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| B ABSTRACT

We consider quadrature formulae (q. f. ) for the numerical evalua-
tion of the Fourier, cosine, sine, and Laplace transformations, Let
Sn denote the class of spline functions of degree n-~1 deifined on
v; the real line and having simple knots at the poinis v +§' for all

integers v. This means that S(x) ¢ sn provided that S(x) ¢ Cn"2
and that the restriction of S{x) to any interval between consecutive
v knots is a polynomial of degree not exceeding n- 1,
A In Part I, we consider, for n a positive integer, a q.f. of the

form

(- ]
[ tx)e™ax =

(n)
Hv, ¢ f(v) + Rt

1 o8

0

where, for fixed t, the coefficients H(n)

v t are bounded, We show that
?

4 among all such q.f., there is a unique formula with the property of

being exact, i, e. the remainder Rf = 0, whenever £(x) ¢ Sn n LI(R)‘

We exhibit the explicit formula for arbitrary step length h and give a
; useful bound on the remainder Rf when n is even,
In Part II, we discuss th: cosine and sine transforms, using deriva-
tive data at the origin. For the cosine case, we consider q. £, of the

] :;g form
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f fx)oos xt dx = ) 5™ fv) + }_‘, a;';’l £ 0y 4 vt
v=0 vt

where, fo: fixed t, again the coefficients H“:)t are bounded, cor the
similar case when {0 )(0) =0,1,... ,[ ]) is known, We find
that among all such q.f, there i3 a unique one that is exact when
i f(x) e Sn n LI(R+)‘ We exhibit the explicit q. f. for arbitrary n, but
have a proof only for specific n,

In Part III, the Laplace transform. case, we use the weight func-

tion e P instead of cos xt or sinxt as in Part I, but otherwise

proceed in much the same spirit as Part II, Part IV contains expressions ‘3‘

f for the remainder or error for the q. f. in the first three parts and explicit
; error bounds for the approximations of the first two parts. Two compu-
| tational examples are also included,
We actually use three different approaches to construct our q, £, :
we either integrate a.n appropriate spline interpolant to f(x), require
our q. f. to be exact for a particular sequence of so-called B-spli'ne s,
or utilize a particular monospline, In any case, the generality and
#; utility we achieve is due to the form of the splines we use, in particu-

lar to the components of these splines, the so-called B-splines,
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INTRODUCTION

+

In{10] I, J. Schoenberg generalized the construction of best quad-
rature formulae in two ways., He discusses integrals with an arbitrary
pre-assigned weight function opening up the possibility of constructing
quadrature formula (q. f. ) for the numerical evaluation of Lapiace trans-
forms, Fourier integrals, and other special integral transforms, We

pursue this possibility here; in particular we wish to discuss approxi-

mations to the integrals

(1) f f(x)e X dx, (2) f f(x)cos xt dx,
-0 0
e o0 - .
3) [ fix)sin xt dx, 4) [ fx)e *Pax
0 0

which are the Fourier, cosine, sine, and Laplace transformations,

respectively,

In 1949, A, Sard generslized the Newton-Cotes q.f. as follows: let

1EmSn+1 and let
n n (m)

() [ fxax = ), H™ fv) + RS
0 v=0 v,

be the formula exact, i,e,, Rf =0, if £(x) ¢ the class of

m-1?

polynomials of degree not exceeding m - 1, and such that the func-

tional Rf when written in Peano-fashion as an integral of the form

n
f k(x)f(m)(x)dx has the kermel k{x) with least sznorm. it was
0

Sponsored by the United States Army under Contract No.: DA-31-124-

ARO-D-462, and in part by the Research Committee of the Graduate School

of The University of Wisconsin-Madison,




I

TRTESEY r

N Ty

TR VTN A AT AT U T T TR AT R R S e T

S aan S UL e DL b Do P She Sl APl g et g 4708 i i Tt Ay P DTV T

- ——-

shown by Schoenberg [8] that we can say the following: Sard's
q.f. {5) is uniquely characterized by the requirement of being exact,

hence Rf = 0, for the elements of the class 82“l 0,1,...,n) of

natural splines of degree 2m - 1 having the knots 0,1,...,n.
The term "natural" indicates that the degree of the polynomial com-
ponents of the spline function should drop from 2m~-1 to m~ 1
in each of the two intervals (-, 0) and {n, ),

In [10] Schoenberg discusses q. f. of the form

n n m-1 m-1
©  [wootmax= ), B+ 5 8™ D0+ T ™ liny e
0 v=0 V2P jz1 bP jal b?®

where w(x) is an arbitrary preassigned weight function and such

that the q. £, (6) is exact for Il _ = and has the property that the as-

1

soclated kernel k{x) of the functional Rf has least L.-norm. This

2
q.f. he shows is uniquely characterized by requiring Rf = 0 {f f is
a spline function (not natural) of degree 2m ~ 1 having the knots
,...,0~1,

In the paper [12], Schoenberg discusses infinite analogues of
Sard's q. f. (5) for the real line R and the half-line R+ or (0,0).,

We first consider the entire line, the so-called cardinal case when

all integers v are nodes of the formula, Let n be a natural number

. and.let Sn denote the class of spline functions of degree n- 1, or

order n, defined on the real line and having simple knots at the

futegers v if n is even, or at the halfway points v +-;- if n is

-2- #1183
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odd, This u.2ans that 8(x) ¢« Sn provided that S5(x) ¢ Cﬁ-z (for

n = 1 this condition is vacuous), and that the restriction of S(x)’ t6

any interval between consecutive knots is 1de'nt1;:al with a polynomial

of degree not exceeding n - 1,, Such functions are called pardinél

spline functions, .
Lemma 1 below (§1) shows that

. 00 !
Q) 8(x) ¢ 5, N L (R) impliesthat ), |S()| < w. ! ‘

v==00

Let n be even, say n =2m, and consider a q.f, of the form

o © 2m)
(8) f txax = Y, H™ f(v) + Rf _
- g0 -w v ) ' ]
where the numerical coefficients HiZm) satisfy the con'dition that
2 | | -
(9) H) | <K for all v and some appropriate K.

1

The implication (7) shows that the functional Rf is well~defined by

(8) if £(x) ¢ SZm n L1 (R). One of the results of [12] is as follows:

Among all quadrature formulae (8), (9) the q. f,

% o
(10) J fdx = ), f(v) +Rf
-00

- Q0
is characterized by the requirement that Rf = .
d he irement th thf 0 if fe SZm n LI(R)
Observe that (10) is none other than the Euler- Maclaurin g, f,

Jtmax = 3ty +5 [ 8 ™ igax,
-00 -00 .

-0 !
!

where, if Bm(x) denotes the mth Bernoulli polynomial, we have de-
fined ﬁm(x) to Le its periodic extension of period 1 from the interval

{o, 1]. !
#1183 \ -3-
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. Note thgt the coefficients H

In Part I, we consider the analog of q.f, (6) for the entire line
R and we take w(x) = eixt, that is, we discuss approximations to the
general Fourier transform (1‘)'. Let n be any positive integer and

consider a q.f. of the form ' i

® ixt « . (n)
[ fxe™ax = Y H) ) + RE
' -0 -0 7’
where the:coefficients H:n)t satisfy the condition that

?
(12) 1B | <k for fixed t, forall v and some K.
?
i
(n)

are now functions of t, Again, the
v, t ’

result (7) shows that the functional Rf, now given by (11), is well~-
|

defined if £f(x) € Sn n LI(R); We have the following

Theorem 1, _Among all quadrature formulae of the form (11), (12),

there is a unique fon@lra with the property cf being exact, i.e., Rf = 0,

‘ whenever f(x) ¢ Sn n LI(R)°

This q.f. (11) could also be obtained by using Newton's funda-

mental idea: assuming the function f(x) to be given numerically at

equidistant points of Step 1, including the origin 0, we interpolate £(x)

by a function S(x) at lthese 'points, and then construct the Fourier
transform of S(x). This idea h;s been used before, and often, for the
integrals (1) - (4) {5].

In flact, for n=2, th;a case of linear spline interpolation, the

q.f. (11) can be found in [5, pp. 22, 23], Butfor n > 2, similar

4. #1183
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q.f. (11), (12) have not previously been developed. The generality
and utility we achieve is due to the form of the interpolatin~ “anc-

tions we use, i.e,, the splines, and, in particular, to the compo~
nents of these splines, the so-called B-splines,

In the paper [12], Schoenberg also considers the analog of Sard's
q.f. (5) for the half-line R+. Let S;m denote the class of functions
S(x) satisfying the following four conditions.

1* S(x) ¢ 2™ 2(R)

2° S(x)e I in each interval (v, v+ 1) for v =0,1,...

2m-1

3°* S(x)e I in the interval (-, 0)

m-1

4° S(x) e LI(R+).

We now consider a q, f, of the form

0

o . (2m)
(13) [ fxiax = Y, B ™ f(v) + Re
0 v=0 °

whose coefficients satisfy the condition that

(14) IHLZ"’)I <K for v 20 and some K.

[+
By Lemma 5 of [12], S(x) ¢ S;m implies that 2 IS{(v)| <o so that
v=0
+

the q. f. (13) is applicable whenever f(x) e S?.m

In {12], Schoenberg proved the following

(15) Among all q, f, of the form (13), (14), there is a unique

formula with the property of being exact, i,e., Rf = 0,

#1:83 -5-
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whenever f(x) ¢ Sfm .

~ A e ¥+ AR, € 3o

In Part II, we consider the analog of q. f, (é) for the half-line

R+ and we take

{(16) w(x) = cos xt or w(x) = sin x¢ .,
We want a q. f. of the form
0 o0 m=1
(17) [ weoteodx = Y B gy 4 Y BP™ 0 4 re
0 v=o Ut jz1 bt
where w(x) is given by (16) and the coefficients Hiz':) satisfy the
»

oondition that

PO
[y

(18) | H:Zl:)l < K for fixed t, for all integers v20 and some K,
y
Note that for m fixed, Hﬁm) is a function of t. Lemma 1 below .

(§ 1) shows that

PRI SRR PUF SO PRV

o0
(19) S(x) ¢ 5, N Ll(n+) implies that v}_jo I8(v)] < oo

8o that the functional Rf is well-defined if f(x) ¢ SZm n LL(R+)‘

Mn et e e A ke

Similar to (15), then, for our endpoint derivative case, where w(x) '

o cmaba

is given by (16), we have

Theorem 2, Among all quadrature formulae of the form (17), (18),

there is a unique formula with the property of being exact, i.e,,

+
Rf =0, whenever £(x) ¢ SZmn LI(R ).

We also consider q, f, of the form

-6- #1183
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° S 1p(0) FE () (2§~1)
(20) of f(x)cos xt dx = vzzjonv’ ) + El By £ (0) + R,
=

) 0 2
@) [toastnxtax=Y, B+ ) ™ g 4 pe
0 v=0 jz1 Mt

where the coefficients I-I‘(’mt again satisfy the condition (18)., Lemma
?
1 will again assure us that the functionai Rf given by (20) or (21)

is well-defined if f(x) ¢ §_0 L (R*), The form of the H“’“)t and the
?

B(;:)t of (20) and (21) is particularly simpler than the corresponding
form of the coefficients for the g, f. (17) and for this reason we shall
consider the q, f, (20) and (21) first, Our approach is the following;
once the existence and unicity of the q. f. have been established, we
shall exhibit the q.f, (20) and (21) that satisfy the requirement (18)
and show that they are exact whenever £(x) ¢ Sn n LI(R+) .

We could also obtain the q.f. (20) and (21) by constructing the
cosine or sine transform of the appropriate spline interpolant, Closest
tc this point of view is the paper [1] in which Einarsson approximates
integrals of the form

b b
(22) [ fx)coswxdx, [ f(x) stn wx dx
a a

as follows: f(x) is interpolated by a cubic spline with equidistant
knots, the interpolation being at the knat s, while the values f'(a)

ani {'(b) are matched by the cubi-: spline, Then he takes the trans-

#1183 7.
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form of the spline, We could adopt this method also, and through the
use of B~ splines, achieve greater generality than Einarsson, However,
we do not follow this approach because, in the general case, this ¢

) o) ¢ (20) and

method does not lead to the coefficients H ",
v,t it

(21) in a very simple form,
In Part 1II, we consider the Laplace transform (4) and establish

the following

Theorem 3, Among all q, f, of the form

) o0 m-1

(23) [ fx)e*Pax = 7}, H™ f0) + Y 8™ {1q) 4 ge

0 v=0 "° =1 he

? whose coefficients satisfy the condition . .

' (24) lHi'“:)-l <Ky ' for p fixed, forall v 20, and some .
?

K, some p>1,

there is a unique formula with the property of being exact whenaver

f(x) is a cardinal spline fuaction of degree 2m - 1 such that

f(x) = O(xs) as x— o for some s 20,

We do this in the same way we prove Theorem 2, by using a

generating function approach similar to that used in [13],
Part IV contains expressions for the error for the approximations
we make in the first three parts and estimates of error bounds for the

1 first two parts. We acquire these expressions by showing that we '

k Sl heb >4

-8~ #1183
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could have constructed our q. f. in still a third way, This third ap-

proach utilizes a particular monospline, related to the so-called

Rodrigues function of {10].

#1183 -9-
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1. THE FOURIER TRANSFORM

1. Preliminaries, We first recall some known definitions and

resuits [7]. Let n be a natural number and

1 n n-l
(1. 1) M(x) = Mn(x) = T 6 x,
where
x i xz20
X =
* 0 if x<9

and where 6n stands for the usual symbol of the 1'1th order central dif-
ference of step equal to 1. Mn(x) is a spline function of degree n -~ 1

having as knots ‘e points v (v integer), or v +% , depending on

whether n- 1 is odd or even, Mn(x) is positive in the interval .
. (- '%n, %n) and vanishes elsewhere, and evidently } n(x) € Sn. It ¢

has the following Fourier transform:

0
(1. 2) f M (x)emdx = ¢ (t)
oo n n
where ¢
2 sin'é' n
(1.3) \l«n(t) = ( t ) .

Mn(x) is called a central B-spline or basis spline because of the fol-
lowing property: If £(x)e¢ Sn, then S(x) admits a unique represénta-

tion of the form

o0
(1. 4) S(x) = ), C M (x-v)

-0

-10- #1183
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and conversely, any such series with arbitrarily prescribed {Cv}
s oconverges and defines a cardinal spline ft;ncuon of degree n- 1,

We also define a forward B-spline by

n in n-1
(1.5) Quix) = M (x=3) = T Z(‘l)‘i)(""”...

~l

Qn(x) has integer knots, is positive in (0, n) and zero elsewhere,

With q;n(t) defined by (1. 3) we define

0
(1.6) b0 = ,Z bylt + 201) .
=00

¢,(t) is a positive cosine polynomial of period Zw and order [9-;—11 -1

that can be explicitly computed from the expressicn

o .
. (l. 7) ¢n(t) .= Z Mn(V)31Vt =| Fl n Mn(v)ei\'t.

v =~00 v
=2

By Lemma 6 of [9, p. 180], we have

(1. 8) max ¢ (t)=¢ (0) =1, ming () = ¢ (r)>0.
t t

By. (1. 7), we find

f- 8,(t) = 1
¢3(t) 3 +4cos t
| ¢4(t) - 2 +;:os t
; | ¢s(t) . 115+ 76 c:lc;sét+cos 2t
E ‘ %(t) - 33+26c<22t+c032t .

#1183 -1-

e TR TN




e R e N e S R T e e, e vl S e R N N S Loy R o - AR T ST

We shall also define ¢o(t) =1 to make the notation in what follows

more convenient,

In the Introduction, we referred to the following

lemmal, If
(1.9) S(x) « Sn n LI(R)

then

o0
(1.10) Y 18w <
=00

If

(1.11) Stx) ¢ 5N LI(R"')

then

o0
(1.12) Y, Isw)l <w. .
0

. Proof, Let n=2m. We reproduce the following remark of

Louboutin [6, p. 1], If Rk(x) «I, then by Markov's inequal.

’ (1. 13) max_|Rt ()] = 2k% max IR ()]
[o,1] [0,1]
: Let now P(x) ¢ HZm-l and let
3 X
R, (x) = J; P(t)dt .

Applying {1. 13) to this polynomial of degree 2m we find that

max [P} = 2(2m)? max | f P(t)dt] = 8m’ f | Pex) Jeix . :
[o,1] [0,1)

; ! For a spline function S(x) of degree 2m - 1 with integer knots, we

-12. ) #1183
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therefore have

2 v+l
. max |8(x)| = 8m® [ |six))ax.
[v,vel] v

Assuming (1,9), we have

[ -] 0
Ylsel s % max s s smilsel
-00

< o
-® [v,vi1] L, (R

while (1. 11) implies

00 0 2
Liswl = ) max Isex)| s sm Iseall, (RH < ©
0 0 [v,v+1] 1

We have carried through the proof for n = 2m; however, we ob-

tain the same result for n = 2m - 1 1if we replace (1. 13) by

max IRk'(x)l s 2k®  max le(x)l

= [-1/2,1/2] [-1/2,1/2]
) \, and for P(x) e HZm-?. define

?, f x

1 R (x) = P(t)dt .,

This completes a proof of Lemma 1,

We also' need to know just when a cardinal spline function of

degree n- 1 -isin LI(R) or in LI(R+)' The answers are given by

e 22 a2 2000

Lemma 2, Suppose S(x) ¢ Sn and {1, 4 holds, Then

, (1. 14) 5(x) ¢ L, (R)

if and only if

#1183 -13-
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[
(1. 15) ) ol <.
Vv==00
The inclusion
(1. 16) 8(x) « L,(R")
olds if and only if
0
(1.17) RARTS
v=0

Proof, That (1. 14) is equivalent to (1. 15) is a special case of
Theorem 12 of [9, p. 199], and is hereby established, (1.16) follows
from (1, 17) in precisely the same manner as (1. 14) follows from (1. 15)
in the proof of Theorem 12 of {9, p. 199]. We now start with the as~
sumption (1, 16) and wish to show that (1, 17) holds. This is derived
from the previous case that has just been settled.Assuming (1., 4), we

consider the spline function,

o0

(1.18) 8x) = L. CM(x-v).
vz~ Il"t"l"]-t-].
2
Evidently
_ 8(x) if x 20
(1. 19) 8(x) = 1
0 if xS-n+ 2.

From (1. 16) we conclude that S(x) e L,(R) and the first part of

Lemma 2 shows that (1.17) holds.

2. Proof of Theorem 1 of the Introduction, We adapt our proof

from the proofs of Theorem 2 of [9] and Theorem 1 of [13]). For sim-
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plicity we write M(x) = Mn(x) and Hv = H‘(’n)t . We require the q. f.
?
(11) to be exact for f(xj} = M(x - j) for all integers §. This stipula-
tion gives the following relations;
00 00
21 [ Me-pe®ax - ¢ () et = ) H M) foran j
=00 V=00 v
or, since M(v-j) = M(j-v) as canbe seen from (1,1), we have
3 14t .
(2.2) 2 MU-vH = ¢ (e for all j.
v==0
To invert this convolution transformation, we consider the positive
cosine polynomial :pn(t) as given by (1, 6) and the expansion of its

reciprocal in a Fourier series:

0
1 {n) ikt
(2. 3) %(t) = kz‘\,w w, e .

Lemma 11 of [9, p. 187], for p = 0, impiizs that
) (n) vt
- (2.4) H ?wj-v v t)e

is a bounded linear transformation of L, into itself, whose inverse
ijt

is given by (2. 2). Since the sequence {q;n(t) e '} is in L, we

conclude that the sequence {H j} defined by (2, 4) also belongs to

1 . Since w(n)
() J-v

w‘(:)j [9, p. 182}, we know from (2. 4) that

¢n(t)ev -‘-\]ln(t)ej E w::)’e(v §)

S .m
(2. 5) Ho= ) wl

Vv ==00 YV ==-00
so that by (2. 3) we get

#1183 .15.
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(2. 6) H, = -;;&-)-e .

The sequence {Hj} in £ 1is uniquely defined, by (2.4).
A proof will be complete as soon as we show that the functional

(2.7) RE = [ f(x)e™dx- ), H £(v)

- 00 Y ==00

with the coefficients Hv qi\.ren by (2. 6) has the property that
(2. 8) RE=0 1if f¢ SnnLl(R)'

Suppose f£(x) is such a function and let

00
(2.9) f) = ), C Mix-v)

-0

be its expansion in terms of the central B-splines of degree n- 1,
By Lemma 2, we know that f(x) ¢ LI(R) implies that

00

(2. 10) Y, lcl<w.
=0l v
The partial sums
I
(2. 11) fx) = Y C, M(x-v) (r=0,1,2,...)

v==r
have the additional property that

n
(2. 12) £(x) =0 if |x|2 >+ T

Since f(x)e S n n LI(R) and (2. 12} holds, we conclude that
fr(x) € Sn n LI(R)‘ Using properties of the functional (2, 7), we obtain

var(v) .

0

o0
(2. 13) f fr(x)emdx -
-

i o8

v

.16 - #1183
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Observing that each fr(x) is dominated by the function .
0 1 .
% lc, |Mix-v)
- 00 H

which is summable on R by Lemma 2 and (2.10), we see that on let~

ting r -> o, the relation (2.13) becomes the desired relation *

© " o0
[ txe™ax = Y Hiw.
-0 ] yv==0 v

This completes a proof of Theorem 1.
i

[

Substituting the coefficients I'—Iv as given?by (2. 6) gives us the,

unique q. f. of Theorem 1 in the following form:

\

0 g () o o
(2. 14) [ te™ax = 2= Y fwie™t+ re . S
~ct ¢n(t) ) '

|
Suppose now that f(x) is a spline function of degree n -1 with

knots at (v +f)h, ‘for all intégers v, that is also {n .LI(R). But
then _ ' b

.S(x) = f(xh)
is a cardinal Sgiine function of degree n - 1 for the step 1, F;'om

Theorem 1 and (2.14) we have . !

@ b (1) o ‘
[ fixnye™ax = °5 L et
=00 ¢n V=~

If we replace in the integral the variable x _Sy x/h and then replace '

in the identity t by th, we obtain

0 y_(th) 0 |
(2.15) [ te™ax = —n 3 funel’t
~00 ¢n(th) v==00
#1i83 17-
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If f(x) is an arbitrary function, then this is no longer an identity.
However, we can obtain information on the error made in using the

appxpicimation (2. 15) if we consider n evexi, say n =2m, In fact,

in 514 below we: shall prove the following

2n
h

Theorem 4, Suppose £(x) ¢ C2™ N L (R) N Lf“‘(n) and

is a natural number, Then we can bound Irf] as given in the q, f.

w 4, (th
2.160 [ f0e'ax = =2B—h ) swhe!™ 4 re
' - ¢Zm(th) va-0
by N '
2.17) Ire] = 4¢R)2m jg2m)y for all rational t# 0

i - L(R) =
2w 2u

an 55,50,

In the theorer!n, Lfm(R) denotes a particular choice of n and

p for the set

L:(R) = {F(x): F(n-l) absolutely continuous, F(n) € Lp(R)}

" where n is anatural number and 1 S p= o, The set L:(R+) is

defined similarly.

-18- #1183
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I, THE COSINE AND SINE TRANSFORMS

For concreteness, we now take w{x) = cos xt and consider q. f. of

the form (20). We sh.all also take n = 2m, and later will indicate the 1
modifications necessary for different derivative data, for even degree

splines (n = 2m - 1), and for the weight function sin xt.

3. A recurrence relation, For simplicity, we write H = Hf,zT), Bj= ’

\
B;Z:n ). We want to construct a q. f. of the form
?

() © m-1 (2§~1)
(3.1) [ fxicos xtdx = ), H fiv)+ ), By b (O)+Rf
0 v=0 j=1

such that

(3. 2) IHvl <K for all integers v 20 and some K’ ‘

and with the property that

1

. .

(3. 3) RE=0 ff fe S, NL R

We do this by enforcing the requirement (3, 3) for an appropriate se-
quence of elements of SZm n LI(R+)° The sequence we require is
the sequence of forward B-splines of degree 2m -1

{3.4) {Q(x - r)} (r =-2m+l, -2m+2, ...)

where, by substituting n = 2m in (1. 5) we have

Lo

n 2m=-1

(3. 5) Q) =Q, () = oy ol

P 0t M- 1)

i=0
Since Q(x) has support in (0, 2m),

#1183 -19-
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(3. 6) Q(x - r) = 0 outside the interval (r, r + im),

(r=-2m+1, -2m+2, ...)

Q(x) ¢ II2 on any interval between consecutive knots so that ‘

m-1
Q(x) ¢ SZm f L1(1R+), and evidently we also have

(3.7) Qx-res, NLRY)  (r=-2mtl, -2m2,...).
Substituting f(x) = Q(x - r) in (3. 1) and recalling (3. 3) and
(3. 6), we have the sequence of relations

r+2m
(3.8) { Qx~r)cos xtdx = HyQErHHQU-rit. .. +H , Q(2m+1)
m-1
2i=1
+ j{;l BZ]-IQ( J )(-r), (r=-2m+l,-2mt2,...,~2,~1)
and

r+2m

(3.9) of Qlx-rjcosxtdx = H Q(I)+H__Q@2)M...+H , _ Q(2m-1) ,

r=0,1,2,...).

4, The summation of certain geries. We shall need the following

lemma which deals with well-known power series,

Lemma 3, 1°. The power series

;- s Q0

= (4.1) 0.(x) = T (vi R (k=0,1,2,...)

- v=0

' has the sum

A P (x) ‘
1 (4. 2) ® (%) =

i k (1-x)k+2

-20- #1183
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where Pk(x) is a monic polynomial of degree k, with integer coeffi-

clents, that may be derived from the recurrence relation

(4.3) P (x) = (4k)P,_ (0) + X(1-x)P| _(x),  with P (x) =1,

2°. The power series

%
E (Zv-f-l)k x

(4. 4) ® (x) =
k v=0
has the sum
- T, (x)
(4. 5) ® (x) = ——
k (l-x)ku

where Tk(x) is a monic polynomial of degree k, with integer coeffi-

clents, that may be derived from the recurrence relation

(4. 6) Tk(x) =[1- (Zk-l)x]Tk_l(x) + Zx(l-x)T'k_l(x) with To(x) =1,

The polynomials Pk(x) are called Euler-Frobenius polynomials of de-

gree k, vhile the Tk(x) are called midpoii. - Euler-Frobenius poly-

nomials of degree k. We omit the easy proof by induction which also

furnishes the relations (4. 3) and (4. 6). We find readily that

Pl(x) = 1+x
2
Pz(x) = I +4x+x
P3(x) = 1+11x+11x +x
PX) = 1+26x+ 66x° + 26%° + x7
and

#1183 -21-




‘l‘l(x) 1+x

2

Tz(x) 1+6x+x

(4. 8) 2 3
T3(x) =1+23x+23x +x

T4(x) = 14+76x+ 23Ox2 + 76x3 + x4

and so on,
The form of the relations (3. 8) and (3. 9) éuggest the use of gen-
erating functions for the determination of the Hv and the Bj . The

righthand side of (3. 8) and (3.9) is equal to the coefficient of

r+2m-1
X in
2m-2 2m-2 m-1 (23-1) ,
4.9) (Z Hx') ), Qm-1-v)x") + [ 2e, 1@ eme -
v=0 v=0 v=0 izl

In order to simplify the two polynomials in (4.9), we note that

ol ol S

@100 Q™ = 1™ 2m-x) k=0,1,...,2m2)

as can be verified from (3. 5). With this substitution and the inter-
change of the order of summation in the second polynomial, (4.9) be-

comes

2m-2 m-1 2m-2 (24-1) v
(4.11) Z Hx")( Y Qu+1)x) - Y, By Y QT wenx”),
= v=0 v=0 j=1 v20

We need the following result that is perhaps of independent

interest;

Theorem 5. The following identities hold:

YT TR
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2m-2 (1-x)°P (x)
. “) v - __;_Ln"z-j -
(4.12) 1°, v};_‘,oo (vl = —o s (4=0,1, ..., 2m-2;

m=1,2,...)

m-1
w132% Y Q¥ Do’ = 1-02™!  m=1,2,...)

v=0
i
2m-2 oy (=x)'T, (%)
(4.14) 3. ), M‘zj':l_l(v-l-l-m)xv = (%)2““2 I (szzT;)% 3|
v=0
(3=0,1,...,2m-3; m=1,2,...)
Zm-2
4% 20 Mz(i:_n;Z) vil-m-0)” = (=22 (m=1,2,...).

We note that because of (1. 5) we could also write (4. 12) in the form

j
2m-2 (1-x)'P, _  (x)
w15 Y M phemp” - — Al
v=0

(§=0,1,...,2m-2; m=1,2,...).

Proof, First we show (4.12). Let

j 2m-2 v
(4. 16) (2P o ) = ) A X,
v=0

From (4. 1) and (4. 2), for k =2m -~ 2 - j, we find that

] _ 2m % 2m-1-j k
=2'P, o ) = (=057 Y (k1) x
k=0
@ tam.t @ 2m-1-§ _k
= Y 0 Y ae)™  x
i=0 ==-o0
8o that

#1183 ' : -23-
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4.17) A = (_l,i(llm)(k“)zm-x j

f+k=v

2m~1- j
Z‘, ""‘1 ) v-141);

o v ot YA

On the other hand, by differentiating '(3. 5) § times, we obtain

2m

0),.. _ 1 f2m) . p2mel-)
(4.18) Q70 = e 1220 DT e
and then
(1) i i2m 2m-1-9
(4.19)  2m-1-§)1 Q(w+1) = ), 1) ( )(v-i-l-l)
. 120

which is identical to (4. 17) so that (4, 12) follows.

To prove (4.13), we substitute j = 2m - 1 in (4, 18) and get

2m
@.200 Q¥™Nyy - E D' o2
i=0

(Zm-l)(x) is a step function so that upon substitution of x = (v+1-0)

Q

for v=0,1,...,2m1, (4,.20) becomes
2 v

w2y Q@ Vg0 = ¥ - D' CPwH-10) = Y 1 ED)
1=0 1=0

(v=01,...,2m1),
But an easy induction shows

v
Z(’ i2m vc.ml)

(4. 22) ) = 0 o (v=0,1,...,2m~1)

so that by (4, 21) and (4, 22), we have

2m-1 2m-1l
Z Q(zm-”(v+l-—0)xv - Z 1) (Zm-l)xv - (l-x) -1
v=0 v=0 '

The even degree spline case 3°, 4° {s proved in the same manner

as (4. 12), (4.13) so we can omit this proof and the theorem follows,

-24- #1183




With the substitution of (4.12), (4.11) becomes

2§-1
o P (x) m=1 (x-13"7 °P {x)
v, 2m-2 2m-24-1
(4. 23) (‘?_ioﬁvx Y +,§1 Baf1 T w21 )

We now turn our attention to the left side of relations (3. 8) and

(3.9) and define

r+2m
Ftame1 © { Q(x-rjcos xtdx  (r=-2mtl,-2m+2,...,-1,0)
(4. 24)
r+2m
Fvom1 = Q(x-rjcos xt dx  (r=1,2,...).

r
If we integrate the righthand side of (4. 24) for (r = -2m+1,...,~1, 0)

by parts 2m-1 times, we obtain

(4. 25) Fr+2m—1 = ['%Q(x-r)sin xt +°:';" Q'(x-r)cos xt - ':3 Q" (x-r)sin xt

m-1 r+2m
- “lz Q™(x-r)cos xt + ... + ‘(‘LQ(Zm-Z)(x-r)sin xt]

¢ th—-l 0

( ]m-'l r+2m
- -IZm-l f Q(zm.l)(x-r)sin xt dx .
t 0

(2m=~1)

Since Q (x) is a step function, we break up the interval of inte-

gration and writ~ the integral in (4. 25) as

r+2m r+gm-1 4+1
4.26) [ Q™D irsinxtax = Sf“ f Q™ D (- rysin xt dx
0 =0 1
re2mel e 241
3 = Z Q (l+1-—r-—0)f sin xt dx .
1 £=0 1

After we integrate and collect terms, we obtain (4, 26) in the form

#1183 -25-




1 r+2m-1 2m-1)
421 -¢ ) Q (#1-1-0) [cos(t+1)t - cos ft)
1=0
r+2m-1
==+ Q¥ Va0 5 @P" D010 Nipti-r0)
£=1
ecOS £t + Q(zm-l)(znx~0)cos(r+2m)t} .
By (4.21) we find
(4. 28) Q@™ iy e 0)- Q™D ipir0) = —-1)F% f_";)
and
2m=1
(4. 29) Q¥™Vong - ¥ (-1)1(?‘;") = -1
1=0
so that upon substitution in (4, 27), we have
r+2m
4300 | Q%™ Nixer)sin xt dx
0
r+2m
_1lA0@m-1) 1 _ r 2m
=+Q (1-r-0) + ¢ !};‘,1 (=1)7 ( Decos &t

Ifwelet { =2m 4+ r- £ inthe sum in (4, 30) and substitute the result

in (4, 25), (4.25) becomes

L L "t =1 m-2 (2m-3)
@3 F, =-[2Q 1) =5 Quinpt. . HEEL— Q™3

t { th-z |
m m r+Zm-1
+_(:LL Q(Zm_l)(l-r-O) + 0 E (-l)i(zm)cos(ﬁ?.m-i)t
th th 120 i

(r =-Zm+l,..-,"l, 0).
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Let j =r+2m-1 and multiply each side of (4, 31) by (-l)mtzm to get
4.32) )™ "‘r 112" 20! (2me1-§)- (- 1) ™2™ QM (2me1- )4

ZQ(Zm-3)

ot @m-1-1)} + Q¥ Van s 0y

+ i(—l)i(zm)cos (J+1-1)t (#=01,...,2m=1).
1=0

In view of the relations (4. 10), we may write
i2m
(4, 33) (-1) t P = t( 1)( )oos(j+l i)t -

(Zm -1) (2m-3) m-1 2m-4

(j+1- 0)+t Q (J41)~. .. +(-1) Q™ (§+1)

ma2m-2

+(-1) t Q'(j+1) G=01,...,2m~1),

If we consider (4.24) for r = 1,2,... and again integrate by parts
2m-1 times, we obtain (4. 25) with the lower limit of integration r
instead of 0. Upon evaluation, the square bracket in (4, 25) is 0 and

we would get, by using (4, 25), (4.26) and (4. 27) that

m r+2m-1
(4.34) F 2 Vi {--1- z Q(Zm 1)(.!-t-l-r-~0)[cos(l-l»l)t:-—cosxt%

2 2
+2m-1 tm-l t for

(r=1,2,...).
Following the same steps we did before, and noting by (4, 21) that

Q‘Zmnl)(l"O) = 1

allows us to use (4, 30) to write

#1183 -27-
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m r2m
(4.35) F S e =T i

= (, )cos £t .
r+2m-1 tzm f=r f~r

Letting i =2m + r- 2 in the sum in (4, 35) and then § =r + 2m - 1,

we obtain upon multiplication by (- l)mtzm
mzm. B i2m
(4.36) 1)tF, = 12 (-1)°(“{cos(i+1-1)t (J=2m, 2m+l,...) .
=0

Let us sum the series

4.3 n™E"Y px
j=0 }
From (4. 33) and (4. 36) we find that 1
m2m & y 2m-1 i 2m j 3
(4.38) (1)t FX' = ¢ ) [ L 1) (" costi+i-1)t]x
§=0 §=0 120

o 2m 2m-1
+ Y1) (-1)‘(2;“)cosu+1-1)tb<’}- Q2™ s41- 01

j=2m i=0 §=0
2m=-2 2m-2
+ tZ Z Q(zm-3)(j+l)x’~. . .+(_l)mt2m-2 Z Q'(Hl)xj '

j=0 §=0

To simplify the term in curly brackets on the right side of (4. 38), we

define
0
(4. 39) : T(x) = [cos(v-l—l)t]xv
v=0
and note that
2m M im i v
(4. 40) (1=-x0""1x) = Y DD - Y [cos(vltl
1=0 v=0
% ) 2m
* =5 1 L en' Mol
j=0  i+v=j
) 1=0,v 20
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2m-1 J o 2m

=% 2(—1)‘(";“)eosu+x-1)t]x’+ Y [Z(-l)‘(z“‘)oosmlq)tbc’
j=0 =0 j=2m 1=0

Using (4. 40) and (4, 12) and (4, 13} of Theorem 5, we may therefore

write (4, 38) as

(4.41) 1) tz“‘Z Fad = (1-%02"r () - [(1-2)2™

’ ’
2 4
L 2m—~3 L3 m-5 _
~ 57 Py (x)1-x) +4 F300- x)
2m-2
m1 t
+(-1) --—(Zm = _3x(1- -x)] .

Equating the relation (4, 23) and Z ijj as determined from (4. 41),
120

we see that we require

m 2
.42) I () roore )P - e )® ™R 4 L
t

m-1 th—Z
+(-1) m _4ix)(x 1}
2j-1
} (i H )sz -2X )+ “"IB R IR L
BRE (2m-1)! ‘-;l 2j~1 (2m=2)!
(2m) B =B(?-rn)

5. Determination of the coefficients H =H ’ .
T e e o v v, t j j’ t

o0
Solving (4. 42) for Z Hvxv gives the final relation
v=0

(5.1) Z H " < L2 ’z;,{‘ D2 12 12!
m—u

#1183 .29
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| (x-1 )Zj 1

m—-l i th R

1) +— l:’Zm--Zi-l(x)
2 3! -1

2§-1 (2m=-2§)1 :

m-
Zm-Zj— l] - 5‘
=1

(x)(x~1)
j-l

o

Our derivation of (5, 1) establishes the following

(?-m) (2m)
Proposition 1. _The coefficients H H sz 1 BZj-l,t

of the most general functional

m=1
(5.2) Ri= [fxlcosxtdx- 3 H 1) - b B, £ )
0 v=0 j=1 1

vanishing for the functions

(5. 3) sz(x - ) (r =-2m+l, ~2m+2, ...)

are the expansion coefficients of the rational function (5. 1) where the

BZj-l (=1,...,m-1) are chosen arbitrarily. ) .
We want to investigate the functionals (5, 2) further, and, in par- r

ticular, determine the unique functional having bounded coefficients,

Let RZm(x) denote the right side of (5,1), where the B (i=1,..., m=1)

2j-1

are as yet undetermined, To use RZm(x) effectively, we need informa-
tion on its poles. To this end, in view of (4, 12) of Theorem 5 for j = 0,

(x) in terms of the central B-spline (1, 5) as

we may write. sz_2

2m-2
() = @m-1)1 Y M, (v-milx .
v=0

(5.4) Pome2

By Lemma 8 of [9, p. 182] we know that this reciprocal polynomial has
only simple and negative zeros so that we may label them to satisfy

the conditions
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- “m“ ',..._,.‘....... - —
1
|
and
(5. 6) MAmez “Ahames T eee SA_A =1,

From the form of +(x) as given by (4. 39), we note that T(x)
i |
converges for |x] <1. Observing that for RZm(x) the poles
xl’ L X N ) ’ km-l 2
side, in view of (5, 5), we shall have the coefficients i—Iv bouhded,

are inside the unit circle while xm, coesh o are out-

if and only if the coefficients B (=1,...,m-1) canbe chosen

2i-1
so that the m-1 poles xl, coay xm_l of R (x) have vanishing resi-

dues. By (5.1) this will occur if and only if the B, satisfy the

i

equations !

j ) ' H

m-~1 (x ~1) (X ) . 1
P am=2i-1 ! :
(5.7) ’};,0 Byio G .
| 2§
_En® e 2m TS P S K

_1yem=-2§-1
Pt (MO ]

' (V = l,ooo,""l),.

In the system (5.7), we have m~1 equations in the m~1 unknowns

821_1 (j=1,...,m-1). To show that the system {s nor}singular, it is
sufficient to show that the determinant
2j~ 1
(1) ()
- m-ZJ--l v
(5. 8) la,,l = | (2m-2J)! | # 0

(V = l’z,noo,m"l; j=1,...,m-l).

1l

'}
W
o

1]
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In order to accomplish this, we shall consider a related problem,
a special case of which will solve our problem. Let

(5.9) ngl = {S(J:t) s S(x) e SZm’ S(v) = 0 for a!l integers v}.

In[9, p. 194] Schoenberg shows that every element of ng admits a

unique rebre sentation
2m-2
© (5. 10) o O8(x) = ) 3,5, (x)
' . k=1

fof appropriate values of the icoefﬁcients 3

"the so-called eigensplines of the class ng and are defined in terms

where the Sk(x) are

o.f the zeros (5. 5) by
o0
(.11)  §=8, (r) = ; oM, e kel2,...,2m2).
X =00 .

In [9, §9] Sphoenberg proved a Theorem 11, a special case of which

asserts the following:

(5. 12) : S(x) ¢ ng n Lf(R) for some s=0,1,...,2m~1

implies that
. (5. 13) 8(x)=0 for all x.

The first half of the proof actually establishes the following:

Every S(x) ¢ ng n Lf(R+) for some s=0,1,...,2m-1 may

be uniquely represented in the form

m=1
(5. 14) Sk = ) a8 (x)
: k=1

for appropriate values of the coefficients a

k L]
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In particular, the §, {x) for k = 1,2,...,m~1 are linearly inde-
pendent,

We determine the set
(5. 15) Ic{1,2,...,m1}
the null set also being allowed, its complement

1° = {1,2,...,m1}-1

and in terms of Ic, the set
(5. 16) , I' = {2m-2-1: ie I°},
Notice that while I is a subsetof {1,2,...,m~1)}, the new set I'
is a subset of {m, mt+1,...,2m+2} so that the intersection IN I' is
empty. The particular set we will be concerned with in connection
with the system (5.7) 1s I1U I'={1,3,5,...,2m-3},

Suppose that S(x) is of the form

m-1
(5. 17) Stx) = ), a5, (x).
k=1

We want to be able to choose the ak in such a way that

(5. 18) sWo) = yéi) felUT
where the righthand side has arbitrarily prescribed values, In other
words, we want the a, to satisfy

me=I*

(5. 19) Y aksf)(o) - yg) PRUR D
k=1

This then is the related problem, a colution to which will enable us to

show (5, 8).

#1183 ~33-




B oaaa Al la g et

In order to show the existence ard uniqueness of the a , we con-

sider the corresponding homogeneous system and prove the following

Lemma 4, If S(x)e ng n I.ls(R+) for some s=0,1,...,2m-1

and
(1)
(5. 20) S$7'(0)=0 if eIV
then
{5,21) S{x) =0 for all x.

Remark. This is a special case of a result of Schoenberg [10,
Lemma 2] concerning a finite interval that we have extended to the
infinite interval (0, ), We follow his proof which was in turn pased

originally on a proof of Greville [4, p. 4].

Proof of Lemma 4, Suppose (5. 14) is the canonical representa-
tion of S(x) ¢ ng n Lls(R+) for some s=0,1,...,m-1. Note that,

sir.ce

(5. 22) S)(cs)e Ll(R+) for (s=0,1,...,2m-1)and k = 1,2,..,,m-1

by the nature of the representation (5. 14), we also have

(5. 23) s®x) ¢ Ll(R+) for s =0,1,...,2m~1,
We let
® m) 2 b m) 2
(5. 24) g = [ ™l = 1m [ 8™ dax
0 b~+wx 0

and wish to show that

{5. 25) =0,

-34- #1183
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We write Q = f S(m)S(m)dx and integrate by parts successively to

. obtain

b b
(5.26) ©=um [ s™as™V .y [ smHgs(m2)
0 0

- b
+m [ P gsl@
0

where the integers o and B satisfy the conditions

R S

SN,

(5. 27) 0SoSm-l, mSB=2m-l, a+p=2m1l,

Notice that we have written (5, 26) as if all the "finite parts' drop out

at each end of the interval of integration and at each step of the suc~

e g et e S R T P ST IR

cessjve integrations. That this is indeed the case follows thus: for

(e agat

each pair of numbers (a, B) satisfying (5.27) we have

[T

(5. 28) s'90)sPo) = o
v because either a¢ I or pe I' so that (5.20) implies that (5, 28)
holds. For each (a, ) we also have

m sy sPp) = o

b-+w
in view of (5, 23).

The integrations can be continued all the way down until we

reach x
b b] v+l

5.20 2 = im [ s¥™ 45 o 1m ilE [ 8™ s x)ax
0 b-+ « v=0 X,

where we have written x =v for v =0,l,..., {b} and x b.

(b1~

Since S(zm—l)(x) is a step function, the integrals in the sum (5, 29)

vanish if 0 Sv <[b], since S(x) e ng . There remains to show that also

: #1138 -35-




b (2m=~1)
(5. 30) um [ s (x)S'(x)dx = 0.
b-+w [b]

If b 1is an integer, (5.30) is true, If b is not an integer, since

S(zm"l)(x) is a step function,

b b
5.3 [ sE™Digsixdx = s V) [ s xydx
[b] [b]

= §®™ Dip)ism) - sapD].
S(x) ¢ ng implies S([b]) = 0 and, upon letting b—+ o on the right
side of (5. 31), we obtain {5, 30) by virtue of (5. 23).
We have just established (5, 25), and therefore that
(5. 32) S(x) ¢ nm-'l .
But S(x) e ng implies that S(x) = 0, This completes a proof of

Lemma 4.

In view of L.emma 4, S(x) as given by (5.17) for the homogeneous

system
m-1
5. 33) ), a
k=1

must vanish for all x, Then, since the Sk(x) for k=1,...,m-1 are

ks}‘:’(o) =0 1eIur

linearly independent, we must have a, =0, k=1,...,m=1. This

k

shows the existence and uniqueness of the a_ for the system (5.19),

k

so that we must have that the determinant

(1)

l=|sk

(5. 34) |A o #0 GelUT, k=012,...,11),

ik
We claim that
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3
3
:
1
[]
3
‘3
A"‘

i
i
(D', 0 |
), . _ 2m-2-1"k 1 j
(5.35) 8,0 = =T L1
k

(1=0, l’.o.,zm"z; k=1, seey m-l)o

Indeed, if we differentiate (5.11) 1 times and substitute x = 0, we

Y

obtain

s

(5. 36) o= 3 % M“’(n.

J=—o00

MZm(x) has support in (-m, m) and

i (1)

(1) -
(5. 37) M, (x) = (F1)'M,_ (x)

as can be seen from (4, 10), so that we can write (5, 36) in the form

m-1
ez  so = et L Ml
j==(m-1)

Ifwelet v=j+m=-1 inthe sum in (5, 38), we obtain

Zm 2
s

(5. 39) Do) Z Ay Mg:](vﬂ-m) .

Then (4, 15) of Theorem 5 establishes our claim (5, 35),
th m=1
If we multiply the k™ column of the determinant in (5. 34) by Xk
k=1,...,m-1 and take the transpose of this resulting determinant,
we have by (5. 34) that the determinant

1
T P 'Y T
(@m-1-1)1 (k, 1)

(5. 40) (k=1,2,..., m-1; feIU I'),

If we consider the special case 1U I' = {1,3,5,...,2m-3}, then the

determinant

#1183 -37-
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O 1R, 2'4“")I ‘o
(2m=1-1)1 (k, 1)

(5. 41)

k=1,2,...,m-1; i=1,3,5,...,2m=3),
This is precisely the relation (5. 8), so that we have established the

first part of the following

Theorem 6, 1°. _Among all functionals

(5. 2) Rf = f fx)cos xt dx~ 3 12Ms) - Z g2 f"‘"”( 0)
Joo Wit 2j-1,t

vanishing for the sequence of spline functions

(5. 3) QZm(x - r) (r ==-2m+l, -2m+2, ...)

there is a unigue one such that the sequence {Hv} is bounded,

2°, In fact, this unique functional Rf can be given explicitly by

R g, (t)
(5.42) Rf= [ f(x)cosxtdx-—2D0 { f(o)+5‘ f(v)cos vt}

0 "’ (t) v=l
m- i ( )q; (t)
£1) m= 2} (2j-1)
' jz;l 21 [ ¢2m(t) ]f o

(where q;n(t) and ¢n(t) are defined in (1, 3) and (1. 6), respectively)

for m=1,2,3,4,

-Proof of 2° of Theorem 6, We observe that the functional Rf of

(5. 42) is of the proper form (5, 2) where
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1 “2m m
5, 43 H =+ H - t =1,2,...).
G431 o =2 %,0 cosvty, @ “IhEe)
By (1. 3) and (1. 8),
(5. 44) | s [SiRtl2 lzm L1 _ .o
v t/2 by = 5, (@

v=0,12,...)
so the sequence {Hv} as given by (5. 43) is bounded, Once we
show that Rf as given by (5.42) vanishes for the sequence of splines
(5, 3), the unicity established in part 1° will establish part 2°,

We accomplish this in two steps, one for (r=0,1,2,...) and
the other for (r = -2m+1, -2m+2, ..., ~-1), We remark that we prove
the first case for general m but the latter only for the special cases
of m=1,2,3,4, So far, the latter general case still eludes us; it is
a matter of showing the validity of one necessary identity, This same
dilemma prevents us from claiming explicit versions of other q. f, to
follow as well as (5. 42) for general m.

We first show that Rf = 0 for f(x) = QZm(x-r) for r=0,1,2,... .
Since (1.2) holds, we get

Q0
Ixt _ ijt
J M ene™ax = el

-0

Taking real and imaginary parts, we find

00
(5. 45) f Mn(x-j)cos xt = \pn(t) cos jt
-0
and
#1183 -39.-
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[
(5. 46} f M, (x-J) sin jt = ¢_{t) sin jt .

- 00
By (1.5) and (5.45) for n =2m and stnce M, (x) =0 i |x|> m,
we obtain

o0 (]
(5. 47) f Q. (x-r)cos xt dx = fM (x~-m-r)cos xt dx
0 2m 0 2m

= ¥, (thcos (mir)t . (r=0,1,2,...),

Since f‘zl'l)(O) =0 for f(x) = QZm(x-r) and r=0,1,2,,,. we need

only show that

r-l-zym-l
(5. 48) ¢Zm(t)oos(m+r)t = . }J+1 MZm(v-m-r)cos vt
(r=0,1,2,...).
By (1. 7) we have
n§1
¢, (t) = M_ (k)cos kt
2m k=-zlm-l) 2m

which upon multiplying by cos(m+r)t and letting v = m+r+k becomes
r+2m-1
(5.49) ¢, (ticos(mir)t = ) M, (v-m-r)cos(v-m-r)t- cos(mtn)t.
m 2m
v=r+l
By using the identity

cos at cos bt = cos(a+b)t + sin at sin bt

we get

(5. 50) cos(v-m-rjt cos(mir)t = cos vt + sin{v-m-r)t sin{m+r)t.
But

-40- #1183
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r+2m-1
M, {v-m-r)sin(v-m-r)t- sin{m+rjt =
2m
v=rtl
m=1
=sinmir)t ), M, (Kistnkt=0
k=(m-1) °™

since MZm(-k) = MZm(k)’ so that upon substituting (5, 50) into (5, 49)
we obtain (5, 48) as we wished,
What remains then is the case r =-2m+1, -2m+2,...,-1. By

(1. 5) we can write (5.3) as MZm(x«-m—r) and need to show that

Rf =0 for

MZm(x-m-r) (r =-2m+l, -2m+2, ..., =1)
or for
(5. 51) MZm(x-j) (§ = -m+l, -mt2, ..., m-1),

By the symmetry of Mzm(x) and (5,45) for n =2m, we find

o0 00

(5. 52) f M, (x-j)cos xtdx =¢__(t) cos jt- f M. (x+j)cos xt dx
0 2m 2m 0 2m

and
[ ‘

(5. 53) M, (x)cosxtdx = —y_ (t),
0 2m 2 '2m

stnce MV gy < oM@ 1y) and M D6y 2 0 for (k=1,2,...,

m-1), and by the previous case for (r=0,1,2,... ), we need only
show that Rf = 0 for (5. 51) for (J =-m+l,-m+2,..,,~-1), For

m

1,2,3,4 this is just a matter of computation. For instance, for

m

2, the cubic case, we need show only that

© g, () $, (L, (t)
4> 1. %Y
(5. 54) OfM4(x+l)cos xtdx = 2,0 {EM4(1)}-t2[l Yy

#1183 -4]-
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By integrations by parts, the left side becomes

2
1 t
“—[cos t- 1+
t4 21!
and the right side, upon substituting M 4(1) =1/6, M 4' (+1) = -1/2,
¢2(t) =1, ¢4(t) -2 +;>os L and using (1.3) and trigonometric

manipulations, agrees, This establishes Theorem 6,

We can now prove the following

Theorem 7. _Among all g. f, of the form

f f(x)cos xt dx = E H(Zm)f( ) + Z B(Zm) f(?'j l)(0) + Rf
0 ,

2m)

where the H: t satisfy the condition
H

|H(Zm)| <K for fixed t, for all integer v Z0 and some K
v t 9 9

?

there is a unique g, f, with the property of being exact, i,e., Rf =0,

whencver f(x)e S, N LI(R+)° This unique g, f, is given by (5. 42)

2m
for m=1,2,3,4,

Proof, The proof is modeled after the proof of Theorem i, We want

to show that the functional

15 o0 m-1 (25-1)
Rf = f f(x)cos xt dx - Z Hf(v)-z B f (0)
v 2j=~1
0 v=0 j=l
with the coefficients H = H(Zm) B = B(Zm) as given in (5, 42)

Jt 2 T2i-1 T2t
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[or as given as the expansion coefficients of the rational function
(5. 1) where the B2 -1 are defined by (5. 7)} has the property

+
RE=0 if fe5, 0L (R

Suppose f ¢ Sm n LI(R+) and let
00
f(x) = rz,w chZm(x-r)

be the expansion in terms of the forward B-splines of degree 2m -~ 1,

By Lemma 2, we know that fix) ¢ L (R') implies that

Q0
(5. 55) 2 lel<w,
r=0 -
The partial sums
k .
Lo = Y cQ, (xr) (k=0,1,2,...)
f=—00

have the additional property that

{5. 56) fk(x) =0 iIf xZ22m+ k.

Moreover, fk(x) = f(x) if x £ 0 so that since f(x) ¢ SZm N LI(R+)

and (5. 56) holds, we conclude that fk(x) € SZm n LI(R+) for integer

k 20, Using the properties of the functional (5. 2) we obtain

0 o m-1 (2j-1)
. 57 = )
(5. 57) ({ f, (x) cos xt dx v};'o H{ (v) + 1221 Byafe . (0).

Observing that each fk(x) is dominated by the function
Q0 | .
Y ledQ, txr)
F==-00

#1183 -43-
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By 3 7
e bt T okt i cam mo

which is summable on R+ by Lemma 2 and (5. 55) we see that on
letting k - oo, the relation (5. 57) goes over into the desired relation

foo ) m=1 (2}-1)
fx)cos xt dx = ), HE(w)+ ), By i £ (0
0 - =1

This completes a proof of Theorem 7.

6. The sine transform (21} for n = 2m. In §3-5, we've considered

w(x) = cos xt and n = 2m, We now want to consider the weight function
w(x) = sin xt and indicate the modifications in these previcus sections

that allow us to prove the following

Jheorem 8. Among all q. f. of the form

(6. 1) [ txstn xt dx - Z H W) + Z B2™ ¢ (0) 4 Rt
0 v=0 v, t I=1 )t

where the coefficients satisfy

IH‘(,ZT)I <K for fixed t, for all v 2 0 and some K,

there is a unigue g. f. with the property of being exact, Rf = 0, when-

ever f(x) ¢ SZm n LI(R+)’ This unique q. f, is given by

00 ¢, (t)

2m

(6. 2) f f(x)sin xt dx = © 7‘ f(v)sin vt
0 ®2m vel

it (-1)’[ 21 ¥ m2p Y cos 3
l -
j=0 12141 2m

2.1 0) + gre,
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(2m)

For simplicity, we write H H(ZT), B 2 sz . We agéin
’
4 shall attempt to show that
t
’ +
(6. 3) RE=0 if fe SZmn Ll(R )

by enforcing this requirement for the sequence of forward B-splines
of degree 2m - 1 given by (3.4). Upon substituting f(x) = Q(x-r) 'in

' (6. 1) we have the sequence of relations

r+2m
(6. 4) f Q(x-r)sin xt dx = HOQ(-r) + HlQ(l-r) +oes
0
(2§)
+H ,  Q2m-1)+ %‘,_1 B,,Q " (0),
(r = -2ml, -2m+2, ..., ~2,-1) '
£ . and
: r+2m ‘ '
- (6. 5) ;f Qe-r)sinxt dx = H, Q() + H Q@) ... +H_, Q@m-l)

(I'= 0, 1’2,000)
which are the analogues of (3, 8) and (3. 9), respectively. Again,

we use a generating function approach and observe tha‘t the righthand

side of (6. 4) and (6. 5) is equal to the coefficient of X r+2m-1 in
2m-2
(6. 6) Z Hx')( ), Q@m-1-v)x")
v=0 v=0
2m~2 m-1 ’
+ Z | E B j()“;:j)(Zm-- 1-v)]x"
v=0 j=1

.

Similar to our approach in §4 then, we use (4. 10) and (4, 12) of Theo-
rem 5 to obtain (6. 6) in the form

#1183 -45-
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H 21
L] P (x) m-1 (x-1)'P {(x)
Yy lm=2_ —2m=2i-2
6.1 ( Z_"OH‘?‘ " zmnr * jz:l (2m-2)-1)1 '

This is the analog of {4, 23).

We consider the left side of relations (6, 4) and (6. 5), and define

r+2m
: | Fr+2m-1 = . Q(x~r)sin xt dx (r==-2m+l,-2m+2,...,~-1,0)
(6. 8) ' ! .
 §+2m : )
Flony = { Q(xj-r)sin xtdx (r=1,2,...).

!

It we integrate the right side of (6.8) for (r = -2m+1,...,~1, 6) by

parts 2m - 1 times and follow the same procedure we used in §4, we

gét the following analog of (4. 31)

_,_1 - '.l i r) - ..(-_D.T_ (Zm-Z)_
(6.9) F oo 4 =-[-3Q60) +t30 '( r)=... Zn-1 Q (-]

m r+2m-1
B Y ey PDsinrezme it (r=-2mi, ..., -1, 0)
t ! i=0

or by letting j =r+ 2m~ 1 and using (4,10), we obtain

i2m (2m-2)

|
(6.10)  (-1)™Z™ y=- Y 1 sin(+1-t - tQ (J+1)
. : © 1=0

@m=4) 101y - ons = D™ 3 -0 ™E ™ Q)

+ 0
(G=0,1,...,2m-1).

If we consider (6.8) forr = 1,2,... and again integrate by parts

2m ~ 1 times, we get analogous to (4. 36) the relation
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m 2 &m 12
6.11) 1™ "‘r’ = = L C0(sin (-0t

i=0
(J = 2m, 2m+l,...).
From (6. 10) and (6. 11) we find that

mm 2 j Zm-l i2m )
(6.12) =(-1)"t" Y, P = Yol ')" (-1)°("stn(+1-1t)x
= 120 =0

T i2
) [7 1) ("stn{j+1- 1)t]x}

j=2m 1=0
2m-2 2m-2
vt Y QPmAuud o Y Q™ N 4 ...
j=0 i=0
m Zm-l 2m- 2
- 1) Y, QU+,
§=0
We define
- 00
(6.13) Tx) = ) [sin+1)tk”
v=0
2m

and note that (1-x) ;(x) is precisely the term in curly brackets on

the right side of (6. 12), so that by using (4, 12) of Theorem 5, we can

write (6,12) as
(6.14) ~(-1)™*™ Z‘, P’x = (1-x°™ T (x) + t(1-x] ™2 Py (x)
§=0

3 2m-1
v 2m-4 L mL.____

o0
Equating (6. 7) and z F *0 as determined from (6, 14), we see that

we require
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3

m-1
6.15) e (- 1)®™700 4 1122 - L b ot n)® ™ 4L
(2m 312
2m-1
+(_l)m-l t

et F2m-2™®}

2ip
(x) "~m=1 (x-1) (x)
- Zm-Z 2m-2)-2
= y:“‘ Fem1p ¥ Z P21 Tmezi1n ’

Solving (6. 15) for ( T H x ) gives the final relation
-0

0 m-1
(6.16) ), Hx" = 1{2'""”(,'{) {"” [(x-1)2™7x)

2
vo0 2m-2 <"

m-1 2j+l
+) 1)t
120

2m-2j-2
(2)r1)1 P20 1) ]

-V g 2§-2
o2 (Zm-Zj-l)!

ml  oenPe, (x)}

This is the analog of (5.1), Our derlvatiori of (6. 16) evidently estab-

lishes the following

Proposition 2, The coefficients H = H(Zm), B :B(Zm) of the
v vt S T
most general functional
0 00 m-1 ()
(6.17) Rf = [ f(x)sinxtdx- ), Hf(v)~- ), B £<V(0)
0 vz0 j=1

vanighing for the function (5, 3) are the expansion coefficients of the

rational function (6, 16) where the sz (1=1,...,m-1) are chosen

arbitrarily.
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We again wish to determine the unique functional (6. 17) having
bounded coefficients H . From the form of T(x) given by (6.13),
we note that 7{x) converges ior ixl < 1. Then in a similar manner
to the discussion in §5 we observe that the coefficients Hv will be
bounded, if and only if the coefficients B, j J=1...,m~1) can

be chosen to satisfy the equations

2}
ml & -1)7P ) m-1
14 2m=-2j-2 v _ (=1) _2m=
(6. 18) E,lszj TENETTY - [ -1 7(x)
2§41
me1 (1) 2oz
YO gy WO ] v=1,...,m1)

}=0
where the xv (v=1,,..,m=-1) are the zeros of PZm_Z(x) less than

cne in ahsolute value, So we need only show that the determinant

o -1)20p (n)
v

_ 2m-2j-2""
619 |a | - (2m-24-1)! | #0

(v=1,...,m=1; § = 1,...,m-1).

That this is the case is evident from the expression (5, 40) if we choose
the special case TU I' = {2,4,6,...,2m-2), This establishes the
existence of a unique fuactional I of the form (6. 17) of Proposition 2
such that the sequence {Hv } is bounded. The remainder of a proof
of the first part of Theorem 8 is essentially the same as the proof of
Thearem 7 so we may cmit it,

We observe that the functional Rf determined from (6, 2) is of the

proper form (6.17) where
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(t)
J, H = sinvt

(V = !’Z,cnoo)o

By (1. 3) and (1. 8) we find

Slsint/ZIZm 1 < 1
t/2 ¢2m(") ¢2m

so, for fixed t, the sequence {Hv} as given by (6, 20) is bounded,

(6. 21) | | <o (vsl,2,...)

()

Once we show that Rf as given by (6. 2) vanishes for the sequence

of splines (5, 3), the unicity established in the first part of the theorem

will complete the proof of Theorem 8, This latter task is accomplished

similar to the cos xt case of §5, showing that Rf = 0 for any

m=1,2,... for (r=0,1,2,...) and looking at the particular cases
of m= 1,2 to show that Rf =0 for (r=-2m+l, -2m+2, ..., -1).

We omit the details.

7. The even degree splinc case, n =2m-1. In §3-5 and §6 we

considered w(x) = cos xt and w(x) = sin xt, respectively, for the
odd degree spline case, n =2m, Here we shall consider the same

weight functions but take n = 2m~1 and prove the following

Theorem 9, Let m =2 or 3. Among all! q.f. of the form

on
(1) [ fxjcos xt dx = ‘[, 120 gy) 4 }3 B‘z";"“l"t’f(Zj Do) + re
0 2o vt
00 00
(7.2) [ fx)sinxtdx = ), HE™ gy Z p2™ 1 420 0) 4 re
) v=0 Tt j=1 “ht
4 -50- #1183
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where the coefficients satisfy

IHSZ':-I)I <K forfixed t, forall v 20 and some K
?

there is a unique q, f, with the property of being exact, Rf = 0, when-

ever £(x) e SZm—l n LI(R+)' This unique q.f, is given by

e Yom 1™ [) S
(7.3) [ f(x)cos xt dx ’TL(T) >80 + ), f(vicos vt
0 2m-1 vzl
m-1 ) $, ()Y (t)
T P Wi 1.5 TS LA E TS )
=1 12 t2me1®
© 7 (t) | =
(7.4)  [H(x)sin xt dx =—2—“‘1—-1m > f(v)sin vt
0 Y2m-1'"" | vz
t
+mi;l 1} [1_"’ZJ‘t)"’Zm-ZJ-zm°°sz]f(21)(0) .
2jH b (t) )
j=0t 2m-1

We shall indicate the modifications in §3-5 necessary to prove
this theorem for the weight function cos xt, The case of sin xt then

follows as §6 did for the case n = 2m, For simplicity, we write

_ ge(2m=1) _o(2m-1)
HV = HV, t BZj~l = sz_ Lt We again attempt to show for
(7. 1) that
+
(7. 5) RE=0 if fe SZm-InLl(R)

by enforcing this requirement for a sequence of B-splines, This time

we choose to use the sequence of central B-splines of degree 2m -~ 2

#1183 -51-
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(x-m-r)} = {M(x~-m-r}} (r=-2m+1,-2m+2,...)
whose knots are at the points (v +%), v an integer, We write these
B-splines in the form (7. 6) to make the analogy with §3-5 clearer,

By (1. 5) we have the explicit expression

2m-1  2mel_ 2m-2

i Zm-l
(1.7) My ) = GmegiT ‘Z,(l) Ot

Upon substituting f(x) = M(x~m-~r) in (7. 1) ar;d noting the requirement

(7. 5), we obtain the sequence of relations

r+2m--;'
(7.8) [ M(x-m-r)cos xt dx = H M(-m-r)+ H M(1-m-1) + ...

0

(2j-1)
+H M(n\-l)-i-jz By M (~m-r}

(r=-2m+l,...,~1)

and

R

r+2m—-%
(7.9) fl M(x-m=r)cos xt dx = Hr+lM(1-m)+Hr+2M(z- m)+...

r+‘£

+H o M(m-1) (r=0,1,2,...)

which are the analogs of (3. 8) and (3.9), respectively. We again em-

ploy a generating function approach and note that the right side of

¥

: (7. 8) and (7.9) is equal to the coefficient of xr+2m-1 in

1 Zm-2 , cmr2m-l (2§-1) v

i- (7.10) { Z Hx')( ), Mim-1-v)x)+ %[ ), By M mel-v)
v=0 v=0 v=0 }=0

In order to simplify the two polynomials in (7. 10) we note that
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(k) (k)

(7.11) M (x) = ("'l),c M (~-x)
) as can be verified from {7.7). With this substitution and (4. 14) of

Theorem 5, we obtain (7, 10) in the form

T
1 Zm—-Z Zm-Z l Zm-Zj l
(7.12) | ZH w2 2823 (2!
Zj 1 g
(l x) Zm~ZJ- %)
(2m~2j-1)! ) }

This is the analog of (4. 23).

‘We consider the left side of relations (7. 8) and (7.9), and define

r+2m-~l-

~ Fr-l-Zm—l = { M{x-m-r) cos xt dx
g (7.13) : (r=-2m+l,-2m+2,...,-2,~1) :
; r+2m-= '
o F - f 2 . :
) r+2m-1 r+'l- M{x-m-r)cos xt dx (r=0,1,2,...). |

2 i
= |
) If we integrate the right side of (7,13) for (r = ~2m+1, -2m+2, ..., =1}
<

by parts 2m-2 times and follow the same procedure we used in §4, we

f* get the following analog of {4, 31)
» {7.14) F = - [‘l‘ M'(~m-r) - L M" {(-m-r) +
* r+2m-1 tZ t4 *ee

f (-2 pr(2m=3)
: + (~m~r)]
: 2m-2
: t
¥ :
. m-2 r+2m-1 :
: S VRIS S 1)1(2"““1)s1n(2m+r— 14 |
? 2m-1 - 2

t . 1=0 :
{ %
;E;' * ) (!' =-2m+l,...,"l) :
¢ f
#1183 -53.-
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orby letting j =r+2m -~ 1 and using (7, 11) we obtain

J
(7. 15) (-1)“'"tz‘""r’ =Y (-1)1(2"1”")s1nu +- - 2™ 3 41 m)
1=0
M em - el 4 =)™ P M 41-m)

(1=0,1,...,2m-2).
If we consider (7, 13) for (r =0, 1,2,...) and again integrate by

parts 2m-2 times, we get analogous to (4. 36) the relation

2m-1
718 0" 2 Y el P ™ hatn g 44 - ape
| IS i 2

(’ = Zm-l,zm,oo.)o

From (7, 15) and (7, 16), we find that

[ ]
m—lth-l Z
§=0

(7.17) (-1) ij’ =

' 2m-2
E ={ % 1) 0t *T Dstng +3- iepd
j=0 1=0

o 2Z2m-1
+ )1 Z(-n‘(z“;")smm;‘-i)t]x’}
j=2m-1 1=0

2m-2 2
-t ) M0 N g emyd + 1

3 j=0 )

) 2m-2
; + (~1) Z M'(jH—m)x’.
i i=0

3
M(Zm—-S)
0

{j+ i*m)xj - e

o197

=3 th—3

We define

-54.
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0
(7.18)  U(x) = ), [sin (v+'§')t]xv
v=0

and note that (l-x)zm"l

U{x) 1is precisely the term in curly brackets
on the right side of (7. 17), so that by using (4., 14) of Theorem 5, we
can write (7. 17) as

(1-02">T (x)

@19 ™l P = (m20"™ oG - () ——
§=0
(1-x)°"> 1, (%)
t.3 3
+ (';_) 31 - e
(1-0)T, ()

m-1,t 2m-~3 2m-3

e () (2m=-3)

Equating (7 10) and Z Fl
§=0
ing for Z H x gives the final relation
v=0

2m-2 m-1
(7. 20) Z‘, H " - {20202 {(‘” [x-1) 2™ Ly x)

x as determined from (7.19) and then solv-

v= Tom-2®) ] ¢2m-!
¢S ey R ek ST Pty
& 2101 24-1
! 251
-%‘la BICLSIS Y T L
L ol Zm-24-1)1 .

This is the analog of (5. 1), Our derivation of (7, 20) evidently

establishes

{2m-1)

B . B(Zm-l)
t b

csition 3, _Th fi =
Fropcsition e coefficients H H 2-1 2§-1,t

’
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of the most general functional

£ (25-1)
(7. 21) RE = [ £(x)cos xt dx - Z‘,H f(v) - E Bypy ! (0)
0 v=0 §=1

vanishing for the functions(7, 6) are the expansion coefficients of the

rational function (7. 20) where the B =1,...,m1) are chosen

2j-1
arbitrarily,

We again wish to determine the unique functional (7. 21) having
bounded coefficients Hv . From the form of U(x) given by (7,18), we
see that U(x) converges for lxl <1, So that just as in §5 we note
that the coefficients Hv will be bounded if and only if the coefficients

Bz;-l (§ =1,...,m-1) can be chosen to satis{y

m-1

(1.22) ), B, (
j=1 2j-1° 2

_\2i-1
()‘v 1) 2m-2i=1
2m-2j-1)!

1)2m-24-1 )

2m-2j-1
t 21-1 sz e )(x 1)
(2i-1)!

m~1
e (L

T U(x)+ Z -1k

i=1
(V =l,z,ono,m'l)

where the ?\v (v=1..,m=1) are the zeros of sz_z(x) less than

one in absolute value, Lemma 8 of [9, p. 182] had guaranteed that

TZm— 2(x) was a reciprocal polynomial which had only simple and

negative zeros TR CTERRPR S that we may label to satisfy the

m-2
conditions (5. 5) and (5. 6). So we need only show that the deter-

minant
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2§-1
(-1 " T ()
. 1.2m-2§-1__v 2m-2i-1" v

We haven't proved a lerama similar to Lemma 4 of §5, but note that

the determinant in (7.23) for the cases m =2 and m = 3 takes

the forms
(7. 24) ‘%()\- 1M(\+1)
and
1o - - -
(7. 25) 4()‘1 l)()\Z l)(kl+l)(kz+l)()\l kz)(l )‘1’\2)

respectively, and so by (5, 5) the condition (7. 23) is satisfied.

This establishes the existence of a unique functional Rf of the form
(7. 21) of Proposition 3 such that the sequence {Hv} is bounded. The
remainder of the proof of the first part of Theorem 9 is essentially the
same as the proof of Theorem 7 and we omit it,

We observe that the functional Rf determined from (7. 3) is of the

appropriate form {7. 21) where

v (t) 7 (t)
1 "2m-1 2m-]
{7, 26) H =7 ———— H = ——— cos vt v=1,2,...)
0o 2 ¢Zm~1m Y ¢2m-1(t) e

and by (1. 3) and (1. 8) we again have this sequence {HV} bounded.
It is a straightforward procedure to show for m =2, m = 3 that Rf
as given by (7, 3) vanishes for the sequence of splines (7. 6), so that

the unicit, established in the first part of Theorem 9 completes the

proof of the theorem.
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E 8. Explicit forms for the g. f. of Theorem 2, Theorem 2 is es~
tablished similar to the way the first parts of Theorem 7 and 8 were
proved, The only change needed is to take IU I' = {1,2,,..,m-1}
instead of what we used before, For instance, for the cos xt

case, we use the same left sides cf (3. 8) and (3,9), but we have to

modify the right sides, Theorem 5 readily allows us to do this and we
; get a similar expression to (4, 42) but now in the coefficients
:: BI’BZ’.’.,BWI. Lemma4f0rtheCh01ce IU I'= {1,2,...,1'“‘1}

enables us to establish Theorem 2 just as the first part of Thecrem 7

was proved,

For the weight function cos xt, the q.f, (5.42) gives explicit

Gl gl g T

4 expressions for our preseht cases m=1 and m =2, Wé want to get
a q. f, similar to (5.42} for m = 3, the quintic spline case, in a form

particularly amenable to computation. We shall find that the form we

do obtain is precisely (5. 42) with the exception that £"(0) is re-
placed by S"(0), the third derivative of a particular interpolating
spline to f(x}, evaluated at 0, The expression for 8" (0) involves
the values {'(0), £'(0), £0), £f(1), ..., but not £"(0).

Por the sin xt case, the q.f. (6.2) gives our desired q. f. when

m =1, For m =2, the only change we make in (6. 2) is to replace
fr{v} by S"(0), the second derivative of a particular spline interpolant
to f(x), evaluated at 0, Here §'(0) is expressed in terms of the

values £'(0), £(0), f(1), ... btut not £'(0). There is a similar q.f,

~58- #1183
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when m = 3 that we get from (6. 2) by replacing f( v)(0) by 8 "(0).

We summarize the foregoing in the following

Theorem 2', Suppose fe LI‘R+)' Let S(x) ¢ Ll‘R+’ be the

unique spline of degree_ 2m - 1 for xZ 0 with knots at x=1,2,3,... !

satisfying the conditions

(8.1) S(v)

£(v) (v=012...)

)

(8.2) SU)(O) (0) 3=12,...,m1).

For m = 1,2,3, the unique g, f, of Theorem 2 are given explicitly by

o ¥, (t)
(8. 3) f f(x)cos xt dx = m { f(0) + Z f(v)cos vt}

e

0 b, () ~ ,
[mf2i ) &0 5 ® (251
+ 5 - T (0 1f (0)
=1t 2m
m- 1 J $, . (O (t)
' -1 2§ Tam-2 2§-1 .
) - 257 Vi) + Re
j=[m/2}+1 t 2m
and
(8. 4) f f(x)sin xt dx = m(t) Z f(v)sin vt
0 ®2m't a1
[m?I J 4yt (t)COS't—
§=0 t21+1 ¢Zm(t)
t
yy ﬂﬁ[x-%’(wz’“"“ 102272 1520 4 ae. )
m-1,  t2H ¢y (V) ;
1=05"1n

#1183 . -59 -




" We also state here for reference in §10 the following

Coroliary 1, _Iﬁ f(x) and S{x) be as given in Theorem 2', Then

the gi f.

% ' g, ()
[ fxe™ax = zmm Z£(0) + Z f(v)e'
0 *2m v=1
{m/2],_ . é, ()Y (t) |
el 2O ® )
! =1=l th b : ¢ ‘t) g @

i mel b 0 ()
£ _(_1_)[1_ 2)° " "2m-2i ]S(ZJ 1)

(0)
j=[m/214 tzj ‘Zm‘t)
- - t
" [(mip/?.]( i) {1 ¢y (W, 5, (tcosT 21420 g,
j=0 2% %2m®)
. | : ¢
myl -1y b, (O, 5. ,(thcoss
+ y -"Ejl)i["-n 2m ijl 2 15(21)(g) )
j=[im-1)/2]4 t : %2m
is the uniéue q. f. exact whenever £(x) e SZm n LI(R+)'

We discuss in detail the cubic case, m =2, of the q,f, (8. 4),

that is, the q.f{,

r°° dy(t) 2 1, Y3lticos t/2

(8. 5) ! f(x)sin xt dx = 2, 21 f(v)sin vt + 311 - "“';;('{')—“]f(O)
: 1 xpl(t) cos t/2

‘ -=- 18"(0) + Rf.

E E 4yt
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How to extend the method to m = 3, and in fact larger m, and (8. 3) will
be clear, We observe that by the second part of Theorem 8, the exact-
ness of (8.4) for £(x) ¢ SZm fi LI(R+) is already established since

for such f we have S'"(0) = f{0). What remains to show is that

(2m)

the coefficients H
v, t

of the q.f. (17) of the Introduction are bounded,
An important point is that we do not want to use the ''natural”
semi-cardinal cubic spline interpolant, This is of course best in the

sense that it minimizes

% 2
[ Fx)fax
0

among all functions F(x) that interpolate f(x)at x=0,1,2,... but

it is not a good approximation. Rather we use the '"complete' semi-

cardinal spline approximation where also f'(0) is assumed known
and is matched by the cubic spline, that is, (8.2) holds,

We note that Lemma 4 guarantees the unicity of the interpolating
spline, The interpolating spline S(x) is given by the spline interpo-
lation formula

[+ o]
(8. 6) S(x) = ), V)L (x) + £(0) Alx)
v=0

where the fundamental functions Lv(x) and A(x) satisfy

e SN e SRS Aeedm Y T s WA A Mg T AT R ST I I R AT PN

Lv(v) =1

(8.7 Lv(p) =0 if v £u (v=012,..,)
L'0) =0
v

and
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Alv) 0
(8. 8) iv=012,...)
A'(0) =1 ¢

respectively. In order to construct Lv(x) and A(x} we shall use
two other important cubic splines,
One is the fundamental function L(x) of cardinal cubic spline
interpolation, {,e,, L(x) is a cardinal cubic spline satisfying
1 £ v=0
(8.9) Liv) =
0 if v£oO.

In terms of the cubic B-spline M(x) = M 4(x), we have explicitly

0
(8. 10) Lix) = N3 ), A M)
j==o0
where
(8. 11) A= -2+N3:2-,268... :

is the root of least absolute value of
P,(N = \rarn+1 = 0.
To prove (8, 10) we note that, for v 1

o vl . _
L) = N3 ) XMM(Wi)=~l3’%(k"“+4x"+ v
j=v-1

- -1 2
=N3- g VTS a4 ) =

and

o

L(0) = N3 » —};» (A+4+)) =j§(z+x) =1

so that the unicity of a bounded L(x} satisfying .8.9} implies that

(8. 10) is correct,
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The cther cubic spline we use is the decreasing cubic eigenspline

v L
(8. 12) 8} = ) AM(x-)

=00

which, from §5, is a cardinal spline satistying

(8. 13) s, (%) = oIl as x—+w
and
(8. 14) Sl(v) =0 for all v.
Now if we write
1
(8. 15) Alx) = Sl,(o, Sl(x)

and use (8. 14), we see that (8, 8) is satisfied. From (8. 12),

(8. 16) 5,(0) = = VMg = %(x—x’l) = 3

because M'(-1) =

v lu—-

, M'(0) =0, M'(1)=- and M(j) = 0 for all

other j, From (8. 15) and (8, 12)

(]

(8.17) A(x) = ;/% Z )\jM(x-j) for xZ 0,

j==1
Writ:ing

[ o]
(8. 18) AK) = ) yMix-)

=1
we see that
(80 19) Yj = 7133-)\‘ (j="‘l’o’ 1,.00).

We shall use the notation
0

(8. 20) L (x) = j-z_:l cj’vM(x~j) for x 2 0.
We have
(8.21) Lo(x) = L(x) for x20

since by (8.8) and L'(0) = 0, (8.7) is satisfied. Using (8. 10) and
(8.21), we find

#1183
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(8. 22) = N3 x“l (1=-1,0,1,...).

c
1,0
It is easily verified that

. o Lixey) - Lf=¥) .
(8. 23) L(x) = Lix-v) sl,‘o) Sl(x) v=12...)

satisfies the conditions (8. 7). From (8. 10) and (8. 16)

L) Nzpttlo¥L, o - i
- Sl'(O) = L = ~I3.x v=12...)

and therefore by (8. 23), (8. 10) and (8. 12)

L(x) =~3 ), xh'M(x-v-j) +N3 2 TadMe-1)
J )

N WU L 34 T _3 -
=3 ?x M(x-§) + N3 A §x M(x-1) ]zlc" Mx=9)
for x20
where
(8. 24) ey = J?(xl""' oY) w2z, ge-1,01,..0).

We can now use the interpolating spline S(x) given in (8. 6) to

determine from the q. f. (8. 5) what the form of the coefficients

Hi4)t = HV of q.f. (17) is., Differentiating each side of (8, 6) twice

’

and substituting 0 for x gives

o0
(8, 25) s"(0) = f(V)L\;'(O) + £f'(0)A'(0)
vz=()

so that
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g, (t) . (ticos =

L e WS R
. © 5,00 sin vt t3[1

(8. 26) H ¢4 )

] L‘:'(O) (V= 1, 2,0..),
From (8. 20) we have

0
. 1" = M!" (- = -
(8.27)  L'(0) _Z-jl o MIED = o | -z, +c

RIS

since M'"(-1) = M'(1) = +1, M"(0}) =-2 and M'"(j) = 0 for all other

j. From (8. 24) and (8, 27), then, after simplification we get

(8. 28) © o LMo) = -1243 '\ (v=12...).

Therefore, for fixed t, by (6.21), (8.11), (8.26) and (8. 28) there

B - o gt o 4 2 g2

exists a constant K such that

B | <k for all v 2 0. ;
By the unicity established in Theorem 2, Theorem 2' is established
for m =2,
We also note that in terms of the functions Lv(x) and A(x)

just defined, we have the following

Corollary 2. The following identities hold

oo g (t)

of Lv(x) cos xt dx = ¢4(t) cos vt (v=12...)

ol ¢4(t)

J L (%) sin xtdx = 2,0 sin vt v=12..)
3 A{x) cos xtdx = -—=[]-——=
. 0 SO A
f 41183 -65-
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0
f L (x)cos xt dx =
o O

-66-

¥, (t)cos 1

f Alx) sin xt dx = --‘5[1 -2

f Lo(x)sin xt dx =':-[l -

y (t)cos L
b, (0)

2y,
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III. THE LAPLACE TRANSFORM

We follow the same kind of generating function approach we used
earlier, the only modifications coming from the enlarged class of func-
tions for which we can find transforms now that the weight function is

e ,y P >0,

9. Proof of Theorem 3 of the Introduction, We f{irst define, for

each y 2 0, the class of functions
F = {FGx) 1 Fix) e c(R') and Fix) = 0xY) as x =+ o}
and the class of sequences
= = ® . = Y - .
YY = {y=1{y,} v, =00") as v» w}
We note that

>
(9. 1) S(x) ¢ SZm n FY for some yZ0 implies {S(v)}e YY

so that by (24) the functional Rf given by (23) is well-defined if
f(x) € SZm n FY . We also need to know just when a cardinal spline

function of degree 2m - 1 isin PY . The answer is given by

Lemma 5, If S(x)e SZm and

9. 2) S(x) = Yc, M, (x-v)
v

then

(9. 3) S(x) ¢ F
\

if and only if

{9. 4) {c }eY .
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Proof, First, we assume (9. 4), so there exist constants A, N
such that
9. 5) le | <avY for v >N,

et n>m+ N, From

. n+m
s -v) S sxs
Iseal = Fle IM, (x-v) sM, (0 } le | f n=xznn
\ 4 v=N-m
and (9.4), we find
n+m -
9.6y Istlsm, ©-A ) v¥s [M, (0): A 2m+1)R]nY = K|x|Y
v=Nn-m

if n = x = n+l
where K represents the quantity in square brackets in (9. 6) and does

not depend on n. So for any x >n > m+N

Isex)i = klx]Y
and (9. 3) holds,
Now, we assume (9,3) and are to derive (9.4), We adapt the proof
of Theorem 4 of [11, p. 18-19] to our particular situation. We observe
first that in rheorem 5 of [11, p. 7] Schoenberg explicitly expresses

the c, of (9. 2) in the form

m=1
13 2
9.7) c, = r‘z_:g 1) vy s%)

where the {yg:)} is a sequence of rational numbers generated by the

expression
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By (9. 7) then in order to prove (9. 4) it is sufficient to show that
(2r)

(9.8) {s" '(v) }e YY r=0,1,...,m~1).

By (9.3) there exist constants C,D such that

(9.9) Istx)| s cxY for x >D.
Let R(x) be a polynomial of degree k in the interval [0, 1]. By

Markov's theorem we obtain the string of inequalities

max |R'| = Zk2 max |R|

max |R" s Z(k--l)2 max |R'|

max|RY] £ 20c-t41)% max|R® Y] (t sk,
and putting them together we obtain
9.10)  max[R™] £ Ak, t) max IR| (t=1,...,Kk)

where A(k,t) = 2 [k(k-1) ... (k-t+1)]°. Applying (9.9) with
k =2m-1, t=2r, to each of the polynomial components of S(x) in
each of the successive intervals [v, v+1] for v >B+ 1, we con-

clude that

(Zr)(v)l £ max ls(zr)(x)l = A2m-1,2r) max 'S(x)f

[V_l’ V] [V 'I;V]

Is

= A2m-1,2r). C max xY = A(2m-1,2r)C- vY
[v- 1, v]
so that (9. 8) and the lemma are proved,

#1183 -69.
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We now turn to the proof of Theorem 3 and again shall indicate

the modifications in a previous proof, this time Theorem 2, that leads
us to our desired conclusion., We again require exactness for the .

B-splines (3. 4) and are led to the sequence of relations

r+2m
e P dx = - - -
(9. 11) of Qex-rle” ™ dx = HQ(-r) + H Q(-rp... +H , Q@m-1)
m-1 ‘
+ Z BjQ(j)(-r) (r=-2m+1,-2m+2,..., 1)
=1
and
r+2m -xp
9. 12) of Qx-rle”Pdx =H Q) +H_ Q@) +...
i' + Hr+2m— 1Q(Zm—-l) (r=0,1,2,...).

The righthand sides of (9. 11) and (9. 12) are the same as in the proof
of Theorem 2, but the left sides now have the weight function e P .
Following the same procedure as before, we arrive at the following

analog of (5. 1)

0 -
9.13) ) H & =SBy )2m 8
m- p

Zm-l-j]_ B 2m=-2-1

I (2m=1-§)!

* Py (K)0xe-1)

m-1 (x-1)'P (x)
j=1 }

Let RZm(x) deriote the right side of (9. 13), where the B,

3 (=12,...,m-1) are as yet undetermined. We recall that PZm-Z

xz, ceny >‘2m--2 satisfying (5. 5) and (5. 6).

(x)

has the simple zeros xl,

.70 #1183
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Observing that for RZm(x) the poles "’l’ cvay )‘m- 1 are inside the

unit circle while eP and Nppeoes X are outside, in view of

2m-2
(5. 5) and (9. 13), we note that the ccefficients Hv will satisfy the

condition (24) if and only if the coefficients Bj 3=1,2,...,m1)}

can be chosen so that the m-1 poles xl, R § have vanishing

m-1
residues. By (9.13) this will occur if and only if the B, satisfy the

]
equations
j
m-1 (A-1)P {(x) -p
(9.14) ZB, v(zm-if\j—)?—j v ?lm[()\v_l)Zm e_ _—
=1 ) P l1-e va

Zm-l-j]

2m-1
+ jzo %szl”‘v)"‘v‘” (v=1,2,...,m-1).

The determinant of the system (9. 14) though is not zerc as is evident
from the expression (5. 40) if we choose the special case
Iurl=1{1,2,...,m1) This establishes the existence of a unique
functional Rf defined by (23) whose coefficients satisfy (24) and
which vanishes for the functions (5. 3).

The remainder of a proof of Theorem 3 follows the same procedure
as the proof of Theorem 7, where now we use PY and e P instead

of LI(R+) and cos xt respectively, and sc we omit it,

10. An explicit version of the g, f. of Tneorem 3. In terms of the

central B-spline Mn(x) of degree n-1, we define
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—xP - -
(10.1) J M e Pax = § (o)

-~ 00

which upon evaluation gives the relation

(10. 2) B lp) = [3--3}33‘?--9-/-3]’rl .

We also define

Vv==00

00
(10. 3) 3, () = Y, M (vie™"P - l% o M ve P
oTs3

and note that $n(p) is positive, From {10. 3) we find

)
ot

32(9)

- _34coshp
d5(p) = —

- _2%+coshp X

115 + 76 cosh p + cosh 2o

bglp) = 192
- _ 33 426 cosh p+.cosh 2p

and cbserve that En(p) has the form of ¢n(p) given by (1. 7) if we
replace the cosine function by the cosh function., Similarly, if we

repiace the sine function in the expression of xpn(p) in {1. 3) by the

sinh function, we get precisely ;i;n(p) as given by (10, 2).

Now we can state the following

1

Theorem 3', Suppose f(x) ¢ FY for some v 20, Let S(x)e F

be the unique spline of degree 2m-1 for x Z0 with knots at

-T2 -
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x=1,2,3,... satisfying the conditions

(10. 4) S(v) = f(v) (v=0,12,...)

(10. 5) sV -0 G=1,2,...,m1).

For m=1,2,3 the unigue g.f, of Theorem 3 is given explicitly by

© ¥, (p) ©
0.6) [ fix)e P ax - -_—Z-L“——[% £(0) + Y, e P1(v)]
0 ¢zm(p) v=1
[m/2] b, 000, Lv)
. ;l [ -2 w2y Ty -1 )
j=1  p ¢, P!
m-1 $,.(p) Y P e
' ;; [ -2 2me2i 7 1 l28-1)
j=[2 11 ° %2m(P)
(] = (i P
2 ¢, (el _,(p) cosh
s ) 1' [ -2 im-Zj 1 2y ¢20)
I )
=0 » b, mP
- - P
me1 ¢, (P)d, . ,(plcosh™
£ Y 21jﬂ (1 -2 T2mo2i-) 215129 g; 4 s
e P 2m®)

where we've written };o(p) = 1 for notational convenience.

We first remark that as a result of Lemma 2 of {11, p. 12] we

have the following:

Every S{x) e S0 N F may be uniquely representad in the form
Y

2m
m—\i
(16.7) S(x) = k}_Jl a, 5, (x)
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for appropriate values of the coefficients a

k *
Then, by ('5. 22) each such S(x) also satisfies

Sx)c ;N LI(R)  for some r=0,1,...,2m-1

and Lemma 4 applies. This guarantees the unicity of the interpclat-

ing spline of Theorem 3'.

We could follow the same type of procedure we used for Theoreins
8 and 10 to show'that (10, 6) actually is the L;nique q.f, of Theorem 3,
but we shall not. Instead, we note that (10, ) follows formally from
Corollary 1 to Theorem 8 by the substitution of ip for t where

12 = -1, In particular, since

cosh x = cos ix, sinh x = -1 sin ix

we have

olie) = dlp), ¢ (i) = ¢ (o)

formally. Precisely the same type of proofs used for the sin xt and
cos xt cases establishes the exactness of (10. 6) for the functions

1
(5. 3, where here we need the sinh and cosh functions instead of

the sine and cosine functions, respectively, Where before (see (8. 26)

and (8, 28)) we had

it - .

'Hvi = Klle Vl + KZ“I Y By > 1, Kl’ 1\2 constants
~ now we obtain
! < ~-vp -v
' IHVI s KSG + K4 iy wy > 1 K3, K4 constants
F so that (24) is satisfied,
:
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IV. EXPRESSIONS FOR THE ERROR

11, An explicit expression for the remainder Rf. In the intro-

duction we mentioned that there was still a third approach to our par-
ticular q. f. for the case of odd-degree splines, This way lay through
the use of the so-called Rodrigue s function H(x) of the Peano kernel

of the q.f. [10]. We consider an interval of integration [a,b] and

assume n interior nodes X such that

Q<X <... <X <b.

1 n

Let w(x) ¢ L(a,b) be a given weight function and let w(-zm)(x), m
a fixed integer 21, denote any 2m-fold integral of w(x). Suppose
1V I' is defined, not as in (5, 15) and (5, 16), but as follows: Let
1 be a subsetof {0,1,...,m-1}, 1° = {o,1,...,m-1}-1 and
E " I' = 2m-1-1: ie Ic}. Defire JU J' similarly. Schoenberg in (10,

§7] discusses so-called complete quadrature formulae of the form

4 3 Y ()
11 [wfcode= ), Cfx )+ Y, Af @i+ ), BE(b)+Rf
a v=1 7 v felUT je]U]'j
where
] P (2m)
3 (11.2) RE = [ Hof “™(x)dx,
a

Under suitable conditions on the sets 1 and J, q.f. of the form
(11.1) and (11. 2) exist for any choice of weight function w(x). In

lé . this event the H(x) of (11.2) is a unique monospline of the form

) 75
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(11.3) H(x) = w‘"z"‘)(x)- S, i)

m,

where S?.m

n‘x) is a spline function of degree 2m ~ 1 with the
4

simple knots Xypeoos X3 satisfying

#Ma) - o i leluT
(11. 4) H(xv) = 0 v=12...,n
H(”(b) = 0 if jeJUTJ,
The coefficients Cv, Ai and B.j are given by
C = H‘zm-l)(x -0) - H(Zm—- l)(x +0) v=12,...,n
v v v
(11. 5) A = et gD g, 11U D
Bj = (-1)j H(Zm"]"”(b) if e JU T,

We want a related expression for the interval {¢, ») and the fol-

lowing choices of weight functions wt(x) and set TUTI'.

(11, 6) wt(x) cosxt, Iul'={0135,...,2m=3}

(11,7) wt(x) sinxt, IUI'={0,24,,..,2m4, 2m-2}.

To obtain an approximation like (11, 3) for H(x), we first consider
spline interpolants to wt(x) on the whole line R, Because

2;"’ 2 -
sup 1a“™ lwt(v)lé 2™ o

v
by Theorems 1 and 2 of [9, p. 169] we know that there exists a unique

’

cardinal spline function St(x) satisfying

(11.8) St(v) = wt(v) for all integers v

-76- #1183
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and

2m-1
(11.9) S,x) e S, NL ™ (R),

On the other hand, since the sequence {wt(v)} is bounded, by
Theorem 1 of [11] there also exists a unique carcdinal spline function

§t(x) satisfying

(11, 10) St(v) = w(v) for all v
and
(11.11) 8,(x) ¢ SZm NL_(R),

We want to show that §t(x) is the same as St(x). From the nature of

the data (11, 6), (1i.7), we know that
W11, 12) St(x) and §t(x) are even or odd as the sequence {wt(v) }is
Let S(x) = 8,{x) - §t(x), so that (11, 8) and (11.1¢) imply that

(11,13) S(») =0 for all integers v.

Evidently (11.9) and (11, 11) 1equire S(x) ¢ S?,m so that we also have
S{x) ¢ ng . We wish to show now that S(x} can grow by at most
some power of x, so by {11, 12) it is sufficient to consider S(x) for

x 20. In particulct, we can write St(x,l in the form

Zm-l Zm—l
{11, 14) St(x)-a0+alx+... (zm-l)'

YC(xv)

(Zm )

where *he coeflicients are to be determined, Taking 2m-1 derivatives

ir {9, 14) gives the relations
#1183 -77-
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2m-1), . _ [ 0
s x) = a, + ) Clx-v)
v=l
or
x=-1
aZm+l + L Cv if x is an integer
s£2m~1)(x) -
b
e ¥ L Cy if not.
v=}
(2m-1)
It the sequence {Cv} is not bounded, then St (x) ¢ Lw(R)

which contradicts (11.9). Hence we have the following necessary

condition

S(Zm—l)(x

(11,15) N

) € L (R) impiies {Cv} is bounded.

Suppose [Cvl <K for v Z1; then by (11. 14) we have

Bm-1 2m-1
< _Llm-1
(11.16) 'St(x)' = lao+alx+... +(2m-l)!x l

o0
X . 2m-1
+73;;]7T Jza(x vl+ .

But the sum in (11, 16) is bounded by me-l so that we get

St(x) = O(xzm-l) as X w.

This, with (11,11), (11, 12) and the definition of §(x), implies that

2..
|m-=1,

(11.17) S(x) =O(!x as X+ + 0.

A spacial case of Lemma 2 of Schoenberg's [11, p. 12] states that if

S(x) ¢ sgm and satisfies (11.17), then S(x) is identically zern. Thus
[
St(x) = St(x) and we have

. #1183
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(11,18) S(x)e 3, NL_(R)
In terms of St(x), we define
!-]_zm
(11.19) H (x) = Zm {wy(x) = 8,.(x)).

From the form of wt(x) fn (11.6) and (11, 7) and by (11.9) and (11. 18),
we obtain
(11, 20) Hy%) ¢« L_(R) n 12" ().
We also seek the analog of (11, 4) for our half-line case. Indeed,
since §,(x) ¢ c®™? nd (11.12) holds, we have
(11, 21) sM0) = o #f 110 T
which implies, by (9. 19), that
(11, 22) 1M0) - o if 1c1U T,
Evidently, (11.19) also enables us to write
(11, 23) Ht(v) =0 forall v.

We can state the following

Theorem 10. _Suppose Ht(x) is given by (11,19), and wt(x)_g_rg

IUT areasin (11,6) and (11.7), If_

(11, 24) f(x) ¢ C2™(R") n Lf“‘(n") n Ll(R+;
then
a T giem) (1)
(1125 [ feow,xdx = ), H“Utv) + ), BE7(0) + RE
. 0 v=0 ¥ fe1UI
where

#1183 -19-
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F (2m)
(11.26) RE = [ Hof“™(xax.
0

Proof, Since (11.20) and (11, 24) hold, we write, letting

Hix) = H,(x),

© b]
an2n  f Ht(x)f(zm)(x)dx = lim f Ht(x)f(zm)(x)dx.
0 b+ 0

By successive integrations by parts, we find

(2m-1)_ . (2m~2)

b]
(11. 28) } H(x) 2™ (x)ax = [HE
0

H’f +...

+ (_I)Zm-Z H(Z m- 2}, ]

{b] . [b] -
f )" le 1% e dx
0 0

{(2m-1)

But H (x) 1s a step function, so we split up the interval of

integration, and find

b] [bl1 v+l
(11.29) - f 720 D e () = - f I B9 D x)ax

0 v=0 v
b1 v+l-0 v+l
== ¥ E%™ Do - [ su®™ xax].
v=0 v+0 v
We note from (11, 19) that we can substitute wt(x) for H(zm)(x) in

(11.29), so that after summing and rearranging, (11.29) becomes
(2m-1) (bl om-1 (2m-1)
(11.30) - {-H (0+0)£(0) + [H (v-0) - H (v+0) Ji(v)
vzl

(2m-1) }b
+H (b}o)f([b} } + f(x)wt(x)dx R

0

If we substitute (11.30) for (11.29) in (11, 28) we find that (11, 28)
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upon evaluation of the term in brackets, becomes

b] 2m-2
(11.31) jI o2 ax = 0 -0 E )™ b))
0 v=0

2m-2
) ‘f (_1)VH(V)(O)f(Zm-l-v)(o)
v=0

- (k11 - -
+ 1) %™ D 0r0)t00) + bi' 202%™ ) w)

v=l

_ b)
+ HE™ D pLo)io)y) + jI Elox)w, (x)dx .
0

By (11.31), then, (11.20) and (11, 24) give us, on letting b =, that

0 2m-2
a1.32) [ HPMwax == ), 10H 0?17V

0 v=0

(]
v=]

00
+bf f(x)wt(x)dx.

If we use (11, 22) in (1i. 32) and solve for f f(x)wt(x)dx, we obtain

0

(1.33) [ fxw xdx = ), -1"H ™ (0)s2m17¥)
0 v/IUD
(2m-~1) N o (2m-1) (2m-1)
- B oroyg0) + Y [HET =008 T w40) Jiv)

v=l

00
+ [ HEfP xax
0

#1183 ~8]-
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Upon interchanging the order of summation in the first sum on the right

of (11. 33), we get

H™ Dm0y - T =1)tal@m D gy,

€0
(11.34) [ foaw, (x)dx = -
0 fe TUI

o0 o0
+ Y D 0w Yo 0ke) + [ B0t ™ mdx.
v=1 0
If we define
(2m) _ (2m-1)
Hyy = -H (0+0)
an3s)  HEW o g™ )L i Vs v,z
b
Bizf’) = o-nialEm -, 1eIU T

we obtain the desired form for our q, f. (11, 25) and (11, 26) and so

estahlish the theorem.

12, The remainder Rf for the cosine transform (5,51). We

specialize to the case (11, 6) and now want to establish that the q. {.
in Theorem 10 is the same as the q.f. in Theot~ 1 7. We do this by
examining the form that the function Ht(x) as defined by (11, 19)

must take. Enforcing the requirements (11, 22) and (11, 23) will lead

us by a generating function approach to tne same coefficients

(2m) B(Zm)

Hv,t YoT2i-1,t

of Theorem 7.

We attempt to find an expression for the cardinal spline function
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St(x) satisfying (11.8) and {11,9). Since we need only consider the
half~line R+, St(x) can be written in the form (11, 14) where the

coefficients a, Cv are to be determined. We want to express the

ai,C in terms of H(zm) =H and B(zm) = B, . From the definition
v v,t v i,t 1

of Ht(x) (31.19) or from

(12. 1) (-1)“‘t2'“Ht(x) = cos xt - §,(x)

we find by differentiating 2m-1 times and employing (11, 29) that

m2m m22m
(12, 2) Cv = (-1}t Hv, azm_1 ={-1) ¢t Ho.

If we differentiate (12.1) (2m~-1-1) times and use (11.29), we get

2m-1-1
m2m_ 2  2m-1-i )
-1)t Bi_(l) t -a, 14 ieIUI
or solving for a that
2m-1-1i Jme1-i
_ 2 2m-1-4 m2m .
(12, 3) a4y = 1) t - DB fe Ul

Enforcing (11, 22) in (12, 1) gives us

(i2.4) a‘=0 iIf ielUT

so that by employing (12, 2), {12, 3) and (12, 4) we may rewrite (11, 14)

as
0™, ), )™,
(12.5)  S.(x) =1 ¢ Y X+ 20 X
2m-2
m-12m-2 m.2m X
S (52 Ve« ~(-1)t BIJ(Zm-Z)!
#1183 -83-
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m2
+["” t"H, ] 2m-1, en™en B (xen)?™!
(2m-1)1 @m-1)1 & S

By virtue of (12, 2) and (11, 15) we have the following necessary condi-
tion:

(2m-1)
st

(12. 6) (%) € Lw(R) implies {Hv} is bounded.

If we solve (12,1) for cos xt and then require (11, 23) for k a positive

integer, we obtain the sequence of relations -

m-1 . 2§
) _y$21  m2m x
(12.7) coskt =1 +1§1[( -0,
2m 00
(-I)mt _2me1 _
R TY ‘Eo H k-v), k=120

The formof these relations suggests the use of generating func-

tions for the determination of the coefficients. The righthand side of

(12, 7) in view of Lemma 3 is equal to the coefficient of kal in

_ _ j Zj_ M 2m
nos L, el [E-C0)TUTB, g py) Py ()
-x o i) (1-x) 2+
m2m 0 P (x)

+g-1z t ( z Hxv) 2m=2
(2m-1)! v 2m
v=0 (1-x)

k-
The lefthand side of {12, 7) is the coefficient of x 1 in what we called
7(x), defined in (4, 39). Equating t(x) and the expression in (12, 8)

and then solving for 3 Hvxv gives
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0
az.9) T Hvxv=42.m-1n {Lu [(1-302" (x)-(1-5) 2™}

v=0 Fam-2®
m=1 2]
(=1)'t oy 2m-1-2f
- 121 2t Paje1®1-%) ]

m-1 B
+ Z 2m=-1-2j P 1(x)(l__x)Zm—l--Zj}.

o @ Cu-

(3
b A e, s

A change in the order of summation in the last siim on the right side

of (12.9) leads to the final relation

S e s ST Ry SIRY
tvr mramn s penn

o0

: (12.100 ), Hx = Piz““l(’,:){‘ DT e 1) 4 (1) 2™ ;
v=0 2m-2
L +Z R T ]
‘: i P11 |

. i

, 2f-1 ‘:
mz (x-1j PZm-l-Zj(x) 1 |

: & Ba-1 T Zmm2i : 3

This is precisely the same relation as (5.1)! The analysis in §5

led to a unique choice of the sequence {Hv} under the stipulation that ;
E this sequence be bounded. By (12.6) and the existence and unicity of |
an St(x) satisfying (11. 8) and (11.9), we conclude that the Hv and
Bj as determined in §5 are the required coefficients for St(x) as given ;

in (1.2. 5). So this approach through the use of the function Ht(x) leads

to precisely the same q. f, as that of Theorem 7, and in particular leads

to an expression for the remainder Rf in Theorerm = We have thereby

established
#1183 -85-
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Theorem 1}, The remainder Rf in the g, f. (5.51) of Theorem 7

under the stipulation (5. 52) for_

(12. 11) f(x)eC (R)nL (R)nL(R)
is given by
% (2m)

‘m 00
(12, 12) Rf = f Ht(x)f (x)dx =-(:-1-2)-“T f [cos xt - St(x)]f(zm)(x)dx
0 t 0

where St(x) is the unique, bounded {2m-1)st degree cardinal spline

interpolating cos xt at the integers,

13. i bound on the remja__i;gder Rf of (5. 51). We now examine the

problem of expressing the above cosine transform (5. 51) in steps of

length h. Let f(x)¢ S, 0 L (R) so that by Theorem 7 and (5. 42)

we can write

00 tPZm(t)
(13.1) f f(x)cos xt dx = f(O) + Z f(v)cos vt}

0 Pomt) v=0
) b ® o
. Z ( 1) 21 Y2m-z) 7y (23 1)
¢2mm

Let now F(x) be a (2m-1)st degree spline function in (0, 0} having
its knots in x = h, 2h, 3h,... where h >0, We want to express the

cosine transform in terms of the values

as.2 PO, F0O),.., p(2™=3)0), F(0), Fih), F(2h),... -
If we let
(13, 3) f(x) = F(xh) (0 S x <)

-1 e €
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we see that f{x) is a semi-cardinal (2m-1)st degree spline function

i
for which the data are

E (13.4)  £(0) = hFY(0), ..., {27 30y = p2™ 3p(2m=3) g |
£(0} = F(0), £(1) = F(h}, ... .
From (13. 1) we therefore obtain the relation
2
%2_ % b, (1) . %
i (13.5) [ Fixhjcos xt dx =-2%— . J1F(0) + ), Fiwhjcos vt
0 bomt) ]2 v=1
§ } (t) {t)
: m=1 $,. (g, . (t o -
: j=1 ¢ 2m
: : Replacing in the integral x by x/b and réplacing afterwards in this
identity t by th, we
g 00 ¢, _(th) ©
: . (13.6) | F(x)cos xt dx =—2B——n { L1p(0) + ) F(vh)cos vth
i 0 ot ] 2 v=0 |
Ml o Gty () oy
j=1 t 2m
Suppose
E (13.7) Fx) e ¢2™n L?miR+) n Ll(R+)

then (13, 6) is no longer an identity. However, the righthand side
will give us the desired approximation to the cosine transform of F(x)

for reasonably small h, We now want to see how good an approxima-

tion this is,

.87 -
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(13.5) is still valid if we use (12. 15) and (13. 3) and add the term

1(13.8)! -(——-)-— me [cos xt - S(x)]F ™) (xh)dx

to the right side of (13.5). If we denote (13.8) by R and again first

replace x by x/h and then t by th, we obtain the expression (13, 6)

with the added term

2
om

(13.9) R éi"—ll-f [cos xt - sth(x/h)]F(?‘m) )dx

on the right side, Here Sth(x/h) is the unique, bounded (2m-1)st

degree spline interpolating cos xt at vh for all integers v, We

' get a bound on R by bounding what we shall call

(13,10) M(t, ﬁ) = max . | == [cos xt - sth(x/h)] .

x20 | &™
X 212z
Let 2z ="2-; so that S (—-—') is the unique, bounded (2m-1)st
h 2h
degree spline interpolating cos 2wzt for z =0, —, +=

_2“,_2", LN

We also let h be of the form

{13.11} h = -zf for n a natural number
-1 2

so that the spline agrees with cos 2nzt for z = 0, + y 2T, ..
n n

If we consider t =1,2,...,n~1, then cos 2wzt is periodic on the
interval [0,1] and so is Sth(an/h), by Theorem 6 of [11], We require

a special case of Lemma 6, 3 of Golomb's {3] which we state as

-88- #1183
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Lemma 6 (Golomb). Let bs(u) denote the unigue bounded

(Zm-1)st degree spline that interpolates the function eansu at

k/n (k=0,+1,%2,...). Then

13.12)  [e*™op )] 540 2P 2M2m 20,41, ..., 4(n-1).

In[3, p. 13]) Golomb remarks that Re b (u) and Im b_(u) are the
corresponding spline interpolants to cos 2wsu and sin 2wsy,

respectively, so that we also have

(13.13) lcos 2usu ~ Re bs(u)l =4 2?'ms2mn-Zm s=0,+1,...,4+(n-1)

where Re bs(u) is the unique, bounded i2m-])st degree spline that

Interpolates cos 2rsu at the points k/n (k = 0, +1, +2

N B

We can therefore employ (13, 13) to get the bound

(13, 14) max |cos 2rtz - 5, (2nz/h)| 5 4. 22M2Mym2m
z 20

t = l’ 2,...,1)"1-
’ Combining (13, 14) and (13.11) with (13.10) and the definition that
, z = x/2n, we obtain
E
]

2m
- '..__l_.. r < h_.....
(13, 15) Mlt, h) = ;n;: |t2m lcos 2ntz - Sth(an/h)]l $45—

We now consider t in the form

(13, I6) t = p/q where p,qe¢ 2 and p = ,2,...,n-1.

Now let w = z/q and we get from the equality in (13, 15) that

#1183 -89.
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1 2nqw
(13,17) M(t,h) = max IT [cos 2npw - sth(Tm
wzo ™

2uqw
where sth( “: ) interpolates cos 2zpw for w =0, + h/2aq,

+2h/2nq,... If welet h be of the form

(13.18) h = 2%x9/h for n a natural number
and consider p =1,2,.,.,n~1, then Sth (EE}_?E) is periodic for

0= w=1, By (13, 13) then we have

(13.19) max |cos 2npw - 8§ (M)I S 4. ZZmPZmn-Zm
w20 th h

(p: l,...,l'l-l).

Substituting {13, 19) in (13.17) in view of (13.16) and {13. 18) we find

2nm !
h 1 2 n-1
€ 4 ———— - L —_—
(13, 20) M(t, h) -41;?‘“‘ (t=0 pORER B
Suppose now we fix h of the form
| 2
(13, 21) h = T\TIT for N a natural number.

] We let q be any positive integer and choose n such that

a9 1
‘ (13, 22) n TN
E Then (13, 22), (13,18) and (13, 20) enable us to show that
~ 2m
h i 2
13«23 Mth §4-_—.. tz—.“ltt N"'
( ) (t, h) 2m ( T g )

3 By (13.19), (13,10}, (13.21) and (i3, 23), then, we have the bound

2m
} < | p(2m) < gD pl2m)
(13.24)  IR] s Mg, h)[IF IILI(R-%) 54 o IF HLI(R+)
12 Zn 1
(t - q’ q’ LI h q )

#1183
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and the following

Theorem 12, Suppose fe¢ CZ™R') n Ll(n*) n Lzm(R+) '2';;"

is a natural number, Then we can bound |Rf] as given in the g, f,

o ¥, (th)
13.25) [ fixicosxtar= 2R hy 104 % fvhicos vth
0 2 mith) val

1 (-1)) ¢zj(th) "‘zm-zj(th)

+ i [1-

1@-D)
0@ &, (th)

(0) +Rf
m

by

h.2my (2m) 2n
<
(13, 26) IRe] = 4) I £ IiLim+, for all rational t in (0,5T).

14. Proof of Theorem 4 of §2. We also have an analogous theorem

to Theorem 11 for sin xt, which we shall only state as

Theorem 13. The remainder Rf in the q. f.

¢, (t)
(14. 1) f f(x)sin xt dx = -2 3‘ f(v)sin vt
0 <"me l

L' gy

tnt) (2
+ Z 2821 4¢0) +re
2 t21+l s, (®
for fe C2™R)n L{z"‘)(n ) L (R®) is given by
m 0 -
(14. 2) RE = 1’—121-5 [ lstnxt-s, s(x)]f(zm)(x)dx
t »

where St s(x) is the unique, bounded (2m-1)st degree cardinal spline
H
interpolating sin xt at the integers,

#1183 <9].
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i Let S .(x) denote the spline 8,(x) of Theorem 11 interpolating cos xt,
3 ]

Toward a proof of Theorem 4, let us assume that ’

E (14. 3) fe C®™n Lf“'(n) n L (R). .
Then we can write
(14.4) f f(x)e®ax - f f(x)cos xt dx + 1 f f(x)sin xt dx

f [£(x) + £(-x)}cos xt dx + 1 f [£(x) - £(-x)]sin xt dx.

Skt el ans e Catdide R A
»

Applying (13,25) for h = 1 and {14, 1) to f(x) + f(~-x) and £(x) - f(-x),

respectively, we find that (14, 4) becomes

am't)

I e, )
[ Yf(v)wsvt]-i-mf\ LUy 2l _2m2i

"'me vemo =1 t2h %2t ‘|

(14, 5)

AL LM 4

AW E e TR AR e T NT T A

¢, (t) -
+1 z“‘(t)[ if(v)sin vt+ ), f(v)sin vt]
¢2m v=l v==]

J é,, ()Y (t) -
(-1) 21 2m-2{-2 sin t][f(?.j)(o ) f(Zj)(0 )] Rsf]

+ ) 1-
0 2j+1 ¢2 (t)

e C b ECd 2 4 it o
Tt
Yt

where

©  .m
(14.6) R f = i) ‘:2% [cos xt ~ St’ c(x)][f(zm(x) + f‘zm)(-x)]dx
0 t

1 ’ ) m
‘- Rf - { '(lez&'[““ xt- 8, s(x)][f(zm)(x)- £2™ ) Jax.

-92- #1183
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We've taken ¢o(t) = 1 for convenience of notation, By (14. 3) the

derivative terms in (14, 5) are zero so that substituting {(14. 5) in (14. 4)

gives
0 g, (t) 00
ixt 2m ivt
(14.7) ) o{ f(x)e “dx = - vzwf(v)e +R{+1R 1.
From (14, 6)
0 m
Rf = of (:t-%%n—[cos Xt - St’c(x)]f(zm)(x)dx

-0 m
+f ":%_)m—[oos(-ty) - § c(—v)]f‘zm)(v)(-dv)
0 t ’

where we've used y = -x to get the second integral, But

St c(-y) = St c(y) so that

y ]

" (2m)
(14.8) Rf= [ [cosxt- Sy, O ki,
-0 t

We can argue the same way, using the fact that St s(--y) = -St s(y)
] 4

and obtain
) m
(14.9) Rt = [ hlga-[sm xt - 8, s(x)]f(zm)(x)dx.
-0 t ’

By (14.7), (14.8) and (14.9), the remainder Rf of Theorem 4 therefore

has the form

¢ m
= - Lol o ixt @m
(14.10) Rf=R f+1R -_{o n e (5, 00 +18, Gt bx)dx.

We note that St c(x) + 1St s(x) is the unique, bounded (2m~-1)st degree
» L4

cardinal spline that interpolates eixt at the in* gers, By precisely

#1183 -93.
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the same argument that led to the bound (13. 26) of Theorem 10 except
that now we use (13, 12) of Lemma 6 where before we used (13. 13),
we reach the desired bound (2. 17) of Theorem 4,

In the foregoing proof in (14, 10) we determinec the explicit form

of Rf, aresult we state as a

Corollary, For f£(x) ¢ sz n Lz';m(R) ] Ll(R), the remainder in

the q. f.
(t)

) ¢ ©
ae1) [ sne™ax - s L fwet
=% ¢Zm V=00

is given by

(14.12)  Re -‘1'-‘-’- f ™" - b)) £ (xjax

where bt(x) is the unigue, bounded cardinal spline interpolant of the
function em at the integers,

An explicit expression for the remainder Rf in Theorem 3, The

same type of approach we took in §11, 12 will lead us to an explicit

form for the remainder Rf in Theorem 3. For our case of the weight
functicn e * and IU T = {0,1,..., m-1} we require the unique

semi~cardinal spline Sp(x) € SZm n LI(R+) satisfyiny the conditions

(15.1) 8 ) = e P v=12...)
and
(15. 2) s“)”(o) s (-p) Jelu I,

-94- #1183
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Here (15.2) reflects the fact that the first m-1 derivatives of e.xp

and Sp(x) agree, In terms of Sp(x) we can state the following

Theorem 14, Let f(x) ¢ C°™ and £(x) ¢ F forsome vy,
}=0,1,...,2m-1. Then the remainder Rf of Theorem 3 may be ex-
pressed as

o 2
(15.3) RE = [ H ot ™ (x)dx

4 .
where

- -Xp
(15. 4) Hp(x) = pZm [e " - Sp(x)],

In order to obtain the appropriate form (23) of Theorem 3 we want

an analog of Theorem 10 to hold, By (15.1) and (15. 2), we find

(15. 5) Hg)(O) =0 eIyl
and
(15. 6) H(v) = 0 v=12,..)

8o that an appropriate analog can be proved in the same way that

Theorem 10 was proved if we can show

(15. 7) lim H")"”

b-+ow

(b) f(p)(b) = 0 if a+p=2ml.

By the assumptions of this theorem and (15. 4), this amounts to showing

(15. 8) S:k)(x) for k=0,1,...,2m=1 is of exponential decay
as x ~ow,

Just as in §8, we shall discuss only the cubic case m = 2; the
extension to higher m is very similar, By using (8. 6) we can write
8 (x) as

%)

#1183 -95-




0
(15.9) 8x) = ) e "PL (x)- pA(x)
P v=0 v
“where Lv(x) and A(x) are the fundamental functions discussed in §8. ‘
By using (8. 15), (8.21) and (8, 23) in (15.9), we obtain w

0 ()
(15.10) S () =Lx) + ) e "Rix-v) + ), e *PW3 2\")8. (x)- 75 5,0,
P v=] v=] 1 31

But for the speciel case m = 2 of Theorem 2 of {11, p. 5 ], we have

: -y*l)tl
3 (15, 11) ILx)] < e for all real x,

where C and Y, are positive constants, This, in conjunction with
(8. 13), and the expression (15. 10) guarantees that sp(x) decays
exponentially as x -+ o,

Similarly, by differentiating each side of (8, 10) and (8. 12) three -

times, we obtain

(15.12)  L"(x) = -6N3 (- 1K I k<x<ktl, k21
and
(15. 13) 8"X) = ~60-1N°  1f k <x <kél

80 that S‘;"(x) as determined from (15, 10) also decays exponentially

as x - o, Therefore (15, 8) holds and we obtain the desired analog

to Theorem 10.

Now we employ the same procedure used in §12 to show that the
q.f. we've cbtained is indeed the same q.f, as given by Theorem 3.

The approach in §12 leads us to the relation (9. 13) so we can con-

tinue as in the analysis of §9 to finally obtain our desired q. f. and
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in this way a proof of Theorem 14, The actual nrocedure is too similar

to repeat,

16, Computational examples. In[2}, Einarsson compares several

methods for computing cosine transforms for the special case of
f(x) = e-x. One method he uses and the reason for the paper is based
on the approximation of f(x) by its cubic spline approximation. This

q.f., precisely the same one as (13,25) form = 2, is

o ¢4(th) 1 0
(16.1) ({ f(x)cos xt dx = ¢4(th) h {E f(0) + vglf(vh)cos vth

_L“-%M)
207 8, (th)

J£'(0) + Rt

where we've used ¢2(t) = 1, Einarsson's main conclusion is that this
spline q. f. is superior to Filon's formula, a q.f. based on approxi-
mation of the function by a quadratic in each double interval and one
of the most used formulae for the calculation of Fourier integrals,
One of the other methods Einarsson uses for comparison is the so-
called Filon-Trapezoidal rule found in Tuck [14], which for the inter-
val (0,) is merely (13, 25) for m=1, that is, the linear spline case.
Einarsson's calculations indicate that for small values of t, the
q.f. (16. 1) gives a relative c.'ror that is four times iess than the
Filon formula, For large values of t, the relative error of the Filon

formula incrzases rapidly, while the spline method (16. 1, gives a

#1183 -97-
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2 surprisingly small error growth, This same phenomenon we found to

be the case for the following q. f, » obtained from (13. 25) and (8. 3),

4 respectively, for m=3

' eo ¥, (th) o

F (16.2) [ f(x)cos xt dx = —>—h {L£(0) + T fivh)cos vth
] 0 bl 12

L. W,th) Lo $lthigen
+'t3[l-¢6m,) ]f(0)+:4-[1- 3 ) 1£*(0) + Rf,

0 ¢, (th} o0
a =5 4
] (16.3) ff(x)oos xt dx = ¢6“h) h {2 £(0) + 2 f(vh)cos vth}

0 vzl

¢y, (th)
1 4 ]
"_'[l" ]f|(°)+_[1_
t?. ¢6(th) t‘

#,(th) 4, (th)
¥ (th)

] 8*(0)+ Rt

e il et &

two q. f, corresponding to spline approximation, the first using
IUI'={0,1,3} and the second using 1UT' = (g 1,2},

We now consider the absolute error and concern ourseives with
j the q.f. (16. 1), (16.2) and (16, 3) and the bouncs we obtained for the
error in (16, 1) and (16. 2) for two examples. We first remark that
as the step h gets small, it appears that §"(0) of (16, 3) approaches

f™(0) of (16. 2) so that the difference in these approximations be-

comes very small. An instance of this we indicate below,

AR TR T

In Figures 1-6 the absolute values of the absolute error fo: the

calculation of the cosine transform with (16, 1) and one of (16. 2) or (16, 3)

1
is given as a function of t for the stepsize h at 80 different places §
|
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]

fromt - .25 to \ = 50, The cubic curve is represented by x's iﬁd

the quint' s curve for (16. 2) or (16. 3.) is lsolid. The dips are at points '
where tn: abuolute error changes sign, We also po'int‘ out that;each
axis i~ sciled logarithmically and a lower bou_nd for" the error in each

9

graphis Z x 10 . Along the vertical axis we indicate bya 3ora 5

where the computed error bounds of (153. 206) .fall, - ’

In Figure 1, we consider . ‘

f e X cosxtdx = —-L-i
0 1+t

and the stepsize h = % & .2, Here S™(0) = -.99994 versus
f*(0) = -1 and since the rorresponding graphs arising from (16, 2)
and (16, 3) were virtually indistinguishable we only need cons;der one,

(16, 2)., We also compute by (13, 26) the bounds on |Rf| and find that

(16. 4) IRel, = 6.1x 107> IR g52.4x 10" foriall rational '

| t in (0, 32) |
where the subscript indicates the case (16. 1) or (16, 2), respectively.,
We note that the bound for |Rf] 5 ié actually less than the computed
transform corresponding to the cubic case,

In Figures 2 and 3 we consider

© e ’
(16. 5) f 3 cos xt dx =%e
0 l1+x | ! !
for h = -2;2- 8,4 to examine the difierence between the' q, f. (16, 2) and

(16. 3), We've plotted the cubic case (16.1) also to serve as a reference.

1
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We see that for small values of t the q.f. (16, 3) (Figure 2)

. gives a considerably worse approximation than (16, 2). Here
. S"(0) ® -, 295 compared with £'"(0) = 0, From (13, 26) we find

2

(16. 6) |Rf|3§ 1L0x10 %, lRf|5§ 5, 86x10-3 for all rational t

2
4n (0,16), h =—1% .

In Figures 3, 4, and 5 we again consider (16. 5), but now for

_2n 2w, . 2n
h = 16 ° 32 and 64 respectively to consider the q, f. (16.1) and

(16. 2) as h decreases. From (13, 26), we obtain

(6.7 IRfl s 6,214 x107%, |Rel, 59.16 x 107
for all rational t in (0,32), h =-§-§-
-5 -6
‘ (16.8) IRfl, =3.884x107°, IRl sL43x10
for all rational t in (0, 64), = %2— .

The figures indicate that we do seem to have errors of order h4 for
(16, 1) and h6 for (16, 2).

If we consider Figures 5 and 6 where we calculate (16, 5) for
h= %;-'- frem q. . (16, 2) and (16, 3), respectively, we can see how

much closer these quintic curves are than they were in Figures 2 and

3, From (16.3) for h =’Z’3‘ , we find that S'"(0) = -, 00674 compared

- o 17'(0) - 0 and the S5''0) = -, 295 we computed above,
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