranteed propellant reserve.

The basic perturbing factors taken into account in determining

guaranteed propellant, reserves, can be subdivided into the following

groups, compiled according to general criteria:

- deviations in "dry" weight;

- deviations in propellant weight;

- deviations in engine parameters;

- deviations in atmospheric parameters;

- control system errors;

- deviations in the initial parameters of motion.
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The actual-list of perturbing factors depends on the design

features of the rocket, its operating conditions, etc.

Equations of Motion of the Rocket

For evaluating guaranteed propellant reserves let us examine a

simplified system of equations of motion of the center of mass of a

rocket in the firing plane during the powered-flight phase of the

trajectory:

dV P-X• •~~ ----- -- -g sin 1);

do Pa + Y _g cosO;"-=g --o .- Co
(8.2)

d 3 = Vcose;
dt

L -- V sin 0,
di

which let us supplement with the simplified system of control equa-

tions - with the equations of the regulation of apparent velocity and

pitch angle:

V+js- d g sinOdtl (; I (8.3)

and with the equation of variatioh in weight

Oar j OdD. (8.4)

In these equations lift is calculated taking the lift of the con-

trol elements into account with the aid balancing equation M2 * O0

i.e.$ with formula

y=aA=S y!!,,-ra,
XAB - XT
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The aerodynamic forces are determined taking wind into accourv .

Parameters Xi characterizing rocket design, the engine system the

control' system and the flight conditions are introduced into the right

sides of the equation. Thus, for instance, it is possible to write

(7=11 X ;. P 2" 5

Q0

where = the launch weight; X2 = G - flow rate per second; X3
2 IQOS

P . specific thrust in a vacuum; X= - coefficient in the
YA.U 4

formula for drag; X5 = S aP - the coefficient of the altitude perfor-
mance of the engine.

The deviations in parameters Xi from their optimum values X[;

t.nd also in the initial conditions V0 , %0. x0 , Y0 from the optimum
* I * I

values V0, G0, x0 , Y0 :

AV 0=VO-V,..., &o=yo-YO.

are the disturbing factors.

'Here I - the coefficient taking rocket deformation into account.

2't5
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The Effect of Small Perturbing Factors on
Maximum Firing and the Components of Guaranteed
Propellant Reserves

A Rocket without a RKS System

For evaluating the effect of perturbing factors on maximum firing
range let us make use of the known expression for deviation AL in range

L from its optimum value L*:

AL=L--L=A-vV+-A+z Ot x+ALh g" (8.5)

Here L* = L(V* E, x, ), i.e., the optimum flight range, is
determined by the optimum values of the parameters of motion at the
calculated moment of time of NS separation tx; ,..,6t L - the
partial derivatives determined either in the quadratures o• [2), or
by numerical methods for optimum trajectory and the calculated moment
of time t, AV,.., A - deviations in the parameters of motion
V(tx),..., g(ts) at moment tK of NS separation from their calculated
values

Perturbations AV, ..., Ag arise as a result of the effect of per-

turbing factors AAi. Certain perturbing factors also vary the moment
t of NS separation, determined by control equation J(t ) J J*. How-
ever we will not examine the effect of this fact on maximum range,

assuming r-AS= O. Expression (8.5) makes it possible to determine
as a first approximation the variation in maximum range with the vari-
ation in the parameters of motion at the moment of NS separation due
to the effect of perturbations A•i*

Assuming values Ai to be small and being limited to linear terms
of the expansion, we obtain•

AVgauAY- e•, (8.6)
O-A V,.. Arl- AI

where the values of derivatives all all correspond

to the optimum trajectory and to calculated moment of time t *. We
24
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will not dwell on the method of determining these derivatives, since

it is examined in book £2).

Substituting the dependences of (8.6) the expression for the

deviation in maximum range (8.5), we obtain

AL=-- '' All, (8.7)

where

o, a~v +~(8.8)

The approximate variation in certain of the coefficients dLldA

with respect to rocket flight time is shown in Fig. 8.3.

it itJz/y, i/,

it-IV Yt

9Ct sec
Fig. 8.3 Derivatives OLId.•m depending on rocket
flight time in the powered-flight phase of the
trajectory.

K M km "M km
Designations: E- se ' aF a

The loss in distance Ali due to the efrect of perturbing factor

AXt can be compensated for by the operatIon or the engine system during

the course of time At, equal to

aft 1• (8.9)
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_____________________________IEll

where

dtx 4- dax
I -

- the derivative, which takes into account the variation in firing

range with variation in engine operating time (in a small vicinity of

moment t K), and the values of all the magnitude in the expression for

this derivative are determined for the optimum parameters of motion

V'(t *),...y*(t)

The propellar.t expended during the additional time At

aO,",=Oa,,,(8.11)

where 0 - G*(t ), is the component of the guarapteed propellant ~ecerve
8which compensates for perturbation &AI for ensuring optimum maximum

firing range L#.

The components of the guaranteed propellant component reserv-es

are distributed in accordance with the formulas:

1(8.12)

A Rocket with a RKS System

In thi4 case the efrect on the motlon of a rocket of the over-

whelming majority of perturbing factors is compensated ror'by a cor-
responding variatlon in engine thrust by vawying the propellant aon-

Sumption per second 0. The indicated fart makes It possible to
substant.ially simplify the determination the components of the guaran-
teed propellant reserves, having placed at the basis for the calcula-&
tion the equation or n*e Ideal operation of the RK3 system:
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I '

This one equation already makes it possible to determine the com-

ponents of the guaranteed propellant reserve AOr 1 ' as perturbations

in the final weight of the roqket AG4,, brought about by perturbations

in the thrust, and drag forces dur to the effect of perturbing factors

The effect of the perturbing factors on the losses in maximum

range (when a guaranteed reserve does not exist,) can then be deter-

mined on the Oasis of the following considerations. An overexpenditure

of propellant by magnitude " h due to the effect of perturbation
AX i leads to premature engine shutdown (due to burnout) at moment

I l~t4e--44g (Fig. 8.4) and to a loss in range

J V _ (8.1)4)

where the de•i'vative deteurined for the optimum trajectory

iand t#.

t

Flg. 8.14. For datermlning the ruaranteed pro-
pellant rvorve for a rockot with a RKS syatem.

The component Of guarantt.eed propellant iv,'-erve v1O.a88, neeaary

In order to en-uro engvne zhutdowta upon Lhu dgnal fro.m the control

system, Will be

a t op (8.15)
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Let us examine G000a.f using as an example the method of deter-
mining derivatives. Let us consider that an engine system consists of

the main and the controlling engines; the regulating of apparent
velocity Is brought about by varying the flow rate per second of the
main engine.

Let us investigate the effect on the final weight of a rocket of
the following basic design parameters:

•,z-0- the launch weight of the rocket;

12 YA,. - the specific thrust of the main engine;

,a-mP,..- the specific thrust of the controlling engines;

i - the propellant flow rate per second through the con-
trolling .engineo.

Lot us represent the expression ,r eongitne oystem thrust (1.35)
In the rorm

o-,0 + . s r .L--(sJ•)'.. (8.16)
+t

Taking Into account that
dO a p(1)

di

we will ob~tain

ma dO nt

Dite'erentlating equation (8.13) for parafeters A1 , we have

__ & (8.19)

Derivatives OPIe31 are determined by dii1erentlating the expres-
slon tor thrust (8.18). Thua, for Instance, ror )4m.G we have

ap* fdG0



Carrying o0t analogous operations for other Al and varying the
order of differentiation, we obtain:

A

lo -p d 30

dt

do

ap (80)

Substituting the obtained exp s1iono• .t" the de.ivatlves of (8.20)
into equation (8.19), we obtain the dfferential equatilons for deter-
mining the durivatlvea aGI0•I ib the Corm.:

-I il -- "a

P:~ 'VA *. a 4)P *".0P"L

Tho Initial Oon•lttO on4r #- •In*g, tho dlrrar~nt*UIl equt~iond cor

8.21) aft the followIng:

viwpe I18.?21

Each or the e4uatlitnl oQ (8.21) 1 a Ilnear dlfterelntitl equautIon'

of the lat ordir ..

the aoiutso" or which eivte• to -4eI:,d deri-vativest or the Minal weight

with repect to the 1ezlot parawasLz9 •-f t-hoe rocket .



i6

e Pleadl (8.25)where

g -*, (8.25)

Using TsJ-.,lkovsky's formula

Py-- gy. In t. (8.26)

i. where

=;4 (8.27)
"GO Q GO

we will obtain approximate expressions for G0J0).d in the final form:

* o-,., 6rC,..- P...)

, , K ., .(8.28)

apy. OC - pYP'yA.n PYA.f

0  0K O (ILI -

P..Y
where n- P C the ratio of the specific thrusts of the engine system

as a whole and of the main engines.

If controlling enrines are absent, then

OR;i -. In0 ýI ( 8.29 )
dPYXO ' y. P Y'.. PYA..

In Fig. 8.5 the ael, roximate variation in derivatives and

during the time Of flight t t is shown.
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~t c.*x= see
S~~Fig. 8.5. Derivatives a~S.•depending oi, rocket flight time

in the powered-flight phase of the trajectory.DesignationI.

CeK• see

Expressions (8.28) arid (8.29) are approximate due to the use of

Tsiolkovsky's formula (8.26N•. With an increase in range the accuracy

in determining the guaranteed reserves is increased with the aid of

these expressions. The most precise results of expression (.8.28) and

-(8.29) are given for the second and a~l the subsequent rocket stages

whose flight occurs practically in airless space.

Total Guaranteed Reserves

The determining of total guaranteed propellant reserves is carried

out taking the following circumstances into account (for generality we

will examine multistage rockets)..

1. The -uaranteed reserves of the i-th stage are calculated on

the basis of an assigned reliability of ensuring maximum range (for

single-stage rockets) or of an assigned reliability of engine shut-

down upon the command of the control system (for multistage rockets),

2. The distribution of the guaranteed reserves with respect to

the rocket stages is carried out so that the losses in range will be

minimal.•

3. It is assumed that the degpnees of reliability in designating

ithe guaranteed reserves of each of the propelaant components ore equal

tr 283

" •........... (8.. . 29)... ar• e give mm nfo the secondr and a lBl th -usqe- oktsae



to each other and are equal to the degree of reliability of engine

shutdown upon instruction from the control system.

4. It is assumed that the perturbing factors obey the normal

distribution law, with the exception of certain perturbing factors,

the probability nature of which is more accurately characterized by

the law of uniform probability density distribution.

Included in these, for example, are:-

- the deviations in the specific gravities of the oxidizer and

fuel due to variation in the chemical composition of the fuel during

its storage;

- the deviation in parameter K due to the difference in the tem-

perature of the propellant components from the optimum.

5. Of the totality of possible values of a perturbing factor

characterized by the distributive law, only those random values are

examined which adversely affect flight range.

6. The maximum values of the perturbing factors and of the com-

ponents of the guaranteed reserves correspond to the degree of relil-

ability of ensuring maximum firing range B. Thus, with probattlity B
•..

A CHIP (8. 30')

where u - the argument of Laplace function $(u), corresponding to

probability 1) = B; Ix , and the standard deviations in the i-th

perýtll'hing factor and the corresponding component of the guaranteed

reserve.

Taking the indicated circumstances into account the value of the

total guaranteed reserve of propellant component (oxidizer of fuel)

of a given rotket stage is determined by the formula
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or
p• ' artap) 2 p

a8P:=U (o) (8.32)

where j - the subscripL of the propellant component (OR [ox] or r ff);

a - the stanlard deviation in the total rezerve of the J-th propel-

lant component.

Let 1is note that formula (8.31) for determining the total guaran-

teed reserves of oxidizer and fuel is approximate, since it is based

on the assumption, that all the components AG1rP obey the normal dis-

tribution laws. If in the total guaranteed reserves the portion of

components, obeying the law of uniform density, is significant, it is

more correct to carry out the composition of the various distribution

laws in accordance with the methods of the probability theory. The
reliability of the series of premises, on which the calculations of

the guaranteed reserves are based, cannot be reliably checked in the

design stage. In particular, it can turn out, that the assumption

concerning the normal distribution laws of such perturbing factors,

as variance in parameter K, errors in propellant loading and others,

is only approximately satisfied: the values of the perturbing factors

accepted in the calculations are insufficiently reliable; the principle

of summing such components of the guaranteed reserves, as the deviation

in parameter K, with the remaining components will be subject to addi-

tional substantiation, etc. As a result of this the calculated values

of the guaranteed reserves and the calculated maximum range corres-

ponding to them cannot be highly reliable. Thus it is advisable to

somewhat increase the calculated values of the guaranteed reserves.

285



The Distribution of the Guaranteed Reserves
Among Rocket Stages

The Shutting Down of the Engine System
of a Separating Stage Upon Command from
the Control System

On multistage rockets the shutting down of the engine systems of
separating stages can be carried out upon instruction from the control
system upon the achievement by the rocket of the prescribed value of

* the controlling functional.

The shutting down of an engine system in such a manner assumes
the presence in the separating stages of guaranteed reserves, necessary
for compensating for the effect of perturbing factors (deviations in
specific thrust, weight and aerodynamic characteristics and others)
and ensuring with the required reliability the shutting down of the
engine systems of the separating stages with assigned values of the

* controlling functional. The effect of the perturbing factors acting
on the rocket after stage separation, is compensated for by the guaran-
teed propellant reserves which are located on the subsequent stage.

For a multistage rocket the degree of reliability of ensuring

maximum firing range is

B=BIB2...BA...Bn, (8.33)

where I - the number of the stage; n - the number of stages; Bz - the
reliability of ensuring the maximum value of the control functional of
the l-th stage on condiltion that the (Z - l)-th stage has attained the
maximum value of the functional.

Let us examine the proLlem of determining for the assigned value
B of 3uch values of BI which, satisfying condition (8.33), ensure the

* :-.greatest maximum range. For solving this problem we will examine the
deviation in maximum range fro-m the value corresponding to that case,
when the guaranteed propellant reserves at each stage ensure the
achiejing of a control functional with a level of reliability O(u*) -

B. W.IUh values of the degrees of' reliability BZ, 9B the guaranteed
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5'

propellant reserves of the Z-th stage vary by value

S .AQ~a --=a=4u A1
•:] (8,34)

Au=' (B5)- U(B), I(.'
where u(B1 ) - the argument of the Laplace function corresponding to

degree of reliability Bz; - the standard deviation in the guaran-

teed reserve of the Z-th stage, determined in accordance with formula
" -- • ( 8 .3 2 ) .

The variation in maximum range due to the variation in the guaran-

teed reserves of each stage by value Arp is determined by expression

1No)

lA L- jU (B) U)" a =f ( 8.35 )

where (T) - the derivative of maximum range with respect to the

final weight of the Z-th stage.

Relationship (8.35) expresses the dependence of the increase in
maximum range on the degrees of reliability of ensuring the control

functionals of all the rocket stages, and taking into account expres-
sion (8.33) and on the degree of reliability of ensuring maximum range.

In view of the small number of stages (Z * 2-3) the investigation

of expression (8.35) for the extremum can be readily carried out by
numerical methods. Figures 8.6 and 8.7 show the approximate variation

in the maximum range of a two-stage missile depending on the degree

of reliability of ensuring it.

The Shutting Down of the Engine System of a
Separating Stage upon Prope lant Burnout

For reducing the guaranteed propellant reserves on multistage

rockets the method of shutting down the engine systems of the separ-

ating stages (excluding the last one) upon complete propellant burnout

(or of one of the propellant components) ;an be used. The shutting
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down of the engine systems upon burnout makes it possible to use the

quantities of the guaranteed propellant reserves in the separating

stages (excluding the last one) as working reserves. In this case the

compensating for the effect of the perturbing factors acting on the

rocket during flight in the powered-flight phase of the trajectory,

is carried out in the last rocket stage. The placing of guaranteed

reserves only on the last stage makes it possible to more rationally

use the propellant reserves and due to this to considerably improve

the energy possibilities of the rocket (to increase maximum firing

range or the payload weight, etc.).

Fig. 8.6. Variation in maximum firing range
depending on the reliability of ensuring it.

""18, I

Fig. 8.7. Variation in maximum firing range
depending on the reliability of ensuring the
controlling functionals with the rel.ability
of ensuring the controlling functionals with
the reliability of ensuring maximum range Bf.

The shutting down of the engine systems ot separating stages can

be carried out with respect to the first burned out component upon a
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signal from the fuel residue sensors or from the sensors of the simul-

taneous tank emptying system.

--- An evaluation of the advisability of shutting down the engine

systems of rocket stages upon propellant burnout can be carried

out by comparing the maximum firing ranges ensured by various means of

I engine system shutdown.

Reducing the Guaranteed Reserves by Regulating
the Expenditures of the Propellant Components

An increase in maximum firing range can be attained by installing

a special propellant component metering system on the rocket.

If special measures are not taken, then during the operation of
the rocket engines deviation from the optimum value of parameter K

always appears (i.e., the ratio of oxidizer and fuel expenditures), as

a result of which the situation can arise, when one of the propellant
components will be completely consumed before the moment of the intro-
duction of the command for shutting down the engines during firing for
maximum range. To eliminate this situation it is necessary to have
onboard the rocket an additional amount of the first and second com-
ponents. This additional amount of propellant constitutes a great

part of the guaranteed reserve and, in order to decrease it, it is
expedient to use some'system for regulating the propellant component

expenditures ensuring the required ratio of propellant components.

For the purpose of more rational use in flight of the propellant

reserve available onboard the rocket, simultaneous tank emptying systems
are finding broad application.

This system is intended for regulating the relative volumetric

propellant component expenditure. It includes propellant component

level sensors, installed in each of the tanks, a computer which works

out the instructions, and actuating elements.

The installation onboard a rocket of a simultaneous tank emptying

system makes it possible to:
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- substantially decrease the guaranteed propellant reserves and

thus, to increase the maximum firing range;

- reduce the requirements imposed for the accuracy of adjustment

of the engine system with respect to parameter K and for the accuracy

of filling the rocket with propellant components;

- simplify the preparation of the initial data for filling the
rocket with the propellant components.

As a result of installating onboard the rocket of a propellant

component flow regulating system the maximum firing range is changed,
which is due to:

- the reduction in the guaranteed propellant reserves;

- the increase in the "tdry" weight of the rocket due to the

installation of the control system;

- the reduction in the specific thrust of the engine system.

A reduction in the guaranteed propellant reserves occurs due to
the component of guaranteed reserves intended for compensating for
the variance in parameter K. With the installing of a simultaneous

tank emptying system this component is eliminated, and the incomplete
expenditure of one of the components Ii due only to an error in the

control system.

For evaluating the advisability of installing one or another pro-

pellant proponent flow regulation system the total gain in firing

range can be determined by the formula

+471 + (836

ILa

where - the weight ot the control system; O~, O"r'- the weight
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of the guaranteed propellant reserves with the presence onboard the

rocket of a control system and with its absence; Pf.,--P7 , -the

difference between specific thrust of the engine with a control system

exists, andwithout it - the partial range derivatives
ewCY h ;•aUoDA

with respect to "dry" weight and propellant weight respectively.

Despite the fact that the weight of the rocket is increased due
to the weight of the control system, the total passive weight of the
rocket is decreased due to the significant reduction in the guaranteed
propellant reserves, as a result of which the maximum firing range is

substantially increased.

8,3. DETERMINING TANKAGE BREAKDOWN

By filling method we will understand the principle of determining
the breakdown of the propellant components loaded onboard the rocket,
and not the method of the technical realization of this principle.

The filling method Influences not only the energy characteristics of

the rocket and its operational convenience, but also the design of the

control system and the rocket as a whole, for example for a number of
control programs due to the permissilbe limits of boosting and throt-

tfing of the engine and by varying the launch weight of the rocket

with the presence of the apparent velocity control system.

In connection with this an important problem arises with respect I
to selecting the method of determining tankage breakdown, In the very
best manner satisfying the requirements of reliable ensuring maximum

firing range and operational convenience of the rocket.

Methods of Determining Tankage Breakdown
and the Requirements, Imposed on It

It is possible to formulate the following basic requirements,
taking into account which should be selected for the method of deter-

mining tankage breakdown: 4

- the most complete utilltation of the energy capabilities of

the rooket;
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- convenience and operational simplicity of the rocket undep field

conditions, reducing to a minimum the time, necessary for determining

tankage breakdown in the prelaunch period;

- maximum simplification of the design of the rocket, control

system and engine system.

Besides these requirements, when selecting the metthod of calou-

lating tankage breakdown another series of initial conditions is

assumed which is due to the design characteristics of the rocket and

its subassemblies, and also to the specifics of field operation. Thus,

for instance, for all filling methods the following:conditions are

usually taken as initial:

- the launch weight of the rocket should not go beyond the perk

missible limits which are determined, for example, with the presence

of a RXS system, by the maximum permissible filling of this system or

in the absence of such a system, with the maximum permissible. value

of flight range reduction;

- the guaranteed and non-working propellant component reserves

are determined for their optimum temperature and are assumed constant

in weight (or in volume) in the operating range otfthe propellant

component temperature variation;

the maximum propellant component filling doses should not exceed

the available volumes of the propellant systems (twankds and conduits)

under all operating conditions;

the w(,rking reserves of oxidizer and ruel should be in a ratio

which makes It possible to completely use them up.*

the propellant component tilling doses are selected for maX-

Imum 1.ring range and remain constant in the taken firing range spread.

1Besides the indicated conditions, it Is possible to name addi-

tional requirements. only charucteristic of an actual given "ethod or
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1) "individual filling- I

2) filling with weight doses*

31filling anwoatye vole dosest.

tcharacteristics of individual
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consequence, to the overfilling of the fuel systems or to an uncal-

culated operating regime of the engine system in flight. For the

indicated reasons the use of the individual filling method is advan-

tageous only for carrier rockets.

From the point of view of operation and the readiness of a rocket

for launch most expedient are the methods of servicing a rocket with

working propellant reserves, not dependent with respect to weight or

volume on certain perturbing factors.

With the weight method of servicing the weight of the propellant

components loaded Into the rocket is constant In the given temperature

range; the distribution of the fueling doses between oxidizer and fuel

Is carried out in such a manner, so as to enst,..- equivalent losses in

"" range with possible variations in temperature up to the boundaries of

a given range. (Variation In temperature affects the weight ratio of
* the per-second propellant component expenditures K ana thereby value

or the unused remainders of oxidizer and fuel).

"However the application of such a servicing method gives rise to

the uicesaity during the designing of a rocket of specifying for addi-
Ltional tank volumes providing for the possibility or the expansion of

the volm@3e of the loaded propellant components in a given temperature

raoge. Such a aethod of servicing is espetially undesirable for

groutd-bazed launchea., when the i'ange of possible temperature varia-

tiona or the propellant tonponaetts Is rather broad (about 100C), and

a 4y4ttm of thereoatatle control is not specified.

Por rockets, equippod with UKS systems, the advantage or the

weight tuelLne method is the fact that the necessary limits of engine

booting and throttling in view of the absence or perturbations In

launch weight are narrower than in the case, when the welghts ot the

fucling dooes depend on the temperature of the propellant components.

With the volume ,ethod rocket fueling with propellant components

Is varrled out with eonstant Volume doses of ouidizer and fuel under

aill rocket operating conditlons; the ratio or the volumes of oaidizeV

Ani fuel Is *elected froa the condition or complete expenditure of the
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* working propellant reserves uncLr optimum conditions.

* The fueling method affects the necessary volumes of the propellant

systems and through them the rocket design,. The interconnection be-

. & tween rocket characteristics and the engine system, the system of per-

turbing factors and the fueling method can be traced using as an

example the determination of the necessary volumes of the propellant
systems*

Determining the Necessary Volumes of
Propellant Systems

Let us carry out a determination of the necessary volumes of pro-

pellant uYstems proceeding from a given value of the optimum launch

weight of a rocket (or stage) 00. Using formula (8.1), let us find

the weight of the optimun working propellant reserve OG ,. after all

the other components of launch weight G0 have been determined.

The weight fueling doaes of oxidizer and fuel are determined by

forwmulau:

SK I 118.37)
where K - the ratio of the weight pe~r.econd propellant component expen-.

dittue under optlmuA coonditions.

The maximum possible volume Mueling do~ea and Va" are oal-

Oulated taking the fueling method Into account. Since the weight

method provides the loading of weight doses of oxidizer and fuel infte'

pendent of their temperature, the maximum posvible fueling volumes are

determined for the maximum tempurature of a given range:

wher theproplln j s ript (n C(8.38)

where J - the propellant component subscript 1oat (ox] or - [J)].



With the volume fueling method the maximum volume fueling doses

are equal to the optimum:

1""T -.(8.39)

To the maximum possible volume fueling doses it is necessary to

add the minimally p'ermissgble .free volumes in the tanks, necessary for

normal operation of the pressurization system Vwsj, and also the vol-

umes AVP, necessary for variations in the fueling doses due to random

factors - errors-in fueling (metering) the propellant components and

errors in manufacturing the propellant tanks.

Finally the necessary'volumes of propellant systems are determined

by the formula vl*pVM8 + Vn,-Fn s (8.40)

Determining Fueling Doses with Assigned
Propellant System Volumes

STo increase maximum firing range it is necessary to as completely

as possible use the volumes of' the propellant tanks. Let us examine

how it is possible to solve this problem with weight and volume methods

of fueling a rocket with propellant components.

For the working range of temperature variation in the propellant

components Trl Tj*T<T; let us determine the rated volumes of pro-
pellant systems (let us disregard the effect of temperature on the
volumes of the main propellant lines VM4 ):

V5 a (Tax)V.,(t)+vu, .-V 7,-n Vie (8.4i)

where VGJ(TVo) - the volume of the propellant tanks depending on tem-
perature:

Vs I(rTJ= V60 [I +sj(Tw- ...'"•",,,

a- the coefficient of linear expansion of the tank material.

Let us find the ratio of the working reserves of the propellant
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components K-=G.PGO, which is mainly determined by the rated volumes
of the propellant systems:

Sr'(•-) Toe (ro 0- -MON -GaMp am

K((Tnj) (8.42)
113 (rc K) T (r) -- OrP .rr5 -- ap 0

Parameter K6 (Tol) is necessary in. order to determine, which of
the propellant component tanks is limiting depending on propellant
temperature. The temperature range of the propellant components, in

which the rated volume of the oxidizer system is limiting, is deter-
mined from condition K(To,)- (Ton). If X(TO• <K)-(ToR), then the
volume of the fuel system is limiting.

Let us determine the loading of propellant component doses with
the weight method in the following manner.

Using the formula (8.41) we find the rated volumes of propellant
systems at maximum possible temperature Vra(Tmax). The ratio of
working propellant component reserves determined by these rated volumes,
is equal to

•..!. E •(r..,z) __•_ P-o," (rma ) 1, .(r m,,) -- n e -trPo -o
K 6 ( T m)x amx (T ma

Vp cA(T) . (8.43)•: Yr'B (TMAX) IVr (MU) -- aim.eP-rr "

It is natural to assume the non-working and the guaranteed pro-
pellant reserves with the weight fueling method in the working temper-
ature range is constant in weight.

Let us compare value Ko(Tmax) with the optimum value of parameter
- K. For the case, when K'GK(Tmax)4 we compute the weight fueling

doses of propellant components in the following manner:

the weight fueling dose of oxidizer
GoK(T) -= V o. (T .. ) oK(r..); (8.4 4)

the weight of the working oxidizer reserve

297



the weight of the working fuel reserve

KOm ;(8.46)

the weight fueling dose of fuel

-•T. 'OP+ (8.47)

For the case, when "w'<Ka(Tmax), we calculate the weight fueling

doses in a similar manner, first determining the fueling dose, then

the working fuel reserve and finally the working oxidizer reserve and

the oxidizer fueling dose.

With the volume method the determination of the fueling doses is:

carried out in the following manner. The rated volumes of the propel-

lant systems and the ratio of the rated working component reserves are

calculated by formulas (8.41) and (8.42).

When Know Ks(TTHOU) the weight fueling doses of oxidizer and fuel

are determined by formulas:

Gox Oo,(r)-- Vpoa (T) y (T).' (8.48)

GATr) rk" (7) -0,r8"P-- Ge + P
rK() r (8.49)

When K°w<<K6 (T"°") the determination of the weight fueling doses
is carried out in a similar manner, with the exception of the order
of calculating the doses: first the fuel dose is calculated proceeding
from the rated volume of the fuel system, and after that the oxidizer
dose.

With the volume method of calculating the fueling doses with a
temperature increase the weight of the propellant being loaded
decreases, which gives rise to a certain reduction in maximum range.
However the volume method of fueling makes it possible to use a tank

simultaneous emptying system, which increases the maximum firing range.
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8.4. THE EFFECT OF FIRING CONDITIONS ON
MAXIMUM RANGE

As was noted above, certain perturbing factors are not considered
in calculating the fueling doses and the guaranteed propellant

reserves. The effect on maximum range of such factors, as geodetic

and meteorological conditions can be considered by introducing appro-

priate corrections into the value of maximum range. For this reason

maximum range is a function of certain firing conditions.

Most frequently the arguments of maximum range are the tempera-

tures of the propellant components of the time of rocket launch and
the geodetic launch conditions.

The effect of propellant temperature on maximum range (or on the

maximum control functional) is manifested in two ways: through the

variation in the engine parameters as well as through the variation

in the engine parameters as well as through the variation in the com-

ponents of the fueling doses, and it can be approximately evaluated

th the aid of the expressions given below.
-- YS ,+( as +,Y., ' as s .+ as 00s )(

ak A 07' OG OT 600~ 06F a~i Or

With the presenco of an apparent velocity control system

=a,"--• '- O+a.,. +
0)0 O or 07'. n 07 (8.51)

+ ~

where S - the firing distance L or the value of the control functional
J; a ,, . a . - the derivatives of specific thrust and of the

per-second expenditures of the engine system and the controlling

engines with respect to propellant temperature; 4 -W- derivatives

of the launch and final weights of the rocket (stage) with respect to

propellant temperature.

With large deviations in the launch and final weights more
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accurate results, than with the use of formulas (8.50) and (8.51), can
be obtained by mathematical modeling of rocket motion on a digital

computer.

A substantial effect on maximum range is rendered by the geodetic

launch conditions which are characterized by the values of the geodetic
latitude of the launch point Oro and the azimuth of the aiming direc-
tion A0 . The dependence of maximum range on the geodetic launch con-
ditions L(c.Ao) is used for determining rocket operational zone,
within the limits of which the reaching of targets is possible. This
zone can be found as a result of calculating the trajectories of the

powered- and unpowered-flight phases with various values Oro and A0 ,
and also using the final formulas of elliptical theory. In the latter
case it is necessary to disregard the variation in the parameters of
the trajectory in the powered-flight phase because of the rotation of
the earth.

The characteristic dependence of the variations in maximum range
on the geodetic firing conditions for rocket conditions is represented
in. Fig. 8.8.

AL% Fig. 8.8. Variation in
maximum firing range
under various geodetic
conditions.
Key: (1) grid.

300



In the case of rocket launches under various geodetic conditions

variation in the values of the guaranteed propellant component reserves

is also possible, in order not to permit substantial variations in

the maximum firing range and in the reliability of ensuring it. Thus,

for instance, for rockets, not having RKS systems, during launches in

a westward direction the value of guaranteed reserves should be in-

creased, and during launches eastwards - decreased with respect to the

value of the guaranteed reserves calculated for launches in a northerly

*: direction. Another approach is also possible, when for constant max-

imum range the value of the guaranteed propellant reserves is main-

tained constant under all geodetic firing conditions and the variation

in the reliability of ensuring maximum range is considered.
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