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Preface

at This thesis is a continuation of previous work done

at the Air Force Institute of Technology on M4onte Carlo tech-

niques of reliability prediction. It is hoped that the

method proposed here may find use in reliability analysis of

* complex systems and/or in situations where limited failure

test data is available to the reliability engineer.

I wish to thank my thesis advisor, Professor Albert H.

Moore, for suggesting the topic and giving guidance and

encouragement throughout this project.

I also wish to express my gratitude to Dr. H. Leon

Harter who gave valuable advise during this project. The

FORTRAN programs in Appendix A and Appendix C are revisions

of programs which he originally wrote and kindly supplied

to me.
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Abstract

This paper develops a Monte Carlo technique which, with

a digital computer, determines confidence limits for system

reliability of complex systems containing components charac-

terized by the Weibull distribution. The component distribu-

tion shape and scale parameters are estimated by the method

of maximum likelihood from component failure times while the

r location parameter is assumed known. The asymptotic distribu-

tion of these maximum likelihood estimators and a Monte Carlo

simulation are used to determine confidence limits on system

reliability. As an example, confidence limits are calculated

for two systems of up to eight components in combinations of

series and parallel configurations using 99, 499, 999, and

2999 simulations. Accuracy of the confidence limits is found

to be satisfactory after being checked by a method using a

double Monte Carlo technique which assumes values for

parameters of the component distributions and generates

component failure times to be used in the proposed Monte

Carlo technique. Central processing time for this technique

on the CDC 6600 digital computer is found to be less than two

minutes for the examples given. There is no limit to the

number of components or the configurations of the components

for the systems to which the method can be applied. The

FORTRAN IV computer programs used are given along with flow-

charts to facilitate reading the programs.

vii
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SMONTE CARLO TECHNIQUE USING COMPONENT

FAILURE TEST DATA TO APPROXIMATE

RELIABILITY CONFIDENCE LIMITS OF SYSTEMS

WITH COMPONENTS CHARACTERIZED BY

"THE WEIBULL DISTRIBUTION

I. Introduction

The Problem

The purpose of this thesis is to determine whether

accurate interval estimation of reliability for complicated

* systems, containing dissimilar components characterized by

the Weibull distribution, can be obtained by using maximum

likelihood estimates and a Monte Carlo simulation.

Significance. Systems containing many components become

increasingly complex and costly. Complicated systems costing

thousands of dollars can become inoperative due to the

failure of a single connection. Because of this, it is

important to determine system reliability as a function of

the component reliabilities which make up the system. This

can be done fairly easily for some few types of combinations

of components which are from certain parent populations such

as an electrical circuit made lip of components characterized

by the exponential distribution. When the components are

dissimilar, no simple analytical expression can be used to

compute system reliability.

In addition, predictions of reliability should be based i

on test data. Hlowever, as system reliability requirements

,. ~1
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incredse, testing a system to destruction can become expen-

sive, both in time needed and money spent.

A method that circumvents this problem uses limited

test data to calculate maximum likelihood estimates of the

parameters of the failure distribution. These estimates are

used, along with a random number generator, in a Monte Carlo

technique which uses the asymptotic distribution of the

maximum likelihood estimators to generate more point samples

of system reliability. These point samples are used to

determine an interval e.timate of system reliability with
t

the associated confidence level.

Definitions. Reliability is the probability that a

system is still operating at time t. If T is the time to

failure or life length of a system or component, the relia-

bility at time t or R(t) is given by R(t) = P(T > t), where

P means "probability of".

The Weibull density function is defined as

K1,

f(t;C,O,K) - exp (l

0, K >0, C < t

= 0 elsewhere

where 0 = the scale parameter, K = the shape parameter, and

C a location parameter. The scale parameter affects the

dispersion of the random variable t about its mean. The Z

shape parameter determines whether the hazard function is

2
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/

increasing, de:reasing, or time invariant; while the location

parameter determines the point of origin.

Reliability, for the Weibull density function, is

R(t) exp p t__CC ) (2)

Pseudo-random numbers are generated from a series of

numbers which repeats itself with long periods between

repetitions. These numbers are suitably random if the

repetition periods are greater than the number of digits

desired and if there is a small enough correlation between

Il digits (Ref 1S:257).

The maximum likelihood estimator (MLE) is the estimator

which maximizes the likelihood function with respect to the

parameter being estimated. The likelihood function is the

joint density of a sample of n random variables and is

expressed by

n
L(xl,x 2 .. xn;6) = n f(xi;6) (3)

i=l

where L(xi :0) = the likelihood function.

If it is desired to determine e (the MLE for the

parameter 0), normally it is only necessary to take the

partial derivative of thI likelihood function with respect

to 8, set it equal to zero and solve for 0 which then becomes

0. By using the MLE for each parameter and the expression

for reliability for a given failure density, it is possible

to arrive at a point estimate for reliability.

3
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The method in this paper generates intervals from a

random sample of system reliabilities and this is called a

random interval. If reliability falls within any given

interval, there is associated with the interval a confidence

level. For example, if it is said the reliability of a

system lies between 0.6 and 0.8 at the 95% confidence level,

it is meant P(0.6 < R(t) 5 0.8) n .95 or the random interval

0.6 - 0.8 would contain the true system reliability 9S% of

the time if the system were tested many times. The interval

is called a confidence interval, which has 0.6 as a lower

confidence limit and 0.8 as an upper confidence limit.

A Monte Carlo simulation is one in which a random value

or number is picked from all possible numbers that can be

described by a specific density function.

Analysis

Assumptions, This thesis will concern itself with

systems which have compopents described by the Weibull

density function. It is assumed that the components have

previously been determined to be Weibull or that the Weibull

density function adequately models the components in the

system. This paper does not provide a method to test for

the Weibull density function though these tests do exist and

are described in other references. One of the easiest ways

to test for the Weibull distribution is to use Weibull graph

paper (Ref 5:170-173). Once it is determined or suspected

the components are Weibull, the methods in this paper can be

4 '
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used to estimate the parameters of the Weibull distribution

a.-d then to generate interval estimates of system reliability.

The Weibull distribution is rather versatile in that,

depending on the value of the shape parameters, the Weibull

distribution can be used to model components with decreasing,

increasing'or constant failure rates or hazard functions.

A special case of the Weibull distribution is the exponential

distribution which occurs when the shape parameter, K, is

equal to one.

It is assumed that the components of the system being

I analyzed fail independently. This allows use of standard

formulas for components connected in series or in parallel.

For instance, if a system is composed of two components

connected in series, the reliability can be expressed by

Rs(t) =[R 1 (t)][R 2(t)] (4)

where Rl(t) = reliability of component number one and,

R2 (t) reliability oi ct.:,ponent number two.

Likewise, for a system made up of two components in

parallel the reliability can be expressed by

R (t) = - - R- R(t)]

1 - 2CS)

where = I - R.(t).

More complex systems can be -reduced to combinations of

series and/or parallel configurations by use of Bayes'

ISi
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theorem or the Boolean Disjunctive theorem. In other cases

where the system reliability dependence on component relia-

bility is known and can be expressed by other equations, the

independent failure assumption is not necessary.

It is assumed that the location parameter is known or

can be set equal to zero for all Weibull component distribu-

tions in this paper.

Standards. The only true criterion that is applied to

test the acceptability of the method in this paper is analysis

of the result. Does the computed confidence interval contain

the actual value of system reliability the required number of

times? To check the validity of the method, the values of

all parameters were assumed for each of the Weibull distribu-

tions of the components. Pseudo-random component failure

times were generated for each of the components and the

method in this paper applied to generate many confidence

intervals. Since the true system reliability was known, a

check was made to see if the true reliability was in the

calculated intervals the required number of times. This

process is described in Chapter II.

For the estimation of the parameters from the generated

component failure times, variation from the true value of

the parameter in the second digit was deemed acceptable.

Background. Levy and Moore developed a method for

determining system reliability confidence limits using a

Monte Carlo method where the component failure distrioutions

(exponential, normal, lognormal, Gamma, or IWeibull) with

6
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location and shape parameters were known (Ref 10). Lutton

extended this method by using the asymptotic distribution of

the maximum likelihood estimators of, among others, the

Weibull distribution, location parameter known (Ref 11).

Harter and Moore developed two procedures relevant to

this paper. They used an iterative procedure to determine

maximum likelihood estimates of the parameters of the Weibull

distribution from complete and censored samples (Ref 8).

They also developed a method to determine the asymptotic

variances and covariances of the maximum likelihood estima-

tors of the parameters of the Weibull distribution from

samples that were censored or complete (Ref 7). This paper

presents a technique in which the sample of failure times

for each component is used, along with the asymptotic distri-

bution of the Weibull parameters, to generate a confidence

interval with the associated confidence level.

Approach. The method and associated computer program

in this paper:

1. Calculate the MLE of the component shape and scale

parameters from the component failure times.

2. De'ermine the variance-covariance matrix of the

asymptotic normal distribution of the shape and

scale parameters.

3. Generate a sample of the component shape and scale

parameters.

4. Use sample shape and scale parameters, along with

known location parameter, to calculate a point

7



GAM/MA/72-2

estimate of component reliability for each

componentl.

S. Calculate a point sample of system reliability from

the point samples of component reliabilities.

6. Repeat steps 3-S to obtain many samples of system

reliability.

7. Order the system reliability samples to obtain an

interval sample of system reliability from which

the confidence limits are determined at a given

confidence level.

8
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II. Procedure

Estimation of Component Parameters

The computer program for finding the MLE of the para-

meters of the Weibull distribution from complete or censored

samples is given in Appendix A. The procedure, as developed

by Harter and Moore, uses the natural logarithm of the

likelihood function of the remaining order statistics which

is

L = Zn nI - tn(n-m)t - Zn r! + (m-r)(kn K - K Zn 0) +r

, ~m m[(ic]
Sc~K-1) [ n~x-C Q

wi=r+l i=r+l

Xnm m "C (Xr+l-C)K

1- + r 9n 1 exp (6)

where (m-r) is the number of order statistics xr+1 r2..xm
X1 ' ~r+2"' **m

and n is the size of the sample before censoring.

The partial derivatives of Lr with respect to each of

the three parameters are set equal to zero and the three

resulting equations solved simultaneously. The iterative

procedure for the simultaneous solution of the equations uses

an initial estimate of the parameter (which is fed into the

computer along with the failure times) and the rule of false

position to determine a new value of the parameter from the

appropriate likelihood equation into which the latest esti-

mates (or a known value) of the other twu parameters have been

substituted (Ref 8:641).

9
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The program in Appendix A has been converted into a sub-

routine and is called for analysis of each component. When
II

this is done, the MLE of the shape and scale parameters are
' .1

determined for all components in the system.

Generating Sample System Reliabilities

The asymptotic joint distribution of the estimators with

the location parameter known is bivariate normal and is given

by

f(Y) [exp(- 1 V- (7)
parameters2

where Y = two component vector of estimates of the

parameters

Y= transpose of Y

V asymptotic variance-covariance matrix
-1

V = inverse of V

IVI determinant of V

Let Z = V Y so that Y = V1 / 2 Z and, because V is

symmetric, Y = Z'V 1 / 2 . Then

S[ 1I/2V-Vl/2
£•?) = • [ep-• Z'VVVZ)] (8)

1[exp(- 11
= [ep( I zIz)] (9)

1 2 22)!- [exp(Z2 + Z (10)

2r 1o 2
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so that the density function of Z is made up of independent

variates of the normal distribution with mean zero and

variance 1 (Ref 14). Thus, to obtain a sample of the joint

distribution of the estimators, the following formula is

"used:

"" a V1 / 2z + Y (11)

where Y' = 2 X 1 vector of the biased random samples of the

estimates of the shape and scale parameters.

V = 2 X 2 variance-covariance matrix.

Z = 2 X 1 vector of pseudo-random numbers from the

standard normal distribution.

Y = 2 X 1 vector of the maximum likelihood estimates

of the two parameters (as found in the previous

section).

or

+ 1 (12)

Ksample V21 V22 Z2 KMLE

In formula (12) the MLE of 0 and K are used as the marginal

means of the bivariate normal distribution of the parameter

estimates.

The randow samples of the component parameter estimates

were substituted into the expression for reliability for

each component to get random values of component reliabilities.

Thc were then substituted into the expression for system

S~11



GAM/MA/72-2

reliability, one value for each component, to generate

random values of system reliability.

The program which generated the system reliabilities is

given in Appendix B, along with a flow chart of the program.

A detailed explanation of the evaluation of V1 / 2 is also

given in Appendix B.

The Variance-Covariance Matrix

The natural logarithm of the likelihood function for a

sample of size n from a Weibull population where the lowest

r and the highest n-m sample values have been censored is

given in Ref 7. The elements of the information matrix are

found by taking the limits, as P ÷ =, of the negatives of

the expected values of the secoud partial derivatives of the

likelihood function with respect to each of the parameters.

Let k.. be the elements of a matrix B, formed from the

elements of the information matrix (sll, s12 = s21, and s22

where E[...] is the conditional expectation given Zr+l and

z. ThenM

k = n =lim pr E[-(•-- .0211 n n a

=-Kp +K(K+l)[r(2; .) r(2;z +) K(K+I)ql K .

qq
m r+l 1

A AK
2 f(z )[Kz -(K+l)q 11(3

q 1 13

12
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k12 -[(2 ;2lir pr E -raK -- AK

12 fBz

AK K 1 r+ f(Zr+I
r(?;z +i) - q 2zm (K Zn zm + ) - Kq1

{KZKr+ in z r+l (Kin zr+l )ql} (14)

V 2k22 a K

K2 K2  K

r+l f(Zr+1) {Zn 2  z AK

Kqr1l r+1 - q)

where q= r/n, q 2 = (n-m)/n, and p = 1 - q2 (m-r)/n.

As ni e with qand q2fixed, Zr+1 converges in probability

=t z r+l f(t)dt q= and z converges
io z where F(0 0 tdql

in probability to where 1 - F f(t)dt = q2" The

primes indicate differentiation and r(a;b) is the incomplete

Gamma function (Ref 7:559).

Then the information inatrix, in terms of the elements

k, becomes

* 13
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kll1n k12 n

-s s

1 s12 02 12
= (16)

k21n
21 22 0 22

Let a. be the elements of the matrix A, which is the
-. aij

inverse of B, then

al a2 kl k1

[A] = a 221a 121 [B]-1 (17)

The elements of the variance-covariance matrix are then

2
a 1 0 a 120

Sv12 n n

!•0 =(18)
a 210 a 22

Iv
v'21 v22 \ n -n-

since

k n kl 2 n al a 12011 12_11_ 1
02 0 n n

0 f

k 2 1n a 210 a22

0 k 2 2 n nL

klal1 + k12a21 1 (k11a1 2 +k 1 2 2 = (

1 (19)
0(k 2 1a 1 1 + k 2 2a 2 1) 2112 +2122

The program given in Appendix C finds the elements of

the asymptotic variance-covariance matrix by solving Eqs (13),

14
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(14), and (15) to find the elements ki., inverting them and

converting these to the elements of the variance-covariz-.ce

matrix by the above transformations.

The variance-covariance matrix is solved by this program

.. for non-integer values of the shape and scale parameters

since with the location parameter known the equations are

regular for any non-integer value of the parameter estimates.

A flowchart and more detailed explanation of the equations

in the program are also included in Appencix C.

Calculating System Confidence Limits

The sample values of system reliability, after having

been generated, are ordered and thus yield the sample cumula-

tive distribution of the system reliability. From this

distribution, the coafidence interval and limits can be

approximated at any level of confidence. For example, in an

ordered sample of 99, the tenth value represents the lower

limit of a one sided confidence interval at the 90% confidence

level since the a priori probability is .90 that a new random

value exceeds the tenth order statistic of a sample of 99.

Thus, it is assured that the true reliability is equal to or

greater than this value with a confidence of .90.

Verifying the Level of Confidence

In order to insure that the confidence level is accurate,

a program was written to generate sample times to failure

from the Weibull distribution. Parameters were assumed for

each of the component distributions and various size sampler

is - !
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of time to failure were generated for each of the components.

This simulates bench testing each of the components to obtain

a sample of failure times for each component. The computer

program which does this is given, with an explanation of the

procedure, in Appendix D.

The true reliability of the system is now known, sincv

the component distribution parameters are known.

The failure times for each component were fed into the

Monte Carlo program and a number of sample values of the

confidence interval at the required level were generated.

The true reliability should be covered by a percentage of

the sample confidence intervals equal to the confidence

level. For example, if 10 one sided 50% ;onfidence intervals

are generated and the true system reliability is .90, a graph

of the intervals might appear as shown in Fig. 1 on the next

page.

In this case half the intervals cover the t'rue relia-

bility verifying the 50% confi.dence level (Ref 13:2S3).

For this paper confidence intervals were generated with

each interval calculated from a sample (N) of 99, 499, 999,

and 2999 system relinbilities. The results are given in

Chapter III.

Systems Analyzed

Two systems are analyzed 'n this paper. The first

system consists of 8 components connected as shown in Fig. 2

for which the required mission time is 7S hours.

16
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.80 .85 .90 .95 1.0

Fir. 1. A Sample of Ten Confiduce- intervals
Over a True Re].iability of .90

17
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Fig. 2. Schematic of System A.

The components have the following characteristics:

Component #1.

Failure distribution: Exponential

Failure test sample size: 100

Sample censoring: top 6 and bottom 6 values

Location parameter: 0.0

Component #2.

Failure distribution: Exponential

Failure test sample size: 75

Sample censoring: None

Location parameter: 0.0

l18
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Component #3.

Failure distribution: Weibull

Failure test sample size:- 150

Sample censoring: None

Location parameter: 0.0

Component #4.

"Failure distribution: Weibull

Failure test sample size: 200

Sample censoring: None

Location parameter: 0.0

Component #5.

Failure distribution: Exponential

Failure test sample size: 75

Sample censoring: None

Location parameter: 0.0

Component #6.

Failure distribution: Weibull

Failure test sample size: 100

Sample censoring: None

Location parameter: 0.0

Component #7.

Failure distribution: Weibull

Failure test sample size: 200

* Oample censoring: None

Location parameter: 0.0

i1
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Component #8.

Failure distribution: Weibull

Failure test sample size: 250

Sample censoring: top 12 and bottom 12 values

Location parameter: 0.0

The expression for the reliability of this .-- stem is

Rs (t) = 1 - Qa(t)Qb(t) (20)

where Qi = 1 R.(t)

R a(t) [1 - Ql(t)Q2 (t)][l - Q6 (t)Q 7 (t)]
aRb(t) = [1 - Q3 (t)Q 4 (t)Q 5 (t)]R8 (t)

The second system (system B) has the configuration

shown in Fig. 3 with a required mission time of 100 hours.

IZ

Fig. 3. Schematic of System B.

The components of system B have the following

characteristics:

201,*
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Component #1.

Failure distribution: Weibull

Failure test sample size: 10

Sample censoring: None

Location parameter: 0.0

Component #2.

Failure distribution: Weibull

Failure test sample size: 20

Sample censoring: None

Location parameter: 0.23

Component #3.

Failure distribution: Exponential

Failure test sample size: 30

Sample censoring: None

Location parameter: 0.0

The expression for system reliability for system B,

. thin terms of the i component reliability is:

R (t) = Rl(t)(l - Q2 (t)Q 3 (t)) (21)

System B was designed to put a strain on the proposed

Monte Carlo method due to the small failure test sample size

for each of the components.
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III. Results

Confidence Limits

It is known that the error associated with a Monte Carlo

calculation is proportional to 1/11N where N is the number of

simulations (Ref 15:259). In this case, the error is statis-

tical, that is, the probable error is proportional to 1141,

or the probability is high that the approximate solution

does ;aot deviate from the true solution by more than a certain

amount (Ref 12:255). The use of a high speed digital computer

should decrease the amount of error in the calculation but

the machine can add random errors of its own, such as round-

off error (Ref 9:11,12). As the problem becomes more complex,

the error can be estimated only from the results of the

computation.

Tables I and II, on the following page, show the confi-

dence limits determined from simulations of various size for

systems A and B. As the simulation size increases the

accuracy of the confidence limits at a given confidence level

increases and more closely approximates the true confidence

limits. Also given are the central processing times for the

CDC 6600 computer for each size simulation. No trend should

be noted from the bounds given for each size simulation in

these tables since each simulation is a random sample of

system reliabilities for a single run. The only proper state-

ment that can be made is that the confidence limits for a

simulation of size 2999 are more accurate than for one of
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Table I
One Sided Confidence Limits

System A

N=of9 99 N=9 N=990
____ (b) a 1e a)* 0.9 On)~b99 -?i-13 , - .33 20 . ,44 30

I I
S98 , .9755 10 .9740 3C 975L 60 ,9 4

97 3 976o 15 .97r4 hO: .9761 00 .97 f,

S96 4 97-62 20 .9756 co .9764 120 -D .9 6 1

95 5 9 27 25 97 6o o•68 .•

*90 10 1.9?72 50l .97?') 100c .9797

2 . 1 a
?5 0 9779 300 3 .7.'0 100 •9?9 0-0

20 .9786 100 297:00 0 1279 -00"

70 1530 ,9801 150 497 300 .01 c ,

60 540 .9816 200.9315 400 981• ]1200 ,.215

50 ::! 50 98!6 250 9?.23 0 0 0982- ' .0 ,=2

C? 19.4 Sec 23.0 Sec 29.5 Sec 6 Sec

Order numbcer of the sample H
** Confidence limit on system reliability

233

A'



C A T/'-'A/72-2

Tiab]e !I
Cne Sided Confidence Limits

Syn tem 93
9 Conf4 N=99 I,' :', 9 :2o9on-P,-0-9".=999 :=20°99
Level][ . .

2 (a) (b)** . (a) (b) (.)
"99 1 87 8 5 ?680 1 ý2. •-, 842 30 [. 2 ". f
98 2 .9077 10 .•8888 30 .9632 60 .869

* I07 ~ " -9907?92

97 ! 3 .909! 15 .8994 40 .8733 00
S I '

95 :1 5 ) .13'ý 05 , 97 I 0 , • 6 1 15o 0' 0 1[
Ii I

96 10 .920 20 .20 0 022 2 00 9C19 2'2
I a

95 15 -•935? 75 .9321 150 .. 93134 1n .91

80 ,20 0 ,D

10 ..9230 8 o 3 00 10' .921 .." "3

7 .30 .9357 150 .9329 10 .930524 .90 .-1

60 9 50. 4 9 200 95)55 400 .9576 12ýO 5
I I

50 50 .9616 2 .0 500. 2 F2

T•neJI 13.2 See% 15.4 Sec. 22.3 Sec. 76.0 See.

* Order nurlber of sample
** Confidence limit on system reliability

24



GAM/MA/72-2

size 99. Only the single sided confidence limits are given

in these tables because they are the numbers most needed in

evaluating the reliability of a new system.

There is also an error associated with the size of the

"sample of failure times for each component. With the loca-

tion parameter known, the sample variances and covariances of

the asymptotic distribution of the shape and scale parameters

are different from the variances and covariances of the small-

sample non-asymptotic distribution of the parameters.

Analyzing this error is difficult but Harter and Moore

determined the error to be relatively small if the location

parameter is known, even for samples of failure times as

small as size SO (Ref 7:562, 563).

Lutton compared the asymptotic distribution technique

with a double Monte Carlo simulation developed by Moore to

approximate the system reliability confidence interval.

Moore's method does not use the asymptotic distribution of

the parameters but uses a method that has an accuracy that is

dependent upon the number of simulations made. Lutton found

good agreement between the asymptotic method and the double

Monte Carlo method (Ref 11:21-26).

Verification of Confidence Level

In order to check the accuracy of the confidence level,

the proposed method was repeated several times. Here, a

single repetition of the method is called a run. At first,

because of the computer time needed for a single run for
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system B, 100 runs were riade on both systems A and B for a

sample of 99 system reliabilities (simulation size 99). In
each run the following is accomplished:

1. Sample failure times for each component are gener-

"ated from component Weibull distributions with

assumed parameters.

2. An ordered sample of 99 system reliabilities is

calculated by the proposed method.

3. A counter is increased by one if the true reliability

of the system is in the generated confidence interval

at any given confidence level.

After all the runs are completed, the value of the

counter is divided by the total number of runs. This gives

the percentage of runs in which the true reliability is in

the confidence interval at a given level; as in the example

shown in Fig. 1. The results of this procedure are given in

Table III on the next page. As shown in this table the

confidence level is found to be rea';onably accurate for a

simulation size 99, which is the least accurate interval

because of the error associated with that size sample.

Table III indicates that the established or required

confidence levels in the proposed Monte Carlo method are some-

times optimistic, at other times pessimistic. It must be

remembered that these confidence levels were checked by using

only 100 runs on a simulation size 99 and it can be expected

that the calculated levels would approach the required levels

if more runs were possible. Even with these limitations,
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9~~~Tt# --9-1

90,?T ... 0

75 8

80T 7

70S 6

?OT 59 ~ 72

50T 1466

00s 56nt- 1eiblties nu1F
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NoT 59~o 72fdec ntr
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Table III indicated the accuracy of the proposed method is

fairly good at a given confidence level.

To determine the effect of more runs on the calculated

confidence level, System B confidence levels were calculated

for 300 and 700 runs. This was done only for System B

because computer time for each run is not excessive for this

three-component system. The results are given in Ttble IV

on the next page. In most cases, if the calculated level was

below the required level, the calculated level approarhes the

required level and then surpasses it when more runs are made.

If the calculated confidence level was above the required

level, the calculated level approaches the established or

required level when more runs are made. In almost all cases

the required confidence levels for this system tend to be

conservative. This confirms Lutton's results, ir which he

found the confidence intervals for the asymptotic distribution

of the parameters tended to be wider or more conservative than

in Moore's double Monte Carlo method. In other words, if

the results in Table IV apply to any system analyzed, the

confidence limits in the proposed Monte Carlo method tend

(in a probabilistic sense) to be slightly conservative for

both one and two sided confidence intervals. This is a

desirable characteristic from a practical standpoint.
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Table IV
System B Confidence !Levels with Runs incroased

N=99*

Reuired " Calcuilated (%)Conf. Level' - ...... .... .. . . .

(+)100 souns 300 Runs Runs

99S** 99.0 99.0

98T #9.0 96.0 97.3

90S; 94.0 92.3 92.6

ii '

80S F6.0 .o.6 E2."

I POT " q"6. •n
, .,

70S3 76.0 72.0 .. '+,

?I 79.0 72.3 , , .,

60s 57.0 57.0

60T 72.0 633. 6h'
jI i

II50S 4.5. 0 45. 0 40. 0

50T 62.050T 6.o54.6 I 53.-9 •

* 9Q systen reliabilitie• simuiate-
** One Ei4ed conf:'-'ence interva!

T Two dii,.A ccn' r i-nce int rv:l
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IV. Conclusions and Recommendations

conclusions

The method developed is extremely flexible and gives

good accuracy for a wide number of system configurations.

The only inputs needed to start the process are the ordered

censored or uncensored samples of component failure times

and, along with the known value of the component location

parameters, any kind of estimates of the component scale and

shape parameters. In the latter case a guess will suffice

since these estimates are used only co start the method of

false positior. An increasingor decreasing failure rate

may be indicated by the failure times, thus supplying a guess

for the shape parameter. Any number within the range of

failure times may be used to guess the scale parameter.

Bayesian methods or Boolean algebra may be used to

express system reliability in terms of the component relia-

bilities. In most zases this can be done with a single

equation which is inserted in the main program. The proposed

method can be applied to any component combination and uses

relatively little computer time to generate a large sample

from which confidence limits are determined.

The accuracy of the method depends mainly on the number

of simulations of system reliability. It also depends, to a

lesser extent, on the size of the sample of component failure

times. As the size of either of these increases so does the

accuracy of the confidence interval. The ccufidence limits

30
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are easily recovered from the ordered sample of system

reliabilities printed as output from the computer program.

Recommendations

It is recommended that further work be done on the

proposed Monte Carlo method in the following areas:

Types of Distributions. The method should be extended

to include other distributions such as the Logistic and Gamma

distributions. Iterative procedures have been developed to

obtain the MLE for the parameters of these distributions and

could be incorporated into a program such as the one in this

paper.

Error Analysis. It is also recommended that a wider

variety of component configurations be analyzed to try to

determine if there is a direct relationship between the

number and configuration of the components and the error.

In other words, is error prediction ;,ossible, or can error

be determined only by analysis of the results?

Analysis of systems with component failure time samples

of less than ten would also be useful. If the proposed

method remains accurate for such limited component testing,

it could be used in systems which have components with a long

mean time to failure or where the components are so expensive

that only a limited number could be tested to destruction.

Confidence level veriiication as given in Table III uses

a limited number of computer runs on simulation size of 99

system reliabilities. It is recommended that further examina-

tion of the accuracy of the confidence level for simulations
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of 499, 999, and 2999 also be undertaken to check the

increase in accuracy of the confidence interval for these

larger size simulations.
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Appendix B

Generating the System Reliabilities

The main Fortran program SYSRE generates the system

"reliabilities. The inputs to this program are the number

of components in the system (a maximum of ten as present~y

dimensioned), the number of simulations desired, and the

mission time. Censoring information is supplied to the

program along with the known value of the location parameter.

The failure times are read for each component when the sub-

Sroutine SPARES is called and the true value of the location

parameter is read into the main program for each component.

The output from the main program is a sample of ordered

system reliabilities from which the confidence limits can b:

read for a given confidence level. The flowchart is given

in Fig. 4 and the function subprogram which is used to

generate pseudo-random numbers from the standard normal

distribution is explained in the notes.

Notes (refer to Fig. 4):

1. The ordered component failure times are read into

subroutine PARES and the individual component MILE's

of the shape and scale parameters are calculatea

and stored each time the subroutine is called.

"2. When the covariances are equal to zero, the symmetric

matrix to xhe 1/2 power is simply the square root of

the non-zero entries of the 2 X 2 matrix.
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3. In this case [V]1/2 is evaluated by using the

matrix formula

IV] = 1 s]- 1 [A]n[S] (22)

where [A] and IS] are matrices that diagonalize [V],

"and the diagonal elements of [A] are the eigenvalues

of [V] (Ref 3:244-2S1).

4. To generate samples from the standard normal distri-

bution the central limit theorem was used where the

distribution

t .)3)

approaches the standard normal distribution as n

If t = x - 1/2 where x is a pseudu-random number from

the uniform distribution, it is found that for a

sample of 12 numbers

12
Yx. -6 (24)

has a distribution that approaches the standard

normal distribution where the x. are pseudo-random

numbers from the uniform distribution (Ref 9:145,

146). Function subprogram RANOR accomplishes the

above and returns the numbers to SYSRE.
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Appendix C

The Variance-Covariance Matrix

Subroutine VACOV solves Eqs (13), (14), and (15);

£ inverts the result and multiplies these by the appropriate

constants as shown in Eq (17). The funct.•on subprograms

GAMI, DGAMI, and D2GAMI compute values of the incomplete

Gamma function and its derivatives by using a series expan-

*1 sion as shown in Ref 6. The function subprograms GAM, DGAM

and D2GAM use the asymptotic expansion formula to calculate

values of the complete Gamma function and its derivatives

(Ref 4:257). The flowchart for subroutine VACOV is given in

f Fig. S.

Notes (see Fig. S):

1. vll - Kp + K(K+l)(r(2;z)]_ + K(K+l)q 2 zm (25)

[2 ',(2; z M)K 2'-'
K2  K2  + q 2 z In zm (26)

v = p - [r'( 2 ;zm)] - [r(2;z K) -
12 ~ m

q2%K[1 + K In Z (27)

2zm m

2. v - Kp + K(K÷l) (28)

_ + r"c2.C) (29)v22 K2 K2
"K K

4S
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p '(2.O) -1.0 (30)

3. v 11  V v11 + -K(K+1)]P(2.0; '~ +

q, zr1 f(z r+i )[Kz T~ - (K+1)q 1] 31

2

AK

V2 2  22 ,2

2 A

(32)

A KK AK

qz f(z )[Kz K~ Arl-(KRi

r1 r+ 1 ~ ~ Jnzrl ( z r+l1 )ql]
q2K
q1
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Appendix D

Generating Sample Component Times to Failure

The program in this appendix was used to generate

I sample failure times for each component. If the points in

the cumulative distribution function are represented by

random numbers in the uniform distribution over the interval

0.0 to 1.0 (represented by Y) then

Y F(t) 1 = - (34)

for the Weibull distribution. The inverse relation is

1/Kt = -O[-Zn(l-Y)] + C (3s)

where t is a random value from the Weibull distribution and

Y is a pseudo-random number from the above uniform distribu-

tion (Ref 15:258). Program RSAMP calculates the true com-

ponent and system reliability for the given number of com-

ponents using the required mission time. It then generates

the individual component failure times and orders them so

that the order statistics can be read into the subroutine

* •which calculates the MLE for shape and scale parameters.

This program was used to check the accuracy of the computed

confidence interval and confidence level and is not a part of

the method proposed.
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