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ANNOTATION

Systemy Kvazilineynykh Uravneniy. I ikh Prilozheniya K Gazovoy lianmike
(Systems of Quasilinear Equations and Their Applications to Gas Dynamics),
Boris Lezonidovich Rozhdestvenskiy and Nikolay Nikolayevich Yanenko, 1968, Main
Editorial Department of Physics-Mathematics Literature of the Nauka Publishing
House.,

Mathematical methods of investigating one-dimensional problems in gas
dynarics are presented. Systems of quasilinear equations and principal prob-
lems for hyperbolic systems are studied in detail. Equations of gas dy-
namics are derived and investigated; analytic solutions of gas dynamics are
presented; discontinuous flows containing shock waves are studied.

The fundamentals of the theory of difference schemes are sei forth and
a variety of numerical solution methods for gas dynamics problems employed in
practical calculations are set forth.

A theory of the generalized solution is outlined for systems of quasi-
line:r equations of the hyperbolic type.

The monograph contains the resultis of recent work on these problem areas.
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INTRODUCTION

Theoretical physics employs a variety of models in describing the behav~
ior of a continuous medium (gas; liquid, or solid); in most cases the models
lead to nonlinesr differertial equations with partial derivatives. This is
not fortuitous. Actually, the interaction of two gas molecules depends on their
velocities. For this reason, the coefficients of differential equations of a
continuous medium describing the averaged pattern of molecular interaction de=
pend not on the time and point in space, wut solely on the state of the medium
at the given point, i.e., the equations are nonlinear.

The mechanics of a continuous medium is a principal, but not the only
field of practical use of systems of nonlinear aifferential equations in partial
derivatives. In describing most real physical processes, we arrive at nonlinear
equations, and only substantial additional assumptions on the smallness of the
amplitudes of the field waves or the amplitudes of fluctuations in the medium,
amplitudes of deviations from the equilibrium state, and so on lead to nonlinear
equations, which are studied more profoundly. Chapter Four of this book pre=
senis examples of problems in physics, chemistry, and mathematics that are asso-
ciated with nonlinear equations.

Study of general properties of nonlinear equations and wsthods of their
solution is a fast=growing field of mcdern mathematics.

Given the wealth of interesting facts and the diversity of original and
ingenious methods of investigation and solution of nonlinesr equations, this
field of mathematics has until now not had as solid theoretical foundation
as the theory of linear equations. This is because, first of all, the prin-
ciple of superpositioning of solutions is not applicable to nonlinear differ=-
ential equations, so that the set of solutions is not linear.

Among hyperbolic systems of nonlinear equations with partial derivatives,
the simplest are the systems of quasilinear equations, Systeme with two inde=-
pendent variables have been most thoroughly studied; these systems describe, in
particular, the nonsteady one-dimensional and supersonic two=dimensional steady
flows of compressive gases and liquids. But even for these systems, at present
time there is not a complete enough theory; there are nc genertl theorems of
the existence and uniqueness of solutions to problems with initial data (Cauchy's
problem).
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This situation is explained by the faot that”the solution to Cauchy's
problem 38 a whole for hyperbolic systems of nonlinear equations is associated
with the marked complexity both of the formulation of the problem as well as
methods ¢f solving it. And almost all the principal difficulties arising here
appear already for the situation of two independent variables, and we can expect
that solutions to multidimensional: equations in gas dynamics locally have
generally the same features as solutions to one=dimensional equations.

So the study of hyperbolic systems of nonlinear equations with two inde=
pendeni variables represents a wholly necessary and thus far still unsurmonnted
stage in the exploration of more general nonlinear equations.

From these considerations, the authors accided to limit themselves gen=-
erally to the theory of hyperbolic systems with two independent variables and
to study one—dimensional nonsteady flows of compressible liquids and gases.
Therefore, as a rule, we will consider one of the independent variables to be
time and denote it by the letter t.

Let us clarify at this point the present status of the problem of the
solvability of Cauchy's problem for hyperbolic systems of quasilinear equations
and the difficulties ariging in attempts to construct the solution to this problem
overall. The fundamental methcd in solving hyperbolio systems of quasilinear
equations is the method of characteristics, presented in detail in Chapter (ne.
It is used to prove the existence, uniqueness, and contimous dependence on
initial data of the classical solution to Cauchy's problem. These reaulte are
highly satisfactory in. the sense that the classical solution is constructed
throughout the domain of variables e and x, where they exist. We note that
the domain of existence of the classical solution, generally speaking, is
bourded,gince solutions to nonlinear equaticrna, in ccatrast to linear equations,
exhibit the property of unbourded increase in the value of the derivatives, which
is called the gradient catastrophe,

The significance of this property is that even at as smootn initial
values as desired, the first derivatives of the solution remain bounded, gen=
erally speaking, only within a finite time interval. A¢ s.me to > O, they
become unbounded,and when t > t, no classical solution to the formulated
Cuachy's problem exists any longer.

Prom the viewpoint of gas dynamics this corresponds to the formation of
a shock wave (a coupression jump) from a cowpression wave. Thus, if we wish to
define ths solution to Cauchy's problem for any t > 0, i.e., overall (and this
is precisely how the problem stands, for exauple, in gas dyndmics), then wve
wust first of all give a definition of the solution, since tne solution to a
system of equations in the usual sense == a classical solution, does not exist
wvhen t > t,, as we stated above.

In most physical problems and, in particulur, in gas dynamics the deter-
mination of the generalized solution is dictated by the way in which the problem
is formulated. Thus, for example, in gas dynamics the “:=ic physical laws froc
which we derive all consequences are the laws of conservation. of mass, momentuxn,
and energy. These laws of conservation are in the nature of :ntegral relations,
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and they are applicable not only to smooth (differentiabl:) flows. Kataer,
differential equations of gas dynamics are derived from these laws of conserva=
tion on the assumption of the amoothness of flow,

Thus, we define the generalized solution of gas dynamics equations as
a flow (possibly even with discontinuous parameters) satistying the main laws
of conservation: of mass, of momentum, and of energy. To this we add the
requirement of thermodynamics on the increase i. the entropy of each system
closed in the thermal sense. The view is widely held, thus far not refuted by
a single example, that a determinate solution exists, is unique, and satisfies
all rational requirements. '

Here a most essential requirement is that of thermodynamics dealing with
the rise in entropy, which shows the possible direction of the process of rapid
change in the gas state. This requirement does not figure in an examination of
classical solutions to equations in gas dynsmica for a gas deprived of viscosity
and thermal conductivity, since in smooth flows the entropy of the system is
retained by virtve of the same fundamental laws of conservation.

Another approach to generalized(discontinuous) flows of an ideal gas
deprived of viscosity and thermal conductivity is also well known in gas dynam=
ica. Since gas without dissipation is an idealization of gas subject to
dissipative processes, naturally we can consider its discontinuous flow as the
“limiting flow" of a viacous thermally conductive gas as the coefficients of
viscosity and thermal conductivity tend to zero. Here it is assumed that
viscous flows are always described by classical solutions of differentisl equa=
tions and that the limit as the dissipative coefficients approach zero does
exist and is unique in a rational sense. And actually, thus far this assumption
has not been overthrown by a single example, though exact proofs have been
obtained thus far only for the very particular case of a stationary shock vave.

Here we wust bear in mind that in many cases real gases exhkibit suffi-
ciently smail dissipation so that they can be "approximated" by nondissipative
gases. However, the occurrence of dissipative processes, even though limited
in extent, leads to an increment in the system's entropy. Thus, the require-
went of entropy increase in the discontinuous flow of an ideal gas is asscciated
with the representation of this flow as the "limiting" flow of a viacous
thermally conductive gas.

Let us note that from the mathematical point of view the requirement of
an entropy increase is a requirement insuring the uniqueness of the generalized
solution and its stability with respect to perturbations.

Though this formmlation of the problem of the flow of compressible gases
was known more than a century ago and even Riemann investigated the simplest
discontinuous flows, there has been relatively limited progress in investigating
general properties of generalized solutions of equations in gas dynamics. Thus,
and we have already mentioned this earlier, up till now there have been no
satisfactory existence and uniqueness theorems.
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On the other hand, the demands of practice stemming from the urgent
need for practical investigation of discontinuous flows, and also the new
computational nossibilities associated with the emergence of high speed comput=
ers has led to a situation in which, 1a spite of our inadequate information
about the general properties of discontinucus flows, different numerical algo=
rithms have been devised and employed for satisfuctory calculation of flows
containing shock waves. Il must be noted that most of the hypotheses, about
which we referred to earlier, in developing the numerical algorithms have been
regarded as reliable.

Since the direct and rigorouc sustantiation of various assumptions on
generalized solutions in gas dynamics is a difficult problem, the natural desire
arose to teat our views even though with model equations and systems of equa=
tions which to some extent simulate equations of gas dynamics.

A consequence of this desire was the emergence in recent decades of the
so=called theory of generalized soluticns of systems of quasilinear equations,
or, more concisely, the theory of systems of quasilinear equations (this is
usually what is referred to as systems of hyperboliu ‘ype). This theory setsout
to introduce on analogy with gas dynamics the concept of the generalized solu=
tion as an "arbitrary" system of quasilinear equations in partial derivatives
of the hyperbolic type, to demcnstrate its existence, uniqueness, snd continuous
dependence on initial problem data, and to study the properties of these soluvions.
At least formally this theory 3is more general than one=dimensional gas dynamics
and includes the latter as a particular case.

The theory has attracted any mathemsticians and several results cof Soviet
and foreign scientists have aroused = expectations of its further development.

Beginning with this view of the advancement of the theory of generalized
(discontinuous) solutions of systems of quasilinear equations, the authors
confine themselves to the case of only two independent variables and cover
the following fundamental prcblem areas in the bock:

1. Methods of constructing classical solutions to systems of quasilinear
equations; proofs of existence and uniqueness theorems, and the continuous
functions of classical solutions; conditions of forming discontinuities in solu-
tions of arbitrary systems of quasilinear equations., These problem areas are
taken up in Chapter one of the book. Here are presented results obtained for
classical solutions of systems of quasilinear equations in recent years.

2. Classical and generalized solutions to equations of gas dynamics for
one-dimensional nonsteady flows. This problem is taken up in chapter two of
the bcok. The authors deem it advisable to examine in detail several problems
in gas dyramics discussed in many reference worka. Presented are the fundamentals
of thermodynamics, the derivation of equations of gas dynamics for different
symmetries of one-dimensional flow, Hugoniot’s conditions, general properties of
flows, the theory of the shock transition, and self-modeling and analytic solu-
tions of gas dynamics. Including these traditional problem areas of gas dynamics
in the book made it prossible to deal with, from a unified point of view, several
mathematical problems that arise in gas dynamics; moreover, most of the nucerical
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methods in gas dynamics are actually based on this material. Covered in
greater detail than elsewhere is the fundamental problem of the theory of dis-
continuous solutions as equations of gas dynamics, as well as general systems
of quasilinear solutions of the hyperbolic type -=- problem of the collapse of
an arbitrary discontinuity, and also the interaction of shock waves with each
other, with traveling waves, and with the contaci boundary.

3. Chapter ™ree in the book deals with difference wethods of solving gas
dynamics equations. These methods have now become the principal means of inves=
tigating problems in gas dyramics, therefore progress in studying discontinuous
flows is closely linked with difference methods.

In this book we were obligated to present the furdamental concepts of
the theory of difference methods. Unfortunately, most statements in this theory
apply only to the case of linear equations.,

The present status of the validation of difference methods used in the
numerical solution of problems in gas dynamics, briefly stated, amounts to the
following. Classical solutions (smooth flows) can bte calculated with practically
arbitrary accuracy. The main methods = the numerical method of characteristics
== is adequately substantiated for classical solutions. At the same time,
rumerical methods used in calculating discontimuous flows strictly speak:ng hav
not been substantiated and in most cases a nuzver of hypotheses on solution
behavior, on the approximation of some solutions by others, and so on are used.
Mcst often simply equations for which the behavior of the discontinuous solution
is well known are employed to verify any particular assumptions. It is not
fortuitous that in this chapter in moat cases each scheme is checked with one
of the simplest quasilinear equations whose solution can be explicitly written.

This principle in substantiating difference methods shows that progress
in this field is closely bound up with progress in investigating general proper=
ties of the generalized solutions of systems of guasilinear equations and, in
particular, solutions of gas dynamics equations. On the other hand, difference
methods yield experimental material and most strongly stimulate advances in the
theory of genera.ized solutions.

4. Chepter Four deals with the theory of generalized solutions of hyper-=
bolic systems of quasilinear equations and contairs the main results attained in
this field in recent years. Here the chief success must be regarded as the
construction of a theory of the generalized solution of a single quasilinear
equation, which can be assumad to be almost consummated. The existence, unigne=
ness, and continuous depandence of a generalized solution on initial data are
proven for this equation; the equivalence of definitions of generalized solu=
tion from the viewpoint of the law of conservation, on the one hand, and as a
limit of "viscid solutions," on the other, is shown.

At the same time, just as in gas dynamics, the study of generalized
solutions of systems of eguations encounter great difficulties, and here thus
far only very scanty results have been forthcoming. The main problem, which is
now undergoing comprehensive investigatiem, is the problem of the disintegration
of an arbitrary discontinuity. By means of this simplest problem, we can study
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the structure of the generalized solution and even cvmstruct generalizsd solu=~
tions for the case of a systsm of two equations, by rzlying on the fourmer solu-
tion.

Chapter pour represents the main result obtained for a single quasilinear
equation; covered ir this chapter is the problem of disintegration of a dis=
continuity for an arbitrary hyperbolic system of quasilinear equations; also
presented are some results appsrtaining to more general case#, This chapier
concludes with a dsscription of sevsral problems of diffsrsnt fields of science
associated with the theory of systems of quasilinear equations and, in parti-
cular, diccontinuous solutions of such equations.

The book is dividsd into chapters, sections, and subssciions. Ths nue=~
bering of formulas is self=-contained in each subsection. Therefore in dssig-
nating formulas, along with formula number ths subsection number and the section
nunber are added, so that formula (2.7.18) stands for formula {18) in subsectior 7
of section 2 or a given chapter, Only whsn ths rsference is rot mads outsids ths
corfines of a given subssction is the formula number alone indicated.

In writing the book, we try to treat as fully as possible the entire
range of problems associated with classical and generulizsd solutions of g-a
dynaeics equations and more general quasilinear systems. Still, our personal
points of view, undoubtedly, have affected ths choice of material.

In writing the book, the authors consulted with different teams of Soviet
mathematicians. Among these we can cits the collectives headed by M. V. Keldysh,
A. N. Tikhonov and A. A. Sawerskiy, and I. M. Gel'fand. Our opinions and points
of view were inevitably affected by consultation with friends and collsagues ir
work; several results were made kncwn to us by oral communication with thea.

For a number of years each of us hes given special courses %o studsnts
on the subject areas of this book. As a resuli of working on the book, a number
of new results, presented here for the first time, were obtained.

Summing up, it must be clear that mathematical theory of dis-
continuous solutions of systems of quasilinear equations and, in particular,
equations of gas dynamics though containi. ~ many remarkable results and contain-~
ments, is s8till far from its culmination e that our book will afford the
reader a grasp of modern methods of sclutio. and investigation of systems of
quasilinear equations and at the same time spur him to furthsr invsstigation in
this highly interesting and rapidly growing field of applied mathematics.

This book grows out of many long years of work during which ws always
enjoy the cooperation of many of our friends and colleagues at work as well as
many of our students. To all we express our heartfelt gratitude.

We are also indzbted to A. N. Tikhonov whose advice we were continually
favored with,

The assistance of L. V. Oveyanikov was especially valuable for us, sincs
he not only reviewed the manuscript of the entire book and made a number of

-7-




valuable comments, but eslso plas 2d our disposal materials which we used in
writing section 13 of Chapter QOne.

A. A. Samarskiy read the manuscript of Chapter Three of this book and
made aeveral valuablie comments.

We were given a great deal of help by N. K. Kuznetsov, who read the entire
manuscript, made several valuable observations, and as an editor of this book
did much to promote its improvement.

We express our deep sense of appreciation to all of these.




CHAPTER ONE FUNDAMENTALS OF THE THEORY OF HYPELBOLIC SYSTEMS OF QUASI-
LINEAR EQUATIONS WITH TWO INDEPENDENT VARIABLES
Section I. Bpasic pefinitions

In this book we will limit ourselves to considering differential equa~
tions for functions dependent only on two independent variables.

The system of relations

3 : Oup | <0u. d; | o ‘
”.'(xl t‘n .l- ug- sy a.' -d}'l'n ce et "OT:‘- '&Ll es e ‘_o“'n')=0 (1)
(t=‘. 2. EX) m)-

relating values of the unknown functions u1(x, ) uz(x, $)y ooe un(x, t) and

their first derivatives .?_-"—", .., Pin U . SUn is
22X ’ DA 2 -—Ta o, ] -;———_t s

called a first=order systiem of differential equations with respect to the
function gy eeey Vpe System (1) is referred to as determinate for the case

when m = n. We will limit ourselves to considering only this case.

Introducing the vectors

‘a_.=.=-[a,._ vee Bg) %u;={%a;|_' i o %u;,_}'
ou __fou " Ousy
G={% 3t

we can write system (1) more concisely:

Fi(xtw o B)m0 =12 ) (2)




The functiomsu, = vi(x, t), exhibiting continuous first derivatives and satis~

fying the equations of system (2), are called the solution of this system of
equations.

If the system of nonlinear differential equations(2) can be represented
in a form that is solvable with respect to the derivatives of the functions
U,, ..., U_ with respect to any derivative (for example, t):

1 e

. %=qu(x. t u ‘g;‘) G=1.2 .. )] (3)

then shis form of system (2) will be called the normel form. System (3) is
called a Cauchy-Kovalevski type system. We note that when system (2) is
reduced to normal form the transformation of variable x, t is admitted.

Systew (2) is called a system of quasilinear equaticus if the functioms
% ; are linear with respect to the variables Ju/ox, Ju/)t; if however func-
tioms %, are linear over a set of variables u, du/dx, dufdt, then system (2) is

called linear.

A first~order system of quasilinear equations can be writien as

2%7’4 byigr e =12 .. % (4)
el o B B o CLoewaTe g 91

where the coefficients aij’ bij’ c; depend on x, %, u. If the coefficients
8540 bij do not depend on u, then system (4) is called semilinear (if in this
case cy is linearly dependent on u, then it is linear). We can somewhat simplify

the notation of system (4), if we bring into our consideration the above-defined
vectors u, 2ufx, dufdt, the vector c = {01, ceey cn.} and the matrix

o ete m

- Ia vee, @ . ' .v '
as|or e s=wy.

When using matrical notations it is assumed that the symbol Au and ui denote
vectors whose couponents can be computed by the rules
. Sm ' "o oo . !
(A“)r‘-"Flau“p (“A)n='}§0n“/=(ﬁ )N {é
(Re=l, 2 ..., 8), | 3 (5)
- 10 -




vhere A!' is a transposed vector.

If matrix A is symmetirical, then A' = A, and Au = uA. The scalar deri-
vative of vectors u, v is given by the formula

N T PR
ﬁvn(l. )ﬂ%';’%
Therefore for formulas (5) it followa that v(Au) = (vA) = vAu, We will denote
by the norm |[u || of the vactor u the quantity

We will refer to as the norm of matrix A that smallest number [/ A {{ which for
any vector u eatisfies the inequalities [[Au[f < [is)/[fuj/. It is not diffi-
cult to see that |[[A[| = /X , where A is the largest eigenvalue of matrix AA®
(or A'A, which amounts to the same thing). Since A < Sp AA', then

let uc recall several more defiritions from linear algebra. The vector
l= {11, . ln} and the number [ are called, respectively, the left eigen-—

vector and the eigenvalue of matrix A if
1a=E1, [I1] #o. (6)

Similarly, vector r is called the right eigenvectoir of matrix A if

Ar =gz, ||zl £ O. (7)

By formlas (5) and (6), the eigenvalues ¥ of matrix A is a root of the charac-
teristic equation

Det ((aij = Eéi,‘])) =0 (8)
vhere éij is the Kronecker delta (éij = O vhen i £ j and 613 = 1 when 1 = j).
To each eigenvalue E of matrix A corresponds a linear space of left eigenvectors

1l and right eigenvector r. The measure of these spaces is n = ﬁ , where B is the

length of the matrix
A - EE - ((ai;j -Eéij))~ (9)

The matrix rark (9), as we know, is not smaller than n = o, where o is the
miltiplicity of the root & of equation (8).
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let us assume that the eigenvalues éf of matrix A are real. Let us num=
ber them in increasing order, i.e., we will assume that

£, <8, . S5, (10)
The equality sign in (10) is admitted owing to the possibility of multiple
roots of equation (8), and each multiple root of £ is repeated in (10) as many
times as its multiplicity.

If for any eigenvalue E of matrix A of multiplicity oC, the matrix
raxk (9) is n -ol, then the eigenvectors, both tho left 1 and the right r
corresponding to all eigenvalues, form the basis in space En of the vectors

um=s {u1, seey un}.

. - . . 1
Thus, in this case we will assume that there exist eigenvecters 1,

12, veey 1 forming the basis in space En’ i.e., satisfying the condition

(11)

The index of the left eigenvector lk in this case corresponds to the number of

eigenvalue § K’ the latter are o.dered by means of inequalities (10).
If Ek" Ej’ then lk and 9 are orthogonal. In fact, suppose

4= £25, AP - gr . (12)

Multiplying scalarly the first of the equalltles (12) vy ! , the second by lk,
and subtracting, we get

7y J'n'quw A PAEAT | 5-ade KOOI B CONCC s b, toe "

SRV A e DA A2 I (Arh =0 (13)
uﬂ‘..t.m'h.

Since Ek,l gj, from this follows the orthogonality of 1k and rJ. For the
case when all eigenvalues of matrix A are simple, the equality sign in inequa-
lities (10) is canceled out and the left and right eigenvectors form a biortho-

gonal system, i.e.,

- 12 -




i SRR e S S s e s s b

2 la'a::o when k ,‘ Je (14)

If motrix A lssmmmemic then we can assume that rk = lk. We require that the

left eigenvectors 1 of matrix A satisfies the norm on condition that;

2% = 1 (k = 1y woes 1)e (19)

E= Ek’ the matrix rank (9) is n ~«, the eigen=
s in B and naturally satisfy condition (11)s if in
basis { } can be chosen as ortho=

Then, if for any eigenvalue
vectorslk form a normed basi
this case matrix A is gymmetric, then the

normed.

Matrix A is referred to as positively defined if all the eigenvalues &re

positive; it is nonsingular if E 0 is not its eigenvalue, and singular, other=

wise.

Limiting ourselves to this brief recapitulation of linear algebra, let

us write system (4) as

AduPt + 3B duPx = c. (16)

For the case when matrix A is nonsingular, system (16) reduces to the

normal form (3) and can be, after transformations, written as

dupPt + A dufdx =Db, (17)

where A, = A1(x, t, u)y, b =Db(x, %, 1) are certain new matrices and a new vector,

respectively. Below we will 1imit ourselves to studying system (16) which can

be reduced to normal form (17).

Above we made an assumption on A(x, t, u) of the system of equation (16).

ends on u, i.e., on the assumption which is asanile unknown to

Hovever, A dep
mptions on the

us. ‘herefore let us stipulate in which sense we make the assu

coefficients of systems (16) and 7).
jon u = u(x, t) of sys*eums (16) and (17)

1) Either we will assume that solut
t, then the realizaticn of any restrice

is given as a function of the variable X,
tion imposed on matrices A, B, and A1, and on vectors c, b, is verified fcrthwith.

2) Or else these regtrictions are satisfied by identity (for any valaes

u = { Upy oooy u } ) in scme gingly-connected domain of space (x, t, u) in whizh

- 13 -




the system of quasilinear equatiuns and its solutions will be considered.

In this chapter we will impose the restrictions mainly in the second

sense.

Section II. Characteristic Directions of a System of Quasilinear Equations

1. Derivative relatietc direction, Assume f(x, t) is a differentiable func=

tion of its variables. At some point (xo, to) we will consider the expression
of 9
A +8% (1)

assuming that A, B are not simultaneously equal io zero,

For any A and B that are continuous in some neighborhood of the poin%
(xo, to) we can find & smooth curve [’ running through thic point and such that
when it is suitably parametrized equation (1) is proportional to the derivative

of the function f(x, t) at the curve /7 with respect to the parameter T .
Actually, suppose the curve [~ is given by the equations:

Pix=x@), (=10 x()==x, tx)=t,. (2)

Then at the curve /  the function f£(x, t) is a function of one variable T:
f(x(r), t(2)) = F(t ). Let us reply that expression (1) be proportional to
F'( ¢ ) whatever the function f.

This will be done if

dx/dt = B, dt/d¢ = oA, (3)
where 4 1is any derivative function T . Clearly, the essential condition uniquely

defining the direction of curve [/ at the point (x,s to) is the equation

dx/B = dt/A, (4)
and formulas (3) define the corresponding parametrization.
We will call the derivative ®'( T) for the natural parametrization o
' . 3 L3 ) . .
[ vhen ol = AT the derivative of function § with respect to direction

" . In this case the parameter < is the length of the arc of the cuzve /7.

When o = 1, expression (1) will be called the derivative of function f

with respect to parameter T in the direction of the curve /'. This simple
-14-




concept finds important applications in the thecry of equations with partial

derivatives.

let us consider the simplest differential equation

(5)

assuming that functions A and B sre continuously differentiable. Equations

g th \w ‘p(x. (6)

or equstion (4) defines the single-parametric family of curves /. The para=
meter « is defined along each of these curves uniquely if along some (arbitrarily

chosen) curve YV interseciion of the curve /' we set T= T, (Figure 1.1).

Fig ¢ 1.1
i Jet us bring into correspondence to each curve I" the value of a certain

parame ter & (for exauple, the length of the arc of the curve v measured from
an arbiirary point on it to the poirt at which intersects with the given curve
/7). Then to each point (x, t)there will correspond one end only one number of

pair T, W.

We can therefore assume the function u(x, t) to be the function of the
variables T, @ ; the equations of the lines /" are of the form w= const, while

equation(S), according to the foregoing, is written as

u(r o)
l} =0 (7)

e

Hence it follows that u = F(e ) is the general solution of equation (5) and the
function u(x, t) is constant along [’ curves 7, w.
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The directions of the curves / defined by the vector {B, A} are called
the characteristic directions of equation (5), and the curves /7 are the charac-

teristics.

Let us note that the form (7) of equation (5) no longer assumes the exis-
tence of the derivatives du/d x, Ju/d t: equation (7) is satisfied by an arbi-
trary function P(w), in particular, even a discontinuous function. Here the
function u = F(w) can be interpreted as the solution of equation (5) in the

generalized sense.

2, Hyperbolic systems of quasilinear equations. Let us consider the system

of quasilinear equations
du/dt + 4 dufox =b. (1)
Multiplying it by the vector 1, we get the scalar equation

t-dT-HA_.:zb (2)

If 1 is the left eigenvector of matrix A, then equation (2) can be written as

(2 1) =0 (3)

where é is the corresponding eigenvalue of matrix A.

In equation (3) all components u; of vector u are differentiated in the

same direction. Actually, by writing equation (3) in components, we get

IICRELLE 0
denoting by -

() = e

the derivative of function ui(:' 1) with respect to the variable t in the

direction dx/dt = £, we see that « 'uation (3) containsa linear combination of

the derivative (.dui/dt). The equai on dx/dt = E defines the direction of
- 16 -




differentiation in equality (3), called the charaoteristic direction of the
system of equations (1), which is common to all functions u'i(x, t).

We will refer to the quasilinear equations (1) as nyperbolic in some
singly-connected domain I of the space of variables x, t, u, if the following
conditions are satisfied at each point of this domeins

1) all eigenvalues £ = gk(x, t, u) of matrix A = A(x, t, u) are real;
and

2) there exists the basis {11(x, ty W)y eeey 1n(x, n)} in the space
E , composed of left eigenvectors of mairix A governed by the rorming condition,
i.e., there exist normed eigenvectors 11, Xt arry i satisfying the condition
(1.11).

Let u3s note that a system (1) is semilinear, then the eigenvalue Ek and
the left eigenvectors 1k do not depend on u. Therefore the condition of hyper=-
bolicity for the semilinear systems is defined in some domain of variable (x, t)

for arbitrary u (in a cylindrical domain).

As a part of the definition of hyperbolicity, let us note that often
conditions 1) and 2).are supplemented further by the requirement of a determinate
smoothness of eigenvectors 1k and eigenvalues £ X Thus, for ezdmple, in the
book [1] system (1) is celled hyperbolic if conditions 1) and 2) are satistied,
and moreover, gk(x, t, u) and 1k(x, t, u) exhibit the same smoothness as the
elements of matrix A(x, t, u).

In the following we will of course have to resort to assumptions on the

smoothness of e‘,’k and lk. We will do this to the ex+ent that it is neceszsary.

let us note in this regard that a given smoothness of 1 and Ek does not always

stem from the assumption of the same smootuness for the matrix 4.

let us show this in the following exawple of a system of two Quasilinear
equations:s

oed mlt R

P o +a,-a—-¥-=0 %f‘,i+a(up S,)—a—*+-a -'-Q' »

Matrix A in this case is of the form




e s ni ke

o Ak

Yot tidad

1__*‘ | . i a; 0|
E,f?ﬁ(ﬂ)ﬂ' a(u.l_. “g) aj‘. ..
and its eigenvalues £, E , are determined from the equation

( oy = u1) ( g ) = 0’
from whence 51 = u, 52 = Uye The elgenvectors 1 ’ 1 are defined from the
equations

o ?,..“ e
o

‘-,.I;+a(-;--,)lz=0 ozx+(u,—u,>z= @
%-.)t¥+a(u,.-,)ti-=o. 0-4+0- lz==0 ®)

£ AT

.-' .Fq_

taking the norming condition into account, let us now define 11 and 12 in the
domain u, # uss

et us consider the straight lire u, = u, on the plane of variables (u1, u2) If

1
a(u1, u1) # 0, then from (5) we find 1° = {1; 0}, and the hyperbolicity condi-

tion 2) is violated on the straight line u, =u,. Let us consider in more detail
the case a(u1, u1) = 0, BHere equations (4) and (5) become iGentical at the straight

line u, =u, and we can select as 1 and 12 two arbitrary noncollinear unit factors
and, therefore, the system is hyperbolic.

But if we have required that the vectors 11, l2 exhibit a certain smcoth*~
ness, then the requirement of the same smoothness for the function a(u1, u2)
would not guarantee this. Suppose, for example, that we require the vectors

11, 12 to be continuous at the straight line u, =us.
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Obviously, the only vector l1 that is continuous

at the straight ijine
Yy = u, would be the vector 11(u

19 Y) = {15 0}; as for the vector 12
continuy+;r necessitates, for example, the continmuity of the function a(
(u2 - u1)-1. For example, if

y its

B0 Bp)

8@ s)=|uy—u['b(uy. u) (blwy. @) +0),

then when o > 1 the unknown continuous vector

u, £ u,) by the formula 12(u
tion 1% exists,

p# is given by formula (6)(when

1 u1) = {0; 1}. When « <1 no continuous funce

It is not difficult to verify that in th

is example, to ensure the conti=
mity of

m~th derivatives of 1° we must require that the function a(u

B continuous derivatives, and also (m + 1)~
u, =y_,

1 u2) have
th derivatives at the straight line

@pler in a highly important particular
case 0Of hyperbolic systems, which we will call hyperbolic in the narrow sense,

We will refer to the system of equationg (1) as hyperbolic in the narrow
sense in a singly=-connected domain D of variables (x, t, u)

this domain the eigenvaluc ]

if at each point of
¥ o4 ucs E1, §

21 seey E’n of matrix A are real and distinct,

In this case +he eigenvalues can be ordered, and we will assume that

everywhere in D the tollowing inequalities are satisfied;

r&i(x. L L)< ... <E(x b u)

Then, as indicated in section I,

the eigenvectors lk(x, t,
pendent,

It is easy to see that in this case lk(x,

the same degree of 8moothness as the elements of the

u) are linearly jinde-
t, u), £ (x, t, u) possess
matrix A(x, t, u),

Ard so, system (1) hyperbolic in domain p,

by multiplying it by the
left eigenvector 1 » 18 reduced to the form

Px.e, a)[-g-f-g.(;.‘t. a)-g;];:j_,(z. L8 (k=1..., 5,

(7)

)

where

Coom .}
f,a:l'oazllzbq,
| pe




From condition 2) of the definition of hyperbolic system (1, foilows the equi-

valence ~f system (7) of initial ccndition (1).
We will call equation (7) the characteristic form of the system of equa-

tion (1).
Expanding the notation of this system in compcnents thuslys

e
n

e {
2‘.(’. f. l) %!".}.(S. ¢ l):-a;]:zfl(x- -

Sometimes we will write it in the following forms

Vo ITELa

g . p(x : ‘.)i( % ).=- 7 (,g, ¥) TP PR

where the symbol (df/dt) denotes the quantity

() =% Fu

3. Hyperbolic system of nonlinear equations. Let us consider a system

of nonlinear equations written in the normal forms

-

«5'—-}-%(5 f 2, g) (zal. u). (1)

Setting
avi/ax = W, (2)
let us write system (1) in the form
B2l o =0 i WS )
P TR A 4 ".-"* ?@@* * Loy e P UL S «nw:f

Suppose <Pk(x, t, v w )& Cro Let A(x, t, v, w ) refer to the square matrix

of all n:
A

L

g—

Are( =)= (%)) @

L AL‘\;..

gr

We will call the system of nonlinear equations (1) hyperbolic in soue

domain of variation of variables x, t, v, w , if at each point of this domain
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R the eigenvalues £ = Ek\x, t, v, .« ) end the left eig-nvectars 1 (x, t, v, @)
of matrix A satisfy requirements 1) and 2) of subsection 2.

. %he hyperbolic system of nonlinear equations (1) reduces to a hyperbolic
system of quasilinear equations. Differentiating each of the equations (i) with
respect to the variable x and taking the symbols (2) into acconnt, we get

(5)

In formula (5) summation*) is carried out with respect to the Greek subscript
o within the limits from 1 to n. Belcw, for simplicity of notation, we will
oxtven employ this convention.

Combining equations (3) and (5), we get a system of 2n equations

s ‘m‘%

where

Lo 208t ot hoin i B3 S

i

which we can consider as a sysiem of quasilinear equations with respect to
2n unknowns

5 To avoid confusion, let us stress that the summe.tion is carried out

P deyn, - g

only with respect to (reek subscript. For example, .’.‘ ‘ - l,h%p_‘_ |
A q

and summation is now carried out witi: respect to the Latin aubscnpt k.
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Let us show that the system of 2n quasilinear equations (6) is hyper-
bolic. Multiplying the second group of squation (€) by the left eigenvsctor
lk(x, t, v, & ) of watrix A(x, t, v, w), we get

STa s T FRTONT 7Y R
7 T X £ & i

OO 2
A i

Thus, system (6) is reduced to the form

URHTR T Ve e T b |

{08 T AT T g U A |
el AT R AR T et T (10)

PR

from whence comes its hyperbolicity.

I e - ?k(x, ty )y deeu, a¢k/avi = 0, then the first group of
equations (10) can be considered independently as a hyperbolic systsm of n
quasilinear equations with respect to n unknowns 401, seey Qe

Of course, we cannot refer to the equivalence of system (10) and system

(1).

Pirst of all, it is not any solution v, ,w, of system (10) that yields
the solution vk(x, t) to system (1). Actually, the solution Vi o @, of system
(10) does not necessarily, generally speaking, satisfy equations (2).

As we show in subsection 3 of section IX, satisfying conditions (2)
reduces to satisfying them at the straight line t = 0. Thus, solutions to

system (10) reduce
(2) are satisfied.
is manifested also

requires that v(x,

to the solution v(x, t) to system (1) only if conditions

On the other hand, the nonequivalence of system (10) and (1)
in that the soluiion to system (10) satisfying conditions (2)
t) & C,. At the same time the definition of the solution

v(x, t) to system (1) requires only its continuous differentiability.
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Therefore the equivalence of system (10) to system (1) cannot hold only for
solutions v(x, t) to system (1) of class Cye

Section III, Riemann Invariants

1. Invariants of a semilinear system of equations, In each equation of
the characteristic system (2,2, 7) functions u, (x, t) are differentiated in the
same direction. In several cases further simpllflcation of the characteristic
system is possible: by change of variables we can succeed in differentiating
only one function of the variable x, t, u in each of the equations.

Iet us first consider the case of the semilinear system. Then equation
(2.2.7) can be written as

i At PR

(1)

vhere

o SR e ANy
ﬂ A 8'.—!. i.(—ai *HL #4-;;# (2)

awf_‘ R
Since for the hyperbolic system Det((l.)) f 0, then
-

e ita i 2

and the variables rk(x, t, u) can be taken as new unknown functions., Let us

express from equations (2) Ugs eeey U in terms of Tys ooy I8

== A, a;.',,; (4)

where we let r stand for the vector {r » wewy T } , and A are the coeffi-
cients of the matrix 1\ that is the inverse of matrix VAY )

Am(@e oD AT (W D]

Substituting formulas (4) in the right sides of system (2), we arrive at the

system of equatons
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- 4-'7\ U

L RSN B SR (5)

which we will ¢a&ll a system written in invariants.

let us illustrate the concept of invariants with the example of the wave

equation

— - - R S
Fage | L3 -

o SE- o 5F  (a=const).

It reduces to the hy\erbol1c ayatem

whose characteristic iorm is

—— -~

(s #)-o(F—og)=0
(‘a"f"“r)“"“(w“ %) =0

Therefore, the inveriants defined by fo.mulas (2) are as follows:

A
kY
D

ry=u-av, T, =u -av.

1
(Let us note that here we have used the nonnormed vectors 11, 12.)

E The system written in the invariantss
oS, ‘H‘VVWW;M‘TW:'&'N- SR Yt

By fory hall #-’-a
? !ﬂﬂl‘:‘f AT -W?rnﬂm.;',.

shows that the invarlant r1 is cons.ant along the stra:ght lines x + at =

const, end r, = along the line x - at = const; therefore

r,=f (x + at), r, = g(x - at),

where f and g are arbitrary functions.
Returning to the function u, we get a known general solution of the

wave equations

Nt et s
In the case of a system of juasilinear equations, the vectors 1k depend

on x, t, u., Let us conaider the differential forms
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o>t ow, diy=1"(x, f, )du==1"(x, ¢, u)da, (6)

Suppose that each of these forms, considered for fixed values of variables x,
t has an integrating cofactor Ay = ,ak(x, t, u) so that for any k = 1,,,,, n,
we have

Bl bt )0y (%, 1, &, du) =iyt X dy, %ﬂ'ﬁ du, )

(Let us recall that the summation is carried out only with respect to the Greek
subscripts; the mumber k in formula (7) is fixed). Equations (2.2.7) after
multiplication by Ayk becore

)*=%."f'§l 0’: =E.(x. t, a) k=1, ..., a, (8)
and

Ev=wfs+r+ 4L, ®)

In formula (9) the variables rﬂx, rit are partial derivatives of the functions
rk(x, t, u), respectively, with respect to x and ¢ for fixed values of the
variables u = {'u1, ey}

Now using independence of the functions rk(x, t, u), let us express
the variable u in terms of thew, after which we get from (8) the following
system of linear equations;

%"“h%’f‘-e.(xo tl ') (k“l. sy fl). (10)

The quantities L, 8re called invariants (Riemann invariants), and the systenm
(10) is called a systen in inveriamts. Riemann first introduced the concept of
invariants in his classical work (2]. 1f systems (2.2.1) and (2.2.7) are homo=
geneous and do not depend explicitly on x, t(A = A(u), f = 0), then equation
(10) is also homogeneous
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FHuOFE=0 G=1....m, (1)

i.e., the functions rk(x, t) are constant along the integral curves of the

equation

(12)

SF=hn)

IR

which are called characteristics of system of equation (11).

2. Systems of two and three quasilincar equations. We know that not
every differential form auk(u, du) has an integrating cofactor. An excep-
tion is the case n = 2 when this cufactor always exists. In this case the

Riemann invariants can be defined thusly. Suppose the equations

0y (2% £, 4, du)=0 (k==,h'.“2)‘ g

have integrals _
O, (0 O, w)y=const (k=1 2)..

E

Then, obviously, the following functiors can be taken as Riemesnn invariantss
rk = ék(x’ t, u)o

f
E Kow let us consider the case n = 3. We know (cf [3, 4]) that in this
T case the arbitrary differential form
a)k(x, By oug da) = 1k(x, t, u) du (1)
(x, t fixed) can te represented one of the following forms
a) dU, b) Vdu, c) dU + V dw,
g where U, ¥, W are functions of x, t, u. The cases a), b), and c) follow one
i after the other in order of generality.
F If the forms wk refer, when k = 1, 2, 3, to types a) and b), then this
I means that integrating cofactor,uk' is present for each form (uk, i.e., the
4 possibility of reducing the system of quasilinear equations to invariants#).

*) We know (cf for example [5]) that the form 1* qu belongs to type a)
if rot 1k = 0, and this form belongs to type b), if lkrot 1k = 0, where these

conditions are essential and sufficient (the operation rot is taken with respect

to the variables Ugy Uy uj).
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In the general case tae forms W, belong to the type c) and the charac=

teristic system rea.aces the form -

TR T R il ‘{F -
: ﬂ et & " @)
e B e £,

where U k’ Vk are functions of the variables Uyy Up, “3' x, t. Suppose

= 0 then equations (2.2.7) can be written in the form

V3

where 03 - Ui(x, %, u).

If the forms w, (x, %, u, du) (k = 1, 2) are considered at the surface

U

plzer. Hence it follows that

‘ ‘:{? i")‘ *f')“ e s-,-';i“‘ "g\i . “\ =, 5
2 '. &.{ “El)*-w.'dlf*-:—&!-dt—;-rdx ’ (kﬂi 2),'

J

- (x, t, u) = const, x = X, t=t, then they have an integrating multi-

h ,.,-.

,.\ .

? &

where it is assumed that
z& #. tl "b U.(S. “s h]. dp 2"(']- .’u .3- xl , 31
The system of quasilinear °quntions 1n this case can be vritten in the follow=

ing characteristic forms

k=13 } \_" 5)

where ﬂk, Ek are functions of the variavles Uk(x, Sy Bl By e
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Section IV. Transformations of Systems of Quasilinear Equations

1. Transformation of systems with respect to solution.

By the irans-
formation of dependent and independent variables

S tmewe e . § o SN
CEMKG CRlED emoimtn. )

which have a reciprocal, i.e., such that
o

RS i

i 3@6-{1-4”»“;:?1--‘6._ ¢ :.m-gs--,f?j

= 70 loRiind -0, ;

f‘.‘.:.__...;xg*s‘f-'t:zm;;;.. B R A N A T

the erbolic system of uasilinear equations is co
Y

ﬁverted into some new
hyperbolic system of quasilinear equations,

The characteristic directions of
the hyperbolic system are the invariants of transformation (1).

This means
that if the direction dx/dt =&,

is characteristic for the original syste i
then after transformation (1) the direction

will also be characteristic,

Let us consider the transformation of independent
gasdynamics, which we will call the transfo
with respect to the solution,

variables used in
rmation of independent varisbles

Suppose the new variables x', ¢!

are associated
with the old x, t by the formulas

T =@ (et ) dX =, (v b, a)dt, }“_‘ )
l' df"ﬁé@,‘(lv". L a)dx — py(x. ¢, u)dt.

For the line x' = const, t' = const to form a regular net

u = u(x, t) of the initial system, i

correspond to each point x, t,

for any solutions
€., for one and only one point xf, ' to

it is sufficient that in the singly=connected

domain of variable X, t undez consideration, the following conditions are

satisfied;
XAV IS . :
=0 =1, 2. @)
8 = 9,0, — 3%, # 0. @
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In inegquality (3) u = u(x, t) is the arbitrary solution of ths initial system;
in the differentiation, the dependence u on x, t must be taken into account.

Since inequality (3) must obtain for any solution u = u(x, t) of the
initial system; they must themselves be its corollaries. Let us assume tiat
this does occur and that (4) is satisfied. Then from (2) follow the differ—

entiation formulas

LT e e 5
TEETAYES, BHL Y ®)

By formulas (5), the derivatives Ju/d¢ ,du/d x are linearly expressed by
dufdt',duf2x', and after substitution .n the initial system, obviously, we

again will obtain a system of quaailinear' 2quations.

Tranaformation {2) is one that is more general compared to the ordinary
transformation of independent variables (1). For its applicability, however .
(in the case when <Pi and ¢, depend cn u) it is necessary that the system of
quasiiinear equations have as corollaries special equations. ps we will see in
section V, it is not any system of Quasiilnear equatinns tnat nas even one

equation of the type (3) a8 the corollary.

let us present an example of the conversion of independent variables
with respect to solution. The system of equations of gas dyanmics (cf chapter
™o, Section II).

bt TP = e g
- O S ot) u’.'%.. % PR .

Rt St Y. 3 SAR N I
/ »?. "'.(‘. B{iﬂ"'&i * ‘&3“ v%}‘ R‘ JI.‘: 40

- ‘o

w10 & /
A 8y A ﬁoa' ﬁ"*P("-.s); 6)
? : ?u;: W :,F% :’3 ; RS IR o TR, (Y
R RS o ! . Pact . .. Yot g
Ay %fa“*o SEEANTE Y LY

contains three equations with three unknowns A, u, S. Let us consider the
transformation

d:x'npdx—pid!. dt’md}'f? (1)
In this case @, = Py ¥, =fu, ¢, = 0, ¢, = =1} conditions (3) are satisfied

by virtue of the first equation in (6), and condition (4) leads to the require-

ment £ > O. Thus, if £ > 0, then
- 29 -
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ﬁ‘r&g" r2 I:w=£v*"" = =3 o]

Vol o 12 i

and system (6) changes, after iransformation (7), into the new system:

.?o _‘?‘iii' (h" ¥ o ﬂl 68 ‘-_. -"3 8
e G Fo0 *

in gas dynamics the variablesx, t are called gulerian variables, and the variables
q = x', t' = t are [ggrangian variables.

2. Hodograph transformation. For a homogenous system of quasilinear

equations whose coefficients do not explicitly depend on X, 1 in the case n = 2:

[N A T TR :-'y:f - '. o
.‘r%«}-’.i(q-g-so. u=={#; _"2]' (1)

let us interchange the roles of dependent and independent variables, 1684,
we can assume that x = x(u,, u)y t = t(u1, u2). Siople calculations lead to
the result '

where

1If A 0, then by substituting formulas (2) into (1), we arrive at a linear

system of two equationss

t
%-——-an(ﬂ)-a;'-}'“u(“)—“o' (4)

'&Wr—-a,‘(a)-a;-+%(u)-;;;
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where aij(u) are elements of matrix A(u).
This transformation of variables is called the hodcgraph transforumation;
it is used in gas dynamics.

3, Extended system. Let us write a system of quasilinear equations of

the hyperbolic type in the following characteristic forms

P 0[S Hhaie to0 5] =
| =z:[i¢,‘it"—+g,~i’a‘-j‘9~]=f,(x. tu) (k=1 ..., n). (1)

In many investigations, along with system (1) it is useful to consider a system
of equations in which the unknowns are also derivatives of the solution u(x, Tk
This system is obtained by differentiating (1) and is its differential corollary.

We will call system (1) and its differential corollaries an extended system.

Let us denote

Bmp B=q (Si=p F=a) (2)
then system (1) can be written as
BEtbA)=RE L) =S, G=1... . (3)

Differentiating each equation (3) with respect to the variables t, x, we get
daq ap &3 - oq P\ __ &
#E+uP)=a. r(E+uE)=F 4)

where
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9.“‘&"'+Tq°

_ . ofy, s (qa_*,g.pa)(-g-‘-a‘—aqg) }
" T __,a( +3.u°qb)p.,.

: ol ' t2l
5,=%’} %’ip.,-(q..+§.pa)(-5;°-+3&:"’e)" f
) )

- lﬁ(%g‘;%-mf’a)”“ '

From (2) follow, as conditions of integrability the equations
2afx =2ppPt, (6)
and, therefore, equations (4) can be rewritten as

p(frudl)=t o(F+ud)=ri, @

RN

where f}k, f};k are, by (5), functions of x, t, u, p, Q.

We will call equations (2) and (7) an extended system. The extended

system can be written in a different representation. The equations

=:q,. l'(%-+§a%£)==5n ; (8)

ccnstitute an extended system of 2n equations if the variables p appearing in

gk are canceled out by means of equations (3). Here it is assumed that

E A O0%).

The extended system wes introduced in this form by R. Courant and P.

lax in article [6].

*) The requirement Ek ;‘ 0 is not essential. By change of variables we car

achieve the result that ék #£0 for all k = 1, «ue, N
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If we consider an extended system in symmetric form (7), ther it is
equivalent to the initial system in the class u(x, t) & Cye

Let us dwell on a remarkable feature of the extended system. As was
shown, a hyperbolic semilinear system can be reduced to invariants. This,
generally speaking, does not obitain for systems of quasilinear equations. How=
ever, an extended system of eny hyperbolic system of quasilinear equations
already possess this property, i.e., is reducible to invariants.

Actually, denoting

%unp- )‘»"1 (9)

i !

' d
‘JLA " 4~.'.1._‘_ .d_..!_.

and converting in equations (7) to the variables ?k, &k’ we get

where

e d u. l \ - '.‘.' ] > . | i
& R

" LA i
? ] ;@.’P%[‘ﬁ}"‘"a :'\F ﬁ‘. ( p ‘h)’,) l ;‘\ ,:,’1..;

Doy W

Since Det(( l:‘ )) # 0, then the variables p, q are uniquely expressed by P,
& , and can be canceled out of F., F,.

Adding to equations (10) the equatio:
il Xoqumile, (12)
G e ik Aatle -

we get a system of 4n quasilinear equations written in invariants.

We can reduce the number of equations down to zn, if, for example, we
add to the first group of equations (10) the first group of equaticns (2), i.e.,

consider 8 systew of 2n equations in the invariantss
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’%&M’%”‘r‘ . .%"““‘:?3"'«-"3 (13)

and assume that in the functions f?k the variables g are canceled out by means
of (3}, and p == by means of (12).

Bowever, the second group of equations (13) is unsuitable for investi=

gation. We will trarsform it. From equations (3) we have

=R =R =AY — M (14)
Therefore instead of system {13) we can consider the system
o ”» & .
.%'{"Ek'—{f:ft' ,‘-&5-=q.=lﬁfa—lﬁ§‘f“. (15) :

vwhich is also written in variants, and the function :?k are functions of x, t,
u, .

Let us write extended system (15) in its final form:

LAY AN S a
i’g?*_ =Fy(x. ¢, u, &P). (17

From formulas (15), (11), (5), and (3) it follows that

Ta=F (5t )+ T a2 b 1) ot T ip(x. b )PPy (18)
Py == F*(x, t, )+ Fi(x, t, 6) P, 19)

where g;k, grk 5 ng; 3 Fk, Fi_ are certain functions dependent only on x,

t, u. The formulas for these variables are quite cumbersome and we will not

wvrite them out here. Let us however note that Fk, F{i are expressed in terms
. - k k k )

of the coefficients of the initial system, and 37 3 gzi » Fug in terms of

the coefficients and their first derivatives with respect to the variables x, t, u.
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The extended system (16) 2rd (17) will be used by us in the following
in estimating the growth of the soluticn to the system of quasilinear equations
and its derivatives (cf section VIII).

By section 1I, a hyperbolic system of n nonlinear equations reduces to
a system of 2n quasilinear equations. The extended system for arbitrary hyper—
bolic system of quasilinear equations reduces, in turn, to equations in invarirats.
Therefore a hyperbolic system of n nonlinear equations reduces to a system rf not
more than 4n quasilinear equations in invariants by means of forming an ertended
system,

Section V. Conservative Systems of Quasilinear Equations

1. Definitions. If the equation

- VSR S
r',..;;“P_(‘v"n )Q: (1)

B

is a corollary of the system of quasilinear equations

2u/dt + Ad2ufdx =1 (2)
for any solutions to system (2), then we call it the law of conservation of
system (2).

Suppose system (2) has m laws of conservation (1) corresponding to the
functions 4’1, vesy Pm; &P1, ooy sUm. These laws of conservation will be
called independent in the domain D if the functions 1, 4'21(x°, t ), ey

P m(xo’ to’ u) are linearly independent for all X to of the domain D under

consideration.

If = @(x, t), then by the definition of equality (1) is not independent
law of conservation,

If system (2) has n independent laws of conservation satisfying the condi-

tion

then we call it conservative, otherwise == nonconservative.
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Thus, the conservative system (2) can be reduced to the form

af(& 20l (3)

T e B e Y

where we understand €, ¢, and P to refer to vectors with n components. Let
us note that a system of the type (3) is often called "divergent"; sometimes
this term applies only to the case F = 0., We obtain equations that will serve
for defining all laws of conservation of system (2), i.e., functions of @ and
Y . To do this, let us multiply system (2) by the vector ol =d(x, t, u) =
{11, P d-n} and require that this result be of the form (1).

Let us arrive at equations

A »g_ I SAr A AR

m ==aér'“"9' *‘OA I’!'

g,:;‘.‘s .{xp’:.- 3 .-".'\- o “, g “‘
where hE '9 T3 "‘ nw”.- oY 'h
={ar i w-:}"'
Canceling the vector oL from these equatlons, we get the systeu
Dy Ffﬂf S i
1‘,“\( x- " )=%'. i (4)

Wiy ‘ ‘. lh)

in which only two unknown functions 4D(x, t, u) and ¢(x, t, u) appear. The

system (4) consists of n equations and is described in comporents as follows:
T ST S At R s Sl

ﬁ %(M L) <t==-t. o ek (5)

The variables x and t appear in the coefficients of this system as parameters.

A set of linearly independent solutions to system (5) defines the

system of independent laws of conservation of system (2).

If system (2) is linear or semilinear, i. iz conservative. Naturally, in

this case A = A(x, t) and system (5) has n independent solutions:

DT e s D= 0e (L )

Wikt Lk W 1

Waen n<2, system (5) is either indeterminate or determina!: and has an infinite
mumber of solutions. When n 23, system (5) is over determined and cannot in

general have a single solution ¢, ¢, which would depend essentially on u. The
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proof of this assertion can be obtained for the example of the system
Frufioo Siulro Praf-o
A e N e . ¢ ! .
for which it is easy to establish that system (5) does not have nontrival solu=
tions (cf [7]).
2. laws of conservation of gas dynamics. As an example (cf [6]), let us

consider a system of equations of gas dynamics in lagrangian coordinates (chapter

two, section II), which we will write as

v o | (oY
T FHERY =0 Fl+pHP=0

Let us pose the problem of finding all laws of conservation of this system of
equations (obviously, system (1) has already been written in the form of iaws of
conservation and is therefore conservative). Representing the system as

’ % , od
iz_u_o. -&-+""'+p,;——o FHrm=0

we will write for it vhe system of equations (5.1.5) with respect to @ = ¢(V,
use)s Y= ‘P(vs us£)3

ga-:pv(v 8;-2 ) \.. , 2)
B e BtV 0 @
LR AL @

Suppose p = p (V, £ ) is a doubly-continuously differentiable functions of its
variable; we will assume that @ (V, u, &¢), ¢¥(V, u, £) is also doubly-continuously
differentiable. Combining equalities (2) and (4), we obtain .

PV O b —p, (V. O gL =0,

which denotes a functional dependence with fixed change u of the variables ¢, p,

i-e.,

¢ = ¢ (p,u) (5)
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Similarly, writing out the conditions for consistency of equalities (2) and (4),

we get
rar (@) =s & (3,
i.e. | |
o¢/ou = F(p, u) (6)

where F(p, u) is an arbitrary function.

Substituting (5) into (3), we find

where ¢ (p, u) is an arbitrary function.
Integrating (6), we get

o(V. s, =F,(p. )+ F (& V). (8)

where as before F1, F2 are certain arbitrary functions.

Substituting this expression into equality (7), we give the latter the

fOllOWing form:
éF, (e V ) 0F, (e, V) of P, u) .’
P l(- . l( __-(l)(p' a)... I(p —[pp. p’vl.

Since here the left side dres not depend on the variable u, then
. i
3%F, (p, 1) !
R e LA (9)

We will limit ourselves to a consideration of the case when the variable

pp' is functionally independent (as a function of the variables V, £) with the

function p(V, £): )
0 ’ B ¥ 4 .
by [ppi— BV # Piw [P AVl (10)
-4
Therefore,in %= ognt side of equality (9) appeers a function of p, U, V, & that

is not reducible to a function of p, u. Therefore equality (9) is possible if

and only ir . . ;
a’Fl (pv u) i g = -.K;‘
W—‘Ql @u(p' u) 0;4‘
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Thus, assuming that condition (10) is satisfied, ¢ (p, u) = ¢ (p) and, by (8)

s e m'vv-v A

LRI

(1)

(12)

Therefore, substituting formulas (11) and (12) into equality (3), we get

@) L OF - O
pfne A p o0 dy (12)
Since F, = F (é V), then the right side in (13) does not depend on u; there=

fore S

m -"%lp(s)- | ._i'_) :::6

Fx(“)’=cl‘§‘+ca“- Fs"*_ba..'

and

since the constants are imaginary. Finally, equation (13) becomes

J p(v, e) 9y %?—zclp(v ¢)+ct- ;

aana

i.e., F2(é y V) satisfies tie mmrematmn in partlal derivatives, assuning

Y V)ac,e~c.v+ﬁ,(s. V) 1

(AT

we get for F2(£ V) the homogeneous equation

1ALy (14)

iy
Ne . i

As for the variables V, £, let us consider the ordinary differential

equation

; dep(V, )aV =03 (15)

Suppose S = S(V, £ ) = const is the general integral of this equation, i.e.,

Si(Vie)p(V. )—Sy(V, & =0.
The funciion S(V, &) is called entropy in thermodsmamics. Since equation (15)

determines the characteristics of equation (14), then (cf for example [5]) the
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general soluvion to equation (14) is
R S ST ”Cj
where £ is an arbitrary function of one variable. And thus, we obtain the

general solution to equations (2) = (4) for ¢

s "

bong ety s el anidea et

ot
_?)
&

after which we can easily find ¢:

(17)

PGt G0 TG0 DY

Formulas (16) and (17) give us a grasp of all laws of conservation of this system
of equation for the case when the inequality (10) is satisfied. It is easy to

note that they contair laws of conservation (1), and also a new law of conserva=

0!(3("; 9) > 0 ]

which in gas dymamici is called the law of conservation of entropy.

tion

From our proof it follows that when condition (10) is satisfied the equa=
tions of gas dynamics (1) do not have any other laws of conservation except for

the known laws of conservation of mass, momentum, energy, and entropy.

By way of y:t another example, let us consider the system

%‘%%'*‘31%%1‘ \ ¢=L..m (18)

where & -é_’(u,‘, vrey un), OZ” - ! (u1, coey un) are scalar functions (cf
[9]). System (18) is hyperbolic if the matrix

zu=((%))

is sign-determined,

The system of equations (18), obviously, is conservative. It is easily
seen that it has yet another law of conservation, independent of the laws of

conservation of (18) if ai? is a variable matrix:

q>==llq.7.a—.?. ‘P’-‘-“a-?ua“"-?"

It 's interesting to note that equations of gas dynamics, as well as certain

othe. systems of equations in mathematical physics are reducible to the form (18).

-40-




3. Potential of the solution of a conservative system of quasilinear
equations. Let us consider a conaervative system of n quaeilinear equations

Therefore, as new dependent variable we can select the variable vi'- 4’1(x, t, u)
and consider only the conservative systems of the special form:

(1)

Suppose we know the solution u(x, t) & C, to system (1). Let us find the vector
F (x, t) such that

Obviously, the vector ¥ (x, t) is nonuniquely determined; for determinateness,
ve must set

¥ 0= jm 3 & O)JJ (2)
e e R1L B . '

where x = xo(t) is a smooth curve uniquely projectible onto the axis x = O,

The system (1) can be rewritten as

y+3-l¢9(x- t, a)—J'(x. f)l==*°, .

Integrating this equation of the domain ;ﬁc bonded by the contour C, we conclude
that the contour integral

ﬁudx-—-[cp(x. . u)-..r(x. 0l dt==0 {

tends to zero for any piecewise-Buoth closed contour C. Therefore the curvilinear
integral

(x-f) :
(D(x. f)== [ adx — (p— F ) dt (3)
(‘ufd
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doea not depend on the path of integration and defines the vector (_P(x, t) f C2,
if¢é%,Pém

From (3) follow the formulas
‘“‘._‘, R . “,?ﬂ“.‘v‘*

| 'ay;*‘-;“ #‘wr&, 4RI (E D

,:'.,',/"r-

R vk SENR S .L CEVE RIS WL NPV o S

Canceling out u and using formula (2), we find

Do N, All"'

%Qh;?@%ﬁ%—d& (4)

cmoce SRR AL e BT R

Now the system of nonlinear integro-differential equations (4) can be considered
independently of (1). If we know the solution & (x, t) & C, to system (4), then
u=239/2x C, is the solution of system (1). Reducing system (1) to system
{4), we can consider, in this way, less smooth solvtions u(x, t) cf system (1) as
derivatives of solutions @ (x, t) of system (4) that have greater smoothness.

For this reason, this apprach find use in the examination of gener-

alized (f'or example, discontinuous) solutione of systems of quasilinear eguations.

We will call the vector ¢ (x, t) the potential of the solution u(x, t)
of system of equations (1) {cf [10]).

Let us note several particular cases. I F = 0, tnhen eystem (4) becomes
a nonlinear system of the Cauchy~Kovalewki vype. Reducing system (1) to system
(4) in this case must be compared with the opposite procedure =~ reducing &
nonlinear system to a system of quasilinear equations (section 1I). Therefore

this processes of increasing solution smoothness can be used even ir the following.

Section VI. Formulation of Cauchy's Problem for & Hyperbolic Sysiem of Quasilineay
Equations

1. Formulation of the problem. For a hyperbnlic system of quesilinear

equations L. . .
L: o

Az = (1)
which we will also write m the characterisiic form

"[‘H""&T]—f' (Rem1, ..., 5),

let us consider the following problem:
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In  gome vicinity of the arc a8 < T< b of curve &
x=x(t), t=1t(%)

find the solution u(x, t) of system (1) that takes on assigned values on L,

..',"(,é'('._)'ny.t(t))=u°(t), };<1<5-, @)

conditions (2) are called initial, the vector-function u® is the initial func-

tion, and curve ol is the initial curve.

The problem (1) and (2) is called the problem with initial data, or
Cauchy's problem.

Cauchy's problem for equation (1) is interpreted geometrically as a prob=
lem of constructing in the space of n + 2 dimersins of variables (x, %, u) a two-
dimensional integral surface u = u(x, t) passing through the given curve

x = x(T), t = t(T), u=u(T), ‘

which we will also called the initial curve.

To render the formulation of Cauchy's problem more precise, we must indi-

cate:

a) the smoothness of the matrix A(x, t, u), vector b(x, t, u) (or lk,
g fk)s the initial curve, and the function u’(t) (we will cail these vari-
ables the initialdata of Cauchy's problem);

b) the domain G »f the variables x, t in which we seek the solution to

Cauchy's problem.

These problems will be examined in the following subsections in the cons-

truction of the solution of Cauchy's problem.

"2t us note that, by definition, the solution u(x, t) of system (1) is
continuously differentiable (u < C1). If u(x, t) exhibits less smcothness,
but in some sense satisfies system (1), then the function u(x, t) is called the

generalized solution of system (1).

In this chapter we construct the solution u(x, t)é& C, for a hyperbolic

system of quasilinear equations; a generalized solution u(x, t) & C will be
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constructed for linear and semilinear systems. Following K. O. Friedrichs,we

will call the latter the solution to Cauchy's problem in the broad sense.

2. Solvability of Cauchy's prcblem. Characteristics. Suppose x(T),
(), u°(t ) éc1, 1k(x, t, u), E fkéC and some vector=function u(x, t)
& c1 takes on the value u°( T ) on the curve Z and suppose its derivatives P,

q satisfy the equations of system (6.1.1) on the line &.

Let us formulate the problem of whether the derivatives p, q based on
these data can be determined (on the line &%), i.e., the problem of whether the

function u(x, t) & c, satisfying these requirements exists.

On the line & we have the equality
a(x(0), 1)) =0@).  Plg+hapl=/s | (1)
s i B . o - 4
where lk, E ¥? fk are obviously known functions of the variable € on %A
Differentiating u(x(z ), t(¢)) = u®( ) with respect to T, we get

PEg+¥ @p=2E — o), (2)
ad

and, therefore, (<€) & C.

Equations (1) and (2) form a system of 2n equations for the determination
(on the line & ) of the derivatives p, q. Since the matrix ((1,5_ )) is non-

singular, then by canceling out the vector q from equations (1) and (2), we get

Fon—ralP=roL-ro—1E ()

where fk is a continuous function of the variable ¥. The determinant D{T ) of

system (3) can be easily computed:
‘ a . o 4 a - . ﬁ'
D(x)=[pet ()] JT¥ Wt — ' o1 =DetA JT ¥ & ta—# ).
It differs from zexro if for all k=1, ..., n

& =5 (‘3+§,.—_—§.(x(lt)-t(f)-‘"“’(t?)-j (4)
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We assume that [x'(T)| + [t'(T)| ¢ O. If ¢'(t) = O, then plainly
D{t) # 0, since £, are bounded. ’ Y

Thue, if conditions {4) are satisfied, then the system of equztion (3)
has the unique solution p = p(= ) and, therefore, the derivatives p, q of the

function u(x, t) are uniquely defined on the line & from conditions (1).

Now let us assume that u(x, t) €0, x( ), t(-z),/'u/o(c ) &0y lk, Ek’
f,E€C. Ifun= u® on ¥, the first derivatives of u(x, t) satisfy on ¥ equa-
tions (6.1.1), and the second derivatives of u(x, t) satisfy onZ the differen=
tial corollaries of system (6.1.1) (i.e., equations obtained by formal differ-—
entiation of system (6.1.1) with respect to variable x, t), then providing tha+
conditions (4) ere satisfied, on .# the second derivatives of u(x, t) are also
uniquely defined.

Similarly, if conditions (4) are satisfied, we can define on .# derivatives
of any order m of the function u(x, t) if conditions (1) are satisfied then, more-
over, &il derivatives of u up to order m inclusively satisfy on & all differ-
ential corollaries of equations (6.1.1) up to order m inclusively. Of course, the
input data must be sufficiently smooth.

Let us note that, as we can easily appreciate, in these arguments it is
sufficient to speak not of all differential corollaries, but only of those that
are obtained by differentiating equations (6.1.1) in any fixed direction not co~
incident with the directicn of the curve & (so-called exit direction). For

example, the direction of the normal is such & direction.

This procedure of determining derivatives can be extended as far as one
wimes if the initial data are analytic, and it permits constructing an analytic
solution for the problems (6.1.1) and (6.1.2) for such data. This fact is the
analytic basis of the well-known Cauchy~Kpovalevski method.

If conditions (4) are satisfied for all k = 1, ..., &L on curve .. we
will call Cauchy's problem noruwal.

The curve & assigned in this space of n + 2 variables x, t, u by the
equations

x = x(x ). t = t( ), u = u’( ), (5)
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is called the characteristic of number ko of system (5.1.1) if the following

equalities satisfy at this curve:

@) ;

FALE

2

W

el @I
..if'if"?."?’;%(t.f?-(" (0. ¢(x). (6)

K.+ Ry

For the case whence several characteristic values gfk coincide on o, the curve

ol can be a characteristic of several nambers k at the same time.

Sometimes we will also refer to the projection of the curve (5) onto the
plane of variables (x, t) as a characteristic, bearing in mind, however, that

equality (6) has been satisfied for it.

Suppose the curve & under Cauchy's problem conditions is the characte=
ristic of number ko. The left side of the equation of system (3) corresponding
tok = ko then tends to zero. If the right side of this equation fk('c) does
not tend identically to zero, then the system of equations (3) has no solutions
at all in general. Therefore there does not ecxist a function u(x, t) & C1 which
on & takes assigned valuesu®(<c) that would satisfy on £ system (6.1.1).

Nor does there exist the solution u(x, t) & C, to Cauchy's problem (6.1.1) and
(6.1.2).

Thus, if the initial curve is a characteristic, then the initial condi~
tions (6.1.2) and the system (6.1.1), generally speaking, contradict each

other, and Cauchy's problem is nonsolvable¥),

For Cauchy's problem to be vhysically meaningful also in this case, we
must stipulate that fk (z)= 0.
o

Thus,if the initial curve has a characteristic of number ko' then the initial

data cananot be assigned arbitrarily; they must satisfy the condition

H@O=f ©f, (@), (@, @)~ (x(). 10, () B0, (7)
*#) From this examination follows anothcy definition for tne characteristic,
as & curve & at which a linear combination of equatiuvns of the system under
congsideration contains only interior derivatives, i.e., derivatives with

respect to the parameter = in the direction of the curve 7 .
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- which is called the conditicn of solvability.

Suppose the initial curve & is a characteristic of number ko and
suppose the solvability condition (7) has been met. Then system (3) is com=
sistent, but has infinitely many solutions. Therefore, the solution u(x, t)
to Cauchy's problem is not determined uniquely by the initial condition (6.1.2)
and there exist infinitely many solutions to system (6.1.1) satiafying the very
same initial conditions. Thus, we arrive at the general definition of the
characteristic of system (6.1.1):

A characteristic curve is a curve & for which Cauchy's problem is either

nonsolvable or solvable, but not uniquely.

For the unique determination of the solution u(x, t) for the case when
the curve &% is a characteristic and when the solvability conditions have been
met, several additional conditions can be imposed. Examples of these problems
are taken up in section XI.

Related to Cauchy's problem is the problem of the extension of the

solution u(x, t) through curve & . Suppose the solution u(x, t)& C, is known
along one side of curve & and it is required to extend it to the other side.

This problem reduces to Cauchy's problem with the curve & as the initial curve.

If & is not a characteristic, then this Cauchy's problem is normal and
tke problem of extending the solution is uniquely solved. In this case, from
4 the condition of the continuity of the extension follows the noncontinvity of
ﬁ all derivatives of u(x, t) which exist on the line & , in particular, there
follows u(x, t) €C,. If however the curve of is a characteristic, then the
E corresponding Cauchy's problem is nevertheless solvable, for the solvability

condition (7) has obviously met (since u(x, t) is the solution on one side of

o S o

Z ). However, it is solved nonuniquely.

E Let us consider, for example, & continuous extension. As 'we have seen,
E the valuesof u(x, t) at the curve & do not uniquely define its first derivatives
é P, Q; therefore the continuous extension of the solution with discontinuity of
E the first derivative &t the characteristic ;¢ is possible by an infinite set

of ways. If however the continuity at o of the first derivatives is required,

then derivatives of higher order can experience discontinuity, so that in this

i case the extension is defined nonuniquely.
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And so, & characteristic is a line through which a solution is extended
nonuniquely.

The problem of extending the solution u(x, t) through the characteristic

f is uniquely solved only for the case of analytic solutions, just as, obviously,

is the case for any problem of the analytic extension of a function.

Now we will concentrate on the normal Cauchy's problem. By transformation
of the variables x' = x'{(x, t), t' = t'(x, t) converting the curve 2 to the
segment of axis t' = 0, the general problem reduces to a special Cauchy's
problem with initial conditions assigned at the axis t = O: find the solution
u(x, t) to system (6.1.1) satisfying the initial conditions

u(x, 7) = u’(x), a<x<h, (8)
From the boundedness of the variables E k it follows that this Cauchy's problem
is normal., We will solve Cauchy's problem (6.1.1) and (8) only in the half-
plane t > 0. The solution u(x, t) is constructed in the half-plane t <O by

analogy, when necessary.

3, Domain of dependence and domain of determinacy. The concept of correct=-
ness of Cauchy's problem. Suppose we know the solution u(x, t) to the system
(6.1.1), taking on the initial value (5.2.8). ILet us draw the characteristic
X = xk(xo, t°, ¢ ), given by the equation

& _!d??__._w ;—1(;;.,»!". .a(ié.':‘)r) i :‘.\__‘&'k ; i ‘.' } 2;'; .-. ‘.' :n).--‘

until they intercept the axis t = O through the point /(= (x°, t°) of the half-
plane . }0. Suppose they intercepi the axis t = O at several points, the far—
thestof which are denoted by a' and b'(a' < b') (Figure 1.2). The segument of
the initial axis t = 0 a' £ x < b' is called the domain of the dependence of
the solution u at the point /.




The domain of determinacy G of the solution to Cauchy's vroblem is the
nsme given to the region of the half-plane t > O consisting of all points(x, t)
for which the domain of dependence a' < x < b' belongs to the initial segment
{a, b], i.eey [a', b'] < [a, b].

Finally, the domain of the influence of segment a'<x < b' of the initial
axis refers to the domain G' of the halt-plane t =0 consisting of all points
(xy t) whose domain of dependence has a nonempty intersection with the segment

[a', b'].

Since the characteristic of the system can be found only simuitaneously
with the solution u(x, t), determining the domain of determinacy is difficult.
The situation becomes much simpler for the case of a semilinear system, when Ek
= Ek(x, t). Here the domain of determinacy G is given by the conditions

G: t=0, Xn(t) £ x < X1(t),
where x1(t), Xn(t) denote the solutions to the differential equations

dx, -
= e o0, 0= mn (L0, ),

which take, on where t = 0, the values X,l(O) = a8, X, (0) = b,

For the case of a system of quasilinear equations, the a priori determina-
tion of G is difficult. However, if we know that [fu(x, t)]| < U, then the
following assertion is valid:

dga. |
where . _ .
G >0 X, 0 <x<X0)
) A ) T
LA .{Qn(z?.(t). to) X, 05 .

ax; . = ¥ (f X.(0)==b.
S ._,r'n{fl_._"Tgluie.(xl(t).qt. 0} X, (0)=0b.

Cauchy's problem is called correct or correctly formulated if its solu-
tion u(x, t) exists, is unique, and dcpends continuously on initial data. Of
course, the questicn of the metric in which the continuous function obtains depends
on the classes of the solutions and initial data under consideration and is solved
in each of these classes in a different way. When proving the existence theorems
for the solution to Cauchy's problem, it will be stated in which sense the conti-

nuous dependence or solutions on initial data obtains.
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let us explain these concepts with the example of a linear systea with
constant coefficients:
duf/at +Adufox =0. (1)
The invariants
k
r,=lu=1lu (2)
satisfy the equations
—#+§.#?0 (k=’l' very )-
i.e., system (1) is decomposible into n 1ndepenuent equations. The character—
istics of system (1) are straight lines:
- %
x=x =X + g}:.
Therefore the domain of determinacy of the solution to Cauchy's problem for
system (1) is the triangle
Gs t 20, a +,_,té b+§1t,
and the domain of dependence of the solution at the p01ntu44 (x, t) is the
segment [a', b’] of the axis t = Q, whers a! = x -Ent, b! « x -§1t (Figure 1.3).

¢

x| ¢ x

&4
a g Vi =z

Figure 1.3

The functions rk(x, 1, are easily defined:
rk(x, t) = fk(x b _Ekt),
where fk are arvitrary functions.
If the initial conditions u(x, 0) = u®(x), are posed, then by (Z)
k o (¢]
rk(x, 0) =1lu(x) = r (x).
From whence s
r.(s. Q.—n(x——bl)=-l’l (x-—hl)al:-&(x——wﬂ
Retrrning by formulas (2) to the functions u, we get

a(x, =00868 (5 — g
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From this formule there directly follows the continuous dependence on initial
data - matirix A and initvial functions u®(x) == of the solution to Cauchy's

problem of system (1) with constant coefficients.

4. Method of characteristics and review of results. Sections VII and
VIII will set forth in detail the application of the method of characteristics
to proving the principal theorems on the solvability of Cauchy's problem.
Here we will only briefly describe the concept of the method of characteristics
in order that the readez rot interested in details will grasp the method of
characteristics and the results achieved witbout having to read the proofs of
the related thecrea.

Suppose that for the systeam

W A

‘4“*"'«.,' ()

the initial conditione  u (x, 0) = u’(x) (2)

ave formulated., For sake of simplicity, assume that a = g0, b = 00; the quan=-
tities 15, &, £,, u® arv acsumed to be sufficiently smooth functions of their
variables.

Suppose that in the eirip 0< t < t the smooth solution u(x, t)
to problem . (1), (2) is known. The functions

it _'.i,,“': j;}.’i‘ % ;t;qh(x; t, :s(:. o)%
BRI (‘*JL"("‘@‘)’ i

can then be regarded as functions of the variables x, t, and system (1) can be

s

considered as a system of linear equations
e
‘*?.[ f '33']&'7' ‘\'{
and it can be written in the invariantss

%4#5}2\; .(x,,i{j (3)

o SN

Here the functions sk(x, t) are expressed in terms of u(x, t), t " % . 5k

and <he first derivatives of l d




Each of the equution (3) can be integrated. Actually, if we let x =
xk(x ’ +° y T ) stand for the soluflon to the probiem —
A AT
then the expression 5)_; + gl( 3‘% is the differentiation operator with

respect to the variable ¥ in the direction of the characterisiic x = xk(xo, to,

< ); therefore

ﬂ]-th fm;'ﬂ' ‘i .ﬁ,n (;4 ;

.'Tz"-.;_t,', vl T R T A ST e bl e L

In view of the hyperbolisity of system (1), matrix ((1 )) is nonsingular,
therefore u(x, t) can be determined from (4):

(cf formula (3.1.4)). Howevei, the solution u(x, t)is unknown to us ard, there=

K fk Sc, with the exception of the most

simple cases,construction of the solution u(x, t) does not ruduce to this

fore, so are the quantities 1 , 5

uncomplicated procedure, but rsguires the application of the methcd of successive

approximations.

Suppcse that in the strip 0Lt < t an approximate value(ékx, t) of
the solutlon to Caughy s problem (1), (2) is known. Then we can determine the
gnantities lK ’ gkﬂ ard find the next approximation of u (x, %) by the
above~indicated method.

st1)
Thus, the approximation u (x, t) can be regarued a8 the results of spplying

DY (x, t) = ™ (x, t).

This operator is nonlinear and contains the operation of differentiation with

)
tou (x, t) a certain operator T:

respect to x, t and integration along the characteristice. The solution u(x, t)
to problem (1), (2) under this approach satisfies the equation u(x, t) = Tu(x,t),
which obviously symbolically describes Cauchy's problem (1), (2). To prcve the
convergence of succesaive approximations{(ﬁ' (x, t) } , we must first of all
establish their uniform boundness in some strip O < ¢t £ to. Then, the proof

of cunvergence reduces to establishing the couwplete continuity of operator T

(i.e., the fact that it .maps any bonded set into a compsct set) Finally, it is
-52-
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shown that the limit possesses the required smoothness and is a solution to a
problem, Ordinarily this last stage involves investigating the seduence of
derivatives \a(ﬁ)/a Xe These problems are studied in detail in the raxt two

sections.,

The first resulis on the existence and uniqueness of solutions to Caucky'a
problem were obtainec by the Cauchy¥owlevswye method for systems of the Cauchy=-
Kovalevsap €quations on the assumption that the initial data of the Cauchy's problem
were analytic. These burdensome restrictions deiract from the value of the results,
since Caucby's problem for hyperbolic equations is best considered with minimum

requirements on the smoothness of initial data.

In 1927 H., Levy (cf [11]) ghowed that esgentially the solution to a hyper=-
bolic system of linear equations with two independent variablea reduces to the
solution of Cauchy‘s problem for systems of ordinary differential equations.

This work laid the foundation of the classical method of characteristics*®).

We will briefly present here the result obiained recently c¢n the yuestior
of the solvability of Cauchy's problem for hyperbolic systems of eQuations with
two independent variables.

In 1948 K. 0. Pridrichs (cf [12]) considered the problem of the existence
and univueness of the solution to the problem (1), (2) for systems of linear,
semilinear, and quasilinear equations. For the linear system K. C. Fridrichs
proposed contimuous differentiability of lk(x, t), Lipshits=contimuity of Ek(x, t),
and the continuity of fk(x, t, u) = fk(x, i) + ﬁi (x; t) u, . Given these condi-
tions, he established the existence of a solution in the broad sense on the
assumption only of contimuity of w°(x) (the concept of the solution in the broad
sense will be taken up in section VII). For 1 system of quasilinear equations
Pridrichs required that li . gk & Cos fk 'S Cys uo(x) = C,. Here the existence

of the soluvion u(x, t)& C, was proven.

R. Courent and P. lax (cf [6]) used the concept of an extended system in
invariante., In spite of the elegence of the prcof, in this work moce rigid

assumptions on the smoothness of the initial data are male. Thus, for example,

*) The method of characteristics was developed earlier for a single equation.
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the existence of third derivatives is required for the initial functions uo(x).

In papers by A. Douglas (cf [13]) and P. Bartman and A. Wintner (cf [14]),
published in 1952, the solution to the problem (1), (2) is constructed on the
assunption of continuous differentiability of initial data. A. Douglas first
constructed the solution for smoother initial data; these initial data are consi-
dered by means of passage to the limit. P. Hartman ard A. Wintner constructed
the solution v -1er these assumptions directly by the method of characteristics.

Lemma 2, presented in the next section, plays a key role in their comstruction.

Thus, the minizum requirement on initial data under which the existence
and uniqueness of the solution u(x, t) & 01 have been proven at the present
time is the requirements of the continuous differentiability of these data. It
must further be required that, as shown by the simplest examples, no solution
u(x, t) & C, exists if the initial data are not differentiable.

Let us note that several existence theorems canbe gotten by specialization
of more general theorems to the case of two independent variables. Thus, for
exauple, papers by I. G. Petrovziciy (cf [15]), and S. A. Knhristianovich (cf
[16]) presented general results, from which derive, in particular, existence

theorems for the case of interest to us. Let us however note that here the

requirements imposed on the initial data are naturally overstated.

Finally, we make several remeicks on the presentation of these questions
discussed in this book. Cauchy's problem for the linear system is studied on
the tasis of the paper [12] by K. 0. Fridrichs; the existence theorem is proven

with these same assumptions.

The method of characteristics as propounded by F. Hartman and A. Wintner
is adopted has the basis for systems of quasilinear equations. However, our
% presentation differs in several key respects. We cite a number of them. Proof
5 of theboundness of successive approximations and their derivatives is usually
extremely cumbersome in the method of characteristics. Gross estimates using

the "ma jorant" which we employ essentially considerably simplify and meke

more general these estimates by bypassing the necessity of arithmetic computa-
tion. Another point of distinction in our presentation is in the proof of uniform

convergence in the domain of determinacy G not only of the successive approxi-

wations, but also of the sequence of their first derivatives.
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5« Two lemmas.

Lemma 1. Suppose that the vector-function u(t) = {111, veoy un} continuous

on the seguent 0 <t £ to satisfies the inequality

]
Ne®I<Up+ [ 1A@+ B mex |u®]1dv, (1)
L e LR . ushbEl ‘
and suppose that when 0 £ t < t, |a (t)[< 4, |B(t)<B, u, >0.
Then when 0 < t £ to the following estimate obiains:
G el e et N7 o At
.'_Ill(f)ﬂ<°‘<”:2‘""(f)"<Uul“+—§("‘—1)- (2)

When B = 0, formula (2) is transformed into the obvious inequality:

|u(t)[]< max ||u(1:)u<U°+At

~).| EXY

Proof. Let U(t) stand for the quantlty max éu (f )i . Suppose t >0
is any number from the segment [0, to] and U(t) = futt)l] (0t < t).
Writing the inequality (1) for the point t', we get

aa(t')u—U(o<Uo+ j’ 1A+Bumldr<

<U°+I[A-{-BU(t)}dt-—Uo-(-At«t-BI U (x)dr.

Applying this estimate many times, we will have

U(o~<uo[l+8t+ + LOA
+A[t 4 (Bly* ]+U(t s
2r -+ BT B(s+ 1)1 07_—1—'

from whence follows inequality (2).

Corollary. Suppose the continuous vector u(x, t)& C1 satisfies the
inequality Pr] o .-
Ll<ron+js2, 0}

Then estimate (2) holds, where U, = Hu@)ll, 2= max I£(t){, B = mgx

s anlil.
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k=

Lemma 2. Suppose u(x, , T ), v(x, t, ) € C,. Then the function
T 2 TR

1(; g)n;fu(x.t z)b"'"' 4"4

o
i 5
? N Yoo a

is continuously differentiable (I(x, t) €C, )

Proof. Let us compute, for example, the Gerivative 31/:3 x. We have:

B/ B =i m=- A o

j{-(x-{—Ax 6 1) ou (s

2 N :
I-(x+w,n-w.t.z 60(£+Ax- L

3, e Pt

X I.’;':'.-w" P ] . ‘:'.‘ BANREEIG IR S AP 1LY
M‘I a(x, t t) Fo [v(x-{-Ax.’f t)—v(z. t ﬂidf, 4
. T v ?“?",;.', T S -4

Performing integration by parts in the last integral and passing to the

limit as Ax —~0, we get

AR ] W or e er
“

"_!_‘;;f---u(x. t, :)o,(x. , t)—-u(x. t, O)vx(’c- b °‘+ “”*

R T wfﬁ,ﬁ;

B T s I

w0

Formula (3) proves lemma 2 and s:imultaneously gives us a rule for computing

derivatives of the function I(x, t).

Section VII. Cauchy's Problem for Linear and Semilinear Systems

1. Existence and uniqueness of the solution of Cauchy's problem in

the oroad sense. Let us consider the semilinear system

F‘*'A(x' [).5_.'_-—-_b(x. l. a).

[‘
) g ,I.’ R
and suppose that the system ‘ i ‘ ‘ K e e
B 0—5-—-»4:.(:. 6N O
A e TRl e , ‘ ‘1 '. fe v ‘
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is the notation of system (1) in invariants.

Suppose that for some segment [a, b] of axis t =« O the initial conditions

. .o,
i a(x, 0) = w2(x). (3)
1 are assigned for system (1). Note that the segment [a, 0] can be unbounded.
Denoting J:;Z(x) - lk(x, G) u° (x), we get the initial conditions
r(x, 0) = r’(x) - (4)
for system (2).
k

let us assume that the funotionms A, Ek’ 1 & ¢, in G (recall that G
refers to the domain of determinacy of our problem), fk, and 31}/9¥¢ & Co in
the domain G X ful = oco<llujj< oo}, w(x) & C, on [a; b]. Then g 2 gk/ax;{_
& C, in the domsin ¢ X {r} - ooljrjj< oo} r’(x) e C, on [a, bl

The functions r(x, t) continues in G are called the solution to Ceuchy's
problem (2), (4) in the broad semse if r(x, 0) = r°(x) and if each of the
functions rk(x, t)_ is continuously differentiable with respect to the variable t
along the corresponding characteristic x = xk( E, T, t), where

S IO NENC
The vector u(x, t) obtained from the vector r(x, t) by formulas (3.1.4) will be
called the solution in the broad sense of Cauchy's problem (1), (3).

The uniQueness theorem of the solution in the broad sense. Suppose that
two solutions in the broad sense u(x, t) and u(x, t) to problem (1), (3) exist
in G. To these correspond two solutions in the broad sense r(x, t), r(x, %) of

problem (2), (4).

We introduce the difference v(x, t) = r(x, t) = r(x, t) (v(x, 0) =0) (6)
Subtraciing from equation (5) written for the function r(x, t) this same eyuatio.,

writien for r(x, t), we get
Tdo(n @ nB.0 _ oy ety !
L amanl ALY (1)

where gli (x, %) denotes the quantities

. . .;._’ o
| g 0= ke b r(x5 —Do(r, Hah.
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By the definition of a solution in the broad sense, the functions r, ;, v are

continuous in G. Therefore the functions gi are continuous in G and are

bouded in any strip 0 ¢ t £ to.

Integrating equation (7) with respect to t from 0 to T , allowing for
condition (6), we get ’

o.<; 1)-=:Jg'(x.. ¢) (x,.‘ f)di (k'g:-t. u).‘i.
In view of the bouniednesa of matrix ((gd' )), hereafter applying lemma 1 from

secticn VI it follows that everywhere in ¢ |{|v(x, t){/ = O and, therefore,

r(x, t) = ¢ (x, t), u (x, t) = u (x, t). The theorem is proven.

Of course, from this theorem naturally follows that the classical, i.e.,

continuously differentiable, solution to Cauchy's problem is also unique.

Existence theorem of the solution in the broad sense for a linear system.
We will construct the solution to the problem (2), (4) for a linear system by

the method of successive approximations.

Suppose gk(x, t, ) = gk(x, t) + gli (xy t) r, . By formula (5), the

solution r, satisfies the equation

k
s "', fy s f'i«- e "& :3: ‘\“':‘.‘.!
r,(x. t)u— rx(x,(x. t, 0))+ [ g'(x,(g t. 1). 1\41-+l SEUPEAN
W o 'f +Ig"‘(x.(x. 1) t)r (x,(x. t r) 1)4!1 (8)

Applying tre method of successive approximations, we set

'j ! vy hots

r.(x.t):..r,(x. 0+J g (x, (x £ 0. Yr, (x,(x t v, qu (9)
(=0, 1,...),

40
it

where o + . ' ;
ra(x, )=r{(x,(x. ¢, 0))+J g (xp(x. £, T), Vdv. ‘
0

*

Hence it is clear tha(:sfl) (x, t) are defined and continuous in G and have a
continuous derivative in t in the corresponding characteristic direction. Ilet

us prove the uniform convergence of the dequence {(%) (x, t)}.
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From formula (9) follows

(I XTRRY WL SR o
a & (x.f)—r(X,t) <8

AN ..“&.u,‘-.,l;d_f_.-;;:_

where G, denotes the intersection of G with the strip 0Lt ¢, and B is
the comtant bounding the norm of matrix ((g « )) in the domain G.

Denoting

}:‘

let us writing (10) as i
( 45

:}-,,m,‘a‘ e S Y

Then

s wziw V(o_; when $§ — oo

“ and, therefore, the sequence {(%) (x, t)} uniformly converges to the ccnutinuous func=
i tion r(x,t)if the domain G is finite with respect to variable t. If owever the
domain G is infinite in t, then the soquencegg)(x, t)} converges uniforrly in any
of its finite (with respect to t) subdomains C, - Passing in thie equality (9) to

0
b the limit as 8 =+ oo , we get the result that r(x, t) satisfies equatione (8).

4 Since xk(x, t, T) = xk(x y b T ), if the point (xo, to) lies on thin character—

istic, then equalitnes (8) can be rewritten as
NSRS I IO U\jﬂ'ﬁ"}!',

.(x.(xo. r)f)aro(x,(xo. 0))+!g"(x,( s by ¥ V)l

Ty

v _ e

bt

"' + I g'(x,(xo. t, T) t)r.(x.(xo. ‘v 1), Tld";l (11)

~.\)

From the continuity of the integrands follows the continuous differ+
entiability of the right side of (11) with respect to the variable t. Therefore,
rk(x, t) is contimuously differentiable along the characteristic x = x i here
the equality (5) is satisfied. Thus, T (x, t) is the solution to the problem
(2), (4) in the broad sense. By forrulas (3.1.4) the solution u(x, t) to the

problem (1), (3) can be obtained.
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For the case of a semilinea. system, successive approximations are
assigned analogously to (9):

i zu R --.,r.< . - \
.-—1.'. A

.‘..

({f’-h‘ _tH- j' ;.(x.(x. r. Dt Xﬁ.(«“- . f/- ndv, .

and converge uniformly in the subdomains G of the domain G in which they are
uniformly bourded. °

Thus, the construction of the solution in the broad sense for the semi-
‘ linear system differs from the linear case only by the fact that the domain Gt

in which the solution of the semilinear system remains bounded appears as the &

b domain of convergence of the successive approximations. We will delay the dis=~

cussion of the boundedness of tre solution to section VIII.

2. Existence of the classical solution to Cauchy's problem for the linear
system. Suppose the system (7.1.1) is linear, i.e., b(x, t, u) = b (x, t) +
1 B(x, t)u. Tien in the system (7.1.2) gk(x, t, T) = gk(x, $) + g%( &y thng
where gk(x, t) = lk'b1, and

o 62 S B
'“I l “ e

FrE L S U (1)

vhere V a lf’ Bgs A, 28 (cf formulas (3.1.2)).

Ve assume that 1%, &, Bp € ©y inC. Obvieusly Ap’ Y, < ¢, inG.

k
o
Suppose also that u®(x) < Cip T °x) € c,.

1°

Let us show that the solution constructed above is under these assumptions
continuously differentiable in G and, therefore, yields the solution to the problem
(7.1.2), (".1.4) in the ordinary sense.,

In the case (1) formula (7.1.9) becomes

"'i""‘ -—

.

[
r. gx. l)a-‘rh(x. t)+[v‘(x.(x. L, 1:) 1:) (x (x. ) 1:) v)dt+
‘ e SR R SNE A :

“+‘[[“ 1 ixntx. t.“?) V)Jk(x.(x. £ %), 1:) r,(x.(x.t 2, Ydv. (2)
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Cbviously, from these assumptions there follows the continuous differentiability
in G of the first two members of the right side of (2) if in ¢ the approximation
(%)(x, t) is contimuously differentiable. As for the last member of
formla (2), it is also continuously differentiable in G if(:sé)(x, t) € C,» This
follows from lemma 2 of section VI.

Differentiating (2) with respect to variable x (the last term in formula

(6.5.3)), we get

(a1 ' (o) ) 5
0xy (x, £, 1) 0y () or
T j—a—— LT

)
+H[ Bt b0, 0] M o race 5—
—[7;!- lg(x,, . ¢ ), ‘t)] xﬁ(Jc. (x. ¢ 0),0) (;:;(xk(x-, t, 0), 0)

+J le' (xalx. & ), 7) "a(xk (x. t. ), ")] X
(O]
X[& Bt 9. 9]~ 5 [8xa e, 8. 9. 0 oo 100X

X[% I} (xa(x. t. 7). *r)]}dr.

Hence it follows that

s+1) )] 1
9) 3
%ol e o e 0—"cx. o]+
¢

+J A(x, £, T) n(l)ﬂx” (;')—(’-rl)” dv+
*

" & (B =D
s or
+JA ‘%, 1, t)n:)a‘x = dx,

and the functians A1, A2, A3 are continuous and bounded in G.

Since the sequence {( )(x, t)} converges in G and the quantities A1, A2,

e

are bounded in G, then the uniform convergence in G of the sequence {a(rg/ 2 x}

is proven on analogy to the preceding., This means that the above-constructed

solution in the csveral sense is continuously differentiable in the variable x.
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The continous differentiability of r(x, t) with respect to t is similarly
proven. Incidently, this already follows from the continuity in G of the
combination of derivaiives o O _

FHug=aman’
Thus, when the formulated conditions are satisfied, the solution r(x, t) in
the broad sense is also the solutions to Cauchy's problem (7.1.2) and (7.1.4)
in the ordinary sense. Passing by formulas (3.1.4) from r to u, we conclude
that the resulting function u is a solution to the system (7.1.1) in the ordi=~

nary sense.

The following assertion is quite analogously proven for the semilinear

4 the solution u(x, t) of the problem (7.1.1), (7.1.3)
is bounded and Ek, 2l & 81; fk(x, t, u) € Cyo uo(x) & C,, the above-
constructed solution in the broad sense is continuously differentiable, i.e.,

u(x, t) & Cye

systems if in the domain G

By direct differentiation of systems of equations (7.1.2) we see that on
these assumptions, the derivatives p, q satisfy in the broad sense the equations

of the extended system.

3. Some properties of solutions of linear and semilinear systems. The
solution to Cauchy's problem in the broad sense for linear and semilinear systems
is uniformly continuous in G if the domain G is finite; if G is an unbounded
region, uniform continuity obtains in any firite region of G. Here, for the
cagse of a gemilinear system the uniform continuity of the solution in the broad
sense obtains only in the domain Gt of the boundedness of the solution. These
properties are easily derived from formla (7.1.8) defining the solution r(x, t).

in the case of the classical solution (u(x, t)e& C1), the deriva:ives p, q
satisfy in the broad sense equations of the exiended system (cf subsection 3 of
section IV). Noting that in the case of a semilinear system the extended system
ig linear with respect to the derivative p, q, we conclude that the derivaiives
of a solution to a semilinear system remains bounded in the domain Gt in which

o
the solution itself remains bounded.

Suppose now u(x, t) and u(x, ) are to solutions in the broad sense to

Cauchy's problem, whose initial data we denote by lk, Ek’ fk, uo(x) and Ik,

"
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el s i i e L

E e’ ?k, u’(x). We will assume that the initial data satisfy the conditions
formulated in the proof of the sxistence theorem of the solution in the broad

' pemse.

It is easy to see that when ;’k, Ek € cC, ;k(x, t, T ) = xk(x, t, T),
if Ek — Ek; then when E-k s gk , G = G. From formula (7.1.6) it
follows that if ék — £, Ik —= 1., and 80 on, then ;k(x, 1) ——— rk(x, t),
;k(x, t) ====u (x, t). Thus, the solution to Cauchy's problem in the broad sense
depends continv-usly (in the norm C) on the initial data of this problem. Thus,

Cauchy's problem is correct in this formulation.

If the initial data are continuously differentiable, then as we have sgeen,
the solution has continuous derivatives and is classical. Of course, the above

statements on continuous dependence apply also to these solutions.

If, further, not only the initial data, but also the derivatives of the

This follows from the fact that the derlvatlves cf the solution satisfy, in the
broad sense, the equations of the extended system which are linear with respect
to the derivatives. Similar conclusions can be made also about derivatives of
higher order if the requirements on the smoothness of the initial data are made

suitably more rigorous.

The construction of the solution to Cauchy's problem reduces to constructing
a representation that transforms the initial function into the solution to Cauchy's
problem at the time instant t. let us consider, for sake of specificity, the
linear system with right side equal to zero (system (7.1.1) with b = Bu). Then
um= Suo, where the operator S is linear. Obviously, the domain of definition of
this operator is a set of continuously differentiable functions. We will consider
S as the mapping C =% C. Then the operator S is defined on an everywhere-dense
set (which is a set of continucusly differentiable functions in C) and is bounded
on the set. According to the familiar theorem of functional analysis, S permits
continuous expansion with norm preserved to the entire space C. S¥ is the result

of this expansion. Then u = S*uo, w’ < C 1is the solution to Cauchy's problem

in the broad sense whose existence we have proven to be independent.
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Hence it follows that to consiruct the generalized (in the sense of
extensions of operators) solution, it is sufficient to approximate the initial
function u% (x) by an element of everywhere-dense set u% (x) (i.e., "to smooth"
the initial function) to construct the smooth solution ug = Sug » and to pass

to the limit as & ~— 0, using the corresponding metric.

Similar considerations apply also for the semilinear cnse. It is cowm~
plicated only by the fact that the operator S assigning the solution to Cauchy's
problem: u = S(uo), is now nonlinear. It is determinate, bounded, and continuous,
as the operator from C to C on a set of continuously differentiable functions
satisfying the equality

e’ < U, > U, = const (1)
o o

0 <t « t, is the strip in which the solution is considered). wuite analogously
to the foregoing case, the operator S can be extended to the continuous bounded
operator defined on the entire set of elements C satisfying inequality (1). The
result of this extension, just as in the linear case, yields the sclution in the

broad sense.

We stress that generalized solutions of linear and semilinear equations

are, thus, limits of the classical solutions in a given metric.

Section VIII. Cauchy's Problem for Systems of Quasilinear Equations

1.Growth estimate of a solution snd its derivatives. Majorant system.
For the system of quaslinear equation ¥ lk(x, t, u); Ek‘- ;k(x, t, u). In
this case the construction of the solution of Cauchy's problem is complicated
compared with the linear system. Let us indicate several points of distinction

for this case;

(1) for a system of quasilinear equation we can no longer introduce the

concept of a solution in the broad sense in view of the absence of invariants;

(2) the domain G of the determinacy of the solution to Cauchy's problem
is defined simultaneously with the solution u(x, t) and, generally speaking,

cannot be prespecified; and

(3) the solution u (x, t) and its derivatives do not remain bounded.
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Therefore, first of all we establish the pru-estimates of the solution
and its derivatives and indicate the domain G € G of variables X, t, in which

the solution and its derivatives remain clearly bounded.
Let us introduce the domain GO(U) of the space (x, t, u) as given by

the conditions:

o,(v)=.(a,<x<o.. 0<t<1‘°. uuu<z)\
s v ¢°<., b°>b

*;a.' . |

Suppose P(x, t u). ;,(x. t, &), f.(x- t 0)60 (ao(U))g for any U >0; uw’(x)€
01(3, b).

By subsection 3 of section IV, the extended system for a hyperbolic

system of quasilinear equations is of the form
” 6’ - M SHPERE - . :. _‘;.:‘\.,{
-ae—""&'s::'-"n‘ -&'--‘-"’n- L m

where TSI x L c)+J',(x.t c)a‘.,-i-J'..p(x. 4 c)ﬂ'efa- [
F.===F'(x. t ¢)+Fh(xt (3 R)’a. ' N o
Z, = L& Lw)p. 4 B g H‘ !

=

The quantities ?k, g’i 5 3;(}(3 ; Fk, FI:L are expressed by 11:1. y Ek’ fk’ and
their first derivatives. Therefore these quantities are continuous in the domain

GO(U) for any U > 0. Let us introduce the following notation:

oF o (U)= maxlln‘f(x. Lo oF =|F"Y,
o GW 29N

97"1(U)=,, g‘:a:g’ﬂaf:(x. ¢, w}. ,' v
FyU)= max  max | 2 . . a)L
Fy(U)e= max |[F(x, t, w)fh. - = =
OXI(U) , . . - . d
FyU)= max| Fa(x, ¢ wl I
A 3 : e
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and let us consider a systex of two ordinary differential .Jjuationss

——~=JO(U)+J.(U)5'+J:(U)” o
’- ., Fo(U)—{-F(U)&’ Y €'

which we will call the majorant system. lLet U ’ ?o stand for the quantities

s

"U.,:a“m::.a,o(x)". ‘ _ao= max Hl.(x, 0. a%(x )) duy (x)H

(X424}

For the system of equations (2), (3), we assign the initial conditions:

P@©) =L,  T0)=T. (4)

For a comparison of equations (1), (2), and (3) it follows that if

N L 0u<U<t) I . 01 <& . @

then Iidu.(x. 0 I<—ﬁ)‘ l{ o"‘:' 5] +t a.f.aix. t). }|< d&‘dt(t)_

Since from (4) follows the satisfaction of condition (5) when t = O, then for
any t 20 Jlu (x, t)/] < u(t), | P (x. t)[)<JXt). Thus, the functions
U(t), 2P (t) majorize the growth of the solution u(x, t) and its first derivatives.

iRl B gt

Suppose that when O < t < t_ the solution U(%), <P(t) of the majorant
system satisfying the initial conditions (4) remain bounded. Then clearly when
0 < t < t_ the solution u(x, t) and its derivatives p(x, t) remain bourded.

Therefore we can determine the domain G <= G by specifying it as follows:

L B=jogt<ty T <2< X, 0)
ax, we mat max {g.(’,\" O t o), X, 0)=a,

X i *“( l‘ i<l

9

E gbgg ;'nln . lmlm<!n {gh’.fz(‘)- t, ), X’;(O):b.

R T
2. PSSR

We will construct the solution to Cauchy's problem for a system cf quasi-~

linear equations in the domain G < G (Figure 1.4).
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let us write out the majorant system for several examples,

(#) Linear System. Suppose il:==l:(x.tﬁ-£,==§,(x- 8, f
fo= 1" 94125 0a, Then

Fo)=F+FU. F U=, F L U)=0,
FRW)=F+F,.U, FWU=r,

where dr}adii;éynifi-i%' F, are constantg that depend only on the domain

G of variables X, t. The majorant systenm for all the 8ystems of linear equations
is glso lirear. Thig eans that the solution to the majorant system, angd together
with it the solution u(x, t) and its derivatives p (x, t) remain boundeg in any
finite region of thre half-plane ¢ Z 0. The Quantity to in this case i3 arbitrary,

in of determinacy G.

Figure 1,4

(2) Semilinear system. Suppose li_ » lﬁl (x, t), §k » gk(x, t), £ =
fk(x, ty u). Then ;Brz(U) = 0. The majorant System (2), (3) takes op the form

=T +F,W) >, F=RO+FW)>.

Hernce it follows that o {t) is bounded if U(t) is bounded. This lact expresses
the general property of solutions of semilinear System: the derivatives of the

solution remain bourded as long as the folution itself ig bounded,

2. Theorems of the uniqueness and existence of g solution. (n the assump~

tions made in subsection 1, let yg consider the Cauchy's problen
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N |- SENEAY A BN S
: a(x, 0)==a%(x). @

First of 81l let us prove the uniqueness theorem. Suppcse that in the domain
G exist the two solutions u(x, %) and u(x, t) to Cauchy's problem (1), (2).
Then the difference v(x, t) = u = u satisfies, in dowain G, the system of linear

equations . :
R +Ee]=Tn  ¢=loun
and the zero initial conditions v(x, O) = 0. Here we introduce the notatiams:

mLtumm =L t a(x H)

"f' L (5, t, a0 (x 0)—

°u_

®)

w ata(x, t, s4Av(x, H) —

"“s(x H a ( L) £ '+M)}a

The quantities il:(_ y £ Kk are obviously contimuously differentiable in G, and

=k .
f o are continuous.

By the uniqueness theorem of the solution to Cauchy's problem for the
system of linear equations established in section VII, we obtain the result that

in 6 v(x, t) = 0, i.e., u(x, t) = E(x, t). The uniqueness theorem stands proven.

To prove the existence theorem let us emplcy the method of successive
approxlmatlon. Suppose we have constructed the approxlmatlon(u) (xy, t) € Cye
Deflnssiﬂ (x, t) as a solution to Cauchy's problem for the linear system

(841) (-'H)

o +&mAaa0)

] [())
I(x, ¢t a(x '))l

=

—heteEmn ()




_taking on the initial values (2):

&~ ¥
‘i'{

Rod)

Pl L.!O)"‘I (%)
From the existence theorem of the solution to the linear system of equations
established in section VII it follows that in the domain of deteminacss@)
for Cauchy's problem (4), (5) there exists the solution(sﬁu(x, t) € Cys 80
that all successive approximations are defined and continuously differentiable
in the domain‘@’.

The first stage of our groof will be proving the existence of some domain
[ belonging to all domains &

approximations and their first derivatives are uniformly bounded in this domain.

and also tie domain G, and sucn that successive

Denote W - ( 5=1) {0 ’,
&.=lu(x. t, u)

\___-.L B

and let us write the extended system for the lmear system (4). It is of the

form

R i JH) -
T-H,(x.: u)—o—=3"(x.t u)+

) (s~ 9 (=1 (41
B A ) &,_}- Wi, t, 4, 8 )P+
8) (s=1D () (s4)) ®)
_ + T tou a) a g :
B (s+1)

«%—--‘-F"(x.t a)—|-F'(x. -“);') ‘ i

We will not here write out explicit expressions for the functions appearing

in the system, since they are obtained quite analogously to formulas (4.3.16) =
(4.3.19). Let us merely note that they are associated with the functions appear-
ing in the system (8.1.1) by the following obvious formulas:

Fix o, u);%(x. t 4, u)-i—‘l’z;(x. t, u, u),

| 7
J&(X. ¢ u)=J;(x. ¢t u, Il). ] ! ( )

Along with system (6) let us consider the system of ordinary differential

equations
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e

L =5 O+ 0,O P+, O P,
:‘g-wr.,<0>+mwi’ s (8)

Y R S, s

where the functions 3’0, Fo, F1 are defined in subsection 1, and

¥ AL

: O;(Ozuv@w@r g

For system (8) we assign the initial conditions: P (0) = ,;70, T (0) = v, (com=
pare with conditions (1.4)).

Since f-om (7) it follows that %, (U) < $,(U), F,(U) <P,(U), the
solution to system (8) majorizes the solution to maJorant system (8.1.3) - (8.1.3):
U(t) < T(t), P(t) < B(t). So if the domain G is constructed according to func-
tion U(t) just as domain G was constructed in subsection 1 according to function
U(t), then § < G.

Now let us assume tha“ all the successive approximations(llg) satisfy the

inequalities =1/, 2, ---, S,

. !
lau<0(o. IF1<Po. - ®

Denoting Hd"‘(t)ésl::puuﬂ. . ,+1(‘)=auplw°if

from system (6) we have
W & F D)+ P+ YD+ O U) PO,
Wesr PO+ FO)P,
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such that, obviously, U  ,(t) < u(t), P 4q(t) <.P(t). Since the initial
approximation can be chosen so that (9) is satisfled, then we have thus prover
that all successive approximations satisfy equaiities (9). Hence follows the
existence of the domain G belonging to 5, as well as to all domains(e) in which
inequalities (9) are satisfied.

The second stage of our proof will be to demonstrate the uniform conver-:
gence in the domain G of the sequence {(131)}

Suppose N e l‘b Ual't
"Ya“l ZCRE % .1 ‘k‘ ‘?ﬁ

Then from (4) we get

R PR R A AT
3 @'y Tﬂ o
#"*&6&;‘( .)°T"'$gg :'.2‘7"‘ ‘?g

where everywhere in G, by virtue of (9), ‘;"_< B, ﬁ” Qﬁ

Since the domain of determinacy of the system co..'ains the dcmain E, then

by integrating along the characteristics, we o}atg‘in for each point in (

® o (m‘ - vedq

ir.|<j|/. A AL 4.

' . g

such that pA
,ﬂ(t).gaj [R (1)+l,“(t)] &, i

where T . s z 1

) . @ .
T R ()= max - jrf -
'('0 x VEC, ‘N:ln i

Employing lemma 1 of section V L, we get

&

.+1(t><c f R, @ ds.

or b
1
R4y (f)<covst « ',) j

which then proves uniform convergence in G of the sequence {(181) }.

Now let finally advance to ihe last step of the proof. Let us show
that derivatives of successive approximations uniformly converge in the domain

B Qbviously, this is tantamount to proving uniform convergence of the sequence

().
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We first prove the equicontinuity of this sequence in x. In other words,
we show that there exists a function M(J), M( § ) =~ O when &= 0, such
that everywhere in T and for all s

R S N« AT S T A - -
WBlio— PR ke e e -xl<s
% (M o
Above it  was shown that the sequence { éf)} is uniformly bounded. Hence it

follows that the functions(ﬁ)(x, t), and together with them the functions

i.(ﬁc. t ‘2(& 1)) ;7'"(x. ) %."0.‘,(;." ¢ (;). (‘;“).

S T S @ (- -

LHE bR ), Tt o 8)
(cf systems (6)) are equicontinuous in G. Moreover, from the equicontiruity of
the functions gk(x, t,(ﬁa there follows the analogous property of the functions
xl(:S)(x’ t, ¥ ) giving the characteristics of system (6).

Therefore, denoting
R I T T
: %)
9P, D

1

,‘).14"" N CRERE

| & e Cod (i)
M, 8)==max sup || F(
- A< (X-2| <O
; . . LK 41 .

and integrating equations (6) along the characteristics, we get
» g t

f M (v Ydr,

0

f My ¢ YSUE+HHDN®HC
w Emryin @, e L .
where the funciion N(S ) is such that N{( &) —= O when §—> 0. Using lemnma
1 from section VI, we wonclude that the required function M( é) exists such

that the sequence § éjs’} is equicontinuous.

Since, by the familiar Arzela's lemma, from any uniformly bounded and
equicontinuous sequence we can separate a convergent (uniformly) subsequence,
jhen some sequence {%)} , therefore also {(Sﬁ)} is uniformly convergent in
G to the continuous function Py + By the familiar theorem of analysis, this
means that the function u -;L_igo 3) is continuously differentiable in G and

] o
duy,/2x =p .

Hence it follows that the family {(Sl} has only one limit point, and
therefore the sequence {(18)3} is not only compact, but convergent. Thus, the
proof of the convergence of the sequence IS) (consequently, also of (a)) is

complete.
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Passing in the system (4) to the limit, we can conclude that u with

a solution to problem (1), (2). The existenre theorem is rroven.

3. Certain properties of solutions to Cauchy's problem for systems of
quasilinear equations. Suppose u(x, t) and u(x, t) are two solutions to Cauchy's
problenm for a system of quasilinear equations, corresponding to initial data

5 L - , . L
l,. b fr "o; l:. E. o 0 We will assume that the initial data

of these two Cauchy's problems satisfy the conditions in subsection 2, i.e., are

continuously differentiable.

In the intersection G of the domains of determinacy of solutiom u(x, t)
and u(x, t), the difference v(x, t) = u(x, t) = u(x, t) satisfies the system of
linear equations y -

—afdv , &= Ov
T[S+ 37| = Vio, + 01,

where \ch s Ai‘k are bounded and continuous in G and Afk tends to zero when

T:' gﬁ' }1_;1:' §3' f",

As we have seen in section VII, solutions of systems of linear equations
depend continuously on initial data of the Cauchy's problem. Tlierefore it follows
. . =k k S =
from this that :va(x; t) = Owhenl, =1 _, Ey, = & i, 21
and v(x, 0) = u%(x) - u (x)=>0.

Here, however, we must make a clarification. It is essential that the

initial data of each Cauchy's problem have bounded derivativea.

In contrast to the case of a semilinear system, the strip 0 £t < to
in which the solution u(x, t) (and its derivatives) remains bounded depends on
the derivatives of the initial functions and t_ = 0 if || du’/dx || =~ oo,
Therefore the continuous dependence of solutions to Cauchy's problem for a
system of quasilinear equations obtains only in the case of initial data with

uniformly bounded derivatives.

If as before we sysbolically write out the procedure for the solution
of Cauchy's problen in the form of the equality u(x, t) = Su®(x), the nonlinear
operator S defines the solution u(x, t) only in the domain G of the half-plane
t 2 0. The width of the strip 0 € t<t_ in which the dozainG is enclosed depends=

on the derivatives duo/dx and tends to zero as (Iduo/dx i = oo,
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Therefore the operator S, in contrast to the case of the linear syestem
does not admit of extensions to the class of contimuous initial functions u’(x).
For this reason the generalized solution to a system of quasilinear equations
cennot be determined formelly by extension of the space of possible soluticns.
Tk2 concept of the classical solution to a system of quasilinear equations must,
thus, be introduced independently of the concepi of the solution of this system.

Generalized solutions will be studied in detail in chapter four.

Let us note a limited extension of the class of initial data for which

the existence of the solution to Cauchy’s problem follows from the foregoing.

The function Eig(x, t, u) is called Lipschitz~continuous in the domain
GO(U) with respect to the totality of the variables x, t, u if there exists a
constant ¢ > O such that

IWE LD —t(x b ) <CF— x|+ F—t]+i—e])
for any (x. f, ;)_'(x. t, )€ O, (V).

If we consider the class ol Lipschitz~continuous initial data characterized
by the Lipschitz constant K, it can be regarded as the closure of the class of
initial data with first derivative uniformly bounded by the same constant K.
Therefore the solution to Cauchy's problem with Lipschitz~continuous initial data
can be treated as the limit of the classical solutions u(x, t) & C1 since the

latter form a family with uniformly bounded first derivatives.

0f course, this limit no longer is the solution to Cauchy'!s problem in
the ordinary sense since it does not possess continuous first derivatives. How=
ever, it is the Lipschitz ontinuous function of the variables x, t and exhibits
derivatives almost everywhere in the domain G. These derivatives almost everywhere
in G satisfy the system of quasilinear ecuations. The class of Lipschitz=continuous
salutions u(x,t) of Cauchy's p‘oblém is an example of the formal extension of the
operator S defined in the class C1 to the class of Lipechitz-continuous input
data.

Section IX. Cauchy's Problem for a Single kquation

1., One quasilinear equation. The results of section VIII unreservedly

-74-




apply to the case of a single quasilinear equation. However they are too
general to apply to this case in which there are important simplifying details.

Therefore let us consider in greater detail the Cauchy's problem for a

single quasilinear equation

Eﬁfvfg (1)

with initial condition u(x, 0) = u (x), a £x < (2)
Integration of equation (1) leads to the solution of the system of two ordinary

differential equations

4 s s AT (3)

DA 751

which are called the characteristic system of equation (1). Each solution x =
X(t), u = T(t) gives the characteristics in the space of variables x, t, u.

It is agsumed that the functions &, f are contimuously differentiable.
Then one and only one characteristic passes through any point (xo, to’ uo).

Cauchy's problem (1), (2) can be geome *~ically interpreted as the problem
of constructing the integral surface of equation (1) passing through a given
initial curve: t = O, u = u_(x). Since here we wish to obtain a unique differ-
entiable function u(x, t) of variables x, t, this surface naturally must be

uniquely projected onto the plane u = Q0 of variable x, t.

Since the solution u is uniquely determined al.ung each rharacteristic
passing through the point (xo, ty uo), this problem amounts to constructing a
surface consisting of characteristics join through the given initial curve and

uniquely projectible onto the plane u = O,

Let X = X(t, X uo), U = U(t, X uo) stand for the solution to the

characteriztic system (3) satisfying the initial conditions
X0 2 d)=x,. U@, x5 8) =42, (4)
Then the solution u(x, t) to Cauchy's problem (1), (2) is yielded by the formula
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s (X (¢ Sr L (-é;))- f) "' e _*o'_‘o_.(f'o)i)'. 1 (5)

Formula (5) implicitly defines the function u(x, t), which in the case
of uo(x) = C1 is continuously differentiable at all points x, t in which the
o (%)) (6)

is uniquely solvable with respect to parameter x and in which the right side

equation x = X(t, x

of equation (5) remains bounded.

Suppose that at these points _
For= X7t 9= xy(x. §) (7)
is the result of solving equation (6) with respect t9 x,» Then from formula (5)

we obtain an explicit formula for the solution u(x, t) of the probiem (1), (2):

B =U (. xo(x. O, so(¥o(x. D)), (8)

Let us explain graphically the construction of this solution to Cauchy's
problem (1), (2). We draw through any point X, & [a, b] tke characteristic (4)
on the plane u = 0 (plane (x, t)), setting u, = uo(xo) (Figure 1.5)., We will

also call this projection (6) a characteristic.

A continuously differentiable function U(t, x , uo(xo)) of variable t,

o
which then yields the soluticu u(x, t) at line x = X(t, x

at the characteristic (6).

o? uo(xo)), is aseigned

Figure 1.5

It may be that at several points (x, t) as t >0 to more lines x =
5 it X
1.5) can intercept each other. At these points equation (6) with respect to
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, uo(xo)) corresponding to different values of the parameter x (Figure




x  has more than one solution and formulas (5) and (8) define some multivalued
function of variables x, t. In this case no continuous solution u(x, t) to
the problem (1), (2) exists.

Iet us show that wvhen 0 <€ t < to and for sufficiently small to >0,
a unique characteristic (6) passes through any point (x, t) & G, i.e., equation

(6) has a unique solution with respect to X

To explain the possibility of the unicue solvability of equation (6)
with respect to X it is sufficient to show that

oBegaesi g
gince x(o. x' yo(x.))sa;;{ and’ s AR
RO mGH=1_ [ a0

Denaoting

0=4w—“,'%:—(‘-'ll (U ©. ’éo-"fq(io))\a,;‘z("'a) '(lxl)-j

and differentiating equations (3), we get

;%_;;ﬁé}% :?Ff;t'/w,x;;; (12)

where for brevity we owit the argument for all quantities. And so, X and 0
satiofy the system of ordinary linear differential equations (12) and the
initial conditions (10) and (11). Hence it is clear that fcr sufficiently
small t inequality (9) will obtain.

and (8) define the function u(x, t) & C, satisfying equation (1) and initial
condition (2).

Thus, there exists a toi? O such that when 0 £ t < to formiles (7)

Cauchy's problem (1), (2) presupposes, as we have already pointed out,
the existence of a unique function u(x, t)< C, of variables x, t satisfy

equation (1) and initial condition (2). At the same time the more general

problem of determining the integral surface S passing through the initial curve

does not at all assume that this surface is uniquely projectible onto the plane

E = T -




of variable x, %, and can have, and as a rule does have a solutior in a larger
domain of variable x, t and does the Cauchy's problem (1), (2).

We will, for example, seek the equation of the surface § in the form

(x’ t, u) = 00 (13)
Any characteristic (4) of equation (1) must lie on the surface S, therefore
‘P (X’ t’ U) = Oo (14)

Dilferentiating (14) with respect to veviable t and taking (3) into account,
we get the equation
PN P N
R b oy S ) 5 =0 (15)
which is a first-order linear differential equation for the function dependent

on three independent variables (x, t, u).

The surface S is defined by equations (13) and (14) uniquely for any
X » t at which X, U are finite and is a smooth surface (p & C1) if uo(x) € Cy
£,f €.

From equation (13) the function u(x, t) & C, is defined, yielding the

1
solution to the problem (1), (2) only in the domain of x, t values in which

equation (6) is uniquely solvable with respect to X .

Thus, the difference in the formulation of Cauchy's problem (1), (2) and
the problem of defining the surface S is that in the first case we seek the
integral surface u = u(x, t) uniquely projectible onto the point u = O; in the

second case this surface can be arbitrary.

For sufficiertly small t_values in the case uo(x)e§ C, above these
Cauchy's problems are equivalent; overall (i.e., for any t > 0), the geometrical
formulation of Cauchy's problem is the more general and admits for She solu=~

tion if and only if problem (1), (2) is nonsolvable.

If we assume that the function u(x, t) describes any physical quantity
in the space of variable x, t, then naturally this quantity must be a unique
function of x, t. Therefore the physics problens reduced to Cauchy's problem
(1), (2) require the definition of the unique function u = u(x, t). As we have
seen, Cauchy's problem (1), (2) is solvable in this formulation in the class of

continuous solutions u(x, t) & C only in a sufficiently small strip 0 < t < to.
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Figure 1.6
Figure 1.6 shows the typical appearance of the surface S. From this
figure it is clear that; du(x, t) | , oo 8t those points (x, t) close to
2x !
which the surface S is nonuniquely projected onto the plane of variables (xy %)

Let us explain the foregoing with the example of the simplest quasilinear
equa tion Ju/>t + udufdx =0, (16)

for which we pose the initial condition

a‘=w+p when X é a
u (%, 0);u°(x)'= ox+B when a <x < b, (17)
' ' ut=ab+p when x = b.

The initial function uo(x) is continuous when =20 < X< ooj the derivative
u'o(x) suffers a discontinuity at the points x = 8; X = b. Let us construct
the solution to problem (16), (17) satisfying equation (16) in the broad sense
at the points at which the derivatives du/dt, >u/dx did not exist.

The characteristic systen (3) of equation (16) has the solution
X Xy ) = %o+ ch Ut xp ) =to (18)

which remains bounded for any values t, X U Suppose oL 2 0. Prnjections
of the characteristics (18) onto the plane u = O are of the form shown in
Figure 1.7. In this case through each point {xs, 1) of the half-plane t 20
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3
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4

passes the unique characteristic x = X(t, X uo(xo)), i.e., equation (6) has
a unique solution with respect to X, The function u(x, t) is constant along
the characteristics (6), therefore in the zone I, i.e., when x < a + u t,

u(x, t) =u a«a+ B , in zone III, when x 2 b + utt, u(x, t) = ut =«b + B

In zone II, whena +u t < x <b + u+t, equation (6) can be solved with respect

to Lt g e
o =1Fe:
By formula (8), let us define the solution u(x, t) in zone II:

1

a(x, 0==u(xy(x. ) =a. .’f-ggﬂr__.t_ﬁ;; |

Thus, the solution to Csuchy's problem (16), (17) when oL 20 is given by the
formula

(rswde M egaper
a(x, H= -‘;f +uf when a-t-ut \§£$h+ u*t.f: (19)
ut=ab+B o — 204wt s

Selution (19) is continuously differentiable when t > O everywhere, except for

the line x = a3 + u-t, Xx=Db 4+ u+t, where the first derivatives suffer a dis~

continuity. : ¢ By

4

Figure 1.7

-

Figure 1.9

|



In the space of variable x, t, u, solution (19) defines the irtegral
surface S showp in Figure 1.8. This surface is uniquely projected onto the

plane u =  when t 2 O.

For the case « <0 u > u+, the pattern of characteristics in projec=
tions oato the plane (x, t) is one of the forms shown in Figure 1.9. All charac=
teristics (6) whena < x < b converge at the point x = (a + b) - B/« ,

& =1/ >0. In zome I, u(x, t) =u j in zone IT u(x, t) = u'. In zone III
u(x, t) = (£x +B)/(1 +eLt), since oL < O, then this formula does not define
the solution u(x, t) when t = =14 . Finally, in zone IV, the function U(t,
xo(x, %), uo(xo(x, t))) is three-valued and takes on the following three values:
uI(x, t) mu, ur (x, t) = (Lx +B)/(1 +aLt), uIII(x’ t) = u'. Thus, for the
caseo < O the continuous solution u(x, t) of Cauchy's problem (16), (17) exists
only when 1t < -1/aL , and the integral gsurface S is determinate for all t Z0
(Pigure 1.10); however, when t z -1/aL it is not projected uniquely onto the

plane u = O,

- S

-

Pigure 1.10

2. One nonlinear equation. Cauchy's problem for a nonlinear equation

\\%';i-‘p(x. & é c.?)=0,\ ‘°=§§- o(x. 0) = v,(x) (1)

for the case pécz, vo(x) & C2 is reduced after differentiation with respect
to x of equation (1) to Cauchy's problem for a system.of two quasilinear equa-=

tions
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,-..;._

-l-Q.(x. {0, o))?————-ip'c) cp‘, “ (2)

F=—ew o0

with the initial conditions: v(x, 0) = vo(x), w(x, 0) = . (x). Transforming

the second equation of system (2), let us write it as

,(“.’pvﬁh, ».~44'1 (R = ""l{ Zw ¥
w+9.r= W—% S
P -v$"+’w~. § o . A . ..,,._!.
. %—l—g{.-;;_?-—v+v;- . OF

Equation (4) is usually called the strip condition.

We can readily see that if we know the solution to the characteristics

system for equation (1):

' “% #¢z (X' LV, d)' _
A —Og (X, 6V, Q—g(X. £V, D), ©
98 QX 4V, O (X, 1V, D, ‘

vwhere X -
X=X(t. Xo» Tpe (l)o)o V=V(t, X0 Yo mo)’ Q=Q(t, Xou Ug» (l)g)u

satisfying the initial conditions:

XO, xp vy =25 V(0 xp 05 @=1, Q(0, xp v, 0= O (6)
then the solution v(x, t) &C, to Cauchy's problem (1) is given by the formula

duy xo))
*

( (t %o g (X0 _‘10_3_%@_) ) (’- Xp Yo%), —dx,

which parametrically defines the function v(x, t). If x = xo(x, t) is the

(7)

result of the unique solution of the equation
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with respect to the parameter X, then from (7) follows the explicit formula
for the solution v(x, t) to Cauchy's problem (1):

ofx = ux;t) v{:.’?x. ).5’&? @ )

Formula (9) defines the unique function v(x, t) €C, only at first point (x, t)

at which equation (8) is uniquely solvable with respect to X,

The solution to Cauchy's problem (1) was obtained by us only for the
case vo(x) € C,. Simple examples show that if v")(x) is only continuous, then
generally speaking there does not exist the solution v(x, t) & €, te problem (1).
Formulation of Cauchy's problem (1) for the case of initial functions vo(x)é Cy

is in need of refinement.

3. Hyperbolic system of nonlinear cequation. For the case of the Cauchy's

problem for a hyperbolic systeu of nonlinear equations

L *3 K ii v" i att I
d ‘&‘+w(x-f °, o)-=0.,« it B H{Fq

o, t»-—-v‘”(x) CAE T 5
Lo gy Pged T gedt "u’?iﬂ*’fﬂ Mbs;m ke ;
Lo o= SR R i s 1A

'\ A3
: AR U DM &

we will assume that 4’602, v° <= 02. Then, by subsection 3 of section II,

the functioms v, w are the solution to the system

BN e e g e ey ol e
%ﬂ’.-_-.l...@(x. £, ,v.‘uﬁ.“ %+A§x. ;‘. 5.' m)‘%‘:-f-’:

" &

(4)

i -

(cf section 1II, subsection ) where the metric A -53-5 ((Eﬁ)). If we compose

the initial conditions
., "‘f“ S L - qd". x_ (_-}"
To(x, O=(x), o(x 0)=0’(x)= ¥ (5)
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for system (q), and the question of wheiher the function v(x, t) defined as
a result of solving Cauchy's problem (4), (5) is the solution to the initial
problem (1), (2) as a problem of satisfying equality (3) for any (x, t)& G.

Differentiating the first group of equations (4) with respect to x,

subtracting from the result the seccnd group of equations (4), and considering

that £m - Py - —g—; «@ (cf formula (2.3.7)), we find
AT LSRR o
'.‘?\?' 'S 4 h ) PR,
,QE‘(YE%ff?ﬁ)=?'“ d"(jif"“k) ¢=1...,m (6

I Y L T A N
Filt .#(x,_O):-.ﬁ),(x, 0). - . ™.
Based on lemma 1 (subsection 5 of section VI), from (6) and (7) it follows
that ' ‘

n.“" (x ‘) X

‘-a?(x. i)a 0;(Xy §), (8)

i.e., equality (3) is satisfied by identity.

Since the existence of the solution to the system of quasilinear equations
was proven for us cnly for the class C1, the hyperbolic systems of nonlinear

equations the constructed solutions belong to class Cz.

Section X. Behavior of Derivatives of the Solution to a System of Quacilinear
Equations

1. Week discontinuity. Transport equation. Sections VII and VIII outlined
the construction oi the solution tc Cauchy's problem for a system of quasilinear
equations possessing continuous first derivatives. In considering the Lipschitz-
continuous initial data, we arrive at a certain generalization of classical solu-
tions == to Lipschitz~continuous solutions to Cauchy's problem possessing first

derivatives almost everywhere in the domain of definition.

Consider a more particular case of generalized solutions u(x, t) of
a system of quasilinear equations == the class of continuous functions u{x, t)
exhibiting piecewise=continuous first derivatives. Let us assuwe that the

vector-function u(x, t) is continuous and exhibits first derivatives that are
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continuous everywhere except for certain piecewise~differentiable lines on
which the first derivatives p, q suffer first-order discontinuity; let us
assuke that exverior to the lines of discontinuity of the first derivatives of

u(x, t) the following system of quasilinear equations

5[5+ u g =h (1)

is satisfied. Suppose x = x(t) is the equation of the line of discontinuity

of the first derivatives of the¢ function u(x, t); let us denote
pi=p} () H=p,(x(O 0. f)=%"f(x(f) to0 9
q$=q:<x(xo. =gy (xO 0. H= TGO 0. 0.
If p+;4 P , but the solution u(x, t) is continuous on tue line x = x(t), then

this feature of the solution is called a weak discontinuity, and line x = x(t)

is called a line of weak discontinuity.
From the condition of continuity of u(x, t) at the weak discontimuity

line x = x(t), it follows that x'(t)p +q = x'(t)p’ + q¥, i.e.
[plx'(¢) = ~[al, (2)
where [p] = p+ -p, [q] = q+ = q-. In the assumptions made, the function
u(x, t) to the left and right of the line x = x(t) satisfies system (1); there=-

fore points of this point

l'(0‘+§ap*)=fn- B+t =/ (3)
(the quantities lk, Ek’ fk are continuous at the line x = x(t)).

Subtracting the second group from the first group of the equations (3),

we get . .
L@t —a)+8 (& —F5)=0. .

where
off:l:p: k=1,.... n).

Canceling out (q+ - q ) by means of (2), we get

[t — & O] sl = [ta-- ' 0] [P§ — i) =0 (4)
k=1 ....n).
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We denote 2

S - -
T “Tsya'?fﬁ?}Lf?n?au
- + - . .
If x'(t) 4 Sy for all k = 1, ...,kn then Ty = :7’1.‘. In view of the linear
independence of the eigenvectors 1 » in this casge P, = pI for all i = 1y ooey

n, i.e., the discontinuity of thz derivatives is absent.

Toerefore, x'(t) = £ o(X 1), 1, u(x(t), t)). (5)
This equation denotesg that the line of weak discontinuity x = x(t) is a charac-
teristic of system (1). This conciusion naturally is in agreement with the
definition ¢ the characteristic Cauchy line through which the sclution to

system (*) is oxtended honuniquely (cf section VI, subsection 2).

under consideration equality (5) is set aside, and suppose x = x(t) is the
m=tuple characteristic ¢f system (1), i.e., equality (5) is solid when g = iy
J+1, ..., J+m=-1,

Then from (4) and (5) it follows that
r]k-y’g ~:}"; =0 when k<j ang k2§ +n.
Let us derive the equations better satisfied by 77k characterizing the value
of the weak discontinuity. Since the solution u(x, t) to the left and right
of the weak discontinuity line x = x(t) is a classical solution of systeu (1),
the quantity :Ti satisfy at th: line x = x(t) the equations of the extended
system (section 1V, subsection 3), in the broad Sense, written for the charace-

teristic x = x(t);

(
(

.4_._0&':.‘ l’a"z'__— & Rent Foanbens

C?k k—j,t—-'{"ﬁn—a'x———o’- +o?‘u¢7°a+orab¢7’a‘9>ﬂv ()]
ory oy

,9;).__. *+§,._;L=J“+J'§c?a'+e7':a§°§?€ @

=/, f41, ..., J+m—1.

LU Y RN

8|

The coefficients of the equations (6) and (7) are continuous et the line x =

X{t), therefore we do not furnish their sign +.

bubtracting (7) from (6), we get
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Since

and 7], = O when o FJs» 341y eeey § +m =1, then equation (8) can be
writter in the forw

| o Ty ﬁ"‘ﬁt iﬁ{-ﬁﬂmhaﬁa @
g aig . . 3 * B ¥y
." *ﬁ"‘ﬂf’ﬁ*ﬁx' a.-;-*t.- ;‘ii.'a -.J..-"s ltv* inint ﬁ*‘n
Lt Jq',.‘“ “- it r..*"\ I_r g 8 eoes 1 g“; r‘; r‘}

e *’amzacww:;«r: AR ]

From the linearity of the system of ordinary differential equations (9)

there follows an important conclusions the weak discontinuity of the solution

REETBE, FUiMenaoqa . phEw mploy gy o j
"%

where

to a hyperbolic system of quasilinear equations, extended along the character=
istic, can npeither arise or disappear if the solution and its first deri=

vative remain bounded.

For the case of a system that is hyperbolic in the narrow sense (section
11, subsection 2), the characteristic x = x(t) is simple. Therefore system (9)

is converted to a single ordinary differential equation.

Equations (9) are called transport equations for the weak discontinuivy.
Noting that e AT B R
Rt i Tl Rt ) WA
the system (9) can take on the following form:

(""') h«f'm%ﬂ[m%’o%%’“m] (10)

T W J+1 coee JAm—1).
System (10) is nonlinear. From it we can conclude that the value of the weak
discontinuity 7 can become infinity in a finite time. Actually, for example,
for systems that are hyverbtolic in the narrow sense, system (10) is converted
into a single equation of the Ricatti or Sernoulli type. However, the values
of 7 K tend to infinity only simultaneously with ZT;, 27;. Therefore this
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and 7, = 0 when o £33, 3+ 1, ceey J+m =1,
written in the form

A i I 3 REWANGIY 7

R K

: o
Lo RES 3 vy
e B g Ei , RO
L 18) weittn R U O E 9 et oY ey
where HeEe e F heny fﬁiﬁ'ﬁ_-;"}i}-ﬁiﬁ'ﬁk};:ﬁ.{ﬁff,-.%:j{ Ry )

LERAURIT By + iy e 4

From the linearity of the system of ordimary differentia

1 equations (9)
there follows an important conclusion;

the weak discontinuity of the solution
to a hyperbolic system of quasilinear equations, extended along the character=-

istic, can neithar arise or disap; 2ar if the solution and its first deri~

vative remain bounded.

For the case of a system that is hyperbolic in the narrow sense
II, subsection 2}, the characteristic x = x(t) is simple.
is converted to a single ordinery

(section

Therefore system (9)
differential equation.

Equations (9) are celled transport equat
Koting that Y P A R ST At s
S e AR AT Y

ions for the weak discontinuiiy.

g o .
T R

the system (9) can take on the following form;

R N e ey
v (7'%")‘-;{9"«-'*Jao["g"p*"?a‘!a'*"?a%] :
MWL L fhm—),
System (10) is nonlinear.

(10)

From it we can conclude that the value of the weak

discontinuity 7 can become infinity in a finite time. Actually, for example,

for systems that are hyperbolic in the narrow sense, system (10) is converted

into & single equation of the Bicatti or Bernoulli type. However, the values

of 7, tend to infinity only simultaneously with s :7’;.
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effect is not specific for the weak discontinuity of a solution, but is the
consequence of the ge.eral property of the unbounded increaseé in derivatives
of the solution to a hyperbolic system of quasilinear equations.

For a sysiem of two quasilinear equaiions that is hyperbolic in the

narrow sense, the transport equation in form (10) was obtained by J. Nitsche
(e [17]).

We have established that for a system that is hyperbolic in the narrow
gense the weak discontinuity differs from zero at all points of the character=
istic. Therefore, the weak discontinuity of a solution to Cauchy's problem
occurs only when the initial functions exhibit discontinuity of the first deri~

vatives.

The arbitrary discontinuity of derivatives of initial functions breaks
down into weak discontinuities, which extend, generally speaking, over all
characteristics exiting from the point of discontinnity of the derivatives of
the initial functions satisfying conditions (9) at each characteristic. Some=

times this effect is called the breakdown of the arbitrarily weak discontinuity-

2. Unboundedness of derivatives. Gradient catastrophe. By subsection 1
of section VIII, the graph of solution u(x, t) and its first derivatives with
increase in t is estimated by means of a solution to the majorant system (8.1.2),
(8.1.3). This system is a nonlinear system of two ordinary differential equa=-
tions and from it they directly follow the fact that for sufficiently large t>0
the quantities 7P (t), U(t) simultaneously tend to infinity. Thus, the growth
estimate of the solution and its derivatives by means of the solution to the
majorant system leuds to the conclusion that for an arbitrary hyperbolic system
of quasilinear equations, the solution u(x, t) and its derivatives p(x, t) tend

to infinity with growth of t, generally speaking.

This conclusion applies to an arbitrary system of quasilinear equations.
However, particular classes of systems of quasilinear equations are also of
interest, for example, systems whose solutions remain bcunded for any values of

the variable 1.

This property is exhibited, for example, by systems of linear equations,
and also by systems leading to invariants, i.e., those representable in the form
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if here fk does not grow too rapidly with growth in r, for example, if for aay
x, t, u

It is not difficult to note that the solution r(x, t)-io systems of this type
remain bounded for any t value, however, their derivatives nevertheless increase

unbounded1y up to absolute value & k(x, t, r) depenas essentially onr =
{ r1 ’ [N ] ’ rn } »
The effect of the formation of unbounded derivatives when the solution

to a system of quasilinear equations is oounded is called the gradient catas=
trophe.

let us explain this with a simple example. Consider the homogeneous
system of two quasilinear equations whose coefficients do not depend explicitly
on x, t it leads to invariants and can be written as

By g
Lriofeeesi] @)

AR

let us assume that afk/a r, > 0 and let us consider for the system (2)

Cauchy's problem with the initial conditions formulated for the entire axis t = O

r(x =A@, s O=rix)=r=const. ®
Suppose zg(x)ecl..‘r‘,’(xH(Mgf ‘( The solution to Cauchy's problem (2),

(3) reduce to Cauchy's problem for a single quasilinear equations:
S g e L
FRUCe AT =0 Al 0=
By section IX, the solution r, (x, t) of this problem is yielded by the formula
0 o
r1(x, t) = I1 (x - 5_.1(r1(x, t)’ rz) “ t)‘

Let us compute the derivative dr,/d xi
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b = R * _F:_ Ta N dx. .
3 ."3:-'\ 5 x(xo)
'y . 1 r (x, t)
SERRT +‘5F‘(l V-
-4
where "_gx('x' ’;9 " Hence it follows that when 27 (Xl v,

2

the derivative 2r1/ 2 x monotonically decreases with increase in i at the

characteristic x = x_ + 5 (r1, r2) -+t and when
L t t =

5 b (': (o). "x’)

becomes unbounded.

d
Thus, if Tf-: # O, then as a rule the derivatives of the solution
r(x, t) to system (2) increase unboundedly (with respect to module) with increase

in the variable t.

3. Strongly and weakly nonlinear systems of quasilinear equations. We
will call a system of quasilinear equations (10.2.1) weakly nonlinear in some

domain of space of variable x, t, r if in this domain
‘,_@.#.c_(’"";"f'. a0 (k=L 2. ... M 1)

otherwise we will call the system (10.2.1) strongly nonlinear.

By definition, a weakly nonlinear system of two quasilincar equations

is written in the form

Sk M) el

,_+§|(-\'. % r,)T f,(x. t, r,. r,) I (2)
‘lf}n(x'f ’t)"a—' fa(x- ¢ ry, fz)-
Note that if gf'f(). %—»" 0. then the system (2) is reducible to

the form

Y e

'%"—Fr’%:f" +’l # F’fr
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4
. ¥ 4 We now will show that the derivatives of the solution of weakly nonlinear sys=
£ tem (2) remain bounded for any t values if the solution r(x, t) itself remains
b3
i bounded.
§ Theorem. Suppose the solution r(x, t) to system (2) is bounced*) when
¥ 0=t <11 'rk (x’ t)'ﬁR’ (3)
3 but system (2) is hyperholic in the narrow sense*¥), i.e.,

ana the functions Ek, fk < C1. Then the derivatives Arkfa X, d rk/at are
bounded when 0 << t < T if they are bounded when t = O,

Proof. The solution r(x, t) will be considered a solution to Cauchy's
problem for system {2) with the initial conditions

ryx 0)=r3(x) (—o0<x< o).
By the conditions of the theorem,

b st R A

sl W

ar?
|| <R ’E;“(x)l<Po-

Suppose x = x1(t, xo) is the equation of the characteristic of system (2) passing

through the point > = X, of axis t = 0. We rewrite the first equation of system
(2) in the form

(f;TI) "‘qq;‘il‘"*'gl(x- L, ry(x, f))%g—=f,(x. t, r. 1)

1

If we assume the function r,(x, t) to be known, then the definition of r,(x, t)

rrduces to the solution to Cauchy's problem for a system of two ordinary

5‘ differential equations
Dy b b 1y (e D) ®
B i T 1 ) =T %9)  (©)

*) As we have noted, condition (3) will be satisfied automatically if
|25, /ox;l s ¢

*#*) It is sufficient for us that condition (4) be satisfied for the given

et

solution r(x, t). Of course, system (Z) can be hyperbolic in the narrow

gsense by identity, i.e., for any Ty Tpe
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with the initial data

%, (0. *o) = *or ;1(0' xo)='§(¥0)" ! (M
If ;1(t, xo) is the solution to problem (5) = (7), then the formula
5 (8 %, =Tt %0 (8)

defines the sclution ri(x, )

let us note . F i
f m= g 5

and let uc differentiate equation (5) with respect to the parameter X, Ve

il

get
Sr=l@betnwon}  Aen O
Since '
1 .t. ) ‘kl — '-."‘x
(Brlzhrd) =B = o
=-‘£¢.(x. t, ry) —aa%‘i‘Ea %;_’]+§;t+§2€;‘- .
then o . :
By, F=Folx b ), (10
where - ' -
f2=$:‘f2+§;:+§2§{r ot
Subtracting from (10) the inequality
%"“Hi%%‘*(%"):' Ny ;
we find o I

k3 b—h

On analogy with the foregoing, we get

=y i =7
H = o
ﬁ;'::’”ﬁ%if.(%ﬁ).._".'..}
Let us transforu squality (11) by means of the identity transformaticnss
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(12)

J-J.(l. -'J

From the initial condition (7), we have £, (0, xo) = 1; therefore, integrating
equation (12) from O to t, we get

(13)

From the assumption (5) on the boundedness of this solution under conti-
nuity of the functions f ) Ek’ it follows that there exists same number
M > O such that
RIS u—bI<M VR—Fil<M
Moreover. by condition (4) of the theorem, we have
hh>e>0

Therefore from formla (13) we get the estimate

. Ml'
<x,(t x°)<—c' - (14)

which shows that the field of characteristics of the first family x = x1(t, xo)
is differentiable witk respect to X, for all t from the interval [O, T].

Hence it follows that the characteristics x = x1(t, 10) do not intersect

each other when 0 £t < T. Now it is easy to obtain the proof of our theorem.
Denoting 5 R L L
f‘lﬁ;;'(f. x&-:.?_l.g;ﬂ.)_
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and differentiating equation (6) with respect to parameter X s ve get

e

| fediiff BLo o
L>t us note P(")- vo"zt‘!a" 2?"&(&1)1 €

i . — e -w<'<w e F R

and we will assume that the constant M is so large that for all 0 <€t < T,
5 -0 L XK oo

I‘?F,‘_|<ML‘ . lf'ul'<M ('.' j=l’ 2)" - ' (16)
Integrating equatlon (15), we get o '

r,(t x)=r; (0. x)eXP{J }+

.+J' [% ,%fé:_'.{_f;x].é,(t. 'xo)exp{_[-%'- dtldt-.

Substituting here the estimates (14) and (16) and using initial condition (7),
we getl

, o
Ine xo)l<Poc“'+—- of P@O+1a (1)
From form:la (8) we have

or (x, 1) 'l (¢ xo)
: ox X| (t xo)

such that from estimates (17) and (14) there follows

M ”‘+ M3 Mt G+l)

o, s,
| Een | M T J.IP(t)-i-lldt

It is easy to observe that the estimate is analogousiy obtained for the quan=

tity 2 rz/a x; therefore
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From these 1nequallt1es there derives the estimate

——

F R )

i W ;

Boi NJ {‘ A ST s‘s,\ pred '.-;».j{pﬁ,,- r :

. ;(0)%%‘%3;: M m(u-)‘ ,;43_',5

&

LRI Is..u & -~;.-§.. }3

is valid when 0 £ t < 7T,

where

Now applying lemna 1 from section VI to the resulting inequality, we
get P(t) < [APO + Bt]eBt, from whence follows the boundedness of the derivatives
P rk(x, t)/2 x over the entire interval 0 <t < T. The theorems stand proven.

In view of the arbitrary selection of T, the derivatives o rk/é xof a
solution of weakly nonlinear system (2) remain bounded in any strip with respect

to the variable t in which theorem conditions (3) and (4) are satisfied.
From the proven theorem there follows:

Corollary. Cauchy's problem for a weakly nonlinear system of two quasi-
linear equations, hyperbolic in the narrow sense, is solvable in the domain of
determinacy G if the solution r(x, t) remains bounded in it#*),

let us explain this corollary in more detail. For an arbitrary system
of quasilinear equations, the derivatives become unbounded even when the solu-
tion itself is bounded. If we consider Cauchy's problem with initial conditions
agsign~d, for example, for the entire initial axis t = O, then for a strongly
nonlinear golution the derivatives tend to infinity for a finite valiue to>0 and

wher t > ¢ no solution (classical) to this Cauchy's problem exists.

For a weakly nonlinear system that is hyperbolic in the narrow sense,
whose solution remains bounded (for example, when |3 fk/éri[ £C (i, k=1, 2)),

#) This very same property of weakly nonlinear systems was recently proven

[32] for the arbitrary system (10.2.1) when £ = 0.
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the derivatives remain bounded for all t > O. Therefore the solution to Cauchy's
problem can be constructed in any finite strip 0 £t € T by the procedure out-
lined in section VIII. Thus, for a weakly nonlinear system there exists a solu-

tion to Cauchy's protlem as a whole, i.e., for any finite vaiues of the variable

YL, SN

§ t. This circumstance brings weakly nonlinear systems closer to linear systems.

' On the other hand, this shows thai any feature of initial data, being

: ‘ smooth when t = 0, po longeris repoducide whemn t > O, Therefore the generalized
,- solutions of a weakly nonlinear system thai is hyperbolic in the narrow sense
can be considered ac *he limits tu smooth solutions at once for the entire half-

plane t 2> 0, much as occurs for linear equations.

Let us consider by way of example the weakly nonlinear system of two equa-

tions *)
‘‘‘ e O e or . .
. %'l‘ﬁh(’a-h)‘af': k=12 (18)
Bere fi=h=h=h=0 therefore formula (13) convertis to the equality

1 N ==E!(’l'(xv’l))—gl(ri(xv‘)) b==1, 2),
, S 5 )

and for the derivative 9 rk/a X we have

; rat ) _ aRd)  u(A)-4 () (9)
1 ox i W=k )

Hence follows the more exact estimate of cerivatives of the solution to system

(18): PMM)K

Let us note an interesting consequence of formula (19): if 52(1'1 (xy t)) =
£ (ry(x, t)), then dr (x, t) /2 x moe.

Remark. The definition of weakly nonlinear systems of quasilinear equa-
: tions was introduced only for systems leading to invariants. This is possible
E in the general case only when n < 2 (cf section III). The theorem cn the bounded-

ness of derivatives was all ihe more 80 proven only for n = 2,

#) The general integral of system (18) was obtained in the paper [35]
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The question of separating of the class of systems which do not lead to
unboundedness of derivatives for the case n > 3 remains open. Possibly, deri-
vatives of the solution to a system that is hyperbolic in the narrow sense

renmain bounded for the case when the following conditions are satisfied:

et BEED 20 @ p=1, ..., (20)

(cf [18]). We can easily see that the conditions (20) and the conditions (1)
coincide in the event that invarianis exist.

If conditions (20) are satisfied, then it is easy to see that the coeffi=
cients ydkd of the extended system (4.3.16) = (4.3.19) identically tend to
zero. In combination with the requirement of hyperbolicity in the narrow sense,
this possibly enables us to prove the boundedness of derivatives of the solutions

of such systems as a consequence of the boundedness of the solution itself.

Section XI. Remarks on the Mixed Problem

1., Formulation of the mixed problem for a linear system. Let us consider

the typical mixed problem:

Find the solution u(x, t) tc a hyperbolic system of linear equations that
takes on, when t = 0, the assigned values
u(x, 0)=u'(x), axb (1)

and that satisfies certain boundary conditions

ct(x, D (x ‘0 ,n=cla |n=c,(x. ) (<) 2
d(x, Dag(x Ol =dul,=dxnH (A<I<m). @)

which are specified for certain lines [’1, [’2, exiting, respectively, from

endpcinte X = & and x = b _f the interval [a, b] of the axis t = 0 (Figure 1.11).

wWe will assume that the curves [, f’2 have a contimiously variable

tangent and li(x, )5 Ek(x, t), fk(x, t), fl:( (x, t) & C, in the domain
5 0. 4, (x 0. f*(x. 0. f2x DEC,
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bounded by the curves ./q, ./Z and by the axis { = 0; qi » C & C1 at the
i
curve ['1, de di & C1 at the curve ['2.

Suppose the conditions for the agreement of initial conditions (1) and’
boundary conditions (2) and (3) are satisfieds:

¢l (a, 0) & (9)=¢,(a, 0) Zl‘<l<nl),' y -
Ao, 0K (B)=4,6.0 (1<i<n). ]

If conditions (4) are not satisfied, then the solution u(x, t) of the

mixed prcblem is discontinuous, and it must then be regarded as a generalized
solution.

lLet us decomypose the vectors ci and 4~ into the vectors lk(x, t)s

¢ Ompix D 0 d'en Hmvl(x DR O
Then the boundary conditions (2) and (3) will be rewritten as

p;i:u"n=c,(x. n  (=1....m)
Vgl =d,x. 0  (I=1.....m)
or, in invariants, B .
Wral=c(e 0 (=1 ....n) ")
"f:’afr,=dt("' n (=1... n,).. " ()

Suppose conditions (5) and (6) are consistent and are linearly independent,

i.e., the rank of the matrix ((,U:' )) is n,; and the rank (( v: )) is n,.

Suppose ¢° is the domain of determinacy of the solution to Cauchy's
problem with initial condition (1).

Obviously, the curves f; and /. 2 mist lie outside the domain G°, since

the solution to the linear system of equations is uniquely determined in the
domain G° by the initial condition (1) and, in general, does not satisfy in it
the conditicns (5) and (6).

Let us consider the case when the curve x = X1(t) intersects 1"1 at

the point D, and the curve x = xn(t) (cf section VI, subsection 3) intersects
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[’2 at the point E.

The solution u(x, t) is uniquely defined in the domain ¢° and can be
constructéd in this domain by the method of successive approximations (cf section
VII). Therefore it is sufficient to consider the problem of constructing u(x, t)

in the domain ACD; the solution is similarly constructed in the domain BCE.

Figure 1.11

To explain the conditions for the solvability of the mixed problem, it
is essential to know which families of the characteristics x = xk( E, 0, t)
exiting from the poinis of the interval [a, b] of the initial axis (a< £<
b) intersects the arcs AD and BE of the curve [, and /7.

Suppose that at k = k., kyy eeey kp, the characteristics x = xk( £, 0,
t) for & € [a, b) intersect the segment AD by the curve [' y and when k = k1,
2, osey k intersect the segment BE by the curve f’

Let us number the variables Ek(x, t), setting k, = 1, k, = 2, .4,

k = .
D p

Denoting uo(x, t), ro(x, t) as the solution to Cauchy's problem with
initial condition (1) in the domain G°, we advance to the next problem in the
domain ACD{(G'):

Find the solution r(x, t) the linear system

_,%L'_i_'gi%'}=g'(x. 0+gh(x. fry, (7)

L e

satisfying the conditions
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{

at the line AC and the conditions (5) at the line AD.

By the definition of the domain Go, its frontier consists of the segmentis

of the characteristics of system (7).

Thus, the definition of the solution in the domain G1 reduced to defining
the solution of the system (7) taking on assigned values at the characteristic
AC and satisfying conditions (5) at the line AD (Figure 1.12).. In view of the
existence of the solution to system (7) ir tke domain Go, the values ro(x, t)
at the line AC satisfy the solvability conditions (section VI, subsection 2).
Thus, here we first encounter the problem when the initial values are assigned
at the characteristic. The problem with data at the characteristic is usually

called Goursat's problem.

A

A0=1,(51) Aap+#s
tk= Z'k(.g t) kfp

<z

Figure 1.12

Let us consider an arbitrary point (x, t) in the domain G (Figure 1.12)
and draw through it all characteristicas x = xk(x, t, T) of this system (7).
Under our assumption, characteristics x = xk(x, t, T) intersect the curve AC
when 1 € k < p at several points (xk(x, s 1‘k), Tk), and here T = Y
(x, t) <.

Similarly, the characteristics x = X, intersect the curve AD at the

points (x.(x, t, T, ), T, ) whenk 2p + 1 and T, = T, (x, t) < t.
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o We will call boundary conditions (5) correct ifs

(1) the number n, of boundary conditions (5) equals the number g = n =~

p of characteristics x = xk(x, t, T ) descending from arbitrary point (x, t)
G on line AD:

U Tl e

(2) conditions (5) can be uniquely solved with respect to the quantities
T, (x, t) wvhenk 2 p + 1.

Suppose these conditions are satisfied, i.e., n,=q=n-=p and when
(xv t) € AD

|;),l ".‘-", 'p,i_ "y . ¥

SN AL Al ol SIEN

’ Detf - + & .. " w'e o *o.:‘j
“’+‘ LX) l»l. °

Then condltlone (5) can be rewrltten as
,(x. B)4p =5, o+2 m(x 1 (s, oL,,
t=p+1, p+2-~--- p+q—n) g!

—

In the following we will omit the bar over c., ,uoL . Solution r(x, t) satisfies
in G1 the equatione

r.(x.f) r"(x,(x.t 'r.) i.)+ ”c

A '. “' o

? (k<P)i
ry(x, f)-—ck(xh (x £, T, "A)+ H

+ B s e )

-+ I (8% (%, {x. £, %), -r)+g"(x.(x. ). Y)r, (x‘(x. l -r). t)] dv
(2 ) .
' >p+1).

We will seek the soluticn r(x, t) by the metlod of successive approximationss
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9% rb(x;t)==r°(x.(x.t 1;) ﬁJ-F
B S B (Al CAUE Y {E 1)r (. 9] e« (*k<p)

(0 xaxy (&4 T)
s ' 2 D
7y (x, [c.(t. n+ qg (& n)‘r.a. m] +

L=ry(x 0 y)
=T,

! o
| o 6! ) {g:‘(x,.t)-l-g:(x. DI (% 1)}:_“0'.'.”.« (k> p+1),

selecting the suitable initial approximation exhibiting continuous first deri-
vatives in the domain G1.

If we denote

v@~mu.mx]q@n—rﬂtm

then on analogy with section VII we obtain the estimate

' (0(3!‘?(‘6&4- [V(T)dt—(B-{-pnu)IV(t)dt

r';.. LAk *

byt o . S
Here we assume that 1n G w'“-"f

IS TN

From the resulting estimate follows the uniform convergence in the domain

),
¢! of the sequence { r (x, t)} to the solution r(x, t) of the mixed problem.

The solution r (x, t) (u(x, t)) constructed in the domain G' exhibits in
it all properties of the solution of Cauchy's problem enumerated in section VII;
it is continuousl; differentiable and depends continucusly on the initial data

of the mixed problem, as well as depending on curve 1"1, if it satisfies proper-
ties (1) and (2).
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Figure 1.13

Note, however, that the line AC, generally speaking, is the disconti-
nuity line of derivatives oi ile solution to the mixed problem. Xor the solu=
tion to the mixed problem to have continuous first derivatives in the domains
¢° + G1, it is necessary that tane initial and boundary conditions satisfy the
conditions of congruence for the derivatives. These conditions will be obtained

below for the more general case.

Above, for sake of simplicity it was assumed that for a fixed k all
characteristics of the k~th family x = xk(x, %, T ) passing through any point
(xy, t) & ¢ intersects, when v<t, either only the line AC or only the line AD.

It may be, however, tha® this is not the case.

Suppose, for example, that through the point A passes the characteristic
x = x (a, 0, T) partitioning dumain ¢! into two parts (Figure 1.13). In this
case the solution is constructed on the analogy with the preceding, with obvious

changes.

Note thet this characteristic will also be a discontinuity line of the

first derivatives.

In general, derivatives of the solution r(x, t) suffer discontinuity at
the characteristics exhibiting from the point A if and only if at this point

the conditions of consistency of the derivatives are not satisfied.
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2. Correctness of boundary conditions for a system of quasilinear equa=-
tions. For a hyperbolic system of quasilinear equations we imposed the initial
conditions  u (x, 0) = u°® (x) (1)

and the boundary conditions

Gt =0 (=120 @,

Gxt D=0 C¢=L..m. O
We will assume that the coefficients of the system satisfy their requirements
that were imposed ix section VIII when proving the existence theorem of the
solution to Cauchy's problem.

Suppose uo(x) & C,» and tke curves 111, 1f; are certain curves with a
continuous tangent line in the half-plane t 2> 0 and passing, respectively,
through the points (a, 0), (b, 0), and ¢y (x5 1)y di(x, t, u) are continuously

differentiable functions of their arguments.

We will state that the consistency conditions (conditions for contimuity
of a solution) are satisfied that the point (a, 0) if
(8. 0, 4%(a))=0 (I=1,....n)!
let us establish the consistency conditions for the derivatives at the point
(ay 0). Suppose x = X(t) is the equation of the curve 17‘. Let us assume the
existence of the solution u(x, t) éEC1 of a system of quasilinear equations

satisfying conditions (1) and (2).

Differentiating the boundary conditions (2) with respect to the variable
t at the line x = X(t) we get

- -

L gt X OW+ 5+ EXO=0 @=L .m)

The derivatives P, = 24,/o>x at t = O are defined from initial conditions (1),

therefore from the system of equations
Blg,+&0p]=1,

we can define the derivatives q = duy, /dt at the initial axis t = O3
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In these formulas the quantities A’ Fa ,ls. f are known functions of the
variable x, for example: )\f - z\i (x, 0, u°(x)) and so on.

We will state that at the point a(a, 0) of curve /[~ 4 the condiiiozs
for consistency ef the derivatives are met if

é_‘_& ‘ C:: Ce
here the famcxctions oay ’ ’ %i«- are taken at the point (a, 0), for

exemple, =¥ S, 2 2 (a; 0, u° (a)).

Assuming as before the existence of the solution u(x, t)é c1 of the
mixed problem, let us establish requirements that must be satisfied by the
boundary conditions. In general, the conclusion that the curves [' [’ must
lie exterior to the domain of determinanch of the solution to Cauchy's prob-
lem for essentially nonlinear equations (9§ k/ 2 ug # 0) is invalid. Correctly
formilated mixed problems exist when the curves ['1 and [' are in the domain
¢°. in example of this problem is the problem of the piston in gas dynamics
(cf Chapter Two, Section III). However, the solutions of these problems are
discontimuous. Confining ocurselves to a consideration of classical solutions,
we now exclude this case, assuming that I 1 and [2' lie outside 6°. Let us
denote

i
v

(x. t)==l'(x. ¢ a(x. ‘))v
Ta=hin t a ) A

and so on and we will consider our problem as a mixed problem for the linear

-.L%"H‘ ou.] i

given the initial and boundary conditions (1) - (3).

system
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Figure 1.14
The functions ;K = 1¥u, satisfy the linear system of equations
BAL DD 0+ B 07,
let us examine domain G' (Figure 1.14) and let point (X(t), t) lie on
the line ]"1.

We will call the characteristic x = xk(x(t), t, T ) the arriving charac-
teristic at the point (X(t), t) of line ['1 if it lies in the domain G' when
T £ t and an exit charac’eristic if it lies in the domain G1 when z2t., In

Figure 1.14 MM' is thr. arriving characteristic, and MM" is the exit character=-
istic.

Suppose that at each point of ['1 the characteristics x = x, when k = 1,
2, «sey p are arriving, and wheu, k = p + 1, ..., n ere exit characteristics.

As for the case of the linear system, we require that

(1) the number of conditions (2) equals q = n - p, and
(2) equations (2) are uniquely solved with respect to the quantities

;p+1, -;P‘.Za"' - ;"t fOI‘ krlown;1, FXJ---"—:P'
If (2) is rewritten as

c,(x. {, i:r_a)'=0 (=12, ..., =9,

then condition (2) will be satisfied if

bex((a"i';'xg))g«-o (z=1.(..;).6q; E=p+1, ..., n=p+q)‘
o X. 9¢
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We note, howaver, that it proves very difficult to verify tbe correctness of
the boundary conditions for a system of nomlinear equations, since conditions
(1) and (2) depend on the solution u{x, t), which is unknown to us. Kevertheless,

in solving the mixed problem we can proceed as follows.

Over a sufficiently small segment of the curve /7, adjoining the point 4,
the solution u(x, t) (if it exists) will be sufficiently close to the value
u®(a). This makes it possible to verify the conditions for the correctness of
the formulation of the mixed problem for sufficiently small values of the variable
t. If they are satisfied, then we solve the probleﬁ for this small interval and
we will consider the values of the solution u(x, t) at the endpoint of the
interval as new initial values. In this way we can construct the solution to

the mixed problem in the entire domain of the variable x, %, where it exisis.

let us consider an example, For a system of two guasilinear equations

¥ s o o e iy
UG =0 e g =D

TCEL R, AP R 4 §

the initial conditions o, (BEN St
ry(x, O)=r0=const, |x|<a:: % ‘1

and the boundary corditions . A ‘ IR iy

et (=0 0. 1y(—3, 0)=0, (4 1, (6. B. (e H)=0
are formlated. Suppose E’<' 0, Ez >0. The consistency conditions are satisfied
if

o ol e LI L

(0 R A0 A0, Y ] @
When this condition is met, the solution r(x, t) is continuous in some neighbor-
hood of the axis t = 0. If in addition to (4) the conditions for the consistency
of the derivatives

0.7 9=,
0 =0,
are satisfied, then the solution r(x, t) has continuous derivatives.

The solution r (x, t) is constant in the domain G°(Figure 1.15): ri(x, t)

= rg. In the domain Gl r1(x, t) - r?. The boundary conditions are correct if

< (¢ r? od(¢, ry, 1) g
(}'(t,fl.rz)+ _._(_‘F?_:_g—+oo

2

0,
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Figure 1.15

Section XII. Analytlc Methods of Separating Solutions tc Systems of Differ—
ential Equations With Two Independent Variables

1. Investigation of the compatibility of several cverdetermined systems.
Analytic methods of seeking soluiions to systems of quasilinear equations in
wany cases lead to overdetermined systems,i.e., systems in which the number of
equations exceed the number of unknowns. Here analysis of the compatibility
of the overdetermined system is called for.

At the present time the most universal method of analyzing the compatibility
of systems of equations is Cartan's method of external forms (cf [3, 4, 21, 22]).
In a number of examples we will present a simple method of investigating compati-

bility which precedes Cartan's method and is sufficient for our purposes.

Example 1. Let us consider first of all the system of equations

ﬁa/,,(xl. Xy By o B (=l .., 8 =1, 2) (1)
for n unknown functions Uy Upy eeey U of two independent variables X, and Xpe
This system can also be written in differentials:
1 4ﬂ¢-=-/,“dx. f (]wl. vees B; a-l. 2). L (2)

Compiling the conditions for the integrability of equations (1), i.e., equating
the mixed derivativess
ax -~,(1r‘

X

L W = ) )
T { 3'“ E c '
we find S d}“f.vf
d d
?}'.‘“‘x% oo +%ﬁ%fu @,
\1.-.',_.‘ -1.': TN Y ¥ cmu ver M) J
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o If relations (4) are satisfied by identity, system (1) is called wholly inte-
grable. In this case solution (1) can be defined by using the following algo-

rithn. let us assign at the point M : X, = Xy (j = 1,2) of the value ug = u, o

(i =1, vesy n) and let us consider a certain curve x; = xj(t) passing through
the point M.o and through the arbitrary point M(x1, xz). Let us further consider
the system of ordinary differential equations
J B
L= Ll O %O, ... PRE= (5)
(a=1, 2). '

Jor known conditions imposed on the function fi&(x’ u) and at the curve .’

integration X, = xj(t), system (5) has a unique solution which takes on the

value u; =, at the point M and is defined everywhere in the domain G con-
taining the point M. Thus, u(x x2) can be defined at each point of the domain.
Let us show that for the case of a wholly integrable system the value u(x) at the
point M(x) does not depend on the choice of the curve X, = xj(t). Suppose ;2;,
éfz are two curves that have common endpoints Mo, M, and are bounded together
with a certain domain G C G (Figure 1.16). Then

b du= § foa, ®
21+2, £,+2;
By the Gauss-0Ostrogradskiy theorem,
= df; d/
§ Jiad*q .‘. f dx.’ d;,' dx, dx,. ()

FRTS 5
Figure 116
By conditions (4), integral (7) is equal to O, which means the independence
of the value u(x) from the selection of the curve of integration. In practice,
it is more convenient to adopt as the path of integration the strict raise at

MOM or a broken line whose segments are parallel to the axes Xy Xope

If conditions (4) are not satisfied identically, they constitute a system

of finite relations between Ugy eoey Upy Xoy Xy which makes it possible to

n
cancel out several of the quantities u; and to reduce system (1) to an analogous
system with a smaller number of unknown functions. Extending the analogy further,
we arrive either at an inconsistent system, or at a wholly integrable system.

In the case of compatibility, we obtain a set of solutions dependent on arbitrary
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constants (a class of solutions with arbitrary constant).

Similarly, an analysis is made of compatikdlity for the system

%:/,,(x,. veer Xpgo Byy eeey ) (I=1, ooy J=1,"000, m).. (8)

in which uy depends on m argunents. Conditions of total integrability are of
the form

df af afi dﬂ Qﬁn dﬂh
= 7+ & ~fu= : e )

(. a==l. e B ], k.—l . ol m)

and for system (8) we have no more than the arbitrary constant in the solutians.

Example 2, Now let us consider the linear homogeneous system with a

single unknown scalar functicn of u(xq, ..., xp):

L,u=a,¢3%=0 G=1 ... pia=1,.... m, (10)

vhere coefficients ey, &re sufficiently smccth functicne of x4, ..., Xp
In this case the compatibility algorithm is known and reduces to the successive

formation of so-called Poisson's brackets (cf [/;, 23, 2417),

let us form the commutant

(Llj=Li;—LL, (11)
for the linear operators L = auaax , l}}. =a;, ;2» « It is not difficult
3

to see that the operator [L L ] is a first—order linear differential operator:

) daja 0y 12
[L Li}— bU“FF' b,,.::als —5—— a,b-a—xb . ( )

Operator [LiI',j] is called the Poisson's bracket. If u(x1, ceey xm) is solution
(10), then it satisfies, as a consequence, also the first-order linear homo=

geneous equation:

Llja=0 (¢ Jj=1,....p). (13)
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Adjoining system (13) to system (10), we obtain an extended first-order system
of linear homogeneous equations and cgn apply to it the algorithm for the forma-
tion of Poisson's brackets. This cycle of operations will be called an exten-
sion. After a finite number of extensions we arrive at a linear system coatain-
ing all the preceding equations, for which the adding cn of Poisson's brackets
does not yield new equations, i.e., the commutants of the differentirl operators
of the system are linear combinations of these operators. The systems are
called complete. Thus, by definition, system (10) is called complete if

t\;‘ﬁ%uﬁe:
i‘ﬁ S w4

yd
hs

I W SO R, ST e

NS I A T T A TR
Bl f 0 8D RS N B v ()

Por a complete system (10) equations (13) are no longer differentiable, but
algebraic consequences.

Assuning the equations of the complete system (10) to be linearly inde-
pendent, we see that twu cases are possibles

(a) p = m, then system (10) admits only of the trivial solution u = const;
and

(b) p< m.

We can ensure (cf [23, 24]) that in the second case the system is reduced
by change of variables to a single linear homogeneous equation for one unknown
function v of m - p arguments Yqr ceoo ym-p’ and thus the solution depends on a
single arbitrary function of m - p arguments.

Thus, the final conditions for compatibtdity consists in estimating the
rank of the matrix of the coinplete systen.

The distinguishing feature of the investigation of the compatibility of a
linear system with a single function is the simplicity and homogeneity of the
operations employed.

This is related to t"e fact thet the conditions for the compatimility of
linear equations are again li. ‘ar equations, i.e., the extended system Las the

sace structure as the initial.

Example 3. Let us consider the overdeterminea sysi:m of two nonlinear

equations, one of which is the Monge=Ampere equation
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and the other is the fu'st-order equation

vh%%rrﬁo

. - T R

/ . o . ey - ap 3 {
e o

af

i 2« -
Here b, adB , 8 are functions of x1,xl, ,‘,x azz ’ adﬁ'aﬁ"

We now consider conditions under which the overdetemined system (15),
(16) admits of a family of solution dependent on a single arbitrary function of

one argument.
Setting
MEntn Spidy Ge=ty (1)
let us write equations (15) and (16) in the form of finite relations in terms
Ofx-‘;leu' P;/.PZ H/PIZ"'/’Z/JPZZL
‘e Pu Pu o

bll’n pﬂg-f- ooy +6=0 " (a, q_l 9 (8

‘ 'P("n- -"r “ Pn- Py ==0. (9

kquation (18) for fixed Xy Xp 4 P, P2 defines a three-dimersional

space of components Pyqr Pyos Poos a second-order surface (quadric) that has,

generally speaking, two families of rectilinear generatrices.

A8 we know (cf [25]), these families are defined by the eguation

bm—Wm+%mM=&} -
bp, —bupp+ 2y —iay,; =0 -

and, therefore
bpy — dupyy+ 8 — iy =0, } @n
bpy3—bpa+24 —payy =0,
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where A1, /\2 are the roots of the chasacteristic équetion
Xz JT PR l" £
B Kt S 5 | (22)

Equations (20), and correspondingly (21), for fixed [t define a specific gene=
ratrix, and the value Py is a point on this generatrix. Changing indepen=-

dently 4 and p,,, we obtain the initial quadric (18).

Differentiating relation (19) with respect to x, and x,, we get

,
P+ p,,+3—+-2p, -0 {1

},+§3‘pm+§!-+§§b,==a | g

Lem i

;f15“f

(23)

For system (15), (16) to be compatible andé to admit of a one=functional
arbitrary constant, the linear algebraic system (18), (23) must admit of an
infinite number of sclutions. Actually, otherwise Pyqr Py Poo would be deter-
mined from conditions (18) and (23) as functions of X4y Xpy Uy Pyy Py, the sys-
tem of equations in total differential (17) with the closed and would admit only
of an arbitrary constant (cf example 1j. The requirement of an infinite number
of solutions to system (18), (23) signifies that the straight line (23) is cne
of the generatrices (18). Assuming that the straight line (23) belongs to the

family (20) or (21), we see that ,2¢

5. %{% must satisfy the equations
¢

blw
xle
QO

» nom nd
T— ?-‘ xl +’l 3-”_1. % _..'E-*-p’.a: i (2'4)_ i
.-el- - , a”-ﬂl ‘ '—WE - x.-—-,ux“ 'l ' ’ 1‘
or else, correspondingly, o St %

dy op
~ r“"w -
‘ —'_m M] ) b

Canceling 4« from equations (24), we advance to a system of equations for

? (X;) X5 U, Dys D)
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Canceling out 4 from equation (25), we thus obtain the equations

r“\ t

@n

B

l

(vzﬂx%!-l-% r"‘ﬂ“”

Let us show that equations (26), and therefore (27), are also sufficient for the
compatibility of equations (15) and (16) with a one~functional arbitrariness.
Suppose @ is eolution (26), and u(x1, x2) is the solution to equation (16); let
us show that u(x1, 12) is the solution to (?5). By differentiating (16), we

get equation (23). Equations (26) signify that we can introduce the parameter u
so a8 to satisfy cquations (24). Equations (24) signify that the straight line
(23) 1ies in the gquadrant (18), that is, u(x1, x2) satisfies equation (15).

he assertion stends proven.

And so0, equations (26), and therefore {27), are necessary and sufficient
conditions for the compatbility of system (15), (16) with one~functional arbi-
trariness. Thus, the problem of determining the compatibility of system (15), (16)
reduces to the familiar and simple algorithm for investigating the compatibility
of the linear homogeneous system with a8 single unknown function, which we treated
in example (2).

Martin [27], Ludfora [28], snd Tu. S. Zav'yalov [29] made an analysis
of the campatitdlity of system (15), (16) on the special assumption when

FFR EFR, amp | ()

In this case system (26) takes from the form




g ¥ 4
E . | 9% .00 __ A
| 3;;’*‘P13;‘4‘f’3;;-—(h
4 » (29)
: o5, TP~ 3, =0
Let us dencte , :
X=Xy Xy=Xp B=8 L=p. %=pp _ (30)
g Twice extending system (29) by means of the formation of Poisson's brackets,
; we arrive at the system
% - -
; Ll=ala% =0 . (’n a=l. Y 5). (31)
z where the matrix aij is of the form | _.
’ ¢ x o 7
01 X —f 0
0 0 —2f h hi 32)
: 0 0 —3f fu fa
7' 00 -3, fia [l
” For the presence of functional arbitrary choice, it is necessary that
the rank of the matrix of the system obtained by adjoining Poisson's brackets
does not exceed 4. Denoting by Ai (i=1, ..., 5) the algebraic comple-
E ments to matrix (32), equation (31) can be rewritten as
L=00. (33)

where ¢ is some function of Xy Xge From (33) follows the representation
dp=0(Bdx) (a=1, ..., 5), (34)

which means that @ is the integrating cofactor of the differential form 4, dx, .
From equation (33) we get equations for « and the compatbility conditions for
system (31).
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Without delving into details, and referring the reader to the works
[27 - 29], where a complete analysis was made, we only point to the end result:
for a system (31) to be compatible and to admit of a solution dependent on an
arbitrary function of one argument, it is necessary and sufficient that there

be the possibility of representing f(x1, 12) in one of two forms:

f=F (axx__;-i—aax;)-_l ' ’ + e
' o 28 4
=g () =l P (25) 00,

where F is the arbitrary function of a single argument, d,1, -62 are arbitrary

constants.

Different expressions are obtainzd for the function ¢, depending on the

function f.

If f is represented in the form corresponding to (36):

then
R (% 2t
§= X3 — x,(x;+a,) xs(x2+°2)i§|(x£+“&)‘b” (3?)
where g(®) is associated with F(®) by the relation g' = Jiﬁ (39)

and the sign # denotes the different possibilities of selection of the roots

of the characteristic equation.

If £ is represented in the form corresponding to (35):

thon =V F (x+axy (o)
v=ax—artgantan @),

where g as before is associated with F by the relation (39}.
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Finally, for the case when f = 0, ¥ = ¢(x y X ) ' (42)
These results were useé¢ by Martin [27], Ludford [28], and Yu. S. Zav'yalov
[29] to obtain generalized Riemann waves (cf chapter 2, section I1X, eubaection

3).

2. Solutions with degenerate hodograph of systems of quasilinear equations.
The main task in the analvtic theory of differential equations with partial deri-
vatives is to obt, i particular solutions and to construct solutions of a broader
class by relying on em. Particular soluiions are obtained for the most part
by means of contraction of the space of the equation, i.e., by reducing the
number of active variables.

Thus, for example, Fourier's method allows us to proceed from
an equation with partial derivatives to ordinary equations and thus to obtain
particular solutions containing the additional (passive) parameters. Then, the
general integrals obtained by superpositioning particular solutions contains

arbitrary functions of passive parameters. However, Fourier's method is appli=~
cable only for an extremely narrow class of linear equations. For the case of
nonlinear equations the method of contracting the space of equations is also
used. It allows us to obtain particular solutions, but the superposition prin-
ciple becomes inapplicable, and obtaining a broad class of solutions that contain
arbitrary functions of passive parameters becomes greatly complicated.

The familiar method of envelopes permitting converting from solutions
containing arbitrary parameters (total integral) to solutions containing arbi-
trary functions (general integral) becomes, generally speaking, unsuitable for
systems of equations with several functions.

:: If ui(x, t, a) (1-1, esey n) (1)
E is a solution to an arbitrary nonlinear eyetem
" ‘ ‘p IA ) 1& %“‘% ‘?# %.)no
ém’u:ﬁ* r{“"M\ 'e,)\‘}‘(’q’. etey .x
then the envelope does not always correspond to it. This fact is pure geome=
trical in origin.
, For the case n = 1 the space (u,, X, t) of equation (2) is three-
1 dimensional and infinitely close two-dimensional integral manifolds (1)
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corresponding to =~ values of the parameters a, a + da intersect along the
line (characteristic). A one-parametric family of characteristics forms an
envelope surface, which is an integral manifold (2)e If n = 2, the space
(u1, Uys Xy t) of equation (2) becomes four-dimensional and infinitely close
two~dimensional manifolds (1) intersect, generally speaking, not along the
line but at a point.

Thus, for a one-parametric family of solutions of system (2), the aggre=
gation of manifolds of intersection yields now not a two~dimensional integral

manifold, but only some line.

Let us consider by way of illustration nonlinear equations for the

potential of a conservative system of equations.

For the homogeneous conservative system

o el W (3)

let us introduce the potentials (cf section V, subsection 3), which are asso=

ciated with Uy eoes u, by the relations

? R i (4)

For ¢ i we obtain the equation

r%%'ﬁ@%ﬁ %‘)" . el Koy (5)

It is not difficult to see that we have a 2n-parametric family of solutions

to system (5)s P, = a;x + byt + ¢y (i =1, eesy 0) (6)

where 8. bi’ ¢y are constants, and 8y and bi are associated by the relation

BN 000 3

In the (n + 2)-dimensional space {tﬁ1, ceey qﬁn, t, x } of system (5), sur~

faces given by the totality of equations (6), with fixed parameters a, and c.,

1

are two-dimensional planes. Suppose the functions
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separate from family i6) some one=-parametric family. We require that the
corresponding planes intersect along a line (characteristic); the set of inter=-
section points is deternined from conditions (6) and from the additional equa-
tions 0= S-ix + 56+ 61, (9)

where the dot over the letter denotes differentiation with respect to <.

For a characteristic (the general line of intersection of the planes (6)

and (9)) to exist, it is necessary and sufficient that system (9) ve of rank 1,
i.e.y that the condition

' ':‘1(;)- Pé‘ .- . - 1 ‘ MM D a (10)

be satisfied. From this we get equations for determination of ai and «s

MEBT]

N NI R A IR O AL u' «$
. [a,;+‘u(r)6,,la;=(f.'&;:..‘_ g Y
bet((“u"‘l‘bu))":o ‘ ) (“")1

: . &
.."“u m&j.".‘a",l.&, RS (13)

where

Equations (11) and (12) define a;( ) with accuracy up to one arbitrary func-
tion of parameter ¥ . From equations (10), ci(-t) is also defined with an
accuracy up o one arbitrary function of parameter T. Since parameter 7 is
undetermined, we obtain a family of solutions depending essentially only on

a single arbitrary function of one parameter, i.e., this family is not a
general integral.

Let us show that the resulting family is a family of so~called simple
waves,

Definition. A simple wave of & system of equations

- 119 -




TN I D SO deialine o e e

e

ey

SRR

DT WL TP

(15)

Equation (15) signifies that functions ui(x, t) can be represented as
%(i”?j’uuﬁt) ="='1'»(x.' t). . (16)

where T (x, t) is some parametric function. Substituting (16) and (14), we find

&g, =0 D)
For solution ui(x, t) = ui[ T (x, t)] to be nontrivial, the equations
TTTTTY T
’Mugg =,g,=._..&-’\ (18)
A

miast be satisfied, Therefore for thla is necessary and sufficient that

Det((@— W)= (19)

then ¥ is the eigenvalue of matrix | aidll ;, and the vectoru = {1.1} is
its right eigenvector.

From the algebraic relations (18) and (19) we find ¥ and u, and T(x,t)
is defined as the solution of the equation

W e
\FiE=0 (20

If system (14) is hyperbolic, then there exist n eigenvalues §1, an)
E . and travelling waves corresponding to them, which we will denote with
the same number as the characteristic. It is not difficult to see that in
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2 the k=th simple wave the characteristics of the k=th family are straight lines.

If system (14) is conservative, i.e., if the following conditions are
satisfied:

au(al. .-‘... u.)=g5‘(%u;;2£"!')o (21)

vhere <Pi(u1, ceey un) are certain functionz, then we can proceed to equation
(5) in potentials. We will show that the envelope of family (6), (8) is a
simple wave. Taking (6), (7), and (9) into account, we have

iu‘=%=(&,£-{—‘b,t+.;,'~,)%-{-a,=a,(t). (22)

Thus, at the envelope surface of family (6), (8) functions ui(x, t) depend
on a single parameter, and by definition solution u; = ui(x, t) is a simple

wave. The statement stands proven.

A special case of the simple wave is the centered wave, when straight lines
of the characteristic of the k~th family intersect at the same point X to. Then
we can choose the inclination of the characteristic

=iz (23)

as the parametric function. Equation (20) retains its meaning, and the relation
§l=t' (24)
is valid.

Let us note one interesting property of simple waves. Relation (16)

signifies that the (n =~ 1)-th functional relation exists in the k~th wave:

_r:(al.'.... g)=¢ (=1l...m i+k). (25)

Let us consider the one-parametric family of k=~th centered waves in
which the constants c; (i f k) from (25) are fixed, and X » t  are associated
ﬁ by tne function x, = 47(t0). Then we have a one-parametric family of integral
]

surfaces of equation (20), which has an envelope. This envelope is a simple

wave, but no longer centered. Therefore, simple waves are centered envelopes.
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Let us now consider simple waves of inhomogencous systems.
For the inhomogeneous system

4‘%‘-+a;¢(u,. a,)%:ig,'(t‘:,..‘ a,) ‘(lj=l.'.... n)._i (26)

assumption (16) leads to the equation

S+HNE=F t=L..m = @n-

where . ( - ' o .' ’
= Bilalla = & - .

f.————‘;.‘ N = Ga=1..,m. (28)

-k

For simple waves with arbitrary functional to exist, it is necessary and suffi-
cient that the rank of the matrix

s EY
JL A Ala (29)

,“.‘»"(fa F, ‘:

1

equal 1. In the general cases condition is not satisfied. For waves to

exist with arbitrary constant it is necessary that the rank of matrix (29) be
20

From this condition, n = 2 quantities ‘;‘i(i =1, ..., n) are determined

for every two of them, for example, uj, ceey u =T at & spacing of l.).,', \.12.

Then, considering these functions, we arrive at subsystem (27) when
i=1, 2, where fi, F, are now the functions only of Ups Uy Solving (27) with

v 2T 5 ¢
r1espect toﬁ 5% we find

K PP & Fifa—Pofy
=P, =2 A d = = 121 0
ax i £~ r ',Qt ?'__‘ﬁ‘&“;' (30)
Setting up the conditions for integrability of equations (30), we find

OO =00, (1)
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Hence follows the integral 4’2/ é1 = C. - (32)
From equations (30), bearing (32) in mind, we find

v.w L
t'!l e %' o

THA ?ﬁgs PR W ) L '-"'
ae Mﬁ!(h }!\ ,‘ -.‘.r S l

The simplesat solution for T is of the form «k 4 SREEN N S5 18 :

PR G ruly d l’ R H !ﬁ'" ié a(l ﬂ
L* t?'#:!-}qa o e z_r‘n,,r 1 -»f'(aqi

B - VP

Thue, U,y u, are functions of parameter E and the following system of ordinary

differential equations is satisfied:

; ’x," *(,"’ i 59*! (35)

s ....__'.__- - b Ly

Let us further point to a class of equations that admit of simple waves

with arbitrary functional. For the system

w.(m .r,s..-.:,‘—'ﬁ-'i g (36)

the parametric function — (x, t) satisfies the equations

N
(sn°
v" ' "\‘ i

where

The conditions for the integrability of equalities (38) yield

B w0

Hence it follows that when of = 1 system (56) admits of a simple wave with

an arbitrary constant.
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Let us indicate the classes of equations leading to equations admitting
of simple waves.

Suppose the system
; ‘ :«’e

L&L+};(r,. m-&LqM u-t 2)# (41)

has the coefficients fi cry, ), 8. (%, rz), exhibiting the property of homo-
geneity, such that the relations

2 f,(ﬁr,. Bry) =047, (r 1] (42)
t g_‘_(?’l‘ e"‘)ﬂ”(’p r,)
are valid. By the substitution r, = x“'Ri (43)
system (41) is reduced to the form
%’L+x‘“/.<«.. Ry wa***‘e, R Ry —yx* ' fR, m)
= Ty (‘u! 2,
If La e ey g _
\‘l@:"‘i)"-hlml‘*l S '(45)
then after the substitution
g T o
""T-FT‘ G j
system (4,) takes on the form o ‘ .
!§‘-+ ,I(Rl' R:)-;,—*'T—g—,;m(lﬂ- Ry —Y/iR,). (47)
i.e., admits of a simple wave.
By the substiwtion T, = (x/t)" Ry (48)

system (41) 78 converted into the form

A +( ) Ji(Ry, Rz)aR‘

tﬂ

L -v—i—v( )m l-——-f,(R,. R,)T(_:.)"'T"" g(R Ry (49)5
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If VR =1, d=1, VB~V -« =0, (50)
then systewn (49) becomes

I Pl g : - 'r

s R hwR, Ra-gaﬂ.‘ta. R i o O
where :5 *ﬂ*n ERTEAEE R 1T 8 -_‘*Bﬂsﬂr -
; 4

H=WRIL £ Ry, Rmﬂ-mé R *é-ﬂ (Sn

SPMPRSI

i.e., also admits of a simple wave.

The possibility of the substitutions given above is related to the group
properties of the equations (cf section XIII on this subject). In particular
equation (51) is invariant with respect to the similarity transformation z ==

kz, T~» kx,

Relation (16) indicates that in the case of a simple wave the two=

dimensional integral surface u; = ui(x, t) maps on to the plane of hodograph
purely {u1, cooy un} in the form of the line 1: u, = uj('r) (=1, voey n);
3 therefore we can now speak of simple waves as solutions with degenerate hodo-
{ graph.

If the system is homogeneous, then to the line 1 there corresponds a

family of solutions with a one=functional arbitrary choice.

In the general case the two-dimensional integral surface u; = ui(x, t)

(i=1,2, ..., n) maps onto a two-dimensional plane in the hodograph spsce.

It can be shown, as a rule, that to the surface S there corresponds a family

of solutions with not more than an arbitrary constant and only in exceptional
cases does surface S map onto a family of solutions with a functional arbitrary

choice.

For sake of simplicity let us limit ourselves to the case of a system
with three unknowns o - "

To each solution u, = ui(x, t) of system (53) that is not a simple wave there

corresponds a wholly determinate surface S in the space { Uy Ups u3} » which

we will give, for specificity, by the equation
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u5 - f(u1, u2)o (54)
After the substitution of (54) into (53), we arrive at the over=determinad
system
$o M0 o=t2. ]
i "% ' LY . (55)
e ) a=1, 2,1 = :
£ O?E%E?i?? { - LL) o b
f where 24 Rl \ > o .
_ ¢=%2 3 a=12. (56)

The condition for the consistency of system (55) leads to a third-order
quasilinear equations for the function ¢ (u1, u2). By defining surface (54),
we can restore the solution by quadrature.

i We will not slight the operations, referring the reader to work [25] and
to section IX of chapter two.

3. Solutions characterized by the differential relation. The analysis
made in the preceding subsections shows that solutions with a degenerate hodograph
(simple waves) do not always have a functional arbitrary choice. This means that
to obtain solutions with an arbitrary functional choice or with an arbitrary
constant choice with a large number of constants, classes of soluiions must be
geparated in a4 more general fashion.

A T e

Functional relations in the space of the initial equation must be replaced
¥ by functional relations in the space of the extended system (cf section IV, sub=-
section 3). Punctional relations containing not only the unknown ana independent

variables as such, but als» derivatives, will be called differential relations
(ct [26]).

The highest order of derivatives appearing in a differential relation will
be called the order of the relation.

Let us clarify these concepts with the example of a system of two inhomo=

geneous equations written in invariantsi
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A

g—;l"“l"'f](fp ry Xy, x?.)'gel'——-gl(rl' ry. Xy, Xg) l

ér,

: 0 ' (1)
3};+f2(’1- Fa Xy xz)_‘,);—,l=g2(’l' ry Xy Xy l

We will seek the solution r, = ri(x1, x2) of system (1) satisfying the first=-

TR TR TN ?W@.GM

order differential relation:

6f| dr’ df] af3)=0

i . .
g F(x,. Xov Fyy Tos -6;1-' -a'z- 'aT;. 'aT; (2)
3 Clearly, using equations (1) the dependence of F on 523 ,£;£; can be canceled
% out and relation (2) can be rewritten as
: B}—l ors\ __

Q(x‘..xg. "n ’2. 5};"' z'x—')—'()v (3)

Here @ is a thus far unknown function, but a fixed function in our entire

treatment.

ILet us find the conditions under which a family of solutions satisfying

the fixed relation (3) as a one-functional arbitrary choice.

Let us consider the first extension of equations (1) and relation (3).

We set
g uge p 25 o
S P G =0 g =% g =h  (=L2) (4)

In equations (1) take on tne form of the finite relations

-ﬁiﬁh+gz d=hm.- J.'(&
using (4) and (5), we;f;g@f" T I
dr,np;dx,.-}-q, dx,= p,dx,4(&,— fip) dxy | )

3

The conditions for the integrability of relation (6) lead to the equations

t

%47f1%%=21+f131=ﬁ- [ (1)
-%z—:+fg-g£:—=fz+frsz=F2-

where
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j ". ——"é:— P‘ é—i (8)

; and the symbol 5/ é xi denotes differentiation with respect to X9 taking
! into account the dependence of T T, (but not Pyr p2) on X,y X5t

um. .’l' r’l (ﬂd e plt Pa) or xl-A;VQ: SR g oo :.',-'. ’- vt T
8 o9 ) PR . »
kel s wa--l-p,;,—. wE B
6 - g METAUN OO N RN ]
‘5"‘+‘h F"l“h ;—== = -
‘ | ©®
—T'+[gl flPl] dr +lgz sza]-F—- o
. -—:--Fgrar'Fgrar APFET hpfﬁ? '-SH, |
Differentiating relation \3) we find. ,“ p o piE ) 5
et =0 @=12 L
t 0 @ g W8
T Xl UL S

In the four—dimensional space of derivatives 849 By t1, tz, each of the equa-
tions (7) and (10) constitutes a three-dimensional plane. For the functional
arbitrary choice it is necessary that these planes have a common s' ight line,

i.e., that the rank of the matrix

PRV ORGP R

N R T abe T i,

¢ .0 f, V5 —F g

[ Aijl" ’ “ 3 -} w . B

’ 28 0 :
A A g.’ j (1)

g o0 ol L 80 |

o I 0 o .?

s w0 Sy

be equal to three. Actually, if these planes intersect a% a point, then this
signifies that from equations (7) and (10) the derivatives 8; = ] pi/a X
=2 pi/a x, are determined in terms of x,, X;.,%. 2 ,f,, P, , and we arrive
at the system of equations with an arbitrary constant choice that we investi-
gated in subsection 1.
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HBence, as the first corollary, when f, £ £, we get

(12)

let us assume for sake of definiteness that 34’/a Py = 0. Then, as the

second consequence we have

;3 "‘7""1( TN, »‘LV K‘»t iR

S ool === 1

Il e

Taking (8) and (9) into account, relation (13) can be transformed to
A+p,B=0 (14)

where

'h“ “".‘ b} rh A rl i j‘| 4
*l Iu 4 g ,‘\.O l, G

ks ﬁs: ‘;T’é}i%f il

If B # 0, then relation (14) is a new differential relation, from which we

can explicitly define Pyl in this case we arrive at the arbitrary constant
choice. Therefore, for a functional arbitrary choice the linear equation

A =0, B = 0. (17)
mst be satisfied.

Thus, the following statement is valid:

For differential relation (3) to admit of an arbitrary functional choice
it is necessary that 4’ satisfy one of the two systems:

L"f ‘”'%”Ro'»*‘i 3. ‘il,"c.;‘*g-»-&--f,'z- : _ Y .
Ty o e B :

c : ot |
i’féﬁ**wmw:%%%” - G D
AT [ (G ",{l)f.‘ Longp=o| |

8 -:“_1?

e e
Wt '.“-y-\

Nt v, A

’
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.N‘;;_:o'_.""" R R T ,r yar. oW ULPERE P iR ‘;‘;‘t S
m ! RS R :'3 "'.’. ~‘" Q I AL R N Ral )
f:‘r‘+’3—+81?r'.'+8’2'&"+‘ GtV 19) |
. o (

e 2 Og 0 éf éf M i
L - ’)"a - P aﬁ“
(f fx)w—+( -;—Pg)-a—’-:O.

[ N

Differential relation (3) corresponding to the condition 3‘5/2 P, = 0 will be
referred to as the first-order relation, and relation (3) corresponding to the

condition 3‘?/3 p, = O -— as the second-order relation.

Again we have reduced the problem of investigating consictency to a

standard problem for a system of linear homogeneous egquations.

The study of systems (18) and (19) is carried out with the aid of the
familiar algorithm for the formation of Poisson!s brackets. Since each of the
systems is considered, essentially, in a five-dimensional space: the second
and third equations of (18) == in the space (x1, X9 Tqs Tp p1), the second
and third equations of (19) == correspondingly in the space (x1, X5y Ty Ty
p2), then a sufficient condition for the existence of a relaticn with a one=-
functional arbitrary choice is the condition r = 4. (20)
vhere r is the rank of the complete Jacobian system formed by adjoining Poisson's

brackets to equations(18), and, respectively, to equations (19).

The algorithm for defining the differential relation with a one-func-
tional arbitrary choice can be transferred almost without modification for the
case of a relation of arbitrary order. Withcut carrying out the operations,
we ctate only the final result. On snalogy with the preceding, the differential
relation

L . (- v ~ [ K e . s
o(xl. x’) rg."}. ey ’,+l)=o. (21)
where the following 1is assumed:, ’ . Fa ly on a g

ot o
H=r, ri=opi— (8=-=l... TS S
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>$
. can be of two orders: a first-order differential relatiPn when «5-7:," =0,
: 2
and a second-order differential relation, when Sy R =0
’

Por the case .of & first-order relation function é satisfies the system

. -. ’&in'(’w&*% "0 eﬁ'

Y ‘
. W k)

1'1 ¢ i b .-7“-"? 5\‘ el
PRNAL W GT RS W S
S (la‘ !f.d gl A BT SPE

.-,a‘h%i Lovne e e o g

f.;’—m-—*i-[e(‘" f.’ﬁ];;rr
™ '(2»,

x‘. s >, n"
<] \.y

where

=, 2 p==1, ,Iz+l)

S “‘u- i

and the quantities gi(:‘: /,2,5=1.. )are defined from the recursion rela~
tions

- » - A

£y d" dt‘f- :

g‘ ' ."d'.'x‘:;'r‘i t‘}ll gg=g“ { (24)

Here d/dx is the total der:.vat:.ve with respect to X4 taking account of all
arguments on which functions 81 , f depend.

The space of system (22) is a space of the valuables Xy Xpy ¥ ,, z , rf"’
(s =0y «oey k). Since it has the dimension 2(k + 2) + 1, for the relation
to admit of a one-functional arbitrary choice it is necessary and sufficient

that the rank of the complete system corresponding to system (22) he equal to
2 (k +2).

Remark. Differential relations for a given system of d:‘‘srential equa-

tions can contain not only derivatives, but also potentials,

Let us consider the conservative system

on, | 0%,y By N
Sy Mt Tt ou =0 au= (25)
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For it the potentials

""&mr: St 0y : =1 = I

SRR U AT

i oo TR A L R ey

can be introduced, satisfying the condltlons S '

%?5'%4*3?%- ce)=e o an

If we take as the starting point not system (25), but the system in potential
(27), differential relations must also contain the variables ¢p g9 oo ¢
Thus, the first-order differential relation for eguation (27) is of the form

w(xl' ‘xr ‘._ .‘.. 0., #‘. ssesn TL) . T w - ".
edd —‘l’(xl.x,.ml... 0.. .. a)=0. (28)

o 01

We similarly discuss relations of this type in subsection 3 of section IX,

chapter two.

In concluding this subsection, let us deal with the application of the
concept of differential relation to ‘several problems in the theory of linear
equations. Ve limit ourselves to Darboux's equation:

a0
I ag = e #)e. (29)
which plays a major role in hydrodynamics.

Setting 2u/2 X, =T, (1 =1, 2), (30)

we write (29) in the form of the system

;_a_zsfl.. 'a';"-—-flk ; (31)
The extended system for equations (30) and (31) is of the form

-

of '
;;-e.- 37’==e;- , (32)
where - ! ‘ ..
g‘;s_—(fc)m( )M-c’f"‘ (=1, 2 a=0, ..., 9, (33

' che v r‘n—a—n (r?-nr‘. ry -ul). - (34)

PRI PRVIELT I ‘o

- 132 -

AR el A itk B



el o S e S S P e B T e s g e AR

e

Wﬂmﬁ'&r i oy S e T R N

Since part of the higher-order derivatives is determined from the conditions
of the extended system, a relation of the (k + 1)=-th order can be sought for
in the form @ (x,5 X5 U, rg, - rg) =0 (i=10r1l=2) (35)
Without going into details of analysis of the consistency of (35) with the

equations of the extended system, let us give the final result.

For functional arbitrary choice the condition
-:.',‘.6' 6’,,0,
o= (36)

is necessary, 8o that relation (35) will be of the first or second order,
depending on whether condition g%é" C or {;g;. = 0 is satisfied. ILet us
2
assume for concreteness that«gjjg =0 (first-érder relation), The following
2

theorem is valids

Theorem. For the first-order relation (35) to admit of functional arbi-
trary choice, it is necessary and sufficient that ¢ not depend on u, rg (8 =

0, ...y k) and that it satisfies the linear homogeneous system

TAY T |
3.“,’)0#—_'0. (@=0, 1, ..., k)'. 37)
_1 .1= _ ‘
e Pass @=0. 1. ..., &) (38)
where L .
. o g -e-1
P°==0. P'=(:)0I{—:r?-l=(¢~:-1)s;"l7“%r? s=1,.... &)
- (39)

An analogous statement is valid also for the second-order relation. Conditions

for the consistency of system (37), (38) lead to conditions or *he function f.

The conditions for the existence of first-order relation*)

Q(xy, X5 r)=0 (40)
is of the form f =0, (41)
i.e., the Laplace invariant tends to zero, and Darboux's equaticn converts to

an equation of oscillations.

#) The order of tne relation is established for equation (29) with respect to

the function u.
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For a second~order relation ¢ (11, X5y Tqs r:) =0 (42)
to exist, it is necessary and sufficient that

=i (43)

This means that by the Laplace transformation (cf [30]) we can reduce equation
(29) to the form ST
o =0
n 0x; 0%, I (44)

These criteria point to the intimate connection Jetween Laplace transformation

and the differential relation method.,

Obviously, the following asse~tion is vulid: if equation (29) admits of
a differential relation of (k + 1)=-th order, then by the k~th Laplace transforma=
tion it can be reduced to the form (44). Since the Laplace transformation theory
is group~oriented (cf [30]), this also points to the close connection be tween
the concept of differential relation and the group properties of differential

equations.

The effective construction of Riemann's function is possible for hyper—
bolic equations admwitting of a differential relation (cf [4]). We will briefly
summarize Riemann's method, confining ourselves for simplicity to Darby's equa-

tion, which is self-adjoint.

Iife u(x1, x2), v(x1, x,) are solutions to equation (29), for any domain
G bounded by the curve C, the relation

[ [ wLu—ulv)dx, dx, = f X dx,+ X,dx,=0,  (45)
A | |

is valid, where FY
: L=mem ) . 9
1 v du 1 du dv :
X‘=7(a37.—°7;f)' 4.,=§-(0-a?’—ll'a;;)- (47)

and the integral along the contour C is taken counterclockwise.
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Riemann's function R , 3 X, is defined as function v( §_,

1° 528 X0 % 1
52; X, x2), vwhich is == with respect to Xqy Xy 77 the solution to equation
(29) and satisfies the additional conditions:

== arbitra
"2 i (48)

x, = arbitrary

1
In other words, R(E1, Ea; Xy x2) is the solution of (29), which tends to
1 at the characteristics PM and MN.

Suppose u(x,, x,) is the solution of (29) for which u,du/2 x1,3u/a X,
are given at the line PN, i.e., for which Cauchy's problem is posed at the line
PN.

Emp’oying the identity (45) for the functions u, v = R for the domain G
and the contour C = PMNP (Figure 1.17), we get after uncomplicated transforma=

tions

i CORORT &, UMETINL TH g . '. e
. W - Wy
o N3 ‘t' RHITY

" ’i‘ 15;?- \b‘l" it - bl ij
it » ‘_"' E ‘bu ‘ (
SRy q?,"h(‘? Loh ‘a 7_{—1\ dx?] )y (49)

ARyt ]
‘&-n.za. R S SR TR SO S, NPT P

Since du/d Xy U, Ry 2R/ x, are given at the curve PN, formula (49) yields
the solution to Cauchy's problem for equation (29).

The explicit representation of Riemann's function for equation (2°) is
possible only in particular cases. Thus, it is possible for eguation (?¢) admits

of differential equations.

The case of a first-order relation is obvious. Then f = O, R=1, and

formula (49) is the familiar D'Alembert's formula.
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Let us consider the case when equation (29) admits of a second=~order

relation of the first and second kinds and when condition (43) is satisfied.

We will seek Riemann's function in the class of solutions admitting of
a differential relation of the second order. The equations for the definition
of the differential relation and the corresponding class of solutions are of

the form:--

Equations for the consistency of the first of the equations (51) and (52) leads

to a systex for Y

",' ‘%"-""‘- } p Ty =
3‘7’7-“'.?’ P, MY P 89,
C 0¥, _éNr _ # 54)
CETECGERet K )
ich i i . . bWt a;" 1 :
which is consistent given the condition T ;},e e Lo
I.m.,-u-).ﬁu e T U R N N IR
I~wmwe o 8

Assuming condition (55), expression
d‘l’::/r, dx,+ """dr, ' (56)

is the complete differential, and for y we obtain the expression

‘If;-r,‘-’am—,+F(.t‘) | (57)

w buoa
where f(x,) is an arbitrary function.

Taking (52) into account, for r, we get the equation

1

—ZEn=re, (>8)

v

whose integral is of the form r1(x1, x,) = C(x1, x,) f (x1, x5)s  (59)

where
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and g(xz) is an arbitrary function.

Let us define F( 11), starting from the condition

R o U DR
f“ t

-§_ vk Mﬁ'&ﬁa\ u&*..‘t:‘i& L s

From (61) it follows that C(x1, € ,) =0.
This is possible only in the case when F(x1) =0, g ;2) =0,

so that r, (x1, x2) can be represented as
‘ " "5 gl AT BTl T
P &)= g ()} %, 3.

Taking the first of the equations (50) into account, we find

“.(x,. ;,9..“’ “ I 1l x,de1+k‘<{

Since u (x,, 52) -1, g 52) = 0, then K(@z) -1,
Bearing in mind that u(& 1 X,) = 1, we find K(x,) =1
and for u(x1, x2) we obtain the representation

i(xi. x,)-:::g(x,) I f(xn- -‘J‘x‘l'*‘ ‘1

» Damai. -

Satisfying the first of the equations (51), we derive an equation for g(xz):

t

‘.5,_,. R """J

7%_“,01:: gf;(;,. x,,dx,+l y

)“ P

(60)

(61)

(62)
(63)

(64)

(€5)

(66)

(67)

(68)

(69)

Taking condition (55) into account, equation (69) can be rewritten as

. EEHE, ely=1. " \"‘” J
where o ale .
l(x‘. le=‘d£"',"—0 /=.3d;"" vt ‘_(7’)
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From this we get an expression for g(xz)x

2

SO ey s g : “Q?_ BN R R < g
w;,.uw., e b g EE . :
L f LR man

i g(:,)m:(h b, xa)“"’"“}’&;‘;;,—'" S

and for Riemann's functlor: ; ! K

o

IR Tl X , |
BER T f I x) a, j rUn, 2y dy
& ("l' ‘J“R Gv 3:- "l' x,)_-. '_ - f(t.-hx:) 1.
? t,;_n\ i .\a. ' SR | - L

Noting that function f, which is the solution to equation (55), is of the
form (cf [30])

L
f = m(&l c:“fvT)T T

th i

we finally obtain ' o ’
{

|

e c(x)-a.muu () =, 8] ;
R_(vz,..ag he x-) 2 o +c.(;.'))la.'(x.)¥a.(xin'“i o

Section XIII. Group Properties of Differential Equations

The task of seeking an multiplying solution is closely bounded up with
the group properties of differential equationz. The fact of simple waves is
enveloping center waves, and the latter of self-uwocdeling, i.e., invariant rela-
tive to the homothetic transformation x1 - kx1, x2 — kx2 in the plane

x1, 12, is group in origin.

The possibility of reducing quasilinear equations to a form suitable for

obtaining simple waves can be found after analyzing their group properties.

The long=-lmown self-modeling solutions of one-dimensional gas dynamics

essentially were derived by a group analysis, whose specific form is dimension.

Group analysis enables us to constiruct regular algorithms to find parti-

cular solutions without involving additional considerations, based only on the

given system of differential equations.
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1. One-parametnc Lie group. Consider in the n-dimensional space Xﬂ
of variables {x y ey X } a gystem of ordinary differential equations

d«!
.a_-_-.-g‘(x'. wees x"). (1)

for which Cauchy's problem xl(to) - x:. (2)
can be formlated., Given sufficiently smooth functions gl(x1, teey xn) and
on the condition that J (El)2 > 0, problem (1), (2) has a unique solution

2 O=f(xl ... 23, t) (3)

which is the sufficient number of times of the differentiable function of the
initial values x1 and parameter t in some domain of variation of parameters

xl and t.
o

Problem (1), (2) can be glven in the followmg geometric interpretation:

”

the parameter t is time, the curve x (t) = g (Es, = . Z,

the trajectories of some steady flow, x), ... , X,* are Lagrangian coordinates,

t) represent

>

1 n g
and X', ...y X are Euler coordinates.

Solution (3) to problem (1), (2) as the property of invariancy relative
to displacement in terms of parameter t: if in the problem (1), (2) we preserve
the initiai xz' valuee and replace to with to + T, then it will have the solu-

tion
qu‘(t)=f‘(x‘. coes X5 E—7) (4)

Formula (3) can be symbolically represented as
x()w St t)x (Ut (5)

where S(t, to) is ar operator converting x(to) to x(t). Due to the invariancy

of the solution relative t: displacement in t, operator S(t, to) has the property
St tg=S¢—1,, O)=S(t—1p). (6)

Therefore, after solving Cauchy's problem with the initial time instants t = to,

t1, t2, we arrive at the property of composition
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]
! Sth+t)=SE)SE)=SES¢. (7) :
§
i
ET To this we must add the property of continuous fitting of the solution to the
§ initial data § (T) = E (T =+0) (8)
% and the property of inversibility S(X) S (-<) =E, (9)
z where E is the identity operator.
]
¢ The totality of operators (transforms) S(t) exhibiting the properties
i (7) = (9) forms, by definition, a one-parametric continuous group (Lie group).
£
¢ We will call E -{51, oYY gn} the dirzction vector of the one=para=
¥
;% metric Lie group and refer to the group with the direction vector £ by the
symbol G,(&).
2. Invariance of the group. The scalar function F(x) = F(x1, st B)
is called the invariant of the group G,(¥) if F(Sx) = F(x) (1)
for any transformation S& G,(&).
Let us introduce the concept of the Lie derivative of the function F(x).
For x* the Lie derivative, by definition, is the quantity
; 8 -
3 T=€‘ t=1.... 0. . (2)
¢ : The Lie derivative of the function F(x) is defined by the rule of differentia-
’ tion of a complex function:
; ¥
() _ OF a7 e OF gy, ..., m)l
% Tamw —baw OThoo® ()

The Lie derivative §F(x)/§ t is none other than the derivative of the function
F(x) along the projectory relative to parameter t.
¥ The differential operatcr

L(;);;#?f’? @l ®) (4)

will be called the infinitesimal operator (in the following, siwply the operator)
of the group G,(E) and we will state that the operator L(E) generates ihe
group of finite trunsfizaations G1(E).
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Thus, the Lie derivative of the function F(x, is none other than the
results of applying the operator L(&) to P(x). It - not difficult to see

that F(x) is the invariant of (}1(5) if and only if the Lie derivative of the
function F(x) is equal to zero:

The expiessicn

will ba called the Lie differential of the function F. In particular, éxi
g's t is the Lie differential of the function x .

We will understand the differential dx’ to refer to the expression

j M)

computed for a fixed -t.

Similarly, the differential of the function F(x) is defineds

r“**n EAAEARS Sty B e W oo g i) 4 Ol o
) Y
ddf,._._.,:,‘c_n-- {;w u.peel LB 8
o e e et )
It is not difficmlt to see that the operators & and d are permutable, so that
the relation 5t - daxi, (9)

is valid. The manifold ¢ given by the equation

R LS e ) (10)
is called the invariant menifold relative to G1( E) if the transformations

Se (}1 tranalate the points of the manifold vgain to points of the manifold.

For the invariancy ¢, it is necessary and sufficient that the vector
at the points @ touch ¢, i.e., that the condition

w
[

f‘ LF':-—10 (leal e @ra=1,..., ). (1)

be satir®ied that the manifold (10) lf an arbitrary point on the manifold
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@ is not invariant relative to G,, while at the same time the manifold P is
invariant, then we say that the group G induces the continuous group of trans=
formations at the manifold é let us assign é by the parametric equations
x‘-,‘(o‘. v.v.'-o x.‘i— (pﬁ‘-f. ‘=l. cany B) (12)

Then the grovp G1(E) induces in the space v = v1, eouy v‘p the group
8,(7), vhere the direction vector ¥ = {7’ ... 7} is related with the
direction vector § = {g’, “oo, En} by the relation

“ouf ¥ "‘v:"' i"#’“- R I )
E"F’_"“?‘- "-.-n I‘f (lt:l. oy l.p:*'i,.,,,p), (13)
u ‘o
- -—-——...._.__-:_.‘QL .5.» LR VIvh { R A -'-—1-{; ~~~~~ 3. v...&_, R . J

vhich derive from equality (12).

Suppose
Q(r, s AN L £ 4s (14)

is a linear differential form. Then the Lie differential of the form () is,
by definition, the expression

B ST St

employing the commutativity of operators 4 and &, we have

on..—.oA,,dxc-l—A,dox--[ &Nﬁ“’-}-"ﬂ,dg" o ! (16)

(a. —l ....n) e

The Lie derivative of form (2 , by definition, is the expression
M U = o A o

which itself is a linear differential form.

We will call the form ()} invariant relative to G1(E) if its Lie deriva-
tive, i.e., the form A(x, £, dx, d£), is equal to zero.
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Suppose the group G1(§) leaves the form

u‘ea,(x)df 'x(l;al_: i

e iat ladLF

(18)

invariant, as well as the manifold ¢ given either by equations (10) or by
paremetric equziions (12).

The forms ,Qi convert on ¢ to the forms
o g, a;;__,.ﬁg S
£

PSR P o l;-_:"-"x"l é‘” the b ol B !v

(‘=l' soey [ lon"o:. R, Aal....' p).

(19)

which remain invariant relative to the group g.l(n) induced by the group G1( E,

on ¢.

By definition, the Lie derivatives of the forms w’ are equal to zero,
i.e., the equalities

Ao, 1 do, amafé{mqéﬂii-a;difé‘s&‘? (20)
(23 PR ﬁ. Y—l,.... p) (
are satisfied. Suppose G (E » G (E,) .., G, (E )  are one-parametric

groups of traneformatlons in the space )&1 We will seek the combined invariants
of these groups. If F(x) = F(x y eeey X') is the invariant of Gy (&,)y G2(E,),
» Gp(Ep), then the relations

L.f=;gizp:* j

gy ? (21)

must obtain. Suppose system (21) is complete, i.e., the operators (Lss L.]

are linear combinations of Li(i = 1, 2, veey P)2

- 143 -




ik e et

If the coefficients c;'j are constant and satisfy the conditions

E"t"’j’f""?v ‘TJ“-&"‘%“.;"“M‘ =0,

then the totality of operators L1, seny Lp generates the p-parametric Lie group
in such a way that any operator

LT Ll

LTI T e 3
ERGRL A . L)
with constants coefficient A 17 oo /\ generates a one-parametric group (cf

[(31]).

3, Extended group. Thus far all variables x* were equivalent. Let us
define some space X = {x*} corresponding to the separation in the points

space Xm+2(x 0% W ssep um) of the two-dimensional manifolds
5 AT, _r*——r _-f
sl ) Sl m) (1)

Point x = {11, ore xn}e Xn will be defined by the coordinates

};"‘ . Bl qf x‘=x‘ . x’:l ;u‘ (2‘)
o »“\p— F ‘ .
;x’"‘”“‘rr—l’v x’+"'+‘—-5;;~ P} o (20
" ‘.( é! 2 'Ei. veey My n=3m+2)

Among all transformations. in the apace xn’ we separate out the transformations

that leave the following forms invariant:

——

QG dymdt o dd (s B, D (3)

We will call these transformations tangential. Relations (2b) remained

unchanged for them.

Among the tangential transformations we single out the subclass of
extended transformations, which are characterized by the fact that the subspace

X 0= {l', x* x?® ..., x"™%} ¢ X, remains invariant. We will call

7
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thege transformations in xm+2 point transformations.

k

g Let us show that thé.point .transformations completely define the extended

% transformations.

¥ Suppose £ = { §', SEm g "”z } is the direction vector of the point trans=-
formation G, (E) at X0 8nd Jg {.f . E'mz ""3 E""z} is the

direction vector of the corresponding extended transformation G1(E ).

From the invariancy of &n+2 it follows that

Tt =l... m+2). (4)

From the condition of the invariancy _,Q" relative to 51(6), we find

da;:"‘—-xz+”""d§5——€’+5'"+‘dx?=o =1 ..., m p=1, 2)-‘. (5)

From this it follows that

. e

. : ;
Freemed 052'” 082'“ 65
3 | Lo & 6)

5 ¢, p=1, 2, l. @=L, %, 5 m).

The statement is proven.

;, Finally, we can consider the further extensions of the group in the

space of the components of derivatives of second and higher orders.

4. Proofs of transformations admissible by the system of differential
equations, For simplicity of presentation, we will limit ourselves to quasi-
linear equations. Using the notations (13.3.2), let us write the system of
quasilinear equations

M‘i - us - =
el (el % a, L, e =L L, e (1)

Goa=1,..., m

in the form of equations in differentials:
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548

Q' (x. dr)= a0 (=1, mp=12.  (2)

~ -JJ

and finite relations:

F‘(x ey X ) xh+7+i+a:.x"'ﬂ+a_j‘=0. 'fl,‘ a_=-._.l.. 7. ’ .-.m)‘ (3)

Then the integral manifold of the system (2), (3) can be determined as the

surface in the space )(n = X3m+2 of variables x1, ceey x5m+2:

RS (=1 R (4)

FEIC PR
on which the forms _Ql tend to zero and which itself lies on the manifold

¢ e&iven by equation (3).

Definition. System (1) admits of the group G, (%) in the space b P
of variable x*(i = 1, ..., m+2) if the extended group G (E) corresponding to
it leaves invariant the manifold ¢, i.e., the group G1(£) translates the
integral surface of the equation (1) into an integral surface. The totality
of groups G1( E) forms a set of admissible transformations of system (1).

The condition for the invariancy of manifold ¢ is of the form:

-

hLA

- dal =
1 ] P e 0
ih+z+ +d ?” +u+_;%_§lxn+2+c__;‘_g 9‘ (5)
B L e e 1 é
Substituting in (5) the expressions for g2+ Busi from (13.3.6) and expressing
by means of (3), x2m+2+l = p; in terms of xm+2+l = p,]", we arrive at the systenm
of equations
A+ A+ AL e =0 - (o o, o= |.;.".'-,§ﬁ)./,§ (6)
TR . e i, . i

where
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’fm"sﬂ (x) % :‘N
4. SN

On the (2m + 2)-dimensional manifold < the independent parameters are the
quantities x1, o iy m+2’ p:, RN p1 Since the ratio (6) must be satisfied
identically relative to -these parameters, from (6) it follows that
f b;.l"." ,. . —I-' -'.', -~ - G R L%
HRGUR) AL M0 o0 oty (9)
b hvgw:" ¥ e m e mreeedl relh

d ‘ l‘z SRONE

Equations {8) constitute a linear homogeneous system of equations relative to
b3 1, evo EHHQ; this system is called determining and,generally speaking,
is overdetermined.

The satisfaction of (8) is necessary and sufficient for the group G,(E)
to be admissible for the given system (1).

1let us consider a number of examples.

L. V. Ovsyannikov [31], based on this algorithm, investigated a group

of transformations for a system of one-dimensional plane equations of gas dynamics

and the polytropic equation of state:



9)

System (9) for any VY value admits of the operators
5

'«*‘r* "‘*T""*‘W*‘W“ =" ‘"’T' 4 (10)

s

when y = 3, system (°) admits of also & single 1n6ependent operator:

The operators L1, LQ are operators of displacement with respect to the axes x,

t; the operator L3 corresponds t¢ Galileo's transformation; operator L4 is an
operator of the transformaticn of similitude (homothety) in the x, t plane.

These operators obtain for any equation of state. The operators L5’ L6 corres=—
pond to the pulytropic equation of state; operator L7 corresponds %o the specific

value y = 3.

The Euler-Poisson equation

s ‘ ' -
o R o sﬂ—O (a = const) (12)

admits of the operators

ey @ . PN SR
R MR I S

3 LI K
L'zlez-";'——}-x;-a-x—;, I;icﬁ%- L5=‘P(x1- xl)-%" ( )
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where ¢p(x1, X,) is the arbitrary solution (12). Operator L, is an operator
of consistent displacement with respect to axes X, X} 1.2 is the operator of
similitude in the Xy X plane; L5 is the operator of inversion. OQOperator 1.5
contains in its coefficients two arbitrary functions of the seme argument and

generates in a totality with the operators L L2, L3’ L4 the infinite Lie group.

1’

let us show, following L. V. Ovsyannikov, how the value of the group of
transformation that admits by the Euler-Poisson equation (12) allows us to define
for it Riemann's function.

As we know (supsuction 2 of section XII), Riemann's function ie the solu=-
tion u(§1, Eos Xg» x,) (12) satisfying the condition

o &R R B e

(14_)

The operators L1, L2, L3 generate a three-parametric group of consistent frac-
tronally linear transformations

(15)

where a, b, ¢, d are arbitrary constants and ad = bc £ O. Since equation (12)
admits of the operators Lys Lps L3 then transformation (15) leaves unchanged.
Employing this, let us choose the transformation (15) in such a way that to the
values x, = 51, x, = 52 there correspond the values X, = 0, X, moo. This is
achieved by the transformation

’ . T T
e = (16)

As a result, the solution 4(51, 53 %15 Xo) to the problem (12), (14) changes
into the solution v§x1, x2) to the problem

w Vs ‘
ax, 0x, +3 ,(x,,—-x,)' : } ; (17)
0 (0, ;,)_ml ) u(x,, oo)==i k

)

Problem (17) admits of the elongation operator L, and thus is self=-modeling.

Tts solution can be sought for in the form
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z"(;l ) =od. &=%- (18)

Substituting (18) into the first of the relation (17), we arrive at the equa-
tica

’ §°'+°""_1—(§_: )z'v‘i"=,p'~; (19)

where the stroke denotes differentiation relative to £ . The desired solution
v(;1, ;2) = v( £ ) satisfies the second and third of the condition (17), if

v(0) = 1. (20)
let us represent a in the form a = m(m=1). (21)
Equation (19) is reduvced to the hypergeometric equation by the substitution
v (1= (22)
and takes on the form
f&(§~ !)n{'+;;«-,14—(2»;+}|);1w'4+m2w=o. (23)

Parameters <, ﬁ s ¥ of this equation are found from the relations

Y=l ubfbl=2m41, op=m? (24)
and take on the values o = 8 =m, V= 1. (25)
Thus, taking (20) into account, we find w = F(m, m, %, ), (26)

where F(ot, P, V, E) is a hypergeometric function. Next, returning to the func-

tions v(& ), V(J.C1, ;:2), u(£1, 52; X, x,), we have

PO o= =P m LY, v @n
LT =\m -
, v(;!. :':!,)=(l-;—;) F(m. m; 1—;L) (28)

. 2
e g[GPl =t (5 —
5@ b 5 ) =[RIHRHL (w1 EERETY

, )
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For the case of conservative systems, it is possible to construct transforma=-
tions by only in the space of the extended system, but also in the space of
potentials,

The conservative homogeneous system

W w s ol
Wt =gt =0 (ha=L2....n  (30)

can, by introducing the potential qol(cf subsection 3 of section 5), bte converted
to the system of equations in differentials:

m‘=d(p‘—u‘.'dx‘+o‘(a1. vy @) dx?=0. (31)

Le*t us consider the cperator

-__5__0__ 2+a_0_ —-"‘;"i — . Rz
L=P gt om0 @=1L...mp=12. (32)

in the space x1, x2, ut, gﬂl (i =1, «ocy n). To the operator L there corres=

pond the admissible transformations, if the Lie derivative of the form w'

equals zero:
= Lat=0. (33)
From condition (33) it follows that _
M —a @ ot — T et =0, (39)
. i
Next le% us proceed to the equations for gl(i = 1, 2, coey 2n42):

I , & +0’%1=§2+‘
: 1~ b

B I T
dal+2+‘ N dgl f d;? 1v2+a (35)
G TGty =l |
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where

(36)

The quantities p: are agsociated, by virtue of (30), by the relations

m—dpt =3 €=l (37)

¥

Substituting (36) into (35), we find

gt c P _: o & . o N i e ;
.0,.+u P u(—;r—{-nﬂ )+ 2 .?

2 414l gl R\ __ 40
R
0§5+2+l *n+2+l - &l . 0&’ . “

. 2 R+32+1 R . XA W
~ +w(£=,—- )+z»«("E ) ik &
- . . e L - - is24@- | »

’ w—agd

Requiring that (38) be satisfied identically relative to p‘{, we arrive at a

system of determining equations

= - -

ot d§u+2+l . 1y e
oxt _t_ ot _ul(fi_+uc g:a)+

+°1(ﬁ.+ _O_ﬁ_')___ 2+l.‘.

s ‘.y:

. e oA

Cxt

0&”’“‘_ , *unl_; 5.1_.._- 1 AT LY ¥ 39
w T "(x= ..w%)*' w1l S o
| +o‘(-&-;—o¢5—)=z a.{"‘
oo L J%




5. Partially invarjant and invariant solutions. We will seek on the
manifold ¢ given by equation (13.4.3) submanifolds @ € ¢ that are invariant
relative to some totality of admissible transformations. Without delving into
details, let us note the path it follows in finding invariant submanifolds and
their corresponding admissible transformations.

Suppose

u’",: éﬁ” a
? “‘»i 3 @ (1)

(B R e (2)

is the parametric representaticn of the desired manifold 4 and G (g ) induced

on ¢ the group G (77), = {r] y ssey np} The correspondences (1), (2)
translate the forms _Q from (13.4.2) to the forms

“—«" WA & oM FOAKIAT el st
et oA vfgi?:('f*fl(_'ég;‘i“.‘..ﬂ & i.,.’.’..& (3)

4
£
s
;%
!
:
%
£

AR

0t

Here the coefficients ¢/ are known functions of ¢J(,j =1, eee, 2m+2) and
linear functions of fﬁ’(k =1, eeey D). The conditions for the invariancy
of the forms wi relative to G (n) are of the form

Bl SR S g e -
F'qfd,._;. N‘o + 'l.....mc.‘#'-l ,ﬂ‘ (4)
m;,ewm&* —e et e e
By virtue of the correspondences (1), (2) g and 7] are associated by the func-
tion '
< u:' 3 M ST ; ‘ e e %
SR, Vel e (5)
:,La-i, :”.‘.."an+2 a-l--- » 22 ﬂ-‘o-- LB
where

SN e i MAET TS

i gal e Y
i %§_=¢g (a, g;==1 s 2m2). (6)
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In particular, when i = 1, ..., B+2, we have

~‘£‘ﬁva‘ %rf i (1)

Substituting (7) into the determining system (13.4.8), we get some linear homo=
geneous system of equations of the first order for

A S T A TR T M TS

L 2T A A S R

whose coefficients B depend on ¢> and are linear relative to fﬁfu (=1, «cy
2m+2; V - 1, ceey p)o

Prom conditions (4) we find

- ;--—«~-.—-—-v'

:‘g"‘f‘{ ég } _.-'." m; ] ﬁr-—l ) pL (9)

The consistency conditions for the system (8), (9) lead to several equations

for the functions 993(v1, veey V). The solutions (integral manifolds) lying
in @ are called partially invariant (cf [31]).

In the particular case when the manifold ¢ is an integral wanifold, we
have an invariant solution. Invariant solutions are a generalization of the
familiar self-modeling solutions. We see that the theory of partially invariant
and invarisnt solutions is intimately bounded up with the method of differential

relations, since the equations giving manifolds ¢ are none other than differ-
ential relations of the first order.

L. V. Osvyannikov (cf [31]) pointed to the relation of simpls and double
waves with partially invariant solutions familiar in gas dynamics,.
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CHAPTER T™WO CLASSICAL AND GERERALIZED SOLUTIONS OF ONE-DIMENSIONAL GAS
DYNAMICS

Section I. General Remarks on the Mathematical Description of the Motion of

Compressible Gases

1. Gas as a continuous medium. (as is an aggregate of & large number
of particlen (molecules, atoms, ions) in contimuous chaotic motion,

To characterize the state of gas as a given instant of time, we must
specify the position and the velocity of each gas particle.

The problem of taking account of the interactions in motion of each
gas particle is incrédibly difficult; therefore in describing the state of
a gas we use the statistical approach.

In the statistical description of the state of gas it is convenient to
assume that its constituent particles continuously fill the space they occupy.
Naturally, here we consider only the volumes whose dimensions are sufficiently

large compared with the distances between the gas particles.

Therefore the expressions "small volume" and "infinitely small volume"
of gas used in the following must be understood as being sufficiently large in
the sense indicated above.

The motion of gas particles can be characterized by the number of
pariicles of each species present in a given location in space and with a
given velocity. This quantity is proportional to the distiibution function,
which satisfies the integro~differential equations of transport (so=-called
kinetic equations). The simplest example of & kinetic equation for gases is
Boltzmann's equation (cf [1], [2]).
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The description of the state of gas, employing distribution functions,
and the solution of kinetic equation is also a very arduous task.

At the same time we kmow that there exist such flows that can be described
with good accur&cy by means of several specific distribution functions. This
description is attained by employing the concept of the state of thermodynamic
equilibrium as & state in which the distribution functions are wholly determinate.

let us recell in passing some thermodynamic fundamentals (cf [3]).

Among the parametsrs ~h2zacierizing the state of gas, some are defined
only by bodies that are external relative to the gas mass under consideration
and do not depend at all on the gas itself. These parameters are called external.
External parameters include, for example, the volume occupied by the gas, the
intensities of the external electromagnetic or gravity fields, and so on.

In contrast to the external, internal parameters are defined by the state
of the gas itself (for example, gas energy, temperature, and pressure).

The state of the gas is called equilibrium if it does not change with
time and also with the exchange of energy with external bodies does not occur,
We stress that simple invariance of this state(ctezaly-state) of itself does not
signify that the gas is at equilibrium,

The equilibrium state is the state from which the gas cannot depart
spontaneously.

If a gas present in an arbitrary state is left to itself (i.e., the ex-
change of erergy was external by these is precluded and external parameters ars
fixed), then in some time interval (so-called relaxation time) it arrives at the
state of equilibrium.

The exchange of energy between the gas and the external bodies occurs,
first of all, by u heat transfer, and secondly, when work is done on the gas
(or by the gas on exicrnal bodies). Work is done by the gas only when there is
change in the external parameters ay and for infinitely small changes in the
latter is equal to the quantity S W = ?Aidai’ (1)

vwhere Ai are the so=~called generalized forces.

If §Q is the amount of the heat communicated to the gas, then the change

in internal encrgy or the gan E (the kinetic energy of motion of the molecules
- 156 =




plus the potential energy of molecular interaction), by the law of conserva=-
tion of energy, is written in the form

dE==0Q —8W =8Q — 3 A, da,. (2)
As for the quantities Ai, let us note that for an arbitrary state of

gas they, in addition to 8y aepend also on the position and velocities of

individual gas molecules, i.e., on the microscopic state of the gas.

The issue becomes simplified if we consider the equilibrium states of
the gas and infinitely small departures from them. Then based on the familiar
fundaental theorem of thermodynamics, all internal parametere, including A.,
are single=valued functions of the external parameters a8 and energy (or tempera=
ture T) of the gas.

Usually, the generalized forces Ai themselves are taken as the equili=-

brium internal parameters. Thus, in the equilibrium state

A4=AT o .... a), . 6
E=E(T. a, ..., a,) ' “@
and equality (2) becomes dE =35Q = % Ai(T, a) da,. (5)

Relations (3) and (4) are determined by the microscopic structure of the
gas under consideration and called the equations of state.

Relations (3) are called thermal equations of the state of the gas, and

equation (4) is the caloric equation of state,

We will consider the case when the gas physically and chemically is
homogeneous in its microscopic composition and does not interact with any
fields (i.e., forces of gravity, electromagnetic fields, and so on are absent).
Then the only external parameter of the gas is the volume V occupies, and the
force A is the pressure p, so that the manifold of thermodynamic states is two=-
dimensional. Therefore d& = £Q = p 4V, (6)

If we consider a unit mass of gas, then the quantity V = 1/e is called the
specific volume, £ ia the density of gas, and the variable £ is the specific

internal energy of the gas.
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According to the second law of theruwodynamics, the quantity
1
CaS=T=p@etpd) (7)

is the total differential of the function S = S(V, T), called the entropy per
unit mass of gas.

Thus, the second law of thermodynamics is written as the equality

S [

where p, £ , S5 are given by the equations

p=pV. ), -
e=e(V, ), (10
S=S8V. 7. (1

From the second law of thermodynamics (8) it follows as equations of
state (9) and (10) are not independent, since the integrability condition of
relation (8) imposes the following restriction on them:

‘9 (1 %\_ 9 (1 d , p 108 _ g 0[P .
14 TBT)"'@T"(TW"’T)'_ or 'W—"pﬁ(’f‘);d (12)

If, for example, equation of state (9) is given, then condition (12,
defines the caloric equation (10) with an accuracy up to an additive function

of temperature.

Thus, in the state of thermodynamic equilibrium a gas is described by

the folloing variables: density /° —— the mass contained per unit volume; specific

volume V = 1/F ; pressure p == force acting on unit area; £ =~ the internal
energy per unit mass of gas; T -— gas temperature; and S -= entropy per unit

mass of gas.

By equalities (9) = (11), there are only two independent variables among

all these thermodynamic quantities.

From equality (8) it follows that
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Thus, for assigned equations of state (9) and (10), entrop; S is dete.zined
with an accuracy up to the additive constan:, which is canceled out if the
entropy is normalized by the Nernst relations S =+ O when T -+ O,

Equations of state of a gas (9) = (11) can be assigned also for a different
selection of independent parameters, for example:

Fopl. O aeell, s, T=T0.9; (14)

or

e i e e oge—

emep. V). S=Stp V). T=TGV). (13)

Under this assignment of equations of state, the second law of thermo-
dynamics (8) requires that the equalities

_d,_l(”. == 9. T"“"' V-1, ),
L Y arWw.S) , ap(v.S) (16)
* - v to@ =

or, correspomhngla},M-~ ’

F NV _ RV, pISEV) _ 0 V)
e NEEN -+ D T ==
‘oT(p,V) 0S(p, V) _ or(p VSEN _ LS _ an
‘Ba 0P av OV . dp ~ d[p V]

be satisfied.

2. Nonequilibrium states and processes in gases. In the noneguilibrium
state of a gas the fundamental concepts of thermodynamics -=— temperature, pres-

sure, and entropy == lose their significance.

Generally, a nonequilibrium state of & gas is not described completely

in terms of thermodynamic (i.e., macroscopic) concepts and requires microscopic
analysis.
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However, for the purposes of classical gas dynamics, the approach of
nonequilibrium theruodynamics is sufficient and generally accepted. Let us
imagine that a mass of gas under study is subdivided into large number of
elementary ceils of extremely small dimensions, each of which we will assume to
be in a state of thermodynamic equilibrium.

This assumption is warranted by the fact that the relaxation time of the
system decreases with decrease in its dimensions, so that for a small portion of

gas it is close to zero.

Understanding the term "point" in a gas to denote a "infinitely small"
volume in the sense indicated in subsection 1, we can thus introdﬁce for each
gas pcint at each time instant the concepts of pressure, temperature, and energy.
Now they take on the meaning of functions of coordinates of point and tine;

vt e e e -

PG i T<Tt 5 55 S=Su s b

As for density f’(x1, Xp1 Xz t) and energy £ -l€(x1, Xy X3 t), these quan-

tities obviously retain their significance regardless of our assumption.

And thus, the nonequilibrium status of a gas is undersiood as the absence
of equilibrium between individual gas particles, each of which itself is at

equilibrium.

From the assumption of equilibrium of small gas portion it follows that
the functions p(V, T), €(V, T), and S(V, T) satisfy the equation of state
(10109) - (101-11)0

Thus, when modified these thermodynamic psrameters satisfy the equations
of state of a gas which are defined for an equilibrium gas. This process is

called an equilibrium or reversible process.

Tne above discussion on relaxation time, however, does not afford a
grasp of the limits of applicability of thermodynamic concepts. This apprecia=-
tion can be realized on the basis of a more general gas model, the statistical

model.

Macroscopic consideration leads to the conclusion that thermodynamic

concepts of temperature and entropy are weaningful if the changes in parameters

characterizing a gas state for lengths of the order of the length of the free
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path of & gas molecuiz in space and for times of the order of {ime between
molecular collisions are small compared with these latter quantitiea.

let us discuss, as an example, cne-dimensional nonequilibrium geo flow.
Suppose u(x, t) is the gas velociiy. One of the approximations reducing Boltz=
mann's equation to gas dynamics equations assumes that temperaturs T and pres-
sure p satisfying the equations of state (1.1.9) and (1.1.10) can be introduced
for the treatment of a gas, but the momentum and energy flows are defined also
by ncnequilibrium components associated with molecular diffusion. For & materially
fixed gas particle in a momentum flow, instead of the pressure p we introduce the
quantity

R T R e o |
B Aol Al T A Lo F Lt b I 1)
and the energy flow is defined by the quantity
LS TR Py s
pu—,xg;da=pn—ua'-a-;~:ﬂ (2)

In this approximation the function p(V, T) satisfies the equation of state
(11.9); 4 and H are the coefficients of viscosity and thermcconductivity,

respectively, proportionz]l to the free path length of the gas molecules.

Hence it follows that if for path length and for times of the order of
the time between collisions changes in thermodynamic quantities are small, then

the approximation of equilibrium thermodynamics is valid.

Actually, for a large number of problems in the dynsmics of gases and
liquids, this requirement can be regarded as met. Ir this case process is
guasiequilibrium in nature and we can introduce temperature and entropy, whicn

will satisfy all thermodynamic relations with a high degrees of accuracy.

On the other hand, as we will see in this chapier, zones of abrupt and
rapid change in the quantities charactefiiing the flow arise in flows of gases
and liquids. In these regions we can ro longer neglect nonequilibrium compo=
nents in momentum and energy flows. However, these zones have dimepsiocas of
the order of the length of the free path of gas molecules. Therefore if this

length is small compared with the characteristic dimensions of a problem, we
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can represent the zone of nonequilibrium status as a discontimuity surface
partitioning the zonea of smooth ¢hange in flow parameters.

In this approach we assume that these parameters everywhere satisfy
thermodynamic reiations, and that the conditions for continuity of flows of
mass, womentum, and energy must be satisfied at the discontinuity svrfaces.
Thus, we will treat of discontinuous flows in gases and liquids whose viscosity

and thermal conductivity are sufficiently small.
In this chapter we wili consider principally exactly this cease.

Finally, for the case of sufficiently large coefficients of viscosity
and thermal conductivity we must consider norequilibrium components in momentum
and energy flows. It may be the case that this consideration will prove insuffi-

cient and we must ring in Boltzmann's integro=differential equation,

Thus, there exist flows in which temperature and entropy retain their
thermodynamic definitions, and all thermodynamic relations are satisfied; here
the regions of abrupt variation are treated as discontinuity surfaces of flow

parameters.
This chapter then is devoted to this type of fiow.

In an equilibrium process the following relation holds:

dS ) (de ,, dV\
?t--;-rz-‘(??""p_,{f)" e e (3) ]
or = .
as 1 4Q
FmTE ?

where dQ/dt is the heat inflow velocity to the gas portion under study.

If the gas portion uncer study is thermally insulated (dq = 0), the

equilibrium process is called adiabatic. For an adiabatic process

ds/dt = 0. (5)
Relation (4) does not obiain for & nonequilibrium process, and by the second
law, for a thermally insulated system dS/dt > O. (6)

Suppose the mass of gas participates in a nonequilibrium process, by excharnging
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heat with external bodies, In this case the second law of thermodynamics
demands that the condition

S+ L0 (7)

be sstisfied, where Se is the entropy of the external bodies., The quantity

dSe/dt can be considered as the flow of entrcpy from external bodies through
the gas mBss.

We demonstrate the calculation of entropy .Jlow dse/dt with the example

of the exchange of heat by 2 gas with a thermostat at constant temperature To'
In this case

‘d4s, 1 dQ
Tdt

=T E (8)
where dQ/dt is the amount of heat flowing from external bodies to the gas por-

tion under consideration. Therefore for the case of a thermostat as the externsal
body, the second law of thermodynamics requires that

S 1 d
%r>"r:'a% 9)

These considerations will be employed in our analysis of an isothermal gas in
gection IV.

5. Methods of describing flows. Fulerian and lagrangian variables.

The flow of a continuous medium can be described by two different methods.

In the first method, at each time instant we determine the parameters
of the gas state as a function of the coordinates Xy Xoo x3 of a point in some
fixed coordinate system. Thus, u = u (x1, Xpy Xz t) signifies under this
method of description the velocity of a particle present at time instant t at

the point (x1, Xy xj). Analogously, all the remaining variables ckaracterize

the state of the gas particle present at time t at the point (x1, X5y X

3):
This method of describing the motion of a continucus medium is called

Eulerian, and the cooi¢inates Xy Xy x3 are called Eulerian coordinates.

- 163 -

K



Another method of description, called lagrangian, presupposes the

assignment of thermodynamic quantities and velocity u of the gas for each parti-

cle as furctions of time t.

Suppose we distinguish the gas particie from other particles by means of
searching parameters Yqr Yo» y3. Then we seek all variables characterizing the

flow as functions of variables Yqr Yos ys, te.

Under this method of description, for example, the vector u(y1, Yor yj)
for fixed Vs Yoo y3 denctes the rate of translation in space of a wholly speci-

fic gas particle. The cooxdinates Yqe oo yj are called ]Aagrangian.

In most cases, we select as the coordinates Yqr To» y3 the Bulerian coordi-
nates of the point at which the gas particle exists at any specific time instant,
for example, at the instant t = O.

If we adopt this choice of Iagrangian coordinates Y0 Yo» ys, then we can
easily compute position of the particle also at the time iustant t f 0. Since

for fixed Yy Yo Y3 the velocity u(y1, Y1 V3 t) is the particle velocity, then

4

f=y+ [ 000 v 3 VT (=12, ). (1)
Q

Here X, = xi(y1, Yos y3, t) are the coordinates at time instant t (Eulerian coordi=
nates) of a particle which at time instants t = O is at a point with coordinates

X4o= ¥ ui(y1, Ypr Y39 t) are the components of the velocity vector u(y1, Yor Y30
t).
Formulas (1} shus establish a relation between lagrangian coordinates

¥y of the particle and its Eulerian coordinates.

Suppose f(x1, X5 x3, t) is any function of the Eulerian coordinates, and
f(y1, Ypr V39 t) is the representation of the same function in the lagrangian

coordinates. Then, according to (1),
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(y-}-.} 'G “‘t_)dt t) R{;)?i, (2)

where for simplicity we denote

e et

Y"‘{’er}'s} = (2], #s- xal : u—{sl 2, o).

Differentiating (2) relative to variable t (naturally, here we assume
the differentiability of f), we obtain

L YDy, o /(5 0 (3)

id

since by (1), x =y + gtud(. By the very concept of the velocity of a gas
particle u(y, t) = u(x, t) (here we symbolize different functions with the same
letter u: u(y, t) = in lagrangian coordinates, and u(x, t) -- in Eulerian),
therefore we rewrite (3) a3

3}? ‘)” dﬂ(x.

[} +uvnx. 0, (4)

where uy 1is the differentiation operator over the space in the direction of

the vector w:

l b4 :
e “V-—“nr+"ﬂz+ v (5)
Ordinarily, in gas dynamics all quantities are denoted by the same letters

both in Eulerian and Iagrangian representation. Therefore to avoid any confusion,

the quantity 2_'{.(.;.)2-1‘2 is denoted by -d—fg(%—é—). Under this notation, formula
(3) becomes

- +Vf +"ar' (6)

The quantity df/dt is equal to the total time derlvatlve of the function f along

the trajectory of particle x = y f/ud'( and is called the substantive derivative.
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By formulas (1), specific BEulerian coordinates correspond tc the Iagrangian
coordinates y, t, and this transformation y, t =~ x, t is unique. The inverse

transformation x, t =¥ y, t is not, generally speaking, always defined.

Actually, we can easily imagine a case when gas fills the entire space
Yys Yoo y3 at the time instant t = 0, but as the result of motion at t > 0, some
portion of the space Xy Xoy x3 proves to be free of the gas. This means that in
this portion of the space for a given t > 0 no ¥q1¥gs y3 values correspond to the

coordinates Xy9 Xos x3.

As we will see below, the condition for the mutually unique mapping x, t ==
¥, t is best in the form fP(x, t) § 0.

4. Equations of state of gases. Ideal gas. Van der Waals! gas., Normal
gas. Limiting ourselves to these brief remarks on methods of describing the
motion of gases and liquids, let us dwell briefly on several of the simplest equa=-

tions of state of gases.

The term ideal gas refers to a gas for which Clapeyron's law is valid:
PV = RT, (1)
where R is the gas constant per gram. Then from the relation (1.1.12) it follows
that -

—ov Ty or £ =£(1), (2)
i.e., the internal gas energy is a function solely of temperature; here the speci-
fic heat capacity of the gas cy " —:—75_— _—_cV (7) 1is also a function only of

temperature.

A gas is called polytropic if Cy does not depend on temperature. Then
£ = ol (3)
i.e., the internal energy is proportional to gas temperature.

The kinetic theory of gases leads to equations of state of a polytropic

gas on the following assumption:

1) The potential energy of molecular interaction is negligibly small com=
pared with the kinetic energy of the molecules. A8 & consequence of this assump=
tion, the energy of a given mass of gas is the sum of the kinetic energies of

the gas molecules comprising it.
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F 2) Only pairwise collisions between molecules are possible, and they
‘i » occur under the laws of elastic collision. The internal molecular structure remains
3 E unchar.jed and overall momentum and kinetic energy of the molecules are conserved. ‘¢
3 : The second approximation denotes, in particular, that the volume of the
i

molecules themselves is small compared with the volume occupied by the gas.

The kinetic theory yields the following expressions for the coefficients
Cys cp, R of the equations of state (1), (2) of an ideal gas:

w=Thm N
Rety—ey. 'O

where f is the number of degrees of freedom of the molecule (f = 3 for a monoatomic

gés, £ = 5 for a diatomic gas, and so on), k is Boltzmann's constant, N is Avo-
gadro's number, and M is molecular weight.

Taking account of equation or state (1), from the fundamentsl relation
(1.1.13) we have

S"‘"v‘“T+Ran+const-—chnT+c’|nV_ -‘ G
4—cvan+co t=cvlnp+c,lnv+con,¢./ (6)

- et il

The simplest correction to the equation of state for an ideal gas, associated with

the allowance for molecular volume and forces of molecular attraction, is given
by Van der waals' equation:

RT ' a :
P=y=s T | ™

Here a is a quantity proportional to the force of attraction of the gas molecules

4 and b is a quantity proportional to the volume of the molecules themselves.

We can analogously derive expressions for & and S:

b = [amar—g, 1 (8)
S=J'c".:.n dT 4 lin(V —b)--const. ! (9)
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If some gas element is subject to slow expansion or compression such
that heat exchange does not occur with the ambient environment, the elemént exe=
cutes adiabatic transition from one thermodynamic state to @nother. Here the
slow process is reversible and the entropy of the element remains unchanged.

Therefore this transition is called isoentropic.

Al]l thermodynamic states through which a given gas element ‘paasea;:in this

f

0

case will lie on the curve S = const, " (10)
which is called Poisson's adiabat.

For an ideal polytropic gas, as readily follows from (6), the equation of
Poisson's adiabat is of the form

. . S !
. Y ; s
'2'.”'?"". Y-—"—'-c—c: =1 +¢—ﬁ- >1, Al= A’(S)=a’c“’=const. (1)

A

We can readily see that the following relations hold along Poisson's
adiabat for a& polytropic gas (Figure 2.1):

_gg_t___c_ip_!v.:?)' ~<0 _ (property I), (12)
Up

ap _0pV.S)

.dvi ) .W' AN (property II). (13)

Thus, Poisson's adiabat p = p(V, So) is a curve monotonically decreasing relative
to ¥, with its convexity facing downward. It is easy to see that the axes V = O
and p = O are asymptotes of Poisson's adiabat, i.e.y p =+ 0 as V = o° and

p =% oo as V —* O (property III).

If some gas element is subject to compression or expansion such that .ae
temperature of the element remains unchanged in the process, the transition made

by the gas is called an isothermal process.

In an ideal gas undergoing an isothermal process, V and p are associated

by the relation

:["Péé"é‘#"ﬂ ; == (¢, —¢y) T = RT == const. (14)

Therefore in several cases an ideal isothermal gas can be formally regarded as a

polytropic gas with exponent Y = 1.1
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S=const
S=const

T=const

T=const

Figure 2.1 Figure 2.2

Curve (14) is called an iscthermal. It satisfies all three properties of
Poisson's adiabat. The isothermal T and Poisson's adiabat A intersect in the V, p

plane just as shown in Figure 2.2.

Thus, isotherms and Poisson's adiabats of an ideal gas form a regular net

in the V, p plane.

Clearly, equations of state of an ideal gas provide for the satisfaction

of the properties:

ap(V. S) (property IV),
5 >0 (15)
__ .
bv=""r G (property V).

Van der Waals' gas isotherms satisfy properties I-III now no longer in the

entire phase space V, p (Figure 2.3).

Property II can be violated in the square A'CB', and property I in the BCA
square; in general property IIJ is not satisfied, since the straight line V = b
is an isotherm asymptote. ILet us note that the violation of property I expressed
by inequality (12) points to the impossibility of thermodynamic equilibrium.
Actually, let some volume of gas from which property I is violated undergo coumpres—
sion under the action of external pressure, which we will assume to be constant

and e :ceeding the inivial gas pressure. If the compression occurs slowly and if

) ; 3

ifif:%;Liq— > 0, the pressurz in the gas decreases, i.e., its drag relative to
2
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external compression is reduced. As & result, total collapse of the gas volume
occurs. Conversely, the volume of the gas exhibiting an excess of pressure over

the ambient environment must grow unboundedly.

Jf we now imagire a gas for which :2£%§5;_§) > 0, at thermodynamic equi-
librium and constant pressure then this equilibrium will prove to be absolutely
unstable, since the slightest departure from equilibrium leads to a situation in
which one part of the gas will be compressed, while another will be expanded
without turning to its initial state.

L)
|
[ )
o ———————

Figure 23.

The situation is otherwise in the case of & gas satisfying condition I.
In adiabatic compression it will increase its pressure and oppose compression.

On departure from equilibrium, fluctuations will arise in the gas, leading it to
its initial state.

Thus, property I is the stability condition of thermodyneamic equilibrium
and is satisfied for all real substances.

In the following we will limit ourselves to a consideration of gases whose
equations of state satisfy, besides thermodynemic relations in subsection 1 that

are valid for any substances, several assumptions not stemming from the demands

of thermodynamics.

Specifically, we will require that properties I-V be satisfied:
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d V=0 (13’)”
= f”“”‘ s (N)‘
: "’H I - (20)}

Additionally, we will demand that the region of variebles V, T in which proper=-
ties I~V are satisfied will be convex (property VI).

A gas whose equation of state satisfies properties I-VI will be called a
normal gas*)

Property I obviously denotes that along Poisson's adiabat A pressure p
decreases monotonically with increase in V; property II requires that this
curve phase convexity-downward; property III requires that v = O be the asymp=
tote to any Poisson's abiabat; finally, property IV denotes that Poisson's
adiabat corresponding to greater entropy lie higher in the plane of variables
Vy, p (cf Figure 2.1), i.e.,

B S

""s‘f?) > oOS(l;—rp)' (21)

PUSUERSRAVID U NAPSI PERGASIS 4

Let us consider the behavior & the surface S = S(V, p) in the three-
dimensional space of variablesV, p, S, assuming that the equations of state

satisfy properties I-V.

*) Relations I-V were formulated by Bethe and Weyl (cf [4]).
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In accordance with properties I-IV, each horizontal section of the
wrelief" of entropy is a monotonic convex curve with asymptote V = 0. Each sec-
tion of the plane V = constant or p = constant is a curve monotonically increas=

ing relative to p, and so relative to V.

Thus, any higher=tvins horizontal section is projected within the under-—
ying

lying section (Figure 2.4).

Based on relation (1.1.7): TdS = d& + pdV, it follows that by virtue of

v,
SV, N 1 V.1 ¢
o =7 =71 >0 22)
From whence ]
dp(V,T) _ 9p(V,S) 9S(V. Ty
- =8 o — >0 @3)

Taking formulas (21) and (22) into account, we find

as(v.7)
>0 (24)
The last inequality denotes that the isotherm and adiabats A form a regular net

of the same type as for the case of the ideal gas (cf Figure 2.2).
Differentiating the identity S = S(V, p) = S(V, p(V, S)) relative to the
variables V, 5, we get
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and differentiating the second equation in (25) relative to the variable V, we
find

Substituting (25) into (26), we 8Et o 'ﬂ
R L S B

——T e

iet us look at the pattern of variation in entropy S along the straight lines
P = p +at, V=V6+bt (28)
in the plane of the variables V, p.

The following statements are valid:

a) if a2 0, b > 0 (a < 0; b<0), then
ds =] d8 .
B850 (§<o) (29)

——

This follows from inequalities (21).

b) if (-"‘) = 0, then

(4!8") 5

_dp-t-t. ‘6—0 +2Wab+-5-‘;—b’<0 (30)

- e g
~935 . 35, Js _
Actually, from ( )6 e ()Pa,« 5 b 0 we have 55 = kb,
-,,g‘ = ~ka, where k is some proportionality constant. Substituting b = —é% »

P)

-é 35 into (30), we get (27).
¢) if 42 < O when t = 0, then dS/dt <0 when t > O.

Let us assume the converse. Then there exist 1;1 > 0 and &€ > 0 such that
dS/dt < O in the interval 0<t< t1, ds/dt = O when t = t,s 4S/dt >0
when t, <t < t, +E. Therefore, d S/dt 2 0 when t = t,s which contradicts
property b). The assertion is proven.
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We note that properties a), b), and c) follow readily from the nature of
the "relief" of the function S(V, p) (Figure 2.4).

By virtue of properties I and II of Poisson's adiabats, the ray passing
through the point Vb, P, of thc =2diabat S = So does not intercept it at any point
if it lies in the first and third quadrents (Figure 2.95), and intercepts it at
only one point if it lies in the second and fourth quadrants (here we include the
case when the ray is tangent to adiabat A, and then we will regard the tangency
point as a paired points.

In the first case S is a monotonic function of the parameter t, in the
second case S has 8 single maximum. The point of the meximum is the point of

tangency by the ray at some adiabat.

Figure 2.6

Here let us note the following: the point S = Smax at the ray divides into
twe halves, so that an arbitrary adiabat intersects its uprer branch in the upper

Lalf, and lower branch in the lower (Figure 2.6).

In the upper nalf of the ray we have

:' 0 G's 'ux‘ia-.m'.' -
2T R V<V (51)

1

and in the lower half of the ray the opposite equality holds

%ﬁ>-§5€;"; N}Vm,g.v,‘ (32)

(R
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Section II. Integral laws of conservation. zguations of the hydrodynarmics of

one=dimensional flows

1. General agsumptions on the flow of compressible gases. We wil represent
the motion of a gas as the motion of a continuous medium in the three-dimensional
space X9 X, xj. In accordance with section I, the motion is wholly determined
if we know the guantities u = u(x, t), P=F(x, t), p = p(x, t), £ =€(x, t),

S = 8(x,t). Almost everywhere in this chapter we will assume that internal fric=
tion and tvhermal conductivity are absent in the gas, i.e., that the particles of

the fluid are thermally insulated from each other.

Under these conditions each element of a fluid does not participate in heat
exchange and does not lose its energy in friction, therefore for smooth changes in

state the entropy of each element was remained constant.

Still, we must take particular note of the fact that this consequence is
valid only for slow, smooth changes in the parameters of the gas particle. there-
fore, if a gas particle abruptly changes its thermodynamic parameters, its entropy

no longer remains constant in time,

In accordance with section I, we assume that everywhere, except for the
discontinuity surface the flow is sufficiently smooth (quasiequilibrium). There=-
fore the particle changes its entropy only by intersecting the discontinuity sur=-
face; away from the discontinuity surface the concepts of temperature, pressure,
and entropy are defined, which together with the given equations of state satisfy

all thermodynamic relations.

And thus, we will consider a fiuid devoid of internal friction and thermal
conductivity; however, the flow particles can change their entropy by intersecting
the discontinuity surfaces. In actuality, the discontinuity surface of the flow
parameters is a narrow zone (zone of nonequilibrium status) in which the effect
of viscosity and thermal conductivity are substantial, however small they may be.
Actually, as we have already pointed out in section 1, entropy changes defined by

the quantities { div u, M grad T, which are finite in this narxrow zone.

When in fact we considered these zones of large gradientsus discontinuity
surfaces of thermodynamic parameters, we avoid any detailed consideration of non-
equilibrium flow in these zones; however, let us consider this nonequalibrium status
overall, which in fact leads to an increase in the entropy of a particle when it

intersects a discontinuity surface (nonequilibrium-state zore).
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As a consequence (of section V), we see that allowing for viscosity and
thermoconductivity in a fluid and the further passing to the limit as A, H = 0
lead us exactly to this flow pattern.

and thus, flows of a fluid to which we will in general consider here are
limiting flows of a viscous and thermally conducting fluid as the coefficients of

viscosity and thermal conductivity approach zero.

On the other hand, a detailed description of flows requires the employment
only of general laws that are valid simultaneously both for equilibrium and for

nonequilibrium processes.

Such laws are the fundamental laws of conservation in physics; the law of
conservation of the mass of a fluid, the law of conservation of momentum, and the

law of conservation of energy, whose derivation we commence in subsection 2.

2. laws of the conservatioun of mass, momentum, and energy in a three=-dimen-
sional space. We will study one=dimensional flows of compressible gases. However,
in order to achieve a unique derivation of egquations for different forms of flow
symmetry (plane, spherical, and cylindrical), initially we obtain equations for
an arbitrary three-dimensional unsteady flow, and then from these we derive the

equations of interest to us for one-dimensioral flows.

Thus, suppose the gis moves in a three-dimensional space with Cartesian
coordinates (x1, X5y x3) measured off in some fixed system. We will call such

coordinates Rulerian.

We will assume that external forces acting on the gas are absent and that

in the space occupied by the gas there are no sources of mass, momentum, and energy.

Suppose G is some part of the space (x1, X9 x3) bounded by a closed
smooth surface )fG. The amount of gas present at time instant t in the volume G

is equal to the quantity

J j foas d;d;,=o;p<p.},da.-(‘ (1)

In formula (1) let dG denote volume of element and P == a point with coordinates

(x9s %0 xB).
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18 equal to the increment in the mass of the gas in the volume G during zhe time
interval from t = t1 tot = t2.
Since sources are nonexistent in the volume G, the increment in the mass

of the gas (2) must equal the gas mass escaping in the time interval from t = t

tot = t2 through the surface J _ of the volume G.

G
We let dX stand for the vector that has the direction of the external

normal to 3 and that is equal in magnitude to the area of the isolated small piece

of surface £ ., Through the area dX there flows per unit time into the volume

G 8 mass of gas equal to the quantity -=PudX . Therefore equating the quantity (2)

to the amount of gas flowing into G, we get the eaquation

LTRSS WY S

_(P t,)mgﬁl’ t,)ld0+ J’ (I padz]dt— i (3)

lrh:"'

Bquation (3) expresses the law of conssrvation of a mass of gas.

Change in momentum in the volume G during the time interval from t = t1 to
t = t2 is equal to the quantity

";"Jn'{p;";,‘;-—(jlr*]dom oj pul a‘O ; @)

i .. o |

and is due to the gas escaping from the surface EZG.
momentum

This gas transports the

-
‘ -, e

[ [ pu(-@)]dt 5)

and the increment in momentum is also due to the pressure forc.s p exerted by the
é remaining mass of gas onto the gas in the volume G aliong the normal to the surface

2:0. The total womentum of the pressure forces acting on the gas in the volume G
is equal to the quantity
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Equating the quantity (4) to the sum of the quantity (5) and (6), we get an integral

relation expressing the law of conservation of momentum:

.'4“1$.£’40+ f rf pdﬁ-&-p-(ndz)]dtso (7)

B itk

In our derivation of relation (7), we used the fact that momentum sources are not

present in the volume G.

The value of momentum in the space G is a vector; therefore equation (7)

contains three scalar equations for each of the momentum components.

o2
The energy contained per unit volume is equal to /o(—;_i + &) the quantity
' (

is equal to the increment in the total energy in the volume G during the time inter-

val from t = t1 to t = t2.

moving gas in the quantity

This increment is due to the transport of energy by the

i [{rrg)a]e )

and due to the work done by the pressure forces p..

The torce -pdJ exerted by the surrounding gas acts on the gas in the volume
G across the surface element dY ; gas particles at the surface ZG move at a velo—
city u. Therefore per unit time the pressure forces perform work on the gas,
f pudZ , and the total work done by the pressure forces in tie time interval

fz?gmt-t to t = ¢

1 2 is given by the formula

-.- ’J’{, LJ; pudz]dt.j (10)
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Equating the quantity (8) to the sum of the quantities (9) and (10), we
obtain an integral relation expressing the law of conservation of energy:

(11)

In the derivation of (11) it was assumed that the gas has no thermal conduc=
tivity. Forrmlas (3), (7), and (11) mathematically express the laws of conserva-
tion of mass, momentum, and energy for gases devoid of friction and thermal conduc-
tivity and are the fundamental equations defining the motion of a gas.

Equations of state of the gas are added to the equations (3), (7), and (11).
For example, if we give the relation p = p(V,€ ), V = 1/p, (12)
then the problem of determining flow reduces to finding five variables:; three velo~
city u components and two thermodynamic variables; 4 and & , since by (12) p is

function of ° and €. To this end, we make use of five scalar relations (3), (7),
and (11).

Let us incidentally note that the equations of state can be assigned in any

form of those considered in section I, and not necessarily in the form of (12).

The vector pPu is called the mass flow vector, and f’u(f.;F” + ,“zf ) is the
energy flow vector; the tensor
- Me=dup tpnnng
is the tensor of momentum flow.
Now we will proceed to a closer gitudy of one-dimensional flows, i.e., flows

in which the quantities u, £, p, & depend only on a single spatial coordinate x
and on time t.

We will discus3s three cases of one-dimensional flows;.

1) Plane one-~idimensional flow, when the quantity w, # , p, & are constant

in the planes x = X, = const; u :'{u, 0, O }. We will call this situation the
case of plane symmetry.

2) A cylindrical one-dimensional flow (case of cylindrical symmetry).
In this case u, £, p, & are constant at the cylindrical surfaces x = /lf + z;
= const (for fixed v). Let us assume
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=
I X3

uan(x, t){:?. 7‘

3) Spherically symmetric flow (case of spherical symmetry) is obtained
if the following formulas hold:

\ b= o(x._t). p= p(x.t)...';

3. Integral laws of conservation for one-dimensiona. iIlows in Eulerian
coordinates. For the case of plane one-dimensional flow all the quantities depend
only on x an? t. Integral laws of conservation (2.2.3), (2.2.7), and (2.2.11) are

rewritten in form#*)

[ofax+ [ pu["at=0 m
Xy h 4 = ] .
is the law of conservation og‘ gxass,'] _

} jpa{: dx+ J:'[p+pa’1|"dt=0 @
ot ' b . *1 .

is the law of conservation of momentum, and

[ple0oes e 545,

l"

dt=0 (3)

-— e e - ot

is the law of conservation of energy.

In equations (1)=-(3) x, and X, fix the isolated volume G, and t, and t_ are

arbitrary instants of time.

#) In the follcwing, we will understand X, and X, to refer to two values of the
single coordinate x, and not too different Cartesian coordinates considered in the

preceding subsection.
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In the case of cylindrical symmetry we obtain integral relations, by writing
the laws of conservation (2.2.3), (2.2.7), and (2.2.11) as applied to volume G
shown in Figure 2.7.

In view of the constancy of all variables at the cylindrical surfaces x =

const, the law of conservation of mass is written for volume G in the form

. . = g
2at | p|"xdx+2azj(pax)|'dt=o
S oom B

or, after canceling out 2¢.1, in the final form:

:,W— Tt,
I pl:"xdx+f(phx) ,:,dt=0. (4)

The integral law of conservation of momentum is derived in somewhat more complex
fashion. Let us write equality (2.2.7) ac applied to volume G (Figure 2.7) only
for the component of momentum in the direction of the vector e. At once we note
that for these two other directions orthogonal to e equality (2.2.7) reduces to
an identity.

:ﬁ = e 1‘
y y
i ‘
: I} 1
| s |
,z'-.z" I'J" ‘

Figure 2.7

By virtue of (2.2.13), fpPu,d G  is written in the forr

-

Ipa, d0=2!fcoupdq> f’p&xdx=
o o

x

Xy
=2sina I puxdx.

X
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The integrand in j/"ue (u ) 1is distinct from zero only for the parts x = X

x = x, of surface ZG; therefore

2

j pa, (uaz) 2 gl;y: lpn’xlr

Finally, the components of deZ in the direction of the vector e consists
26

of two terms: integrals over the parts x = X4y X = X, of surface Z el

SR T T e

¥ f cos ¢ do [p,c [:]= A slna[px[]

b mr—— W -

and integrals over the parts ¢ = & surface X, (Figure 2.7):
\T

. Xy
—2isina J' pdx.
SR

Substituting all these expressions in (2.2.7), we obtain after canceling
out leina(, the final fo.aula:
R
flm, xdx+flcp+pa0x1[dt— jpam 5)
\J. 1y Yi!. s g ‘
The law of conservation of energy (2.2.11) as applied to volume G for a flow wiir

cylindrical symmetry is written in the form

~ — " e D e S S 1»-?

f 5 m+J e 79 et ©)

no N - JRDUR SR . S

And thus, relations (4), (5), and (6) afford a representation of the lawe of con=

servation of mass, momentum, and energy for a flow with cylindrical symmetry.




For a spherically symmetrical flow, the laws of conservation of mass,
momentun, and energy are written for volume G excised from a right cone with an

apex angle oL by the spheres x = x, and x = x, (Figure 2.8).

1
Operations analogous to those just concluded, lead to the following equa-

tionss

;“' adiosl "W : T T ki =
: r!‘x+ touit)| di=0;7"
.‘qﬂjﬂi i ‘i‘ 'Irl ': N "J i .,i

| x’lx-ﬁl l(&!-l-pfl’la"l[fl ; [ 2éxdx3r. _‘_'_(a)

. : .:f’ i o ]

: PERss b‘m'&‘, ﬁz ‘.‘I.l‘&‘:'" b ft PR \ “ )
5 r[gi;ﬁ Qﬁ) tk’f}f%- fyw}e-}- +“f,- Kdt:_o ’(9,)
o T " o

Fow it is easy to note that for all three cases of homogeneous flows the laws of

conservation of mass, momentum, and energy are written by the general formulas;

RS

o PN, L"TT\:‘{ ) R AT A
AR xsf;:-»mr m'&» TR 2 AR 3
iy nnniey ,“x }M’)ﬂ'dté}% (l(» :
LA e -.i W EREY L '.'."». LRSI
¥ ,fu Yt ‘H"'\ R S A :
! W, #L11 ,ev].l:at=] [ vpx»’-'dxat (n)
{34 ‘tu n’ h oo o

b
RIS DIt S
nf? b "' q&' & ST LR Y %}

f .
T

.

LI PR Coe—

In the formulas (10)~(12) we wust set v = O for the case of plane, v =1 for
the case of cylindrical, and y= 2 for the cese of spherical symmetry of flow.

Let us consider in the plane of variables x, t the rectangular loop C and
the domain G, it bounds (Figure 2.9). Obviously, equalities (10)=(12) can be

rewritten as




e R R T ki b

- I O

§px'dx pux"df-o 7"(i3)‘

fpax'dx-(ﬁ-pﬁ’)x'dté

' - : . .»A“’.‘ ‘%--'. 'g-— f("cf vpr—Idxdt (14)

Ll e
i : ‘ -pa(e+ +—§-)x'dtz=0 (15);=

Figure 2.9

if the loop ¢ is of the form shown in Figure 2.9.
In its phys:.cal meaning the quantities f ‘FXVdx . / Pax’dx
and IZZ,O (E+ “ )x4x are continuous functlona of the variables t, x,, and x,,

-t
and{ /’al"dé, J; (p+,auz)de£ , and .{ rd (f+?f_’4_g_)d+,

are continuous functions of the variables x, t1, and t2' Therefore, assuming at
the quantities u, £, £ , p are bounded and piecewise=continuous functions#*) of
the variables x, t, we conclude that the relations (13)=(15) will be satisfied for

any close piecewise=smooth loop C and the domain G, bounded by it.

c
4. Integral laws of conservation in lagrangisn coordinates. Suppose r

denotes the initial position of a gas particle, for example, &' the time instant

t = 0, and suppose x = x(r, t) is the position of the same particle at time instant

t. The lagrangian coordinate r in the Eulerian coordinate x are related, as we have

seen in subsection 3 of section I, by the relation

*#) For the case of spherical and cylindrical symmetry, the boundedness can be
violated at the straight line x = O. This of course is not central to our follow-

ing treatment.
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) xqr+ u(r. (1)

In (1) the velocity u = u(r, t) is given as functions of lagrangian variables.
Prz 8 known velocity u(r, t) equation (1) defines the particle trajectory.
riously, the mass of gas enclosed in the volume bounded by the sections x =
x(ro, t) and x = x(r, t) remains constant in time.

Ob~

Therefore we can write #);

"v:fh’ ‘," L ub;é : AL : ;‘, '.‘ e '-.":-
b ("’)""’x-fpo(f)r'dréMa-wut.%
|2t ) - = SR

(2)

Cinema e

where /oo(r) denotes the density at the time instrat t = O.

Differentiating (2) relative to r, we get

‘V P(’.

(3)

since, obviously, /2 (x(r, t); t) = AP(r, t).

Formula (3) shows that mapping of lagrangian coordinates are onto Eulerian
coordirates x is mutually unique given tne condition P (r, t) # 0.

In the regions where f= 0 (vacuum regions) no lagrangian coordinates r and
t correspond to the points x and t, i.e., no flow trajectories pass through these
points.

By formla (1)

AT :
LED vy, p, (4)

Therefore from formulas (3) and (4) we conclude that the transition from Eulerian
coordinates x, t to lagrangian coordinates r, t is given by the relation

*) The quantity M has the dimension of mass only of the case of spherical
symmetry.

- 185 -




L;; Lo ’:(':)dr+a(r.l)dt (5)

The substitution of formula (5) into the law of comservation of mass (2.3.13)

transform it into an identity. However, from (5) follows the integral relation

gy

- — w

fx"v'di";;ﬁ{’ e 2 =0, ‘ (6)

e O S —— "

wrich is equivalent to the law of conservation of mass, since it is a consequence

of relation (2). In inequelity (6) C is an arbitrary piecewise=smooth closesd loop

in the plane of variables r, t; x = x(r, t) is defined by using formula (1).

Let us note that equslivy (6) is &lso called the integral law of conserva=
tion of the volume occupied by a gas.

Converting from variables x, t to lagrangian variables r, t in equation
(2.3.14), ve get

re

‘fv'l—&f ’ % .
§ f‘#i—p&?(r. t)dt==A- ) ,px'-‘dto‘(’- ) dr

‘ .;l.-,' ; i Oe o
i .,'.yﬁ. & g I vax”t O_S_ dtdr== D
) i ; e 1 2 '-‘") 1

IR, T THESPERANRRT e e '
P R s B 77_"!-‘ x(-r) o n ddr @
SR T e s bz, s W@ e e ' '

which is the equation of conservation of momentum. In formula (7) C is the loup

of the plane r, t, and GC is the region of these variables bounded by it. Finally,

the law of conservation of energy (2.3.15) is written in lagrangian variables in
the form

o ey —— -

t i(e-i—-f)p.,(r)r'dr-—apx'(r. t)dt==0 . (8)
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Equations (6)~(8) constitute the laws of conservation of volume, mome tum, and
energy in lagrangian variables.

The laws of conservation (6)=(8) become somewlat simplified if we :introduce
the notation

P E r

e
V. 0=V=m; q=q(r)=jpo(r)r"dr. (9)

B . 0

The variable q coincides with M and is called the mass lagrangian coordinate.

Converting to these variables, we get:

Vdg+ x(q. Hudt=0, (10)
§u&q—px”dt=—jj‘3%!dqdf. (1)

Q¢
: ﬁ(t+%’)dq—avadt=0. (12)

In equations (10)=(12) C is an arbitrary piecewise-smooth closed loop in the plane
of variables q, t.

5. Differential equations one=-dimensional flows. Iet us assume that in
sce region of variables x, t the functions u, £, p, £ describing gas flow are
continuously differentiable. Then by Green's formula the contour integrals in the
equalities (2.3.13)=(2.3.15) are transformed into integrals over the region Gc;
here the integrands will contain the first derivatives u, # , p, and £. In view
of the arbitrary mass of the region GC’ these integrand expressions must tend to
sero. Therefore for smooth flows (u, £, p, £ & C1), from the condition that the
integral of laws of conservation (2.3.13)=(2.3.14) are satisfied follows the ful-
fillment of the differential equations
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Differential equations (1)-(3) are written in BEulerian coordinates x, t and are
valid for smooth flows. Analogously, from the laws of conservation (2.4.10)=
(2.4.12) fcllow differential equations in lagrangian coordinates g, t:

. a7 “"a -
' ‘5?"%’7"“"’ =0, 0

T = ®
-‘;:—(e +"7’) —I--‘;’T(ava) =0. . - (6)

In equations (4)=(6) the Eulerian particle coordinate x must be considered
as a function of lagrangian coordinate q and time t, i.e., x = x(q, t); from

formula (2.4.4) we obtain & differential equation for x(q, t);

Equations (4)~(7) describe & smooth one-dimensional gas flow in lAgrangian coordi=-

nates.

Equations (1)=(3) are transformed to the form
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where § is the entropy defined by the equation 7ds = 4 + pdy. Analogously,
by combining equations (4)~(7) in lagrangian coordinates, we cb*ain

This equation shows that entropy S of each gas particle remains. constant in
time through the entire region of flow smoothness. Hence it follows that if the

flow is smooth, the entropy of each gas particle remains constant.

we note that if the gas exhibits finite viscosity and thermal conductivity,

equations (1)=(3) for a viscous thermally conductive gas are replaced by the follow-
ings

!
i

"5‘“””’+%:["’(P+“’*—»*T)\=”“”"(" —kg). 1D

URRYE Il

f B e a0 )
-

| -a,é-[r‘n(c—i-%);ll-é—[ "oa(z-i- +-§-)-—|Ax“u-a—]_

!

14

;._;

O S A P Lo 2B

where M4 > 0, 3{ > 0 are the coefficients of viscosity and thermal conductivity,
respectively, and T is gas temperature.

The corresponding equation in the [agrangisn coordinates are of the form
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Now, by combining -- on analogy with the preceding == equations (11)=(13), we

findg
s 0 i (my L L2
," o ox  “Tp \dx ,T-x"’o’-ﬁx- x -
or, in Lagranglan céérdmaueé? ]_ : Y R P

prtiasar SR

From equations (17) and (18) it follows that for a thermally insulated gas mass
exhibiting viscosity and thermal conductivity, its total entropy does not decrease

vwith time t.
Actually, by writing equation (18) as

e - e ek,

e a7 )

"1“‘('&7) +3?"" "‘TW"'

anG integrating it within the limits from q = q1 and q = qyy we get

0
%—Is(q.ndq=

L[

el e e@le w
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Denoting S, :fZlS(q, t)dg as the total entropy of the given mass of gas,
we obtain from(20)

LR

Ay W
@l

Lt Ly

(21)

where W = —J[I"F ;a—qz is the heat fiow ana the quantity W/T is the entropy flow.
Thus, inequality (21) indicates that for a given mass of viscous thermally conduc=
tive gas the output of entropy exceeds its inflow through the boundaries of this
gas mags. If the mass of gas enclosed between the sections q = q1 and q = L) is
thermally insulated, then ]{5‘1}_ Z%'P = 0 for q = Qg9 Q= Qe Therefore from (2Q)
[ follows that ds, /dt = © (22)

Thus, if we consider the motion of a gas devoid of viscosity and thermal
conductivity as the limiting motion of a viscous and thermally conductive gas as
A =+ 0, then from equations(17), (18), ('20) follows that S(q, t) = S(a, 0)
only for the case when /ﬂ-j—g— — O,/ﬁ %J'E;T - 0, a8 My, JH =+ 0. A8 we

will see later, the motion of a gas devoid of viscosity and thermal conductivity

' is not smooth, since within the ges there form regions where the gradients au/bq,
': 27/ q are not bounded. por this reason, if we are considering flow of an inviscid

and nonthermally conductive gas as the liriting flow when M, == 0, the conser=

vation of entropy S for each gas particle obtains only as long as the particle

trajectory is in the region of flow smocothness.,

E:
E

Bat if the particle trajectory passes through the zone of unbounded gradients
or else through the discontinuity surface of the hydrodynamic variables, the entropy

of this particle increases.

This principle of entropy increment when a particle passes through a dis-

continuity surface (zone of nonequilibrium status) will be employed by wus in
the following (section IV) in sele.ting stable discontinuities when we investigate

the flow of a gas devoid of viscoeity and thermal conductivity.

Now let us note that for a unique determination of flow we must add to equa=
g tions (1)=(3) or to (4)~(6) for an inviscid and nonthermally conductive gas, and
; also to equations (11)=(13) or (14)~(16) for a gas with viscosity and thermal
conductivity, equations of state of the gas. In the following we will assign equa=-
tions of state in one of the following forus:
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‘;":‘p(;‘ T, 'e-—m;a n; (23)
e—-e(p ?2.; or p=p(ryE&); (24)
e—e(V 5:)_“1’ PV, $)¢ or p=p(P, s) (25)

Fquations of state can be givea in any of these forms, however for the case of

the gas with viscoaity and to thermoconductivity it is especially convenient to
enploy them in the form (25), since this law is to select temperature T as the

main thermodynamic variable.

For the case when various gases participate in the motion, we must assume
that these functions are distinct in regions occupied by the different gases.
Since these regions are not known in advance, we cannot, in general, assign these

relations as functions of the Bulerian coordinates x, t.

1et us ilote Lere ihe advantages of lagrangian coordiniates in which the
equations of state (27)=(“)) can be assumed to be assigned in the form of functions
of q, t, for example; E=E(Vy Py Q). (26)
In this case function (26) must be assumed to be continuous relative to variable q

at the points q = qi = const, which are the interfaces of th: different gases.

6. study of equations in Eulerian coordinates. (Charazteristic form. Charac=
teristics. We will assume that the equation of state is given in the form (2.5.25);
- . hen .
p=p(Py S)e T Laﬁ op g
?F'dx +3s ox .
Substituting this cxpression into the system of equations (2.5.8)-(2.5.10), we

obtain equations of one-dimensional flow in Fulerian variables written in the form

o , opu vou
. Ou Ou | dp dp , 10p a8
(@t e tew e w=0 i
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Iet us reduce the system of three quasilinear equations (1)=(3) relative

to three unknowns £, u, S to the characteristic form. To do this, according to

3

section II of chapter one we must compute the roots 51, 52, E . of the equation

u— E r 0.
£ a—b g8 [=@—P—pu—p=0. (4)

9
0 0 u—¢ o,

Z
£

28 we already stated in section I, we will sssume that

269 0. @)
Then denoting op(o. S
a=dp H=2E3, ®) :‘

let us write equation (4) in the form

(w— Bl — P —A=0, (7)

from whence we get:

§|==U—F; 52_—_11; §3=u +-C; (8)
E<i<i >0

Ana thus, provided condition (5) is satisfied the systiem of equations (1)=(3) is

given by a hyperbolic systenm.

In section I we saw that the condition g%g = - \/2 5?5 > 0 is the

stability condition for the thermodynamic state of a gas. This same condaition

insures the hyperbolicity of equations in gas dynamics and, therefore, the correct=

ness of Cauchy's problem for gas dynamics equations. If however f?;' <. 0, then

cauchy's problem for the system (1)~(3) would, generally speaking, be incorrect.

1et us reduce this system of equations to the characteristic form. To this
end, multiply equation (1) by the quantity -cAP y add iv to equation (2), and to
S the result add equation (3) multiplied by the quantiiy -F% §%§ . Then we
arrive at an equation in the characteristic form.
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. (9)

The second characteristic equation corresponding to the cigenvalue gz = u is

equetion (3): 3s/5t +uwds/sx =0, (10)

and the third is obtained by miltinlying (1) by ¢/f , adding the results to (2),

after which equation (3) multiplied byié; f%g is added cnto the result. So we

obtain a third equation in the characteristic form;

Fretosr+i[F+ero®]+ .
+,,',%§[—&-+ te ) v (11)

]

Thus, equations (9), (10), and (11) constitute the characteristic form ol gas dyna-=

mics equaticns (1)=(3) in Eulerian coordinates. The quantity
c=co. S)=1/3P(_§Pv )

is called the speed of sound, since small perturbations iu the solution are propa=
gated along the characteristics; but the inclinations of the characteristics are
the quantities u - ¢, u, u .- 2. Therefore small perturbations are propagated
relative to the substance at the velocity O, 4c(/, S). Integral curves of the

equations

Sms—c s Feaie (12)
are called characteristics of the system of equations (i)=(3) or {9)=(11), where

the line dx/dt = u is also called the trajectory.

By equation (10) the entropy S is constant along the trajectory. We obtain
a conclusion that we already noied above; the entropy of a particle remains con-

gtant as long as the flow is smooth.

5ince ¢ >0, the characteristics dx/dt = u = ¢ of the first family relative
to the subetance move leftward with time t, while the characteristics of the

third family dx/dt = u 4+ Cc move to the right relative to the substance.
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Finally, let us note rurther one form of the notation of the characteristic
sysienm (9)-(11) which is often encoantered in the literature;

T ———— 8 T —— e

dx‘m(l—-—c)ﬂ.fdga-id,».*.é. ;LS‘
dx=iadt, ds-o“ s

Ty . AT

Ardad 4 (13)

sn(-+c;g£ ol ¢p+-3§-p;"“ -.fqé.? .

In this notation it is indicated along which lines differential relations

between the desired functions are satisfied.

7. Isentropic and isothermal flows. Riemann's invariants. 3uppose %hat
wie initial values of the gas dynamic variables are assigned at the straight line
tm0; umuy(z), P=F(x) S =5,(x)e ()

If we assuwe that the initial functions LA Fo’ So have a bounded first derivative
(ac are Lipschitz-continuous), tnen from the resulte of chapter one follows the
existence in some strip 0 £ t £t of the differentiable (or Lipschitz=continuous)

solution to the system of equatlons (2.6.9)=(2.6.11).

1et us assume that so(x) =5, = const. fThen from equation (2.6.10) it follows
that throughout the region of variables x, t where a differentiable solution exists
to system (2.6.9)=(2.6.11), entropy remains constants:
S(xy t) = so(x) = So = const. (2)
This rule is called isentropic.
The problem of defining an isentropic flow reduces, obviocusly, to integrating

the system of two quasilinear equations

—— (3)
%+(a—c)3————[-&-+(a—-c)-,;—] L -
Qj:f“(“'b‘f)-;;;'i- [‘af ,W+¢)T]——'!c—‘f'-. (4)
vhere
T e —wzp‘-~ RERRC
czsc(p So)a.. 'p—a"ﬁ—_ c(P)' (5)

b e
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Just as any system of two guasilineer equations, system (3), (4) reduces
to Riemann's invariants (in chapter ome, sectiun 1I1I). Introducing the function

W@)_ f‘(’)‘? = f‘@)‘? I dP(P-,.!_,_. (6)
PR : . .e:-v.': Jm,.,t_‘-n-
and the new variables 8, T3y s=u=~@(P) r=u .,,4;(,0), (1)
let us write system (3), (4) as
Ere—og =T Fretag——" ®)

The variables r, s are called Riemann's invariants.

From the known r, 8 u,f are uniguely defined, i.e., transformation (7)

has an inverse. Actually, u= (v +8)/2 (9)
and o ,
r—s |

'P(P)"‘T- i (10)
gince T T

ge=28>0 (1)

L s

then from formula (10) £ is uniquely defined as a function of r=s, i.€s, we

can assume that

p=¢‘1(' _‘s:):. -‘élzp.i:\p(r = S)-"=C(Q"1 (" X 3)): (12)
wvhere ==t L L .
>0 B b __ <’ (p) :

@Y =m0 F="F " @ (13)

Thus, the system of equations for isentropic flow can be written via Riemann's

invariants in the form

' - (14)
%s_ [r+s - o)]gg wir—s(+s)
o[ v —a] - (15)
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Equations are specially simplified for isentropic plane-symmetric flow. In
this case V = O and the right side in the equations (14) and (15) cancel out;

RPN S TRRA TR % At e 2 Lot

Se [ e A
- o ek ."- ‘.“ ’.V“q ‘-"‘.‘ ¥ {v"d'i’;ﬂ'. 0
R

Fefandgholizio f

vl ie e

(16)

From equations (16) it follows thet Riemann's invariants r, s retain contant

values along the corresponding characteristics:; the invariant s is constant along

;2;22 wvﬂ-mix,
7=

: “i-?t—-Tu?*(n»—s

4 ——— e

the characteristics

invariant r is constant along the characteristics

L5 u+c?- s +urv,ﬁ

Now let us consider further a spe01al cage -~the case of isothermal gas.
we assume that gas exhibits extermely high thermal conductivity and is enclosed
in a thermstat which is kept at a constant temperature To' Owing to the high
thermal conductivity, the temperature in the gas w.'ll be very rapidly equalized,
and we can consider it approximately as constant and equal to To' This means that

we consider the limiting case of infinite thermal conductivity.

In contrast to the approximation of a locally adiabatic process in which
the conservation of particle entropy is violated in the region of steep gradients,
this model is physically meaningful and remains nonconiradictory also for dis=-

continuous flows.

Therefore, let us establish integral laws of conservati n which are valid
in this case.

It is quite understandable that the laws of conservation of mass and momen=
tum are valid also for the case of this flow model. As for the law of conser-
vation of energy, it must be modified in this case, since gas maintains a constant

temperature o by receiving from or supplying energy to the thermostat.

The law of conservation of energy now is meaningful only for a closed gas-
thermostat system. As for the gas itself, the application of the law of conserva=-
tion of erergy to any gas mass specifies only the amount of heat communicated to

or received from the thermostat. In an example of this approach is in subseotion 6
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of section IV.

writing the equation of state in the form p = P,y T ), we see thet
this case pressure can be taken as a function of only density 7 and that ¢ 5 ,5 >0.

From the laws of conservation (2.5.13) and (2.5.14) follow differential
equations (2.5.1) and (2.5.2), which are reduced to the characteristic form (3)
and (4), where c must now signify the quantity

ey @)-;I/HL&-—EW (17)

.;MM —— o

and ¢ = cT(f‘) js the so~called "isothermsl speed of scund.”

Equations (3) and (4) naturally can be written in the form (14) and (15),
and for the case of an isothermal gas, here formulas (7) are valid for r and s,
formula (12, for cT(,ﬂ )» and formula (6) for P(P) if ¢(p ) is understoed to
stand for quantity (i7).

8. Fquations in Iagrangian coordinates. (ase of variable entropy. We will
teke as the initial equations in jagrangian variables equations (2.5.4), (2+5+3),
and (2.5.6) in which q is the mass .coordinate. Iet us write the following form:

!%ﬂxvﬁ-;uv"u%—'—=-"—"}’—. (n
- | @
."m 9&3.‘:0. : u"--—’%; : @

where the Eulerian coordinate x = x(q, t) must be considered as the solution to

differential equation (2.5.7): ' -
: ¢
f_ﬁ%.).—;u(q. O (4)

satisfying the initial condition following from (2.4.9):

.

) X‘“- 0')

I po(r)rYdr= q." (5)
0 . e
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i.e., we can assume that x(q, 0) = xo(q). (6)

where xo(q) is & monotonically increasing and continuous function of the variable
q. To equations (1)~(4), as always, ve adjoin the equation of state, which we
will assume to be given in the form p = p(V, S), p%(V, S)< 0. (7)

The variable x - x(q, t) is defined from equation (4); we have the follcwing expres=
sion for the derivative 3 x/d q;

0x(g. ) 1
o 7 V'-: (8)

Eigenvalues 5 52, 53, as usually, are defined from the equation

;g'—xv 0

“levpy, —E xVP5|=0, ®
i.e. 0 0 ¢ |
t[e+27py] =0. o
Since
’p{’ (V' 6‘)=_p2p:’(p. S\:':.- —p?c’(P. S)n (l l)
then

v ¢ v
=== =0 =m=§
The same formulas for 51, 3 09 53 can be obtained from the results in subsection
6 by applying the transformation of coordinates x, t into q, t by formula (2+4.5)

The reduction of system (1)~(3) to the characteristic form is carried out
as in subsection 6. We present here the final form:

v v
W—"”"‘W“‘( —Fe )T

S
pS(:c ) (_&_ xvpc%_)=1;i, (12)
%‘f_=0, (13)

A4
» +x"pc%"¢——00('7r+"°"5‘)+
+Ps(V Sy (‘6?"’ ¢ os) 2. 0,
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Equation (4) with initial condition (€) is adjoined to equations (12)=(14).

For the isentropic flow giq, %) = &y Riemann invariants

ﬁ%h-J%?i.f=m+J%r

coincide with those introduced in subsection 7 (cf (2.7.6), (2.7.7}). Insiden-

tally, this is a general property of Riemann invariants; they are invariant upon

interchange of dependent and independent variables.

Thus, isentropic flow satisfies a system of two quasilinear equations in
invariants

i a—— L PP

d 0 ‘
‘ -a-;--]-x"pc-a;—=—v—f'—. (1‘6)

and the function x = x(q, t) is defined by formulas (4) and (6). The quantity c

depends only on pP = 1/v and is a unique function of r - sg
pe=P( — )97 (¢ — )=k —3).

% Equations (15) and (16) are significantly simplified < : the case uf plane
symmetry when v = 0.

; In contrast to the case ¢f Rulerian coordinates, in [agrangian coordinates
the problem of cdefining a smooth flow with variable entropy is also reduced to a
system of two quasilinear equetions and therefore admits of the introduction of

invariants.

Actually, suppose we know the entropy distribution at initial time instant
: t = 0: 5(c» 0) = 5,(a)s (17)
: and so(q) is a differentiasle function.

In the region of fl.ow smoothness, from equation (15) follows

s5(2» t) = 5,(a) (18)
and the problem reduces to solving the two equations (12) and (14). Introducing,

3 as above, Riemann invariants
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Yt [ 3 5:@) do] ) 4
Tk ! 'g: 3 ‘“)._ +e _"“v____

Functions f1 and f2 are represented in the form

b g

ey

-, ro e S er ol ol

iy LUl vy g ~9Sa(@) g

= == J x_o"o f—-s. 2 .‘S ( )).' ‘ 2
s{ih.f'( LA ’ e % (24)

and functions (24) are linear relative to variables u,'gé% . For greater clarity,

let us write these equations for the case of plane symmetry, i.e., when v = O:

B T A ST T g e
| YA ‘%+pc-3';'-—fifa.l Tew
N T ' ‘
fx-='f.==-—-%[p§—cp f 9e (. 20 (@) i‘pl] 26)

1 1 . [N ‘

.

The quantities /9 and ¢ are expressed uniquely in terms of r, S.

For the case of isothermal flow equations in [agrangian variables as

before are of the form (15) and (16), only the quantity ¢ now appearing in the
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equations and in the definition of Riemann invariants are r, s is the isothermal
speed of sound cT (formula (2.7.17)).

9. Equations in invariants for polytropic and isothermal gases. For a
polytropic gas pressure p is given by the formula

AS) e
p=2pn g, M
. : :

therefore

A=PL= O, o H=AOP T

y-1
2

@

For an isentropic flow Riemann invariants are defined by formulas (2.7.7).
calculating @ (pf), we get

¢
E
i
i
1
i
!
?

. o . -
vo=[ASe To_ 2 [ %]
| . =t '
R :
since ¥y » 1. For siaplicity let us set fo = O, then
. —| 2A (S l;_( . - y-]. . ‘—- avwe .
)= = (:r . c(p)=A(S)pT=l§_lq,(p). 3)
; i.e. e -
- - y—!
P L

Thus, isentropic flow equations (2.7.14) and (2.7.15) take on the following form
for a polytropic gas:

g

%%-j—(as+br)-g§=L—l)ér’-_s')' =
] G e g =— YD "
1 where 1 o “ 1 |
L ".a=-§-+_7_4_>12_>0. _p_=§_' V-: . @
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Let us write these equations for the case of plane symmetry (v = 0);

.-0 #E x“
é.*.‘f‘-_”f"’??= ; a+(at+ps);— ? (8)

PR . e 3 IO

Let us also write formulas (2.7.7) for invariants r and s;

Fo- o T —

8=¢-—0(p)—-¢-——1—c., r-—¢+w(6)='+ ,__,J;g’,‘.’ ®

== — g peiand

N s o i e

and the e01procal formulasL -

,,__:ii,‘ c:,d;(p s‘,)_1 ‘ (r——t) (m)c

- * BE AT I_z'___._ -

I

For the case of an iscthermal ideal gas p = RfT. (1)
therefore . o o
L V'RT ——-cunst—-cﬁ. : i) '
o , . B h
s Fedp P _ |
. .‘P(P)—f ? '-coln R it (fa)
A R RRT LA

Assuming for definiteness 10 = 1, we will have

2@@)_(r——-s)—2colnp p—exp{—ﬁ—.—} (14)

.»“f’

Equations in invariants for an isothermal gas are of the form

- —— . e -

_&,.‘_(_'l:__"co).g;:.;‘f('rﬁ-s). | Qé)
SelftrdEe—gers o

special cases of gstem (8) eve of interest (v = O). One of the cases, | = =1
(correspcnding to so-called chaplygin'é gag#)), reduces to a weakly nonlinear

system;

o b4 d' - (A
%+ =0 y+3-‘g—-’=01 (17)
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Another interesting case, } = 3, reduces to a degenerating system ¢f equations

Frden rrgeo ()

TN IR ST b ARSI BEVREY LT BRI RSO I

whose characteristics, as we have seen in chapter one, are straight lines.

: In concluding this subsection, let us derive equations in jagrangian vari-
ables for the motion of & polytropic gas in the case of plame symmetry (v = 0)
with variable entropy.

From formulas (2.8.25) and (2.8.26), in this case, we obviously obtain

P et S v - 'w~v+r_ - .. =

‘g"B(S (q))(r—s)\'-' f,. : (19)
L BE@)C —sﬁ-"§§=f,. 20)
3 where :
{ - —l \7‘, '
3 = —N dso(q) l v ’
: | n=r="5" [Ny ,,p] 2AG@)A @) @
: 1 =Ty N
;
3 and £, is always, is defined as some function of the difference r = s and the
j . "
] quantity So\q)'
: Let us also observe that for the case of the isentropic flow of chaplygin's

8 (Y ==1), equations (19) and (20) become linear;
: ds .alj_"‘_m
e ¥ 4

: Hence we have the general integral s = so(q + Bt), r = ro(q - Bt), where 8,0 T,
3 are arbitrary functions of the same argument. From this it follows that if the
E solution r, s to system (23) is smooth at the instant t = to’ it remains smooth

than for any t.

*) To lend physical meaning to the equation of state, here we wust assume that

2
paFo-_'i_.(_g——z—

= const 0.
VP ’ Po re
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System (23) is the weakly nonlinear system (17) transform into Jagrangian

.

E variables. (onsequently, solutions to system (17) also retain their swoothress.

% This fact can be viewed as an illustration of the theorem on weakly nonlinear

% gystems demonstrated in section X of chapter one.

:

§

§ III. Study o the Simplest plane Qne~Dimensional Flows

; In this section we will study the quality of properties of the simplest,

z mainly isentropic or isothermal, flows for the case of plane symmetry ( v= 0).

4 1. General properties. JIntegration for the case y = 3. In Eulerian coordi-

nates isentropic flow is described by a system of two equations, which for the
case of a polytropic gas is of the form

% 4 es+802 o, -";}tf—(ur—ws)-‘;%:-m (1)
e=g i3t p=g—I7h vl (2)

We will assume that the initial condi‘ions s(x, 0) = so(x), r(x, 0) = ro(x), (3)

are imposed on system (1) and that the functions s, and r are bounded and have a
f continuous first derivative.

Then from the results in chapter (ne there follows the existence of solutions
to cauchy's problem (1), (2) in some strip 0 £ t-<'to; the variable to is the time
instant at which derivatives of the solution become unbounded.

We assume that the solution s(x, %), r(x, t) is known. we will call the

integral curve of the equation g4x B
. L =t N=0s(x H+br s H=u—c

The s-characteristic, analogous to the integral curve of the equation

%"%2(3’ ry==ar(x, )+ps(x, )=u-c¢
of the r-characteristic.

The invariant s = s(x, t) is constant along the s-characteristic x = x
{(ty xo), as follows from equations (1), i.e., s(xs(t, xo), t)= so(xo), if
xs(O, xo) =X .

Analogously r(xr(t, xo), t) = ro(xo), if x = xr(t, xo) is the equation
of the r-characteristic passing through the point x = X, of the initial axis t = 0.
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' min 8y(x) < 8(x, HLmaxsy(x), |

minry(x) < r (x, £) < maxry(x) {! (4)

obtain for the solution s, r, and are valid only in the dowain ( £ t <€ to in

which the solution remains continuous.

Since

S=y—

2 *2 r
T c, r._.u—i-Y_1 ¢, 4=

';'8 , c:.—:":l(r—s).‘* (5)
Ll
from (4) there follow the estimates for velocity u and the speed of sound c

(when V> 1):

min [ () — g € 0)]| - min [ug () - 2 am] <2 ng
<mfx[uo(x)— vil ¢:¢,(,vc)]—i—mﬁx[t,tc,(‘\:)-}-YE_1 co(x)]. (6)

min [ () 527 co ()] —max [y (0 — 72 o (0] <y e 1, A
< mfx[uu (x)+ 7_2__ T % (x)] — m:n [“o (x)— 'f%-T ¢y (x)] N X

where co(x), uo(x) are the initial values cf the speed of sound and flow velocity.

1f we approximate these estimates, tnen we readily get

mln (X)) — v—l-l [mfxco(x) — m:n co(x)] Lu(x, ;)<

<« max uy(x) +—Y—l—’ [mfx (%) — mln co(x)] , (8)
i ¢ (%) — 1-4‘2-'- [max ty () — minag(9] < €5 H<

: p—1 —_mi . g9) °
<max o)+ [maxtp@ —mina (] @

Denoting
“min g, (x‘) == lY, maxa,(x)=U,  mincy(x)==¢, - re
x X x
max ¢, (x) == Cy, Aay=U,—u, BDey=Cy—cq '
x
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let us rewrite inequalities (8) and (9) more concisely:

s 28 2T *:ﬁ‘;g 05’-7;—!--—-;&.- (10}”
;,}gﬁ (s. o<c‘+1—;—4-, '(u)

We must bear in mind that in ite physical meaning the speed of sound ¢ 2 Q. fThere=
fore if ¢, - l’—f-’A“ < Oor

I TETRTR
j »

! [ 1x)+—,——re.<x>]—max[-a(x)———-—fc.,tx)]<o

'..._k' T S Y Ak R O e

then in the left side »f inequalities (11) and (7) we must insert zero. pFrom for—

mias (5) it therefore also follows

~~-r

-ﬂi [.o (.e)-a,-'—__-r c,,(x)}< -(x. t)<m£§[u. (x)-;-—’{ c,(x)]. !
-‘.__.. Cal L > 3 [~ VORI,
However, when c, — .‘—}.2'—’4%< 0, estimate c(x, t)> 0 also proves to be
rough. Therefore we will now show that if the initial functions uo(x) and co(x_)
possess bounded derivatives, then c(x, t) # 0 for no finite value t > O whatever.
At the same time we will establish useful estimates for derivatives of the solu-

tion to ¢auchy's problem (1), (3).

Since the assertion to be proved is general in scope, we will consider the

case of any V= = 1. ¥hen V2 =1, =2 0

Theorem. If in an isentropic flow of & polytropic gas (V> ~ 1) no shock
waves are induced (no characteristics of tihe same family are intersected) and if
the initial values r (x) and x (x) of the Riemann invariants are differentiable,
there exists the functions P(t)<oo and /° (t) > 0 such that

ou(nd < . (x. 0>Po(‘)

o o . .

T _‘?__ — 3_’: .
proof. et 5T = Py S = Py and assunme
S e 0)<P5? L =p(.0<P, (12)
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and also

G Rt § Tt L o Vst et Do)
0<m <o o)-p.(x)-[iu-<r,<x)~vo<e)> . '<R¢- ‘"”f

we denote A PRSI i

% +(¢t+lr)-3, ==',g'+(l-c)-¢r —-(?)
y+(w+m-,-=-g+(s+c)-,,— (%) -

Then, by aifferentiating equations (1) reiztive to variable x, we get

—— m—

%) e ’PnPr (1’!") =—ap— MP, ‘ (14)

e m el

Since ﬁ = 1 =, these equations can be rewritten in the form

,-w-- et

(7 In p,) % —o(p,—-P;)—Pz- (— In p,j —-—G(Pz"'Pn)—Pl (15)

— . e -

writing equatlons (1) as
() =4+aman=o (5] =% Feronsa

we can easily estabhsh the formulas

e —— e A & e -

m=uz(w)="r[7r<" f“_Tcz(%:‘) ’
o =[] - (4e).

. 1 (dr ..o1rd _ —— _d_ .
p=—3 (@), = 9], =— [ o],
let us substitute these formulas into equations (15); then they will become

<o i —— -

[0, =—ow—p). [§in}],=-ser (1)

when Yy 2 = 1,ol 20. tTherefore, if at any point x, ¢ p1(x, t) > r,(x, t), &t
thie poin

d p (X. ‘) 0‘
(& 5wn ), <
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i.e., the quantity p1AP does not increase along the s=-characteristic with in=
crease in variable t.

In general, from equations (16) it follows that

(7

1let us prove this inequality in somewhat greater deiail. Suppose A(x, t) is an
arbitrary point on the half-plane t 2> C. Let us pass through this point s=charac=
teristic I and r-characteristic IT (Figure 2'.10).

Figure 2.10

Suppose, for example, that at the point A(x, t) Py (xy t) > pz(x, t), and
suppose that this relation is also satisfied over the gegment AB of characteristic
I, i.e., P, (x'y #') > pz(x', t'), and below point B (Figure 2.10) on characteris=
tic I this —elation changes into its inverse (p1 £ p2) and Py =Py at point B.

Then by the first equaticn in (16)

ﬁﬁf'ﬂﬂ;qmﬂ

p(x ) < 0B ~ g’( ]

Suppose that over the segment BC of characteristic IJ' running through point B,
P, > Py Then by the second equation in (16)

%E<Pw

If at the point ¢, p1(C) = p2(c) and that Cp, Py 2 Do then by the first equation
in (16) P R

p(C) __ g,%c) p.(D

1&@3 P(C) \<>_g( ) * I'

oL
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Thus we sooner or later arrive at the initial axis t = 0. Por the case shown
in pigure 2.10 we will have

¥ r -~ yog—
£ (%, 0) Ptk ty Ps (B) Pl ©Q_n (D) Po 18
. P& <. §"Tp( 0 <D e (18)
i This chain of inequalities convinces us of the validity of assertion (17). and

so, from (17) there follow the estimates of the derivatives

s Pop (%, or(x, 8) Po(xt)
] T p=2m0 R0, g p 2 lPeind, (19)

R

—_— e

where the guantities P, and /°o are given by equations (12) and (13). Since u =

7% cr + S) , then from (19) there also folluws the one~sided estimate of the

! derivative 3 u/d x;

O P.n(x.5
‘-6?< Pe (20)

L

writing the continuity equation

d ¥ _ ou
| WG =g |
in the form ' : -

we conclude thet according to (20)

(% ) __LJ‘_-L i.e.,(;%?f_)é_;g (21)

Integrating inequality (21) from arbitrary point .(xz, t) to point E on the initial
axis along the trajectory AE (Figure 2.10), we obviously nutain

s BT "\.,._____

f‘-zr—.m< -‘

G i L s e et o ik i ke i i i R g o i b (¥ e

Je€4,
py (E)
b 8> 5T B > rRrs @

- 210 -

|
|




e

AR

v

¥

Inequality (22) states that density p (x, t) cannot tend to zero if the initial
values possess & bounded derivative (obviously, we must assume that P, Z 0).
Inequalities (20) and (22) prove the theorem.

Inequality (22) tells us that under these conditions when t >0 a matually

b
;
4
3
i

unique correspondence between fulerian and Jagrangian coordinates holds.

This fact is physically interpreted thusly. A gas continuously filling at
time instants t = O the entire space with density different from zero cannot in
its motion "collapse", i.e., form a vacuum region in which P= 0 if and only if

£ when t = O velocity discontinuities uo(x) such that uo(x -0)< uo(x + 0) are abeent.

This fact obtains also in more general cases. It is valid, in particular,
both for nonisentropic continuous flows and for ideal gases, as well as for dis-

continuous solution (flows with shock waves).
V-1

——

Gince ¢ =ApL -, then when V>1, from (22) follows the estimate from below

also for the quantity c(x, t). Since when VY >1, c(x, t) and therefore £ (x, t) are
bounded from above by means of inequalities (11), then frow (20) there follows the

g estimate of the derivative

2
' du(x, b c y—1 AuyTy=1
o R R e

Let us note that when V<1 inequalities (11) vary in such a manner that together

with (22) they bound the value c(x, t) from above and from below.

In the foregoing we established estimates for Py» Py from above. In esti=-
méting these quantities from belcw, we note that from system (14) it follows

that if p(t) stands for tne quantity

v - e

lP(f)=..- max max[|p;(x. D] | pa(x. nilh

-0 L XL 00

then
2D L(al+ish P

PO '
Hence POST—miFpni-PO

. =P
P O TG FIBN PO

(29)




- e W
A O RR e - R -

Esilmates (19) and (23) bound derivatives of the solution from above and from
below. From (23) it follows that when t < 1/(/|+/f})Au)the derivatives remain
bounded both from above and from below. Thus, the strip 0 <t < '/(I-([+[3])P(o)

is a strip in which a classical solution to Cauchy's problem (1) (2) clearly
exist.

Naturally, estimate (23) is to growth. fThus, for example, if dso/dxgo,
dro/dx >0, then P, = 0, p, > 0, as follows from equations (14) and as a conse=~
quence of (18) a classical solution exists for all t > 0.

Let us clarify onr general remarks with the example of the flow of a poly=
tropic gas with exponent ¥ = 3. 1In this case « = 1, S = 0 and the system of

equations (1) decompose into two individual equations;

P P Sy
Since invariant s is constant along the s-characteristic, and the slope of the

s-characteristic is s, these characteristics are straight lines.

Along the line x = X, + so(xo)t - xs(t, xo), we have 8(x, t) = so(xo);
similarly, r(x, t) = ro(xo) along the line x = X, + ro(xo)t.' Thus, the solution
to Cauchy's problem for system (24) is given implicitly by the formulas

s(trs;?h)hl 0-—450@)-
r(m—+ro(We; f)=ro(;D-
‘ "

For the explicit expression of solution a(x,.-t)‘, r(x, t) we must solve the func-

tions
F=t+guQf r=ntrmtd (25)
relative to the quantities &, M . suppose we define them from (25)s

T i=t(x 0, ﬂwnfk-‘—f)i

-

then “

(26)

-
T
'

2 0ZRED B, 0)

The geometrical significance of the quantities g(x, t), 17 (x, t) is clear from
Figure 2.11.
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1et us verify that several of the estimates obtained above are satisfied. pif-
ferentiating relations (25) relatlve to the variable X, we get
" ———— e

wiin &

and we see that estimates (23) hold in this case. By Figure 2.11

F*P*w-—7—

._'=ro<n(ﬁ_t_>z —nGl " ()

[V 0@ =1 - 2, F Dt Q=2 W 5y =gy (26)

From (27) and (28) therefore must follow

|2z 9> 2@ — Al G H—néx. 0. ¢ (29)
But from (27) we have g(x, t) = n(x, t) = 2¢c(x, t)t. (30)

combining equality (30) with inequality (29), we get

| e 0> 159> > i (31)

T

Since when V= 3, P = c, equality (31) ir a special case of estimate (22)'. Simi=-
larly, for the case V = 3 we can easily verify all thc other estimates obtained

above.
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Figure 2.11

2. Travelling waves (Riemann waves), Waves cf compression and rarefaction.
gere we look at several of the simplest isentropic fiows for the case of plane
symmetry (v = 0). In studying travelling waves it is of practical indifference
as to which variables == Eulerian or lfgrangian == we conducted our examination.

gere let us use lagrangian. Then isentropic flow equations are written as

g T AR
b — )j’;j—=%—cp-‘,,’;—=o. m
FHEe-9f =F+ag=0 @

where Riemann invariants r, s are associated with u, V by the formulas

-{,av;y-;- _[V]/‘. —3 4y,
|4

{}dVE=a-— fivf—— é dv.
v =

For an isentropic flow p is a function of the single variable V.

s=u-

¥

i )

r=a—

J
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We will assume c¢hat p = p(V) is an arbitrawy differentiable function
satisfying, however, conditions I and II:
g ER TR
s on ) il
7% S ()

Then, denoting Rl 5 LN T e

ve get V(V.{-‘—‘( <°

and : T, ﬁ\.;;: a ‘:%y;:.

Thus, from conditions (3) it follows that ¥ (r - s) is a monotonically increasing

function of the difference r = s.

Isentropic flow in which one of the fiemann invariants is constant is
called a Riemann wave for & travelling wave. Suppose for definiteness that r =

T, = const; then equation (2) is satisfied identically, and equation (1)

3 ;."-.': -, “ f&"‘:'.{.: ::‘?
o t—9 5 =0.; (4)
serves for the determination of the function 8(qy t).
characteristics are integral curves of the equation
d o B
T=—t—s0. 0) |
and are obviously straight lines in the q, t plane since the invsriant s(q, t)

is constant along these. Hence it follows that along the straight lines
d —q o
A= =g 0 (5)
both 8(q, t)aand r = r, are constants, and therefors, all hydrodynamic variables

V, by P, ¢, uare constants. et us note at once that the s-characteristics

will be straight lines &lso in the plane of Eulerian coordinates x, t.
-~ 215 -
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Figure 2.12

If in some region és/eq > 0, ths characteristics (5) » oo . divergent
bundle of straight lines (Figure 2.12, a); if however 28/3q < 0,
then they form a convergent bundle of lines (Figure 2.12, b). Since u = (r + 8)
= #(zr, + 8), then from 2 s/eq >0 follows du/3q > O. From the continuity equa=
tion, 2y/3 t = du/d q; therefore it follows that when 2s8/3 9 > 0,2v/e t >0,

: and density £ decreases. Therefore the Riemann wave in which 2 s/a q >0 is called
b the rarefaction wave, and the Riemann wave in which 2 s/é q < 0 is the compression

. wave.

E The case when & = Bn = constrat is treated quite similarly. In this case
' also when Jr/dq < O we have a compression wave, and when Jr/3 q >0 == a rare-

faction wave. Thus, the general characteristic of the compression wave au/z Q<0

or, which amounts to the same thing, au/a x < 0 leads to the conditions as/a Q<0

for the Riemann s-wave (r = r ) and to dr/>q < 0 for the Riemann r-wave (8 = 8,)e

) ¢ ‘
I,'. . 7 S

&

g

W ¢
¥

Figure 2.13%
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o’ For Chaplygin's gas, p = AV + Py dzp/dv2 = 0, and § = /=A is the
constant, The slope of the characteristics in this case is fixed and therefore

all s-characteristics are parallel to each other, just as are the r~characteristics.

Nevertheless condition 2 s/ 24 >0 again distinguishes the rarefection region

in the Riemann wave r = ro.

L e ssis

The Riemann wave (r = ro) is called centercd if the s~characteristics form
a bundle of straight lines departing from a single point (qo, to) let (Figure 2.13).
Since the invariant s(q, t) is constant along the s~characteristic, it follows that

in the central the Riemann wave

—ef9—9
3=3(‘T‘:-). r=r,

or
oo boore, |
'-—r(-}:-‘:'). §=s,
solutions dependent only on the variable y = Z' z" are called self-model-
e ©
ing-

Let us show that centered Riemann waves yield all self-modeling solutions

to gas dynamics equations.

writing equations (2.5.4)~(2.5.6) in the form

the substitution by the formulas

O ou_ . ow , 9 _ o O _ N 6
! TH=0 Ft3g=0 g~ 0=9 ©)
and assuming that the variables Vv, u, p, S depend only on y = _____..Z h Z‘ s We make
§ - o

ol_ d "o 1 4
o T T—fdy! FqT it dy’
after which we arrive at the equations;
b . - -
] av | du _ ds _dp _ dS _
| Yyt =" YH—ay=% &=

From the last equation it follows that § = s0 = constant, and the self-modeling

flow is, therefore, an isentropic flow.

C converting in the remairing two equations to Riemann invariants, let us

1 rewrite them in the form

- 217 -




‘U+£('—-8)l% =0, [y—_-{(r-s}]%:(). '

Ify;‘- §(r- s> , thends/dy-Oands-so. Since ¥ (r = s) > 0, then
when y = =E(r = 8) we have r = r = constant. 4gna so, there are only two possi-

bilities for the self-modeling solution; either

8= gy==const, ,‘1;5”('—30). o
or ~ : | y .
r=ro=const, y=—8(g—sg)., - *° @

and, therefore, any self-modeling solution to equations (6) is a Riemann wave.

Since g’(r - 8) > 0, then by differentiating equalities (7) ana (8) rela-
tive to q, we conclude that any self-modeling solution whern t < to is a compres-=

sion wave, and when t > to -=- a rarefaction wave.

Thus, if we consider the half-plane t 2 0, then in it any self-modeling

solution dependent on the variable y = q/t (qo = to = 0), is a Riemann rarefaction

wave,
In Eulerian variables a centered Riemann wave is given by the conditions
- X=Xy """ T
s§=gy=cons!, y== t=g+4c
T—1,
or

r—.r == const, =X g,
0 Y=7=

P .

Iet us coisider several relations holding for an arbitrary kiemann wave for the
case of a pnlytropic gas,

For a polytropic gas
atdar S
¢,

.
S=Emymre r=edhyIye

Suppose that in the Riemann wave r = ro = constant, ana suppose uo, co are the

values of the velocity and the speed of sound at some point in the Riemann wave.

Then 2 3
Bt y=Te=st 7"
or
c=c°(l —--7—'-2:1 ':"—l R o)
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Since p = 1&‘4 v-r ¢ V=1 then from (9) we have a relation between pressure

p and velocity u in the Riemann s-wave;

er*@‘“‘x XA
Pl I“d%“w*%‘*l'% : ; (1)

.m_mqm ““({ﬁ! mcontt).

Similarly, in the Riemann r-wave;

RPN
'Q ﬂ,n:const) 4

Finally, let us note yet another important property of the Riemann wave.

(1)

Any contimuous flow adjoining the zone of constant flow is a Riemann wave.

Actuslly, suppose the flow is continuous and con3stant leftward from the
line AB (Figure 2.14). This means that the line AB is & line through whic .ne
solution to a systew of equations in gas dynamics is not uniquely extended and,
therefore, the iine AB is a characteristic., Since the flow leftward from AB is
constant, AB is a straight line.

suppose, for eiample, that AB is an s=characteristic, then to the right
of ABr = r, and the flow to the right of AB is a Riemann s=wave.

poe=a -""‘_"‘_"-—v" ‘.-'_ B |
ey sare vr ‘1

RS K I "n.

Figure 2.14

3. profiles in a Riemann wave, Radiant catastrophe. let us consider the
behavior of hydrodynamic variubles in traveling waves of compression and rare-
faction. Suppose, for example, r = r, - constant and 35 > 0, i.e., we are consi-

dering the case of a rarefaction s-wave.
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As we saw above, in this case g—‘f > 0, g—%/ > 0. Since 52(1: -8)=

-dp/dv, d p/dv ™ 0, V decreases with increase in ..5 and, therefore, c¢ in-

creases. Since, moreover, 5 (r = 8) > 0, then from the condition 5‘—75 > 0,
1A

q
of veloclty u and the speed of sound ¢ in the rarefaction-ness wave (r = constant,

rmr = constant it follows that & > 0.33776 < 0, 32-;? < 0. fThus, profiles

0) are of the form shown in Figure 2.15, a.

Figure 2.15

We similarly obtain profiles for the case of a rarefaction r-wave (Figure
2.15, b).

Figure 2.16, a and b shows the profiles of hydrodynamic variables in the
case of a compression wave.

And thus, in the rarefaction wave 2 u/a g > 0, ana in the compression
wave 3'? < 0. The wave r = constant differ from the wave 8 = constant by the

- : i 2w, dc h - 2% dc - s Y Jc
sign of t'e variable 37 53 : wvhen r = r 5o Sq <Q, when s 8, 037 ;.;>
0.

1et us note that the sign du dc¢ coinciles with the sign du dp. Therefore
in the plane of variables p, u (p, u~diagram), the family of states in the Riemann
s-wave is described by curve 3.2.10, of the form shown in pigure 2.16, c. Simi-
larly, for the r-wave du dp > O (Pigure 2.16, d).

1et us consider the time variation of the profiles of hydrodynamic quan-
tities.

Since the solution is constant in the traveling wave along the straight

lines end since these lines diverge with increase in t in the rarefaction wave,
- 220 -
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in the rarefact.on wave the gradients of all hydrodynamic variables decrease in

absolute value with increase in time t.

conversely, in the compression wave the characteristics of the correspond=
ing family diverge with increase in time t and the gradients of all hydrodynamic
variabies increase ' - absolute value. Figure 2.17, a and b shows the variation
in the profile s = 8(q, t) with increase in t in the waves of compression and

rarefaction for the case r = r, = constint.

The characteristics in the compression wave intersect each othexr at some

! finite value t = to. At the point of intersection of the characteristics the

§ derivatives of the hydrodynamic variesbles become unbounded.

It is not difficult to calculate the instant of formation of the unbounded
; derivatives. Suppose r = T and s(q, 0) = so(q). Then by (3.2.5) two s=charac=
) teristics departing from the points q = qg and q = qg of the initial axis t = Q

intersect at imstant tn:

e = SR
‘qm"’o(a)‘g('o"‘o(ﬁr)) ’ (1)

For the case when so(q) is differentiable, we obtain the smallest time

instant t, for which the s=characteristics intersect each other:

(R v -

’ml‘n# m.n = & "o"-’o ] (2)

Formula (2) is meaningful only for the case when m&x [-)E/J q] >0. Ift nin <

0, the s=-characteristics do not intersect each other when t > O and the deriva-

tives in the Riem&nn wave remain bounded,

Thus, in any traveling compression wave gradients increase and become un=

bounded in a finite time interval. fThis phenomenon is sometimes called gradient

catastrophe.
%P
when 5—\-/',_ > 0, gradient catastrophe commences in & traveling compression
wave, and when Sve & 0 == in a traveling rarefaction wave. Thus, when-j—vﬁ;

a compression shock wave is formed, and when alf < 0 =~ a rarefaction shock wave

(cf section IV).
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r=const S=const

r=const

(4)

] a b . a

r-.b - T Pl Ak 3} - A g
(e)

Figure 2.17

No continuoug solution exists when t >t >

(i, 2 O; the solution becoues

discontinucus,

Let us consider a more complex form of flow =- flow with local initial
data.

we will state that initial data are local if initial functions ro(q), so(q)
are variable only over a finite interval a < q £ b of the axis ¢t = 0, i.e.,

-3

r- when q < a S when q < a

a0 <8 secq)={ )
2 ot when q > b, st when q > b,

»
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Flow arising under the initial conditions (3) is not described by traveling
Riemann waves. However, in several caces of flow, for sufficiently large t >0,

it can consist only of traveling waves.

1f, for example, r("(q) Z U, s:’(q) > 0, the solution has bounded derivatives
for any t 2 0, as follows from the estimates (cf section I). values of the in-
variant s are transported along the s-characteristics, with velocity = Pc < 0; the
values of invariant r are transported along the r~characteristics with velocity
Pc >0. Therefore for a certain 'c1 > 0 the zones of variability of the variants
r and s diverge and the solution will consist of two traveling rarefaction waves

separated by a constant-flow zone (Figure 2.17, c).

Now with & = Q, b =—» Q, i.e., if we proceed to the problem with piecewise=
constant initial data, solution r(q, t), s(q, t) will obviously tend to the self-

modeling solution consisting of two centered rarefaction waves (Figure 2.17, d).

cauchy's problem with piecewise-constant initial data

' (r-, ¢<0. s, q<6-..
ro(q)=i," g>0, so(q)={s,. §>0 (4)

is called the problem of the decay of an arbitrary discontinuity and is studied in
detail in section IV of this chapter.

The above analysis allows us to assert that if s-s 9+, r-S r+, t'  prob-

lem of decay has a solution that is consistent when t > Q, consisting of two cen=

tered rarefaction waves (Figure 2.17, d).

An analogous app‘roach to the consideration of the problem of decay as a
limiting problem with local initial aata enables us to predict the quantitative
behavior of the solution even when we rejec* tne inequalities r < r+, 8 < st.
1f, for example, r > rt, then after the interaction of traveling waves (zone 1)
the compression r-wave will propagate toward the right (Figure 2.17, e). As we
saw above, the gradients in the compression waves increase unboundedly. This
leads tc a discontinuity in the solution. Shock waves appear :n the solution.

pased on this, we can aasert that if s > storr > I+, shock waves

necessarily emerge in the solution to the decay problem.
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4. piston problem. Escape of gas into vacuum. Traveling waves find
mmerous applications in a number of these simplest problems, and also in the
qualitative investigation of thus far ‘exiremely complicated flows. We will consi-
der here several of the simple problems whose solutions are described with the aid
of traveling waves.

Suppose a gas exisis on one side (to the right) of a rigid waell(piston),
which beginning at the initial time instant t = O moves according to a certain law.

We will assume that at the initial instant the gas is at rest and exhibits
constant density, pressure, and entropy, i.e., we will presuppose that

e e e

W 0=0. 26 0=5. b 0= =0y, 5@ 0)=S (1)

we will assume for the gas that its equation of state satisfying conditions I and
1I is giveng

' #Bp
<o R e =0 )
The piston is at the gas boundary, whose coordinate q we will take as equal to
zero. The law of piston motion is expressed by the function w(0, t) = g(t), (3)
where (1) is the piston velocity, given as & function of the time t, and u(q, t)

is the gas velocity*). we will assume that U(t) is 8 continuously differentiable
function satisfying the condition U(0) = 0. (4)

Initially let us consider the case when 7' (t) = 0. rThe construction of
this problem reduces to finding the solution to equations of an isentropic flow
satisfying the initial conditions (1) and boundary condition (3). In Riemann

invariants the problem reduces to finding the solution to the equations

‘%%N{;us);;mo -g+t(r—~c)3;-=0. i ()

satisfying the initial conditions

#) Equality (3) holds only when the gas does not separate from the piston.
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s(q. 0),=--—r(9 0)===--¢(V.). Vo ,,'.oj (6)
e o oo s Wbdicmen W ¢ BRER7 {

and the boundary condition assigned at the straight line q = O;
2. §4r0. =200 m

zone I (Figure 2.18), bounded on the left by the characteristic 04 (9 =

o I t) is obviously the zone of flow constancy, i.e., in zone I

=8 rmrye—g, =0 pEpy - C=0 " (8)

Zone II of an inconstant flow is bounded along the r—characteristic of the
oA from the constant-flow zone. Therefore, flowing zone II is a Riemann wave.
As we can see from Figure 2.18, the Riemann invariant s(q, t) is constant in zone
1I, and the values of this invariant are transported %o zone II along the s=charac-

teristics from the initial axis t = O,

v‘ =

| L

YToA 7] po
‘/ !

/ S

o 0

Figure 2.18

Thus, in zone II, s(q, t) = S0 = constant, and it remains for us tc inte-

grate only the second equation in system (5):
" :
F R —s) g =0, (9)

If the r-characteristic intersects *) the axis q = O at the point T > 0, then

at this point s(0, T) = S, and from (7) we define r{(0,t ):
[*) at following page
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“ro. r)uzu(f)e-s,=2v(t)+9 voq (10)

m zone II of the Riemann wave, invariant r(q, t) is constant along the
r—characteristics, which are given by the straight lines;

=t 0 A==t d. 0= | (1)

gk TR — o

Along the straight line (11) r(g, t) = r(0, ) where r(0, T ) is given by formula
(10). Formula (11) yields the solution r = r(q, t) paramétrically by means of
the parameter == the ordinates of the point of intersection of characteristic
(11) with axis ¢ = O. From (11) it follows that if y' (t)< 0, in zone II
:il%§%4493 > 0, i.e., motion in zone II is & rarefaction wave and the pattern
of characteristics is of the form shown in Figure 2.18. When solving boundary
condition (7) it was assumed that the r-characteristics departing trom the ray

q@ 2 O of the initial axis intersect the line ¢ = O when t >0.

According to its physical meaning, the quantity cz2 0 (12)
therefore formula (10)'is meaningful only when the inequality

o= (U B 289 =9 QUM+ W) >0 (13)
is satisfied.

According to (2), ¥ (r = s) is & monotonically increasing function. There=
fore inequality (13), generally speaking, bounds from below piston velocity U(t)

for  which the boundary condition (3) can be satisfied, i.e., bounds from below
the gas velocity at the line q = O.

For g(t) < O that are sufficiently small modulewise, inequality (13) is
vbviously clearly satisfied, since when 7 (t) = O
VROV = b (r—s) =6 > 0.}

Suppose that for any t = t1 ilnequality (13) is converted into an .cuality

*) As we will see below, for U(t) < 0 that are sufficiently large modulewise,
this is not the case, i.e., the r-characteristics do not intersect the axis q = Q.
- 227 -




R T oy T e T

even when t >'t1, o(t) < U(t1). Then when t > t1 boundary condition (3) loses
its m=2aning.

In this case the piston separates some of the gas, and & vacuum region is
induced between the piston and the gas. Formula (11) parametrically defines the
solution r(q, t) throughout the zone II assuming that the parameter 7+ lies within
the segment 0 < T < t1.

Note that from the assumptions (2) it follows that if -—5f; =& r-5)
= ¢/ =0, then p = 0, therefore the boundary q = O providing t > t1 can be viewed
as the free boundary of the gas, i.e., the boundary of the gas with the vacuum in
which p = O, P = O. The inconvenience of Jagrangian coordinates is manifested in
this case in that in the 3,  plane the boundary of the gas @ = O coincides with

the piston position, since in the region between them /A = 1/v = Q.

The pattern becomes more graphic if we represent gas and piston motions in
Bulerian coordinates. Figure 2.19 shows the pattern of the r—characteristics in

the case of gas separation from the piston, in pEulerian coordinates.

In zone I we have asbefore a gas at rest, zone JI bounded by the r—charac=
teristics (¢ and AB is & zone of the rarefaction wave, and zone III (between the
pisont trajectory z = x(t) and the characteristic AB) is the vacuum zone. At the
point A(t = t1) separation of a gas from the piston occurs. Note that obviously
the straight line AB, which is the boundary between gas and vacuum is simultaneously
an r~ and a s-characteristic. For a polytropic gas, @ (V) =-7%7-C1
Y(r-s) =¢ = y-! (r = 98); therefore condition (13) can be written when v>1

£
in the form

———

: 2
_ [U(0+?—l ‘°]?°' (14)
i.e.
V> —<2 ¢,
T I (15)
And su, when g(t)< —-V? ¢s the separation of gas from the piston commences.

Note that if we consider the isothermal gas formally as a gas for whick y = 1,
then from (15) it follows that the separation of an isothermal gas from a piston

generally does not occur, since the quantity —V—f—r ¢, —» o when¥—+1. tThe

same conclusion can be obtained also from the formula for f’, since
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‘(_1.=CXP{%:—S}>0. where CT = /-1’{71'_ = constant.

dr _
?t-—l/(t)<ﬂ

Figure 2.19

Another physical problem about pistons is solved in almost similar fashion,
when it is not the piston velocity that is given, but the pressure on the piston.

This leads to a boundary condition in Jagrangian variahles; p (0, t) = po(t). (16)

If we assume that under the conditions of the preceaing problem U(t) decreases
monotonically over the segment 0 £ t < t1, but when t 2 t1, U(t) = Uo = constant.

The pattern of characteristics in the g, t plane is presented for this case
in pigure 2.20, &. We see that if U0 > -
the zone III.

V2 <, » then the flow is constant in
If now the qQuantiiy t1 tends to zero, at the limit as t1 =+ (O we obtain a
self-modeling solution, whose pattern of characteristics is shown in Figure 2.20,
b. This self-modeling solution corresponds to the problem of the piston impelled

= ¢ zome III

vanishes, giving way to the rarefaction wave, i.e., zone II in this case displaces

from a gas at constant velocity U = - 2z . For the case J_ «& - 2
0~ Y1 ° (0]

zone III. Providing Uo < ——éT ¢, At the boundary q = O, conditim P =0 is
satisfied, ana the gas is not in contact with the piston, i.e., they are separatea

by a vacuur region.
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Pigure 2.20

This self=-modeling solution yields the solution to another problem, called
the problem of the escape of gas into a vacuum. In this problem we can assume thh
that at the initial time instant t = O the wall bounding the gas on the left (at
the point g = 0) is taken away.

Now let us consider the second case, when y'(t) 20, U(0) = 0.  (17) )

/4
.....———-‘—"‘
V/j

!

vy>a . 7
Figure 2.21

Boundary condition (7) can now be always satisfied, since providing u(t)>0
inequality (13) is always satisfied. We can readily see that when U(t)>*0,‘3£é;;£)
< 0, and the flow in zone II is therefore a compression wave. Figure 2.21 gives
the pattern of characteristics in the q, t plane. gSince r-characteristics inter=

sect each other when t >0, the classical solution to the piston problem for the

case U(t)>0 exists only for a limited time interval.

Beyond the intersection of two characteristics, the solution to the piston

problem become discontinuous. 230
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In genersl note that if we are considering an arbitrary law of piston
motion u = U(t) and if U'(t):> () for certain t, then discontinuities necessarily
emerge in the solution to this problem. (onsequently, the complete solution to
the piston problem in these cases is described by discontinuous solutions of gas
dynamics equations containing shock wavead. we will study the properties of shock‘
waves in section V.

Note &till further that if we assume that the piston begins to wove toward
the gas side with finite velocity y(0) > O, the solution is discontinuous for all

t > 0. 5o in this case consideration of the isentropic problem is meaningless.

5« Problem with two pistons. Reflection and refraction of a traveling
wave at the contact boundary. We continue our qualitative study of the simplest
flows with the example of these two problems in which we must consider interaction

of two Riemann waves.

Figure 2.22

As we already took note of in subsection 1, for the case of a polytropic
gas with adiabatic index Y = 3, straight lines in the plane of the Eulerian
coordinates x, t along which the corresponding Riemsann invariant is constant are
characteristice. This fact enables us to derive a solution to Cauchy's problem,
and also a solution to any correctly formulated boundary problem for the cass
when shock waves do not form in the solution. Suppose a polytropic gas with
index Y = 3 at the initial time instants t = O is in a quiescent state (u = O,
P = fo’ P =D, g = so), bounded on two sides by pistons whose trajectory of

motion are given by:; x = x1(t), X = xz(t) (Figure 2.22). We now employ Eulerian
- 23 -




T VRS

e e

LIRS S I Rl

Qe

coordinsites x, t.

Qbviously, in zone I we have a constant flow coinciding with the initial
flow, in zones II and IJI =- Riemann waves, and zone IV is the zone of Riemann

wave interference.

Consider qualities of another extremely simple problem; the interaction
of Riemann waves with a contact boundary, i.e., with boundary of two distincéive
gases (for identical gases with different densities). For simplicity, we will
regard both gases as polytropic:; the gas to *he left of the boundary x = X,
(Figure 2.23) has the adiabatic index V= V,, and the gas to the right =~ the
index Y = Vz, i.e., we assume that to the left of x = X, P -.A1f’ﬂ, and to
the right == p = Azf‘ﬁ . We can readily understand that if two gases adjoin
each other, the boundary between them is a trajectory, and therefore the follow=
ing conditions must be satisfied at the interface of the two gases;

u_ = u+, P = P+s (1)
where u_, p_, u+, p+ are the velocity and pressure in the gases to the left and
to the right of the contact bounasry, respectively. As will be shown in sectiion
IV, these equations derive from the laws of conservation of mass, momentum, and

energy.

Figure 2.23

penoting the Riemann invariants s, r to the left and to the right of the
contact boundary by, respectively, 81 Ty 859 and Iy, we conclude that at the
continuity of velocity at the contact bounaary require by the first of the condi-
tions (1) is described by the equality
S, + T, =8, + T, = 2y(t), (2)
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- where U(t) is the velocity of the contact boundary. Teke some point (xo(t),t)
b ad at the contact boundary (Figure 2.25) after a Riemann r-wave with the velocity
é of the left gas arrives at it. &ince s=characteristics transport to the contact
E boundary x = xo(t) in gas IJI constant values in the invariant s = 8, = sg, motion
g to the right of the contact boundaries naturally a Riewann r-wave (s = s; =
, constant). Therefore, by formula (3.2.11) the pressure against the contact
!
; boundary is defined by the function
—1 U@ 1oy
! ,),_m{}-}-lﬁ—..%]" . :
= J (3)
where P, is initial pressure in gases I and II, and cg is the initial speed of
sound in gas II (the initial velocity in gases I and II is Zero).
calculate pressure p1 in gas 1. slnce
| & (-3- Wl
L P\ ’e
4 where c? is the speed of sound in gas I at the initial time instant, and
] v, -1 -
cy = _Lj;_- (r1 91), therefore
L& - 0
| Yi—1 rj—s 3=
D= - 1 IV ]
| S5t oza | @
i ' = —a 3. A
canceling out the quantity 8, at this point by means of (2), e get the formula
M | : v
1 - n_ Y- Y= ' )
: 4 po['? 2. g ] . 2
where ro =_2 _ <? is the value of invariant r in the constant=flow zone of

1 v, ~ 1
gas I ahead of the Riemann r~wave (we assume here that U(0) = 0). Equating

pressures p, and Pyy we derive the equation

r -y 1—0(1) ” 1=l U® 2
1 __n= et 12 Y-
o 5N (e B )
~ RS

If it is assumed thet r, = r1(t) is a known function, then from this stage we

1
can define y(t). Actually, the quantity r1(t) is an unknown, since the inter—
action of two Riemann waves to the left of the contact boundary (Figure 2.23)

leads to curving of r-characteristics. However, we can make a gqualitative

-'z}}-




investigation of the dependeace of U(%) on r1(t) and study the flow pattern qua-
litatively. -~

suppose, for example, that a rarefaction r-wave arrives at the contact
boundary. Then, as is readily seen from pigure 2.23, r (t) is monotonically de-
creasing function of the vaxiable t (i-’iig< o) when t = t (Figure 2.23),
1(to) = r?, therefore from {6) it follows that U(to) = 0. slnce we assume that
v1, V2 > 1, the left side f equality (6) decrecsnes with increase in y(t), while
the right side == in contrast == increases monotonically. Hence it follows that
if r1(t) is a monotonically decreasing function of the variable t, y(t)< O and

U(t) is also monotonically decreasing.

This means that flow in gas II can be regarded as motion induced by the
movement of a piston with velocity U(t) < 0. Therefore the Riemenn r-wave in
gas II is a rarefaction wave., Quite analogously, we can ascertain that if the
incident wave is a compression wave, {(t) > O and a compression r-wave is propa=

gated in gas IT.

It is somewhat more difficult to establish the pattern of an s-wave reflected

from the contact boundary, thet is-to say, the sign of d:; :t) . Differentiating
equality (2) relative to variable t, we get
Hence we cor 'lude that if Ly'(t) > dr i“ , the reflected wave is a rare-

faction wave, otherwise == a compression wave. For simplicity, we consider only
the case of identical gases (\)1 = V2 = 1/ ) whose entropies are distinct, i.e.,

c? ¢ cg. Then equation (6) can be rewritien as

y—1 r,({)-—-U(t) Y-—l U(Q
2 ] =1+ i (8)

* ~ PR T SRS b

and

n =25

U and 127 1 v
VOsTTEE- | T Vo=
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Hence we conclude that if c?/cg < 1, the quantity fi%é;ﬂ has the sign of

Ar (¢) . . 0/, 0 . ds ce) adr, (t)
ST but if 01/02 > 1, then the signs of L% and _;'_t_

are opposed.

For the same gas ( Y1 = ]/2 = v), inequality c$<< cg means that the density
f? of gas I is greater than the density f’g of gas II, since p = f%;f « There=-

fore we can forrulate our result thusly;

. 0 . .
Fron a denser medium (f; >»f>°,c; < ¢?) a ravefaction (compression) wave
4
is reflected also in the form of a rarefaction (compression) wave, and conversely,
5 ¢ o Z ' : . i :
from a2 less dense medium (f;<-le ‘2.>‘%) a rarefaction (compression) wave is
reflected in the form of a compression (rarefaction) wave.

0
2
be treated as the reflection of a Riemann wave from an infinitely dense gas or as

Note one special case, ¢, = 0 (f:::oo) for which y(t) = O. This case can
a reflection from a rigid wall (y(t) = O). Wwe conclude that compressior (rarefac=
tion)waves are reflected from a rigid wall always in the form of compression (rare=

faction) waves,

Formula (6) enables us to make & qQualitative investigation of the proble.
of the reflection of Riemann waves at a contact boundary. But the total solution
of this problem is complicated by as a fact that actually the function r1(t) is
unknown, since the r—characteristics are curved in the zone of interaction of the

incident Riemann wave with the wave reflected from the contact boundary.

Accordingly, let us note a special case when the solution to this problem

reduces to the solution of ordinary differential equation.

consider the case when V1 = 3, but V2 >1 arbitrarily, Then the charac-
teristics in gas I are straight lines, and we can assume that r1(x, t) = £1(x, t),
where £1(x, t) is defined uniquely in the Riemann wave. However, in equation (6)
r1(t) is the value of invariant r1(x, t) at the contact boundary, i.e., at the
point (xo(t), t)s r1(t) = r1(xo(t), t) = f1(xo(t), t). (9)
Since by the physical meaning of quantity y(t)

d=y(t) Y
—5—,—-—.-———- U@, (10)

and from equations (6) and (9) U(t) is expressed as a certain function of the vari=

ghles t, xo(t), therefore the solution of the entire probleu is reduced to integral
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equation (10). As the initial condition for equation (1), here the condition
(Figure 2.23) xo(to) -x is imposed. fThus, for example, if

¥y e v 5 ® 3 and if a centered rarefaction wave arrives, equation (10) takes on,
according to (8), the form

) xot(t) = c(‘l
dxo(t) .
;t =17 c“’/cg . X, (to) =clt, £,>0, (m )

since in the centered rarefaction wave when V= 3, r(x, t) = x/t.

6. Remarks on boundary conditions for equations in gas dynamics and an
illustration of their solvability with the example of the piston problem. In
analyzing the solvability of prcblems with boundary and wall conditions, the
conclusions which we drew in considering this problem area for hyperboiic systems
of quasilinear equations in section XI of Chapter (Qne are wholly applicable for

gas dynamics equations. -%'
Nevertheless, when studying the motion of gases and liquids, certain

classes of boundary and wall conditions are especially to be anticipated in

therefore are particularly important. Therefore we will here consider typical

boundary conditions for eqQuations in gas dynamics.

The wall conditions are most naturally formulated for the boundary of an
isolated gas volume, i.e., for a trajectory. Iﬂ Lagrangian coordinates, a fixed
coordinate q corresponds to a trajectory; therefore this kind of boundary condi-

tion in Jagrangian coordinates is imposed on the straight lines q = constant.
Two types of boundary conditions can be distinguishedg

1) Fxternal boundary conditions, or conditiong at external boundaries.
This will naturally be boundary conditicns erffectively describing the influence
of an external environment on a given gas volume. For the one-dimensional flow
under consideration, such conditions are the conditions at the left and right

boundaries of the volume in which the gas is situated.

2) Internal boundary conditioms, or conditions at internal boundaries.
These include conditions : <ontact boundaries between gases exhibiting different
properties (different entropies, different equations of state, and so on). Among
the internal boundsry conditions we can include also conditions at the disconti-

nuity lines of a solution. These conditions will be discussed in detail in the
= ’)16 -
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next section.

As for the conditions at the contact boundaries, in gas dynamics they are
always identical and require continuity of flow velocity u and pressure p. An
example of the use of these conditions is given by subsection 5, where the problem

of reflecting Riemann waves from & contact boundary was studied qualitatively.

Let us dwell on external boundary conditions. For the case of the piston
problem taken up in subsection 4, the boundary condition is imposed at the point
q = 0. We can easily observe that if the pressure p(0, t) = p(t) >0 1)
is assigned at the piston, this boundary problem is solvable, and uniquely so,
since from condition (1) it follows that ¢ > 0. But for the case when the piston
velocity u (0, t) = U(t), (2)
is given, we see that provided U(t) < O separation of gas from the piston is pos=
sible, that is to say, condition (2) is not satisfied, but is replaced by condi-

tion p = O,

The very same situation obtains for systews of linear equations as well.
1f boundary conditions are imposed outside the domain of dependence of initial

data, these conditions generally speaking do not uniquely define the solution.

For the piston problem, the physical formulation of the problem yielded
the correct solution, by replacing, where required,condition (2) by the "free

boundary" condition p = O.

When U(t) > 0, the piston problem with boundary condition (2),
conversely, is always so.vable, even though the solution will be discontinuous.
This conclusion must be compared with the case of a system of linear equations
for which the boundary problem generally speaking is not solvable either in the
class of smooth or in the class of discontinuous solutions, if the boundary condi-

tion is posed in the domain of determinacy of the solution to (auchy's problem.

gection Iy. Discontiimities in a Qne-Dimensional Flow of Compressible (ases.

shock waves

1. Hugoniot's Conditions. In the examples of these simplest flows in
section III we saw that as a rule solutions to equations in gas dynamics remain
continuous for a limited time, then discontinuities emerge in the solutions.
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Naturally, differential equations lose their meaning for discontinuous flows; -
however, as we already stated above, integral laws of conservation of mass,

momentum, and eaergy remain in force for discontinuous flows as well.

Figure 2 24

Iet us derive conditions that must be wet at the discontinuity lines of

solutions to equations in gas dynamics as consequences of integral laws of conser-
vation.

Suppose x = x(t) is the equation of one of discontinuity lines of the
hydrodynamic variables, which we will assume over the segment t1 <t £ t2 under
consideration as poscessing a continuous tangent (Figure 2.24). Suppose f(x, t)
suffers a discontinuity at the line x = x(t). Let us denote

FO=[EO~0. 05 [O=1GO+0. 0 N=LO-f0. (1)
Integral laws of conservatlon in Eulerlan coord.mates (2 3.13) = (2.3.15) are of
the form

§ px¥dx — pux’di =0,
?pax“dx—-(p pu’)xvdt——J.J-vpr“ dxdt, (2)
¢ :
§ (e+-§-)x"dx—-—pu(e+— —\xvdt_.u
¢ .
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Let ug write the laws of conservation (2) for the path AA'BB', assuming

g

that the lines A'B and B'A adjoin infinitely close to the discontinuity line
x(t), respectively, to the right and to the left of it.

In view of the boundzaness of all hydrodynamic variables, integrals vanishh
over the parts AA' and BB' of the path C, as does the J/f v pxY"/ dx dt.
& ¢
Along the line x = x(t) we have dx « D dt, where D = D(t) = x'(t). Therefore,

§ for example, from the first equation in (2) we get

: Ca T m ek C gy \
JrolmO—a®DPO=@OBO—n6 @ ,#5.{_0% (3
A D ve mrn ey a Tl A 1%

In view of the arbitrariness of the limits of integration in (3), we must equate
the integrand to zero, i.e., x¥ (t) {D(t) [f'} - [Fu]}- 0.

Cancelling from this equality, we see that the conditions at the dis-
continuity line are identical for three symmetry cases vy =0, 1, 2. proceeding

in similar fashion with all laws of conservation (2), we get conditions at dis~
continuity line x = x(t):

T Dipl=flpal T “'”.f.*-,.j(il
|\ ... Dipuj=lppd, Kok

[(e-i— HN=loele+£ +4)],.1 (57

-

which associate discontinuities in hydrodynamic variables at the discontinuity

line x = x(t) and the velocity D = x'(t) of the discontinuity line.

- Relations (4)-(6) are called conditions for hydrodynamic consistency of

a discontinuity, or Hugoniot's conditions, after the French scientist who first
derived them#).

B

According to the notation for the quantity D = D(t), D[f] = [Df]. This
means that equation (4) can be rewritten as [/D(u - D)] = 0, (7)
Multiplying equation (7) by D and subtracting from (5), we get

- *) In Awerican literature this condition is often called Rankine's or Rankine=
Hugoniot conditions.
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Finally, multiplying (8) by D, subtracting the results from (6), and considering
2
that [D] = [D°] = 0, ve get

i - —

emafrgreg)= 9)

Teking the notation (1) into account, we can rewrite Fugoniot's conditions (7)-
(9) in the form of the equalities:

- ae—D=a@—D=m (0
. Pytp(ty— DY =py+py (4 —~DP=J, ' (i)
B 5 (s —D)\ __ '

prty— D) (e £ 4 Lo D)

= @—D)(a+L+ &5 )=y qy

According to subsection 2 of section IJ, the quantities m, j, f denote, respec-
tively, flows of mass, momentum, and energy calculated in a coordinate system
that travels at the velocity D relative to the system in which the flow velocity
u is measured. So Hugoniot's conditions (10)=(12) require continuities of the
flows of mass, momentum, and energy at the discontinuity line of the hydrodynamic

variahles.

Note, finally, that integral laws of conservation written in lagrangian
coordinates lead to the same Hugoniot's conditions (4)-(6), if we take into

account the wrelationship between Jagrangian and Eulerisn coordinates.

2. pifferert kinds of discontiruities; shock waves, contact discontinuities.
pifferent forms of Hugoniot's conditions, Hugoniou's adiabat. we will distinguish
solution to continuities 38 a function of the satisfaction of the conditions m =
0, m # 0.
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If o(t) = m = O, then this kand of discontinuity will be called a contact

discontinuity; if m(t) ﬁ 0, we will call the discontinuity a shock wave.

For the case of a contact discontinuity, from (4.1.10) it follows that
D=u, =u,= x'(t), (1)
i.e., the discontinuity line coincides with the particle trajectory (the contact

discontinuity is represented in Jagrangian coordinates, therefore the straight
line q = constant).

Putting u; = Dy Uy = D, ve get from (4.1.11)
Py =Dy = Je ()
and condition,(4.1.12) when U, =u, =D is satisfied by identity. and so, the
following two conditions are satisfied that the contact discontinuity.
u1 - \12, p1 o= P21 (3)
i.e., flow pressure and velocity are countinuous. Ve can readily show the converse:

if conditions (3) are satisfied at the discontinuity, then the discontinuity is
of the contact type.

The quan*ities £, £, S can experience a longitudinal shock at a contact
discontinuity, however satisfying in the process the condition of pressure conti-
ruity (2). A contact discontinuity, in particular, can be the interface between

two differeni gases satisfying differeny equations of state. The conditions for

velocitv 2nd picaswas wcotimmity (3) in this instance can be regarded as internal

boundary conditions at the interface of the distinct gases.

For the case of a shock wave m f 0, the substance flows across the disconti=-
nuity line x = x(t). For the case m > O, the substance flows across %the disconti-
muity line from left to right; therefore we will state that when m >~ O the shock
wave will travel frow right to left relative to the substance; conversely, when

m < O we will state that tne shock wave will travel to the right.

Let us consider different representations of Hugoniot's conditions (4.1.10)~
(4.1.12) for the case of a shock wave.

The condition of momentum flow continuity (4.1.11) can be written in the

form of the following equivalent equalities.
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‘ py+m(ty—Dy=p,+m(@;—D). | |

£ P:"}_'V:""= p+Vimt, R (4)
£ Pr— P

m’ =

f1—Vy .

YO

where v = 1/f. cCondition (1.12) after being divided by m becomes
—D . —
et oV s+ O gL = o gy G O (5)

If we let the lette~ & stand for the quantity g + pVs called enthalpy, then (5)
can be written as

ga+(“2—’_D)?=J:7‘l+!a|—-D)’;: (6)
Fron (4.1.10) we heve
(a;— D) (s, — D)= ——m"'VV, (1)

Substituting here the third formula (4), we get

(= D)0y — D)= PV Wy B, )

according to (4.1.10)

W —D)=mVy; (— Dy==mVy @~D)'=mV} (y—Dyf = m'

()

Substituting here the third formula in (4), we obtain

(u; —D) v—‘—%—vb (aa ) -pr::—_%vg (10;

let us note several other useful formulas. From (9) we have

1 =02 D) G = D =mV,—V).|
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Therefore =
r-r')‘ ‘“‘2“"'71-'—-?—- — e e
&= ’V’(V | 4 =-( ’V.- d
;@n-;m,o;q V=0 PV |
"l 'l,'—D)-zn’V,(V,v—Vl)an(p,-Lp,)V,.} (M)
and, finally,
R | 1
0, ¢.L“§ T ’!é?f FQCV14'V0 (12)

2 e e fale as s s

From the resulting formulas we can draw several conclusions; 1) from formu=-
las (4) it follows that during a transition across a shock front pressure increases
or decreases simultaneously with density.

2) From formula (7) it follows that the differences (u2 - D) and (u1 - D)
have the same sign.

3) For & finite m, the differences (v2 - v1) and (p2 - p1) are of the same
order, so that as \Z% v, - 0, P, = Py - 0,

Equalities (10) express the relative velocities u2 - D and u1 = D in terms
of thermodynamic quantities. Therefore substituting these formulas into equalities

(5) and (6), we obtain relations containing only thermodynamic variables;

oty I
o NG e

;—w p,+p;)(vf-—vz) T iy

nret '.‘!J

‘ i3
1 . ; [T

532 Nt 3:'—-5(% m)(V=+V1)- . (14) L

Equality (13) or (14) is called the condition of a Hugoniot's adiabat.

Let us introduce into consideration the function

H(p,V po. Vo)—e(p. V)—B(Po. VoH-(V Vo)&u- 1 (15)

4

which we will consider as a function of two variables p, vy that depend para-
metrically on Py Vo.

Suppose M, = .{p1, v1} v My = {DPy vz} are points on the p, V plane
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characterizing the thermodynamic state of substance on different size of disconti-

nuity line. Then by virtue of (13) the following relation is valid;

H(My M)=H(p, V3 py, V)=—H(M, M)= “
. ' - — : (P;- Vﬁ pg- V2)=£] (16)

The points M1 and M, associated by relation (16) will be referred to as conjugate.
The property of conjugateness is not transitive, since from the relations H(Mo, M1)

= 0; H(M;» My) = O, H(M_» M) = O does not follow.

1et us fix the point Mo(po, vo) of the p, Vv plane and considering a set of
points M(p, V) conjugate to M, They wust lie on the curve

H(M, M) = H(P> Vs Ps V) = O. _ (1)

The curve given by equality (17) will be called Hugoniot's adiabat with a
set of points Mo(po, vo). According to equality (13), Hugoniot's adiabat is a
geometrical locus of points (p, V) characierizing the thermodynamic state of the
substance on one side of the discontinuity (shock wave) front if the state Py ¥,

on the other side of the front is assigned.

Suppose Hugoniot's adiabat H(M, Mo) passes through the point M, Then
mgoniot's adiabat H(M, Mi) passes through the point Mo’ but dues not coincide
with the adiabat H(M, Mo) (Figure 2.25). frhis situation reflects that Hugoniot's
adiabat is not a line of constancy of the function of two variables, but is the
line of constancy of a function of two variables dependent also on two parameters.
Therefore, if we select the points (p, V) that are conjugate to the point (po, vb)
as the new centers of Hugoniot's adiabats, then we obtain a one—-parametric family

of Hugonict's adiabats passing through the point (po, Vo) (bundle of adiabats),

3., Hugoniot's adiabat for a normal gas. (ur preceding remarks on Hugoniot's

adiabats apply to a substance with an arbitrary equation of state.

For a more detailed study of Hugoniot's adiabat, we will assume that the
equations of state of the substance p = p(v, s), £ = 5f(v, T) satisfy the require-

ments that were formulated in subsection 4 of section I for a normal gas;

- p(V, S
2.9 o @, D >0 qn.
p(V, S)->00 "when V-0 (), m

V.S _ v, M f
op(a N%0 av. o="gF—>0 W

—~ el




»
%
g

Condition yI is the requirement of convexity of the demain of variables Py, V in
which requirements I-y are satisfied.

Figure 2,25

Qur entire subsequent consideration, with the exception of cases that
will be given special reservations, will apply to a normal gas*),

Let us examine, following [2_7, the total differential dH of the func-

tion B(p, Vv, Py Vo) of two variables p, V, sssuming Pys V, to be fixed:

db!:hdbﬂelﬁgyﬁwﬂf4~11552ﬁdpf (2)

using the fundemental relation d&= TdS - pdV, we obtain the

following expression for dH:

dH=Tas+L5Yeap - =P sy, i

tquation (3) can also be written ms
‘dH =T as | VEVF 4

N -

*) Properties of the adiabat for gas with arbi

(4)

trary equstion of state was
studied in the work of G, Ya. Galin /43/.
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where

k=42h; | v
is the slope of the ray passing through the center Mo(po, Vo). According to
equality (4.2.4), K= - mz, (6)
where m is g mags flow acruss the shock front separsting the states P V, and
p, V (here H(p, V, p,, Vo) = 0).

Let us consider the mutual arrangement of the following curves:

a) Poisson's adiabat given by the equstion dS = O and psssing through the
point N%(po’ Vo); we will denote this curve with the letter A; b) the Hugonict's
edisbat dH = O passing through the point Mo(po, Vo); let H stend for this curve.

By formulas (3) and (4), when V = Vs p= Py and dH = TdS. Thus, the
curves A and H at the point of their intersection Mo(po, Vo) have a common tangent.

Let us consider the behavior of the differentials dH, dS, dK at ~azh cof

these indicated curves.

a) et the sdiabat A, dS = 0, According to (4),

at = o ar. (7
According to properties I end II, along 4 (i.e., when S = constent) dK/dv > 0,(8)
therefore at the adizbet & dH/dv:> 0. (2)
Consequently, H < C in the upper part of the adisbat A (V< Vo)’} %D
H >0 in the lower section c¢f adiebat & (V ;>V0).
b) At the ray dK = O, dd = Tds. (1)
This equelity signifies that siong the ray K the signs of dil and dS coincide and,

in particular, the stationery peints of the functicns H ¢nd £ coincide.
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As will be shown i3 subsection 4 of section I, entropy S hes no stationsry

peints at the ray K = constant > 0 and increases monctenically with p; at the ray

K < C entropy S has & single stationary point at which S reaches ihe maximum,

The same is valid, therefore, for the functicn H, so that H along the ray K= const

< 0 has nc statiorery points; H has a single maximum at the ray K = constant >

0, &nd this at the same point as does S. Hence it follows thet at each ray, K =

const<O there exists & single point Md of Hugoniot's adiabst H lying between the

point MA of Poisson's adisbat and the center Mo'

Thus, thers exists a curve H -- Hugenict's adisbat passing through point MB.

The smccthness of Hugoniot's curve follows from the fact that it is an integral

curve of the ordinary differentisl equeticn (2) pessing through the center 4.

c) At the adiabst H, from relsticn (4) follows

- E (V-—V)r === )
Ta§=— L5k ax. (12)

Hence it follows thet if the point M(p, Vj travels along the adiabet, # such that

the rey K(M, M ) travels clockwise (dK<0), entropy S increases menotonicslly.

Dl T ap—

1
!
]
1
% v

Figure 2.26
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Summing up our ccnclusions on the behavior of differentials dH, 4S, dK at
the curves &, K, H, we conclude that in the neighborhocd of the point M, where
the adisbats intersect tangentielly, the curves A and H lie es shcwn in Figures
2.26,

The mutual dispesition of sdiabets A end H in the neighbecrhced of the center
Mo indicetes thet the tengency cf the adiasbats A and H must be of an order not less
then two, Let us confirm this by computsticn,

From (3) we have along H

raS=;-V_,ﬁdp+" P 4v, (13)

Differentisting equality (13) relative to vsriable V, we find

dT iS4 1 &S = — 5 dV dp— —T—d’p+ 2

i.e., 425 = 0 at the point (po, Vo) and the tangency of the curves 4 and H is

of the second order. Frinally, differentiating (14) once more relative to V, we find

EE

d’TdS+2de’S+Td°S———'-§dVd’p- =5 * #p.
Since at the point M_, d¢ = d°S = 0, from this we find
d's
tes=—joer = Fe—d o

at the point R according to property II of the equation of state.
Thus, cnly the third derivstive d3S/dV3 is distinct from C at the point M,

of the curve H,
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It is not difficult to see that in the neighborhood of the center Mb(po,
Vo) the following properties of adiabet H hold:

1) For any point M on the curve H

(15)

2) No ray MbMH touches the adiabat H when MH:# Mo'

3) Each rey MOMH intersects the sdiabet H et no more than a single point
My ¥ Mo'

4) Each ray intersecting the upper branch of adisbat & intersects elso the
upper branch of adisbat H, Here, the functicns H and S at the ray MOMH have pro-
files of the form shown in Figure 2.,27.

Observe that from properties 2) and 3) does not follow the convexity cf the
curve H, since these properties are valid for rays departing only from a certain

point on an adiabat, namely from its center.

. el

Figure 2.27
Let us prove that these properties ¢f adiabat ! obtain not only locally,
but also globally. Let M, be an arbitrary point on adiabat H. Since
H (MH’ Mo) = H(Mo, N%) = 0,
therefore at the ray MoMﬁ there exists the stetionary point of the function H (and

also by virtue of (11), the stationary point of the function S). Therefore, k<0
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and property 1) of ediabat H has ber~~ proven.

Let us prove property 2). The stastionary point Mét[Et = stationary/ lies
strictly within the segment MDMﬁ end is the sole stationary point. The tangency
of adiebet H with ray K would signify the existence at the ray K of two stationary
peints of function H and, consequently, two stationary points of S, which is
impcssible. Property 2) stends proven.

From the existence of & ray intersecting curve H at two points distinct from
Mo there necessarily follows the existence of a ray tangent tq H at the point
distinct from MO. This is impossible by virtue of property 2) and therefore proper-
ty 3) is also proven.

Finelly, since S(MH) )»S(P%) when py > p_, then any ray intersecting the
upper part of adiabat H intersects st first adiabat H et point MH’ and then adiabat
A at point M,. Property 4) stends proven,

In particular, from this it follows that the slope of the ray K intersecting

adiabat H at the point My 7 Mo lies within the limits

kL PR < Y8 oo (16)

PP 2 SR ST .

Now let us consider the follcwing problem:

The state is given along cne side of the discontinuity line (shock wave).
Suppose it is cheracterized by the parameter u = Ugy P = P, end E= & = E(po,
Vo). The flow of mass m ecross the discontinuity front is also given, 1t is
required to define the stste (u, V, p, & ) along the other side of this disconti-
nuity line based cn Hugoniot's conditicns.,

We assume that K = ~me satisfies conditicn (16), Let us show that for s

normel ges this problem elways has & soluticn, and one that is unique et thst.

Thermodyenmic parameters of the gas p, V are defined by the point of
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= -m?, Since K satisfies condition (16), then by properties 1) - 4) of adiabat

intersection of Hugoniot's adiabat H(p, V, Po» Vo)‘z 0 with the ray K =

H, the point (p, V) exists and is uniquely defined.
So, thermodynamic parameters p, V, ¢ are defined uniquely. Naxt, all the

remaining shock wave parameters are uniquely defined. The differences uj, - D =

mV_ and u =~ D = uV are defined by formilas (4.2.9). Since u, is known, from this
the velocity D of the shock wave is determined,

This meens that the formulated protlem has a unique solution provided condi-
tion (16) is satisfied.

Let us consider the limiting case when K = - w2 = )P(a‘é’ > . At this

K value the ray is tangent to Hugoniot's adiebat (and simulteneously, to Poisson's
adiabat) at the point Mo(po, Vo). The conjugate point M(p, V) characterizing the
state of the substance along the cther side of the front coincide to Mo(po, Vo),
i.e., the shock wave is infinitely weak.

In this case u = u  end by formula (4.2.8) we have

LI e el nba

e—op=ZER o,

A,
- PRSP

Thus, an infinitely shock wave will travel at the speed of sound relative
to the substance, i.e., it is a weak discontinuity.

When K = - o0, the chock wave is called infinitely strong.

4. Stable and unsteble discontinuities, Stability cornditions and Champlin's

theorem. Suppose the variables Uy, P Eq3 Y p2, V?, '22 , and the velocity

1’ V1’
of the shock wave D satisfy Hugoniot's conditions (4.1.10) - (4.1.12). Ve can

easily note *that Hugoniol's conditions do not change, whether or not we assume
the state Usy D, \!1, 21 as the state of the ges left of the shnck wave front,

and the state u v as the right side state, or, vice versa, Ups Pys V1,

2) p2’ 2’ £2
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21 as the right, and Uy, P2, V2, 22 as the left, However, as we now see, as to
their physical meaning these cases differ widely so thst one of them must even
be regarded as impossible.

. Let us begin with our sssumption of some definite sign for the mass flow
m= l°1(u1 - D)= ]“z(u2 - D). OSuppuse, for example, m< O. In this case the wave
relative to the substance travels to the right and, thus, in its motion the
substance cut across the shcck wave front, moving from right to left relative to
the front.

As we state in section I of this chapter, we represent the discontinuity
surface of the flow at the nerrow zone of lesrge gradients in which the ecticn or
dissipative forces -~ viscosity and thermsl conductivity -- is substentisl. The
action of these processes lesds, ss we kncw from thermodynsmics, to entropy gein,
which characterizes the irreversibility of processes with viscosity snd thermal
conductivity, Since when m < 0 gas perticles in the course of motion move from
a right position relative to the shock weve front to a left positicn, then obvicus-
ly, due to the irreversibility of the processes occurring in the narrow zcne
which we associste with the shock wave we must require thst SUPQB‘: Saeg
[Pnpag = r.ght; JfNed = lef§7, where Smmg end Spep are the entropy of the
gas to the right and to the left, respectively, of the wave front.

The inequality Snpas < Sheg (n <0) (1)
no longer allows us to interchunge the states Uys Pqs V1, &1; Uyy Poy V2, 52 but
rather indicates the specific positicn of these states relsiive to the front.

We will cell the shock wave when m < 0 for which condition (1) is sstis-
fied & stable discontinuity; if conditior (1) is violsted, then we will csll this

discontinuity unstable.
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Whelly enslogous erguments lead us to the conclusicn that when m C
Snee < Spas (m >C). (2)
We will call conditicrs (1) - (2) shock wave stebility cornditions.

If we agree to lebel the stete eghead of ths shcck wave front the state to
the right of it wher m< C and to the left of it when m >C, end lebel the second
stete as the state behind the sheck wsve front, then inequalities (1) and (2,
require thet the entropy ¢f the gas present behind the front will be greester
then the entropy of the gezs sheesd of the wzve front.

We will denote the state sheed of the frent by the letters Uys Pos Vo’ Eo,
and the state behind the front by u, p, V, £; then the stsbility ccrnditicns (1)
and (2) can be written in & single irequality: S ;>So. (3)

In the follewing, we will understand shcck wave to refer only to & stable shock
wave, i.e., 8 discortinuity satisfying Hugoniot's conditicns and condition (3).

Let us turn to the problem of determining the state slcng cre side of the
front, if the stete on the cther side is given gleng with the mess flow m consi-
dered in the preceding subssction. If ug, Py Vo’ 20 is t he state cheed of the
shock wave front, thzs protlem cf defining the steste behind the front satisfying

stability conditien (3, is solved, end dore so uniquely, providire the condition

' — ) i
—ml =K == “,’_V: <3T’;.(v°. Sp. (4)
is setisfied. For & normel gas stebility ccndition (3) leads to the following

consequences;

1) To each D vslue snd to each stete sheed of the “‘ront u, p , V, &
o’ Yo 0

there corresponds one and only one stste behind the fremt u, p, V, & if (D - u}

>c .

(o}
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Actually, m = fo(u0 -D) end 12 DL &5 = — a'\’/ . Hence

follews (4.3.16) and the velidity cf the assertion.

2) With incresse in ID - uo[ from <, to 0o, entropy behind the front
increases mcnotcnically,

3} Sheck waves lead only to compressicn of the swbstance and to a pressure
rise.

hctually, et the upper branch cf adiegbzt H, which corresponds to stetes
behind the front, we have S >S,, p > p, V<V, i.e., £ > A,

4) The shcock wave travels at supersonic velocity with respect tc the gas
ahead of the front and with subscnic velocity in the medium behind the front.

This assertion (Chemplin's theorem) is written es the inequalities

luo-Dl>co, ju-D[< c. (5)

The first inequality, as we saw, is equivzlent to the conditicn S >'So. In sub-

section 3 it was shcwn that

-

_!{7{%<;g§_=ycf (6)

with p and V lying to the right cf Poisson's adiabat A. Since in accordence with

subsection 3, My lies tc the right of adiebst 4, inequality (6) hes been satisfied.

Therefore
; 'Pp—ﬁ.- R — — -
(V=T =—m=—pu—Dp> g

Hence ‘u - D[ £ ¢, wiich wss required tc be proved.

Ncw let us nute that we cen consider elso the prcblem cf defining the state
Uos P» Vo’ &, aheed of the front with respect Lo the given stete u, V, p, &
behird the front end the mass flow m (or velocity D) across the discontinuity
front. Stebility condition (3) in this case can be replaced by the equivelent

inequality:
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and the point (p, V) (if it exists) is unique and lies on the lower branch of
the Hugoniot's adiabat with its center at the point M(p, V). Recalling that
the velocities of the cherecteristics E., £, 53 are equal to

51:1’1-0’ Ez;u! 53

we can vurite inequality (5) also in the form

=uTrTec, (7

EI‘MB >D > &, npas when D<uﬂP&B (8)
g

R >D > §3 npas when D>wu,., (9)
where gms end g’?” are the velocities of the characteristics, resnectively,

tc the left and to the right of the discontinuity.

e e e rw
PR g RO

Sher QERUYRAE [k
shoede o s

Figure 2.28
Finally, let us ncte further that the stability conditicns of disconti-
nuity (1), (2), or (3) are equivelent to the inequality Upeg > Uppas (10)

Actuelly, suppose, for example, m < O. Then by (4.2.10)
By — a8 — gp=m{ VY. I

— 1 it
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Since V )’Vo, from this follcws (1C). The case m >0 is similerly proven.

Inequalities (8) - (10) enables us to schematically represent the behavicr
of characteristics and stresmlines in the vicinity of the discontiruity line,

Figures 2.28, a and 2.28, b show the mutusl dispositicn of discontinuity
line x = x(t), streamlines dx/dt = u &nd charscteristics dx/dt - §1 =u-c,
dx/dt = EB = u + c in the regions to the left and to the right of the shock front
in Eulerien coordinates for the csse of &z shcck wave that trasvels to the right
(m<0) and to the left (m >C} relative to the gas.

Figure 2.29 gives the dispositicn cf the correspcnding curves in the plene
of Lagrangien coordinates q, t for the case m<0. In this figure q = q(t) is the
discontinuity line, q = constent is the stresmline, snd dq/dt = * fc ere the charac-

teristics of the first and third families.

hr—

1 « o

(4
| o] zg=-P¢

Figure 2,29

Let us note one typical feature thst follows from the pattern of the disposi-
tion of the discontinuity lirne end the cheracteristics shown in Figures 2.28 and
2.29, Four characteristics arrive at esch of the points on the discontinuity line
x = x(t) from below (from the region of lower time values t); only two characteris-

tics depert (defined st large t values), snd one of these is the stresmline. For
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the case m < 0, two arriving characteristics of the third family intersect at the
discontinuity line, and when m >0 -- two incoming characieristics of the first
family. We state that when m< O the characteristics of the third family form a
"herringbone pattern", and when m >0 characteristics of the first family form
the "herringbone,"

This situaticn is strongly related to shock wave stability. In perticular,
it indicates that the solution in this case is necessarily discontinuous, since
arriving characteristics of the ssme family intersect at the discéntinuity line,
These consideraticns enable us to formally define these stabilities of a disconti-
nuous soluticn to a hyperbolic system of equaticns es the satisfaction cf the
"herringbone condition" at discontinuity lines. This appr jach to discontinuous
solutions is employed and extensively discussed in Chapter Four.

5. Hugoniot's conditions for a polytropic gas. For the case of polytropic

gas the equation of state is cf the form
Fe'"'”—To 'L‘M.,’*v«—_fr" o= 'pr_ﬂ“ (1)

For enthalpy we have the expression

oY P
=y ﬁ " °<"-—.5:r<l—] (2)
and the equation of Hugoniot's adisbat with its center at the point (po, Vo) is of
the form
p"4ﬁh(;@v'—‘PvQQ“Ibvb== I e
or ;
V(e (V— WV =(1 —#) pV, “)

-257-

bk 2

T

RV U oo

L bl

a7 ity

WA LIt vaguprapy

N T MBI PO TIE BT W SR s

VALY




e L T B v e ]

In Figure 2.30 we give tke plots of Hugonict's adisbat and Poissen's adiebat
for the case of a polytropic gas. Hugonioi's sdiabat H, according to (4}, is a
hyperbola with the asymptotes V= hV , p = -hp_, (5)
and Poisson's adiabat is given by the equation pV = az(So) = constant - (6)

and has its asymptotes, axis p= 0, V= 0.

et

-nh 'I :

Figure 2,30

The following properties are valid for a polytropic gas.

1) Pressure p varies along Hugoniot's adisbat from O to oo when V is veried
from Vo/h to hVo; p=©00, V= hVo corresponds to an infinitely strcag shock wave
at Do Vo values ghead of the front: p =0, V= Vo/h corresponds to an infinitely
strong shock wave for the given stave p, Vo behind the fropt. From Figure 2.30

we conclude that the limiting compression of & polytropic gas by a shock wave is

equal to
‘ ;”‘V:__} —:i? VT (7)
AT VTS Yi:r.?.l"
2) Along Hugoniot's adiabat dp/dV < © (8)
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This means that with an increase in the quantity ID - uol pressure p end density
4 behind the weve tront incresses menctonicelly.

In subsections 3 and 4 we shcwed that for a normal gas, the stete behinl the
sheck wave front is uniquely determined from Hugonict's conditicns if the state in
front of the front (uo, Py Vo’ 20) erd the quantity cheracterizing the strength
of the shock wave (mass flow m or velocity of shcck wave D) are given.

Let us here present the corresponding working formulas for the case of a poly-

tropic gas. We will cheracterize the strength of the shcck weve by the dimension-

less quentity

__lee—D}
o= (9)

-

which, by virtue of Champlin's theorem, 1s greaster than or equal to 1.
If we know M,, then we find the modulus of the mass flow M ecross the weve
front: Jm| = fo My (10)
Now let us express explicitly the quantities p, V, ¢, u in terms of Pgs Vos

Cor Ugs M,. Rewriting the equation for the acisbat (4) in the form

piin_ pbhe _(A=POP) ——Rat (11)
0 o N
where we use (4.2.4), we find
p-+hp0=-‘(l —h)Po(“o'_rD)’:(.l_+,h?’,,_°m.. (12)

L] - 2
1 =
since po ‘ eﬂ
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(12) - (15) express thermedynamic quantities behind the wave front in
terms cf those kncwn shead of the front, and in terms of Mo. To determine velocity

u behind the front, let us employ formula {4.2.10), according to which

1"=’4‘3'{:’;'("“"Vo)="o:tpo‘—'oMoV(\v(VLo—‘ l)=

) =a°£coﬁio(—%-—l)=u°i(l—h)co(Mo———_%:—) (16)

{the symtol + sign in formula (16) as taken for the cese of a wave traveling towsrd
the right, i.e., when m £ C; if tre wave moves to the left relative to the gas
(m »>C), then the - sign is taken).
squalities (13) - (16) explicitly express the state behind the front in the
form of rationel functions of MO. The quantities
B wm e o
Do ) Dy G o
are, as we cen readily see, monotoricelly incressirg functicns of the parameter M,.

By virtue of the symmetry (¢ Hugonict's conditions, the state ahead of a

sheck weave front U s Poo v éo with regpect to the given state u, p, V, £ behind

o’

tne front is defined by the very same formilas, if instesd of Mo we intreduce the

number N
8 ——
M=18=21

[
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where from Champlin's theorem it follows that Mg1.

6, Hugoniot's conditicns for zn isothermal gas. An isothermal gas is the
limiting case of a fhermally conducted gas when the thermal conductivity coeffi-
cient tends to infinity, and the temperature of the ges is kept constant due to
external heat sources. Frem integral of laws of conservation in this case follow

only two laws of conservation at the discontinuity front -- those of mess and momen-

tum:
- A AR
- mm~m 0y (83— D) == m, e QUi
FH’+1H(“1"£”’E=P3°F1&GE L» 1 P

and pressure p is given by the formula p = p(V, To) = FV), (3)

Since in an isothermal gas the temperatures identical ahead of and behind
the shock wave front, the role of Hugoniot's adiabat H in this case is played by
isotherm (3), whose equation can be written as

p-FV)=p -FV)-=o0. (4)
In this case, i.e. two points (po, Vo) and (p, V) lying on isotherm (3) will be
conjugate.

On the assumption that the gas exhibits propeirties I - V of subsection 3,
the isotherm satisfies the conditicns (ef section.I, subsection 4)
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Consequently, isotherm (3) is a convex curve, and any ray drawn from the

point (po, Vo) intersects it at not more than one point,
| Al
V- Ve
only at a single peint (Figure 2.32) if

Therefore, the ray X =

intersects the upper part of isotherm (3)

-

—00 < Ke=

—.—m.’,;.(w) [ 4:_ (6

T - . ._.-L._.--»ln—

where cT is the isothermal speed of sound. Providing K = - oo (sn infinitely

strong shcck wave), compressicn will also be infinite. To the same conclusion

formally derived from the compressicn formulas for a polytropic gas as yY--- 1,
since h=XY=-! —» 0 at Y — 1,
vV + I

Figure 2.31
Let us present working formulas for & shcck wave in sn isothermsl gas, again

taking es the parameter defining the streagth of the wave the quantity
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From (2) follows

Hence we csn determine V, after which u is found from the formula

J_ f‘q=m(v Vo)a—p,,c,(VoM,W— “; (8)

B S SO,

where for definiteness we put m«C (shock wave travels from left to right relative

to the gas). In the case of en ideal gas

p-=F(V)==—r‘ "r" 5 o (9)

%

the isothermal speed cf sound cq :‘[RTo is constant and formulas (7) and (8)

become

t-‘ T ]
?
o
N\

{te . ' .(‘ -. ‘X LA

e s J.

Converting to Riemann invarisnts (secticn 2 2, subsection 9)

S P ea—
s=u—clnp, r=u-tcplng,. (12)
let us give Hugonict's conditicns (10) and (11) & symmetric form:
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where 5o ro ere values of Riemann invariants celculated at the points Uy Pos Vo.

To solve the problem of these stabilities of shock weve in en isothermel
gas, it is sufficient to invelve the requirement of the secord law of thermodynamic
for a nonegquilibrium isothermal process (formula(1.2.29)):

45 1 dQ |
7;->.rfz?'°f (15)

Let us use this inequality for a ges particle interse:ting a shcck wave in its
motion. Since per unit time the gas mass ]Pn(uo - D)} = [P (u- D)} = |m| inter-
sects the shock wave, then, tsking this quentity as ihe mass of this particle, wc
set equal to 1 the time of its transition from the state shesd of the wave (uo,po,
v, 20) to its state behirn: the wave (u, p, V, £ ). By the law cf conservaticn

of energy (formula (1.1.2)), AQ= AL +AA,where AE is the increment in totsl

energy of the particle, end AA is the work perforzed by it per unit of time on

the surrounding gaes. Since

b .5 oot '“".',v-- 2 . R
L‘\'E=|m|(z—a,,+—§ﬁ). 44=(pa—Po")'lxnﬂ
inequality (15) gives ] -
Ty S.)+"°"° =

§

-

g—u!
+%-E+T.>0
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(where m >C if the wave mcves from right to left reistive to the ges, m < 0

otherwise). Taking relaticns (1) and (2) into sccount, we get

L% . .
T,(S—so)+_::____%+eo_,e+(uo - L C ; S 0.

Substituting here formulas (4.2.10):

@—DP=PIEVL G DP=PSEVE

- -—-.— o ——— B

we give inequality (16) the form

=TS — so) H(p.V Py Vo >0.

Let us compute the quentity TO(S - So)' To do this, we integrate the thermcdynsmic

equelity TdS = d& + pdV slong isotherm T from the point (po,

(Figure 2.32) (we sssume the gas to be normel, so thet ¥ = F(V) is a curve with

convexity fecirg downward). Along isotherm p = F(V), T = TO =

. .V
Ty —S)=e—reg+ [ FV)v.

e Ve

Substituting this into inequelity (17), we get it the final form:

. oy -
Pt Po — {
24P v, —V) J F(V)dv >0.

Cbvicusly, fcr & normal gas tais requiresent is tsntamcunt to the conditicn V< Vo

i.e., only the upoer half of isctherm T corresponds tc the sctete vehind the front,
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V ) to the point (p, V)
o

(16)

sl D St e ik b b NS s e L

(17)
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constent, therefore

(18) i

(19, 1
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Figure 2.32

Hence, as earlier, it follows that the shock wave in the case of an iscther-
mal ges leeds tc an increment in pressure and in density; mction ehead of the wave
front is supersonic, and subsonic behind the front (the iscthermal speed of sound
cp =V m_F/_a_\}_ is taken as the speed of sound he: .

Stability conditicn (19) can be given e different form. Let us consider in
the plane of Lagrengian invariables (q, t) the gas element situated between the
straight lines q = q, and q = a, (q1 < qz). For eny successive time instents t.,

t, (’c1 < tz), inequality (15) epplied to this gas element, gives:

'8 . [0 '

J'(z-{-%’-;— oo) dq— J' (e+i‘;-—1‘os) 44> 84

te te
[{] ! @

b

where AL ie the work dore by this element cn the embient gss in the time t2 -t :

r [ 'Y
bA= [ (pux"),_, at— [ (puxn,_q dt (21)
f f .

-t
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~ (the equality sign in (20) corresponds to the case of a smcoth, i.e., quasi-

oy

equilibrium, flow), From (20) end (21) we readily obtain the following integral

condition equivalent to condition (19):

GEEREEs] o

(C is en erbitrary ﬁiecewise—smcoth contour drswn in the pcsitive direction).

The quantity & + u2/2 + T85=E-TSis called free energy (per unit mass)
in thermodynamics, and inequality (22) expresses the familier thermodynemic law:
in an isothermal process the work done by a system is smeller thsn the loss inter-
nal energy and is equal to it only for the case of a quasiequilibrium prccess.

In this latter case the flow is smooth, and from (22) there derives the

2 differentisl relation

(23)

PR iigag;ﬁr
J P P SPRERN L

=

It must be satisfied by identity in the smooth pertion of the tlow, i.e.,
it must be a consequence of differential equetions of motion (2.5.4) and (2.5.5).
This actuelly does hcld: from equations (2.5.4) end (2.5.5) we readily obtain the

relation

which, by virtue of (18), coincides with (23).
Note that conditions (19) and (22), as explained in sec“ion 1, cen be

uuderstood as the requirement for an increment in the energy of tile total system

9 consisting of & gas particle and the externel hest sources (thermostat). Equality
4 - 267 -
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(23) then denotes the constency of entropy cf this system for the cese of smcoth
flow.

7, Strong and wesk shock weves., 4 comperiscn of shock wave and Riemsnn
compression wavz. For simplicity we will assume that the gas ahesd of the shock
wave front is &t rest, i.e., u, = 0. For an infinitely strong shock wave p/po =
oo . We would assume p to be finite, and P, = 0.

Pessing in equations (4.5.13) - (4.5.16) to the limit as My, — co, Py~
C, end Cy —> 0, we obtain Hugoniot's conditions for an infinitely leng shock wave

in e polytropic gas:

&p:llm(‘-}-k}pﬂg:(l—lop‘(ﬂo D)’: h)()2 (l)
* L_}é._ 13 y4+1 - ’
F

o = ' R ¢
®y e e C--V'h(l-q—h ){ D), ) . o)
R -

We see that the kinevic energy cf a gas behind the front of the shcck wave is

equal to the internal energy, since

(=ap a- h)’ .
o= 2h(l+h) = D= ‘
Fcr wesk shock waves we will take the quantity Mo =14 - DI as teen

<o

close to unity. Putting MC =1+ &, 0 < & <« 1,

we perform an expansicn in formulas (4.513) - (4.5.16) with respect to perameter

& with en eccuracy up to members of the order 2_3:




; ,4.- P

skl ehags a3

:‘:4‘ . -:.. m. - hv‘;
‘ p. (1—:.) m'

:,-—=}/ r+a_*)‘7,_)(,=_h+y@%%,_
; ’1’ P° (l—f)co(m —TC'I:""O“

_;i:.=-- ey

T e

Let us compute the discontinuities in Riemann invariants r, s st the front of a

weak shock wave:

" - h) R s g t,'w hioy
l P == — + )
% =% (c QD 2ot e e ! e

.—(1—h)co{<2e—e’)+(2e—e’)1+0(e’)= =Y
=41 —Hct—2(1=Ncf+0EH ™m<0), @)

/ s—-so..—=a—-a0—- U ") (c—-co)—(l—h)co(Qz-—e’,-—- ok

-—C

(m <0 ao)j

From the general pruperties of Hugoniot's adisbat H, es we saw in subsecticn 3,

there follows S - SO = 6(h3). (11)

Thus, in a week shock weve propegsting to the right relstive to a gas,

inverient r hes e first-order discontinuity relative to &, and invariant s and

entropy S have tnhird-order discontinuities. Just es for a wave traveling to the

left, in varient s snd entropy S have third-crder discontinuities.
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Formulas (10) and (11) shcw that a weak shock wave teheves as a "short"
travelling compression wave. Actually, as we saw in section I1I, constancy of
entropy S and cne Riemann inveriant characterizes & Riemann compressicr weve.
This is viciated for weak shock waves only in the third order, and therefore in
approxinate terms functions in a weak shock wave can be regarded just as func-
tions in a travelling compression wave, This enablas us to approximstely replace
a weak shock wave with a travelling wave., In seversl csses, this proves useful,
especially when snalyzing the interactions of shcck waves with Riemann waves.,

Since in cur approximastiorn

D=c,(1+&) (< 0),

we see that tne velocity o¢f a weak shock wave is the arithmetic mean of the

velocities of r-characteristics, since the equality

u +c¢c_+u+tc
0] o]

is satisfied with an accuracy up to third-order terms.

- 270 -




qneny

o 1o

8. Exemples. Let us consider now two of the simplest problkems on flow
containing skock waves:

1) Molicn cf a pistor in a quiescent gas.

In 2 quiescent polytropic gas lccsted to the right of the piston snd charac-
terized by the paremeters u, = C, pg, Voo Cor 2 piston advences with a velocity
U>0 when t >0 end U= 0 when t = G,

4 shock wave will be propegeted reletive to the gas witn a constent velocity

D, lesving behinu the front z stete with versmeters uw, p, V, c¢. Cleerly, u= U,

Fror relastion (4.5.16) therefore we determine M as 2 positive roct cf the equaticn
c

L] 2 U —
MO-TI-—_’I)C-;Mo—l—O'
i.s,., v %
M0=;2(l—h)co+l/-4(l—h)2cs+1‘ (03]

Next, the quentities p, V are defined frem formulas (4.5.13; and (4.5.14), and
D= c M,. Note that provided U>0 Vv <'Vo, and the stsbility conditicn for the
shock weve is satisfied.

2) Reflection of g shock wave from a rigid wall,

A shecek weve meves towerd the right with s velocity 0 > C in a gas st rest

(ug, = €, p,y, Vg, ¢, leevirg behind the front the state u, p, V, c calculated

ot
above (Figure 2.33, a,. At the instent t = C the shcck weve apprceches the rigid
wall x = Xy bounding the ges cn the right. The cenditien u(xo, t,; = 0 is es-igned
at the rigid well. Therefore the shcck weve is reflected from the wall in the form
cf & shcek wsve propegoting te the left with e velocity J, < 0. Let us derote the

stete behind the front of the reflected sheck weve 8s uy = 0, poq, V1, ¢, (Figure

233, Bs 5y -

i ol “ar

=

e i ot



Figure 2.33
Thus, the problem reduces to determining precisely these persmeters. Note

thet the problem cf determining u,, Pqs v c1 from kncwn u, p, V, c reduces to

1?
the preceding task, since we kncw that u, = O.

Let us introduce for consideraticn the queantities

u—D, 4
’ Ml=u—c—"" (2)

N

The foullowing relations are valid:

My>1, 0<M<l M>1 @)
u—uo=u=(1—h)C°(Mo'—T‘lqo—)r . (4)
uo—u=—u=(l—h)£'(M—-£-). ®)
u—u,=u=(l—.‘:)c(M,-_—~;?|-). C(®)
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From equations (5) and (6) it follows that the quantities M, end 1/M setisfy the

same guadratic equation

ol — = we o 1 =0 (7)
BLER | e i, . A -
Since M1 >1, 1/M>1, then M, = 1/M, i.e., MM, = 1. (8)

Let us calculate the pressure rise in the reflecticn ¢f & shock weve. Using

(8), we get:

t;ér [ SN EE &-l-h g A T
1+a)m M= L o
AR ECT SO tl+2h)—4-k ‘@
*}—b-=h+t)1§;—n= B
R oy l+h
,”!L':"_._:!L.—_: denm
=h T .,’._ . (10

For the cere of & week wsve p/po—>1,.%_l-ﬁt —» 2, which corresponds to
] Y
the acoustic law cf reflection,

For the case of strong wave, when = — 0, 0k we . 2w =
£ P~ Po h

2+ ,V__*_é_ . For gages with index close to 1, we obtain e strrug pressure rise.
V -

However, it must nct be assumed thet for en isothermal ges the pressure rise will

be infinite, since the enalcgy ¢f an isothermel gss and e polytrepic gas with V= 1
is inepplicable here. Actually, if for en isothermel ges Py = 0, then PC ~— 0,
since c% = RT = constant. Therefore no iscthermal shock wave traveling with finite

velocity relative to the background = 0 (vacuum) exists,
2 125
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Secticn V., Study of Sheck Transition. Width of Shcck Wave

1. Formulsticn cf the problem for & normel gas. We will assume that the
equations cf stete of a gas satisfy conditinns I ~ VI formulated in subsection 4
of section I, i.e., that the gas is normel.

As we already stated, we considered discontirucus flows es limiting flows
of a viscid end thermally conductive fluid a&s the ceefficients of viscosity snd
thermel conductivity tend tc zero., Therefore we will now study severel of the
simplest solutions to equaticns in gas dynemi-s for a gss exhibiting viscosity and
thermel conductivity, and then we will obtein discontinucus flows by meens of
passage to the limit. Here we can estimste the width cf the shock wave zone for
geses exhibiting finite viscosity and tnermal conauctivity¥).

We will consider only the case of plene symmetry (v = C) since es suffi-
ciently small sections end sufficiently small time intervels, any chcck weve,
when Vv ¥ 0, can be considered approximately es plenar.

Let us write differential equetions for a viscid thermally conductive liquid

(256 T1] = (2509

4‘3}‘- [p u-;—+pn’]=~0 1 (2)

2 (eto )t e+ 2+ 5) —l e Lo 0@

To equaticns (1) - (3) sre added equsticns of state

*) Our presertsticn in subsections1-4 follows /5_/.
-274-




p=p(f, T, E=E(f, T), (4)
which we assume to satisfy requirements I-VI. Multiply (1) by u2/2 -&, (2) by

-u, end summing the results with equation (3), we get

ixpressing du@dx from (1) and substituting inte (5), we give it the form

= - ._.____,._-

'%_;*ri*:?(w“w (’T“"é‘ (’? ) S“’

Aan

.-s__-.._

Since TdS = d + pdV, from (6) follows

Py o .Tﬂ-"*]x"’ T YT
: FA .‘.;}er,"‘q'ﬁ i:)i'i,x

R
"
,\\- ,‘ *t’-’ Nb U'h;

=g (] e T

Equation (7) shows thal entropy S of & thermally irsulated mass of gas

increases. Actually, by integrating equation (7), we obtain

. === Sl g PN TIAMTR Ty

e . 1 S o "
't [ownamsegt(a [l @1+ (8 @
= A byl i

ooy '..;-, NREN PO S R

where q is the Legrengian coordinate (dq = P dx), q, and 9, are the bounds of the

isoleted gas volume.

If the gas vclume under consideration is thermally insulated, then }Cé}%ifn

' 9

= C, ena from (8) follows the increment in total gas entropy. In particular, l
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from equation {7, it follows that in a viscid, but ncnthermally ccnductive ges,
the entropy cf eech perticle does not decreasse with time,

Let us consider the simplest sclutions to the system cf equaticnz (1)-(3),
specifically, stetionary solution. Since system (1)-(3) is inveriant reletive
to Galileo's transformeticn x'= x - Ut, u'=u- U, we will consider
steady flows in this system of coordinates in which flow hes fixed profiles of

ell quantities u, p, P, £. Omitting the strokes at the vesriable x' ana u' and

puttingg_% :aé-"—" = .;é.f = 0, we get equations for the determinsticn of steady
flows:

e m wu=0  ®
g -~ o .

| Zle+m—pgl=0. a0
';;E["‘,' (e+-§+5})—ua§-}—x%]=o. (1)

These equstions have first integrels:

du ar

. T du NI
p=Ci pHet—pgz=Co C\(e+2+5)— |
' — gz —% g =Cy (1)

g . =1
Ao e

The first integral obvicusly expresses the constency of the mess flow, the second

~- mementum flow, and the third -- the constency ci' the energy flow scross and
arbitrary croes section x = constant. Trensform equations (12) into & form suitsble
for the following trestment. Simple trensformaticns leed to two ordinery differ-

ential equations:
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1
;

W

wgf= et - "')+p(v D=,
- 2
x,‘%=c [e(V 7')--—(:’(V~—l) ——214.; g:]._.y(v n.

S i, . (14)

13)

- ——— e

which relate to functiers v end T. As a consequence of equetions (13) and (14),

we get an equation in the V, T plane:

_ T (15)

which plays an importent role in the analysis of steticnsry solutionsg and condi-

ticns for their existence,

Let us introduce the dimensionless varisbles:

- RS I ¢
V=VT. P-—T. 8=8?g. T=R—C§T. (16‘)

Converting to dimensionl

(14) es

3ss veriebles V, p, ¢, T, we rewrite equaticns (13) and

LA r 4 D—1=ofl¥. P, an |
L N—5@—12—F=2F. 7, g




iEpuias pe ol i kit -

where we denote:
ll=%‘-. n e :‘ ; ﬁm-—é{!»—-.l 3 -
PV Dy=pW. D . T)neamf*l i

To simplify nctetion, in the fellowing we will omit the bar over ell quan-

tities and reurite system (17) and (18) in its finsl form:

F=r0. n+V—x==mv Do ah!

ac——-::e(V 1')-.7<v---1)3 pn;.y(vr; ‘(‘M)

However, we must remember that the functicns p(V, T) end (V, T) in (20)
and (21) are obtained from the equoticns of state with sllowence for (16).

Dimensionless varisbles p{V. T) and & (V, T) appeer in equsticns (2C) end
(21), where V end T sre also dimensionless. We can easily verify that these func-
ticns are such that conditions I-VI are sslisfied, if we satisfy the initisl equa-
tions of state, (Here we must beer in mind that C >0, 0361 > Q)

We set, yp the following boundary problem for the system (20) end (21):

Find the soluticn V(x), T(x) of system (20, and (21), which at infinity
tends to constent velues, i.e.,

when X —e + 00, V(x) —» V‘I’ T(x) —» T (22)

1)
but when x —» -~oo, V{(x, —» V?, T(x) —» T2. (23)
{ necesssry conditicn for the existence of the soluticn is obviously the require-
t' ment thet the point (Vq, T,), (V,, T5) be stetionery pcints of the system (20)

end (21), i.e

*
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T TRk Vy Ty 20 T Tym=0. (24)

e . e T

B
-
-]
‘i?
f

G

In other words, the points (V,, T1) end (V,, T,) must be points of intersection
of the curves MV T) = 0; W, 1) =0 (25)
Suppese such points (V1, T1) and (V2, T2) exist, Then at these points, according

to (20) end (21), AMdV/dx = 3 dT/dx = O; therefore from integrals (12) it

follows that: ﬁ u, = f;_u2 = 01. (26}
3’?;} P;+&‘g;-i,+%=cr ' )
4 ,i;(é’{ﬂ—ﬂ —'5—)=M(eg+ 'g)==0s (28)

(here all functions u,f”, p, £ are initis) functicns, without transformeticn to
dimensionless varisbles).

Hence it follows that the stetes u,, P1, Pq> 51; u2, /92, Py 22 must setis-
fy Hugoniot's conditicns, Actually, since we ere considering the steticnery sclu-
ticn of system (1)-(3) in a moving system of coordinstes, then by denoti = the rate
of displacement U of the coordinate system by D, we obtein the results that in
conditions (26)-(28) the quentities u,, u,, in the transformeticn to the fixed
coordinete system, are replaced by u, - D, u, - D, sfter which conditicns (26)-
(28) teke on the usuel form cf Hugoniot's conditions (4.1.10)-(4.1.12). hence, in
perticuler, it follows that the points (p1, V1) end (p2, V5) in the plene of veri-
ables p, V must lie on the Hugoniot's ediabat.

Thus, all points of intersecticn of the curves (25) lie on Hugoniot's ediebst

passing through one of them,
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2. Properties of the curve M= C, &= O for a normel gas. Let us show

that for a normel gas functions & and A exhibit the following properties:

1) —szgr—n—>0. 0. T) >0.

2) The curves &= C and o‘ﬁ . C either have no intersection points, or heve

two end only two commcn pcints (V1, T,) end (V 2) . We will denote them by

(Vo, To) and (V1, T1), essuming thet V0>V1.
3) 3—%5\;1) > 0 at the curve &= C while v, <V < v .
£V < v ut the point (V T ) and &Ly > __.”b_(! at the point (V s
L7 M < T My 1

From property 1 it follows thst temperature T is & unique function of vari-
able V glong the curves &= C and M= 0. Let us dencte:
= 1{V) sleng the curve €= C,
T = m(V) along the curve M= O }

(1)

From properties 1 end 3 it follows that the curve = C at the section
[711, VU_7 diminishes mcnctenically, i.e., the function 1(V) decreeses monotonically.

actually, alcng the curve Z= 0 we have

el

e )
vy =__‘1'g <0. |
’W‘ - —V" ?_gz;‘ : (2)

Finally, property 4 mesns that the slcpe of the curve J(= C, at the point

(V., T ) is less than the slope of the curve &= C, but is greater at the point
)

o?

(V,. T).
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Thus, properties 1-4 are functions .f and oif denote that the curves L=0
anddM = C at the ¥, T plane lie approximetely thusly (Figure 2,34).

Let us prove that the properties 1-4 of functions & and J( follow from
the properties I-V of the equations of state.

Property 1 for & and ¢ is written thusly:

R Y@

bR L.]
TR Bl (3)

and since dimensionless variabtles (5.1.16) differ from the dimensionel variable
only by their positive cofactors, inequalities (3) follow from properties IV and
V (cf alsc formula (1.4.23)).

Let us now prove property 2. All points of intersection of the curves
& = 0 and o= O must lie in the plane V, T at Hugoniot's adiabat H passirg
through one of them.  The line gi{ = O obviously is the straight line

p=1-V (4)

with negative slope in the plene of the dimensionless variables p, V. Thus we
have seen in subsection 3 of section IV, any straight line with negative slope
intersects Hugoniot's ediabat H exectly at two points. Thus, if the curves &= 0
and 4 = O have even one point in common, then they have also the second point in
commcn, but nc mere. Property 2 stends proven,

Now let us demonstrate properties 3 and 4. Using the relaticn @ = TdS -

pdV in expressicns (5.1.13)and (5.1.14) for & (V, T), M(V; T) (in dimensionless

variables), we get

[ aF=ciras—coka )

Whence

V.T) _ o 0S(V. .
AT -7 56D . | ©
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Let us consider the intersecticn cf the curves &= C and (= 0 in the plane of
dimensionel variables V, p (Figure 2.35). From (5) it follows that at the curve
=0 ds, 2V = C /T M. (7)
Hence it follows that dS/dV = 0 at the points of intersecticn of the curve = C
with the streight line &= 0, i.e., the curve A= 0 is tengent to Poisson's
adigbat A passing through the point of intersection, 2nd consequently elso the
edigbat H, Since the slope of adiabat & for & normal ges is grester at the
point (p,, V,) then the slope of the ray o = 0, but et the poirt (p, v,) is
less than the slope of 4 = O, hence it follows thet the inclination cf the curve
& = 0 at the point (p1, V1) is greeter then the inclineticn of the straight
lineg{ = 0, but is less then the point (po, Vo).

In mapping the plene V, p on the plene V, T, corresponding to the lower
half-plene ol (V, p) < 0 is the domein oM (V, T) < O, which 1lies beneeth the

curve ol = O by virtue of the relaticn  2P.C% T/ 5 0 yhich is valid for the

2T

normal ges. Hence it follows thet the pattern of the intersectim of the curves
oM = 0end & =0 in the V, p plane is qualitatively the same as in the V, T
plane (Figure 2.34).

Thus, properties 3 and 4 have been prcven*),

3. Gualitetive investigetion of integrel curves of the shcck transiticn.
The solution of systems (5.1.20) and (5.1.21) eatisfying the boundary conditicns
(5.1.22) end (5.1.23) describes & stoticnery shock wave in & viscid thermelly

conductive gas, We will let Vos To stend for the state sheed of the weve front,

*) Let us note that study cf the curves &= C and (= O in the V, p plene is

much simpler then in the V, T plene. However, in investigsting isothermel dis-

continuity it is mcre convenient to employ the variables V, T,
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end V1, T1 represent the stete shead of the front, and for defiriteness we will

gssume thet m= C1j> 0, i.e., the shock wave propagstes to the left with respect

to the gas. Then dimensionless verisbles u>0,X>0.

Figure 2.35 Figure 2.36
The soluticn V = V(x), T = T(x) of system (5.1.20), (5.1.21) can be consi~

dered &s a parsmetric assiprment of the integral curve of the equaticn
x-dT" 7 .
pav = AV (1

Conversely, to eech solution T : T(V) of equaticn (1) there corresponds the solu-
tien T = T(x), V= V(x) of system (5.1.20), (5.1.21) defined with an accuracy up
to the displacement.

To the sheck trensiticn will correspond the solution T = T(V) of equation
(1) passing through the points (Vo, To), (V1, T1) of the intersectiocn of the curve:
& = 0,M= 0. Clearly, these points are singuler points of equstion (1), and
this makes the present formulation ¢f the problem possible.

Let us consider in the plene of varigbles V, T the field of vector direc-

tiens {J()g[:} . The curves = 0, = 0 divide up the quadrant V >0 into four
- 28% -
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regicns I-IV, The number of the regions corresponds to the number of the qua-
drant in which the vector-éj(}27 lies (Figure 2.36).

From the graph cf the directicn field given in Figure 2.36 for equation
(1) it follows that in each of the regions the function T = T(V) is monctonic at
the integral curve. Here the integral curves can pess from cne region intc anoth-
er in the follcwing crder: from region :V to regions I and III, from region II to
regions I and III, The following transiticns ere impossible: from regicmsI end
III to regions II and IV, "rom region IV to II end conversely from region II to
regicn IV,

Hence it follows that the integral curve connecting the pointé (Vo’ TO),

(V1, T1) mist lie entirely in the region II, Thus, the following relstions must

obtain for the shasrp transits .n:

<0, L @m=C>0. (2)

U et G Pl e Toaal 3
Let us prove the existence and uniquehess of the integra). curve of the

shcek transiticn, To do this, we establish the type of singular points (VO, TO),

(V1, T1) of equaticn (1). Thus we kncw, the type of the singulsr point 1s deter-

mined by the churacteristic equetd on, which is of the form

v R
. -%g %gr = (3)
A% ‘ ,. e el L ae

We have for the rocts 111, )“2 of the characteristic equation the expression
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We can readily see that by virtue of properties 1 and 3 of functicns £ and oM,
the characteristic roots )H end Ab are real and distinct. They are of the same
sign, if
;--“*.r,
A s
E' : [-s%’- -s?

i e

and are of different signs if A € 0. Therefore in view of property 4 of functicns

& endok, we conclude that at the point (Vg , T ) /\ A are of the same sign
o

o’ 2
)
/

(positive), but of dissimilar signs at the point (V1, T1 . Thus, the point (V_,
To) is a nede, and the point (V1, T1) is & saddle point for the equaticn (1). Let
us show that there exists ar integral curve of equeticn (1) conuecting the points
(Vo To) end (Vy, T1). hccording to Figure 2.36, for the field of directions of
equation (1), through any point M on curve oi{ = O passes an integral curve of eque-
ticn (1), pessing simultaneously through the point (Vo, To). Shifting the point M
along the curveo{= 0 to the point (V1, T1), we obtain by a continuity considers-
tion the result thet the points (V,, T1) and (Vo, To) sre connected by the integral
curve of equaticn (1).

Similerly, through any point L on curve &£ = C there pzsses the intsgral
curve (1) psssing through the point (V_, To)° Shifting the point L along the
curve & = C to the point (v1, T1), we obtain et the 1limit that there may exist

an integral curve of equaticn (1) connecting the pcints (Vo, L (V1, T,) &nd

1
which curve is distinct from the preceding.

Since the point (V1, T1) is & saddle point, then by the quazlitetive theory

of differential equations, through it pess only two integrel curves ct equeticn (1).
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Therefore the points (Vo, To) and (V1, T,) connected by one and only one

1
integral curve of equation (1), Actuslly, if these points were connected by two

distirct integral curves of equation (1), then through these points would pass
also any integral curve drawn through the point lying with the regicn bounded by

these two integral curves. This contradicts our conclusion that the point (V1,

T1) is a gaddle point.

By virtue of properties 1 and 3 cf functions {{ and &, curves o= O,
‘z = 0 are zeros of the first order of these equeticns.” Hence it follows thatc
in the neighborhood of singuler peints (for example, (Vo, To)), the functions &
andgi( can be represented in the form
e e e e e L
Z=ay(V—V)+a,T—-T)
M =0y (V —-Vo+anyT—Tp.

and along the integral curve connecting the points (V, To) snd (V1, T.)

1

M = b(V - V), b#C,
From equaticn (5.1.21) it follows that the "width" of the shock transition zone

is infinite, since the integral 1 .
Vi
R pdv .
. Al
diverges. Therefore plots cf the shock
transition are of the form shown approxi-

o mately in Figure 2.37, where it is clear

: o r(.r) Yz - ‘: that values Vo, To ahead of the front and
- ..------5-5___ ' V,» T, behind the front are attained
¢ @ asymtotically at infinity.
-4
Pigure 2.37
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4. Limiting case. Iscthermal discontinuity, Let us consider the behavior
of the shcck transition at two limiting ceses: as - O and as A~» C.

If we fix M4 > 0 and vary W, then the dependence of the shock transitions
on } will be menctonic in the sense that to the lesser velue of M they will
correspcnd the integral curve of equation (5.3.1) lying closer to the curve &=0

Let us show that for sufficiently small # integrel curve (5.3.1) lies
in the t,—s"crip above the curve £= 0, Actually, in the left point of region II
we will heve over the é&-strip of the curve £= C, &£ > & (). Then, by selecting
as large N> C as we like, we can select & small H. =H( &, N) such that at any
point over the g-strip

de'-'.'""""f‘ AT

A MM NSL
i.e., the slope of integrel curve of equaticn (5.3.%1)over the& - strip can be made
larger then the maximum slope of the curve bounding the g-strip from above*).
Then, if the integral curve exists at any point from the g-strip, it will no longer
enter at the point (V1, 'I"1). This means thet as 3 —» O the shock transition tends
to the curve &= 0,

Let us consider the second limiting case when u=~-» 0, 7 0. If the
segment of the line M= 0 includes between the singuler points is a curve monoto-
nically diminishing towerd the side of increasing V, then by anslogous arguments

we can show that es M- O the shock trensition tends towsrd the curve oM = 0.

&

*Tz:)n following pagg7
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For the case when this section cf the curveod(= C is nct a wenctenic curve,
the situation turns out differently. Let us consider for simplicity the case when
the curve oM = O st the segment V, & V £ V_ has crie maximum (Figure 2.38). Clesr-
ly, in this cese the upper bound of the irtegrsl curves is the curve A1A2Ao censist-
ing cf the chord A1A2 parallel to the V gxis, and the erc A°A2 of the curve M= O
Reasoning anelogcusly to the sbove treatment, we cen show that this boundery is 2
point, i.e,, 8z M-+ O the integral curve tends to the curve A1A2A°; and does SO
uniformly. In perticular, at the intervel [\-11 +E&, \’2 —6__7 the shcck transiticn
lies in the é&-strip A,{A:AéA; (cross-hatched in Figure 2.38). Since ir this strip

laﬁ( (% Dl = TWiem 3 léf(V )] < L (&) then the inequality
iw —Vl<|

is valid. Hence it follows thet we - can meke ,(,( so smell that et the intevsl
L— Vg tE, V2 -{7 we will heve

J{ <b1==51(9 B, -0 where g~ 0.
Consequently, T in this inte;w;al lies w1thin the limit T, -~ (E, U)LT LTy +
L(E, U)ot (E,4) —» C as 4—= C, The segrent Ax corresperding to the inte-
gral [\_11 +E,V, - £/ has the valus

T et

L”=“°' "’—vf m

Since et the interval /V, + &, v, - é7aj((v, T) > M (&) >0, hence it
follows that A (£, u) -+ O as M+ G. The relaticns derived sre valid for

arbitrary g -—» O.

Thus, when there is & maximum at the segment V1 £V £ V, on the curve

*ﬁor definiteness we can assume that the g-strip is obtained by displecing
the curve &= O with respect to the varisble T by the quentity € .

- 288 -




o= 0, the shcck trensiticn in the case ¥ U, 4= O consists of & smcoth varia-

tion over the interval (-2, x ) from the values Vs T, aheed of the front to the

%

<

values V,, T, = T, (point A, in Figure 2.38) end at the discontinuity of specific

GLG o

volume st the point Xq from velues V, on the left to V1 on the right gt constant
tempersture T = ’I‘1 (Figure 2.3¢). Thus, when only thermsl conductivity is present,

g discontinuity cf dersity at constent temperature is possible., This disconti-

nuity is called isothermal.

\ Figure 2...

Figure 2,40
As & consequence of the possitiveness cof the coe 'ficient of thermel con-
ductivity it follows thst the specific velure V2 ehesd of the front of the
isothermel discontinuity is grester ther the specific volure V., behind the

1
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front of the iscthermal discontinuity, Thus we obtain the result that the limit-
ing discontinuity as M--» O setisfy the conditien for the sability of disconti-
nuity in an isothermal gas which we derived in subsection 6 of section IV,

For the case when the curve of(= C has seversl maxime, the shock transition
will heve several isothermel discentinuities (Figure 2.40) simply did by smcotn
flow zunes, In this case the shcck trensition tends, es 44—+ C, to the curve
A1A2B2A383A4A0, vhich is clear from the fact thet the integrel curve of equation
(5.3.1) slweys lies within the zones I,

Let us also ncte thst the effect of isothermel discontinuity depends not
only on the ecuetions of stafe, but also on the constents Cg, 02, Cj defining the
flow, Generally speeking, an isothermal discontinuity is ind. zed only for strong
enough shock waves, We will show this below for the exsmple of en ideel gas.

In concluding this secticn, we note that we heve obtsined stesdy flows of
e viscid and hest-conducting liquid in the form cf & "blurred" shcck wave, of the

type shown in Figure 2.37. Actuslly, the velues V_, TO, LR sheed of the front and

(o]

Vis Tqy u, behind the front setisfy the dugonict's conditicns end the stability
conditicr S, > SO (V1 < V,). Therefore when M-+ 0, H~» C we obtain at the
1limit from sclutions T = T(x), V= V(x) of systems (5.1.20) and (5.1.21) a stable
this continuity (shcck wave) sutisfying the conditions for dynamic compactibility
and the stability ccnditicn.

In gereral the essumpticn exists that eny solutions of equaticns in ges
dynemics containing stebie disecontinuities can be viewed &s 1limiting scluticns cf
equaticrs in pes dynsmice with viscosity and thermel conductivity as the coeffi-
cients cf viscosity u &and of thermel conductivity K tend to zero.

Thus fer there is nct & single example refuting this hypcthesis, elthouch

neither is there a procf of it., The latter circumctance stems from the difficulties
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arising in an exact consideration of Cauchy's problem for ncnlineer equations

describing flovis of a viscid heat-gonducting gas.

In this section we have shown only that this hypothesis valid for station-

ary flows, i.e., for a constant shock wave which exists for an indefinitely long

time,

5. Shock transition for the case of an ideal gas {Becker's study). The
first investigation of shock transition in a viscid heat-conducting gas was made

by Becker /6_/ in 1922. He consid:red the case of an ideal gas

g T Tr— - - -

~'Pw';=':vx'=';v- ‘_¢.==‘ch.. (1)

In dimensicnless variables equaticns (1) become

.

e -.,'""l'— 1
s - bl = (o (2

. e

and the functions & eand ,#( are specialized thusly:

AV, D)= bV — 1, @
b it P 8% 8 4
FFV D=y Ty =08 2

Thus, the curve u(V, 1) = C is a perebola
[T=V—vie—(v—3)+1. (5)

wich its convexity facing upward, with its axis as tue straight line V= 4 and
the epex es the point V= 4, T =4 (Figure 2.41). The curve & (V, T) = 0 is also
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a parabols

T ey T E. .=, )
. TPl -0 Hsa—D. (6)

7 |~ - :

- with its convexity facing downward, with axis V= 1 and the apex at the point V=

1, T= B(V¥ - 1). Thus, the suspe of parabola (6) is unchenged, and its position

depends on B, i.e., cn the flow constants,

.
’

e

-y

|
o
L N N vaP
;-ﬂ ______ e _/
_/
I

Figure 2.41

Pareboles & = 0 and o = O intersect two points when C & p < Bo; the
cases ﬁ)ﬁo and B< O ere physicelly unsttainsble, since in the first case there
sre no pcints of intersecticn end, therefore, there are no asymptotic values of
3 V and T, end in the second T< 0. The cese B = 0 corresponds to an infinitely
; strong shcck wave, since Tq/T, = py/p, = 62, end the cesr f= ﬁo = 2734:73
corresponds to en infinitely weak shock trensiticn, since in this case the points
(Vg To) and (V1, T1) merge, i.e., T1/To = p1/p0 =1,

For the case M= 0, 47 O, equaticns (5.1.20) and {5.1.21) are integrated.
Actually,

 Te= 130V (@) — 1 +60— 1) ()

and V{x) setisfies the equation
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where V,& VLV . (8)

Whence

TETHHET ¥
i u~ PR A1d: ]
‘("" @d}i«" u‘ie X

T geonnt

ﬁ?w’ “#5‘:: 'Vw ‘s}r‘«( ‘}‘%"‘."“ TJ“i 'éx“ v—

V)

@” '-sﬁy "

(9)

Figure 2.42, & gives the approximate form of the profile V= V(x) yielded by for-

mula (9). The proximity of the graph V(x) to the constant values V = V1 and V=

Vo occurs as X -—=>» tp0, so that the "width" of the shock wave, strictly speaking,
is infinite, However, this proximity occurs exponentially, i.e., quite rapidly.

To determine tne order of the "width" of the shock wave 2one, it is defined as
the quantity i e O

fil ._-)v_-—-v“ ;

.l:., . mul wd(*) (10)

(cf also Figure 2.42, a).

Calculstions made by Becker led to an amazing result, It turned out that

for most gases at not very high temperatures end densities the quantities 4{ and
W are such that the width of & shock transition zone proves to be of the order
of 10-4 - 107® cm, i.e., of the order of a ges mclecule path length,

If we exclude from consideration of the fect of nonequilibrium status of
hydrodynemic flows at distences o} the order of a moleculer peth length, and this
indicates that with a high degree of accuracy the shock trensition cen be effec-

tively replaced by & mcbile discontinuity (shock wave), whose left and right

limiting velues satisfy Hugoniot's conditicn and the condition ct entropy
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increase (the stebility condition).

Thus, justificetion is gained for our point of view eccording to *.ach
the flow is decompcsed into regicns of reversible processes where equations of
hydrodynamics are in effect without allowence for dissipative terms, and into
regicns of irreversible processes, which constitute narrow zones end cen be

effecti vely described by mobile discontinuity surfa.es.,

Figure 2.42

Let us additionally note-that a more exec!t representation of a shock transi-
tiocn zone in a reel gas can be obteined only by using the Boltzmen equatioi,
however the estimate of the width of & shock weve trensition zone remeins the
same,

Let us note in concluding this subsecticn that inthe case 4= 0, H¥ O,
tﬁe isothermal discontinuity, as cen be reedily seen in Figure 2.41, exists only
for sufficiently strong shock waves when C < B 5{31.

Let us present formulas (5.1.13) and (5.1.14) in Legrengian veriables g, t

which we will need in the following trestment:

| ~av V. N T) o T B 1)
___=c v B =pp v (
. " l\ )+ c, - R |4
3
_dr . 1 e, &Y . -_‘__CL, = (12)
igmoema-g) et |
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For an ideal gas &= —— pV. Let us consider the case H= 0, MF C.

71 From
(11) and (12) it follows the equaticn for V:
SaV _ytl (V=W =V i
‘igq. T2 o -t v ‘f'_".\"? ( 3)

where m = C1 is the mass flow rate cf the shock weve; V, V1 are the values of
the specific voluwe V aheed of and behind the shcck wuve front

For the case M= constant, from (13) we have the integral

o ( Vo:‘z ) V' "= -%—mq+ const; {14)

if, for exampls,

(9):

jz=yaf>= constant, then from (13) follows the formula close to

——

po“"n (
(V°—V) Y%'l mg -}~ const.

(15)
V-V V“V'

From formula (13), on the assumpticn u= constant, snd using the defini-

ticn of the width of the shock weve zone by formula (10), we obtein an expres-

sicn for the zone width Aq:

1
Ae=T Taay

where Au = v - g is the discontinuity in velocity st the shock wave.

6. Staticnary solutions of equations in hydrodynamics with Neymer-Richt-

meyer viscosity., Now let us consider the stationery soluticn of equaticns in

ges dyramics for s polytropic ges whese thermsl conductivity is equsl to zerc,

end whcse "viscosity" sppesring in equeticns (5.1.1) - (5.1.3) is ot & special
form*):

*) Jon following psge/
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: i.e., we cen formally assume in the preceding consideration that the coverficient

M 1is equel to the quantity

-

=yl (2)
Since according to (5.1. 12) and (5.1. 16) u= v, (3)

then we can easily see that for a pclytropic gas the determination of e station-

ary solution reduces to integrating the equation
dv | aV .
_E{_a.i=(v Vo)em.-v,) , (4)

(cf equaticn (5.5.8)), where A = V%—Tm A . TFor the cese m >0, A >0

aV/dx< J (cf Figure 2.4%, a), therefore equation (4) is represented ir the form

== . ”"l
dV
:1(——) (V V:)(Vo V)>° (5)
end is reedily integratec:
- El =S B Y 7 “
¢y V__V V i

e (6)
hl’“ln—v—-v‘— =
T V—

In Figure 2.42, b is given the profile V = V(x) for the solution (6). The sub-
stential difference from the preceding case here is the finite width 7/ & of

the shock transiticn. fccordingly, we observe that the increasing proximity

§ %) The viscosity of this type wes first discussed by Neymen and Fichi-

, vayer /7 /.
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of the solution V= V(x) to the constant values V, and V1 is nct anelytic, since

the second derivative V"(x) et tha point x = + "é: suffers a discontinuity,

which can oe readily verified both from the equation (4) as well es from formule

§i

(6) for the soluticn.

I in equaticn (5.5.13) we quite analogously get

g%"‘ H”‘f : (7)

then we arrive at the equaticn

Bigiothein i o

e =

-

whose integral is the equality

| vy f— =Lt C Q

,,,,,,,

note that for the case of Lagrsngian coordinates, the Neymn-Richtmayer viscosity
results in & finite width of the shcck front independent of the strength of a
shock wave,

The finiteness of the width of the shcck transiticn in several cases
eppears to be substantial. Therefore the Neman-Richtmayer "viscosity" (1) is
widely used for numerical calculations of discontinucus soluticns of equations
in gas dynamics. The ertificial "viscosity" of the type (1) with a small coeffi-
cient A is introduced into equations of gas dynamics for gases devoid of internal

friction end thermal conductivit+. This permits blurring of the shock transitions

over a finite regicn, which proves to be convenient in the numericel cslculations,
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Thiz is Giscussed in greater detail in Chepter Four.

Section VI Problem c¢f the Detay of en Arbitrery Discontinuity.

1. General properties cf the solution cf discontinuity decay problem.
In this section we consider in deteil the problem of the decay of an initial
discontinuity. For the case of an isothermsl gas this problem was posed and
solved by Riemann in his wcrk [F8_7. A qualitative exemination of the problem
of discontinuity decay for polytropic gases was made by N. Ye. Kochin [5_7, and
for normal gases by L. D, Lendeu and Ye. M. Lifschitz /10/.

The term arbitrary discontinuity is given to the initiel state of two

infinite gas masses ch.racterized by constent perameters Yy, Pqy V1, E1» T1;

Uys Poo Vo, 20, To’ end aedjoining at initisl instent t = O elong the plane x = 0,

Here the quentities to the left and to the right of the discontinuity are erbi-
trery and are governed only Ly the equations of state of the gases, which can
differ for the adjoining gases.

The determinaticn of flow arising when t > O unde: these initial condi-
tions is called the problem cof the decay of an arbitrery discontinuity.

Thus, the proulem of discontinuity decsy is one ¢f determining cne-

dimensicnal flow with plene symmetry (v = 0) satisfying the integrel lews of

conservation:

’ipdx-.—padf=0. §‘padt—[p+pa71dx==~0>,»
[ ol $amloer g gJorms

end the piecewise-constant initiel conditi crs:
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- where t = 0

<

3

; where x< 0;

i } (2)

g where x>0,

§ |

{ In section IV we saw that conditions of dynamic compatibiliiy (Hugoniot's condi-

it tions) must be complied with for stable'disco“tinuity. For the case of a shock

H wave at the discontinuity the stability condition must also be complied with

! (entropy gain), and at a contact discontinuity (interface of two gases), pres-
sure and velocity are continuous.

5 Therefore, if an erbitrary discontinuity is not of the contact or shock

wave type, then it decays, forming some kind of configuraticn of stable dis-
continuities and continucus gas dynamic flows.

We cen readily see that if we perform the similarity transformstion of
the independent variables: t' = kt, x' = kx  (k>0), then in the new veri-
ables x', t' as well, seeking the sclution of the problem of decay reduces to
finding the soluticn to the laws of conservetion (1) satisfying initial condi-
tions (2) if x and t are now understood as x' and t'.

¥ If we presuppose the uniqueness of the solution of problems (1) and (2),
from this it follows thet z(x, t) = ;(x', t1) = ;(kx, kt). (3)
Here we will dencte as the vector z the totality of hydrodynamic variables z =
{/’, U, Py £, +es §, 80C by the letter Z -- on the seme quantities in the vari-
ables x', t'.

Putting in the identity (3) k= 1/t >0, we get
— o

i ol

[
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Thus, from the presupposition c¢f the uniqueness of this scluticn otems the self-

1 mcdeling status of the solution cf the problem of arbitrary discontiruity decaly,

H

i,s., the dependence of &ll hydrodynamic variables only on the single veriable y

E x/t. In pertic.l-v, from this it follows thet ‘he discontinuity lines -- sheck
E waves snd contact discontinuities -- ere stra:ght lines in the plane of varisbles
E x, t, i.e., the velocities of the shcck waves and til contact discontinuity are
H constant,

In subsection 2 of section II1I, we saw that the self-modeling solution
continues when t > 0 is a centered Riemann rarefacticn wave cherescterized by the

constency of entropy S and one cf the Riemann invariants (r or s).

Figure 2.43

‘Thus, the self-modeling solution cf the problem cf discontinuity decay
contains as its elements shock weves, rarefaction waves, and contect discontinuity.

Let us establish on general properties of the self-mcdeling solutien cf
the decay problenmcthat are valid for ncrmel gases.

1) In each of the gases "1" (left) and "O" (right) not more than ore shock
wave is propagated.

Actually, we signify by the term shock wave only a stable shock wave, As

can be seen from subsection 4 of section IV, from this follows Champlin's thecrem.
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Let us presuppcse, for example, thet in the gas "O" twc shcck waves are props-
gated: x/t = D, x/t = D2; D2 > D1 (Figure 2.43), and that the flows in the zones

I, II snd III are constant., Denoting the speed of sound ¢ in the zones I, II, and

I11I, respectively, by CIs Cypo and e &M velocity u by uI, Urgs and U s We
will hsve
i st i
pa<ep<en - g <uy<dy (5)
However, Champlin's theorem requires that
o <D,—am, D, —ay < ey, ®
ey < Dy —uy. Y

Inequality (7) obvicusly is imcompatible with (6) given the condition D;< D,,
which in fact proves our assertion.

2) In each of the gases not mora than one centered rarefaction wave is
propagated; in the ges "0" (at the right) s = constant in the rarefaction wave;
r = constant in gas "1" (st the left).

The assert.on readily follows from the equalities

u+c==y=-‘;- ‘(’sd’onst). u—c=y--‘;- (r == const), (8;

that are valid in centered rarefacticn weves.

3) The presence in cre of the gases of & shcck wave precludes the possi-
bility cf the propageticn in the same gas of & rarefaction wave, end, conversely,
the propsgeticn in cne of the geses of & centered rarefaction weve precludes the
possibility of a shock wave propagating in it.

£s 8 consequence of these properties, we obtein the result that the self-
rodeling sclutici cof the problem ct discontinuity decsy contains & contact dis-

centinuity partitioning the gases ("C" enc "1"); 4n esch cf the gzses nct mcve
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1 thar one wave (traveling or shock; adjoining the constant-flow zones is propagated.

E A Thus, constructicn cf a self-modeling solution of the discontinuity decay

problem consists of"splicing" elementary soluticns (constant flows, contered

MM

waves) and determining the parameters characterizing the solutions and disconti-
nuities. Since discontinuities and elementary solutions are determined by a
finite nurber of parameters, this problem becomes purely algebraic., We will show
below that for normel gases a self-modeling solution of the problem of the decay
of an arbitrery discontinuty exists end is wunique, that is, is uniquely
determined by initisl deta (2).

We will begin our examination with the case of polytropic ges. The index
of Poisson's adiebet YV for the gas "O" lying to the right of the point x = 0
will be dencted by‘vo and the gas "1" -- by V1.

We present the following method of considering the decay problem: starting
from the specific case of conditions (2) in which the position of the shock waves
and the rarefacticn waves (configuration) is obvicus, by contiruously varying
the parameters in problem (2), we will continuously vary the sclution, thus pass-

ing through critical values of the perameters that distinguish ocne configuration

from snother.

i 2, Cenfiguretion A. Since gas velocities u, and u, are determined with
an accuracy up to the additive constent, then we will put u, = 6. It is suffi-
cient to consider only the case when Py 2 Pg- (1)

We will begin our exsminaticn cf the problem of discontinuity decay, formed by

two quiescent masses of polytropic gases. The problem is posed thusly:

At the point x = C we have e partitiuvn sepsrsting twc masses cf gas charec-

1! F1

by Vo So, P o’ Po To’ uo = { to th~ right, where the ccmdition
- 302 -

terized by psrameters V) 1 S 5 p1, T1, u1 = 0 to the left and, respectively,




,, Py > P (2)
o is satisfied.
At the instent t = O the partition is pierced,eand the gases are set in-
to motion., Presupposing the self-modeling status of the motion (or, which amounts
to same thing, the uniqueness of the solution of the decay problem), we calcu-

late it.

%%
:
5
s_
%

Since through the contact boundery (the boundery between geses "O" and
"{") vo substence passes, therefore for each gas mass the contact boundsry cen
"5 eonsidered as a piston. By virtue of condition (2) the piston will travel
£ toward the side of gas "O" and advance relative to gas "1". If the piston velocity
U is assigned as consteat (cving to the self-modeling status), the problem is
uniquely solved for each of the geses taken sepsrately. To obtein s solution to
the discontinuity decay problem, we must "splice" the soluticns of the these two
piston prcblems, requiring that at the contact boundary the pressure p_ to the
left is equal to “he pressure E, to the right, From this condition we determine

the velocity U of the contact boundary and all parsmeters defining motien,

Figure 2 A4

KeYe
A) Rarefaction wave C) Shock wave

B) Contact discontinuity = 305 -




Solutions to the piston problems are kncwn to us {cf section III, sub-
section 4 and section IV, subsecticn 8); therefore the disposition of the die-
continuity will be of the form shown in Figure 2.44 (configuration 4).

Four rays: I:Y j:,'[;, and Jfg -- partition the upper half-pleane into
five regions. We have constent flows in regions I, II, III, V,end a centered
rarefection weve in region IV, HRay JFB is & shock wave, JFE is a contact dis-
continuity, and.j:, JC: are the lines of week discontinuity at which the solution
is continncus. Hugoniot's conditions must be complied with et the line _[; for
the shock wsve end the stability condition, at 1”2 the continuity of pressure
and velocity must be observed, and at 141, /z -- the continuity of all hydro-
dynemic varisbles.

In region IV, p and u ere associated by & relation stemming from the cons-

tancy of kiemenn invarisnt r (cf formulss (3.2.10) end (3.2.11):

=

i % l;n#ﬁ%‘a]%?':”'['“l‘aﬂ‘%]%(u:';t;).' (3)

PO AR, 2

Since zone III is & constrat-flow zone, velocity u st cheracteristic j: is
equal to the velocity U or contact boundery Jf;. Therefore if we denote the

pressure p in the wone III gs ¢ , then by (3) we have

. .ﬂ'_ o ‘ )
= ?—-l U— - . |—l 174 -
R e e R (e (4)

At shcck wave lf; we have (cf furmmulas (4.5.13) - (4.5.16)):

Co == Yo 1 '
e .l'a:’lo-{;co(l—ho)(Mo‘--)'l{.-)=co(Mo—-ﬁ- (A—h). (6)

,;,_'.,.po[(ni}-no)mg—'oi, My=1Dziel LDy vl
; '

‘.
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Since the zone II is a zone of flow constancy and since at the contact toundary

1”2 pressure and velocity are continucus, we arrive at the equation

for the determination of Mc'
The function p_(Mo) appearing inthe left side of equation (7) is a mono-
tonically decresasing function of Mo’ p+(Mo-) is a function cof Mo monctenically

incressing to + £©, Since when Mo =1

[P QP S =7y 17 (8)

by virtue of assumption (2), then it follows that equetion (7) has one and only
cne reot Mo > 1.

Determine the quantities Yos y1, U, D as functicns of Mo and show that
the configuration A conditions: VoL ¥, < U <D, (9)
are satisfied.

Inequalities (9) are always satisfied when U>0, U - uy = U>0. Actuelly,

inequality U = co(1 - ho)(Mo - 1/Mo) <D= coMo is obvious, For y,, y, we have

R SRS A S RN

where ¢_ is the speed of sound in zone iII, c_3> 0. Hence it follows that y,

U, Finally, rq = (r1) ; therefore

; e e Pyl ""‘*"’**7—"", .
f —yo=U—c. -w,=-U+J—r—(U—~o= il il

U425t U— u>o (u)
Ao 5 3; . ® v U+ '_;._- .

o - g ,4
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And thus, ell conditions (9) are satisfied end configuration A is compatible.
Now we will vary the problem perameters. Fix p,, P, (p1 >-po) and vary

velocity u, of gas "1". Then, putting u; 7 0 in (3) and (4), we arrive at tae

equetion

AN TP

o TR

R

: ' P [l nw—I1 ‘0(“‘”0)(1"0—-;;;)—“1]“-]
i =h|l73 =

€

; i‘m = (M (1) M — k] (12) 1

'
i

e TR

instead of equation (7). As before, p_(M ), p*(Mo) sre monotcnic functions of
5 ,
M .
o
Let us trace the veiistion of root Mo as a function of psrsmeter u, . The

following sssertim is valid: the root M of equation (12) is a monotonically

rising function of u,. Actually, P_(Mo) is @ monotonic function ofuy.In parti-

cular, the vslue of / p,_"(1)=pi [| +'!L‘E.i ‘c‘_n‘lv‘-hr. .
PYEN . ce— ‘. .. v“' l

- . -

to which correspends point B in Figure 2.45, also monotonically increases with
. Point B increases with uy, and together with it the entire curve p = p_
(Mo’ u1) is monotonically elevated (Figure 2.45). Since the curve p = p+(M§,
is fixed, the point C of intersection of the curves p = p_(Mc, u1) and p =
p+(Mo) are shifted toward the right with incresse in u;, i.e., the curve M0 of
equetion (12) increases with u,,which wes what we set out vo prove.

Let ug £ C stand for the velue of u, st which p_(1, uf) = p,, i.e.

1+—1-g——l—“° (’°) E'—
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Figure 2.45
or
X o B e
j _1:2 AL . ] d 1
L:,= Y:—_“c‘ 'lﬁ;ﬁ SO» (13)

Then, in accordance with Figure 2.45, it is obvicus that where
U<y, €1 (14)

equation(12) elways has the single roct Mo > 1. When M, > 1 sheck wave ['3
(Figure 2.44) satisfies the stability conditicn; when M% < 1, shock wave lfg
is unstable and therefore configursticn 4 is impossible. However, the entire
chain cf inequalities (9) must be satisfied to meke configuration A possible
(Figure 2.44).

Therefore let us consider the satisfecticn of these inequslities when
uq > 0. The quantities U, D irercase with u, up to infinity so thet the inequa-
lity U<D is preserved. The inequality y1-< U is also preserved. It remsins

cnly te investigate the difference

yl—'y.l)%(u':"“—)’—(;g ;‘1)‘“(U—.l|)—(€-—cvl).‘: A (15)
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Due to the constarcy of inrsarient » in zone IV, we nave

W o
(5 P

IR T e e e
[rmetgira=ttyipe. U-42lhok (16)
Substituting (16) into (15), we get
L iy g
E— Yo x: (7)

ECRIPUN < N e )

We have shown that 'Mo increases with uy. But from equaticn (12) it follows

1

(17) it follows that yq - yo decreases with increase in u

that the difference U - u, decreesses with increase in Mo. Consequently, from

4+ As long es U - u,
> 0, Yy - Yo >0. When U - u, = o, ga = g = 0. The latter is satisfied given

the condition that the equelities

e e e ey w Tt omme] oy “oon oy

) R s L

-ﬂ", o d , -
!«'1'=U=(1—"o)‘o(Mup ]'r—)"lo ~.119)
[ SR T TN O RS JU SR (3 }i._:t ’_A.a.qxhk\‘!t‘d‘_.ll
in which M kp [kp = critical7appears s e parsmeter are simultaneously satis-
fied.

It is not difficult to express ub- explicitly:

B N a8t W R

R ‘/ _,_,.._‘/‘__LII A

w=0—hyed | Brg-—F f+w >0 (20)
e N A PRI >

. ety

Thus, if the conditicns u < Uy < ug, (21)

are met, then conditions (2) for the compatibility of configuration 4 are met.
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So assuming that inequalitles (21) are satisfied, the pattem of discentinuity
is of the fcrm shown in Figure 2.44, and the formules obtained atove enable us
to whclly calculate the flow under configuraticn & conditions.

3. Configuration B, When u, = ug, y1 - yo =0, i,e., the zone of the
rarefacticn wave vanishes, and the solution is constructed from the single shock
wave and the contact discontinuity (Figure 2.46), With e further increase in
u,, the difference u ‘

~ U becomes negative. Therefore when uy > uy, the contact

1 B’
boundary dx/dt = U must be considered as a piston simultaneously advancing both
in gas "0" and in gas "1"., Thus, in accordance with the solution of the piston
problem (cf section IV, subsection 8), the solution to the discontinuity decay
problem when u, > up must be sought for in the form of two shock waves, one propa= :

guingngas "O", end the other in gas "1" (cf Figure 2.47). We will call this

cas)e configuration B.

[T R ;":’{3;*;";“‘7}-‘ 7
2l 4 . .

- PR B r
“ ;

Figure 2.46
KaYe

h) Contect discontinuity B) Shock wave
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Figure 2,47

KEY:
4) Shock wave C)} Shock weve

B) Contact discontinuity

T:. the case of configuraticn B, we have four constant-flow zones I-IV,
pertitioned by shock waves f1 and ['3, end by contact discontinuity ['2 Let
us prove the compatibility of configuration A provided we heve the conditim

u, > uB. Let us write the conditicns at the shock waves _['1 end [’3:

[ po=p, [ A M — h); W
- ‘D, —

. a_::a,—-c,(l-—h,)(M,—ﬁ-;ﬁ-). M‘-.:-_.I_!c'il.; ®@
; . ; Dy, - .
i p+=-p°[(x‘+h°)Mg-—h°]! M°=T.!; 3

1 i vg
| = — b (Mo—31-)- @

fqueting each other the pressures p and P, at the bcundary ['2,

we get: =310 -
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(5)

Hence it follows that M1isa monotonicelly increasing function of Mo' To deter-

mine Mc’ let us write the condition for continuity of velo.ity at the contact

boundary Jf;:

LR e s L R 8 (6)

The left side of this equality is s monotcnically decreasing function of NH and

by virtue of (5), a monotonically decreasing function of Mo; the right side is

g function cf Mo roiactonically increasing up to :* v0, Let us consider the values

u_(Mc) and u+(M°) when Mc = M kp? where Mo kp is determined from equalities

(6.2.18) end (6.2.19). Since
;'“"é- = -’1 RS 'r-\..' ---._.‘ g "“ i e
&AS?M“” q&ﬁ.%)m ﬁ%'; I (7)

then

e ian R gy

M,(Mo,,)-n " (M,(Mo,,p))-nw } .
A

(MOKD)‘“”D@ W(Moq r}::!u; (8)

But, according to our assumption, u1 > up, therefore from (8) we have

--(M‘(M'm)') > 8 {Mox by (9)
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So equation (6) previding u, > ug will alweys have, and only one et that, the

root Mo > Mo > 1,

kp

After determining Mo’ by formula (5) we determine 141 in &)1 flow parameters

in the zones II and III. The conditions for compatioility cf configuraticn B

[y T ey
B‘ﬁf%q<”<%i
Vel i %< Dy (10; (10)
are easily verified and are elways setisfied providing uy > uB, if we consider

that if M1 > 1, and also Mo > Mo kp > 1. 4ind so, for any u satisfying the

condition u, > uB, we have configuration B,

Figure 2.48

KEY:

4) Rarefection wsve B) Contsct discontinuity

4. Configuraticn C. When v, = uC< C (cf formule (6.2.13)), MO = il

U=20, i.e., the contact boundery is a fixed piston fer gas "C". When u, =

U, we therefore have & soluticn when in gas "O" the shock weve vanishes and

’

it remains fixed, retaining its initial parameters, and the rerefecticn weve
I'ooﬂl (Figure 2.48) propesgatesin gas "1".
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With & further redrecti~c in n1(u1<:uc<( 0), the contact houndary begins
Lo to edverce to the left reletive to ges "C" (U<O0), sc that it cen be consicered

as & piston simulteneously traveling from geses "C" and "1". 1. accordance with
the soluticn cf the piston prcblem (secticn III, subsection 4), in this case the
scluvtion to the decasy problem consists cf twc centered rarefacticn waves propegat-
ing ir geses "1" and "C" (Figure 2.49). We will cell this conditicn ccnfigurrticn
C. The upper hslf-plere es partitioned intc the six regions I-VI, divided hy
four lines cf wesk discontinuities lﬂo, lr;, Jf;, Jr', end by ccntect boundery
112. tones I, I1I, IV, gnd VI are constant-flow zones, zones II and V are rare-

fecticn wave regicns; invariant is constant in zone II, and varisnt r is constent

in zone V,

Figure 2.49

KeY:

4) Rarefecticn weve

Let us shcw that giver the condition u1 < u (@]
configuraticn C is compstible,

In zones 11 and V we have
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In perticular, at the contact boundsry J[; wher u=u = u, = U we must obtsin

p_=p,, i.e., we must arrive at the equetion

o .
n-""‘

. 5 -
—l U—u Ty-T = a1
==P (U)—pl[l—ll—f_- (.‘lul]v =p+ p+(U)

,,:' S l+1'—§—'—l-U]—1, :(4')"

< e G, | !

—— -

*

L=
i

In order to determine U, Here

(5)

e ies el Loaon

Condition (5) notes the nonnegativeness of pressure at the boundary. Note

o e i

that the equality signs in formule (5) cen obtein only simultaneously snd corres-

pond to the separaticn cf the geses. As we cen see, in equation (4) p (U) is a

monctcnically decreasing function of U, &nd p+(U) is mcnotonically increasing

function of U, Where U= C,

T
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] rrom condition (1) therefore follows p (0 < pi(O). {7)
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With a reducticn in U, p_(U) will increese, and p+(U} will decrease. Thus,

b p+(U) does not tend to zero, there exists the single root U < 0 of equstion

(4) satisfying the condition U > - 3 f’ c,e (8)
(-4

Then equation (5) leads us to the inequality

(9)

J Thus, provided condition (9) is satisfied, there exists the root U< 0 of equa-
tion (4). We will show that when u, < u, configuration C is also compatible,

i.e.y the conditions Y, <0 = U gy,< y3. (10)

are satisfied, It i1s not difficult to see that

| R Wi e WA
-l (el ~co=-*1‘—}'——U>o an -

A
L .
s

‘ ’ § 3" n Sl T oAy 3
r Inequalities , 4“_: 54_"’_%“)0‘ e |
f b > —. o. y —(U—") ﬁ*>°) «‘x \_(la N
£
! § are self-evident., Finelly,
; y,—;.,-U u,ch,—c )-u—’-?—(U—r,r (13)

4, (™ Demye \p

But from equation (4) and conditicns Py > bos U <C it follows thet U - u,>0.

AAA

and pro-

Hence ¥y - y°> 0. Thus, configuraticn C is compatible when LIT

vided that conditicn (9) is satisfied.
But if condition (9) is violated, equation (4) dces not have the root U,

In this case the gases separate from each other and equation (4) is repleced
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I

[ ToiWow p.,{: + !:.;'_f 9&]"%
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i.e.’ ﬂ=—-—-—;._‘_ Q' r l<.'_ ’ ,~ e

Since it follows from the noncompliance of condition (9) that U1 < U, the gases

separate from each other and the solution is of the form shcwn in Figure 2,50,
! The regicns _['00 f; end ['?0 [; are regions of rarefacticn wgves, respectively,
. r = constent and s = constent, and the regicn 1"10['2 is the vacuum region in

which we put = 0, p=0, ¢ = 0,

Clahiian o ot it st i

Figure 2.5C

E KeYs

1 A) Rarefscticn wave C) Rerefsction weve
b) Vacuum
i 5. Review of configuretions. Gases with equel pressure. Let us ncw write

the conditicns for the existence of configurations A, B, end C on the presuppcsition
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p}) p, & = 0. Configuration A is possible providing that the conditions
o ©

¥
.,< <‘;j (1)
are satisfied, Configuration B is pcsuible providing that

f/""l-" a2 ' '=4r~l

' (2)
Voo A.ﬁ* et
and configuraticn C is possible providing that
- RS WY
b Py Ty 3
ihere o oo “'*awt st T
o ?;Zl+4~}-.
=(l—"«)co At
i oriy
For the case p, = p , we have ue = ug = O, (6)
1 o B

Ccnsequently, in this case when u, > 0 we have configuration B, but when u, O
~- configuration C.
Now let us note that conditions (1) - (6) bring into correspcndence to
any arbitrary disceatinuity (ensembie of quantities Vi, Pys /91, Cys U5 v
P Po’ Cor uo) one and only one configuration whose flow parameters are cslcu-
lated uniquely, end where stability conditicns are satisfied at the shock waves,
Therefore our ccnsideration of the problem of the decay of an arbitrary
discontinuity shows that it hes cne and only one stable self-modeling solution.

Thus, we approved the theorem cf the existence of uniqueness of the soluticn of

the problem of discontinuity decay in the clsss c¢f self-mcdeling solutions for

polytropic gases.
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However, the question rises: can the discontinuity cecay problem have a
stable, but not self-modeling soluticn?

A negative answer to this question cen be obtained by two methods:

1) by the proof of the theorem cf the uniqueness of the discontinuous solu-
tions of gas dynamics equstions, i.e,, solutions with shock waves end with centered
rarefacticn waves;

2) by the direct proof of the self-modeling status of any stable soluticn
to the discontinuity decay problem.

As for the first method, we must stete that at the present time sufficiently
general theorems of the uniqueness of discontinuous sclutions to gas dynamics equa-
ticns have not yet been obtained, and their derivation evidently involves
great difficulties, though for polytropic (end normel) geses evidently nc cne
doubts the uniqueness of this soluticn,

Pursuing the second method, we c¢n actuslly demcnstrate the self-modeling
of the sclution to the discontinuity decay problem by using certain concrete proper-
ties of any stable solution of this problem with piecewise-constant initial data.

However, we will not here desl with this proof, and as an exemple we will
furthér refer to subsection 5 of section I1I1 in Chapter Four where & similar prob-
lem was solved for & system of two quasilinesr equeticns of fairly general form,

6. Problem of discontinuity decey for an isothzrnal iresl ges. We will
here understand by gases "1" and "O" two isothermal idsal gasers vhcse equaticns

of state are given in the form

Timan, %y a=RT. G=RT. (1)

LY ]

An isothermal idesl gas can be considered formelly as a polytropic gas

with index V = 1. The difference in our treatment lies in the fect thet we cmit
- 318 =
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. ¥ the equsticn c¢f conservaticn of energy and the third Hugonict's corndition by
E replecing it with the condition T = constant,
3 Since an anelysis of critical configursetions invelved only ihe two first
% iugenict's conditions, all results cf the preceding subsecticns can be directly
§ applied to the isothermsl case. In formules of subsecticn 2-4 we must put h =
I %/ h1 =0, V.I = Vo = 1, reducing, wherever required, the injeterminscy. Let us
A‘f % consider expressions for u. and uy. Reducing the indeterminecy in formule (6.5.4)
E as Vq —= 1, we heve
“
us ¢ ln <0 (,>p) (2)
.' for uy we heve
_‘ 0= l/p,_'_po_ —Co[]/p'— po]_ (3)
: e
Conditions cf configursticns i, B, ena C will be as before. Note alsc thel where
V1 = Vo = 1 conditicrs (6.4.9) ere alweys cetisfied, so thet seperaticn cf geses
3 and the formaticn of vacuum sre impcssible for isothermal gases.

Working fermulss, after psssing to the limit, are of the form:

Configuration 4:
g

g T e S T
! M * _%(M" _ —/Wo.) 2 (
p (M= p,exp 5 = p. (M) = p,M}. (4)

Yoo eate.

Fermuls (4) correspcnds to (6.2.12),

Configuraticn B:

4 (M)e=u, —c, (M, _7&7):"‘ (Mo)'=co(Mo__:_"7°_) (5)
) o
sid M= Z:' M, ., ®
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so that finally:

: e - [ T
Vw2 V%m]‘ifo[:"'o-uﬁ:]: | (7
Foermilas (5) and (6) correspcnd tc (6,3.6) and (6.3.5).

Finally, for the case of configuration C

. U—i | _ U
LR nen @

Formula (8) corresponds to equation (6.4.4).

Note thet all the written formulas can be readily obtesined if we use
Riemgnn invariants. WYe cifer the reader ths opportunity of carrying cut these
operaticns if he desires.

7. Froblem ¢f discontinuity decay for normal geses. In sdditicn to the
ordinary requirements I-V (cf subsecticn 3 of section IV), we will require addi-
ticnelly that the following property of Hugonict's adiabat H be satisfied: at
its upper brench the quantity (p - p }(V, - V) must menctonically increese to

(¢ simultenscusly with increase in entropy S.

Then from relations (cf subsecticn 2 of secticn IV)

;;;;p;—‘fo So. - ST "(T)‘ ;
(Eosp= =) @

where u_, Pe» V dencte the psrameters of flow ehead of the shcck wave front,
c
end u, p, V -- the paremeters cf flow behird the front, it follcws that p and |u|

are mcnotonically increesing functicns*) of parameter |m|, cr, which amcunts to

[*)-En following pagey = 320 -
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the same, Mo =-L;—"£CL . Recall also (ef subsection 2 of sectiocn III, as well es
I’ (-]

subsection 7 of secticn II) that in the traveling waves u and p are associated

by the relation

,.»i&.,n

’ mﬁ‘y (Y \om Q vnuc‘. (3)
t@(éup)&mm R )

L TEC AR ~R.‘ B VAR ¥ WSCTIREYN us:l.:._u

where &(S, p) is defined by the formula

(5)

“vhere p is the fixed limit of integration, and an(S, p) = Pc >0 (6)

can be assumed to be a function of pressure p and entropy S. From (5) and (6) it
follows that ¢ (S, p) is a monotonically increasing functicn cf pressure p.
Function @(S, p-) depends on the equaticn of stste, therefore the func-
tions QO(S, p) and ¢1(S, p) for gases "O" and "1" are, correspondingly, distinct,
genserally spesking,
Let us begin owr examinaticn of the problem of decay with ccnfigursticn
A by putting u, < u, =0, P, > Py (7)
essuming that the equations of state of gases "1" and "C" are distinct and that
for each of them conditions I-V snd the condition of menotcnic increase of u(M)
are satisfied (cf (1) and (2)).
From assumption (7) follows configuration A (Figure 2.44). Invsrient r
is constant in regicn IV, therefore wu, + 491(51, p1) = u_ + @1(81, p_). (8)

In region II, p, = p (M), u =u (M), (%)

*) The monctonic increase in p(Mo), &s shown in subsecticn 3 cf section IV,

is a consequence of conditicns I-V,
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where po(Mo) end uO(Mo) dencte the state shead of the shcck wave front in gas
. %1

"C" for assigned Mo and incresse to oo with increasing Mo'
Conditions for the continuity of velocity and pressure at the contect

boundary 112 lead to the equation for the determinaticn of Mo:

)= 0,S, P =015,y (M) = A= M- (10)

R

The left side of (10) decreases menotonically, and the right increases menocto-
nicelly up to o0 with increesing M_. When MO = 1, according to (5) end (7) we

have

a()=0,6S, P —O S PS>0 (= °'>:w}.”“' (11)
« e (=a0)=0. A

Hence, as before, it follows that equation (1C) has cn= and only one rcot Mo
2 1

Fixing pq and p,, we will vary u,. The functicn

o= al My m) =i+ By Sy, )=, Sy, (M)

is a mcnotonically increasing function of L Censequently, the root M0 of
equaticn (10} is a monctenicelly increasing function of u1.

Let us consider how the inequalities ¥ ST < U< D (12)
very with change in u4. The inequsality D - U > 0 is self-evident by virtue of

relation (4.2.8):

P (Mo) — Po > 0. )

(U—.D)(uo—D)=D(D_U)= Po (Mp} — Py (13)
Inequelity U - y, = U - (U-c_)=rc_>0is also self-evicent.
Consider the difference
W= —c)— U ~e)=U —8))—(c. ~¢c. (14)
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; Since u_ = U, from (8) it follows that
TNETY e A S Y B T T T TR 0 RS e ey
U =n— (.= )= )=y 2)F (). { (15)

PP (M) endc =c¢ (S1, p ) increase with u,; thus, differences é1(81, p1)
= 3 = = = =

13
-@q(s1, p_), end ¢, - c¢_ are reduced. Thus, the difference V- ¥, decreases

o ; with increese in u, and at some value U = ug becomes equal to O, The rarefaction
1 i wave region venishes, and the soluticn will have the configuration AB (Figure 2.46).
: H
j t When u, = up P_=Ppy C_ = Cp U U, (16)
f Therefore uy is defined from the equaticns
i T R
E : 'p._npo(Ma';o?}‘ a5
) L Uy o= g(Mo “:

in whicn Mc kp appears as a psrameter,

gut if u, is reducad, then as we have seen Mb will be reduced and when u

will become equal to 1. When U = u

1

= u the shock wave venishes and the solu-

C c’

ticn takes on the configuration AC (Figure 2.48),

The velue u. is fcund rrom the equetion

| E

; U= Oy p) S 2) <, (18)
s which follows from (10) when Mo = W,

] When uy > uB {19)

configuretion B is elweys corpetible (Figure 2.47).
Let us write the conditicne for continuity cf pressure and velocity at the

cortact boundery 142:

] P (M)=p, (M) | @0 |
u_(M)=u, (My. @h
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The function p_(ML) is a menctenicelly ‘ncreasing function of the parsmeter M,
therefore from equeticn (20) M, is determined menotonicelly increesing functicn
of M», and equation (21) can be considered as the equetion for the determinaticn
of Mc>Mc kp>1; M1 >1.

Noting ncw that the left side of (21) is & mcnotonicslly decreasing, end

the right side -- a monctonically incressing functicn of MO end that

My (Mg =F.

5;tﬁ%;;:: Uns u (1) = u, > Ugs

we conclude that equationé (20} and (21) have one and only cne root Mb >'M° kp
> M >

Thus, the conditions for the compstibility of configuraticn B (M&>1,M1;>1)
are always satisfied when u1;> ug.

Finally, when u1=< ue (27)
we have configuration C (Figure 2.4S).

The conditicn for the cortinuity of velocity and pressure ¢t the centsct

boundary lﬂé is of the form

A "-=‘"l“+l0|(sp p,)—(ﬁ,(S‘,: p= T s -
b =u, =Sy p)— DSy p)=U (23)
(p denotes pressure in the zores III end 1V, p - p, = pj. lkror it p end L are

determined.

The left side of equation (23, decreases menctcnieslly, snd the right side

increases mcnotcericelly -- with increease in p; when p - pC
I’. y ek a, =‘uo (p°)=b; | /
LB =8_(P)=t,+O,(S. p)—® (S, p)=8—1,<0.
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dence it fellows that equation (23) has one srd only one root p = p_ = P,<PP,-
The conditicns for the compatibility of configuraticn C followed from the fact

thst 0 > U .>'1H. With further reducticn in u, sepsreticn of geses beccmes possi-

1
ple,

8. Soluticn cr the problem of discontinuity decsy in the plesne of vsrisbles
p, u (p, u-plot). In all cesecs of configureticns &, B, C the state U, p,, S,

te the right of tha contsct boundary wss associsted with the state ¢f u = 0,
o

p, S in gas "C" et the initisl instent either by the rerefecticn wsve releticn
c o '

&

S."‘ =Sy 8, —O(Sy p,)=8y—P(Sp P)=—Dy(Sy Py).

or by the Hugoniot's relsticns, from which follows

P.=Py(Sp M) 4, =16,(Sp Mo (2)

where p (£, M), u (3, ¥4 ) incresse monctecnicelly with increesing M_, &nd
pO O, c ’ c 3 o y g 0’

0

po(So, M) - 00, uO(So, MO) — 0o provided Mo —= oo, From this it follows
thet we cen cancel out the paremeter Mc from the functicns (2) and obtsin & new

functicn: u, = \yo (s

o’ p+); (3)
et which \yC(SO, P,/ Just es cpo(So, p+'), is & merctcnicslly incressing functicn
¢!’ the vsrisble p .

s nececsery coraition fer the rerefscticn weave (y3 - ¥y >0 is the require-

ment. P, £ P (4)

frer whence follews thal in determining u we cer employ only helf cf curve (1):

u, =0y Sy p,)—Dy(Sp P). (s)

assignad oy the conditicn 9, L P .
The conditicn fcr the stability of sheck wave (Mc>/ 1), cerversely, requires

only that pressure P, te lerger thern P, (pf > p,); therefore when determining
: (-]
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u_we can also employ cnly half of curve (3) essigned by condition p >

P .
par

Therefore the curve

[ ' £,)— B,(So 29 nere p, < b

(6)
o(SO' p+) : AT where p+ } P

Gefine the velocity u+ at the contsct boundary for the assigned pressure P, .

The curve

Y (so- P)':bo(so' Po where p P o’
u=go(So. p)-—{ (7)
s FoGor P) , where p P,

docribes in'the plane of vsriables p, u e set of stetes which cen be zssociated

with the right state Pys € ,u = 0 by m2ans cf the cemtered rarefsction wave or
o c©

by ¢ stable (‘Mo > 1) sheek wave,

rigure 2.51

~) Rarefscticn wave 8) Shock wsve
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We state that at the curve (7) a "state" is defined, even though at each
of its points only two cf three hyerdynamic parameters are known -- p, u.
However, we can readily see that in the rarefacticn wave (p < po) S=
, but when P2>P, the entropy S is uniquely determined at each poini on this

curve from Hugcniot's conditions.

Stated briefly, curve (7) is the projection onto the plane of variables

p, u of a curve located in the space of three variables (p, u, S) and describing

%
g
z_

a set of states (p, u, S), which can be associated with the right state Pys Uy =

0, S by the rarefaction wave or by the shock wave.
o

gy & P

i We can readily see that the curve (7) passes through the point H and from
the property of the second-order tangency st the point (po, u = C) of Hugonict's
adiabat H and Poisson's adisbat 4 it follows that curve (7) exhibits at point
(po, u = 0) and, therefore, everywhere a continuously differentiable tsngent.
Figure 2.51 présents the approximate shape of curve (7); and some of its
part corresponds to the shock weve (function (3)), and the lower -- to the rsre-

faction wave (function (5)).

Wholly analogously, the curve u= uy - g,(S;, p), (8)
where
S»WP’)'—‘D (s- P) P@- {
: S. __{ D, (S 1 W O
"(‘ P=1w,s, . _ . e (9)

describes in the p, u-plane a family of states that csn be associsted with the
state Uiy Pos S1, as with the left state, either by the rarefscticn wave (r =
constant) o by the shock wave (m > 0, M, 2 1). We cen readily see thst

g1(S, p) has a monotonically incressing function of p, so thst curve (8) passes

through the point (p1, u1) and has two continuous derivatives. The approximate
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shape of curve (8) is shown in Figure 2.51. Also shown in Figure 2.51 ere the .
sections of cirve (7) and (8) to which correspond the rarefacticn wave (B.p.)

snd the shock weves (y. B.), respectively, in gases "O" and "i",

Figure 2.52

KsYe
1) Sepsrstion 4) Configurstion B
2) Configuration C 5) Rarefaction wave
3) Configurstion A 6) Shock weve

Since at the contact discontimmity it iz always (save for the case of gas
separation) that the continuity of velocity u_=u_ and pressure p_ = P, the
solut.on of the discontinuity decay problem reduces to determining the point

(py u) (p=p_= pu=u_-= u+) of intersection of curves (7) and (8).
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If the intersecticn point (p, u) of these two curves lies in the upper ;
helf (p > po) of curve (7), then a shock wave is propagated in gas "O"; but
ifp< P, then a rarefaction wave propagates in gas "O", Similarly, if the
point (p, u) of intersection of these two curves lies in the upper half (p<:;H)
of curve (L), then a rarefaction wave propagates in gas "1"; but if p > Py
then a shock wave propsgates in gas ™", Accordingly, Figure 2.52 presents
the possible cases of intersecticn of these curves, Assigning, as always,
condition P4 >-p° end noting that curves (8) for different u, differ from each
other only by displacement, we present in Figure 2.52 the disposition of the
possible configurations as a function of L and also a graphical method of
determining the quantities Ug, Yo, and uotp [;tp = separation of gase§7. From
Figures 2,51 and 2,52 also follows the graphical method of solving the problem
cf the decay ot an aroitrary discontinuity*).

A similar considerstion of the problem of discontinuity decay can be
made also for the projection onto the plane (s, r) of Riemann invarisnts. In
the plane (s, r) perts of the curves (7) end (8) corresponding to the rarefaction
waves will be raised parsllel to the coordinate axes, while enother part will
represenc some smooth curve that smoothly (with two derivatives) is consistent
with these rays (Figure 2.53). It is especislly convenient to use the r,s=plot
"T7¥) 1t must be borme in mind thet curve (8), just sc curve (7), depends para-
metrically on entropy S1(S°), therefore the assignment cf only the point (p,, u )

1

still dces not determine it. If, however, we assume that for all U, Pi2P,

entropy 5, is fixed, then curves u - u, = —g1(S1, p) end u - u! = —g1(S1, p)

]
coincide when u} - u, = g1(p%, S1), p<£ min(p1, p%). Cn this basis, in Figure

2,52 are indicasted the regicns cr values Pps U, when S = £ = constent, in

which configuraticn of the soluticn of the discontinuity decay problkm is preserved
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in solving the problem of discontinuity decay for isothermsl gases.
In concluding this subsection, let us determine the function go(So, p)
for the case of polytropic gases.

For a polytropic gas

.

0o(Sy: )~ ®@(Sp PO= -

R=t '
__2 Pyw _
i I r-T[( %) A.‘l‘o‘so' g;’;

~

. ey .2 -v. RE TP
M N U p=A (‘3)0 - < .(lo)

-~ .

= -

In the case of & shock wave (p > po), let us express Mo from (4.5.13):

Pl

S a7
M= EER (12)

after which in formula (4.5.16) we find QO(SO, Pt

! S oy ek EL po(l+ho)] .
S0 =0 -mealSu 20V iR 7 Fhapo 1 (13)
Thus, for a polytropic gas equaticnu (7) is written in the form
N -t
-2 AR where p<p ,
s, (g =] eropene

‘k1=go(s. p): ‘:

Pt hop eS|
‘l w (li-’,"’)c"(s'p“)[ m+°h:)_l/ P+hoP:

where n2 Pgoe

G, Lineerized formules of discontinuity decsy in the czse of pelytropic

gas. It is easy to see that the quantity 450(50, p) -@o(s ) aad q)o(So, p)
- 530 -
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when 7;-2 1 + & coincide, with an eccurecy up tc terms of the crder of £3.
(-]

The seme conclusicn follows from en aneiysies of wesk sheck weves made in sub-

secticn 7 of the secticn IV. Therefore, by carrying cut in formule (6.8.14)

:e en expansicn in pcwers of the smell quentity p-5 end limiting curselves
g only to first-order terms, we get
5
& - N
P
! u—g°(s'p)=?°- Sh=tee (1)
¢ oo
i Similerly, for weak waves
m—C ¢ cp—pr
’u'.—._uzg'(sl' p)=Y_:.”_P‘p = plcll‘ ' (2)

O AR Y PG

Therefore we obtain the result that for the decay of a discontinuity with smell
amplitudes the values of the pressure p and velccity u at the contact disconti-

nuity, indepencently c¢I configuretion, are expressed 0y the same formulss:

.

or 1 ;/
! 3 P P
¥ s=s(Sn 5 Figure 2.53 —_ o s
__ =00 L) Poto V(3
ir KEY: P=0 g T, L
i PeCo ity Pofo
¢ e 2 1) Shock wave
i (&
: IS % 7 2) Rarefaction )
1 | ' g=-Pr—P Polotto + P1Catts \
¥ | n viawae Poco 910y PoCot+mer (4)
/ \

= 1
Tartis.n) 04

whers we replace tha quentity u, oy the difference u, - u_. Forirules (3) ara
(4; describe the solution of th» problem of the decay of s discontinuity in

the ecoustic epproximsticn, i.e., for infinitely wezk waves,

\

l\

A) (Z) Lo} j/ ( /}

/

Figure 2.53a
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10. Decay of a discontinuity in & veriable-section channel. We will
consider two semiinfinite cylindricel tubes with cross section layer as A1 and
A2 abutting at the plane x = O (Figure 2,53a) and filled with geses characterized
et time instant t = O by the psremeters u1,fH, Pys S1, and, respectively, by
u,, P2, Py 82.

The gas pressure erising at t">>0 is two-dimensicrel; however, it can be
assumed that the waves propzgatirg in eech tube as t — 00, [x| ~#po become
close to cne-dimensiornal. The approximate flow pattern (we will call this flow
the decay of discontinuity &t the section discontinuity) is based on the sssump-
ticn that the asymptctes are established instantaneously and the flow decaysinto
two one-dimensicnel flows divided by an infinitely thin transiticn zone enclosed
betueen the plenes x= -&, x = +&, The notion in the region of the transition
is & steady flow, so that the quantity f = (u, O, p) tc the right and tc the left
‘of the transiticn zone (we will designate them by £~ and f', respectively) are

associeted by the relstions

T Thelsaert
o 0+2+5] =[e. 0+ 5+5] - @

The Iirst expresses the lew of conserveticn of mecs, end the second Bernculli's
law. To this we add a fzir relsticn, which has ¢ different form for different
decey mcaels. We will cenfinecurselves to the eiiebat medel in which the
congervevicn ¢f enropy in ine trensiticn zone is essumad®;, Fcr o polytropic

gas, tnerefore, we have

—
L
=

/*) en fsllowing page/
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Let us consider the simplest case of discontinuity decay -- the impinging of
a shock wave traveling with recspect to the quiescent gas with parameters fH, p1,
u, and exiting from the wide s2ction of the tube into the narrow, Ws¢ will assume

that the discontinuity in the section is small, i.e., that the conditicn
L’ AR

5 ﬁf (4)

is satisfied. Then we can assume the disturbance inthe shock wave to be small
end we cen linearize the working formulas., After the shock wave passes through
the section discontinuity, we will have the following configurstion of disconti-
nulties: to the right trevels shock wave D1, behind it st the point x = C occurs
a discontinuity subject to relations (1)-(3), behind travels the reflected waves;
between the shcck wave that has gone by asnd section 3z = O lies the contact toun-
dary. Figure 2.53b reflects the configuration of discontinuities in the x, t-
plane. The line JFZ is the trajectory of the shock wave entering the narrow
tube, [; is a trajectory of the reflected shock wsve, .["2 is a trsnsition zongz,
and ['3 is the trsjectory of the contact becundary. At the lines .[;, .Z;, f;
the flow psrameters experience discontinuities of small amplitude, and the
cerresponding sbutment conditicns cen be linesrizad. Let Ap, Au represent
the totel changes in p, u in the trsnsiticn from ststes (2) to stste (3), and
let A4p snd Aju stand for the chsnges in p, u for the transition across Fi

(1 =1, 2, 3). The following linesrized reletions sre velid:

8) st Thp L TER B oyt
Jf‘i‘_, L+ TIE o, .
b) st TSI .Y .
;PT St + = =0 (5)
\ :. A ra !
c, L ‘r-;:;g--'—%Aay::o, i§
d) at )rl: 8yp ==y =0.

*)’K complete analysis of the discontinuity decay problem at the jump section

is found in the papers of V. G. Dulov [11] and I. K. Yakushev [12].
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Figure 2.53b

Total changes Au, Ap are caused by chenge in the force M of the shock
wave as it makes its transition from the wide section of the tube into the
narrow. Using Hugonict's condition for a peclytropic ges

O s

1y !
b E=a-n(M—gly

; (6)
c) :‘.:_ ]/[(1+k)- ](1—-h)+hM’lw
‘ .
4 = v A
we have -_p'_-. 5 -};"th ’: -
g ! ':,f ,:‘_{g_fi&—2(1+;,)MAM [ .
”

b) = Q—"ﬂ“-—(l h)(1+-ﬂ-yAM

Relation (6) erables us to express quantities with subscript 2 in terms
of quantities with subscript 1 and kncwn functicns of M, and then the coeffi-
cients of equations (5a), (5b), and (5c) will be expressed in terms of M and
quentities with subscript 1. Equetions (52), (5b), (5¢), (7e) and (7b) yield

8 system of five equations reletive to four quantities: Aqu, Azu, A1p, AZY).
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The condition of algebraic compatibility of equation (7) leads to an equation

thet wes first obtained by Chester /13/:

O F At LT re e T e
r-i.i - JE!f?-]a?!%ggajﬁ" : ”{'-, . '}
where i ;

!

Ay =2 [ +(l —8) ——‘—)(2:+1+Wﬂ

b W
| #on %ﬁ'%%’itfr iy e

-~ .o
U VU SR . U OO VUL S SN

Equaticn (8) yields the relationship between variations in intensity of shock
waves and the two cross sections. Chisnell /14/ proposed using formula (8)

for the decey of a nonsteady shock front traveling in a channel with continuocusly
variable cross section. In the Chisnell theory achennel with a continucusly
variable cross section is epproximsted by a sequence of cylindrical channels
(Figure 2.53c) abutting one another, and the transiticn of the shock wave

from one cylindricel section tc another is given abcve by formula (8).

By integrating equaticn (8), we find Af(M) = constent, (11)
where

e . e o -, - . ot} = '.,' - ]
r-m-—-—;"-"" T - ‘.. = & y=1\7 [ ¥ .
! . o g = R— ] '”."; Wb
=2V E— 1) (2 ) ”[T—-;;‘fk]/m‘ J'———r ﬁl)? e

?_‘. .

, L e+ 1 .
' 1
" )(exp[(y_’_l) mctg{‘?y l]. a2
. ’ . , -‘
; R=(1+4)". (13)
l z=—1—v_2+y_ M—p ( (14)



The quantity k(M) is a slowly chenging function of M. Thus, for

If we essume k is a constant, integral (11) is simplified end leads to the

form 252 - 1) = constant. (15)

For wcak shock waves an arbitrery V, k(M) — 4 &nd formula (15, becomes
M-1 ~ &2, (16)

For strong shock waves

—r— ———

B = s ,2. )
WA =TT (17)

Then from equation (15) we have M4
Estimate (18) was used by Chisnell to establish the agymptotes of a strong

shock wave for the case of cylindrical and sphericel symmetry.

J——

= . . Lo e

Figure 2.53c

From (18) follows Mo x?, n 24;! (19)
for & cylindricel shock wave and M~ x™", n= Keos (20)

for a spherical shock wave (x represents distarces up to the axis or, ccrres-

ponaingly, the symmetry points).
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A comperison cf estimates (19), (20) with the self-modeling soluticn

cf Guderiey for a convergent shcck weve (cf section IX, subsection 5) shows

excellent agreement. Since, for V=35- , 37~, we have the following comparison
cf indexes n:
.‘ Limannxpuvecxas soama dC@epnucm soans
: Y iawen C  lyaepact P Yucoens C [yaspack
i .
v 3 02254 02260 04508 04527
y=% o197 0,973 03941 03944
KiY:
g, Cylindrical wave ¢) Guderley

b) Chisnell . d) Spherical wave

The theory cutlined by Chisnell does nct meke allowance for the sddi-
ticnal influence of seccndary waves reflected from the chennel walls and
overtegking the shcck wave. Corrections were intrcduced into formula (18) in
the works cf Chisrell / 14/ end /15/, which incidentslly prcved to be uncssen-
tiel,

Withen /16/ geve = simple interpretsticn of equation (8). A4is we know
(cf /28/), the flow in the channel is described, in = one-dimensional eppro-

ximeticn, by the egueticrs

2 2 (uA) =0,

a s , 1op
FHem e =0 (

IR

n
=3
~—
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where &(x) is the cross section area of the chennel.

Equations (21) cen be rewritten in characteristic form:

Flo e dlnA
o @& tisrigt=o

— e

by (o (i—) 0.

i
YA } (22)
1 ' dinA '
c) ” dl,+dl,+ uzc daty -—0
where g —Y W
&= 7‘*““‘"3" H=wte g T=w e+ g (2)

Assuming for definiteness that the shock wave travels from the left to
the right and that the difference in the sleopes of the shock wsve trajectories

and the overtaking characteristic is small, we can approximately assume that the

relaticn

dr_—-dp+du+-—+— dlnA=dr+lenA=0

(24)

is satisfied nct along the r-charecteristic, but at the shock wave trajectory.

From (6a)and (6b) we have

P e e S """"""

dr~d11+ dp——c.l(l—“h)(l-'l--n—) (l+h)M]dM ' {25)

A

.. — L S p—

Substituting (25) into (24), we arrive at the relsticn

[(l—‘h)(l+-M—)+ (l+h)M]dM+——°§1—ydlﬂA=° (26)

which by virtue of relations (6) is equivalent to (8).

Since the assumpticn (24) is valid not only for weak waves, but also far

strong wsves entering in the center, this explains the gocd sgreement of Chisnell's

theory with the sel’-modelirg secluticn for the problem of a convergent shock weve,
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Different epproximations have been developed for flows possessing the
property that the inclination of tbe characteristic overtaking the shock wave
is close to these slopes of the shock front, and these approximaticns satisfac-
torily describe the behavior of flow near the front (Poincare-Lighthill-Go

method /17/ and the method of shock waves /18/).

Section VII. Interaction of Strong Discontinuities,

Based on the analysis of the problem of the decay of an arbitrary dis-
¢ontinuity,in this section we consider several problems of interaction of
strong discontinuities, such as shock waves and ccntact boundaries,

In the merging of strong discontinuities piecewise-constant flows emerge,
which can be taken as initial data for the solution of the problem of the decay
of arbitrary continuity. Therefore the problem of the interaction of strong ds-
continuities reduces‘to the problem of discontinuity decay.

We consider in this section interactions of strong discontinuities in the
following order:

1) the impinging of a shock wave at the contact boundary.

2) the union of shock waves traveling directly into each other relative
to the gas.

3) The union of shock waves moving in the ges in the seme directicn.

All possible interactions of strong discontinuities sre exhausted in the
three combinations. The main problem will be to establish the confliguraticn of
the slope formed &s a functicn of the psrameters characterizing the interacting
discontinuities,

We {irst make a general examinaticn by the method cf the p, v disgram,

and then consider the case of the polytropic gas.
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1. Impinging of a shock wave at the interface of two media. Suppose that
a shock wave traveling in the medium x = O in the direction from left to right
impinges against the boundary x< 0 of two media characterized by parameters
EO =P, 5, 4=0 (to the left of x = 0) ard p,, S_, uy = O (at the right} at
time instants t = 0., Thus, at the instant t = O the initial discontinuity with
parameters p,, £,, u, {(gas "1", ieft) and p, Sg» Uy = 0 (gas "0O", right) is
formed. Here the point (p1, u1) must lie in the upper part of the curve (6.8.7)
calculeted for the ges initially lying et x <0 and passing through the point

(po, 0), i.e.

e BoSo P |
P>pe >0 (1)

Thus, the set of possible states (p;, u,; of gas "1" is mapped in the plane
t

{p, u) by & curve descrivad by equation (1) (Figure 2.54).

s SRR R FE R
P O\ EREHGE

Y u-gisp
oL 149
U=lUy=~f (58
) £
? s ﬂ-’- ..... ur ;. ’
e G o
Figure 2.54

Suppose that the initisl shock wave is given. Then &lso given is the
point (p1, u1) lying on the carve (1) {(¥Figure 2.54). In acccrdance with sub-

secticn 8 of section VI, the solution cf the problem of the intersction of a

shock wave with the contact boundary reduces tc the determinaticn of the peint
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(p, u) of intersection with the curve (6.8.7) w= go(So, p) (2)
for the gas "O" peassing through the point (po, uo) and thé curve (6.8.8)
u=u, - g1(S1, p) (3)
for gas "1" passing thrcugh the point (p,, u,).
Obviously, curve (2) can intersect curve (3) only in the separate branch,
i.,e., whenp > Foe Consequently, the induced flow has either configuration A
(corresponds to point A of the intersection by curve (2) (CA) and by curve (3)

(AB) in Figure 2.54), or configuration B (corresponds to point B of intersection
by curve (2) (CA) and by curve (3) (AB)).

Thus, a shcck wave is alweys propagated in gas "O", and a rarefaction wave

or a shock weve is propagated in gas "i", depending on the mutual disposition of

curves (1) and (2).

Let us considar the case of polytropic gas. According to (6.8.13)

o6, m—a—2.3“50[‘;/%_.7‘_"’1_';..“:_,. Bl

e m— ST P SN PSSRSO, oo W . T el i,

We intrcduce into cur consideration the quantity

B p _ 0—mfc01+%0+nlmqf’~»w %“1

T

where 3 8= ,E. Coam (7)
: L R TRRY T

From this we have

| K@=

e ——-——— g

o= ER G (IR @
Keo= =t CES (B —ithka. @
" © L Al ]
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If h < h (V< ¥ ), then K(e0) > K(1) end K(6) is a monotonically increasing
fuaction of 6. But if h > h, (V,>V), then K(co)< K(1) and K(6) is a mono-
tcnically decreasing function es 0 < @ < 00,

Let us consider the following cases:

1) K(1) 21, K(©9)>1. Then K(6) > 1 and SP(SO, p) = g{,(so, p) for
all p ;.po. In this case curve u = ‘fo(So, p) lies beneath the curve u = %(—S'o,
p) (Figure 2.54) and for any shcck wave intensity,as a result of interaction
with the contact boundary configuration B is induced, i.e., when t>0 twe sheck
waves propagate to different sites from the contact boundary (Figure 2.55).

2) K(1) £ 1, K(o0) < 1. Then QO(SMP) < ¢ (S, p) end for any shock
wave intensity the flow when t > O has configuretion 4, i.e., & shock wave
propagates in gas "O" (as, it does, incidentally, slways), and a centered rare-
faction wave propsgates in gas "1",

3) If K(1) > 1, K (00)< I-(V, > V,), then for some p = P the curves u =
q/o(éo,P) and u =Y (5, p)intersect esch other. When pcé py < P, we have
configuretion B; when P, > P, i.e.,, for sufficiently strong‘ shock weves, we have
configuration A,

4) K(1)< 1, K(e2) > 1 (V, < V,). Then curves u= l[Z(SL,P) and u =

£ p, < P the flow

q/o'(so, p) intersect each other at p = P; in the regicn p ]

(o]

has configuratiocn A; when p1 > P it has configuration B,

Let us consider the special case of identicel gases (V, = ‘J, =V ). Then

7—-*"'—7(\—'——

K(l)-K(oo):-:( 1

s (10)

1

,al:u

Considering relstion = 758- , let us write (10) in the form
4K(l)==K(oo)....-_-’_9- (11)
b oo, L P
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From this it follows that when the shock wave travels from a lzss dense gas into
a more dense ges (K> 1), then the shcck wave is reflected in the less dense gas
(we have configuraticn B). But if the shcck wave travels from a more dense gas

into a less dense (K < 1), then a rarefaction weve is reflected (configuration A).

/I‘(I)BI,_ Kloa) >1
Figure 2.55
KeYs

a) Shcck wave b) Contact discontinuity

This result can be compsared with the conclusicn in subsecticn 5 of sec-
tion IIl, where the reflecticn cf & traveling wave at the contact boundary was
studied. There we obtein the conclusicn that a wave of the same type as the
incident wave is reflected from a mcre dense medium. Since the weak shcck wave
can o« re.arded as & weak Riemenn ccmpressicn wave, then we see that qualitatively
the reflecticn cf shcck waves end fiemenn waves st contect boundasries is identical

in neture,

2. Encounter of two shock waves. Two shcck waves travel toward each other

in & substence with parzmeters u, = 0, B and éo’ leaving behind them states
o
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u = ¢ ¢S, P p,» S, behind the left uave and u = - $ (5.p)R. S
behind the right (Figure 2.56). At the instsrt t = O the shock wavesencounter
at the point x = 0 forming an initial discontinuity with parameters u, = iiffi,,Pz
£. S, (left) and u = —92(5,1/’,), Po. S, (right). For definiteness we suppose
that Py > P (1)

Here twoc ceses are possible:

a) Curve u - u = ¥ (S, p) is always below curve u = 92(3,,,") (Figure
2.57, a).

b) Curve u - u, = ¥ (3,,p) intersects the curve u = i(go,p) at some

pcint (P, U) (Figure 2.57, b).

S

Figure 2.56

In the first case only configuraticn B is possible, in the second, both

B end A, however in any case a shock wave will be propagated in gas "O".
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Figure 2.57 Figure 2.58

Let us consider more detail the case of the polytropic gas for which the
intersection of the curves u = Q' p)and w=uot 4’ €3,.p) - g/ (S,,p)

is impossible. Thus we must prove the inequality

Lﬁ}v P+ .(iiim>%%ﬂ vhere p2p > Bo. (2)
Considering formula (6.8.13) for «yo(so, p) and formula (6.8.12) we reduce in-

equality (2) to the form

} ﬁ-ﬂl‘ szmpn L :‘-'q
Uﬁ:&' “mi'; AR ‘!

- et b
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where

b

/!

AT
T SR ey Pwe

i (4)
k of . o g v ' N I" 1"t -
¢ I L Y & = 1 T 3
| MY > <v>w )
f From this follows the equality
FomT T T Ay MER
‘ftl'_f)w " 1+:.)ﬁ3 (5)

- —

Allowing for relaticn (4.5.15):

{0 AT £ 0
i M .Y (6)

-

and also consequence (5): . )
MM
| 1= 1 0 .
; w1 A+mM—r j (7)

-

let us transform inequality (3) to the form

L (MMa—1F <1 (M, — MP(1—h - aMY) (8
M W amM—x )

Canceling cut of inequality (8) the quantity M by using (5), we arrive at the

inequality

| (MMo—1) N (My— Mo [1 — A+ 5]
LM M—htaM] (9)

When M1 = Mo’ inequality (9) will obviously be satisfied (this case corresponds

to the encounter ot equal-intensity shock weves). Let us shcw that inequality
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is satisfied for any M1 2 Mo. To do this, let us transform it to become
=1 = ) s L oamdi 3] S 6

from whence it readily follows that 1t always is setisfied when M1 > Mo > 1.

Thus, in a polytropic gas only configuration B is produced in the encounter of
two shock waves, i.e., when two shock waves meet each of them as it were Ypasses"
through the other.

3. Union cf shock waves traveling inthe seme direction, In a gas with

parameters p , S u, = 0 a shock wave travels from left to right with constant

o’
velocity D, > O, leaving behind the state EO,F,, \S"c located at the curve
u= Y(s,, p). (1)

Behind the first shock wave, also with constent velocity Dy, D‘1 > D, > ‘:‘o’
travels the second shock wave, lesving behind the state Uys Pqs S‘1 located &t
the curve u - :10 = ‘I’o(éo, p), (2)
passing through the point (50, s P, > )(Figure 2.58). At the instent of
union of the shock waves an initial discontinuity is induced, which on decaying
yieldsa flow with configuraticn B, if the point (p.l, U, + tI;(So , P)) lies above
the curve (1) (in Figure 2.58 this case is shown by pcint B), and alsc induced
is a flow of configuraticn A if the point (p1,&o ty (30, P,) ) lies below the
curve (1) (the corresponding scluticns are noted by the points (5' end A' in the
figure). A shock wave will slways propagate, however, in this case toward the
side of gas "O",

Let us consider again in grester detail the case of an ideal gas. The
mutual dispositicn of curves (1) and (2) is determined by the sign of the dif-

ference

L= y(Se Po+ FoSo 2= YolSor P (3)

-

= 347 -




for the assigned restrictions P, & 50< p. (4)

Let us introduce the notsations:

© v e wr— L R Rt -— =
’ D"' 0r. D.: MQ
c. PSS ' 1€y "','

EH

5=

-

Here Mo corresponds to the first shock wave traveling with respect to the back-
ground (0, p,)and leaving behind it the state (Eo, 50); M is the second shock
wave traveling relative to the background (;o’ 50) leaving behind it the state
(u1, p1); M is the possible shock wave traveling relative to the background

(0, p,) and leaving behind it the state (u, p). Then the difference (3) is

represented in the form

o - — s [T L .o w

M"‘ . ' M’-l :
From relations
};.z (lvl—h.)_M;—-h. L==(l+la)M-—ll.‘ ==(l+h)M'—l‘.‘ (7)
follow
et - S - =L

Substituting (8) into (6), we get

e R e
A=~ .“_,‘ o
{ {..0,"'_‘)‘% My +co (l-{-h)Mo_n ] "]

[(M %(MMO-H)_}_ =M} ] ; (o)

="

L " L MM, il - (l-i-h)Mo—h
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Using relaticn (4.5.15) (cf Figure (7.2.6)), which in this case can be written

8s

et i = e TR

[(l +h) M’—hr(l —h) + Ml
_c?,_ M’ 3 (10) |

we obtain frem (9]

- =

A“(l—h)c [(“0 “)(MM0+I)+V(l—n)+m2(w_w)1] i
MM, M VA+mM—h A

P e

=(l — Be,(M — Mo)[

ESAL VAR

Vi—h+ M3 (M 4 M) (MMO-{-J)] 1)
MWV(l+h)M" h mM, |

Since, by (4), M >Mo > 1, then we see that the sign of A coincide with the sign

of the expression

(1=htam)(M+Mp (MM + 1) . a2
M [(1 +h) M3 — 1] MM :

Finally, here substituting M from formula (8), we get

[ G Wbt REE Sani o Yd

. [1 h+.w’] (M+M°)’ (MMO-{-;;’”
i .ignA—.lgn M2+hMﬁ_h M2 B *Mﬁug }=

| = sign (M (M+-Mo) (144 (M—1)| —(MM4 1) (M0 (ME—1)]) =

T =—sigm (;u{- 1) (M —1) [(1 — &) M*— 20MMo—h).  (13)
end so, if 1 ‘ o i,
L (I— B M? — 2hMM, — k>0, )
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thenA< O, and we have configuration 4; but if
L — Ry — 2 MMy —R <O,y (15)
then we heve configuretion B.

It is not difficult to see that when the second sheck wave is sufficiently
strong (M>>1, M 3 1), inequelity (14) is satisfied and we have configuration
A. In order for the equaticn

R T -

tc have the roct M(M >M0 > 1), it is necessary and sufficient that the inequa-

lities . o
- = A .
L1<M<y—ag (17)
or h 21/3, i.e.,V22.
to be setisfied. 1If
(1-31)>2h, i.e., h <3, V< 5/3. (18)

then cenditicn (15) cannot be satisfied for any M, > 1, and we will lower the
configuraticn A, But if v > 5/3, and we may elso have configuration B.
More exactly, when M £ Mkp’ where Mkp is lerger than Mo’ the root of equation
(16, cr what emounts to the same, when ——
E’gw...

(Mot
we heve configuretion B, otherwise -- 4.

4. Interacticn cf strong discontinuities in sn isothermgl gas. For the
case of an isothermsl gas, enalysis of the directicn of discontinuities is simpli-
fied, Actuelly, an iscthermel gas cen be considered as a polytrcpic gas whare
V=0

For isothermal gas we have

'}.{’l;o(l’):‘o[— %‘-"m- ' ; m :
S =gglufe. a @
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Let us consider the problem cf the incidence of a shock wave against
a discontimity contact (cf Figure 2.54). As we show in subsection 1, the
choice between configurstion A and B is determined by the sign cf the difference
A= SI_’:,(P)- ¥, (p) given the condition p » P, When A< O, we have configuration 4,
and whenA >0 —- configuration B.

Teking (1) into account, we have

LerEme T TR S e .
Zﬁ%ﬁ@;mgf (3)
;}x’ A Q’T { ’.
it BT el ag e Jame v o

Since p/p°> 1, then configurstion A obtains where Eo < c., and configuration B

o?
-- where c > c.:

Teking the relation P, = ¢ P = :Pa. (4)
into account, we get the result that we have configuraticn A where ,0: < £, and
configuration B -- where é > F. Its resull also follows directly from the re-
sult of subsecticn 1.

When solving problems of the interacticn of shcck waves, we must besr in
mind that ¢_= c .

o o
Let us initially cons’der the intersection of shcok waves traveling headon

toward each cther (cf Figures 2.56 and 2.57). Using the nctations in subsection

2, putting h= G, we have

qum‘“;m Lo >~
" A"
Y ) ==L, 6
L “M\.km' ,_;M - My —- (>'_.

The condition for configuretion B is of the form (cf (7.2.3))
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from whence we have (M1 + MO)(M1 + 1)(Mo -1) > C. (8)
Thus, we also have corfiguration B.

From the relations

we have { e d : i, i AR o
i

Prom the relaticns

.= P A T

4”V“ﬁ“W°@ﬂl"‘W{
o G v o

end teking (10) into account, we have

s o0 — 0t + | = a

flence it follows that e T, (14)

Equality (14) signifies that after the weve encounter, eech of them reteins its

intensity: Moo= M, M1 = M1; (15)

and the relstive velocities of the shock weves are preserved:

—

¥ D,=D, —uo—-D—HaoI Dy=D —u,.“' © (6

i rr—— e e
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where D, [—17= righ§7 is the velocity of the shock wave traveling to the right
after the encounter, and D, [tﬂz lef§7 is the velocity of the shock wave travel-
ing tc the left after the encounter.

Thus, working fcrmulas for the intersction of colliding waves are of the

form

e vaee o wea
Lt S TR U I
where p and u is the pressure and velocity between the fronts of the divergent
weves., Their velocities are determined by formule (16).
Let us consider the conclusicn of problem of the union cf waves traveling
in the ssme direction, Condition (7.3.14) is satisfied when h = C. Consequently,
for the case r ¥ iscthermal gas vhen the shock wave traveling in the ssme direction

merge, we aslways have configuraticn A.

VIII. Interacticn of Shock Weves With Treveling Waves

If the sheck wave trasveling et a constant velocity with respect to a
constant background enters a traveling wave, its intensity 1s changed. 1In the
case of a polytrcpic gas the entropy behind the wave front becomes varisble,
which complicates snalytic examinstion. Therefore we will confine ourselves to
a consideraticn of barotropic polytropic gases, in paerticulsr, an isothermsl gss.
Let us initislly mske the observaticn thst is vslid for all barotropic poly-
tropic gases., Suppcse that & shock wave is treveling with constant veiocity
with respect to 2 constant background (po’ PO, uo) from left to right, leaving
behind it & constant background (p1, Py u1) associzted with (po,/po, uo) by
Hugonict's conditions. At scme instasnt t, the shock weve enters the region of

1

distrubed mction, which can be either & traveling wave, or a regicn of inter-

ference of treveling waves. Then the moticn we just formed behind the shock
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waveise traveling wave until e new shcck wave is formed in it (Figure 2.%59). < -

a) Shock wave

Figure 2,60
KiYe

a) Shock wave

1. Interaction of & shcck wave with treveling weve in an isothermel gas.
Suppose a constant flow (po, u = 0) sdjoins a rsrefacticn s-wave
o

r=r =u+c In P = constent (1)
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L sheck weve travels st constent veloacity Do with respect to a conctant back-

ground(po, uo = C) from left to right, leavirg behind it the state

D
Mo=T°" (2)

pi i c%i' p! = poMgo

At the instent t = to the zheck wsve enters regicn III cf the treveling weve

{Figure 2.60; where pressure snd velocity incresse in oppouite directicn, i,e.,

In regicn III cf the traveling weve, Hugcniot's ccnditicns ere of the

form {cf Section IV, formla (4.6.13) and (4.6.14})

it g, st =$(M). - 3)
=2, ¢(x)=C(x——%+lﬂ¥’)- (4)
. ¢(x)=é(x——}-?1nx’),

where L is the velocity cf the shcck wave; the quentities with the sign "+"

dencte the quentitiss in the woave I1II sheed cf the shcck wsve front, end these

with the sign "-" -~ the vsriebles behird the front cf the shock wave (regicn
Iv).
. . - R - +
In the cese urder considersticn the s-weve 1 = r,, r = r. (5)

Fror equsticns (3) end (5)it follows that M ig censtsnt ena equel to h%. Thus,

the emplitude ct' the shcek wuve is inveriart end the quentities

S
i ’

B, By gr_pl
P P w—a (6)

retein & constent value at the weve front,
In the regicn IV we have & rzrefscticn (compressicn; s-wave, ir in
regicn I1I the Kiemenn wave is ¢ rerefaction (ccmpression; wave. sactuslly,

since u~ - u' 1s constsnt et wezve froni, then
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or i . ? (1)
A

-

such that the derivatives Ju~/3x and du”/x (in the regicns III and IV) are of
the seme sign. Since in the s-wave with constant invariant r (in zone III) the
Kiemenn relation x - (u - ¢)t = f(u)(8)Bvalid,vwhere f(u) is some function of u

and at the shcck wave the relaticn

%=D=u+cMov=u+-}v—D°..'. (9)

is velid, then by comparing (8) and (9}, we obtein a differential equaticn for
’ mp £ ’ qu

the trajectory of the shock weve:

| e — . - — - - -

In the particular case of a centered rarefaction wave when the following releticn

is veaiid:
I | iy K
L XXy
=g —C,
t—t . (11)

where (x1, tq) is the wave center, we can readily cbtain the integral equation

%.—. = +Do+‘ (12)

Clezrly, & similer enslysis was obtained also for the case of shock wave
treveling from vight to left end encountering a Riemenn r-wzve.

For the cese cf a racefacticn wsve (—-‘ >0, ai

< 0 ), the shock wave pre-
ceeds "under the peak,” by asccelersting; fcr the cese of a compressicn wave

(_3‘% aP
A

0, 5% >0 ; the shock wave travels "irto the peak", slcwing down. This

pattern c¢f interaction cen be reeslized in the problem with twc pistons; first
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the right piston retreats from the gas, forming a rarefacticn wave (r = constant),

then the left piston advances into the ‘gas, forming & shock wave that travels

into the rarefaction wave.

Figure 2.61

KEY:

a) Shock wave

Let us now consider the problem cf the interacticn of a shock wave travel

ing to *he right with a Riemann r-wave (s = S, = constent) (Figure 2,61)., 1In

this case the pressure and velocity shead of the shcck wave increase - in the
same direction (au ap > 0),

In forrula (3) we must put r~ = r = constant, s' = s (13)

Then for the case of rarefaction(compression) wave in region III, we have

‘/6“4- >O (%u"‘

%’i>o (1’5'—<o) (14)

and from relation (3) we find

=95l =




» oo (Er2dp 0
x50 G>or ]

This means that for rarefaction wave III, the reflected wave IV is a

compression wave, for compression III wave IV is a rarefaction wave. In the first

case the intensity M cf the wave is reduced, and the second -- is increased.

ikl
L

Figure 2.62
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KeY:

A) s-wave

The trajectory of a shock wave is found on analogy with the foregoing,
This pattern can be reslized in the problem with one piston: the piston initlally
retreats, forming a rarefaction wave, then edvancing into the gas, forms a com-
pressicn wave (shcck wave).

2. Asymptotes of in.croction cf a shock wave and a centered rarefaction
wave, As a result of interscticn of a shcck wave with & rarefacticn wave III,
after departing from it against the constent background V, the shcck wave acquires
instead of its initial velocity D, the velocit& D,. Clearly, the discontinuity
in velccity Dy - D, ofa shock wave does not depend on the entry point (x1, t1) if
there is smocth flow in the region IV, Suppose the entry point (x1. t1) draws
nearer the center (x_, t ) of the wave.

Then the difference Dy - D, remains unchanged. If X, = X then we crn
speak cof instanteneous interacticn of shock weve with concentrated rarefaction
wave., In this case we have a longitudinal discontinuity characterized by the
states (II, V). We set up the problem: will the velocity D1 of the shock wave
in the problem cf discontinuity decay coincide with velocity D1 after the exiting
cf the shcck wave from the rarefacticn wave II1? Let us first consider the case
of the cei'ered rarefacticn s-wave (Figure 2.62, a).

States II and V ave defined by the formulas

o2 ke K ' "'«:«""\'-S',""'x."‘l’\_“.‘;}f.q':;' s 5 'I
M “2= al ‘*—c (Mo_ E‘) . pz’a.‘le?“-. " K
: Bosrr) M
‘ u,—u,:c[]/_ﬁl'_ !l] e
vV p -
.: o L f5=ul+cln%. '(.co “; ) (2)1
=359 -
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Let us calculate the discontinuity decay (p2, Uy) s (p5, u5) using the
(p, u)-diagrem (Figure 2.63). In this case we have configuratior 4. The quan-

tities u and p are found &s the result of sclving the solution

Ly e T,
M-—.w-—lnp'la . ot
where we put . . m ¢
1P A
M =7.'| @0 .p" (4)

After uncomplicated transformation, from formula {3) we have

e, RS S e v : S, uw
_._'(“" ;fM-.—%-Hn Mf::—-—’(f""?‘ =.M‘,Tﬁ:+u‘xm " (

m e e cm o D

\n
~

From whence

MMy (6)
Thus, after the interacticn cf a shock wave traveling to the right with en s-weve,
it ascguires the same velocity as resulting from instasntaneous interacticn the
shock wave and a concentrsted rarefacticn zone calculated by the discontinuity
decay formulas. This agreemert stems from the fact that reflected weve IV is
a rarefacticn wave ard as t —soo no singularities are ‘nduced in the mcticn
behind the wave front, A similar psttern obtsins in the interaction c¢f a2 shock

wave traveling to the left with e rarefacticn r-wave.

N TN
Vigure 2.63
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Here let us corcider (cf [247) the interscticr cf & shcck weve traveling
tc the right with s r-wave (Figure 2.62,b).

In this case shock wave passing thrcugh regicn III scquires 2 velocity
that is different from that resulting [rom instentenem:s interaction of ¢ shcck
wave with a concentrated rsrefacticn r-wave concidered as the deczy of en arbitrary
disccntinuity. The reasor fcr this is the initiczticn cf the shceck wave traveling
tc the left from compressicn wsve IV and then cf a rarefactiorn weve traveling tc

the right and overteking the shock wave traveling toward the right,

Figure 2,64

The shcck wave appearing, by verying ite velccity, changes the invarisat
r. These changes sre transported slcng the r-charecteristic end, arriving at
the front of the shock wave treveling to the right change the velocity of the
letter by inducing e change in tre inveriant s.

Chenges in invariant s at the right weve elony the s-cherecteristic are
trancperted to the left shcck wave, ceucing s chenge in the inverient r. IFror
interaction cf the reer fronts ct the right end left cshock weves & certrin symp-
tetic regime is gererated. The limiting configurstions end flow coincide with

the configurations erd flow resulting from the decsy cf discontinuity II end V
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(Figure 2.64).

Let us consider front interaction in deteil., We introduce the notstions:

r;, sy are the velues of the invarients in I;

riyq® Sypy 8T the velues cf the inverisnts at the leading front of the
wave in III;

Ty Sy ere the velues of the invarients in V;

T11s Syp =T values cf the invariants in II;

r, s -- velues of the invariants at the rear front of the right wave;

R, 8 -- velues of the inveriants at the rear front of the left wave;

D -- velocity cf the wave treveling to the right;

D -- velccity of the wave traveling tc the left;

M=P=ty, A?i.—_l"'“ >1;
’ Co c q
Uys Cc -- quentities shead of the front c¢f the right wave;
i, C -- gquantities sheed of the front of the left wave;
ri, €., M, -- values cf r, s, M st points Q,;
i’ i 1

Ri’ Si’ Mi -- values of E, S, M =t points Pi.

The fcllowing relatiorns are valid et the frant (QC, Qs Q2, eoe), (F

1 b
P2, P3, PA’ . ot
I 4 M et sy . g e - R Al
S.—”‘SV=¢(M). ’—‘;l"=@(l”)n 8 =S =\p(M), r—ry -_-—vq)‘(’ﬁj)’ . (7}
and correspcndincly R—ry=— 'WM.)- S—s; : — ().
The arcs (Pl; Py)nr.(Pa. PJ. seny (le-p le)' (Q[',._Qg)- (Qa- Qo. ..“.' -
oo Q- Q) correspord to the sections cf the trajectories of the shcck

waves when they sre traveling at constant velocity; the srcs (P Py, (P Py, ...
v Py Py Qe Q) (@ @) -0 Qe Quiyp)7
- 362 -
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correspond to the sectiocns of variable velocity.

The following relations are vglid:

= ':- "4+: =Ry ,‘ (8)
At secticn Q Q1, we have
o
MH e ©

Teking (7), (8), and (2) intc account, we have
Sk My M R<R] (10)
Thus, the left weve is strengthened at the sectiocn P0P1’ end R end S are wezkened,

By virtue of (8), at secticn Q2Q3 we have

'l-*.‘ .‘ -.“I-z. 3 < Mﬂ' 53 < 32- :’ (1 1 )

i.e., at section Q2Q3 the right weve becores wesksr. In the follcwing the pattern
is repeated: a wave traveling to the left is intensified, and that traveling tc
the right is sttenuated; Mi monctonically decreases, ﬂi monotonically increeases.

Let My, Ecc denote the limits Mi corresponding to M, as 1 —w~oo. By
1

virtue of (7) and (8), the following relations are valid:

FRTYTIM, s=sy=b(M). R—ru=—0(M). S—sy==b(M,). (12)
Formules (12) are formulas for discontinuity decay for the states (II, V). Thus,
we approve the coincidence of the ssymptctic regime of interection of r sheck
wave with e rarefecticn wave end & flow derived from the discontinuity decay
(11, V).

Note that for sufficiently large smplitude of the resrefsction weve III,

the shock waeve entering into it can be converted intc 2 rarefecticn wave, end

configuraticn B can be replaced by ccnfigursticn A.
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3. Interacticn cf shock weves with weves treveling in barotropic pcly-
trepic gases. In the cezse of barolropic polytrcpic geses, ilugerict's third
conditicn is replsced by the conditicn of entropy ccnstancy.

dugcnict's cenditions for & sheck wave traveling tc the right beccme

- sy (= By oMy — ) ‘ )
B (1 + )M, 3 - @
:l.

g S PR M i o 3
o » 4# ; . (
(P B\ .
sy o

s —

Let us initizlly consider the impinging cf e sheck wave traveling from left to

right at a rarefsction s-weve. Fror conditicns (1)-(4) we heve

 wr -

e g —

r,’)——ro=co[(l—h)(M -;lz-)-{—v_?_](c—; )]=cFy.  ®
,__;,fn‘—so=09[(l—h)(M —l—)—;;—“’_—l-(z—‘—- N=coty. ©®

S o

07 L
Since F(MC) ir fcrmule (5} is a menctenically increasing functicn cf i, end

since co setisfies the cenditicn

T

6Co y— I 6"0

Lo I Q0 (r=ry=cons) 7
and .
oM
’ UARS %o | F(My)cy 5> =0,
then
oM
6x° >0 8
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i.e., the intensity of ins shock weve becomes grester.

Clesrly, behind the front cf the shock wave we have a Riemann s-weve
(r= ro). e establish the sign of du@dx or, which amcunts to the same thing,
the sign cf 3s/x behind the sheck wave frent.

From relstions (1), (5), and (7) we have

Cince the epproximeticn of the barotrcpic geses B wlid fcx'Ho clecse to 1, the
expression in the brackets is close to 1. Hence we hesve 3u1/§x>0. (10)
Thus, where IV is a rarefacticn weve (Figure 2.62, a).

Let us now consider the impinging of a shock wave sgainst the rsrefaction
r-wave, Then in (5} and (6) ry = constent, 8= constart. From (5) we have

mrl_ro+c0F(Mo)—so+co[ — +F(M°)] (11)

Since 900/?x >C, then from (11) there follows DMO/ax = 108 (12)
i.e., the amplitude of the shock wave becomes wezker. Let us determine the
sigh el g;' = E/ -g—;—' behind the frort cof the shock wave.

for sufficiently small \MO - ‘ll, G(MO) is a mcnctonically increasing
functicn of MO. From (11} it follcws that 351/éx £0, i.e., the reflected weve
IV is a compressicn wave.

Thus, we have seen thet in the basrotrcpic approximetion, i.e., for suffi-
ciently srall ‘Mo - 1], the qualitetive pattern of intersction is the same as

tfor an isothermal ges.




Secticn IX. Analytic Soluticns of One-Dimensicnsl Ges Dynemics
1. General integrel of an isentropic cne-dimensicnal plsne flow., 4 one-
g dimensicnal plsne isentropic flow is described, as we kncw, by equeticns in the

irvarisnts (cf section II, subsecticn 7)

; w+['+’ +K(r~S)]§§—0.

+[r+s K(r—s)]'&:o' m

where
r=‘-_iu+I cdlnp, s=u— I cdlap, )

and x is an HFulerisn coordinate.

The functicn K(r - s) = ¢ is asscciated with tho equation of stite

p=p(S. O=F@ . @
by the relaticn 3 . e
, K —9=¢["¢—9), o spue @)
+here
'—r;—. e~ dp

By the hedograph trernslormzticn, cystem (1) recuces to the linesr:

ax i —_—
_3;_[ £ ko s)]d 0
Let us rewrite system (A, in the form
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F N
Z4 0 —r_s 1
: 7 [x— (L2 +K)e]=—f(z—K).
1 7
* L= (LK) e]=—(1—x) 7}
] From squeticn (7, it fcllews thet the expressicn
S rts K)t dr+[x—(——2——r+s —K)t]ds (8)
: 4 _[x_( 2 + J : /
1 is the exsct differential of scme function V¥, which we will cegll the pctertiel
functicn. From the expressicn fer the exact differcntial we have
)‘v" OW
4 x-—('“;s-FK)'==-arv
x_(r-;s_K)t= 3
‘ Fror equstions (S}, x znd { cen be expressed in terms of Wr, WG:
ow oW r4s__ )OW_(r—I—s. )GW
T __( Ko K (10)
=TT Ge—s * *T K (r—s) .
By virtue of relaticr (7, ena (10), * setisfies the third-order equesticn
b (__I__KI)
aw _ \2 ("_W____._"W). (11;
ords 2K (r—s) or as
g Thus, thz pctential furciicr satisties the speciel usrbeux equrticn (¢ Chup-
23]
-;: ter Cne, Lcctice All, cubsecticn 2




oy 7

w , 0w
W—f(xl+x2)(7+m7)=e, 12)
where we put 1
K-z
xl=f, x2=—s' f=—m-—. (13)

It is nct dirfficult tc see that equation (12)

W=(pv.cp=ce-f“6”e. 9=x,+x2. (19)
car be reduces to bhe ferw

02

o =FE+r)e. F=p—7. (15)

» by the substituticn of

liow let us consider thcse equations cf steie for which the total integrel

end the riemrron Cuncticn are represented In clcsed Iorin.

trepie gacses feor -vhiceh p is an expcnertizl function of P

_ 16
p=a2pv' Y —c-v—>l- ( )
In this csse
-1
[(('-_\(,')=(,'=‘v4 (I‘—S)- (17)

Fror whence
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2 !“- rl 'l S & Lt ?ﬂ‘a + = : . ‘. ‘ -41
! i hadd JPPRSTL E ) "’2 Y"'B* FZ R 7 5 Pa
L ,A“_.__mgl «L-.,_‘if-‘:m_. S WA : i e e (18)

The following property of the reducticn is este blished by Darboux and

enabling us to advence from cne m value to ancther is valid for equation (12)

with £ = - 7—’{‘—;—;
If W is the solution of equation (12) when f = - xl”f 77 » then
omat, (b a) (19
is the sclution of equaticn (12) when
§f=. _1%'?” m=mtl. | (20)
When Y= +3, m= 0 and W setisfies the equation
ot (21)
which has the femiliar general integral (J'alembert's integrel;
(22)

W::F(-:VS—-{-O(.VQ. }

The following ¥ velues correspcnd to 1nt9gral positive velues of m:

= H{’- (23)

whera m = 1, = 5/3 (ronoatomic ges), when m = 2, V= 7/5 (dietomic ges), and

reduction,

so on, By virtue cf the property of

N

7 values is the general integral
- 369 =
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¥

§ V(x,. x,)-L‘lF(xa l-O(xg)b (24)
; L-m....._ A e -

¢ where the operator L is given by equality (19).

Let us show that the expressicn (24) for the general integral cen be trans-

formed to become

g Py S sy
ACEE Sy +x,>+ T L

(25)

Let us assume in the follcwing that F'(x1) = (x1), G'(xz) = Y(x,). (26)
Representation (25) cbviously follows from (24) when m= 1, By induction, let

us prove the equivalence of (24) and (25) for any m. Suppcse

= e - . RS — —— -

L.F‘xl)g-___rf L&’ ; 1) R Pt !'.' e a. &TJ
0"

Let us show that

P () o
L F(xx) ?—mx—")ﬁr . (20)

Using the assumpticn (27), we have

il — L™ =719 o) - = .h. v
L | P s = LUTP () =L 'o'xF"_'L“'(x,-i-'x,)-} S

1" o) m_ b Q)

x,+x, dx" “* +x,) x,+x, dx"' RS +x )’ﬁ (29)

After this itis not difficult tc see that equelity (28) is equivalent to the follow-

ing:
(OH)™ = 0H™ 4 mH""", (30)
where we assumg, thet for fixed X35
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Thus, we have shown that the general integral for equation (12) where f =

m

- m is of the form

= 'n-’“ T rm{“" .l%‘wgﬁt &‘1 ,\

——-" X S y;
ﬂ (‘l+ x,)d: Wl LY I‘z‘l' %

("+;5i

O A R O S LR I S

jic (32)
If we take Xy X, to be complex numbers, and W, ¢ , ¥ to be analytic functions
of their variables, then by employing the familiar Cauchy's representation for

derivatives of amalytic functions, formula (32) can be represented as (cf /19/)

N N jpgesenw. (T

W (s, 2= DR 'o(x.) +n;-‘ wx.)

mam om ““dl “’-!m
§ (l+xz)“'(t—x)" (x +t)" t-—x:)“

(33)

. i i - ]

In formula (33) D, = cl,éxi; the contour C, is taker in the plane of the complex
variable X135 X, is considered as a complex parameter; the contour 02 is taken in
the x, plene; Xy is the perameter.

Formula (33) is meaningful zlsu for fractional m, if in it we replace
(m-1)1 by 47 (m); then cperators DT -1 D'""1 take on the significence . f frac-
tional derivatives first introduced by Riemann /20/ and T:.aville /21/.

Let us now proceed to the problem of defining the Riemann function for

m v
X+ xc! '

equation (12) when f =~

We will employ equation (15), which at this f value becomes

e 8N ey =

N . -— d '
Qf.’van:-'g?v' b=xi+x, s=mm—1. (34)
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For the Riemenn function R( 51, Ez; X x2) of equaticn (34), the following

representation is valid (cf Chapter One, Secticn XIII, Subsection 4):

' RGy b X x;;'_'(l —YFmom 1D @5

where - _ (=3 (x4t :
- emwety o
and

2L S e 2

’(F(d ?.‘"y. x)=l+‘—i'%-x+ ‘e B

T a@tY .. @k R=DBEFD L BER—D) L,
B S LT 2 5 PO (. I

is the familiar Gauss hypergeométric series.,
Ncte that for integrel m series (37) becomes a pelyncmial., We can show
that for integrel m equaticn {2,) admits cf an m-th order differential relaticn-
ship end, conversely, if any equstion cf the form (15) edmits of an m-th crder
differentiel relaticnship, then F(x; + x2) satisfies the equetion among whose
mom - 1)

sclutions we have the functicn -
S 5 (x, + Xx,)%

en exemple, Let us consider equeticn (1%5) sdmitting ¢f a sccond-crder relation~

. Let clarify this asserticn with

ship. Then, as was shown in Chapter One, Secticn XII, F(x1 = x2) satisfies the
equation

3.mh‘;'. (38)
which in cur case becomes FF" - F'2 = F3, (32)

where the stroce denctes a derivative with respcct to §= X, 1 X,
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The functicn ,
g m(m—1)

FO=—p—
& ' .
setisfies equaticn (39) when w = 2, The genersl intezral of equeticn (28) is cf

the form

e

BEY WA T S
. 1 VO FF VT, c,>0.

04 C,== Y¢C, VC,F+3F+VC, ' (4(:;)
= 2 C.t2F C.<0
e i)/ S <o

Using the arbitrary constants C,, Co’ using functicn (40) we cen approximate func-
tions F(8) and obtain good spproximations. Thus, G. 4. Dombrovskiy cbtaired
spproximations cf Dsrboux's equaticn (ef /22/),

In the next subsecticn we shcw how a knowledge cf the general integral of
the equeticn enebles us to sclve severel problems in ges dynemics that leed to
the interpretsticn cf simple waves,

2. Problems of the interacticrn cf elementery scluticrs. UYe consider two
problke ms:

+) the interacticn cf two Riemsnr weves; and

b) the incidence cf e Riemsnr wave againct the interface of two medie.

Suppese et instent t = t |, & centered r-wsve begins to propagete from the

foXd
point x = xc, and et the instant t = t,a centered s-wgve from the point x = Xq.

We crn essume thet the certered weves result {rom the deperture of & piston frem

e gas with constant velccity (Figure 2,6%e),
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Figure 2.6%5a

£iYe

1) Line of left piston 2) Line of right piston

> T
- R

rer \\\‘\\\\ ' |
- q T

5=5 S=5 5 |

i - a

Figure 2,65b

In zone I-V the solutien is of the form:

wre e »~, . 'l
l':v'r:r,. s=5, h<Ily , (m-‘
. r=ry s=5. &§>% 2 (2 !
HI: u=uy=0, c=¢y I=rg=z"T¢p S=8h=—7_7% @ -

L odx _x—x _x%th . 4
v = = = T @
, dx __ x—Xx, _x-—h= 5)
R AT ol Py pale g s+ Mo ( B

- 374 -




Rl oo ]

, 2 2cme Vi, whics Is the zone cf izmlerfarmpce a0l is megred in the gued
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Let ue scive this problse for Y= 5,73, The geperzl irtegrsl =i egueticn |7, e

cre: L - o
3curdery copditicns {8, leed ir the relat

[f —9;:‘533"&%“_@:; 3 (a5 + prg. B

LR/ g =@ +pe o

r—

~ ——

-~ - & < - Seer = - - < - - % - -
Lot us suggest for sizplicity thet T = {, i.=., iZe retres:

vy
ot
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'ty
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tn
I
R
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— O O+ EOF[rg=k (r.-:)* .
(r—:of(ﬂ’ [ —ge)=—hr—s (an
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(11

B
£,

(12)

which we studied ir Chepier Cre, Secticr Zil.

Ncte thet the trece cof p and g es impendirg veriebles signifies thet p
is rot &8 fumciicn cf g or, which amcunts ic the szm
dyramic {lcw persmeters consiiiute z tuo—dizmersicnel merifcld,

The excepticrnal case whem p = p(S) will e trezted bty us leter.

(12} vith & ome-functicnel erbitrery cncice satisiying the gdditicnel relsticr
&4

DI St oo d e et st s N R CATE S |
a;

2. 9. & L=¢0. ¢. i-u.t)masn (13

Eelsticn (13) is the interzedis

c*
3
[
=]
[

&
d
’.-l
b,

the Mcnge-irpere equaticn (12).
Cleerly, egusticns (72) erd (13 are competitle crly for these specific
functicr £(p, @). & ccmplete eralysis 57 cozpetibility made by Mertin /2

Ludford /26/, erd indeperdently bty Yu, S. Zev'yelovw 27/ shcwed thei irtermediate

integrsl exists for the follewing fumeticrs f(p, ¢,:

r £ (. q>m TR 0
pFe}
1. 4)= ("*‘Gz)’ V" ( —:: (15

§=of—outg(ap+am). (16)

ir. the first cese

——— . -

In ths seccnd cese
e=t—r0Tod-sq+erg(EEe).  an

- 381 -
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Wy =y

oy

In beth ceses gi{6) is associeted with F(6) by the releticr

ey ¢ ————— . .— - . o

P e |

Let vs consider the cese of the pclytrepic gas when

If entropy S is censtent end £ is & functicaz solely of p, ther we cen use the

represertaticn (14) when o , = 0. Corpering (74) end (20) we find:

!_&a“?l: "’-’.;':‘:\ 3 tu rAv’T— __}_c. (2‘1) :

Then we have

f_:.

")
<U
[1]
I3
&
W
[l
]
i

Noé 12t us consicder the cese cf vzrieble entrcpy. We will shcw thet
emcng the flcws with cornstest Riemenn generelized inverient there ere flows
edjcining the quiescent regicn scress the sheck weve, Letl us use represente-

tice (i5), {17) for thiz purpcse. We will essume thet the shcck wave trevels

with respect to & zero tackgrcund (/90 - i, u. = C, erd is strerg, i.e., fcr-

mules (4.7.1) - (4.7.4) sre velid for guertities Tenhind the weve froni:
2 2 1] ¥ 1
P=yrr =y O
I & P & ol i .
A=3"Th= 3= @3
2
=——2D,
I=3F
whers -
—dx _ 47
b=Zr=1%" @4
- - —_—




Usirg (18) end (19}, for i(S) end g(R) we cbtein.the expressions

V“ kil ;-— < "--7 T -;_ ,:‘T Lo g
A%s\-m'%u «"«.-' Y (*)
-___f : ;2\& v S (P By
‘=“-j CIL) [ 5 :
¢ Lot S TR -

<here ¢ is scme csnstant,.£.|, ,,42 are gssuzed ecuel to zero. Suppose thet st
the instents t = O, & shcck weve begins Lo be propagasted in the quiescent gas
treveling eccording tc the exponential lew q= et . (27)

Let as find the incdex d io which ccrresponds the constent value ¢f the function
¢ frce (17) st the wave front. Then ¢ will be identicslly ccnstant behird

the weve frort and will alsc have & constent generelized Riemanr invariant.

Frez (17, teken (3) inte ecccunt, we find

":;"?‘*;ézdmx;dg(ﬁ) Vel g

3

whence it follews thet ),. s & S wEiF
qan+m.¢de( £)=0. ’ @9 i

= . =Rl

3y virtue of assumpticn (27, releticn (29) at the rear front cf the wave,

efter dividing by dt, tecores

T w- - T e i
(T“(“ 1)C’+—:’—_—-C’a’) fla-2 +Bt n &\»‘3'0)
nere Z i S s \Qo L ’ \' i ._,- .,: -.,
- e "3"—"( 2 i&‘c' I R
o Sy BEge T-{-T) e @7
AT ttalls . . —_— ——— -
Hernce it follews that . . -
v 2 ) R
ad= 3?—*—1 . Aw 3 g . - 5 (3?)
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Gererzlizei Riemsrrn weves cen be considered &s scluticrs with differenticl rels-
tionship (Chepter Cne, Secticn XII)

$ (g, t, ¥, #,5 u, p, Elqi) = €, (33}
where q01, 492 gre the pctentiels of system {1).

t was indiceted, the definiticrn cof the functicr (ﬁ>reéuces to inte-
greticrn of = .iresr hcEcgenecus systenm. Since hers the irdeperndent veriebles
erve g ernd t, the differentiel relaticn (33) cf equetion (1) elso hes the
cese excluded from ccnsideretiorn oy Mertin, where ¢ = p(S). TIhis cese
trezted in the rext subsecticn.

4. Zqusticn of hydrodynemic surfece. For the cas- of idegl ges equa-

ticns (2.3.1) wili beccre

'a"ﬁ"" t"";\)‘z" R
u , dp -« 4 B g, IX=0, 1y
T =0 WA= & ‘
L ox=XELL g lav 2
r= s L7 3 ) 2
We obtein sanegueticn in the hodegraph space u, p, ¢ for system (1. Zmpley

ing the elgorithr given in Sectiorn XII of Chepter Cre for the surface
¢ =¢(p, uj, (3)

we arrive at the follcwing equastion:

N, N,
BTt W 3?; = (4)
.%-ﬁ—wp'*%ﬂ- i

where 4 1is an andetermined cofactor.

Conditicns for the integravility <f equaticns {4) reduce to equsticns

for U :

- 384 =




il b Da kb vdlha Wt i o

IST—————oC R WTEP

S

) .- .

00 dlap a9 dlmx _ a(”-x%)__q, ;
N TEm T T T L = '!
09 dlng ¢ dhnp —0. -
. 7 om o dp ’

- . B ~ F =

(5)

Sclvirg (5 relstive to %’—":—5 and i‘g_"_/i , we fird

olnp _ O Olng __ o9 6

x —ouw ¥ op dp ®
here " i o912
o s 2 -x( 9%

o=7. A=(g)—er(3) i

rirelly, the ccpditices fer the

[

niegrability c¢f equeticns (6) yield the follcw-
irg third-créer equaticn:

Y
0u dp 0
o A N e (8)
1 170 3
Irtegrating equaticn (8), we errive at the second-crder equaticn
I .
)
5(¢P x"o'u_) 0%
ot
Ly} (¢)
b (o) e (3

where £(y ) is an erbitrery functicn ¢© ?.

It is net difficult to see thet equiticn (2) sdmits of the fellewing
integrals:

' g(P):

u = h(y),

(1¢)
(17)

where g end h &re artitrsry functicns cf their erguments. The scluticng corres-

pending to them are of the form
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(a=Cl$C. " p=—Cqa+Cp Y=L(P (12
[3nmav=cetc,
1 _plox=—Ct4C, u=h(¥)

i T__ %

(13)

Relation (10) gives at once the excepticrnal case when transformation to the
Monge-Arpere equaticn is impcssible.

Solutions cf the form (12), (13) will cbtain by X. P. Steryukcvich /28/.
If Y=y(u, p, is the solution cf equaticn (¢), the sclution cf the initial
equation ic obtained by successive integretion cf the wholly integreble systems
(6) end (4.

The formulas restoring the sclution are of the form

T [ de pm 0Py, 0
g=[n(§ap+a)=[uao= [Fonaw.  as)
=t [Fof(vo=)ap+ L an] a0

Corresponding tc the giren surface ¢(, p, u) = 0, by virtue of formules (14)-
(16), is the scluticn of equatiors (1), uniquely with en sccuracy up to the
constents. The uniqueness is viclated in the event o the function ¢ = -ons-
tent, to it correspcnds a feﬁily of sclutions dependent on twc arbtitrery func-
tions of the seme argursnt,

5. Sclution with ertitrary ccnstent choice of symmetricel cne-dimensionel
equetions in gas dynemics. We will use gereral equeticrs cf cne-dimensionel

flows - 386 -




(1)

where the paremeter v is equsl to O in the plene, 1 in the cylirdrical, and

2 in the spherical cases.

Below we will assume that the equstion of state is of the form

AY

= s2(s)p" (2)

Ir this case system (1) can be trarsformed to become

Call st o

(3)

Vinmara sy

In the plene case (V = 0} ot cystem (1), (3) we Lave coefficients dependent
only on unkncwn functions, and we can edmit similitude ernd shear trens-
formetions with respect to the independent variables x end t. In the cylindricel
end sphericel casee, only similitude treznsformation with respect to x, t is
possible. Converting to icgarithmic sceles with respect to x, t and to the

dimensionless velocity
?‘;_llnl. }:slnx n::—f-U.' c—-%c':

~
~

(4)

system (1) can be written in the form*)

vw

.a‘_+u-&.+c2§r+07+u' ®
i [P 'ﬁ‘-l—U E7Y +§f (V+$JU=0. “ (6)
: " g g - U=0 ‘
B SN W L F+.....j':.._ = (?) B

“/%) on following page/
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tion XII, it hes simpls wevas

- > T e -
U=U@® s=¢8. s=t1@ -
8==8+a1 +ao1 -
- . .
Since the cosfficients of cysiex (5,-{7. dc nct depend e &, ¢, ihe sclulicns
cf the fcrm
i ) y—1
UsU®). e¢=¢@+k $+=¢@— Is, (=

ere poss®ble, where jls & erbitrery conslert.

)
(2]
o}
«
®
ﬁ
[
[}
4
3
W
L3
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4
[
[
tr
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i
&
o
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®
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m
§ote
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i
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'y
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14
tn
f
ot
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-

multiplier, sc thet crnly their rastio 51/32 = -z is the essentizl pesrenmeter,

%) Iquations of gas dynamics were considerec in this ferz by K. P. Stanyu-
kevien /28/.

[**) on follewirg pagey - 386 -
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Given the condition

(17)

equation (15) admits of the integral (energy integral)
A - k (E B) = constant. (18)

When the energy integral is preéent, system (12) reduces to a single equation,

We give a brief review of certain problems leading to self-modelihg solu-
tions. Fundamentally these solutions describe flows adjoining the quiescént
regicn through the shock wave or through a weak discontinuity. Here the charac-
teristic circumstance is the zero-equality of the pressure in the quiescent
region. Then the shock wave can be considered as infinitely strcng, and Hugo-
riot's conditiocns acquires a homogenecus form, which then enables us to find

the soluticn in the self-modeling form.

As we know (cf Secticn IV, subsection 7), Hugonict's conditicns at a

strong shock weve are of the form

LT Lz
1~*5;""y—-l'A —y-{-i ‘ p"‘y-{-l‘ o (19)

Sa . . R . -

where D = dx/dt is the shock wave velocity.

We will assume that the trajectory cf the shock wave is the E-line °

(i.e., 2 line whose equation is E = constant). Then from (11) follows

¥ __a
D= = T

nl)‘

}-} - (20)

Hugonict's conditions (19) for dimensionless quantities U, R, P become

u(€ —3:-'?}. R(§)=—‘tl-t" P(E’“Tr‘;!‘-‘-"‘ 191)

Hence it follows that 1 = O, After these preliminary remerks, let us consider

several self-modeling solutions.
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1. Convergent shock wave, Thi;iproblam was posed aﬁdA;;ived by Guderley
/30/ and independently by K. P. Stanyukobich /28/ for the case Y = 7/5 and
fully detailed for ell V by a group. of Soviet msthematicians (cf review 1317).
The problem can be set up thusly. In a quiescent gas wi@h parameters po,;°o,
uO = 0, a shock wave 1s in motion, aécelerating with respect to the directicn
toward the center x = 0. At the instant t = O it arriwswith infinite velocity
at the amter,which is a singular point of the system of equations (1). The
enelytic character of the sdktim's singularity at the point x = 0, t = 0 is
highly complex. It is assumed that the solution in the neighborhood of the

center is represented by arelytic functions of the fractional-exponential argu-
ment & = on81t32 and therefore is self-medeling in neture. For convenience

in formulating the boundary conditions, we put in (11)

a,=1, 8, = -k (22)
Since the shcck wave is infinitely strong, then ccnditions (19) and (20) are

valid. We select go so that at the shock wave £= 1. Then conditions (21)

become

N b i e
vO=girE RO=E
.o o : t .

The constent C; in integral (i3) is defined from conditicns (23). Using inte-

grel (13) end introducing the new variables (cf /31/)

I - IR T
y=1—#0. =13 =F0—W0)" (24)

T ea

system (12) cen be reduced to twc equations:

dy __'q’('y; 3).'--

dz !_ ( ,l) e
b) BE=y=y

3
H
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whers

ORI -

Pl =@ —Pz—=@n—D+
tor v — 3+(k-l;(v ly— Y(k--l)

o (26)
J&&(y, )=(l—y)(y 3:)—-(1-.\)(—8-{-1 -9) e

On conditions (23) we find

D T ot ST RO 