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ANNOTATION 

Systemy Kvazilineynykh Uravneniy. I Ikh Prilozheniya K Gazovoy Hianmike 
(Systems of Quasilinear Equations and Their Applications to Gas Dynamics), 
Boris Laonidovich Rozhdestvenskiy and Nikolay Nikolayevich Yanenko, 1968, Main 
Editorial Department of Physics-Mathematics Literature of the Nauka Publishing 
House. 

Mathematical methods of investigating one-dimensional problems in gas 
dynamics are presented. Systems of quasilinear equations and principal prob- 
lems for hyperbolic    systems are studied in detail. Equati<?p_s of gas dy- 
namics are derived and investigated; analytic solutions of gas dynamics are 
presented; discontinuous flows containing shock waves are studied. 

The fundamentals of the theory of difference schemes are set forth and 
a variety of numerical solution methods for gas dynamics problems employed in 
practical calculations are set forth. 

A theory of the generalized solution is outlined for systems of quasi- 
linecr equations of the hyperbolic type. 

The monograph contains the results of recent work on these problem areas. 

Bibliography» 185 entries. Figures: 181. Tables» 1. 

- 1 - 



INTRODUCTION 

Theoretical physics employs a variety of models in describing the behav- 
ior of a continuous medium (gasj liquid, or solid); in most cases the models 
lead to nonline&r differential equations with partial derivatives. This is 
not fortuitous. Actually, the interaction of two gas molecules depends on their 
velocities. For this reason, the coefficients of differential equations of a 
continuous medium describing the averaged pattern of molecular interaction de- 
pend not on the time and point in space, out solely on the state of the medium 
at the given point, i.e., the equavions are nonlinear. 

The mechanics of a continuous medium is a principal, but not the only 
field of practical use of systems of nonlinear differential equations in partial 
derivatives. In describing most real physical processes, we arrive at nonlinear 
equations, and only substantial additional assumptions on the smallness of the 
amplitudes of the field waves or the amplitudes of fluctuations in the medium, 
amplitudes of deviations from the equilibrium state, and so on lead to nonlinear 
equations, which are studied more profoundly. Chapter Four of this book pre- 
sents examples of problems in physics, chemistry, and mathematics that are asso- 
ciated with nonlinear equations. 

Study of general properties of nonlinear equations and icothods of their 
solution is a fast-growing field of modern mathematics. 

Given the wealth of interesting facts and the diversity of original and 
ingenious methods of investigation and solution of nonlineox equations, this 
field of mathematics has until now not had as solid theoretical foundation 
as the theory of linear equations. This is because, first of all, the prin- 
ciple of superpositioning of solutions is not applicable to nonlinear differ- 
ential equations, so that the set of solutions is not linear. 

Among hyperbolic systems of nonlinear equations with partial derivatives, 
the simplest are the systems of quasilinear equations. Systems with two inde- 
pendent variables have been most thoroughly studied; these systems describe, in 
particular, the nonsteady one-dimensional and supersonic two-dimensional steady 
flows of compressive gases and liquids. But even for these systems, at present 
time there is not a complete enough theory; there are no general theorems of 
tho existence and uniqueness of solutions to problems with initial data (Cauchy's 
problem). 
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This situation is explained by the faot that the solution to Cauchy's 
problem <as a whole fox hyperbolic systems of nonlinear equations is associated 
with the marked complexity both of the formulation of the problem as well as 
methods cf solving it. And almost all the principal difficulties arising hers 
appear already for the situation of two independent variables, and we can expect 
that solutions to multidimensional  equations in gas dynamics locally have 
generally the same features as solutions to one-dimensional equations. 

I 
So the study of hyperbolic systems of nonlinear equations with two inde- 

pendent variables represents a wholly necessary and thus far still unsurmounted 
stage in the exploration of more general nonlinear equations. 

i 

From these considerations, the authors decided to limit themselves gen- 
erally to the theory of hyperbolic sjstems with two independent variables and 
to study one-dimensional nonsteady flows of compressible liquids and gases. 
Therefore, as a rule, we will consider one of the independent variables to be 
time and denote it by the letter t. 

Let us clarify at this point the present status of the problem of the 
solvability of Cauchy*s problem for hyperbolic systems of quasilinear equations 
and the difficulties arising in attempts to construct the solution to this problem 
overall.  The fundamental method in solving hyperbolic systems of quasilinear 
equations is the method of characteristics, presented in detail in Chapter one. 
It is used to prove the existence, uniqueness, and continuous dependence on 
initial data of the classical solution to Cauchy's problem. These results are 
highly satisfactory in the sense that the classical solution is constructed 
throughout the domain of variables e and x, where they exist. We note that 
the domain of existence of the classical solution, generally speaking, is 
bounded,since solutions to nonlinear equations, in contrast to linear equations, 
exhibit the property of unbounded increase in the value of the derivatives, which 
is called the gradient catastrophe. 

The significance of this property is that even at as smooth initial 
values as desired, the first derivatives of the solution remain bounded, gen- 
erally speaking, only within a finite time interval. At s^me t0 > 0, they 
become unbounded,and when t > t0 no classical solution to the formulated 
Cuachy's problem exists any longer. 

From the viewpoint of gas dynamics this corresponds to the formation of 
a shock wave (a compression jump) from a compression wave. Thus, if we wish to 
define the solution to Cauchy's problem for any t ?0, i.e., overall (and this 
is precisely how the problem stands, for example, in gas dynamics), then ve 
must first of all give a definition of the solution, since tne solution to a 
system of equations in the usual sense — a classical solution, does not exist 
when t > tof as we stated above. 

In most physical problems and, in particular, in gas dynamics the deter- 
mination of the generalized solution is dictated by the way in which the problem 
is formulated. Thus, for example, in gas dynamics tht -r«»ic physical laws from 
which we derive all consequences are the laws of conservation, of mass, momentuji, 
and energy. These laws of conservation are in the nature of integral relations, 
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and they are applicable not only to smooth (differential.») flows. Bather, 
differential equations of gas dynamics are derived from these laws of conserva- 
tion on the assumption of the smoothness of flow. 

Thus, we define the generalized solution of gas dynamics equations as 
a flow (possibly even with discontinuous parameters) satisfying the main laws 
of conservation« of mass, of momentum, and of energy. To this we add the 
requirement of thermodynamics on the increase i<: the entropy of each system 
closed in the thermal sense. The view is widely held, thus far not refuted by 
a single example, that a determinate solution exists, is unique, and satisfies 
all rational requirements. 

Here a most essential requirement is that of thermodynamics dealing with 
the rise in entropy, which shows the possible direction of the process of rapid 
change in the gas state. This requirement does not figure in an examination of 
classical solutions to equations in gas dynamics for a gas deprived of viscosity 
and thermal conductivity, since in smooth flows the entropy of th<~ system is 
retained by virtue of the same fundamental laws of conservation. 

Another approach to generalized(discontinuous) flows of an ideal gas 
deprived of viscosity and thermal conductivity is also well known in gas dynam- 
ics. Since gas without dissipation is an idealization of gas subject to 
diesipative processes, naturally we can consider its discontinuous flow as the 
"limiting flow" of a viscous thermally conductive gas as the coefficients of 
viscosity and thermal conductivity tend to zero. Here it is assumed that 
viscous flows are always described by classical solutions of differential equa- 
tions and that the limit as the dissipative coefficients approach zero does 
exist and is unique in a rational sense. And actually, thus far this assumption 
has not been overthrown by a single example, though exact proofs have been 
obtained thus far only for the very particular case of a stationary shock wave. 

Here we must bear in mind that in many cases real gases exhibit suffi- 
ciently small dissipation so that they can be "approximated" by nondissipative 
gases. However, the occurrence of dissipative processes, even though limited 
in extent, leads to an increment in the system's entropy, Thus, the require- 
ment of entropy increase in the discontinuous flow of an ideal gas is associated 
with the representation of this flow as the "limiting" flow of a viscous 
thermally conductive gas. 

Let us note that from the mathematical point of view the requirement of 
an entropy increase is a requirement insuring the uniqueness of the generalized 
solution and its stability with respect to perturbations. 

Though this formulation of the problem of the flow of compressible gases 
was known more than a century ago and even Riemann investigated the simplest 
discontinuous flows, there has been relatively limited progress in investigating 
general properties of generalized solutions of equations in gas dynamics. Thus, 
and we have already mentioned this earlier, up till now there have been no 
satisfactory existence and uniqueness theorems. 
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On the other hand, the demands of practice stemming from the urgent 
need for practical investigation of discontinuous flows, and also the new 
computational possibilities associated with the emergence of high speed comput- 
ers has led to a situation in which, in spite of our inadequate information 
about the general properties of discontinuous flows, different numerical algo- 
rithms have been devised and employed for satisfactory calculation of flows 
containing shock waves. It must be noted that most of the hypotheses, about 
which we referred to earlier, in developing the numerical algorithms have been 
regarded as reliable. 

Since the direct and rigorous sustantiation of various assumptions on 
generalized solutions in gas dynamics is a difficult problem, the natural desire 
arose to teat our views even though with model equations and systems of equa- 
tions which to some extent simulate equations of gas dynamics. 

A consequence of this desire was the emergence in recent decades of the 
so-called theory of generalized solutions of systems of quasilinear equations, 
or, more concisely, the theory of systems of quasilinear equations (this is 
usually what is referred to as systems of hyperboliu type). This theory setBout 
to introduce on analogy with gas dynamics the concept of the generalized solu- 
tion as an "arbitrary" system of quasilinear equations in partial derivatives 
of the hyperbolic type, to demonstrate its existence, uniqueness, and continuous 
dependence on initial problem data, and to study the properties of these Solutions. 
At least formally this theory is more general than one-dimensional gas dynamics 
and includes the latter as a particular case. 

The theory has attracted any mathematicians and several results of Soviet 
and foreign scientists have aroused  expectations of its further development. 

Beginning with this view of the advancement of the theory of generalized 
(discontinuous) solutions of systems of quasilinear equations, the authors 
confine themselves to the case of only two independent variables and cover 
the following fundamental problem areas in the book: 

1. Methods of constructing classical solutions to systems of quasilinear 
equations; proofs of existence and uniqueness theorems, and the continuous 
functions of classical solutions; conditions of forming discontinuities in solu- 
tions of arbitrary systems of quasilinear equations. These problem areas are 
taken up in Chapter one of the book. Here are presented results obtained for 
classical solutions of systems of quasilinear equations in   recent years. 

2. Classical and generalized solutions to equations of gas dynamics for 
one-dimensional nonsteady flows. This problem is taken up in chapter two of 
the book. The authors deem it advisable to examine in detail several problems 
in gas dynamics discussed in many reference workd. Presented are the fundamentals 
of thermodynamics, the derivation of equations of gas dynamics for different 
symmetries of one-dimensional flow, Hugoniot's conditions, general properties of 
flows, the theory of the shock transition, and self-modeling and analytic solu- 
tions of gas dynamics. Including these traditional problem areas of gas dynamics 
in the book made it possible to deal with, from a unified point of view, several 
mathematical problems that arise in gas dynamics; moreover, most of the numerical 
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methods in gas dynam5.cs are actually based on this material. Covered in 
greater detail than elsewhere is the fundamental problem of the theory of dis- 
continuous solutions as equations of gas dynamics, as well as general systems 
of quasilinear solutions of the hyperbolic type — problem of the collapse of 
an arbitrary discontinuity, and also the interaction of shock waves with each 
other, with traveling waves, and with the contact boundary. 

5. Chapter ?hree in the book deals with difference methods of solving gas 
dynamics equations. These methods have now become the principal means of inves- 
tigating problems in gas dynamics, therefore progress in studying discontinuous 
flows is closely linked with difference methods. 

In this book we were obligated to present the fundamental concepts of 
the theory of difference methods. Unfortunately, most statements in this theory 
apply only to the case of linear equations. 

The present status of the validation of difference methods used in the 
numerical solution of problems in gas dynamics, briefly stated, amounts to the 
following. Classical solutions (smooth flows) can be calculated with practically 
arbitrary accuracy. The main methods — the numerical method of characteristics 
— is adequately substantiated for classical solutions. At the same time, 
numerical methods used in calculating discontinuous flows strictly speaking have 
not been substantiated and in most cases a number of hypotheses on solution 
behavior, on the approximation of some solutions by others, and so on are used. 
Most often simply equations for which the behavior of the discontinuous solution 
is well known are employed tu verify any particular assumptions. It is not 
fortuitous that in this chapter in most cases each scheme is checked with one 
of the simplest quasilinear equations whose solution can be explicitly written» 

This principle in substantiating difference methods shows that progress 
in this field is closely bound up with progress in investigating general proper- 
ties of the generalized solutions of systems of quasilinear equations and, in 
particular, solutions of gas dynamics equations. On the other hand, difference 
methods yield experimental material and most strongly stimulate advances in the 
theory of generalized solutions. 

4. Chapter Four deals with the theory of generalized solutions of hyper- 
bolic systems of quaailinear equations and contains the main results attained in 
this field in recent years. Here the chief success must be regarded as the 
construction of a theory of the generalized solution of a single quasilinear 
equation, which can be assumed to be almost consummated. The existence, unique- 
ness, and continuous depandence of a generalized solution on initial data are 
provan for this equation; the equivalence of definitions of generalized solu- 
tion from the viewpoint of the law of conservation, on the one hand, and as a 
limit of "viscid solutions,*1 on the other, is shown. 

At the same time, just as in gas dynamics, the study of generalized 
solutions of systems of equations encounter great difficulties, and here thus 
far only very scanty results have been forthcoming. The main problem, which is 
now undergoing comprehensive investigation, is the problem of the disintegration 
of an arbitrary discontinuity. By means of this simplest problem, we can study 
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the structure of the generalized solution and even construct generalized solu- 
tions for the case of a system of two equations, by relying on the former solu- 
tion. 

Chapter pour represents the main result obtained for a single quasilinear 
equation; covered in this chapter is the problem of disintegration of a dis- 
continuity for an arbitrary hyperbolic system of quasilinear equations) also 
presented are some results appertaining to more general case». This chapter 
concludes with a description of several problems of different fields of sci*>so® 
associated with the theory of systems of quasilinear equations and, in parti- 
cular, discontinuous solutions of such equations. 

The book is divided into chapters, sections, and subsections. The num- 
bering of formulas is self-contained in each subsection. Therefore in desig- 
nating formulas, along with formula number the subsection number and the section 
number are added, so that formula (2.7.18) stands for formula (18) in subsection 7 
of section 2 of a given chapter. Only when the reference is not made outside the 
confines of a given subsection is the formula number alone indicated. 

In writing the book, we try to treat as fully as possible the entire 
range of problems associated with classical and generalized solutions of g*.a 
dynamics equations and more general quasilinear systems. Still, our personal 
points of view, undoubtedly, have affected the choice of material. 

In writing the book, the authors consulted with different teams of Soviet 
mathematicians. Among these we can cite the collectives headed by M. V. Keldysh, 
A. N. Tikhonov and A. A. Samarskiy, and I. M. Gel'fand. Our opinions and points 
of view were inevitably affected by consultation with friends and colleagues in 
work; several results were made known to us by oral communication with them. 

For a number of years each of us has given special courses to students 
on the subject areas of this book. As a result of working on the book, a number 
of new results, presented here for the first time, were obtained. 

Summing    up,    ±%  must be clear that mathematical theory of dis- 
continuous solutions of systems of quasilinear equations and, in particular, 
equations of gas dynamics though containi. «* many remarkable results and contain- 
ments, is still far from its culmination     ^pe that our book will afford the 
reader a grasp of modern methods of solutio. and investigation of systems of 
quasilinear equations and at the same time spur him to further investigation in 
this highly interesting and rapidly growing field of applied mathematics. 

This book grows out of many long years of work during which we always 
enjoy the cooperation of many of our friends and colleagues at work as well aa 
many of our students. To all we express our heartfelt gratitude. 

We are also indebted to A. N. Tikhonov whose advice we were continually 
favored with. 

The assistance of L. V. Ovsyanikov was especially valuable for us, since 
he not only reviewed the manuscript of the entire book and made a number of 

- 7 - 



valuable comments9 but also pla> 3d our disposal materials which we used in 

writing section 13 of chapter one. 

A. A. Samarskiy read the manuscript of chapter Three of this hook and 

made several valuable comments. 

Ve were given a great deal of help by M. H. Kuznetsov, who read the entire 
manuscript, made several valuable observations, and as an editor of this book 

did much to promote its improvement. 

Ve express our deep sense of appreciation to all of these. 
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CHAPTER OME  FUNDAMENTALS OF THE THEORY OF HYPERBOLIC SYSTEMS OF QUASI- 
LINEAR EQUATIONS WITH TWO INDEPENDENT VARIABLES 

Seotion I. Basic Definitions 

In this book we will limit ourselves to considering differential equa- 
tions for functions dependent only on two independent variables. 

The system of relations 

<T,\x, i, «,. *, «,. -JJJ-. .... -gj. -gp "*"]—"     v ' 
(1 = 1. 2 m). 

relating values of the unknown functions u1(x, t), u2(x, t), ... u (x, t) and 

their first derivatives ~~' . , . . , &*•*.        ^u, __ ^Url    » is 

called a first-order system of differential equations with respect to the 
function a., ..., u . System (1) is referred to as determinate for the case 

when man. We will limit ourselves to considering only this case. 

Introducing the vectors 

ir-\ir i* p 

we can write system (1) more concisely« 
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The functioreu., • v.(x, t), exhibiting continuous first derivatives and satis- 

fying the equations of system (2), are called the solution of this system of 
equations. 

If the system of nonlinear differential equations(2) can be represented 
in a form that is solvable with respect to the derivatives of the functions 
u.., ..., u with respect to any derivative (for example, t): 

4T=<P,(*. I- •' w)    ff-i. *••••. «fcl (3) 

A'tjsr+h 
du, 

'TZ-*1'* . (/—l. it 
v-1 

■'■1 »■ "   i i. ■ ■•:  ■,*.';; :-:4 

then ihis form of system (2) will be called the normal form. System (3) is 
called a Cauchy-Kovalevski  type system. We note that when system (2) is 
reduced to normal form the transformation of variable x, t is admitted. 

System (2) is called a system of quasilinear equations if the functions 
<*f.  are linear with respect to the variables <3u/^x, *)u/Öt} if however func- 

tions^, are linear over a set of variables u, ^u/äx, 3u/<3*, then system (2) is 

called linear. 

A first-order system of quasilinear equations can be written as 

(4) 

where the coefficients a.,, b.., c. depend on x, t, u. If the coefficients 
ij  ij  i 

a.., b.. do not depend on u, then system (4) is called semilinear (if in this 

case c. is linearly dependent on u, then it is linear). We can somewhat simplify 

the notation of system (4), if we bring into our consideration the above-defined 
vectors u, ^u/^x, ^u/^t, the vector c - fc., •••» c } and the matrix 

When using matrical notations it is assumed that the symbol Au and uA denote 
vectors whose components can be computed by the rules 

-. .■■'■■ ■ • I 

(A^l. 2 »).       ; ;'J      (5) 
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where A1 is a transposed vector. 

If matrix A is symmetrical, then A' - A, and Au - uA. The scalar deri- 
vative of vectors u, v is given by the formula 

Therefore for formulas (5) it follows that v(Au) - (vA) -> vAu. We will denote 
by the norm \\ u \l  of the vector u the quantity 

We will refer to as the norm of matrix A that smallest number // A /( which for 

any vector  u  satisfies the inequalities fjAu//^ (|A////u//. It is not diffi- 

cult to see that  |j A (( - j~\  > where A.  is the largest eigenvalue of matrix AA8 

(or A'A, which amounts to the same thing). Since A^Sp AA', then 

Mii<i/ i M 

Let UJ recall several more definitions from linear algebra. The vector 
1 - f 11» •••» 1 } and the number £ are called, respectively, the left eigen- 

vector and the eigenvalue of matrix A if 

lA-fl,   || 1|| /0. (6) 

Similarly, vector r is called the right eigenvector of matrix A if 

Ar -fr,   IIr II / 0. (7) 

By formulas (5) and (6), the eigenvalues ~f  of matrix A is a root of the charac- 
teristic equation 

Bet ((a., -^ij)) -° I8) 

where <$.. is the Kronecker delta (ä±*  ■ 0 when i / j and £.. - 1 when i ■ i). 

To each eigenvalue £f of matrix A corresponds a linear space of left eigenvectors 

1 and right eigenvector r. The measure of these spaces is n - fi ,  where ß  is the 

length of the matrix 

A-fE -((•iJ-5ai4)). (9) 

The matrix rank (9), as we know, is not smaller than n - d,  where d.  is the 

multiplicity of the root ^ of equation (8). 
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Let us assume that the eigenvalues £ of matrix A are real. Let us num- 

ber -themin increasing order, i.e., we will assume that 

5, ^ S2 3 ••• < £„• do) 
The equality sign in (10) is admitted owing to the possibility of multiple 
roots of equation (8), and each multiple root of S,   is repeated in (10) as many 

times as its multiplicity. 

If for any eigenvalue jj? of matrix A of multiplicity °L, the matrix 

rank (9) is n -ot, then the eigenvectors, both tho left 1 and the right r 

corresponding to all eigenvalues, form the basis in space £ of the vectors 

u - f u.j, ..., UQ} . 

Thus, in this case we will assume thst there exist eigenvectors 1 , 

1 , ..., 1 forming the basis in space £ , i.e., satisfying the condition 

(11) 

The index of the left eigenvector 1 in this case corresponds to the number of 

eigenvalue £ , ; the latter are o. dered by means of inequalities (10). 

If %.  jL   %.y  then 1 and r are orthogonal, in fact, suppose 

ikA- 5 ik, Ar* - gJ. (12) 

Multiplying scalarly the first of the equalities (12) by r , the second by 1 , 

and subtracting, we get 

•1   > »•   '» Y'^% 
t: \$ •; 

/»^^W/»(i4/->)'--/*(M=f0i'|        (13) 

,k Since f. ^ %.,  from this follows the orthogonality of 1 and rJ. For the 
K    J 

case when all eigenvalues of matrix A are simple, the equality sign in inequa- 

lities (10) is canceled out and the left and right eigenvectors form a biortho- 

gonal system, i.e., 
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k  ,1c 

when    k +  j. (14) 

k   2c 
If matrix A is symmetric then we can assume that r •* 1 . We require that the 

left eigenvectors 1 of matrix A satisfies the norm on condition that? 

||lkii» 1    (k - 1, ..., n). (15) 

Then, if for any eigenvalue £ = £. , the matrix rank (9) is n ~aL%  the eigen- 

k vectors 1 form a normed basis in E and naturally satisfy condition (H); if in 

this case matrix A is symmetric, then the basis ^1 j can be chosen as ortho- 

normed. 

Matrix A is referred to as positively defined if all the eigenvalues uxe 

positive; it is nonsingular if ^» 0 is not its eigenvalue, and singular, other- 

wise. 

Limiting ourselves to this brief recapitulation of linear algebra, let 

ua write system (4) as 

Adu/<H + B -5u/^x - c. (16) 

For the case when matrix A is nonsingular, system (16) reduces to the 

normal form (3) and can be, after transformations, written as 

du/öt + A1 5u/?X - b,        (17) 
where A1 » A.(x, t, u), b = b(x, t, u) are certain new matrices and a new vector, 

respectively. Below we will limit ourselves to studying system (16) which can 

be reduced to normal form (17)« 

Above we made an assumption on A(x, t, u) of the system of equation (16). 

However, A depends on u, i.e., on the assumption which is asarule unknown to 

ua. '.therefore let us stipulate in which sense we make the assumptions on the 

coefficients of systems (16) and (1?)« 

1) Eitner we will assume that solution u = u(x, t) of systems (16) and (17) 

is given as a function of the variable x, t, then the realization of any restric- 

tion imposed on matrices A, B, and A., and on vectors c, b, is verified forthwith. 

2) Or else these restrictions are satisfied by identity (for any values 

u * { ui> •••> u } ) in some singly-connected domain of space (x, t, u) in which 
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the system of quasilinear equations and its solutions will be considered. 

In this chapter we will impose the restrictions mainly in the second 

sense. 

Section II. Characteristic Directions of a System of ftuasilinear Equations 

1. Derivative ralatoete direction. Assume f (x, t) is a differentiable func- 

tion of its variables. At some point (x , t ) we will consider the expression 

*%+"&- CD 

assuming that A, B are not simultaneously equal to zero. 

For any A and B that are continuous in some neighborhood of the point 

(x , t ) we can find a smooth curve jf running through thic point and such i;hat 

when it is suitably parametrized equation (1) is proportional to the derivative 

of the function f(x, t) at the curve f  with respect to the parameter r . 

Actually, suppose the curve f  is given by the equations: 

iVW*(T). t^Hx),   xix^x*   t(To)«=/„.-       (2) 

Then at the curve f  the function f(x, t) is a function of one variable C: 

f(x(r), t(t)) « F( t ). Let us reply that expression (1) be proportional to 

F'(-c) whatever the function f. 

This will be done if 

dx/dt: - flCB,  dt/dt - oCA, (3) 

where d.  is any derivative function x. • Clearly, the essential condition uniquely 

defining the direction of curve" f at the point (x , t ) is the equation 

dx/B - dt/A, (4) 

and formulas (?) define the corresponding parametrization. 

We will call   the derivative F1 (f) for the natural parametrization o? 

r   when <L  s=  -, - j=~~r-      the derivative of function 4  with respect to direction 

r  . In this case the parameter X.  is the length of the arc of the curve J1, 

When oC" 1> expression (1) will be  called     the derivative of function f 

with respect to parameter X.  in the direction of the curve f.    This simple 
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concept finde  important applications in the thecry of equations with partial 

derivatives. 

Let us consider the simplest differential equation 

(5) 

assuming that functions A and B are continuously differentiaWe. Equations 

(°) 

or equation (4) defines the single-parametric family of curves f.    The para- 

meter -c Is defined along each of these curves uniquely if along some (arbitrarily 

chosen) curve V intersection of the curve /'we set r« t (Figure 1.1), 

:-■   >,--■'     >■:--.". 

^•,?" ^^*- 
k_.'.'' X 

Fit. re 1-1 

Let us bring into correspondence to each curve 1 the value of a certain 

parameter U> (for example, the length of the arc of the curve V measured from 

an arbitrary point on it to the point at which intersects with the given curve 

T7)« Then to each point (x, t)there will correspond one end only one number of 

pair ttiO. 

We can therefore assume the function u(x, t) to be the function of the 

variables X , co ;  the equations of the lines f  are of the form a) = const, while 

equation(5)> according to the foregoing, is written as 

■■mO. (7) 

Bence it follows that u - F(«ü ) i» the general solution of equation (5) and the 

function u(x, t) is constant along f   curves r,«- 
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The directions of the curvesfdefined by the vector £B, A} are called 

the characteristic directions of equation (5), and the curves f are the charac- 

teristics. 

Let us note that the form (7) of equation (3) no longer assumes the exis- 

tence of the derivatives hu/Z x, «Ju/<? tj equation (7) is satisfied by an arbi- 

trary function t(io),  in particular, even a discontinuous function. Here the 

function u - F(o>) can be interpreted as the solution of equation (5} in the 

generalized sense. 

2, hyperbolic systems of quasilinear equations. Let us consider the system 

of quasilinear equations 

^ u/^ t +Ä 3u/dx ■ b. (1) 

Multiplying it by the vector 1, we get the scalar equation 

If 1 is the left eigenvector of matrix A, then equation (2) can be written as 

«GM-ia-* (3) 

where £ is the corresponding eigenvalue of matrix A. 

In equation (3) all components u. of vector u are differentiated in 1he 

same direction. Actually, by writing equation (3) in components, we get 

i-i 1-1 

denoting by 

(dut\_duL  , , dm 
\dT)~ dt  "^U 

the derivative of function U.(J t) with respect to the variable t in the 

direction dx/dt -|f, we see that  uation (3) containsa linear combination of 

the derivative (.du./dt). The equai, on dx/dt - <£ defines the direction of 
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differentiation in equality (5), called the characteristic direction of the 

system of equations (1), which is common to all functions u.(x, t). 

We will refer to the quasilinear equations (1) as nyperbolie in some 

singly-connected domain B of the space of variables x, t, u, if the following 

conditions are satisfied at each point of this domains 

1) all eigenvalues ^ - %J(X>  *» u) of ««trix A - A(x, t, u) are real} 

and 
1 n 

2) there exists the basis {l (x, t, u), ..., 1 (x, t, u)J in the space 

B , composed of left eigenvectors of matrix A governed by the norming condition, 
1   **        n 

i.e., there exist normed eigenvectors 1 , 1 , ..., 1 satisfying the condition 

(1.11). 

Let U3 note that a system (1) is semilinear, then the eigenvalue 2f. and 

the left eigenvectors 1 do not depend on u. Therefore the condition of hyper- 

bolicity for the semilinear systems is defined in some domain of variable (x, t) 

for arbitrary u (in a cylindrical domain). 

As a part of the definition of hyperbolicity, let us note that often 

conditions 1) and 2) are supplemented further by the requirement of a determinate 

smoothness of eigenvectors 1 and eigenvalues £.. Thus, for example, in the 

book [l] system (1) is called hyperbolic if conditions 1) and 2) are satisfied, 
k 

and moreover,£k(*i t, u) and 1 (x, t, u) exhibit the same smoothness as the 

elements of matrix A(x, t, u). 

In the following we will of course have to resort to assumptions on the 

smoothness of ¥,v  and 1 . We will do this to the extent that it is necessary. 
k 

Let us note in this regard that a given smoothness of 1 and £f, doea not always 

stem from the assumption of the same smoothness for the matrix A. 

Let us show this in the following example of a system of two quasilinear 

equations; 

Matrix A in this case is of the form 
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and its eigenvalues ^1, § 2 axe determined from the equation 

,1 ,2 
(1-^) ( ^-u2) -0, 

from whence If* ■ u., £o " u2* ^°e ei8envec*ors 1'» 1°" are defined from the 

equations 

Pftg^+aO«,.^^  0.4+0./|=0.   (6) 

1     2 
taking the nozming condition into account, let us now define 1 and 1 in the 

domain u., j> u»t 

(6) 

Let us consider the straight line u.. • u„ on the plane of variables (u., u2). If 

a(u1, u,j) jt 0, then from (5) we find 1 « (l; 0 ), and the hyperbolicity condi- 

tion 2) is violated on the straight line u.. « u„. Let us consider in more detail 

the case a(u., n1) - 0. Here equations (4) and (5) become identical at the straight 
12 

line u1 ■ Up and we can select as 1 and 1 two arbitrary noncollinear unit factors 

and, therefore, the system is hyperbolic. 

1  2 
But if we have required that the vectors 1 , 1 exhibit a certain smooth- 

ness, then the requirement of the same smoothness for the function a(u , u„) 

would not guarantee this. Suppose, for example, that we require the vectors 
1  2 
1,1 to be continuous at the straight line u - u2> 
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Obviously, the only vector 1 that is continuous at the straight line 

tL » u„ would be the vector 1 (u.., u„) - (1 > 0/} as for the vector 1 , its 

t.'ontimKt;' necessitates, for example, the continuity of the function a('J1, u2) 
(u2 - u.) . For example, if 

a(«,, u$«|«, - «, r *(«i. %) 0 <«i- »«> * °>- 
2 

then when«£>1 the unknown continuous vector 1 is given by formula (6)(when 

u1 ^ u2^ ^ tiie ^ormu^a ^ (ui> ui) " ^Oj 1 J . When oi<1 no continuous func- 
tion  1 exists. 

It is not difficult to verify that in this example, to ensure the conti- 

nuity of m-th derivatives of 1 we must require that the function a(u1, u„) have 

m continuous derivatives, and also (m + l)-th derivatives at the straight line 
ui " V 

The situation becomes very much simpler in a highly important particular 

case of hyperbolic systems, which we will call hyperbolic in the narrow sense. 

We will refer to the system of equations (1) as hyperbolic in the narrow 

sense in a singly-connected domain D of variables (x, t, u) if at each point of 

this domain the eigenvalues H   , %   , ..., £f of matrix A are real and distinct. 

In this case the eigenvalues can be ordered, and we will assume that 

everywhere in D the following inequalities are satisfied! 

6, (*, t. «) < iß(x. f. «X • • • < &„ (*■ t. «)•' 

Then, as indicated in section I, the eigenvectors V"{x,  t, u) are linearly indt>- 

pendent. It is easy to see that in this case 1 (x, t, u), g Ax,  t, u) possess 

the same degree of smoothness as the elements of the matrix A(x, t, u). 

And so, system (1) hyperbolic in domain D, by multiplying it by the 
k 

igenvector 1 , is reduced tn  +v.» left eigenvector 1,  is reduced to the form 

'*H*+u«*i%*tj*4.!   (*-,....,„, 
(7) 

where 

a-i 
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Prom condition 2) of the definition of hyperbolic system (l) follows the equi- 

valence nt system (7) of initial condition (1). 

We wiJl call equation (7) the characteristic form of the syste» of equa- 

tion (1). 

Expanding the notation of this syste« in components thuslyi 

Sometimes we will write it in the following formi 

where the symbol ^df/dt). denotes the quantity 

m)ri*W 
5. hyperbolic system of nonlinear equations. Let us consider a system 

of nonlinear equations written in the normal formt 

Setting 

av^x - *>., (2) 
let us write system (1) in the form 

P5H*¥i(f 'ft/W^'   ^*»>* 2V WiVJft »v (3) 

Suppose <Pk(x, t, v, a) )e Cgo Let A(x, t, v, oj ) refer to the square matrix 

of all n: 

We will call the system of nonlinear equations (1) hyperbolic in some 

domain of variation of variables x, t, v, a) , if at each point of this domain 
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the eigenvalues £ - £. {x,  t, v, CO ) end the left eigenvectors 1 (x, t, v, a> ) 

of matrix A satisfy requirements 1) and 2) of subsection 2, 

?he hyperbolic system of nonlinear equations (1) reduces to a hyperbolic 

system of quasilinear equations. Differentiating each of the equations (1) with 

respect to the variable x and taking the symbols (2) into account, we get 

. . •»':■■'■  -^ ■■'■      ~ V-'V - * 

In formula (5) summation*) is carried oui with respect to the Greek subscript 

d. wilfcin the limits from 1 to n. Below, for simplicity of notation, we will 

oxten employ this convention. 

Combining equations (3) and (5), we get a system of 2n equations 

where 

KWMMBSe, mW^tr^4 
r^/il;£ t>;:a>)/?'. L.^ä.<H % 

'W*£? ■!.■*• 

which we can consider as a system of quasilinear equations with respect to 

2n unknowns 

*) To avoid confusion, let ua stress that the summation is carried out 

only with respect to Greek subscript. For example, **-S**' 
«-» 

and summation is now carried out with respect to the Latin subscript k. 
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Let us show that the system of 2n quasilinear equations (6) is hyper- 

bolic. Multiplying the second group of equation (6) by the left eigenvector 

1 (x, t, v, « ) of matrix A(x, t, v,<y), we get 

ÜÜlus, system (6) is reduced to the form 

.bridtt -I «**!'"&i»"?' •T*Ä*?;'""A»!rr ■ •*■-in""f ■•",-w*?' «■">.*»« *»»» .->.~? »w« 
(10) 

from vhence comes its hyperbolicity. 

If <Pk « ^v^
x» *» a))» i*6*» d<fJ^yi  " °» then tfae ^i*81* group of 

equations (10) can be considered independently as a hyperbolic system of n 

quasilinear equations with respect to n unknowns ob., ..., oi • 

Of course, we cannot refer to the equivalence of system (10) and system 

0). 

First of all, it is not any solution v. , (o of system (10) that yields 

the solution v, (x, t) to system (1). Actually, the solution v. , a), of system 

(10) does not necessarily, generally speaking, satisfy equations (2). 

As we show in subsection 3 of section IX, satisfying   conditions (2) 

reduces to satisfying them at the straight line t - 0. Thus, solutions to 

system (10) reduce to the solution v(x, t) to system (1) only if conditions 

(2) are satisfied. On the other hand, the nonequivalence of system (10) and (1) 

is manifested also in that the solution to system (10) satisfying conditions (2) 

requires that v(x, t)6C2. At the same time the definition of the solution 

v(x, t) to system (1) requires only its continuous differentiability. 

- 22 - 

_^^^^^^^^ 



Therefore the equivalence of system (10) to system (1) cannot hold only for 

solutions v(x, t) to system (1) of class C«. 

Section 111. Hiemann Invariants 

1. Invariants of a semilinear system of equations. In each equation of 

the characteristic system (2.2.7) functions u.(x, t) are differentiated in the 

same direction. In several cases further simplification of the characteristic 

system is possible: by change of variables we can succeed in differentiating 

only one function of the variable x, t, u in each of the equations. 

Let us first consider the case of the semilinear system. Then equation 
(2.2.7) can be written as 

(1) 

where 

(2) 
■&—rss 

Since for the hyperbolic system  Det((l*)) / o, then 

and the variables r^x, t, u) can be taken as new unknown functions. Let us 

express from equations (2) u, % in terms of r, r , 

«*-.♦.-X*rj 
■:■>: 1 

(4) 

k where we let r stand for the vector Jr..,  ..., r } , and A, are the coeffi- 

cients of the matrix /\  that is the inverse of matrix /\ t 

Substituting formulas (4) in the right sides of system (2), we arrive at the 
system of equations 
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IJ^tS'??^^^.'.: <*-*• '- *- (5) 

which we will call a system written in invariants. 

Let us illustrate the concept of invariants with the example of the wave 

equation 

Tpr^*\W     <«»=«J»8t)  

It reduces to the hyperbolic system 

whose characteristic form is 

, (£+«t)+<(£+«£H- 
Therefore, the invariants defined by fojmulfis (2) are as follows: 

r- • u - av, 'r„ - u - av. 

(Let us note that here we have used the nonnormed vectors 1,1.) 

The system written in the invariants] 

shows that the invariant r. is constant along the straight lines x + at - 

const, and r2 — along the line x - at - const; therefore 

r1 - f (x + at),   r2 - g(x - at), 

where f and g are arbitrary functions. 

Returning to the function u, we get a known general solution of the 

wave equation: 

Jr 
In the case of a system of quasilinear equations, the vectors 1 depend 

on x, t, u. Let us consider the differential forms 
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»*<*. t. «. </«)«/*(*. t, u)du = l>c(X, t. U)duv (6) 

Suppose that each of these forms, considered for fixed values of variables x, 

t has an integrating cofactor M.   * <<UAx,  t, u) so that for any k = 1,..., n, 
we have 

Mtte '. «)•*(*. t, u, da)=,nki*da _fr*(*. t, u) 
-5S7-^da* (7) 

(Let us recall that the summation is carried out only with respect to the Greek 

subscripts; the number k in formula (7) is fixed). Equations (2.2.7) afte? 
multiplication by /U,   become 

and 
I  * h~lt-lrttl£=gt(x.t.u)      (k==l A (8) 

(to 

In formula (9) the variables rJL » r' are partial derivatives of the functions 

r. (x, t, u), respectively, with respect to x and t for fixed values of the 
variables u - / u., ...,u }. 

Now using independence  of the functions r. (x, t, u), let us express 

tne variable u in terms of them, after which we get from (8) the following 
system of linear equationsi 

*#+5*-37-»*,(*. /, r) (*-l. »)• (10) 

The quantities r, are called invariants (Riemann invariants), and the system 

(10) is called a system in invtriants. Riemann first introduced the concept of 

invariants in his classical work [2j. If systems (2.2.1) and (2.2.7) are homo- 

geneous and do not depend explicitly on x, t(A ■ A(u), f - 0), then equation 
(',0) is also homogeneous: 
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TM-1UWT8—0  (*=!.....»). (11) 

i.e., the functions r,(x, t) are constant along the integral curves of the 

equation 

which are called characteristics of system of equation (11). 

2. Systems of two and three quasilinear equations. We know that not 

every   differential form &>k(u, du) has an integrating cofactor. An excep- 

tion is the case n » 2 when this cui'actor always exists. In this case the 

Riemann invariants can be defined thusly. Suppose the equations 

(D4(*o. jo, a. d«) = 0  (A=i. 2) . 

have integrals 
<D4 (x°. fi, a) == const      (ft = 1, 2).. 

Then, obviously, the following functions can be taken 83 Riemann invariantst 

rk " ^M*' *» u^ 
Now let us consider the case n * }. We know (cf [3, 4j) that in this 

case the arbitrary differential form 

4>k(x, t, u, du) - l
k(x, t, u) du (1) 

(x, t fixed) can be represented one of the following forms 

a) dU,  b) V dU, c) dU + V dW, 

where U, V, W are functions of x, t, u. The cases a), b), and c) follow one 

after the other in order of generality. 

If the forms (JO    refer, when k • 1, 2, J, to types a) and b), then this 

means that integrating coi'actoryC(. is present for each form &J, , i.e., the 

possibility of reducing the system of quasilinear equations to invariants*). 

*) We know (cf for example [5]) that the form 1 du  belongs to type a) 
k k   k 

if rot 1 »0, and this form belongs to type b), if 1 rot 1 «0, where these 

conditions are essential and sufficient (the operation rot is taken with respect 

to the variables u.., u„, u,). 
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!w In the general case tne forms 6J, belong to the type c) and the charac- 

teristic system  reduces the form 

(2) 

where H.t  W., Y, are functions of the variables u.., u„, u,, x, t. Suppose 

?, » Of then equations (2.2.7) can he written in the form 

^.»■.--rrcr 

where u, « I*!*» t, u). 

If the forms öJiAx, t, u, du) (k ■ 1, 2) are considered at the surface 

U, » 0,(x, t, u) » const, x ■ x , t ■ t , then they have an integrating multi- 

plier. Htmce it follows that 

m^^mm^3WMX&¥^^Ldx "* (jL\ vi 

where it is assumed that 

The system of quasilinear equations in this case can be written in the follow- 

ing characteristic formt 

rfff. 
.= ** 

(ft=i.s; «;. 
(5) 

where 1\. ,  g, are functions of the variables U, (x, t» u), x, t. 
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Section IT. ükansformations of Systems of Quasilinear Equations 

1. Transformation of systems with respect to solution. By the trans- 

formation of dependent and independent variables 

ßÄ|-''^¥^ ^v{x.t,^ (1) 
which have a reciprocal, i.e., such that 

the hyperbolic system of quasilinear equations is converted into some new 

hyperbolic system of quasilinear equations. The characteristic directions of 

the hyperbolic system are the invariants of transformation (1). This means 

that if the direction dx/dt ■ £7 is characteristic for the original syste 
then after transformation (1) the direction 

will also be characteristic. 

Let us consider the transformation of independent variables used in 

gasdynamics, which we will call the transformation of independent variables 

with respect to the solution. Suppose the new variables x*, t* are associated 

with the old x, t by the formulas 

For the line x' ■ const, t' - const to form a regular  net  for any solutions 

u ■ u(x, t) of the initial system, i.e., for one and only one point x!, t* to 

correspond to each point x, t, it is sufficient that in the singly-connected 

domain of variable x, t undei consideration, the following conditions are 
satisfiedi 

<*»,(*,<, i»)  d*Ax,t,«)  A 

A — <p,f,—fyti-^0. (4) 
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\ . In inequality (3) u « u(x, t) in the arbitrary solution- of the initial system) 

in the differentiation, the dependence u on x, t must be taken into account. 

Since inequality (3) oust obtain for any solution u - u(x, t) of the 

initial system* they  must themselves be its corollaries. Let us assume t'.iat 

this does occur and that (4) is satisfied. Then from (2) follow the differ- 

entiation formulas 

(5) 

By formulas (5), the derivatives äu/H ,d\i/2 x are linearlyexpressed by 

du/<H' , ^ u/äx', and after substitution ,n the initial system, obviously, we 

again will obtain a system of quasilinear equations. 

Transformation (2) is one that is more general compared to the ordinary 

transformation of independent variables (1). For its applicability, however 

(in the case when <P . and f. depend en u) it is necessary that the system of 

quasilinear equations have as corollaries special equations, AS we will see in 

section V, it is not any system or quasiJLinear equations wat has even one 

equation of the type (3) as the corollary. 

Let us present an example of the conversion of independent variables 

with respect to solution. The system of equations of gas dyanmics (cf chapter 

Two, section n). 

+*£*° 
n -vr.?'>y ''*. 

(6) 

contains three equations with three unknowns /°,  u, S. Let us consider the 

transformation 

dx* »prf* — pudt,     dtf* U (7) 

In this case <f>^  - ft f 1 -/"u, f2 ■ 0, f2  - -1} conditions (3) are satisfied 

by virtue of the first equation in (6), and condition (4) leads to the require- 

ment f > 0. Thus, if P > 0, then 
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and system (6) changes, after transformation (7), into the new system« 

(8) 

in gas dynamics the variables x, t are called guQaoBn variables, and the variables 

q - x', t' » t are jagrangian variables. 

2. Hodograph transformation. For a homogenous system of quasilinear 

equations whose coefficients do not explicitly depend on x, t in the case n ■ 2: 

0) 

Let us interchange the roles of dependent and independent variables, i.e., 

we can assume that x - x(u., u„), t * t(u , u„). Simple calculations lead to 

the result 

;;.* 
where    -I ^; ; *.^,£|J 

^fS-^lt* .i.ft"^ 
d»L du, 

'at»i;«il 
äpnr (3) 

If A/ 0, then by substituting formulas (2) into (1), we arrive at a linear 

system of two equations« 

(4) 
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where a. .(u) are elements of matrix A(u). 

This transformation of variables is called the hodcgraph transformation; 

it is used in gas dynamics. 

3. Extended system. Let us write a system of quasilinear equations of 

the hyperbolic type in the following characteristic forms 

■-':[*+fafr]-/.e«.'.-«o  <*-» »>• ^1) 

In many investigations, along with system (1) it is useful to consider a system 

of equations in which the unknowns are also derivatives of the solution u(x, t). 

This system is obtained by differentiating (1) and is its differential corollary. 

We will call system (1) and its differential corollaries an extended system. 

Let us denote 

du      „ du __n       läui_        dui \, (2) 

then system (1) can be written as 

Differentiating each equation (3) with respect to the variables t, x, we get 

"(TK«**H*  ''(*+^*)-^       (4) 

where 

- V 



&u 

(5) 

From (2) follow, as conditions of integrability the equations 

B qfi x.   • ä p/& t, 

and, therefore, equations (4) can he rewritten as 

(6) 

f (*.+**)-*  *{4Kti*fcj& ]       (7) 

where •£.,   %r,   are, by (5), functions of x, t, u, p, q. 

We will call equations (2) and (7) an extended system. "Ehe extended 

system can he written in a different representation. The equations 

$*«. "($+u4H- (8) 
. . i 

constitute an extended system of 2n equations if the variables p appearing in 

$, are canceled out by means of equations (3). Here it is assumed that 

*» k 
r    / o*). 

The extended system was introduced in this form by R. Courant and P. 

Lax in article [6j. 

*) The requirement I',  / 0 is not essential. By change of variables we car, 

achieve the result that £. / 0 for all k. ■ 1, ..., n. 
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If we consider an extended system in symmetric form (7)» then it is 

equivalent to the initial system in the class u(x, t) €: C2« 

Let us dwell on a remarkable feature of the extended system. As was 

shown, a hyperbolic samilinear system can be reduced to invariants. This, 

generally speaking, does not obtain for systems of quasilinear equations. How- 

ever, an extended system of eny hyperbolic system of quasilinear equations 

already possess this property, i.e., is reducible to invariants. 

Actually, denoting 

«-■ Coc! *: 2L&4I tütiü^u J 

and converting in equations (7) to the variables 5^k» d}k> we get 

where „„UK, .,,,,,, .. 

J. 'A M '■'! 

Since Det(( . )) /L 0, then the variables p, q are uniquely expressed by ^T, 

d? , and can be canceled out of *E,   $ ,. 

Adding to equations (10) the equation 

$$$*&*:   ff^^^'J (12) 

we get a system of 4n quasilinear equations written in invariants. 

We can reduce the number of equations down to 2n, if, for example, we 

add to the first group of equations (10) the first group of equations (2), i.e., 

consider a system of 2n equations in the invariants: 
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.ÄtfcSNf*: #~*^*1 (15) 
and assume that in the functions ^F,   the variables q are canceled out by means 
of (3), and p — by means of (12). 

However, the second group of equations (13) is unsuitable for investi- 

gation. We will transform it. From equations (3) we have 

^^-^U-^~X*|>Vj (14) 

Therefore instead of system (13) we can consider the system 

:-^ + ^=^*'  .T?-ft-W.-*«/V- (15) 

which is also written in variants, and the function ^F.   are functions of x, t, 

Let us write extended system (15) in its final form: 

^+i*^=«r*(*.f. «.*»).        (16) 

-£- = /%(*.*. «.*•). (17) 

From formulas (15), (11), (5)» and (3) it follows that 

fff*^ t> u) + <rk*(x. t.  «)^„ + «£"i»(*. t,  «)^o^V (18) 
Pt ^ F*(x. t, tt) + fi(x. t, a)Pa, (19) 

where ^^ » &    » SL* > ** *ot are certain functions dependent only on x, 

t, u. The formulas for these variables are quite cumbersome and we will not 

write them out here. Let us however note that F% F^  are expressed in terms 
k   k     k 

of the coefficients of the initial system, and £f  , g^ » <5^ä  in terms of 

the coefficients and their first derivatives with respect to the variables xP t, u. 
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The extended system (16) end (17) will be used by us in the following 

in estimating the growth of the solution to the system of quasilinear equations 

and its derivatives (cf section VIII). 

By section II, a hyperbolic system.of n nonlinear equations reduces to 

a system of 2n quasilinear equations. The extended system for arbitrary hyper- 

bolic system of quasilinear equations reduces, in turn, to equations in invariants. 

Therefore a hyperbolic system of n nonlinear equations reduces to a system of not 

more than 4n quasilinear equations in invariants by means of forming an extended 

system. 

Section V. Conservative Systems of Quasilinear Equations 

1. Definitions. If the equation 

**wE$ffi^ii:Fj8i (1) 

is a corollary of the system of quasilinear equations 

h u/a t + A^u/«?x  - b (2) 

for any solutions to system (2), then we call it the law of conservation of 

system (2). 

Suppose system (2) has m laws of conservation (1) corresponding to the 

functions <p., ..., f>   : f., ..., f . These laws of conservation will be 

called independent in the domain D if the functions 1, <p  (x , t , u), ..., 

<p    (x , t , u) aie linearly independent for all x , t of the domain D under 

consideration. 

If <p - <p(x,  t), then by the definition of equality (1) is not independent 

law of conservation. 

If system (2) has n independent laws of conservation satisfying the condi- 

tion 
:,i 

then we call it conservative, otherwise — nonconservative. 

- 35 - 

jjiW^^iiiHitt'Wi»'--»* 



Thus, the conservative s?/stem (2) can be reduced to the form 

m^j^j^L^^t^i (3) 

where we understand <p» if , and P to refer to vectors with n components. Let 

us note that a system of the type (3) is often called "divergent"; sometimes 

this term applies only to the case F ■ 0. Ve obtain equations that will serve 

for defining all laws of conservation of system (2), i.e., functions of <p  and 

f . To do this, let us multiply system (2) by the vector od.-c<,(x, t, u) ■ 

{oL* i  '"i oi   } and require that this result be of the form (1). 

Let us arrive at equations 

where 
tea*: 

m (4) 

Canceling the vector oC from these equations, we get the system 

in which only two unknown functions f (x, t, u) and '/'(x, t, u) appear. The 

system (4) consists of n equations and is described in components as follows: 

(5) 

The variables x and t appear in the coefficients of this system as parameters. 

A set of linearly independent solutions to system (5) defines  the 

system of independent laws of conservation of system (2). 

If system (2) is linear or semilinear, i- is conservative. Naturally, in 

this case A ■ A(x, t) and system (5) has n independent solutions: 

mm® 

When n^.2, system (5) is either indeterminate or determine U- and has an infinite 

number of solutions. When n <?3» system (5) is over determined and cannot iu 

general have a single solution <p » *t » which would depend essentially on u. The 
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proof of this assertion can be obtained for the example of the system 

for which it is easy to establish that system (5) does not have nontrival solu- 

tions (of [?]). 

2. Laws of conservation of gas dynamics. As an example (cf [s]), let us 

consider a system of equations of gas dynamics in Lagrangian coordinates (chapter 

two, section II), which we will write as 

W     du     rt  du  , dp(V,t)      ft   d  / . u'\,dpu     n 
(1) 

Let us pose the problem of finding all laws of conservation of this system of 

equations (obviously, system (1) has already been written in the form of xaws of 

conservation and is therefore conservative). Representing the system as 

we will write for it the system of equations (5.1.5) with respect to <p-<p(V, 

u,e), f ■ f (V, u,£): 

(2) 

13) 

(4) 

Suppose p » p (V,f) is a doubly-continuously differentiable functions of its 

variable} we will assume that <p (V, u, £), <f(V, u,£) is also doubly-continuously 

differentiable. Combining equalities (2) and (4), we obtain « 

p:<y.*)&-K<y> <>%=*• 

which denotes a functional dependence with fixed change u of the variables f, p, 

i.e. 

V  - HP. U)« 
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Similarly, writing out the conditions 

we get 

for consistency of equalities (2) and (4). 

i.e. 
2<p/d u  - F(p, u) 

where P(p, u) is an arbitrary function. 

Substituting (5) into (3), we find 

where <$> (p, u) is an arbitrary function. 

Integrating (6), we get 

(6) 

(7) 

(8) 
<p(V. «. e)=»F,(/>. u) + F7&. V). 

where as before P.., P„ are certain arbitrary functions. 

Substituting this expression into equality (7), we give the latter the 

following form: 

Since here the left side d^es not depend on the variable u, then 

^M^K-^-1 (9) 
We will limit ourselves to a consideration of the case when the variable 

pp1 is functionally independent (as a function of the variables V,£ ) with the 

function p(V, f): 

iiW-ti+t-vW^*®; (10) 

Therefore,in iks ogbfc side of equality (9) appears a function of p, u, V, 6. that 

is not reducible  to a function of p, u.    Therefore equality (9) is possible if 

and only if 
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Thus, assuming that condition (10) is satisfied, <j>(p, u) ■ 4> (p) and. by (8) 

öD 

tfrom equalities (2), (4), and (11) follows 

ilpK]#^^^5^(^| (12) 
Therefore, substituting formulas (11) and (12) into equality (3), we get 

Since F2 ■ F2(<£ > V)' *^en tlle r^6^* si<ie in 03) does not depend on u; there- 

and 1'* u» /,
1(«)=C»T+C»8'    F»=c»^ 

since the constants are imaginary.    Finally, equation (13) becomes 

i.e., F2(£> V) satisfies the linear equation in     partial derivatives, assuming 

/»,<«,V)*«-G,e^ClK+PJ(e, V).j 

we get for F2(<? » V) the homogeneous equation 

'PP. *)&-■§— %; 04) 

As for the variables V, £, let us consider the ordinary differential 

equation 

fo+p(y. t)dV = fr (is) 
■..  _ ..1 

Suppose S = S(V,£ ) ■ const is the general integral of this equation, i.e., 

s,
t<yi6)p<y.t,y-~s'v<y, e)«o. 

The funciion S(V, £ ) is called entropy in thermodynamics. Since equation (15) 

determines the characteristics of equation (H), then (cf for example [5]) the 
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general solution to equation (14) is 

where f is an arbitrary function of one variable. And thus, we obtain the 

general solution to equations (2) - (4) for f: 

after which we can easily find ^: 

^«^^^.fO^^^fl (17) 

Formulas (16) and (17) give us a grasp of all laws of conservation of this system 

of equation for the cage when the inequality (10) is satisfied. It is easy to 

note that they contaii laws of conservation (1), and also a new law of conserva- 

tion sm$M~^ 
which in gas dynamics is called the law of conservation of entropy. 

Prom our proof it follows that when condition (10) is satisfied the equa- 

tions of gas dynamics (1) do not have any other laws of conservation except for 

the known laws of conservation of mass, momentum, energy, and entropy. 

By way of y,»t another example, let us consider the system 

I'fc+iMF-i «='•••••»>■ «» 
where J£ -«^(u.., ..., un)»<3? - <£f' (u<i •«•» u ) are scalar functions (cf 

[9])« System (18) is hyperbolic if the matrix 

"***    \VSHSSJII 

is sign-determined. 

The system of equations (18), obviously, is conservative. It is easily 

seen that it has yet another law of conservation, independent of the laws of 

conservation of (18) if Jc      is a variable matrix» 

9-««.?. -&.      ^^ttay„a-y. 

It s interesting to note that equations of gas dynamics, as well as certain 

othe, systems of equations in mathematical physics are reducible to the form (18). 
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3. Potential of the solution of a conservative system of quasilinear 

equations. Let us consider a conservative system of n quasilinear equations 

By  the definition of conservativeness 

Therefore, as new dependent variable we can select the variable v. ■ <p.(x, t, u) 

and consider only the conservative systems of the special form: 

TW*1 (1) 
¥* 

Suppose we know the solution u(x, t) 6 C1 to system (1). Let us find the vector 

& (x, t) such that 

Obviously, the vector ^(x, t) is nonuniquely determined} for determinateness, 

ve must set 

V' 

jr<*. o«s J /*«. /, «(i. 0)4." 
;iW . v ■     .>;±J 

(2) 

where x ■ x (t) is a smooth curve uniquely projectible onto the axis x - 0. 

The system (1) can be rewritten as 

Integrating this equation of the domain £„  bonded by the contour C, we conclude 

that the contour integral 

u dx — lm (x. t. a) - & (x, 01 dt - 0 N 

tends to zero for any piecewise-onooth cLased contour C.    Therefore the curvilinear 

integral 

(*.» 
<D(*, 0*=   J orfjr-{9-^')Ä (3) 
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does not depend on the path of integration and defines the vector (p{x,  t)(fc2, 

if ^«£0,, F<£C. 

From (3) follow the formulas 

Canceling out u and using formula (2), we find 

How the system of nonlinear integro-differential equations (4) can be considered 

independently of (1). If we know the solution <$> (x, t)^ C2 to system (4), then 

u - 3$/3x ^ C. is the solution of system (1). Reducing system (1) to system 

(4)» we can consider, in this way, less smooth solutions u(x, t) of system (1) as 

derivatives of solutions <£>  (x, t) of system (4) that have greater smoothness. 

For this reason, this approach find use   in  the examination of gener- 

alized (for example, discontinuous) solutions of systems of quasilinear equations. 

We will call the vector <£ (x, t) the potential of the solution u(x, t) 

of system of equations (1) (cf [10]). 

Let us note several particular cases. If F = 0, then system (4) becomes 

a nonlinear system of the CauchyKovale-wki uype. Reducing system (1) to system 

(4) in this case must be compared with the opposite procedure — reducing a 

nonlinear system to a system of quasilinear equations (section II). Therefore 

this processes of increasing solution smoothness can be used even in  the following. 

Section VI. Formulation of Cauchy'a Problem for a Hyperbolic System of Quasilinear 

Equations 

1. Formulation of the problem. For a hyperbolic system of qu*Bilinear 

equations 
'.-"w i . du     . 

which we will also write in the characteristic form 

let us consider the following problem: 

■ , t,. ,-t.MWW.-- ...  — 



la  some vicinity of the arc a £  r< b of curve ££. 

X- x(-c),  t - t(r) 

find the solution u(x, t) of system (1) that takes on assigned values on^, 

U (X (T). t (T) )«tfi (t).  o < t < ft 
(2) 

conditions (2) are called initial, the vector-function u is the initial func- 

tion, and curve a£  is the initial curve« 

The problem (l) and (2) is called the problem with initial data, or 

Cauchy's problem. 

Cauchy's problem for equation (1) is interpreted geometrically as a prob- 

lem of constructing in the space of n + 2 dimensbns of variables (x, t, u) a two- 

dimensional integral surface u ■ u(x, t) passing through the given curve 

X   m  x(-C), t ■ t( t), U»U°(^), 

which we will also called the initial curve. 

To render the formulation of Cauchy's problem more precise, we must indi- 

cate; 

a) the smoothness of the matrix A(x, t, u), vector b(x, t, u) (or 1 , 

£ k, f.)s the initial curve, and the function u°( X.)  (we will call these vari- 

ables the initial data of Cauchy's problem); 

b) the domain G of the variables x, t in which we seek the solution to 

fauchy's problem. 

These problems will be examined in the following subsections in the cons- 

truction of the solution of Cauchy's problem. 

at us note that, by definition, the solution u(x, t) of system (1) is 

continuously differentiable (u e C..). If u(x, t) exhibits less smoothness, 

but in some sense satisfies system (1), then the function u(x, t) is called the 

generalized solution of system (1). 

In this chapter we construct the solution u(x, t) €z  C. for a hyperbolic 

system of quasilinear equations; a generalized solution u(x, t)^ C will be 
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constructed for linear and semilinear systems. Following K. 0. Friedrichs,we 

will call the latter the solution to Cauchy's problem in the broad sense. 

2. Solvability of Cauchy's problem. Characteristics. Suppose x(c), 
o        k t(r), u {n)£=:C,,  1 (x, t, u), 2|, , f. ^ C and some vector-function u(x, t) 

^r C1 takes on the value u ( r) on the curve <£? and suppose its derivatives p, 

q satisfy the equations of system (6.1.1) on the line if. 

Let us formulate the problem of whether the derivatives p, q based on 

these data can be determined (on the linej£),  i.e., the problem of whether the 

function u(x, t) £=: C. satisfying these requirements exists. 

On the line ££  we have the equality 

B(*(T), *(t)) = ««(T). t'ty + ltP) =»/».;        (1) 

where 1 , !?, ,  f, are obviously known functions of the variable x. on <£f. 

Differentiating u(x(t), t( c)) - u ( c)  with respect to <• , we get 

/«?+*'WP^^=<P(i£ (2) dx 

and, therefore, <f (<) €= C. 

Equations (l) and (2) form a system of 2n equations for the determination 

(on the line «if ) of the derivatives p, q. Since the matrix {{X^,))  is non- 

singular, then by canceling out the vector q from equations (1) and (2), we get 

\f « i* - v (*)]>/>=[f w i, - *' (t)] ix=;;?       (?) 

where f,   is a continuous function of the variable   Z,    The determinant D(tr) of 

system (}) can be easily computed: 

» '■'•      ■ »    ■ ■ -1 
D(t)= [Del ((#)] jDJU'(t)64-V(t)l = De{ AJOj^W l»-*^!, ; 

It differs from  zero   if for all k - 1, ..., n 

^|^=-^^I4=^(X(T). zw. ««(T)).;, (4) 
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We assume that jx*(t)/ + /t'(r)f / 0. If t»(r) « 0, then p^xnly 

D(r) j 0, since £. are bounded.    ' , 

Uhus, if conditions (4) are satisfied, then the system of equation (3) 

has the unique solution p ■• p(tr) and, therefore, the derivatives p, q of the 

function u(x, t) are uniquely defined on the line <^f from conditions (1). 

/o        k How let us assume that u(x, t)^-Cp} x(-e), t(-e)/u (c)<£C2, 1 ? <f. , 
fk ^ C1' ** u ** u on ojf » the first derivatives of u(x, t) satisfy on „Sf equa- 

tions (6.1.1), and the second derivatives of u(x, t) satisfy on,^ the differen- 

tial corollaries of system (6.1.1; (i.e., equations obtained by formal differ- 

entiation of system (6.1.1) with respect to variable x, t), then providing that 

conditions (4) are satisfied, on Jjf  the second derivatives of u(x, t) are also 

uniquely defined. 

Similarly, if conditions (4) are satisfied, we can define on JP derivatives 

of any order m of the function u(x, t) if conditions (1) are satisfied then, more- 

over, all derivatives of u up to order m inclusively satisfy on <£? all differ- 

ential corollaries of equations (6.1.1) up to order m inclusively. Of course, the 

input data must be sufficiently smooth. 

Let us note that, as we can easily appreciate, in tßese arguments it is 

sufficient to speak not of all differential corollaries, but only of those that 

are obtained by differentiating equations (6.1.1) in any fixed direction not co- 

Incident with the direction of the curve Jjf (so-called exit direction), Fox 

example, the direction of the normal is such « direction. 

This procedure of determining derivatives can be extended as far as one 

wishes if the initial data are analytic, and it permits constructing an analytic 

solution for the problems (6.1.1) and (6.1.2) for such data. This fact is the 

analytic basis of the well-known Cauchy-Kovalevski method. 

If conditions (4) are satisfied for all k ■ 1, ..., r. on curve „Jf. we 

will call Cauchy's problem normal. 

The curve ££  assigned in this space of n + 2 variables x, t, u by the 

equations 

x - x(r)s     t - t(f),     u - u°(r),        (5) 
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is called the characteristic of number k of system (6.1.1) if the following 

equalities satisfy at this curvet 

-^    -*4 .. -   ij f :_£_i_ . - -■' ■-.• ._-, i. : ::^t3 

For the case whence several characteristic values <jf, coincide on o^" , the curve 

cjf can he a characteristic of several numbers k at the same time. 

Sometimes we will also refer to the projection of the curve (5) onto the 

plane of variables (x, t) as a characteristic, bearing in mind, however, that 

equality (6) has been satisfied for it. 

Suppose the curve J£ under Cauchy's problem conditions is the characte- 

ristic of number k . The left side of the equation of system (3) corresponding 

to k - k then tends to zero. If the right side of this equation f, (t) does 

not tend identically to zero, then the system of equations (3) has no solutions 

at all in general. Therefore there does not oxist a function u(x, t) &  £. which 

on <£  takes assigned valuesu (r) that would satisfy on ^ system (6.1.1). 

Nor does there exist the solution. u(x, t) & C. to Cauchy's problem (6.1.1) and 

(6.1.2). 

Thus, if the initial curve is a characteristic, then the initial condi- 

tions (6.1.2) and the system (6.1.1), generally speaking, contradict   each 

other, and Cauchy's problem is nonsolvable*). 

For Cauchy's problem to be physically meaningful also in this case, we 

must stipulate that f,  ("C)= 0. 
o 

Thus,if the initial curve has a characteristic of number k , then the initial 

data cannot be assigned arbitrarily; they must satisfy the condition 

/».(Wct)/^). f(T). a»(T))-<*.(*(T). t\x\ «O^^ssO,    (7) 

*) From this examination follows another definition for tne characteristic, 

as a curve g£   at which a linear combination of equations of the system under 

consideration contains only interior derivatives, i.e., derivatives with 

respect to the parameter X. in the direction of the curve ,£? . 
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which is called the condition of solvability. 

Suppose the initial curve <£? is a characteristic of number k and 

suppose the solvability condition (7) has been met. Then system (3) is con- 

sistent, but has infinitely many solutions. Therefore, the solution u(x, t) 

to Cauchy's problem is not determined uniquely by the initial condition (6.1.2) 

and there exist infinitely many solutions to system (6.1.1) satisfying the very 

same initial conditions. Thus, we arrive at the general definition of the 

characteristic of system (6.1.1): 

A characteristic curve is a curve <j£ for which Cauchy's problem is either 

nonsolvable or solvable, but not uniquely. 

For the unique determination of the solution u(x, t) for the case when 

the curve «£f is a characteristic and when the solvability conditions have been 

met, several additional conditions can be imposed. Examples of these problems 

are taken up in section XI. 

Related to Cauchy's problem   is the problem of the extension of the 

solution u(x, t) through curve $£ .    Suppose the solution u(x, t)^ C. is known 

along one side of curve ^£ and it is required to extend it to the other side. 

This problem reduces to Cauchy's problem with the curve 4d as the initial curve. 

If Jzf is not a characteristic, then this Cauchy's problem is normal and 

the problem of extending the solution is uniquely solved. In this case, from 

the condition of the continuity of the extension follows the noncontinuity of 

all derivatives of u(x, t) which exist on the line <£? , in particular, there 

follows u(x, t) £• C.. If however the curve ^f is a characteristic, then the 

corresponding Cauchy's problem is nevertheless solvable, for the solvability 

condition (7) has obviously met (since u(x, t) is the solution on one side of 

££ ). However, it is solved nonuniquely. 

Let us consider, for example, a continuous extension. As we have seen, 

the valuesof u(x, t) at the curve jzf do not uniquely define its first derivatives 

p, qj therefore the continuous extension of the solution with discontinuity of 

the first derivative at the characteristic j£   is possible by an infinite set 

of ways. If however the   continuity at JC   of the first derivatives is required, 

then derivatives of higher order can experience discontinuity, so that in this 

case the extension is defined nonuniquely. 
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And so, a characteristic is a line through which a solution is extended 

nonuniquely. 

The problem of extending the solution u(x, t) through the characteristic 

^C  is uniquely solved o'lly for the case of analytic solutions, just as, obviously, 

is the case for any problem of the analytic extension of a function. 

Now we will concentrate on the normal Cauchy'a problem. By transformation 

of the variables x* • x'(x, t), t1 - t'(x, t) converting the curve J£ to the 

segment of axis t' • Q, the general problem  reduces  to a special Cauchy's 

problem with initial conditions assigned at the axis t » 0: find the solution 

u(x, t) to system (6.1.1) satisfying the initial conditions 

u(x, )) « u°(x),    a<cx<£:b. (8) 

From the boundednesäof the variables g,   it follows that this Cauchy's problem 

is normal. We will solve Cauchy's problem (6.1.1) and (8) only in the half- 

plane t > 0. The solution u(x, t) is constructed in the half-plane t ^.0 by 

analogy, when necessary. 

3. Domain of dependence and domain of determinacy. The concept of correct- 

ness of Cauchy's problem. Suppose we know the solution u(x, t) to the system 

(6.1.1), taking on the initial value (6.2.8). Let us draw the characteristic 

x - x, (x , t ,r), given by the equation 

p^*2&*i?v* ;«(*»f3f '^(iä-i; ;2;;C.."n); 

until they intercept the axis t - 0 through the pointy« (x , t ) of the half- 

plane * >0. Suppose they intercept the axis t - 0 at several points, the far- 

thestof which are denoted by a' and b'(a' < b') (Figure 1.2). The segment of 

the initial axis t « 0 a* ^ x ^ b' is called the domain of the dependence of 

the solution u at the point J^, 

Figure 1.2 
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The domain of determinacy G of the solution to Cauchy's problem is the 

name given to the region of the half-plane t ^ 0 consisting of all points(x, t) 

for which the domain of dependence a' ^ x ^ b' belongs to the initial segment 

[a, b], i.e., [a-, b'] ^ [a, b]. 

Finally, the domain of the influence of segment a'^x ^ b' of the initial 

axis refers to the domain G* of the half-plane t ^0  consisting of all points 

(x, t) whose domain of dependence has a nonempty intersection with the segment 

[a», b']. 

Since the characteristic of the system can be found only simultaneously 

with the solution u(x, t), determining the domain of determinacy is difficult. 

The situation becomes much simpler for the case of a semilinear system, when <?, 

° ^k(x' *)• ^ere *^e ^oma^n °^ determinacy G is given by the conditions 

G:  t ^0,    Xn(t) < x ^ X.,(t), 

where X,(t), X (t) denote the solutions to the differential equations 

2§Ja- max &(*.«. i)l.  ^= mln {$,(*,<*), /)). 

which take, on where t = 0, the values X (0) » a, X1(0) = b. 

For the case of a system of quasilinear equations, the a priori determina- 

tion of G is difficult. However, if we know that \\ u(x, t)j/ < Ü, then the 

following assertion is valid: 

ÖEQ. 
where 

4*!=, max  max! \U(XB(f). t. «)). X.{0) = a, 
at       *-i, ..„ « |n|<u 

i^L= mln  mln {St(*i(Q.'. «)}• Xx(Q) = b. 
dt A-l, .... * |a{<l/ ■> 

Cauchy's problem is called correct or correctly formulated if its solu- 

tion u(x, t) exists, is unique, and expends continuously on initial data. Of 

course, the question of the metric in which the continuous function obtains depends 

on the classes of the solutions and initial data under consideration and is solved 

in each of these classes in a different way. When proving the existence theorems 

for the solution to Cauchy's problem, it will be stated in which sense the conti- 

nuous dependence of solutions on initial data obtains. 
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Let us explain these concepts with the example of a linear system with 

constant coefficients: 

<Jupt  + A^u/^x  -0. (1) 

The invariants 

r, » 1, u = 1 u 
k  k   a a (2) 

satisfy the equations 

i.e., system (1) is decomposible into n independent equations. The character- 

istics of system (1) are straight lines: 

Therefore the domain of determinaty of the solution to Cauchy's problem for 

system (1) is the triangle 

G:  t ^ 0,  a + £t £ x ^ b + £,t, 

and the domain of dependence of the solution at the point </n  (x, t) is the 

segment [a1, b'] of the axis t ■» 0, whers a' = x - %  t, b1 * x "%A  (Figure 1.3). 

a       a' 

Figure 1.3 

The functions r,(x, t) are easily defined: 

Tk(x, t) - fk(x - Skt), 

where f, are arbitrary functions. 

If the initial conditions  u(x, 0) ■ u (x),  are posed, then by (2) 

rk(x, 0) - 1 u°(x) - r°(x). 

From whence 

Returning by formulas (2) to the functions u, we get 
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Fro« this formale there directly follows the continuous dependence on initial 

data — matrix A and initial functions u (x) -*- of the solution to Cauchy's 

problem of system (1) with constant coefficients. 

4. Method of characteristics and review of results. Sections Vll and 

Till will set forth in detail the application of the method of characteristics 

to proving the principal theorems on the solvability of Cauchy's problem. 

Bssre we will only briefly describe the concept of the method of characteristics 

in order that the reader   not interested in details will grasp the method of 

characteristics and the results achieved without having to read the proofs of 

the related theorem. 

Suppose that for the system 

(1) 

the initial conditions  u (x, 0) - u (x) (2) 

ace formulated. For saks of simplicity, assume that a ■ -co, b - <TOJ the quan- 

tities 1 , 2L , f, , u ars assumed to be sufficiently smooth functions of their 

variables. 

Suppose that in the etrip  0 ^ t ■£.  t the smooth solution u(x, t) 

to problem . (1), (2) is known. The functions 

Sfiil&ffiiÄÖfr. A« t :iJ* 
can then be regarded as functions of the variables x, t, and system (1) can be 

considered as a system of linear equations 

■'./VV--'< 

ISA*:! 
and it can be written in the invariantst 

7i£X wmm (3) 

x r Here the functions 8k(*> t) are expressed in terms of u(x, t), t, 1 ,  4, 
-k and ihe first derivatives of 1 . 
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Each of the equation (3) can be integrated. Actually, if we let x 

x,(x°, t°, "C ) stand for the solution to the problem 

then the expression -gz. + ^ -gz\ is the differentiation operator with 
o respect to the variable r in the direction of the characteristic x - x^(x , t , 

-t   ); therefore 

x-mm 

where r are equal, in accordance with 

In view of the hyperbolisity of system (1), matrix ((1^ )) is nonsingular, 

therefore u(x, t) can be determined from (4)1 
"HUES 

(cf formula (3-1-4})* However, the solution u(x, t)is unknown to us and, there- 

fore, so are the quantities 1 , €,* f.. So, with the exception of the most 

simple cases,construction of the solution u(x, t) does not ruduce to this 

uncomplicated procedure, but requires the application of the method of successive 

approximations. 
13). . 

Suppose that in the strip   0 ^ t   s£ t an approximate value u(x, t) of 

the solution to Cauchy's problem (1), (2) is  known. Then we can determine the 
isi Is)     <*•> en-1) 

quantities 1* ,  i* , f.  and find the next approximation of u (x, t) by the 

above-indicated method. 

Thus, the approximation u (x, t) can be regarded as the results of spplyin^ 

to u (x, t) a certain operator Ti     u (x, t) • Tu (x, t). 

This operator is nonlinear and contains the operation of differentiation with 

respect to x, t and integration along the characteristics. The solution u(x, t) 

to problem (1), (2) under this approach satisfies the equation u(x, t) - Tu(x,t), 

which obviously symbolically describes Cauchy's problem (1), (2). To prcve the 

convergence of successive approximations|^u' (x, t) } , we must first of all 

establish their uniform boundness in some strip  0 < t < t . Then, the proof 

of convergence reduces to establishing the complete continuity of operator T 

(i.e., the fact that it.maps any bonded set into a compact set). Finally, it is 
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shown that the limit possesses the required smoothness and is  a solution to a 

prohlem. Ordinarily this last stage involves investigating the sequence of 

derivatives d^u'/Z x.   These problems are studied in detail in the next two 

sections. 

The first results on the existence and uniqueness of solutions to Caucby's 

problem were obtained by the Cauchy-fto-wLeväcBjß method for systems of the Cauchy- 

Kovalevdoj»! equations on the assumption that the initial data of the Cauchy's problem 

were analytic. These burdensome restrictions detract from the value of the results, 

since Caucby's problem for hyperbolic equations is best considered with minimum 

requirements on the smoothness of initial data. 

In 1927 H. Levy (cf [ll]) showed that essentially the solution to a hyper- 

bolic system of linear equations with two independent variables reduces to the 

solution of Cauchy's problem for systems of ordinary differential equations. 

This work laid the foundation of the classical method of characteristics*). 

We will briefly present here the result obtained recently on the queaiior. 

of the solvability of Caucby's problem for hyperbolic systems of equations wish 

two independent variables. 

In 1948 K. 0. Fridrichs (cf [12]) considered the problem of the existence 

and uniqueness of the solution to the problem (1), (2) for systems of linear, 

seuilinear, and quasilinear equations. For the linear system K. C. Fridrichs 
k 

proposed continuous differentiability of 1 (x, t), Lipshits-continuity of %Ax,  t), 

and the continuity of fk(x, t, u) - r (x, t) + f^_ (x, t) u^ . Given these condi- 

tions, he   established the existence of a solution in the broad sense on the 

assumption only of continuity of u (x) (the concept of the solution in the broad 

sense will be taken up in section VII). For 1 system of quasilinear equations 

Fridrichs required that 1^ , £, ^ C2, f, €.   C.» u (x) €z c„. Here the existence 

of the solution u(x, t) G. C2 was proven. 

R. Courent  and P. Lax (cf [6]) used the concept of an extended system in 

invariante. In spite of the elegance of the prcof, iu this work more rigid 

assumptions on the smoothness of the initial data are made. Thus, for example, 

*) The method of characteristics was developed earlier for a single equation. 
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the existence of third derivatives is required for the initial functions u (x). 

In papers by A. Douglas (cf [13J) and P. Hartman and A. Vintner (cf [14J)> 

published in 1932» the solution to the problem (1), (2) is constructed on the 

assumption of continuous differentiability of initial data. A. Douglas first 

constructed the solution for smoother initial data; these initial data are consi- 

dered by means of passage to the limit. F. Hartman and A. Wintner constructed 

the solution vier these assumptions directly by the method of characteristics. 

Lemma 2, presented in the next section, plays a key role in their construction. 

Thus, the minimum requirement on initial data under which the existence 

and uniqueness of the solution u(x, t) £ C, have been  proven at the present 

time is the requirements of the continuous differentiability of these data. It 

must further be required that, as shown by the simplest examples, no solution 

u(x, t) ^ C. exists if the initial data are not differentiable. 

Let us note that several existence theorems can begotten by specialization 

of more general theorems to the case of two independent variables. Thus, for 

example, papers by I. G. Petrovskiy (cf [15]), and S. A. Khristianovich (cf 

[16]) presented general results, from which derive, in particular, existence 

theorems for the case of interest to us. Let us however note that here the 

requirements imposed on the initial data are naturally overstated. 

Finally, we make several remarks on the presentation of these questions 

discussed in this book. Cauchy's problem for the linear system is studied on 

the basis of the paper [12] by K. 0. Pridrichs; the existence theorem is proven 

with these same assumptions. 

The method of characteristics as propounded by F. Hartman and A. Wintner 

is adopted has the basis for systems of quasilinear equations. However, our 

presentation differs in several key respects. We cite a number of them. Proof 

of the boundness  of successive approximations and their derivatives is usually 

extremely cumbersome in the method of characteristics. Gross estimates using 

the  "majorant"    which we employ essentially considerably simplify and make 

more general these estimates by bypassing the necessity of arithmetic computa- 

tion. Another point of distinction in our presentation is in the proof of uniform 

convergence in the domain of determinacy G not only of the successive approxi- 

mations, but also of the sequence of their first derivatives. 
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5. Two lemmas. 

Lemma 1. Suppose that the vector-function u(t) - {u., ...» u } continuous 

on the segment O4J t ^ t satisfies the inequality 

1 

\\u«n<U9+ f M(T) + B(x) max ||«G)||]rfT, (1) 
0<J<t 

and suppose that when 0 ^ t $ t   JA (t)| ^ A,  J B(t)|<: B,  D ^- 0. 

Then when 0 ^ t ^ t the following estimate obtains: 

i«(0||<mwi«(t)||<£V'«4:4(»,W-1)-     (2) 

When B ■ 0, formula (2) is transformed into the obvious inequality: 

|a(0K max |«tt)|<<VMf. 
"  0<T<« 

Proof. Let ü(t) stand for the quantity max II u (T)H • Suppose t ^-0 

is any number from the segment [o, t ] and 0(t) - If uvt*)f|  (0 ^ t* ^ t). 

Writing the inequality (1) for the point t', we get 

jj« if) B« t/ (0 < t/0+ J W + BU Ml dt < 

<t/g+ J H + BU'{x)) dx = t/0+ ** + B J «/ (t) dt. 

Applying this estimate many times, we will have 

U(f)<U0[l + Bt+l+^£-]+ 
■■•■        -ufA^-l- I    <B<>***   l I f/tf^'*3 

from whence follows inequality (2). 

Corollary. Suppose the continuous vector u(x, t)£- C. satisfies the 

inequality 

\w\<Mti+\&M 
Then estimate  (2)    holds,    where      U    -  |ju(0)|f ,    A - max|]f(t)/J , B - m|x 

li((fi(t))!l. 
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Lemma 2. Suppose u(x, t,r), v(x, t, r ) ^ C.. Then the function 

'  ,...V     ,.<-. I h, ■ > :^ 
is continuously differentiable (l(x, t) fiC^). 

Proof. Let us compute, for example, tlie derivative bl/^x.    We havei 

^   .    T"-' '•■■■.-- ■•■■-•■■•■' . * .^B^i^'C^ii 

*   "    l;5 - :J'   .'''-fcY'.V, ..'.* .*^3s 

Performing integration by parts in the last integral and passing to the 

limit as Ax -^0, we get 

+ j [8.(X, *, t)0t(*. *, t)-M*' '. «)M*. '. *)1**|   ,,) 
...... -j.. • ■ • ■■■ -;,-! -.J^ "%*! 

Formula (?) proves lemma 2 and simultaneously gives us a rule for computing 

derivatives of the function l(x, t). 

Section VII. Cauchy's Problem for Linear and Semilinear Systems 

1.   Existence and uniqueness of the solution of Cauchy's problem in 

the broad sense. Let us consider the semilinear system 

&+/»(*..o'-fer'^f:'$- 7 ■ • i-'M 
and suppose that the system 

&+U(jt.0-T8-Äf»C».<»f) "T 
(3) 

/;II*«(      ■ ?ii'V 
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is the notation of system (1) in invariants. 

Suppose that for some segment [a, b] of axis t <- 0 the initial conditions 

u(x, 0) ■ u (x). (5) 
are assigned for system (1). Note that the segment [a, b] can be unbounded, 

Denoting r, (x) ■ 1 (x, 0) u (x), we get the initial conditions 

r(x, 0) - r°(x) (4) 

for system (2). 

Let us assume that the functions A, §,, 1 (r C. in6 (recall that 6 

refers to the domain of determinacy of our problem), f,, and 3f}/aud 6 C in 

the domain G X (u f  - oo</|u//< ooj, u (x) G=.  C on [a, b]. Then gk, a 8^*^ 

£: CQ in the domain G X {r j -oojjrj(< DO),  r°(x) <c CQ on [a, b]. 

The functions r(x, t) continues in 6 are called the solution to Cauchy's 

problem (2), (4) in the broad sense if r(x, 0) — r (x) and if each of the 

functions r, (x, t) is continuously differentiable with respect to the variable t 

along the corresponding characteristic x ■ x, ( £» T , t), where 

fflftfeffi *« 0. Ö*» «*»(** t.r(*t, OX (5) 

übe vector u(x, t) obtained from the vector r(x, t) by formulas (J.1.4) will be 

called the solution in the broad sense of Cauchy's problem (1), (3), 

The uniqueness theorem of the solution in the broad sense. Suppose that 

two solutions in the broad sense u(x, t) and u(x, t) to problem (1), (3) exist 

in 6. To these correspond two solutions in the broad sense r(x, t), r(x, t) of 

problem (2), (4). 

We introduce the difference v(x, t) - r(x, t) - r(x, t) (v(x, 0) i)) (6) 

Subtracting from equation (5) written for the function r(x, t) this same equation, 

written for r(x, t), we get 

.^iisHpisW^'h-*'! (7) 

where g  (x, x)  denotes the quantities 



By the definition of a solution in the broad sense, the functions r, r, v axe 

continuous in G. Therefore the functions g   are continuous in G and are 

boarded in any strip 0 ^ t ^ t . 

Integrating equation (7) with respect to t from 0 to T , allowing for 

condition (6), we get     ,--•-•>  i ;•■•••• ■- 

«*(*. t)« f ^»(*». *)«„(*,. f)dt      (ft-1 »). 
■ ± : •.•';*«!:...■-'-i-'.i- -' '• ■■■  -—— - -' - 

In view of the bouraedness of matrix ((g , )), hereafter applying lemma 1 from 

section VI it follows that everywhere in G  ||v(x, t)// - 0 and, therefore, 

r(x, t) ■ r (x, t), u (x, t) « u (x, t). The theorem is proven. 

Of course, from this theorem naturally follows that the classical, i.e., 

continuously differentiable, solution to Cauchy's problem is also unique. 

Existence theorem of the solution in the broad sense for a linear system. 

We will construct the solution to the problem (2), (4) for a linear system by 

the method of successive approximations. 

k       k 
Suppose gk(x, t, r) - g (x, t) + g^ (x, t) r^ . By formula (5), the 

solution r, satisfies the equation 

r»(*. Qmtf,(*tAx* <* 0))+1 **(*»<#. U t), T)4t%tl \ ■, ;*', J 

. .. -,,;.  , ,.,'.' *; . a.(   §-:.   -.  :t *■■■   >: r' ...0 »ttJÜ 

applying t)"e method of successive approximations, we Bet 

.■is ,i.k s*v,>, x.    *-i       •< ■':.'■••■'• "■■ 

(* = 0. 1. ...). 

7S(*. 0 = rj(jf4(x. f. 0))+ J **(**(*. '. t). T)rft. 
where <, jf :'"';|- 

Hence it is clear that *k (x, t) are defined and continuous in G and have a 

continuous derivative in t in the corresponding characteristic direction. Let 

us prove the uniform convergence of the sequence {^r'(x, t) } . 
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Prom formula (9) follows 

ll^i^i^^^^SI   (io) 

where 6r denotes the intersection of G with the strip 0^ t^ c , and B is 

the constant bounding the norm of matrix ((g^ )) in the domain G. 

Denoting 

let us writing (10) as 

y?fJi|ili 
ri;,v^K'W^>

>*ift??*jfJ?y 

Then 

W<W1? when ÖO 

and, therefore, the sequence{^r'(x, t)} uniformly converges to the continuous func- 

tion r(x,t)if the domain G is finite with respect to variable t. If jowever the 

domain G is infinite in t, then the sequencer'(x, t)} converges uniformly in any 

of its finite (v»ith respect to t) subdomains G. . Passing in the equality (9) to 
*o 

the limit as s —*• oo , we get the result that r(x, t) satisfies equations (8). 

Since. x,(x, t, T) - x,(x , t , T ), if the point (x , t ) lies on thin character- 

istic, then equalities (8) can be rewritten as 

rt(xt(xv tv <). f)-i\(x;[xv tv 0))+J **(*,(*„. tv^ T)rft+1 

+ I *J(x*(*o- '<>• *)■ *)'*(*»(*<>• VT)' OT (11) 

From the continuity of the integrands   follows the continuous diffei- 

entiability of the right side of (11) with respect to the variable t. Therefore, 

r, (x, t) is continuously differentiable along the characteristic x ■ x. j here 

the equality (5) is satisfied. Thus, r. (x, t) is the solution to the problem 

(2), (4) in the broad sense. By fonralas (3.1.4) the solution u(x, t) to the 

problem (1), (3) can be obtained. 
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For the case of a semilineav system, successive approximations are 

assigned analogously to (9): 

and converge uniformly in the subdomains G  of the domain G< in which they are 
t 

uniformly bounded. ° 

Thus, the construction of the solution in the broad sense for the semi- 

linear system differs from the linear case only by the fact that the domain G. 

in which the solution of the semilinear system remains bounded appears as the 

domain of convergence of the successive approximations. We will delay the dis- 

cussion of the boundedness of tie solution to section VIII. 

2. Existence of the classical solution to Cauchy's problem for the linear 

system. Suppose the system (7.1.1) is linear, i.e., b(x, t, u) « b (x, t) + 
k       4 

B(x, t)u. Then in the system (7.1.2)   gk(x, t, r) - g (x, t) + g^ (x, t) r^, 

where g (x,  t) - 1 o., and 

V$*p|£i+{# t1*-*^ >.       (1} 
where y* » 1^ B.j A^ (cf formulas (3.1.2)). 

k i*   k 
We assume that 1 , £,, B^p ^ £. in G. Obviously A», y  c= C. in G. 

Suppose also that u (x) <£ C.» r (x) £L  C.. 

Let us show that the solution constructed above is under these assumptions 

continuously differentiable in G and, therefore, yields the solution to the problem 

(7.1.2), (".1.4) in the ordinary sense. 

In the case (1) formula (7.1.9) becomes 

f ^+f$$f*fc^^(i>i*. f.D. <l*ru(x>(x,t, -s). *)<**.     (2) 
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Obviously, from these assumptions there follows the continuous differentiability 

in G of the first two members of the right side of (2) if in G the approximation 

^r'(x, t)     is continuously differentiable. As for the last member of 

formula (2), it is also continuously differentiable in G iPr'(x, t) £r C1. This 

follows from lemma 2 of section VI. 

Differentiating (2) with respect to variable x (the last term in formula 

(6.5.3))» we get 

(*+i>  (0) . t r »    1*) 1 

£-£+/*^[#.+*£]*+ 
+ [^T/^**(*> '■ T>' T)L/«(*' 0'«<*■ f>- 

—[^ #(**(*. '• T). T>]t./S (*»(*. t. 0). 0) ?„(*»(*. /, 0), 0) + 

+ J {^k(jf»(*. /. T). T)r« (*»(.*. *, T). T)]X 

x[^'e(**(*. '• x). *)]- £[»S(*»(*• '. T), t) ?«(*»<*, /. T). t)]x 
X^'*(**(*. '• X). T)]}rfT. 

Hence it follows that 

^      £ 
~SS ^F <AHx. f)fr(x. 0-V(je, o| + 

1 

+j ^(x. f, T) max|| r —("r)J|</T-|- 

^-J^»:*, <, t) max "5F       51" dx, 

1      2      3 
and the functions    A , A , A   are continuous and bounded in G. 

Since the sequence [*T'(X,  t)J   converges in G and the quantities A , A , 

A   are bounded in G,  then the uniform convergence in G of the sequence for//d x } 

is proven on analogy to the preceding.    This means that the above-constructed 

solution in the general sense is continuously differentiable in the variable x. 
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The continous differentiability of r(x, t) with respect to t is similarly- 

proven. Incidently, this already follows from the continuity in G of the 

combination of derivatives 

Thus, when the formulated conditions are satisfied, the solution r(x, t) in 

the broad sense is also the solutions to Cauchy's problem (7.1.2) and (7.1.4) 

in the ordinary sense. Passing by formulas (3*1*4) from r to u, we conclude 

that the resulting function u is a solution to the system (7*1.1) in the ordi- 

nary sense. 

The following assertion is quite analogously proven for the semilinear 

system: if in the domain G. the solution u(x, t) of the problem (7.1.1), (7.1.3) 

is bounded and 5. , 1 g? C.; fk(x, t, u) ^ C1, u (x) ^ Z., the aboye- 

constructed solution in the broad sense is continuously differentiable, i.e., 

u(x, t) 6 Ct. 

By direct differentiation of systems of equations (7*1*2) we see that on 

tnese assumptions, the derivatives p, q satisfy in the broad sense the equations 

of the extended system. 

3. Some properties of solutions of linear and semilinear systems. The 

solution to Cauchy's problem in the broad sense for linear and semilinear systems 

is uniformly continuous in G if the domain G is finite; if G is an unbounded 

region, uniform continuity obtains in any finite region of G. Here, for the 

case of a semilinear system the uniform continuity of the solution in the broad 

sense obtains only in the domain G. of the boundedness of the solution. These 

properties are easily derived from formula (7.1.8) defining the solution r(x, t). 

in the case of the classical solution (u(x, t)g= C,), the derivatives p, q 

satisfy in the broad sense equations of the extended system (cf subsection 3 of 

section IV). Noting that in the case of a 3emilinear system the extended system 

is linear with respect to the derivative p, q, we conclude that the derivatives 

of a solution to a semilinear system remains bounded in the domain G. in which 

the solution itself remains bounded. 

Suppose now u(x, t) and u(x, t) are t<o solutions in the broad sense to 

Cauchy's problem, whose initial data we denote by 1 , ^ , f , u (x) and 1 , 

- b2   •- 

^^«^^^^^fc- 
Jllif'JfMMiiitniMni, n    1    T      ■■-inrtfiäT.-iin «*— 



1 v» ?v» 
u°(x)> Ve will assume that the initial data satisfy the conditions 

formulated in tho proof of the existence theorem of the solution in the bread 

sense. 

It is easy to see that when £k, fk ^ C1 x^x, t, r )  ** x^x, t, r), 

if f —*• £ i  then when f,  -—*•   f. , G  *- G. Prom formula (7.1.&) it 

follows that if  fk —-** £., lj_ —*■ 1,, and so on, then rk(x, t) —-*- r, (x, t), 

u.(x, t) —— u. (z, t). Thus, the solution to Cauchy's problem in the broad sense 

depends continvcusly (in the norm C) on the initial data of this problem. Thus, 

Cauchy's problem is correct in this formulation. 

If the initial data are continuously differentiable, then as we have seen, 

the solution has continuous derivatives and is classical. Of course, the above 

statements on continuous dependence apply also to these solutions. 

If, further, not only the initial data, but also the derivatives of the 

initial data uniformly approach each other, then not only u —-*• u, but also 

This follows from the fact that the derivatives of the solution satisfy, in the 

broad sense, the equations of the extended system which are linear with respect 

to the derivatives. Similar conclusions can be made also about derivatives of 

higher order if the requirements on the smoothness of the initial data are made 

suitably more rigorous. 

The construction of the solution to Cauchy's problem reduces to constructing 

a representation that transforms the initial function into the solution to Cauchy's 

problem at the time instant t. Let us consider, for sake of specificity, the 

linear system with right side equal to zero (system (7.1.1) with b » Bu). Then 

u ■ Su°, where the operator S is linear. Obviously, the domain of definition of 

this operator is a set of continuously differentiable functions. We will consider 

S as the mapping C —*• C. Then the operator S is defined on an everywhere-dense 

set (which is a set of continuously differentiable functions in C) and is bounded 

on the set. According to the familiar theorem of functional analysis, S permits 

continuous expansion with norm preserved to the entire space C. S* is the result 

of this expansion. Then u » S*u , u €=- C  is the solution to Cauchy's problem 

in the broad sense whose existence we have proven to be independent. 

- $- 
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Hence it follows that to construct the generalized (in the sense of 

extensions of operators) solution, it is sufficient to approximate the initial 

function u. (x) by an element of everywhere-dense set u < (x) (i.e., "to smooth" 

the initial function) to construct the smooth solution u^ - Su< , and to pass 

to the limit as % •   m  0, using the corresponding metric. 

Similar considerations apply also for the semilinear c^se. It is com- 

plicated only by the fact that the operator S assigning the solution to Cauchy's 

problem: u » S(u ), is now nonlinear. It is determinate, bounded, and continuous, 

as the operator from C to C on a set of continuously differentiable functions 

satisfying the equality 

||u°|| < U+ ,    U. - const (1) 
to      *o 

(0 ^ t <: t is the strip in which the solution is considered), wuite analogously 

to the foregoing case, the operator S can be extended to the continuous bounded 

operator defined on the entire set of elements C satisfying inequality (1). The 

result of this extension, just as in the linear case, yields the solution in the 

broad sense. 

We stress that generalized solutions of linear and semilinear equations 

are, thus, limits of the classical solutions in a given metric. 

Section VIII. Cauchy's Problem for Systems of <#iasilinear Equations 

1.Growth estimate of a solution and its derivatives. Majorant system. 
k   k 

For the system of quaslinear equation 1 ■ 1 (x, t, u); jj. ■ 5fc(x» *» u)« ^ 

this case tne construction of the solution of Cauchy's problem is complicated 

compared with the linear system. Let us indicate several points of distinction 

for this case; 

(1) for a system of quasilinear equation we can no longer introduce the 

concept of a solution in the broad sense in view of the absence of invariants; 

(2) the domain G of the determinacy of the solution to Cauchy'a problem 

is defined simultaneously with the solution u(x, t) and, generally speaking, 

cannot be prespecified; and 

(3) the solution u (x, t) and its derivatives do not remain bounded. 
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Therefore, first of all we establish the pre—estimates of the solution 

and its derivatives and indicate the domain G £ G of variables x. t, in which 

the solution and its derivatives remain clearly bounded. 

Let us introduce the domain G (u) of the space (x, t, u) as given by 

the conditions: 

■;/  «o<*.; *o>:*' "  ■ ■'■• H 

Suppose     /*(*. t, «), !»(*, U *). J*<Ai> *)£Ci(9M)j for any Ü >0j u°(x)e 

C^a, b). 

By subsection 3 of section IV, the extended system for a hyperbolic 

system of quasilinear equations is of the form 

d*> d*< du* 
fc*-3£-=c5r*; ~ST=='>k' (I) 

where 

PM*=F*(X. t. a)+fi(x. t, «)^„. 

The quantities £~k\   y* , $r*      ; F*, j£ are expressed by 1* , g^., f , and 

their first derivatives. Therefore these quantities are continuous in the domain 

G (U) for any Ü > 0. Let us introduce the following notation» 

iT0 (£/) ~ max || & (jr. /. a)|f,  «T -» {^"*}. 
o.<tf) . | 

f,(U) = max SiTS(*. '• «)L i 

aT2 ({/)*= max  max J<£"2p,(*, *. «)J.    i 
o.<i/) fc-i « 

#%((/)« max H/^x. *. «OR.  - 

f,(t/) = m«x|fi(*. t, u)\ -rs 
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and let us consider a system of two ordinary differential    quationss 

'Ä* -Z^foW+fiMP + J'tiU)**. .   (2) 

which we will call the majorant system. Let U , ^7* stand for the quantities 

For the system of equations (2), (3), we assign the initial conditions: 

&{0)  - VQr U(0) » U0. (4) 

For a comparison of equations (1), (2), and (3) it follows that if 

then 

y~~ J' iu(*. oB<c/^). u^(*. oii<^(o.     (5) 

Since from (4) follows the satisfaction of condition (5) when t - 0, then for 

any t >0 fju (x, t)//^U(t), \\V* i.*- t)/|^^[t). Thus, the functions 

U(t),^(t) majorize the growth of the solution u(x, t) and its first derivatives. 

Suppose that when 0 < t $ t the solution U(t), ^(t) of the majorant 

system satisfying the initial conditions (4) remain bounded. Then clearly when 

0 ^ t <:  t the solution u(x, t) and its derivatives p(x, t) remain bourded. 

Therefore we can determine the domain G <S. G by specifying it as follows» 

,    0j»{ft<V<V    *i (0 <*<**(*)}• 
a. ^LWB   mat'    mas   {|»(^,(0. '• «)}•      ^i(0)»c 

#. 9    join-,-;•    mln    {S*<^2(*). <• «))-   #,(0)=*. 
Je—1. .,..'» 1«I<W(0 

We will construct the solution to Cauchy's problem for a system cf quasi- 

linear equations in the domain G S. G (Figure 1,4). 
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I- "! « - «i«e « tte ^.oran, 8yste„ fop sererai ^^ 

''«(*. 0. l4 = iJk(x. o, s 
(1) Linear system. Suppose 

where _,-• 

- also iinear.    ais MaM ^^ - ■"«* «.*. of linear equatiolls 

"iu ,he soiuti°"-<-«) - - ~vo°^r;r si^^te", - *»»» 
runt, region of the ha]f-plane t   > „     _ P tX' »' re«"" »ounded in «ny 

Figure 1.4 

k    k v- (2) Semilinear system. Suppose 1^ » 1^ (x, t), 5k - %ir(x'  *)» *> " 

ffc(x, t, u). Then ^~2(ü) * 0. The majorant system (2), (~j>)  takes on the form 

Hence it follows that ^P (t) is bounded if U(t) is bounded. This Tact expresses 

the general property of solutions of semilinear systems the derivatives of the 

solution remain bounded as long as the solution itself is  bounded. 

2. Theorems of the uniqueness and existence of a solution. On the assump- 

tions made in subsection 1, let us consider the Cauchy's problem 
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First of all let us prove the uniqueness theorem.    Suppose that in the domain 

G exist the two solutions u(i, t) and u(x, t) to Cauchy's problem (1),  (2), 

Then the difference v(x, t) - u - u satisfies, in domain G, the system of linear 
equations 

and the  zero initial conditions      v(x, 0) « 0.    Here we introduce the notations: 

Tl = fa(x. t, u{x, 0).   U = !*(*. '. «(*. 0). 

/>/{ if» (*. t. ü+Xv(x, 0) — 

dx       dOa (l*'lk)tx.t.B+ko)}dL 

(3) 

-k    - 
The quantities 1 , ,  £ , are obviously continuously differentiate in G, and 
-k 
f      are continuous. 

By the uniqueness theorem of the solution to Cauchy's problem for the 

system of linear equations established in section VII, we obtain the result that 

in G v(x, t) • 0, i.e., u(x, t) - u(x, t). The uniqueness theorem stands proven. 

To prove the existence theorem let us employ the method of successive 

approximation. Suppose we have constructed the approximationv,u/(x, t) £ C . 

Define u '(x, t) as a solution to Cauchy's problem for the linear system 

W 
/(*. /. ■(*. ')) [-£-+!» <*. t, u(x, m^r' 

(») 
=/*(*. /. «(*. 0), (4) 
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(5) 

taking on the initial values (2)t 

From the existence theorem of the solution to the linear system of equations 

established in section 711 it follows that in the domain of determinacy G ' 

for Cauchy'a problem (4), (5) there exists the solution^ ü '(x, t) ^ C.., so 

that all successive approximations are defhied, and continuously differentiable 

in the domain^'. 

The first stage of our proof vill be proving the existence of some domain 

0  belonging to all domains^G, and also the domain G, and sucn that successive 

approximations and their first derivatives are uniformly bounded in this domain. 

Denote "^  . 4 " :' (*-» i£l 

^ :•— >   . r i 
and let us write the extended system for the linear system (4). It is of the 

form 

m n% « <*>■ Jl+I»(ft"/. «)^-*=«^*(*. t, «)+ 

(6) 

We will not here write out explicit expressions for the functions appearing 

in the system, since they are obtained quite analogously to formulas (4»3«16) " 

(4.5.19). Let us merely note that they are associated with the functions appear- 

ing in the system (8.1.1) by the following obvious formulas: 

(7) 

Along with system (6) let us consider the system of ordinary differential 

equations 

-69 - 

. .  , 
^^■'^''^■^■""^-"iyihrtiHiiiiiiHT itiii IHIHMUgMIBi 

■ ii.ifnrTiMr'a.va iiiriMiniiiiiriiiiii-iinTliiii 



f 1 
(8) 

where the functions ^ , P , P, are defined in subsection 1, and 
o/o  o  1 

;# 
!?''«<«''* 

For system (8) we assign the initial conditions: P (0) - £P , tf (0) ■ Ü (com- 

pare with conditions (1.4)). 

Since f-om (7) it follows that ^(U) <: 4>.,(U), 3"2(ü) ^£2(U), the 

solution to system (8) majorizes the solution to majorant system (8.1.3) - (8-1.3): 

U(t) < tf(t), ,y(t) < P(t). So if the domain 6 is constructed according to func- 

tion u(t) just as domain G was constructed in subsection 1 according to function 

U(t), then G ^ G. 

Now let us assume thav all the successive approximations^u' satisfy the 

inequalities k.-t, 2.,    -,s, 

Denoting 

i«i!<ö(o.  m<P(th 

v * ■ ■ X 

(9) 

from system (6) we have 

*jgU-<#»o<0>+'
,i<Ö>A 
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I 

such that, obviously, ^3+1(t) ^ U(t), <78+1(*) ^..P(*)« Since the initial 

approximation can be chosen so that (9) is satisfied, then we have thus proven 

that all successive approximations satisfy equalities (9). Hence follows the 

existence of the domain G belonging to G, as well as to all domainsv§' in which 

inequalities (9) are satisfied. 

The second stage of our proof will be to demonstrate the uniform conver- 

gence in the domain "G of the sequence luf 

Suppose 

Then from (4) we get 

.ml^%fa*yb£fcmfi /. mam 
jn 

imvjmm where everywhere in G, by virtue of (9), 

Since the domain of determinacy of the system contains the domain G, then 

by integrating along the characteristics, we obtain for each point in G 

such that 

where 

(«+0 fA*\m     mi***).-      >-^ 

,     ■- 1 • '-•-■• --    ;' 

max  !jr[|. 
(x. t)€0. t<< 

Employing lemma 1 of section VI, we get 

or 
W)<Cj\?,(T)dT. 

which then proves uniform convergence in G of the sequence / u'}. 

Now let finally advance to 'she last step of the proof. Let us show 

that derivatives of successive approximations uniformly converge in the domain 

G. Obviously, this is tantamount to proving uniform convergence of the sequence 
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We first prove the equicontinuity of this sequence in x. In other words, 

we show that there exists a function M(<5), M( £ ; ——<*• 0 when <§-—*• 0, such 

that everywhere in 'S and for all s 

where x" - x» / ^ <S. 

•), Above  it  was shown that the sequence Sfj» \  is uniformly bounded. Hence it 

follows that the functionsHr(x, t), and together with them the functions 

u.> 
(cf systems (6)) are equicontinuous in G. Moreover, from the equicontii.uity of 

the functions £, (x, t, uj there follows the analogous property of the functions 
(s) x£ '(x, t,r) giving the characteristics of system (6). 

Therefore, denoting 

■- 7% 

Af,(f, ö) = max  sup ||^(je*. T)—^»(j^. T) 

and integrating equations (6) along the characteristics, we get 

'■"■■','' ' 

\. .iU:*! ■  - ;-.   '  ,..« 
where the function N(<3) is such that N( 6) —•" 0 when <S -—*- 0. Using lemma 

1 from section VI, we conclude that the required function M( <§ ) exists such 
(a) 

that the sequence j^j>'I    is equicontinuous. 

Since, by the familiar Arzela's lemma, from any uniformly bounded and 

equicontinuous sequence we can separate a convergent (uniformly) subsequence, 

then some sequence i*is I , therefore also { P } is uniformly convergent in 

G to the continuous function p^ . By the familiar theorem of analysis, this 

(A) means that the function u, >» lim vuy. 

au^/äx -p 

is continuously differentiable in G and 

c(i) Hence it follows that the family Jvp' I has only one limit point, and 

therefore the sequence J^p' I   is not only compact, but convergent. Thus, the 
(s) (s) 

proof of the convergence of the sequencevp' (consequently, also of vq') is 

complete. 
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Passing in the system (4) to the limit, we can conclude that u with 

a solution to problem (1), (2). The existence theorem is proven. 

3. Certain properties of solutions to Cauchy's problem for systems of 

quasilinear equations. Suppose u(x, t) and u(x, t) are two solutions to Cauchy's 

problem for a system of quasilinear equations, corresponding to initial data 

/* t    t   »°. 7» F 7   £° We will assume that the initial data 
v »*• /»»»•* 0' »*• /*• u • 

of these two Cauchy's problems satisfy the conditions in subsection 2, i.e., are 

continuously differentiable. 

In the intersection G of the domains of determinacy of solutiois u(x, t) 

and u(x, t), the difference v(x, t) = u(x, t) - u(x, t) satisfies the system of 

linear equations „__    >_, ■ 

k where y  , Af, are bounded and continuous in G and Af,   tends to zero when 

Ti- I  A-'fc h A 

As we have seen in section VII, solutions of systems of linear equations 

depend continuously on initial data of the Cauchy's problem. Therefore it follows 

from this that in G v(x, t) ^ 0 when 1 

and v(x, 0) - u°(x) - u°(x)^>0. 

7k 
!*' => 5 ., f. => f, k  k ^ k 

Here, however, we must make a clarification. It is essential that the 

initial data of each Cauchy'n problem have bounded derivativen. 

In contrast to the case of a semilinear system, the strip 0 .< t $ t 

in which the solution u(x, t) (and its derivatives) remains bounded depends on 

the derivatives of the initial functions and t «*—*• 0 if ||du /dx \\    ■ ■ »■ o=>. 

Therefore the continuous dependence of solutions to Cauchy's problem for a 

system of quaailinear equations obtains only in the case of initial data with 

uniformly bounded derivatives. 

If as before we symbolically write out the procedure for the solution 

of Cauchy's problem in the form of the equality u(x, t) - Su (x), the nonlinear 

operator S defines the solution u(x, t) only in the domain G of the half-plane 

t ? 0. The width of the strip 0 < t^t in which the domainG is enclosed depends» 
0 

on the derivatives du /dx   and tends to zero as (|du /dx || —•" &=>, 
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Therefore the operator S, in contrast to the case of the linear syetem 

does not admit of extensions to the class of continuous initial functions u (x). 

For this reason the generalized solution to a system of quasilinear equations 

cennot he determined formally hy extension of the space of possible solutions. 

Th3 concept of the classical solution to a system of quasilinear equations must, 

thus, be introduced independently of the concept of the solution of this system. 

Generalized solutions will be studied in detail in chapter four. 

Let us note a limited extension of the class of initial data for which 

the existence of the solution to Cauchy's problem follows from the foregoing. 

The function 5k(x, t, u) is called Lipschitz-continuous in the domain 

G (U) with respect to the totality of the variables x, t, u if there exists a 

constant C > 0 such that 

16,(5.7. «)-!»(*. *, «)|<c{|x-*|+l7-'l+||«-«!ir 
for any    (J. f, Ü).  (jc> t% u) £ oo<y). 

If we consider the class ol Lipschitz-continuous initial data characterized 

by the Lipschitz constant K, it can be regarded as the closure of the class of 

initial data with first derivative uniformly bounded by the same constant K. 

Therefore the solution to Cauchy's problem with Lipschitz-continuous initial data 

can be treated as the limit of the classical solutions u(x, t) & C, since the 

latter form a family with uniformly bounded first derivatives. 

Of course, this limit no longer is the solution to Cauchy's problem in 

the ordinary sense since it does not possess continuous first derivatives. How- 

ever, it is the Lipschiti ontinuous function of the variables x, t and exhibits 

derivatives almost everywhere in the domain G. These derivatives almost everywhere 

in G satisfy the system of quasilinear equations. The class of Lipschitz-continuous 

solutions u(x,t) of Cauchy's problem is an example of the formal extension of the 

operator S defined in the class C to the class of Lipcchitz-continuous input 

data. 

Section IX.  Cauchy's Problem for a Single Equation 

1. One quasilinear equation.  The  results of section VIII unreservedly 
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apply to the case of a single quasilinear equation. However they are too 

general to apply to this case in which there are important simplifying details. 

Therefore let us consider in greater detail the Cauchy's problem for a 

single quasilinear equation 

Im (1) 

with initial condition u(x, 0) ■ u (x),  a «$ x ^ h (2) 

Integration of equation (1) leads to the solution of the system of two ordinary 

differential equations 

which are called the characteristic system of equation (1). Each solution x ■> 

S(t), u - ?(t) gives the characteristics in the space of variables x, t, u. 

It is assumed that the functions |, f are continuously differentiable. 

Then one and only one characteristic passes through any point (x , t , u ). 

Cauchy's problem (1), (2) can be geomt ^ically interpreted as the problem 

of constructing the integral surface of equation (1) passing through a given 

initial curve: t - 0, u ■ un(x). Since here we wish to obtain a unique differ- 

entiable function u(x, t) of variables x, t, this surface naturally must be 

uniquely projected onto the plane u » 0 of variable x, t. 

Since the solution u is uniquely determined along each characteristic 

passing through the point (x , t , u ), thi3 problem amounts to constructing a 

surface consisting of characteristics join through the given initial curve and 

uniquely projectible onto the plane u « 0. 

Let X ■ X(t, x , u ), U - U(t, x , u ) stand for the solution to the 

characteristic system (3) 3atisfying the initial conditions 

X (0. J*Q! ÄJl'■•xv<    U (0. x0, OQ) ■» «o- (4) 

Then the solution u(x, t) to Cauchy's problem (1), (2) is yielded by the formula 
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ic** *;*(**). ^y.^A^J (5) 
< ... 

Formula (5) implicitly defines the function u(x, t), which in the case 

of u (x) €: C. is continuously differentiable at all points x, t in which the 

equation x = X(t, XQ, UO(XQ)) (6) 

is uniquely solvable  with respect to parameter x and in which the right side 

of equation (5) remains bounded. 

Suppose that at these points 

v£*«= X~x (t. *)=x0(x, f)j (7) 

is the result of solving equation (6) with respect to x . Then from formula (5) 

we obtain an explicit formula for the solution u(x, t) of the problem (1), (2): 

jt(,x.t)=:U(t,x0(x,f), u0(x0(x,'t))).. (8) 

Let us explain graphically the construction of this solution to Cauchy's 

problem (1), (2). We draw through any point x £=.[a, b] the characteristic (4) 

on the plane u = 0 (plane (x, t)), setting u ■ u (x ) (Figure 1.5). We will 

also call this projection (6) a characteristic. 

A continuously differentiable function U(t, x , u (x )) of variable t, 

which then yields the solution u(x, t) at line x » X(t, x , u (x )), is assigned 

at the characteristic (6). 

Figure 1.5 

It may be that at several points (x, t) as t >0 to more lines x ■ 
X(t, x , u (x )) corresponding to different values of the parameter x (Figure 

1.5) can intercept each other. At these points equation (6) with respect to 
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x has more than one solution and formulas (~) and (?) define some multivalued 

function of variables x, t. In this case no continuous solution u(x, t) to 

the problem (1), (2) exists. 

Let us show that when 0< t < t and for sufficiently small t > 0, o o 
a unique characteristic (6) passes through any point (x, t) e G, i.e., equation 

(6) has a unique solution with respect to x . 

To explain the possibility of the unicue solvability of equation (6) 

with respect to x ,  it is sufficient to show that 

~$x9 

since    yM  «• «t*.\\s=:^l and AT(0. JV «oW)E*»I '3Tl 

X(0. xv «,(x,))=l.   '        (10): 

Denoting 

and differentiating equations (3), we get 

^.^#Ä^^|S#ft|^        (12) 

whsre for brevity we omit the argument for all quantities. And so, £ and Ü 

satisfy the system of ordinary linear differential equations (12) and the 

initial conditions (10) and (11). Hence it is clear that for sufficiently 

small t inequality (9) will obtain. 

Thus,  there exists 4 t  70 such that when 0 ^   t < t    formulas (7) o o        v'' 
and (8) define the function u(x, t) ^ CL satisfying equation (1) and initial 

condition (2). 

Cauchy's problem (1), (2) presupposes, as we have already pointed out, 

the existence of a unique function u(x, t) €E C. of variables x, t satisfy 

equation (1) and initial condition (2). At the same time the more general 

problem of determining the integral surface S passing through the initial curve 

does not at all assume that this surface is uniquely projectible onto the plane 
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of variable z, t, and can have, and as a rule does have a solution in a larger 

domain of variable x, t and does the Cauchy's problem (1), (2). 

We will, for example, seek the equation of the surface S in the form 

(x, t, u) - 0. (13) 

Any characteristic (4) of equation (1) must lie on the surface S, therefore 

<p (X, t, U) - 0. (14) 

Differentiating (14) with respect to variable t and taking (3) into account, 

we get the equation 

.%+.m *■ *>£+/<*• '• a>lr=0, (15) 

which is a first-order linear differential equation for the function  dependent 

on three independent variables (x, t, u). 

The surface S is defined by equations (13) and (14) uniquely for any 

x , t at which X, U are finite and is a smooth surface (f> £r C.) if u (x) ^ C., 

§ , f e ct. 

Prom equation (13) the function u(x, t) £r C. is defined, yielding the 

solution to the problem (1), (2) only in the domain of x, t values in which 

equation (6) is uniquely solvable with respect to x . 

Thus, the difference in the formulation of Cauchy's problem (1), (2) and 

the problem of defining the surface S is that in the first case we seek the 

integral surface u - u(x, t) uniquely projectible onto the point u ■ 0; in the 

second case this surface can be arbitrary. 

For sufficiently small t values in the case u (x) £r C„ above these 
o ov '   1 

Cauchy's problems are equivalent; overall (i.e., for any t?0), the geometrical 

formulation of Cauchy's problem is the more general and admits for ihe solu- 

tion if and only if problem (1), (2) is nonsolvable. 

If we assume that the function u(x, t) describes any physical quantity 

in the space of variable x, t, then naturally this quantity must be a unique 

function of x, t. Therefore the physics problems reduced to Cauchy's problem 

(1), (2) require the definition of the unique function u - u(x, t). As we have 

seen, Cauchy'e problem (1), (2) is solvable in this formulation in the class of 

continuous solutions u(x, t)^ C only in a sufficiently small strip 0 < t <: t . 
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Figure 1•6 

Figure 1.6 shows the typical appearance of the surface S. Fro. this 

^ at those points (x, t) close to 
figure it is clear that} äu(x. t) \ 

which the surface S is nonuniquely projected onto the plane of variables (x, t). 

Let us explain the foregoing with the example of the simplest quasilinear 

equation        3u/e>t + u 2u/ä x  =0, (16) 

for which we pose the initial condition 
when x < a 

when a <x < b,    (17) 

when x ^ b. 

|<r =aa+ß 

owc + P 

8
+ = o*+P 

The initial function u (x) is continuous when -£*><x<: oo ; the derivative 

u1 (x) suffers a discontinuity at the points x » as x = b. Let us construct 

the solution to problem (16), (17) satisfying equation (16) in the broad sense 

at the points at which the derivatives <)u/<^ t, 3 u/e> x did not exist. 

The characteristic system (3) of equation (16) has the solution 

X (t.  X0. «o) = X0-j- V,   U (t, X0,  B0) = «0. 
(18) 

which remains bounded for any values t, x , u . Suppose at ^0. Projections 

of the characteristics (18) onto the plane u ■ 0 are of the form shown in 

Pigure 1.7. In this case through each point (x, t) of the half-plane t ^0 
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passes the unique characteristic x - X(t, x , u (x )), i.e., equation (6) has 

a unique solution with respect to x . The function u(x, t) is constant along 

the characteristics (6), therefore in the zone I, i.e., when x^ a + u t, 

u(x, t) « u » «d a + ß ,in zone III, when x ^ b + u+t, u(x, t) » u+ = adb + p. 

In zone II, when a+ut^x$b + ut, equation (6) can be solved with respect 

to 

By formula (8), let us define the solution u(x, t) in zone II: 

Thus, the solution to Csuchy's problem (16), (17) when o£>0 is given by the 

formula 

u(x. 0 = 

<j-=Ofl-f-P 

vc + P 
f+at when 

ltf+ = aA + p when 

ö+a~'<£<H-«+'.:'  (19) 

x^b+a+L   J 

Solution (19) is continuously differentiate when t ^0 everywhere, except for 

the line x»a+ut, x-b + ut, where the first derivatives suffer a dis- 

continuity. . 

Figure 1.8 
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In the space of variable x, t, u, solution (19) defines the integral 

surface S showD in Figure 1.8. This surface is uniquely projected onto the 

plane u - 0 when t £> 0. 

For the case c£<0 u > u , the pattern of characteristics in projec- 

tions onto the plane (x, t) is one of the forms shown in Figure 1.9. All charac- 

teristics (6) when a $ x ^ b converge at the point x ■ (a + b) - ß/<C , 

t «-l/>t > 0. In zone I, u(x, t) - u ; in zone II u(x, t) ■ u . In zone III 

u(x, t) ■ (otx +ß )/(l +ott), since <^ < 0, then this formula does not define 
the solution u(x, t) when t ■ -1/k. . Finally, in zone IV, the function U(t, 

x (x, t), u (x (x, t))) is three-valued and takes on the following three values: 

u_(x, t) - u , u__ (x, t) » (otx + £)/(1 +<^t), u  (x, t) « u . Thus, for the 

caseo£<0 the continuous solution u(x, t) of Cauchy's problem (16), (17) exists 

only when t < -l/«i. , and the integral surface S is determinate for all t ^-0 

(Figure 1.10); however, when t ^ -1/oC it is not projected uniquely onto the 

plane u » 0. 

Figure 1.10 

2. One nonlinear equation. Cauchy's problem for a nonlinear equation 

\ ^+9(X, /. k ©)«teO. » = -^-. v(x.0) = v0(x> 0) 

for the case <pSC?, v (x) e C2 is reduced after differentiation with respect 

to x of equation (1) to Cauchy's problem for a system of two quasilinear equa- 

tions 
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do 
-y.sx —q>(jc, t t>. o) 

(2) 

with the initial conditions! v(x, 0) - v (x), io(x,  0) » v* (x). Transforming 

the second equation of system (2), let us write it as 

Equation (4) is usually called the strip condition. 

We can readily see that if we know the solution to the characteristics 

system for equation (1)J 

iX **.=,£(*,/,V,0). 
dV J£e*Q£(Xrt. V. Q)-*{X. t. V. Q), 

du VL^-W.iX. t. V. Q)-^(X. t. V. Q). J 

(£) 

where 
X = X(t, JC0. w» ©o). V = V(t, .*„. v0, COO). B=Q(f, % % "o)» 

satisfying the initial conditions: 

*(0. *„. tie, (^«Xo. V(0, JC0. Vp (00) = ^, Q(0, *„, v0, «0) = (flt).    (6) 

then the solution v(x,  t) £rC2 to Cauchy'e problem (1) is given by the formula 

v(x(t. x, vM *£&). t)-v(t. x, V4 %^). (7) 

which parametrically defines the function v(x, t). If x » x  (x, t) is the 

result of the unique solution of the equation 
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with respect to the parameter x , then from (7) follows the explicit formula 

for the solution v(x, t) to Cauchy's problem (l)t 

:^^^^f^M^^Wß^^M       w 
Formula (9) defines the unique function v(x, t) £-C2 only at first point (x, t) 

at which equation (8) is uniquely solvable with respect to x . 

The solution to Cauchy's problem (1) was obtained by us only for the 

case v (x) ^ Cp. Simple examples show that if v'(x) is only continuous, then 

generally speaking there does not exist the solution v(x, t) e G1 tc problem (1). 

Formulation of Cauchy's problem (1) for the case of initial functions v (x)^C. 

is in need of refinement. 

3. Hyperbolic system of nonlinear equation. For the case of the Cauchy's 

problem for a hyperbolic system of nonlinear equations 

we will assume that <p<SC2, v €; Cp. Then, by subsection 3 of section II, 

the functiore v, w are the solution to the system 

(cf section III, subsection '?)  where the metric A m d£ ~((JLi)) .    if we compose 

the initial conditions 
&(*>        Z^j 

' *<*.>)«= t>°(jc). »(*, 0)=«P(*)«4^|äiJ    (5) 
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for system (4), and the question of whether the function v(x, t) defined as 

a result of solving Cauchy's problem (4)» (5) is the solution to the initial 

problem (1), (2) as a problem of satisfying equality (3) for any (x, t)£r G. 

Differentiating the first group of equations (4) with respect to x, 

subtracting from the result the second group of equations (4)» and considering 

that £ m - f *   - -0 cO (of formula (2.3.7)), we find 

and by (5),  it!'- •*,/• ■  r 
sr(*. o)=»,(*. a*        (?) 

Based on lemma 1 (subsection 5 of section VI), from (6) and (7) it follows 

that 

i^(*,l)s<i.((*,0. (8) 

i.e., equality (3) is satisfied by identity. 

Since the existence of the solution to the system of quasilinear equations 

ven for us cnly for the class C,, the hyperbolic 

equations the constructed solutions belong to class C2» 

was proven for us cnly for the class C,, the hyperbolic systems of nonlinear 

Section X. Behavior of Derivatives of the Solution to a System of ^uaeilinear 

Equations 

1. Weak discontinuity. Transport equation. Sections VII and VIII outlined 

the construction of the solution tc Cauchy's problem for a system of quasilinear 

equations possessing continuous first derivatives. In considering the Lipschitz- 

continuous initial data, we arrive at a certain generalization of classical solu- 

tions — to Lipschitz-continuous solutions to Cauchy's problem possessing first 

derivatives almost everywhere in the domain of definition. 

Consider a  more  particular case of generalized solutions u(x, t) of 

a system of quaailinear equations —■ the class of continuous functions u(x, t) 

exhibiting piecewise-continuous first derivatives. Let us assume that the 

vector-function u(x, t) is continuous and exhibits first derivatives that are 
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continuous everywhere except for certain piecewise-differentiable lines on 

which the first derivatives p, q suffer first-order discontinuity; let us 

assume that exierior to the lines of discontinuity of the first derivatives of 

u(x, t) the following system of quasilinear equations 

<[*+«•*]-'*! (1) 

is satisfied. Suppose x = x(t) is the equation of the line of discontinuity 

of the first derivatives of tho function u(x, t); let us denote 

Pl-pttoto. o~M*<o±o. o~£(*«)±o. o. 

li-ltix®. 0=*4(*(0±0. o-^-(x(0±o. 0* 

If P r P » but tne solution a(x, t) is continuous on tue line x = x(t), then 

this feature of the solution is called a weak discontinuity, and line x = x(t) 

is called a line of weak discontinuity. 

From the condition of continuity of u(x, t) at the weak discontinuity 

line x - x(t), it follows that x*(t)p + q~ - x'(t)p+ + q+, i.e. 

[p]x'(t) - -[q], (2) 

where [p] = p - p , [q] = q - q . In the assumptions made, the function 

u(x, t) to the left and right of the line x = x(t) satisfies system (1); there- 

fore points of this point 

'*(?* +!»P*)=/». '*(?- + !»/>-) = /*      (3) 

(the quantities 1 , £;, , f, are continuous at the line x ■ x(t)). 

Subtracting the second group from the first group of the equations (3), 

we get 

where 

Canceling out  (q      - q ) by means of (2), we get 

[i* - * w] i^*i - ih -- *' (o) [ri -^*]=o (4) 
(A = l «). 
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We denote 
'* 

IS x'(t) / §k for all k - 1, ..., n then ^J** - g>~     in view of tfce linear 

independence of the eigenvectors 1 , in this case p. ■ p. for all i » 1, ..., 

n, i.e., the discontinuity of the derivatives is absent. 

Therefore, x«(t) - £ (x, t), t, u(x(t), t)). (5) 

This equation denotes that the line of weak discontinuity x » x(t) is a charac- 

teristic of system (1). This conclusion naturally is in agreement with the 

definition &.*" the characteristic Cauchy line through which the solution to 

system (') is extended nonunique]y (cf section VI, subsection 2). 

Suppose that over the "segment of the line of weak discontinuity x - x(t) 

under consideration equality (5) is set aside, and suppose x » x(t) is the 

m-tuple characteristic of system (l), i.e., equality (5) is solid when a « j, 
j+1, ..., j + m - 1. 

Then from (4) and (5) it follows that 

^k " <^k " ^k     * °  when k < *     and k ^ j + m. 
Let us derive the equations better satisfied by *f, characterizing the value 

of the weak discontinuity. Since the solution u(x, t) to the left and right 

of the weak discontinuity line x - x(t) is a classical solution of system (1), 

the quantity ^J1'  satisfy at thw- line x «■ x(t) the equations of the extended 

system (section IV, subsection 3),  in the broad sense, written for the charac- 
teristic x - x(t): 

(d ~A _^*4_f "tZr* 

(*=/. j+t y-f-«-i). 

(6) 

(7) 

The coefficienta of the equations (6) and (7) are continuous at the line x 

x(t), therefore we do not furnish their sign ±. 

Subtracting (7.) from (6), we get 
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Since 

and   5? i - 0 when  o£fj, j+1,  ...» j+m-1,    then equation (8) can be 

written in the form 

where 

MäXM®Wfflt?Mm??M^:i 
From the linearity of the system of ordinary differential equations (9) 

there follows an important conclusion« the weak discontinuity of the solution 

to a hyperbolic system of quasilinear equations, extended along the character- 

istic, can  neithar  arise  or disappear if the solution and its first deri- 

vative remain bounded. 

For the case of a system that is hyperbolic in the narrow sense (section 

II, subsection 2), the characteristic x ■ x(t) is simple. Therefore system (9) 

is converted to a single ordinary differential equation. 

Equations (9) are called transport equations for the weak discontinuity. 

Noting that      "jm*±*lM~m~-  *, „ ±m>-„- . »-,, 

the system (9) can take on the following forms 

W)^K\^Kh^^:\+^^] do) 
(*'->/, 7+1 J + m-l). 

System (10) is nonlinear. From it we can conclude that the value of the weak 

discontinuity >? can become infinity in a finite time. Actually, for example, 

for systems that are hyperbolic in the narrow sense, system (10) is converted 

into a single equation of the Ricatti or Bernoulli type. However, the values 

of t\ .   tend to infinity only simultaneously with ^J^,     £7^. Therefore this 
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Since 

and ^- 0 when cd ^ j, j + 1 j + » - 1, theß equation (Q) 

written in the for« 

where 

From the linearity of the system of ordinary differential equations (9) 

there follows an important conclusion: the weak discontinuity of the solution 

to a hyperbolic system of quasilinear equations, extended along the character- 

istic, can  neithor  arise  or disapi ^ar if the solution and its first deri- 
vative remain bounded. 

For the case of a system that is hyperbolic in the narrow sense (section 

II, subsection 2), the characteristic x » z(t) is simple. Therefore system (9) 

is converted to a single ordinary differential equation. 

Equations (9) are called transport equations for the weak discontinuity. 

Noting that     >'LftÜ:>"J.ZZZ.'"■'„  i —.-  . ~_ 

the system (9) can take on the following formt 

System (10) is nonlinear. From it we can conclude that the value of the weak 

discontinuity "A   can become infinity in a finite time. Actually, for example, 

for systems that are hyperbolic in the narrow sense, system (10) is converted 

into a single equation of the rticatti or Bernoulli type. However, the values 

of t\  . tend to infinity only simultaneously with ^T*. ,  £7*. . Ifierefore this 
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effect is not specific for the weak discontinuity of a solution, but is the 

consequence of the ge^^al property of the unbounded increase in derivatives 

of the solution to a hyperbolic system of quasilinear equations. 

For a system of two quasilinear equations that is hyperbolic in the 

narrow sense, the transport equation in form (10) was obtained by J. Nitscbe 

(cf [17]). 

We have established that for a system that is hyperbolic in the narrow 

sense the weak discontinuity differs from zero at all points of the character- 

istic. Therefore, the weak discontinuity of a solution to Cauchy's problem 

occurs only when the initial functions exhibit discontinuity of the first deri- 

vatives. 

The arbitrary discontinuity of derivatives of initial functions breaks 

down into weak discontinuities, which extend, generally speaking, over all 

characteristics exiting from the point of discontinuity of the derivatives of 

the initial functions satisfying conditions (9) at each characteristic. Some- 

times this effect is called the breakdown of the arbitrarily weak discontinuity. 

2. Unboundedness of derivatives. Gradient catastrophe. By subsection 1 

of section VIII, the graph of solution u(x, t) and it* first derivatives with 

increase in t is estimated by mean& of a solution to the majorant system (8.1.2), 

(8.1.3). This system is a nonlinear system of two ordinary differential equa- 

tions and from it they directly follow the fact that for sufficiently large t>0 

the quantities ^(t), U(t) simultaneously tend to infinity. Thus, the growth 

estimate of the solution and its derivatives by means of the solution to the 

majorant system leads to the conclusion that for an arbitrary hyperbolic system 

of quasilinear equations, the solution u(x, t) and its derivatives p(x, t) tend 

to infinity with growth of t, generally speaking. 

This conclusion applies to an arbitrary system of quasilinear equations. 

However, particular classes of systems of quasilinear equations are also of 

interest, for example, systems whose solutions remain bounded for any values of 

the variable t. 

This property is exhibited, for example, by systems of linear equations, 

and also by systems leading to invariants, i.e., those representable in the form 
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JKÄffiäf^^-II    (1) 

if here f, does not grow too rapidly with growth in r, for example, if for any 

It is not difficult to note that the solution r(x, t) *io systems of this type 

remain bounded for any t value, however, their derivatives nevertheless increase 

unboundedly up to absolute value  2; . (x, t, r) depends essentially on r ■ 
{ r1, ..., rn '}, 

The effect of the formation of unbounded derivatives when the solution 

to a system of quasilinear equations is bounded is called the gradient catas- 

trophe . 

Let us explain this with a simple example. Consider the homogeneous 

system of two quasilinear equations whose coefficients do not depend explicitly 

on x, t it leads to invariants and can be written as 

(2) 
m^]'S& 

Let us assume that ^^\J^ z\r -^ ® and *et us consider for the system (2) 
Cauchy's problem with the initial conditions formulated for the entire axis t - 0» 

.   -        -      .-. .■-•£*! 
r4C*. 0)«4(*).   r2(jf. 0) =/*(<) = r» = const. (8)] 

Suppose i^W^C,.^(*)!<•**•( The solution to Gauchy's problem (2), 

(3) reduce to Cauchy's problem for a single quasilinear equation! 

By section IX,  the solution iAxt t) of' this problem is yielded by the formula 

r^x,  t) « r° (x - f1(r1(x,  t), r°) •  t). 

Let us compute the derivative ^r../«? x: 
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r< rf 

where   *0 = * — I, (r,. /$«ft Hence it follows that when f^L£*^J<- o , 

the derivative ^ r-i/^ x monotonically decreases with increase in t at the 

characteristic x - x + ^.(r., r„).t and when 

becomes unbounded. 

Thus, if —■ p   0, then as a rule the derivatives of the solution 

r(x, t) to system (2) increase unboundedly (with respect to module) with increase 

in the variable t. 

}. Strongly and weakly nonlinear systems of quasilinear equations. We 

will call a system of quasilinear equations (10.2.1) weakly nonlinear in some 

domain of space of variable x, t, r if in this domain 

; JMp^üeO  (*=*1, 2. .... »). (1) 

otherwise we will call the system (10.2.1) strongly nonlinear. 

By definition, a weakly nonlinear system of two quasilinfar equations 

is written in the form 

''    -*ji3 ....     '        * 

Note that if 

the form 

(2) 

4^«^0; Tfr^O»    then the system (2) is reducible to 

A-.. ^, 
">C 

W+r,«.^/,. flHhr,^^/, 
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> We now will show that the derivatives of the solution of weakly nonlinear sys- 

tem (2) remain bounded for any t values if the solution r(x, t) itself remains 

bounded. 

Theorem. Suppose the solution r(x, t) to system (2) is bounded*) when 

0 6t ^ T: |rk (x, t)j ^ R, (3) 

but system (2) is hyperbolic in the narrow sense**), i.e., 

hi*- t. /•,(*. 0)—£,(*. t,r2{x, 0)>e>0    «here 0 < t < T,    (4) 

and the functions £,, f €S C.. Then the derivatives «ärj/ax, 2r,/dt are 

bounded when 0 ^ t ^ T if they are bounded when t ■ 0. 

Proof. The solution r(x, t) will be considered a solution to Cauchy's 

problem for system (2) with the initial conditions 

rt(x. 0) = i-J(x)   (— co < x< co). 

By the conditions of the theorem, 

dr\      I 

■ 

r\{x)\<R, AT**/ r^o- 

Suppose x - x.(t, x ) is the equation of the characteristic of system (2) passing 
I    o 

through the point Y  - x of axis t - 0. We rewrite the first equation of aystem 

(2) in the form 
I A 

If we assume the function r2(x, t) to be known, then the definition of r.(x, t) 

reduces to the solution to Cauchy's problem for a system of two ordinary 

differential equations 
dx ̂  = li(xl.t,ri(x1,t)). (5) 

4r - A (*v *> 'i- r3(xv t))  (7, =7, (/. *„))     (6) 

*) As we have noted, condition (3) will be satisfied automatically if 

Pfk/^r./ ^ C. 
**) It is sufficient for us that condition (4) be satisfied for the given 

solution r(x, t). Of course, system (2) can be hyperbolic in the narrow 

sense by identity, i.e., for any r., r». 

- 91 - 



ecg   -■•■-■-  ;■-■• *ea 

with the initial data 

*i(0. *o) = *o- 7i(°- *dts"i(ty I (7) 

If r1(t, x ) is the solution to problem (5) - (7)» then the formula 

defines the solution r.(x> t). 

Let us note 

*ie.*o>=^*i<'-*°> 

and l«»t us differentiate equation (5) with respect to the parameter x .    tee 

get 

dx] 
dt 

lr = {£[hi*-t.ra(x.f))l}xmXiVJi(t.**. 0) 

Since 
/ dlt (x, t, r,) \ _ dSi   , t 
V       Ä       J2

_ dt ^6: 2 U 

-|^'2>[^+*>-&]+*»+*&, 

then 

where 

at. * _ ^ + l^ = h(*<t<r)> (10) 

* ft = "5^ A + lu + Ij^ix- 

we find 

Subtracting from (10) the inequality 

*+** 

■sr 5.^1. 

On analogy with the foregoing, we get 

Let us transform equality (11) by mean» of the identity transformationst 
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Substituting this equality into equation (9), we transform the latter to become 

(12) 

Prom the initial condition (7), we have i.,(0, x ) ■ 1j therefore, integrating 

equation (12) from 0 to t, we get 

,%R^W*)->.^U,(io)l^(fcJi"
e,p

l/ IT* v>) 

Prom the assumption (3) on the boundedness of this solution under conti- 

3f the func 

M > 0 such that 

nuity of the functions ffc, ffe, %k,  it follows that there exists same number 

Moreover, by condition (4) of the theorem, we have 

Therefore from formula (1J) we get the estimate 

Mi Mi 
(14) 

which shows that the field of characteristics of the first family x ■ x1(t, x ) 

is differentiate with respect to x for all t from the interval [o, T]. 

Hence it follows that the characteristics x - x.(t, * ) do not intersect 
I *   o 

each other when 0 ^ t ^ T. Now it is easy to obtain the proof of our theorem. 

Denoting iA  x.      ^fi    : 
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and differentiating equation (6) with respect to parameter *o> we get 

L>t us note 

0» 

-oo<jr«x> 

and we will assume that the constant H is so large that for all 0 ^ t <;" T, 

-co < X < Oo 

Integrating equation (15), we get 

(16) 

rft. 

Substituting here the estimates (14) and (16) and using initial condition (7), 

we get 

Mfl+M 

From formula (8) we have 

(17) 

*•■(*. 0'_ 'iff. *.) 

such that from estimates (1.7) and (14) there follows 

Ml 

b^H\<>L,"'^P,+ §-,2S^^m+^ 

It is easy to observe that the estimate is analogously obtained for the quan- 

tity ^rp/^x; therefore 
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ßom these inequalities there derives the estimate 

where       ?.£*^^^ (] }k ? ;,;"**? ,5& -!'#'*-■ ^#«§ 

I 
is valid when 0 ^ t ^ T. 

Now applying lemma 1 from section VI to the resulting inequality, we 

get P(t) <" [AP + Bt]e , from whence follows the boundedness of the derivatives 

b r, (x, t)/3 x over the entire interval 0 -^ t ^ T. The theorems stand proven. 

In view of the arbitrary selection of T, the derivatives ä r,/ä> x of a 

solution of weakly nonlinear system (2) remain bounded in any strip with respect 

to the variable t in which theorem conditions (3) and (4) are satisfied. 

Prom the proven theorem there follows% 

Corollary. Cauchy's problem for a weakly nonlinear system of two quasi' 

linear equations, hyperbolic in the narrow sense, is solvable in the domain of 

determinacy G if the solution r(x, t) remains bounded in it*). 

Let us explain this corollary in more detail. For an arbitrary system 

of quasilinear equations, the derivatives become unbounded even when the solu- 

tion itself is bounded. If we consider Cauchy's problem with initial conditions 

assigned, for example, for the entire initial axis t - 0, then for a strongly 

nonlinear solution the derivatives tend to infinity for a finite value t >0 and 

when t > t no solution (classical) to this Cauchy's problem exists. 

For a weakly nonlinear system that is hyperbolic in the narrow sense, 

whose solution remains bounded (for example, when \ä tjhx.\ ^ C (i, k ■ 1, 2)), 

*) This very same property of weakly nonlinear systems was recently proven 

[32] for the arbitrary system (10.2.1) when f - 0. 
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the derivatives remain bounded for all t > 0. Therefore the solution to Cauchy'a 

problem can be constructed in any finite strip 0 ^ t ^ T by the procedure out- 

lined in section VIII» Thus, for a weakly nonlinear system there exist3 a solu- 

tion to Cauchy'a problem as a whole, i.e., for any finite values of the variable 

t. This circumstance brings weakly nonlinear systems closer to linear systems. 

On the other hand,this shows that any feature of initial data, being 

smooth when t « 0, no longer is repoducihle viian t> 0. Therefore the generalized 

solutions of a weakly nonlinear system that is hyperbolic in the narrow sense 

can be considered ae ^he limits to smooth solutions at once for the entire half- 

plane t ^0, much as occurs for linear equations. 

Let us consider by way of example the weakly nonlinear system of two equa- 

tions *) 

Here  /t!Sfc/jass/iBSt/a0*0'    therefore formula (15) converts to the equality 

and for the derivative 3 *Uä x we have 

dx dx\    ' U(.rl{x,t))-ll(r1(x,t))' 
(19) 

Hence follows the more exact estimate of derivatives of the solution to system 

(18): fär>(*,<)[ p M 

Let us note an interesting consequence of formula (19)» if £p(ri(x' *)) " 

%^{r2{x,  t)), then 5 rk(x, t) / 3 x  - o°  . 

Remark. The definition of weakly nonlinear systems of quasilinear equa- 

tions was introduced only for systems leading to invariants. This is possible 

in the general case only when n^ 2 (cf section III). The theorem en the bounded- 

ness of derivatives was all the more so proven only for n ■ 2. 

*) The general integral of system (18) was obtained in the paper [33]. 
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The question of separating of the class of systems which do not lead to 

unboundedness of derivatives for the case n ^ 3 remains open. Possibly, deri- 

vatives of the solution to a system that is hyperbolic in the narrow sense 

remain bounded for the case when the following conditions are satisfied: 

r*(x, t. «) **£;'' *} gO  (a, k= 1 n) (20) 

(cf [lö]). We can easily see that the conditions (20) and the conditions (1) 

coincide in the event that invariants exist. 

If conditions (20) are satisfied, then it is easy to see that the coeffi- 

cients ^^ of the extended system (4.3.16) - (4.3.19) identically tend to 

zero. In combination with the requirement of hyperbolicity in the narrow sense, 

this possibly enables us to prove the boundedness of derivatives of the solutions 

of such systems as a consequence of the boundedness of the solution itself. 

Section XI. Remarks on the Mixed Problem 

1. Formulation of the mixed problem for a linear syjtem. Let us consider 

the typical mixed problem: 

Find the solution u(x, t) tr a hyperbolic system of linear equations that 

takes on, when t « 0, the assigned values 

«(*, 0) = «u(x).  o<*<* (1) 

and that satisfies certain boundary conditions 

c'a(x. 0«a(x. V) |ri = c'u |ri = ct (x. .)  (1 < / < «,).  (2) 

< (*. 0 »a (x. 0 |r, - d'u \Ft=d, (x. 0     (1 < / < nj.       (3) 

which are specified for certain lines f*, f' , exiting, respectively, from 

endpcintf x = a and x - b Jf the interval [a, b] of the axis t - 0 (Figure 1.11). 

We will assume that the curves f , f9  have a continuously variable 
k      f _k      k tangent and ^(x, t), ^k(x> t), r (x, t), f^ (x, t) ^ C. in the domain 

l\(x, f). ik(x. 0, /*(*. 0, ft(Xt 06Ci 
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bounded by the curves f.,  f\  and by the axis t - Oj c, , c. ^ C. at the 

curve r1, d^ , d. ^ 0. at the curve /*_. 

Suppose the conditions for the agreement of initial conditions (1) and 

boundary conditions (?)  and (3) are satisfied« 

C£(«. Ö)««(«)««,(«. 0)    0<'<«0-t1      M\ 
<*'(*. o)i£(*)*=</,(*, O)  (i< ÄP   - ! 

If conditions (4) are not satisfied, then the solution u(x, t) of the 

mixed problem is discontinuous, and it must then be regarded as a generalized 

solution. 

i    i k 
Let us decompose the vectors c and d into the vectors 1 (x, t)j 

Then the boundary conditions (2) and (3) will be rewritten as 

tifisirui**   c-i »«). 

or, in invariants, 

l*i'.lr, ««<<*.<>      ('-» »,)■ (5) 

Suppose conditions (5) and (6) are consistent and are linearly independent, 
i 1 

i.e., the rank of the matrix ((//^ )) is n.; and the rank (( v )) is n?. 

Suppose G is the domain of determinacy of the solution to Cauchy's 

problem with initial condition (1). 

Obviously, the curves .T  and /T, must lie outside the domain G°, since 

the solution to the linear system of equations is uniquely determined in the 

domain G by the initial condition (1) and, in general, does not satisfy in it 

the conditions (j>) and (6). 

Let us consider the case when the curve x - X1(t) intersects /"* at 

the point D, and the curve x - *_(*) (cf section VI, subsection 3) intersects 
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I _ at the point E. 

The solution u(x, t) is uniquely defined in the domain G and can be 

constructed in this domain by the method of successive approximations (cf section 

VII). Therefore it is sufficient to consider the problem of constructing u(x, t) 

in the domain ACD; the solution is similarly constructed in the domain BCE. 

a' b       _jg 

Figure 1.11 

To explain the conditions for the solvability of the mixed problem, it 

is essential to know which families of the characteristics x ■ x,(£> 0, t) 

exiting from the points of the interval [a, b]  of the initial axis (a^ §<: 

b) intersects the arcs AD and BE of the curve /*. and /\, 

Suppose that at k«k., L, ..., k , the characteristics x = x, ( ^, 0, 

t) for^^ [a, b] intersect the segment AD by the curve /*., and when k - k\, 

k„, ..., k intersect the segment BE by the curve J^~. 

Let us number the variables <?k(*> *)» setting k. - 1, k_ - 2, ..., 

Denoting u (x, t), r (x, t) as the solution to Cauchy's problem with 

initial condition (1) in the domain G , we advance to the next problem in the 

domain ACD(G )J 

Find the solution r(x, t) the linear system 

dr 
^+l>f*-f

,C*.ft+fJ<*.0V (7) 

satisfying the conditions 
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:
 I»' • • • i ÄJ» ' (8) 

at the line ÄC and the conditions (5) at the line AD. 

3J
-
 the definition of the domain G , its frontier consists of the segments 

of the characteristics of system (7). 

Thus, the definition of the solution in the domain 6 reduced to defining 

the solution of the system (7) taking on assigned values at the characteristic 

AC and satisfying conditions (5) at the line AD (Figure 1.12). In view of the 

existence of the solution to system (7) in the domain G , the values r (x, t) 

at the line AC satisfy the solvability conditions (section VI, subsection 2). 

Thus, here we first encounter the problem when the initial values are assigned 

at the characteristic. The problem with data at the characteristic is usually 

called Goursat's problem. 

tk^xk(x,t) k*p+t\ 
th=tn(x,t) krp     \ 

Figure 1.12 

1 
Let us consider an arbitrary point (x, t) in the domain G (Figure 1.12) 

and draw through it all characteristics x - xjc(
x> *, T) °f this system (7). 

under our assumption, characteristics x ■ xk(x> t, r) intersect the curve AC 

when 1 < k § p at several points (x (x, t, rk)» T. ), and here T, ■ T 

(x, t) <t. 

Similarly, the characteristics x - x, intersect the curve AD at the 

points (x,(x, t, "Ck)i "O when k ^ p + 1 and r ■ Tif(x» *) ^ t# 
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m? We will call boundary conditions (5) correct if: 

(1) the number n of boundary conditions (5) »quals the number q - n - 

p of characteristics x ■ ^(x» t, T ) descending from arbitrary point (x, t) 
1 6 on line AD: 

(2) conditions (5) can be uniquely solved with respect to the quantities 

r. (x, t) when k ^. p + 1. 

Suppose these conditions are satisfied, i.e., n - q « n - p and when 

(x, t)£AD 

( Det 
Vf&V.-V 'S*«-«! : 

■»•! *_■ *V*! • '. 

**J+» ••' ^ 
+ 0., 

Then conditions (5) can be rewritten as 

In the following we will omit the bar over c. /j'       „ -, j..        /  jx  ... -. i, *V . Solution r(x, t) satisfies 

in G the equations 

L;V.-%>,\ '■»»• :,. «a; 

f 

+ J {8* (*, (*• '• *>• T) + «J (** (*• *> *>• *) '„ (** (*. '• *' t)} rft 

(Ä>p+1). 

We will seek the solution r(x, t) by the met)od of successive approximations: 
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,',;*■ / {**(*. T)+*J(*. T)ro(x.T)}      *  (*<„>. 

«-*»■■■■     r i        w    -l 
« (x. o- «,<£ D+ S »*;«. i)*-««. n> + 

H-*4 

+ ( i^(M)+fJ(u)r,(M)J      it  (*>/>+». 

selecting the suitable initial approximation exhibiting continuous first deri- 

vatives in the domain G . 

If we denote 

V (0=max max | r4 (C. T) - r4 (C T) |. 

then on analogy with section VII we obtain the estimate 

Here we assume that in G „ J....... , 
»4?*$ 

Prom the resulting estimate follows the uniform convergence in the domain 

G of the atquence £ r (x, t)} to the solution r(x, t) of the mixed problem. 

The solution r (x, t) (u(x, t)) constructed in the domain G exhibits in 

it all properties of the solution of Cauchy's problem enumerated in section VII; 

it is continuously differentiable and depends continuously on the initial data 

of the mixed problem, as well as depending on curve f., if it satisfies proper- 

ties (1) and (2). 
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t 1 

Figure 1.15 

Note, however, uhat the line AC, genera1ly speaking, is the disconti- 

nuity line of derivatives of the solution to the mixed problem. ?or the solu- 

tion to the mixed problem to have continuous first derivatives in the domains 

G + G , it is necessary that tne initial and boundary conditions satisfy the 

conditions of congruence for the derivatives. These conditions will be obtained 

below for the more general case. 

Above, for sake of simplicity it was assumed that for a fixed k all 

characteristics of the k-th family x - \{xt  t, T ) passing through any point 

(x, t) ^ G intersects, when r<t, eitner only the line AC or only the line AD. 

It may be, however, tha^ this is not the case. 

Suppose, for example, that through the point A passes the characteristic 

x - XvC3» 0» T ) partitioning domain G into two parts (Figure 1.13). In this 

case the solution is constructed on the analogy with the preceding', with obvious 

changes. 

Note thfct this characteristic will also be a discontinuity line of the 

first derivatives. 

In general, derivatives of the solution r(x, t) suffer discontinuity at 

the characteristics exhibiting from the point A if and only if at this point 

the conditions of consistency of the derivatives are not satisfied. 
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2. Correctness of boundary conditions for a system of quasilinear equa- 

tions. For a hyperbolic system of quasilinear equations we imposed the initial 

conditions  u (x, 0) - u° (x) (1) 

and the boundary conditions 

e, (x, t. «)lr, = 0  </«IV2. . f.. nj. (5» 
d,(x, t, «)£«=0  (/=% ..':.; »j). J  _    (3) 

We will assume that the coefficients of the system satisfy their requirements 

that were imposed ii. section VIII when proving the existence theorem of the 

solution to Cauchy's problem. 

Suppose u (x) £■ C., and the curves /*., /*„ are certain curves with a 

continuous tangent line in the half-plane t ^- 0 and passing, respectively, 

through the points (a, 0), (b, 0), and c. (x, t, u), d.(x, t, u) are continuously 

differentiable functions of their arguments. 

We will state that the consistency conditions (conditions for continuity 

of a solution) are satisfied that the point (a, 0) if 

e,(a. 0. a°(<i)) = 0  (/= 1 n$ } 

Let us establish the consistency conditions for the derivatives at the point 

(a, 0). Suppose x - X(t) is the equation of the curve Z7.,. Let us assume the 

existence of the solution u(x, t) £ C. of a system of quasilinear equations 

satisfying conditions (1) and (2). 

Differentiating the boundary conditions (2) with respect to the variable 

t at the line x ■ X(t) we get 

The derivatives p - bu^/äx at t - 0 are defined from initial conditions (1), 

therefore from the system of equations 

we can define the derivatives q- 5u^ /ä t at the initial axis t - 0» 
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In these formulas the quantities A^, ^ t Cp , £ are known functions of the 

variable x, for example» A* - A* (x, 0, u°(x)) and so on. 

We will state that at the point A(a, 0) of curve /\ the condisioüs 

for consistency ef the derivatives are net if 

here the functions j^ *  ^ ,   *<g        are taken at the point (a, 0), for 

example, j%   - |^(a, 0, u° (a)). 

Assuming as before the existence of the solution u(x, t)^C1 of the 

mixed problem, let us establish requirements that must be satisfied by the 

boundary conditions. In general, the conclusion that the curves f., f2 must 

lie exterior to the domain of determinancy G° of the solution to Cauchy's prob- 

lem for essentially nonlinear equations (^./au. / 0) is invalid. Correctly 

formulated mixed problems exist when the curves f^  and ±g are *n tne domain 

G°. An example of this problem is the problem of the piston in gas dynamics 

(cf Chapter Two, Section III). However, the solutions of these problems are 

discontinuous. Confining ourselves to a consideration of classical solutions, 

we now exclude this case, assuming that /*, and f^ lie outside G . Let us 

denote 

and so on and we will consider our problem as a mixed problem for the linear 

system 

given the initial and boundary conditions (1) - (3). 
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Figure 1,14 

The functions i^   - lj^ satisfy the linear system of equations 

#+!,#=**(*. 0+£(*. 0r"o. 

Let us examine domain G (Figure 1.14) and let point (X(t), t) lie on 

the line /*.. 

We will call the characteristic x « x,(x(t), t, r ) the arriving charac- 

teristic at the point (X(t), t) of line f' if it lies in the domain G when 
1 

T ^ t and an exit characteristic if it lies in the domain G when r?t. In 

Figure I.I4 MM1 is thr arriving characteristic, and MM" is the exit character- 

istic. 

Suppose that at each point of C*  the characteristics x » x, when k - 1, 

2, ..., p are arriving, and wnen k ■ p + 1, ..., n pre exit characteristics. 

As for the case of the linear system, we require that 

(1) the number of conditions (2) equals q - n - p, and 

(2) equations (2) are uniquely solved with respect to the quantities 

r_+1» ~rpi.z .  - - -   .   '„.      for known r1, rt „ .. . _ rp. 

If (2) is rewritten as 

c,(x. <.X;ra) = 0  (/=1. 1, .... nt = q). 

then condition (2) will be satisfied if 

Det((|£tf))*0   (/=1 q;    k = p+\ n = p + q) 
(x oer,. 
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We note, however, that it proves very difficult to verify the correctness of 

the boundary conditions for a system of nonlinear equations, since conditions 

(1) and (2) depend on the solution u(x, t), which is unknown to us. Nevertheless, 

in solving the mixed problem we can proceed as follows. 

Over a sufficiently small segment of the curve I*.  adjoining the point A, 

the solution u(x, t) (if it exists) will be sufficiently close to the value 

u (a). This makes it possible to verify the conditions for the correctness of 

the formulation of the mixed problem for sufficiently small values of the variable 

t. If they are satisfied, then we solve the problem for this small interval and 

we will consider the values of the solution u(x, t) at the endpoint of the 

interval as new initial values. In this way we can construct the solution to 

the mixed problem in the entire domain of the variable x, tt  where it exists. 

Let us consider an example. For a system of two quasilinear equations 

dr\ dr> &* 
-*■ 

■ .  • ;  JJli '>%'•* \ 
the initial conditions , : ■1 

/■,(*, 0) = rj=const,      |jf|<s ;  ; 

and the boundary conditions '" '■•      '*; 

c(i. /■»(—«, f). r3(—a, f))=0.     d(t. r,(a, /). r,(e. 0)*=0 J 

are formulated. Suppose t, < 0, %2>0*    The consistency conditions are satisfied 

if 

II 

1 

«(o.4^^o.. rf(o. f^«0'^a'-'] (4} 

When this condition is met, the solution r(x, t) is continuous in some neighbor- 

hood of the axis t » 0. If in addition to (4) the conditions for the consistency 

of the derivatives 

* (0. if. rf) = 0, 

f-(0. r» r*)~0. 
9 

are satisfied, then the solution r(x, t) has continuous derivatives. 

The solution r (x, t) is constant in the domain G (Figure 1.15)» *Ax,  t) 

■ r.. In the domain G, r1(x, t) ■ r... The boundary conditions are correct if 

TS7 
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Section XII. Analytic Methods of Separating Solutions to Systems of Differ" 

ential Equations With Two Independent Variables 

1. Investigation of the compatibility of several cv?rdetanm.ned systems. 

Analytic methods of seeking solutions to systems of quasilinear equations in 

many cases lead to ovtrdetermined systems,i.e., systems in which the number of 

equations exceed the number of unknowns. Here analysis of the compatibility 

of the overdetermined system is called for. 

At the present time the most universal method of analyzing the compatibility 

of systems of equations is Cartan's method of external forms (cf [j, 4, 21, 22]). 

In a number of examples we will present a simple method of investigating compati- 

bility which precedes Cartan's method and is sufficient for our purposes. 

Example 1. Let us consider first of all the system of equations 

(1) 

for n unknown functions u., u«, ..., u of two independent variables x1 and x2« 

This system can also be written in differentials; 

! "•; i f*tifj*!f**. 0*1- •••• *> •«•*# 2> (2) 

Compiling the conditions for the integrability of equations (1), i.e., equating 

the mixed derivatives; 

•rvv tnti 
T^^TjJ&r    .C-I....M*      (3) 

we find    k.;. i •■''»/ *'*&.•< "•■ ,.f.     . , t 
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. > If relations (4) are satisfied by identity, system (1) is called wholly inte- 

grable. In this case solution (1) can be defined by using the following algo- 

rithm. Let us assign at the point M : x. - x.„ (j = 1,2) of the value u. « u. 
*    0 3       jQ x     ' 1   xo 

(i - 1, ..., n) and let us consider a certain curve x. ■ x.(t) passing through 

the point M and through the arbitrary point M(x., x ). Let us further consider 

the system of ordinary differential equations 

(a-1. 2). 
it **'   dt (5) 

i"or known conditions imposed on the function f. (x, u) and at the curve ^ .' 

integration x. » x.(t), system (5) has a unique solution which takes on the 
J   J 

value u. =« u. at the point M and is defined everywhere in the domain G con- 
1   10 o 

taining the point M. Thus, u(x.., x~)  can be defined at each point of the domain. 

Let us show that for the case of a wholly integrable system the value u(x) at the 

point M(x) does not depend on the choice of the curve x. - x.(t). Suppose J^, 

c£fp are two curves that have common endpoints M , M, and are bounded together 

with a certain domain G C G (Figure 1.16). Then 

I dut=   I fladxa. TOi* 

By the Gauss-Ostrogradskiy theorem, 

*I+XI a, 

Figure 1.16 

By conditions (4), integral (7) is equal to 0, which means the independence 

of the value u(x) from the selection of the curve of integration. In practice, 

it is more convenient to adopt as the path of integration the strict raise at 

MM or a broken line whose segments are parallel to the axes x1, x2. 

If conditions (4) are not satisfied identically, they constitute a system 

of finite relations between u., ..., u , x.., x„, which makes it possible to 

cancel out several of the quantities u., and to reduce system (1) to an analogous 

system with a smaller number of unknown functions. Extending the analogy further, 

we arrive either at an inconsistent system, or at a wholly integrable system. 

In the case of compatibility, we obtain a set of solutions dependent on arbitrary 
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constants (a class of solutions with arbitrary constant). 

Similarly, an analysis is made of compatibility for the system 

35~ = .M*i xm, «, «,) (/==1 «; 7=1. .... «).  (8) 

in which u. depends on m arguments. Conditions of total integrability are of 

the form 

dft,     dftj      df„      asVj±_*f±xV±ft (o) 

(I, a = l n; J, A=l «). 

and for system (8) we have no more than the arbitrary constant in the solutions. 

Example 2. Now let us consider the linear homogeneous system with a 

single unknown scalar function of u(x-|, ..., xm): 

£,«=aIa^- = 0  (/=1 p;a=l m).  (10) 

*'here coefficients a,      ere sufficiently smccth function? of x-,   ..., x . 

In this case the conpatMlity algorithm is known and reduces to the successive 

formation of so-called Poisson'e brackets (cf />+, 23, 2U\I) . 

Let us form the commutant 

\LtLj]*=LtLf-LtL,. (11) 

for the linear operators L^ » aUTr    '   L, ~ <*-u ~^r     • I* is not difficult 

to see that the operator [L.LJ is a first-order linear differential operator» 
1 j 

d daß däu, (-12) 

Operator [L.L.J is called the Poisson's bracket.    If u(x1,  ..., x ) is solution 
-*■ O I III 

(10), then it satisfies, as a consequence, also the first-order linear homo- 

geneous equation: 

H,i,|B = 0    (/. /-I. .... p).        (13) 
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if 

; Adjoining system (13) to system (10), we obtain an extended first-order system 

of linear homogeneous equations and can apply to it the algorithm for the forma- 

tion of Poisson's brackets. This cycle of operations will be called an exten- 

sion. After a finite number of extensions we arrive at a linear system contain- 

ing all the preceding equations, for which the adding en of Poisson's brackets 

docs not yield new equations, i.e., the commutants of the differential operators 

of the system are linear combinations of these operators. The systems are 

called complete. Thus, by definition, system (10) is called complete if 

ggii$!^i4i (14) 

For a complete system (10) equations (13) are no longer differentiable, but 

algebraic consequences. 

Assuming the equations of the complete system (10) to be linearly inde- 

pendent, we see that two cases are possible! 

(a) p m m. then system (10) admits only of the trivial solution u ■ const; 

and 

(b) p <£ m. 

We can ensure (cf [23, 24]) that in the second case the system is reduced 

by change of variables to a single linear homogeneous equation for one unknown 

function v of in - p arguments y1, ..., y  , and thus tho solution depends on a 

single arbitrary function of m - p arguments. 

Thus, the final conditions for compatibility consists in estimating the 

rank of the matrix of the complete system. 

The distinguishing feature of the investigation of the compatibility of a 

linear system with a single function is the simplicity and homogeneity of the 

operations employed. 

This is related to t1 -e fact that the conditions for the compatibility of 

linear equations are again 11 ar equations, i.e., the extended system has the 

same structure as the initial. 

Example 3. Let us consider the overdeterminea syslsm of two nonlinear 

equations, one of which is the Monge-Ampere equation 
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»«MM \ 

*u +S"S5%+«-°    >P-Kfr $$ •) 

and the other is the first-order equation 

Here b, a  . , a are functions of x^xiyu, ^~ t &£ , a^ ^^ßtc- 

We now consider conditions under which the overdetaanined system (15), 

(16) admits of a family of solution dependent on a single arbitrary function of 

one argument. 

Setting 

«flu****' ****$*****. (t- ■'-1, ?v (17) 

let us write equations (15) and (16) in the form of fini+e relations in terms 

of x1, *z , LL, ptJpz, ptl, pl2 - PZI > Pa ■- 

i\Pn   ^l+^ + i-O      (a. *=1. 2). C8) 
/to    £» 

f(«l, Jfc «, p,. />,) = <>. (9) 

Equation (18) for fixed x.., Xz, «-. /», , /^ defines a three-dimensional 

space of components p.., p12, p22> a second-order surface (quadric) that has, 

generally speaking, two families of rectilinear generatrices. 

As we know (cf [2?]), these families are defined by the equation 

and, therefore 

*/>,» — *n/>a-fX,— JUJ„ = 0. J 
(21) 
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where * t   A are the roots of the characteristic equation 

Equations (20), and correspondingly (21), for fixed ^define a specific gene- 

ratrix, and the value p., is a point on this generatrix. Changing indepen- 

dently K  and p12, we obtain the initial quadric (18). 

Differentiating relation (13) with respect to x1 and x_, we get 

(23) 

For system (15), (16) to he compatible and to admit of a one-functional 

arbitrary constant, the linear algebraic system (18), (23) must admit of an 

infinite number of solutions. Actually, otherwise p.., p«0, p00 would be deter- 
11     1 C    C.C 

mined from conditions (18) and (23) as functions of x1, x_, u, p., p_, the sys- 

tem of equations in total differential (17) with the closed and would admit only 

of an arbitrary constant (cf example 1). The requirement of an infinite number 

of solutions to system (18), (23) signifies that the straight line (23) is ens 

of the generatrices (18). Assuming that the straight line (23) belongs to the 

family (20) or (21), we see that -|^ ,i-£ , ±£  must satisfy the equations 

» 
opt 

«Mi— yfi 
or else, correspondingly, 

» "~ — Jp   «„—jiA, 

* w 
•=F *t—i««ii 

(24) 

<2S* 

Canceling /A  from equations (24), we advance to a system of equations for 

<p (x1? x2, u, p.j, p2): 
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Canceling out jx  from equation (25), we thus obtain the equations 

(26) 

*i^+fcÄr*fe^*5ir-fc Uff 

(27) 

Let us show that equations (26), and therefore (27), are also sufficient for the 

compatibility of equations (15) and (16) with a one-functional arbitrariness. 

Suppose <f is solution (26), and u(x., x~) is the solution to equation (16)} let 

us show that u(x..> x„) is the solution to (15)« By differentiating (16), we 

get equation (23). Equations (26) signify that we can introduce the parameters 

so as to satisfy equations (24). Equations (24) signify that the straight line 

(23) lies in the quadrant (18), that is, u(x,, x„) satisfies equation (15)< 

&e assertion stands proven. 

And so, equations (2b), and therefore (27), are necessary and sufficient 

conditions for the compatibility of system (15), (16) with one-functional arbi- 

trariness. Thus, the problem of determining the compatibility of system (15), (16) 

reduces to the familiar and simple algorithm for investigating the compatibility 

of the linear homogeneous system with a single unknown function, which we treated 

in example (2). 

Martin [27], Ludford [28], and Yu. S. Zav'yalov [29] made an analysis 

of the compatibility of system (15), (16) on the special assumption when 

Wm::w^ '*-fi(«.x* (28) 

In this case system (26) takes from the form 

- 114 - 

maammimmM   __ _________ 



Let us denote    , 

Twice extending system (29) by means of the formation of Poisson's brackets, 

we arrive at the system 

(29) 

(30) 

£iss=fl/«^ = 0  (/, o=I, 

where the matrix a.. is of the form 
13 MO 

0 1 
0 0 —2/ 
0 0 -3/, 
0 0 -3/_ 

0 / 
-/ 0 
A A 
Ai Ai 
Ai A2 

5). (31) 

(32). 

For the presence of functional arbitrary choice, it is necessary that 

the rank of the matrix of the system obtained by adjoining Poisson's brackets 

does not exceed 4« Denoting  by   A ■  (i - 1, ...» 5) the algebraic comple- 

ments to matrix (32), equation (31) can be rewritten as 

§■ = *,<>. (33) 

where u)  is some function of x., x«. Prom (33) follows the representation 

rfp-»i»(AB4*J  (■—"l 5).      (34) 

which means that <*> is the integrating cofactor of the differential form A^ dxa 

Prom equatioi 

system (31)» 

Prom equation (33) we get equations for u)  and the compatibility conditions for 
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Without delving into details, and referring the reader to the works 

[27 - 29], where a complete analysis was made, we only point to the end result} 

for a system (31) to be compatible and to admit of a solution dependent on an 

arbitrary function of one argument, it is necessary and sufficient that there 

be the possibility of representing f(x., x„) in one of two forms: 

/ = F(o,*, + <VC,). 

,_       1      \F(*i4k\--L4-_Vpfa±a.l. (36) 

where P is the arbitrary function of a single argument, d   , <£ are arbitrary 

constants. 

Different expressions are obtained for the function f , depending on the 

function f. 

If f is represented in the form corresponding to (j6)s 

then 

1  i/W-^+M 

"P = *a--«4(*1 + «4)-->f»(*j+aJl±^(^Ö:)>   (»8) 

where g(0) is associated with F(6) by the relation g* ■ Jf* (39) 

and the sign £ denotes the different possibilities of selection of the roots 

of the characteristic equation. 

If f is represented in the form corresponding to (35)« 

then 
/-/^(«i*i + <»»*»). (40) 

<p = oyr4-0,^1^(0,*,-I-o,Jf^.     «  (4t), 

where g as before is associated with P by the relation (39;> 
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J 
Plnally, for the case when f - 0, f - ^(x., x.).       (42) 

These results were used by Martin [27], Ludford [28], and Yu. S. Zav'yalov t 

[29] to obtain generalized Biemann waves (cf chapter 2, section IX, subsection 

3). 

2. Solutions with degenerate hodograph of systems of quasilinear equations. 

The main task in the analytic theory of differential equations with partial deri- 

vatives is to obt. ■S'j particular solutions and to construct solutions of a broader 

class by relying on iien. Particular solutions are obtained for the most part 

by means of contraction of the space of the equation, i.e., by reducing the 

number of active variables. 

Thus, for example,        Fourier's method allows us to proceed from 

an equation with partial derivatives to ordinary equations and thus to obtain 

particular solutions containing the additional (passive) parameters. Then, the 

general integrals obtained by superpositioning particular solutions   contains 

arbitrary functions of passive parameters. However, Fourier's method is appli- 

cable only for an extremely narrow class of linear equations. For the case of 

nonlinear equations the method of contracting the space of equations is also 

used. It allows us to obtain particular solutions, but the superposition prin- 

ciple becomes inapplicable, and obtaining a broad class of solutions that contain 

arbitrary functions of passive parameters becomes greatly complicated. 

The familiar method of envelopes permitting converting from solutions 

containing arbitrary parameters (total integral) to solutions containing arbi- 

trary functions (general integral) becomes, generally speaking, unsuitable for 

systems of equations with several functions. 

If      u±(x, t, a)       (1 - 1, ..., n) (1) 

is a solution to an arbitrary nonlinear system 

-  '*       ." ;• * 
• *•. »V-\ I ■ ' '""•'• •, v.r    »■;,'■ 

then the envelope does not always correspond to it. This fact is pure geome- 

trical in origin. 

For the case n • 1 the space (u , x, t) of equation (2) is three- 

dimensional and infinitely close two-dimensional integral manifolds (1) 
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corresponding to   values of the parameters a, a + da intersect along the 

line (characteristic). A one-parametric family of characteristics forms an 

envelope surface, which is an integral manifold (2). If n = 2, the apace 

(u., Up, x, t) of equation (2) becomes four-dimensional and infinitely close 

two-dimensional manifolds (1) intersect, generally speaking, not along the 

line but at a point. 

Thus, for a one-parametric family of solutions of system (2), the aggre- 

gation of manifolds of intersection yields now not a two-dimensional integral 

manifold, but only some line. 

Let us consider by way of illustration nonlinear equations for the 

potential of a conservative system of equations. 

For the homogeneous conservative system 

■^^■'■^■■t  <l-1 *>*      (3) 

Let us introduce the potentials (cf section V, subsection 3), which are asso- 

ciated with u1, ..., u by the relations 

For 4>.  we obtain the equation 

^^Sffr&äil &)*■*<# «MV..-•'."<&'•'      (5) 

It is not difficult to see that we have a 2n-parametric family of solutions 

to system (5)i 4> ■  ■ a.x + b.t + c.     (i = 1, ..., n)       (6) 

where a., b., c. are constants, and a. and b, are associated by the relation 
i* i  i l    i 

In the (n + 2)-dimensj.onal space {^<> •••» ^n» *» x } °f system (5), sur- 

faces given by the totality of equations (6), with fixed parameters a. and c., 

are two-dimensional planes. Suppose the functions 
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separate from family (6) some one-parametric family. Ve require that the 

corresponding planes intersect along a line (characteristic); the set of inter- 

section points is determined from conditions (6) and from the additional equa- 

tions 0 » ''X + D.t + c,, (9) 

where the dot  over the letter denotes differentiation with respect to T. 

For a characteristic (the general line of intersection of the planes (6) 

and (9)) to exist, it is necessary and sufficient that system (9) he of rank 1, 

i.e.» that the condition 

(10) 

be satisfied. From this we get equations for determination of a, and AX t 

where 
t>e«((«//+M*i/))«=0. (12)1 

„   _fo<(«i ««) /.«( < 

Equations (11) and (12) define a.(-f) with accuracy up to one arbitrary func- 

tion of parameter r . From equations (10), c.( r) is also defined with an 

accuracy up to one arbitrary function of parameter T.    Since parameter r is 

undetermined, we obtain a family of solutions depending essentially only on 

a single arbitrary function of one parameter, i.e., this family is not a 

general integral. 

waves. 

Let us show that the resulting family is a family of so-called simple 

Definition.    A simple wave of a system of equations 
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is the name given J.o  the solution u. ■ u.(x, t) satisfying the conditions 

rank 'W'W^ M (15) 

Equation (15) signifies that functions u.(x, t) can be represented as 

where f (x, t) is some parametric function. Substituting (16) and (14), we find 

For solution u.(x, t) » u.[ T (x, t)] to be nontrivial, the equations 

(18) 

IS ' 

must be satisfied. Therefore for this is necessary and sufficient that 

if- •   ■•■■■'   ■'■ *' i 

'" ß. " ' 

JpC«((«to-lft|o))=Ö. (19) 

then ^   is the eigenvalue of matrix    // a.    // , and the vector u    ■   /u}   is 

its right eigenvector. 

From the algebraic relations (18) and (19) we find   \ and u, and   T(x,t) 

is defined as the solution of the equation 

I ai  ', . dt A 

;v-3r+^ass0- (20) 

If system (14) is hyperbolic, then there exist n eigenvalues Jj , ..., 

§  and travelling waves corresponding to them, which we will denote with 

the same number as the characteristic. It is not difficult to see that in 
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J the k-th simple wave the characteristics of the k-th family are straight lines. 

If system (14) is conservative, i.e., if the following conditions are 

satisfied: 

aiAui "«) = Wj • (21) 

where <PÄa*t  •••» u ) are certain functions, then we can proceed to equation 

(5) in potentials. We will show that the envelope of family (6), (8) is a 

simple wave. Taking (6), (7), and (9) into account, we have 

«i«^~(ii* + *if+i|>'£+«i = Mt). (22) 

Thus, at the envelope surface of family (6), (8) functions u.(x, t) depend 

on a single parameter, and by definition solution u. - u.(x, t) is a simple 

wave. The statement stands proven. 

A special case of the simple wave is the centered wave, when straight lines 

of the characteristic of the k-th family intersect at the same point x , t . Then 

we can choose the inclination of the characteristic 

t = t-U (23) 

as the parametric function. Equation (20) retains its meaning, and the relation 

is valid. 

Let us note one interesting property of simple waves. Relation (16) 

signifies that the (n - 1)-th functional relation exists in the k-th wave: 

/•»(a, «„) = «,  «-1 «; /¥■*)• (25) 

Let us consider the one-parametric family of k-th centered waves in 

which the constants c. (i / k) from (23) are fixed, and x , t are associated 

by tne function x ■ <p (t ). Then we have a one-parametric family of integral 

surfaces of equation (20), which has an envelope. This envelope is a simple 

wave, but no longer centered. Therefore, simple waves are centered envelopes. 
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Let us now consider simple waves of inbomogenoous systems. 

For the inhomogeneous system 

■§-+«fa(»i ««>ir=tfi(*i..... «g   -0-1.....»;.] 

assumption (16) leads co the equation 

(26) 

Sf + fi^ = pi   "ff—1 »).      (27) 

where 

~-'   fi  V>  0=1 »)• (28) 
— i. 

For simple waves with arbitrary functional to exist, it is necessary and suffi- 

cient that the rank of the matrix 

:i< fat* t 

4 

(29) 

equal 1. In the general cases condition is not satisfied. For waves to 

exist with arbitrary constant it is necessary that the rank of matrix (29) be 

2. 

From this condition, n - 2 quantities u.(i ■ 1, .... n) are determined 

for every two of them, for example, u,, ii • •< at a spacing of u-, u„. 

Then, considering these functions, we arrive at subsystem  (27) when 

i - 1, 2, where f , F. are now the functions only of u., u„  Solving (27) with 

respect to $S J iS  , we find 

(30) 

Setting up the conditions for integrability of equations (50), we find 
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Hence follows the integral $J $.  - C. 

From equations (30), bearing (32) in mind, we find 

(32) 

The simplest solution for f is of the form  Oi^:-Y ^»L-!^^ <■•ui the form i/i 

i <-f '.Via.. "''.»UV:-y-jii-.c-'. i «,«>", (84)9| 

Thus, u., u„ are functions of parameter \ and the following system of ordinary 

differential equations is satisfied] 

Let us further point to a class of equations that admit of simple waves 

with arbitrary functional. For the system 

i^^T^W'^   ?£*'■*■<     (56) 

the parametric function x(x, t) satisfies the equations 

From whence we find 

(sn? 

where 

.4«' 
(8*> 

<*#: 

The conditions for the integrability of equalities (38) yield 

V^^*A = ^ (40) 

Hence it follows that when oi  » 1 system (36) admits of a simple wave with 

an arbitrary constant. 
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I*t us indicate the classes of equations leading to equations admitting 

of simple waves. 

Suppose the system 

■tf+Mri. rj^l *r *,<ri.A f.jr*!: 

(/***, w (41) 

has the coefficients £.cr,,''t>,gi(
ri, 'i), exhibiting the property of homo- 

geneity, such that the relations 

are valid. By the substitution  r. » x R. 

system (41) is reduced to the form 

(42) 

(43) 

If '•■'••■'■■■■   ,\1    ,.  !        .', • - ... 

then after the substitution 

['■"-tf'. + l *~*4t' («> 
system (4,) takes on the form     ' 

i.e.1 admits of a simple wave« 

Sy the substitution   r. ■ (x/O H- 

system (41) ia converted into the form 

\*. . ._ _ a/?. 

(48) 

V 

*+(*)"/,«,. *.>&= 
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If     Vß, - 1,   oLm   1,   Vß2 " V - Oi 

then systeu (49) becomes 

0, (50) 

where ■'«x-'^'fttf-•<■■ 'vA^"*-fcssSMi- f'^yf^.i»^.^*^4? ^?"?r^ 

i.e., also admits of a simple wave. 

The possibility of the substitutions given above is related to the group 

properties of the equations (cf section XIII on this subject). In par+i«ailar 

equation (51) is invariant with respect to the similarity transformation z  —•» 

kz, T—*» kr. 

Relation (16) indicates that in the case of a simple wave the two- 

dimensional integral surface u. ■ u.(x, t) maps on to the plane of hodograph 

purely {u.., ..., u J in the form of the line 1» u. - u.(r) (i ■» 1, ..., n); 

therefore we can now speak of simple waves as solutions with degenerate hodo- 

graph. 

If the system is homogeneous, then to the line 1 there corresponds a 

family of solutions with a one-functional arbitrary choice. 

In the general case the two-dimensional integral surface u. ■ u.(x, t) 

(i ■ 1, 2, ..., n) maps onto a two-dimensional plane in the hodograph space. 

It can be shown, as a rule, that to the surface S there corresponds a family 

of solutions with not more than an arbitrary constant and only in exceptional 

cases does surface S map onto a family of solutions with a functional arbitrary 

choice. 

For sake of simplicity let us limit ourselves to the case of a system 

with three unknowns 

&fa*W' :0  (/, a=l. 2. iy 
(55) 

To each solution u. - u.(x, t) of system (53) that is not a simple wave there 

corresponds a wholly determinate surface S in the space {u , u_, u,| , which 

we will give, for specificity, by the equation 
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After the substitution of (54) into (53), we arrive at the over-determined 

system 

where 
:' ~ r^ ■ -IBV.. '    ■ ■•"■■■<' ' 
|J .»it :. fai: ~W  • ■:--. . .  ./■'■■ 1-.  •• 

j| »»—£^«»#-  (< = ». 2. 3; a=l. 2) 

(5o) 

(56) 

The condition for the consistency of system (55) leads to a third-order 

quasilinear equations for the function 4 (u1, u2). By defining surface (54), 

we can restore the solution by quadrature. 

We will not slight the operations, referring the reader to work [25] and 

to section IX of chapter two. 

3. Solutions characterized by the differential relation. The analysis 

made in the preceding subsections shows that solutions with a degenerate hodograph 

(simple waves) do not always have a functional arbitrary choice. This means that 

to obtain solutions with an arbitrary functional choice or with an arbitrary 

constant choice with a large number of constants, classes of solutions must be 

separated in a more general fashion. 

Functional relations in the space of the initial equation must be replaced 

by functional relations in the space of the extended system (cf section IV, sub- 

section 3)« Functional relations containing not only the unknown and independent 

variables as such, but also derivatives, will be called differential relations 

(cf [26]). 

The highest order of derivatives appearing in a differential relation will 

be called the order of the relation. 

Let us clarify these concepts with the example of a system of two inhomo- 

geneous equations written in invariants! 
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drt dr, __ 
ä£7 + /i('V r2> *v Jfü)^-=«,

1('-I. r2. xv xj, 
dr2 l/fj ■S^ + Mrv H, xx, xdj±=gt(rv r2, xv Xi). 

(1) 

We will seek the solution r. ■ r.(x., x_) of system (1) satisfying the first- 

order differential relation: 

p(y      y     r     r       Ö/"'   *"»   *"'   *"* ^ — rt F\xv x2. rv r2, ^-. -^.  -g^-. jj-J-O- (2) 

Clearly, using equations (1) the dependence of F on ^  , ~*   can be canceled 

out and relation (2) can be rewritten as 

•(**'»■'*&• SH- (3) 

Here <Q  is a thus far unknown function, but a fixed function in our entire 

treatment. 

Let us find the conditions under which a family of solutions satisfying 

the fixed relation (3) as a one-functional arbitrary choice. 

Let us consider the first extension of equations (1) and relation (j). 

We set 

*i *i tot dP, 
M~p" ^=?" ■d==s" -4=''   (/==,*2>- 

In equations (1) take on trie form of the finite relations 

ih+J,Pi^gi      ('=1.2). (5) 

using (4) and (5), we find" 

dr, =* Pt dxy+ q, dx2 an />, </*, -f (g, — f,pt) dxr (6) 

(4) 

The conditions for the integrability of relation (6) lead to the equations 

(7) 

where 

g+/.fe-'*+to-',. 
£+/,$-*+/*-''.. 
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A-2KC (8) 
*»* 

and the symbol <$/<S x. denotes differentiation with respect to x., taking 

into account the dependence of v+,  r« (but not p., p_) on x.., x_« 

HOCTB *,. r,(HO HC Pfr'fj) at *,. *s: 

*   * "-L -■ * i   d 

Differentiating relation (J) we find. 

to—Ü 2). 

(a—1. 2). 
tjii. 

\  > 

(9) 

.'j)»i>! 

(M 
■»- ■'. w 

In the four-dimensional space of derivatives s., s2, t1, t„, each of the equa- 

tions (7) and (10) constitutes a three-dimensional plane. For the functional 

arbitrary choice it is necessary that these planes have a common s  ight line, 

i.e., that the rank of the matrix 

.: < 

Jr   p    /,    i   .-f, 

■it* 

- * 

a 
&d 

01) 

be equal to three. Actually, if these planes intersect at a point, then this 

signifies that from equations (7) and (10) the derivatives s. ■ ip./ax., 

t. - ^ P-/<2 x„ are determined in terms of x1, *^ , *"», ^i ,p, , pz , and we arrive 

at the system of equations with an arbitrary constant choice that we investi- 

gated in subsection 1. 
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Hence, as the first corollary, when f„ / f. we get 

Let us assume for sake of definiteness that ^VJZ> p2 ■ 0. Then, as the 

second consequence we have 

03) 

Taking (8) and (9) into account, relation (13) can be transformed to 

A + p2B - 0 (14) 

where 

'-■-- ■ -J- - -    • ~..^f 
JkSuJii 

If B / 0, then relation (14) is a new differential relation, from which we 

can explicitly define p2> *n *il^-s case we arrive at the arbitrary constant 

choice. Therefore, for a functional arbitrary choice the linear equation 

A - 0,    B - 0. (17) 

must be satisfied. 

Thus, the following statement is valid: 

For differential relation (3) to admit of an arbitrary functional choice 

it is necessary that <$ satisfy one of the two systemst 

rp/'f-W'l^lÄ,^;!/;^' 

(18) 
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or 

06  ; Oi 

(19) 

Differential relation (3) corresponding to the condition ^/i p * 0 will be 

referred to as the first-order relation, and relation (3) corresponding to the 

condition &$/j p., - 0 — as the second-order relation. 

Again we have reduced the problem of investigating consistency to a 

standard problem for a system of linear homogeneous equations. 

The study of systems (18) and (19) is carried out with the aid of the 

familiar algorithm for the formation of Poisson's brackets. Since each of the 

systems is considered, essentially, in a five-dimensional space: the second 

and third equations of (18) — in the space (x.., x„, r.., r«, p..), the second 

and third equations of (19) ~~ correspondingly in the space (x., x2, r.., r„, 

p„), then a sufficient condition for the existence of a relation with a one- 

functional arbitrary choice is the condition  r = 4« (20) 

where r is the rank of the complete Jacobian system formed by adjoining Poisson's 

brackets to equations(18), and, respectively, to equations (19)» 

The algorithm for defining the differential relation with a one-func- 

tional arbitrary choice can be transferred almost without modification for the 

case of a relation of arbitrary order. Without carrying out the operations, 

we state only the final result. On analogy with the preceding, the differential 

relation 

where the following is assumed: 

0(i,. xvr*,.r\,:;.;r***fimO, (21) 

fir1.-1 
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I 
can be of two orders: a first-order differencial relation when 

*f 
and a second-order differential relation, when 

a* 2>r K+l - O 

= O. 2>r «+ i 

For the case of a first-order relation function ^> satisfies the system 

where 

m. 

and the quantities gA C'"-/, 2y 5-i,   v*-;are defined from the recursion   rela~ 
tions 

S\ #Mft. »,: „.;,! 
(24) 

Here d/dx. is the total derivative with respect to x1, taking account of all 
3-1 

arguments on which functions g,  , f depend. 

The space of system (22) is a space of the valuables x , x-, rs,rs,  r**' 

(s - 0, ..., k). Since it ha. the dimension 2(k +2) +1, for the relation 

to admit of a one-functional arbitrary choice it is necessary and sufficient 

that the rank of the complete system corresponding to system (22) be equal to 

2 (k + 2). 

Remark. Differential relations for a given system of deferential equa- 

tions can contain not only derivatives, but also potentials. 

Let us consider the conservative system 

du, du.     .      <*, 

- 1J1 - 

(25) 

 immun- - - 



For it the potentials 

■■•T >-£*fo-f-•■;£■_*-: 

can be introduced, satisfying the conditions 

If we take as the starting point not system (25), hut the system in potential 

(27), differential relations must also contain the variables <£>.,  ..., <£>   . 

Thus, the first-order differential relation for equation (27) is of the form 

i \ =*(*,. x^ ©,..... ©„. ^."l... B,)=O. (28) 

We similarly discuss relations of this type in subsection 5 of section IX, 

chapter two. 

In concluding this subsection, let us deal with the application of the 

concept of differential relation to several problems in the theory of linear 

equations. We limit ourselves to Darboux's equation: 

which plays a major role in hydrodynamics. 

Setting äu/3 x. - r.  (i - 1, 2), 

we write (29) in the form of the system 

&=/«.-& = /«♦ 

The extended system for equations (JO) and (31) is of the form 

(29) 

(50) 

(31) 

where 

1- 
.1 

BE- 
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Since part of the higher-order derivatives is determined from the conditions 

of the extended system, a relation of the (k + "l)-th order can be sought for 
Q      k 

in the form <p (x , x„, u, r., ..., r.)- 0  (i » 1 or 1-2)   (35) 

Without going into details of analysis of the consistency of (35) with the 

equations of the extended system, let us give the final result. 

For functional arbitrary choice the condition 

•/■ftp gjL 
1 drf drf 

fr   fo,«Q, (56) 

is necessary, so that relation (35) will be of the first or second order, 

depending on whether condition 

assume for concreteness that 

theorem is valid: 

»4drZ     _   ...     3r? 
- 0 is satisfied.    Let us 

d*Z 
0 (first-order relation). The following 

Theorem. For the first-order relation (35) to admit of functional arbi- 

trary choice, it is necessary and sufficient that <f   not depend on u, r^ (s ■ 
0, ..., k) and that it satisfies the linear homogeneous system 

where 

)  (a = 0. I. .... ft). *P _i_p *t_ 

p=0 P^(>\*^lr*-i=(   °   Y'^'r* (s=\. 

(37) 

(38) 

... ft). 

(39) 

An analogous statement is valid also for the second-order relation. Conditions 

for the consistency of system (37)> (58) lead to conditions on ',he function f. 

The conditions for the existence of first-order relation*) 

<p(*,. xv  r,) = 0 (40) 

is of the form       f - 0, (41) 

i.e., the Laplace invariant tends to zero, and Darboux's equation converts to 

an equation of oscillations. 

*) The order of the relation is established for equation (29) with respect to 

the function u. .,, 

aMMHIM»«»^.^.. 
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For a second-order relation <P(**t  *2» 
ri' r-|) " ^ 

to exist, it is necessary and sufficient that 

(42) 

(43) 

This means that by the Laplace transformation (cf [30]) we can reduce equation 

(29) to the form 

!<\ (44) 

These criteria point to the intimate connection jetween Laplace transformation 

and the differential relation method. 

Obviously, the following assertion is valid: if equation (29) admits of 

a differential relation of (k + l)-th order, then by the k-th Laplace transforma- 

tion it can be reduced to the form (44). Since the Laplace transformation theory 

is group-oriented (cf [30]), this also points to the close connection between 

the concept of differential relation and the group properties of differential 

equations. 

The effective construction of Riemann's function is possible for hyper- 

bolic equations admitting of a differential relation (cf [4]). We will briefly 

summarize Riemann's method, confining ourselves for simplicity to Darby's equa- 

tion, which is self-adjoint. 

If u(x1, x2), v(x1, Xg) are solutions to equation (29), for any domain 

G bounded by the curve C, the relation 

is valid, where 

.f f {vLu — uLv)dxx dx2 = <£ Xldxx + X2dxa==Q. 

L=> 

(45) 

(46) 

v       I l    do du\ v       1 / du do \        ,.,v 

and the integral along the contour C is taken counterclockwise. 
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Riemann's function R(^1» £2' xi» ^o) is defined as function v(£L, 

52l **i *o)» which is — with respect to x., x„ ~ the solution to equation 

(29) and satisfies the additional conditions: 

x„ ~ arbitrary 

x1 — arbitrary 
(48) 

In other words, &{%*t  ^2
J xi • x2^ i8 the 8oiution of (29)» which tends to 

1 at the characteristics EH and MN. 

Suppose u(x.|, Xg) is the solution of (29) for which u,^u/a i-^u/a Xp 

are given at the line PN, i.e., for which Cauchy's problem is posed at the line 

PN. 

Employing the identity (45) for the functions u5 v ■ R for the domain G 

and the contour C - PMHP (Figure 1.17)» we get after uncomplicated transforma- 

tions 

V3SS}®*! :SÄ£/k 

Since iu/^x., u, R, ^R/^Xg are given at the curve PN, formula (49) yields 

the solution to Cauchy's problem for equation (29). 

The explicit representation of Riemann's function for equation (2?) is 

possible only in particular cases. Thus, it is possible for equation (?9) admits 

of differential equations. 

The case of a first-order relation is obvious. Then f = 0, R =• 1, and 

formula (49) is the familiar D'Alembert's formula. 
- - ■       .. S 

\H(thCt) 

Figure 1.17 

- 135 - 

^^^^^^ 
r.iri»m < 

■ 

HÜ  



mv^^^■wv^^^3^wr^v?t^8S^a«M^^^'^MllWl^J^, gmtHmstm 

Let us consider the case when equation (29) admits of a second-order 

relation of the first and second kinds and when condition (43) is satisfied. 

We will seek Riemann's function in the class of solutions admitting of 

a differential relation of the second order. The equations for the definition 

of the differential relation and the corresponding class of solutions are of 

the formj 

.SÄI  _'_         >. ..       m ... ... . — .*. - *'--i 

Equations for the consistency of the first of the equations (51) and (52) leads 

to a system for ¥: 

m (53), 

if._,j_m 

which is consistent given the condition 

3tf:WfcEy"'--' ^ 

Assuming condition (55) > expression 

Vft^J*  -t L-..V■/..**    '4 1\ ,'  ..    ", j. Jl 

(M) 

(56) 

is the complete differential, and for [$)  we obtain the expression 

where f (x..) is an arbitrary function. 

Taking (52) into account, for r. we get the equation 

*, 
^T t-^-'w: (56) 

whose integral is of the form r.. (x., x„) •» C(x., x») f (x , x2), (59) 

where 
- 1J6 - 
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and g(x_) is an arbitrary function. 

Let us define ?{x*),  starting from the condition 

From (61) it follows that  c(x.j, £ 2) - 0. 

This is possible only in the case when P(x.) - 0, g(§2) " °» 

so that r1(x1, x2) can be represented as 

""IT"1 

Taking the first of the equations (50) into account, we find 

'«(*,. jt$~g(x)I■/(*,. itf'to^ pfifft 

Since u (x1, £2) - 1, g( £2) - 0, then  K(^2) - 1. 

Bearing in mind that u(£ ., x2) - 1, we find  K(x2) - 1 

and for u(x., x?) we obtain the representation 

t. •. ► -|J 

(60) 

(61) 

(62) 

(65) 

(64) 

(65) 

(66) 

(67) 

(68) 

Satisfying the first of the equations (51)» we derive an equation for g(x2)t 

-:.^ 

Taking condition (55) into account, equation (69) can be rewritten as 

where 
,   t?W+i%- «£irto—!• 

;l(*j. *,) = 
din/ f—srr 
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Prom this we get an expression for g(x2)« 

fXZ 

and for Hiemann's function j  . 

(72) 

: i K.V 
«(*,, *^=*/?(|j. |3; *,. *a) «-k. 

fy%:x$djtt J/M.X,)**, 

/«.. *•) 
- "Jiöß- ,..*;a. 

+1. 
(73) 

Noting that function f, ^/hich is the solution to equation (55)» is of the 

form (cf [JO]) 

we finally obtain     j 

©rt i.'* ■.^-HJ««(*i)-»t(li)H''i(*i)--«i<ti)l 1 1 «K\ I 

Section XIII. Group Properties of Differential Equations 

The task of seeking an multiplying solution is closely bounded up with 

the group properties of differential equations. The fact of simple waves is 

enveloping center waves, and the latter of self-modeling, i.e., invariant rela- 
112     2 

tive to the homothetic transformation x —*• kx , x —*■ kx  in the plane 
12. 

x , x , is group in origin. 

The possibility of reducing quasilinear equations to a form suitable for 

obtaining simple waves can be found after analyzing their group properties. 

The long-known self-modeling solutions of one-dimensional gas dynamics 

essentially were derived by a group analysis, whose specific form is dimension. 

Group analysis enables us to construct legular algorithms to find parti- 

cular solutions without involving additional considerations, based only on the 

given system of differential equations. 

- 138 - 



BREHmu 

j 

1, One-parametric Lie group. Consider in the n-dimensional space X 

of variables £x ,  ..., x } a system of ordinary differential equations 

dx* 
~dT = |V *"). 0) 

for which Cauchy's problem x (t ) » x . (2) 

can be formulated. Given sufficiently smooth functions ^ (x , ..., x ) and 
i 2 

on the condition that  £ ( ? ) >  0, problem (1), (2) has a unique solution 

*'(/)-=/' (*o x%. t). 0) 

which is the sufficient number of times of the differentiable function of the 

initial values x and parameter t in some domain of variation of parameters 

x and t. o 

Problem (1), (2) can be given in the following geometric interpretation! 

the parameter t is time, the curve x (t) ■ f (X'0J ■■■ ,  Xg     , t) represent 

the trajectories of some steady flow, xj ,   • ■ •  ,   X.£~  are Lagrangian coordinates, 

and x , ..., x are Euler coordinates. 

Solution (J) to problem (1), (2) as the property of invariancy relative 

to displacement in terms of parameter tj if in the problem (1), (2) we preserve 

the initial x values and replace t with t + t , then it will have the solu- c oo 
tion 

*'w-/'(*S *$.*-*)■ (4) 

Formula (3) can be symbolically represented as 

(5) 

where S(t, t ) ia an operator converting x(t ) to x(t). Due to the invariancy 

of the solution relative to displacement in t, operator S(t, t ) has the property 

S(t. g=S(^-/Q. ö)-=S(*-/oJ.' (6) 

Therefore, after solving Cauchy's problem with the initial time instants t » t , 

t1, t„, we arrive at the property of composition 
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To this we must add the property of continuous fitting of the solution to the 

initial data S (f) —*- B    ( X  —*• 0) (8) 

and the property of inversibility  S(f)S(-r)-B, (9) 

where E is the identity operator. 

The totality of operators (transforms) S(t) exhibiting the properties 

(7) ~ (9) forms, by definition, a one-parametric continuous group (Lie group). 

We will call £«{i£ , ..., £ j- the direction vector of the one-para- 

metric Lie group and refer to the group with the direction vector £ by the 

symbol G1(£). 

1 n 
2. Invariance of the group. The scalar function F(x) - F(x , ..., x ) 

is called the invariant of the group GAZ)  if P(Sx) = F(x)    (1) 

for any transformation S£? GA%). 

Let us introduce the concept of the Lie derivative of the function F(x). 

For x the Lie derivative, by definition, is the quantity 

If-1 (/=1 »). (2) 

The Lie derivative of the function F(x) is defined by the rule of differentia- 

tion of a complex functions 

it        dx?  «  6 dx* 
»)•! (3) 

The Lie derivative <$F(x)/<Jt is none other than the derivative of the function 

F(x) along the protectory relative to parameter t. 

The differential operator 

1>® = 1" A*" 
(0"»li ...» ») (4) 

will be calJed the infinitesimal operator (in the following, simply the operator) 

of tne group G„(£) and we will state that the operator L(^) generates the 

group of finite transfers»tiona G (%). 
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Thus, the Lie derivative of the function F(x, is .none other than the 

results of applying the operator L(£) to F(x). It - not difficult to see 

that P(x) is the invariant of G.. (2;) if and only if the Lie derivative of the 

function P(x) is equal to zero: 

xmRkGm* 
The expression  '^'VV^ fy-&fe*&^J&*t£Xyfa .ft*.,, vJM 

will be called the Lie differential of the function F. In particular, £x 

g^S t  is the Lie differential of the function x . 

We will understand the differential dx to refer to the expression 

w,* f^iy^fjit ,'f; C'* 
1VI« •»/» I 

■:iv ; '4 (7) 

computed for a fixed -t. 

Similarly, the differential of the function F(x) is defined: 

4 
(8) 

It is not difficult to see that the operators 6 and d are permutable, so that 

the relation £ dx ■ d£x , (9) 

is valid. The manifold ^ givwn by the equation 

**(**,.v','*-):-^) ' </ = !...., fl. (10) 

is called the invariant manifold relative to G.. ( *§) if the transformations 

S £ G1 translate the points of the manifold "gain to points of the manifold. 

For the invariancy <£ , it is necessary and sufficient that the vector 

at the points $ touch $ , i.e., that the condition 

! * d*» 
n). (11) 

be satipfied that the manifold (10). If an arbitrary point on the manifold 
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q   is not invariant relative to C,, while at the same time the manifold ^ is 

invariant, then we say that the group G1 induces the continuous group of trans- 

formations at the manifold 7. Let us assign <p  by the parametric equations 

«r—/(&::;,vf   (P***-*H» C....»). (12) 

Then the group GÄZ,) induces in the space v -     v ,  ..., v5      the group 

S-i(>? )> where the direction vector Y\ m{i\\" • yylt>} is related with the 

direction vector   3; «/}?, .. . ,   ^   _f by the relation 

J—-..—^^5..-,uLia.u JiiflL»*'- i -tteir3.jL,: ,L_»... . :. «. .y 

which derive from equality (12). 

Suppose 

Q(*. ^~4,(**--^">tf*M (14) 

is a linear differential form. Then the Lie differential of the form $ is> 

by definition, the expression 

employing the commutativityof operators d and St  we have 

(a, p=sl. .... n). 

(15) 

(16) 

The Lie derivative of form XL » ty definition,  is the expression 

A{*. I'd*. <*) = $■I'dxy^dl'. (17) 

which itself is a linear differential form. 

We will call the form Q_  invariant relative to G. ( ^) if i*8 Li.e deriva- 

tive, i.e., the form /i (x, S, , dx, d^), is equal to zero. 
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Suppose the group &A%)  leaves the form 

(18) 

invariant, as we?.l as the manifold <$ given either by equations (10) or by 

parametric equations (12). 

Tha forms Jl    convert on ^ to the forms 

(/== J, .... r; o«= 1, ...,. n; (p 1, .... /»), :| 

(19) 

which remain invariant relative to the group g*(rj) induced by the group G.( %,\ 

on   ^ . 

By definition, the Lie derivatives of the forms co    are equal to zero, 

i.e., the equalities 

A'(t>, n? dv, dT$&^yfld{ß+<&*$**$J (20) 

are satisfied. Suppose G.( §<)> <S2(%2),  . - . , (xp(Kp)       are one-parametric 

groups of transformations in the space X . We will seek the combined invariants 

of these groups. If P(x) - P(x , ..., xn) is the invariant of QA&), Gtt<.%j)( 

• • • , <jrp(%e), then the relations 

V-tt-5;-* 
w-e& = P. 

(a=='l, .... rt). 

(21) 

must obtain. Suppose system (21) is complete, i.e., the operators (L., L.] 
A    J 

are linear combinations of L.(i =1,2, ..., p): 

- U3 - 

imyvfiniii^aitrv v - ;: - ■ ■ ■       ■ - '' litrfTliriti it ifiiT^irii' oiiif-r rtffitrtf rrt¥r'r1'^TrirfM^YawMgr ^iii^Miivf'J i i&it^äsäii^ei^^ 



'-"=?V£W»?-'«ws*-t:., 

ip^f^?.1'^/.-«-«..*^.' J* 
If the coefficients c^.      are constant and satisfy the conditions 

operators I 

in such a way that any operator 

then the totality of operators L.., ..., L generates the p-parametric Lie group 

ar*" ,(!,) 

with constants coefficient A , ..., A generates a one-parametric group (cf 

[51]). P 

3. Extended group. Thus far all variables x**- were equivalent. Let us 

define some space X ■ (x*)  corresponding to the separation in the points 

space X „(x ,x,u,...,u)of the two-dimensional manifolds 

Point x " [x ,  ..., xn}e X   will be defined by the coordinates 

,~t. .»' JVirV. *'+' = o', 

•I,/^Stl 2;l-= i. ....»;   « = 3m + 2). 

(2«) 

(26) 

Among all transformations. in the space X , we separate out the transformations 

that leave the following forms invariant: 

Wui,^dx)~ä&{r**+*?+*dx*      (<— 1,.... N; P — l. 2). (5) 

We will call these transformations tangential. Relations (2b) remained 

unchanged for them. 

Among the tangential transformations we single out the subclass of 

extended transformations, which are characterized by the fact that the subspace 

Xm+2 ■{*>** *■*> ■ - - ' X-*Ul\ C  V-n,    remains invariant. We will call 
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these transformations in X „ point transformations. 

Let us show that the point transformations completely define the extended 

transformations. 

Suppose £ - { g',  -. - , %*'**}  is the direction vector of the point trans- 

formation G/l) at X^, and f - {£, ... , #m*2, %m*\  ... f3*"2} is the 

direction vector of the corresponding extended transformation GA%). 

Prom the invariancy of X » it follows that 

'.Jfmf      (/«=?,..„ m + 2>. (4) 

Prom the condition of the invariancy jf relative to Ml), we find 

4f|2+I__je8+B«+f<^ß_^2+em+<dx0 = 0  (* = 1 fli; ß => 1, 2).      ^\ 

Prom this it follows that 

|2+«I+I __ dj! ;2+J 

dx>    '    dua 

(s. 0=1. 2; /, a—1 w) 

The statement is proven. 

Finally, we can consider the further extensions of the group in the 

space of the components of derivatives of second and higher orders. 

4. Proofs of transformations admissible by the system of differential 

equations. For simplicity of presentation, we will limit ourselves to quasi- 

linear equations. Using the notations (13.3.2), let us write the system of 

quasilinear equations 

£r + *l
a(*. x';  «• B-n)-g. = ,/(*>, x,. „x  

(f. 0=1. ..,. m) 

in the form of equations in differentials: 
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ß'(*. dx) = dxM-x*+*"+tdx* = Q   (1=1 «; p- 1; 2) , (2) 

and finite relations: 

Fl(xl jc-)=*2"+2+'+aijc,"+2+o-/'=a=0    (t, a==l. .... m), A 0) 
Then the integral manifold of the system (2), (3) can be determined as the 

surface in the space X = xzm+2 
of variables x , ..., x   : 

on which the forms J2. 1 tend to zero and which itself lies on the manifold 

{p   given by equation (3). 

Definition. System (1) admits of the group G^(%)  in the space X^ 

of variable x1(i - 1, ..., m+2) if the extended group G.j(5) corresponding to 

it leaves invariant the manifold 4> ,  i.e., the group G^lj) translates the 

integral surface of the equation (1) into an integral surface. The totality 

of groups G..(£) forms a set of admissible transformations of system (1). 

The condition for the invariancy of manifold 4>  is of the form: 

<*£ b? (5) 

(ß=*l, .... »4-2; I. d«|B>. .... aty 

Substituting in (5) the expressions for \ 

by means of (3), x m+ +1 = p^ in terms of xm+ +1 ■ p1, we arrive at the system 

of equations 

from (13.3.6) and expressing 
i 
1! 

A'+A^pf+A^^pf^Q      0. a, «4. Oj« 1. . ...;»).J (6) 

where 
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... 
p 

M mm 

the coefficients of b(x) depend on 

(7) 

On the (2m + 2)-dimensional manifold <£ the independent parameters are the 

quantities x , ..., x  , p1t ..., p.. Since the ratio (6) must be satisfied 

identically relative to these parameters, from (6) it follows that 

Ipif'-I^o m *r«s"-v.;;;W     (a) 

Equations ^8) constitute a linear homogeneous system of equations relative to 

§ , ... 5  » this system is called determining and,generally speaking, 

is overdetermined. 

The satisfaction of (8) is necessary and sufficient for the group G1(?) 

to be admissible for the given system (1). 

Let us consider a number of examples. 

L. V. Ovsyannikov [jl], based on this algorithm, investigated a group 

of transformations for a system of one-dimensional plane equations of gas dynamics 

and the polytropic equation of statei 
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i 
(9) 

System (9) for any V value admits of the operators 

b 
•J 

(10) 

When V - 3, system (9) admits of also a single independent operator: 

The operators L., I*, are operators of displacement with respect to the axes xs 

tj the operator L, corresponds to Galileo's transformation! operator L, is an 

operator of the transformatici* of similitude (homothety) in the i, t plane. 

These operators obtain for any equation of state. The operators Lc» L/- corres- 

pond to the polytropic equation of state; operator L. corresponds to the specific 

value Y ■ 3„ 

The Euler-Poisson equation 

d'u 
dxtdx, ~^"(^=~=;yin==0      (ß = const) (12) 

admits of the operators 

«3*p~**35-' 
(13) 
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where <p(xi> xg) is the arbitrary solution (12). Operator L is an operator 

of consistent displacement with respect to axes x.., x2» 1^ is the operator of 

similitude in the x., x„ planej L, is the operator of inversion. Operator I* 

contains in its coefficients two arbitrary functions of the seme argument and 

generates in a totality with the operators JL, I^, L,, L.  the infinite Lie group. 

Let us show, following L. V. Ovsyannikov, how the value of the group of 

transformation that admits by the Euler-Poisson equation (12) allows us to define 

for it Riemann's function. 

As we know (subnotion * of section XII), Riemann's function is the solu- 

tion u(£lf §2J x , x2) (12) satisfying the condition 

H^WW- (14) 

The  operators L1, I*,, L, generate a three-parametric group of consistent frac- 

tionally linear transformations 

05) 

where a, b, c, d are arbitrary constants and ad - be / 0. Since equation (12) 

admits of the operators L, L2, L, then transformation (15) leaves unchanged. 

Employing this, let us choose the transformation (15) in such a way that to the 

j£2 there correspond the values x - 0, x~ - cx>.    This is values x. 1 1' *2 
achieved by the transformation 

(16) 

As a result, the solution u( %., ^ •,  x.» .v) to the problem (12), (14) changes 

into the solution v(x., x„) to the problem 

Problem (17) admits of the elongation operator L2 and thus is self-modeling. 

Jts solution can be sought for in the form 
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(18) 

Substituting (18) into the first of the relation (17)> we arrive at the equa- 

tion 

V-tv-^t^o. 09) 

where the stroke denotes differentiation relative to £ . The desired solution 

v(x1f ip) « v(^) satisfies the second and third of the condition (17)» if 

v(0) - 1. (20) 

Let us represent a in the form a ■ m(m-l). (21) 

Equation (19) is reduced to the hypergeometric equation by the substitution 

v - (1 -£)mv (22) 

and takes on the form 

l<l~ 0«?+JT L-H2*+_ 1)0«'+ **»«-0. (25) 

Parameters «C, ß  , V     of this equation are found from the relations 

V = l.  a+ß + V==2«+l,  <* = »* "'*. (24) 

and take on the values  «(.- ß  - m, V - 1. (25) 

Thus, taking (20) into account, we find w - p(m, m, i, ),       (26) 

where P(«d , (5, V, £) is a hypergeometric function. Next, returning to the func- 

tions v(£ ), v(x1f x2), u(^, ^2s x^ Xg), we have 

;-7;    ^-=(r~6f/?C«. m; V|).   .•»■■       (27) 

a« I.-* x.\ — r gl ~ 6,) (*' •" •Xi) 1" F L «• 1 (*»-S»H*i-k)\ 
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For the case of conservative systems, it is possible to construct transforma- 

tions by only in the space of the extended system, but also in the space of 

potentials. 

The conservative homogeneous system 

fe' j *•'(«' »»)  du'   , do1 

!J+w-ö?=«   «.«=1.2 .>   (30) 

can, by introducing the potential q>  (cf subsection 3 of section 5), be converted 

to the system of equations in differentials: 

o»' = d(p< — u'dx^+v'iu1 un)dx3 = Q. (31) 

Let us consider the operator 

tfi  _0 .  »2+a J}_ .i+2+o   d i = iP-^ + ra^ + r^+a^   (o-l n; ß = l. 2). (32) 

1  2  i   i in the space x , x , u , <p    (i « 1, ..., n). To the operator L there corres- 

pond the admissible transformations, if the Lie derivative of the form a) 
equala zeros 

to: 
6T = £ö' = 0. 

Prom condition (33) it follows that 

dl'*ut - a' dll + t>' d? - \nidx' + *'alUa dx3 = 0. 

(33) 

(34) 

Next let us proceed to the equations for  %X(l " 1» 2>   •••»  2n+2)t 

<tf »+»+! 

dx* ■u 
i <£ _±_„i <$' _t2+' 

dx* + v dx' r. 
^ -*£+■>*—*- <u* At» 

(35) 
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.    .-. ■_.,.••  -•-■..-'.-'.•'I:-.".-..; .;.-...-_->..=> 

_±_ L + rfJ—fcJ^i d 

difi 

**"' (a^l.:...»;-'«-"I;'* 

(36) 

The quantities p   are associated, by virtu© of (JO), by the relations 

/$=-,«#•     "i^Ä? 

Substituting (56) into (35), we find 

£L (i=i »). 

^+-^
i-«'(*+-^+ 

•+J+1 

-tflS+'SHPS^S+'A 
**+'+' ^ *' 

•+2+i 

A.« 
.s+i :6 • 

(57) 

(38) 

Requiring that (38) be satisfied identically relative to j£, we arrive at a 

system of determining equations 

* 
»+2+J 

a*' 

* 
»+J+1 

djc» 

B» * 
«+2+I 

d»° 

* 
»+2+1 

*•« 

(39) 
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5. Partially invariant and invariant solutions. We will seek on the 

manifold ^ given by equation (13-4-5) submanifolds <p & 4>   that are invariant 
relative to some totality of admissible transformations. Without delving into 

details, let us note the path it follows in finding invariant submanifolds and 

their corresponding admissible transformations. 

Suppose 

^■C^&Mt^qnfe^w 

is the parametric representation of <$ * 

^SSF«fi 

(1) 

(2) 

is the parametric representation of the desired manifold <f  and GA%)  induced 

on f> the group GArj),   ?l m (*l t  •••> *PJ» 5!he correspondences (1), (2) 

translate the forms SI .  from (13.4.2) to the forms 

wzmm 
(3) 

Here the coefficients c' are known functions of fJ(j - 1» ...» 2m+2) and 

linear functions of  T^(k - 1, ...» p). The conditions for the invariancy 

of the forms on   relative to GAv{) are of the form 

f^,#^i^-^!'^^^;f7^--«VKK ".".Vir (4) 

By virtue of the correspondences (1), (2) ^ and ^ are associated by the func- 

tion 

:"^i.t/.T;;,ratf-j-2; «->•..... a»-h2^—i P>. 
(5) 

where 

$  (o,fi«l. .... 2/»+2). (6) 
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In particular, when i - 1, .... m+2, we have 

(7) 

Substituting (7) into the determining system (13.4.8), we get some linear homo- 

geneous system of equations of the first order for  t 

(8) 

i &&c 

whose coefficients B depend on <f> and are linear relative to ZJ~   (i - 1, ..,, 

2m+2; V ■ 1» ...» p). 

Prom conditions (4) we find 

'§**& 1^5=0 'ur>*\...,..*; /;>-»*• ••••ÄL, (9) 

The consistency conditions for the system (8), (9) lead to several equations 

for the functions <p"(v , ..., TT). The solutions (integral manifolds) lying 

in <f  are called partially invariant (of [iJl])« 

In the particular case when the manifold f ia an integral manifold, w» 

have an invariant solution. Invariant solutions are a generalization of the 

familiar self-modeling solutions. We see that the theory of partially invariant 

and invariant solutions is intimately bounded up with the method of differential 

relations, since the equations giving manifolds <p  are none other than differ- 

ential relations of the first order. 

L. V. Osvyannikov (cf [j1]) pointed to the relation of simple and double 

waves with partially invariant solutions familiar in gas dynamics. 
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CHAPTER TWO  CLASSICAL AND GENERALIZED SOLUTIONS OF ONE-DIMENSIONAL GAS 
DYNAMICS 

Section I. General Remarks on the Mathematical Description of the Motion of 

Compressible Gases 

1. Gas as a continuous medium. Gas is an aggregate of a large number 

of particle» (molecules, atoms, ions) in continuous chaotic motion. 

To characterize the state of gas as a given instant of time, we must 

specify the position and the velocity of each gas particle. 
- 

The problem of taking account of the interactions in motion of each 

gas particle is incredibly  difficult? therefore in describing the state of 

a gas we use the statistical approach. 
§ 

In the statistical description of the state of gas it is convenient to 

assume that its constituent particles continuously fill the space they occupy. 

Naturally, here we consider only the volumes whose dimensions are sufficiently 
I 

large compared with the distances between the gas particles. 

I 
Therefore the expressions "small volume" and "infinitely small volume" 

of gas used in the following must be understood as being sufficiently large in 
I 

«he sense indicated above. 
i 

The motion of gas particles can be characterized by the number of 

particles of each species present in a given location in space and with a 
d 

given velocity. This quantity is proportional to the distribution function, 

which satisfies the integro-differential equations of transport (so-called 

kinetic equations). The simp1est example of a kinetic equation for gases is 

Boltzmann's equation (cf [l], [2.]). 
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The description of the state of gas, employing distribution functions, 

and the solution of kinetic equation is also a very arduous task. 

At the same time we know that there exist such flows that can be described 

with good accuracy by means of several specific distribution functions. This 

description is attained by employing the concept of the state of thermodynamic 

equilibrium as a st&te in which the distribution functions are wholly determinate. 

Let us recall in passing some thermodynamic fundamentals (cf [3])» 

Among the parameters characterizing the state of gas, some are defined 

only by bodies that are external relative to the gas mass under consideration 

and do not depend at all on the gas itself. These parameters are called external. 

External parameters include, for example, the volume occupied by the gas the 

intensities of the external electromagnetic or gravity fields, and so on. 

In contrast to the external, internal parameters are defined by the state 

of the gas itself (for example, gas energy, temperature, and pressure). 

The state of the gas is called equilibrium if it does not change with 

time and also with the exchange of energy with external bodies does not occur. 

We stress that simple invariance of this state(btsady-state) of itself does not 

signify that the gas is at equilibrium. 

The equilibrium state is the state from which the gas cannot depart 

spontaneously. 

If a gas present in an arbitrary state is left to itself (i.e., the ex- 

change of erergy was external by these is precluded and external parameters are 

fixed), then in some time interval (so-called relaxation time) it arrives at the 

state of equilibrium. 

The exchange of energy between the gas and the external bodies occurs, 

first of all, by a heat transfer, and secondly, when work is done on the gas 

(or by the gas on external bodies). Work is done by the gas only when there is 

change in the external parameters a. and for infinitely small changes in the 

latter is equal to the quantity <JW - £A.da., (1) 

where A. are the so-called generalized forces. 

If SQ is the amount of the heat communicated to the gas, then the change 

in internal energy of the gab E (the kinetic energy of motion of the molecules 
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J 
plus the potential energy of molecular interaction), by the law of conserva- 

tion of energy, is written in the form 

d£=ÖQ - 6W=6Q - 2 A, da,. (2) 

As for the quantities A., let us note that for an arbitrary state of 

gas they, in addition to a., depend also on the position and velocities of 

individual gas molecules, i.e., on the microscopic state of the gas. 

The issue becomes simplified if we consider the equilibrium states of 

the gas and infinitely small departures from them. Then based on the familiar 

fundamental theorem of thermodynamics, all internal parameters, including A., 

are single-valued functions of the external parameters a. and energy (or tempera- 

ture T) of the gas. 

Usually, the generalized forces A. themselves are taken as the equili- 

brium internal parameters. Thus, in the equilibrium state 

Aj = At(T, a, a«), 
E=Eqr, a, a.j. 

(3) 
(4) 

and equality (2) becomes dE - 5Q - £A.(T, a) da.. (5) 
,- i      l 

Relations (3) and (4) are determined by the microscopic structure of the 

gas under consideration and called the equations of state. 

Relations (3) are called thermal equations of the state of the gas, and 

equation (4) is the caloric equation of state. 

We will consider the case when the gas physically and chemically is 

homogeneous in its microscopic composition and does not interact with any 

fields (i.e., forces of gravity, electromagnetic fields, and so on are absent). 

Then the only external parameter of the gas is the volume V occupies, and the 

force A is the pressure p, so that the manifold of thermodynamic states is two- 

dimensional. Therefore  dfc - <5Q - p dV, (6) 

If we consider a unit mass of gas, then the quantity V - l//°    is called the 

specific volume, f   is the density of gas, and the variable £ is the specific 

internal energy of the gas. 
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According to the second law of thermodynamics, the quantity 

dS = yL = ±(de+Pm (7) 

is the total differential of the function S - S(V, T), called the entropy per 

unit mass of gas. 

Thus, the second law of thermodynamics is written as the equality 

TdS = de+pdV. (8) 

where p, £  , S are given by the equations 

p = p(Y. T), (9)- 
e = e(V. D, (10) 

S = S(V, T). (H) 

From the second law of thermodynamics (8) it follows as equations of 

state (9) and (10) are not independent, since the integrability condition of 

relation (8) imposes the following restriction on them: 

W(TW)=W(TW
+

T)',    
or      [W^^WKTII*        C12) 

If, for example, equation of state (9) is given, then condition (12, 

defines the caloric equation (10) with an accuracy up to an additive function 

of temperature. 

Thus, in the state of thermodynamic equilibrium a gas is described by 

the folloing variables: density/0 — the mass contained per unit volume; specific 

volume V ■ 1//° ; pressure p ~ force acting on unit area; £  — the internal 

energy per unit mass of gas; T — gas temperature; and S — entropy per unit 

mass of gas. 

By equalities (9) ~ (11)f there are only two independent variables among 

all these thermodynamic quantities. 

From equality (8) it follows that 
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I 
(15) 

Ifcus, for assigned equations of state (9) and (10), entropy S is detex^jned 

with an accuracy up to the additive constant, which is canceled out if the 

entropy is normalized by the Kernst relation« S —*• 0 when T —»• 0. 

Equations of state of a gas (9) - (11) can be assigned also for a different 

selection of independent parameters, for example: 

(14) 

or 

z^tip.V),    S**8fr.V),    T^T(p.V). (15) 

Under this assignment of equations of state, the second law of thermo- 

dynamics (8) requires that the equalities 

dt(V,S) 

\ 

WT p<y.s), ±%^=T(ytS), 

M = 0" 

or, correspondingly,    _^J 

Vfo V^S ^.l <>t(p,V).      TdS{p,V) __dt(p,V) d\P>y)317 —Pn      317 •  * —ST 3-—. "W dV ~W dp 
• dT(/>, V) dS(p, V)      ffT(p.V) dS(p, V)      d[T,S\      . 

(16) 

(17) 

be satisfied. 

2. Nonequilibrium states and processes in gases. In the nonequilibrium 

state of a gas the fundamental concepts of thermodynamics — temperature, pres- 

sure, and entropy — lose their significance. 

Generally, a nonequilibrium state of a gas is not described completely 

in terms of thermodynamic (i.e., macroscopic) concepts and requires microscopic 

analysis. 
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However, for the purposes of classical gas dynamics, the approach of 

nonequilibrium thermodynamics is sufficient and generally accepted. Let us 

imagine that a mass of gas under study is subdivided into large number of 

elementary cells of extremely small dimensions, each of which we will assume to 

be in a state of thermodynamic equilibrium. 

This assumption is warranted by the fact that the relaxation time of the 

system decreases with decrease in its dimensions, so that for a small portion of 

gas it is close to zero. 

understanding the term "point" in a gas to denote a "infinitely small" 

volume in the sense indicated in subsection 1, we can thus introduce for each 

gas point at each time instant the concepts of pressure, temperature, and energy. 

Now they take on the meaning of functions of coordinates of point and tine; 

As for density /° (x.., x„, x,, t) and energy £ »£(x.., x^, x,, t), these quan- 

tities obviously retain their significance regardless of our assumption. 

And thus, the nonequilibrium status of a gas is understood as the absence 

of equilibrium between individual gas particles, each of which itself is at 

equilibrium. 

Prom the assumption of equilibrium of small gas portion it follows that 

the functions p(V, T),&(V, T), and S(V, T) satisfy the equation of state 

(1.1.9) - (1.1.11). 

Thus, when modified these thermodynamic parameters satisfy the equations 

of state of a gas which are defined for an equilibrium gas. This process is 

called an equilibrium or reversible process. 

The above discussion on relaxation time, however, does not afford a 

grasp of the limits of applicability of thermodynamic concepts. This apprecia- 

tion can be realized on the basis of a more general gas model, the statistical 

model. 

Macroscopic consideration leads to the conclusion that thermodynamic 

concepts of temperature and entropy are meaningful if the changes in parameters 

characterizing a gaB state for lengths of the order of the length of the free 
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path of a gas molecule in space and for times of the order of time between 

molecular collisions are small compared with these latter quantities. 

Let us discuss, as an example, cne-dimenaional nonequilibrium gas flow- 

Suppose u(z, t) is the gas velocity* One of the approximations reducing Boltz- 

mann's equation to gas dynamics equations assumes that temperature T and pres- 

sure p satisfying the equations of state (1.1.9) and (1.1.10) can be introduced 

for the treatment of a gas, but the momentum and energy flows are defined also 

by nonequilibrium components associated with molecular diffusion. For a materially 

fixed gas particle in a momentum flow, instead of the pressure p we introduce the 

quantity 

:>*.4* ##i*4&«;4* -J* ?s-*'i (1) 

and the energy flow is defined by the quantity 

pä - xgrid T=pa- \ut^ — *|3| (2) 

In this approximation the function p(7, T) satisfies the equation of state 

(11.9); M  and X are the coefficients of viscosity and thermoconductivity, 

respectively, proportional to the free path length    of the gas molecules. 

Hence it follows that if for path length and for times of the order of 

the time between collisions changes in thermodynamic quantities are small, then 

the approximation of equilibrium thermodynamics is valid. 

Actually, for a large number of problems in the dynamics of gases and 

liquids, this requirement can be regarded as met. In this case process is 

quasiequilibrium in nature and we can introduce temperature and entropy, which 

will satisfy all thermodynamic relations with a high degree of accuracy. 

On the other hand, as we will see in this chapter, zones of abrupt and 
« 

rapid change in the quantities characterizing the flow arise in flows of gases 

and liquids. In these regions we can no longer neglect nonequilibrium compo- 

nents in momentum and energy flows. However, these zones have dimensions of 

the order of the length of the free path of gas molecules. Therefore if this 

length is small compared with the characteristic dimensions of a problem, we 
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can represent the zone of nonequilibrium status as a discontinuity surface 

partitioning the zones of smooth change in flow parameters. 

In this approach we assume that these parameters everywhere satisfy 

thermodynamic relations, and that the conditions for continuity of flows of 

mass, momentum, and energy must be satisfied at the discontinuity surfaces. 

Thus, we viXl treat of discontinuous flows in gases and liquids whose viscosity 

and thermal conductivity are sufficiently small. 

In this chapter we will consider principally exactly this case. 

Finally, for the case of sufficiently large coefficients of viscosity 

and thermal conductivity we must consider nonequilibrium components in momentum 

and energy flows. It may be the case that this consideration will prove insuffi" 

cient and we must bring in Boltzmann's integro-differential equation. 

Thus, there exist flows in which temperature and entropy retain their 

thermodynamic definitions, and all thermodynamic relations are satisfied; here 

the regions of abrupt variation are treated as discontinuity surfaces of flow 

parameters. 

This chapter then is devoted to this type of fxow. 

In an equilibrium process the following relation holds: 

or 
et "Tv*1^' <ttl 

dS _JLäQ_ 
dt ~ T   dt ' 

(3) 

(4) 

where dQ/dt is the heat inflow velocity to the gas portion under study. 

If the gas portion under study is thermally insulated (d^ » 0), the 

equilibrium process is called adiabatic. For an adiabatic process 

dS/dt - 0. (5) 

Relation (4) does not obtain for a nonequilibrium process, and by the second 

law, for a thermally insulated system  dS/dt > 0. (6) 

Suppose the mass of gas participates in a nonequilibrium process, by exchanging 
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heat with external bodies. In this case the second law of thermodynamics? 

demands that the condition 

dS 
dt + ^>o. (7) 

be satisfied, where S is the entropy of the external bodies. The quantity 
8 

dS /dt can be considered as the flow of entropy from external bodies through 

the gas mass. 

We demonstrate the calculation of entropy .'low dS /dt with the example 

of the exchange of heat by a gas with a thermostat at constant temperature T . 

In this case 

dSe _ 
dt  J" 

1 dQ 
T9 dt (8) 

where dQ/dt is the amount of heat flowing from external bodies to the gas por- 

tion under consideration. Therefore for the case of a thermostat as the external 

body, the second law of thermodynamics requires that 

dt  >77^F- (9) 

These considerations will be employed in our analysis of an isothermal gas in 

section IV. 

3. Methods of describing flows. Eulerian and Lagrangian variables. 

The flow of a continuous medium can be described by two different methods. 

In the first method; at each time instant we determine the parameters 

of the gas state as a function of the coordinates x1, x?, x, of a point in some 

fixed coordinate system. Thus, u - u (x , x„, x,, t) signifies under this 

method of description the velocity of a particle present at time instant t at 

the point (x., x„, x,). Analogously, ail the remaining variables characterize 

the state of the gas particle present at time t at the point (x , x„, x,). 

This method of describing the motion of a continuous medium is called 

Eulerian, and the coordinates x , x„, x, are called Eulerian coordinates. 
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Another method of description, called Lagrangian, presupposes the 

assignment of thermodynamic quantities and velocity u of the gas for each parti- 

cle as functions of time t. 

Suppose we distinguish the gas particle from other particles by means of 

searching parameters y , y„, y . Then we seek all variables characterizing the 

flow as functions of variables y , y~, y_, t. 

Under this method of description, for example, the vector u(y1, J«, y,) 

for fixed y , y_, y, denotes the rate of translation in space of a wholly speci- 

fic gas particle. The coordinates y . y2, y, are called Lagrangian. 

In most cases, we select as the coordinates y , y„, y the Eulerian coordi- 

nates of the point at which the gas particle exists at any specific time instant, 

for example, at the instant t « 0. 

If we adopt this choice of Lagrangian coordinates y., y„, y,, then we can 

easily compute position of the particle also at the time instant t / 0. Since 

for fixed y , y2, y, the velocity u(y , y„, y,, t) is the particle velocity, then 

**=y,+ j «,(y,. y2. y3. T)</T (/= i, 2, 3).       (1) 

Here x. - x.(y., y„, y,, t) are the coordinates at time instant t (Eulerian coordi- 

nates) of a particle which at time instants t « 0 is at a point with coordinates 

x. - y.; u.(y , y„, y,, t) are the components of the velocity vector u(y1, y„, y,, 

t). 

Formulas (1) ühus   establish  a relation between Lagrangian coordinates 

y. of the particle and its Eulerian coordinates. 

Suppose f(x , x„, x,, t) is any function of the Eulerian coordinates, and 

f(y1» ¥n,  y,, t) i3 the representation of the same function in the Lagrangian 

coordinates. Then, according to (1), 

*-\.;,
:
L'I^- - r./.^-j-V--' ■ 
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(2) 

vh^re for simplicity we denote 

Differentiating (2) relative to variable t (naturally, here we assume 

the differentiability of f), we obtain 

(3) 

since by (1), x - y + J  udr. By the very concept of the velocity of a gas 

particle u(y, t) ■ u(x, t) (here we symbolize different functions with the same 
letter a: u(y, t) — in Lagrangian coordinates, and u(x, t) — in Eulerian), 

therefore we rewrite 0)  83 

3-5 ^ h ttV/(x, f). (4) 

where u y is the differentiation operator over the space in the direction of 

the vector u: 

' d d        * d 
(5) 

Ordinarily, in gas dynamics all quantities are denoted by the same letters 

both in Eulerian and Lagrangian representation. Therefore to avoid any confusion, 

the quantity flS^^-^- is denoted by älSjLAl t    pn(ier this notation, formula 

(3) becomes 

..,<*.~-ir^BV/   nr^^Wa (6) 

The quantity df/dt is equal to the total time derivative of the function f along 
A 

the trajectory of particle x « y + j udt and ie called the substantive derivative. 
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By formulas (1), specific Eulerian coordinates correspond to the Lagrangian 

coordinates y, t, and this transformation y, t —*■ x, t is unique. The inverse 

transformation x, t -*• y, t is not, generally speaking, always defined. 

Actually, we can easily imagine a case when gas fills the entire space 

y^> y2> y* 
at tne ^ae  instant t ■ 0, but as the result of motion at t > 0, some 

portion of the space x1, x«, x, proves to be free of the gas. This means that in 

this portion of the space for a given t > 0 no y1,y2, y, values correspond to the 

coordinates xi, x^, x,. 

As we will see below, the condition for the mutually unique mapping x, t —— 

y, t is best in the form /'(x, t) ^ 0. 

4. Equations of state of gases. Ideal gas. Van der Waala* gas. Normal 

gas. Limiting ourselves to these brief remarks on methods of describing the 

motion of gases and liquids, let us dwell briefly on several of the simplest equa- 

tions of <3tate of gases. 

The term ideal gas refers to a gas for which Clapeyron's law is valid: 

pV - ET, (1) 

where R is the gas constant per gram. Then from the relation (1.1.12) it follows 

that 

"7fj5^|   or £   -£(T), (2) 
i.e., the internal gas energy is a function solely of temperature} here the speci- 

fic heat capacity of the gas c --2iL — c   (T)     ±B  also a function only of 
V  ay   \f 

temperature. 

A gas is called polytropic if c does not depend on temperature. Then 

i.e., the internal energy is proportional to gas temperature. 

The kinetic theory of gases leads to equations of state of a polytropic 

gas on the following assumption: 

1) The potential energy of molecular interaction is negligibly small com- 

pared with the kinetic energy of the molecules. As a consequence of this assump- 

tion, the energy of a given mass of gas is the sum of the kinetic energies of 

the gas molecules comprising it. 
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2) Only pairwise collisions between molecules are possible, and they 

occur under the laws of elastic collision. The internal molecular structure remains 

unchanged and overall momentum and kinetic energy of the molecules are conserved. "- 

The second approximation denotes, in particular, that the volume of the 

molecules themselves is small compared with the volume occupied by the gas. 

The kinetic theory yields the following expressions for the coefficients 

c , c , B of the equations of state (1), (2) of an ideal gast 

eY 

tefe 
44- 

Cy, 

(4) 

<5) 

where f is the number of degrees of freedom of the molecule (f » 3 for a monoatomic 

gas, f » 5 for a diatomic gas, and so on), k is Boltzmann's constant, N is Avo- 

gadro's number, and M is molecular weight. 

Taking account of equation o£ state (1), from the fundamental relation 

(1.1.13) we have 

• — cv In V+const=ev In"> -f sp In VX const./ (6) 

The simplest correction to the equation of state for an ideal gas, associated with 

the allowance for molecular volume and forces of molecular attraction, is given 

by Van der Waals1 equation: 

(7) 

Here a is a quantity proportional to the force of attraction of the gas molecules 

and b is a quantity proportional to the volume of the molecules themselves. 

We can analogously derive expressions for £   and Si 

-J 
.^\cv(T)dT-±, 

cv(T) 
-t- dT+:; In (Y—b)+const, 

_• .447--- - 

(8) 

(9) 
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If some gas element is subject to slow expansion or compression such 

that heat exchange does not occur with the ambient environment, the element exe- 

cutes adiabatic transition from one thermodynamic state to another. Here the 

slow process is reversible and the entropy of the element remains unchanged. 

Therefore this transition is called isoentropic. 

All thermodynamic states through which a given gas element passes in this 

case will lie on the curve   S » const, 

which is called poisson's adiabat. 

(10) 

For an ideal polytropic gas, as readily follows from (6), the equation of 

Poisson's adiabat is of the form 

*«iLv'-\ Y=-£ = 1 +-£ > 1, A» = i4»(S) = a»/"=const. (11) 

We can readily see that the following relations hold along Poisson's 

adiabat for a polytropic gas (Figure 2.1): 

dp _dp(Y,S)   .n 

rm 
<Pp     »plV.S)    fl 

(property I), 

(property II). 

(12) 

(13) 

Thus, Poisson's adiabat p - p(v, S ) is a curve monotonically decreasing relative 

to V, with its convexity facing downward. It is easy to see that the axes V - 0 

and p - 0 are asymptotes of Poisson's adiabat, i.e., p —*- 0 as V —*"«° and 

p -♦■ oo  as V —•» 0 (property III). 

If some gas element is subject to compression or expansion such that >,he 

temperature of the element remains unchanged in the process, the transition made 

by the gas is called an isothermal process. 

In an ideal gas undergoing an isothermal process, V and p are associated 

by the relation 

p = c«-pr = cV. c* = (cp — cv)T = RT.= const. (H) 

Therefore in several cases an ideal isothermal gas can be formally regarded as a 

polytropic gas with exponent V ■ 1• 
— 168 — 



-■■-■■■"    ■■■■--■. ■■-. ■■■■■ ■■■■■ ■  ■•■ ■ ■■■ 

-■ ■ " ■ .■■ 

Pi 
S* const 

Figure 2.1 Figure 2.2 

Curve (14) is called an isothermal. It satisfies all three properties of 

Poisson's adiabat. The isothermal T and Poisson's adiabat A intersect in the V, p 

plane just as shown in Figure 2.2r 

Thus, isotherms and Poisson's adiabats of an ideal gas form a regular net 

in the V, p plane. 

Clearly, equations of state of an ideal gas provide for the satisfaction 

of the properties: 

c„ = 

dp(V,S) 
dS 

dt(V,T) 
dT 

>0 
(property IV), 

(property V). 

05) 

Van der Waals* gas isotherms satisfy properties I-III now no longer in the 

entire phase space V, p (Figure 2.3). 

Property II can be violated in the square A'CB1, and property I in the BCA 

square; in general property III is not satisfied, since the straight line V ■ b 

is an isotherm asymptote. Let us note that the violation of property I expressed 

by inequality (12) points to the impossibility of thermodynamic equilibrium. 

Actually, let some volume of gas from which property I is violated undergo compres- 

sion under the action of external pressure, which we will assume to be constant 

and ecceeding the initial gas pressure. If the compression occurs slowly and if 
3 P ( V    Si 

-    > 0, the pressure in the gas decreases, i.e., its drag relative to 
^ v 
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external compression is reduced. As a result, total collapse of the gas volume 

occurs. Conversely, the volume of the gas exhibiting an excess of pressure over 

the ambient environment must grow unboundedly. 

If we now imagine a gas for which ££ '  =r J> 0, at thermodynamic equi- 

librium and constant pressure then this equilibrium will prove to be absolutely 

unstable, since the slightest departure from equilibrium leads to a situation in 

which one part of the gas will be compressed, while another will be expanded 

without turning to its initial state. 

Figure 2.3. 

The situation is otherwise in the case of a ga3 satisfying condition I. 

In adiabatic compression it will increase its pressure and oppose compression. 

On departure from equilibrium, fluctuations will arise in the gas, leading it to 

its initial state. 

Thus, property I is the stability condition of thermodynamic equilibrium 

and is satisfied for all real substances. 

In the following we will limit ourselves to a consideration of gases whose 

equations of state satisfy, besides thermodynamic relations in subsection 1 that 

are valid for any substances, several assumptions not stemming from the demands 

of thermodynamics. 

Specifically, we will require that properties I-V be satisfied: 
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ftp^? 
'when V—*0 

(20), 

Additionally, we will demand that the region of variables V, T in which proper- 

ties I-V are satisfied will be convex (property VI). 

A gas whose equation of state satisfies properties I-VI will be called a 

normal gas*)_ 

Property I obviously denotes that along Poisson's adiabat A pressure p 

decreases monotonicallywith increase in V; property II requires that this 

curve phase convexity-downward; property III requires that V = 0 be the asymp- 

tote to any Poisson's abiabat; finally, property IV denotes that Poisson's 

adiabat corresponding to greater entropy lie higher in the plane of variables 

Vi p (of Figure 2.1), i.e., 

*£*>r ■SI (21) 

Let us consider the behavior if the surface S «• S(V, p) in the three- 

dimensional space of variablesV, p, S, assuming that the equations of state 

satisfy properties I-V. 

*) Relations I-V were formulated by Bethe and Weyl (cf [4]). 
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Figure 2.4 

F« 

In accordance with properties I-IV, each horizontal section of the 

"relief" of entropy is a monotonic convex curve with asymptote 7 = 0. Bach sec- 

tion of the plane V = constant or p - constant is a curve monotonically increas- 

ing relative to p, and so relative to V. 

Thus, any higher-tying horizontal section is projected within the under- 

lying section (Figure 2,4). 

Based on relation (1.1.7): TdS « d£ + pdV, it follows that by virtue of 

V, 

From whence 

dS(V, D 1   dt(V,T)       cv 

dT      - T      dT            T 

dp(V, T) dp(V,S) dS(V, T) 
dT dS           dT 

>o. 

>o. 

(22) 

(23) 

Taking formulas (21) and (22) into account, we find 

dS(V,T) ^n 
(24) 

The last inequality denotes that the isotherm and adiabats A form a regular net 

of the same type as for the case of the ideal gas (cf Figure 2.2). 

Differentiating the identity S = S(V, p) = S(V, p(V, S)) relative to the 

variables V, S, we get 
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(25) 

and differentiating the second equation in (25) relative to the variable V, we 

find 

Substituting (25) into (26), we get   X-l&^>,w*1^-^ <^;'-'i;4"v' 

Let us look at the pattern of variation in entropy S along the straight lines 

p = Po + at, V - V + bt (28) 

in the plane of the variables V, p. 

"Hie following statements are valid: 

a) if a £. 0, b ^  0 (a ^ 0; b ^ 0), then 

•$>r   (4<»W (29) 

This follows from inequalities (21). 

,dS b) if^W0'then 

(30) 

Actually, from (44),   ,  -— <a^ -^-* - 0 we have ££- = kb, 
<?/> «»/» 

-ka, where k is some proportionality constant. Substituting b=i- , ~Sv 
a = "< Ty    int0 (50)» we 6et (27). 

AC a^ 

o<5 c) if J2-jp «c 0 when t * 0, then ds/dt < 0 when t > 0. 

Let ua assume the converse. Then there exist X. ^ 0 and £ >■ 0 such that. 
ds/dt < 0 in the interval       0 $ t < t , ds/dt = 0 when t = t , ds/dt>0 

2   2 
when t < t < t + £. Therefore, d S/'dt ^.0 when t = t1, which contradicts 

property b). The assertion is proven. 
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We note that properties a), b), and c) follow readily from the nature of 

the "relief" of the function s(V, p) (Figure 2.4). 

By virtue of properties I and II of Poisson's adiabats, the ray passing 

through the point V » P of the Ediabat S = S does not intercept it at any point 

if it lies in the first and third quadrants (Figure 2.5), and intercepts it at 

only one point if it lies in the second and fourth quadrants (here we include the 

case when the ray is tangent to adiabat A, and then we will regard the tangency 

point as a paired points. 

In the first case S is a monotonic function of the parameter t, in the 

second case S has a single maximum. The point of the maximum is the point of 

tangency by the ray at some adiabat. 

Figure 2.^ 

Here let us note the following: the point S ■ 5   at the ray divides into 
max 

two halves, so that an arbitrary adiabat intersects its upper branch in the upper 

half, and lower branch in the lower (Figure 2.6). 

In the upper naif of the ray we have 

nv.s)    p-p0 M^<^¥    <V<vmj; (31) 

and in the lower half of the ray the opposite equality holds 

(32) 
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Section II. Integral laws of conservation. Equations of the hydrodynamics of 

one-dimensional flows 

1. General assumptions on the flow of compressible gases. We wil represent 

the motion of a gas as the motion of a continuous medium in the three-dimensional 

space x , x«, x,. In accordance with section I, the motion is wholly determined 

if we know the quantities u = u(x, t), f>=f(x,  t), p = p(x, t), £ = e (x, t), 

S = S(x,t). Almost everywhere in this chapter we will assume that internal fric- 

tion and thermal conductivity are absent in the gas, i.e,, that the particles of 

the fluid are thermally insulated from each other. 

Under these conditions each element of a fluid does not participate in heat 

exchange and does not lose its energy in friction, therefore for smooth changes in 

state the entropy of each element was remained constant. 

Still, we must take particular note of the fact that this consequence is 

valid only for slow, smooth changes in the parameters of the gas particle, there- 

fore, if a gas particle abruptly changes its thermodynamic parameters, its entropy 

no longer remains constant in time. 

In accordance with section I, we assume that everywhere, except for the 

discontinuity surface the flow is sufficiently smooth (quasiequilibrium). There- 

fore the particle changes its entropy only by intersecting the discontinuity sur- 

face; away from the discontinuity surface the concepts of temperature, pressure, 

and entropy are defined, which together with the given equations of state satisfy 

all thermodynamic relations. 

And thus, we will consider a fluid devoid of internal friction and thermal 

conductivity; however, the flow particles can change their entropy by intersecting 

the discontinuity surfaces. In actuality, the discontinuity surface of the flow 

parameters is a narrow zone (zone of nonequilibrium status) in which the effect 

of viscosity and thermal conductivity are substantial, however 3mall they may be. 

Actually, as we have already pointed out in section I, entropy changes defined by 

the quantities // div u, >C grad T, which are finite in this narrow zone. 

When in fact we considered these zones of large gradients us discontinuity 

surfaces of thermodynamic parameters, we avoid any detailed consideration of non- 

equilibrium flow in these zones; however, let us consider this nonequalibrium status 

overall, which in feet leads to an increase in the entropy of a particle when it 

intersects a discontinuity surface (nonequilibrium-state zone). 
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As a consequence (of section v), we see that allowing for viscosity and 

thermoconductivity in a fluid and the further passing to the limit as A , .?<--** 0 

lead us exactly to this flow patterr. 

und thus, flows of a fluid to which we will in general consider here are 

limiting flows of a viscous and thermally conducting fluid as the coefficients of 

viscosity and thermal conductivity approach zero. 

On the other hand, a detailed description of flows requires the employment 

only of general laws that are valid simultaneously both for equilibrium and for 

nonequilibrium processes. 

Such laws are the fundamental laws of conservation in physics: the law of 

conservation of the mass of a fluid, the law of conservation of momentum, and the 

law of conservation of energy, whose derivation we commence in subsection 2. 

2. Laws of the conservation of mass, momentum, and energy in a three-dimen- 

sional space. We will study one-dimensional flows of compressible gases. However, 

in order to achieve a unique derivation of equations for different forms of flow 

symmetry (plane, spherical, and cylindrical), initially we obtain equations for 

an arbitrary three-dimensional unsteady flow, and then from these we derive the 

equations of interest to us for one-dimensioral flows. 

Thus, suppose the £,as moves in a three-dimensional space with Cartesian 

coordinates (x.., x„, x,) measured off in some fixed system. We will call such 

coordinates Eulerian. 

We will a3sume that external forces acting on the gas are absent and that 

in the 3pace occupied by the gas there are no sources of mass, momentum, and energy. 

Suppose G is some part of the space      (x , x?, x,) bounded by a closed 

surface X„. The 

is equal to the quantity 

smooth surface Z .    The amount of gas present at time instant t in the volume G 
u 

J j J prf*s 
d*%ax, = | p(P, 0dO. j (1) 

a a 2o 

In formula (1) let dG denote volume of element and p — a point with coordinates 

\^4 9    Xn 1    X-, J • 
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The quantity 

(mwim^\ (2-, 
is equal to the increment in the mass of the gas in the volume G during ^he time 

interval from t ■ t1 to t - t„. 

Since sources are nonexistent in the volume G, the increment in the mass 

of the gas (2) must equal the gas mass escaping in the time interval from t ■ t 

to t ■ t„ through the surface £ of the volume G« 

We let d£ stand for the vector that has the direction of the external 

normal to X and that is equal in magnitude to the area of the isolated small piece 

of surface £ . Through the area dZ there flows per unit time into the volume 

G a mass of gas equal to the quantity -/°ud£. Therefore equating the quantity (2) 

to the amount of gas flowing into G, we get the equation 

Equation (3) expresses the law of conservation of a mass of gas. 

Change in momentum in tb 

t - t2 is equal to the quantity 

0) 

Change in momentum in the volume G during the time interval from t • t.. to 

(4) 

and is due to the gas escaping from the surface £ , This gas transports the 
G 

momentum 

i - J| J>(«dE)|<«, (5) 

and the increment in momentum is also due to the pressure fores p exerted by the 

remaining mass of gas onto the gas in the volume G along the normal to the surface 

£ . The total momentum of the pressure forces acting on the gas in the volume G 

is equal to the quantity 
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(6) 

Equating the quantity (4) to the sum of the quantity (5) and (6), we get an integral 

relation expressing the law of conservation of momentum: 

J&£w+ fnpte+M<Gftäf~t (7) 

In our derivation of relation (7), we used the fact that momentum sources are not 

present in the volume G. 

The value of momentum in the space G is a vector; therefore equation (7) 

contains three scalar equations for each of the momentum components. 

The energy contained per unit volume is equal to f(-z-   f t )      the quantity 

j,{t+g«, (8) 

is equal to the increment in the total energy in the volume G during the time inter- 

val from t »• t. to t - t„. 
1       2 

moving gas in the quantity 

val from t »• t. to t ■ t„. This increment is due to the transport of energy by the 

J"/f J,p(?:f"f)IUffl]Ä (9) 

and due to the work done by the pressure forces p. 

The force -pdj exerted by the surrounding gas acts on the gas in the volume 

G across the surface element d£ ; gas particles at the surface £ move at a velo- 

city u. Therefore per unit time the pressure forces perform work on the gas, 

( pu dZ.  i and the total work done by the pressure forces in the time interval 

from t *• t    to t t? is given by the formula 

(10) 
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Equating the quantity (8) to the SUB of the quantities (9) and (10), we 

obtain an integral relation expressing the law of conservation of energy: 

In the derivation of (11) it was assumed that the gas has no thermal conduc- 

tivity. Formulas (3), (7), and (11) mathematically express the laws of conserva- 

tion of mass, momentum, and energy for gases devoid of friction and thermal conduc- 

tivity and are the fundamental equations defining the motion of a gas. 

Equations of state of the gas are added to the equations (3), (7), and (11). 

For example, if we give the relation p - p(V,£ ), V - l//°,        (12) 

then the problem of determining flow reduces to finding five variables: three velo** 

city a components and two thermodynamic variables: f> and <f , since by (12) p is 

function of /° and t.    To this end, we make use of five scalar relations 0),  (7), 

and (11). 

Let us incidentally note that the equations of state can be assigned in any 

form of those considered in section I, and not necessarily in the form of (12). 

The vector /°u is called the mass flow vector, and fa(e + S. + itf ) is the 

energy flow vector; the tensor 

is the tensor of momentum flow. 

Now we will proceed to a closer study of one-dimensional flows, i.e., flows 

in which the quantities u, f ,  p, £ depend only on a single spatial coordinate x 

and on time t. 

We will discuss three cases of one-dimensional flows». 

1) Plane one-dimensional flow, when the quantity a, f  , p, £   are constant 

in the planes x ■ x - const; u V /u, 0, 0 J. We will call this situation the 

case of plane symmetry. 

2) A cylindrical one-dinensional flow (case of cylindrical symmetry). 

In this case u, f>  , p, £   are constant at the cylindrical surfaces x mftf + X \ 

■ const (for fixed t). Let us assume 
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3) Spherically symmetric flow (case of spherical symmetry) is obtained 

if the following formulas hold: 

3. Integral laws of conservation for one-dimensiona^ x'lows in Eulerian 

coordinates. For the case of plane one-dimensional flow all the quantities depend 

only on x and t. Integral laws of conservation (2.2.3), (2.2.7), and (2.2.11) are 

rewritten in form*) 

? ] p dx+  f p»\  dt = 0 (1) 

is the law of conservation of mass, 1 

J pp[ <**+} [P+9"\ dt = 0 (2) 

ia the law of conservation of momentum, and 

t. '   '■ 

t 

is the law of conservation of energy. 

In equations (1)-(3) x and x„ fix the isolated volume G, and t.. and tn are 

arbitrary instants of time. 

*) In the following, we will understand x. and x„ to refer to two values of the 

single coordinate x, and not too different Cartesian coordinates considered in the 

preceding subsection. 
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In the case of cylindrical symmetry we obtain integral relations, by writing 

the laws of conservation (2.2.3), (2.2.7), and (2.2.11) as applied to volume G 

shown in Figure 2.7. 

In view of the constancy of all variables at the cylindrical surfaces x » 

const, the law of conservation of mass is written for volume G in the form 

2al J p| xdx + 2ai J (pux)\  Ä = 0 

or, after canceling out 2#11, in the final form: 

J p\'xdx+ j(pux)l'dt=0. (4) 

The integral law of consei/ation of momentum is derived in somewhat more complex 

fashion. Let us write equality (2.2.7) as applied to volume G (Figure 2.7) only 

for the component of momentum in the direction of the vector e. At once we note 

that for these two other directions orthogonal to e equality (2.2.7) reduces to 

an identity. 

IV 
X fs 

**^ 

\ 

„^rtÄrf J- k \ 
X'Xt X'Xf 

Figure 2.7 

By virtue of (2.2.13),   Jfa   d &       is written in the forn 

j pu, dO = 2/ J cos<p dy f puxdx = 
a Ox, 

= 2/slno j paxdx. 
*\ 
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The integrand in   Jf*ue (ud£)     is distinct from zero only for the parts x » x.., 

x « x0 of surface     £ ;  therefore 
<- G 

•.* 

J pa, (a rfS)=2/ flftp ft»2*) p. 

Finally, the components of J pdZ. in the direction of the vector e consists 

of two terms: integrals over the parts x - x., x - x„ of surface Z  : 

; %l J foil9dipU«n= {Hsin.ofpx£j, 

and integrals over the parts f - +oC surface 2"p (Figure 2.7): 

— 2/sin a J pdx. ; 

Substituting all these expressions in (2.2./), we obtain after canceling 

out 2isino6 the final foimula: 

; $.m\*xdx+ jitp+pu^xirdt^ j j pdx«. (5) 
H 

The law of conservation of energy (2.2.11) as applied to volume G for a flow with 

cylindrical symmetry is written in the form 

r. _r_    . Ji_■".  - —~- K ~ — 

And thus, relations (4), (5), and (6) afford a representation of the lawt' of con- 

servation of mass, momentum, and energy for a flow with cylindrical symmetry. 

— ;•-"¥! 

Figure 2.8 
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For a spherically symmetrical flow, the laws of conservation of mass, 

momentum, and energy are written for volume G excised from a right cone with an 

apex angle d,  by the spheres x - x   and x -' x_ (Figure 2.8). 

Operations analogous to those just concluded, lead to the following equa- 

tions : 

ft /*■-;■-•...•.■—i^i-.Kfte- . *' .9,:,^:, -..*.-'      •■- -■->."• ■ :... 

Now it is eaay to note that for all three cases of homogeneous flows the laws of 

conservation of mass, momentum, and energy are written by the general formulas: 

■?c^^m^$M&/:^3kb 

In the formulas (10)-(12) we must set V - 0 for the case of plane, v -1 for 

the case of cylindrical, and y- 2 for the case of spherical symmetry of flow. 

Let us consider in the plane of variables x, t the rectangular loop C and 

the domain G_ it bounds (Figure 2.9). Obviously, equalities (10)-(12) can be c 
rewritten as 
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. .    : 
;>' -; 

■<     . 

1 ».   "'' 

ffi pax * dx — (p+ps*} .*» <# =s 

"   fe— f^px^dxdi,   (14) : 1 
"   4 

Figu re 2.9 

if the loop C is of the form shown in Figure 2.9, 
*,! 

In its physical meaning the quantities  / f # *etx - j.    Pu-X dx 

and ( zp(e+  ~)xW are continuous functions of the variables t, x^,  and Xg, 

and Jilpux'dl,    Ji  
l(p+Pu.*)X.*'di       , and j£ *fu. (£+JL + <£> Jl 

are continuous functions of the variables x, t., and t2> Therefore, assuming at 

the quantities u, /° , £  , p are bounded and piecewise-continuous functions*) of 

the variables x, t, we conclude that the relations (15)-(15) will be satisfied for 

any close piecewise-smooth loop C and the domain G   bounded by it. 

4. Integral laws of conservation in Lagrangian coordinates. Suppose r 

denotes the initial position of a gas particle, for example, &%  the time instant 

t - 0, and suppose x - x(r, t) is the position of the same particle at time instant 

t. The lagrangian coordinate r in the Eulerian coordinate x are related, as we have 

seen in subsection 3 of section I, by the relation 

*) For the case of spherical and cylindrical symmetry, the boundedness can be 

violated at the straight line x - 0. This of course is not central to our follow- 

ing treatment. 
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In (1) the velocity u - u(r, t) is given as functions of iagrangian variables. 

For a known velocity u(r, t) equation (1) defxnes the particle trajectory. Ob- 

viously, the mass of gas enclosed in the volume bounded by the sections x ■ 

x(r, t) and x - x(r, t) remains constant in time. Therefore we can write *)t 

I *o* o 
(2) 

0) 

where /*0(r) denotes the density at the time instant t - 0. 

Differentiating (2) relative to r, we get 

*   ** i&p 

since, obviously, /° (x(r, t), t) =• /°(r,  t). 

Formula (3) shows that mapping of iagrangian coordinates are onto Eulerian 

coordinates x is mutually unique given the condition P{r,  t) / 0. 

In the regions where /°» 0 (vacuum regions) no Iagrangian coordinates r and 

t correspond to the points x and t, i.e., no flow trajectories pass through these 

points. 

By formula (1) 

Therefore from formulas (3) and (4) we conclude that the transition from Eulerian 

coordinates x, t to Iagrangian coordinates r, t is given by the relation 

*) The quantity M has the dimension of mass only of the case of spherical 

symmetry. 
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I«V J,v TjfJ^MLdr + uir.Oäi. 
*v PC./) 

(5) 

übe substitution of formula (5) into the law of conservation of mass (2,3.13) 

transform it into an identity.    However, from (5) follows the integral relation 

I *v rfiW I -&fy fv dr + a (/>, 0 *v * ■ ■ 0. (6) 

which is equivalent to the law of conservation of mass, since it is a consequence 

01 relation (2). In inequality (6) C is an arbitrary piecewise-smooth closed loop 

in the plane of variables r, tj x - x(r, t) is defined by using formula (1). 

Let us note that equ&liuy (6) is also called the integral lav of conserva- 

tion of the volume occupied by a gas. 

Converting from variables x„ t to Lagrangian variables r, t :in equation 

(2.3.14), we get 

$ «fe(r)fk$sr.*kt.(', 0 # =* - j.J y^-1 dt-£l) dr =» 
iH<^'i<'» >Wu:\'r T-r-r-■■ ■■••• 0/ ■          

which is the equation of conservation of momentum. In formula (7) c is the loop 

of the plane r, t, and G is the region of these variables bounded by it. Finally, 

the law of conservation of energy (2.3.15) is written in Lagrangian variables jji 

the form 

j |:(e4- £jfc-W* *" -'***(r' ° *" °- (8) 
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Equations (6)-(8) constitute the laws of conservation of volume, mome turn, and 

energy in Lagrangian variables. 

The laws of conservation (6)-(8) become somewhat simplified if we introduce 

the notation 

—-  --.,.,.- - -      r   ■ 

Vlr.Q-V^-^;     q = q(r)= j ^r)^ dr. (9) 
o 

The variable q coincides with M and is called the mass lagrangian coordinate. 

Converting to these variables, we get: 

&Vdq + xv(q, f)udt*=Q. (10) 

kudq vpV 
* <•» — y  »• j j  

ac 

&{t-\-^~jdq-upx"dt = 0. (12) 

-px*dt=- jj^-dqdt, (11) 
ac 

In equations (10)-(12) C is an arbitrary piecevise-smooth closed loop in the plane 

of variables q, t. 

5. Differential equations one-dimensional flows. Let us assume that in 

so e  region of variables x, t the functions u,f,  p, £ describing gas flow are 

continuously differentiable. Then by Green's formula the contour integrals in the 

equalities (2.J.13)-(2.3.15) are transformed into integrals over the region G„i 

here the integrands will contain the first derivatives u, y° , p, and £ . In view 

of the arbitrary mass of the region o, .  these integrand expressions must tend to 

„■sero. Therefore for smooth flows (u, /° » p, £<£ C1), from the condition that the 

integral of laws of conservation (2.3.13)-(2.2.14) are satisfied follows the ful- 

fillment of the differential equations 

; 
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4*(*vp)+"sr(*vpB)=0, 

TM«+T)]+£MH-*+T)]-* 

(2) 

(3) 

Differential equations (1)~(3) are written in Eulerian coordinates x, t and are 

valid for smooth flows. Analogously, from the laws of conservation (2.4.10)- 

(2.4.12) fellow differential equations in Lagrangian coordinates q, t: 

!r--^=0' 
di\   . 

■*- + ■ 
_ \pV 

-dl-->lq-Xp='x 

M'+Th-k^-«- 

(4) 

(5) 

(6) 

In equations (4)-(6) the Eulerian particle coordinate x must be considered 

as a function of i/agrangian coordinate q and time t? i.e., x - x(q, t)j from 

formula (2.4.4) we obtain a differential equation for x(q, t): 

at (7) 

Equations (4)"(7) describe a smooth one-dimensional gaa flow in lagrangian coordi- 

nates. 

Equations (1)"(5) a^e transformed to the form 
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where s is the entropy defined by the equation TdS - d£ + pdy. Analogously, 

by combining equations (4)~(7) in iagrangian coordinates, we obtain 

This equation shows that entropy S of each gas particle remains constant in 

time through the entire region of flow smoothness. Hence it follows that if the 

flow is smooth, the entropy of each gas particle remains constant. 

We note that if the gas exhibits finite viscosity and thermal conductivity, 

equations (1)~(3) for a viscous thermally conductive gas are replaced by the follow- 

ingi 

ufoi (II) 

I '${M'+Tfi*Mr»kH&$)-^'&\' 
■;jj. 

(13) 

where ,U > 0, X > 0 are the coefficients of viscosity and thermal conductivity, 

respectively, and T is gas temperature. 

The corresponding equation in the iagrangian coordinates are of the form 
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*-**-* 
a» 

(1.0 

-f-^p(p-W«^)]-^-[p-W«^].  (15) 

Now, by combining — on analogy with the preceding — equations (11)-(13)t wfc 

find: 

_i_. ' ** «J» ^L\a 4-± -L- A- 

or, in Lagrangian coordinates,  J_       • 

(17) 

(18) 

prom equations (17) and (18) it follows that for a thermally insulated gas mass 

exhibiting viscosity and thermal conductivity, its total entropy does not decrease 

with time t. 

Actually, by writing equation (18) as 

***-'£'(#)''+%£*%+&& (19) 

and integrating it within the limits from q - q. and q - q2, we get 

d 
«i 

j S(q, Qdq*=* 

(20) 
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Denoting s„ = Jq  SCq, -t.)d<j       as the total entropy of the given mass of gas, 

we obtain from(20) 

'^>-^ (21) 

where v - -Kx2'/° j^T     is tl5e he8* ^ i°w anQ the quantity W/T is the entropy flow. 

Thus, inequality (21) indicates that for a given mass of viscous thermally conduc- 

tive gas the output of entropy exceeds its inflow through the boundaries of this 

gas mass, if the mass of gas enclosed between the sections q ■ q and q » q„ is 

thermally insulated, then #■%* *ZVP  ■ 0 for q - q.., q « q„. Therefore from (2ft) 

follows that dsrt /dt ^ 0 (22) 

Thus, if we consider the motion of a gas devoid of viscosity and thermal 

conductivity as the limiting motion of a viscous and thermally conductive gas as 

M ,}£-+• 0, then from equations(17), (18), (20) follows that s(q, t) - s(q, 0) 

only for the case when JM  ——• -*• 0,/X ^~     —*■ 0, as Mi -K. -*» 0. As we 

will see later, the motion of a gas devoid of viscosity and thermal conductivity 

is not smooth, since within the gas there form regions where the gradients ^u/^q, 

^T/<?q are not bounded. For this reason, if we are considering flow of an inviscid 

and nonthermally conductive gas as the limiting flow when /#,}£ —+• 0, the conser- 

vation of entropy 3 for each gas particle obtains only as long as the particle 

trajectory is in the region of flow smoothness. 

But if the particle trajectory passes through the zone of unbounded gradients 

or else through the discontinuity surface of the hydrodynamic variables, the entropj 

of this particle increases. 

This principle of entropy increment when a particle passes through a dis- 

continuity surface (zone of nonequilibrium status) will be employed by  us  in 

the following (section iv) in sele».tir-g stable discontinuities when we investigate 

the flow of a gas devoid of viscoeity and thermal conductivity. 

Now let us note that for a unique determination of flow we must add to equa- 

tions (1)~(3) or to (4)~(6) for an inviscid and nonthermally conductive gas, and 

also to equations (11)~(12) or (14)~(16) for a gas with viscosity and thermal 

conductivity, equations of state of the gas. in the following we will assign equa- 

tions of state in one of the following formsj 
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f = p(p,T).     e=*e(p, T); (25) 

;e = e(p, p)f      or p-p(/»,£)* (24) 

' e=e(V. S),' p^=p<y, S),;     or p - p(/° , s).      (25) 

Equations of state can be given in any of these forms, however for the case of 
i 

the gas with viscosity and to thermoconductivity it is especially convenient to 
i 

employ them in the form (2^), since this law is to select temperature T as the 

main thermodynamic variable. 
| 

For the case when various gases participate in the motion, we must assume 

that these functions are distinct in regions occupied by the different gases. 

Since these regions are not known in advance, we cannot, in general, assign these 

relations as functions of the Eulerian coordinates x, t. 

Let us note he^fc the advintages of Lagrangian coordinates in which the 

equations of state (2? )-(;<;;) can be assumed to be assigned in the form of functions 

of q, t, for examplej    £-£ (v, p, q). (26) 

In this case function (26) must be assumed to be continuous relative to variable q 

at the points q » q. » const, which are the interfaces of the different gases. 
i 

6. Study of equations in Eulerian coordinates, characteristic form, charac- 

teristics. We will assume that the equation of state is given in the form (2.5.25)« 

P"P(/>> S). Then     ,. ':— --—.— — ~, V'   ; I dp_ _ dp  *» , dp dS 

I 
Substituting this oxpression into the system of equations (2.5.8)-(2.5.10), we 

obtain equations of one-dimensional flow in Eulerian variables written in the form 

dp  ,  dpu _      vpa 

dS   ,     dS      n ... 
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Let us reduce the system of three quasilinear equations (1)~(3) relative 

to three unknowns /° , u, s to the characteristic form, TO do this, according to 

section II of chapter one wa must compute the roots § ,§2, 4z of the equation 

IP   0 . 

0  a—I 0 

<=(u-tf-p'(tt-i)=0. 

•■*, 

(4) 

A3 we already stated in section 1, we will assume that 

Then denoting 
dp  >u- (5) 

(6) 

let us write equation (4) in the form 

from whence we get; 

(7) 

li ==« — c; £2 = "; £a = "4-<;; (8) 

£1 < £2 < £3 (c>0). 

Ana thus, provided condition (5) is satisfied the system of equations (1)~(3) is 

given by a hyperbolic system. 

in section I we saw that the condition ^- ■=  - V   -f-£ J>  0 is the 

stability condition for the thermodynamic state of a gas. This same condition 

insures the hyperbolicity of equations in gas dynamics and, therefore, the correct- 

ness of cauchy's problem for gas dynamics equations, if however jL£. SL.  0, then 
& p 

Cauchy's problem for the system (1)-(3) would, generally speaking, be incorrect. 

Let us reduce this system of equations to the characteristic form, TO this 

end, multiply equation (1) by the quantity -c//3 , add it to equation (2), and to 

the result add   equation (2) multiplied by the quantity "-pZ Xc.     • Then we 

arrive at an equation in the characteristic form; 
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du   .  , -<>£ -hl 
to 1 TdS   , , . dSl 

X (9) 

The second characteristic equation corresponding to the eigenvalue gg " u is 

equation (3)t    ä s/^ t +u^s/*x -0, (10) 

and the third is obtained by multiplying (1) by c//° , adding the results to (2), 

after which equation (3) multiplied by-£- *£. ia added onto the result. So we 

obtain a third equation in the characteristic form; 

£~H„+o&+j[£+(«+«)£]+ 

X (11) 

Thus, equations (9), (10), and (11) constitute the characteristic form of gas dyna- 

mics equations (1)~(3) in Eulerian coordinates. The quantity 

is called the speed of sound, since small perturbations in the solution are propa- 

gated along the characteristics; but the inclinations of the characteristics are 

the quantities u - c, u, u -r c. Therefore small perturbations are propagated 

relative to the substance at the velocity 0, +c(ft  S). integral curves of the 

tquations 

dx dx 
dt 

dx 
ST' :a+e 02) 

are called characteristics of the system of equations (1)-(3) or (9)"(H)i where 

the line dx/dt ■ u is also called the trajectory. 

By equation (10) the entropy s is constant along the trajectory, we obtain 

a conclusion that we already noted above- the entropy of a particle remains con- 

atant as long as the flow is smootn. 

Since c >0, the characteristics dx/dt - u - c of the first family relative 

to the substance move leftward with time t, while the characteristics of the 

third family dx/dt - u + c move to the right relative to the substance. 
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Finally, let us note further one form of the notation of the characteristic 

system (9)"*(11) which is often encountered in the literature; 

dpi ■ ^<tätifäp&fä£%±U*-^&i* 
(13) 

in this notation it is indicated along which lines differential relations 

between the desired functions are satisfied. 

7. isentropic and isothermal flows. Riemann's invariants. Suppose that 

■phe initial values of the gas dynamic variables are assigned at the straight line 

t - 0; U - U0(X),   />- /»0(X),  S - S0(X). (1) 

If we assume that the initial functions u . P  , S have a bounded first derivative 
000 

(or are Lipschitz-continuoue), tnen from the results of chapter one follows the 

existence in some strip 0 < t ^ t of the differentiable (or Lipschitz-continuous) 

solution to the system of equations (2.6.9)-(2.6.11). 

Let us assume that S (x) - S - const. Then from equation (2.6.10) it follows 

that throughout the region of variables x, t where a differentiable solution existB 

to system (2.6.9)-(2.6.11), entropy remains constants; 

S(x, t) - 3o(x) - S0 = const. (2) 

This rule is called isentropic. 

The problem of defining an isentropic flow reduces, obviously, to integrating 

the system of two quasilinear equations 

(3) 

(4) 

where 

^(p/^V^I^f^ 
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just as any system of two quasilinear equations, system (3), (4) reduces 

to Riemann's invariants (in chapter one, section III). Introducing the function 

*' ' -L.^3 
and the new variables s, r: s ■ u - f(f)t  r » u + f»(/°)> 

let us write system (3), (4) as 

(6) 

(7) 

(8) 

The variables r, s are called Riemann's invariants. 

prom the known r, s u,f   are uniquely defined, i.e., transformation (7) 

has an inverse. Actually,    u » (r + s)/2 (9) 

and 

<P(P) = 
r — s 

Since 

^(p)=lM.>>o.! 

(10) 

(11) 

then from formula (10) f    is uniquely defined as a function of r-s, i.e., we 

can assume that 

where 

p = qri (r — s),",' c}p)=$ (r — s) = c (q>~1 (r — a)). (12) 

(13) 

Thus, the system of equations for isentropic flow can be written via Riemann's 

invariants in the form 

-3?+{—2—*<r— *>J-acF— s  
Jr , fr+i ...   ."I dr dr _  yifr(r — s)(r + s) 

2* 

(14) 

(15) 
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Equations are specially simplified for isentropic plane-symmetric flow. In 

this case V =» 0 and the right side in the equations (14) and (15) cancel out* 

TTT! 
-ton fr+t      Jfo^h n'.V'.fl *+l^rfe * : •. .'.4 ».;•'« (16) 

prom equations (16) it follows that Eiemann's invariants r, s retain contant 

values along the corresponding characteristics: the invariant s is constant along 

the characteristics  

invariant r is constant along the characteristics 

f .+•'■ i **: *  — o-f c = • +ites "7B    . "f" i. «y^-jgfti 

Now let us consider further a special case —the case of isothermal gas« 

We assume that gas exhibits extermely high thermal conductivity and is enclosed 

in a thermstat which is kept at a constant temperature T . Owing to the high 

thermal conductivity, the temperature in the gas w.'ll be very rapidly equalized, 

and we can consider it approximately as constant and equal to T . This means that 

we consider the limiting case of infinite thermal conductivity. 

in contrast to the approximation of a locally adiabatic process in which 

the conservation of particle entropy is violated in the region of steep gradients, 

this model is physically meaningful and remains nonconcradictory also for dis- 

continuous flows. 

Therefore, let us establish integral laws of conservati n which are valid 

in this case. 

It is quite understandable that the laws of conservation of mass and momen- 

tum are valid also for the case of this  flow model. As for the law of conser- 

vation of energy, it must be modified in this case, since gas maintains a constant 

temperature T by receiving from or supplying energy to the thermostat. 

The law of conservation of energy now is meaningful only for a closed gas- 

thermostat system. A3 for the gas itself, the application of the law of conserva- 

tion of energy to any gas mass specifies only the amount of heat communicated to 

or received from the thermostat. In an example of this approach is in subsection 6 
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of section IV. 

Writing the equation of state in the form p « p(^>, f ), we Bee th*.t in 

this case pressure can be taken as a function of only density f  and that - ~  >0. 

From the laws of conservation (2.3.13) and (2.3.14) follow differential 

equations (2.5.1) and (2.5.2), which are reduced to the characteristic form (3) 

and (4)» where c must now signify the quantity 

.<»«=]/ s r£S 
T* 

(17) 

and c « o (Z1) is the so-called "isothermal speed of sound." 

Equations (3) and (4) naturally can be written in the form (14) and (15)> 

and for the case of an isothermal gas, here formulas (7) are valid for r and s, 

formula (12^ for c (/° ), and formula (6) for <P{f)  if c(/e> ) is understood to 

stand for quantity (17). 

8. Equations in iagrangian coordinates, case of variable entropy, we will 

take as the initial equations in iagrangian variables equations (2.5.4)» (2.5.5)» 

and (2.5.6) in which q is the mass coordinate. Let us write the following form; 

ST-* 
du 

=v*v- i„ dx ~ vuV 
X 

=0. • 

,.sT. 

as 
HF' = 0. «-}. 

(0 

(2) 

(8) 

where the Eulerian coordinate x = x(q, t) must be considered as the solution to 

differential equation (2.5.7): __ 
i£&JL = a(«. 0. (4) 

Satisfying the initial condition following from (2.4.9): 

0 _ 
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i.e., we can assume that x(q, 0) ■ x (q). (6) 

where xQ(q) is a monotonically increasing and continuous function of the variable 

q. TO equations (1)-(4)> as always, ve adjoin the equation of state, which we 

will assume to be given in the form p = p(y, s)> p'(V> S)< 0.    (7) 

The variable x - x(q, t) is defined from equation (4); we have the following expres- 

sion for the derivative d x/'b qt 

dq x*     '» (8) 

Eigenvalues £., £_, £,, as usually, are defined from the equation 

i.e. 

-I    —x*      0 
x*p'y     -I    x*p's 

0   0-1 

= 0. 

l[t2 + *2VP(r]=0. 

(9) 

(10) 

Since 

then 

,p'y(V. S)=*-p?p'(p, Sv- -pV<p. S). 

?< = -pcjcv = _ ex" {, = 0. $, = p«* = 
ex" 

(11) 

'. 

The same formulas for £.., ^ „, ^ , can be obtained from the results in subsection 

6 by applying the transformation of coordinates x, t into q, t by formula (2.4.5). 

The reduction of system (1)-(3) to the characteristic form is carried out 

as in subsection 6. we present here the final form« 

du da   ,     (dV dV\ 

<dS dS\ 

dS 
pe      \t 

vcu 
X 

-df = 0. 

+li££(-+^-)—=. 
" 199 " 
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Equation (4) with initial condition (6) is adjoined to equations (12)-(14). 

for the isentropic flow s^q, t) = s • Riemann invariants 

iT"~  ''~r  •"'" $ ' 
s = B_j__,  r = a+J__ 

I ...    nr. ...'■.*.'   .1- 

coincide with those introduced in subsection 1  (cf (2»7.6), (2.7.7))„ psoideii' 

tally, this is a general property of Riemann invariants; they are invariant upon 

interchange of dependent and independent variables. 

Thus, isentropic flow satisfies a system of two quasilinear equations in 

invariants 

ds        „ ds       veu 

dr  .    v    dr vat 

(15) 

(16) 

and the function x = x(q, t) is defined by formulas (4) and (6). The quantity c 

depends only on f = l/v and is a unique function of r - ss 

pc = $(r — «)f-«(r — *) = £(r — s). 

Equations (15) and (16) are significantly simplified *Vr the case of plane 

symmetry when V = 0. 

in contrast to the case of Eulerian coordinates, in iagrangian coordinates 

the problem of defining a smooth flow with variable entropy is also reduced to a 

system of two quasilinear equations and therefore admits of the introduction of 

invariants. 

Actually, suppose we know the entropy distribution at initial time instant 

t-0: S(c, 0) =SQ(q), (17) 

and s (<l) is a differentiaole function. 

in the region of f.'.ow smoothness, from equation (1J) follows 

S(q, t) = SQ(q), (18) 

and the problem reduces to solving the two equations (12) and (14)» introducing, 

as above, Riemann invariants 
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let us write aquations (12) and (14) as 

where 

b *■- 3 

Functions f1 and f~ are represented in the form 

(21) 

(24) 

as« 
and functions (24) are linear relative to variables u, —^r • F°r greater clarity, 

let us write these equations for the case of plane symmetry, i.e., when V - 0: 

dr (25) 

*& [»' - co f ^£iJjM.±].   (26) 

The quantities f  and c are expressed uniquely in terms of r, s. 

For the case of isothermal flow equations in iagrangian variables as 

before are of the form (15) and (16), only the quantity c now appearing in the 
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equations and in the definition of Riemann invariants are r, s is the isothermal 

speed of sound c (formula (2.7.17)). 

9. Equations in invariants for polytropic and isothermal gases. For a 

polytropic gas pressure p is given by the formula 

therefore 

,-£**  t„i~>,. <i, 

an . v-' 
c««5f«A»(5)p»-'. e(p. S) = A(S)p *  .     (2) 

For an isentropic flow Riemann invariants are defined by formulas (2.7.7), 

Calculating <p(P),  we get      P    v-i 

since v> > 1. For simplicity let us set f   ■ 0, then 

;^=^pV, V-l 

i.e. 
Y._, r   .   m^AiSip^=i^Lm>    (3) 

—' 
* GO = -*fi (r-,). (4) 

Thus, isentropic flow equations (2.7.14) and (2.7.15) take on the following form 

for a polytropic gas: 

where 
^ixldxl >-j>0.     ß = £- 1        Y-J 

(5) 

(7) 
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* Let us write these equations for the case of plane symmetry ( V ■ 0)» 

%+(w+Pr)-£;=0.  |r 4^*^&*^f (8) 

i 
s 

Let us also wri.te formulas (2.7.7) for invariants r and sj 

*=a 

and the reciprocal formulas»        ~      • <•■ . -Vx-.fr.«.- { 

>•      .»m i_ 

For the case of an isothermal ideal gas p - H/'T. 

therefore 

cr = //?r0== const = Ca. 

<P(P)=J-Ip-=:<;oln~^- 

(12) 

; (»3) 

.?» 

(11) 

Assuming for definiteness P   - 1, we will have 

2<p(p) = (r-s) = 2c,ilnp.  p=exp|^^}. 

Equations in invariants for an isothermal gas are of the form 

(14) 

H8) 

(16) 

Special cases of %i3tam (8) £ce of interest (v> ■ 0). one of the cases, )} -  -1 

(correspcnding to so-called chaplygin's gas*)), reduces to a weakly nonlinear 

systems 

~st^-rsi W^'SI 
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Another interesting case, V " 5» reduces to a degenerating system cf equations 

whose characteristics, as we have seen in chapter one, are straight lines. 

in concluding this subsection, let us derive equations in iagrangian vari- 

ables for the motion of a polytropic gas in the case of plane symmetry (v « 0) 

with variable entropy. 

prom formulas (2.8.25) and (2.8.26), in this case, we obviously obtain 

v+* , 

where 

  W-ß(SoW)C-*),-,^=/I.. (19) 

*+B(S0(q))(r -Sy&^=fv (20) 

^^H^mF'*<*«»■ • (2D 
/.=fi=^!r [vi^Typv] • ^(sa«i))A'(s0(qn (22) 

and P,  is always, is defined as some function of the difference r - s and the 

quantity s (q). 

Let us also observe that for the case of the isentropic flow of chaplygin's 

gas (y - - 1), equations (19) and (20) become linear; 

ds       ads  __ dr dr 
HT + BöJ=0 (23) 

Hence we have the general integral s ■ s (q + Bt), r ■ r (q - Bt), where s , r 

are arbitrary functions of the same argument, prom this it follows that if the 

solution r, s to system (23) is smooth at the instant t - t , it remains smooth 

than for any t. 

*) TO lend physical meaning to the equation of state, here we must assume that 

P-/J- A2(SL 

W 
, p   -  const ;> 0. 
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System (2J) ia the weakly nonlinear system (17) transform into Lagrangian 

variables, consequently, solutions to system (17) also retain their smoothness. 

This fact can be viewed as an illustration of the theorem on weakly nonlinear 

systems demonstrated in section x of chapter one. 

Ill«   Study cf the simplest plane one-Dimensional plows 

in this section we will study the quality of properties of the simplest, 

mainly isentropic or isothermal, flows for the case of plane symmetry ( v- 0). 

1. General properties. Integration for the case y ■ 3« in Eulerian coordi- 

nates isentropic flow is described by a system of two equations, which for the 

case of a polytropic gas is of the form 

£+<«+W-£-0. £+<«r + MT5-a 0) 

o = - Y-l 
P—7  4 Y*l. (2) 

We will assume that the initial conditions s(x, 0) =- s (x), r(x, 0) «■ r (x), (3) 

are imposed on system (1) and that the functions s and r are bounded, and have a 

continuous first derivative. 

Then from the results in chapter One there follows the existence of solutions 

to conchy's problem (1), (2) in some strip 0^ t < t ; the variable t is the time 

instant at which derivatives of the solution become unbounded. 

We assume that the solution s(x, t), r(x, t) is known, we will call the 

integral curve of the equation dx 
dt = lx(s. r) = as(*, O-f-P't*. 9 = «-c 

The s-characteristic, analogous to the integral curve of the equation 

of the r-characteristic. 

The invariant s ■ s(x, t) is constant along the s-characteristic x ■ x 

(t, x ), as follows from equations (1), i.e., s(x (t, x ), t)2 3 (x ), if 

x (0, x ) = x . 
Sv '  0'    o 

Analogously r(x (t, x ), t) «• r (x ), if x • x (t, x ) is the equation 

ough the 
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The estimates 

min jj(x) < *(x, f) < max s0(x), 
*   -        ■ t     ..       . * 

minr0 (x)<r(x, f)<maxr0(je). (4) 

obtain for the solution s. r, and are valid only in the domain C ^ t ^ t in 

which the solution remains continuous. 

Since 

^u-^jc, r^a + ^-c, a = ±±l.  c=
y-=±(r-$)r (5) 

from (4) there follow the estimates for velocity u and the speed of sound c 

(when V> 1): 

min [a0(x) —-^_ c0(x)]4-min [«0(*) + ~rT c0(*)]<2"(*. Q< 

< max [a0 (x) — —-j- c0 (x)] + max ja0 (x) -f ~j c0(x)],      (6) 

min [«oW + ^n co(x)]~max[uo(x)—^~i co(.x))<^~nc(x. 0< 

< max jau (x) + —y c0 (x)] — min [«0 (x) — ~- c0 (x)],     (7) ■ 

where c (x), u (x) are the initial values cf the speed ox" sound and flow velocity. 

If we approximate these estimates, then we readily get 

min u0(x)— ~j [max ca(x) - min c0(x)j < a (x. 0 < 

<max«0(x) + —U-fmsxc0(x)— mlnc0(x)l,  (8) 

Kin c0 (x) — ^~ [max a0 (x) — min a0(x)j < c (x, 0 < 

<maxc0U)-|--^-[max«0(x) — minau(x)l.      (9)  ; 

Denoting 

mln a0 (x) = «0.     max a0 (x) = U0,     mln c0(x) = CQ, 
X X * 

max<:0(x)=:=C0, Aa0=U0 — a0.      Ac0 = C0—c0 
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Let us rewrite inequalities (8) and (9) more concisely} 

We must bear in mind that in its physical meaning the speed of sound c ^ 0. There- 

fore if c0- -^ &a0   <  o or 

then in the left side of inequalities (11) and (7) we must insert zero, prom for- 

mulas (5) it therefore also follows 

However, when c — ¥~llAu0< O , estimate c(x, t)^.0 also proves to be 

rough. Therefore we will now show that if the initial functions u (x) and c (x) 

possess bounded derivatives, then c(x, t) / 0 for no finite value %> 0 whatever. 

At the same time we will establish useful estimates for derivatives of the solu- 

tion to cauchy's problem (1), (3). 

Since the assertion to be proved is general in scope, we will consider the 

case of any V ^ - 1 • When V ^ - 1 > «^ ^  0. 

Theorem. If in an isentropic flow of a poly tropic gas (v>^ ~ 1) no shock 

waves are induced (no characteristics of the same family are intersected) and if 

the initial values r (x) and x (x) of the Riemann invariants are differentiable, 

there exists the functions p(t)<o<> and /° (t) > 0 such that 

5^iL<"»(0.   P(*.o>Pb(o- 

Proof. Let f| = p,, ±L p2> and assume 

<*|*L » Px (x, ox P£   r^-=> P% (*•• 0) < P. (12) 
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and also 

0<pb<p(Jc.0)-M*)« 

We denote 

r>M^(^*?W^W)J  <J^ (l8) i 
"*"- f 

i-+(«r+IW^^4-(S+.)^=(4)r.      I 

Then, by differentiating equations (1) relative to variable x, we get 

Since p « 1 - <L, these equations can be rewritten in the form 

Writing equations (1) as 
. .   _ _ £> 

we can easily establish the formulas 

*■" A^S),"—-3ET["A (r-4-~ t=T e'W, = 

Let us substitute these formulas into equations (15); then they will become 

L>ti --«A-* [>■?i—r!*^ (16) 

when   V ^ - 1,e£.£0.    Therefore,  if at any point x,   t p..(x,  t) ^ F2(
x»  *)> at 

this poin-; 
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J i.e., the quantity -gjp   does not increase alon°r the s-cbaracteristic with in- 

crease in variable t. 

in general, from equations (16) it follows that 

(17) 

Let us prove this inequality in somewhat greater detail, suppose A(x, t) is an 

arbitrary point on the half-plane t £ 0. Let us pass through this point s-charac- 

teristic I and r-characteristic u (Figure 2.10). 

ntjiEKr 

-—  nalj 

Figure 2.10 

Suppose, for example, that at the point A(X, t) p..(x, t) £. p„(x, t), and 

suppose that this relation is also satisfied over the segment AB of characteristic 

I, i.e., p^x», t') ^ P2(x*, *')> and below point B (Figure 2.10) on characteris- 

tic I this -elation changes into its inverse (p1 ^ P2) and p. - p„ at point B# 

Then by the first equation in (16) 

Suppose that over the segment BC of characteristic JJ*  running through point B, 

P2 ^  P1• Then by the second equation in (16) 

If at the point c, P-,(C) - P?(c) an<1 that CD' p1 ^p2» then b^ the first equation 

in M6) -      , 
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Thus we sooner or later arrive at the initial axis t » 0. por the case shown 

in Figure 2.10  we will have 

f- 
(18) 

This chain of inequalities convinces us of the validity of assertion (17). And 

so, from (17) there follow the estimates of the derivatives 

S^5^»;j,(, 0=^<APi?i>,      (19) 

where the quantities p and f are given by equations (12) and (13). Since u - 

^ C r + s ) , then from (19) there also follows the one-sided estimate of the 

derivative ^ u/d xi 

da ^P#{x,t) 
«17 ^ 7C-— • \~fik~ Pt (20) 

Writing the continuity equation 

in the form m.' 
flP _j_ „ # du 

. — ftiSL      MV      d   .      d 

we conclude that according to (20) 

m>-^- i.e., (J-JL)^JJL (21) 

integrating inequality (21) from arbitrary point :Jx,  t) to point E on the initial 

axis along the trajectory AE (Figure 2.10), we obviously obtain 

i.e., 

1 1     sl± 
7OT~P7(S>^ P. ' 

P8 .    ^      Pi>(g)Po       ' 
P(Xl '»P.+P.(£)/V >P.+Ä^ 

(22) 
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inequality (22) states that density /'(x, t) cannot tend to zero if the initial 

values possess a bounded derivative (obviously, we must assume that p ^> 0). 

inequalities (20) and (22) prove the theorem. 

inequality (22) tells us that under these conditions when t^Oa mutually 

unique correspondence between Eulerian and iagrangian coordinates holds. 

This fact is physically interpreted thusly. A gas continuously filling at 

time instants t * 0 the entire space with density different from zero cannot in 

its motion "collapse", i.e., form a vacuum region in which f>= 0 if and only if 

when t - 0 velocity discontinuities u (x) such that u (x - 0) < u (x + 0) are absent. 

This fact obtains also in more general cases, it is valid, in particular, 

both for nonisentropic continuous flows and for ideal gase3, as well as for dis- 

continuous solution (flows with shock waves). 
y-/ 

Since c =Af>   ?     , then when V > 1» from (22) follows the estimate from below 

also for the quantity c(x, t). since when V >1» c(x> *) and therefore f (x, t) are 

bounded from above by means of inequalities (11), then from (20) there follows the 

estimate of the derivative 
2_ 

;v-i 

Let us note that when V<1 inequalities (11) vary in such a manner that together 

with (22) they bound the value c(x, t) from above and from below. 

in the foregoing we established estimates for p., p„ from above, in esti- 

mating these quantities from belcw, we note that from system (14) it follows 

that if p(t) stands for tne quantity 

then 

Hence 

P(0 = max max{|p,(x 0|. |/>2(*. 0|). 
-OO<JT<<» 

-^«|o|+iM>/*<4- 

pw<t_(|0,4.|j|)(.p«& 

, -P(Q) 
P'<x< *>> l-dol + ljHX^tO) 

(23) 
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Estimates (19) and (23) bound derivatives of the solution from above and from 

below, prom (23) it follows that when t < 1/(U]+lßl)fft)tibe derivatives remain 

bounded both from above and from below. Thus, the strip O^t-S l/(H\+$l)P(o) 

is a strip in which a classical solution to cauohy's problem (1), (2) clearly 

exist. 

Naturally, estimate (23) is to growth. Thus, for example, if ds /dx^.0, 

dr^dx >0, then p1 ^ 0, pg ^ 0, as follows from equations (14) and as a conse- 

quence of (18) a classical solution exists for all t?■ 0. 

Let us clarify our general remarks with the example of the flow of a poly- 

tropic gas with exponent • - 3. m this case «6-1» ß - 0 and the system of 

equations(1) decompose into two individual equations: 

ds + * ds 
SI' ■0. 

or   , . w  . 
(24) 

Since invariant s is constant along the s-characteristic, and the slope of the 

s-characteristic is s, these characteristics are straight lines. 

Along the line x « XQ + sQ(xo)t - x(t, x ), we have s(x, t) - s (x )j 

similarly, r(x, t) - X
0(X

Q)  along the line x - XQ + ro(xQ)t. Thus, the solution 

to cauchy's problem for system (24) is given implicitly by the formulas 

«(H-MD*; 0=*o(D- 

For the explicit expression of solution s(x, t), r(x, t) we must solve the func- 

tions 

relative to the quantities %, rj .    suppose we define them from (25)5 

then 

iitÄaSy '(A^^i"^ (26) 

The geometrical significance of the quantities £j(x, t), r\ (x, t) is clear from 

Figure 2.11. 
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Let us verify that several of the estimates obtained above are satisfied. Dif- 

ferentiating relations (25) relative to the variable x, we get 

Therefore, from (26) it follows that 

and we see that estimates (23) hold in this case. By Figure 2.11 

S&^&g^XMSZSgM (-") 

Let us make the following estimates; 

l^^^y^^^^^(^t'c^^^(ii-f'o<^--s^r        (28) 

prom (27) and (28) therefore must follow 

But from (27) we have £ (x, t) - >7 (x, t) - 2c(x, t)t. 

Combining equality (30) with inequality (29), we get 

e(x t\^ JjiULTs Si ^  r» - A 

(29) 

(30) 

(31) 

> ■ ' 

Since when V- 3, /° - c, equality (31) ie a special case of estimate (22). simi- 

larly, for the case V - 3 we can etsily verify all the other estimates obtained 

above. 
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Figure 2.11 

2. gravelling waves (Riemann waves), waves Q".  compression and rarefaction. 

Here we look at several of the simplest isentropic f-LOws for the case of plane 

symmetry (v - 0). in studying travelling waves it is of practical indifference 

as to which variables — ßulerian or Legrangian — we conducted our examination. 

Here let us use iagrangian. Then isentropic flow equations are written as 

-5JT-6C-*)-^-=-3r-cp-3^=0. 

*" _1_W,   .A *" _•*" _i_ -v, * _ ft (2) 

where Riemann invariants r, s are associated with u, V by the formulas 

por an isentropic flow p is a function of the single variable V« 
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., 
We will assume chat p - p(v) is an arbitrasy differentiable function 

satisfying, however, conditions I and Hi 

(3) 

Then, denoting 

we get 

and 

.:s* i'-F~W  71'..i   •• iji 

;'«*>* 

»'(V; «00L ^<o 

L * 

Thus, from conditions (5) it follows that g(r - s) is a monotonically increasing 

function of the difference r - s. 

isentropic flow in which one of the Hiemann invariants is constant is 

called a Riemann wave for a travelling wave, suppose for definiteness that r - 

rQ « const; then equation (2) is satisfied identically, and equation (1): 

>S        1(^-5)^=0,1 (4? 

serves for the determination of the function s(q, t). 

Characteristics are integral curves of the equation 

and are obviously straight lines in the q, t plane since the invariant s(q, t) 

is constant along these. Hence it follows that along the straight lines 

d1 _ 1 — <A 
it — t — t„ l(r0-i(g.  0) (5) 

both s(q, t)aand r »■ r are constants, and therefore, all hydrodynamic variables 

V> P» P  » c, u are constants. Let us note at once that the s-characteristics 

will be straight lines also in the plane of Eulerian coordinates x, t. 
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Figure 2.12 

If in some region £s/i?q> 0, the characteristics (5) i rm  divergent 

bundle of straight lines (figure 2.12, a)$ if however is/aq < 0, 

then they form a convergent bundle of lines (Figure 2.12, b). since u - ^(r + s) 

• £(r + s), then from ä s/a q />0 follows ^u/^q > 0. From the continuity equa- 

tion, av/^ t - 3 u/^ q; therefore it follows that when ^ s/ä q > 0, ^v/a t ;>0, 

and density/* decreases. Therefore the Riemann wave in which a s/<5 q > 0 is called 

the rarefaction wave, and the Riemann wave in which ^ s/^ q < 0 is the compression 

wave. 

The case when s • s ■ constr.nt is treated quite similarly, pi this case 

also when ^r/<3 q < 0 we have a compression wave, and when «*r/a q >0 — a rare- 

faction wave. Thus, the general characteristic of the compression wave au/?q<0 

or, which amounts to the same thing, ^u/dx4 0 leads to the conditions «^s/3 q< 0 

for the Riemann s-wave (r - r ) and to dv/^q. < 0 for the Riemann r-wave (s - s ). 

i A». 

Figure 2.1) 
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O 0 
por chaplygin's gas, p - AV + PQ» d. p/d-V - 0, and £« /-^   is *ne 

constant. The slope of the characteristics in this case is fixed and therefore 

all 8-characteristics are parallel to each other, just as are the r-characteristics. 

Nevertheless condition } a/c> q > 0 again distinguishes the rarefaction region 

in the Riemann wave r - r , 

The Riemann wave (r ■ r ) is called centered if the s-characteristics form 

a bundle of straight lines departing from a single point (q , t ) let (Figure 2.13). 

Since the invariant s(q, t) is constant along the s-characteristic, it follows that 

in the central the Riemann wave 

or 
s = s0. r = r 

Solutions dependent only on the variable y - -2—~-   are called self-model- 
X.  - to 

ing. 

Let us show that centered Riemann waves yield all self-modeling solutions 

to gas dynamics equations. 

Writing equations (2.5.4)-(2.5.6) in the form 

and assuming that the variables v, u, p, S depend only on y - 5. "  l?" 
£ "'to 

the substitution by the formulas 

, we make 

•3T 
1      d 

' t—tr ~3y'   J5L   *~*%. ~*y' 
after which we arrive at the equations; 

dV.   du    ^.      „<to       dp _n      dS      ft 

From the last equation it follows that s ■ S - constant, and the self-modeling 

flow is, therefore, an isentropic flow. 

Converting in the remaining two equations to Riemann invariants, let us 

rewrite them in the form 
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ly+&C-*)l-£r=o, ly-6(r-«)]£=o. 
'■271 '17 = 

If y / - £ <" ^ - s >  , then ds/dy - 0 and s - s . since £ (r - s) > 0, then 

when y ■ - 2j(r - s) we have r =• r « constant. Ana so, there are only two possi- 

bilities for the self-modeling solution; either 

or 
s = *i«=const,  y = |(r —*„). 

r = r0=const.  y = — fc(r^-*). 

(7) 

j » 

and, therefore, any self-modeling solution to equations (6) is a Riemann wave. 

Since £'(r - s) > 0, then by differentiating equalities (7) ana (8) rela- 

tive to q, we conclude that any self-modeling solution when t < t is a compres- 
o 

sion wave, and when t > t — a rarefaction wave. 
o 

Thus, if we consider the half-plane t ^ 0, then in it any self-modeling 

solution dependent on the variable y ■ q/t (q - t ■ 0), is a Riemann rarefaction 

wave. 

in Eulerian variables a centered Riemann wave is given by the conditions 

s = »« ■ const, . _ x—xt _ 
>=7=ir=*+c 

or 
. X — xt :r9»comt,     yg ^__7 »a — < 

Let us cp-isider several relations holding for an arbitrary Riemann vave for the 

case of a polytropic gas. 

For a polytropic gas 

Suppose that in the Riemann wave r - r - constant, and suppose u , c are the 

values of the velocity and the speed of sound at some point in the Riemann wave. 

2 Tnen 

or 
"o+v^TV vV 
c — c (\       V-l u-a»\ 
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I 
Since p . J-A~~ c -&T   t then from (9) we have a relation between pressure 

p and velocity u in the Riemann s-wave» 

Similarly, in the Riemann r-wavei 

H 
(10) 

en) 

Finally, let us note yet another important property of the Riemann wave. 

Any continuous flow adjoining the zone of constant flow is a Riemann wave. 

Actually, suppose the flow is continuous and constant leftward from the 

line AB (Figure 2.14). This means that the line AB is & line through which, «ne 

solution to a system of equations in gas dynamics is not uniquely extended and, 

therefore, the line AB is a characteristic, since the flow leftward from AB is 

constant, AB is a straight line. 

Suppose, for example, that AB is an s-characteristic, then to the right 

of AB r - r and the flow to the right of AB is a Riemann s-wave. 

:* .A2 :■>■" 

Figure 2.14 

J. profiles in a Riemann wave. Radiant catastrophe. Let us consider the 

behavior of hydrodynamic variables in traveling waves of compression and rare- 

faction. Suppose, for example, r - r ■ constant and — > 0, i.e., we are consi- 

dering the case of a rarefaction s-wave. 
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Aa we saw above, in this case £~~  > 0, ~~   > 0. since ^ (r - s) - 

-dp/dy> d p/dv ^ 0, V decreases with increase in i; and, therefore, c in- 
35 if  then from the condition ~=  > 0, creases, since, moreover,  £' (r - s) >• 0, 

r m x   m  constant it follows that ~~   > 0,^ <  0, j~- < 0. Thus, profiles 

of velocity u and the speed of sound c in the rarefaction-ness wave (r ■ constant, 

0) are of the form shown in figure 2.15, a. 

|                              u~u(Q 

■ \ i            ii 1                   fc* 

*"*  ft* "b.%>8 

(a) (b) 

figure 2.15 

We similarly obtain profiles for the case of a rarefaction r-wave (figure 

2.15, b). 

Figure 2.16, a and b shows the profiles of hydrodynamic variables in the 

case of a compression wave. 

And thus, in the rarefaction wave i u/<> q > 0, ana in the compression 

wave j~   <    0. The wave r » constant differ from the wave s - constant by tne 

sign of t\e variable ±£ •    ~       * when r " T
n^a"4S  <0> when «■>-■ ^> 

0. 

Iyet us note that the sign du de coincides with the sign du dp. Therefore 

in the plane of variables p, u (p, u-diagram), the family of states in the Riemann 

s-wave is described by curve 3.2.10, of the form shown in figure 2.16, c. simi" 

larly, for the r-wave du dp > 0 (figure 2.16, d). 

Let us consider the time variation of the profiles of hydrodynamic quan- 

tities. 

Since the solution ia constant in the traveling wave along the straight 

lines and since those lines diverge with increase in t in the rarefaction wave, 
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in the rarefaction wave the gradients of all hydrodynamic variables decrease in 

absolute value with increase in time t. 

Conversely, in the compression wave the characteristics of the correspond- 

ing family diverge with increase in time t and the gradients of all hydrodynamic 

variables increase ' absolute value. Figure 2.17» a a^d b shows the variation 

in the profile s * s(q, t) with increase in t in the waves of compression and 

rarefaction for the case r • r - constant. 
o 

The characteristics in the compression wave intersect each other at some 

finite value t At the point of intersection of the characteristics the 

derivatives of the hydrodynamic variables become unbounded. 

It is not difficult to calculate the instant of formation of the unbounded 

derivatives, suppose r - r , and a(q, 0) ■ so(l)« Then by (3.2.5) two s-charac- 

teri8tics departing from the points q » q., and q - q, of the initial axis t ■ 0 M 
intersect at instant t • 

(1) 

For the case when s (q) is differentiate, we obtain the smallest time 

instant t, for which the s-characteristics intersect each other» 

^^•^rss^fqj c2) 
Formula (2) is meaningful only for the case when max [-^£/^q] >0. if t . ^ 

0, the s-characteristics do not intersect each other when t > 0 and the deriva- 

tives in the Riemann wave remain bounded. 

Thus, in any traveling compression wave gradients increase and become un- 

bounded in a finite time interval. This phenomenon is sometimes called gradient 

catastrophe. 

i*-p 
When  x > 0, gradient catastrophe commences in a traveling compression 

when -—, < 0 — in a traveling rarefaction wave. Thus, when-j-£ > 0 

3ion a 

(cf section iv) 

wave, and 

a compression shock wave is formed, and when~^2<0 — a rarefaction shock wave 

f .,. 
- 221 - 

^^^^^T^^^rT^^^^^^^f^^^^^r """" -' 



-y 

(a) 

A ,.! 

AÜ£"A'. J 
0*«* 

(«) 

Figure 2.16 

(*) 

r  :>>   ;.v*     :C i     'ill'1"'     ' 

Figure 2.1? 
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rs const 

figure 2.17 

No continuous solution exists when t > t .  > Os the solution becomes 
inn '    ' 

discontinuous. 
min 

Let us consider a more complex form of flow -- flow with local initial 

data. 

ye will state that initial data are local if initial functions r (q), s (q) 

are variable only over a finite interval a £f- q ^ b of the axis t - 0, i.e., 

W -/;; 

when q < a, 

when q > b, 
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when q < a, 

when q > b. 
(5) 



plow arising under the initial conditions (3) is not described by traveling 

Riemann waves. However, in several caces of flow, for sufficiently large t >0, 

it can consist only of traveling waves. 

If, for example, r1(q) ^ U, s*(q) > 0, the solution has bounded derivatives 

for any t ^ 0, as follows from the estimates (cf section i). values of the in- 

variant s are transported along the s-characteristics, with velocity - fc < 0} the 

values of invariant r are transported along the r-characteristics with velocity 

po  >0. Therefore for a certain t. > 0 the zones of variability of the variants 

r and s diverge and the solution will consist of two traveling rarefaction waves 

separated by a constant-flow zone (Figure 2.17, c)« 

Now with a —*- 0, b —*• 0, i.e., if we proceed to the problem with piecewise- 

constant initial data, solution r(q, t), s(q, t) will obviously tend to the self- 

modeling solution consisting of two centered rarefaction waves (Figure 2.17, d). 

Cauchy's problem with pieeewise-constant initial data 

r0(.q) — 
<7<0. 
<?>0. s0(q) = 

s-,   q<0. 
s*.   q>0 (4) 

is called the problem of the decay of an arbitrary discontinuity and is studied in 

detail in section iv of this chapter. 

The above analysis allows us to assert that if 8 < s+, r ^ r+, t' prob- 

lem of decay has a solution that is consistent when t > 0, consisting of two cen- 

tered rarefaction waves (Figure 2.17, d). 

A.n analogous approach to the consideration of the problem of decay as a 

limiting problem with local initial data enables us to predict the quantitative 

behavior of the solution even when we rejec* tne inequalities r ^ r+, s ^ s+. 

If, for example, r > r+, then after the interaction of traveling waves (zone I) 

the compression r-wave will propagate toward the right (Figure 2.17, «)• As we 

saw above, the gradients in the compression waves increase unboundedly. This 

leads to a discontinuity in the solution. Shock waves appear in the solution. 

Based on this, we can assert that if s  > s+ or r > r+, shock waves 

necessarily emerge in the solution to the decay problem. 

- 224 - 



■ - .■■■■::- .:■.-■.-    .  ■ v- ■-. . .. ..-;.■_...-.. - ■■■ ■ ■■:•   .'■■■■■ ■■■.-■■     ;■■■■■■ 

4« Piston problem. Escape of gas into vacuum. Traveling waves find 

numerous applications in a number of these simplest problems, and also in the 

qualitative investigation of thus far extremely complicated flows, we will consi- 

der here several of the simple problems whose solutions are described with the aid 

of traveling waves. 

Suppose a gas exists on one side (to the right) of a rigid wall(piston), 

which beginning at the initial time instant t ■ 0 moves according to a certain law. 

We will assume that at the initial instant the gas is at rest and exhibits 

constant density, pressure, and entropy, i.e., we will presuppose that 

'S3*b&^t&fa$* Pfo °>?*>•±,.£& ?H?£j 0) 

We will assume for the gas that its equation of state satisfying conditions I and 

II is given: 

(2) ;&<Vli£>0- '*«*&-■* 
The piston is at the gas boundary, whose coordinate q we will take as equal to 

zero. The law of piston motion is expressed by the function u(0, t) - U(t), (2) 

where u(t) is the piston velocity, given as a function of the time t, and u(q, t) 

is the gas velocity*), we will assume that u(t) is a continuously differentiable 

function satisfying the condition   u(0) - 0. (4) 

initially let us consider the case when u' (t) ^ 0. The construction of 

this problem reduces to finding the solution to equations of an isentropic flow 

satisfying the initial conditions (1) and boundary condition (3). in Riemann 

invariants the problem reduces to finding the solution to the equations 

(5) 

Satisfying the initial conditions 

*) Equality (2) holds only when the gas does not separate from the piston. 
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(6) 

and the boundary condition assigned at the straight line q - Oj 

Zone i (Figure 2.18), bounded on the left by the characteristic OA (l - 

c /" t) is obviously the zone of flow constancy, i.e., in zone I 

k*=V ■,*»!■„ at—<f0. *=»0V-p=^_«^V -        (8) 

Zone II of an inconstant flow is bounded along the r-characteristic of the 

OA from the constant-flow zone. Therefore, flowing zone II is a Riemann wave. 

As we can see from Figure 2.18, the Hiemann invariant s(q, t) is constant in zone 

II, and the values of this invariant are transported f,o zone II along the s-charac- 

teristics from the initial axis t = 0. 

Thus, in zone n, s(q, t) = s = constant, and it remains for us to inte- 

grate only the second equation in system (5): 

J+i(r7y£-o. (9) 

If the r-characteristic intersects *) the axis q. « 0 at the point r 7 0, then 

at this point s(0, T) - s and from (7) we define r(0,r): 
[*) at following page] 
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in zone II of the Hiemann wave, invariant r(q, t) is constant along the 

r-char&cteristics, which are given by the straight lines; 

4^=1 (r (0. *)—'V« !<**»• 0—«&J 01) 

Along the straight line (11) r(q, t) - r(0, r) where r(0,r) is given by formula 

(10). formula (11) yields the solution r - r(q, t) parametrically by means of 

the parameter  — the ordinates of the point of intersection of characteristic 

(11) with axis q = 0. prom (11) it follows that if u' (t)<  0, in zone H 

— rJ<~i  > 0, i.e., motion in zone XI iß a rarefaction wave and the pattern 

of characteristics is of the form shown in figure 2.18. When solving boundary 

condition (7) it was assumed that the r-characteristics departing trom the ray 

q > 0 of the initial axis intersect the line q ~ 0 when t >0. 

According to its physical meaning, the quantity    c > 0   (12) 

therefore formula (10) is meaningful only when the inequality 

e~*mff~2äzy^fa*wy>*j (15) 

is satisfied. 

According to (2), f (r - s) is a monotonically increasing function. There- 

fore inequality (13)» generally speaking, bounds from below piston velocity u(t) 

for  which the boundary condition (3) can be satisfied, i.e., bounds from below 

the gas velocity at the line q = 0. 

For u(t) < 0 that are sufficiently small modulewise, inequality (13) is 

obviously clearly satisfied, since when u (t) » 0 

*<W0)W*('o-*o>=«V>
0-; 

Suppose that for any t ■ t. inequality (13) is converted into an duality 

*) As we will see below, for u(t) <0  that are sufficiently large modulewise, 

this is not the case, i.e., the r-characteristics do not intersect the axis q « 0. 
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even when t > t1, u(t) < U(t1)« T^en when t > t.. boundary condition (3) loses 

its meaning. 

In this case the piston separates some of the gas, and a vacuum region is 

induced between the piston and the gas. Formula (11) parametrically defines the 

solution r(q, t) throughout the zone n assuming that the parameter f  lies within 

the segment 0 $ T $ t.. 

Note that from the assumptions (2) it follows that if yAj^r = f o-sj 

m o p - 0, then p - 0, therefore the boundary q - 0 providing t > t.. can be viewed 

as the free boundary of the gas, i.e., the boundary of the gas with the vacuum in 

which p ■ 0, p - 0. The inconvenience of iagrangian coordinates is manifested in 

this case in that in the },  t plane the boundary of the gas q = 0 coincides with 

the piston position, since in the region between them f -  1/y ■ 0. 

The pattern becomes more graphic if we represent gas and piston motions in 

Eulerian coordinates. Figure 2.19 shows the pattern of the r-characteristics in 

the case of gas separation from the piston, in Eulerian coordinates. 

in zone I we have as before a gas at rest, zone n bounded by the r-charac- 

teristics OC and AB is a zone of the'rarefaction wave, and zone m (between the 

pisont trajectory z » x(t) and the characteristic AB) is the vacuum zone. At the 

point A(t - t1) separation of a gas from the piston occurs. Note that obviously 

the straight line AB, which is the boundary between gas and vacuum is simultaneously 
2 

an r- and a s-characteristic. For a polytropic gas, f (v) = -y-rj c, 

ty Cr- *)  = c  = y~—-     (r - s); therefore condition (13) can be written when V>1 

in the form 

[tf«>+7=T*]>o. 
(14) 

i.e. 

UW> ea. Y-l "° (15) 

And so, when U(t)< - 
V- / 

the separation of gas from the piston commences. 

Note that if we consider the isothermal gas formally as a gas for which \?  ■ 1, 

then from (15) it follows that the separation of an isothermal gas from a piston 

generally does not occur, since the quantity 
v> -/ 

•eo  whenV-*-1. The 

same conclusion can be obtained also from the formula for f , since 
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P?=exp {^}>°- where c 
T- /HI constant. 

^=U(t)<0 

Figure 2.19 

Another physical problem about pistons is solved in almost similar fashion, 

when it is not the piston velocity that is given, but the pressure on the piston. 

This leads to a boundary condition in Lagrangian variaMes« p (0, t) « p (t). (16) 

If we assume tnat under the conditions of the preceding problem U(t) decrease« 

monotonically over the segment 0 < t <: t., but when t ^ t., u(t) ■ U ■ constant. 

The pattern of characteristics in the q, t plane is presented for this case 

in Figure 2.20, a. we see that if uo ^ - -~— cD ,  then the flow is constant in 

the zone m. 

If now the quantity t. tends to zero, at the limit as t1 —*■ 0 we obtain a 

self-modeling solution, whose pattern of characteristics is shown in Figure 2.20, 

b. This self-modeling solution corresponds to the problem of tne piston impelled 

from a gas at constant velocity n >- — <:. For the case u <C -  -J=— £.•> zone in 
0 ^  \f-i   " o v' i 

vanishes, giving way to the rarefaction wave, i.e., zone n in this case displaces 

zone in. providing \j   < — -=- ce  at tne boundary q ■ 0, condition P ■ 0 is 
O     y/'i ' 

satisfied, ana tne gas is not in contact with the piston, i.e., they are separated 

by a vacuum region. 

I  / 
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Figure 2.20 

This self-modeling solution yields the solution to another problem, called 

the problem of the escape of gas into a vacuum, in this problem we can assume thh 

that at the initial time instant t => 0 the wall bounding the gas on the left (at 

the point q » 0) is taken away. 

Now let us consider the second case, when U'(t) ^0, u(0) - 0.  (17) 

Figure 2.21 

Boundary condition (7) can now be always satisfied, since providing u(t)>0 

inequality (13) is always satisfied, we can readily see that when U(t)> 0, "tLHL*-) 

<0, and the flow in zone II is therefore a compression wave. Figure 2.21 gives 

the pattern of characteristics in the q, t plane, since r*characteristics inter- 

sect each other when t s0, the classical solution to the piston problem for the 

case U(t)>0 exists only for a limited time interval. 

Beyond the intersection of two characteristics, the solution to the piston 

problem become discontinuous. 
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; 
in geoereil note that if we are considering an arbitrary law of piston 

motion u - u(t) and if U* (t)> 0 for certain t, then discontinuities necessarily 

emerge in the solution to this problem, consequently, the complete solution to 

the piston problem in these cases is described by discontinuous solutions of gas 

dynamics equations containing shock wavea. we will study the properties of shock 

waves in section IV- 

Note still further that if we assume that the piston begins to move toward 

the gas side with finite velocity u(0) > 0, the solution is discontinuous for all 

t > 0. So in this case consideration of the isentropic problem is meaningless. 

5« problem with two pistons. Reflection and refraction of a traveling 

wave at the contact boundary, we continue our qualitative study of the simplest 

flows with the example of these two problems in which we must consider interaction 

of two Riemann waves. 

■ '"r< 

Figure 2.22 

As we already took note of in subsection 1, for the case of a polytropic 

gas with adiabatic index V -3, straight lines in the plane of the Eulerian 

coordinates x,  t along which the corresponding Riemann invariant is constant are 

characteriatiCEi. This fact enables us to derive a solution to cauchy's problem, 

and also a solution to any correctly formulated boundary problem for the case 

when shock waves do not form in the solution, suppose a polytropic gas with 

index V ■ 3 at the initial time instants t - 0 is in a quiescent state (u - 0, 

^,"/'»P"P»S_S), bounded on two sides by pistons whose trajectory of 

motion are given by. x - x.(t), x - x2(t) (Figure 2.22). we now employ Eulerian 
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coordirüütes x, t. 

Obviously, in zone I we have a constant flow coinciding with the initial 

flow, in zones u and m —» Riemann waves, and zone iv is the zone of Riemann 

wave interference. 

Consider qualities of another extremely simple problem; the interaction 

of Riemann waves with a contact boundary, i.e., with boundary of two distinctive 

gases (for identical gases with different densities). For simplicity, we will 

regard both gases as polytropicj the gas to +he left of the boundary x ■ x 

(Figure 2.2J) has the adiabatic index V - Vy> and the gas to the right — the 

index V ■ V2» i«e.f we assume that to the left of x - x , p - A.,/»*''» and to 

the right — p - k^P '* • We can readily understand that if two gases adjoin 

each other, the boundary between them is a trajectory, and therefore the follow- 

ing conditions must be satisfied at the interface of the two gasesj 

P_ V 0) u >• u , 
+ 

where u_, p_, u , p are the velocity and pressure in the gases to the left and 

to the right of the contact boundary, respectively, AS will be shown in section 

IV, these equations derive from the laws of conservation of mass, momentum, and 

energy. 

t 
X=Xg(t) 

1 7v / 

s-sf 

\\ -~ 
t, 

///  . _ ."V 

Figure 2.2} 

Denoting the Riemann invariants s, r to the left and to the right of the 

contact boundary by, respectively, s , r., a^,  and r^,  we conclude that at the 

continuity of velocity at the contact boundary require by the first of the condi- 

tions (1) is described by the equality 

s1 + r1 " s2 + r2 " 2U^)' (2) 
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ar 
where u(t) is the velocity of the contact boundary? Take some point (x (t),t) 

at the contact boundary (Figure 2.23) after a Riemann r-wave with the velocity 

of the left gas arrives at it. Since s-characteristics transport to the contact 

boundary X - x (t) in gas H constant values in the invariant s - B„  - s2, motion 

to the right of the contact boundaries naturally a Riemann r-wave (a ■ s2 ■ 

constant). Therefore, by formula (3.2.11) the pressure against the contact 

boundary is defined by the function 

t *->>^^M (5) 

where p is initial pressure in gases I and n, and c2 is the initial speed of 

sound in gas n (the initial velocity in gases I and n is zero). 

Calculate pressure p1 in gas I. since 

where c is the speed of sound in gas I at the initial time instant, and 

J. - ILJZJ    (r„ -  s.), therefore 
1    4.   v 1   1' 

(4) 

Canceling out the quantity 8.. at this point by means of (2), ?;e get the formula 

• *h 

(5) 

where r„ ■ — — c 
1  Vt - 1 

is the value of invariant r in the constant-flow zone of 

gas 1 ahead of the Riemann r-wave (we assume here that u(0) «■ 0). Equating 

pressures p and p„, we derive the equation 

r.0- v»~» mo refer _r, 1 7.^-1 U(l)Vh=X 

J .- w 

If it is assumed that r1 - r (t) is a known function, then from this stage we 

can define U(t). Actually, the quantity r.(t) is an unknown, since the inter- 

action of two Riemann waves to the left, of the contact boundary (Figure 2.23) 

leads to curving of r-characteri3tics. However, we can make a qualitative 
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investigation of the dependence of u(t) on r,.(t) and study the flow pattern qua- 

litatively. 

Suppose, for example, that a rarefaction r-wave arrives at the contact 

boundary. Then, as is readily seen from Figure 2.25, *At)  is monotonically de- 

creasing function of the variable t (d~sS~ < o)>   When t » t (pigure 2.2J), 

r..(t ) ■ r°; therefore from (6) it follows that u(t ) - 0. since we assume that 

V .., v>2 > 1, the left side of equality (6) deoi-uanes with increase in u(t), while 

the right side — in contrast ~ increases monotonically. Hence it follows that 

if tA%)  is a monotonically decreasing function of the variable t, u(t)< 0 and 

U(t) is also monotonically decreasing. 

This means that flow in gas JJ  can be regarded as motion induced by the 

movement of a piston with velocity u(t) < 0. Therefore the Riemann r-wave in 

gas ii is a rarefaction wave. Quite analogously> we can ascertain that if the 

incident wave is a compression wave, tf(t) > 0 and a compression r-wave is propa- 

gated in gas II. 

It is somewhat more difficult to establish the pattern of an s-wave reflected 

from the contact boundary, that is to say. the sign of .— .'. (— . Differentiating 

equality (2) relative to variable t, we get 

(7) 

Hence we cor lüde that if i;u' (t) > ~r' c-~-        , tfte reflected wave is a rare- 

faction wave, otherwise — a compression wave, For simplicity, we consider only 

the case of identical gases ( V1 ■ V?  " ^ ) w^ose entropies are distinct, i.e., 

c1 / c„. Then equation (6) csn be rewritten as 

Y~l/,(0T;V(Q,CTl , V~l t/m 
n -'. Jt > n     .0 

and 

(8) 

(t/(0' 
fiW- 

l+M J7$       I and U'if): 
1+414 

'{(0- 
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Hence we conclude that if c /c„ < 1, the quantity - S\l.      has the sign of 

^I4P-      i  tout if c°/c° > 1, then the signs of ^V*J        and ctr,ct) 
at- Y    c d-t jj £ 

are opposed. 

For the same gas ( y. = )/„ * \f),  inequality c"< c_ means that the density 

f*   of gas I is greater than the density Z', of gas II, since p « S—£.   . Qhere- 
* V 

fore we can formulate our result thusly: 

prom a denser medium (P   > f°, c'z < c")  a rarefaction (compression) wave 

is reflected also in the form of a rarefaction (compression) wave, and conversely, 

from a less dense medium (f> < p * cf>c3)  a rarefaction (compression) wave is 

reflected in the form of a compression (rarefaction) wave. 

Note one special case, c_ = 0 (^,'=«>) for which u(t) * 0. This case can 

be treated as the reflection of a Riemann wave from an infinitely dense gas or as 

a reflection from a rigid wall (u(t) = 0). we conclude that compression (rarefac- 

tion)waves are reflected from a rigid wall always in the form of compression (rare- 

faction) waves. 

Formula (6) enables us to make a qualitative investigation of the problem 

of the reflection of Riemann waves at a contact boundary. But the total solution 

of this problem is complicated by as a fact that actually the function r..(t) is 

unknown, since the r-characteristics are curved in the zone of interaction of the 

incident Riemann wave with the wave reflected from the contact boundary. 

Accordingly, let us note a special case when the solution to this problem 

reduces to the solution of ordinary differential equation. 

Consider the case when V 
1 

3, but v"2 >1 arbitrarily, Then the charac- 

teristics in gas i are straight lines, and we can assume that r.(x, t) - f.i(x> t), 

where f1(x, t) is defined uniquely in the Riemann wave. However, in equation (6) 

r1(t) is the value of invariant r (x, t) at the contact boundary, i.e., at the 

point (xo(t), t)j  r,(t) - r1(xo(t), t) - f^x^t), t). (9) 

Since by the physical meaning of quantity u(t) 

dt   ■ um, (10) 

and from equations (6) and (9) u(t) is expressed as a certain function of the vari- 

ables t, x (t), tnerefore the solution of the entire problem is reduced to integral 
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equation (10). AS the initial condition for equation (10), here the condition 

(Figure 2.2J) x (t ) ■ x is imposed. Thus, for example, if 

V1 - l/ 2 ■ 3 a«d if a centered rarefaction wave arrives, equation (10) takes on, 
according to (8), the form 

*o(fl ■«? 
l + CJ/( 

■o/,o VoK.'^0' (") 

since in the centered rarefaction wav^ when V« 3» r(x, t) ■ x/t. 

6. Remarks on boundary conditions for equations in gas dynamics and an 

illustration of their solvability with the example of the piston problem, in 

analyzing the solvability of problems with boundary and wall conditions, the 

conclusions which we drew in considering this problem area for hyperbolic systems 

of quasilinear equations in section xi of chapter one are wholly applicable for 

gas dynamics equations. t '" 

Nevertheless, when studying tne motion of gases and liquids, certain 

classes of boundary and wall conditions are especially to be anticipated in 

therefore are particularly important. Therefore we will here consider typical 

boundary conditions for equations in gas dynamics. 

The wall conditions are most naturally formulated for the boundary of an 

isolated gas volume, i.e., for a trajectory, in Lagrangian coordinates, a fixed 

coordinate q corresponds to a trajectory; therefore this kind of boundary condi- 

tion in Lagrangian coordinates is imposed on the straight lines q - constant. 

Two types of boundary conditions can be distinguished• 

1) External boundary conditions, or conditions at external boundaries. 

This will naturally be boundary conditions effectively describing the influence 

of an external environment on a given gas volume. For the one-dimensional flow 

under consideration, such conditions are the conditions at the  left and right 

boundaries of the volume in whicn the gas is situated. 

2) internal boundary conditions, or conditions at internal boundaries. 

These include conditions £  contact boundaries between gases exhibiting different 

properties (different entropies, different equations of state, and so on). Among 

the internal boundary conditions we car; include also conditions at the disconti- 

nuity lines of a solution. These conditions will be discussed in detail in the 
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next section. 

As for the conditions at the contact boundaries, in gad dynamics they are 

always identical and require continuity of flow velocity u and pressure p. An 

example of the use of these conditions is given by subsection 5i where the problem 

of reflecting Riemann waves from a contact boundary was studied qualitatively. 

Let us dwell on external boundary conditions, for the case of the piston 

problem taken up in subsection 4» the boundary condition is imposed at the point 

q ■ 0. we can easily observe that if the pressure  p(0, t) ■ p(t) £. 0   (1) 

is assigned at the piston, this boundary problem is solvable, and uniquely so, 

since from condition (1) it follows that 0:5.0. But for the case when the piston 

velocity u (0, t) - u(t), (2) 

is given, we see that provided u(t) < 0 separation of gas from the piston is pos- 

sible, that is to say, condition (2) is not satisfied, but is replaced by condi- 

tion p - 0. 

The very same situation obtains for systems of linear equations as well. 

If boundary conditions are imposed outside the domain of dependence of initial 

data, these conditions generally speaking do not uniquely define the solution. 

por the piston problem, the physical formulation of the problem yielded 

the correct solution, by replacing, where required,condition (2) by the "free 

boundary" condition p ■ 0. 

When      U(*) > 0» *ne piston problem with boundary condition (2), 

conversely, is always solvable, even though the solution will be discontinuous. 

This conclusion must be compared with the case of a system of linear equations 

for which the boundary problem generally speaking ia not solvable either in the 

class of smooth or in the class of discontinuous solutions, if the boundary condi- 

tion is posed in ths domain of determinacy of the solution to cauchy's problem. 

Section IV. Discontinuities in a one-Dimensional plow of compressible Q-ases. 

Shock waves 

1. Bigoniot'a conditions, in the examples of these simplest flows in 

section m we saw that as a rule solutions to equations in gas dynamics remain 

continuous for a limited time, then discontinuities emerge in the solutions. 

- 2J7 " 

:^^-^.,-:.^. - ii~ - ~ ;iiU,-:v. -i - 3ab^jah* ° -i^;iafifiaafjjagjtrrä ■ftif if ,:.......;...:. 



-'5"^"J^>*WSWS*nM£iB#ns»c<™w-.. 

Naturally, differential equations lose their meaning for discontinuous flows? 

however, as we already stated above, integral laws of conservation of mass, 

momentum, and energy remain in force for discontinuous flows as well. 

ft'T 

JE-Jl «UL jj 

ATA' I 

Figure 2„24 

Let us derive conditions that must be met at the discontinuity lines of 

solutions to equations in gas dynamics as consequences of integral laws of conser- 

vation» 

Suppose x » x(t) is the equation of one of discontinuity lines of the 

hydrodynamic variables, which we will assume over the segment X. ^  t ^ t„ under 

considerate on as possessing a continuous tangent (figure 2,24). Suppose f(x, t) 

suffers a discontinuity at the line x » x(t). let us denote 

integral laws of conservation in Eulerian coordinates (2.3.13) - (2.3*15) Qre of 

the form 

|pxvrfx — puxvdt = 0. 
c 

I paxv rfx - - (p -J pa*) *v <# = — J j V/>JCV-' rfx d/. 

' r c 

(2) 
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Let us write the laws of conservation (2) I'or the path  AA*BB', assuming 

that the lines A'B and B'A adjoin  infinitely close to the discontinuity line 

x(t), respectively, to the right and to the left of it. 

in view of the boundodness of all hydrodynamic variables» integrals vanishh 

over the parts AA' and BB' of the path  C» as does the ff   v px**-' dx dt. 

Along the line x - x(t) we have dx » B dt, where D * B(t) - x'(t). Therefore, 

for example, from the first equation in (2) we get 

j # (f) {(Pa (0-ft (0) o (0-T (fit (f) «s (0 -ft M)«^«|     (3) 

in view of the arbitrariness of the limits of integration in (3)» we must equate 

the integrand to zero, i.e.,  x* (t) { B(t) [/" J - [fu]}*» 0» 

Cancelling  from this equality, we see that the conditions at the dis- 

continuity line are identical for three symmetry cases y ■ 0, 1, 2. proceeding 

in similar fashion with all laws of conservation (2), we get conditions at dis- 

continuity line x * x(t)j 

1 w. 

which associate discontinuities in hydrodynamic variables at the discontinuity 

line x ■ x(t) and the velocity D = x1(t) of the discontinuity line. 

Relations (4)~(6) are called conditions for hydrodynamic consistency of 

a discontinuity, or RUgoniot's conditions, after the French scientist who first 

derived them*). 

According to the notation for the quantity D - B(t), ü[f] = [Bf]» This 

means that equation (4) can be rewritten as  [/'(u ~ D)] " 0.      (7) 

Multiplying equation (7) by D and subtracting from (5), we get 

*) In American literature this condition is often called Rankine's or Rankine- 

RUgoniot conditions. 
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{p+9{u-Dft~0. (8) 

Finally, multiplying (8) by D> subtracting the results from (6), and considering 

that [D] « [D ] ■ 0, we get 

;[^(.+f+^)H.~ (9) 

Taking the notation (1) into account, we can rewrite fiugoniot's conditions (7)- 

(9) in the form of the equalities: 

pJ(a,-D) = p,(«,-D)=./n. (10) 

(1!) 

(12) 

According to subsection 2 of section u, the quantities m, j, f denote, respec- 

tively, flows of mass, momentum, and energy calculated in a coordinate system 

that travels at the velocity D relative to the system in which the flow velocity 

u is measured, so Hugoniot's conditions (10)-(12) require continuities of the 

flows of mass, momentum, and energy at the discontinuity line of the hydrod,ynamic 

variables. 

Note, finally, that integral laws of conservation written in Lagrangian 

coordinates lead to the same Hugoniot's conditions (4)-(6), if we take into 

account the relationship between iagrangian and jgulerian coordinates. 

2. Different kinds of discontinuities: shock waves, contact discontinuities. 

Different forms of Hugoniot's conditions. Hugoniou's adiabat. we will distinguish 

solution to continuities as a function of the satisfaction of the conditions m ■ 

0, Q/0. 
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If m(t) - m - 0, then this kind of discontinuity will be called a contact 

discontinuity; if m(t) ^ 0, we will call the discontinuity a shock wave. 

por the case of a contact discontinuity, from (4.1.10) it follows that 

S " u1 ■" u2 - x'(t)' (1) 
i.e., the discontinuity line coincides with the particle trajectory (the contact 

discontinuity is represented in Lagrangian coordinates, therefore the straight 

line q ■ constant). 

putting u. - D, u„ - D, we get from (4.LII) 

P1 - P2 - 0' (2) 
and condition (4.1.12) when u1 - u„ - D is satisfied by identity. And so, the 

following two conditions are satisfied that the contact discontinuity. 

U1 " V     p1 ■ *2» 0) 
i.e., flow pressure and velocity are continuous, we can readily show the converse} 

if conditions (3) are satisfied at the discontinuity, then the discontinuity is 

of the contact type. 

The quantities f , £  , s can experience a longitudinal shock at a contact 

discontinuity, however satisfying in the process the condition of pressure conti- 

nuity (2). A contact discontinuity, i» particular, can be the interface between 

two different gases satisfying different equations of state. The conditions for 

velocity Qr.d preoouxe vcr.tir>»ity (3) in this instance can be regarded as internal 

boundary conditions at the interface of the distinct gases. 

por the case of a shock wave a / 0, the substance flows across the disconti- 

nuity line x - x(t). for the case m > O, the substance flows across the disconti- 

nuity line from left to right; therefore we will state that when m > 0 the shock 

wave will travel from right to left relative to the substance; conversely, when 

m < 0 we will state that the shock wave will travel to the right. 

Let us consider different representations of nugoniot's conditions (4.1.10)- 

(4.1.12) for the case of a shock wave. 

The condition of momentum flow continuity (4.1.11) can be written in the 

form of the following equivalent equalities: 
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Pa+*(«j — D) = pl+«(«, — D), ) 

(4) 

where v - l/^. condition (1.12) after being divided by m becomes 

H+M+l^^fM+fBLjBt^ (5) 

If we let the lette-" Zf stand for the quantity £ + £>v> called enthalpy, then (5) 

can be written aa 

«'»T -Tf = #1 + m «  ■■* 

From (4.1.10) we have 

(«2-D)(«,-D) = -^- = «%V1. 

Substituting hers the third formula (4), we get 

Pt—Pi 

According to (4.1.10) 

(B,-D) = mV,; («2~D)=i/BK2; («,^b),=»M; («j-D^^mVJ. 

Substituting here the third fprmula in (4)» we obtain 

Let us note several other useful formulas, prom (9) we have 
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-ß 
Therefore 

and, finally, 

aifi^^yMi      (12) 

From the resulting formulas we can draw several conclusions; 1) from formu- 

las (4) it follows that during a transition across a shock front pressure increases 

or decreases simultaneously with density. 

2) prom formula (7) it follows that the differences (u„ - n) and (u.. - D) 

have the same sign. 

5) For a finite m, the differences (v2 ~ V<) and (p2 - p ) are of the same 

order, so that as v_ - v1 "**■ 0, p2 - p. —•*■ 0. 

Equalities (10) express the relative velocities u„ - D and u. -u in terms 

of thermodynamic quantities. Therefore substituting tnese formulas into equalities 

(5) and (6), we obtain relations containing only thermodynamic variablesj 

<i 

Equality (13) or (14) is called the condition of a Hugoniot's adiabat. 

Let us introduce into consideration the function 

"<*•'£ P°>V*> = '(P> V)-e(Po, Vj+Qr-VjlJp.  I (15) 

which we will consider as a function of two variables p, v that depend para- 

metrically on p , y • 

Suppose ^ - {P1t V.,} » Mg " /P2> V2} 
are points on the p, V plane 
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characterizing the thermodynamic state of substance on different size of disconti- 

nuity line. Then by virtue of (13) the following relation is valid- 

=-*(p,.^;ft.vp
J)=ii.l (16) 

The points M1 and Mo associated by relation (16) will be referred to as conjugate. 

The property of conjugateness is not transitive, since from the relations H(M > Vi,) 

- 0, H^i Mo) - 0, H(M0I Mg) - 0 does not follow. 

Let us fix the point M (p » V ) of the p, v plane and considering a set of 

points M(P» 7) conjugate to M • They must lie on the curve 

H(Mi M0) - H(P» V, P0, V0) - 0. (17) 

The curve given by equality (17) will be called Hugoniot's ad?.abat with a 

set of points M (p i V )• According to equality (13)> H^goniot's adiabat is a 

geometrical locus of points (p, v) characterizing the thermodynamic state of the 

substance on one side of the discontinuity (shock wave) front if the state p , v 

on the other side of the front is assigned. 

Suppose Hugoniot's adiabat H(MI M ) parses through the point M-« Then 

Hugoniot's adiabat H(M, M*) passes through the point M » but does not coincide 

with the adiabat H(M> M ) (Figure 2.25). This situation reflects that jjugoniot's 

adiabat is not a line of constancy of the function of two variables, but is the 

line of constancy of a function of two variables dependent also on two parameters. 

Therefore, if we select the points (p, y) that are conjugate to the point (p , V ) 

as the new centers of nugoniot's adiabats, then we obtain a one-parametric family 

of Mugonict's adiabats passing through the point (p , V ) (bundle of adiabats). 

3« Hugoniot's adiabat for a normal gas. our preceding remarks on H^goniot's 

adiabats apply to a substance with an arbitrary equation of state. 

For a more detailed study of Hugoniot's adiabat, we will assume that the 

equations of state of the substance p - p(v, S), € - £ (V* T) satisfy -the require- 

ments that were formulated in subsection 4 of section I for a normal gasj 

3T73   •* " dp(V, 5) i-'<0 (I). (II). 

p(V. S)-*oo "when     V->0 (III), 

3e%S>o (iv). cv=<Z^A>o   (V) 
(0 
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J 
Condition vi is *ße requirement of convexity of the domain of variables p, y in 

which requirements 1-7 are satisfied. 

Figure 2.25 

Our entire subsequent consideration, with the exception of cases that 

will be given special reservations, will apply to a normal gas*). 

Let us examine, following £U_J,  the total differential dH of the func- 

tion H(p, V, p , V ) of two variables p, V, assuming p , V to be fixed: 

using the fundamental 

following expression for dH: 

(2) "5—~&P> 

relation dt ■-  TdS - pdV, we obtain the 

dti=*TdS- V~V, i-dp^J^zSi-dv. 
(3) 

equation (3)  can also be written as 

1 ■ n dK. --! U) 

*) Properties of the adiabst for gas with arbitrary equation of state was 

studied in the work of G. Ya. Galin /I}/, 
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where 

l\*-i£7; 
(5) 

is the slope of the ray passing through the center M (p , V ). According to 

equality U.2.4), K = - m2, (6) 

where m is e mass flow across the shock front separating the states p , V and 
o  ° 

p, V (here H(p, V, p  V ) = 0). 
a  o 

Let us consider the mutual arrangement of the following curves: 

a) Poisson's adiabat given by the equation dS = 0 and passing through the 

point M (p , V )j we will denote this curve with the letter A; b) the Hugonict's 

adiabat dH = 0 passing through the point M (p , V ); let H stand for this curve. 

By formulas (3) and (-4), when V = V , p = p , and dH = TdS. Thus, the 

curves A and H at the point of their intersection M (p . V ) have a common tangent, 
O  O   O 

Let us consider the behavior of the differentials dH, dS, dK at ?^;h of 

these indicated curves. 

a) at the adiabat A, dS = 0. According to (4), 

dH=aiJ^tdK. (?) 

According to properties I end II,  along A (i.e., when S=  constant)    dK/dV ^ 0,(8) 

therefore at the adiabat A       dH/dVj> 0. (9) 

Consequently, H <G in the upper part of the adiabat A (¥< V ),-i 
(10) 

H >0 in the lower section cf adiabat A (V >V ).   J 

b)  At the ray dK =0, dH -  TdS. (11) 

This equality signifies that along the ray K the signs of dH and dS coincide and, 

in particular, the stationary points of the functions H end £ coincide. 
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As will be shown ii subsection U  of section I, entropy S has no stationary 

points at the ray K = constant > 0 and increases monotonically with p; at the ray 

K < C entropy S has a single stationary point et which S reaches the maximum. 

The same is valid, therefore, for the function H, so that H along the ray K= const 

< 0 has no stationary points; H has a single maximum at the ray K = constant> 

0, and this at the same point as does S. Hence it follows that at each ray, K = 

ccnst<0 there exists a single point M, of Hugoniot's adiabat H lying between the 

point M, of Poisson's adiabat and the center M . 
A o 

Thus, thers exists a curve H — Hugoniot's adiabat passing through point M . 

The smoothness of Hugoniot's curve follows from the fact that it is an integral 

curve of the ordinary differential equation (2) passing through the center 1L. 

c) At the adiabat H, from relation [/,)  follows 

Täs=-<y=££dK. 
(12) 

Hence it follows that if the point M(p, V) travels along the adiabat H such that 

the ray K(M, M ) travels clockwise (dK<0), entropy S increases mcnctonicelly. 

Figure 2.26 
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Summing up our conclusions on ths behavior of differentials dH, dS, dK at 

the curves A, K, H, we conclude that in the neighborhood of the point H^.  where 

the adiabats intersect tangentially, the curves A and H lie es shewn in Figures 

2.26. 

The mutual disposition of ediabats A and H in the neighborhood of the center 

M indicates that the tangency of the adiabats A and H must be of an order not less 
o 

than two. Let us confirm this by computation. 

From (3) we have along H 

TdS* L^tap+lL^Lw. (13) 

Differentiating equality (13) relative to variable V, we find 

dT uS + i (PS i - ^ dV dp - -^-2- <Pp + 

+1 dp dV = - ?-^± (Pp. (H) 

i.e., d^S - 0 at the point (p , V ) and the tangency of the curves A and H is 

of the second order. Finally, differentiating (H) once more relative to V, we find 

<PTdS + 2dTd*SJtTdiS = -~dV(Pp-!~^ (Pp. 

Since at the point M  dS = d2S = 0, from this we find 

Jd3S=—^dV(Pp and 

at the point M according to property II of the equation of state. 

Thus, only the third derivative d^S/dv3 j_s distinct from 0 at the point ^ 

of the curve H. 
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It is not difficult to see that in the neighborhood of the center M^p , 

V0) the following properties of adiabet H hold: 

1) For any point M on the curve H 

(15) 

2) No ray ^i, touches the ediabat H when H, J M . 

3) Each ray J^NL intersects the ediabat H at no more than a single point 

U) Each ray intersecting the upper branch of adiabet A intersects also fee 

upper branch of adiabat H. Here, the functions H and S at the ray %K, have pro- 

files of the form shown in Figure 2.27. 

Observe that from properties 2) and 3) does not follow the convexity of the 

curve H, since these properties are valid for rays departing only from a certain 

point on an adiabat, namely from its center. 

Figure 2.27 

Let us prove that these properties c.f ediabat I obtain not only locally, 

but also globally. Let M„ be an arbitrary point on adiabat H. Since 

H (MH, Mo) - H(M0, Mo) = 0, 

therefore at the ray M^ there exists the stationery point of the function H (and 

also by virtue of (11), the stationary point of the function S). Therefore, K<0 
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and property 1) of adiabat H has be<"~ proven. 

Let us prove property 2). The stationary point Mct/ct = stationary/ lies 

strictly within the segment J^Ji, and is the sole stationary point. The tangency 

of adiabat H with ray K would signify the existence at the ray K of two stationery 

points of function H and, consequently, two stationary points of S, which is 

impossible. Property 2) stands proven. 

From the existence of a ray intersecting curve H at two points distinct from 

M there  necessarily follows the existence of a ray tangent to H at the point 

distinct from M . This is impossible by virtue of property 2) and therefore proper- 

ty 3) is also proven. 

Finally, since S(M ) >S(M ) when pH > p , then any ray intersecting the 
n     o      n   o 

upper part of adiabat H intersects at first adiabat H et point R,, and then adiabat 

A at point M^. Property 4) stands proven. 

In particular, from this it follows that the slope of the ray K intersecting 

adiabat H at the point % ^ M lies within the limits 

— co < K = -p_vt <~W ' > w*yj (16) 

Now let us consider the following problem: 

The state is given along cne side of the discontinuity line (shock wave). 

Suppose it is characterized by the parameter u = u , p = p , and t - t   = 6{v>  , 
o      c o 

V ). The flow of mass m across the discontinuity front is also given. It is 

required to define the state (u, V, p, £ ) along the other side of this disconti- 

nuity line based on Hugoniot's conditions. 

We assume that K = -m satisfies condition (16). Let us show that for a 

normal ges this problem always has a solution, and one that is unique at that. 

Thermodyanmic parameters of the gas p, V are defined by the point of 
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2 _ *PCV°^J5<3       .. ... 
m = —£ -7—-". At this 

3 v 

intersection of Hugoniot's adiabat H(p, V, pQ, V )' - 0 with the ray K = -£——1 

=  -m2. Since K satisfies condition (16), then by properties 1) - 4.) of adiabat 

H, the point (p, V) exists and is uniquely defined. 

So, thermodynamic parameters p, V, g are defined uniquely. Naxt, all the 

remaining shock wave parameters are uniquely defined. The differences u0 - D = 

mV and u - D = mV are defined by formulas (4..2.9). Since u is known, from this 

the velocity D of the shock wave is determined. 

This means that the formulated problem has a unique solution provided condi- 

tion (16) is satisfied. 

Let us consider the limiting case when K : 

K value the ray is tangent to Hugoniot's adiabat (and simultaneously, to Poisson's 

adiabat) at the point I-^(p , V ). The conjugate point M(p, V) characterizing the 

state of the substance along the ether side of the front coincide to M (p , V ), 
0*0  o 

i.e., the shock wave is infinitely weak. 

In this case u = u and by formula (4.2.8) we have 

L^-^-^Sr^"      i.e.,      !i- b-±'°st^ 
Thus, an infinitely shock wave will travel at the speed of sound relative 

to the substance, i.e., it is a weak discontinuity. 

When K - - c°,  the chock wave is called infinitely strong. 

4. Stable and unstable discontinuities. Stability conditions and Champlin's 

theorem. Suppose the variables u,, p , V , £.. ; u , p , V , £ , and the velocity 
1  1  1      2  2  2  2 

of the shock wave D satisfy Hugonio.t's conditions (4.1.10) - (4.1.12). We can 

easily note that Hugoniot's conditions do not change, whether or not we assume 

the state u., p^, V , £ as the state of the gas left of the sbrck wave front, 

and the state u„, p^, V , £    as the right side state, or, vice versa, u.., p , V , 
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Z~  as the right, and uu, p,, V , £ as the left. However, as we now see, as to 

their physical meaning these cases differ widely so that one of them must even 

be regarded as impossible. 

Let us begin with our assumption of some definite sign for the mass flow 

m =; ^-liu. - D) = fo(n0 -  0)« Suppose, for example, m < 0. In this case the wave 

relative to the substance travels to the right and, thus, in its motion the 

substance cut across the shock wave front, moving from right to left relative to 

the front. 

As we state in section I of this chapter, we represent the discontinuity 

surface of the flow at the narrow zone of large gradients in which the ecticn of 

dissipative forces — viscosity and thermal conductivity — is substantial. The 

action of these processes leads, as we know from thermodynamics, to entropy gain, 

which characterizes the irreversibility of processes with viscosity and thermal 

conductivity. Since when m < 0 gas particles in the course of motion move from 

a right position relative to the shock wave front to a left position, then obvious- 

ly, due to the irreversibility of the processes occurring in the narrow zone 

which we associate with the shock wave we must require that S-p^« < S^g» 

lnpa,h -  right; Jl£&   - left/, where S^-  end S^^   are the entropy of the 

gas to the right and to the left, respectively, of the wave front. 

U<0) (1) 

no longer allows us to interchange the states u., p^, V' t  ; u?, p?, V , t.   but 

rather indicates the specific position of these states relative to the front. 

We will call the shock wove when m < 0 for which condition (1) is satis- 

fied a stable discontinuity; if condition (1) is violated, then we will call this 

discontinuity unstable. 
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Wholly analogous arguments lead us to the conclusion that when m    C 

We will call conditions (1) - (2) shock wave stability conditions. 

If we agree to label the state ahead of the shock wave front the state to 

the right of it when m < 0 and to the left of it when re >C, and label the second 

state as the state behind the shock wave front, then inequalities (1) and (2) 

require that the entropy cf the gas present behind the front will be greater 

than the entropy of the gas ahead of the wave front. 

We will denote the state ahead of the front by the letters u, p , V , £ , 
C  * Ü   o   o 

and the state behind the front by u, p, V, £; then the stability conditions (1) 

and (2) can be written in s single inequality:    S .>S . (3) 

In the following, we will understand shock wave to refer only to a stable shock 

wave, i.e., a discontinuity satisfying Hugoniot's conditions and condition (3). 

Let us turn to the problem of determining the state along one side of the 

front, if the state on the ether side is given along with the mass flow m consi- 

dered in the preceding subsection. If u„, p , V , t    is the state ahead of the 

shock wave front, the problem of defining the state behind the front satisfying 

stability condition (3) is solved, end dore so uniquely, providing the condition 

«2=^=T5^<W^5O)- : U) 

is satisfied. For a normal gas stability condition (3) leads to the following 

consequences: 

1) To each 0 value and to each state ahead of the ^ront u , p , V , £. 
0» *o'  o   ° 

there corresponds one and only one state behind the front u, p, V, t,  if fi) - u | 

>v 
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Actually, m '- f (u   - D)  end in2 >ß c\ = - *F<*<j-&L 

follows (A.3.16)  and the validity of the assertion. 

Hence 

2) With increase in \ D - u f from c to oo , entropy behind the front 

increases mcnotcnically. 

3) Shcck waves lead only to compression of the sub stance and to a pressure 

rise. 

Actually, at the upper branch of adiabet H, which corresponds to states 

behind the front, we have  S >S0, p ;> p0, V< V , i.e., p  > /° . 

A) The shock wave travels at supersonic velocity with respect to the gas 

ahead of the front and with subsonic velocity in the medium behind the front. 

This assertion (Champlin's theorem) is written as the inequalities 

The first inequality, as we saw, is equivalent to the condition S ,> S . In sub- 

section 3 it was shewn that 

P—Pt 
dV 

(6) 

with p and V lying to the right of Poisson's adiabat A. Since in accordance with 

subsection 3, H, lies to the right of adiabat A, inequality (6) ties been satisfied. 

Therefore 

IVZ& = — »2= — (?(u — D¥>- pV». 

Hence Iu - D| < c, v'.iich was required to be proved. 

New let us note that we can consider also the problem cf defining the state 

u0, p , V , £   ahead of the front with respect to the given stete u, V, p, £. 

behind the front end the mass flow m (or velocity D) across the discontinuity 

front. Stability condition (3) in this case can be replaced by the equivalent 

inequality: 
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and the point (p, V) (if it exists) is unique and lies on the lower branch of 

the Hugoniot's adiabat with its center at the point M(p, V). Recalling that 

the velocities of the characteristics ?;.., &, t§ are equal to 

£-, = u - c, ^2 - u,  ^ = u + c, 

we can write inequality (5) also in the form 

2,/toB   >D > ^«nia*   when     D<>*3 

(7) 

(8) 

(9) 

npa£ 

*****     >D   > W*    WhSn      D>U^ 
where     ij       and  5,^,.  are the velocities of the characteristics,  respectively, 

tc the left and to the right of the discontinuity. 

tH-^M^^h^ -.i■'fef:y»,V»r;ii 

I 

a) m <0 b) m >0 

Figure 2.28 

Finally, let us note further that the stability conditions of disconti- 

nuity (1), (2), or (3) are equivalent to the inequality   u   > u^g (10) 

Actually, suppose, for example, m < 0. Then by (A.2.10) 

^—■££—« - dpV *<V'—^ 
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Since V >V , from this follows (1C). The case m >0 is similarly proven. 

Inequalities (8) - (10) enables us to schematically represent the behavior 

of characteristics and streamlines in the vicinity of the discontinuity line. 

Figures 2.28, a and 2.28, b show the mutual disposition of discontinuity 

line x = x(t), streamlines dx/dt = u and characteristics dx/dt - ^ - u - c, 

dx/dt - ^ - u + c in the regions to the left and to the right of the shock front 

in Eulerian coordinates for the case of a shock wave that travels to the right 

(m<0) and to the left (m >0) relative to the gas. 

Figure 2.29 gives the disposition cf the corresponding curves in the plane 

of Lagrangian coordinates q, t for the C8se m<0. In this figure q - q(t) is the 

discontinuity line, q = constant is the streamline, r-nd dq/dt = ±fc  8re the charac- 

teristics of the first and third families. 

9-V(t) 

Figure 2.29 

Let us note one typical feature that follows from the pattern of the disposi- 

tion of the discontinuity line and the characteristics shown in Figures 2.28 and 

2.29. Four characteristics arrive at each of the points on the discontinuity line 

x - x(t) from below (from the region of lower time values t); only two characteris- 

tics depart (defined at large t values), and one of these is the streamline. For 
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the case m <0, two arriving characteristics of the third family intersect at the 

discontinuity line, and when m_> 0 — two incoming characteristics of the first 

family. We state that when m < 0 the characteristics of the third family form a 

"herringbone pattern"}  and when m >0 characteristics of the first family form 

the "herringbone." 

This situation is strongly related to shock wave stability. In particular, 

it indicates that the solution in this case is necessarily discontinuous, since 

arriving characteristics of the same family intersect at the discontinuity line. 

These considerations enable us to formally define these stabilities of a disconti- 

nuous solution to a hyperbolic system of equations es the satisfaction of the 

"herringbone condition" at discontinuity lines. This approach to discontinuous 

solutions is employed and extensively discussed in Chapter Four. 

5, Hugoniot'r. conditions for a polytropic gas. For the case of polytropic 

gas the equation of state is cf the form 

Izz&ti^miL *=^ (1) 

For enthalpy we have the expression 

3- . t    y-.TT=T Ä;°<'=S5fl (2) 

and the equation of Hugoniot's adiabat with its center at the point (p , V ) it, of 

the form 

pv+k (p<y - pv$ - Ply0=ö 

o»+A*,) <y - Ay«) - (i - w p<y*- 
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In Figure 2.30 we give the plots of Hugoniot's adiabat ana Poisscn's adiabat 

for the case of a polytropic gas,    Hugonioi's adiabat H, according to (^}, is a 

hyperbola with the asymptotes       V = hV , p = -hp , (5) 

and Poisson's adiabat is given by the equation     pV   = a (S ) = constant -   (6) 

and has its asymptotes, axis p = 0, V = 0. 

Figure 2.30 

The following properties ate valid for a polytropic gas. 

1) Pressure p varies along Hugoniot's adiabat from 0 to ßo   when V is varied 

from V /h to hV : p = oo,  V = hV corresponds to en infinitely streng shock wave 
c      o o 

at p , V values ahead of the front: p = 0, V = V^'h corresponds to an infinitely 

strong shock wave for the given state p0, V behind the front. From Figure 2.30 

we conclude that the limiting compression of a polytropic gas by a shock wave is 

equal to 

(7) 

2) Along Hugoniot's adiabat   dp/dV < 0 
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This means that with an increase in the quantity j D - u / pressure p snd density 

fl behind the wave front increases mcnctonically. 

In subsections 3 and /. we shewed that for a normal gas, the stete behind the 

shock wave front is uniquely determined from Hugonict's conditions if the state in 

front of the front (u , p , V , £ ) and the quantity characterizing the strength 

of the shock wave (mass flow m or velocity of shock wave D) are given. 

Let us here present the corresponding working formulas for the case of a poly- 

tropic gas. We will characterize thü strength of the shock wave by the dimension- 

less quantity 

MQ=-- i"o-P| (9) 

which, by virtue of Champlin's theorem, is greater than or equal to 1. 

If we knew M , then we find the modulus of the mass flow M across the wave 

front: / m / = /» c M . (10) 1   '    ' O 0 o 

Now let us express explicitly the quantities p, V, c, u in terms of p , V0, 

c0, u , M . Rewriting the equation for the adiabat (4) in the form 

■■:■ 

-; 

P+hP* = h±hL = !\~))(P-P«\ = (i -A)m». (11) 

where we use (4.2.4.), w© find 

p+hPo~(l -h)p0(u0-Df = 0 +h)pj*v .12) 

since p   - c^fi —-—.    Hence 
o       *'*   i +h 
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p = p0[(l + h)M*-kf:" 
9       ^o      P+kPo Ma 

Pb    v    PO+*P    <i-*)+**{ 

_ _ m _ f(1 +*) *%~'kl t(1 ~h)+AAI°1 
«lg 

.*»•* 
(13) 

(14) 

(15) 

(13) - (15) express thermcdynamic quantities behind the wave front in 

terms of these known ahead of the front, end in terms of M . To determine velocity 

u behind the front, let us eniploy formula (4.2.10), according to which 

'o = «c+»(V-^ = ir0±jVoAf0K0(^._ i) = 

= *o ± <<A,(-£— .1) = «o ± (1 - A)%(M0 - -i-) (16) 

(the symbol + sign in formula (16) 8S taken for the case of a wave traveling toward 

the right, i.e., when m < C; if the wave moves to the left relative to the gas 

(m >C), then the - sign is taken). 

Equalities (13) - (16) explicitly express the state behind the front in the 

form of rational functions of M . The quantities 

P_ 
Pa'     "■ 

c It —Bg 

«0 

are, as we can readily see, ironotoricelly increasing functions of the parameter MQ. 

By virtue of the symmetry if Hugonict's conditions, the state ahead of a 

shock wave front u , p , V , > with respect to the given state u, p, V, £ behind 
Q *     o       o c * 

trie front is defined by the very same formulas,  if instead of M    we introduce the 

number 
iM = 

\u-D\ 
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i.e., 

j (17) 

where from Champlin's theorem it follows that M^1. 

6, Hugoniot's conditions for en isothermal gas. An isothermal gas is the 

limiting case of a thermally conducted gas when the thermal conductivity coeffi- 

cient tends to infinity, and the temperature of the gas is kept constant due to 

external heat sources. From integral of laws of conservation in this case follow 

only two laws of conservation at the discontinuity front — those of mass and momen- 

tum: 

; ~   ft (<r, ~ D) =#fc («, - D) ~ m. 

% 

and pressure p is given by the formula  p = p(V, T ) = F(V). (3) 

Since in an isothermal gas the temperatures identical ahead of and behind 

the shock wave front, the role of Hugoniot's adiabat H in this case is played by 

isotherm (3), whose equation can be written as 

p - F(V) = po - F(Vo) = 0. (-4) 

In this case, i.e. two points (p , V ) and (p, V) lying on isotherm (3) will be 
o  o 

conjugate. 

On the assumption that the gas exhibits properties I - V of subsection 3, 

the isotherm satisfies the conditions (cf section I, subsection U) 
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when V (5) 

Consequently, isotherm (3) is a convex curve, and any ray drawn from the 

point (p , V ) intersects it at not more than one point. 

Therefore, the ray K = ■■   r°      intersects the upper part of isotherm (3) 

only at a single point (Figure 2.32) if 

-oo<|f««a' ■     ;»     4\ 

-,-'Ä.--[« (6) 

00 (en infinitely 

strong shock wave), compression will also be infinite. To the same conclusion 

where c is the isothermal speed of sound. Providing K 

formally derived from the compression formulas for a polytropic gas as V   1, 

since h 0 at V 1. 

sft T/CH ***                         -i 

1  .' 

p y.\A\ 

Po  r~^ 
i 
i 

t 

»it»*. 

Figure 2.31 

Let us present working formulas for a shcck wave in an isothermal gas, again 

taking as the parameter defining the strength of the wave the quantity 
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From (2)  follows 

m-r<ra: m zf&rmw-^--, 

Hence we csn determine V, after which u is found from the formula 

j&fr *<y -y^-p^r<^^0^^ (8) 

where for definiteness we put m<C (shock wave travels from left to right relative 

to the gas). In the case of en ideal gas 

,«F(i0^~T = <£i (9) 

the isothermal speed cf sound cT =J RT  is constant and formulas (7) and (8) 

become 

Converting to Riemann invariants (section 2, subsection 9) 

« = u — cr Inp,  r = «4-cr'nP'' 

let us give Hugonict's conditions (10) and (11) a symmetric form: 
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^rj^V[ia^+(AI^^)]^f(^p),     (14) 

where s , r are values of Riemann invariants calculated at the points u , p , V . 
o' o °  0  o 

To solve the problem of these stabilities of shock wave in an isothermal 

gas, it is sufficient to involve the requirement of the second law of thermodynamic 

for a nonequilibrium isothermal process (formula(1.2.29)): 

dS^ I  dQ 
(15) 

Let us use this inequality for a gas particle intersecting a shock wave in its 

motion. Since per unit time the gas mass j/° (u - D) J = j/° (u - D) ) - |m| inter- 

sects the shock wave, then, taking this quantity as the mass of this particle, wc. 

set equal to 1 the time of its transition from the state ahead of the wave (up , 

VQ, t )  to its state behind the wave (u, p, V, t ). By the law of conservation 

of energy (formula (1.1.2)), AQ = A £ + A A, where AE is the increment in total 

energy cf the particle, and A A is the work performed by it per unit of time on 

the surrounding gas. Since 

^==|fB|^e-e0 + —J-2-J.     A,4«=0>a-/yr ^ilgn 

inequality (1$)  gives    I 
Y ' 

MS-V+^+^-'+^o 
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(where m VC if the wave rocves from right to left relative to the gas, m< 0 

otherwise). Taking relations (1) and (2) into account, we get 

^-^+^-|+e0-e + <5^-ifi^->0. (16) 

Substituting here formulas (4^2.10): 

we give inequality (16) the form 

= r0(S -So)-H(p, v. p0, vj > o. (17) 

Let us compute the quantity T (S - S ). To do this, we integrate the thermcdynsmic 

equality TdS = d£ + pdV along isotherm T from the point (p , V ) to the point (p, V) 
oo 

(figure 2.32) (we assume the gas to be normal, so that F = F(V) is a curve with 

convexity facing downward). Along isotherm p ~ F(V), T = T = constant, therefore 

T0($-S() = t-t0+fF(V)dV. 
. .. * vr 

(18) 

Substituting this into inequality (17), we get it the final form: 

v. 
£^<y9-V)-)  F(V)dV>0. (19) 

Obviously,  fcr a normal gas this requirement is tantamount to the condition V< V 

i.e.,  only the upper half of isotherm T corresponds to the state behind the front. 
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Figure 2.32 

Hence, as earlier, it follows that the shock wave in the case of an isother- 

mal ges leads to an increment in pressure and in density; motion ahead of the wave 

front is supersonic, and subsonic behind the front (the isothermal speed of sound 

Cm = V J-b f/b V is taken as the speed of sound he: ). 

Stability condition (19) can be given a different form. Let us consider in 

the plane of Lagrangian invariables (q, t) the gas element situated between the 

straight lines q = q.. and q = a (q < q ). For any successive time instants t1, 

t„ (t1 < t ), inequality (15) applied to this gas'element, gives: 

jV^-^L dq~ I(e+T-^L,^>AA';     (20) 

where A A is the work done by this element en the embient  gas in the time t - t ; 

ft* 
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» (the equality sign in (20) corresponds to the case of a smooth, i.e., quasi- 

equilibrium, flow). From (20) and (21) we readily obtain the following integral 

condition equivalent to condition (19)! 

I 
(22) 

(C is an arbitrary piecewise-smcoth contour drawn in the positive direction). 

The quantity & + u /2 + TS=E-TSis celled free energy (per unit mass) 

in thermodynamics, and inequality (22) expresses the familiar thermodynemic law: 

in an isothermal process the work done by a system is smaller than the loss inter- 

nal energy and is equal to it only for the case of a quasiequilibrium process. 

In this latter case the flow is smooth, and from (22) there derives the 

differential relation 

f85w*?*a (23) 

It must be satisfied by identity in the smooth portion of the How, i.e., 

it must be a consequence of differential equations of motion (2.5.4) end (2.5.5). 

This actually does holds from equations (2.5.4) end (2.5.5) we readily obtain the 

relation 

which, by virtue of (18), coincides with (23). 

Note that conditions (19) and (22), as explained in section 1, can be 

understood as the requirement for an increment in the energy of the total system 

consisting of 6 £,as particle and the external heat sources (thermostat). Equality 
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(23)  then denotes the constancy of entropy of this system for the case of smooth 

flow. 

7, Strong and weak shock waves. A comparison of shock wave and Riemann 

compression v/6»3. For simplicity we will assume that the gas ahead of the shock 

wave front is at rest, i.e., u0 = 0. For an infinitely strong shock wave p/p0 = 

oo    . We would assume p to be finite, and p = 0. 
o 

Passing in equations (4.5.13) - (4.5.16) to the limit as M0 —> to, p —>• 

0, and co —»0, we obtain Hugoniot's conditions for an infinitely long shock wave 

in a polytropic gas: 

ft 
« = (1-A)Ö. > 

(1) 

(2) 

(3) 

(4) 

We see that the kinebic energy cf a gas behind the front of the shock wave is 

equal to the internal energy, since 

2A0 + A) -Y- 

Fcr weak shock waves we will take the quantity M   - t u° QJ-     as been 

close to unity.    Putting      M   = 1 +   £ ,       0 <■ £   <4c 1, 

we perform an expansion  in  forrrculss  (-4.5.13)   -  (4.5.16)   with respect to parameter 

£   with en accuracy up to members of the order    E  '. 
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Let us compute the discontinuities in Fiemann invariants r, s at the front of a 

week shock wave: 

rr - ;r0=a _ \+IL=L*L £ 1^, 
* ■   .' -  •.•'. * ■■-■f.r- ■.:.■.:■•■■.•■■«»..■':: *Sf 

.=0 - A) *01(2e - e»)+ (2e - e*)l + O (e») = 

= 4(l-A)c0e-5(i^A)CoeS4.ö(e») («<0). (»X 

'—*«»«—V 0-») (c -Co) =»(1- A) «„(&-B»/ - .«'.*'• 

\-h e° -IT f2Ae - **1+° (e8)^ P (e8) J« < 0). 

FroE the general properties of Hugoniot's adiabat H, as ve saw in subsection 3, 

there follows C(h3) (11) 

Thus, in a weak shock wave propagating to the right relative to a gas, 

invariant r has 8 first-order discontinuity relative to £ , and invariant s and 

entropy S have tnird-order discontinuities. Just as for a wave traveling to the 

left, in variant s and entropy S have third-order discontinuities. 
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Formulas (10) and (11) shew that a weak shock wave behaves as a "short" 

travelling compression wave. Actually, as we saw in section III, constancy of 

entropy S and one Riemann invariant characterizes a Eiemann compression wave. 

This is violated for weak shoe* waves only in the third order, and therefore in 

approximate terms functions in a weak shock wave can be regarded just as func- 

tions in a travelling compression wave. This enables us to approximately replace 

a weak shock wave with a travelling wave. In several cases, this proves useful, 

especially when analysing the interactions of sheck waves with Riemann waves. 

Since in cur approximation 

D = C0(1 + S. )    (m<0), 

we see that the velocity of a weak shock wave is the arithmetic mean of the 

velocities of r-characteristics, since the equality 

u + c + u + c 
D=-S 2  

is satisfied with an accuracy up to third-order terms. 
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3. Examples. Let us consider now two of the simplest problems on flow 

containing shock waves: 

1) Motion cf a piston in a quiescent gas. 

In a quiescent polytropic gas located to the right of the piston' and charac- 

terized by the parameters u - 0, p , V , c , a piston advances with a velocity 

U > 0 when t > 0 and U - 0 when t - 0. 

A shock wave will be propagated relative to the gas with a constant velocity 

Ü, leaving behinu the front a state with parameters u, p, V, c. Clearly, u = U. 

From relation (4.5.16) therefore we determine M as a positive roct cf the eauetion 
c 

^-(1^)^0-1=0. 

M°- 2(1-A)c,+ Y   4(1-A)J4 +1 (1) 

Next, the quantities p, V ere defined from formulas {L,5.13) and (4.5.H), and 

D - c M . Note that provided U >0  V< V , and the stability condition for the 

shock wave is satisfied. 

2)  Reflection of a shock wave from a rigid wall. 

A shcck wave mcves toward the right with a velocity Ü ) C in a gas at rest 

(u - C, p , V , c ), leaving behind the front the state u, p, V, c calculated 

above (.Figure 2.33, a).  At the instant t - G the shcck wave approaches the rigid 

wall x - x bounding the ges  en the right. The condition u(x , t) - 0 is assigned 

at the rigid well. Therefore the shcck wave is reflected from the wall in the form 

cf a shcck wave propagating tc the left with a velocity D.. < 0. Let us denote the 

state behind the front of the reflected shcck wave as u- = 0, p-, V , c, (Figure 

2.33, b). 
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u**4lb>b4 { 

erf Pi. H.C, 1 
u,fl,V.c 

j i I 
1      ' 

b)  t >0 

X 

a) t< C 

figure 2.33 

Thus, the problem reduces to determining precisely these parameters. Note 

that the problem cf determining u,, p , V , c from known u, p, V, c reduces to 

the preceding task, since we knew that u- - 0. 

Let us introduce for consideration the quantities 

Mn 
D — sh       D M: D-u Mt 

a —/>, J 

(2) 

The following relations are valid: 

Af0> 1.     0<M<1,     Af, > 1, 

a — u0 = a = (1 — ft) C0(M0 - -jj-j. 

a0 — « = — u = (l — *)*(iM— -jg-f, 

«-«, = « = (! —*)e(A»,—3^). 

(3) 

(4) 

(6) 
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From equations (5) and (6) it follows that the quantities M end 1/M satisfy the 

same quadratic equation 

K-^r^«^»'-°: (7) 

Since M > 1, 1/M > 1, then   M = 1/M, i.e., MH, = 1. (8) 

Let us calculate the pressure rise in the reflection cf a shock wave. Using 

(8), we get: 

Bffl&tZSl&MX A4-* 

(9) 

. (10) 

For the cape of a week wsve p/p _> 1, J-L-Z-J-Z,   —#~ 2, which corresponds to 

the acoustic law cf reflection. 

For the case of strong wave, when —- —*-<? P'   ' — 2<-i 
2. f -^ £-*- . For gases with index  close to 1, we obtain a streng pressure rise. 

However, it must not be assumed that for an isothermal g8s the pressure rise will 

be infinite, since the analogy of an isothermal gas and a polytropic gas with V- 1 

is inapplicable here. Actually, if for an isotherme! gas p —*• 0, then /° 0, 

since c-j> = RT = constant. Therefore no isothermal shock wave traveling with finite 

velocity relative to the background p = 0 (vacuum) exists. 
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Section V. Study of Shock Transition. Width of Shock Wave 

1. Formulation cf the problem for a normal gas. We will assume that the 

equations cf state of a gas satisfy conditions I - VI formulated in subsection 4- 

of section I, i.e., that the gas is normal. 

As we already stated, we considered discontinuous flows as limiting flows 

of a viscid and thermally conductive fluid as the coefficients of viscosity snd 

thermal conductivity tend to zero. Therefore we will now study severe! of the 

simplest solutions to equations in gas dynemi-s for a gas exhibiting viscosity end 

thermal conductivity, and then we will obtain discontinuous flows by means of 

passage to the limit. Here we can estimate the width cf the shock wave zone for 

gases exhibiting finite viscosity and thermal conductivity*). 

We will consider only the case of plane symmetry (v = C) since as suffi- 

ciently small sections and sufficiently small time intervals, any shock wave, 

when V /0, can be considered approximately as planar. 

Let us write differential equations for a viscid thermally conductive liquid 

(2.5.11) - (2.5.13): 

dp* r+^H'-^+P8*]^0- 
m 
(2) 

i(<*+p£)+£Me+f+f)^lH*£h<>-v ?<^ 

To equations (1) - (3) ere added equations of state 

*) Our presentation in subsections 1-4 follows /5_A 
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I 
p=p (/>,!), £ = «(/", I), (4) 

which we assume to satisfy requirements I-VI.    Multiply (1)  by u^/2 -f,  (2)  by 

-u, and summing the results with equation (3), we get 

J ■-'i JCL- . *•■-?'-?•.-'..>,*- m 

Expressing ^u^x from (1) and substituting into (5), we give it the form 

L .  - '   k*-    -' • -    .  '-^  ,.j  .;, -"^.A.-.l.YLi:'!'■ 

Since TdS -~ d + pdV, from (6) follows 

Equation (7) shows that entropy S of a thermally insulated mess of gas 

increases. Actually, by integrating equation (7), we obtain 

. .     ,  ■, ,- • -,... -.•      -  —■ •- "~!~ KX'."wn >, 

where q is the Lagrengian coordinate (dq - f> dx), q and q are the bounds of the 

isolEted gas volume. 

If the gas vclume unaer consideration is thermally insulated, then X-r— / 4 

o  X iq 

-  C, ena from (8) follows the increment in total gas entropy,. In particular, 
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from equation [7j  it follows that in a viscid, but ncnthermally conductive gas, 

the entropy cf eech particle does not decrease with time. 

Let us consider the simplest solutions to the system cf equations (l)-(3), 

specifically, stationary solution. Since system (l)-(3) is invariant relative 

to Galileo's transformation x - Ut,  u' = u - U, we will consider 

steady flows in this system of coordinates in which flow has fixed profiles of 

all quantities u, p, f , £. Omitting the strokes at the variable x' ana u' and 

putting .££ - ^J~   =  _f_f  = G, we get equations for the determination of steady 

flows: 

£■—'«. (9) 

(10) 

01) 

These equations have first integrals: 

du dir 
dx t"«^-*^r = <V   02) 

The first integral obviously expresses the constancy of the mess flow, the second 

— momentum flow, and the third — the constancy cf the energy flow across 8nd 

arbitrary cross section x~ constant. Transform equations (12) into a form suitable 

for the following treatment. Simple transformations lead to two ordinary differ- 

ential equations: 
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 ! 2      V        C\J -cT+2 cfJ = ^(V. 7). 
"2F 

•'«5 i*«#JVH' .^ 
(14) 

which relate to functicrs V and T      i* 
-      and T.    As a consequence of equations (13)  and (U), 

we get en equation in the V,  T plane: 

x dT __ J?(V, T) 

(15) 

which plays an important role in the anelysi 

tions for their existence. 

Let us introduce the dimensionless variabl 

s of stationary solutions and condi- 

c3 c3 cl'        H~dlT- (16) 

Converting to diroensionlasi 

(U)   as 

variables V   n   Z    r   ,,~ »» Pi £,   i, we rewrite equations  (1 U3)  am 

rfR 

(18) 
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where we denote: 

(19) 

To simplify notation, in the following we will omit the bar over all quan- 

tities and rewrite system (17) and (18) in its final form: 

m> 

However, we must remember that the functions p(V, T) and (V, T) in (20) 

and (21) are obtained from the equotions of state with allowance for (16). 

Dimensionless variables p(V T) and £(V, T) appear in equations (20) and 

(21), where V and T are also dimensionless. We can easily verify that these func- 

tions are such that conditions I-VI are satisfied, if we satisfy the initial equa- 

tions of state. (Here we must bear in mind that C >0, C C > 0.) 

Wegetvp the following boundary problem for the system (20) 8nd (21): 

Find the solution V(x), T(x) of system (20) and (21), which at infinity 

tends to constant values, i.e., 

when x -*. + *>,   V(x) -* Vv T(x)—. ^, (22) 

but when x ~+  - oo , V(x) — V.,, T(x) -* T (23) 

L  necessary condition for the existence of the solution is obviously the require- 

ment that the point (V|, T^), (V^, T2) be stationery points of the system (20) 

end (21) , i.e., 
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.* 

fSES^^^^^^^- (24) 

In other words, the points (V-j, Tj end (V"o, T2) must be points of intersection 

of the curves    Ji. (V, T) = 0,   fi£(V, T) = 0 (25) 

Suppose such points (V , T ) and (V , T ) exist. Then at these points, according 

to (20) and (21), // dV/dx = jt dT/dx = 0; therefore from integrals (12) it 

follows that:      ?i\~ Pi\~    V (26' 

*+p,«!^+w$=<V 27) 

(28) 

(here all functions u,/>, p, £ are initial  functions, without transformation to 

dimensionless variables). 
j 

Hence it follows that the stetes u- , /* , p... * ; u , /> , p , f must setis- 
V  1' rV &-|  2   2  2' 2 

fy Hugoniot's conditions. Actually, since we are considering the stationary sclu- 

tion of system (l)-(3) in a moving system of coordinates, then by denote * the rate 

of displacement U of the coordinate system by D, we obtain the results that in 

conditions (26)-(28) the quantities u1, u?, in the transformation to the fixed 

coordinate system, are replaced by u1 - D, u« - D, after which conditions (26)- 

(28) take on the usual form cf Hugoniot's conditions (4.1,10)-(4.1.12). hence, in 

I     particular, it follows that the points (p1f V ) and (p«, V~) in the plane of vari- 

ables p, V must lie on the Hugoniot's adiabat. 

Thus, all points of intersection of the curves (25) lie on Hugoniot's adiabat 

passing through one of them. 
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2. Properties of the curve tM,-  C,i£- 0 for a normal gas. Let us show 

that for a normal ges functions^ and tM, exhibit the following properties: 

iT^F—>01—W— -' 
2) The curves cM.~  C and <£= C either have no intersection points, or have 

two and only two common points (V^ T^) and (V , T ). We will denote them by 

(V0, To) and (Vv T ), assuming that VQ>Vy 

3) *$L££J2  > o at the curve ^= C while V. < V < V . 

U) s& < £^at the point (V , T ) and Ä >.^ir at the point (V  T ). 

From property 1 it follows that temperature T is a unique function of vari- 

able V along the curves d£= C and J/(=  0. Let us denote: 

T = 1(V) along the curve j£-  0. 1 
y CD 

T = m(V) along the curve Jt=  0. J 

From properties 1 and 3 it follows that the curve j£=-  C at the section 

/V"1, V J diminishes mcnotonically, i.e., the function l(V) decreases monotonically. 

Actually, along the curve Jt-  0 we have 

dl{V)       dT 
-dv~=z~iy 

TV 
<0. i (2) 

Finally, property U    means that the slope of the curve Jt=  C, at the point 

(V  T ) is less than the slope of the curve j£= 0, but is greater at the point 

(Vv ^ *'< 

Figure 2.34. 
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Thus, properties 1 —4. are functions J£ and oK denote that the curves^= 0 

and<M.= 0  at the V, T plane lie approximately thusly (Figure 2.34). 

Let us prove that the properties 1-4 of functions 4f andj( follow from 

the properties I-V of the equations of state. 

Property 1 for o£ and eK is written thusly: 

w MWS8&& (3) 

and since dimensionless variables (5.1.16) differ from the dimensional variable 

only by their positive cofactors, inequalities (3) follow from properties IV and 

V (cf also formula (1.4.23)). 

Let us now prove property 2. All points of intersection of the curves 

£ -  0 and oK=  0 must lie in the plane V, T ,vt Hugoniot's adiabat H passing 

through one of them. The line o>K. -  0 obviously is the straight line 

p = 1 - V (4) 

with negative slope in the plene of the dimensionless variables p, V. Thus we 

have seen in subsection 3 of section IV, any straight line with negative slope 

intersects Hugoniot's adiabat H exactly at two points. Thus, if the curves j£=  0 

and<^(= 0 have even one point in common, then they have also the second point in 

common, but nc more. Property 2 stends proven. 

Now let us demonstrate properties 3 and 4. Using the relation d = TdS - 

pdV in expressions (5.1.13)and (5.1.14) for <£ (V, T),<yK(V; T) (in dimensionless 

variables), we get 

Whence 

W^L^c,T^^--<U- 
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Let us consider the intersection cf the curves 5f= 0 end <M.-  0 in the plane of 

dimensional variables V, p (Figure 2.35). From (5) it follows that at the curve 

at-  0 dS/dV = C /T M. (7) 

Hence it follows that dS/dV = 0 at the points of intersection of the curve = 0 

with the straight linec5f= 0, i.e., the curve JA. = 0 is tangent to Poisson's 

adiabat A passing through the point of intersection, end consequently also the 

adiabat H. Since the  slope   of adiabat A for a normal gas is greater at the 

point (p.j, Vj than the slope of the ray <M. = 0,  but at the point (p , V ) is 

less than the slope of ^ = 0, hence it follows that the inclination cf the curve 

<£f = 0 at the point (p.., V ) is greater than the inclination of the straight 

line^(= 0, but is less then the point (p , V ). 

In mapping the plane V, p on the plane V, T, corresponding to the lower 

half-plane <M. (V, p) < 0 is the domain oM.{'J,  T) < 0, which lies beneath the 

curve oK ~  0 by virtue of the relation   — -t > ®>  which is valid for the 

normal gas. Hence it follows that the pattern of the .intersection of the curves 

oK.   -  0 and <§f = 0 in the V, p plane is qualitatively the same as in the V, T 

plane (Figure 2.34). 

Thus, properties 3 and U have been proven*). 

3. Qualitative investigation of integral curves of tie shock transition. 

The solution of systems (5.1.20) and (5.1.21) satisfying the boundary conditions 

(5.1.22) end (5.1.23) describes a stationary shock wave in s  viscid thermally 

conductive gas. We will let V , T stand for the state ahead of the wave front, °  o 

*) Let us note that study cf the curves j£= C and^^ 0 in the V, p plane is 

much simpler than in the V, T plane. However, in investigating isothermal dis- 

continuity it is mere convenient to employ the variables V, T. 
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and V , T represent the stete ahead of the front, and for defir.it en ess we will 

assume that m - C > 0, i.e., the shock wave propagates to the left with respect 

to the gas. Then dimensicnless variables /(>0,}£>0. 

P i 

r ,1 

Figure 2.35 Figure 2.36 

The solution V- V(x), T= T(x) of system (5.1.20), (5.1.21) can be consi- 

dered as a parametric assignment of the integral curve of the equation 

x dY      JPJV.T) 
n dv ~~ **(v, T); (1) 

Conversely, to each solution T - T(V) of equation (1) there corresponds the solu- 

tion T - T(x), V - V(x) of system (5.1.20), (5.1.21) defined with an accuracy up 

to the displacement. 

To the shock transition will correspond the solution T = T(V) of equation 

(1) passing through the points (V  T ), (V , T ) of the intersection of the curve: 0      o 11 

oC    - 0,oK= 0.    Clearly, these points are singular points of equation  (1),  and 

this makes the present formulation of the problem possible. 

Let us consider in the plane of variables V, T the field of vector direc- 

tions /UC,<J£}  .    The curves«^ = 0,j£ = 0 divide up the quadrant V >0 into four 
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regions I-IV. The number of the regions corresponds to the number of the qua- 

drant in which the vector £JCJ£} lies (Figure 2.36). 

From the graph cf the direction field given in Figure 2.36 for equation 

(1) it follows that in each of the regions the function T = T(V) is monctonic at 

the integral curve. Here the integral curves can pess from one region intc anoth- 

er in the following order: from region IV to regions I and III, from region II to 

regions I and III. The following transitions ere impossible: from regions I and 

III to regions II and IV, ''*rom region IV to II and conversely from region II to 

region IV. 

Hence it follows that the integral curve connecting the points (V , T ), °     o 
(V , T )  must lie entirely in the region II.    Thus, +he following relations must 

obtain for the sharp transit:^n: 

1»=C,>0). (2) 

Let us prove the existence and uniqueness of the integral curve of the 

shock transition. To do this, we establish the type of singular points (VQ, T ), 

(V1> TJ °f equation (1). Thus we knew, the type of the singular poini, is deter- 

mined by the characteristic equation, which is of the form 

i- da —% Ml 

TW      "W""* 
(3) 

We have for the roots   X1,   X? of the characteristic equation the expression 
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We can readily see that by virtue of properties 1 and 3 of functions <$_, and oA(, 

the characteristic roots A end A are real and distinct. They are of the same 
1    2 

sign, if 

i£ 
#' If 

a. >o. 

and are of different signs if ^ < 0. Therefore in view of property 4 of functions 

<P  ando*(., we conclude that at the point (V , I ) A , A are of the same sign 

(positive), but of dissimilar signs at the point (V , T ). Thus, the point (V , 

T ) is a node, and the point (V.., T ) is a saddle point for the equaticn (1). Let 

us show that there exists ar integral curve of equaticn (1) connecting the points 

(V0, T ) and (V.,, T ). According to Figure 2.36, for the field of directions of 

equation (1), through any point M on curve <M. -  0 passes an integral curve of equa- 

tion (1), passing simultaneously through the point (V , T ). Shifting the point M 

along the curve<>({= 0 to the point (V  T ), we obtain by a continuity considera- 

tion the result that the points (V.., L.) and (V , T ) are connected by the integral 

curve of equaticn (1). 

Similarly, through any point L on curve ^ = C there passes the integral 

curve (1) passing through the point (V , T ), Shifting the point L along the 

curve £ = C to the point (V , T1), we obtain at the limit that there may exist 

an integral curve of equaticn (1) connecting the prints (V , T ), (V , T ) end 
o  °    i   1 

which curve is distinct from the preceding. 

Since the point (V.., T ) is a saddle point, then by the qualitative theory 

of differential equations, through it pass only two integral curves cf equation (1). 
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and along the integral curve connecting the points (VQ, T ) and (V , T ) 

cM. = b(V - VQ),  b^ c. 

From equation (5.1.21) it follows that the "width" of the shock transition zone 

is infinite, since the integral 

A*: 

\                   Tfr) 

jr 

diverges. Therefore plots of the shock 

transition are of the form shown approxi- 

mately in Figure 2.37» where it is clear 

that values V , T ahead of the front and 
o  o 

V1, T.. behind the front are attained 

aaymtotically at infinity. 

Therefore the points (V , T ) and (V , T ) connected by one and only one 

integral curve of equation (1)„ Actually, if these points were connected by two 

distinct integral curves of equation (1), then through these points would pass 

also any integral curve drawn through the point lying with the region bounded by 

those two integral curves. This contradicts our conclusion that the point (V^, 

T..) is a saddle point. 

By virtue of properties i and 3 of functions^ and <£,  curves oK=  0> 

J£    = C are zeros of the first order of these equations.' Hence it follows thac 

in the neighborhood of singular points (for example, (V , T }), the functions,^ 

and,^ can be represented in the form 

Figure 2.37 
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4. Limiting case. Isothermal discontinuity. Let us consider the behavior 

of the shock transition at two limiting cases: as j£—*"" C and as *A~+- C. 

If we fix AL>0  and vary X, then the dependence of the shock transitions 

on JC will be mcnctonic in the sense that to the lesser value of J4-  they will 

correspond the integral curve of equation (5.3.1) lying closer to the curve S£.=  0. 

Let us show that for sufficiently small JC  integral curve (5.3.1) lieB 

in the i-strip above the curve £-  0. Actually, in the left point of region II 

we will have over the £-strip of the curve j£= Cf Jg  >S (E). Then, by selecting 

as large N> 0 as we like, we can select e small JC = JC{ £.,  N) such that at any 

point over the £-strip 
[dT 
%— 

i.e., the slope of integrel curve of equation (5.3.1)over the£ - strip can be made 

larger than the maximum slope of the curve bounding the e-strip from above*). 

Then, if the integrel curve exists at sny point from the <f-strip, it will no longer 

enter at the point (V-,, T.,). This means that as yi,—#> 0 the shock transition tends 

to the curve Jjf = 0. 

Let us consider the second limiting case when A—*  0, >ty 0. If the 

segment of the lineoX- 0 includes between the singular points is a curve monoto- 

nically diminishing toward the side of increasing V, then by analogous arguments 

we can show that EG /U—*- 0 the shock transition tends toward the cmve «K= 0. 

*) /on following page/ 
Figure 2.38 
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For the cese when this section cf the curve^^ C is net a trcnctcnic curve, 

the situation turns out differently. Let us consider for simplicity the case when^ 

the curve «^(= 0 at the segment V.. <C V ^ V has cne maximum (Figure 2.38) . Clear- 

ly, in this case the upper bound of the integral curves is the curve A.A^A consist- 

ing cf the chord A..A parallel to the V exis, and the ere A A of the curve ^= 0. 

Reasoning analogously to the above treatment, we can show that this boundary is a 

point, i.e., as /(—#> 0 the integral curve tends to the curve A-A„A , and does so 

uniformly. In particular, at the interval ß   + £ , V? -£_/  the shock transition 

lies in the £-strip AJA"A'A" (cross-hatched in Figure 2.38). Since in this strip 
*  1  2 2 

loM.   (V, T)/   >   XU ),  u    /if (V, T); < L (£), then the inequality 

i-pJjr|<lTtl- 
is valid. Hence it follows that we can make {X   so small that at the inteval 

/ V-j +£ , V -<£ / we will have 

; \2L|<ft, = 6,(e, j»),  6,->0 where /<-#- 0. 

Consequently, T in this interval lies within the limit T., -<*L( t,M)£?  <■ T-, + 

"<-(£ ,M.),<IL{£ , M)  —*- C as ,£/—*- C. The segment Ax corresponding to the inte- 

gral /V1 + £, V., - l7 has the value 

\*k A, V     '( *W 6 

Since at the interval /V., + £, V - £7<X(V, T) ^M0(e) > 0, hence it 

follows that A {£ ,JU)  «-*- 0 as X/—*- G. The relations derived ere valid for 

arbitrary g —#■ 0. 

Thus, when there is a maximum at the segment V. <. V ^ VQ en the curve 

*T~For definiteness we can assume that the £-strip is obtained by displacing 

the curve §£-  0 with respect to the variable T by the quantity £- . 
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otf.-  0, the shcck transition in the case }lj 0, Ak-  0 consists of a smooth varia- 

tion over the interval {-<*>,  x„) from the values V , T ahead of the front to the 
' o o' o 

values V0, T„ = T1 (point A in Figure 2.38) end at the discontinuity of specific 

volume at the point x from values V2 on the left to V. on the right  at constant 

temperature T = T (Figure 2.39). Thus, when only thermal conductivity is present, 

a discontinuity cf density at constant temperature is possible. This disconti- 

nuity is called isothermal. 

Figure 2.,, 

Figure 2.40 

As a consequence cf th e possitiveness of the coefficient of thermal con- 

ductivity it follows that the specific vcluire V ahead of the front of the 

isothermal discontinuity is greater then the  specific voluire V  behind the 
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front of the isothermal discontinuity. Thus we obtain the result that the limit- 

ing discontinuity as A-+  0 satisfy the condition for the stability of disconti- 

nuity in an isothermal gas which we derived in subsection 6 of section IV, 

For the case when the curve oK= r-  has several maxima, the shock transition 

will have several isothermal discontinuities (Figure 2.£0) simply did by smcotn 

flow i,unes. In this case the shock transition tends, as M.-~*■  C, to the curve 

AJ.B-A B A A0, which is clear from the fact that the integral curve of equation 

(5.3.1) always lies within the zone II. 

Let us also ncte that the effect of isothermal discontinuity depends not 

only on the equations of state, but also on the constants C., C„, C_ defining the 

flow. Generally speaking, an isothermal discontinuity is ind. ced only for strong 

enough shock waves. We will show this below for the example of an ideal gas. 

In concluding this section, we note that we have obtained steady flows of 

a viscid end heat-conducting liquid in the form cf a "blurred" shock wave, of the 

type shown in Figure 2.37. Actually, the values VQ, T , u ahead of the front and 

V^, T.|, u1 behind the front satisfy the ilugonict's conditions and the stability 

conditicr. S1 > S (V < V0) . Therefore when M-~-  0, X—^ c' we obtain at the 

limit from solutions T= T(x), V= V(x) of systems (5.1.20) end (5.1.21) a stable 

this continuity (shock wave) satisfying the conditions for dynamic compactibility 

and the stability condition. 

In general the assumption exists that any solutions of equations in ges 

dynamics containing stable discontinuities can be viewed as limiting solutions cf 

equations in gas dynamics with viscosity and thermal conductivity as the coeffi- 

cients cf viscosity jx    and of thermal conductivity jL tend to aero. 

Thus far there is not a single example refuting this hypothesis, although 

neither is there a proof of it. The latter circumstance stems from the difficulties 
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arising in an exact consideration of Cauchy's problem for nonlinear equations 

describing flov;s of a viscid heat-conducting gas. 

In this section we have shown only that this hypothesis valid for station- 

ary flows, i.e., for a constant shock wave which exists for an indefinitely long 

time. 

5. Shock transition for the case of an ideal gas (Becker's study). The 

first investigation of shock transition in a viscid heat-conducting gas was made 

by Becker /6_/ in 1922. He considered the case of an ideal gas 

(1) 

In dimensicnless variables equations (1) become 

(2) 

and the functions *£ and ^ are specialized thusly: 

tW,D=-lTr-^-i)?-ß. 

(3) 

(4) 

Thus, the curve ol((V, T) = C is a parabola 

r«v_v»—(V-^+T- (5) 

wi-h its convexity facing upward, with its axis as tite straight line V -- \  and 

the apex as the point V - £, T = {  (Figure 2.41). The curve^ (V, T) = 0 is also 
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e parabola 

^l^ff-yH-M-i). (6) 

with its convexity facing downward, with axis V = 1 and the apex at the point V = 

1, T = ß (V - 1). Thus, the shape of parabola (6) is unchanged, and its position 

depends on f> , i.e., on the flow constants. 

Figure 2.41 

Parabolas £ -  0 and oK-  0 intersect two points when C ^. ji < |5 ; the 

cases ß>ß0  and ß < 0 are physically unattainable, since in the first case there 

are no pcints of intersection end, therefore, there are no asymptotic values of 

V and T, and in the  second T<0. The case ß = 0 corresponds to an infinitely 

strong shock wave, since  T^/Tp = p-|/p0 = o°,      end the cas< B- fi>c = JTy^To 

corresponds to an infinitely weak shock transition, since in this case the points 

(V0, 10) and (Vv Ty merge, i.e., T.,A0 = P/P0 = 
1- 

For the case jL-  0, Mj 0, equations (5.1.20) and (5.1.21) are integrated. 

Actually, 

r(*)=^-[K<*)-ii3-M(v-i). (?) 

and V(x)   satisfies the equation - 292 - 
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Whence 

where V^V^Vg (8) 

(9) 

Figure 2.42, e gives the approximate form of the profile V = V(x) yielded by for- 

mula (9). The proximity of the graph V(x) to the constant values V = V.. and V = 

V occurs as x —^ +#>, so that the '"width" of the shock wave, strictly speaking, 

is infinite. However, this proximity occurs exponentially, i.e., quite rapidly. 

To determine tne order of the "width" of the shock wave zone, it is defined as 

the quantity 

m*L( do) «n« äx 

(cf also Figure 2.42, a). 

Calculations made by Becker led to an amazing result. It turned out that 

for most gases at not very high temperatures and densities the quantities /A  and 

3i are such that the width of a shock transition zone proves to be of the order 

of 10~4 - 10  cm, i.e., of the order of a gas molecule path length. 

If we exclude from consideration of the fact of nonequilibrium status of 

hydrodynemic flows at distances of the order of a molecular path length, and this 

indicates that with a  high degree of accuracy the shock transition can be effec- 

tively replaced by a mobile discontinuity (shock wave), whose left and right 

limiting values satisfy Hugoniot's condition and the condition cf entropy 
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increase (the stebility condition). 

Thus, justification is gained for cur point of view according to vlach 

the flow is decomposed into regions of reversible processes whcre equations of 

hydrodynamics are in effect without allowance for dissipative terms, and into 

regions of irreversible processes, which constitute narrow zones end can be 

effectively described by mobile discontinuity surfe es. 

" 
.■    -;. ■ »—4»i -- r, 

i 
l 

I 
i 
! 
1 

n _ ^^-J 

-w m  * 
e 

Figure 2,42 

Let us additionally note that a more exact representation of a shock transi- 

tion zone in a real gas can be obtained only by using the Boltzmen    equation, 

however the estimate of the width of 8 shock wave transition zone remains the 

same. 

Let us note in concluding this subsection that in the case /A-  0, jlj 0, 

the isothermal discontinuity, as can be readily seen in Figure 2.41, exists only 

for sufficiently strong shock waves when C <^ p <1 p-|. 

Let us present formulas (5.1.13) and (5.1.14) in Lagrangian variables q, t 

which we will need in the following treatment: 

- dV      r 

»  J2 

ü=-W>=-^-: <"> 

Ct + -r i.«8 2 C, 
K = pX. (12) 
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* 

For an ideal gas £ = ——- pV. Let us consider the case yC=  0, Mj 0. From 

(11) and (12) it follows the eauaticn for V: 

- äV _ Y+l m (V-VMV-Vi. 
'J& 

m 
Mu » 

(13) 

where m = C„ is the mass flow rate of the shock wave; V„. V are the values of 1 '  o»  -j 

the specific volume V ahead of and behind the shock WuVf front. 

For the case /A-  constant, from (13) we have the integral 

■ '.. 

ln(fe£)V'-K'=^»< + const: (U) 

if, for example,   M=ißf> =  constant, then from (13)  follows the formula close to 

(9): 

(V_K1)»
r.'«'i $ 

const. (15) 

From formula (13), on the assumption /A-  constant, and using the defini- 

tion of the width of the shock wave, zone by formula (10), we obtain an expres- 

sion for the zone width Aq: 

™ v+i rSTT' 

where Au = n - u is the discontinuity in velocity at the shock wave. 

6. Stationary solutions of equations in hydrodynamics with Neytrar-Richt- 

meyer viscosity. Now let us consider the stations ry solution of equations in 

gas dynamics for a polytropic gas whose thermal conductivity is equal to zero, 

and whose "viscosity" appearing in equations (5.1.1) - (5.1.3) is of a special 

form*): 

*) /on following page/      . 2Q5 - 

„_ ___     _M«a^^^^— ,^_^^_^_^_^^^^ 



.    '    ■:     ,-.'   T.»   :   .— ■■•.      v —.■.:■: 

|i?r$HI?rj (1) 

i.e., we can formally assume in the preceding consideration that the coefficient 

M    is equal to the quantity 

Since according to (5.1.12) and (5.1.16), u~ mV, (3) 

then we can easily see that for a polytropic gas the determination of a station- 

ary solution reduces to integrating the equation 

i. 

5«-l&l-.<r-WM» Ax ! dx U) 

(cf equation (5.5.8)), where /W = —-—m A . For the case m >C, M >0 

dV/dx<D (cf Figure 2.42, a), therefore equation (4) is represented in the form 

end is readily integrated: 

H^f=<y-vo(yo~y)>o (5) 

v1±^-^ 
* 

trcsln    o — v— = -Tr&"+"C' J^r n (6) 

In Figure 2.1,2, b is given the profile V - V(x)  for the solution  (6).    The sub- 

stantial difference from the preceding case here is the finite width  Tj/^F   of 

the shock transition.    Accordingly, we observe that the increasing proximity 

*)  The viscosity of this type wes first discussed by Neyman onc^ Kicht- 

irayer /7_/'. 
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the second derivative V"(x) at the? point x = + _j£— suffers a discontinuity, 
-     2. 

which can oe readily verified both from the equation (4) as well es from formula 

(6) for the solution. 

li in equation (5.5.13) we quite analogously set 

ffiffl w 
then we arrive at the equation 

whose integral is the equality 

s--V£#fctt 
|fo»tn- »r.^^-^-t-c; (9) 

•.■•'--. ■ * 

and the width of the shock transition zone is  I ,__   7---xr" >■ 

i 
note that for the case of Lagrangian coordinates, the Neyrren-Richtmayer viscosity 

I 
results in a finite width of the shcck front independent of the strength of a 

shock wave. 

The finiteness of the width of the shock transition in several cases 

appears to be substantial. Therefore the Neyman-Richtmayer "viscosity" (1) is 

widely used for numerical calculations of discontinuous solutions of equations 

in gas dynamics. The artificial "viscosity" of the type (1) with a small coeffi- 

cient X  is introduced into equations of gas dynamics for gases devoid of internal 

friction and thermal conductivity. This permits blurring of the shock transitions 

over a finite region, which proves to be convenient in the numerical calculations 
- 297 - 
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This is discussed in greater detail iß Chapter Pour. 

Section VI Problem cf the Decay of an Arbitrary Discontinuity. 

1. General properties cf the solution cf discontinuity decay problem. 

In this section we consider in detail tho problem of the decay of an initial 

discontinuity. For the case of an isothermal gas this problem was posed and 

solved by Riemann in his werk £&J.    A qualitative examination of the problem 

cf discontinuity decay for polytropic gases was made by N. Ye. Kochin /9_7, and 

for normal gases by L. D. Landau and Ye. M. Lifschitz fio/. 

The term arbitrary discontinuity is given to the initial state of two 

infinite gas masses characterized by constant parameters u., p1, V , £.., T..; 

u
0> P0> V » £  , T ,  and adjoining at initial instant t = 0 along the plane x = 0. 

Here the quantities to the left and to the right of the discontinuity are arbi- 

trary and are governed only by the equations of state of th e gases, which can 

differ for the adjeining gases. 

The determination cf flow arising when t > 0 under these initial condi- 

tions is called the problem of the decay of an arbitrary discontinuity. 

Thus, the prol/lem of discontinuity decay is one of determining cne- 

dimensicnal flow with plane symmetry ( v = 0) satisfying the integral lews of 

conservation: 

l&pdx — pudt = Q,    &padt—lp-\-ptt'ldx=-0, 

f  £p(«+T)*-M«+f+-?}]*c-° 
(1) 

and the piecewise-constant initial conditions: 
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k> 
where t = 0 

where x< 0; 

where x>0. } (2) 

In section IV we saw that conditions of dynamic compatibility (Hugoniot's condi- 

tions) must be complied with for stable discontinuity. For the case of a shock 

wave at the discontinuity the stability condition must also be complied with 

(entropy gain), and at a contact discontinuity (interface of two gases), pres- 

sure and velocity are continuous. 

Therefore, if an arbitrary discontinuity is not of the contact or shock 

wave type, then it decays, forming some kind of configuration of stable dis- 

continuities and continuous gas dynamic flows. 

We can readily see that if we perform the similarity transformation of 

the independent variables: t* - kt, x' = kx  (k>0),   then in the new vari- 

ables x', t' as well, seeking the solution of the problem of decay reduces to 

finding the solution to the laws of conservation (1) satisfying initial condi- 

tions (2) if x and t are now understood as x' and t'. 

If we presuppose the uniqueness of the solution of problems (1) and (2), 

from this it follows that z(x, t) = z(x', t') = z(kx, kt).        (3) 

Here we will dencte as the vector z the totality of hydrodynamic variables z = 

Sfi,  u, p, t ,   ... }, and by the letter z — on the seme quantities in the vari- 

ables x', t'. 

Putting in the identity (3) k = 1/t > 0, we get 

!«'S.O-I(T.I)-#O(T).' U) 
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Thus, from the presupposition of the uniqueness of this solution sterns the self- 

modeling status of the solution of the problem of arbitrary discontinuity decaly, 

i.e., the dependence of all hydrodynamic variables only ofi the single variable y = 

x/t. In particular, from this it follows that the discontinuity lines — shock 

waves and contact discontinuities -- «re straight lines in the plane of variables 

x, t, i.e., the velocities of the shock waves >yid the contact discontinuity are 

constant. 

In subsection 2 of section III, we saw that the self-modsling solution 

continues when t > 0 is a centered Riemann rarefaction wave charecterized by the 

constancy of entropy S and one of the Rieroann invariants (r or s). 

Figure 2.43 

Thus, the self-moaeling solution of the problem cf discontinuity decay 

contains as its elements shock waves, rarefaction waves, and contact discontinuity. 

Let us establish on general properties of the self-mcdeling solution cf 

the decay problems that are valid for normal gases. 

1) In each of the gases "1" (left) and "0" (right) not more than one shock 

wave is propagated. 

Actually, we signify by the term shock wave only a stable shock wave. As 

can be seen from subsection 4 of section IV, from this follows Champlin's theorem. 
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Let us presuppose, for example, that in the gas "0" two shock waves are props- 

gated: x/t = D , x/t = D ; D   >D   (Figure 2.4-3), and that the flows in the zo^es 

I, II and III are constant.    Denoting the speed of sound c in the zones I, II, and 

III,  respectively, by c-r,  c    , and cTTT,  BUG velocity u by u , u-j-j. and u      , we 

will have 
-—IT» Tr^ty' 

hc\ < ca < CHI»     «I < «II < *IU- 

However, Champlin's theorem requires that 

«i<öa —«i»  öj —«II<«II» 
cu<D1— «„. 

(5) 

(6) 
(7) 

Inequality (7) obviously is imcompatible with (6) given the condition B1< D , 

which in fact proves cur assertion. 

2) In each of the gases not mcr? than one centered rarefaction wave is 

propagated; in the gas "0'' (at the right) s = constant in the rarefaction wave; 

r = constant in gas "1" (at the left). 

The assertion readily follows from the «qualities 

«4-c = y = y 'fsmttonst),     a — s = y^~      (r =» const), (8} 

that ace valid in centered rarefaction wcves. 

3) The presence in one of the gases of a shcck wave precludes the possi- 

bility of the propagation in the same gas of e rarefaction wave, and, conversely, 

the propagation in cnt of the gases of a centered rarefaction wave precludes the 

possibility of a shock wave propagating in it. 

i.s a  consequence of these properties, we obtain the result that the self- 

modeling solution of the problem of discontinuity decay contains a contact dis- 

continuity partitioning the gases ("C" ana "1"); in each cf the gases net mere 
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than one wave (traveling or shock) adjoining the constant-flow zones is propagated. 

Thus, construction cf a self-modeling solution of the discontinuity decay 

problem consists ofsplicing" elementary solutions (constant flows, centered 

waves) and determining the parameters characterizing the solutions and disconti- 

nuities. Since discontinuities and elementary solutions are determined by a 

finite number of parameters, this problem becomes purely algebraic. We will show 

below that for normal gases a self-modeling solution of the problem of the decay 

of an arbitrary discontinuty exists snd is unique,  that is, is uniquely 

determined by initial data (2). 

We will begin our examination with the case of polytropic gas. The index 

of Poisson's adiabet Y for the gas "0" lying to the right of the point x = 0 

will be denoted by V and the gas "1" — by V • 
o        - ■) 

We present the following method of considering the decay problem: starting 

from the specific case cf conditions (2) in which the position of the shock waves 

and the rarefaction waves (configuration) is obvious, by continuously varying 

the parameters in problem (2), we will continuously vary the solution, thus pass- 

ing through critical values of the parameters that distinguish one configuration 

from «mother. 

2. Configuration A. Since gas velocities u. and u0 are determined with 

an accuracy up to the additive constant, then we will put u = 0. It is suffi- 

cient to consider only the case when   P-i ^ P • (0 

We will begin our examination cf the problem of discontinuity decay, formed by 

two quiescent masses of polytropic gases. The problem is posed thusly: 

At the point x = C we have a partition separating twe masses cf gas charac- 

terized by parameters V 1»  S , P , p , T , u = 0 to the left and, respectively, 

by V0» S , P    , p , T , u = 0 to thfi right, where the condition 

- 302 - 



P1 > P0. (2) 

is satisfied. 

At the instant t = 0 the partition is pierced,and the gases are set in- 

to notion. Presupposing the self-modeling status of the motion (or, which amounts 

to same thing, the uniqueness of the solution of the decay problem), we calcu- 

late it. 

Since through the contact boundary (the boundary between gsses "0" and 

"1") v.o substance passes, therefore for each gas mass the contact boundary can 

Ko Considered as a piston. By virtue of condition (2) the piston will trsvel 

toward the side of gas "0" and advance relative to gas "1". If the piston velocity 

U is assigned as constsit (cving to the self-modeling status), the problem is 

uniquely solved for each of the gases taken separately. To obtain a solution to 

the discontinuity decay problem, we must "splice" the solutions of the these two 

piston problems, requiring that at the contact boundary the pressure p to the 

left is equal to ';he pressure p, to the right. From this condition we determine 

the velocity U of the contact boundary and all parameters defining motion. 

KiSY: 

Figure 2 U> 

A) Rarefaction wave C) Shock wave 

B) Contact discontinuity  " 503 - 
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Solutions to the piston problems are known to us (cf section III, sub- 

section 4 and section IV, subsection 8); therefore the disposition of the dis- 

continuity will be of the i'orm shown in Figure 2.44 (configuration A). 

Four rays: f , f, f, and f  — partition the upper half-plane into 

five regions. We have constant flows in regions I, II, III, V, and a centered 

rarefaction wave in region IV. Ray f   is a shock wave, f1   is a contact dis- 
3 2 

continuity, and f, f7 are the lines of weak discontinuity at which the solution 

is continuous. Hugoniot's conditions must be complied with et the line /T for 

the shock wave and the stability condition, at / 2 the continuity of pressure 

,-r   .-7 
and velocity must be observed, and at i r, 1    — the continuity of all hydro- 1  o 

dynamic variables. 

In region IV, p and u ere associated by a relation stemming from the cons- 

tancy of hiemann invariant r (of formulas (3.2.10) and (3.2.11): 

17 >i 
T-3L _?* 

■4.     ZJXJLU*. 

^-^P«*[l -^'-^(«,=0).     (3) 

Since zone III is a constpiit-flow zone,  velocity u at characteristic   f] is 

equal to the velocity U of contact boundary  J   .    Therefore if we denote tht 

pressure p in the zone III as p  , then by (3) we have 

/.-..,[. -Jf1^]« -„f. - V-fP* U) 

At shock wave P   we have (cf formulas (4.5-13) - (4.5.16)): 
"* 3 

P-P<,[(l
t+^Ml-*o)>   Mo 

* «*«o-fCo(»-Ao)(^o-lR7)=Co(^o-i-)(l-Ao)- 

i • *-*?{■■ <5> 
(6) 
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I 

Since the zone II is a zone of flow constancy an'd since at the contact boundary 

J     pressure and velocity are continuous, we arrive at the equation 

IXZ& -.it's* if;5,' ^Mh*i 

RVM&KI * ^frr* Slap SwjqKggffl 

for the determination of M . 
c 

The function p (M ) appearing in 1he left side of equation (7) is a mono- 
o 

tonically decreasing function of M , p(M ) is a function of M monctonically 

increasing to ■+ oo,    Since when M = 1 

'ft^J^^Pv l (8) 

by virtue of assumption (2), then it follows that equation (7) has one and only 

one root M > 1. 
o 

Determine the quantities y , y , U, D as functions of M and show that 

the configuration A condition?:  y s y < U < D, (9) 
o   1 

are satisfied. 

Inequalities (9) are always satisfied when U>0, U - u.. = U>0. Actually, 

inequality U = c (1 - h )(M - 1/M ) < D= c_M is obvious. For y , y we have OoOO O OT 

(10) 

where c_ is the speed of sound in zone III,  c_ > 0.    Hence it follows that y1 

U.    Finally,  r-| =  (r^)   ; therefore 

L—'' -        -    Ä.,-- ....   j. . ...'. r.   :.   . ^.\.!+l ,'t' '*       '<■'■■    -i 
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And thus, ell conditions (9) are satisfied end configuration A is compatible. 

Now we will vary the problem parameters. Fix p.., p (p. > p ) and vary 

velocity u of gas "1". Then, putting u-j 4 0 in (3) and U), we arrive at the 

equation 

iM^^M1—5——]   ■? 

i      - >> L1 ~ "i «, J 
I  ^^ \«M^*<N(1+*oH-*p]  (12) 

instead of equation (7). As before, p (M ), p(M ) ere monotcnic functions of 
o       "*    c 

M . 
o 

Let us trace the vexistion of root M   as a function of parameter u..    The 
o r       1 

following assertion is valid:   the root M of equation (12) is a monotonically 

rising function of u-,, Actually, P (M ) is a monotonic function ofu1.In parti- 
i - o ' 

cular, the value of        I /> (l) = p\\ + J!L,"Z± ÜTv^, 

to which corresponds point B in Figure 2.45, also monotonically increases with 

u . Point B increases with u., and together with it the entire curve p = p_ 

(M , u.) is monotonically elevated (Figure 2.4f>). Since the curve p = p,(M ) 
o  i + o 

is fixed, the point C of intersection of the curves p = p (M , u,) nnd p = 

p (M ) are shifted toward the right with increase in u. > i.e., the curve M0 of 

equation (12) increases with u..,which was what we set out to prove. 

Let UQ £ C stand for the value of u.. at which p_(l, u,) = p+, i.e. 

¥ .. ^I-1 N »für* 
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* 
■:.- .0 

or 

AffM--' 

(Mm—' 

(13) 

Then, in accordance with Figure 2.4.5, it is obvious that where 

uB<u1^i 
(U) 

equaticn(12) always has the single roct M >1. When M >1 shock wave J. 

(Figure 2.44) satisfies the stability condition; when M <1, shock wave f~ 

is unstable and therefore configuration A is impossible. However, the entire 

chain cf inequalities (9) must be satisfied to make configuration A possible 

(Figure 2.44). 

Therefore let us consider the satisfaction of these inequalities when 

u-] > 0. The quantities U, D increase with u« up to infinity so that the inequa- 

lity \}<D  is preserved. The inequality y < U is 8lso preserved. It remains 

only tc investigate the difference 
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Due to the constancy of in «riant i* in zone IV, we have 

Substituting (16) into (15), we get 

r -TS 

(16) 

(17) 

We have shown that M increases with u,. But from equation (12) it follows 

that the difference U - u. decreases with increase in M . Consequently, from 

(17) it follows that y^ - y decreases with increase in u . As long as I) - u 

> 0, y. - yn >0. When U - u = 0, y - y - 0. The latter is satisfied given 
1 1 1 

the condition that the equalities 

-■■If J*.,  :.- AS..  :• •'  .?.:<>: läki«e ff>«JäM—*^ *-■.■«■ a-iL.-. 

in which M.  / kp - critical/appears as e. parameter are simultaneously satis- 

fied. 

It is not difficult to express u,- explicitly: 

(20) 

Thus, if the conditions  u < u < u_, (21) 

are met, then conditions (9) for the compatibility of configuration A are met. 
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So assuming that inequalities (21) are satisfied, the pattern cf discontinuity- 

is of the form shown in Figure Z.Uk, and the formulas obtained above enable us 

to wholly calculate the flow under configuration A conditions. 

3. Configuration B. When u, = u_„ y - y = C, i.e.,   the zone of the 
i   o     1   o 

rarefaction wave vanishes, and the solution is constructed from the single shock 

wave and the contact   discontinuity (Figure 2.4.6). With a further increase in 

a., the difference u.. - U becomes negative. Therefore when a. > uR, the contact 

boundary dx/dt = U.must be considered as a piston simultaneously advancing both 

in gas "0" and in gas "1". Thus, in accordance with the solution of the piston 

problem (cf section IV, subsection 8), the solution to the discontinuity decay 

problem when u. > uß must be sought for in the form of two shock waves, one propa- 

gsüngfcgas "0", and the other in gas "1" (cf Figure 2.47). We will call this 

case configuration B. 

KiT: 

'.f?' X' '•■'-•• 4k / v- mm       m  O    ^ * T At» ' T 

Figure 2.^6 

A) Contact discontinuity ri) Shock wave 
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Figure 2.47 

A) Shock wave 

B) Contact discontinuity 

C) Shock weve 

I?i the case of configuration B, we have four constant-flow zones I-IV, 

partitioned by shock waves j and J*, and by contact discontinuity f.. Let 

us prove the compatibility of configuration A provided we have the condition 

u, > un. Let us writi? the conditions at the shock waves C.  end P 

«.-^-«iO-v(jl,«-,TBr)' A!'==|P'tTB,|;    (2> 

Equating 

we get: 

each other the pressures p    and p    at the boundary   P„, 
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(5) 

Hence it follows that M is 8 monotonically increasing function of M . To deter- 

mine M , let us write the condition for continuity of velocity at the contact 
c 

boundary f : 

(6) 

The left side of this equality is a monotonically decreasing function of M. and 

by virtue of (5), a monotonically decreasing function of M ; the right side is 

a function cf M iroiictonically increasing up to : c*>. Let us consider the values 

u (M ) and u. (M ) when M = M . , where M ,  is determined from equalities 
- c     + o      c   o Kp»      o kp 

(6.2.18) and (6.2.19). Since 

K J 
^^^fA)vk;^ (7) 

then 

ESP 
(8) 

But, according to our assumption, u > u , therefore from (8) we have 
1   o 

«_ (Al, (Af0«p» > *<r$M0^ 
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So equation (6) providing u > u will always have, and only one et that, the 

root M > M . > 1. 
o   o kp 

After determining M , by formula (5) we determine M   in til flow parameters 
o 1 

in the zones II and III.    The conditions for compatibility    cf configuration B 

do) 

are easily verified and are always satisfied providing u1> u , if we consider 
1   B 

that if R. > 1, and also M > M   > 1. And so, for any u satisfying the 

condition u1 > u , we have configuration B. 
1   B 

KEY: 

A) Rarefaction wave B) Contact discontinuity 

4. Configuration C. When u - u < C (cf formule (6.2.13)), M = 1, 

U = 0, i.e.., the contact boundery is a fixed piston for gas "0". When u1 - 

u , we therefore have t solution when in gas "0" the shock wave vanishes and 

it remains fixed, retaining its initial parameters, and the rarefaction wave 

fo0f-\  (Figure 2.48) propagatesin gas "1". 
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With a further redtctirc in u.,(u <u < 0), the contact boundary begins 

to edvarce to the left reletive to gas "C" (U<0), sc that it cen be considered 

as a piston simulteneously traveling from gases "0" and "1". I. accordance with 

the solution cf the piston problem (secticn III, subsection 4). in this case the 

solution to the decay problem consists cf two centered rarefaction waves propagat- 

ing in geses "1" and "C" (Figure 2.49), We will cell this condition configuration 

C. The upper half-plene es partitioned into the six regions I-VI, divided by 

four lines cf week discontinuities f.,  i„ 1 .,  /*., end by cent get boundary v i 3        4 

P  .    Zones I, III, IV, and VI ere constant-flow zones,  zones II and V are rare- 

fecticn wave regions; invariant is constant in zone II, and variant r is constant 

in zone V. 

KaTT: 

A)  Rarefaction wtve 

Figure 2.49 

Let us shew that giver the condition 

configureticn C is compatible. 

In zones II and V we heve 
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(s = const), 

r  —~.-» 

In perticular, at the contact boundary ,/ when u = u = Uj. -  Ü we must obtain 

p - p , i.e., we must arrive at the equeticn 

In order to determine U. Here 

MM§^^:§¥^M^1 (5) 

Condition (5) notes the nonnegetiveness of pressure at the boundary. Note 

that the equality signs in formula (5) can obtain only simultaneously end corres- 

pond to the separation cf the gases. As we cen see, in equation (4j p (U) is a 

monctcnically decreasing function of U, end p (U) is mcnotonically increasing 

function of U. Where U = C,' 

/»-(0) 'H- (6) 

Fro« condition (1) therefore follows  p (C)< p (0). 
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With a reduction in U, p_^(J) will increase, and p+(U) will decrease. Thus, 

if p (U) does not tend to zero, there exists the single root U < 0 of equation 

(4) satisfying the condition     Ü > - — — c^. (8) 
%- I     o 

Then equation (5) leads us to the inequality 

(9) 

Thus, provided condition (9) is satisfied, there exists the root U < 0 of equa- 

tion (4). We will show that when u.. < u configuration C is also compatible, 

i.e., the conditions y < y1 ^_  U $. y? < y . 

are satisfied. It is not difficult to see that 

(10) 

Inequalities 

ImM'Jrf&f-^k^i "£>l .'Sli'M * 

are self-evident. Finally, 

(13) 

i3ut from equation (0 end conditions p > p , U < C it follows thet U - u >0. 

Hence y1 - y > 0. Thus, configuration C is compatible when u..<. u„ and pro- 

vided that condition (9) is satisfied. 

But if condition (9) is violated, equation (4) does not have the root U. 

In this case the gases separate  from each other and equation (4.) is repleced 
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by two free boundary equations: 

i.e.,  Vi^.fif yprr^ . f,  V 

i.e .,   fr-^J^IL,. 

/(Mr 

Since it follows from the noncompliance of condition (9) that U < U , the gases 

separate from each other and the solution is of the form shewn in Figure 2.50. 

The regions £o0 IZ  and f 0 f  are regions of rarefaction weves, respectively, 

r = constant and s = constant, and the regicn 1 \0/^   is the vacuum region in 

which we put f>-  0, p = 0, c = 0. 

Figure 2.50 

Kill 

A) Rarefaction wave C) Rarefaction wave 

5) Vacuum 

5. Review of. configurations. Gases with equal pressure. Let us new write 

the conditions for the existence of configurations A, B, and C on the presupposition 
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p  > p , u   =0.    Configuration A is possible providing that the conditions 
too 

J^^^ (1) 

ere satisfied. Configuration B is possible providing that 

and configuration C is possible providing that 

(2) 

where 

mMtr^;-".^:^^';?^! ^SfeSp*7i?f 3BPIJ 'W>J-JHT •J-^rr(»;1» 

.V* 

..  _   Ä _"J_1*-*-—^«. 

For the case p   - p , we have 
1        o 

uc = uB = 0. (6) 

Consequently, in this case when u, > 0 we have configuration B, but when a, 0 

— configuration C. 

Now let us note that conditions (1) - (6) bring into correspondence to 

any arbitrary discontinuity (ensemble of quantities V-], p1, /°1, c , u ; V > 

P > P t  c0> tO 
one snd only one configuration whose flow parameters are calcu- 

lated uniquely, and where stability conditions are satisfied at the shock waves. 

Therefore our consideration of the problem of the decay of an arbitrary 

discontinuity shows that it has cne and only one stable self-modeling solution. 

Thus, we approved the theorem of the existence of uniqueness of the solution of 

the problem of discontinuity decay in the class of self-mcdeling solutions for 

polytropic gases. 
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However, the question rises: can the discontinuity decay problem have a 

stable, but not self-modeling solution? 

A negative answer to this question can be obtained by two methods: 

1) by the proof of the theorem cf the uniqueness of the discontinuous solu- 

tions of gas dynamics equations, i.e., solutions with shock waves and with centered 

rarefaction waves; 

2) by the direct proof of the self-modeling status of any stable solution 

to the discontinuity decay problem. 

As for the first method, we must state that st the present time sufficiently 

general theorems of the uniqueness of discontinuous solutions to gas dynamics equa- 

tions have not yet been obtained, and their derivation evidently involves 

great difficulties, though for polytropic (end normal) gases evidently no one 

doubts   the uniqueness of this solution. 

Pursuing the second method, we c*n actually demonstrate the self-modeling 

of the solution to the discontinuity decay problem by using certain concrete proper- 

ties of any stable solution of this problem with piecewise-constant initial data. 

However, we will not here deal with this proof, and as an example we will 

further refer to subsection 5 of section III in Chapter Four where a similar prob- 

lem was solved for a system of two quasilinear equeticns of fairly general form. 

6. Problem of discontinuity decay for an isothswial ioeal gas. We will 

here understand by gases "1" and "0" two isothermal idaal gase? whose equations 

of state are given in the form 

Pi=<&. : h= '&>   «i=RiT-   cl - V- (1) 

An isothermal ideal gas can be considered formally as a polytropic gas 

with index "V = 1. The difference in our treatment lies in the fact thet we omit 
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ft. 
i the equation cf conservation of energy and the third Hugonict's condition by- 

replacing it with the condition T = constant. 

Since an analysis of critical configurations involved only the two first 

Hugonict's conditions, all results cf the preceding subsections can be directly 

applied to the isothermal case. In formulas of subsection 2-4 we must put h = 

h = 0, V-i = V -1> reducing, wherever required, the indeterminacy. Let us 
1      '    o 

consider expressions for u and uH. Reducing the indeterminacy in formula (6.5.4) 

as V-. —*■ 1, we have 

for uwe have 
ß 

c,inA<0 (Pi > Po} (2) 

V     .Co/£ + !-2=c0[/£-/A]. (3) 

Conditions cf configurations A,  3, ana C will be as before.    Note also that where 

V- =   V0 -  1  conditions(6.4.9)  £re always satisfied,  so that separation of geses 

and the formation of vacuum are impossible for isothermal gases. 

Working formulas,  after passing to the limit, are of the form: 

Configuration A: 

1 P  (M<) — /?, exp |*-*(*'-Tc) 
= /»+(A*O>=PX (4) 

Formula (4) corresponds to (6.2.12). 

Configuration tt: 

«_ (Af,)*= a, _ c, (M, - -^L) = n4 (MJ = c0[M0 ~ ^-) 

and M, 
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so that finally: 

* frT^ly^Ä-vftil^ii^TTfel;" (7) 

Formulas (5) and (6) correspond to (6.3.6) and (6.3.5). 

Finally, for the case of configuration C 

»     T/'-XT    0- 
(8) 

Formula (8) corresponds to equation (6.4.4). 

Note that all the written formulas can be readily obtained if we use 

Riernenn invariants. We offer the reader the opportunity of carrying cut these 

operations if he desires. 

7. Problem cf discontinuity decay for normal gases. In addition to the 

ordinary requirements I-V (cf subsection 3 of section IV), we will require addi- 

tionally that the following property of Hugonict's adiabat H be satisfied: at 

its upper branch the quantity (p - P0)(VQ - V) must mcnctonically increase to 

<y?    simultaneously with increase in entropy S. 

Then from relations (cf subsection 2 of section IV) 

P—P» 
Vt-V 

(B-uj>=(p-P()(y0^-v), 

Hr ■• 'w> "••wy ^ U» (D 

(2) 

where uc, p , V denote the parameters of flow ahead of the shock wave front, 

and u, p, V — the parameters of flow behind the front, it follows that p and |UJ 

are mcnctonically increasing functions*) of parameter | m |, cr, which amcunts to 
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the same, M = ■! -j . Recall also (cf subsection 2 of section III, as well as 
o f0 <-o 

subsection, 7 of section II) that in the traveling waves u and p are associated 

by the relation 

>>••*&; - 

where 4?($> p) *s defined by the formula 

(5) 

where p is the fixed limit of integration, and am(S, p) = /°c >0   (6) 

can be assumed to be a function of pressure p and entropy S. From (5) and (6) it 

follows that ^ (S, p) is a monotonically increasing function cf pressure p. 

Function $>{S,  p) depends on the equation of state, therefore the func- 

tions $ (S, p) and <&(S, p) for gases "0" and "1" are, correspondingly, distinctj 

generally speaking. 

Let us begin our examination of the problem of decay with configuration 

A by putting        uc - ^ = 0,  Prj > pQ, (7) 

assuming that the equations of state of gases "1" and "0" are distinct and that 

for each of them conditions I-V and the condition of mcnotcnic increase of u(M) 

are satisfied (cf (1) and (2)). 

From assumption (7) follows configuration A (Figure 2.44.). Invariant r 

is constant in region IV, therefore  u. + <f>AS ,  p ) = u_ + <£> (5 , p ). (8) 

In region II,  p+ = pQ(M0), u+ = UQ(MO), (9) 

*) The monctonic increase in p(M), as shown in subsection 3 cf section IV, 

is a consequence of conditions I-V. 
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where p^(M ) fnd u (M ) denote the state ahead of the shock W8ve front in gas rox o     o o 
r|C" for assigned M and increase to OQ   with increasing M . 

Conditions for the continuity of velocity and pressure at the contact 

boundary £ -  lead to the equation for the determination of M : 

o.(M,>«=«!+<!>,(5,. Pt)-%(SV PoW^M^W^««^«))- (10) 

The left side of (10)  decreases monotonically,  and the right increases mcncto- 

nic8lly up to oo with increasing M .    When M   =  1,  according to'(5)  end (7)  we 
'■' c 

have 

(11: 

Hence, as before, it follows that equation (10) has one and only one rcot M 

> 1. 

Fixing pi and p , we will vary u... The function 

is a monotonically increasing function of u... Consequently, the root M of 

equation (10) is a monotonically increasing function of u . 

Let us consider how the inequalities  y < y < U < J    (12) 
o   1 

very with change in u,. The inequality D - u > 0 is self-evident by virtue of 

relation (4.2.8): 

(U-Dm~D)~D(D~U)=%™>Z?t  >0. (13) 

Inequality Ü - y.. = U - (U - c_) = c_ > 0 is also self-evident. 

Consider the difference 

yi — yo — (^ - «-) — («,-*,) = (£/- 0j) — (c_ — c,). 
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Since u_ -  U, from (8) it follows that 

(15) 

p - p (M ) and c = c (S , p ) increase with u ; thus, differences 4>n(S1, p ) 
~oo     -   ~ 1  ~ ' '     '      1 
-^1(S1, p ), and c. - c are reduced. Thus, the difference y. - y decreases 

with increase in u* and at some value u. = uR becomes equal to 0. The rarefaction 

wave region vanishes, and the solution will have the configuration Aß (Figure 2.46), 

When u1 = Ug P_ = P-,» c_ = c1, u_ = u , 

Therefore u is defined from the equations 

'".'ft—ftW^l 
«B-=«.. 

(16) 

(17) 

in whicn A   ^ appears as a parameter. 

riut if u, is reducad, then as we have seen M will be reduced and when u„ 
1        ' o 1 

- u„ will become equal to 1. When u- - u,, the shock wave vanishes and the solu- 

tion takes on the configuration AC (Figure 2.48). 

The velue u is found from the equation 

*lPv Po)-r%Fv *)<# (18) 

which follows from (10)  w'ien M.   =  1. 
o 

When u- > u (19) 

configuration ß is always conpetible (Figure 2.47). 

Let us write the conditions for continuity of pressure and velocity at the 

contact boundary /\, 

«.(A!,)-«+(*!,). 

(20) 
(21) 
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The function p_(M ) is a mcnctcnically "ncreasing function of the parameter Hj, 

therefore from equation (2C) M. is determined mcnotonically increasing function 

of M , and equation (21) can be considered as the equation for the determination 

of Mc>Mckp >1; M
T >1- 

Noting now that the left side of (21) is a mcnotonically decreasing, and 

the right side — a monctonically increasing function of M and that 

"*.fa»JS = UB,  U_(1) = U1 > Uß, 

we conclude that equations (20) 8nd (21) have one and only one root M >M , 

> 1; M, > 1. 

Thus, the conditions for the compatibility of configuration B (M>1,M >1) 

are always satisfied when u.. > uQ. 
i    a 

U "< u 
1   C 

(2?,) Finally, when 

we have configuration C (Figure 2.49). 

The condition for the continuity of velocity and pressure et u.he contect 

boundary £'   is of the form 

■ «_ = uC+% @i. Pi) - % (Sv P) = 
I =u, =a>0(S0. P)-%(S0. />„)=£/ (23) 

(p denotes pressure in the zones III end IV, p - p+ = p). From it p end I are 

determined. 

The left side of equation (23) decreases mcnotonically, end the right side 

increases mcnctcnicelly — with increase in p; when p - p 
c 

f     j        ,  **'•        «. =««(/»o) = Ö; 

k«. = «.(*«)-», +0,(5,. Pd-%(Sv P6)^"i-"B <0. 
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Bi| ilence it fellows that equation (23)  has one and only one root p=p   -p<P<p. 
r  o  1 

The conditions for the compatibility of configuration C followed from the fact 

that 0 > U > u . With further reduction in u. separation of gases becomes possi- 

ble. 

8. Solution of the problem of discontinuity decay in the plane of variables 

p, u (p, u-plot). In all esses of configurations A, B, C the state u , p , S4 

to the right of the contact boundary W8s associated with the state of u =0, 
o 

p , £ in gas "C" at the initial instant either by the rarefaction wave relation 
c  o 

5, =S0.     a+-%(S0. p+) = «0-<P()(S(), p0)= -<DU(S0. Po). 
(1) 

or by the Hugoniot's relations,  frorr which follows 

(2) 

where p (£ , M ), u (3 , M ) increase monetcnicelly with increasing M , and 
o o  c   c n  0 c 

p (S , M )  —#- co,  u (£ , M ) —•- oo   provided M —»-co. From this it follows 
O     0        o 0      0        o o 

that we can cancel out the parameter M    from the functions  (2)   and obtain a new 
c 

function: u+ =     ¥0 (SQ,  p+); (3) 

at which  \U  (S ,  p ),  just es  4>  (S . p  ),  is a mcn.ctcnicclly increasing function 
c° * o    o      ^ 

of the variable p   . 

A necessary condition  fcr the rerefficticn  wave (y    - y   >. 0)   is  the require- 
3     ' 2 

m&it P.,    ^    P0, U) 

from whence  follows that in  determining u    we car,  employ only half of curve (1): 

(5) »t=W+)-W4 

assigned by the condition o < p . 

The conditicn fcr the stability of sheck wave {A  %■ 1), conversely, requires 

only that pressure p  be larger then p  (p > p); therefore when determining 
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u we can also employ only half of curve (3) assigned by condition p ^ p 
-r •  * + '  c 

Therefore the curve 

■■JT.(V>*) 

where p < p , 
+ " ° (6) 

where P+ > P 

define the velocity u at the contact boundary for the assigned pressure p+. 

The curve 

7 *«;  »s \**<s»p) «o(so. P)-%(s» PJ where p  p , 
0 (7) 

where p  p 

dsscrihes ii the plane of variables p, u a set of stetes which cen be associated 

with the right state p , S , u - 0 by nsans of the centered rarefaction wave or 
o  o  c 

by v  stable (M ^1) shock wave. 

a; 
A   \\\ 

figure 2.51 

K.:,Y; 

.-./   Rarefaction wave 8)  Shock wave 

-326 - 

-rmlHIii^tMtoMa«**»^ 



*»WfcW*<!lW»W*«*3g£K*$ft8& 

We state that at the curve (7) a "state" is defined, even though at each 

of its points only two cf three hydrodynamic parameters are known — p, u. 

However, we can readily see that in the rarefaction wave (p^ p ) S = 

S , but when p >. p the entropy S is uniquely determined at each point on this 
o o 

curve from Hugcniot's conditions. 

Stated briefly, curve (7) is the projection onto the plane of variables 

p, u of a curve located in the space of three variables (p, u, S) and describing 

a set of states (p, u, S), which can be associated with the right state p , u= 

0, S by the rarefaction wave or by the shock wave. 
o 

We can readily see that the curve (7) passes through the point H and from 

the property of the second-order tangency at the point (p , u = C) of Hugonict's 
o  c 

adiabat H and Poisson's adiabat A it follows that curve (7) exhibits at point 

(p , u = 0) and, therefore, everywhere a continuously differentiable tangent. 

Figure 2.51 presents the approximate shape of curve (7); and some of its 

part corresponds to the shock wave (function (3)), and the lower — to the rere- 

faction wave (function (5)). 

Wholly analogously, the curve u = u^ - g-^S.., p), (8) 

where 

.?!$•?   IFA/* (9) 

describes in the p, u-plane a family of states that can  be associeted with the 

state u , p , S , as with the left state, either by the rarefaction wave (r = 

constant) or by the shock wave (m > 0, H. > 1). We C8n readily see that 

g1(S, p) has a monotonically increasing function of p, so that curve (8) passes 

through the point (p , u ) and has two continuous derivatives. The approximate 
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shape of curve (8) is shown in Figure 2.51. Also shown in Figure 2.51 ere the 

sections of cirve (7) and (8) to which correspond the rarefaction wave (B.p.) 

end the shock wsves (y. B.), respectively, in gases "0" and "1". 

Figure 2.52 

KiY: 

1) Separation 

2) Configuration C 

3) Configuration A 

4) Configuration B 

5) Rarefaction wave 

6) Shock weve 

Since at the contact discontinuity it is always (save for the case of gas 

separation) that the continuity of velocity u_*u and pressure p_ - p , the 

solution of the discontinuity decay problem reduces to determining the point 

(p» u) (p " P_ ■ P » u ■ u_ ■ u ) of intersection of curves (?) and (8). 
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If the intersection point (p, u) of these two curves lies in the upper 

half (p > p ) of curve (7), then a shock wave is propagated in gas "0H; but 

if p< p , then a rarefaction wave propagates in gas "0". Siffiilarly, if the 

point (p, u) of intersection of these two curves lies in the upper half (p<P1) 

of curve (C), then a rarefaction wave propagates in gas "1"; but if p > p1, 

then a shock wave propagates in gas "1". Accordingly, Figure 2.52 presents 

the possible cases of intersection of these curves. Assigning, as always, 

condition p„ > p and noting that curves (8) for different u, differ from each 
1   o 1 

other only by displacement, we present in Figure 2.52 the disposition of the 

possible configurations as a function of u., and also a graphical method of 

determining the quantities uß, u , and u + /otp = separation of gases/. From 

Figures 2.51 and 2.52 also follows the graphical method of solving the problem 

of the decay of an arbitrary discontinuity*). 

A similar consideration of the problem of discontinuity decay can be 

made also for the projection onto the plane (s, r) of Pdemann invariants. In 

the plane (s, r) parts of the curves (7) and (8) corresponding to the rarefaction 

waves will be raised parallel to the coordinate axes, while another part will 

represent some smooth curve that smoothly (with two derivatives) is consistent 

with these rays (Figure 2.53). It is especially convenient to use the r,s-plot 

*) It must be borne in mind that curve (8), just as curve (7), depends para- 

metrically en entropy S1(S ), therefore the assignment of only the point (p.., u ) 

still dees not determine it. If, however, we assume that for all u., p >,p 
1       1      o 

entropy 5    is fixed,  then curves u - u   =  -g1(S  , p)  and u - u! =  -g1(S , p) 

coincide when u'  - u   -  g (p1,  S ), p < min(p  , p').    Cn this basis, in Figure 

2.52 are indicated the regions of values p1, u    when S = £   =  constant,  in 

which configuration of the soluticn of the discontinuity decay problem  is preserved 
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in solving the problem of discontinuity decay for isothermal gas«s. 

In concluding this subsection, let us determine the function gQ(S , p) 

for the case of polytropic gases * 

For a polytropic gas 

I J _ AiW. 00) 

** -l 

In the case of a shock wave (p > p ), let us express M from (A.5.13): 

'M — if  P + h«p<>    i 
(12) 

after which in    formula  U.5.16)  we'find   $ (S , p): 

;i3) 

Thus, for a polytropic gas equation (7) is written in the form 

« = *o(S0. P)\ 

u 

vFTc°^^[(^-!] Wherep^pc 

where p->p_. 

(U) 

9. Linearized formulr.s cf discontinuity decay in the case of polytropic 

;as. It is easy to see that the quantity <£>  (S , p) -<£0(S , p ) and ^ (S , p) 
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P -3 
when -ir -  1 + £  coincide, with an accuracy up tc terms  of the crder of £J. 

o 

The seme conclusion follows from an analysis of weak shock waves made in sub- 

section 7 of the section IV. Therefore, by carrying out in formula (6.8.14-) 

P - P an expansion in powers of the small quantity _—s-    and limiting ourselves 
f0 

only to first-order terms, ws get 

„__<wC     „\  e«i  P — Po   P — P» 
(1) 

Similarly, for weak waves 

~"  „'/c ~\— c> P — h —P — P\ 

Therefore we obtain the result that for the decay of a discontinuity with smell 

amplitudes the values of the pressure p and velocity u at the contact disconti- 

nuity, independently cf configuration, are expressed by the same formulas: 

-J 
'W 

1 

IS'S(S,,st.ri} 

y*^      ^> < si 

-t,"»SI»*■  .■- - . -i 

Figure 2.55 

KEY: 

1) Shock wave 

2) Rarefaction 

wave 

_P\    |    Pa 
Ui—«o       I    Pi«! Wo.   ,_, 

Pl«l PlA 

_    Pi —Pa 

Pi<?i        Po^o 

PoCoUo + Plfl«! 
PO«O4-PI«I P0C0 + P|Ci (A) 

where we replace the quantity u by the difference u* - u . Formulas (3) arj 

(40 describe the solution of th? problem of the decay of e discontinuity in 

the acoustic approximation^ i.e., for infinitely weak waves. 

At 12) J> W 

Figure 2.53s 
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10. Decay of a discontinuity in a variable-section channel. We will 

consider two semiinfinite cylindrical tubes with cross section layer as A« and 

A„ abutting at the plane x = 0 (Figure 2.53a) and filled with gases characterized 

at time instant  t = 0 by the parameters u ,f ,  p , S , and, respectively, by 

V P2'  P2' V 
The gas pressure arising at t'^>0 is two-dimensional; however, it can be 

assumed that the waves propagating in each tube as t —*~ <x> ,  | x/ <-*-oo  become 

close to one-dimensional. The approximate flow pattern (we will call this flow 

the decay of discontinuity at the section discontinuity) is based on the assump- 

tion that the asymptotes are established instantaneously and the flow decaysinto 

cwo one-riimensicnel flows divided by an infinitely thin transition zone enclosed 

between the planes x= -t , x~ +£.    The notion in the region of the transition 

is a steady flow, so that the quantity f = (u,(0, p) to the right and to the left 

of the transition zone (we will designate them by f" and f+, respectively) are 

associated by the relations 

The first expresses the law of conservation of mass, end the second Bernoulli's 

law. To this we add a fair relation, which has a different form for different 

decay models.  We will confine 'ourselves to the aiiebat model in which the 

conservation of entropy in tne transition zone it- tssumed*}. Per u  polytropic 

gas, therefore, we have 

(y) ~(f) ' (3) 
/*) on following page/ 
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Let us consider the simplest case of discontinuity decay — the impinging of 

a shock wave traveling with respect to the quiescent gas with parameters f* ,  p , 

u1 and exiting from the wide section of the tube into the narrow. W& will assume 

that the discontinuity in the section is small, i.e., that the condition 

!Sf«]jKs m •»HÜ l« 
is satisfied. Then we can assume the disturbance in the shock wave to be small 

and we can linearize the working formulas. After the shock wave passes through 

the section discontinuity, we will have the following configuration of disconti- 

nuities: to the right travels shock wave D.., behind it at the point x -  0 occurs 

a discontinuity subject to relations (l)-(3), behind travels the reflected waves; 

between the shock wave that has gone by and section 3: = 0 lies the contact boun- 

dary. Figure 2.53b reflects the configuration of discontinuities in the x, t- 

plane. The line 1.  is the trajectory of the shock wave entering the narrow 

tube, l-\  is a trajectory of the reflected shock wave, i ^  is a transition zone, 

and /*- is the trajectory of the contact boundary. At the lines f , Jy) f 

the flow parameters experience discontinuities of small amplitude, and the 

corresponding abutment conditions can be lineerizad. Let /vp, AU represent 

the total changes in p, u in the transition from states (2) to state (3), and 

let /^p end A^u stand for the changes in p, u for the transition across f. 

(i = 1, 2, 3). The following linearized relations are valid: 

a)       at 

■ -f- 0, A~« B» 0. 
1'. I»«   "3-a- 

■I 

(5) 
c) ;•    '; M+ 
d) at )Fr A»|> = V:=0. 

*)~X complete analysis of the discontinuity decay problem at the jump section 

is found in the papers of V. G. Dulov [l1j and I. K. Yakushev [12]. 
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Total changes Au, Äp are caused by change in the force M of the shock 

wave as it makes its transition from the wide section of the tube into the 

narrow. Using Hugonict's condition for a polytropic gas 

&/ 

1 
b) 

:i c) 

i 
\ 

I 
1 
■- 

i 

d) 
we have 

a) 

> b) 

P\^   

*-(!-'**(* T<i)*j 

h. = ^[(1 + A) - -^Jr] 1(1 - A)+AMI f (6) 

*i • .'< '*"' 

p, _f   At*    .; 

Ap_ A,/>+&,/> — 2(l-|-fr)A$AAl, i 

(7) 

Relation (6) enables us to express quantities with subscript 2 in terms 

of quantities with subscript 1 and known functions of M, and then the coeffi- 

cients of equations (5a), (5b), and (5c) will be expressed in terms of M and 

quantities with subscript 1. liquations (5a), (5b), (5c), (7a) and (7b) yield 

a system of five equations relative to four quantities: A-^u, ApU, A,p, A p. 
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The condition of algebraic compatibility of equation (7) leads to an equation 

that was first obtained by Chester /1^/: 

where 

V     (1(0 

Equation (8) yields the relationship between variations in intensity of shock 

waves and the two cross sections. Chisnell /1^/ proposed using formula (8) 

for the decay of a nonsteady shock front traveling in a channel with continuously 

variable cross section. In the Chisnell theory »channel with a continuously 

variable cross section is approximated by a sequence of cylindrical channels 

(Figure 2.53c) abutting one  another,   and the transition cf the shock wave 

from one cylindrical section to another is given above by formula (8). 

By integrating equation (8), we find  Af(M) - constant,       (11) 

where 

1 
/ = zY(*_ !)(*-{-A) 

_"+(V) J 

*-(»+±p. 

(12) 

(13) 

(M) 

- 335 - 



The quantity k(M) is e slowly changing function cf M. Thus, for 

If we assume k is a constant, integral (11) is simplified and leads to the 

form    A^M2 - 1) = constant. (15) 

For weak shock waves an arbitrary V , k(M) —*► £ and formula (15,- becomes 

M - 1 ^   A~2. (16) 

For strong shock waves 

*(M) -* *<oo) - (!+*,) <,+*,) • (17) 

% 
Then from equation (15) we have   M -v A" 2 . (18) 

Estimate (18) was used by Chisnell to establish the asymptotes of a strong 

shock wave for the case of cylindrical and spherical symmetry. 

"^b^ 

7^^ 

Figure 2.53c 

From (18) follows   M ~ x"n,   n =— 

-n 

(19) 

for a cylindrical shock wave and  M ^ x ",  n = k^, (20) 

for a spherical shock wave (x represents distances up to the axis or, corres- 

pondingly, the symmetry points). 
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A comparison cf estimates (19), (20) with the self-modeling solution 

of Guderley for a convergent shock wave (cf section IX, subsection 5) shows 

excellent agreement. Since, for V= J'T» we have the  following comparison 

cf indexes n: 

ft          Uuaupnecm nun                       Cl C$epäWCKM nun 

"      ivaexi 0    . yatpjet fc    lacaeu          C   fyMpjd 
1 

5 
Y»-y 

7 

■ t,— 

0,2254 

0,1971 

0,2260 

0,1973 

0,4506 

0,3941 

0,4527 

0,3944 

KfiT: 

a;  Cylindrical wave 

b) Chisnell 

c) Guderley 

d) Spherical wave 

The theory outlined by Chisnell does net make allowance for the addi- 

tional influence of secondary waves reflected from the channel walls and 

overtaking the shock wave. Corrections were introduced into formula (18) in 

the works cf Chisnell / \Q  and /Tjj/, which incidentally proved to be unessen- 

tial. 

Withan /16/ gave a simple interpretation cf equation (8). As we know 

(cf /28/), the flow in the channel is described, in a one-dimensional appro- 

ximation, by the equations 

du  .      du   , 1 dp      « 
(21) 
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where A(x) is the cross section area of the channel* 

Equations (21) can be rewritten in characteristic form: 

where 

a) 1 dp du-,    en    din A 
p dtv      dtl~

i~T^7~dir ■0. 

«   life 
x      i 4p i *»• i    g   jQgj A c;    ^-dü^Sl^^Jre   dtt -"• 

(22) 

- J¥„=¥"f:(B_c) ?»• w="ar+a EF- ^=-5r+(*+<> ^-      (23) 

Assuming for definiteness that the shock wave travels from the left to 

the right and that the difference in the slopes of the shock wsve trajectories 

and the overtaking characteristic is small, we can approximately assume that the 

relation 

dr=±dp+du+13fcd1mA~dr+-£7dlnA*=b (24) 

is satisfied net along the r-charecteristic,  but at the shock wave trajectory. 

From (6a)and (6b)  we have 

4,-iB±Xdp-cl[0-»)(\+±) + &(l+\)M]uF\ (25) 

Substituting (25)  into (24), we arrive at the relation 

[(7^)(i + ^j+^(i+*)^tfl+5j^-i.x-ft;        (26, 

which by virtue of relations (6) is equivalent to (8), 

Since the assumption (24) is valid not only for weak waves, but also fcr 

strong waves entering in the center, this explains the good agreement of Chisnell's 

theory with the sei f-modeling solution for the problem of a convergent shock wave. 
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Different approximations have been developed for flows possessing the 

property that the inclination of the characteristic overtaking the shock wave 

is close to these slopes of the shock front, and these approximations satisfac- 

torily describe the behavior of flow near the front (Poincare-Lighthill-Go 

method /I7/ and the method of shock waves /Tß/). 

Section VII. Interaction of Strong Discontinuities. 

Based on the analysis of the problem of the decay of an arbitrary dis- 

continuity, in this section we consider several problems of interaction of 

strong discontinuities, such as shock waves and contact boundaries. 

In the merging of strong discontinuities piecewise-constant flows emerge, 

which can be taken as initial data for the solution of the problem of the decay 

of arbitrary continuity. Therefore the problem of the interaction of strong dis- 

continuities reduces to the problem of discontinuity decay. 

We consider in this section interactions of strong discontinuities in the 

following order: 

1) the impinging of a shock wave at the contact boundary. 

2) the union of shock waves traveling directly into each other relative 

to the gas. 

3) The union of shock waves moving in the gas in the seme direction. 

All possible interactions of strong discontinuities ere exhausted in the 

three combinations. The main problem will be to establish the configuration of 

the slope formed es a function of the parameters characterizing the interacting 

discontinuities. 

We first make a general examination by the method of the p, v  diagram, 

and then consider the case of the polytropic gas. 
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1. Impinging of a shock wave at the interface of two media. Suppose that 

a shock wave traveling in the medium x = 0 in the direction from left to right 

impinges against the boundary x<0 of two media characterized by parameters 

p = P f i^a„ = 0 (to the left of x = 0) and pQ, S , uo = C (at the right) at 

time instants t = 0. Thus, at th3 instant t = 0 the initial discontinuity with 

parameters p.., S,, u (gas "1", left) and p0, S , u = 0 (gas "0", right) is 

formed. Here the point (p., u ) must lie in the upper part of the curve (6.8.7) 

calculated for the gas initially lying at x<0 and passing through the point 

(po, 0), i.e., 

Thus, the set of possible states (p,, u ) of gas "1" is mapped in the plane 
■  i 

(p, u) by a curve described by equation (1) (Figure 2.54). 

^■Öl&P) 

"Kbit 

Figure 2.54 

Suppose that the initial shock wave is given. Then also gi. ven is the 

point (p,., u ) lying on the carve (l) (Figures 2.54). In accordance with sub- 

section 8 of section VI, the solution cf the problem of ehe interaction of a 

shock wave with the contact boundary reduces to the determination of the point 
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J (p, u) of intersection with the curve (6.8.7) u*= g (S , p) (2) 

for the gas "0" passing through the point (p , u ) and the curve (6.8.8) 

«= u-, - g-,^, p) (3) 

for gas "1" passing through the point (p-j, u,). 

Obviously, curve (2) can intersect curve (3) only in the separate branch, 

i.e., when p > p0. Consequently, the induced flow has either configuration A 

(corresponds to point A of the intersection by curve (2) (GA) and by curve (3) 

(AB) in Figure 2.54.), or configuration B (corresponds to point B of intersection 

by curve (2) (CA) and by curve (3) (AB)). 

Thus, a shock wave is always propagated in gas "0", and a rarefaction wave 

or a shock ;/ave is propagated in gas "1", depending on the mutual disposition of 

curves (1) and (2). 

Let us consid3r the case of polytropic gas. According to (6.8.13) 

.v-prvirT~-tJ8*TS?y; 

We introduce into our consideration the quantity 

!  W  *S(S»/9  (1-Aa)1 4" »+ *i Ö + *i («- W   , » ■< 

where 

Fron> this we have 

P% 
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If h <h (V?< V}), then K(oo) > K(1) and K{0) is a monotonically increasing 

fuiction of 0. But if h > h (V0>V,), then K(OO)<K(1) and K(6) is a mono- 

tcnically decreasing function as 0 < 9 < DO. 

Let us consider the following cases: 

1) K(1) >1, K(<x»)2>1. Then K(Q) ^ 1 and ^(S0, p) ^ !^(S0, p) for 

all p ^p . In this case curve u = 4J.(S , p) lies beneath the curve u = •£. (S , 
o °   o o 

p) (Figure 2.54) and for any shock wave intensity,as a result of interaction 

with the contact boundary configuration B is induced, i.e., when t>0 two shock 

waves propagate to different sites from the contact boundary (Figure 2.55). 

2) K(1) ^ 1, K(oo)<£ 1. Then £ (S0Jf>) < fo ( S0. f> ) and for any shock 

wave intensity the flow when t > 0 has configuration A, i.e., a shock wave 

propagates in gas "0" (as, it does, incidentally, always), and a centered rare- 

faction wave propagates in gas "1". 

3) If K(1) > 1, K CooX KVÖ > V,;, then for some p = P the curves u = 

iy (S01p)  and u = ^ C30.. /^intersect each other. When p ^ p. ^. P, we have 

configuration B; when p > P, i.e., for sufficiently strong shock waves, we have 

configuration A. 

A) K(1) < 1, K(ov) > t ( V„ < )/, ) .    Then curves u = %CS0, f>) and u = 

lj> (S , p) intersect each other at p = P; in the region p ^ p ^ P the flow 

has configuration A; when p > P it has configuration B. 

Let us consider the special case of identical gases (V0 = V, = V )• Then 

^(l) = A^ra(A)*. ; (10) 

?  v" P Considering relation c = -~- , let us write (10) in the form 
r 

j/f(l)^/f(oo) = A. •■ (11) 
L—.   "..•■ P» 
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From this it follows that when the shock wave travels from a less dense gas into 

a more dense ges (K>1), then the shock wave is reflected in the less dense gas 

(we have configuration B). But if the shock wave travels from a more dense gas 

into a less dense (K < 1), then a rarefaction wave is reflected (configuration A). 

K*2: 

a) Shock wave 

H(1)*1,  K(oo)>t 

Figure 2.55 

b) Contact discontinuity 

This result can be compared with the conclusion in subsection 5 of sec- 

tion III, where the reflection of a traveling wave at the contact boundary was 

studied. There we obtain the conclusion that a wave of the same type as the 

incident wave is reflected from a more dense medium. Since the weak shcck wave 

can ue  fpgarded as a weak Riemann compression wave, then we see that qualitatively 

the reflection of shock waves end id ernenn waves at contact boundaries is identical 

in nature. 

2. Encounter of two shcck waves. Two shcck waves travel toward each other 

in a substance with parameters u - 0  , p and S , leaving behind them stetes 
c      o    o 
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u, = % (3,. P,)>  P.,» S-, ^^^ the left wave and UQ = - f^S^Pd Pe , S, 

behind the right (Figure 2.56). At the instant t = 0 the shock wavesencounter 

at the point x = 0 forming an initial discontinuity with parameters u^ = S^S«,,/3,) 

/», 5, (left) and u = -%(Sc,f>c\?0, 5a (right). For definiteness we suppose 

that p., >, p . (1) 

Here two cases are possible: 

a) Curve u - u = f (5„,p)  is always below curve u = J£f-5„,/0 (Figure 

2.57, a). 

b) Curve u - u = tyJ^cxP^   intersects the curve u = <^/-So,/0 at some 

point (P, U) (Figure 2.57, b). 

"»AA 

**&,% 

&U.S 
«6J 

•»?"'■• ^ 

figure 2.56 

In the first case only configuration B is possible, in the second, both 

B and A, however in any case a shock wave will be propagated in gas "0". 
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('.PS 

L 
Figure 2.58 

Let us consider more detail the case of the polytropic gas for which the 

intersection of the curves u = ^ ($ejp) and u. = u + ty  CS^/O -% (S^^fi,) 

is impossible. Thus we must prove the inequality 

iM'L^^M^^^M where p^po>po.    (2) 

formula (6.8. 

equality (2) to the form 

Considering formula (6.8.13) for «f (S , p) and formula (6.8.12) we reduce in- 
c o 

(3) 
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where 

i T   '—*-' " '-iiai*.5^ ~fi*£ :&*s^ 

I fö>*>"»$!fei Mt 
,-.> 

M'+ISS&L, >i tp>pj 

U) 

From this follows th9 equality 

Ci-tfA)*J-E*^ 

Allowing fpr relation (4.5.15) s 

and also consequence (5): 

Ali *■■• *HQ   ' 

let us transform inequality (3) to the form 

,(*,*„-1)»^ 1 (Af,-Af0)»(l-A + M«») 

(5) 

(6) 

(7) 

(8) 

Canceling cut of inequality (8) the quantity M by using (5), we arrive at the 

inequality 

(Mo~J? -^ (*i-Mtf[l-k+hMÜ 
M\ Ml-k+hMl (9) 

When M = M j inequality (9) will obviously be satisfied (this case corresponds 

to the encounter of equal-intensity shock waves). Let us shew that inequality 
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»5 
is satisfied for any M Z- M . To do this, let us transform it to become 

from whence it readily follows that it always is satisfied when R. ^ M > 1. 

Thus, in a polytropic gas only configuration B is produced in the encounter of 

two shock waves, i.e., when two shock waves meet each of them as it were ?passes" 

through the other. 

3. Union of shock waves traveling inthe same direction. In a gas with 

parameters p , S , u = 0 a shock wave travels from left to right with constant 

velocity DQ > 0, leaving behind the state u , f>0j Sc   located at the curve 

u= yo
(So> P}- (1) 

Behind the first shock wave, also with constant velocity D-], D > Da > Cco, 

travels the second shock wave, leaving behind the state u.., p., S located at 

the curve u-ü=   y (s . P), (2) 

passing through the point (p , <£c( S0,  ft > ) (Figure 2.58). At the instant of 

union of the shock waves an initial discontinuity is induced, which on decaying 

yieldsa flow with configuration B, if the point (p.., üg + <£ (Se , p, ) ) lies above 

thü curve (1) (in Figure 2.58 this case is shown by point B), and also induced 

is a flow cf configuration A if the point (p.., a„ + f0 CSC,  p, )    ) lies below the 

cvrve (1) (the corresponding solutions are noted by the points £>   and A1 in the 

figure). A shock wave will always propagate, however, in this case toward the 

side of gas "0". 

Let us consider again in greater detail the case of an ideal gas. The 

mutual disposition of curves (1) and (2) is determined by the sign of the dif- 

ference 

(3) 
1 A = y0 (S<, Po) + % ($, P) - vo <So. P)] 
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for the assigned restrictions p < p < p. 

Let us introduce the notations: 

U) 

'?£t-M 
■«*■ >■■■ 

:«•. 
'A-*'—ä.    JL = :M. 

«o (5) 

Here M   corresponds to the first shock wave traveling with respect to the back- 
o 

ground (0, p)and leaving behind it the state (u , p ); M is the second shock 
° o      o 

wave traveling relative to the background (u , p )  leaving behind it the state 
o  o 

(u..f P1)» M is the possible shock wave traveling relative to the background 

(0, po) and leaving behind it the state (u, p). Then the difference (3) is 

represented in the form 

Li 

A=d -*)c,M— -Ml -A)c0-1g- T(i rh)%—-. (6) 

From relations 

Ä^(i4-A)Afl_*, ^.«(i +k)W~M,, A„(i+A)Ai*:-r 
(7) 

follow 

(I+AJAP-A Af'+AuJ-A 

»+•**?-.S^S''   °r '»*-iH5^r (8) 

Substituting (8)  into (6), we get 

r 
A> 

4   '4    *0     A-    *> '        «o (1+A>A*3—* Ä.I 

(?) 
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Using relation U.5.15) (cf Figure (7.2.6)), which in this case can be written 

as 

g _[(!+*) Ml-~hf\(\ -k)+hM\\ 
4 M0 

(10) 

we obtain from (9) 

A A^(l     h)c\(Mo-M)(MMo+l) |  rtl-m-ftA^M'-A^ »]   _   ! 
°L MM, T      M,V(\+h)Ml-h      M]        I 

t 

I   MMV{l+h)Ml-k MM,     J 

Since, by (4-), M >M   > 1,  then we see that the sign of^ coincide with the sign 

of the expression 

(l-h + hM§(M + Mtf       (MM. + lf 
MlM2[(\+h)MZ-li\ M2Ml 

(12) 

Finally,  here substituting M2 from forrcula   (8), we get 

'"' "   f[l-h+hMl] (M + Mtf      (MM0+lf 1 

= sign [M'(M-\~MoY [l+A (Af2-1)] -(iMAf^-l)2 [M3+h (Ml-1)]} 

and so,   if 

= -$lgn(AIJ- l)(Alg— l)[(I -h)M2-2hMMo-h}.    (IS) 

(1 — A) M1 — 2hMM0 — A > 0. (14) 
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then^< 0, and we have configuration A; but if 

(t_A)AP-2AA«A!0 — *<0. -\ (15) 

then we have configuration B. 

It is not difficult to see that when the second shock wave is sufficiently- 

strong (M»1, M 2>>   1), inequality (U) is satisfied and we have configuration 

A. In order for the equation 

(1 - A) Af» -^2hMM0 - A = 0 T (16) 

to have the roct M(M >M > 1), it is necessary and sufficient that the inequa- 

lities _    
i'"*  i  * ... I i<Mo<-fr^; (17) 

or h ^1/3, i.e.,V^2. 

to be satisfied. If 

(1 - 3h) > h, i.e., h <-4, V ^ 5/3.    (18) 

then condition (15) cannot bs satisfied for any M > 1, and we will lower the 

configuration A. But if  V > 5/3,     and we may also have configuration 6. 

iMore exactly, when M ^ M. , where M.  is larger than M , the root of equation 

(16), or what amounts to the same, when 

"* 0+A)AlJ-ft" 

we have configuration B, otherwise — A. 

4. Interaction cf strong discontinuities in an isothermal gas. For the 

case of an isothermal gas, analysis of the direction of discontinuities is simpli- 

fied. Actually, an isothermal gas can be considered as a polytropic gas where 

V - 1. 

For isothermal gas we have 

(1) 

(2)' 
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Let us consider the problem cf the incidence  of a shock wave against 

a discontinuity contact  (cf Figure 2.54). As we show in subsection 1, the 

choice between configuration A and B is determined by the sign cf the difference 

A - %(P)~ %(p) given the condition p >p . When Ä<0, we have configuration A, 

and when^>0 — configuration B. 

Taking (1) into account, we have 

®s 
(3) 

Since p/p > 1, then configuration A obtains where c < c , and configuration B 

— where c„> c . 0 '   o 
Taking the relation  p = Q

C
 f   =C*/J.        U) 

into account, we get the result that we have configuration A  where p  < /*, and 

configuration B — where Pa > Pe.    Its result also follows directly from the re- 

sult of subsection 1. 

When solving problems of the interaction of shock waves, we must bear in 

mind that c = c . 
o   o 

Let us initially consider the intersection of shcok waves traveling headon 

toward each other (cf Figures 2.56 and 2.57). Using the notations in subsection 

2, putting h = 0, we have 

;&iii-l,£-*f.   £L=M\ -*©*» fa 
.*•• ■   {..• p* ■■•      P*   • ■»,<■< 

(6) 

The condition for configuration B is of the form (cf (7.2.3)) 
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from whence we have   (M„ + M )(M + 1)(M - 1) > 0, 
1   o  1      o 

Thus, we also have configuration B. 

From the relations 

(7) 

(8) 

we have 

Sf^: ■ BBS M& 
p\ P* 

MA-^A- %=ik*K: 00), 

From the relations 

*»« 

.,(12) 

and taking (10) into account, we have 

.MOO-^I+TOTT]
00

- 
(13) 

(H) Hence it follows that      K = 1. 

Equality (I.4) signifies that after the wave encounter, each of them retains its 

intensity: M = M ,  M = M ; (15) 
* 0   c'   1   1 

and the relative velocities of the shock waves are preserved: 

f ßI = ön-«o = 0 + KV D0 = Dt-u~ (16) 
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where D £ n-  right/ is the velocity of the shock wsve traveling to the right 

after the encounter, and D, £Ji=  left/ is the velocity of the shock wave travel- 

ing to the left after the encounter. 

Thus, working formulas for the interaction of colliding waves are of the 

form 

(17) 

where p and u is the pressure and velocity between the fronts of the divergent 

waves. Their velocities are determined by formula (16). 

Let us consider the conclusion of problem of the union of waves traveling 

ir. the same direction. Condition (7.3.H) is satisfied when h = 0. Consequently, 

for the case rp  isothermal gas when the shock wave traveling in the same direction 

merge, we always have configuration A. 

VIII. Interaction of Shock Waves With Traveling Waves 

If the shock wave traveling at a constant velocity with respect to a 

constant background enters a traveling wave, its intensity is changed. In the 

case of a polytrcpic gas the entropy behind the wave front becomes variable, 

which complicates analytic examination. Therefore we will confine ourselves to 

a consideration of barotropic polytropic gases, in particular, an isothermal gas. 

Let us initially make the observation that is valid for 8ll barotropic poly- 

tropic gases. Suppose that a shock wave is traveling with constant velocity 

with respect to a constant background (p , f>  , u ) from left to right, leaving 
'ooo 

behind it a constant background (p., p   ,  u.) associated with (p , f*  , u ) by 

Hugoniot's conditions. At some instant t the shock wave enters the region of 

distrubed motion, which can be either e traveling wave, or a region of inter- 

ference of traveling waves. Then the motion we just formed behind the shock 
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waveiea traveling wave until a new shcck wave is formed in it (Figure 2.59) 

KEY: 

a) Shcck wave 

KEY: 

Figure 2.59 

Figure 2.60 

a) Shock wave 

1. Interaction of a shock wave with traveling wave in an isothermal gas. 

Suppose a constant flow (p , u = 0) adjoins a rarefaction s--wav3 

r=r =u+cln/3- constant 
o ' 
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s: 

A shcck wave travels at constant velocity D with respect to a constant back- 

ground^ , u = 0) from left to right, leaving behind it the state 
O   0 

(2) 

At the instant t - t the shock wave enters regicn III cf the traveling wave 

(Figure 2.60) where pressure and velocity increase in opposite direction, i.e., 

In regicn III cf the traveling wave, Hugcniot■s ccnditicns are of the 

form (cf oeotion Iv, formula (4.6.13) and (4.6.14)) 

>-_r+=<p(A0. s--s+=$(M).  - (3) 

Af = -^1,  <p(*) = c(*-i-+In**). (4) 

k_ 
t(x) = c(*-4--ta*»). 

where D is the velocity cf the shcck wave; the quantities with the sign "+" 

denote the quantities in the wave III ahead cf the shcck wave front, end these 

with the sign "-" — the variables behind the front cf the shock wave (regicn 

IV). 

In the case under consideration the c-weve  r~ = r , r = r0>  (5) 

Fror, equations (3) snd (5)it follows that M is constant end equal to M. Thus, 

the amplitude cf the shcck wave is invariant and the quantities 

£• £• »tX; (6) 
retain a constant value at the wave front. 

In the regicn IV we have a rarefaction (compression) s-wave, if in 

regicn III the Riemann wave is a rarefaction (compression) wave, actually, 

since u" - u1 is constant at wave front, then 
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I.      u-—e\du-      (.      «+—e\d»+ 
l1      D~}-dr-[l—D~)ST' 

(7) 

such that the derivatives 3u~/^x arid 5uT/Öx (in the regions III and IV)  are of 

the same sign.    Since in the s-wave with constant invariant r (in zone III)  the 

hiemann relation x - (u - c)t =  f(u)(8) is valid,where f(u)  is some function of u 

and at the shock wave the relation 

-g- = D = u-j-CAI0 = a+ + D8. (9) 

is valid, then by comparing (8) and (9), we obtain a differential equation for 

the trajectory of the shock wave: 

'-[T-^+^-ÄZT^: do) 

In the particular case of a centered rarefaction wave when the following relation 

is valid; 

*-rf = «-«. (11) 
t—ii      , 

where (x.,, i )  is the wave center, we can readily obtain the integral equation 

'***, (12) 

Clearly,  a  similar analysis was obtained also for the case of shock wave 

traveling  from right to left and encountering a Riernenn r-weve. 

For the case of a rarefaction wave {~~^ >£, -~ < o ),  the shock wave pro- 

ceeds "under the peak," by accelerating;  for the case of a  compression wave 

(j7<ö> 4y >° )  tfte shock wave travels "into the peak",  slewing down.    This 

pattern of interaction  can  be realized in the problem with two pistons;  first 
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the right piston retreats from the gas, forming a rarefaction wave (r = constant), 

then the left piston advances into the 'gas, forming a shock wave that travels 

into the rarefaction wave. 

KEY: 

a) Shock wave 

Let us now consider the problem cf the interaction of a shock wave travel 

ing to the right with a Riemann r-wave (s = s = constant) (Figure 2.61). In 

this case the pressure and velocity ahead of the shcck wave increase  in the 

same direction (J^JI >  0). 

In formula (3) we must put r" = r = constant, s+ = s .       (13) 
o 

Then for the case of rarefaction(compression) wave in region III, we have 

if* 
IF 

(H) 

and from relation (3) we find 
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(15) 

This means that for rarefaction wave III, the reflected wave IV is a 

compression wave, for compression III wave IV is a rarefaction wave. In the first 

case the intensity M of the wave is reduced, and the second — is increased. 

/KEY on following page/ 



* 

Kitt: 

A) s-wave 

The trajectory of a shock wave is found on analogy with the foregoing. 

This pattern can be reelized in the problem with one piston: the piston initially 

retreats, forming a rarefaction wave, then advancing into the gas, forms a com- 

pression wave (shcck wave). 

2. Asymptotes of interaction cf a shock wave and a centered rarefaction 

wave. As a result of interaction of a shcck wave with a rarefaction wave III, 

after departing from it against the constant background V, the shcck wave acquires 

instead of its initial velocity D , the velocity D... Clearly, the discontinuity 

in velocity D^ - D of a shock wave does not depend on the entry point (x-j, t..) if 

there is smooth flow in the region IV. Suppose the entry point (x^, O draws 

nearer  the center (x , t ) of the wave. 
o  o 

Then the difference D-, - D remains unchanged. If x = x , then we cm 

speak cf instenteneous interaction of shock wave with concentrated rarefaction 

wave. In this case we have a longitudinal discontinuity characterized by the 

states (II, V). We set up the problem: will the velocity D.. of the shock wave 

in the problem cf discontinuity decay coincide with velocity D, after the exiting 

cf the shcck wave from the rarefaction wave III? Let us first consider the case 

of the cevt.ered rarefaction s-wave (Figure 2.62, a). 

States II and V are defined by the formulas 

Sj-Hl=c[/Ä_/k]. _.s 
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Let us calculate the discontinuity decay (p~, u2), (pe, u,) using the 

(p, ti)-diagram (Figure 2.63). In this case we have configuration A. The quan- 

tities u and p are found as the result of solving the solution 

■ l  • 

M — -TJ-—Ia~=t m p, 

(3) 

where we put 

P* *Pi U) 

After uncomplicated transformation, from formula (3) we have 

V 1&L » M--jg + in M*'-. slljji = Mo —jjr + !n AO.1 (5) 

From whence 

Af — A** 
(6) 

Thus, after the interaction cf a shock wave traveling to the right with an s-weve, 

it acquires the same velocity as resulting from instantaneous interaction the 

shock wave and a concentrated rarefact^cn zone calculated by the discontinuity 

decay formulas. This agreement stems from the fact that reflected wsve IV is 

a rarefaction wave and as t —»-co no singularities are Induced in the mction 

behind the wave front. A similar pattern obtains in the interaction cf a shock 

wave traveling to the left with a rarefaction r-wave. 

(nu) 

fand 

^•tite       toft» ,  .-.   A   i 
figure 2.63 
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Here let us consider (cf [UU)  the interaction of a shock wave traveling 

tc the right with a r-wave (Figure 2.62,b). 

In this case shock wave passing through region III acquires a velocity 

that is different from that resulting from instentaneouo interaction of c shock 

wave with a concentrated rarefaction r-wave considered as the decay of an arbitrary 

discontinuity. The reason for this is the initiation cf the shock wave traveling 

tc the left from compression wave IV and then of a rarefdction wave traveling tc 

the right and overtaking the shock wave traveling toward the right. 

Figure 2.64. 

The shock wave appearing, by varying its velocity, changes the invariant 

r. These changes are transported along the r-oharacteristic and, arriving at 

the front of the shock wave traveling to the right change the velocity of the 

latter by inducing a change in the invariant s. 

Changes in invariant s at the right wave along the s-cheracteristic are 

transported to the left shock wave, causing a change in the invariant r.  From 

interaction cf the rear fronts cf the right and left shock waves a oertrir. symp- 

tctic regime is generated. The limiting configurations and flow coincide with 

the configurations and flow resulting from the decay cf discontinuity II end V 
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(figure 2.64.). 

Let us consider front interaction in deteil. We introduce the notations; 

rT, s-r are the values of the invariants in I; 

rTTTn: sTTT are the values cf the invariants at the leading front of the 1x1    111 

wave in III; 

rtf, s 8re the values of the invariants in V; 

rII* ST — values cf the invariants in II; 

r, s — values of the invariants at the rear front of the right wave; 

R, S — values of the invariants at the rear front of the left wave; 

D — velocity cf the wave traveling to the right; 

D — velocity of the wave traveling to the left; 

B-»    >l; ä=Ö>I, M, 

U , c — quantities ahead of the front cf the right wave; 

u, c — quantities ahead of the front of the left wave; 

r., s., M — values cf r, 5, M at points Q.; 1  1  i 1 

R., S., M. — values of E, S, M ~t points P . 

P  P  P 
2' 3' A'  ' 

The following relations are valid at the front (Q , Q1, Q , 

(7) 

and correspondingly R-rn=-y(M),   S —*,i = -q>(Äf), 

The arcs   (Pv  />,). (P», PJ  (P„_,. P2l),   «?,,<?,), (<?,. <?«). ...- - 

■ •■• (Qit-v Q11)        correspond to the sections cf the trajectories of the shcck 

waves when they are traveling at constant velocity; the arcs (P0. />,), (Pt, Pj),... 
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correspond to the sections of variable velocity. 

The following relations are valid: 

?*■?•*'   sW-^.-'J (8) 

At section Q Q , we have 
o 1 

" Mt'<"fy-} %'<£»„$ (9) 
■-•--—■■ 

Taking (7), (8), and (9) into account, we have 

dfe**     Äf,>**o.  Ä,'<ÄorJ (10) 

Thus, the left wave is strengthened at the section PJ3..» and R end S are weakened. 

By virtue of (8), at section Q0Q we have 

i.e., at section Q„Q_ the right wave becomes weaker. In the following the pattern 

is repeated: a wave traveling to the left is intensified, and that traveling to 

the right is attenuated; M. monctonically decreases, M. monotonically increases. 

Let M,^, M^xj denote the limits M. corresponding to M, as i —*~<?o. By 

virtue of (7) end (8), the following relations are valid: 

^^y^pCMJ, s-Sy=%(MJ. /?-r„=-q)(iW00), 5-s,,—-WAQ.       (12) 

Formulas (12) are formulas for discontinuity decay for the states (II, V). Thus, 

we approve the coincidence of the asymptotic regime cf interaction of r shock 

wave with a rarefaction wave and a flow derived from the discontinuity decay 

(II, V). 

Note that for sufficiently large amplitude of the rarefaction wave III, 

the shock wave entering into it can be converted intc a rarefaction wave, and 

configuration B can be replaced by configuration A. 
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3. Interaction cf shock waves with waves traveling in barotrcpic pcly- 

trcpic gases. In the case of taro'-ropic polytrcpic gases, Hugcnict's third 

condition is replaced by the condition of entropy constancy. 

Hugcnict's ccnditions for a shock wave traveling to the right become 

£L = (l+A)Af2._ A. (2) 
A 

4=— =(lf*)4-*, (3) P?  />« 

*-(**f-(fc)*-J^Ä**l*- -» 

Let us  initially consider the impinging of a  shock wave traveling from left to 

right at a rarefaction s-wsve.    Fror conditions  (l)-(4.)  we have 

r,V-r0 = Co[(l-A)(Af0-^r)+7|T(^-l)]=r0F(Af0).      (5) 

rff-*o = <o((l ~ *>(*- iJ-^Tfe - »)]-<*W     W 

Since F(M ) in formula (5) is a mcnctonically increasing function of M , and 

since c satisfies the condition 
o 

and 

*i=s_J^i-^.<0   (r = r0 = const) (7) 

then 

dx (8) 
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i.e., the intensity of tne shock wave becomes greater. 

Cleerly, behind the front cf the shock wave we have a Riemann s-weve 

(r - r ). V.'e establish the sign of 2u/Öx or, which amounts to the same thing, 

the sign cf ds/äx behind the shock wave front. 

From relations (1), (5), and (7) we have 

do, 
dx H'+*(l+*)33M*-i)]*- (9) 

Since the approximation of the barotrcpic gases is laLidforM close to 1, the 

expression in the brackets is   close to 1. Hence ue have äu-,/6x>0. (10) 

Thus, where IV is s rarefaction wave (Figure 2.62, a). 

Let us now consider the impinging of a shock wave against the rarefaction 

r-wave. Then in (5) and (6) r.. - constant, s = constant. From (5; we have 

(11) 

(12) Since dcjdx ^>C, then from (11) there follows 5M /Öx < 0, 

i.e., the amplitude of the shock wave becomes weaker. Let us determine the 

sign cf 5-7' — ^ £$■'      behind the front of the shock wave. 

, G(M ) is a mcnctonically increasing For sufficiently small M - 

function cf M . From (11) it follows that ^s./^x <0, i.e., the reflected wave 

IV is a compression wave. 

Thus, we have seen that in the barotrcpic approximation, i.e., for suffi- 

ciently spall JM • 1j, the qualitative pattern of interaction is the same as 

for an isothermal gas. 
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Section IX. Analytic Solutions of One-Dimensional Gas Dynamics 

1. General integral of an isentropic cne-dimensional plane flow. A one- 

diraensicnal plane isentropic flew is described, as we knew, by equations in the 

invariants (cf section II, subsection 7) 

where 

*+[4i+K(r_5)]*=„. 

r^a-f- J cdlnp,     s = u— j cdlnp, 

(I) 

(2) 

and x is an Eulerien coordinate. 

The function K(r - s) -  c is associated with tho equation cf state 

by the relation 
P = p(S,p) = F(p) (3) 

(4) 

where 

g^ywTti.,  A=2jy^(p)^-. <n 

3y the hedegraph transformation,   system (1)   reduces to the linear: 

dx 
"57 

-[4i+IT(r-.)]&«0. 

Let us rewrite system (6) in the font: 
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■ ■ 

-> 

£[,_(4i_,)(]=_,(._r). (7) 

From equation (7; it fellows that the expression 

dW = [x_(L+L+K)t]dr + [x-(^-K)t]d* (8) 

is the exact differential of seme function VJ, which we will call the potential 

function. Frorr. the expression for the exact differential we have 

f:+i_/c)(=^ TT- 
(9) 

From equation? (9), x aid t can be expressed in terns of VJ , W : 

ay  air 

2/((r-s)-' 
(^r-'lTT-^'-i-') "5T 

2/C(r-s) 
(10) 

By virtue of relation   (?)   and (1C), VJ satisfies the third-order equation 

w      ("f ~y) f jg.    w\ 
"aTTiT ~ 2K{r-s)\dr ds ) 

(11) 

Thus, the potential function satisfies the special Jerbcux equrti.cn (cf Chap- 

ter Cne, Lection Xil, subsection 3) 
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where we put 

&ti 

/,_! 
, = /■. x3 = — s,     f= -w (13) 

It is net difficult tc see that equation (12), by the substi ituticn of 

W = yo. <p = cJ/l9)de. Q = Xl + x2, 
car. be reduced to the fern 

d'v J^; = F(x1 + xJv,     F = p-f. 

(14) 

(15) 

Now let us consider these equations cf stete for which the total integral 

End the Kiemmn function are represented in closed form. Let us begin with pcly- 

trcpic gases for vhicn p is an exponential function of f> ; 

In this case 

K(r-s) = c = *-f-(r-s). 

(16) 

(17) 

f'rorr whence 
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The following property of the reduction is established by Darboux end 

enabling us to advence from cne m value to another is valid for equation (12) 

with f = - --r ~ „ - 

If W is the solution of equation (12) when f = - -    - , then 

is the solution of ^equation (12) when 

(/ -35T5T-. ■f--«+1' j (20) 

When V - +3> m = ° and w satisfies the equation 

■^? <>• (21) 

which has the familiar general integral (J'Alambert's integral) 

WM*P(XJ + 0(XJ. (22) 

The following V values correspond to integral positive values of m: 

2* + 3.' (23) 

where m = 1, V = 5/3 (ironoatomic gas), when m = 2, V= 7/5 (diatomic gas), and 

so on, By virtue of the property of    reduction, corresponding to these m and 

"Y values is the general integral 
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where the operator L is given by equality (19). 

Let us show that the expression (24) for the general integral can be trans- 

formed to become 

Let us assume in the following that F'(xJ = <£> (x ), G'(x ) = ^(x2)« (26) 

Representation (25) obviously follows from (24.) when m= 1. Ey induction, let 

us prove the equivalence of (24) and (25) for any m. Suppose 

Ax? * ix 4.x \m 

Let us show that ' { l^ *> 

Using the assumption (27), we have 

(29) 

After this it is not difficult to see that equelity (28)  is  equivalent to the follow- 

ing: 

(6W)<m) ■= 8//"'+mtf"\ ( 3Q v 

where we assume, that for fixed xp, 
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Thus, we have shown that the general integral for equation (12) where f = 

m 
*, + *; 

is of the form 

(32) 

If we take x , x to be complex numbers, and W, $> , £  to be analytic functions 

of their variables, then by employing the familiar Cauchy's representation for 

derivatives of analytic functions,  formula (32) can be represented as (cf /?2/) 

W{xu ^^sr,^^+^ggr: 

(33) 

In formula (33) D. = ^/6x.; the contour C is taker; in the plane of the complex 

variable x ; x is considered as a complex parameter; the contour C is taken in 

the x? plane; x1 is the parameter. 

Formula (33) is meaningful also for fractional m, if in it we replace 

(m - 1)1 by f (a); then operators Dm" , D^~ take on the significance . f frac- 
1    *~ 

tional derivatives first introduced by Riemann /20/ and Ll^aville ^21/. 

Let us now proceed to the problem of defining the Riemann function for 

equation (12) when f --  y —~7 

We will employ equation (15), which at this f value becomes 

d*v 

<Ei«ü 
p-c,  e = jc, + x,. a = m(m — 1). 
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For the Riemann function R{ %   , %  ;  x , x ) of equation (34.), the following 

representation is valid (cf Chapter One, Section XIII, Subsection 4.): 

where 

and 

, _(*|—Si)(*i + t«) /3fi> 

^s- 

S«*f* P.Y. x)-l + ^-*+... 

, a(q + l)---(a + *-l)P(ß-H)..(ß + *-1) „t ■    r3« 

is the familiar Gauss hypergtometric series. 

Note that for integral m series (37) becomes a polynomial. We can shew 

that for integral m equation (34) admits cf an m-th order differential relation- 

ship and, conversely, if any equation of the form (15) admits of an m-th order 

differential relationship, then F(x^ + x ) satisfies the equation among whose 

yriC m. - I) 
CZ, * Xi.)' 

an example. Let us consider equation (15) admitting cf a second-order relation- 

solutions we have the function -^—-y- z  . Let clarify this assertion with 

ship.  Then, es was shewn in Chapter One, Section XII, F(x.  +  x ) satisfies the 

equation 

£**%,>. OB) 

which in our case becomes  FF" - F'2 = F^. (39) 

where the stroke denotes a derivative with respect to ß =  x + x . 1 12 
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The function 

F(6) = - 

satisfies equation (39) when m = 2.    The general integral of equation (38)  is of 

the form 

)+C2 = 

i   ... Yct+v-iTGr •In 
V~£:     fCl+2F+Vc7 ' 

2 .   _/C, + 2/J 

C, >0. 

C,<0. 
(40 

lising the arbitrary constants C., C , using function (40) we can approximate func- 

tions F(9) and obtain good approximations. Thus, G. A. Dombrovskiy obtained 

approximations of Darboux's equation (cf £22/). 

In the next subsection we show how a knowledge cf the general integral of 

the equation enables us to solve several problems in gas dynamics that lead to 

the interpretation cf simple waves. 

2.  Problems of the interaction cf elementary solutions. We consider two 

probte ms: 

t.) the interaction cf two Pdemsnn waves; and 

b) the incidence of a Riemann wave against the interface of two media. 

Suppose at instant t = t , a centered r-wave begins to propagate from the 

point A - x , and at the instant t -  t a centered s-weve from the point x = x1. 

We can essurr.e that the centered waves result from the departure of a piston from 

a gas with constant velocity (Figure 2.65«). 
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Figure 2.65a 

XiY: 

1}  Line of left piston 2} Line of right piston 

9r 
> I* »III 
fill 

0 f? 

5»J> $-Jj 

Figure 2.65b 

In zone I-V the solution is of the form: 

I:     r — rv   s~ sg.   r, < r^ 
II-    /■ = /■„.   s = 5,.   l|>»o: 

///:  H=U0=0. c=e^ r=r0-. 

IV-      ***  -a ."* — *' 

—rc0. S = V 

(0* 

(4) 

(5) 
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It icce ¥1, iÄic_ is t£* icte cf irterfer^cce eci is «arcsc ir. it* rzi: 

regle F5EÄ of täe r, «-place (figcre 2.55h*:, tie fclicscis^- rapresoBtetica is 

Tilid: 

c^ 

«feare V satisfies is-s ecTse-.ir* 

*f    m *-t 
r_-_ 7*5=5 - 

Gsicg (4) aoi (5), we cat iupcso bcocäty   cccciticts cccstitetiif lae Ccnrsat's 

profelse for 'rf it täe aoedretgle FiT£ et The sire ?S asc ?i: 

(?;■ 

Let as solve this probles for V= 5/3.    SB gecerel irtegrai zT eqosticc  [7,  be- 

coses 

it 
L/Mm. 

r—s 19, 

BouEdery cccditicns (8/ lees tr the relations 

-.*:; 

Let us suggest for simplicity that  t = 0, i.e., the retreat cf tag zistcti 

occurs sisulterecusly.    Then releticts (1C)  beccce 

«rtr-*f'»+fCi|^-/(r^-*(rt-j3«. 
ir ~Qf&P- /(*-) -g(y~ -**<?—&       00 
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i.e., fir; aci gisl ere secc&i-craer poljnsalals cf iäeir variables.    Ttszs, 

cctsiierirg the! "»" äefitec vitä tie» ercsrety ap ** '<&- feStiiiTe catstact, we 

Setisfyir^ SXE£»±ST7 caaiitiaBs i&,, we fire 1, J, t, 3, afcteiriif fajteilj fcr 

* ÜK egrresaite 

Foraolas ic.. ar<i ilj.  ■äefice iJae selctlra: inc.« H.    It ^a* rate« "T «c: 7" we 

ae*e try-.Te*;-y Jdanacr uttes, ilretiT oaz-tecteref.  -äsirii ere iiffit-,^.-. :- salro- 

lat*. 

&w lei ES cacjfiier »i» iriereriiat cf e trewiieg «BST* vita carter! 

fceasdarj.    Jrcm- ".3? point i = Zt t = T e cesteiciü USMXE'S s—WST» is- prsj-tfet-es, 

uräich strikes    "s* c-ariert fecKafcy i". * -  1 et  ".be zeit."  z = -s  ;?:rzr* 2.-at*  . 

*e C«E  rr-cE sir»:- vie ra.5* «set. bets s&edia ere pel/tropic ftses wilis   V =  5/?.     ~e 

pe"err. cf acticc is inscribe: 'by täe fcnnules: 

reritc I: » -    - - r = f, * = «,= —r,.  c — «^. 5 = 5+  « = ^=ft 

rsgita III: /»V *=^%: ^ i"^. 

r = r.. $■= $, JF— r,. c = cs. 5 = 5^   

-i is i^e r^ficr cf fxterferetce cf the incideat    sri reflect»:: »-eTes, 

regiers II €T.i Y ere trerelir»  wsYes, tri regicrs 71 ?rc 711 ere -jtiftra flc» 

V£T*S. 

Let us first of all  ieiernine the flew it rericr. It   'Figure 2.66c  . 
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Zsizf fcmcLles (6), «■« cer iapcse for the T-mciita ii{r, s^  the bctndarj 

cecciiitrs at th«- liae AC: 

äecce, "CT msir^ the fcrwiLe for tti geserel ittegrsl (9), we cbteis 

r*toK~fcjttfS#>*'*ä -r. 

'ircm «ssoetict ("S9i it fellows the! g{s*. is * llte»r fatctien cf s.    Sioce * is 

iefisec with es erccrtcj np 1c the eMitiTe canrtesi, the STST f(ri * gis; 

cooteic the terw C-ir - s    •iii ertttrerj cetstett C. 

t 
** i"N<*      r ,-f ;. •> 

*     ' , 

»3f-ire i.ec* *ir-T* I.-cct 

5y 5-e*et".ir^- the encrteci  C,  *« res pat t,s   -  readiest 

;   ::. «e r^t„j gei 

' rir. ij5=^V-      /W-OL 

Jrsr — C51S£ 

Z 

Sew le: 

re   iri.i^l'.v   ;e 

cf L'.Ttrie-.*. 

-.15 ct-rizer ibe bcaciexj ccc-itics cf the ccrtect IcwiitTj ir. 

Rise i. lire ü it "he hritfrefh plate.    Sciltf ".he «estate/ 

-  r«  tc the left cf ic-j^isrr,  frcm tie ccoiiticcs ft"  the 
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r 

ccctaet bcstitrj «e fici thti zse :r«^£.tiiies r, r et the right siäe cf the fccim- 

sery ere essccietec by the lireer reletias 

Äfe-T^.    -(4f- (*1) 

where i^j, A, ere ectrqpy cccstects cf the geses tc the right, cod tc the left, 

respeciirely cf the bcittiery. 

Tie bcraciery cceditica: et i.3 ie the x, t-pleoe is af the fern 

ix/it= {r-  sJ/2. 

Csirg formdes [6J sri (112 f we get 

+ »-e)(r - ,)dr„+rj + r. 

—40* 
r^A = 0.   (23) 

ifcEce, cctitg thet from (2i;  it fclicws that 

'-«-CT*'-'* 

ve erteil et ec^ticr for f(r;: 

vhese eersrel irtegrei is cf the fcrc 

--nere C.,, C, ere arbitrary rocstents, ecd   X,,A_ are the rc-cts rf ti 

tsriitic equeticr 

A*4-x(3 — 2x) X^h 3(l^-x) = 0. 

The cocstects C^, C ere ieterained fron the cocditiccs 
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J chsrec- 
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I 

; 

/W-=C1(r,-rJ
1' + CI(r,-rl)

l' = 0. (29) 

00) 

*e ccte it cc«cciusicE last the passing ware II*  is a traveling rare- 

fecticc v£?e; the VET« ¥ esc De either a rerefacticr. vave, cr a ccarpressicc VST«. 

Jcr the case r- < r_ «e heve a rarefaction vare, &c- ix the case r->r, 

— e ccaicressict: v*Te. 

jss shcv- fcy ^he irTesligaticrs ir. Secticx Ill, sutsecticr 5, tae reflect©;: 

v£Te ¥ vili be e rarefaction «IT» «öen Ji>"i ace e ccrpressicc vaTe vheEji<*- 

Fcr the case X>'s  *Q« regicrs II* etc ¥ -ill be tue rerefacticr ira\es and the 

resulting sclucicc ss h —*- C will teri tc the scluticc cf the ccrrespccding 

prellet cf discontinuity lecsj (cf £2cticn Till, safesecticn 2], 

This sclutioE vac shear, us irr li. K. .^EuchiE»:. 

The general solution tc the probier if the ir.ciaierce cf a Äierarr. ve~e 

i£ = ir.£t the interface of tve 3ieti£ Is tc be found ir the work by laut £22/. 

3. rlare cne-r'rersicnal flcvs vith 7ariaL-Ie entrcpy.    The jfertin rethed. 

jfertin  »cf iTJts.  succeeded in reducing the equal ices cf gas cyr.arlt-s tc  the 

Monge-Aspere eca&ticn    end then »as able tc «aplcy the setaec cf the iEtereediate 

integral  icf Chapter Cr.e, Section III]   arc to cbtain ir. this -ay £ generalization 

:f .-.ier.ar.r.  Lr.Tsricr.-.s  fcr '..-.*  ~^se cf :Tr.   -ith varieds  =r-.~-y. 

further investigations cf >fertir. /25/, Ludford /2c/, and Ta. S.  tfv'yalcv 

/27/  effcrdec a tctel _ei.ersrir.et.icr. cf the class cf equations cf state and er.trcpy 

distribution functions fcr "which the scthod cf the interreaicte integral is 

applicable. 
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['-: 

»s «ill csgir. frcs. eqroeticcs in Lefrengisn cccrdinstes 

du^t    +  ^p;£q     = 0; 

si Zl/d*~ -Ju/Zq   - C,        b)   ^Sydt   =0. 

CcrrespcciiE£ tc ecjasticns (Is; sea (1b) ere the pcisctisls   ^   end   ^   (cf 

Chapter Cne, Secticc ¥, subsecticc 3): 

(ft 

.%rtic Intrcduces täe pctectisl Fraction £ by nesns cf the equality 

<=a4r+f#=4fc+tf(0». 

«■'ret equality {^, ^2 hsTe 

(4; 

*« öf 
= i 

** = iv*r + Z„4*.    * = l«^+^,4f: 

op     »f 

5F = W 

(5) 

(6) 

Substituting 16;  intc {2-, ve fled 

(9) 

ir.e ccr.iiticr cf ^he eiset differectiel fcr equaticn {?/» with (?)  ttkw ir.tc 

£'.ccjri, lea^s tc the iirr.ge-.rxpere equation fcr the function cf E, • 

(1C) 

/cr a certain equation cf state V = V(p, S}  and fcr assigr.ed entrcpy distritu- 

tior. S - S(q)  in the right side cf equation (1C), we have the specific function 
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If 

and equation (10) takes ja the forn cf the equation 

tu) 

(12) 

which we studied in Chapter Cue, Section III. 

Mote that the trace of p aEd q as «pending variables signifies thet p 

is cot a fuccticE of q or, which aacunts tc the saice, of 5, i.e., the therac- 

dynaaic flew parameters constitute a two-diEensicnel aanifcld. 

The exceptional case when D = p(S) will be treated by us later. 

Martin's xethed consists in seeking a family of solutions cf equation 

(12) with a one-functional arbitrary choice satisfying the additional relation 

(13) 

Relation (13/  is the" intermediate integral of the ffcnge-Aspere equation (12). 

Clearly, equations (12) and (13)  are coapatible only for these specific 

function f(p, q).    A cccplete analysis jf ccupatibility Bade by Martin /2^/, 

Ludford /26/f and independently by Yu. S.  Zav'yaiov /27/ shewed that ir.tercediate 

integral exists for the following functions f(p, q;: 

*-*'^ Ig ^"ttf'.f; t * /j=-fto—U; 

f~ Of.5)«rP<l«iA-harfX 

In the first case 

In the second case 

t=a^—a,«±tf(a,/>+arf). 

(14) 

(15) 

(16) 

-t-S-'i+«y—»+^±i(fjg-). 07) 
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In bcth cases g(G)  is associated with ?(G) by the relation 

Let vs consider the case of the pclytrcpic gas when 

(20) 

If entropy S is constant and f is a functicn solely of p, then we can use the 

representation (M) when d. 2 -■ 0.    Comparing (14) and (2C) we find: 

l»C3pFi*<   3f*'^V?*V^"-^ can 
Then we have | i    -  u 

•ii£--l#-§^. .'•;*     • (22) 

i.e., the intercsediate integral is ncre other than s Bietern invariant.    This 

justifies the terse "generalized Pdesann invariant1* introduced by Martin and 

Hudford fcr intermediate integral (13)  cf equation (1C). 

Now let us consider the case cf variable entropy.    We will shew thai. 

sacng the flows with constant Rienann generalized invariant there are flows 

adjoining the quiescent region acrcss tht: sheck wave.    Let us use representa- 

tion (15),  (17)  for this purpose,    '.ie «ill assume that the shock wave travels 

with respect to a zero background (f   ~ 1, uc = C) end is strong, i.e., fcr- 

Eulas (4.7.1)  - (4.7.4/  are valid fcr quantities behind the wave front: 

where 

•y+1 Y-*-l 

Y + l 

dt        di 

(2$) 

(24) 
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Using (18) and (19), for A(S) and g(0) we obtain-the expressions 

«here c is soae constant, at.   , aL    are assumed equal to zero. Suppose that at 

the instants t = 0, a shock wave begins to be propagated in the quiescent gas 

traveling according to the exponential law    q = Ct . (27) 

Let us find the index d. to which corresponds the constant value of the function 

f  fro* (17) at the wave front. Then <f  will be identically constant behind 

the wave front and will also have a constant generalized Riesenn 5-n variant. 

Fror: (17), taken (3) into account-, we find 

utf■?P#>= *&&**("*)> V -:'-- &*>. 
whence it follows that* ^lv V.^-r -V    - .     .-....'*$&'■& 

; f *f +.{4t*dg(j)=o. (29) 3 

By virtue of assumption  (27), relation (29)  at the rear front of the wave, 

sfter dividing by dt, becomes 

where 

Hence it follows that 

o = ar+i* 

•k.v ,~ »• 

(33) 
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Generalized rdeasann weves can be considered as solutions with differential rela- 

tionship (Chapter One, Section XII) 

4>  (q, t,^,^, u, p, S(q)) - C, {33) 

«here $  , <f   are the potentials of systes (1). 

That was indicated, the definition of the function (preduces to inte- 

gration of e linear homogeneous syster;. Since here the independent variables 

are q and t, the differential relation (33/ of equation (1) also has the 

case excluded from consideration by Martin, where p = p(S). This case will be 

treated in the next subsection. 

4. Equation of hydrodynainic surface* For the cas^- of ideal gas equa- 

tions (9.3.1/ will become 

■ + 
dp = 0. 

x = 

<* 
= 0. dt  _u- 

r+i v v 

(i) 

(2) 

We obtain an equation    in the hcdcgraph space u, p, if for system (1). Employ 

ing the algorithm given in Section XII of Chapter One for the surface 

if = «P(p, u), (3) 

we arrive at the following equation: 

U) 

where jU    is an undetermined cofactor. 

Conditions for the integrability of equations (4)  reduce to equations 

for/* : 
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j 
*P     dm    da dp    dp    ~~5p^ 

d+ dipu <fy din ft 
dp    dm da    dp 

—Sä-  -O.     I 
(5) 

Solving   (5;  relative to   21*A   md   Zln/i 
Du. *P , we find 

where 
ding dj/ dteg  d$ 

du f. 

*-i • »-»r-«^(«p 
(6) 

(7) 

Finally,  the conditions for the integrability of equations  (6)  yield the follow- 

ing third-order equation: 

d$ d* 
du dp 
fo dy 
du dp 

= 0. 
(8) 

Integrating equation  (8),  we arrive at the second-order equation 

'(--"5) 
du 

d'$ 
dp» 

»; «F^ST =/»). (?) 

where f (if )  is an arbitrary function cf ^ . 

It is net difficult to see that equation (?) admits of the following 

integrals: ^ = g(p), (1C) 

u = h(ip), (11) 

where g end h are arbitrary functions of their arguments.  The solutions corres- 

ponding to them are of the form 
- 385 - 



',' « « a-f C,.  /> = - Cq + Cj.  * — g (p). (12) 

(13) 

I 

Relation (10) gives at once the exceptional case when transformation to the 

Monge-Ampere equation is impossible. 

Solutions of the form (1?), (13) will obtain by K. P. Staryulcovich /2S7. 

If ^-^[VL,  p) is the solution of equation (9), the solution cf the initial 

equation is obtained by successive integration cf the wholly integreble systems 

(6) and (4). 

The formulas restoring the solution are of the form 

""inn = J /(?)**.  H = «f 'ma* = Fit). (14) 

(15) 

(16) u 

Corresponding to the given surface <f ( If, pf u) = 0, by virtue of formulas (H)- 

(16), is the solution of equations (1), uniquely with an accuracy up to the 

constants. The uniqueness is violated in the event cf the function f ~   cons- 

tent, to it corresponds a family of solutions dependent on twc arbitrary func- 

tions of the same argument. 

5. Solution with arbitrary constant choice of symmetrical one-dimensional 

equations in gas dynamics.  We will use general equations of one-dimensional 

flows 
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.•ff^'T-Tl 

i (1) 

where the parameter v is equal to 0 in the plane, 1 in the cylindrical, and 

2 in the spherical cases. 

Below we will assume that the equation of state is of the form 

P= e2(S)fy (2) 

In this case system (1) can be transformed to become 

'I 
(3) 

In the plane case (V = d) of system (1), (3) we have coefficients dependent 

only on unknown functions, and we can admit similitude and   shear    trans- 

formations with respect to the independent variables x and t. In the cylindrical 

and spherical cases, only similitude transformation with respect to x, t is 

possible. Converting to j-cgarithmic scales with respect to x, t and to the 

dimensionless velocity 

^U-ta/. fc^lllX.  tt*=yt/,  C = y(£j / , 

system (1) can be written in the form*) 

■■- IU.. 

(5) 

(6) 

(7) 

/*) on following page/ 
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where f = In P, f = y Ir t2. 

Ir systes (5}-(7), for any Y   the coefficients do net depend oo toe exgOMEts 

T end A , ecd consequently, es shown fcgr the   analysis »ade In Zhcpter Cne, Sec- 

tic c XII, it has sinple waves 

(8i 

Since the coefficients of sysleat (5i-(7j  do not depend on   ^,  ^, thee solutions 

of the fcrs 

u—um.   »=?«+*.   ♦«=♦» T-l 
(?; 

are ooss~ble, where J(is an arbitrary ccrs^art. 

Con vertilg tc the variables u, ^ , p, we obtain the representaticc 

where 

(11) 

Solutions cf the form (IG) ere called salf-ocdel :g**/ 

Clearly, the indexes a-, and a ere determined with an accuracy up tc the 

multiplier, sc that only their ratio a /a = -k is the essential pareiseter. 

The oyster, cf equations fcr U(§), R( %) t ?{%,)  corresponding tc system 

(3; is cf the fcrr 

*) liquations of gas dynamics were considered in this form by K. 

kevich /28/. 

/**)  on following page7      - 386 - 
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^ 

i 

ej 

-:- 

£ 12cm- cnUnUa tf «raetiaes (121»: «d (12cJ !•«** tc 

Csc-cellec irvag-r*! rf siitiftticity. 

5=l«frB.l 

V=»T VV^W^^^T^^£M 
! T,"   ,_£±iü±*t 

•;- 

«tich   «titles   S$   fO»*  £ET   V   «jvj   /   «j-   _-,.*,-.-   #t-    ...J.3_ .r 

Let OS sijcv list fcr certiic k £B:5 I sjstea [" 

integral. 

^2.  siini: s tf jet EDttber 

äqasticcs (1J SET» ts tae leu cf ecererratice the relaticr 

H 

expressing the lav of cccrerraticc c 

etn;?ticr- *, " "   -- 

-e:e7-     io ccrrespccse the self-sceilizg 

4f +1» 4- 5-f *(/ - 3)} 6 3? «-£=o. 
vaere 

**        -0-" '/   ie_:-ircselir.r sciuticr^ c*~ -re_---vrc- -~-  -:_^ - -   -. _ _«.».s i..   — -j.3er.sj.Cj.sj. f£3 aynsHics es scluticns 

.-^.e — v„ ^c ce, -cir.  treEsiorüBtia: grews -ere first ccn« 

derfej by Bechert /;-y Q'. 
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Given the condition 

equation (15) admits of the integral (energy integral) 

A - k ( l5 B) = constant. 

( 17) 

( 18) 

When the energy integral is present, system (12) reduces to a single equation. 

We give a brief review of certain problems leading to self-·modeling solu-

tiona. Fundamentally these solutions describe flows adjoining th~ quiescent 

region through the shock wave or through a week discontinuity. Here the cherac-

teristic circumstance is the zero-equality cf the pressure ln the quiescent 

region. Then the shock wave can be considered as int'initely strcng, and Hugo-· 

niot's conditions acquires a homogeneous form, which then enables us to find 

the solution i~ the self-modeling form. 

As we know (cf Section IV, subsection 7), Hugonict's conditions at a 

strong shock wave are of the forre 

(19) .. 
where D = dx/dt is the shock wave velocity. 

We .will assume that the trajectory cf the shock wave is the ~-line 

(i.e., a line whose equation isS= constant). Then from (11) follows 

· .. ~'0- . -- ,; x - -i x · -
·D~.==-- .. ~=_-rT·' · . . tU tJ1 t ... ~ .. ( 2o) 

Hugonict's conditions (19) for dimensionless quantities U, R, P become 

Hence it follows that 1 = 0. After these preliminary remarks, let us consider 

several self-modeling solutions. 
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1. ~onvergent shock waw·. This problem was posed and solved by Guderley 

l3Qi and independently by K. P. Stanyukobich L2ii for the case V = 7/5 and 

fully detailed for all V by a group.of Soviet mathematicians (cf review LJi/). 
The problem can be set up thusly. In a quiescent gas with parameters p , ~ , 

0 0 

u = o, a shock wave is in motions accelerating with respect to the direction 
0 

toward the center x = 0. At the instant t = 0 it arri"ewith infinite velocity 

at the an~,which is a singular point of the system of equations (1). The 

analytic character of thes~'s singularity at the point x = 0, t = 0 is 

highly complex. It is assumed that the solution in the neighborhood of the 

center is represented by am lytic functions of the fractional-exponential argu­

ment l; = s xa1ta2 and therefore is self-modeling in nature. For convenience 
0 

in formulating the boundary conditions, we put in (11) 

a = 1 a = -k 2 ' 1 • (22) 

Since the shcck wave is infinitely strong, then conditions (19) and (20) are 

valid. We selects so that at the shock wave.;= 1. Then C()nditions (21) 
0 

become 

· . 2 I ' 
~(l)== v+l "iT" . 

The constant c1 in integral (13) is defined from conditions (23). 

gral (13) and introducing the new variables (cf LJ1J) 

system (12) can be reduced to two equations: 

a) kt !!J._ = q (y, z) ' ' .., ~ z-y 

kt E-r::= z p(y, z); 
.,. ~ y z-y b) 
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Using inte-
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I 

~~ 
' 

'J 
,. 
~: 
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1 

I 
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l • ~ 
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~ 
I 
~ 



---------.-----------------------·--·---------·------

where 

On conditions (23) we find 

J...lhen t = 0, the solution u(x,t), f(x, t), p(x,t) Jr.Ust be bounded. 

follC'.·!S that U(O) = O, P(O) = O, 

l,~hich in variables y and z signifie!l ·y(O) = 1, x(O) = O. 

(26) 

(27) 

Hence it 

(28) 

(29) 

Thus, we reduce the problem of seeking the self-modeling solution to the boun-

dary problem (27), (29) toward the system (25). 

Dividing equation (25b) by (25a), we find 

.b :', ;, 1)1 
,-.. ~71_.··. 

( 30) 

We arrive at the equivalent formulation. Find the solution of equation {30) 

passing through the points M1(.Y:.! , _£J_ ) , ~( 1 ,, 0) in they, z-plane. 
-- V+ I V+ I 

......... 
I ' 

- .. 

. , 
""' ._. ... ' 

l''iguro 2.67 



—i«*r 

35« prccLea ;ci*i is ;T*räet*niis*c as; is sclaaile osly fcr ©eriei« k 

It is act üfflcolt to aw£L*y ttet t&e esaracterlstlc 

ia/it = c - c. r 

erriTis$ at Ite catver i:  tot 5-lir* at: is xa?c*= is läe y, t-clac« by t2» 

stnJc&t lis« (71c«« 2-Ä75       y - a = C. >. 

Ttut zcLzm~i X., Ä. Li* at ri'fermt sites cf U»a *ti»i£Bt ÜB* z - 7 = '. aci, 

therefor», is* aeslTee IstagTai car»» jr = yi5 J, x = *i£* asast istti sc t t&e 

«trai^M. lixe at seme pcist K ecrresj>aD±isf to sen» raise cf las pa?aanei*r ?L. 

If «tea use carve y(§ j, stlji ©asses thrcii^h üae seist Jfc   {_y = yt CJ» 

a = yl^nSl»    **• f*»ctices p(y, *i aca ©£y, a} ac ECU charge sigs, to« toe 

right sue of" eqoatirss {25> 5c- chasee sifs ass xbe fäcetiors 7IK ) *=£ x(£j 

becrae acxnasiooe, vr^r^ is isecssibl».    ämce it fclica»s thai et the pcist Ms 

{ji^^t *t5^'} ^ os£X*i*ies p(y, a) asd qCy, zy alsc tesd tc aerc, end it 

is e singular polst.    Cccrditices y - z = uf p = C leas tc the ecuetice 

^Jfa^isr^ >j»»flt  /K'. 

#fe^##fe 
SO .33; 

Thus, we have twe singular points S. and fi_ at töe straight lise y - z = C.    Use 

pesitice cf these pcicts, end alsc the nature cf these singularities depend cc 

the v«c parexeiers   V end k.    In the case   V  = 7/5 (investigated by Gnderley), 

the pcist I, is a saddle point end a unique integral carve connecting the pcists 

H. and H_ exists.    It pesses through the pcist M,  (cf figure 2.67, b*.    ¥e will 

further provide the reader for detailed analysis to the review /3l/.    Let us 

indicate only that there ere dosains cf the parexeters V  sr.i k fcr which the 

prcblea is uniquely solvable. 

2.  Tne probles- cf the collepse cf a spherical cavity is similarly investi- 

gated.    A sass cf isen-ropic gas escape into e vacuus so that the boundary cf the 
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£ts üilÄ the Ttz-ajti trsT*ls »-its. eceelerstitc tcw»ri lb* carter **•>*- at •■>» irs- 

tart t =  I arri--es «rithix crygart»: -nlzzizj *t the tatter x = t. 

For 15» iinecsicEless ir-wariiffts 

;-*(■+^H- -4-0H * 0» 

«*e ccteir is* systsni cf «caaticts 

«cere 

y *• — *U~d...     j» Ä        ffr.j» ^_ 

I (*> 

Ibe bcmcarT vita :it Tscjan: Sr a ^-lite.   4~ -£ select«! re that c =  "-    ISME 

the acmaarT cocciticts fcr systasr (35/ ere c: the fern. 

rii; = s{i* = *, iTrj 

He; = sic) = c. 138, 

*e arrive at a baz&zerj prcfclen in the r,  s-plare. 

Fici the integral ccrre cf the aquatics 

09) 

passing thresh the pcirts H,{1, 1) ard M_(C, C>. 

»e car, similarly demonstrate that the desirsd integral curve j?ust pass 

thresh singular pcicts equeticc (3^. Detailed analysis shews that there is 

EC unique analytic scluticn {cf /32/y- 

3.  The pcir.t cf ezplcsicr. pre tier -as solved by L.  I. Sedcv /32/ and by 

-•  I.  Taylor 242/''. 
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At tee pcint x = C and insist t = C, a finite eocost of energy S is 

ir.s"-'j:t&n_c-.islj released, which is converted to the energy of the ncTing gas 

separated from the quiescent mecim fcy a shock weTe.    Since at t values the 

energy concentre* ice arc the pressure are large, then we can ceglect the pres- 

sure p   cf the quiescent gas, which makes pcssitle the self-aodelfcg cf appro- 

ximeticc.    for convenience in fcrroleting the besatdary cereal tiens, we pot in (11) 

a   = 1, a   = - 1 /k and neglect  £    so that   4 = 1 et the shock wave.    Then the 

flow resulting frcm the point exploding is described by that solution cf system 

(12) which satisfies conditions (23) ana, screever, the synEetry condition 

ü*5S{£} — :,    $ — c. (4C> 

which signifies that u(C, t) - C. 

Let us shev that in addition to the sdlebeticity integral (13), we else 

have the energy integral,    ay virtue cf the assunpticn p-   = C, the energy flew 

across   -he shock wave is equal to zero, and the energy cf the scving gas is 

identically equal to E: 

M'(I+T)^! U1) 

Converting tc the quantities r, R, Ü, we obtain *he relaticr. 

z-piHi"l(lhp+\m')r'* (42) 

Hence it, follows that k But this, given the condition 1 = C, is 

necessary and sufficient for the exis*-i:ce of the energy integral.    Frc-z the 

conditions at the sheck wave it feiiews that the constant of integration in (18) 

is equal tc C, and the energy integral Deceases 
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W(^T p+1*1=T=T *+T RtJt- (43; 

Cctasiieriog tbst 1 = 0, we write irtegrel (13) tiraslj: 

— 

Hie coEstect Cg in (44}  is detemiecd from the ccciiiiccs £*, t? * shcck ware: 

*e transfers ecus ties (43)  to bectsre 

:• -st= r; • 

I&fferentiatitg (44; and (4c! with respect to & ere canceling ent tie qiÄ_-*ities 

±_il_      *r.f*     djnjk     frc= equations (44;.,  (46;, SEC (12t;, we Ei-rive at the £T. 2 

equation fcr U: 

tu 
>U 

where 

g.-K/)ftC7-«> 
T(J+T)ü*_ii{T4.I)y + JÄt' 

>.=»(*+3) - (?-T)(^ + i) > 0. 

(47) 

(48) 

Integrating \47), we find 

mere 
Cl = U—(a, - ü)"^(f/ -Oj^. 

,-^«^ + 2(T + »)(Tr-<»»)       .  _ft-0* 

(49) 

(50) 
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."; Scie thai the quantities ctirf., «£,-rf,8    ere positive fcr eny   y and   v 
12        12    r2 

ess t*w jr-antiiy   £    is positive fcr any   V > 1 and fcr all  V . 

The cct: "-«lit C ic (49i  is ieterrixed frcas the ccnditiccs cf shock wave 

( £ = 1; end is «sail tc 

c-(4r-rh-4r-r(tii — •? (5i) 

If next ve use *acergy integral 143)  sei integral {u£, (£5,, "^e get the 'clicking 

expressions fcr r. EEC P: 

(52) 

(53) 

Fror fonmle (49/  it fcllcvs the", ss   ^ —#- ~,  "J —*-c(.~, hence it  fellows that 

the syraetry condition ! X)  is satisfied. 

k detailed analysis cf ihe fc-rsules cf the jcluticn (cf /3J/>  shews that 

ü attains the values rf- ?> £ —»■ C,  fcr y <C ^ when   v - 2 end fcr ell   V    when 

v   = C, 1. 

The point cf explosion fcr  V > *?, V = 2 is accompanied by the fcrraticr. 

cf a cavity, vhese boundary ir the x,  t-plane is capped by the £-line. 

The pcint cf explcsicn problem was considered by us in th2 adifbatic 

approximation, without eHowing fcr therr^l conductivity.    Clearly,  fcr suffi- 

ciently sffiell t the energy concentration is high and we =ust take ir.tc account 

thermal conductivity. 

The point cf explcsicn probier, with thermal conductivity taken into accourL 

wes considered in the  .crks cf V. ?. Kcrcbeynikcv [y$j PS.6 V.  Ye.  Keuvezheyev /34/. 
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h problem that is very siwilar is fcrauleticn tc the point explosion 

problem, is the problea cf acticr induced under the action cf the piston with a 

spherical (cylindrical, plane)  sirface. 

Figure 2.6? 

If v:e C.SZSZ&  that the piston velocity varies according tc the exponential 

lav u^ = constant t , (54.) 

then the flew ir-juced is described by the self-nxdeling equations (12). In 

contrast tc tne point of explosion pnjblei, her? we have only one adiabeticity 

integral (13; tnd there is nc energy integral. Therefore system (12) from which 

p is canceled out by seans cf integral (13) reduces to two equations for u (5) 

and B( £ ). 

This flew is bounded by two £,-  lines: 5y the line cf the shock wave and 

by the pistcn line (Figure 2.68). Hence it follows that 

dL =  1/k,   1 = C. (55) 

The following boundary conditions ere imposed on u(% )  and R( I; ):    et the 

shock wave, when   ^ = rj 
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.J (56) 

at the piston line, where   4 = V , »( >?0) = 1A« (57) 

Integration of the system for u(^ ) and R( J£ ) is carried out from the 

vslue £ =77„ to the value  £>=7?    at which condition (57) is met.    Since the 
*        1 ' o 

energy integral is absent, the index k is arbitrary. 

The piston problem was investigated in detail in the works of N. L. 

Krasheninnikov, N. S. Mel'nikove, and N. N. Kochina. 

We will further rear to the monograph /3.2/ which gives a detsiled ana- 

lysis of the piston problem and the explosion problem, together with references. 

A highly interesting solution to yet another self-modeling problem — the 

instantaneous shock problem — was given by Ya.  B.  Zel'dovich /3j>7   sd further 

investigated by V". B. Adamskiy /36/, A.  I.  Zhukcv, and Ya. M. Kazhdan [jfj. 

6. Self-modeling solutions in Lagrangian coordinates.    Equations (9.5.1) 

after conversion to the mass Lagrangian cocrdimte 

become: 
a) 

b) 

c) 

d) 

jü^-täTTtZ 

> 

 C dt 

= 9. 

= B. 

(8>  % 

Using representation (9.5.10), from (1)  we find 
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(3) 

Hence it follows that the quantity 

(4) 

is a function of A . 

Taking (9.5.10) into account,, we find that the quantities f: (u, v, S, x) 

can be represented as     f = f trF(>?), (5) 

which in fact proves the self-modeling status in Lagrangian coordinates, 

7. Flows with linear velocity profile. An extremely interesting class 

of solutions exhibiting functional arbitrary choice was treated by L. I. Sedov 

/38/. This class is wholly defined by the prjsence of the lineer velocity 

profile«) u = A(t)x. (1) 

Differentiating equai.'.ty (1) with respect to t and taking (9.6.2d) into account, 

we find 

¥. "IT ; Ar- ■ 4 dA 
(2) 

Integrating (2) with respect to t, we get 

u mm B(t) U (q).    B(t) e J (* VA) *.. 

where U(q) ip en arbitrary function of q. 

(3) 

*) The case of inhctnogenous coupling u = A(t)x + B(t) contradicts the symmetry 

condition u(0, t) - 0. This kind of flow was considered also by A. I. Zhukcv 

(private communication), Hafele /32/> Corner [k<Sj  end Keller Äl/. 
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Integrating equation (9.6.2d'* with respect to t, we have 

U) 

Equalities (1), (3), and (4) are noncontradictory, since we can verify without 

difficulty that B= AC. From equation (9.6.2b) we determine v: 

Hufe (5) 

Hence, us'.ng the equation of state (9.5.2), we obtain an expression for p: 

where £fc *tii*fypw *tä*Wfc*WBKUi 

Equation (9.6.2e) enables us to define the functions C(t) and to harmonize the 

arbitrary functions U(q) and tf (q). Substituting (3) and (6) into (9.6.2a), 

we find after separation of variables 

where ^ is a constant. 

If C(t) half-size equation (8), and functions U(q) and <f(q) are harmo- 

nized by means of equation (9), then equalities (3)-(6) define a solution 

dependent on a single arbitrary function. The solution (3)-(6) can be realized 

as the escape into a vacuurr of a spherical volume of gas and the flow of gas 

behind the convergent spherical wave. A detailed consideration of these flows 

is given in the monograph £3&/. _ .„ 
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CHAPTER THRfiä   DIFF2HEMCE METXDS OF SOLVING 33ÜATICNS IK GAS DYNAMICS 

Section I. Fundamental Concepts of the Theory of Difference Schemes 

In this section we expound the fundamental concepts and facts of the theory 

of difference schemes, referring the reader for more extensive details to monographs 

and journal articles (cf list of literature for this chapter). 

The thec:~"- of difference schemes has two fundamental aspects: 

1) methods of constructing difference themes; and 

2) validation of the selected difference schemes, i.e., investigation of the 

convergence of the corresponding computational algorithm. 

In this section wedwell mainly on studying the convergence of difference 

schemes, end in the next section — en methods of constructing them. First let us 

recall several facts from functional analysis that are essential for our further 

exposition /1-j/. 

1. Linear operators in normed spaces. A finite-measure unitary space V 

is the term  given to the complex space X of vectors x in which for each element 

x = (x-j, ..., xn)£;X the norm ||xll is introduced by the rule 

; 1*1—J§*I*I., (1) 

where x^ are components of vector x, and x. are complexly conjugate to x., 
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.. 
Stspcs« A is a linear x-eretor in ni„.    The äeraitiu. i*.r*  jj A jj cf cc?rctcr 

A is deterairei given to the upper bound cf the q»y»niltj    [JA  fj/|x{|     ..-here i is 

en elessent cf G^, and  |J * |j   » iJAx II   tre xBiderstocd in the sense cf (1). 

The linear functional space A = I uj   is called ccraed if fcr each elesent 

(function) u^ I scse negative nusber  ||u jj    is aefined, called the ncn cf a such 

that the fcllcving requireEects are set: 

1) |ju|J>C for any eleaert u^Ä that is net a zero element; the rxra cf a 

zero elenent is C; 

2) |ju,   -t Uiil^-jju,!! +   j|u2l{ (triangle inequality); and 

3) jjcujl   =  jej   j/uj/. 

Introducing the concept of the norm enables us to define the passage to 

the limit in the space X. By definition u= liu u. if 
1—*-ooX 

I|B-«;II-*O. f-fcooT nit*. «6*. 

The sequence /u.l is called fundamental if 

and t (K) —►- C as N —*-oo.    Normed X is called complete or Benach if any funda- 

mental sequence /u.Y converges to seme element u 6X. In the following, if a 

specific norm is not indicated, we will denote complete ncrmad spaces by   B. 

Suppose Uc B is a certain class of function. Let us form the set U (closure 

of Uj es follows: u £; Ü if u is the limit of the sequence {\x^\, u.£U. Clearly, 

U C.  U, and U can be defined as the complement U by the limit elements. 

The class UCB is called dense in B if U = B. 

Let us consider examples of certain functional spaces. The linear space of 

the functions u(x) continue« over segment /a, by together with all the derivatives 

up tc order p inclusively becomes a Benech space if we introduce the ncrm 
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*e «ill i«ote this cert: by C„.{s, b).    In pertiralar, las sr-ace öT cacilcicics 

fiatcticns o(i^ witls cent  j*j(j= tmx jiaix^l vilZ be deoctsd foj C0(a£} cr sdacly 
z 

tj C(e, b). 

*"e «ill let L,(a, b}_stand for the «pace cf ftzcticcs sonmsc^e "ry r-isdreiore 
f     -. »        *■ - - 

over tie segoect /a, t/ in vaicn the rent _     I&(x\i£.~ 

is introduced. 

The relation  (äönyakcTski-Sch-wartz inequality^    jj « f J <. j u J/ (f^ 

-here w(x) =   | u (X)V{JC) j 2 is valid for the ncrm in L . 

The aggregate of polynomials ?E(x^ - e^ x* {«£= C, 1,  ..., n) is dense in C(a, b} 

(«eierstrass theores).    for the aggregate cf trigonometric poiyncsials T_(x) = 

_i<LX {<£.= -n,  ..., C,  ..., n)  is dense in the space C(a, b) of continuous pericd- 

ic functions when b-a^2Tf.    C(e, b)  is dense in I^Ce, b). 

Suppose A is a linear operator defined for seme dense class ücß and trans- 

ferring the function u£ö to the functicn v & E. 

»e will refer to the quantity        \\^\\- supü-—-p      u ^ U.      as the norm 

(I A j|   of operator A. 

We will call operator A bounded if      || A // <    oo    , end unbounded, otherwise. 

Bounded operator A exhibits the properties: 

a) Au = lie Aui? if u = lim u^,  u, u.£ U; end 

b) if   {u.^  is a fundamental sequence, then Au.  is also a fundamental sequence 

quence. 

If A is a bounded operator, then the domain U of its definition can be 

enlarged to the entire space B (extension cf operator A)  (cf /1-j/).    Let Ä stand 

for the extended operator.    By definition, Au = lim Aut,   a — lfrt*».! 
{-»OB <-»0O I 
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., 

It is »et üffirüt ^c sec« *-het     Is = Jt,    - &Z,     ; i     =      i.« .    Je exeicl* 

of itae sxtatesicK cf operator jiarrllB—rj is givce It rectlce fill of Ckeyier 3». 

¥• «ill ccczi;»*- the space 5 of Lip sjrhitx-ccEtirac'Bs facMicts a»z,   «ri*i the tern 

Differ o&iable faccticcs a ^ C, font a ietse class is the space.    Ve iefitei cc ere- 

tor S cf the sclaticc cf Ceachy's prtblea fcr qaasilitesr aqoeticEs it sscticc  Till 

cf Chapter Cue is the spec« € , ess here Vs» sclaticc a = Sa   is bosasseä it the 

ccra 3.    Therefore operator S cat be extended to the class £ cf Lipschitr-cotviisoous 

f-Jtcticcs.    ärtetiec cceratcr l wrings  irtc ccrrerp:r.iec:~5 :c  each -_&z  -  solu- 

tion a = Sa   bonded it B and which is e gaserelized solatia: cf the systes cf 
c 

equations. 

The totality of operators A defined in 3 forc3 the lirear set I . This set 

becomes Ecr»ed if w/e introduce as the nor» cf operator A considered es the elesect 

X,, its nor» as the ncra cf the operator 3(induced nor«). 

Then we can define the proxirity of bounded operators, and we will state 

that a fanily     of        operetois A( T ) dependent en peranseter T* reduces to A in the 

sense of uniform topology, if    fjA("C) - k\\—► 0, T —•* C.      We can speak cf 

the convergence of operators A(T )  tc A in the sense of a strong topology if 

(J/Ä( X ) - A/u |j   —*» 0 as   X —*• 0 for arbitrary u  ^ B. 

Finally, if the family of operators A(X ) is unbounded in the totality, 

then the proximity of operators A can be estimated for some functional class I'cB. 

For the case when     ||/A( f) - A/u if  —*> 0 as   t—*■ 0 for an arbitrary u ^ Ü, then 

we will state that the family A(X )  approximates opsrator A and we will denote 

this by the symbol /%• :  A( X )  ~   A. 

In the following we will briefly state that operator A(T)  dependent on para- 

meter X   approximates operator A. 
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le: -_= -:v ~jT5;;er sexera! sctces assccieleä wi^s differ«: re srhanes. 

i--i\z± zri*~-j.  -ifferecre lrerhods cf irtsgrstirf systems cf if.fferemiial, 

irlegrel-differemtixl, ead integre! eqostions cf «these licpi physics coexists in 

converting freu ierixrtive to äiffsrscre releticcs «Ed fror integrals ~.z sa*s. 

IK practical v*rsE£, this naers converting from e finite—measure spec« cf 

fatciiots of » ccctiriaDGs argument to & finite-nee ssre space cf grii functions era: 

reducing equations for fascticns of e continacjis ergraDect to algebraic relations. 

This approach, convenient it practice, gives rise to difficulties when proving 

convergence, since * grid function end the ftancticn cf s cortimacus argument it 

epprcxin>ates ere refined in different spaces with different norms.    Moreover, the 

rent cf e ^rid function iepenis en grid parameters ani charges together with then. 

Therefore in a theoretical investigation it is also cenvecient tc consider 

difference operators in the sane functional space  ~s that for the operators they 

approximate.    Dcderthis method cf consideration we assume that difference equations 

are satisfied by functions of a continuous argument at each point cf the domain in 

question.    As we will see,  such an approach is net always possible. 

Let us illustrate both methods cf examination by a simple example.    We stipu- 

late for the thermal conductivity 
da        - 0:u ■!*=*-&■    « = const. (2) 

for the mixed Cauchy's problem: 

;  «(0. /) = *('• 9 = 0.     Q<*<*V 
(3) 

(4) 

Let us introduce a grid in the x,  t-plane, assuming 
r- 

,-i|  '(I ̂ •0. 1 A/ + 1),     /V-f 1=4-. 

tmtszm1 ,-.-. («4p0. 1. .... M). , 
I 

M=±. 
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Lei us define tie grii fraction 07 et the pcirts cf grid* (5), äocotiiag by n   tie 

»alias of tbe fascticc et tie point x. = i"e, t   = it.    let us replace reletiers 

(2)-(4) by üsä algebraic relations 

For e fixen s the quantities u   (i = 1,  ..., JE>  ere coapcuects of the 1-dJ ■enslonal 

▼actor u* for wbich & g i^ren oora can be defined, for axaaple; 

er 

I»*I» 
-t-M 

Crcinarily the grid function uF is extended ir soee fashion, for example by inters 
i 

poleticn, to the entire decain under consideraticn 

C ^x < i,      C £t< t . 

A procf of the convergence cf uf to u(x, t)  can be obtained by demonstrating the 

convergence of the functicr u(x, t) obtained by interpolation to u(x, t) or by 

proving that   [u*]—»- {u(ih, ET}}     for all   T, h —+■ C, C ^i^4/h, C^-c^t^r. 

V;e can readily see that the solution cf the mixed, problem (2)-(4)  reduces 

tc the soluticn cf Cauchy's problem for equation (2)  with initial conditicn 

*(*. 0) = «^).       -00<X<OO.r (6j 

imposed on the entire straight line t = 0 if the function u (x)  is periodic 

with period Zi and is odd at the integral /-£, J£]'.    Actually,  in this case the 

initial functicn u (x)  and the soluticn u(x, t)  of problem (2), (6)  are represented 

by the series: 
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irS? «*(0)*»»»J 

and, therefore, initial date 13} sta bow&aery cocditiccf {A) «re satisfied. 

»ere, the sclnticc u(x, t) cf proöle« (2}, {6} Mill be a periodic fcccticc 

of the variable x vith perice 2Ä, vhich ir. the strip C ^T i^ £. coincides with the 

sclvtisE cf the sixed problesr (2^ -(4). 

Let ras replace Cauchy's problea (2), (6} vith periodic fiasciicn uc(x> by 

the following difference problem: 

( 

for the function u(x, t}. 

Under this considersticn, bounaary conditions venish, and initial condition 

(8) in conbineticn vith difference equation (7) enable us tc define the function 

u(x, t) et straight lines t= k (k = 1, 2,...}. 

Thus, for E fixed t - k"C the functions u(x, t) end u(x, t) ere defined 

over the entire straight line - oo < x < oo. Proof of the convergence of u(x,t/ 

tc u(x, t) reduces tc proving the convergence of tha functions cf one variable at 

this straight line t = constant. Clearly, this examination is net possible for 

any boundary conditions (4). 

In these cases when we must consider problems associated with boundary 

conditions, we will convert to grid functions. In the following subsections 

we give a comparative analysis of Cguchy's problems for difference and differen- 

tial equations. 
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1*   -xrelrzirx    ".i; s"-b; er"."l:r.,   \~: us  agree cr.  '.'.- fcll:»ir.g zz'.iiicr. 

If the function u{rf t) for arbitrarily fixad t belays, as a fraction cf x, tc 

•innach space B, we    ,
-*T- regard it es a oce-p-araEetric lesdJ./ cf elements of the 

sr;ece and denote it vith u{t* A- 3.    In particular, t'X'rC {s, b)  signifies that 
q 

u(x, tj for fixed t has et the interval /a, b/ q continuous iei.vatives vith respect 

tc x; u(t}^ L2\-Jt, X  signifies that / u^x,  t;dx < oo. Scoetixes for 

brevity we will odt the iocaix: cf definiticn cf the fractions and siaply write 

C  ,1-,, era so cr. 
q      ■£. 

2. Correctness cf Ceuchj's probier in Banech space for linear systems of 

differential equations.    The i-hec-ry cf generalized sciutiens cf differential eque- 

tiens began to develop fairly recently, since the 194CE.    Referring the reader 

desiring a    closer    treaiaeni tc the sencgrephs /4-2/j  «a present in 

brief a acre specialized theory that does net require the concept cf the gene- 

ralized functicn and derivative {cf /8, 2/). In the strip G: |x|<Coo, C^t^t 

let us consider the systec du/e> t   = L(I/)u, (".) 

-.'here u =   (IL(X,  t),   ..., u (x,  t)}      is a vector functicn cf x,  t; L(D)   is a 

differectisl-inatrical operator whose coefficients depend en x,  t: 

L(D)=*u{xMO'.   a=l P-D = -SI' & 
«.<* O = |oiy(x. Oj   (I. /=! »; a=l p>.      (3) 

Tne solution cf system (1) is the term given to the function u(x, t) thet 

has continuous derivatives appearing in (1) and t,etisfying equation (l). It is 

required that the solution u(x, t) thus exhibit differentiability vith respect tc 

t and that a continuous derivative 

The initial data 
ax? 

exists for any t,  i.e., u(t)^C 

u(x, tc) = uc(x), 
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etc be iapesei cr. sjsi&c {',. *e »-ill prersDpcse the periodicity cf the coeffi- 

cient cf äjrsiei i"!) ee3 iüiliel ftacticB o^x, with regiect tc x with period if. 

ä£ fer sjstes. U), -e ^iii assist», forth» r, that for en arbitrary t  € /C, £/ ec 

arbitrary fi'BcticE u (x) <~ C    {o ^s>  there exists e 'jniqae scIotlcE oil, t*  ds- 
c q 

fiaec ic the strip  ~ ^ t ^ t. 1     c 

it? ccrrespccdcsce *J{Z ; —*- ult; (t <■ t ^t), vhich we cat writ 
G C 

e es 

*(f)=S(t. y«,(je)=S(#. g.C^.j ;s; 

üelices the iranefors operator c(c,  c }.    If fcr SET u (xj^C     u(t/ ^ C , t <t^ C- C q q        o 

t,  then ne c£E ststo about ihe system (1)  that li exhibits the property of exten- 

sibility in C .    It this crse the fcaily cf £{t, t„}  exhibits the property cf 

cc?5ocsiticE  in C .  i.e.. 

£<&. ^=5<fc. 4)5ft. <£.     0<t<'i<V<<- (6; 

aquelity (c>   signifies thai multiple use of the  tranrform operator ioes net renove 

te space C  .    If in this ccse 
q 

iS{U ^3c <M<Ö«     0<f1<f8<T. (7) 

the function n(t; "ro~ the space C . If in this crse 
c 

then we can cell Ccnchy's nrcblem (1),  (4.',   correct in C .     If 

|5(H-t. Ofic <!-+£$*     0</<f-^--i<7 (8) 

then v»d vd.ll cell the probier (">),  (4) uniformly correct in C  .    We will 8lso cell 

operator SCt^, t..)  the- solution operator of Gnuchj's problem,  end we will also 

call operator S the solution cperetor cf Cauchy's problem    and csll operator S(t + 

X., t;  — the step operatcr. 

If the initial dete do net belong  to C    or if system (1)  does not heve the 

property cf extensibility in C ,  it becomes necessary to define the generalized 
q 
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I 
; 

solution, i.e., a scicilon belonging to a nore extensive space than the space 

Me will tssae that there is -a ch space B containing C    es a dense class 

and such that the operator S(t_, % } is bonded in the norn of B tr the class n(t) 

C .    Then the operator S(t_, t } can be extended in 3 with no** oreserv#d.    £que- 
q Z     1 

11*7 C5)f where S(t, t ) refers to tc extecitd operator; end u(x, t) refers to a 

faction of B, defines the generalited solnticc u(x, t) of Cauchy's problen (l)f 

(4) that is correat In B providing that (7) is satisfied end is unifornly correct 

in   3 when (8) is satisfied.    Clearly, in this case systea (1; exhibits the property 

of extensibility in 3. 

Let ns clarify the concepts we have introduced with a number of exasples. 

Define the displacement operator T(h) by ceans of the equality 

r(i)sCx)-=«0g-r^; (9) 

We can readily see that in the space C   and L   of periodic function 
q        p 

Consider the equation 

with initial data 

||T(h)||   = 1. 

n£j**i=~i *-«>«.' nrlraj?~- 

(10) 

en) 

u(x, C) = u (x). (12) 

If u ^ C , then Cauchy's problem (11),  (12)  has a solution.    The transform operator 

can be represented as S(t„, t ) = T/-a(tp - t]/. (13) 

Suppose u   g  L2, u  6C    Then the solution of the problem (11),  ("*2)  does not 

exist in C , but the equality     u(t) = T(-at)uQ (U) 

is physically meaningful and defines the generalized solution cf Ceudiy's problem 

(11), (12) in Lp. An analogous approach is possible also for equations of acous- 

tics '*»      A*
00

 =rt       * —^«O      fl«=Cnnst (15) 7f—a7GT    0>    ~3f    IxT '    fl==coas,•   , 
u(x, 0)*-«0(*>.   . «(*, 0)»«„(*). (16) 
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If °0£C.JJ To^Cj, thai u{t}^ C.,, ▼(t)^-CJ end eqaeticcs (15/ are equivalent 

tc a systas in invariants 

*+'*=^^JEP*>    (17) 

where r = 'a - «v, s = u ♦ ev ere üie«enn invariants, «rt It c   & L„, v <£ L-, 
«- 2      o        -c 

then r0^ L_, sc ^ L    end tha equalities 

f7<0=r(—«0'*~ iW^^W^i (18) 

define ths generalized solution In the space L?.    Here we have in the ncrs L_ 

l'(0I=l'.l    I*(0l=KI ( 1G\ 

if the initiel functions ere r ,  s (u_, v )  ere periodic with period 2Ü»    If we 
o  o c  o 

define the ncre as the vector function f = ^u, v ] by Eeans cf the equality 

l/B*= JV+aV)**, (20) 

then froc equalities (18) and (19)  fellows 

H/(0|p=4 j[rHx.f)+*'(x. 0]rf* = 

=\ J [/■'(*. Q) + sHx, 0)l«/x = ||/(0)|p. (21) 

i.e., the generalized solution is extensible in norm (2C). From equalities (18) 

it follows that Cauchy's problem (15), (16) is uniformly correct as C<t<©oin 

the C^ class, and from equality (21) it follows that it is uniformly correct 8ls o 

in the class L . 

3. Fourier's method. A solution operator can be effectively constructed 

for the system (1.2.1) with coefficients a ^(t) dependent only on time by means 

of   Fourier's meihod*). Suppose u <£C    is a  periodic vector-function with 

period 2n. The vector-function u (x) is represented by the Fourier series 

£*  en following page/ - 412 - 
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k «sr 

where 

«,'(*)- J'AwA 

c»»)-i-Jv*)^|r*». 

(i) 

(?) 

(1) 

(2) 

which when q = 1 converges to uc(x) absolutely and uniformly. Assuming q to be 

sufficiently large, we will seek the solution cf problem (1.2.1) and (1.2.4) iß 

the form of the Fourier series   u(x, t) = . >.  C(k, t) e'  , (3) 

i.e., ss the superposition cf the functions   v(x, t) = C(k, t)eikx, (4) 

.<e  will call these functions harmcnics. 

Let us establish the condition ui.der which a harmonic is a solution of (1.2.1) 

Substituting (4) into (1.2.1), we find 

(5) [i-twHf-fi öCp^. 

where L(ik, t) is the matrix  L(ik, t) = a^ (t) (ik/*', ,6= 1, ..., p.  (6) 

From (5) it follows that harmonic (4) is a solution of (1,2.1) if the vector 

C(k, t) satisfies the differential equation 

*?|P> lz,(tt, oc&'o = o~ 
(7) 

Consequently, for series (3) to be a solution of Cauchy's problem (1.2.1), 

(1.2.4), C(k, t) must satisfy, when k = C, +1, +2, ..., equation (7) and the 

initial conditions   C(k, t_) - C_(k).  k= 0. +1. +2     (8) C(k, to) - Co(k),  k= 0, ±1, +2, ..., 

*) Cf monographs /10-12/ for a treatment of Fourier series theory. 
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so that when t = t series (3) must transform into (1).  If series (3) belongs 

to C , r ~%,  p, then it is a solution of Cauchy's problem (1.2,1), (1.2.4). 

Let us estimate the smoothness of solution (3) as a function cf the smooth- 

ness of the initial data. As we know, the following estimate of its Fourier 

coefficients is valid for u (x)6 C.: 

I 

: 
i 

lco(*)l = Ti*J'  S lx*P<°°' <l (9) 

where A v  of the Fourier coefficients of the function f-g-— . Suppose 

S(k, to, O is the transform operator of system (7), corresponding to an arbi- 

trarily fixed k. We will cell the operator S(k, t„, t.) the spectrel image or 

the Fourier-image of operator S(t?, t ). Ey definition of S(k, t^, t ), we have 

C (kTt^S (ft. t2. tj) C (ft^,). (10) 

We will assume that in the interval £o, tj  system (7) of ordinary differential 

equations is a uniformly stable system with respect to k, i.e., 

tup || 5(*,/a.A)|I-p N (/,./,)< oo. ̂  
(11) 

where || S(k, t2, t ) || is the Hermitian form of operator S(k, t , t ) in the space 

Ü of components C(k, t). If u(t ) Q.Z  ,  then by virtue of (9) end (11) the 

following estimate is valid: 

.IWMKtf UjJ-. \\ 

from which it follows that u(t) & C ... Consequently, if q^-p + 1, then ti.ere 

exists a solution of problem (1.2.1), (1.2.4.) which is not necessarily extensible 

in C . 
<1 
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lieu  let us consider the generalized solution of the problem (1.2.1), (1.2.4) 

in L (-TT, TT). If u(t) ^L„(-ir , 7T), then 

||«(0|P=2n X |C(*. OP- 

Hence, taking (10) into account, we have 

(12) 

\\S«2- 'i)IL=sup||S(*. t2. /,)|L =N(t2, /,)<<». (13) 

Consequently, a generalized solution exists in L . Condition (13) thus is the 

condition for the correctness of Cauchy's problem (1.2.1), (1.2.4) in L?(-T7, Tf). 

Let us give en explicit expression for the transform operator S(t9, t1) in terms 

of S(k, tp, t ). From equalities (3) snd (2), we have 

wnere 

00 

u(x.t2) =  2  S(k,t2,tl)C(k,tl)e
lk* = 

-too 

'-  2 S{k, t2, /,)( ja(s. /,)*-'**,*)<.'** = 

= j£ j K(t2. h-x — s)u(s. tx)d$,    (14) 

«--.CO 

Ii 
2)i 

K{t2. tv x — «)=  2  5 (A. f2, /,)«<*(*-*). 
*--00 

(15) 

Whan the order of integration and summation \BS changed, we used the theorem of 

the possicility of terawise integration of the Fourier series. 

Thus, in this particular case the transform operator S(t?, t ) is a convo- 

lution type integral operator. Let us consider a special case when equation (1.2.1) 
- 415 " 
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is an equation with constant coefficients. The matrix L(ik, t) = L(ik) does not 

depend on t, and the solution cf problem (7), (8) is of the form (cf /9_7) 

C(ft, *) = «M«)«-«C0(ft). (16) 

Here e v ' is the matrix (exponential) which can be represented by the series 

From (16) follows 

.£(<*>' =£+S ml 
m-l 

S(ft. /2,/1) = ei«*><<•-'.>. 

S(ft, /j, f,) = S(ft. f2 — *,. 0). 

(17) 

(19) 

We obtain the estimate 

\\S(t2.m=s»p\eL«km-%,<sye 
k ™ 

»£(«)(<,-/,)!„ 
(20).? .y 

for the transform operator S(t  ,  t ).    Thus, Csuchy's problem with constant coeffi- 

cients is correct if 

sup || L(/ft)(f2-/,)]!    <W(0.     /,«i<f. (21) 

We can interpret condition (21) in the following manner. 

Let us consider the harmonic solution to system (1.2.1): 

where u is a constant vector. If (22) is the solution cf (1.2.1), then 

Det||(o£ — £ (/ft) ||=:0. 
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k *J' 
Clearly, for the correctness of system (1.2.1) it is necessary and sufficient that 

RelU^M, (24) 

where ^ is a constant not dependent on k. 

Condition (24) signifies that any harmonic solution increases an amplitude 

not more strongly than er   . 

In other words, solutions of system (1.2.1) are of the same order of growth 

as the solution cf a certain system of ordinary differential equations. This signi- 

fies that system (1.2.1) can be majorized by a system cf ordinary differential 

equations. 

Let us consider that the system 

with constant matrix A. If system (25) for JU=  0 is hyperbolic, then by linear 

transformation in the space of components u-j, ..., u we can reduce it to the 

canonical form 

*"* *■■■■' Or»        0*r, " r       *^ 1 ^ 'Mn *w* J^1 *      (26)' 
The Fourier transform of system (26) leads to a system of equations for Fourier 

coefficients Ct(k, t) of functions r-(x, t): 

Hence J ^-fftyk+i*>ey«=o ' (7=i. n). (27) 

Cj (*. 0=«-C",+ty> fCj (A. 0), (28) 

S(k! t3. Z,)-!«-^W'-''>6y/|       (/. '= 1 »). (29) 

||S(/,. f,)||=±8up||S(*. tt. yj-iuplr^+VX'i-'i)!« 1. (30) 
■t * *', 
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System (25) is correct in L, when/* ^C. 

The Fourier method is an effective method of estimating the norms of opera- 

tors and analyzing properties of solutions in L^. It is directly transferable 

to the theory of difference equations with coefficients dependent on t. 

The investigation of correctness is severely complicated for equations 

with coefficients dependent en x and t. 

With the example of equations of acoustics with variable speed of sound 

3pa-g. = 0. £-£«oT i<%<•(* 0<«,<oo. <31)J 

we will shew the application cf another method of studying correctness — the 

method cf energy inequalities,  cr the energy integral method.    Multiplying the 

first equation in (31) by 2u,  the second by 2ev,  and carrying cut the manipula- 

tions,  we obtain 

rience we arrive at the inequality 

d •£{«'+flt^<2£(a«0 + M«J+a*V    yr  "(33) 

where 

, din a I  , 1     da ft = max —-— -f max -T=--— 
dt \Va  dx 

(34) 
;i 

Suppose functions e(x,  t), u(x,  t),  v(x,  t)   are periodic relative to x with period 

2 Tt.    Then by integrating (33)  with respect to x over the interval /- 7T, if/, we 

get 

i ji/ip<»ii/ip. ... ^ ; 
where 
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Frcr: (35) follows 
■ - —i -« 

i 

i/»r<«*i/w <w> j 

Thus, Cauchy's prcbJeE for equations (31)  is correct in. the ncra (36). 

The dependence of ncr» (36) en t is inessential: the solution f(t) = 

iu(t), v(t)l    of system (31) with variable coefficient e(x,  t)  is correct in the 

norm (36) with censtent a, &0 ^ a < B1. 

In concluding the subsecticr.,  JS will dvell on e. lecel analysis cf the 

correctness cf equations with variable coefficients, which is also callei the 

method cffreezing" of coordinates.    Let us associate with oach point ? = (x, 1/ 

a system vith constant coefficients 

&=LtP*Q)B,     HP, D)-=fl.(i. OO".      («=> f>-  («) 

where x, t erg considered as parameters. 

The harmenic solution {?.2) cf system (38) corresponding to seme point F - 

(x, i)  for sufficiently large k Is a strongly oscillating function of the variable 

x.  In a sufficiently smell region G : x - £ ^ x ^ x ~ £, t - £^. t < t^f 

the coefficients a.(x, t; cf system (1.2.1), which we assure tc be continuous 

and smooth, can be approximate]y assumed es censtent, vhile the harmonic solution 

(22; varies quite strongly. Clearly, tne harmonic (22), being s solution to system 

(36) with constant coefficients, is ct the seme time ar. approximation cf the solu- 

tion cf system. (1.2.1) in the detain Gg with e high degree of accuracy. There- 

fore the behevicr cf (22) in the domain Gt effcrds a concept cf the p-operties 

cf the correctness cf system (1.2.1). 
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A hypothesis exists that is valid for many equations, to the effect 

that a necessary and sufficient condition for the correctness of syetem (1.2.1) 
.., ,., 

in 1 2 is the correctness of the local systom ( 38) in L2 !'or any pcir.t P = (x, t) 

(hypothesis of local correctness). 

This examination becomes more exact, the larger k is (high-frequency 

harmonics); therefore this criterion of correctness will also be called the crite-

rion of asymptotic correctness. 

Local an~lysis of solution stability is employed ulso for nonlinear systems. 

Let us at once emphasize the substantial difference bet~een linear and nonlinear 

equations from the viewpoint of their stability properties. 

The property of superposition is valid for linea~ homogeneous equetjons. 

This signifies that if u1(x, t), u
2
(x, t) are solutic.ns of the linear homogeneous 

equation a u/o t = Lu, ( 39) 

then u(x, t) = c1u
1
(x, t) + c2u

2
(x,_t) is also~ solution of (39). Thus, a space 

of solutions of (39) is linear. In this cEse we can speak about the ~tebility of 

the solution of system (39) not cnly relative to smllll perturbaticns, but also 

relative tc arbitr~ry pertm·batior.s belongine to some nortr.cd lineE~r space. For . 

the cas,e e;f rwnlir.ear system, the property cf superposi ttc.n is r.ot cbtain~d, 

therefore we must speek abcut the stability of a concrete solutior. reletive to 

sufficier.tly small perturbations. 

The procedure of investigating this stebility of nonlinear srilutlcns 

adopted in practice consists cf r.. chain cf simplifyinb the asl'lumptic.ns, which 

ultimntely C'lln:ir,etes in the harmonic analysis of stability. !t'ir~t of sll, for 

a g1ven no;:lir:ear system end its specific solution a linear equation is constructed 

in variations (aquatic~ for small perturbations). 
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(40) 

is D qur.urtlinP-E.r &ystem. If u(x, t) ie a soluticn of' Gyet~m (40), and u(x, t) 

is some ether so1.ution, than the ve~tor v = u - u aetisfies the eyetem o! 

equr, tions 

Zqunticn ( !~1) cnn be transfomed to becorre 

(42) 

whore th•J n:Atrixes B* Pnd C* ere forn:ed .from tha thrao-incticial matrix 

(43) 

- -J 
(44) 

an1 u* is &n intormedirl~ VRlue between u End ~. 

To the first epproxi~cticn w~ put u* = u, end th~n we obtain e ncnline~r 

nqur-ticn in vrrioticr. 

Neglecting 
• ()v . 

qtwntity U.- )v, 1-.'l.'l 
;})(.. 

(43) 

oLtein H Hn~ar Hquetion :tn vericticn 

(Jv 'Of.• -
or+ A Tx + Btt.c: ~· 
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Snccndly, lot us uno ne cmr working hypothesis the assumption that the correct-

n:_~ns of' Hnear syr:Jtflm ( 46) is a neceeaary condition for this stability ot the 

solution of quesHinear system (40). Finally, the correctness of (46) is invest!-

c;t.tod by th~ method of locol harmonic analysis, which is based in tw.· :.n the 

hypot!1esi r:~ of locc.l correctness. This analysis is employed when investigating 

the stability of rrlm1y physical procesoee ( cf for example /JJ & 1/J). 

Cl~arly, this procedure of investigating stability based on two hypotheses 

th'J hypothesis of correctness cf the system in varintiorjfl end the hypothesis 

of local correctness ls a rnugh estimate in many cases. Let us clerify this 

!-Jrocednre VJi th e dmple exemple. 

Let us consider in th~ 3trip 0~-t ~t, lxl < oO, the Caucny 1s problem: 

The lin!~~r f.ystem in ve..rietions is of the form 

(48) 

Suppes~ u(x, t) is a golution of (47) corresponding to the initial data 

u ( x) = El = constAnt. 
0 

Then u\x, t) =.e. cll'ld equDtion (48) take on the fom ., 
(49) 

Ec,1Jnticn (49) is correct in C in the strip lx 1<: DO, C ~ t ~ t, where t 
p 

ls r-.s larg(l os ·,.,r~ vdsh. l!r,rmonic enPlysis eppliod to (49)oonfirms this. At the 

ct:.Jr.o t.:tm'l tho e.ctu(ll problem ( 47) is correct in c1 only in the nl,rrow strip 

\.; ~ t ~ t* where t:~ dapends en initi.c1l clllts. We nasurne, for t!Xlltnpl3, 
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u (x) = a + £ sin kx, 

Then Cauchy's problea (47) reduces to'the gradient cstestrophe at the tine instant 

t = t* = ■£-  , which tends to C as k «o. This sxaaple indicates that the test 

of local asymptotic correctness is applicable only to linearized systte (46), and 

not to initial systen (4C). Let us indicate one further detail in the investiga- 

tion cf the stability of nonlinear systecs. 

If we construct for the equation 

n 

et once a local equation (with "frozen" coefficients), and then vary it, we get 

the equation 

*3*l&*fa* 

But if we initially construct a linear equation in varieticns, then "freeze" the 

coefficients, then ve arrive at the equation 

If solution u(x, t;  cf equation (5C)  is identically equal to P.  constant u(x, t) 

2. a - constant,  equations (51)  and (52)  coincide;  if the solution cf u(x,  t)  h&s 

large gradients,  then (5*) and (5?)  differ widely. 

k similar procedure was ernplcyed also fcr difference ncrlir.c-sr equations 

in the work by Neumann and Richtiryer    /1f/ (cf subjection L cf secticn II). 

4.   Ctuchy'r difference prcblem.    Let us  formulate Cauchy's 

(1.2.4) in correspondence with Cauchy's difference ;,rccle~: 
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"•tr/"" gV^W+V(4        ,_ 0) 
_ ^(x)=«j(xX (2) 

where /V ., Aa   are operators defining 3, dependent en t ,  X.    „, end else, 
Hit' 

generally specking, en other parameters, and 

'-=^- ••• +*J*k*fZtecif-n><Tl ^^^fF? 

(we have assumed at the cutset (1.2.1), (l.?.4)t - 0). o 

The correctness of the prcbleE (1),  (2)  is defined analogously to the 

preceding. 

Let us rewrite relations (1)  as      A^u1"*1    = B_um, (4/ 

where A   = E - Z      A. , H   = £ + r    . A  .    ¥e will assume that operator A    is 

invertible in B for all values cf the problei. parameters.    Then system (4)  can 

be solved: 

•+i « + = C.+10-, _ C«+1 = A?Bm. (5) 

Sines onerator C_ is defined in B, then the system cf recursion relations (5) 

or a system cf relations (4) equivalent to it define the sequence cf functions 

uE(x) £.  B, if and only if uc(x}^; 5. Thus, th? problem (1), (2) is f emulated 

in the space B. 

From (5) it follows that uw =  C^ , uk, (6) 

where C , = C C .... C ir,k   IT m-1    k-r1 

We will call operator C , the transform operator, cperstcr C_ - C r m,k r     » r      »   m,n.-1 

— the step operator, and operator C   — the operator of the solution cf problem 

(1), (2). 
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Definition. Problee (1), (2) is correct in B if there exists a number 

of M(t) > 0 such that     llCE k "ß — *& (7; 

for all 0>£ k < m, t $t and for sufficiently snail X    >C; it is uniforffil/ 

correct if there exists N > C such that 

mz5F&+»'. *3 

m, 

for all m of (3) and for sufficiently small X   . 

Regarding system (l) as en algorithm for the determination of um(x) with 

respect to the initial function uc(x), we will call relation (l) a difference 

scheme. If Csuchy's problem (1), (2) is correct, we will call scheme (1) stable. 

Let us gave a definition of an approximation. 

Definition. Problem (1), (2) approximates the problem (1.2.1), (1.2.4) 

in the space 3 if 

I(5«-CjB(/«.I)|a = tse.(tJ. <9)_ 

'^{'«» f«-i).«(0=S(/, 0)«o{x)     is the generalized solution of 

the problem (1.2.1), (1.2.U),  n0(x) is an arbitrary element of B, and 

where S_ = m 

0 is uniform relative to m or f = max T —> 0. m 

Definition.    Solution um(x) cf problem (1),  (2)  converges in 6 to the 

solution u(x,  t)  a probleir. (1,2.1),  (1.2.4),  if for trbitrary initial function 

uo^3 

mai|i«--8(^||Ä = maxj|{C1B,0-S(^. 0)I«o||a-*0       (10) 

* 

8S      X. —*■  C. 

First theorem cf convergence.    If 

1)  problem (1),  (2)  and problem (1.2.1),  (1.2.4.)  are correct in B,  and if 
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2) problem (1), (2) approximates problem (1.2.1), (1.2.4.) then the solu- 

tion um(x) of problem (1), (2) converges in B to the solution u(x,t) cf the 

problem (1.2.1), (1.2.4). 

Proof. Let us use the representation 

f   SJC^S^J^S,.     Cm%^CmCu.l...Cv      (II) 

to estimate the quantity (1C).    Hence it follows that 

^ J . 

C^-S(tm, 0)=C.C«_, ... Cj-S^«., ... JJafc 

mmgtL » •** CM(P» — S*)^*-i ••• St*3* 

= |;C«,»(C4-SJk)54.Ii0.     (12) 

Using (12), we obtain 

m 

<2tCm<t\\MCk-Sk)S(tk_ul)a0\\= 
m 

S}Cm,tU(Ck-Sk)U(tk.i)".    (13) 
*-i 

ürplcying the correctness estimate (7)   er.d the approximation estiir.ate (9),  we 

find 

liB"-«^-)li<^(Ö2v4(T4)<yW(ö/maxe4(T4). (14) 

Hence follows the err. verger.cu ■ 
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.; end the theorer is proven. 

Convergence theorems cf this type were formulated in the works of V. S. 

Rysben'kiy /To/,  K,  N.  Meyman   /17/', F. Lax and R.  Richtmyer /18/.    Our proof 

scheme Delcngs to LEX and Richtmyor. 

We defined approximation in terms of bounded operators S , C  ,   Actually,it 

is irora convenient to aefine approximation in term? cf unbounded operators L, 

AXj Ae .    In this case the estirrste of proximity is made net for the generalized 

solution u(t)^ 3, but for the solutions cf the prcblerr (1.1.1), (1.2.4)  u(t)^C 

Definticn.    Problem (1),   (2)  approximates the problem (1.2.1),   (l.c.4)  in 

the class C    in the norm 3 if 
q 

maxli/^iU^axjj "^""^ --Aia(W-V ('«>!,-»<> 

(16) 

as     X ;r an  rrbitrary fixed solution u(t) ^  C    cf problem 

(1.2.1), (1.2.4).    V.'e call the quantity R   tho reminder of the difference equction 

(1). 

Second convergence theorem.  If 

1) problems (1), (2) and (1.2.1), (1.2.4; sre correcting is, and 

2)        lVI=='l(£--tm+iAir,JL,<w(ö.    » ™* 

3) probler (l), (2) approximates the problem (1.2.1), (1.2.4) in the sense 

(16), then the solution cf problem (1), (2; converges to the solution of problem 

U.2.1), (1.2.4). 

Proof. The solution cf the inhemegeneous difference problem 

is of the form 
m). 

(17) 

(18) 
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This cen be verified inductively without difficulty. 

The difference vm = um - u(t ) satisfies the difference equation 

TM+I 
(19) 

By virtue of the invertibility of A , relations (19) Pre  transformed to become 

(cf U), (5)) 

^l = Cm^^ + Fm¥V      /?m+1---r,il+1^
,/?m+L.  (20), 

Using for v' formula (18) and noting that v° = 0, we find 

^n = CmaFa      (a=l m). 

Hence follows the estimate 

||^j!<Af(0/V(7)/max||/?a||B. 

(21) 

(22) 

denoting the convergence 

\\ V'T' \\    —*■ - where      X—+■ C,  end sr en. (23) 
B 

Wow we c::) establish the structure of solutions cf difference and differential 

Cpuchy's problems. 

Lot us consider the linear space X of functions u(x,  t)  of two independent 

variables x,   t  defined it  the closed domain Gt  t  6   /t1,   t    /,   xeH,/] where 

A-p  t-^/C-zC,  £_/, v;here the functions are periodic relative Lo variable x 

with period li.    If for ?ry fixed  t £/i.,   L-,_/ u(t)  =  u(x,  t)   £ 3,  then we can 

state that u(x,   t) £ X. 

Introducing   -he norm ü    into X:       \\ u |l      =   suo II u( t)   II    .   (2Z.) 
1 t 

Taking account cf the domain cf determinacy G cf the  funrtirns u(x,  t),   ehe space 

X with nenn 6    t^ll be denoted  by b\j(G;.     by virtue of the correctness cf Cauchy's 

problem (1.2.1),  (1.2.4), the solution u(x,  t)  vi this problem belongs to the 

space b1(Q0;>  ;,-.ere ^ u thg .;cm£ln ^ ^- x ^ ^ 
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: .» Suppose A is an operator effective in B. Obviously, operator A is sea '-«- 

fol also in the space B1: [AU(I, t)]B. The converse, of course, is invalid: an 

operator defined in B generally speaking is not defined in B. Let us define in 

E, the displaceaent operator T(h, c ) by the equality 

▼(x, t) - T(h, r )u(x, t) - u(x + h, t + r). (25) 

Obviously, the operators ?(b, 0), 3/fei ■ D, exist simultaneously in the spaces B 

and B., but the operators >/&t • B , T(0,r )(T/ 0), definedinB. are not defined in 

B. 

Let us denote for brevity 

*(h, 0) - Tv    T(-b, 0) - 1^ « T.,% 

T(0, r) - To,    T(0, -r) - T.0 .Q ,?~1. J 
(26) 

Definition. The matrical operator defined in B.: 

A(I)«fo(x. t, t, A)3OT. (27) ; | 

where the aatrices b. g act in the space |u j of components of vector-func- 

tion u(x, t) will be called a difference operator. 

Operator A is defined for the function u(x, t) £~ B..(G), where G « 

U0-c, t- qQr] X [-i,i]. 

Operator (27) is called finite if q , q,, ^ Q, where Q does not depend 

on t, h. 

Clearly, the sum and product of finite operators is again a finite operator. 

The operator that is the reciprocal of a finite operator is not, generally speak- 

ing, finite. 

Suppose 

, B-»«W % = 0.  1. .... /£" «,-FO, 1. .... Pv    (28) 

- 42S ~ 
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is a matrical-differential operator. Let us define the approximation A ~ SI » 

where A   is operator (27). 

Let us consider the function 

R(x, t, X, h) - R(r, h)u - [A (r, h, T) - i2(D)]u(x, t),   (29) 

where u(x, tJ^CcB,, operator A (r,  h, T), #(D), R( T, h) -/( r , h, T) - 

JZ(D) are considered in B1. If for any u(x, t)^C cB. providing 

-c2 + h2 «C T
2, (50) 

where XQ depends on the choice of u(x, t) the following estimate is valid« 

(|R(x, t,r. h) \\  B - O(r^) + 0(hP),  *<_>0,   ß^O,        (31) 

then we will state that operator A absolutely approximates operator SI  in norm 

B.j for class C with order di   with respect to t and with order ß   with respect 

to x. But if relation (31) is violated, that is, if it does not hold for arbitrary 

r, h from the neighborhood (30), but the following estimate is valid for a certain 

law of passage to the limit h ■ h(r)t 

|jR(x, t,r, h(r))!lB - o(^-),   oi^o, (32) 

then we speak of the conditional approximation of operator £1 by operator A of 

order cC. For the case of conditional approximation, the exponent oL depends on 

the law of the limit process h ■ h(r). As a rule, estimates of the form 

|JR(x, t, r, h)||   - 0(T<*) + 0(h£) + 0(-c
vh*), 

where V and S can be even negative are valid for a conditionally approximating 

operator in the neighborhood (30). 

The equality 

u(x + h, t+x) = T(h, x)a(x, *) = 22 
a-Oß-0 

dP+ilu(x,t)   h"  -fi 
dx"dfi      a! ß! 

= SS(-^-ir)a(*' 0 = «*°'+*°'«(*. t).       (33) 
a-Ofl-0 
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is valid for the analytic function u(x, t). Thus, $he relation 

T(h, t ) - ehVrD<>      (34) 

is valid for the class of analytic functions. We will use relation (54) also 

for nonanalytic functions, interrupting the expansion of the function e ^  ° 

in series at the corresponding tern. 

Then the determination of approximation A /viZ can be carried out as follows. 

Expression*) 

-w** 

_^      -^^./. V^'^'-^^OOpflf  (35): 

is expanded in exponential series with respect to T and h. Then we verify the 

condition for the absolute approximation (31) and the orders Ji  and ß . If we 

are interested in approximation for specific limit processes, then we insert into 

this series h ■ C Tv ( V > 0), after which H becomes 

R. A-JZ - P(r, Do, D^, (36) 

where P("C , D , D..) is a fractional-exponential series in r and exponential in 

D , D... Then the smallest power of T in (36) determines the order of approxima- 

tion for the law of the limit   process h « C x*. The order of approximation 

A -*■ SI   depends on the class Ü of the comparison. If IL d.  U, the order of 

approximation in class IL can only be increased compared with class D. 

*) In equality (35) the expressions for R,A,-ft are operators. However, 

in several cases we will signify by the symbols D., T. not operators, but quanti- 

ties D.u, T.u defined for sufficiently smooth functions. In this sense algebraic 

relations can exiet between the expressions for D and D... 
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Let ns consider several examples that illustrate tbe concept cf order of 

approximation, absolute and provisional approximation. 

Let us define the order of approximation A svfl  for the operators 

.Q^D^+aD,,   A=In=S- a>0. (37) 

Following the general algorithm (54)» (35), we find 

A-n-i^+£Ä*+... -f **+£«,i*- (38) 

From (38) it follows that for the class C (■ ^2) the approximation is absolute 

and is of the first order with respect to x  and h. 

Let us consider the approximation A ~ SI for the class U of analytic solu- 

tions of the equation Slu ■ 0. Here we must formally put D ■ -aD. and equality 

(38) becomes 

K = A~-V=[^Dn*-l)-^ß?(*2- l)+'.T." 

+ (_l)-^L_D-(x-,-l)+...].  (39) 

where % - a*r/b. 

When jt - 1, the approximation A -~ SI  for the analytic solutions of eque- 

tion J2u « 0 is of infinite order. 

It is convenient to establish the approximation in harmonic polynomials 
N "" 

PN=   S C^+w.   ' (40) 
kt—N 

for equations with constant coefficients in the norm L„. In this case we convenient- 

ly convert to spectral images A > J2 of the operators A, J2, which are defined by 

the equality      ~ A(Cie*<+»*)~=(Xck)e°'+'**. j       Matrices Ä, R and A, ß 

operate in the space U of components C, and are derived from the operator-matrices 

A(T , T^), Jl(D , D^)  by the formal substitution 
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:, 
r,-*«■«. r,-*«*». o^*. o,-»a. -    (42) 

?hen to equality (36) there corresponds the eqaalit} 

B- A- A -P(rf»J, ik). X; 

Equation» (36) and (43) are equivalent by virtae of (42), however the 

tion (43) is valid far functions expandable in Fosrier series, while (36) i* 

valid only for analytic functions,    letuming vita this point of vie« to car 

exaaple (37), we see that an infinite crier z! apprcxinatiiffi A/v J£   obtains 

also when >C" "• and for discontinuous functions represented by the Faurisr series. 

It is not difficult to see that this is associated with the ooiacldenon of spera- 

tors of the solution of the equations 

An m 0        and     2u - 0. 

Actually, when X" 1 "* have 

S(t +r, t) - c^,   m - ^(-ar), t - it. 

Bow let us show as exaaple of a scheae with a provisional approxiaatioa. 

Ve put the equation 

Q« = -s-+a ■j-={Dj-i-o£>i)« = 0.     fl = coesi. 

into correspondence with the difference equation (Lai scheme} 

~Tw    !i±L=i 1 
A-= =-? -i-e Tl~T--  U = 0.      (45) 

♦ 

Let us represent operator A as 

A T.     hö—5- ^ p .    (46) 

Using this scheae for verifying the approxiaation, we see that equation (45) 

under the law of the Unit process h - constant- x.    approxiaates equation (44)1 
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........ -··--· ··-·-·-------··---------·--·------ --------. 

2 under the law of the limit process h • 2~~, it approximates the parabolic 

equation ;:· ~:.+~ ~~;-b :- ----.. ---·----~rr '(47)~ 
------~--. .. . .. · ~--------·-···-- -- .J 

This tdx.ample shows that in the case of conditional (provisional] approxill8tion 

the difference operator can approximate different differential operators for 

different lave of tbe limit process~ 

Nov we can give a third definition for the approximation or Cauchy's prob-

lem (1.2e 1 ), ('1.2.4) by Cauchy's difference problem (1 ), (2).· 

Cauchy's difference problem (1), (2) characterizes Cauchy's problem (1.2.1), 

(1.2.4), if the operator 

-··-- ........... ~.,...._...._ 
. A-= T,-;B -A1T0-Ao. (48) , 
t ------·----·~---------'"""'~ ·~-:. 

approximate*) as --7 0 the dift'erential operator Jl • ~/at - L(D) (49) 

. from any smooth solution u(x, t) G Cq of the problem (1.2.1 ), (1.2.4). lfov let 

us compare different definitions of approximation. T.be third defini~n is the 

moat formalized and most effective. It is not difficult to see that from it stems 

the second solution. 

Actually, if u(x, t)6Cq ia a solution of (1.2.1), (1.2.4), then as shown 

above, u(x, t) E B
1

• 

let us form the quantity (remainder of the scheme) 

R( r, x, t) • R( -c )u(x, t), R( 'C ) • A ( r) • SZ.. 

If u(:x, t) is a sufficiently smooth solution, then R( "t', x, t) E: B
1

• Noting 

that R( -c m+1 , x, tm) .. R( -c m+1 )u(x, t
11

)u(:, tm) • R
11
+1 , from (16) we ha-;·e 

*) Since the dependence of opera tors 1\ 1 and /\
0 

on parameters h, ~ ia 

not indicated here, the approximntion A,-vSl. can be both abaolute aa well aa 

provisional. 
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~~~·~·:-·- .. ........_..---~ ..&---~-..........--· ··---:--------·- ···-· ........ :-·"': .. '""".'1 
'JJ.lu)R~..a-:-L-<nia1 OR(8. i, t>L. .. · 8<-r-._mu-r.. , 
\.. . •.. . . ''·-" ·!_. . .~-=--...___ . J 

!rom whence follows our assertion .. 

Let us show that it the OJI.erator A • E -"C/\1 is invertible, then troa the 

second definition or approximat~ .. on (formula (16)) follows the first (ronula (9)) 

in the class Cq~ B in which (16) holds. 

Suppose fl A - 1 I~ ~ B(t). Prom ( 16) there follows 

and equality (9) is satisfied, since max II Rm+111 B _...., 0 as "C' ...... o. 

~ird theorem ot convergence. If 

1) problems (1), (2) and (1.2.1), (1.2.4) are correct in B, 

2) IIA-111B .. II (E- "CA 1 f 111B ~ B(t), 

) ) 1\ 1 + A o ......., L :in B1 • 

then solution or (1), (2) converges to solution (1.2.1), (1.2.4) in 31 
Proof, Actually, in B ve have 

From whence it 

r-c:..•":""-:-:- •• ,. ~ '**'-" ........... --......r.···· ............. ____ ••. --- ·-·--·- ....... ·--·----'----· ··-· 

. T,-B ~·~ AT, +a;._, .A +A ~ ~. . . . ·' . ,. ._- " .. · 7 •. _, 1 o ..... -.. '.; . o . . ., r.. 1 .. . . . ' . . . . . ,. 
~---. =-=-=::-! ·~ -B . ~ ~ . : :' ·, . '~ 

follows that ! ... A~( !'t-. . -.~1T0-N)~.c -=or.-~(D). -~ 
L _____ \_. -·-·-·- -·---····----- ·-· ...... ---- ·- -----·-----

B,y what has been proven, (16) is satisfied, and ve are under the conditions ot 

the aeoond convergence theorem, 

5. Stability criteria of difference schemes. The theorems forMUlated 1ft 

subsection 4 enables us to establish the convergence or a difference scheme aa 

soon as we have establiahed.approximation and stability. Approximation criteria 
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are relatively simple, are local in character, and tor the most part are reducible 

to a Taylor series expansion. Stability criteria are much iDore co~lioated. In 

this respect we present brief review of various stabilit7 criteria. 

If the scheme is uniformly stable, then of course it~ stable. Thus, 

uniform stability is a sufficient condition of stability. This enablea ue iR 

most cases to reduce stability to the definition of tho norm of the step operator. 

Let us first consider equations with coefficients dependent on t. In this 

case the Fourier transfGrm is possible for scheme (1.4.1). If 

r···--- -·---:---··· --- ........ ··~. ··-··· -·- --: ---.. -·:· ------------- .. 

.- (x}- l1 C"' (k) 'u . ·(1) 
'· ---~ __ _!.-.::...t -~~- - - . __ :: ·-=--.;~.-~.:~2~~--~ 

ia the representation of um(x) by a Fourier series, then tor cf(k) ve obi;ain a 

system of difference equations 

where i\1 , A
0 

are spectral images of operators A
1

, 1\
0

• 

- .. , -The ~ourier transform place~ the step operator (K - 't'.l\
1

) (E + -rl\
0

) of 

' ..- -1 --scheme (2) into correspondence to the step operator (E - "t 1\
1

) (E +'1'/\
0

) <Jt 

scheme (1.4.1 ). On analogy with formula (1.~.·1}), we have 

(:~) 

l:here C ..,(k) 1a the transform operator of the dif.l'erenoe scheme (2) transforming m,JC. 

c1(k) to cm(k). 

If the estimate 
I··:"':"-~; .• ·. . .. 

l . uc~+_J.m(~:-'.~~-.~. ~ +.~:~.~: (4~ 

is valid for the step operator C +1 (k) of system (2), then by virtue ot (3) m ,m 
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scheme (1.4.1) is stable in~· 

'l'hur1, equalit;r (3) enables us to reduce the atabiliq p1'oblea to a Plll"•l¥ 

algebraic problem of defining the norm ot the atep operator a 
1 

(k) • .... .. 
We know that the spectral radius ct a matrix, that ia, the .ax~ aodalma 

of ita ch~racteristic root, does not exceed the matrix nora. Bence ve obtaiD 

the necessary stability criterium (Neumann criterion)a 

For the 

inequality 

scheme (1.4.1) to be uniformly stable, 

R, (C 1 (&e))~ 1 + M(t)'t'; 
" m+ ,m - (5) 

b~ valid, ~here RA (C) is the speotrsl radius ot matrix c. 

For the case when Cm+1 ,m(k) is a normal matrix, that is, interchanseable 

vith ita adjoint counterpart, its norm ooinoides with the speotral radiua and 

criterion (5) is a necess&ry an~ sufficient condition tor unitora stabili~ ot 

scheme (1.4.1). A detailed analysis or different estimates or matrical nora. 

can ba found in [9]. 

The stability estimate tor schemes with coefficients dependent on x, t ie 

mucn more involved. Here ve uee the following methods ot estimating the correct• 

neoa of difference problem (1.4.1), (1.4.2)1 

1. method of m&jorant or a priori estimate 

2. local algebraic method. 

The simplest majorant estimate ia an estimate tor aoh••• vith poaitiw 

coefficients. Let us consider tor the equation 

the 

j.' . , i~ + ~ i~:··~J.:~;;~fi[i;f;. ~ .~~~~ tfi.·~rr.;~~'f ·~~·: 
... ··------ ' ..... ~:".!1.....~ .... , -~·.,,,• ~ • l. ........ ~ 1\'J.. •\.\1 ~ ~ ' .• 

follO\dr&g di.fferenoe aohemo 1 • : ·,· · · ·' · 

,.m+• (x!_:-r"' (x) + t,;. (x)' ....:~· x-Tt -~(~)f'l(x). (I)' , 
t . . . . .. 

F ... .. ,.,. -··----a~• .... • ... -...,. .. , ... .._,_. ~--- .. 
! 
I 

' I 
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V* merit« «cms» (7) i» ths for* 
v# 

where 

the estiaste 

[,*#*(*)« [1 -"^^/-(xV+a"Xx)/-<x^*)+*«-(x)/-(x>. (^ 

the conditic»  0 *i 1 -*?(x) ^ 1 (9) 

i i^^ir^wP,Sfr'^^glt-«i-   w 

is valid. Salecting as the nora of the solution the quantity 

va find fron (10) 

|f-|=»ax!r*(x)i. 
X 

fli) 

(12) 

where we denot« 
f isauxj«"(xH (13) 

Beace follows unifars stability cf a obese & (7) and the space 2.- i, ji;  with 

nora (11). 

Let us show unifora stability of (7) in lA- JLt jfc)*). Haltiplying squalid 

(8) by r  (x) and using (9), we hare 
lr^Hxff*[l-«-(xMr-{x)r-+1(x)+x-fK)r-ix-^r-«(x)+ 

+ T^-(x)f-{x)r--»(x)<i=^i^- [r-(x)P-f- 

^4k-«(xH»+I=f^lr-(x)P+^-ir(*-*)I
l+ 

^ywr+i^wr.   (to 

*) Stability in LgC-/, j£) follows fros the stability in C{-£ , 2)  only 

for finite J_  . 
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I 
Fro« whence 

(15) 

Integrating inequality (15) *ith respect to x within the limits fro« - £■ \c &, 

lT^xl<l±£^\ff =I1 +0(^llr-?, 06) 

where we put 

— «» *|f W-f (*— r— sap 4! (17) 

Whence follows toe unifore stability of scheae (?) in L^ if condition (9) Is 

satisfied sad ^   (1) is LipachLtz as continuous. 

These estimates are sransfcraed without asking changes to sehe sea approxi- 

aaiing systess of equations in invariants 

TT+**4r = SIr.-     •,«-!. ....«■ (13) 

K. 0. Friedrichs (cf [19]) introduced general concept of positive schemes — 

difference schemes with positive matrices — and established for the» the suffi- 

ciency criterion of correctness in L.    We formulate the Friedrichs criterion, 

Halting ourselves to the case of a single space variable. 

Suppose the linear system      3u/&t    • A(i, t)äu/ax (19) 

is approiiaated by the exnlicit difference scheae 

«-+»(*)«=  S  B„(x./. T, *)a-(jc + oA). (20) 
a--«. 

He:» A ■ |j A ,j|, B^ -|| B7, IJ are aatrices in the space of the components of vector 
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Scheae (20) can be also written es 

«•«^C.*«    C.—V..    a=— ft «i- (21) 

1 Suppose scheae (21) satiafies the condition £     Bx« £, (22) 

which signifies that the constant vector a (z) =£ « • cccstant is a solution of 

(21).    fiten scheae (20) approxisete equation (.19) given the condition 

•—« 

Tbe Friedrichs criterion is formulated timely« 

Scheae (21) is correct in 1^ if aatricas 3^ axa ay—»trie, positive, and 

Upschitx-contixaous relative to z, so that the condition 

^|Ai£±£^|<>. <24) 

a+1 

is satisfied. 

Ifaltipiying equality (20) acalarly*) by u**', ana taking condition (22) 

and inequalities 

0>~ v)iY@+<j V(B$-*) < {B* Sf^g 0) ,     (25) 

to account, we neve 
(«•«. s-*v= 2 (S.(x)«-(x + as). «•«(*)>< '- 

<^( 2 iss(*)«-+,w.«*+,w)+ 
* 

«—«1 

+ 7  2 (BB(* + a*)«-(*+a*)t «-(*+aft))- 
a--»-?. 

~T S (lß,^ + <^)-ß«(*)l«"(*~a*)- «"<* + «*)).    (26) 
o--«i 

[*) on following page] 
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J 
Integrating inequality (26) within the limits from -I to i, we find 

"~T7 
$J*j^jpr 

vyS-s nml 
t 

<^{i-|-m*)««{*+o»), •"(x+a*»rf*. (27) 

where we assume 

I«jp^ \ (ßiA. «<*))** 

Taking the periodicity of function u(x, t) and condition (22) into account, we 

the following transformations 

' ft 

Finally we have 

f 5 (^(«+o*)«"t*+«*). «-{*+oA))d* = 

a--* -I 

2 J(B.(JC)«-(JC). «"(x))rfJC= | J (*«"•(*). «"(*»<**= 
-I a--«, 

= f (( S *«)""<*>• «*(*)W=II«" 

.ft-rfi -I 

i|s-"+1IP<(i+W!l«mIP- 

IP- 

(28) 

The assertions stand proven. 

Schemes with positive coefficients and matrices represent a bounded, 

though extremely important class of difference schemes. As a rule, these are 

♦) We refer to the scalar product in the space of components u.,, ..., uns 

(u, v) - u^ T^    ( cL - 1, ..., n). 
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I 
schemes of first-order accuracy in which the der stives are approximated by one- 

sided difference relations. For approximations of higher orders of accuracy 

when centered differences are taken, as a rule we do not obtain positive coeffi- 

cients. In this case mojorant estimates of stability are complicated. This 

kind of estimate is called apriori estimate. 

The apriori estimate method for difference schemes is analogous to the 

corresponding method for differential equations, wherein the difference case its 

realization encounters major difficulties. This is obviously associated with 

the specific details of difference analysis in which many relations of ordinary 

analyses then do not hold or take a more cumbersome form. 

Let us consider the apriori estimate method for the example of equations 

of acoustics (1.3.31)» in whose integration will use the implicit scheme; 

u»+i— uf A, ...  - =0m+l _^_wm+l< (29) 
*tm +1 — «*■   A 
—-— = -^«»+». A^r.-f. A.j-ifi-r.,. (30) 

The apriori estimate for this scheme is analogous to the energy inequality for 

the system (1.3.31) establishing subsection 3. Multiplying (29) by 2um+1, (30) 

by 2a  v  , and manipulating, we cbtain after the uncomplicated transformation 

I (B*+i)3 _|_ fl«i+i (t^>+i)ij — [ (««)»+ a" (o")2] — 
«= _ (Um+1 _ B*)J _ am+l (V-+« _ yip 4- (flmn _ a*) („*)» _J_ 

2T _j_^.ö«+i(«»+iA1v
m+, + vm+I A.,«**1) (31) 

Taking formulas of the difference differentiation of the product 

A, <Jg) = (A,/) g + (Txf) A,* =- A,/ Tlg + f A,*. 

-<*-•• '      "**' '*"|W|»..ii        „j 
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. . .. ...... ..... ......-.-...:-.- . t.;-*1*~*^**S**^ : 

into account, let us transform the expression 

to the following formt 

—ritF"
+1A,B"+1-J-tr"+,A_1B«+>J=a»

+iA,(fl«+»w"+l—o«f»A_1a*
+ll=» 

— «•«riy»+>Ata»
+1.  (32) 

■*i ; 

—'' (32) 

Then» *ro» (31) we can obtain without difficulty  the equality 

where 

j (a«+i)»+a«+i (*-»+i)*] _ [ (a*)2+«* (©*)*]< 

< -TTA (««+V+,f _,«-+I)+ *iT [ (a*)2+a>» (v«)2] -f 
^t^xKuf^+T^HT^^n     (33) 

     v/*r 

Integrating (33) relative to x, we obtain 

n 
where 

|0-+ip_|<I»»f<*1t|<I>*f-|-ftaTJ(»*
+If.     (35) 

fence follows the estimate 
-a 

1 

(36) 

08 

which proves the uniform correctness of the scheme (29), (30) for the case jf 

Lipschiiz-continuous  function a(x, t). 
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Similar estimates are established fo- the scheme in which the quantities 

in the upper layer appear with weight c6 and in lower layer with weight ß t 

„<* + !_B» 

«Ä+l-,0« 

A, A, 
==o1a»

+lTr«-+1+MAc"> 

Q-l [ajU'+'+^j. 

a,+&«»l. a,>0. fc>0  (1=1.2). 

(38) 

Now let us proceed to the local algebraic method of investigating correctness. 

Underlining this method is the study of the properties of a local difference 

operator. 

Suppose 

is a difference operator with variable coefficients. Then the operator with 

constant coefficients    A(x,t) - b« « (x, t, r, h)!I?ßc TÄ 
TfJ ^J 0       1 

corresponding to the fixed value x « x, t - t, will be called the local »perator 

corresponding to operator A at the point x ■ x, t - t. Local criteria of the 

stability of a scheme enables us to establish this stability of the difference 

schemes, based on the stability properties of the loca? difference operator of 

the scheme. Local stability criteria are thus a generalization of the method of 

freezing coefficients employed in the theory of differential equations (cf sub- 

section 3)« 

We consider the local algebraic method for the example of the scheme for 

equations of acoustics with variable speed of sound. Let us show the equivalents 

of system (38) to a second-order difference equation. 

Write system (38) in operator forms 
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•^a« = (a1a
m+17-0+ß1fl<»£)Avm (39) 

&v*=<aJf0+ßJ£)^i|«-,     Ao^r^-ß. (40) 

A-1 
Multiplying equation (39) operator by operator by (^2TQ + 02

E) IT' equation 

(40) by ^o/f f and manipulating, we cancel out um and obtain for v    the equation 

(M'tr»— vm+t — 2i>"»+' + g'»  _ 

= (c^r,+ßjf) ^ (a,«-*1?,, + ß,a»£) -£- V» == 

Shifting the time index by 1 and denoting 

aia2 = Y1.  Ojß. + Ojß^Yo.  ßiP2 = Y_,.      (41) 

we obtain a three-layer scheme 

t/m+i_2t;m-f {/"•-'   A_, S YJa
m+*4L*''n+1 (42) 

Clearly, V_-i» V » V1 satisfy the condition y  + VQ + v^ - 
1«  (43) 

For further analysis it is more convenient to us to convert to the space of grid 

functions defined over the grid 

x = lh (1 = 0,  1, 2 N-\-l); 

t=?mx      (m = 0, 1, .... M),   (W+1)A = JT, Mx =r} (44) 

For equation (42), which we will rewrite in indicial form, let us formulate the 

mixed problem: 
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\i 

«?+I-2t>? + r- -l 
s Y>:+f(«&r-«ro 

*—i (+ 

v 

(45) 

(«CJ—[(,+TK*+HS,-,-> ")• 
-V? 

(/= 1, .tf). 
(46) 

At each step t ■ t the solution v of the difference problems (45) and (46) 

can be given by the N-dimensional vector 

We will consider the case when  a(x, t) * b(t)a(x). (47) 

Let us formulate for equation (42) the difference boundary problem for the eigen- 
k   k      k 

values: find the eigenfunction w - {w , ..., w^} and the eigenvalue A^ of 

the equation 

*    / A        A \ *      * 
Aw = (-^- c (x) -^-J vj°= Xkv, 

if 
wft '%+!' 

(48) 

(49) 

This problem is the difference analog of the Sturm-Liouville problem for a self- 

adjoint second-order differential equation. The indicial notation of equations 

(48) is of the form 

*     * 
< + ■ 

(w,+ 1 — w,)—a    ,(»i —»(_,) 

(*=»!. , N;    1=1,2 N). 

(50) 
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» 
> 

The fcätrii of equations (49) ui (50) is * syaawtrical ttaaa--aJagcsM1 Jacobiaa 

matrix.    As ve know (cf fox eiarple [47]), this astrix is simple 1» structure 

aas when s(x)> 0 its eigenvalues  A    are real and negative.    ?b each of these 
k 

eigenvalues  A.    there corresponds the function w of the problea (48),  (49). de- 

fined vith as accuracy up to the arbitrary ■altlpliex.    The nozasd system of 
1 I 

I eigenfunctions v,  ..., v of probless) (48),  (49) fores an orthonorssd basis 

is the space S- of vectors vith I components.    Therefore the vector     v    - ,:, 

T"(  ..., v", 0 I-, being the solution of the problem (45),  (46), can be uniquely 
1 * k 

represented if the fors of a cosbination of vectors wi 

•r—ipff*,?)   («=t..... AOL 0i) 

Substituting representation (51) into difference equation (45)» taking (48) and 
k 

(47) into account, and noting the linear dependence of vectors v, we obtain 

■T1-«*!»»-* v 

-,  T* = [Vr'THif*« + V«^? + T_,*-H>f-1] *»• (52) 

where k* - b(mx). 

The problea of defining the stability of difference equation (42) or, 

which amounts to the same thing, system (39)* (40) reduces to defining the stabi- 

lity of equation (52) where k - 1, 2, ...,I. 

Difference scheme (42) or (39), (40) is stable providing condition (47) 

is met, if for sufficiently small T^r the estimate 

|p«|<K(T0).  ft=l. 2 N;     »<-i- = Af.    (53) 

is valid. The problem is solved especially simply when a(x, t) does not depend 

*) Recall that summation is to be carried out with respect to the repeat- 

ing Greek subscripts. 
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t. «• can pet »(t) - 1 «ad ajstw (52) b» 

04 

solution f* of arsta* (54) la giva» by the foraala 

•«J 

12 '     
where x*_, X^ are the roots of the characteristic equation*) (aultipli cation caef- 

ficients) 

*-%*+l =M+Vi +J-0 V (S6) 

In this case toe criterion on nnifora stability is of the fora 

!*»l^$+£*  (*=1. 2. .... N; x=I. 2V    (57) 
  jg^ _                

where C>0 is a constant not dependent on x,  h, k. 

Ais stability criterion is not effective enough, since for arbitrary 

a(x) A, are unknowns. We can formulate the following effective stability crite- 

rion: 
1 -  2 

Suppose z, (x), ^(x) are the multiplication coefficients and A,(x) are 

the eigenvalues corresponding to local operators \{x).    If the estimates 

!**(*)!< I+CT (*=1. 1 N;  j=l, 2) (58) 

hold for all x and if the constant C does not depend on x, k, then difference 

scheme (;>4) is correct. 

This local criterion of stability reduces the problem of determining 

the stability of operator A with variable coefficient a(x) to a purely algebraic 

*) Investigations of stability were similarly pursued in the works [20J, 

[21 j. For difference boundary problems, cf also [22]. 
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«MET..  

-   » 
es* «stszsrfsdLag tte stability of tft 

hcumxlj, for local operator A(x) 

A^), 

(50) 

*      » 

follows tfcst g^iaf—L'.Aca of «fet proalea (48)t (v9) f«r • local v:^ 

S = 

« « min kx (x - ii, i, k • 1,  .... I) 

Is toe parti-alar ase wbea V, • tf- • 0,   ^    • 1  (" 

following sabsecticc), ~.nrtiti«as»($7), (56)srE satisfies, 

,CijS=^Mi<! 

:«• 5 , cf 

5? 

,., I,  xaee seaeae If rendition (39) is satisfied st escfe poist z • Jh, j • * 

(42) providing  V1 -   V      « 1 will be stable.    Condition (39) is ;ae local 

Couzant criterion*). 

Let us prove, following the work of fa. Te. Boyarintsev [24j,   tie fcraclated 

stability criterion (58).    Ris criterion follows fros the property of stonotoni- 

city of the characteristic roots of the Jacobian aatrices. 

We will consider the Jacobian syaaetrical aa trice a A -   {a  ."V , i,  j - 

1,   ...,  I,  of the fors 

flo=a<v/-I-(«l-w+«,+1^*/+«/+wö/+^    (6o> ' 

corresponding to positive functions a(z). Suppose A - /a.A,  where A, corres- 

ponds to a1(z), Ag - a2(z), a8(z) 0. 

Let us consider the pencil of matrices  B « A.  + (A_ - A,).   (61) 

*) Criterion (59) was first formulated as the condition for the conver- 

gence of the "cross" difference scheme for the weighed equation with the constant 

speed of sound a in the work by R. Courant, K. Friedrichs, and G. Lewy [25]. 
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We have for the normed eigenvector x(~) o~ matrices B(ct) and the eigenvalue 

l ( ~ corresponding to it 

f.. Bx(a)-~(a)x(a), 
Ids ·u tn..' ~· 
: dclx(a)+Bda=dax(a)+~ d:, 

.. dB·... . .. 
dii=(At-At); ·. 

,. 
• -~.L, 

. .. 

(62). 

. (63) 

(64) 

~lltiplying equality (63) acalarly b,y x, and taking the orthogonality or x and 

iL""C./dJ.. into account, along with equality (64), '!'l'e obtain 

r· (-(~~-~>::·~)~ ·:~ ..... : .. ··:_ ·:---7 iM> 
- .•. · . .,.- .. .l'~-... ...·. ~... -····. . . ... . . . . . . 

If n
2

(x) ~ s 1 (x) > O, then ((~ - A1 )x, x) ~ O, and fro~:; equality (65) follows 
• • •· . '" •· -· • I • ~ 

-·~·-·· 

! ~-< ~. < o. I '-u I> I ~.1. (66) 
--·- - ..... "r"~ • - .. 

where )\
8

k are the ei~nvaluE/3 or mat:t"ix. A
8

• 

Thus, ve hav~ proven the monotonic dependence or tho roots ~ k on the 

fu...."'lcUon a(x). 

Let us now conaider the dependence or the roots zk or equation (56) on k• 

We assume f. or aimplici ty V 1 • V _1 • 0, \J 
0 

• 1. Then for ~ we have tb& -:. · '\res-

a ion 

If 'the rl.)ots (56) ere conjugate, -then they both equal modulus 1, since their . 

product e~uals 1. If the roots zk are real, then the following estimate is 

valid: ; .... ·r .. ,.--.. ··:··i....., ..... - ......... -- .. ·:-··· ..... ~-· ...... -
:. m~x {I ~I;,, I Zit I J ~ -r<t'l ~. 1+1' yj£.1t<l ).It l<t1- 4) -I. 
,., ..... ~ t. ... \ ......... ·- ····· ,..:_.,. __ . .• ., _.. .................... _ ·-. .... . .... -' .·. ·: ..... ' . 

H<;nc~ it follows that. corresponding to the larger value /Akf is the lar~value 
s • 

max I zk/. These properties or monotonioity of ~k' max/z1 J enables us to prove 
8 
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the local stabilit,t criterion. Aotuall7, it all local ach••• are atable, thn __ _ _, 

in particular the scheme with a
0 

• max a (x) is stable. lllt then, b7 rirtU ot 

the property of the monotonicity ot ~k' the eigenvalues Ak correspcmding to 

a(x) ~ a
0 

are s1118ller moduhswiee than the correeponding e.ipnvalues ot operator 

1\ with const:nt coefficient a
0

• Baaed on the propert1 ot monotonicit,r, the 

quantity maxjzkjfor the equation with coefficient a(x) will also be less than 
s 

the corresponding quantity for the equation with a(x) • a
0

• Bence follows the 

stability of the sqheme with variable coefficient a(x), which is thus proven. 

For the case of explicit schemes for the system of hyperbolic equation 

c u/C>t + A 2Ju/~x • 0 

Lax (23] proved the validity of the local Neumann criterion. Yu. Ye. Boyarintsev 

proved the local criterion for the implicit scheme (42) of the general torm, 

when a(x, t) is not of ~he form (47) and the local operators 1\ depend on x, t,and 

are noncommutative. 

The local criterion of Yu. Ye. Boyarintaev is founded on the following 

theorem of comparison: 

I:r the difference acht:!me (42) is stable for a(x, t)_. a2(x, t), then it 

ia stable also for a(x, t) • a1 (x, t)~ a2(x, t). If the difference scheme (42) 

is unstable for a(x, t) • a1 (x, t), then it is unstable also for a(x, t) • 

a2 (x, t) ,?:- a1 (x, t). 

Hence at once must follow the local criterion of stability for (42)a if 

all local s~hemea (42) are stable (unstable), then scheme (42) is stable (unstable) 

as well. We refer the reader to the work (24) for the proof of these theorems. 

The local stability criterion •••••• 

(missing pages 359-370 in text] 
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.... a Ti»11»T» pattern is also observed is equations vith partial derivative*. 

For t xasejl t , for the eqoation  

where s b are poeitii , tie explicit scbeae of rcnr.iae coaputetioa 

+« 

is stable where   X- *r- ^ 1, *»* i» no* strongly stable.    Actwüly, «hen *0(*) 

» constant, we bare „-.   -    - — 

Sb 

Vfeen br > 2, we get the solution of r", «kid: for sufficiently large a deviates 

fro» the solution of equation (45).    Sote tbst far sufficiently large b the restric 

tioB r < 2/b can be stronger than ihe restriction doe to Gonraat's criterion 

ai/h <1.    %e implicit acheae 

^%-.^+^0 

is also not strongly stable. 

Use inclicit scheue 
•-'-/ 

+ o + *^*5=C 

is strongly .«table. 

7. Dispersion analysis of difference scbeaes.    Appiw iaatioa viscosity. 

Suppose the difference equation 

As=«h*/t7t« = 0.   *« — «,..... 1y fc = -* *.      (1) 

approxinates the differential equation 

Pi- (2) 

If the aetrices a, , and ho a   have constant coefficients, then we 

esploy a Pourier analysis to investigate both stability and approximation. 

t+ikx 
For the naraonic u « u e o 

to be the solution of equation (1) or else 

of equation (2), 6c and k mist satisfy the condition        Det   I/ÄJ/« 0 

or,  correspondingly,        Det ilJZH- 0»      (4)    where the matrices 

Ä=*ftA«e-"e'*W,     Q = ß(Wfla,(rt)* (5) 
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f_ 
az» spectral of Operator» A cad fl . 

Zquaticna (5) «ad (4) ar* called dispersion relations,  corresponding to 

eenationv (1) aad (2). 

9te solution &J-A)<f, h, k) (»-a^k)) of equation (5) (and those of {4)) 

yields coaplete iaforaeiias about the properties cf solutions of equation (1) 

(aad those of (2)). 

5fcu*,the spproxination condition A--JI'   ia of the for« u>{ r, h, k) -»** 

u>(k)   (6)       for en arbitrarily thick k aad "C , h —•» C.    If relation (6) ia 

Tslic for arbitrary apprcaob of  r and h to zero.  then the apprcxiastior. ia 

absolute, otherwise it is conditional. 

Station {1} defines a stable aches* if far sufficiently snail fend h 

BBU)(-C , fe, i.'.-^/t, (?) sac the constant n does not depend on k*). 

2» «chess ia absolute!? stable if eatinete (7) holds when 0<tr + h ^-r , 
o 

and it ia conditionally stable or unstable otherwise« 

M» will iisit ourselves to coonaidering the hyperbolic systea 

2u/dt    -s-   A^u^x     - 0, (8) 

rfbere A ia a constant matrix vith real distinct eigenvalues 5 ■ ^(i • 1,  •.., n). 

Proceeding to invariants, we get the systea 

my. 

Se diapereion equation is of tLe fora 

(•+ «!»)(•+y») • • • («H-U»)=0. 
3ras, for the case of a hyperbolic systea we have 

;  Re»=0,  |p|=l. p = f. 
Suppose 

A. = {Isz± + Aira+ A,) a - 0 

is a difference scheoe corresponding to {d). 

(9) 

(10) 

(11) 

(12) 

*} Condition (?) is the familiar Hamann condition which, generally speaking, 

is only a necessary condition for the stability of scheme (1). In several cases 

it is also a sufficient condition (cf [9])« 
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* will state that scheme (12) exhibits approxirs-tional viscosity if 

IPI < 1  fark^O, 1        (13) 

latex« -: ijc, h, k) is the eolation of the dispersion equation corresponding to 

equation (12). 

For example, for equations of acoustics let as cospsxe approximations of 

the roTBiing computation type (l .6.24): 

T,-£     .* 4,*.,     . A.+ A., 
/s\  —J *?—p-  —* W—       fm\ 

5       T   5" *» 

sod of the "cross" type (1.6.25)« 

■0- 
n-g 

T        ~       k 

a,r,  r.-£ 0- (15) 

For equation (14) we have 

p, ,= 1 —2xsln-^-(sin ~ ± /cos-5-]. 

Whence it follows that 

AA 
|p,P=lftP=1-^(I-x)s,n2T- 

lPil=»lfcl<l. *^o. «<!• 
|p,l = lfcl = l. * = 0. K<1. 

iPil = lftl = 1' k =» any number,^» 

For the "cross" scheme we have 

\  06) 

J 
07) p,J== 1 -2x2sin2-y- ± |/(l-2K»sin-^-)a-l, 

I Pi I = 1P21= *•  *■<!■  k = any numbe^. 

From (16) and (17) it follows that the running computation scheme exhibits appro- 

ximational viscosity where }£<1, the "cross" scheme exhibits this property where 

X^1, and the running computation scheme does not exhibit approximational 

viscosity when }(. ■ 1. 
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Let us dveil in »ore detail on this fact. Inequalities (1?) signify that 

the amplitude of a harmonic solution decays with time. Parabolic differential 

equations exhibit a similar property. 

Thus, the difference equation approximating a hyperbolic equation, provid- 

ing that condition (13) is met, exhibits the properties of a parabolic equation. 

Let us consider scheme (14). is was shown in section VI, it is equivalent 

to the running computation scheme 

(18) 

(19) 

Each of these equation approximates the corresponding equation in invariants! 

W+aW 
«  a* „is    n 

where r - u - av, s ■ u + av. 

Let us limit ourselves to analyzing one of the difference equations(18). 

We will show that solution (18) behaves emphatically as a solution of some para- 

bolic equation. We obtain the most characteristic pattern for the case of dis- 

crete    initial data. Suppose function r (x) is of the form 

1. *<0, 
r0(x) = 

0. *>0. (20) 

We will show that when the Courant criterion j£* ar/h  <:1 is satisfied, 

scheme (18) exhibits the property of monotonicity (cf [28]), that is, the mono- 

tonic profile r (x) converts to the monotonic profile i* '(*)• Actually, suppose 

A  ,£- rm - rm ,^0   for all i. -1 i   1   1-1 
Prom (18) we have 

&_,/•*+> =/*+3 — r*+> «=(1 — x)A_|/-J
,+ xA_1r«_,<0 

where J£ ^1, which in fact proves-the assertion. 

Let us follow the variation in the profile of r (x), which initially had 

the form of a "shelf" (20). 

Prom equality (18) we have 
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Converting to indicial notation, we find 

*-o 

(21) 

(22) 

(23) 

Fro« formula (23) it follows that where r™ - 1 when i <: 0} r1? «g 1 when 

i ^ ■} r. - 0 where i ^ m + 1, and the valuea of r? (i - 1, 2, ..., D) depend 

monotonically on i, varying frori 1 to 0. 

Tiiv.B, a* thf» s-th step the profile of r, has the form of a curve shown 

in Figure 3.6. 

-2-10123   t.-Z m m+f 

Figure 3.6 

For example, where X" i» «C" $ ■ i and for an even number of steps m » 2k 

the mean value r ■ £ will lie at the point k - m/2. The  profile of r? will be 

symmetric relative to the point i - k, r - £. 

The mean value of r will travel over the grid x with velocity a, while 

the profile becomes symmetrically smoothed relative to the central point. Here 

we have a complete analogy with the smoothing of the initial discontinuity in 

Cauchy's problem for the equation 
du   , du d'u 

Clearly, this smoothing of the discontinuity is the result of the opera- 

tion of approximations! viscosity. 
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I 1 

an /en more graphic example of the operation of approximational viscosity 

is given by the analysis of the propagation of unit error by means of the so- 

called £ -scheme (cf [28, 29]). 

Suppose that at the time instant t - 0, the initial data of r. are of the 

form 
,     0. i*C. 

[ h'   ' —J- 

Then formula (23) yields 

r"=4 S(Jf)«^-V«-*—i(7)«r-v. (25) 
»-0 

Here the profile of r. is of 1te form of the binomial law of distribution, and the 

profile maximum is shifted at the rate  dx/dt - a. 

Using the analogy with probability theory*), it is not difficult to show 

the limit profile to which the function tends for suitable norming x » ih and r.. 

Using Stirling's formula, we have 

1 f l-fflq \2 

(")a'F-'=-=L=e~*\***) +6%-, (26) 
V' / K2nmaß * 

where c. is a quantity dependent on oL,  but not dependent on i, and |9| < 1. 

For large m 

1 ,' m-l-ma \2 1 / m$-l \2 
rm^ l     _g    2V    V~*&   ;==_!       —L=-e   tyVmadJ .    (27) 

Let us introduce the quantities 

Then 

Fr=rmYm<$.      y= 'Z^. (28) 

«"^im^' (29) 

*) A. I. Zhukov [30J pointed to the analogy of asymptotic properties of 

difference decisions with limit theorem of probability theory. Our analysis 

mainly follows that of A. I. Zhukov. 
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if m —*• oo , and i varies so that y is finite. 

We will show that asymptotic properties of the profile of r are asso- 

ciated with the asymptotic properties of the operator of solution C from (21). 

Let S ■ T(-st ) denote the step operator of Cauchy's problem 

(D0-hflD1)r=-|-+a^- = 0. r(x. Q) = r0(x),        (30) 

and let r(x, m r) » r (x) stand for the solution (20), and r (x) — the solution 

(22). Then 

r* = CV. r" = Snr°,       1 

rm=CmS~m}m=z(CS~1)m7m.  I 

/■"^CV, r" = Smr0, 

-1 

(31) 

The operator CS  characterizes the deviation by one step of the difference solu- 

tion from the exact. Let us convert to spectral images of the operators C, S, 

CS . The corresponding multiplication coefficients are of the form 

pc=l—x(l — «-'**) = (1 —x)4-xe-'**, ps = *-'<"*. 

. =i-i=üj£l*M-.o(*M). 
(32) 

Now let us consider asymptotic properties of the deviation operator (CS ) . If 

we fix k, then as m —t>oo, X. —*• 0, we have 

'(«->>• =[! -^^k' + O^f^e-™,      (33) 
o ,2, 1 —x a2x 

Thus, the operator of the solution s(t) of  difference equation (18) is asympto- 

tically represented as 2 (t) « S(t)jZ(t),   where S(t) is the operator of the 

solution of differential equation (30), and J£(t) is the operator whose spectral 

images yielded by formula (33). 

We can show that the operator of solution 21 (t) asymptotically coincides 

with the operator of the solution of the differential equation 

dr".      dr       ., d2/- 
, W+a-57 = b2JP*- .  <34> 
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l> Let us pose for equation (34) a problem with initial data of the £- 

function types 

/(if. oji« 
■.oK.!*i.*f* ..4 

1 r*Kj*' (35) 

The solution of the Cauchy's problem (34)» (35) is of the form 

r(x,/).-' 57^"' 
55 

(36) 

as h —*■ 0, the approximation formula (36) becomes exact. 

Setting i - x/h, at - t/r > we see that expressions (27) and (36) coincide. 

Equation (34) oan be derived from equation (18) as follows. The operator 

Tt-ß ,    A.,   . ... :«r+aT*-r.4.fl <xD*-B B-*-hDi 

is expanded in a Taylor series relative to r and h with an accuracy up to 

second-order terms 

f:-- 1 A±-Q-D0+ ad,:+ 4 TOg-£ oM» (37) 

Mext, expressing D from equation (30)t  D - -aD,,  and inserting in (37)» 

we obtain the differential equation   •»» _.r «„».-..—-»- 

where b - £ah(l -HO» which coincides with equation (34)« 

We will call equation (34) the first differential approximation of differ- 

ence equation (18). 

We can readily note that difference equation (18) approximates equation 

(34) for solutions u <£ C,, and does so for equations (50) with an accuracy of 
2    2 

the quantities of the order -c and h . Therefore with an accuracy up to quan- 

tities of the second order we can state that the difference scheme (18) "adds" 

to equation (30) the "viscosity" b 2 S r_ 

This algorithm of the first differential approximation of the difference 

scheme is due to Ä. I. Zhukov. 
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The method of the first differential approximation can be extended to 

the symmetrical difference scheme 

i 
fl2A, + A_,t)W==vAj^a 

tf"+1_v'" AiirÄ-' a"—v A,A-' Tj- 
t ■ ^       *r—v    A*    W 

«•. 

2 2 
which,when V« h /2f, is the Lax scheme, where v- a f/2 

(38) 

it is the predictor- 

corrector scheme, and when V* ah/2 — it is the running computation scheme. 

After converting to invariants r ■ u - av, a ■ u + av, scheme (38) decom- 

posed into equations for each of the invariantst 

,m+l 

t   ^a     2A r      v T^r • 
,  s«+l_4m   A,4-A_. „    AtA_, „m A,4-A_, _ 

"P" 

(39) 

and asymptotic analysis by means of the first differential approximation is 

wholly applicable. 

Let us note that symmetric schemes(38) are asymptotically monotonic and 

only one of them — the running computation scheme — is strictly monotonic. 

In the general case of nonsymmetric approximation, operators of the con- 

version of difference and differential equations are noncommutative operators 

and asymptotic analysis becomes complicated. In any case it is clear that pro- 

perties of monotonicity of nonsymmetric schemes are poorer than for s.fmmetric. 

Thus, for the "cross'! scheme with viscosity 

A.,«"1 A,A. .a  A,A_ 
A' 

A,u"+1_, 

the scheme in invariants is of the form 

- 46O 

(40) 
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3!Si®!P5äP*'?ww»w<Me^'ES£!B»»<~ 

Kv0-Oi-»«>>+ 

+(v^->;i +*)>*]- ^^'.(ffiPjflj, 
»"+1-J" A«-«/ 

v-^-*^^^^ 

>r™"^ 

f .*  '/ .1 

w 

We can readily see that the solution (41) with constant invariant r or s 

does not exist, whence follows the nonmonotonicity of the difference profile of 

the acoustic shock wave. 

Section II. Method of Constructing Difference Schemes for Equations in Gas 

Dynamics 

1. Methods of describing gas dynamic flows and construction of difference 

schemes. The nature of the schemes of integration used for equations in gas 

dynamics depends heavily on the method of describing hydrodynamic flow. In the pre- 

ceding chapters we employ the following three ways of describing flow» 

First method. The region G of the phase plane x, t in which motion is 

considered is partitioned by strong and weak discontinuities into regions G. of 

smooth flow in which equations of gas dynamics are satisfied, while compatibility 

conditions are satisfied at the discontinuities. In this consideration the 

generalized solution is a set of smooth solutions defined in the regions G. and 

adjoining each other across discontinuity lines with the observance of compati- 

bility conditions. In this description it teccmes necessary to numerically integrate 

the equations of gas dynamics in the region G. with conditions for contingency 

at the discontinuity lines being satisfied. Here any identity transformations 

of the equations are admissible in each of the regions G., as is an arbitrary 

and sufficiently exact difference approximation of equations and contingency 

conditions. 
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The best known is the difference method corresponding to the first tech- 

nique of description, namely the method of characteristics. Actually, among 

the lines of separation we have weak discontinuities and contact boundaries, 

which as the characteristics which make the characteristic difference scheme 

convenient. 

A total detailing of the description of a flow, which is a positive feature 

of the method of characteristics, at the same time, impedes its realization on a 

computer owing to the complicated logic  calculating singularities and constructing 

of the calculation front. 

Of course, the method of characteristics is not the only difference method 

that can be employed within the framework of a detailed description of flow. 

Second method. A generalized solution is defined by integral laws of 

conservation in Bulerian or Lagrangian coordinates. This description is unique, 

since both equations in gas dynamics and the compatibility conditions are conse- 

quences of the laws of conservation. 

Difference schemes corresponding to the second technique of description 

ere obtained by the unique approximation of the laws of conservation indepen- 

dently of the nature of the flow and therefore are called homogeneous schemes or 

schemes of continuous computation*). 

Third method. The generalized solution is defined as the limit of the 

classical solution of some system of quasilinear parabolic equations with small 

parameters at the leading derivatives. 

If 

$+SjfiU/w (1) 

is the initial system of equations in gas dynamics written as laws of conserva- 

tion, then the corresponding parabolic system is of the form 

du S+^-/»+iH»fe). «o 
*) The concept of homogeneous schemes was introduced and studied — in a 

somewhat different sense ~ in studies by A. N, Tikhonov and A. A. Samarskiy 

(cf, for example, [42]).       - 462 - 



Here u - u(x, t) is the vector-function describing flow; f(u),£?(u) are certain 

functions of vector argument u; B(u) is a square matrix; and ]/■  is a small para- 

meter*). 

The matrix £(u) must be chosen in such a way that the solution u(x, t) of 

system (2) exhibits sufficient smoothness and as /X—* 0 approximates in some 

sense to the solution of system (1). 

Difference schemes based on the third method of consideration thus partake 

of the nature of continuous computation schemes. In several cases the second and 

third approaches lead to identical schemes. We will begin our consideration of 

schemes with the method of characteristics. 

2. Method of characteristics. The method of characteristics is one of 

the most widespread of the methods of interpreting systems of hyperbolic equations. 

Its typical feature compared with other difference methods is the minimum use of 

integration operators and the related maximum proximity of the region of dependence 

of the difference scheme and the region of dependence of the system of differen- 

tial equations. Smoothing of profiles that is characteristic of difference schemes 

with a fixed grid is at a miniimam in the method of characteristics, since the grid 

used in this method is constructed with allowance for the region of dependence 

of the system. 

The method of characteristics has been presented in detail in the mono- 

graphs [31, 32], therefore we will limit ourselves to a brief presentation of 

the features of this method and elements of the difference algorithm. 

The method of characteristics begins from the approximation of a system 

of characteristic equations of gas dynamics in a characteristic grid. Here both 

Eulerian and Lagrangian coordinates can be used. 

We will first consider the method of characteristics as applied to a system 

of quasilinear equations in invariants: 

(i) 
I dr \        dr   , . .  , dr       „  . .. v 

(■3r)i = -3r + 68(r.«)SF=>^(r.s.x.O. 

*) In some schemes with artificial viscosity, U-  becomes a function of 

ä u/d x. 
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As we know, equations of gas dynamics reduce to a system of equations of the 

type (l) in the case of plane, cylindrical, and spherical symmetry and constant 

entropy (Eulerian coordinates) and in the case cf plane symmetry and variable 

entropy (Lagrangian coordinates) (cf Chapter Ivo). 

Suppose for system (1) a problem with the initial data 

r (i, 0) - rQ(x),  s(x, O) - so(x),    a^x^b,   (2) 

is posed, with a smooth solution in some region 6 containing the segment [a, b] 

of the x axis (Figure 3«7). 

Let us decompose the segment [a, b] into the intervals [x., x1+-i]» *0 • 

a, x„. m b. The points (x., 0) form the first series of calculated points 

(series I). The next series of calculated points (series II) contains the points 

of intersection of r- and s-characteristics omitted from the series I points. 

If the m-th series of calculated points (x., t.) is defined, then the next series 

(x.  , t. ) is defined by means of the formulas (first approximation) 

x?+i- *l .HI 
=- = 62*. 

11      —I, 

jn+1       -m Xf     —xu i+1 

'l      — '1+1 
= 61 J+l« 

(3) (3) 

where \ai — %,{r?' *?• *?• *?)'   a—1. 2.     and r., s. are values of the invariants 

J.1- •  J.      m    .m at the points x,,  t.. 

Figure    3.7 
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fcxt, the invariants rj, 8J+1 with the corresponding increments 

(4> 

are shifted to the point (x. , t. ). The first approximation scheme signifies 

the change of characteristics passing through the points of the lower series 

x., t. with straight lines (3) and the approximation integration of equations 

(1) along characteristics by filler's method. 

To revise formulas (3) and (4)» let us employ the recalculation of both 

points   of the series (x.  , t. ), as well as the values r.  , 3, . In 

formulas (3) the right sides f. (slope of lines approximating the characteris- 
tics) are replaced by the half-sums 

where ,? -<?   .2       «rUft,—~i—• (5) 

L.^.    fa^-vf*1. «?+i. *r+«. tr+% (6) 

in formula (6) are calculated by means of 
and     _*■♦». V+\~r£*.""ip*i] 
formulas (3), (4)." 

The invariants r°, 8J with increments refined by the trapezoidal formula 

are translated to the points {xm+1, t™*1)! 

.««+1 m 

(7) 
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In (7) F^±» F£± retain their former values froa? (4), and F^*
1, F^*1 are defined 

by the formulas 

where r.  , s.  have been calculated by (4), and x.  , t.  — by (5). 

Reconversion by formulas (5) " (8) increases the order of accuracy of 

this scheme, but the additional conversion does not le&d to the following in- 

crease in order of accuracy, and therefore it is sufficient to limit ourselves 

to a single order. 

Prom a polytropic gas with V" 3> fl** symmetry, and constant entropy 

equations (1) become (cf Chapter Two, Section II, subsection 9} 

— ■  .      . . '.  ...  -. «k. i 

In this case even formulas (3) and (4) yield, without conversion, an 

exact solution of Cauchy's problem for (9), since the characteristics (9) are 

straight lines. 

Scheme (3), (4)» with the first order of exactness for smooth functions, 

in this case exhibits an infinitely large order of accuracy for the class of 

smooth solutions of system (9). 

At tht! same time the scheme of any order of exactness with constant grid 

yields only an approximate solution of problem (9). 

This example clearly illustrates the advantages of a characteristic grid 

which minimizes the difference of regions of dependence of the scheme and of 

«he equation and thus of the residual term. 

Construction of the calculation frort can be carried out in a regular case 

also in a different fashion, not relative to spatially 3imilar series, as indi- 

cated in Figure 3.7, but relative to characteristic lines. This calculations! 

algorithm is extended  to more general systems of equations. Suppose 

;^).-*(*+*»T?)-A   *—■' n) (10) 
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9 is a hyperbolic Bestem in characteristic form for which'invariants exist. 

The equations  dx/dt - £, (x, t, u)  define n ons-parametric families 

of characteristics. In the general case any pair of families form a characteristic 

grid which does not coincide with the grid corresponding to the other pair. 

Suppose for definiteness that we have selected a pair of characteristics corres- 

ponding to the indices k « 1, k » n, Mis the calculated point on the grid 

(Figure 5.8), A. is the basis of the k-th characteristic descending from M at 

the line AB. The points A. and A are grid points, the points A-, ..., A . are 

located between them, and the determination of u at the points A», ..., A . 

requires interpolation relative to the values u(A.) and u(A). Thus, besides 

translation  along    the characteristic there appears the interpolation opera- 

tor, which leads to smoothing effects that are inherent in   ordinary difference 

methods. 

Figure 3.8 

KEY: z. m-th series. 

In the general case equations (10) do not have invariants, and we must 

convert to the more complex extended system (cf Chapter One, Section V). None- 

theless the method of characteristics in this case as well preserves with high 

accuracy the domain of dependence of the hyperbolic system. 

This regular algorithm of the construction of a characteristic differ- 

ence grid and the approximation integration of equations in invariants is 

possible in the domain of a smooth solution. If the neighborhood of a calcu- 

lated point contains any singularity (shock wave, contact boundary, arbitrary 
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discontinuity, site of initiation of a shock wave, and centered rarefaction 

wave), then the formulas are modified based on the nature of the singularity 

and the configuration of the grid. 

Let us consider several typical configurations. 

1) Contact boundary. Let us illustrate the algorithm with the example of 

a plane-symmetric piecewise-isentropic flow and the Lagrangian system of coordi- 

nates. 

How the calculated points must lie not only on the r- and s-characteristics, 

but also at the contact boundary, which is +.he coordinate line q - constant 

(Figure 3.9). The inhomogeneity of the calculation associated with boundary 

leads to two calculation fronts. 

Suppose P1 and ^ are the last calculated points at the contact boundary 

f,  located on the left, and correspondingly right, side of it; M and K are 

points of the calculation fronts neighboring them. The points N and L are com- 

puted in regular fashion. In the first approximation, starting from the point 

H, we can calculate the point P„ of intersection of the r-characteristic MN 

with boundary {* and determine in it the value of the invariant r^ . Similarly, 

starting from the point M, we can define the point Q~ and the invariant s in it. 

The value of r^ is interpolated relative to the points P.. and P„ at Q_. 

The conditions for the continuity of p and u at the contact boundary, 

taken at the point Q^ lead to the relations 

P = P.(St, r, - *,) = Pa(SB, r„ - sj. 

(11) 

rn and s  are defined at <t, from (11). Thus, the calculation front from the 

right advances by a single step, and in the first approximation we can find the 

points R and (L and the invariant s  at the latter. This makes it possible to 

calculate in similar fashion to the preceding point P, . after which the calcula- 

tion cycle is completed in the first approximation. Second-approximation for- 

mulas can also be constructed, which are quite complex. 
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Figure 3.9 Figure 3.10 

KEY: 
Z — shock wave. 

2) Shock wave. Again the presence of a discontinuity leads to two calcu- 

lation fronts, however in contrast to the preceding case the discontinuity line 

no longer is a time-similar  line.  As follows from Champlin1s theorem, the 

shock wave line will be spatially-similar at the forward front and time-simi- 

lar at the rear (Figure 3«10). 

A shock wave line "cuts" the grid of characteristics ahead of it, and all 

values of quantities at the forward front are known, since they are transported 

by characteristics from below. 

At the same time only the invariant r (for the case of a wave travelling 

to the right) is translated relative to the characteristic at the rear front, 

while the invariant s is swept from the shock wave line, being defined at this 

line from Hugoniot's conditions. For simplicity of our treatment, let us limit 

ourselves to the case of an isothermal gas, when Hugoniot's conditions are 

written in invariants (cf Chapter Two, Section IV, Subsection 6)J 

r„ — r„ = a<t(M), (12) 

13) 

M __ R — Uy. 
a 

<p(M) = Af—-i--f InM». i|>(Al) = /W— -jr-lnM*. M 
(14) 

- 469 - 

■ 
___________ — 



■ ■ IIKKVWxK   .,-.,-- 

where a denotes the isothermal speed of sound. 

Knowing r_ , ra , un  from (12) and (14)> let us determine the shock 

wave velocity R, and from (1J) determine a^ . 

Suppose the shock wave line (Figure 3.11) intersects at points A and B 

the element (cell) LMNP of the characteristic grid already computed, and suppose 

that at point A we know the quantities r,  s^ , rn , s , and, therefore, E. 

Figure 3.11 

KEY» 

shock wave. 

Then the characteristic triangle EAD to the left of the shock wave line 

is wholly defined. From point A let us draw a segment of the straight line AB 

approximating the trajectory of the shock wave in the neighborhood of A. At the 

characteristic PL we can integrate at the point B the values of rn , s0  by 

their values at the points P and L. 

Since the segment AD has been wholly calculated, then on it we can find 

the point C such that in the first approximation the r-characteristic drawn 

through it passes to the point B. This problem i* solved by linear interpola- 

tion of invariants rD> sD, rA, s at point C given the condition that the seg- 

ment of the straight line 

x — xr 
rc + sc 

t-i. 

will pass through the point B. 
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It we denote the parameter ot linear interpolation along AD by e, then 

the working formulas tor the determination ot e will be ot the torm 

~t=t~:ll~tt~~~~tt=~·~:~-;,::_,_<~~l~~::. 
lbxt, determine all quantit:i.es. Attar we determine (rBt' we can calcu-

late ~' after which the point B is reconv~rted b,y the trapezoidal formula 

E
··~·:.~~:-~·.~,R'~+R, '-
t - t . . .. j. • 
I A~._,.-,r-.-·. . 
--·--. ..:.....-."\ ~~-=-- __. .. L. ...:. ·-· 

~is enables us to recalculate point c, and olso varjants (rB~ , 

(e:Bljy , (rB)n , after which the point B is determined, and the calculation front 
.J 

to the left of the shock wave can advance b.1 yet another step. 

Similarly, vi th some complication, we perform the calculation tor the case 

of flow with variable entropy when we must introduce trajectories into our consi­

deration. 

or course, still other formulas of calculation and other configurations 

of the mutua.l arrange:.oent of the shock wave line and the characteristic grid 

are possible. 

Similar difficulties arise when considering singul~~ities of the following 

types a 

~) centered rarefaction wave J 

4) breakdown of a discontinuity, 

5) intersection of characteristics of one famil7 with subsequent forma~ 

tic~ of a ohock wave 1 and 

6) a boundary with a vacuum when degeneration of the grid elements oc~s. 

In each specific situation, the problem or the advance or the'calculaUon 

front by a single step in the neighborhood or a given singularity ia elementary 

and reduces to interpolation and to the solution or problema and analytic geonae­

try. 

Diffioulties or the method or charaoteristios lie in' the construction or 

tho oslaulation front when a large number or singularities or different types 

are present. Then th<t calculation becomes irregular. and the detel."mination or 

the poaaible confi~tration and the ohoioe or the calculation formulas becomes 
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the main problem. To this we can add the difficulties of memor,y distribution 

caused by bifurcation · by the shock wave of the characteristic grid. 

t 
( 

Figure ~.12 

Let us consider this fact in great~r detail. 

As we have noted, the method of characteristics admits of the two·l~er 

co11struction of a calculation in a regular domain, so that to determine the 

(m + 1 )-th layer it is sufficient-that we know the m-th :tay~:r- and, perhaps, 

one point of the (m + 1)-th layer (second method). If a!ter calculating tha 

(m + 1)-th layer the results of the m-th layer are blurred, then when the char4c• 

te1•:lstic grid is bifurcated by a shock wave the latter can also be initiated in 

the calculated and "blurred" elements of thu grid (Figure ~.12)P which makes 

extension of the calculation impossible. 

In spite of major logical difficulties in realizing the method of oharac~ 

teristica on computers, programs permitting calculation with a high dagree of 

accuracy of flows containing large numbers of cingularities have been formu­

lated in the USSR (cf [32]). 

3. Explicit running calculation schemes. T.be closest to the method of 

characteristics are the running calculation schemes. Like the method of charac­

teristics, they begin from equations in invariants or in characteristic form, 

but the difference grid is no longer a characteristic grid. 

We will begin with a consideration of explicit running calculation schemes 

for a one-dimensional plane piecewise-isentropic gas flow not containing shock 

wa,res. As we f'..now, this flow is described in Lagrangian coordinates by a system 

of equations in invariants (of Chapter Two, Section III) 

- 472 -

: 

I 

I 
I 

I 



where n • of' is the mass speed of sound, and· entropy S is a pieoewiBe• 

constant function, whose sites of discontinuity are oontaot boundarie•• In the 

following a will be considered as a function of the single argument e • r - a. 

Let us formulate the problem with the following initial and boundar,y 

conditions for system (1) 

r ·,. (~: 'o>- "'ro(q);·:. '8(ij; '05~.~o(f}~···· ... 1).<~-:<il7~.~'00. ·:: 
·. . tiJ; . .t:>==J<~· . . P_<Q!_t>·-~g~t)._ .. : .... ·: .· .. ;~:··e> .. l· · 
•· · -~ ..... --· ~." • .. -.... I k;- -.....-1- -.:....;.J..~--...... J 

Boundary conditione (3) signify that the velocity of the left boundary 
and the pressure at the right are given. 

Of course, we can select another combination of boundary conditions (tor 

example, at both bounds velocities or pressures are given). The equation or 

state ia given by the formula*) p • P(S, r - s). (4) 

When no shock waves are present in the flow, the entropy is oonatant at 

each line q • constant, including at the boundaries q • 0, q • Q. Therefore 

boundary conditions (3) can be written in the form 

f-_,.-(o; i>+_&co. f) - 2/(f). ···· ... ··- --. --· -----~·~:_·· 

:·_:__~~· _f)~;;(Q, t)=k(f)=P-
1
(p, S)=P-1 (g(f) •. ~· '• •(&) I 

----·····-·. ··--· .. __________ .... _,_ !:':'.__.,. __ _ 

Th~ ordinary conditions given below are imposed on the internal oontaot boundaries 
+ - + - ( ) q ""' qi 1 Pi • Pi' ui • ui' 6 

which in terms of invariants, are of the form 

*) We assume for simplicity that the contact boundaries separate 

{~FHHJ which h:;we the eamg equation of state (4), but vith different entrop7 

valuea. The problem is slightly oo~licated it the eaoea are aasu.ad to be 

different. - 47:S -
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r~ (·s:r·,+ : .+·) P ( - - -> j I •_ 1. -«_1 all It, r1 -II , 

I · r++•+=r-+•- · . } I I I' 
. . ... ···~ .....• ---···· .. 

(7) 

Here the sign "+" denotes quantities to the right, and the sign "-" denotes quan­

tiea to the left of the i-th boundary. 

For the case or e polytropic gas when 

L·:~-~~·~;- -:~~~_-<s><;·~-·!>~.- --~--~~ 
... 
. (8). 

........ 
2-J 

where rJ_ • V _ 1 , and cf"(s) is expressed in terms of the entropy constant A(S) 

{Chapter Two), conditions {7) becc-ae lineara 

1

--.----------------·. --·· ' . . ' 

' 
rt -,,It "= "• (r; - lj). 

, \r,, . 
. J ·.•• . . 

. ,.---- -(·~;~); 

X I = --:t:'" . • . ,, (9) 

C~nverting to difference equations and assuming at f'irst the absence or 

internal 't:c\mdaries, let us ·.;onetruct a grid that is uniform relative to mass 

such that 

;- . . f ..... ~ ...r-: ·.·. ~ .. .. ' • 

r . .. h~tlq,=:ql+t-·1/,=.cbnst==-,i/:r. } .' .· ... (10) 

~.1/o=o. llt:i::h, !''' IIN+t==<N+l)h=Q. 
~ . :....- ··-··-··-.. . . ----. __ ... _ ~-

To solve the problem formulated, ve can propose the following explicit 

runnlng calculation sohemea 

to which the following initial data are add~di 

as well as the boundary condi·tio:na 
. -... ·~ . - ···-- .. __ . . . 

(l== 1, · •••• N), 

l·. r':+•':-2/". 
[ r!; ... ,-•R+t- ·~· .... -· 
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■+1 . 3siD£ relations (11), r,      is deterained successively fron i • 1  to i ■ I ♦ 1, 

«ad aj\,  is deterained Cna (14). 

Siailarlj, froa (12) a"*1(i - ■»  ...» 0) la deterained, aad r^*1 ia deter- 

fro« (15).    kit, the (a ♦ l)-tb layer la calculated, aad to determine the 

(a ♦ 2)~ts layer the procedures are repeated e& srxc. Given the condition 

X- < 1 (13) 

• =.; 

(11), (12) ia a echeae vita positive coefficienta, vcich ensures — aa 

ia aabet etion 5 of Section I — ita stability.    Let aa prove the con- 

of the solution of tee problem (11) - (14) to the solution of the problea 

(1), (3). 

Let aa aaaoae that the problea (1) - (3) has the eolation r(q, t), s(q, t), 

lusplaying       rraitiaana» aecond derivatives relative to q,  t. 

Let    £ra aad    £e*   stand for the differences 

y* = r~— r(f*.sn).     trf = *? — s(lk. mx\ 
f *   , M 

where r(ih, at"), a(ih, ar) represent the exact solntioa of the problea (1) - 

(3) at the grid points q - in, t - ar. 

*he quantities     ST.,   in. satisfy the difference equations 

irr==P-a^arf¥,r«r^r-,-T{«('r-«r)- 
- ^(r(0. sn) — *(fa. «t)ij j S-*u- 

li-+»=(l-s?)*f- + *ra«£I+T{a(r--i-)- 

-«lr(f*. •*) — *<<*. srr)j} 
* ( (/ + 1) *. «T)—X(it«T) ^ffS 

(16) 

vixa the following initial and boundary conditions: 

J**=0. 

the residual terns H*. and H?. are of the order 0{ x.   ). 
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Baing the smooth?»« of the aclution r(q, t), 8(q, t), we can rewrite 

system (16) in the fox« 

vhere „-_,/flF) r{a.t)—r((f—I)a.mw) 

are bounded quantities, 8-r-s, d*iaan intermediate » «ice in the fiuite- 
incremect formula. 

It is not difficult to see that given the condition (15), the following 

estimate is valid for the step operator C^ of the nroble« (17), (18)1 

{*V   «5«"}      is defined aa       max   ■mxftjxj j, |j,J /} .    Consequently,  the 
following estimate (cf Section I» Subsection 4) is valid» 

*?H*ri<a~a«««{j^|. |f-|}=0«. 

fro« which follows the convergence        U r? | -»- 0, j$s"| -* 0    UT^0 

uniformly relative to i, a in the domain of existence of the solution r(q, t), 
s(q,  t). 

If coatact boundaries are present, then relation (?) at the boundaries 

will also enter into tbe difference equations.    For simplicity of oux discussion, 

let us assume that there exists a single contact boundary located at the point 

q - jfa of the grid.    Then tbe invariants r, s are discontinuous at the point q . 

oh.    Equations (11),  (12), which become     ■■^.p-^fc+fc^ 

are valid for the left values (r"*1)_ and the right values  (s"*1) . 

To t>~~» we must add relation (7): 
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I 

\' I    irn^+w: : »er». -ftn- 
■4-1 1*4-1 a+1 ■+1 

which for kvn (r7* ).,  (a^    )+ enables us ".o deteraine (r^    )+,  (»^    )_, after 

which the coaputatio? is eantiar»d a« usual. 

Warn several contact bouz.la.riee are pre sen;,  each of thea is calculated 

by the indicated algor^th«. 

If ahcck ***** are sen:', is the flew, bat the entropy changes froa eie- 

a*nt to elesen-.,  the equations describing action becoas iafcaaage—oasi 

fhea wat left aides of the equations axe approxiaeted, just as in the boacgeneous 

case,  the rigr; »ides are taken froa the a-th layer, and the convergence is 

proven analogously as under the saae condition  ,";.;. 

Is the general case, the systee of quasilinear equations, including also 

equations is hydrodynaaios, is net reduced to invariants.    Severer, in this case 

»s «ell running eal'^alation is possible, starting froa the equations in tse 

charactaristics fen.    3fcie scheae vas proposed in the studjr [26]. 

Suppose that for the hypeiboiic systea 

£{*U .   .. «-)[-^ + l»Ä s-)^] =/»(*! *,}     (IS) 
'       («. o«=l. .... s) 

the following initial dnta are assigned:        u    (T, 0) • U    (X). (20) 

let us approximate Caechy's problea (19),  (20) by tse Csschy'a difference problea 

=/,(«r «3. <2J) 

where um(z) is the solution of (21), (22) defrned at the instant t - »f, and 
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A 
-1 when ww °?)>0-1 (23) 

¥e can rewrite the difference schese (21) in the for« 

where it is «soured 

C-W--0. < C* C-lt«. — «ft      025) 

W»n JX.!!! -^ 1» *** difference operators 

beccae positive, and scheae (24) ie analogous to the scbeaes that are positive 

in the Friedrichs sense. 9>e work [26] showed that given the conditionpt^\^it 

the solstion of u*(x) of the boundary proble» (21), (22) converges in C to the 

solution of the proble» (19), (20). 

"« have considered two variants of running calculations a) in invariants 

and b) for a characteristic systea. Belatif* to the foraolation of the boundary 

conditions and relative to the simplicity algorithm, calculation in invariants 

is preferable [text pages 393 - 435 sicsing] 
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CHAP?© P0Ö5 GES3BALIZ2D SOLGTIOJE OP HTPESBCSJC 315136 CF 3UASILIIEAE 

saunas 

Section I. Poranlation of Canchy's Probiea far the Class of Discontinuous 

functions 

1. General He Barks, In Chapter Two we saw that differential equation» of gaa 

dynamics are    consequences of aore general integral law» of conservations — 

of aass, eoaenttts, and energy. 

fhe transition froa integral lava of conservation to differential is 

possible only for a certain saoothness of flow. If a saootb flow does not exist, 

then in order to define flow (discontinuous or not exhibiting the required saooth- 

r.ess), we aast resort to integral laws of conservation. 

The saae approach was adopted in the theory of discontinuous (ge.^ralized) 

solutions of hyperbolic systeas of quasilinear equations, conceived in recent 

decades. 

We will consider the conservative systee of quasilinear equations 

du 
IT + *<«■*<> -/(,,x.O     V ' <!) 

(u, <f, f are vectors with n components) as a consequence of the system of integral 

laws of conservation 

&sdx— f(s. x, /)<#+/ J/(«. x. f)dxdt = Q 
c '    MC 

(2) 

wbich oust be satisfied for any piecewise-smooth closed contour C and the domain 

<^c it bounds. 
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If the function u(x, t) satisfies integral lavs of conservation (2) far 

any closed contours C and de—ins *<?, and f6C., fee, then froa this it 

follows that th- function u(i, t) satisfies the system of differential equations 

(1). 

It is also obvious that any solution u(x, t) of systea (1) (u(x, t)€-G,) 

satisfies integral lavs of conservation (2). The integral relations (2) serve 

to introduce   the concept of the generalised solution of ays tec (1). 

We will confine our inquiry to the class £ of functions u(x, t) satisfying 

the following requirements: 

First requireaent. In any finite portion of the halfrplane t Z-§ 

there exists a finite number of discontinuity lines '     x ■ x(t) 

and a finite nuaber of discontinuity points; exterior to these lines and points 

the function    u(x,t)       is continuous and has continuous first deriva- 

tives. 

Second requireaent. left u(x - 0, t) and right u(x + 0, t) limiting 

values exist at the discontinuity lines x - x(t); for definiteness we will 

S8suae that u(x, t) - u(z + 0, t). 

¥e will call the vector-function u(x, t) ^ K the generalized solution of 

system of equations (1) if for an arbitrary piecewise-smooth contour C and the 

domain bounded by it ^_ integral laws of conservation (2) are satisfied. 

Other definitions of the generalized solution of system (1) are also used. 

Suppose g(x, t) er C.. is a finite function (it tends to zero outside the 

finite portion of the plane x, t). 

Let us multiply each of the equations in system (1) by g(x, t) and inte- 

grate the results of the multiplication over the half-plane t ^0. 

Performing integration by parts, we get 

\\ \[«ilF+fiC. *• 0|f+/i<«. *• t)g(*. f)]dxdt+ 

+ J g(x, Q)u,(x. 0)<fjc = 0       (1—1. 2 n).    (3) 

- 480 - 



i r 
Equations (3)» just as (2) do not contain arbitrary functions u(x, t)  ana are 

not meaningless for discontinuous u(x, t). We will call the function u(z, t) 

g Ka generalized solution of system (1) if equalities (3) are satisfied for 

any finite function g(x, t)£ C.. 

Finally, using the concept of potential (Chapter One, Section V), let 

us introduce yet another definition of a generalized solution of system (1). 

Suppose the vector-function <|>(x, t) - {<J>(x, t), ..., ^„(xi t)} 

is continuous and has first derivatives b&/äx £. K. Üben if at all points for 

which the derivatives d<p/3x,  <?4>/<?t exist, they satisfy the system of nonlinear 

integral-differential equations 

*+*(£• *H'«(Trt#)«   (/=I n)' (4) 

then the function    u(x, t) - b$/<?* (5) 

will be called a generalized solution of system (1). We can easily note that 

each of these definitions naturally is generalized to broader classes of functions 

u(x, t). Nonetheless we will confine ourselves to the class K, since more general 

classes of generalized solutions have not yet been studied well enough. 

How let us note that the system of quasilinear equations admits sometimes 

of several different representations in the form of laws of conservation. For 

example, one equation ä u/Öt + u £u/^ x - 0 (6) 

can be represented both in the form   <?u/&t + ^/äx (u /2) «0, (7) 

a8WellaS V/*n , a /V\ n 
¥T+¥T=a       •« (8) 

Hius, any solution of equation (6) satisfies simultaneously the following 

integral laws of conservation: 

:0. (9) I udx 2" *": 

I dx -T*' 0. (10) 

We can easily, however, see that the discontinuous function u(x, t) can satisfy 

one of the equations (9)» (10), but not satisfy the other. 
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This situation reflects an interesting- fact, interpretable as 

follows: different processes can be described by the very same differential 

equations, but by different integral laws of conservation. Therefore the dif- 

ference of the processes shows up only in the discontinuous solutions. 

Introducing the concept of the generalized solution of conservative system 

(1), we uniquely fix the integral laws of conservation (2). 

2. Hugoniot's conditions. Suppose u(:s, t)€rK and x - x(t) is an equation 

of one of the discontinuity lines of the function u(x, t). Let us denote 

D = *' (0. a, (0 — «(* (t) - 0. 0. «. (0 = «(* (0 + 0. 0. 
(u] = [«(x, 0] = «(je + Ö. t) — a{x — Q,t), 

lu(x(t). /)] = «„ (*)-«,(«. 

... (<p(«. x. <)l = «p(«(Jf-f 0, /)• *• 0~<P("(* — 0. 0. *. 0- 

(1) 

Just as Hugoniot's conditions at the discontinuity line of flow (Chapter Two, 

Section 4, Subsection 1) derive from the integral laws of conservation of mass, 

momentum, and energy, likewise from the integral laws of conservation (1.1.2) 

at the line x ■ x(t) of discontinuity of the solution u(x, t) there follows the 

satisfaction of the equalities    D [u] - [<p(u, x, t)]      (2) 

or, in components,   D [u,j « [<PJ(U» X» *)]•    Condition (2) relates the 

left and right limit values of the decision at the discontinuity line*). 

On analogy with the case of gas dynamics, we will call these  equations 

Hugoniot's conditions. 

If the function u(x, t)g= K satisfies the system of differential equations 

(1.1.1) everywhere except  at the discontinuity lines, and if Hugoniot's condi- 

tions (2) are satisfied  at the. discontinuity lines, then obviously integral 

laws of conservation (1.1.2) are satisfied by any closed contour C. Therefore 

the function u(x, t) in this case will be generalized solution of system (1.1.1). 

*) The same conditions follow for piecewise-continuous u(x, t) and piece- 

wise-smooth discontinuity liner also from definitions of generalized solutions 

(1.1.5), or (1.1.4). and (1.1.5). 
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With the simplest examples let us inepeot the oonaequenoes ~hioh stem 
!rom Hngoniot'~ conditions. 

Suppose the system or equations (1.1.1) ie semilinear. T.ben 

l-..... ~·r.:r .. -· ,,,.., .,r,... ... \ .. ..., .. ......,. .•. ·····r-r · ,.,... .. · ····· · 1 .. ., 
:. '"- \•'· )t• t):· r •.• · :: .. ····' . -~. '· :. 1 • '!.. •' • ''··.f' •·· ' • ' • 
. '...,., .•, ," . L:-..t ·~i!-~4\" J> :·::~;: ."'\~'.,..· • .)·::· >•~ .. 
~ 1,~· ,.;., .... -~'111},\'f";'.i,fl•, · ·•, ..... •···· , , .. 4. • \fi'A • . ; 

f 
1 

f 1 ' ~ , • ' 41j • 1 , I . • 

ll ........ , ~ '·'·~-~~-~-- ··-· .... - ..... . .L •• ·•· ~----~-
the-r.etore 

or 

If th~ solution u(x, t) is discontinuous, then ~ [uj]2 , 0 and 
j-1 

Det ({aij(x, t) - D$ij)) • 0, 
i.e., the qu~tity D • x•(t) must coincide with the eigenvalue or the matrix 

A .. ((atPi/J uj)). Suppose D • l;'k(x, t), (5) 
ttlen [u] • Urk(x, t) (6) 
or, in components, [ui] • Ur~(x, t). (7) 

The right eigenvector or the matrix A(x, t) corresponding to the eigenvalue 
s k (x, t) is dEmoted by rk(x, t) • { r~(x, t) } • 

Thus, for the aemilinear system, by (5) dx/dt • ~(x, ·t), (8) 
i.e., tho d:lacontinuity lines or the s:,lution are characteristics or the system 
of oquations (1.1.1). 

Analogous to weak discontinuit,y, strong discontinuity or a solution or 

a scmHinear aystem of equations is also propagated along characteristicat or 
the eyetem. 

Note that a similar property ia also exhibited by solutions or a weakly­

nonlinear system of quaeilinear equations (Chapter One, Section X). Aotua117, 

H ie not difficult to verify that discontinuities or a generalized solution ot 
"'onkJ.;r-nonlinear system or quaeilinear equations can J.ie on the oharaoteriatica 
of thie oyotcm. 

Por the caoe of a single quasilinear equation'(n • 1) HUgoniot's oondi­
tiona (2) are rewritten in the form 
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r. ........ 'l ... _ .. _ •. ·-... .. --:..:· • -

~.':x~.<~=·n=. ''f'(,j' t)J·.=, . 
1 = ~(un(t), x(l)\g-•<• .. (t), x(t). t) ~ 

. : . . lla( -•.(t) ·: (9) 
-·'- -·-·---·4 ---- .. ---····---·--·-

F4uali ty (9) can btl interpreted geometriooll.y as .follows. The veloci t:y D • x• ( t) 

of a discontinuity line x • x(t) is equal to the slope (ta~'nt of angle~) of 
the chord AB to the u axis (Figure 4.1): !he following inequalities are satis-

fied for the case shown in Figure 4.1c <f''u(un(t), x(t), t)<:D<4''u(u.n(t), x(t),t) • 

. .. _.,.._. ___ ... _~ 
··' 

Figure 4.1 

If ~" (u, x, t) f O, then by formula (9) the value of D is distinct both .. uu 
from 1''u(un (t), x(t), t) and from tf'u(u..n(t), x(t), t} if u"(t) /- u.n(t). 

T'nu~, the discontinuity line x .. x( t) is no longer a characteristic for the non-

J.inear equation. 

note that different Hugonoit'e conditione correspond to different integral 

laws of conservation which in turn correspond to the same system of quasilinear 

equations. Thus, from integral law (1.1.9) follows HUgoniot's condition 

D 
_(~~ . ·aD U.l . . -··~·a- . ~ .. --· 

-=~= I 

~ ... " . - . 
(10) 

and from (1.1.10) 

(11) 

It is not diffi..,uJ. t to presen·t an example of discontinuous functions u(x, t) sat­

isfying one of the Ifugonio·t' a condi tiona ( 10) and ( 1 1 ) and not sa tis tying the 

other. - 484 -
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3. Stable and unstable discontinuities. Stabifity conditions. A solution 

(classical) of a system of quasilinear equations, as we saw in .Chapter ODe, ie 

uniquely defined in the domain.or definition b,y ita initi&l 'value at t • o. 
It turns out, however, that aatisfa_ction ot integral laws __ f!E conservation and 

integ;r..al condi tiona does not at all guarantee the uniqueness ot a discontinuoue 

solution; rather, we can specify a set ot essentially dietinct discontinuoue 

functions u(x, t) satisfying both integral laws of conservation as well as initial 
conditione. 

Let us confirm this by a very simple exa~QPle. .Por the equation 

the following initj.al condition is aasigne~.a 
-

u(O, x) • u (x) ~ f u+ 
0 t u 

for x< 0, 

for x >O. (2) 

Ve ;.fill seek the bounded piecewise-continuous function u(x, t) satisfying integral 

law of conservation (1.1~9) and the initial connition (2). 

&1goniot's condition (1.2.10) must be Gatisfied at the discontinuity 
linea, therefore the function 

.u 
u1 (x, t) ... { + 

u 

for x < D1 t, 

for x > D1t, 

u 
(3) 

ia the desired eolution. This function is constant excer·t at the discontinuity 

line x"" D1t at which th0 Ifugordot's condition (1.2.~0) is satisfied, and takes 
on the initial values (2). 

- + 
another solution to the problem (1), Suppooe u < u • Let us construct 

(2) formula it is: 

-[ :/t for x~tu , 
u2(x, t) - + (4) .. feD tu~x ~ tu , 

u+ + for x~tu. 

rfhe solution u a u2(x, t) is continuous when t)>O, continuously differentiable 

everywhere except the lines x • tu-, x • tu+, and satisfies equation (1) in the 

half-plane tz::O in the large. We indicate two solutions u • u1 (x, t), u • u
2
{x,t) 
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of Cauchy's problem (1), (2). Each or the solutions satisfies integral law or 

conserva-tion (1.1.9) and initial condition (2). Thus, here we meet the fact 

of the nonuniquenesa of the solutior,. However, it seems natural that a rational­

formulation of Cauchy's problem ira the olaas of diacontir~~JS funotiona must 

lead to the uniqueness or the solution. 

To eingle aut the unique solution of problem, we make the following assump-

tiona: 

:~rat. Any (classical) solution or a system or quasilinear equations, 

~c~he:-1 :U;; ex .tats, ie the "true" solution of the system also in the class of 
generalized (discon::·inuous) solutions. 

Second. The limits of (classical) solutions of a system of quasilinear 

equations are the "two" solutions or integral laws or conservation in the case 

of diacontinuous functions. 

Let us clarify this in somewhat more detail. 

'rhe first requirement is a natural extension of the fact that the class 

of. ;;;oener~lized solutions of Cauchy's problem for a system of quasilinear equa­

t~_ons is an expa::'l.Bion of the class of classical solutions. If we rejected this, 

then c1asaical solutions will not have practical importance when considering 

Cauchy's problem for the cl&ae of discontinuous functions*). 

The second requirement is a natural consequence or the first requirement 

and the assumption of the cont1nuous dependence of generaliz~d._solutions on the 

initial _data of Cauchy's problem. 

Thxt ~he continuous dependence of solutions on initial data of Cauchy's 

problem is one of the conditions for the correctness of Cauchy's problem. 

*) If the first requir~ment ie rejected, cauchy's problem for equation 

(1) with in:f.t.ial condition u{O, x)!!! 0 baa an infinite set or discontinuous solu-

tions. For example , 

-{-l 
for X + t ~ 0, 

u(x, t) for -t-<, X< 0, 

for 0 <.X< t, 

for X- t >0 

•,rill b3 tho solution of this problem. 

- 486 -



i •i<: 

~~ 
~;~ 

Thus, the ordinary concept of the correct .formulation of Cauchy's problem.~ .. ~- .. ~ 
leads us to the first and second requirements. . ·~ 

A fuller formulation of. the requirements imposed en a eeneralized solu-
tion wil~ be given below. 

Thus far we are only making qualitative use or the first and second require-

menta for the further study of properties of continuous solutions of systems of 

quasilinear equations and, in particular, for deriving the unique ("true") solu­

tion u .... u(x, t) of Cauchy's problem (1 ), (2). Figures 4.2 and 4 •. , give the 

behavior of the characteristics x • x
0 

+ u(x, t)t for the solutions u • u
1
(x, t) 

and u ~ u2(x, t). 

Let ·us consider the solution u • u 6 (x, t) of equation (1) satisfying the 

condition u~ (0, x) • u~ (x), (5) 

;/here u 
0 

(x) is a monotonically inereaaing functj_on of variable x, coinciding 

outside the segment I x J < cS with u (x) (Figure 4.4). 
0 

t 

Figure 4.2 Figure 4·' 
Figure 4.5 shows the characteristics for the solution u (x, t). Compar-

ing Figures 4.3 and 4.5 we note that sl!i!o uS (x, t) • u
2

{x, t), {6) 

where equality (6) holds for any x, t, except the point (0, 0), where the limit 

u .. (x, t) ae S -+ 0 dot;:J not exiat. Therefore, aooording to the second re• 
"' quirement, the "·!:rtw" oolutions of Cauchy's problem (1 ), (2) must be regarded 

ns u .. u2(x, t). We wUl call the eolution u • u1 (x, t) the unstable diaoonti­

rmous noJ.uti.on, s:meo nmoothing of the initial function for aa small a aeotion 

f'~.l ~~o \•'::1:~h lot.'l.da to a clo::wicol solution (true} far from u
1 

(x, t). 
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From a comparison of Figures 4.2 and 4.3 we conclude that the oauae ot 
the instability of solution u1(x, t) is that at the diacontinuit7 line x • D

1
t 

of the eolution u1(x, t) it is not the characteristioa issuing tra. the point• 
of the initial axis t • 0 (and thus, intrinsic to the initial data) that inter­

sect each other, but the characteristics issuing from the points ot the dia• 
continuity line x • D

1
t. 

In this sense we can state that the discontinuity ot the solution shovn 
in Figure 4.2 is "invented" and is not caused by' the intersection ot character­

istics intrinsic to the initial values. We call this disoontinui~ an unstable 
discont:lnui ty. 

But if in the condition of Cauchy's problem (1 }, (2) u- > u +, then the 
~-- . .--

solution u1 (x, t) given by formula (3) will have characteristics shown in 
Figure 4 .. 6. 

t 
t • • I 

""·" 

,..~,. 

Fi~Jre 4·4 Figure 4.5 Figure 4.6 
In thie case characteristics intrinsic to initial values (arriTal ohal~o-

teristics) intersect each other at the diaoontinui ty line X • D
1 
t, In thia .J&ae 

no continuous solution of this Cauchy's problem exists, and the amoothed ao:u­
tion u 6 (x, t) is also discontinuous. Therefore the solution u • u

1
(x, ~)and 

- + thl':· d:tacontinui ty line x • D1 t where u > u will be oalled a table. 

For oquation (1) the condition o£ tho interaeotion at the diaoontimliQ' 
l:S.r1a of the arrival charaoteriatios ia doao:dbed by tho 1noqualit1 ia 

u./1 (t) > D :> u 0 (t), D • r:' (t). (7) 
for the more general quasilinear equation 

;+!'!~~/·Ji:.;(~.' ·,.I) (8) 
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the velocity of the oharaoteristioa is 4''u(u, x, t), therefore the condition 

foT. intersection at the line x • x(t) or the arrival characteristics is described 
s:troiJ..ar to (7) s 

•r ''1' -~~ ••. - .. ..,, , , .. ,. ,. ; ,, ·~--~,-· • • ~· , -~-. -·• ~ ··- ........ T",. J r ~~<~~(I),' . .t: (t)::-#) >. p \>l . .,v. <"· (1) •. X (I). t): .. D- x' tt). I (9 > 
·-··- ..... ~---··--.. -- ·-·~---.:....M- .... - '•• 0 '·-··- .. ----· - oo 0' ·--- --- 0 J 

The discontinuity lines or the solutions are characteristics tor the 
semilinear equation (a) ( ~" (u, x, t).:: 0 }. Thus, it we seek more general uu 
stability conditions that are also for linear equations, then it must be written 

in the .form 4''u(ur. (t), x(t), t) ~ D ~,O'u(u (t), x(t), t). (10) 

As we Hill Aee, conditions (10) ensure uniqueness and admit of the existence of 
e generalized solution or equation (8) for the case when c:p"uu(u, x, t) does 

change in sign, i.a., for the case of a function ~(u, x, t) that is convex rela­

tive to the variable u. We will call conditions (10) the conditions tor the 

stability of the generalized solution in the case or sign-constancy ot~"uu• 
... 

But if ~~~ (u, ~, t} is a sign-variable function of u, the conditions 
T UU 

(10) do not ensure either uniqueness or continuous dependence or the solution 

on the initial data, i.e.; conditions (10) are. irregular conditions. 

Actually, auppose 4' • f'(u), f.=: 0 and suppose 
con1ition is formulated for equation (~)a 

( 0 ) ( ) t u r or x < o, 
U x, • U X • 

0 -u tor x > o. 

that the following initial 

(11) 

i:luppone th~ graph or function 1'(u) and the position or the pointe u- and u+ are 

us ehovn :tn Figure 4 .7. The function -
u .. u1 (x ~ t) IIIli { u 

\1.+ 
for 

for 

X<., Dt, 

X~ Dt, 

-~·- !<~ir-:.•<,., .. r· · (12) 
. . u .-u- •, 

..-. , . .., • ,.,.. .• , •• l,Wtt.A~ '"" <• "'t·l 

nst:lnf:toa th~ integrAl law or conservation j>u dx • f(u)dt • 0 

or C<1ll~tion (8), :initial condition, and tho proposed "stability condition" (10). 
rr'hr; 1~ttor. ohv:tounly oan bo inepeoted trom J'iBUr• 4.7, ainoe ?'u(u-1},.. D '>' 

((J'u(u+)~ D :io tho nlopc of the chord AD to the u axia. 
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let us, however, coca tract the secaad solution n - a-(x, t) of oar QKchy's 

proble*.    Let as gären the function UJCI.  t) *s follows: 

, n for % <3>*1t, 

UjCx, t)   -      j   t(x/t)   for a*t< z  < B*2t, 03} 
for 

vbere 
x    > J»*2t. 

(H) 

f( |) is deterstixsed fron the eqration      £-<f*   ['(5)]- H5J 

sad the  joints u#1 u# (sbscissae of the points C and D) — fron the coadition 

thst the straight line BC is tangent to the graph of the function   <p (a) at 

the point C, and the line AD — st the point D; additionally, it is assueed that 

f "ua(
u) / 0 for u* £u ^ a" (of Figure 4-7). 

1 

a~B,(*i) *~tiz!nt) 

Figure 4.8 Figure 4-9 
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*lo« * • «^(z, t) «inn by fcrania«    05) - 05} «stisfiM tie 

integral law of e— ~ratinm far e?«aticr (8) «a« for condition« (10).    1sm»t 

if ^"    (u, x, t) is • «i^-rariatle faction of «rgaaeat a,  then the "stability 

coBditioes" (10) «atiify two «clutioas it, (x, t) «ad «^(x, t). 

Figtre« 4.8 and 4-5 sfeow ire field of characteristic« fsr the «olatic 

Fsgore 4-10 

Incidentally let us note one interesting property of solution ^(x, t). 

Tte discontinsi^r line x ■ u_(i, t) is a characteristic of solution ^(i,  t), 

calculates by toe rules of lixit values cf xix solution un (t) -TO it; siadisrly, 

the discontinuity line x ■ 3».t is a characteristic calculated free the raises 

u    (t) at the line x - 2>*.{t). 

fo give preference to one of these tvo solutions,  let us sg&ir ecploy 

the aetfaoc of verifying the stability of the solutions by smoothing the initial 

function. 

Let us saooth the initial function u (x) by using a aonot«nie function 

u    (x) which is shown in Figure A^O.    Sie points (x ^, u #),  (x^, u #) eorree~ 

pond    to the points IS and C in Figure 4-7, and the points u . and u . are the 

points of inflection of the graph of the function <f (u),  i.e.,    <f    (u ) - 

v voi    1' 

Let us represent the cbaracteristice of the solution u ■ u g(x, t) in 

Figure 4.11. 
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fnoa Figure 4.7,   ^'  (a) oe the interval [a , a, ] is • 

function of variable a aad, therefor«, the »lope cf icsically 

the characteristics  #*  {«*$ (a)) ax the initial aria aocotonically deciiaet 

ew töe sehest [-$, a^]; aiaxlarly,   Tf' («} (a)) a»>tc*icsl2j increases over 

the ae^aeat [a~, rT] aad dacrs&sea ever the aegaest [x^, & ]. 

Figure 4.11 

Careful inspectros of the pattern n '.jaracteristics {Figure 4.11) leads 

as to tee concluaicc that the discontinuity of the solution at which the left 

value is the quantity u and the right u cannot arise for a saooth initial 

function u (z). 

Actually, we can *ee fros Figure 4.11, two disconviauitiea must arise for 

this to be true, of which the discontinuity I located to the left and corres- 

ponding to the values u and u ^ will have velocity 2* 

and discontinuity II corresponding to the values u  and u will have the veio- 
f* city D* ■ ^* (u #J. 5njs, the lines of discontinuities which are foraed giveu 

the initial function u° (i) (they are shown in Figure 4.11 ay the bold lines 

and are denoted by the nuabers I and 11} will behave as follows. Discontinuity 

line I will never intersect the characteristic issuing iroa the point x  of 

the initial axis and will approach it asymptotically as t 

derives froa the inequality 

o© . Ihis obviously 

«{«.") for 
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jjtti*'. analogously we conclude thai the discontinuity line II vili 

asysptotically approach the characteristic issuing -ro* ^ point z # of the 

initial axis and will never intersect it. 

It will now hscoae obvious tbst if toe quantity £ tends to zero, the 

solution u, Lx, t) will tend t? u-(xt t). 

Inns, the solution u.(x, t) and the disconti'Ziitj line z - 2Lt are UE- 

stable. 

And so, condition (10) does not guarantee this stability of the general- 

ised ^jf^wrMip"»--« solution of quasilinear aquation (a) for the case when 

^"  (u, z, t) Is,  sign-variable. 

A correct generalization of stability conditions far a discontinuous solu- 

tion of equation (8) for the case when f"     is siga-vaiiabie can be obtained 

upon careful inspection of the solutions which are derived when discontinuities 

are saoothed. Una, a solution of the type «.(.T, t) (Figure 4.8) could be stable 

if the discontinuity lines I and II (Figure 4.11) would overtake one another, 

i.e., the pattern cf notion of disctevtiauities I and II would be scbeaatically 

of the following fora (Figure £A?). 

/ 

y 

Figure 4.12 

Ibese considerations lead us to the following stability condition. 

Suppose at the discontinuity line z » z(t) of the solution of equation 

(8) UJJ (t) ■ u , un (t) ■ u end suppose r* (t) » D. Bie discontinuities 

called stable if the inequalities 

f(.«,*,Q-V(8-,x,Q   D> 

a* — a" 
«*6(*-. 1').  X = x(t). 

«(a', x, Q — ?(»'. J.,0 
a* — »* 06) 
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are satisfied far any Tslae of u* fraa the interval (u , u ). 

We cac easily note that the discontinuity solution u1(x, t) does not sat- 

isfy condition 06).    Actually, if we select, far example, as u* any number froa 

the interval (u ^ n ^), then inequalities (16) are violated.    Sot discontinuities 

of solution u_(x, t) obviously satisfy these inequalities, which is clear froa 

Wgcre 4.7. 

Finally, we note that conditions (9) automatically derive iron (16} if 

we tsaxme that <p■    (u, x, t) / 0.    9ns, the stability condition (16) contains 

stability conditions (9) far the convex function f(u, x, t) as a special case. 

The question of the stability of discontinuous solutions even more in- 

volved for a hyperbolic systea of quasilinear equations.    The point is that for coe- 

pler sjstess ve actually hare no graphical      aethods of constructing discontinuous 

solutions.    Therefore an elucidation of the correctness of any given stability 

conditions for a solution is extremely laborious, 

when foralating stability conditions we will rely on the analogy with 

cases of a single quasilinear equation and the systea of equations in gas dynamics 

(Chapter Two). 

Let us limit ourselves to considering the systems that are hyperbolic in 

the small,  i.e., we would assuse trat 

£,(«. x, 0< I,(s, x. {}< ... <*,{». s. 0 (*7) 

Just as in the case of a single equation, the stability equations must require 

that the arrival characteristics of a single family intersect each other at the 

discontinuity line x - x(t). Suppose, for example, that the arrival character- 

istics of the k-th fasily intersect at the line x ■ x(t), then 

|*(M0. x(0.0>O> 
(18) 

If nothing more is required, then it is possible that the arrival characteristics 

of other families as well will intersect each other at the discontinuity line 

x ■ x(t), and for several families the arrival characteristics will be absent at 

the discontinuity line. 
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J 

Figure 4-13 

Therefore ve can add the following two additional inequalities to inequa- 

lities (I8)x 

~ 5»-i (*ß(0. *(Ö. 0 < Ö < l»+, («„(/}, x (f). 0.    (19) 

which with reference to (17) lead, in the neighborhood of the discontinuity line 

x - x(t), to the pattern of characteristics shown in Figure 4»13« 

In Figure 4«13 integral curves of the following equations 

dx, 
-jj-=li(a<x> *>. x. t) (20) \ 

are drawn through the point A of the discontinuity line for the numbers i - k - 

1, k, k + 1. ?y conditions(17), (18), (19) n + 1  arrival   characteristics 

(at the rate of one from each family and two from the k-th family) reach the 

point 4 and n - 1 departing characteristics (at the rate of one from each family, 

excepi for the k-th) depart from point A. 

And thus, we will state that stability conditions are satisfied at the 

discontinuity line x - c(t) of the piecewise-cont uous solution u(x, t) of 

the system of quasilinear equations hyperbolic in th small, if the following 

inequalities are satisfied: 

l»(«»(0. *(0. 0>D>lk(ua(f). x{(), 0.    j 

U-I("M(Q. *(0. 0<O<t»+,(«„(0. *(0. 0- I 
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Conditions (21) were published in the work [38], The  number k for which condi- 

tions (21) are satisfied is called the index of the discontinuity line. 

On analogy with the case of a sirgle equation, it is clear that stability 

condition (21) can ensure uniqueness also for the continuous dependence of solu- 

tion» on initial data only in a certain, possibly narrow, class of systems of 

quasilinear equations. However, this class has also not been found. It is possi- 

ble that conditions (21) guarantee the uniqueness of the discontinuous solution 

for systems of quasilinear equations satisfying the requirement 

/*(«. Jf. Ogr«dI|»(«, x. 0*0   (*« 1, 2. *>..«)  (22) 

(compare Section X of Chapter One) where r (u, x, t) is the right eigenvector 

of the matrix A » ((<3<P./a u.)). 

4. Irreversibility of processes described by discontinuous solution of 

systems of quasilinear equations. Suppose when 0 $ t < t1, the solution u - 

u..(x, t) of the Cauchy's problem 

has been constructed. We will state that the solution u - a.(x, t) describes a 

reversible process if the solution of the inverse Cauchy's problem with the 

following initial condition formulated at t « t.,, 

| At , &?(«, x, f) _ t. ' 

(2) 

coincides in the strip O^t <£ t.. with u..(x, t)j but if the solution of problem 

(2) is distinct from u..(x, t) then we will state u.. (x, t) describes an irrever- 

sible process. 

If u..(x, t) is a classical solution of problem (1), then obviously it 

describes a reversible process. Actually, the oniooth function u,(x, t) is a 

unique smooth solution both of problem (1), as well as problem (2),as stems 

from the uniqueness theorem of the classical solution of a system of quasilinear 

equations proven in Chapter One. 
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* ' i^.-±z.--j:x  -.- the problea of the reversibility of töe prv=eaa described 

by the <!■«»»•*>»«-«—^-»- acistisc of prcelea (l), we scat consider that we will 

regard only stable solstices as solutions of tii = pr:':lta. Seppe«* u-v-t t) is 

a stable discorr:_tac<cs solution of problem (1) wx&  ^at z * x(t) ia ita disconti- 

aaity line. "Sberefare, the stability condition« 

axe satisfiei at the line x - x(t). 

we will also label as solutions of the inverse Cauchy'a problea (2) only 

solutions that are stable with respect to variation and the Initial data. We 

can easily see, however, that variation in the direction of notion at tine t 

leads to stability conditions that are the inverse of (3), i.e., 

since here the right ana left positions are interchanged. 

üTüS, if u.'x,  t) is a stable discontinaous solution of problea (l), then 

u m u.(x, t) is not a stable solution of the inverse Cauchy's problea (2), since 

it does not satisfy conditions (4)« This means that the function u - u2(x, t), 

clearly distinct from u. (x, t) will be a stable solution of the inverse Cauchy's 

problea (2), and that the solution u (x, t) describes an irreversible process. 

Let us clarify our  jnclu3ions here with a very simple example. Fcr the 

equation 
ws , a   u" '  ..' ' -   ■-- -•• - dm   , d   m>~ ---^v 

with the initial condition 

u(x, 0) - u(x) {., 
u   for x<0, 

(6) 
u' for x>0. 

as we have seen above, for the c**e u > u the following function is a stable 

discontinuous solutions 

u~ for  x < Dt, 
u^x, t) {♦ *- u for  x > Dt, 

(7) 

D - 
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Sat if we »elect anj instant t - t. ^ 0 end solve the inverse Cauchy's 

probles far equation (5), tbst is, the problem when the initial position 

for   x < x1, 

for   x > x,, 
x1 -^1' (8) 

is assigned at t ■ t. and if we seek the solution where 0 ^ t ^ t., then the 

following function will becose the stable eolation of this problem 

s,(x, /)* 

x — x,<iF?^— tU 

£=*i- for ;«-{*,-/)<*-*,<«*(<, 

s-  for 
x—x, 

-0. (9) 

Figure 4*14 presents a pattern of characteristics for the solutions u..(x,t) 

ar . u„(x, t). Characteristics of solution u. (x, t} are shown by solid lines, 

and for solution u_(x, t) — by dash lines. Thus, the solution a.(x, t) and 

u„(x, t) are distinc* in zone I. 

And thus, a discontinuous stable solution of a hyperbolic system of quasi- 

linear equations describes an irreversible process. This conclusion is valid 

only for hyperbolic equations, since for equstions of other types the inverse 

Cauchy'a problem can prove to be incorrect, that is, the irreversibility of the 

process will have a different nature in this case; in particular, even smooth 

solutions can describe irreversible processes. 

Finally, we wish to direct the attention also to the fact that this con- 

clusion is valid only for essentially nonlinear hyperbolic systems of quasilinear 

equations. 

Actually, discontinuous solutions are linear, semilinear, and weekly- 

nonlinear systems of equations of hyperbolic type describe irreversible processes. 

This stems from the fact that the uniqueness theorem of discontinuous solutions 

for the systems can be proven only on the basis of integral laws of conservation, 

that is, unstable solutions are nonexistent for these systems. 
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, 

Figure 4.14 

KEY* 

A —• Zone I 

Let us state, finally, several considerations on the nature of the conti- 

nuous dependence of generalized solutions of a system of quasilinear equations 

on initial values. 

From the examples considered above it is clear that the measure of proxi- 

mity of generalized solutions cannot be found in the norm of space C. As we 

have seen in this chapter, for the case of a single quasilinea*- c«iua.tion stable 

generalized solutins exhibit the property that 

if 
sup|<I>(x. 0 — ®(x, f)\->0. 

x 

sup|<D(je. 0) — Ö(x, 0)|-*0. 

(10) 

01) 

1 

Here <£ (x> 0» <P (xi *) are potentials of the generalized solutions u(x, t) 

and u(x, t). We will state that solutione exhibiting this property are conti- 

nuously dependent on initial data "in the potential metric." 

This property of stable solutions of  single equations enables us to 

assume that for systems of quasilinear equations as well the stability general- 

izes solutions denotes their continuous dependence on initial conditions "in 

the potential metric." 

Section II. A Single Quasilinear Equation 

1. Review of result«. A single quasilinear equation is the simplest case 
- 499 - 

■nwmjmaifiri.iMii.M 



■Ml-Ul* '«.li»«»» 

of a aystea of qoasiliaear equations in which there «re essential simplifying 

•etails,    laterally» therefor»,  the first results in the study of diaccstinanc» 

solutions of Cauchy's problea were obtained far a single qimsi linear equation. 

In 1950 £.  Sopf   published the classical work [63] which constructed a 

discontinuous solution of Cauchy's problea 

fc 
'S" 

+ ^(£)=0.     s(x. 0)-«,(x).     - a) 

Bw» E.    5opf aethod consists of the following. 

Instead    of Cauchy's problea (1} he considers a    different Cauchy'a prob- 

lea: 

^+^4=^- *<*•-'*«■ »°- GO 

whose solution is written explicitly.     SSbe generalized solution of Cauchy'a prob- 

lea (1) is determined as the limit a^(x, t) ap  JLk"^ 0: 

«(x. 0 = "m«_(x. 0. (3) 

An explicit expression for u., (x, t) and formula (3) for the generalized 

solution u(x, t) Cauchy's problem (1) made it possible to study in detail the 

properties of a discontinuous solution of problem (1). 

Thus, the E. Hopf construction can be regarded as the first of result 

of establishing the existence and uniqueness of a generalized solution of Cauchy's 

problem for a single quasilinear equation in a sufficiently broad class of 

initial functions (it is sufficient to require only boundedness and measurability 

of the initial function u (x) for the S. Hopf construction). 

Let us note that Cauchy's problem (2) has been also considered by 

Borger [2, 3] and by Cole [23]. Germain and Bader [11] established that the 

solution of problem (1) is unique if at the discontinuity points u(x, t) the 

stability condition u. > un is satisfied. 

However, a vigorous validation of the solution of Cauchy's problem (1) 

was given first by E. Hopf,  In particular, E. Hopf was the first to state 

that the function u(x, t) given by formula (3) satisfies equation (1) in the 
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of satisfying the integral sqoaliiy 

}]{*<* ^+^^£)***+ ill*-******-*  « 

far as arbitrary smooth finite function g(x, t). 

In 1954 0. 1. Oleynix [40, 41] considered the following Cauchy's problem* 

——tag that condition^"    (u, z, t) >0 (4^     < 0) was satisfied is a class of 

pieoewise-continuous       and piecewise-difiereirtiable solutions, and prove the 

existence and uniquer-es3 of the solution.    In 1936-1957 0. A. COeynik [44, 46] 

extended this result also to the class of bounded measurable solutions u(x,  t). 

A. I. Tikhonov and A. A. S—axsMy [61 ] considered the following Cauchy's prob- 

lea in 1934 for an inhomogeneous law of conservation: 

[ *ü- %$%*;)> 
'.T~: 

<fi 

in the class u(x, t)£K, also assuming the convexity of the function<p(u,  x, t) 

(f"uu^°)- 

In several subsequent works the properties of solutions of Cauchy's prob- 

lem were refined for equation (7)« Several new methods of solving Cauchy's prob- 

lem were proposed for equations (5) and (j)f  including the "potential method" 

[27] and the "potential smoothing" method [56]. 

The works of I. M. Gel'fand, 0. A. Oleynik, and A. S. Kalashnikov [10, 

48, 30, 24] considered and in several cases solved Cauchy's problem for a non- 

convex function <£>(u, x, t) when the quantity <fn    (u, x, t) is sign-variable. 

Although in this case the problem was solved in much less detail, nonthe- 

less the main features of this case were clarified. 

In this section we consider almost exclusively the case of the convex 

function f (u, x, t)j the case of the nonconvex <j?(u) is analyzed only in order 

to demonstrate the complications that arise. 
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for siaplicitr ** onr presentation of results, we will Halt ourselves, 

as a role, to the class of solutions a(x, i)6I, though sost of the results 

see transferred without appreciable complications also to tie class of bounded 

aoasnrable solution*. 

2. 3opf considered the solution u(x, t) 2. S. Hopf construction, 

of equation 

wiih the initial conditicx. u(x, 0) - u (x) 

0> 

(2) 

a« a linit as M—•> 0 of the solntions   u„(xf t) of s different Caucby's problem 

(4) 

¥e will assume the function u (z) to be bounded over the eirtire axis ox 

jx/<«», exhibiting a piecewise-continuous first derivative, and with a first- 

order discontinuity point. 

We will assuse that we know the solution u^(x,  t) of Cauchy's problem 

(3)»  (4) and that it is continuously differentiable when t > 0.    Then, by equa- 

tion (3),  the curvilinear integral 

«CM- J\£+[*%~—%\« (5) 
.em 

does not depend on the integration psth; here 

(6) 

Canceling function u ,, from (6), we obtain an equation which <$„(*,  t) satisfies! 

«W,, 
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J 
ly our aaaoaption,      a (x) » o( I x I) 

2 3ence it follow» that      ($>  (x) - o(x )        as 
X.OO' 

too. 
(9) 
(10) 

obviously, ^>   (x) is a continuous function of variable x, Tarring the pieosvise- 
continuous first derivative. 

We now solve Caacby'a problea (7),  (8) for $M : wa find u^(i,  t) by 

foranla (6), and then, as ytf—•- 0, we obtain at the limit the function u(x, t)f 

which we call the generalized solution of Cauchy's problea (1),  (2).    Bw tab- 

stitution «^(x, t) - -2/1 In ^(x, t) (11) 

reduces Cauchy's problea (7),  (8) to Cauchv'-* uroblasi for the aquation of 
thermal conductivity 

with the initial condition 

^(x.0)—<{x)-=op<- 
. -*  / ..., 

?{-i«.(4=«p{-ij''.a)-iJ.w \ 
v   V 

ly foranla (10) t|/J (x) - o(e^ ) as     x -»» *«>, (14) 

and therefore Cauchy's problea (12),  (13) has a unique solution, which is yielded 
by the formula 

1      7 

—OB 

Now from formulas (11) and (6) we obtain an expression for u^x, t): 

where 

M*.0 = 
K^H-^H 

—CD 

kit. x, i)=o0a)+^i>l. 

- 503 - 

(16) 

07) 

irif-i MTirr rmaiMiraiMi 



It follow from formula (1?) thai the function A(t, z, |) it a continrous func- 

tion of «11 its variables as t > 0. Based on condition (10) we can assert that 

for any fixsd x, t > 0   A(t, x, 5) -•-♦ 00    as % £oo-    (18) 

This means that the oontinnoas function  A(t, x,^) takes on — for fixed 
1,  t   > 0 — the saallest value of  \   .  (x, t) for soae bounded set of values 

of the variable £.    Let as denote this set by «(x, t). 

Let as introduce into oar consideration function v(t, x,£)s 

v(fc x. D=*<*. x. 0-*— (x. 0=<VD+ ^^5^—3L„(x. OL        (19) 

By the definition of the quantity A  (1, t) as the absolute Iniansi 

relative to the variable £ of the function A (t, x, £), we obviously conclude 

that v(t,i,|;^ Oj (20) 

and here the equality sign in (20) holds only for the case when 3* belongs to 

the set a(x, t). Multiplying the numerator and denominator of formula (16) by 

exp f +   S\J* )  » "* Gi're toe following form 

H(x.f)==—  

**r 

M-^W« 
(21) 

Suppose  )|   (x, t) and § (x, t) are, respectively, the exact lower and exact 

upper bounds of the set n(x, t)t 

I" (x. 0=in! » (x. 0.    $+ (x, f) = sup * (x, 0.   I" (x, Q< I* (x, <). (22) 

Let us graphically clarify the definition of the set m(x, t) and its bound» 2| , 

%   .    To do this, let us introduce a new function >/(t, x, {•): 

«(/. x. S) = X(/. x. l)--§r = ;nit, ft'D-ty.    (23) 

The functions A(t, x, £ ), v(t, x, 5), and >] (t, x, g) take on the smallest values 

for fixed x, t>0 of the same points § £ m(x, t). 
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Figure 4-15 

Figure 4-15 shows is the plane of variables 2^, z the carve x * f(tt 0, 

^ ) and soae straight line z » x £/t ♦ c. The inclination of this straight 

line is given for fixed x, t > 0. Let us select such a anther c so that this 

straight line is tangent to the curve z - 7](t, 0,J=) fros beneath, and nowhere 

intersects it.    Äen the set of points l£ in which  g x/t •»■ c - 

t(t, 0,5) constitutes the set a(x, t). Actually, if curve z - ^(t, 0, 5 ) 

"rests" on the straight line z « x £/t + c, then this aeans that at ^(t, 0, 

% ) - x £/t - *l (t, x, %  ) at the points at which ^ x/t + c - ?f(t, 0, 

c,; takes on its saallest value. Let us note that the nusber c coincides with 

Wx» *>• 
In Figure 4.15» the set a(x, t), except for the bounds § (x» *)» § 

(x. t), contains further the segnent a< ^ ^ b. 

Let us now establish the following properties cf the quantities £ , g : 

£+(x. 0<r(x/. 0 w^en  x < x", 
£"(JC-0, f) = l (x. 0. ¥(x + 0. f) = ¥(x. I). 
|(4-oo.0=i+oo,   5+(-oo. 0 = -oo. 

(24) 

(25) 

(26) 

To prove property ^24), let us consider the difference 

H(t, x + Ax. y-T|(/. x + Ax. V(x. 0) = 

r\«, x. ö-iJC x. l*(x. f))—^-l\-i+(x. D) (27) 

By virtue of the definition of the upper bound 
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. nv- *. ö-*e. *. r<*. <» ,>0     when $ £5*(r, t),    , 

* > 0     <bes g • ^ (x, t) 

Sbppoae    Az >0.    It follows fro« fcrrelaa (2?) and (28) that 

(26) 

% the definition of   %~{x, t) 

> 0     when $ <T f ~{x, t),    ^ 

-   0     when   5   -^(x,  t). 

*£. x+Ax. I (x-J-Ax. /))—n(tx+Ax. t*(x. /))<© 
(Ax>0). 

v30) 

CcapariB« formla (30) with (29), we see that £~(x +   x, t) -2?£*(x, t).    »is 

then proves to be inequality (24). 

Äe proof of inequality (24) is illustrated geometrically.    Actually, 

if     x' > x, then the slope of the reference line z • jr x'/t   -#• c' is greater 

than the slope of the line z • \g x/t    + c and frca Figure 4.15 inequality (24) 

follows at once. 

In the siailar fashion we can readily establish the properties (23) and 

(26).    Let us note that since the function  A(t, x, g) is a continuous function 

of all its variables when t > C, then its absolute »-in-»™    \  .  (x, t) relative sin 
to the variable   g  is also a continuous function of the variable x, t. 

Let us turn to formla (21) and show that for »ny x,   t P-Q 
x-^t*i*t} ^.._.^_ ,_, „,^„_ ,_, „, ^x-:jx,/) (51} 

x'-*x Xf-*-X 

Prom foiaulas (31), in particular it follows that if at the point x, t(t > 0) 

the condition ^ (x, t] * % (x, t) is satisfied, then at this point there exists 

the limit 

3*° 
x-i-(x,r,_x-i+{x,f) 

—       t      ~~   t (32) 

Proceeding to prove formula (31), f°r brevity ve denote   ^ (x,  t) -   JSj , 

l~   (x,  t) ■   l£ .    Suppose £ ?0 is an arbitrarily small positive number.    Let 
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I select noaiUr» nanli.i iudb that «re «nffieiantljr «u ,fe»t far ,22 

; , **, t», eetisfjing the conditions 

tha following IrifM Title« an satisfied« 

(33) 

(34) 

Äe fractions  5  (z* *) *afi   5 (*» *) «*• seoiccaitinnoEs, respectiveij, to the 

left and to the right, and therefore if the value of a is   saali   enough,    then 

providing that inequelitie« (33) *» 134) «re satisfied, ve can assaae also 
that the following hare been nets 

Write foraala (21) as applied to point xfj t* t 

L* •»of. 0=^ 
L;    J«^ 2*^14« 

(») 

<»> 

Let as estiiate the nuserator In faraola (56)1 

■ ..   t+.+*»_ 
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In obtaining (J7) we use the condition (34). <feite similarly, we obtain for 

".he nsawzatar the estimate fron above 

Abiding the estiaate obtain in (57) by the denominator in foranla (36), we 
obrioosly get 

*"7» 

-f- r+a 

j^-^p.}. 
(39) 

Let us show that the last two terns in inequality (39) tend to zero as M—*" 0 

uniforaly relative toi',  t',  if the litter satisfies  constraint    (33).    Noting 

that the linear function [ ~£^~   " ■%■ ] on the seai-intervals (- 00, Jj~ - 2b] 

and [^    +   2b,  +00) is estimated aoduluswise, respectively, by the quantities 

ec (&, -   §) and c*i ( 5 " *§ ) and tne value ol" '->; can be selected independently 

of i*, t», if ihe latter satisfies 33)» let us write: 
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f-9 

I 
(40) 

«tr  
M-i}« 

~VW7W 

J H~ih     ^ 

JH-i} 4 
■t V j 

For all x\ t', satisfying (33), V (tf, x»,^) > 0 when % < §" - 2b and 

V (t«, xf, §) - 0( £ /2t») as § —*• - <*>.    Therefore there exists the number 

A > 0 such that     v(t', x», 5g ) > A( f - £*)2  when g <C ^" - 2b. 

Using the estimate, let us write the following expression for the numerator 

in formula (40): 

-06 ' 

r-» 
<• J <r-l)exp{-^(E-6-J»}^ = -a.exp.{-id»L}. (42) 

— 00 

On the other hand, since y (t*, x', S; (t1, x1)) - 0, then there exists a 

S >0  such that v(t', x', £ ) <. 4Ab2 for all 55 from interval % (x', t») - 

£ <- ^ < g (x', t'). Therefore the denominator in formula (40) can be esti- 

mated as follows: 
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»-V'.iO ?-(*'. «0 

.««p{-if-}. (43) 
4-(*/.«')-» 

The right side of inequality (40) does not exceed the ratio of the right side 

of (42) to (43), i.e., it does not exceed the value of dju/k&  ,    where its 

estimate holds uniformly for all x', t1 satisfying (33). Since a similar esti- 

mate can he readily obtained also for the second term in (39)> then we can write: 

Ij^ix'. f)>/ + 0(u). 

Similar operations for (38) lead to the inequality 

1"«fcüV'flR £-FW 

(44) 

(45) 

Estimates (44), (45) hold uniformly for x', t», satisfying (33). Prom the 

definition of the numbers JL  and L (34) and the arbitrary choice of the quantity 

£ it follows that estimates (44)i (45) prove formulas (31) and (32). 

Let us determine the generalized solution of Cauchy's problem (1), (2) 

by means of the formula    u(x, t) - lim  u>a(x, t)        (46) 
A—*• 0 

at all points x, t, at which this limit exists, i.e., ^~(x, t) m   J|+(x, t). 
übe function u(x, t) is continuous at these points over the set of argument 

x, t. 

At the points at which £ (x, t) +   ^ (x, X),  we will assume for definite- 
ness that       u(x, t) - u(x - 0, t) - x " ^  >X| *'. 

Suppose ^ (x, t) / g (x, t) at &ny point (x, t)= Then from formulas (31) and 

(24) it follows that    u(x - 0, t) > u(x ♦ 0, t). (47) 

since 

^fr-M-^0,  .(< + 0,Q,*=yiSib. (48)^ 

Inequality (47) shows that the generalized solution u(x, t) given by 

formula (46) satisfies the stability condition which was introduced in .iection I. 
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** 
Suppose now £"(*, t) - £+(x, t) - £ (x, t). If £-5(x, t) is a point 

of continuity of the initial function UQ(JJ), then since A(t, x,lg) takes on 

the minimum value of this point, then 

«o(l(*.0) = 
x-£(*.Q 

«£(£(*. 0-0) > —j.  BJa(Jc,O + 0)> —} 

(49) 

(50) 

we assume that the point £«i;(x, t) can be a point of discontinuity of the 

derivative of the function u (£)  Bit if the point ]f« £ (x, t) - g""(x, t) - 

^ (x, t) is a point of discontinuity of the initial function u (§), then 

M6(*.0-ö)< ■»>(&(*. o+O). 
Sow suppose §"(x, t) / £+(x, t). Then 

( u0<l~ (*• 0- 0) = a(jf - 0. 0 <a0(|- (x, 0 + 0), 

) «ote* t*. 0 - o) <«c+o- 0=*o(r <*; 0+0). 

(61) 

(52) 

(53) 

Finally, let us note yet another property of solution u(x, t). Suppose x ■ x(t) 

is the discontinuity line u(x, t). Then 

Tim *P3~**°«|[«Cr(P- O.0 + «(x(0+O.0] (54) , 
I-+-/ + 0 * J 

This property shows that piecewise-smooth solutions u(x, t) of Cauchy's problem 

(1), (2) satisfy Ssgoniot's condition for equation (1). 

How let ue proceed to clarifying the problem in which sense function 

u(x, t) ■ lim VLM(X,  t) satisfy equation (1) and initial condition (2). 
M—•> o 

I^t us consider the function 

O(x.0 = HI,(DJifJr.0 = l.n,Üliy^-_!ir„_r= , ,      ., : 

t»-»o 
.i 

applying in this equality I'Hopital's rule, we get 
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0>(x, 0 = Hm - 
-co  

f  / *«.*. t)l - 
(55) 

From formula (55) it follows that 

1 <s>(x. /)=*™io (*. 0=». (t. x. I" (*. o) =* *• ('. *. r (*. 0)* 
(Jt-|)r = inf [<D0 a)+*£ir-] - ">«> ('• *. I). (56) 

ff(t,x.l)*=%(l)+£^. 

The proof of (56) Is analogous to the proof of inequalities (J1). Hence it 

follows that 4>(x, t) is a function of the variable x, t that :Ls continuous in 

the half-plane t > 0. Since as t ■-*• 0, %  (x, t) —*■ x, g (x, t) —*- x, 

then from (56) it follows that <#(x, t) is continuous also when t » 0, i.e., 

it is continuous when t ^0. 

Let us consider the arbitrary point (x, t) of the half-plane t >-0, 

at which %  (x, t) - i* (x, t). Obviously, there exists the neighborhood of 

the point (x, t) in which §~(x', t1) - ^+(x', t') for all of its points 

(x», f). * (6) 

■37 — «»• (57) 

Since ;he sequence \i^  converges uniformly in this neighborhood to u(x, t), 

and $> JX  (x» *) :^$(xi  *) according to the proof given above, then obviously 

<$ (x, t) is differentiabla at the point (x, t)j here 

(58) 
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= .*Ä*r--J''3!X:'S,Ö'=^iM£ --"W^' 

Differentiating formula (16) relative to the variable x, we find 

where we denote the quantity 

* V\ j«Jv;f ;« 

(60) 1 

fy   u^     .    At the points (x, t) at which   if (x, t) -   §+(x, t), we have 

lira 
|i*0 I * J (61) 

Therefore in this neighborhood of the point (x, t), according to (57), the 

sequence <?^jj/«3 t uniformly converges as «/<—*■ 0; 

!im (62) 

Consequently, the function <|> (x, t) is differentiable in the point under consi- 

deration (x, t) relative to the variable t, where 

—-£——T~' (63) 

And thus, at all points (x, t) for wnich § (x, t) - l*+(x, t), the functi 

<$ (x, t) is continuously differentiable and satisfies the equation 

on 

s+iisr-«- (64) 

i(y formula (25) the functions J|~(x, t) and ^+(x, t) are monotonically increas- 

ing functions of the variable x and are semicontinuous relative to the variable 

x and are bounded for finite x, t. Hence it follows that for any segment of 

the straight line t - constant the set of points in which §"(x, t) f*   %+(x,  t) 

is not more than countable. Hence, it follows further, that in any domain G 
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of variables (x, t) there exists not more than a countable number of lines 

outside of which ^(x, t) is continuously differentiable and satisfies equation» 

(64). 

Since *j~(x, t) —*■ x, £*(x, t) —•• x as t —* 0, then 

•V 
1 OK*, o)=*,(*)== j«oOK- 

3y virtu? of the continuity of # (x, t)s we conclude that 

as 0. (65) 

Relations (65) and (64) show that the function u(x, t) given by formula (46) is 

the generalized solution of Cauchy's problem (1), (2). 

Let us show by yet another csthod that the function u(x, t) given by 

formula (46) is a generalized solution of Cauchy's problem (1), (2). Integrating 

equation (3) over the domain G of the half-plane t >0 bound d by the closed 

contour C, we obviously get 

j^dx--$-dt = -^-gdt. (66) 

By (59), M^jjr —+ 0 at the point which ^"(x, t) - %*(x,  t). Therefore if 

we assume that at the contour C the measure of the set of points (x, t) at 

which § (x, t) / § (x, t) is equal to aero, then as^/i—*- 0 the integral 

&M 4^ dt appearing in the right side of (66) since to zero. 
c 

Under the same assumption, the integral in the left side of (66) as 

JA --+» 0 retains its meaning, since at the contour G almost everywhere u(x, t) 

—*- u(x, t). Therefore passing  to   the limit as JA—*- 0 in (66), we get 

u(x,t)dx—B'(*'^ dt=0. (67) 

And thus, for an arbitrary closed contour C at which the measure of the set 

of points of discontinuity u(x, t) is equal to zero, the function u(x, t) satis- 

fies the integral law of conservation (67) for equation (l). 
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el 
Since the function u(z, t) takes on initial values (2) in the sense of 

(65), then u(x, t) is a stable generalized solution of Cauchy's problem (1), 

(2) also in the sense of integral lav of conservation (67). 

Now we note that if at the points of the discontinuity of function 

u(z, t) a certain value is assigned, for example,  u(x, t) » u(x - 0, t), (68) 

then equality (67) is valid in general for any closed contour C lying in the 

half-plane t ^ 0, 

Actually, the contour C can be considered as the limit of the contours C 

at which the measure of the set of points of discontinuity of function u(x, t) 

is equal to zero. 

Equality (67) is satisfied for each such contour C according to the 

focal point. If at each discontinuity point (x, t) of the function u(x, t) 

the corresponding point (x', t*) of contour C1 tends toward the left, i.e., x*< x, 

x'—»-x, then u(x!, t') -*• u(x, t) by (68) aid, passing to the limit in equality 

(67) we conclude that it has been satisfied for the arbitrary contour C. 

Multiplying equation (3) by an arbitrary smooth finite function g(x, t) 

and integrating the result over the half-plane t ^-0, we get 

-  .  -   •— ■——•-  .• . --T- •      ;—T —-_• v 7 

00 -«. -" <>•"'  ' ; (69) 

Since almost everywhere Uj,-* u(x, t), uM —+- u (x, t) and by (64) for 

M rr* ""> 0, then passing to the limit in (69) as Mr-*" 0, we get ä K 

00  , > 

J{ [TH* 
f) + ^^¥L\dX dt+ ig(X' <ö*<*>**^* (70): 

«>• 

Equality (70) shows that the constructed function u(x, t) is a generalized 

solution of Cauchy's problem (1), (2) also in the sense of the last of the three 

definitions which were introduced in Section I. This definition of a generalized 

solution of quasilinear equations was first suggested by E. Hopf. 
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3.  Cauchy's problem for the equation «t + <P% - 0 pw the condition 

^-       > 0.    Suppose the function *»(u, x, t) exhibits two first continuous 

derivatives relative to all their variables aet^0,-M<i<»   and for 
(u, x, t) > 0 in this 

(u, x, t) <  0 is considered quite 
all the    constraints on u.    We will assuae that <f> u_. 

doaain of variables x, t, u(the case of <p' 

analogously). 

For the equation 

uu 

' du   .   df(m,x.Q 
"3T"1   5 ==0 

(1) 

(2) we pose the initial condition  u(0, x) - «0(»), 

assuming that the function UQ(X) is piecewise-continuous and has a piecewise- 

continuous first derivative for all bounded values of the variable x. 

Cauchy's problem (l), (2) was considered and solved for the first tine 

by 0. A. Oleynik, and this was done even for broader claes of initial func- 

tions — bounded and measurable functions UQ(X). Our consideration of Cauchy's 

problem (1), (2) will be less detailed and somewhat different fro« that given 

by 0. A. Oleynik. 

For the characteristics system of equations (1) 

^.^^(«.jc.O.  -g.^=-<(«.*,0 (3) 

let us consider the Cauchy's problem with the initial conditions 

x(0) - xo,      u(0) - uo. (4) 

We will denote this solution of this Cauchy's problem by the latters 

x(f)~X(t, x^m^,     «(0«=t/"(/, Jf0. «Q). (5) 

These functions, by the definition, satisfy condition (4), which we will now 

rewrite as       *«>   * - u ) = x .    U{0, x., uj=u,.  (6) X(0, x , uo) = xo, 

We will assume that the function X and D remain bounded for any finite XQ, UQ 

and t > 0. The conditions in which this obtains are relatively involved, and 

we will not present them here. 

If X(t, x , u ) and ü(t, x , u ) are bounded, then they have continuous 

first derivatives with respect to all their variables. This follows from the 

continuous differentiability of the righx side of the characteristics in 0). 
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.- 
Finally, we further assuae that     X(t, x , o ) —•> ±00 as   x   —*• ±jx>» (7) 

Sie 8ecood problea which we will consider for the characteristic sysvz 

(3) is the boundary value problea with the following conditions. 

It is required to find the solution x(t^ ■ l(t, c , $ , x ), n(t) « 

Ü(t, r , ^ , x ) of characteristic systea (3) satisfying the following boundary 

conditions: 

xpJfW, x. I. xj=x„     x(x)=X(x. T. C^=5. •       (8) 

where x , j£  are arbitrary numbers, and r>0. 

AB  before we will assuae that this problea has a unique bounded solution 

for arbitrary x , P , X > 0, without detailing the complicated sufficient condi- 

tions under which this obtains. However, if this is assumed, then the functions 

X, D are continuously differentiable relative to all their arguments. 

Let us enumerate the following obvious relations: 

X(0. x. I  o^s^,  *(T. T. I xj=i, (9) 

X(t. xv f'(0, T. I xJ)s*X(t, T. I xj. (10) 
U(t, xf 0(0. x, i.  X^)3t/(/. T, l xj. (11) 

For the 2. Hopf equation considered in previous section, f>(u, x, t) « u /2 

and 

X(t. XQ, u^=*x0 + uj. U(t. XQ.  a0) = «0. 

X(t, x. I.  *0) = *0 + -^^. U(t, x.  i x^) = A_* 

(12) 

(13) 

FTOE formulas (13) we can readily note that the solution u(x,  t) of 

C&uchy's problem (2.2.1),  (2.2.2), given by fonaxlas  (2.2.48) can also be written 

as 

B(*-0. ()=U(t. t, x. l'(x. 0)- 

«(x + 0, 0 = ÜV. t. x. l*(x. 0). 
(14) 

where the quantities %   (x, t) and ^ (x, t) are defined (of subsection 2) as 

the exact lower and upper bounds of the set of § values for which the function 
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X(f :*.I>-^(I>+-^=J *«*■-+ <*-tr 

takes on a ■daim value for fixed x, t. Foting that for the E. Hcpf equation 

/(*, x. ö=l(/. x 

we can assert that in this special case the § (x, t) and £ (x, t) values can 

be also defined as the exact lower and exact upper bounds of the set of $ values 

for which the function 

/(/. ,.»-! («eM - £/(0, t. x.  tölrftj (16) 

takes on its saallest value for fixed values of the variable x,  t  > 0. 

As shown by 0. A. Olej-nik, formulas (14) give the solution of Cauchy's 

problem (1), (2) under the requireaerts that we imposed above on the function 

<P (u, x, t), if we iet £ (x, t) and § (xf t) now stand for the exact upper 

and exact lower bounds of the set of g values for which l(t, x, § ) takes on 

its saailest value. 

It follows froa the requirenents imposed on f(u, x,  t) that 

1(0,  t,  x,  f ; -*-    re »8     2g —•»     + OO, 07) 
and since we assuae the initial function u (x) to be bounded, then o ' ' 

l(t, x. D-.+oo asi^i-^co.    (18) 

Tnis aeacs that the continuous function l(t, x, § ) for fixed values x, t 7*0 

takes on its saailest value I . (x, t) on soae bounded set B(X, t) of values mm 
of the variable  % .    »e can denote exact lower and exact upper bounds of this 

set by, respectively,    %    (x,  t) and 4   (x,  t).    The quantities   § (x,  t) and 

2j+(x,  t) satisfy relations (2.2.24),   (2.2.25), and (2.2.26).    2he proof is 

given analogously as in subsection 2 and will be omitted here.    Ihe generalized 

solution u(x,  t) cf Cauchy's problem (l),  (2), defined by formulas (14), satis- 

fies inequality (2.2.47). - 5I8 - 
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I ir 

Let as introduce into consideration tbe function 

r 
>(t x. Q->\iM**+f&fm& *. *)-•<#* *)j*. (It) 

... / * \ W 
where for brevity ve omit tbe argoaents at tbe functions U - ü(f , -.,  i, g ), 

X - X(r , t, x, % ). Differentiate tbe integrand in the second tera of foranla 

(19) relative to tbe variable %.    We get 

[^<fc */*)-•<&;*. ^-ÖJf.CÖ. *.*+?(■»<?. **£- 

-0ft(# *. tjjj-<(i/. *. t>*j. c») 

ärtü and X represent tbe solntion of characteristic systes (3), therefore 

; f£# *. T>—*r.    -«£(*/. *. f)«Öj. (21) 

Inserting foiaulas (21) into (20), we get 

[ff<-^^+^=-5-{<>(*. *• x. t)^i(t. /. x. &)}. 
Inserting this expression into foraula (19), we find 

wbere 7 - +jW("r *r *J-?«V *r »»A.   (22) 

f?, = t?(T, /, x.OX   *,= *(*. if. X. 0). 

Let U3 inspect the second tera in foraula (22): 

W.       - ...... -. , 

-^[f/(T, ft X. *>*i(T, fc X.  »J]rftrfn = 

= J [Off. t. x, fl)^(*. /, x, n) —17(0. f, x. iO^(°.'.x, *)}**. 

But by foraulas (8)    X'    (0, t, x, ^ ) - 1, X*   (t,  t, x, *] ) - 0.    Therefore 

V 
#(/. x. Ü= / Mio - 0<P. '• x. tDJ«fn+f(x. 0.     (23) 
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where 
i 

■ 

fbraolas (2?) and (19) give a new representation far l(t, z, f),  fraa which 

we can conclude that for fixed z, t > 0 the continuous function •§ (t, z, ^ ) 

takes on its saallest value on the saae set a(z, t) of variable 2~ as dees 

the function l(t, z, 5 )• ^i-8 aeans that the function 

is a unique and continuous function of the variables z, t. 

Proa foraulas (25) and (19) we conclude that the continuous function 

<£(z, t) takes on, given t • 0, the following valuest 

X 

«(j. o)= j sfc)**^®»^- (*> 

Since the arguaent ^{t, 1, f ) is a Iipssiiz-continuoua function of all its 

arguaents in any bounded doaain of variables t >0, z,   ^ ,  i.e., 

|*0+Af.x+A*.H-oÜ-S(/.x.üK*ii*l+|A*i+iA*il- 

then its absolute ainiaua relative to the variable 2| — the function & (z, t) 

— exhibits the sane property, i.e., 

|0>(x4-Ax. t+&G-<S& f)\<M{\Lxi+\Zt\\-      «8) 

Iöpechitz'-continucua function   <£ (z, t) has aiaost everywhere continuous 

derivatives relative to the variables z,  t. 

Let us calculate these derivatives foraally at least.    We have 

tu. t> --'     ' 
®(x. 0=        «6(10*1+ J [U*m (U. X. T)~f(Ö, X. t)l<fT,(2S) 

* * 

where as before we denote  ^ (x,  t) -    ^"(z,  t), Ü * U(c,  t, z,  £ (x,  t)>. 
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Iqr differentifcting (29) with respect tc variable x. ve get 

* i.- •r«(x. 0)^g^-+I ^[cTfi-fjÄ 

Just as la the preceding case, 

m 

* r.-w --7 

where 
yK v. x. t)-9(t?..?. t)]=£(#JQ.     (ii) 

^4^u{(i.o>     •- 
Inserting (31) ^to (30), we find 

-j^=«,Sfx. tn^SL+UV. *L x. *(* 3)*J&ILx.*(x.<»- 

— (7(0. L x. *<x. 0)^(t. #, x. {(x. /».  (12) 

Bat is foranlas (8) it follows that 

J£<0. /. xf$(x. fi)=* Sg3 ,    Jtiif. / ^ t(x. />,« iTliSS) 

therefore (32) becooes 

%f - {%£(*. 0>- «7(0. /. x. |{x. /))i -S^i-+0 

-la,(i(x.l»-£/(8. A x. ${x. gi|-S|p+«<x. -j.   (34) 

Siailar operations lead to the fcnsila 

-J-^MfcC*. 0)-t/(0. fc x. $(*• ^»—W 

*i**—*(.(*, /). x.'O  (35) -KS(*. 0)—»9- ** *■ &<*■ 0)1-^ 

Fowls (34) vaa derived bgr us foraally, and here we assuae tc the existence of 
the derivativ  1&2LJU     ^    ^gC^iJ   _ 

<?* -de 

Bat these derivatives exist at the    (x,  t) poinUBfor vbici  ^  (x,  t) - 

§  (xf  t), regardless of whether the initial function a (£) is differentia'ile 

or not at the point £ - %(x>  ')•    A vigorous validation of these fcraulas is 

not complicated, but is laborious.    For exacple, validating formulas (34) and (35) 

can be done if we regard u (x) as the licit of continuously differentiabie 
- t>21  - 
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function*, low, however, we can easily note that if £ (x, t) ■ %  (x, t), 

then tbe expressions 

mac*. O>-«?«B. <L x. t(x. o»-*^ 

tend to sere*) «ad foraulaa (34) »nd (33) under thia condition 

iato siller expressions i 

ax« converted 

■» » 

1g-=a(x» 0.     -jg- =—f(a{x, ft *.* TO 

fet IT |~(x, t) /  g*(x, t)t  then      . , -   j 

^-(x-0. fl«=«(x—0. ft.     5"(x+0. /)—aCx+f. ft  <*J) ; 

And tins,  the deri-rmtives ——and i   exist almost everywhere, and they were 

computed by faraoiaa (36).    Pros tola it follows that the continuous function 

^(x, t) almost everywhere satisfies the equation 

4?+»(£-• *•')-• ^ 

and taxes on the initial values (26). 

And thus w conclude  that the solution u(x,  t) given by forsula (1d), for 

any closed contour C, satisfies the identity 

^l«(x, f)dx—f(«(x, ft x, /)«j=0. (»> 

Since, moreover, u(x, t) taxes on initial values to in tbe following sense: 

. J*(x. O^Jc-* j m9(x)dx as   t —»* 0,      (40) 

*) If £ (1, t) - 1= (x, t) and u (£ ) is continuous at tbe point £ - 

§ (x, t). then uo( £(x, t)) - ü(0, t, x, £ (x, t)); but if % (x, t) is tbe dis- 

continuity point u ( £), then -^f.*r -y- jgrz-^- 0. 
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and setisfies the stability condition u(x - 0, t)  ^ u(i + 0,  t),  therefore the 

discontinuous function u(x, t) given by formula (14) is a stable generalized 

rotation of Cauchy's problex (1),   (2). 

Above we obtained proof that ferula (14) defines the generalized stable 

solution of Osuchy'8 problea (1),  (2).    But this proof does not indicate by 

what aeans ve arrive at formula (14).    Therefore we present here another method 

of constructing a discontinuous solution of Cauchy's problem (1),  (2) which 

automatically leads to formula (14) for the generalized solution.    This method 

was used under the saa>.   assumptions about the problem (1),  (2) which were made 

above and even when some of them are rejected.    However,  for clarity and simpli- 

cltj of exposition, we begin with an analysis of she case of a smooth initial 

function u (x), and then consider the case of a piecewise-smooth and piecewise- 

continuous function u (x). 

And thus, we assume that the function  <?(u, x,  t) satisfies our former 

requirements, and that the initial function u (x) has a continuous first deriva- 

tive and is bounded for any finite values of the variable x.    As long as the 

equation x - X(t, XQ, %(*,)) (41) 

has a unique solution x   - x (x,  t) relative to x , as we have seen in Chapter 

One,  the solution is continuous and is given by the formula 

u{x. f) = U(t. xo. s^oC*. ())). (42) 

But if equation (41) has mo^e than one solution relative to x at several 

points or domains of the variables x, t, then formula (42) defines some multi- 

va^ue function of the variables x, t from whose branches the generalized solu- 

tion must be constructed. 

The existence of a generalized solution u(x, t) of Cauchy's problem (1), 

(2) presupposes the existence of Idpschitz-continuous potential c£ (x, t), which 

almost everywhere satisfies the nonlinear equation 

<W> 
+»(£'• «■<)-» (43) 

and the initial condition 
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•(*. o)=a>0(*)«J«,d)rf6.',"..' C44) 

Let us denote the geometrical integral of Cauchy's problem (4?)« (44) by 

<J> m <£> (t, x ), i.e., the equation of the integral surface of this problem 

expressed in parameters t, x , where x is the point through which characteristic 

(41) passes. Generally, this surface is not uniquely projected onto the plane 

of variables x, t. According to subsection 2 of Section IX of Chapter One, the 

function <p(t, x ) is defined by means of integration of the "strip equation" 

y=*U(t; jf0, «„ (*o)). x=x (t, x0. % (*„) y 

Using initial condition (44), integrate equation (45): 

">-•'       •   
a>(/( xd-*%{xd+[[Uv'mV.je, 0-9(f. X.  0],_t*r. (48) 

at 

where /» ///>•- »_/-\\ y-^ytt   «■_ a.tv.w ! 

For the case when equation (41) in uniquely solvable relative to parameter x , 

the potential <£(x, t) is given by the formula 

d> (X {t, x0. «o (*o)). 0—* ('■ *o>        <47> 

or by the explicit formula  <^(x, t) - <^ (t, x (x, t)).      (48) 

But if the function (41) is nonuniquely solved relative to x , foi-<"las (47) 

and (48) define the multivalued fur -;tion <p{x,  t), from whose branches a unique 

and continuous function <f> (x, t) must be constructed — the potential of the 

C «era!ized solution. 

Let us fix an arbitrary t > 0 and consider the behavior of the curve 

x = X(t, x0,a0(xjj (49) 

in the plane of variables x, x  (Figure 4.I0). The function (49) obviously is 

represented by some continuous curve, which however, for sufficiently large 

values of the argument t > 0, is not uni . ?ly projected onto the straight line 

XQ - 0. The curve (49) is always uniquely projected onto the straight line 

x - 0. 
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Therefore we can assume that corresponding to each point on this curve, 

for a fixed value of variable t, is a definite value of the parameter x • Conse-o 
quently. we can assume that the contiiluous !unctions U(t, x , u {x )) and 
,....... 0 0 0 

qs(t, x ) (functions of the variable x) are ~ssigned at the continuous curve 
0 0 

(49 ) .. 

Our problem is to select from the branches or the multivalued function 

(48) e unique anC. continuous !unction - the potential ~ (x, t). Let us show 

how this separation is made, and incidentally establish that it is unique. 

Suppose that en some section a.<::. x < b the curve_{49) bas at three points 
0 

intersections vi th the straight lines x • c when x1 < o < x2 , i.e., is triply 

projected onto the segment x1 -~ x ..S: x2 of the x .,o (Figure 4.17). Suppose 

x1 c::::. x < x2 and suppose(±) s..:~~--~ (~~ ~- :valu;~ __ o! _the v~i.ab_le ~<] ~atisf;y-
ing*) equality ( 4 9). Let 1~<f, 1). ~(~. 1)". ~ ci: '~. ~( ... t), ~~,r~li!; :~ . . 
denote the coztresponding values~tne-functfons-lf[t, x , u x )J and ¥"< t, x ), 

. 0 0 0 0 

'I -~.--~~~~:)_t)~;~'(f:;_~: ~~~~~)~•; •) 
f·· .:JI_c~~ t)·~~<,;· ~o) ..... •: · -~ · 
. ,. • 1-· ....... - ··~ -- ~'··-----.:. •. • .•.. 

For each of these branches, in view of the "strip condition" (45) the following 

equalities are satisfieda 
. : (.I)" . . . ' 
' OcD{Xi. t) . ' . _(I) ·A. r C>x =u(x, •J 

. ..• , I'· 

-... ----- ~_. .. 
'.fe assume earlier th3.t the boundary value problem for the characteristic system 

:i.e uniquely ;=Jolvable.·. From this assumption it follows that 

.-- -~·;·r~t~l' 1;:<~1. ;>~~~~~rx~--~>:·-~: ·1>-·<·c,;:fJ<:x. t).·x.~~~~ <&ty>i 
', 

0 •.j • o4o ·•• •• - -- '• \~ ~ • ----~~· 
0 

, ·-

0 

·.,, .. ,......._-.._, • ... 

and since 4'"uu (u, x, t) >O, then also 

r~i{~·: ''"''." ."<it' ··r : ... " .. (a)/"· 
. ' "(x~ I)<., (.¥1 t) < "(x, t). (52)' . 

By formula (50), we can wr~te ·· · ...... ·-·-'-·---··--·:-.,~·--- __ .. 

*) Curve (49) can have vertical segment. In this case an infinite set 

of potnts of the curve (49) can correspond to some x. As we have seen, this 

does not affect the course of our.conatruotions. 
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(53) 

f«o«*i>* 

Figure 4«16 

In Figure 4.16 we represent at the section [xA,  x0J the function (48), 

which according to our assumption is three-valued. The branch <# (x, t) is 

defined at x ^ x , and the branch <§  (x, t) — at x1 < 1 $ x^i  here, in view 

of the continuity of the function <£ (t, x ) relative to the variable x , we 

have the equalities A,      m"  - 
<S>(x., f)=*®(x2, t). 

#(*,. f)=<!>(*,. 0- 

Using, finally, inequality (53)» we conclude that the graph of the function (48) 

is of the form shown in Figure 4-18. 

Figure 4-18 

And thus, at the section x, ^  x <C   *2  for which the function #{x,  t) 

is three-valued, the separation of a unique and continuous functions - the 
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potential <p (:;, t) — is obviously carried out in a.natural manner and is given 

s* by the formula        #(x, t) - min <£ (x, t), (54) 

where the minimum \z  taken over all values <jf  (x, t) at the given point x, t. 

Figure 4.18 shows that this minimum is attained at the first and third branches 

of <p (*> t)» i.e., 

I 1 

0(x,f) = 0(.x.f)    where      x^  % ,<#(x,  t) - 4> (x,  t)     where |Y>1 

Correspondingly, the function u(x, t) is also thus defined: 

(55) 

a(x. 0«=ß(*. f)     where     x ^ f  , u(x, t) -     u(x, t)     where    x>t (5«)* 
. _ .,-#&?« ■ .   '.....li 

Mow if curve (49) has sections which are projected more than three times on the 

axis x »0, then by decomposing it into individual pieces at which <p (x, t) 

is three-valued, we reduce the entire procedure of constructing the continuous 

potential 4> (x, t) to the case just considered. 

Thus, the generalized solution u(x, t) of Cauchy's problem (1), (2) is 

given by the formula   u(x, t) - U(t, % (x, t), UQ(^(X, t))),     (57) 

where |(x, t) ia a value of the parameter x for which 

is J.he smallest value of the function <£>(t,  x ) for x values bounded by condi- 

tion (49), i.e.,       x - X(t, XQ, UQ(XO)). 

Now using formulas (46), (19)> and (2j), we can readily establish that formula 

(54) is equivalent to the requirement that function l(t, x, %)  have a minimum. 

Thus, we again arrive at formula (14) for the generalized solution u(x, t). 

Figure 4.19 
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We have considered, however, only the case when the initial function u (x) 

is saocth and, in particular, a continuous function of the variable x. We now 

see that nothing essential is changed even in the case of a piecewise-smooth 

and piecewise-continuoua initial function u (i). 

If we consider the discontinuous initial function u (x) as the limit of 

continuous functions, then this only leads to the situation that at the disconti- 

nuity points u (x), when solving the characteristic system, we oust given the 

function u (x) all intermediate values between the left and the right limit 

values u (x - 0), u (x + 0). Then the function (49) as before will be repre- 

sented by a continuous curve in the plane of variable x, x . The only differ- 

ence is that at the discontinuity points this curve has horizontal segments 

(Figure 4«19). Thus, for example, in Figure 4.19 corresponding to the point 

±1' is the case when      u (it1'- 0) > u (±1'+ 0), 
o ov o 

and corresponding to the point 
(2) ° vx'    — t the case when     «„(Xo-OX^-j-O). 

A bundle of characteristics x - X(t, x , u (x )) leaves the discontinuity point 

of the initial function u (x), and this bundle of course cannot be described by 

only the parameter x . Therefore we introduce at the discontinuity point u (x) 

yet another parameter oL{0 ^ °C ^- 1) ani define the functions X(t, x , u (x ), 

cL   ), U(t, xo, uo(xo),o£  ), and <§ (t, XQ, OL ),  thusly: 

X ft *<>. «b(*<)• o) — X (t, xv 0*0 (*,—0) + (I — a) «„ (*„ -f 0)), 
U(t. *» «o(Jf0).a) = f/tf, x» o«,^— 0)-Hl -o)«b^+0)). f (59) 

V $(/, x0. a)=<V*o> + f lU<f't(U. *.T) -«({/. X.x)]dx.    (to 
1 J 

The functions (59) at t - ~t   are denoted by Ü and X in formula (60). Now if the 

parameter x runs through values from -00     to 00 , and ot  is made from 0 to 1, 
o 

then the curve x - X(t, x . u (x ), dL ) will be continuous in 

the plane of variables x, x ; <$  (t, x , JL, ) there is continuously along this 

continuous curve. Therefore, by repeating the former operations we conclude 

that also for the case of discontinuous initial functions u (x) formulas (57) 

and (58) remain in effect for the generalized solution. 
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y These foraulas will new appear  as fo1iov9t 

«(x. f)=U(t. \{x. 0. «,(E(x. .?*. a{x. t)\ 

where £ (z, t) and«c(x, t) are values of the paraaeters x «ad cC  fro» which 

©(x, /)=*(/. i(x. I). o(x. /)) 

is the let at value of the function ^(t, x , J. ) relative tc toe paraaeters x 

and ai  and governed tsj the condition 

for the inhosogenecus law of conservation 

x - X(t, xc, uoixo)tet). 

*+^r»(«. *■ 0-=/(«. x. t) (61) 

with initial condition (2), formulas {14) and  (58) as before define the general- 

ized solution in the case when      f(u, x,  t) - f„ (x,  t) ■#■ f-(u, x,  t)        (62) 

Only now U(t, x . u ), X(t, x , u }, Uf and I denote the solution of the charac- 

teristic systes for equation (6l)s 

-#=¥,(: x. 0.     -£=/(«. x. /) — ?;(«. x, 0.     (63) 

and $(t, x ) represents the solution of the "strict condition" for equation 

(61): 

where 

-^ = </f;«/. X, o-f(t/. *. 0+r>. 0+/,«*.   (M) 

rl(x. 0=/,(x,0. 

To be convinced of this, let us transform equation (61) tc becoae 

where 

*j fLiw-   ,   AJ —n (65} 

v = ««p{— J/i(t)rfx}. 
8 

,(„. x, 0 = exp{— jftWdi)[<?(vexp{f f2(x)(H].x.f)-F(x.f)\. 

Let us apply the methoc  cf constructing the generalized solution to the Gauchy's 

problem outlined above to equation (65) and,  in particular, here formulas (14) 

and (58) are valid.    Returning again to the variable u ■ v exp /   f0( r)dtr, 

we get the result that the latter is defined by formulas  (14).    The solution 

satisfies the integral law of conservation 
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$• <*—•(*= *• 9*+JJl/,<x. *>+/,(*)«ldx «J=G. 
*c 

deriving fron aquation (6^) under condition (62). 

4. GaucL.   - proeien far an i.fcfogragouj law of 

problen foe an inhentagene-cj.. 5 law cf conservation 

rteiohy'* 

with initial condition        n(0, x) - a (x) (2) o 
vaa first exaadned by A. a. Hkboaov and a. a. Sn—T-nriy (1934)» «to 

that the functions 3 and f are doc'aly ccstinaoasly differentiatie,  and that  me 

initial function u (x) is piecevise-sor-tinuccs eae piecevise-diffcrcstiaals. 

?heir method sax. be- called the method of integrating sJignaiot's condi- 

tizr. 

9te solution of the characteristic syeten 

'7; 

satisfying the initial conditions      x(Q) - x ,    a{0) - x , (4) 

as before xs denoted by x - l(t, x , a ),      u - U(t, x , u ).        (5) 

«e will &ssun* that the function Z and U renair bounded in the ctamair cf the 

variation of variables t,  x ,  and -    urner --r-=iiera-.i:r.. 
o     o 

It is sufficient tc emsiger the case vhen the initial function a (x) is ov  ' 
assigned an the finite segment   f xf ^ a and to solve the problem (l)f  (2) in 

the domain of    iefir.iticr. of the segment. 

Let us select the value of a to be sufficiently snail that the initial 

function u (x) has on the segment   f x |   <.   a a unique firsv-order disosntinci^r 

point which can, without restricting generality, be taken as the point x » 0. 

Let us consider two possible cases. 

1) Suppose u^(-0) < u (-»0).    Since  f>"     >0,  then it follows that 
-U 

, •;(«,<-<». «• °> <T/.(«,(-M»)- 0: 0). ,0) 
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~t us draw two characteristics~ • x-(t) and x • x+(t) given b.Y. the &quationa 

C?i~~VHlip:o>I~\::~~:-.?~~·~i~~·:~~~;:~<¥ ): ~:-:.~~ 
through the point (0, 0). From condition (6) it follows that at least for suffi­

ciently small values or the variable-t :>o the following condition will be sati&" 

fied: x-{t) < x+(t), (a) 

and if it is assumed, as earlier, that the boundar,y value problem (2.~.8) is 

uniqu9ly solvable fo~ characteristic system (3), then inequalities (8) will be:. 

satisfied for all t >O. 

., 
' 

.. ~ .. :I 

Figure 4.20 

Figure 4. 20 showa the domain or determinacy of the segment I X I ~ a 
and the 

tj.on of 
I 1,Figure 

ch~raoteriatic (7). According to Chapter One, a unique ~lassical solu­

equation (1) taking on initial values (2) exists in zones I and II 

4.20) for sufficiently small t
0

> 0. This solution is given by the 
fo:rmuls u{X(t, x0 , u

0
(x

0
)), t) • U(t, x

0
, u

0
(x

0
)) (9) 

:l.1nplid.tly by means of pars,meter x
0 

or, if we can solve 

. x • X( t, x
0

, u
0 

(x
0

)) 

the function 

relatjve to x s x • x (x, t), 
0 0 0 

(10) 
(11) 

and alao by the explicit formula u(x, t) • U(t, x
0

(x, t), u
0

(x
0

(x, t))). 

Formulae (9) and (12) define the solution to Cauchy's problem (1), (2) in 

I and II. It re~~ine to determine the solution in zone III. 

I.et us d.raw the characteristics x. • X«- given by the condi tiona 

•. , ......... -.,.,.,,, ~·,·· ·.J·t•· .. ·~·-·--:....,..·:-~··.r·-. · .. ·. ·~ 

·t':i~'x-·~f{(t, .'d. ·~~(Li1).'4'(f4i'~(~))/1. ··:(f<a <I; }· ... 1 
i .. ~~.~L~?~. ~,-:·):~.<~~---~-··~~~·-~-· .. _·. _:_: .. .... ! .. ·_ .. ··1 

(13) 

f.hrough the poin·e (0, 0). The eq,uation x • tA (14) 
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is •.miquely aolvnble in zone III relative to parameter~ a 

c(.. ~ (x, t). (15) 
Therefore the solution u(x, t) is given in zone III by the formula 

/." •cXi:·l)·-.v(t:-:o ... ~c;qf.Fcr.:;iir;i~>f - ·· ··· (isf.: 
&; ..... ,.: ... - ·~- ... •.J•:...- ..... :;,..,_.:.._· ~:.._ __ .;.._ ..... .:.. . .k,.....,.~ •. ::. :_ .... _:_: __;·, ... · ... -~·--- __ ••• •••• • . __ _J 

or, if we know function (15), by the formula 

:. ~-~~-·-··if~Y <~~:~?-~!r~<~>~~ ~.t:~: .. ··.~:~f;~~!~.~'B>i:_:,~·~-~~·.:'1 
The set of formulas (9) and (16) define the solution of Cauchy's problem (1),.(2) 
in zones I, II, and III, which is continuous when t> 0, has discontinuities of 

first derivatives located on the lines x • x-{t), x • x+{t), ~nd has a singula­

rity at the point (0, 0). To clarify the nature of this singularity let us note 
thF.tt 

[ .., .... ·: ...... ,~ , ... , .......... " ....... ·-~--". .. . .. . .. 

;· ~~#Jxo'(ri. 1)'+,~~-~(~~>:+·u~a>aqC+o>. 
llm·a;}t) ~·-ilra.~(~(~.~;)~ ~~ 't)~~(,g, 0, 0;~ 
1-f~!..~ ·. ,,.i ' (19) 

Hence it follows that in zone III solution (17) has a singularity of the type 
--. . ... ·· Jl ... .... , ..... .. .. ----· - .•. --~--- -- .......... "'"?'" ., 

i u(x, t)-=g(7}+0(t), g'-= IP~(a,O,O)• (20) • 
I • . . • 

··- ··- . . . -.-:t~ 

A ~:dn,guJ.ari ty of this kind is called a centered rarefaction wave in gas dynamics. 

Thus, when inequality (6) is satisfied there ~xists a continuous solution 
~>!hich is given by formnlas (9) anti (16). 

2) Now let us consider a second case, when u (-o) > u (+0), i.e., 
. 0 0 

: ~~'~1:::.~~-o>.·;>·~nu~c-ro>.· o. 0) •. ·. . . (2.t> ·: 

In this case inequality (8) is changed into its converse and zones I and II 

overlap each other (Figure 4.21). The intersection of zones I and II is denoted 

aa zone III (Figure 4.21). In this case formula (9) defines the function u(x, t) 
twice in zone III: one function, which we denote by u·(x, t) is determined rela• 

tive to the values x < 0, and the other, u +(x, t) -- relative to the values 
0 

x )' 0. The solution u(x, t) in this case is discontinuous. We will assume. __ 
0 

that the discontinuity line OD (Figure 4.22) is drawn through the point ~(0, O) 

in z0ne III and that the equation of this discontinuity line will ~ assumed 

to be written in the form x • x(t), x(O) • o, to the left of the discontinuity 
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line OD u(x, t) • u-(x, t)J to the right or OD u(x, t) ~ u•(x, t). 

··' ' 

-"'---~---a~_'rl:·· .... ~>_ ... ,.::: .... >-':..,·.--.--!1~-........,-: _ .. :~.--"~~1!!""!'·-·~-
. · ... i.t~ : ~ ..• ·· .·· •·· . .l,._ ....... ~ _ _J....:;,;.\ _ _;,_~ .~· .. : . • ··-' .. ; ... - ,., __ ......,_ .•• 

Figl\re 4.21 Figure 4.22 

Hugoniot's conditions (Section I) must in this case be satisfied at the 

dis0ontinuity line x • x(t), and the conditions are written in the form 

i-d;{t>. ;_ .. n;~, ;;(".+(;. t> .. ~~· ,; ::-.<~;<:;:·nrk: :;,.-r·: ;~·('·;~·-~·f:· _e:)t~i)~: 
i dt . - -- " .. o+(x, t)~"-(k,·t}::: _<'f;~· r ~:"".'~ x.,; •, : f ·j 
i ._______._:. ---·· .• · .:·.:..~~:\.-·~-·· _-.-·:~~:....bL.:L.l.C·.!·:. -~ .~;h·~·f.l. 

Under the exi.stence theorems established in Chapter One, the functions u·(x, t) 

and u+(x, t), for sufficiently small t , have bounded first derivatives. There­
. 0 

fo-::_•,-z the function A(x~ t) appe~ring in equation (22) has a bounded first deri-

-rative. 

Let ua consiQqr any point :7 on the line OB. Suppose we let D~ denote 

the slope of the line OB to the axis t • 0 at the point :l• i.e., 

j'D~ ~ · ii~<h'j. -~ :-j 
r . . . .. . . ,_,,. .. 

I • .! • • • .• -I 

Let a single characteristic x • X(t, x , u (x
0

)) corresponding to the 
. 0 0 

value x < 0 be drawn through the point -::J. Hence we OOJ!Q.lude that 
0 

. (p~(u;; (¥1~~,,).~~·;;., ··l;.j":;;,;.')(~"(i;, x;·;. ao(x;))->~-:-~ ---~- --- ·. ~·7 ... ~ ... 
>cp; ("+(x,. t,):·x,, t;,.), ... D,-..Jxat~o. o, a11 C+O>)· (28)': - .. '- ... ' . . . ~ 

• l . . • • -

Figure 4.23 is a graph of the function c(>• tp(u, x-r;r, t,-), considering that 

?"uu > 0. 'IJle conclude from cond~tion (23) that u .. (xg, t~ ) > u•(x:J»' t!1). 
Obviously the quantity A(x~, t~) is the slope ot the chord joining the pointe 

{ u +<x~, t:J), ~.~~~J~{·~~:/~).· -~~·.!,)f.· ("~.(x,:~;~r!~:~~e_~,~~~!f.ll. 
Ae is clear from Figure 4.23, a consequence or inequalities (23) ia the inequali~ 

l_A (xl'.'. t4>) > ~~~(u+'(.t~, t,); x~; ··t~j·:,;;.-iJ,_. ·. ·.,' . 
• ., ·~ ...... o~.o ..... 

~ ~·-.... , 
(24) 1 

. l 
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Thus, on the line OB A{x~, t~ ) > D:;r i.e., the velocity ot the 
integral curves of differential equation (22) on the line OB is greater thAn 

the velocity of the line OB. Put briefly, the field of direutiona on the line 

OB has the shape shown in Figure 4.22 for equation {22). We si~ilarly conclude· 

that the field of directions at the line OA is also of the form shovn in 

Figure 4.22. Since in zone III, as we have already stated above, A(x, t) is 

continuously differentiQble relatiV9 to its variables, therefore there exists 

e unique integral curve on of ordinary differential equation {22) lying entirely 
within the zone III. 

;. ,. 
I·. 
f. ·,. 

•' . 

- 1.·:· ' ... 

Figu:re 4.23 

A.f.i,;er the finding the line on, let us determine the solution in the zone 
I, II, and. III~ 

u(x, t) - { u-(x, t) to the left of the line on. (25) 
u+(x, t) to the right of the line on. 

Solution (25) is continuous everywhere except the line on antrhas a bounded 

first derivative. On the line OD u(x - O, t) u(x + 0, t), 

i.e., thia solution satisfies the stability condition. Hugoniot's condition is 

satisfied at the d1scontinuity line on as a consequence of equation {22)Jthere-. 
fore formula (25) define~ the stable generalized solution of Cauchy's problem 
(1), (2). 

Thus, for the case when the initial function has an isolated firat-order 

d:f.ac~ontimli ty, we conatruot a generalized solution of Cauchy's problem by the 

a~ovc d<1acribed technique in some neighborhood of the discontinuity point. It 

the :trd.tial funcUon han several d:i.aoontinuity points, then by decomposing the 

:i.n:'.tif!.l ncgment into part.a, ·we reduce the problem to the case under present stud.v. 
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Finally, let us note ;yet another fact. .The value t
0 

.b:r which ve delimit 

f:rcm above ·.;he domain of definition is bounded from above b;y the tact that the 
- + solutions u (x, t) and u (x, t) in zones I and II must have bounded tiret deri-

vatives. 

However, as we have seen in Chapter One, derivatives of a solution of 

quaailinear equati0ns do not remain bounded and oan grow in absolute value up 

to infinity. The essential thing is that moat representative oase in the beha­

vior of solutions of quasilinear equations is that in which derivatives of the 

solution at any point become infinite, but the equation itself remains continuous • 

... .. -

Figure 4.24 

Thus, to have the possibility of successively, step by step, employing the 

above described method of explicit-isolation of singularities, we must further 

consider the case when the initial function u (x) has an unbounded derivative at 
0 

the pnlnt x • O, but itself remains continuous (Figure 4.24). Here it is suffi-

cient to consider only the case when in the neighborhood of the point x • 0 

.· .. 't)~J'> :< o. (26) 
:_., .. AI\.' ••·•• • 

since the derivative p .. :Ju/~ x satisfies the equation * +cp~(~·:·~:.~-*·~ -_·;:~·~+ [/. -cp:xi.~+,~ (27) 
. . . ~ ::·~1.l·ti~: :.'.t:r:-..... • . - ..... . 

and remains bounded from above s p(x, t) < A( ~"uu > 0) if the derivative of 
tho function u (x) ie bounded. 

0 

And thus~ wo noaume that when 1 x { ~· a oondi tion (26) and 

;; ~(J(..) --;sx:- --...-co aa x -+ 0. (28) 
are ~~tiofiod. In thio caae we limit ourselves only to remark&, ainoe the 
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construction of tho solution in fundamental ~eaturea ia nimilar to that given 

for t.he oaee (21). The main distinction ot this ca8e trom the preceding ia that 

the Cauchy's problem for equation (1) considered separately tor the segments 
[-a. 0] and [o, a)hae a solution with an unbounded derivative tor AnT t

0
;>o. 

~erefore we must now teke aa the line OA (Figure 4.22) the envelope ot a family 

of dwraoteristioa x ,.. X( t, x , u (x )}, x < 0, i.e., oharscteristica departing 
0 0 0 0 

-to tho left from point 0; and the line OB must be taken &8 an envelope ot charac-
tcri3tice of th~ family x • X( t, x , u (x ) ) x > 0. 

0 0 0 0 

In this case lines OA and OB are tangent to each other at t • Of the 

solut:i.ono u-(x, t) and u+(x, t) have unbounded derivatives, reepectively, at Lhe 

linea OA and. OB; for the rest, the pattern is wholly similar with that considered 

above. Thus, the field of directions for differential equation (22) is or the 

form shown in Fi~1re 4.22, and the uniqueness of the discontinuity line OD when 

derivatives of the ~1nction A are unbounded follows from the tangency·of the 
line OA and OB at t • 0. 

Thus, by using the method of explicitly integrating Hugoniot's condition, 

we can def:l.n.e the solution u(x, t) of Cauchy's problem (1), (2) in any domain of 

interest to us in which the number of'~discontinui ty lines re.main bounded, which 
ia mont often the case in practical problems. 

Let us further note that f'o~ the case when f(u, x, t) := 0, after deriving 

the potential of the guneralized solution q>(x, t), we can writea 

u- (x f) • t)c)- (x, t) 
. • = clc • 

( • • 1""1) t) (Jf1)-~X' t) 
q>u ~:'<· .. x, ~- .. ' 

Hhere q-(x, t) and ~+(x, t). are uniquely defined in the domain AOB from the 

l',,'::r.ip aqu[ltiono." Therefore Hugoniot's condition takes on the form 

i':r.cm '··rhencP. it fol1owo that the discontinuity lino OD x • x( t) is a line vhere 

~ +(x, t) • p -(x, t). (31) 
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I i 

., 
Sqnaiity (31) «bow« that for the case of piecewise-saootb solutions u(x, t) the 

method of the explicit isolation of discontinuity lirses is equivalent for homo- 

sham-cam laws of ccn**~vatica to the analytic wtbod of finding the solution 

pretested in Subsection 3» 

-Uaucfcy's problem (l),  (2) can in scae sense be reduced to the problem for 

the honogeaeoas law of conservation by using the method of successive approxi- 

imtioBs.    let us set u Cz^t) ^-t^CXJi    Taiciig as known^"{±,  t), let us define 

£*(z, t) aa the solution of Osuchy'3 problem 

I. 
« 
S(*. O}**:«,^ 

«*-» Introducing the function JTj£>,*|/<> <|, ^-j, 04. 

(32) 

(33) 

(34) 

Write equation (32) as. 

(35) 

?be theory of constructing discontinuous solutions developed in subsection 3 

is applicable for equation (35)> however we oust allow for several details. 

Tbß  characteristics system for equation (35) i8 written in the form 

-g^¥,W. A". A -*£- = -«,(*/. A", *)+/( 0 (^, 0. A. 0. (36) 

here the function f(Sa '(x, t), x, t) is a discontinuous function of the vari- 

ables x, t. We impose the continuity condition for the variables X'and^fr at 

the discontinuity points f. 

As above, the solution of problem (35) with initial condition (33) is 

given by tho fcrnula 

8>(x. 0 = mtn<fc(f. xj. (37) 
>^  -      .        ♦   . 
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where )£;'  (t, x ) is defined by the quadrature 

;«(/. *0)=a>0(i0>+ J [(/<(&. >.'t)-f(i/. *. TH-WT)]«T <ss) 
Li.: ..-.'.. ° ;_  ■      -.. -   - -< 

(in formula (38) W - Ü ft, X0, u-^c/C,,)). 

The sequence ^' (x, t) converges uniformly in any bounded domain of vari- 

able x, t. Ve will not present the proof here, instead we refer the reader to 

the work [28]. 

5. Uniqueness of the generalized solution under the condition <pu     > 0. 

We will now see that the generalized solution of the Cauchy's problem 

«(*. 0) = o0(x). 

0) 
(2) 

satisfying the stability condition  u(x - 0, t)^ u(x + 0, t),    (3) 

is unique. 

We prove this theorem for the class of piecewise-continuous and piecewise- 

differentiable solutions. 

Let us assume that there exist two bounded piecewise-continuous and piece- 

wise-differentiable solutions of the problem (1), (2) u(x, t) and u(x, t) where 

t > 0*), each of which satisfies equation (1) everywhere outside the disconti- 

nuity lines, and satisfies the stability condition (2) at the discontinuity lines. 

Suppose # (x, t) and $> (x, t) are potentials corresponding to these two 

solutions. These functions are continuous and satisfy the equation 

.?*»(£•*«)-/'(▼■«■«)*       «> 

everywhere except at the discontinuity lines of the solutions u and u, and when 

t - 0 they satisfy the initial condition 

■<D(*. 0) = a>o(je)=J «o(l)<*t- (5) 

*) We are considering solution which can also have singularities of these 

type» g( 
t'X.6 ,  t) and which are not continuous at t - 0, 
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!S* differ««» T . /? - $>  satisfies everywhere, except'foar the discontinuity 

-ine* u sad a, the equation 

*+*<«. ^J*«.*^* 
:..>j 

Ä_ f **g:ft
g(s, on-f B(x. o«(x, o—$<ß. Q*(P. o+. 

+£«(*i(0. Dl»(xjW4-0. /)-ß(x4(/)-0. $.     <5> 
I - 

?be atanaatico in (6) is carried out over all discontinuity lines x - x (t) of 

solutions u(x, t) and u(x, t) such that 0 < x.(t) <  x, and 

A{X.t): 

*(*./)= 

^~zz -:ise 

»*«ix.i>. x. rj — v v»ix.r>. x, rj 
when   u / u, 

(7) 
^(.(x. ix x. /> vhen   u « u. 

/ (■ (x. /% x, 1) - / {• tx *>. x, 0 
>(x.r)->(x.f) 

when   Sjls, 
(8) 

/;c«(x. o. x./) when   u « u 

T(X, 0) s 0. (9) 

|s(x,01<^r 
lfl<a.x,f)|<ilL 

i4ayM<4^     | 
(10) 

l«t ua prove that far an arbitrary a > 0 in the trapeziua 

the function T(X, t) =0. 
(11) 

Under these assuapticos aade above u and ä airf the requireaents in sub- 

section (4) iB5>csed en functions f» and f,  the function B(x, t) has obviously 

a bounded variation -relative to the variable x, and the noaber of discontinuity 

lines x « xi(t) of the functions u and u" (they in fact are the discontinuity 

lines of the quantities l(x,  t) and B(x,  t)) is finite in the trspeziun (11) 

usier consideration,    therefore the right side cf equation (6) is estimated by 

the quantiv !^T(t), where Y(t). - sax jv(£, r) j , (12) 

and the mxiaa* in feraila (12) is taken over the intersection of trap^.ziuD (11) 
with the strip 0^. z. ^ t. 

tier. 
-od thus,  in the trapezia (11) the function v(x,  t) satisfies the cond'- 
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- ■ -.^«^»s—g»-swgj J.MWB ayjirwaiT 

|£-M(x.o£|<*tV(0. (13) 

and at t ■ 0 — the condition (9). 

Let us consider the ordinary differencial equation dx/dt » A(x, t), (14) 

in which the right side is discontinuous at the limes x « x (t). We will call 

the continuous curve x « x(t) which satisfies equation (14) at a!.l continuity 

points of A(x, t) the integral curve of equation (14). 

Let us assaoe that tb*> integral curve of equation ^14) intersecting the 

axis t = 0 at the base of the trapezium -a < x < a passes through each point 

of the trapezium (11), then by integrating inequality (13) along the integral 

curve passing through the point (x, t), "e get — using condition (9) — 

\v{x,f)\<fMiV(x)<h. (15) 
e 

Hence it follows that 
1 

V(f)<MJV(x)dx (16) 

I •    -  ^ 
and, based on lemma 1 from subsection 5 of Section VI of Chapter One, it also 

follows that v(x, t)  0. (17) 

Since u - u ~ ^SJ^t ^J-   , then from (17) follows the proof of the theorem we 

formulated. 

And thus, the proof of the theorem reduces to proving the following fact: 

The integral of curve of equation (14) intersecting the axis t ■ 0 

passes through any point(x, t) of the trapezium (11). 

Let us prove that if u and u satisfy the stability condition (3), then 

this actually is so. To do this, let us note that the integral curve of equa- 

tion (14) defined at t ^ x. passes through the point (J|, "C ) if it is a conti- 

nuity point of A(x, t). If this integral curve at t <: c does not intersect 

the discontinuity line x • x.(t), then it intersects the axis t = 0 at segment 

-8 ~ x <.  £ since |A(x, t)|^M.. 

- 540 - 

lBiMTTll'-'ii"~- ■"-^--^-^a trnmrn - iirii r 11N iii H 'iiiirirärriinwaiiffi^'-'-^''^^'*1^^----"'-'' ^^^^^^^-^ ^.^^,^..^.q^^ 



t 

r 
\            J#«^Ä 

sf SV° Wy 

Figure 4.25 

Therefore, if the integral curve of equation (14) defined at t < r passes 

through any point (2f , < ) lying on the discontinuity line x - x.(t), then 

through any point of the trapezium (11) passes the internal -nrve intersecting 

the axis t ■ 0. 

Let us consider the case when the point (2*,t) lies on the discontinuity 

line of function A(x, t) x = x.(t) (Figure 4.25). Under our assumptions, the 

left and right limit values of A( § - 0, x.)  and A(£ + 0, c) exist at the point 

(l,tr).  If        A(§ - 0, -c) >A(%  +0,c), (18) 

then there must necessarily pass through the point (£, t) the integral curve 

of equation (14) defined at t < t . 

Actually, if we denote D. = x!(t), then in this case one of the two in- 

equalities is met J   a) A(g - 0, « ) > D.,   b) A( %, + 0, C ) < D..  (19) 

Figure 4»25 gives the directions of the integral curves of equation (14) in the 

cases a) and b). As we can see from Figure 4*25» in each of these cases an 

integral curve defined at t < X    passes through the point (5, t). 

So the proof of the theorem has now been reduced to establishing inequa- 

lity (18). Since (^,-c) is a discontinuity point of A(x, t), then either 

u(x, t) or u(x, t) is discontinuous at this point, or else they are ai_ ontinuous 

simultaneously. Therefore we will assume that 

«ft — 0. T)>a(| + 0. t), Hß-r-0. t)>a(|-f 0. t). 



Let us give the graph of the function ^(u, g,~c) for fixed  ^ and x in Figure 

4.26.    Since    <pu       *>   0.   this curve is convex downward. 
T   vai 

According to formdas (7) toe quantity k{% - 0, t } ii equal to the 

slope of the chord joining the points A   and B , and *(l; + 0, T) is equal to 

the slope of the chord B A .    Proa condition (20),  it does follow that each 

endpoint of the interval [u(£- 0, t), n(|  - 0,t)] lies to the right of the 

corresponding endpoints of the interval [u(^  -#- G, r), u(^ ♦ 0t t)].    For the 

convex curves (<*"     T 0) it therefore follows that the slope of the chord A B VT uu        ' 
is greater than that of the chord AB.    Äia saae relation in fact follows 

fioa Figure  .'.26. 

So condition (18) is satisfied     at each discontinuity point fro« the 

function A(x,  t).    üis aeans that at least one integral curve cf equation (14) 

intersecting the axis t - 0 passes through each point of the trapeziua (11). 

This aeans also that condition (18) holds in this trapezins along with u(x,  t) 

S  n(x,  t). 

Let us consider the problem of the continuous dependence of generalized 

solutions on input data. 

Suppose u(x,  t) and u(x,   t) are pieeewise-SBooth stable generalized 

solutions of quasilinear equations defined by the conditions 

* > 

du a* to x, t) _ 
dt dx 

Öf (Ö, x, t) _ 
dt dx 

/(«. x. 0.    *{x, 0) = aQ(x),   q£, > 0.   (21) 

flü.x.r,.    Ü(X.Q) = B0(X).   f^>0.   (22) 

We will assume that the functions  <P,   <p , f, f, u , u 

which were imposed on them in subsection 3 and 4« 

I PC«. £ r; 

satisfy the requirements 

mt+w u(z.l-0) a 

Figure 4.26 
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I f CoTxtspcodiag to solutions a and u are the potentials <£ and ^   SÄtis- 

tying the equations 

cod tae initial ©aoditioa» 

(23) 

•-4. 

(2» 

5he differ«*» T ■ (p -   ^   satisfies tae eqaat 131 

X . 

and initial condition i 
■—< X 

v{x. 0)=w8(*) = <l>e(x)-$0(x)= J f«,(ö -/e(Dl rffr   (27)^ 

and the quantity A and 3 are defined by fonnulas (7) and (8). 

Suppose the conditions juj ^ M , J u j .<- M   are satisfied in trape- 

ziun (11} and suppose that when |u|^. K 

|<P«(*. *.*)\<MV    |9(a. x, 0-i(«. x. 0I<A<P. 

|/(«, x. 0-7(a. x. 0i<A/. 

üben from equation (26) follows the estimate 

|£+*(*.o&|</*«.*£« 
0 
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S:imilarly, we find the new estimatea 

I r¥+ . .4-c~:· t)~~.,.,~MV.(t)+&p+~AJ, 
l ~ .. ~··-·· :. ,• - ··-·. ··-·- ~· 

.. 
(28) .. 

.. ·-•: • I 

whero the constant M depends, in particular, on .he number of discontinuity 
lines of the solutions u and u. 

We assume that each of the solutions u and u satisfies. the stabili~ 

condition, i.e., '~x·-·o .. t)";:..,u·(x ,_:o, t);· · u(x-0, t)>i<~+·O. t).;.;~ 
. ' 

-· ----··· .... 

Just as earlier, from this it follows that the inP1uality A(x, t) is satj.sfied 

at the discontinuity points of th_e_ function A(:IC 0, t)_~ A(x + 0, t). 

Therefore, at least one integral curve of·equatio. (14) intersecting the axis 

t • 0 passes through each point of the t£apezium 11). B,y integrating inequa­

lity (28) along this curve nnd applying lemma (1) from subsection 5 of section 
VI of Chapter One, we gel; 

I,' 

-where 

Using the fact that 

We conclude that inequality (29) establishes the continuous dependence of 

generalized solutions of quasilinear equations on the input data of Cauchy's 
problem in the potential metric. 

Unfortunately, however, the constant M dependent on,the number of disoon--tinuity linea of solutions u and u appears in estimate (29). Here we note 

that this quantity can be estimated by variation of the funotiomu(x, t) and 

u(xt t), and the latter are estimated from initial conditions. 
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For homogeneous laws of conservation when ~ • t :i O, estimate {29) 

becomes simplified a I v(x, t) I~ v 
0 

+ tl cpt. In: particular, if we consi-

der o11ly the dependence of the solutions of Cauchy's problem ot one quasilinea 

"'('l_U~tion nn the initial data, i.e., if we assume that At:fJ• 0, this estimate 

sho1m that the solutions constructed above satisfY the principle ot the conti• 

nuc~H~ dependen~r' of (1.5.4) and (1.5.5) from Chapter One. 

OnP !'.athod of cr :-,;:·..acting discontinuous solutions, which we call the 

"method of potential smootlJJ.ng" ,41;, related. to the problem of the contirmous 

dependence of generalized so1utions on initial data. For simplicity, let us 

consider the homogeneous law of conservation 

(30) 

(31) 

is formulated. We will assume that the function rp satisfies the preceding re- . 
quirements, and that u (x) is assigned or. the segment 1 xl ~ a, has a single 

0 

first-order discontinuity point x • O, and at all the remaining points of the 

segm-:>nt has a bounded L:lpschitz constant. Let us denote u- • u (-o) and u+ • 
- + 0 

u
0

(+0). As we have seen above, if u ~ u , the solution of problems (30}, 

(31) is continuous when t ~ 0 in some n~ighborhood 0~ t ~ T of the initial 

axis. In particular, it can be obtained ns ~ ~h 1.imi t of the classical solutions 

u :6 (x, t) as $ _,... o, where ud (x, t) is the aoluliion of equation c~o) with 

the initial condition u~ (x, 0) • u~ (x) (32) 

her<.: u; (x) :::;: u 
0 

(x) as 1 x l ~ ~ and u 
0 

(x) is monotonic as \xI ~ ~ • 

Figure 4.27 

- + Therefore we have considered only the second case, when u ~ u • In 

th:ltl case the aolution u(x, t) for sufficiently small T has in the strip 

0 ~ t ~ T a single discontinuitY- line 09!, iaau'ing. from the point (0, 0) 

of tho initial axis (Figure 4.27). Figure 4.27 shows the discontinuity line 
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0~ and the characteristics of the solution u(x, t). We. will solve, instead 

of the problem (30), (31), the problem (30), (32), assuming that u~ {x}.=u.,t%..) 

when 1~1 (}¢, that the function u~ (x) is monoton:i.c when lxJ ~ ,s , and that it 

has a L.ipschi tz constant on the segment 1 xl ~ .$ not exceeding the quantity M/ 5 , 
and finally, that 

I , . , .... ·''""'t--·• • '"'.A, ..... ••••• 

1 ...... 6 . : ·. . .· J 

1 

·.J [u0(x)-~~x)]d:-~,~ J. 
.~..,..~-·-·-· -l·-··· 

let us introduce the potentials of the solutions u and u & by using the rela.- __ . 

tione 

.. ~~·~ .... (.z,·,.~·-...:...-a··#• .. :·-.._-~-h·-. 

1 cp(x. t)=- J udx..:;.;.q>(a. x_. t)dx. 

·<-•· 0) 
(.r, t) .. 

\.~6 (x. ()= J u6 dx·-q>(u6~ x.1)dt. · 
(-c,O) . "' . 

Then from relation (33) it follows that <f(x, o)::: <:Pix, O)when \xI ~.s (34) 
1tfith these limitations made on the function u~(x), there exis~s the function 

u5 (x, t) in the broad sense of problem (30), (32), which is continuous and 

which can be constructed by the classical method of characteristics when O~t~ 

tf , where -tf ...-v 1/J • let x • ~-cS and x • ~S denote the equations of the 

charscterietics of this problem departing from, respectively, from the points 

x "" - S and x • S of the initial axis (Figure 4. 28). Obviously, in view of 

condition (34) u(x, t) ~us (x, t), 4> (x, t) ::::= tf>s(x, t) 

•.. ,, .•. ~ .... ..,• •r .. •·t" ............. _. "'·• ••·•··-··•··• ··• • 

when :[x.:-:_~~~6 _(!~].[~.--=:x.1<t)l_~o. o~_t,-~tf;J i.e., u{x, t), (x, t) 
coincides, respectively, with u~ (x, t), <P ~ (x, t) outside the curvilinear 

trapezium formed by the straight lines t • O, t • tf and by the segments of 

the characteristics x • X~ .S and x • ~ S. 

Figure 4.28 
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Suppose that at t • t 1S solution ucS(x, t) hao a. singularity (the un• 

boundedness of the J;lpsdti tz constant or a first-order diaoontinui ty') at the 

segment [x~cS (t.1~ ), X,.S (t{ )) of the s·traight line t • tl'• Obviously, 

xt <t.i...:. X'i6.<t.> < 2~. · · --
Let us select a segment of the .. strafgbt'"i{;;-t • tf with lerfgth 2cS within 

which the segment [x;~ a,s J, xf ( t~)) lies completely and again smooth the func­

tion u ~ (x, t 1!J ) on the segment, i.e., introduce the function u ~ {x, t{») which. 

satisfies the same requirements as u& (x)~ namelya u~ {x, tl) .=. u& (x, t 1.,g) 
outside the smoothing segment, j~'[u~ (x, t{') • u~ (x, t,J)]dx • O, where -a., 
[a1 , b1 ] is the smoothing segment. We require as before that the function 

u1 (x, tl) have a Lip3chitz constant bounded b~ the quantity M/6 and that it 

be monotonic on the smoothing segment (a1 , b1 ]. We will seek the solution 

u 2; (x, t) when tl ~ t ~ tf, asB1.lming that u (x, t) satisfy equation {30) 

and the initial condition u~(x, t 1 ~) • u ~ (x, t{' ). To construct u.,s(x, t) 

in ths strip tl) ~ t ~ t~ , let us again employ the classical method of 

characteristics. We SL~in discove~ that outside the trapezium formed by the 

straight lines t M tf and t • t 2S and by the segments of characteristic x • 

x; (t) and x ... x:2 (t) issuing from the endpoints ')f the smo~thing segment, 

the solution u(x, t) and u_s(x, t) and the potentials <P (x, t) and c:j>~(x, t) 

coincide. 

Continuing this process we can successively by smoothing and solving 

Cauchy's problems by the classical method of characteristics arrive at the 

3traight line t .. T, i.e., delimit the domain of interest to us. Here we will 

have to solve Cauchy's problem with smooth initial conditions of the T/& order. 

As a T.e~ult of this process we get the solution u~(x, t), which is conti­

nuous everywhere except for the smoothing segments on the linea t. tkS. Seg­
ments of the characteristics issuing from tho endpoints-or the smoothing seg­

ments form a "belt" within lie singularities and discontinuities of the function 

u,. (xr t). \Vhen the value of cS is decreased, this "belt" will be drawn toward 
i!J 

at the discontinuity line o<.:e. 
Since the potentials p(x, t) and 4>.s(x, t) coincide outside the "belt", 

and the aolution u(x, t) :rnd u (x, t) are assumed to be bounded, then 

lcf(x, t) -<i'~(x, t) I ..C::.. 2MS' 
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From this follows the convergence of the "potential smoothing method" 

aa $ ......, 0 in the potential metric. It is ~r clear that outside the "belt"_ .... 
the solutions u(x, t) and u (x, t) coincide. 

The method outlinEd permits an approximate construction of discontinuous 

solutions of quasilinear equations by approximating them with continuous solu­

tions. However, of greater interest is the application of this method to the 

case of a system of quasilinear equations. Unfortunately, thus far no results 
have yet been achieved in this area. 

6. Asymptotic behavior of generalized solution as t -..C!'O. Suppose 

u (x, t) :in a generalized solution of the homogeneous law of conservation 

c>u ·+- aq, (a) ~-0· (jf -ox-. . 
. . .. · ~· .. ' . 

cp:U (u) > 0,' :! ( 1) 

whose coefficients do not depend on the independent variables x, t. Further 
assume that u when x < O, 

u(x, 0) .. u0 (x) • {u+ (2) 
when x > b > 0. 

~nd suppose that u0 (x) takes on arbitrary bounded values in the interval 

(0, b). \ve will assume the function u (x) to be piecewise-continuous. Thus, 

I...e t us denote 

and 

0 

I u 0 (X) I ~ M ' t u (X' t) ' ~ M. ( 3) 

Jt 

J u0 (~) dt = $ 0 (x). 
0 

(4) 

(5) 

\ve will bring the potential 

. <l'>(x; I)~· r ud>i-;p(u)dl, ~( ... 0)~~~~;~ 
. (0,0) 

(6) 

u·, <.:orresponde:nce with the solution u(x, t). By conditions (2) and (3) we havea -
c."f< (x) ... u x when x ~ 0, } l- 0 

(.p (x) ... p (b)+ (x- b)u+ when x~b (7) 
0 0 

lcf (x) l=f Hx. 
u 

... 548 -



We are studying the behavior or the solution u(x, t) as t ~oo~ 

If' the initial data (1) were .sip · onl7 when x< 0 (u
0
(x) au·), then 

obviously the solution of cauchy's problem (1 ), (2) could be defined onl7 vbe:re 

x < t:p 'u (u -)t and would coincide then identioall.1' with u -. Let us estimate 

the width of. the domain to the lett of the straight line x ·~u(u-)t to which 

the solution u(x, t) of problem (1), (2) does not coincide with u·, i.e., 
u(x~ t) ~ u-; here u(x, t) ~ u- by virtue or the characteristics departing tram 
the segment [o, b]. obviously, the lower charaoteristio x • X( t, x

0
, u

0 
c i;) ) 

'~hen o ~ ~0 :::=; b cannot lie to the lett of straight line x • - ~ t in view ot 
the boundedness of the :tni tial function u

0 
(x)J however, this estimate ot the 

domai!1 of influence of the segment [o, b] is to course. Suppose u(x, t) /-

u-, x - p 1 u ( u-) t < 0 ar1d that the characteristic issuing from the point '2'• 
of tht:J segment 0 ~ x ~ b arrive at the point (x, t) -and suppose that 

""" 0 
u(x, t) ~ u11 (X:cJ(Fig-~~~ .. -~·fJ):y ~~r ~~~~~~ •. ~e denote 

~~o(~o)~~~k;t q,-~~.9-~c:~ .. .. :!~;:.~ 
We have the equali tie~~·~"-'l.l···'o -~~t.·u;_tm .. r•·- '.•I '·· ~ > ... -d· 

;-:·:~~~Ii~;;~[)!'fl!~~···t~ 
1 n. v;, ~ ., . . , . . • ~ 
iJ • •. ~r./. •. '• :.,):.,;..,:... .. I,J..,, '·', •~ 

(8) 

or .t''""~~'[.~ (~~):::~'-ta)r..:..~ .. 
1 ·~---~¥···: .. : .............. '!_,.....,..., ... h .. ,....!tt~ .. ~· :.~-1 

(9) 

- """' Let us compute$ (t, x" ) by formula (2.3.46)r 
oc-:~ ..... ,.._...,.-~.,_.,..-:~·--···~· ·~.~·· J. ''I ·~•·- ·•.:•:• 

(tr>_(I~·~~·~-<B~(x0)~t~[~~(~)-=-'~u~]~ .J (10) 

using formula (9) let us cancel out the quantity tup'u(u) from (10)a 

·~- 'UcP: tu>.~:~ <~~,~\~:i."J.-;'br:·~~:~--~ .. ·:.11- · · '". <11> 

\ ~(~~- ~~)~~?(i0).~:~;o·~,~~ft[~~~~-·)7,q?(,i)J. u'~)" 
On the other hand, the characteristic x • X(t, x-, ui) at the value 

0 
x~ < 0 (Figure 4.29) arrive at the same point (x, t)(x - ~'u(u-)t ~ o). 
This characteristic transmtes to the point (x, t) the value u • u· and the value 

,)f the potential 7f ( t, x-). 
0 

'*')Fc;'r. the case when x is a disnontinui ty point or the initial fUnction 
0 

u
0

(x):. wo rmwi; take u 
che pn.ra.mete:;~ d.~. 

to stand for u~ (x
0

) given· tho corresponding value of 
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'l'hua, x - x~ • .p' u (u -)t, or 
and by formula (2.3.46) 

.. 
X • •he 

0 

According to formulas (2.3.57) and (2.3.58), in order that u{x, t) • u0(~ ). 

• u ~ u-, it is necessary thRt the inequality 

~(t, x
0

) ~ ¥ (t, x~) or $(t- x
0

) -~(t, x~)~ o. (1,) 
is satisfied. Subtracting formula (14) from formula (12), we sat 

'tlS(t. x~)-·~(t. x;)·~.[~~~:f.:..i;or+·~~:.~•>+ .. : .. ··r-···; 
· .. · +t [<~>~(a-)(U'-,-~+cp<a-)-cp(~>l: ·~ (16) 

. .... .... •, -··· 

Now let us estimate the last term in formula (16). Using the fact that 
'U ~ u- and cp" (u) ;;:>- 0, we get by the Taylor formula uu 

...... - ···--···· ___ ... ~ .... ~ .... >. ··~ 

:1 cp (a-> -·~ci> ~ cp~ <., .. > <,. .. :....:,U'> +.;.<a .. - 'U)': 
~ e , , ' h o ... I·--

Inserting this expression into (16), we obtain 

·. I 
I 

-· ...... . . ' . ~ 

(17) 

.. ~ (~·- x0)-cfi (t. ~~) > [cD~. (x~)-~x0] + !'.<~:_· .. ~!..3!f <•:-.:-u)l.: ( 18) 

From formula (9), since u-> u, we can readily obtain 
A;f (u -) - ?'' (u) • It.,.~ and (u- - u) ~ h-1< ~~ (19) 
T ll u t :;;;.-" At 

The last ine~uality lets us rewrite ·(18) as 

(20) 

And thus, for inequality (15) to be satisfied it is necessary that 

Ot' 

'\ ,. 
(22) 
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Inequality (22) delimits the doaain of -variables z, t lying in the half- 

plane t^O to the left of she straight line x »<p*  (u )t, since 

fa - <p'   (u )t - x. 

*e cax assuae that the point (x, t) belongs to the domain of influence of the 

segaent [o, b] if at least one value x~ ,3 ^ iT ^ b) exists for which at 

given x, t inequality (22) is valid. Since {"u j <.  K, {<£  (x )( ^ Mi , then 

by strengthening *) inequality (22), we write« 

2J&JU l'iMat <iÄL K2AMt  <»> 

and h < 2AMt, (24) 

x « 

Figure 4-29 Figure 4.30 

Jnequality (24) shows that at t the value of h increases linearly with 

t. Cmversely, we will clearly enlarge the domain of influence of the segment 

fo,b]if we set x   «= 0 in (22) and in the right side take the maximum for all 

x Then we write: 

<,(2£i)<MB*  or  ,.<»££< 2AMbt. (25) 

We see that for large t values h increases as  t5". Thus, the domain of influ- 

ence lies within the domain that is hatched ii. Figure 4'30: 

h ^ /ZÄMbt  - h(t). (26) 

Ve quite similarly estimate the domain of influence of the segment [o, b] to 

the right ox the straight line    x - b + <f%   (u )t.  Inequality (22) remains 

in force only if now we take h to stand for the quantity 

h - x - b -f>'u(u
+)t, (27) 

and take the right side with the opposite sign. Inequality (26) remains in 

general unchanged. 

*) That is, we clearly expand the domain of influence of the segment [0,b], 
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In the case u~> u there exists a t. >  0 such that when t ^?t1 

u(x, t 
(u 

'■{♦ V-U 

where 

where 

where 

x - c < Dt, 

x - c > Dt, 

'■jf^-fQr).-' 
u+ — a' 

(28) 

(29) 

Actually, if u~ > u+ then the straight lines x - f»' (u )t and x - b + 

f>! (u+)t lie as shewn in Figure 4,51. Since the distance between these straight 

lines increases proportional to t, and the bounds of the domains of influence 

of the segment [o, b] are separated from the straight lines by a distance of the 

order of (t) , then we find such an instant t - t.. for which the domain of in- 

fluence of *>»e gearriont [o. b] disappears (Figure 4«31)« Thct is, the curves 

hl = <f'„(fi-)t — x = Y2AMbt, 

A2 =1 — b — q>; («+) / -f x = Y^ÄMbi ' 

intersect each other. To determine the value of t.. we have the equation 

Suppose t1[^' (u~) - <?' (u+)] >  2b. Then from (30) we get 

.. 4?2AMbtl or '.< 
32 A Mb 

(30) 

(31) 

Now we clearly conclude that when t.. - T formula (28) is valid. Actually, since 

the domain of values of the variable x, t is given by the conditions 

b + <p'u(u
+)t <x<<p'u(u")t, 

lies to the left of the straight line x - <p ' (u )t and to the right of the 

etraight line x ■ <p%   (u+)t + b, in order that in this domain u(x, t) / u 

and u(x, t) / u+ is necessary that the point (x, t) belong to the domain of 

influence of the segment [o, b], which is impossible when t ^ T. 
t 

Figure 4-31 
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*c deieraäiÄ the value of c in forsula (28) let us consider a certain 

point i    on the line t - t-.    Let us detercine this point fro« the conditions 
■a 

*(rr x-) = <b{tl. x;\ (33) 

Concition (53) can i« rewritten in the fcra 

= ©,(*)+«*(*+ -*)+*, [«*<(■*)-»(■*)]■ t34) 

3y inspecting equations (32) and (34) as equations defining the values 

of i , x^, and J.., let us find the quantities x and ct 

And thus, we have established tha„ the solution u(x, t) of Cauchy's prob- 

lee (1), (2) given the condition u~>u coinc-.des when t ?  T with the solu- 

tion u°(x, t) of the problem of the decay of discontinuity 

£+*,*=.. ^.o,=(;;: :<;: (36) 

This result can be fonnulated in a diffeint fashion.    Suppose u and u 

are generalized solutions of equation (1), and suppose 

u(x, 0) s n(x,  0)        when      \ x \ ^  b. 

If, fvrther, 

, u        when        x <- -b, 
u(x, 0)=u(x, 0)      - -j    + 

*-u        when        x   ;?   b 

and u   >   u  ,  then there exists  t.. >   0 such that when t ^ t1 

u(x,   t) = u(x + c,   t), 

where 

(37) 

(38) 

(39) 

■ = L—   f [a (x, 0) — u{x. 0)] dx. 
-» 

(40) 
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The property of generalized solutions we have proven expresses the fact that in 

the case u > a generalized solutions of Cauchy's problem (1) - (7) do  not 

depend, "with an accuracy up to displacement," for sufficiently large times on 

initial values for any finite segnent of the initial axis t - 0. 

Bote that this result can be strengthened in two directions» 

1) for more general equations when <£>*<p(u, x, t) given certain assump- 

tions on <p; 

2) when requirement (38) is weakened» 

{ü(x, 0) - u(x, 0) \   —*■ 0    as   x—*- +<& 

u   as x —*■ -00. (u    a«  A —^—      *"'■'» 

+ 

u   as x -*» +00; 

here a specific order of approach to the limit is required. 

Let us study the asymptotic behavior of solution u(x, t) in the case u 

•< u . In this case, as we can easily see from Figure 4-32, the domain of 

influence of the segment [o, b] does not vanish as t —+•€&,  but rather becomes 

unbounded. In this case we can no longer assert that for sufficiently large t 

u(x, t) - u°(x, t), 

where u (x, t) is the solution of the decomposition problem. However, in this 

case as well the solution u(x, t) is close to the solution u (x, t) for suffi- 

ciently large t. Specifically, we will prove that 

|u(x, t) - u°(x, t) j =^  0   as t H»,jo,   (41) 

Suppose u is the solution of the decay problem 

t~du* 

H°(X, 0) 

dp(u°) 

f u- wnen x v. 0, 

"I «+ when * > 0. 
<«H 

(42) 

Function u is given by the formulas 
u~ when 

«°(JC. 0 

where 

fUL\        when       q>;(a-)*<*<<p;(u+)f, 

B+ when *><(a+)'. 

?;(/(!)) = !■ i.e., /(D = [<J-1(D- 
■*v- 
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Thus, to the left of the ray OA u°(x, t) = u , and to the right of the ray OC 

u°(x, t) ^u+(Figure 4.32); but in the zone AOC u° - f(x/t). As we see, 

outside the domain of influence of the segment [o, b] it also holds for u(x, t), 

i.e., when 

and when 

o^ o' 

Therefore, we need prove property (41) only in domain of influence of the segment 

[0, b] — the zone EOBD. Suppose (x, t) is any point lying within the zone 

EÖBD. Then, since not a single characteristic x ■ X(t, xn,  un(xn)) when xr 

[O, b] passes through this point, therefore 

0 <   x    < b. (48) —  o —    v ' where 

From (47) we get 
r-   •'!* ,~ffv 

[0^i^^^^*fj^i       (49) 
Comparing (49) with (44)» we conclude that 

Thus, in the zone AOC   „..^,-——r-^w' 

Since f' - \J4>*    , then from (yi) it follows that y\        1 T uu' w ' 

(52) 

Thus, property (41) in the zone AOC is proven.    Mow suppose (x,  t) is any point 

in the zone EOBD, for example,  suppose that this point lies to the right of 

the straight line x -  <f>*   (u+)t,  i.e., in the zone COBB (Figure 4«32).    Then 

at this point u    ■ u  , and u(x,  t) as before is defined from formulas  (47) 

and (48). 
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fly the definition of the domain of influence of the segment [o, b], we 

have 

■   x~^lW<b + kif}*='b+YVAßm. (53) 

Therefore'    i«(x.o-«^:oi=|/^)-«i=i/(^)-/(<(«+))i< 

-v——5—:   >   '   *      ~ 
f "«i^ia.i+i^L. (54) 

Since to the left of the ray OA inequality (54) is proven quite analogously, 

we have thus proven the property of generalized solution (41) and have estab- 

lished in so doing the order in which u(x, t) approaches u (x, t), namely: 

\u(x,f)-u<>(x.())<£ + -!7=yAMb. (55) 
' '-• •:•''  i    at      art ifj'.y.' 

"        + —   + 
Combining the result for the cases u < u and u >u , we can formulate it as 

follows. 

Suppose u(x, t) and u(x, t) are bounded generalized solutions of equation 

(1) whose initial values differ only by a finite segment of the initial axis, 

i.e., 

|«(*, 0)~a(x, Q)|==0.j    where  | xl ^ b.     (56) 

Then there exist the constants , D, and t.. such that where t ^ X. 

\u(x. <)-tt{x + c. t))<~r.'  :       (57) 

Let us emphasize that in this formulation it is not assumed that 

u(x, 0) —► u~ u. as   x —»■ - 00, + 00. 

The asymptotic properties of generalized solutions cf a single quasilinear equa- 

tion proven above are essentially associated with the nonlinearity of the equa- 

tion. Actually, solutions of linear equations differing in initial values 

differ one from the other for all values t ^-0, and this "discrepancy" generally 

speaking does not tend to zero ae t —*~ &°. 

7> Method of viscosity. In subsection 1 of this section we already con- 

sider one of the applications of the viscosity method — the generalised solu- 

tion of the problem 
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which was obtained as the limit, as /<"■*■ 0, of the solutions u^ (x, t) of 

another Cauchy'a problemt 

Here we obtained for u ..an explicit formula which enables us to make the passage 

to the limit as^—*- 0 and to study the properties of the generalized solution 

u(x, t). Naturally, it is difficult to anticipate obtaining analytic formulas 

for the solution for more involved equations. However, since we wish to 

familiarize the reader with applications of the viscosity method, we will consi- 

der several simple cases from which we can judge the potentialities of this 

method. 

We will discuss the Cauchy's problem 

A*  ' Salai      ''    "x '■'' T:'''' "** 'i'-   ■' '''"""'   •'•'<*' i' ■>£' 

v  «(*, 0) == «o(*).  | «o(*)|< A*.: t,    ' ' $| 

In addition to this problem, we will consider another: 

V*. c)=*«0(*>- $ 

We will assume that the initial function u (x) has a continuous first 
ov ' 

derivative, and that   |u'(x)| ^L   K   (-£>o<x< «so ).    (5) 

The first problem, which in any case emerges at once is the problem of the 

existence of the solution u^ and its properties. 

The study of this problem will lead us far beyond the scope of our sub- 

ject, which deals mainly with hyperbolic systems of quanilinear equations and 

with equations in gas dynamics. Therefore, referring the reader whose seeks 

a more detail exposition to special studies (cf, for example, [9, 39, 42]), 

we will assume that the following is known: 

1) a bounded solution u„(x) exists for any t > 0, and does so uniquely, 
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2) For any initial function u (x) satisfying conditions (2) and (5) 

derivatives of uA exist and reiiain bounded for all t > 0. In particular, when 

t > 0 the continuous derivatives appearing in equation (3) exist. 

3) Die solution u« and its derivative p^ - J2Ü- satisfy the maximum prin- 

ciple, which is formulated in the form of the inequalities 

: .  IsKAI. (6) 

[*-£<* __ <7> 
which are valid for any x, t ^ 0. 

Let us illustrate the principle of the maximum (6) by the following graphi- 

cal arguments. Suppose the function u>a(x, t1) considered as a function of 

variable x at straight line t » t1 has at the point x » x.. a relative maximum 

(minimum). Then the relations 

;-ar(*i- 'i)=o, -^-(x,. *,)<<). 

are satisfied at this point. According to equation (3), we conclude: 

This inequality shows that each relative maximum with respect to the variable 

x of the function u^ (x, t) does not increase with time t. However, inequality 

(6) does not yet follow, since the function u^ cannot take on its maximum 

(minimum) value at any finite point. 

A more detailed proof of the principle of the maximum considers that the 

initial function u (x) is bounded. 

As for the maximum principle for the derivative p , we direct attention 

to the fact thit inequality (7) restricts the derivative p„ only from one side, 

namely from above. This ia because the equation obtained by differentiating 

(5)! f&+»:w%=^-*w4 '<■>* 
enables us only to assert that the relative maximum p..(x, t) cannot increase 

/** 
with time t. As for the minima of p , they can also decrease. 

r~ 
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4. For all/^>0 and arbitrary x, t ^0 the inequality 

■ . : •   * 

is satisfied, where C is some positive quantity not dependent on ß. . 

Let us prove*) inequality (8). Denoting 

du» 
(9) 

we write equation (5) in the form ^u^/^t ■ 2>z/2x. 

Differentiating equation (9) relative to variable t, we find 
dt d  lduVk\ da,,     ■ 

Here inserting xlf* ^r» we 8s* at  , /, v d* d*g 

Thus, the function z satisfies the nonlinear equation of thermal conductivity. 

Therefore, from the principle of the maximum we get 
|«(x, Ö|<max|z(ji, 0)|. 

i        * ' _ 
Hence follows inequality (8) and, in particular, the more exact inequality 

' min [u -^- — <p (a0 (*)) 1 + <P (V < H 
X      *• »X ■* 17 < 

^ m« [|i -^— «P («o (*))] + <P (V- 

When requirements 1 - 4 are satisfied, we can also prove several more 

properties of the solutions u^ (x, t). Let us show, in particular, that the 

function >u £Ü£- on the average for any finite domain of variables x, t tends 

to zero as M -+• 0. 

Multiplying equality (?) by u^,, let us write the result in the form 

where 

d tul\      d d7  vl       (duA2 

(10) 

Integrate equation (10) over the rectangle 0 < t ^ t^,  x1 ^ x ^ x^t 

*)  This proof was communicated to us by a student at Moscow State 

University, V. G. Shushkov, in 1964« 
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t,    X, -4 
0 x, 0  X, 

</*. 

Let us rewrite this rilation in the form 

l r®f«~ fF^^I dx + 

0  x, 

<■ » 0«u (-«1. 0  , 

0 +F(uii(xvt))\dt. 
In visw of inequalities (6) and (8), the right side ia estimated from above» 

'. x, 

u J j (^-)2 dt dx < -J- JH* (xa - *,)+2«, 4- 2AK», = 

= ^i(*a-x1)-H2/l(F4-^).  ÖD 

where the constant P is defined in such a way that 

F ^ I P(u)|  when |u| <c M. 

Since the right side of (11) does not depend on M J hence it follows that for 

Any finite domain <-j  of the half-plane t ^ 0 

where the constant 3 depends only on the domain ^. 

Let us use the Bunyakovsky inequality 

<3tt. 

j j\uv\dtdx^-l/~j j u*dtdx j j v2dtdx .    ; 

in which we set u »  ^ —^, v   = 1.    Then we get 

»ll\d-w\dtdx< \fS^ \j(^rJ^dx<]^V^D. (12) 

where SJL.   is the area of the domain i^r.    Inequality (12) shows that 

J j^sTjf^fa dx tends to zero as _/•*-"** 0 HS (/O • 

Now let us outline the proof of the convergence in the mean as^#—*• 0 

of solutions u w(x,  t) to the colution u(x,  t) of Cauchy's problem (l),  (2). 

Let us introduce  the potential <£ (x,  t).    According to equation (}) the contour 
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does not depend on the path of integration and defines the continuous and differ- 

ertiable function whose derivatives satisfy the equalities 

f^~-Y-FC/*£77' At"".7"*""'"! 

Canceling u« from these equalities, we get 

^MM^LS-: .., <»; 
The potential <£> takes on the following initial values: 

%(*. 0)«<I>0 (*)==] «0(ii)dTl. 

In view of inequalities (6) and (8), we conclude that 

w xm* *%7j 

where \<p(a) \<.4> when | u| -£  M and the family of functions   <£>M (x,  t) is bounded 

for allyU >■ 0 at any point (x, t).    Finally, we write the obvious inequalities: 

I "ST |<;Af/ -y <C-f-9. 

Let us prove the uniform convergence in any finite section of the half- 

plane t $? 0 of the potential <&,(x, t) as U —*> 0. To do this, let us dif- 

ferentiate equation (13) relative to the variable /A . Denoting <& - <*%**  , / r      ZM 
we get 

.'.f^'f;        * I 

end according to the initial condition  «^(x, 0) = 0. 

Taking the function u^ as given, we see that the quantity <g* satisfies 

linear equation of thermal conductivity (15) and the zero initial condition. 

According to inequality (14), $M (x, t) increases not more rapidly than the 

linear function as x -— ±00, therefore <£>• satisfies the principle of the 

maximum for equation (15)» 
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Since according to (7) -r-s^. K, then S*   (x, t)j^ Kt. 

therefore for the function  tf> - <£ - 2Kt/t      the following inequality 

is satisfied:   Xa  ^ ~K.tf      such that the sequence of functions i|/ (x, t) 

decreases monotonically as ^t —^ 0, and therefore owing to its uniform bounded- 

ness from below the sequence converges uniformly relative to x, t. Therefore 

there exists the limit   <£>  (x, t) » ld^o 04*„(x» t). 

Let us clarify certain very simple properties of the function <^>(x, t). 

Since (u^if^Mand . %£  - Uy, then 
\Q{x+Hx:. Q--0(jr. /)f<Af|Ajc|. 

Similarly [. s        ■'.-..•■        - » 
|<D(*. t+6f)-Q(x, 0!<[c+<pl|A/|. 

Thus,  the potential ^> (x,  t) is a Ljpschitz-r.ontinuous function of its 

variables, which takes on the initial values 
M 

<D(JC, 0) = «D0(x)= fa0(ii)rft|   j 

and,  like any Lipschitz-continuous function, has almost everywhere the derivatives 

-£-£,   -r-r .    Let us show that almost everywhere these derivatives satisfy the 

equation - — ■ ■ 

•W+il7) = 0' 06) 

and that the sequence u w tends to u(x, t) almost everywhere as /L-+* 0, where 

u(x. /)=^1>. 

To do this, let us note that owing to the uniform boundedness of u »   (6) and 

the cne-sided boundedness of the derivative p (7), follows the boundednesd of 

the variation of the functions u^ on any finite segment of the straight lines 

t • constant. 

Using this fuct, we can show that almost everywhere 

~5x--+Sx-'   sr-*-f[irj 
as,A—•» 0, such that the potential <^(x, t) almosi everywhere satisfies equa- 

tion (16). _ 562 _ 
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ftius, the potential <£(x, t) is Lipschitz-continubus, satisfies equation 

(16) almost everywhere, and takes on the necessary values when t - 0. 35ierefore 

the function u « -^2-    is defined almost everywhere, bounded and measurable, 

satisfies stability condition as a consequence of (7)« 

and is thus a generalized solution of Cauchy's problem (1), (2). 

Let us note further that using the viscosity method we can consider the 

Cauchy's problem also for the case of an arbitrary, bounded, measurable initial 

function u (x) (cf [45]). 

Let us indicate yet another of the applications of the viscosity method. 

According to Gel'fand, we obtain stability conditions of a generalized solution 

of a single quasilinear equation with nonconvex function <p (u) (cf also Section 

I). 

Suppose the piecewise-continuous solution u(x, t) is the limit of solu- 

tions u^(x, t) of an aquation with viscosity 

-w+-ir-^MB(^-^h   Be>»o-   i*>oN       (17) 
-■-.. ...._,._..'.'   -   -    -   -■ i 

Suppose that at the point x.,, t.. > 0 the solution u(x, t) is discontinuous and 

u(x1 +0, t1) - u , and suppose that the discontinuity is displaced in the x, t 

plane along the curve x ■ x(t), and here x'(t1) ■ D. 

It is natural to assume that in a small neighborhood of the point x1, 

t.j the solution u(x, t) is represented approximately in the form u(x, t) » 

u(x - Dt), where u(x) - u when x< 0 and u(x) - u when x >0. We will assume 

that the solution u^(x, t) in a small neighborhood of the point x.., t.. is also 

a travelling wave, that is, u^ (x, t) - u( ^J^i-);  here u^x) -*■ u" as 

x  —*- - oo , u^(x) —** u as x -*"■ oo    (in this case we assume that the para- 

meter M  is sufficiently small). 

And thus, we will seek the steady solution u „(x, t) of equation (17) 

in the form 
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as I" —*• -co, 

as £ —<• + oo. 
(18) 

Denoting g - ■——— , let us derive an ordinary differential equation for AK 
uM)  from (17): 

(19) 

here conditions (18) yield boundary conditions for r^uation (19): 

as %   —•• -00, 

as %  - 
.^.lP- 

*-u 
(20) 

+ 00. 

_Integrating equation (19) from the point *£,•*-00    to %  and assuming 

that j^-*" 0 as g—*- ±.00, we get 

ß(V-^=(PC«lt)-<P(«-)-/>(s-"")=/'(V-, (21) 

i.e., 

In order that — 'tS.   —* 0 as uM ~*~ u+,  it is necessary that P(u+) - 0, 

U— i+r-M- 'A (22) 

which, as we have seen in Section I, also follows from Hugoniot's conditions. 

Thus, +he existence of the integral ourve of the problem (19), (20) 

necessitates that P(u") - F(u+) - 0. This, however, is insufficient. 

Another necessary condition for the existence of u.^ is the requiroment 

that there will be no alternation of sign at the function P(u^ ) on the interval 

(u , u ). Actually, if a point u* exists in this interval such that to the 

left and to the right of u* the function F(u) has different signs, then obviously 

no interval curve u^« uM(%)  exists. 

Multiplying equation (21) by the quantity 2(u^, - u~), we give ii, the 

following forms 
,-> d 

^(V-^(^^«-)8=2(^-«-)^(äA (23) 
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Now it is obvious that the existence of u^(%) also necessitates that 

the right side of (23) be nonnegative, that is, 

2(üt,-«-)F(ü(l)>0. 

Actuelly, since BCu^J^O, from the existence of u^(T§) it follows that the 
_    — 2 

quantity (u^ - u ) does not decrease with increase in the variable |f, since 

otherwise the function P(u) would change sign on the interval (u , u ). 

—    +2 
We can similarly easily obtain the results that the quantity (u - u ) 

does not increase with ^, therefore 2(u^, - u )F(u^) <• 0. 

Dividing each of the la3t two inequalities by the positive quantities 
—    ••2     ••    +2 

2(u n  - u ) and 2(u^ - u ) , we give it the following fc :orm: 

<P(«*n) — f(«~)      <p(u+)-<p(u-)  <p(«,i) —ip(u+) 

«,, —u" U+ — W «„ —u+ (24) 

here, obviously, u^ is any number from the interval (u , u ). And so, we 

conclude that the discontinuous solution u(x, t) can be viewed as the limit of 

solutions uM(x,  t) as XA—*- 0 only for the case when condition (24) is satis- 

fied at the discontinuity line x - x(t) as each of its points. We can easily 

note that the condition (24) obtained here coincides with the stability condi- 

tion we obtained earlier in Section I from wholly different considerations. 

In conclusion let us note chat we have now proven the existence and 

uniqueness of a generalized solution of Cauchy's problem for the case of a non- 

convex function <p{u).    Here the stability of the generalized solution is 

understood as the satisfaction of conditions (24). We must note that these 

theorems have been proven in a much narrower generality than for the case of 

the convex function <p , namely for the case of piecewise-continuous and 

piecewise-smooth solutions. 

III. System of Quasilinear Equations 

1. Introductory remarks. Now we will consider the conservative system 

of quasilinear equations 

- 565 - 



■**""v:i'     ■■ ggffyawMww «mMwtN» 

which for brevity will be written in the form 

(2) 

where we take u, <p , and f as vector functions with n components. We will 

further assume that the vector-functions <p(u, x, t) and f(u, x, t) have tvo 

continuous derivatives relative to all their variables in the domain of varia- 

tion of the variables u, x, and t we are considering. 

The system of differential equations (2) in the hyperbolic case is 

reduced, as we have seen in Chapter One, to the form 

where 
Dtt((lU*. x.  0))*0, (4) 

The vector J>, (u, x, t) « {^ (u, x, t) ]  is the left eigenvector of 

the matrix A(u, X, t) •* (( --%-*)) , and ^.(u, x, t) is the corresponding eigen- 
k   J k 

value, that is,    £   (u, x, t)A(u, x, t) ■ 5fc(ut x, t) £  (u, x, t).  (5) 

Throughout this section we will deal only with systems of equations (2) and 

(3) that are hyperbolic in the small, i.e., we will assume that 

The problem of constructing classical solutions of system (2) was dealt 

with in Chapter One, and here we will study generalized (discontinuous) solu- 

tions. 

A generalized solution of system (1) satisfies integral laws of conserva- 

tion 

&udx — <p(a, x, Oät+j J /(«, x, fjdxdt^O, 
c re 

0) 

but in the domain where the first derivatives-r- and p~   exist this solution 

satisfies differential equations {?.)  or (3)} we will also write the latter aore 

concisely: 
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we will foxaclate tfee Caucsy's probier with the initial coadlticaa 

a(x, 0) - «o(»), (?) 

far the «fetes of aaasnlauer equations (2), where B (X) is, ia «serai, a c 
diecoetlanocs bounded vectar-fcacti, am. 

As we bare seer, ia Sectioc I, the A1»—u—¥1» fozaalatlaa of Caacfcy*s 

problea laeds to certain stabiii*- ooaditioBB that auet be satisfied by geaeral- 

ixed eolatiaas of this acoala*. 

Is taia aectics we saa ocasider aairoy gesfezaiised solatieas that bar* 

pieoewise- aeooth diasoatiaEity lire» x • x(t), ontaide of weicä they are 

classic! aolntioaa of systaa (2). 

Stability coaditioas. la acoavda&ce vita Sectioe I, will a» iwale ia 11 1 

ia the following sense. 

Soae noaher k,  called the icdex of the discoatiaa.' *f line, will be rmugst 

to correspondence to each disrortimity line x * x(t).    Sie inequalities 

&>.,<*{*»-©.**«> o </><u4J<*(»»+•. Kx«t* ao 

are satisfied at the line x - x(t) for this nearer k. 

Ia their siaplest f ara, properties of generalized solutions of jystea* 

of quaeilizear equations can be etadied with the exar^le of a ronegeneous non- 

linear aystea of equations + -ft«: 

i.e., in ü:«. case wher the Teeter  <f does not depend en variables x, t, and 

f =0. 

2. Self "Modeling solutions of a systea of quasilinear equations.    Soln- 

tions of aye tea of equations (5.1.12) that der^isd only on a single variable 

y » (x - x )/(t - t ) are called eelf-sodeling.    without restricting generality« 

we will assuar t   - x   »0.    We seek the solution u(y) of systen (3.1.12) 

defined for "9-0 and dependent only on the variable y a x/t.    Perforaing the 

substitution in (5»'».12) besed on the following formulas 
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we get the result that the self-modeling solution u • u(y) satisfies the system 

of ordinary differential equations 

·.~ ... ~ .. ·:.·; :~·..-.:· :"'''.'77.7:_ • • .... -·:j.~~ .. --:-·:r~:·:;=:-:r:;:r-~~w( -~ }1): ,. '" '· .... ' .. u. . . . ,.·, . ..,.,/.''') ,,; "9 •. 

(.t.~.<~>+:."~ '41f;·.~~,: .. ,:.,(:'~.(~ '~· .. · ·~. -
~·~~.-- .. -~_.:._:._ ·_:.r-~. :.~-.:1~/·..!.~ .. .....:...l~;.·,:· . .\· __ :. .. 

(1) 

where E is the unit ~~trix of n-th order. 

It follows from system of equations (1) that if 

yyf. ~k(u) (k•1, 2, ••• , n), 

then the vector du/dy is identically zeroa ~: 0 and the solution u{y) ::: 

constant. So we will assume that on some segment of the variable y the follow-

:i..ng equality is identically satisfieda . y -~k{u), (2) 

'\>there k is any of these number 1, 2, ••• , n. Then system of equations (1) has 

a ~untri~ solution relative to the vector of the derivatives du/dya 

du/dy • A. rk(u), (3) 
where rk(u) as uaual denotes the right eigenvector of the matrix A(u) (Chapter 

One), i.e., A(u)rk(u) • ~ k(u)rk(u). 

System of equations (3) doP~ not yet enable us to determine u(y) by 

integration, since an unknown cofactor A appears in these equations. To 

determine it, let us differentiate equation (2) relative to the v~riable y. 
We get the equation : ,. -; · ·- ·=- · ~-.-n- · 

, ~ ~t·(U)··:dUJ . : 
i ~ ~"J ify -d .. , 

J•l""'t .. · ,.;.. . I 
'''-- . :-•.':"'t·. . 

wh:i.ch we rewrite in symboli'~ fo~ ..... d~/d! .. ~a~-~k(uL~i·1·.~:~ :·• \4) 
introducing the notation : gtiKl~1 (u)=='{¥:~ ... ./ ,,}"!''}~t; 

Finally, inserting in equ~t{~~:.(4); ~xiire~aion· (3) ;or ·d_~jdy, we derive 

an equntion that enabler. us to determine A 1 

I , ; " • '• •- , • , ••' ,··· ",• • ' ' • •: . ,' ~ \ • ' 

. i.rk (~)grad~. (u) ~ )v ~ ~ (u)' ,, '7' 1 .. : ~· 
. ' . ' . / •. J- ~ . UJ . . . 'I 

• • • t :. ' ' ' ~ 

(5) 

I.et ue conaider the following two possibilities 1 
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a) The following inequality rk(u) grad ~k(u) Ia O, (6) 
:!.s satisf.i,~d for the inte:r:val of variation of the variable 7 ve are oonaidering. 

Sygtems of equations for which inequality {6) is satisfied for all values 

k "" 1 9 2 9 ••• , n an.d any u • . u
1 

, 

[38] 4 

are called purel7 nonlinear b7 Lax 

If inequality (6) is satisfied, then from (5) A is uniquely determined, 

and when 'm insert it into (:~) we get the following system of ordinary differ-
ential equations~ 

Let us denote the solution o~_system of ordinary differential oquationa 
- 0 0 1,;.) passing through the point u0 • .£u1 , ••• , un} as followsa 

b) The second possibility obtains when at the given pcint y • ~0 
. ~~~ (~ -(y})',ir'i"dt~ (u {Y))·~:-0~~-~:.~.·;~,:· '7~:-~.:_•., "'1.'~ 
l ' -- ....... : .. ~·: . -~~···. ·::. ;·.~:·:~·-· .. 1~:: .. ~~~~ 

In this case equation (5) is not satisfied when X. Ia O, and ·the solution u(y) 

is e:!.ther constant in some neighborhood of the point y
0 

or else cU.scontinuoua 
at this point. 

The case of a discontinuity of a self-modeling solution will be dis-
cu9eed below. 

In general, in the following we will limit ourselves, if otherwise not 

S!JP-cif:i.cally stipulated, to the case when conditiom(6) are satisfied for all 

kg 1, 2, •.• ,nand for any u. 

Confining ourselves to thf.s ,case, we will now study in greater detail 

the oolution u(y) of system (7). We will call solution (8), following the 

Hnn.J.og.r ~..;:l.th eque. tiona in gus dynamics, a "centered rarefaction wave" or a 

cent0:r.-cd ·travelling wave. 

Lot u~ comdder the differential equation in partial derivatives in 

the space of variables u1, u2, ••• , un for a single (scalar) function v • v{u) 
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• •• ~~ ...... "' •• I ......... {:. ~II"' ,' ~ .. : .. ·----:-·:~(. -~,... ... •• . 

. J~~~)gr~d.~_{a)~ ~'!<•> :;.·.=-0. '.• · 
ilo . I'' i • ~ ~ t 1- • ..... •. , -
... .,.,.,.. - .... ····"· •. , .. ~-· .• ,. t-. J ......... ' ,, ••• ,l; • • 

· .. 
(~0) 

Suppose v ~ v(u) is any solution of equation (10). We will show that 

r · ·,;·~··· "<u~& . .J>~.co~~. (II) 
Actually, 

, - .. •·"_ ..... ,., ............... ,; .. ·4a. . . ·~ 

l. ~~<~.~·~·:··~o)>~ :E~ "~· ~),-~ . 
: · · c•t' 

• 

. . . ·-

·=~a~ ).r!(U)dy-).dyr"(a)~4 ~-o. 
a•l . , 

Thus, each solution v(u) of equation (fo) is constant at the rarefaction wave 

(8). This can also be formulated in the following manner. 

Integral curve (8) of system of equations (7) lies on the hypersurfaoe 
v(u) ... constant if v(u) satisfies equati.on (10). 

Equation (10),~~-~-~ .. ~~~!P.~nd~t_s~l~!~E~~ ~hToh we will denote by 

t~-~.~). · ~~-~u), ·.: .. ·~ -"-~_V:-t (u): 

he:re the system of n. vectors rk(u), grad v~(u), ••• , grad v~_1 (L) 
i.s lin€'arly independent. 

From equation (11) it follows that in the traveling wave u • u(y) given 

by .formula (8), the (n- 1)-dimensional vector vk(u). {vk:1(u), ••• , vk_
1

(u)} 
k...Jc k 1t n 

is constant, i.e., , c~-(y,u )) m c ' where c is a constant 
0 

!V"'. ~ 
\ Ai. 1)-dimenaional Yector. 

Thu,.~, integral curve (8) of equati.ons (7) can be given in another fashiona 
vk (u) .., <.."D~Js/a,r, 5~ («.).::::: Y, 

and. the problem of integrating system (7) reduces to determining n- 1 indepen­

dent solutions of equation (10). 

'We will call the Yector vk(u) • · { v~ (u.J,. ••• _. v!., cu)} the (n - 1 )­

d:tl!l£!nsi.onal vector-lliemann· invariant. Wo can eas.i.ly show that in oases when 

o:rdj.na.ry Ri.emann invariants rk • rk(u) e:dst, the vector-variant vk(u) is repre-

eentcd in the form 
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Actually, according to Section IH of Chapter Ofae  or.(a) - ^.(a)/1(a)dnl 

grad r.(n) * Jt.(u)£  (u),   and therefore v.(u) - r.(u) when i.e 
*, »*/. •:  i k is soluti<*i of equation (10), since the right r (a) and left Z  (a) 

eigenvectors cf natrix A(u) are biorthogoaai: -ttu)r (u) * 0     when   i / k. 

In particular, üben n • ? Me—MI iavarianta always exist am therefore when 

r « 2 An) - r.(u), i / L. 

Solution (8) of systen (7) is a doubly rontifmooaly differentiable carve 

located fc the space of variables ts , u_,  ..., a , j.    If tie quantity 7 is 

taken as a parameter, then tcis will be a carve passing through tfce point a 

in the space of variables u. 

Ifcr rendition (6) tbe quantity £k(u(y)) varies aonotaclcally along tbis 

carve.    Since 7 * x/t and t > 0, then froa equation (2) we conclude that part 

of this carve given b7 the condition   ¥.{»(7)) >^Jiua) corresponds to tbe revs 

7 • x/t iTiag to the left of the pcint 7 » y , and tee part of the carve on 

which  t. (0(7)) < £. {a ) ccnespaods to the rays 7 » x/t lying in tbe plane of ' i. x o 
variables x, t to the left ei the ra7 x/t ■ 7 - - 

few assigning the naher k inequality (2) all values froa 1  to n, we 

arrive at the following crcciusioni 

..., a    pass ürougfc tr* pcint a    in the space of n variables u,, u_, 

n smooth carves which are the solutions of equation {)) when k » 1, 2,   ..., n, 

which are not tangent to each other atywhere.    übe direction of the w.--.-.-.r.iz 

increase cf the variable y   - x/t is indicated alcng each of these corves. 

low let us rjosider the case of discontinuity ci  the self-<Be"eling solu- 

tion.    Self-model irg solution u(y) » u(x/t) can have discontinuities only along 

the lines x/t - 7 « constant.    Suppose that the solution u(y) is discontinuous 

at the pcint 7.    üben tfce following %goniot's corditiocs (Section I) sest be 

sa-isfiei a*   -"is  lir^  1 > ;.-; 

we will assume that cne of the values -a(7 + 0) or u(7 - 0) i£ fixed and 

we will denote it by u , and this syste* of equations will serve for tbe deter- 

aination of another quantity, which we will denote by u.    Lev us rewrite this 

systea in tbe foru B(u - a } « ^(u) - <P (u ),      D - y. (12) o o 
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Let es assuK ^aat equations (12) define in the space cf variables u in 

saooth carves passing through the point a » u . 

Let ns consider one of these carves and introduce soae parameter f, 

Manlag that the solatien of equations i'2)  is paxraetrically expressed \sj ft 

u - «(£),     D- 3(5)   and 

Differentiating ays ten (12) relative to 

Sä ♦3(u{§) -uo]- A(u(§)if 

■<V-v 
r  % . we find 

where ä and 9 denote derivatives of the corresponding functions relative to para- 

aeter f .    3ere setting   £- C , we get [A(U ) - BBju( £ ) - 0, (13) 

since u{£   ) • a  . 
^o7        o 

She quantity ü( £ ) is distinct fron zero onlj when 

ltet((A(uo) - IK €0)S)) - 0. 

üherefore we assume 3( 5  ) • *LA § ) •*■ %k(» ) and we will denote 

this brand, of the curve detersdned frox ays ten (12) by u » u {%). 

low let us select parameter £   in a wholly specific »aimer:    £ - 5. (a)    (14) 

Equations (13) lead to the consequence u (§   ) - A.r*(u ), (*5) 

and frcffi (id) we get, by differentiation relative to % , 

A comparison of fcrwlas (15) and (16) with fcrsulas (3) and (4) leads   A to the 

ccnclusio*' that 

(7»^=- r»(jj 

^(»^Sr»öJ»W m 
s*< i.e.,  the derivative u ( £ ) hes the sate valve as in the rarefaction wave (7). 

'*e will row snow that the seconc derivatives u  (, 4  > coincide with the second 

derivatives coepu-ea at zhe rarefaction wave,    Twice di/rerentiating formulas 

(12) relative tr    £ « £k(a)    asd then setting  ^,(u) « ^.^J, we get 

"ät- v d — 
where the synbel [<7At Ja aecote8 the quantity « 

^HSE^fr- -*>« 
/^.i f-i •*? 
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D FOP coaparxscn,differentiate equation? (1) relative to the variable y; we    btaia 

equations aiailar to (16) if ia tbot we set y » 7 s 

& the left aid» of equations (18) and (20) tfae asvrix of coefficient» ia defrt- 

zete, also»   £. (- ) ia tbe eigenvalue of aatrix a(a ).    Therefore for aystea (-->) 
2 2 

to Is solvable relative to d u/dy .  tbe right side aust be art-   gonal to the le: . 

eigenvector   /.  (u ) of the aatrix A(i ). since the left side of the equality c o 
ia plainly orthogonal to this factor. 

Since by foraula (17) the funcii<s u(y) has fully detereinate second deri- 

vative«, thJa condition is clearly satisfied.    Therefore by writing tbe ortho- 

gonality condition of tbe right side of (20) to the vector  £ (u ), we get 

an 

The orthogonality condition of the right side of s/atea (18) to the vector 

X (n ) can be written, using 07)f in the following forax 

•<22) 

8eferring to foraula (21), froa (22) we get       \{% ) -h (23) 

Bow froa a coeparison of systez of equations (18) with systea (20), we conclude 

that 
jVJ» 

■ * 

(*«* (Ml 

let us denote by u - ?(§.(u), u ) the solution of equations (12). Then 

froa equalities (1?) and (24) follows that 

and 

Ol&W-ltWn       (25) 

\.A^.v: 

1 
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*s 

Formulas (25) reflect the fact that the state IT aaaociated with the 

of the shock wave of the k-th index is distinct fron je state state a by 

u aaaociated with n by *je rarefaction ware by a quantity of the third order 

of —alias— relative to the difference [\T -u 1. 5hia fact was first noted 

by Lax [3?] far general systeae of quasilinear equations, although in gas dynaaics 

this property of weak shock wares is well known. 

Thus, two saootb curves n - (T I1,   c J.)^ a.,) and u -&(**. («K "* ) 
pass through the point u » u .    fte first curve represents the faaiiy of states 

which can be aaaociated with the state u   by aeans of a r refaction wave of the 

k-th type.    She second curve is foraed of states which can be associated with the 

stute a    -7 way of a shock wave of index k.    These two curves at the point u   are o ' o 
in second-order tangency. 

If we assuae the et.te u    to be the left state,  then only one half of 

the curve u - u (£k(u), u ) given by the condition      5k(u) >%AXL ) is aeaning- 

ful for the values y > y , as we stated above. 

Stability conditions (3.1.10) and (3.1.11) require that the following in- 

equalities be satisfied for the shock ware u * Vr(% k(u), u ): 

:  U(£P<M«).0)>ß»<U(«X^>Uü*CS.(«).O).  , 

i.e., we conclude that if u - u is the left state, then corresponding to the 

right states is only half of the curve u ■ IJ (£, (u), u ) given by the inequality 

SkW<*k(«0>. 
Therefore the curve 

(l»(«X«8) 

when 

when 
y=l*(«»5*(V. (2*) 

has, by rirtue of equations (25), two continuous derivatives, passes through 

the point u , and represents a family of states which can be associated with the 

state u , considered as the left state relative to u given by forsula (27) by 

oeans of a rarefaction wave or s shock wave. 

Conversely, if the state u is taken as the right state, then the analogous 

curve is given by the fornula 
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; 

~\% 

€/*«*(•). V\       vhere 

FGtfßl&l       where *&>U&£i >C ^ 

Finally, let us ccr^ider the case vfaen for any value k - 1,  2,   .,., n 

rk(u) grad 5k(u) ^ 0. (29) 

Me will call the characteristic   £«  ^k(u) satisfying condition (29) a contact 

characteristic. 

Obviously, along the line      T (u) -   {?(u), Tj^)»  •••* T,»-i(u)} " c      ^) 
the quantity £.(u) is constant by virtue of «qu^Moa (10).    Therefore the quan- 

tity i- (u) cannot be selected, as ve did above, as a paraaeter defining a point 

on this curve. 

Let us In.troduce soae other parameter on the curve (30), for exa^>le,  the 

length of the arc of this curve aeasured froa any point or. it.    then curve (30) 

is an integral curve of the systes of equations du/ds    - r (u),      since we 
k *      » 2 assuae that \\ r (u)|f   • £ Cr'i m 1.    &ltiplying this equation on the left side 

by the ■atrii A(u) mSZ.     , we get 

But along the curve (30 ) the quantity   %. (u) is constant and therefore these 

equations are integrated.    Let us integrate these equations froa u » u    up to 

the arbitrary point u - u(s),  then 

f («W)-t(«o) = l4(«)I«(*)-^J = U(aJl[i^*)-a4J.     (*!J* 

5hus, we see that any two points on the curve (30) satisfy äigoniot's conditions 

where D« $ .(u ) »   §,(u).    Discontinuities of this kind are called contact 

discontinuities in gas dynamics. 

Finally,  let us note that if condi ;ion (29) is net,  then a centered rare- 

faction wave of the k-th type does not extst.    This rarefaction wave changes 

into shock wave  (30)* 

lern 

3. Problem of the decay of ari arbitrary discontinuity.    Ttte Cauchy's prob- 

*4- 
dx = 0. 

. fa-,   *<0, <■ 
(11  < 

- 575 - 



is called the problem of the decay of an arbitrary discontinuity. We can easily 

note that this problem is invariant relative to the similarity transforaation 

(3) 

Therefore ve presume the uniqueness of the solution of Cauchy's problea (1), (2), 

fro« this follows the self-modeling status of the solution. Actually, suppose 

a - u(x, t) (4) 

is » solution of the problem (1), (2). Carrying out the similarity transforma- 

tion (5), we see that solution u(x*, t'), by virtue of the assumption of it3 

uniqueness, coincides with solution (4), i.e., 

; *(f*T)dfS,,*x,/** (5) 

Equality (5) is satisfied for any values of the parameter k  0. Therefore by 

setting k - 1/t > 0, we get    u(x, t) - *(1, i/t) - U(1, y) - uQ(y).  (6) 

We can sasily see that if ve do not assume the uniqueness of the solution 

of Cauchy's problem (1), (2), we cannot assert that all solutions of thi3 problem 

are self-modeling, that they depend only on the variable y *-  i/t. Therefore 

proof of the uniqueness of the self-modeling solution of problem (1), (2) does 

not allow us to assert that this Cauchy's problem has a unique solution. None 

the less the problem of the uniqueness oi a self-modeling solution of problem 

(1), (2) is of definite independent significance, first of all because in several 

cases *e succeed in directly proving that any stable generalized solution of this 

problem is self-modeling, and secondly because in the course of proving the uni- 

queness of the self-modeling solution fundamental difficulties which are encoun- 

tered in studying the general Cauchy's problem (1), (2) are unearthed. 

Let us give a geometrical interpretation to the problem of the decay of 

an arbitrary discontinuity. 

We »fill consider the self-modeling solution u(y) of the problem (1), (2), 

assuming that it exists. Then in the domains of smoothness of the vector func- 

tion u(y) it satisfies system of equations (5.2.1): 
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I pH >-. c —■■ 

and at the discontinuity poin*" — Hugoniot's conditions 

yl«(y-^0)-*(y—C)I=*(«(y+0))—f(B(y—0)).      0\) 

Vfe will as?uoe the solution u(y) to be bounded, üben we can assert that 

the vector u(y) is inconstant only in a bounded interval of values of variable 

y. Actually, suppose | u(y) j^ M,j 5fc(u) / ^ Mj then if y - yr is a point of 

continuous variation of u(y), equations (7) are satisfied at this point and, as 

we have seen in Subsection 2,  | y j - J5k(«(y ))/^ M.       (9) 

But if y » y is a discontinuity point of the function u(y), then from the stabi- 

lity conditions it follows that 

*-> » »-Ä+0 
(10* 

Thus, if jgk(u(y))|< M(k - 1, ..., n), then outside the interval [-M, MJ the 

functi n u(y) is obviously constant. Condition (2) becomes as follows fcr the 

functio/ -%     u(y) —•*■ u   as  y 

and due to boundedness of u(y) 

u(y) « 

-00 

u 

u(y) u 

{.. 
as 

as 

y < -M, 

y >M. 

as y —**■ «o,  (11 ) 

(12) 

Suppose that at the point y ^ -M the solution u(y) - u . Let is consider 

the possible variation of the function u(y). If u(y) is varied, forming a rare- 

faction wave of the k-th type, then   y - §k(u(y)).    The least among the 

quantities ^  is %^ . Therefore let us consider the section of the variable 

y on which y = §.,(u(y)). (13) 

Since u(y) « u when y< -M, then a solution of the type (13) can hold, 

beginning with values where    y~ « %.(\i~). 04) 

Suppose that equality (13) is satisfied on the interval [y" y|], i.e., 

in the interval [y^, y1J the solution u(y) forms a rarefaction wave corresponding 

to the first eige^/alue 5 -. • 

In Figure ^.'3 the value of the variable y i3 laid out on the abscissa 

axis, and the values of the quantities £.,(u(y)), £2(u(y)), •••» £ (u(y)) are 

laid out on the ordinate axis, and the bisector § ■ y is drawn. On the section 

*~\  <: y ^ ^1 ^i(u(y)) * y» a11 the remaining eigenvalues €2(u), ..., 

£n(u) are larger than y. The states u ■ u(y) on the segment [y~, y|] are 
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i\ 
associated with state u~, just as with the left state, by a rsvefaction wave 

corresponding to the eigenvalue £« 5.,(u). The plot of the function ^ - 

£-i(u(y)) when y? ^ y ^ y1 lies on these straight lines g« y, 

Suppose that on the interval [y~, y2] 52(u(y)) ■ Vt  i«e«» on tnis inter- 

val the solution u(y) forms a rarefaction wave corresponding to <£- £2(
u)* I*1611 

it is quite obvious and, in particular, from Figure 4.33 it is clear *;hat 

y2->y*> W(«(y))>y.\ 
&,(«<*))<*;        05) 

The states u(y) considered on the interval [y_, yg] are associated with the 

state u(yT), just as in the case of the left state, with a rarefaction wave of 

the second type (y « 59(u)). 

il-Sf-iSn 

Figure 4-33 

Now from Figure 4.33 it is altogether clear that each rarefaction wave 

corresponding to the k-th eigenvalue (y ■ % k(u(y)) lies to the right of any 

rarefaction wave corresponding to the eigenvalue §£ with a smaller Jdnumber, 

and to the left cf any rarefaction wave with a larger JL number. 

Hence we conclude that the continuous solution u(y) of problem (7), (12) 

contains not more than nine ordered rarefaction waves. 

If we can select the quantities y, and y. such that u(y^ - u and 

u(y ) - u+, the function u(y) defined on the intervals [yk, yfc] in the form 

of a rarefaction wave, i.e., 
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■ '--- 

v-r 

where 

«Ö?-^ ;    'where y»+<y<£+*. j 

06) 
(17) 

gives a self'-modeling solution of the discontinuity decay problem. 

Let us consider another possibility when the solution u(y) is disconti- 

y.. Then by the stability conditions, there exists a nuous at the point y 

k number such that 

■   U(«(y»-ö»>»y.>l»^W-fO)).  ; - M\ 

Suppose the index of the discontinuity line at the poiut, y. is k - 1. 

Figure 4.34 again gives the function 2j. (u(y)) when k ■ 1, 2, ..., n. In this 

case at the point y. 

A  5»("tTH-0)):>y,1 when k> 1. %J  (21)j 
Hence it follows that once that if a shock wave with index k - 1 is present at 

the point y - y1, then a rarefaction wave corresponding to the value § - 1L (u) 

» y is absent in the solution u - u(y). 

In general, from a comparison of Figures 4*33 and 4.34 we conclude that 

a stable generalized self-modeling solution u(y) (satisfying stability conditions 

(18) and (19)) contains not more than n travelling waves (rarefaction or shock 

waves), which are ordered jy their indexes, since the presence of a shock wave 

with index k precludes *he possibility of a rarefaction *ave with index k, and 

vice versa. 

Figuro 4.34 
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Thus, when solving the decay problea (l), (2) in the class of «»elf-modeling 

solutions, it appears possible to construct a solution in the for» of n travelling 

waves whose amplitudes oust be chosen so as to satisfy conditions (11). 

As we have ."»en in the preceding section, if we know the left state, then 

at a wave of the k-th type the family of states to which we can convert by Beans 

of this wave (shock wave or rarefaction wave of the k-th ^pe) is described with 

a single paras*» eer. Thus, the problea is, after selecting n such parameters, to 

satisfy conditions (11), 

Based on the given u value, which is the left value for the solution u » 
u(y)> we define the sovition in a wave (shock or rarefaction) with index 1 as 

the function of the single ^-raaeter 2L «* ^ (u): 

••»I" &.«-), (22) 

where F is given, according to (3.2.27), by the formula 

F"lrt    ,-) = ( ? *' "_) Where %l > ll (<r)l 
v "        l Ü» ft,, a") where {, < £ (m~y. 

(23) 

here • *? ft (*-\ m-\- £$Q '        '     r2tf -^-{|v(« ). > ),-|P,(.-)gr«,|i(B-).       (24) 

The state (22) is the left state for the wave with index 2. Therefore we intro- 

duce 

•*-*#"ft» K,} = /"ft* P ft,, a-)).       (25) 

where r   is determined hy formula (3,2.27) analogously to (23). Continuing our 

reasoning, we find 

3" = /r"ft.. a"-,) = 

-'"(L. ^fc.-,. i--?(..:Pfc «-))-..)))= 
-•Oi. E» •-. 6.. «-)•  (26) 

The solution of the decay problem in the class of self-modeling solutions 

reduces to determining the quantities Jji» 5c> •••> <^„ from a system of n equa- \        c. n 

tions 

o»ftt. I* ...;£..«")=«*•       
(27) 
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tfe will assoae that the state« a1, a2, ..., a* • a* lie *n a «afficieatlj 

»ighbarhood of the poiat a .    Siace tV  Jacoaiaa 

-* "x. ~   * 

^«f? -S.._ 
-»t-r.-l 

- ... * ,» <xt- 2* r    f^gf 

is distinct froa sero ©wieg to the assasptiaa that systea (l) is bjyaxtaUc aai 

that conditions (3-2*6) have bees satisfied, there exists sose neighborhood 

|u-a"U S ol the poiat a" such that for a , .... a lying la this neigaber- 

bood, the Jacobisn .jgfegis5Bl!E j 

is distinct free« sero. Equations (27), aoreover, are coapatible when a » a ; 

lv • §. (u ). Therefore by the theorea of implicit functions there exists in 

this neighborhood the unique eolation JL, §_, ..., 1L   of system of equations 

(27), to which corresponds the self-nodeling solution a ■ a(y). 

low let us note that the existence and uniqueness of the self -modeling 

solution u(y) has just been proven not only on the assuaption of the sufficient 

proximity of the points u and u , but also on the assuaption of the praxis!ty 

of the quantities u , u , u , ..., u = u . 

Thus, here we have not received an answer to our question of the unique- 

ness of solution u(y) as a function of the quantities u and u , though we can 

assume that for sufficiently large u and u the solutions u f u , ..., a 

will remain in a fairly small neighborhood of these points. 

4. Example of the nonuniqueness of the ?e3f-modeling solution of the decay 

problem. We will now show that if we do not assume the sufficient proximity of 

vectors u , u , then without restrictions on this system of quasilinear equations 

we cannot rely on the uniqueness of the automodeling solution of this problem. 

Let us first note that the ooncept of a discontinuous self-modeling 

solution of a decay problem was introduced by us only for conservative systems 

of the form (3.3«1)> however the continuous solution u(y), if it exists, is also 

determined for systems not written in the form of laws of conservation. 
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~1erefore we now consider a system. or three quasilinear equations that is 
hyperbolic in the smalls 

:. ~·c~)"[~+·~~·(~)~]-·o·,. -~~~(~~.·~. •~J .... ·<·=-~~·:2. 3), '(l)'·: 
. . . . . . 

leaving for the moment the question of the possibility of formulating this system 

in the form of laws or conservation, and we will show that the de~ problem for 

this system can have sev~ral continuOus self-modeling solutions u • u(y). 

Let us note that this situation also holds for conservative systems or 
quasilinear equations [21]; but we are considering a nonconservative system, 

since the example is simpler iu this case. 

Let us set 

e.nd suppose 
(3) I 

11 12 1' ~~0 vectors , , and are mutually orthogonal, therefore we will assume 
k k tha t r. · ( u ) • .,l ( u ) ~ (I. ) 

Condit:l.ons(:;.2.6) take on tho foll~ing form for system of equations (1)a 

(5) 

We can easily note that we oan always select the tunotiona ~ 1 and ~3 
ouch that conditionn (5) and (') are satisfied, for examplea 
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Curves u • uk(y, u0 ) describing states that can be associated b,1 rare­
faction waves are the following straight lines for system (1)s 

ui {y, uo> ·=·tto+ ll (u~ 8, ~-= ll (uo) grad ~t<'f.Jl),' 
tft (J ~ llo) = Uo + fl ( "o) (Y - '4). 

lJ3 (y, uo> -=·Po+ l3 (u~ ~· % == J3 (uo) grad .l.(Ua)~ 

... . 
(8) 

(9) 

(10) 

The straight line u • u
1 

lies in the plane u
2 

• u~ and has the direction of the 
1 3 ' 0 vector £ (u0 ); similarly, the line u • U also lies in the plane u

2 
• u

2 
and" 

has the direction of the vector ~3(uo); the line u - u2 is the line u1 • u~, 
u2 • u~ (Figure 4.35). The arrows at the lines u • uk denote the direction in . 
which the quantity ;k(u) increases. 

Figure 4.35 Figure 4.36 

Let us consider any two planes u2 • c, u2 • c + ~/2, for examplej u
2 

• c 

and u 2 ... n/2 (Figure 4.36). Since J.} (u1 , 0, u
3

) • £3(u
1

, -rrj2, u
3

), then the 

lines u • u
1 

arid u • u3 lying in these two planes project onto each other. The 

arrows at these linea u • uk as before denote the direction of increase of the 

quantity :S k(u). Now let us consider for system (1) the decay problem for the 
case when 

(1,1) 

Let ua construct one of the solutions of this problem 

' ,- when y ~ o, 
II (y) a:::: 

lfl(y, u-) when 0 ~ y ~ il/2, (12) 

u+ when y ~ Tf/2, 
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t ... hich obviously is contl!luous relative to the variable y.. IA:lt us sh~ that tor 

this same problem there exists an infinite set of other self-modeling solutions 

u(y). Suppose, for example, that the point~ C nnd D lie on_~he same straight 

line parallel to the u2 axisz C(u1, O, u~), D(u1, rrj2, u~) (Figure 4.36}. In 
view of our assumptions 

• ., ~-·a--· • • o •, ... 

s~<W:· o. r4)>t~<"1' o. t4). ·t.. (al'·i· ,~)>~(~: -;.;.·~~}: .<·•al: 
-· .......... · ........ _ .... - .. ~ , . ....,..,. __ ...::..... 

Therefore we can also write another self-modeling and continuous solution of 
this decay problem: 

!J(y) = 

[* "' when] 

tr * np"H .>' < ~1 (a-) < 0, 
U 1 (y, u-) * npH ~~ ~?· 0, un-<;: y < ~~ (u1, 0, ,g). 
U1 ~~ (u1, 0. t4). u-) npH t1 (u1• 0. ug) < y < 0, . 

U2(y.(u1,0.t4)) *npH O<y<f~ 

u2(f. (u1' o. '4)) *npH f<.V<ta(u1• T' ug). 

. .. 1 
; 

. ~ 1 
(14) 

lP(y. (Up ; , ttg)) *n~ .~ ( "1• l-• t4) < Y< la ( '1• l• ~)' 1 
n+=U3 {~ ("1· ~· ug), (a1, ~· ~) )*npH y > ~ (~. ~, U:}.~ l 

''" .... ·· 

which obviously is distinct from solution (12). B,y arbitrarily varying the quan­

tity u1 > u~, we get an infinite set of self-modeling solutions. 

This example shows t.hat the decay problem can have an infinite set of self­
modeling solutions for a hype~bolic system of three quasilinear equations. 

Finally, we further note that it is possible that the nonuniqueneaa or 

the solutior. of the decay problem of an arbitrary discontinuity for a system or 

the type (1) is a consequence of the more general property of hyperbolic vyatema 

of three and more quasilinear equations, which consists of the following. 

For the system 
... .. 
(US).; . .... 



of three or mere quasilinear equations, the growth of soluti~ u of Cauchy's 

problem with the initial data .u(x, 0) • u
0

(x) is determined, in contrast 

to systems of two quasilinear equations, nC't only by the quantity U • max tlu (x)IJ, 
· 0 X 0 

but also by thg derivatives 11 ;~oil· Therefore the o~olution or system (15) when . " . 

n ~ 3 ,generally speaking becomes unbounded for some t > 0. This shows that, 

generally speak!ng, the problem of the decay of an arbitrary discontinuity is 

~eaninglese for such systems, since in this case the solution of the.problem can 

not be considered as a limit solution with the initial data smoothed. 

5- Decay problem for a system or two quaailinear equations. In the ca3e 
n "" 2 the system of quasil:t.near equations is reduced to Riemann invar:i.ants 
(Ch~pter One, Section III) and is written in the following forma 

(1) 

We will assume that condition (3.2.6) is satisfied, which can be written as 

c'e,jc rk ,J. o, (2) 
J!or system (1 ). The curve u • uk(y, u

0
) in the plane or variables u

1
, u

2 
changes 

into the straight line rj • constant (j ~ k) in the plane of variables r
1

, r
2 

( Fj [sure 4. 37). Thus the rarefaction wave for system ( 1 ) corresponds to a segment 

of the l:J.ne r j "" constant. According to the foregoing, through each point r • 

r there pase two curves u • ijk(y, u ) representing families of states that can 
0 0 

be associated with the atate u by a shock transition. As we have seen above, 
0 0 

these curves have at point u
0 

a second-,rder tangency with the lines rj • rj• 

therefore at least in some neighborhood of the point r • r the equations of 
- 0 --

these curves can be written as 

1':r!t~ R~(ft• r?; -1)~ R,('t•.· 'o)• ··}.I 
'r1 -.R1 (r2, ,.Y •. rg')=Rt('2' 'o)• 
I -· . . 

(3) 

i.e., thoae curves are uniquely projected, respectively, onto the linea r
2 

• 

constant, and r 1 m conatant. In Figure 4.37 the arrows indioate the direotion or 

inercrua; of the variable y "" ·:/t in the rarefaction waves r j • constant and in 
th1'l f'hoek waven r j "" Rj; he::r.t: we require that 

''A..<h ~~~~ 'o;;;r> .. ; 
I . ·' ... ,• 
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which can always be assumed to be satisfied in view or (2). 

Figure 4·37 

The question of the unique solvability or the decay problem in a class 

of self-model5.l':l.g solutions depends essentially on the behavior of the curves 

r 2 • R2 ~nd r 1 • B1 overall, that is, tor sufficiently large values or fr - r
0

J • 

However~ it is difficult to study the behavior of these curves overall, since 

they are defined from substantially nonlinear equations. Therefore we will now 

indicate certain sufficient conditione under which the problem of the decay of 

an arbitrary discontinuity for a system of two quasilinear equations has a unique 
self-modeling solution. 

With the ass1mptions made above, we will additionally assume that Hugoniot's 

conditions are solved in the form (3) for any r 1 , r 2 , r~, r~, i.e., the corres­

ponding curves are uniquely projected onto the axes r 2 • constant and r
1 

• 

constant for any r and r
0

• Suppose, further, that 

I aR1 (r2o r?, r~ ., 
1 

. 
()r < . 

I . (~ ··\ . 
We know the value D • y appearing in the Hugoniot's conditions at each 

point of curve I r 2 • R2(r1, r
0

). Let us denote by D the expression 

along the curve I 

and alone curve II 

have ohown in Subooction 2, at tho point 

Dt('1· 'o)=~•('o)•} 
D~ (r~. r 0) r.:c a2 (r o) 
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-  ^  •»—. 

*. «ssw tr-»t fear «7 r?. r° axrf ^ «<C  r?t r^ > r!j, i* a&iitioa *c (5/ foil 

iac ©aniitiasn a=v cctisfiedx 

je. -jär *.öV: v 

Conditiofes (il) and (*.2) denote, obviously, that tie eclat ice» r2 - fc^, 

r « 2, aad r. - 5L. 2 « D_ of äfagcniot's conditions satisfy the etability condi- 

If inequalities (11) and (12) are satisfied for any r   and r1   < r.., 

r- > r?, then when r., > r° and r_ <   r° the signs ia these equalities are reversed. 

Actually, suppose r., > r^.    Jne curve r_ ■ £_ passes through the point (r.,, B_ 

(r-, r )), which according; to äigoniot's conditions,  aatisfies the equations 

Equations (13) express the obvious fact that Higoniot's conditions are unchanged 

if the left and the right values of the solution are interchanged.    Froa foraulas 

(13) we can now readily obtain the validity of our Assertion. 

Conditions (5),  (11), and (12) are fairly cocplic&ted. Therefore ve will 

verify that they have been satisfied with a siaple exasple.    Let us consider the 

systes of two quasilinear equations describing the notion of an isothermal gas 

in Lagrangian variables  (Chapter Two, Section II, Subsection 9)» 

dV -*L = 0.     £ + ^iP- = 0. V(V)<0,     p*(VO>0.   (14) 
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tmie"   caa be written is Sissasn invariants. 

4^-.(V)^^ £+e00£=0. 
W*»srl« 

IF=O.        a« 

v--« -J *€•*•■     r,=«+jc«^     <•(*.=_*.       0Q 

■*■*!*■■ (16) •sable as to express the caantity T in ten« of the difference 
r2 " ri* Co«»«*« the derivatives ■j-' *° »«ify that condition (2) has been 
satisfiedi 

Proceeding to verify cenditions (5), (11), ard (12) l„»t us «rite the äigcciot's 
conditions for sjstea (14): 

B(y-V}=H-u.   D(a,-«)=,(»g_,(K), (if) 
wbence ' 

P»_ P(V)-HVJ - 
"^         Vt—v     ■ &»i 

Irtn forav a (20) we obtain the result that D can have positive and negative 

-«.lues. Suppose B,^, rQ)< 0, and fl^, ro) > 0. Then since p'(Y)<0, 
P"(V) > 0,  therefore if 1   > ?,  then 

o 

-tfYXD^r,, rJ<-e<Vj. (21) 
c(V^<D7(ri.r^<c(y). {22} 

To verify that inequalities (5) have been satisfied, we will differentiate 3ugo- 

niot's cenditions (18), assuming that 7, u, and 3 depend on T.  and that D * 

Mr1» ro^ <   °*    ^noti^g the products by r., with a priae, we get from (18) 

W'+~V<y~VZ = -*.     Ds' + £K(0_ao)=_c»(K)V"    (23) 
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3 ard 

^=*'+c(r)V = l- (24) l 

Prt» equations (23) and (24) let us determine the values of f, a*, and D*, 

Sir. re 

&gä (r„ r.) _  - „ y, _ [P, (r„ rj+« (V)p 

and B, (r,, r ) < 0, then 
0<  **lQr±<l 

(2S) 

Si*rl?r ccaputan-ns lead to tbe results 

(27) 

and we have thus sees that requirements (5) have been satisfied for tbe systes 

of tw:> equations (14). 

Since along tbe curve r_ - äUCr,, r ) 

i//_ ^ _  -2P.(r,.rJ  . 
(28) 

and along tbe curve r, • ^iCro» r )    ^ < 0»  inequalities (21) and (?2) lead to 

the satisfaction of conditions (11),   '12). 

Be taming to the general uase, let us show that if a systes of two quasi- 

linear equations satisfies our conditions,  then the problea of the dpcay of a 

discontinuity for the syBtee has not r.ore than one self-Bodeling solution*). 

Let us draw a segoent of the curve T2 ■ H^Cr., r ) through the point r 

for r.   <- r.  and let us draw the ray r„ - r,  for r^ ^ r.   (Figure 4.58), and 

through the point r    let us draw a se.^ssent of the curve r1  ■ &|(r2' r ) when 

r? ^ r* and the ray T   - r* when r„ <■ r*.    Curve I represents a family of states 

*) If in conditions (?) it is required thatj—*-j<q   < 1,  then we can 

alsc assert that a self-modeling solution of the decay problem exists. 
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that can be assorted vitb the state r    if the latter is taken as the left; 

curve II represents states that can be associated with the state r , which is 

takes as the right.    It follows froa condition (5) that the intersection of 

curves I and II can occur only at a single point.    Ibis then denotes the unique- 

ness of a self -modeling solution of the decay prob' ca. 

Figure 4.38 

ife can easily note that if r,  ^  r^, r? ^  r*,  the self-modeling solution 

consists of two rarefaction waves (Figure 4.39» a);  if r. ^   rT,  but rQ >  rj, 

then the solution consists either of a rarefaction wave and a shock wave  (4.3.9, 

b),  or two shock waves (4.3.9,  c), and in the case r. > r.f r?   > r_ also 

necessarily contain at least one shock wave.    If we succeed in defining the 

functions IL,  D., B., and D~ then in all cases, with the exception of the case 

when a self-modeling solution has two shock waves,  the solution r(y) is expli- 

citly defined.    For the case of two shock waves (Figure 4»3«8)»  construction of 

self-modeling solution r(y) reduce? to solving a system of two equations 

«M'l. '") = **      #I('J- r') = rV (29) 

where r and r_ represent the state of the self-modeling solution between the 

shock waves. The system of equations (29) can be solved by the method of 

successive approximations: 
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-5» 
««. JM.LV j^fsr^srf" 

-- 
_**# ri:!isr ' <u $i»V 
't «r£ fr*'/*tf '/•' 5- «i^i.'-* ..— -.»".'. <M* 

(£>    - (a) 
here «• can set "x^ = r.., r_ = r. 2* 

de condition for the convergence of successive approximations 

Sg$BSW£M 
is obviously satisfied if inequalities (5) are satisfied. Now let us note that 

condition v3> ) is sore general than (5) and is sufficient for the uniqueness cf 

the r«;If-modeling solution. Additionally, this condition is invariant relative 

to the change of dependent variables, in contrast to requirements (5). We 

adopted condition (5) for sake of simplicity, actually conditions (31) are suffi- 

cient . 

, /" 

rt1 

*•'■. 

a) 

1     > 

b) 

Figure 4-39 

Suppose a system of twn quasilinear equations satisfies requirements (2), 

(11), (12), and (31). Then the solution of the decay problem for such a system 

is self-modeling. Actually, suppose that the follovirc Cauchy's problem is 

formulated for a system of quasilinear equations (1)1 

r(x. 0) = 
if, x< 

!\r+. x> 
<0. ! 

(32) 

Let us denote the bounded stable generalized solution of this    'oblem by 

r(x, t) and prove that it is self-modeling, that is,  that it det  nds only on 

the variable y - x/t. 
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Figure 4.4O 

Suppose the solution r - r(x, t) of Cauchy's problem (1), (32) is conti- 

nuous when t > 0. This is possible only in the case when 2* (r~) <§2(r
+). 

Let us draw two characteristics x - %.(x~)t and x ■ £_(r")t through the 
origin of coordinates (0, 0) (Figure 4.40). Obviously, in zcnes I and II the 

solution is constant. We assume that in some neighborhood of the line x - 

5.|(r )t in zone III solution r(x, t) is variable. But in this neighborhood 

r2(x, t) - r2, since §2(r~) -^(O» Therefore the function r. (x, t) satis- 

fies in the neighborhood of the characteristic x - f ,.(r")t the following equa- 

tion: 

(33) 

From equation (33) we conclude that near the line x ■ £. (r~)t in zone III the 

function r^ (x, t) XB  constant alo'-g the straight Mnes x -^..(r.., rl)t + eC . 

Obviously, these straight ?ines can interact onlj when t :$ 0 (Figure 4.41). 

Quite analogously we conclude that in zone III in the vicinity o the charac- 

teristic x - £2(r )*» 
r-|(x» *) " ri» but ~2^-   *> ia constant along the 

straight lines; which can intersect each other only whsn t ^ 0. Thus, r., (x, t) 

is constant along the straight line x - £, (r.,, r~)t +oc(r1),^^0, but r2(x, t) 

is constant along the lines x -^(r,,, r2)t + ß(r2),ß<. 0. Let us show that 

<<- (3 - 0. If this is not so, then these two families of straight lines inter- 

sect each other when t > 0. At the point of intersection we will have 

r3(x, f) = 't-     rI<jt,0 — ''f- 

Hence we obtain the result that in the domain OABC (Figure 42) r(x, t) ■ cons- 
tant, which is possible only in the case when r » r . In this case the solu- 

tion is in general constant, and, therefore, self-modeling. But if r~ / r+, 
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<J 
then x « ß ■ 0. If =^ - ß » 0, the continuous solution r(x, t) is self-model- 

ing. 

-' *« «»*%& 

Figure 4^41 Figure 4.42 

How let us consider the case of discontinuous solutions r(x, t) of the 

äi8<*cntinuity decay problem. First let us note that it follows from the stabi- 

lity conditions for the generalized solution (3.1.10) and (3.1.11) that a stable 

generalized solution that is bounds«! and piecewise-continuous when t > 0 cannot 

nave more than two discontinuity lines propagating from ore point in the domain 

t > 0. 

lherefore it is sufficient to inspect cases when the solution has one 

and two discontinuity lines departing from the point (0, 0) of discontinuity of 

the initial values. Let us consider the case of a single discontinr' y line. 

Suppose the solution r(x, t) has a single discontinuity line OA with index 

? (Figure 4.43). Obvio»?"*/, to the r jht of OA r(x, t) - r+, and to the left 

of tne characteristic x r. § (r )t r(x, t) - r . Similarly, we conclude that 

in the zone BOA r2(x, t) - r0. Actually, from the stability conditions (3.1.10) 

and (3.1.11) it follows that the characteristics ~~*- £2(
r(x» *)) intersect 

simultaneously the lines OB and OA and, therefore, rp(x - 0, t)J m - r, 

,(x, t)L_. Therefore 
'2V*' ""'OB 
are assigned at the line OA. 

r2(x - 0, t) r(x + 0, t). - r .  (34) 

According to our assumptions made about the system of two quasilinear 

equations, the velocity B of the discontinuity line OA and the value r..(x - 0, 

t) are uniquely determined from these data; here these quantities will be 

constant! 
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B~Dafor*).     r^x-O.i) = *!(*?. r+> (35) 

Ttaxa,  the discontinuity line OA is a straight line. Hext, at> *e did above let 

us establish that in the zone BOA r(x, t) - r(y), i.e., the solution of the 

decay problem with a single discontinuity line is self-modeling. 

Finally, let us consider the case when the solution r « r(z, t) has two 

discontinuity lines OA and OB (Figure 4*44) from which stability conditions 

(3.1.10) and (3.1.11) are satisfied. Omitting several details, we note that 

the integral curves of the equation  dx/dt - % AT(X,  t))   (36) 

in the zone BOA intersect simultaneously the lines OA and OB. In Figure 4*44 

the integral curve of equation (36) is the curve GE, here t„ > tg. Similarly, 

the integral curve CD of the equation   dx/dt - 4 2(
r(x» *))  (37) 

intersect simultaneously the lines OB and OA, here t. > t-,. Thu«, we can write 

r2(D)=ra(C). r,(C)=»ff r,(C), /-)       (38) 

r,(Q = >■*(£). 'i (£>=»*! ('»(£)■ r+). (39) 
and 

J 

where by r(D) and r(£) we denote values of the solution in zone III at the 

corresponding points. Inserting (39) into (38)» we find 
/jCÖ^Äp,(Ml). r+)."Fy (40) 

Figure 4«43 

Similarly, we could obtain 

Figure 4«44 

(41) 

Extending this process and comparing it with the process of successive approxi- 

mations (30), we conclude that r2(D) - r2« In view of the arbitrariness of 

point D, we conclude that the quantity r„(x - 0, t) is constant at the line OA 
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I ' and equal to r?; similarly, r. (x + 0, t; at the line OB is equal to r-.    9ms, 

the solutioa r(x, t) is constant in the zone BOA, and the lines 0A and OB aze 

straight lines.    This then signifies the aelf-aodeling status of the solution 

r(x, t) m r(y) containing two discontinuity lines. 

The proof that the solution of the decay probleo is self-*odeling together 

with the uniqueness of the self-sodeling solution of the decay problea allow us 

to assert that the solution of Cauchy's problem on the decay of arbitrary dis- 

continuity is unique and self-modeling. 

6. The Goursat problem for a system of two quasilinear equations.    Bow 

for a system of two quasilinear equations 

<V* 
W + UC x-Q%r = /•('• *■ 0       <*=!. 2) (1) 

we will consider several more general problea* than the discontinuity decay 

problem. Suppose 2; . , f, &.  C_ and 

l^r, x, f)<l2(r, x. i).       aü(y,0>0  (* = 1. 2).  (2) 

Suppose the curve Oo£2> whose equation we will write in the form x - x»(t), is 

a characteristic of system (1). Differentiate functions r?(x, t) and Tp(x, t) 

are known at the curve Oaf2« ^e  curve 0£2 has a continuous tangent and 

is the integral curve of the equation   dx/dt - £2(r°(x, t), x, t), 

and the function r„(x, t) satisfies at OJC?  the compactibility condition 

~rl(xt(i), 9=/2(r°(*2(0. 0- *• 0- 

We will seek in some domain ^f„ OoL2  (Figure 4«45) the solution r(x, t) 

of system (1) satisfying the conditions: 

First. The solution r(x, t) takes on the given values r°(x, t) at the 

line 0£2
l •(*, t)l U t)| (3) 

Second. The function r2(x, t) has a singularity at the point (0, 0) of 

the type of the self-modeling rarefaction wave. Analytically, this condition 

reaches thusly: 
WmrJtUr\(Q, 0). ß. 0. 0). /) = ß. 

and parameter ß takes on values from a certain interval 
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Fro« coodition (4) it follows that th» functic 

the point (0, O) • singularity of the fc 

r2U» i) a-. 

We will seek a solution of the problea 0), (j)f (4) far such that the function 

r_(x, t) can be represented in the for» (5); here ggC/t *) haa continuous first 

derivatives in y asd in t. We will seek the solution of the problea foraulated 

by the method of successive approxiaations differing froa that eaplcying in 

Chapter C* due to the singularity of the solution r2(x, t). 

Figure 4.45 

Here we trust note that the bound.edness of also successive approxinations 

can be insured if we consider only a sufficiently small strip 0 ^ t ^ T of 

the variable t. 

We assume that the approximation^ r '(x, t) satisfying conditions (3)» 

(4) is known in the zone ^,^^^2' 

Let us define^ (x, t). as the solution of the single quasilinear equation 

(«) <•-»> 

TT + 6i "»' *'* (x'f)l *' ° TO"=/l (>I" r» (Xt °* *' °' (8) ' 
satisfying condition (j), i.e., 

(«) 
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treble*, also» tbe UmOJ^ i» • Ait rani||'» arable« is • 

characterisric cf the »smart faadly. 

ft» fanetincAK{x, t) is also defined a« the aolntis» of the eiagie acaei- 

itio« 

5-.+4T?«* * " *> «^^/«("^V * 51 * * «, 

aatisfylng condition (4)1 

>jrw 
._».--     IT* . f 

M» «ill seek the solution of tbe two problexs in the doaain G famed by 

the intersection of tbe daemln <£~Oj£2 
vith tbs 8tzlP 0^ t^  t .    *e deter- 

Eise tbe ffclae of t   below fro» the condition that all successive epproxination» 
v?f a»dv?|(yt t) -^(yt, t) haw at 6 bounded first derivatives of^ in x aod 

in t, «rd bounded first derivatives of gi(y, t) in y and in t. 

Cauchy's problea (6),  (7) in solved by tbe ordinary aethod of character- 

istics.    As for the problea (8), (4) here we have a problea vith a singularity 

at tbe point (0, 0).    Ve denote by x -^(t.ß) the equation of a characteristic 

along which as t —a» 0 tbe function Sei (x, t) takes on tbe value of  j.    Obviously, 

<*,. ,.    »r-s-i     «a» x,(0, W«=0 anT1«» r.Cx,«. &•<>=* 

For brevity, let us denote 

(s) 
The quantities r2(t, R) and^x'(t, A) satisfy the characteristic systeas of equa- 

ticr.  (6): 

and satisfy the initial conditions 

dxt 

at 

-j) («> («) 
X,. 0. 

dr, 
ST 

(« -i) («) 

0. 
(«) 
r,. 

W 
x2. 0 

2(0, » = = 0. 
(«) 
r% (0. ») = ß- 
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ife .-1:: «a 

Ut 

that t   ia smffieie»tiy 

Vuaded la Ct 

it all 

tbat fear sufficiently nail t   derivatives cf Ü» fusctioae 

!*'{/, t) 11 IM f ii boBsded far all B - 1, 2, .. 

Let ns denote ay £7 the quantity that aodolovise 

Cf) 

the first deri- 

vativ.» of r°(x, t)i 

similarly 
im i*r<* 

•»-* 

|^iPI<X- I^^KA-' 

tion (6) relative to toe variable x. Me obtain the equation 

*-*- 

j-f*ij.i6.*|L,l    ?_i£ii£Li>    tin 

Let us cospute the initial value oi" the derivative vp^ at the line^^f-*    *° ic 

this, let us determineTK froa two conditions:    Equation (6) 

and the differential consequence (7) 

ft ~ä" + *i= IF ~ä~ "+" ~5~ • 

Since dXp/dt -   ^p, from these two conditions we find 

«,          ■3F&,+"3T-/l 

ft tor, =      Ei-5. OT, 

Since    ^_ -  ^1 >£    >■   0,  it follows that there exists the number C »uch that 

,(*) 
i?tiU<c 

The increase in the quantity^/ is estimated by using the solution of the 

ordinary differential equation 
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m-n •*■ 

<*c»,4 if+-^p-ifi+a  <i*. j 

which take« OB the value C when t - t- 

^r t « denote the vaine of toe variable t at the characteristic of 

tiou (11) «bare it intersects with the Hue 0<&(*i«are 4.43)1 the value of H 

is selected so that where j rj.^2 «on \.z, tj^Ctk following inequalities 

are satisfied < 

The solution of the equation A" " 

* *• 

f 
exceeds the solution of equation (12).    Rewriting (13) in the for» 

Let us integrate it with reference to the condition p1(r) - Ci 

ft+1 
(C+l)(i) 

jC + l)iMUt\" ft +'      1 
(14) 

And thus, the solutionVj(x, t) of equation (11) is estimated from above: 
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'*<*. OK 
*+»£) * S, 

(C+1)TJI 

V2* +1 p"* *'-'] 
05) 

The ratio t/r   appearing in (15) is the ratio of the variable t at the charac- 

teristic of equation (H)to the 'value of thin saae -variable at the point of 

intersection of the characteristic vitfa the line Q^Cz (JiV*** 4.4 5) •    If is 

the doaain C the ratio t/r   la bounded, then for sufficiently aaall t    the 

bonndedness of the derivatives ofV: follows froa estinate 05)- 

It la easier to as;iaate that value of the derivative ^gÜh J by 

starting froa the characteristic avstea (9).    Differentiating equations (9) and 

initial conditions (10) relative to paraaeter £ , we get 

(«-U 

W*t = -57 ** + [ST ST +SI\ *r 

-it **=757 *»+ i3T~sr + IF\** 

?2(0. p)=o.    7j(0. »=1. 

00 

where we introduce the notation 

«rt   j w 
2, "-$-£('■»• '2=% r3(t, ft). 

From equation (16) it follows that 

<ft, 

dt. 
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0 Ordinary estioates of fcranlas (17) le»d to the inequalities 

Here £ denotes the quantity 

<^ft »<** ■« riix. R«* <> ♦**. 

(18) 

«bids, according to (2), is larger than aero, 

Inserting estimates (18) into second forsula (17), we get 

••*-:. M-r- 

«•-A 
<r*+[fI+Jj MV 

Suppose t is sufficiently s»all that 
c^^(T- WexPKA +2)iWJ.   (19) 

(•-l) 
-j-lfj+ljerp^f, +2)My<l. (20) 

Äen fro« (19) follow simpler estimate it 

14 
f#-*»</£(/. P)<2^. 

Inserting estimates  (21) into (18), we get 
2 .    .«»r1)    _W. («-« 
J-ÄS-1 *■ +1!'Ä'<xJ(/. p)<2A!^ * +J,J" 

(21) 

(22) 

Since 

U 

<w (*) (■)      2} 
5*- = /-ii   and   *"« - '«<*■ P dy <5x dx — («) 

-4«. ß) 
then from (21) and (22) we have 

(«) 
toe* Q, c 2/"** 
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Äe derl«tiw3 AJ^t   •* i^t «B 1» .«iiartj «tinted. 

that in the doaais G tie ratio t/r   is bounded: 
fr« (15) we get 

Vtr< k, 
) 

,5«* OK ^±M^ . 

«* +1 
Soppose that ia doaain G toe ineouality 

<*> 

(25) 

^ 

is satisfied, then fro«. (24) we haw 

|X(X.0|<2(C+I)^''. 

If, further, [(^1)+ 3 j^ < ^ 

then fro« (23) we get 

*l<4—* If 

(28) 

(27) 

and, according to (26),   |<§)(x, t)|<2(C + ^K(^^i E . 

Thus, if in the domain G the following inequalities are sinJataneously satis- 
fied: 

(28) 

(29) 

,< 
4<*. 

iMaT-^i+1'^,+,,Ä,<T' 

(£, + 3)Af^<o. 

ry*;. +i_11(C + l)<BM   ^ 1 
lA ,J ME, -1-1   <1 

then the inequalities (20),   (25),  (27), and,  therefore, 
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.. 

are • id taae coaly satisfied.    So 

fled in ü. we have 
that cooditices 0°) - (35) are aatis- 

«ad all successive appraxiaetione of 

tlvcs in 6. 

(a).«,( 
-1 aod tyj. %) have bounded first derive- 

Let na consider tbe proble» of vbether inequalities (50) - (33) can be 

aetlefied In domain G.    let us assign arbitrary end values o£ > 0 and £ >1. 

aext we calculate tbe quantities £. and 1„ by fancies (29) and (28).    Inequa- 

lities (31) - (33) can obviously be satisfied if we choose paraaeter t    suffi- 

ciently snail,    as for inequality (30), it bounds free beneath the domain of 

P values.    HHUS, in view of the arbitrary choice of I>1 we can assuae inequa- 

lity (30) to be satisfied in domain 6.    9ms there exists a dosain C- of th* type 

Indicated in Figure d.45 in which all successive approximations are^r;(x, t) 

•a* Mill *) aa*> bounded first derivatives. 

Sote that in the case of Lipschitz-continnous initial data of Goursat's 

problem,  the unifore Lipscbitz^continuity of successive approximations is simi- 

larly proven. 

Let us prove the convergence of successive approximations.    Prom equations 

(6) we have tbe consequence 

e 
• <- •<[^f+H*l^]i"-""i+ 

'      *H«l+*l*|]iV-Vi< 
1 iM^+inft-Vi+v-iiV-Vn- (35): 

fieferring to condition (7), it follows that there exists s B_> 0 such that 
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£(*. o- r, (jfc oi<a<i-t)«*i'« - '. l< 

<aa«; 'i — 's I- <HXr 
. . S _£_ ^   >-' * 

Me cao acre readilj eatiaate the quantityjvr£ -H£ 'j bjr atarting fro« the charac- 

teristic ajstea (9). Pro« equations (9) and initial conditions (10) it follows 

that 

0»)      (>-I> ■*»-!»  J»-J* 

I'lfr »- r, (/. p)|<»m«| r, - r, J. 

(37) 

According to cur notation 

\rt{x. 0-X(.x. 0JH*<8fc p). 0-VÄfc » OK 
<K»(-«aft P). 0— r2 (*,(*, p). 01 + 

,,<•-"/«-0 («-»(,-1) » t«-D 
-H ''J ( *2 (*. P). 0- rs ( jr, (/. p), 0|<|r2(/, p)- ^ (/. p)f+ 

+ -p-|Xa(?.  P)-  JCj  (f. p)|. 

Here inserting estimates (37), we get 

\r%{*. 0— r, (x, 0|<Bmax| r, — r,  | {/ + £,}.      (38) 

Estimates (36) and (38) prove the uniform convergence of successive approxima- 

tions in domain G for a sufficiently small t . 

Thus, we have proven the existence of a solution of the formuleted Gour- 

sat's problem for a system of two luasilinear equations. It ia interesting to 

note that in the case n ^-3 not only is the question of the assistance of the 

solution unclear, but even the very formulation of Goursat's problem. 

7» Construction of discontinuous solutions of a system of two quasilinear 

equations. Now we .take up several cases of construction of discontinuous solu- 

tions of a system of two quasilinear equations, which we will write in invariants' 
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and also in the fans of the lavs of conservations 
--a.—»-i~-.^-*__■._.:-_ .!••:■*_>^. *  .*- :■ . >/.' --r'v, ;.J;"S. »j 
laws of conservation» 1TO.U .;.v;V, 'w irJväPsi 

Ve will aseume that system of equation (2) satisfies requirements (3*5«4) ~ 

(3.^.12), with the only difference that now the functions £., &., IL, D1, and 

D_ appearing in these conditions, except for the arguments indicated in sub- 

section 5> also depend on x and t. 

We will seek the generalized solution r - r(x, t) of system of equations 

(1) taking on the initial values  r(x, 0) - r (x). (3) 

We will assume that r (x) has a first-order discontinuity at point x - 0; with 

the exception of this point, the function r (x) at the segment (xj^a is 

assumed to be continuously differentiable. 

For the case when  r°(-0)^ r°(-K>),   r°(-0)^ r£(+0), 

the solution r(x, t) will contain only centered rarefaction waves and will not 

have discontinuity lines (shock waves). Wie solution can be constructed in this 

case by using the solution of two Goursat's problems considered in the previous 

subsection. Therefore here we will deal with the case of discontinuous solutions 

and require of the initial function r (x) that   r?(-0)?- r?(+0).   (4) 

Just as for the case of the problem of the decay of arbitrary discontinuity consi- 

dered in subsection 5» problem (1), (3) given condition (4) is decomposed into 

three mutually exclusive cases» 

a)     A?(+0)<>?(-0), /?a(r°(+0). /■?(-<)).*/f(-0). 0. 0)< 

b) 

c) 

!r$(+0)<4(-0), *,(f?C-9). >?(+<». r§(+0). 0. 0)> 

/?a(/?(+Q), f?(-0). TJ(~0). 0. 0)>rf(+0). J ~ 
Ä,(>S(-'6). ^?(+0). r°(+0). 0. Ö) < r?(-0J. j   <7) 
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When (5) is satisfied, solution r(x, t) of problem (1), (3) has the dis- 

continuity line Oitry   with index 1, issuing from the point (0, 0) and the 
1 "»    + 

rarefaction wave  %Co O^i ^P^®***  4»46, a); when (6) is satisfied, rare- 

faction wave at ^0<£\ and discontinuity line 0££~   with index 2 issue from 

point (0, 0) (Figure 4.46, b). Finally, when inequalities (7) are satisfied, 

two discontinuity lines O^C D with index 1 and 0<£~.   with index 2 issue from 

point (0, 0) (Figure 4.46, c).1 2 

b) 

Figure 4*46 

The construction of solution r(x, t) is different in each of these cases, 

however  cases a) and b) differ from each other only by the indexes of the 

discontinuity lines and the rarefaction waves. Therefore it is sufficient that 

we consider the question of whether the solution has been constructed either 

when inequality (5) or inequality (7) has been met. 

Let us outline the method of constructing the solution r(x, t) in each 

of the two cases. 

The common ground for these two cases is the solution of Cauchy's problem 

for equation (1) with the initial conditions 

r(x, 0) - rQ(x),  -a ^ x < 0, 

assigned only to the left of the point  x - 0, and with initial conditions 

r(x, 0) - rQ(x),   0 < x ^ a, 

assigned only to the right of the point x • 0. 

The solution of each of these two Cauchy's problems is continuously dif- 

ferentiate and can be defined in the domain of definition of each of these 

problems by the method of characteristics outlined in Chapter One. The solu- 

tion of the first problem is defined here in douiain I bounded on the right by 

a characteristic of the first family Oo£\\  the solution of the second problem 

is in domain II, bounded from the left by a characteristic of the second family, 
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V, which we denote by ^J^jCFigore 4»47)« Note that in some cases domains I and 

II can overlap each other, i.e., the line Odd?  can **e *° *ne left °^ tne H-ne 

Ö££Z,  however for our further consideration this is not of key importance. 

Solutions of the two problems in the domains I and II will be further denoted 

by r (x, t). According to the results in Chapter One., r (x, t) has bounded 

first derivatives in the variables x and t; we will assume that these derivatives 

are bounded modulcwise by the number C > 0. 

Figure 4.47 Figure 4^48 

In the case when conditions (5) are satisfied, the construction of the 

solution begins with the solution of Goursat's problem for system of equations 

(1) with the conditions assigned at the characteristic öXi 

'i<*. 01«,,+="?(*• 0. 
and at the point (0, O): 

Iirnr2(/!2(,0(+0), ft 0. 0), J) = ß, 

where 

■ Ra{r°(+0).  ^(-0). ^(-0). 0. 0)<ß<r°(+0). 

The solution of this problem is constructed by the method outlined in 

subsection 6. Suppose that when 0 <C t <. T the solution of this problem is 

constructed in the zone £*f~ 0£c~  (Figure 4^48). According to subsection 6, 

the solution r(x, t) of this Goursat's problem is a smooth function and, in 

particular, is differentiate along the characteristic O^?-    The solution 

r(x, t) in the zone ^„Ö,/. will also be denoted by r (x, t). 

Further constructions are aimed at defining the functions r1(x, t) and 

r_(x, t) satisfying the following conditions: 

1) r1 and r„ are defined in the zone <£ *üj£.r,  containing the zone 

ä^y 0^2 m^  satisfy system of equations (1) in the zone ^tXo^"'. 
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2) Integral curve Oot-,.   of the equation 
1 

^ - 0, (rt (*. 0. M*. 0« /• <V * 

passing through the point (0, 0)t   x(0) » 0, 

lies entirely within the zone J£ | OJg"\ when 0 «£ t < T. 

3) The condition   v^ (x, t)| ^y- - r°(x, t), 

is satisfied at the line Oo£2  an(^ tne condition 

M*. 0l0,  *»«»(/! (x, 0. 'o(*' o. *. 0- 
0I   

(8) 

(9) 

do) 

(11) 

is satisfied at the line   Oc£ V 
We can easily note that if such functions f1 and r„ and the line OJt-r 

are found, the generalized solution is given by the formulas 

r(x, t)      in the zone OC-Q OoZ ?' 
r(x, t) -{ r (x, t) outside the zone £C _ Oj£ p* 

(12) 

Actually, formula (12) defines a function that is discontinuous at the line 

0C£T\  > and which everywhere, except for the discontinuity line, satisfies sys- 
1 

tem of equations (1). Solution r(x, t) satisfies Hugoniot's conditions and stabi- 

lity conditions at the discontinuity line O «^ • 

Thus, the problem has been reduced to constructing the functions r.. and 
/
T2  satisfying requirements (1), (2), and (3) formulated above. We now indicate 

the method of successive approximations by means of which these functions can 

be constructed. 

Let us define the function*1?^ (x, t) to the left of the line flj£. We 

Mix, t) will assume that^AXx, t) does not depend on x and that at the line    0<£ 2 i* 

takes on the same values as does r2(x, t).    Thus, r*2(x> t) is defined to the 

left of   O^C 2 and is given ty the formula 

where x - x(t) is the equation of the line O£tL0* 
(1) 

Next, let us determine vAx, t) as the solution of the equation 
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ü 
(13) 

satisfying the condition 

(1) 

^.t   W/*r*ifl at tQe line /I/o«   n» solo- 
(1) 

tianxT. is uniqualy defined in the zone ££  -]&<*? 2 (^iff*3* 4 »49)» where 

0££*  i(B *he characteristic of equation (13) passing through the point (0, 0). 
According to our conditions, r?(-K)) < r°(-0) therefore for sufficiently small 

T the inequality ,*././£ A</*(*, "A"! will be satisfied in the zone ££   *0<£A* 

From condition (3.5-11) it follows that 

^1,(^(0. 0). r,(0, 0). 0.0)= V. . 
V      '*= 5,(>?(+»). /?1(r?(+0). r0(-0). 0. 0),0.0)< 

<6,('?(-0), r0(-0).0.0).  (!4) 

In inequality (14) the slope of the line 0^£ 1 at the point (0, 0) appears in 
the left side, and in the right side — the slope of the characteristic Oo£."\ 
at the point (0, 0). Therefore when this inequality is satisfied it follows 

that for sufficiently small T the curve OXg * lies to the left of OgZ, 
is shown in Figure 4.49« 

as 

Figure 4.49 

How let us consider in the zone       £g' . 0^£<\  the ordinary differential 

equation 

-3f—Di (ri(*. 0- r0(x, f), x. 0. 
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for which/we impose initial condition x(o) - 0. Bating that for sufficiently 

snail T, %(i, t) is a differentiable function of its variables, we conclude 

that the right side of equation (15) is also a differsntiable function of its 

variables. At the point (0, 0), fro« conditions (5«5>11) it follows that 
ID   o> u>    — 

I, (', (0.0). r (0.0). 0.0) < D, (r, (0,0), r0 (0.0), 0.0) <ly(r0 (0.0). 0.0). 

Bence, from the continuity of these functions ve conclude that for sufficiently 

small T the inequality 

bd^i*. /). r0(x, & x. 0<.&,(/#x. f). x. Q. (16) 

t"- 
is satisfied at the line Oe£<t  and the inequality 

. |,(r, (x. f),  r2(x. 0: x. fi<Dl{rix. f), r0(x. f), x, f).   (17) 

— at the line Q\J .. 

Inequalities (16) and (17) signify that at the lines 0££*  and O^A  1 

field of directions for differential equation (15) is of the form she  in 

Figure 4»50. We conclude that the integral curve of equation (15) passing 

through the point (0, 0) exists, and that it is unique. We denote this curve 

by 0   \y      . Obviously, the curve ö^^j\   is a smooth curve, and also dif- 

ferentiable. 

Figure 4.50 

.(I) 0) 

in 

After determining the curve 0^£  j\  > ^et us define the function "r-Cx, t) 

the zone   ^J    1 Oa^- o as *ne solution of equation 

dr 
(ii 0) dr, Ü' (i) 

£- + EsC-,(*.0.r2. x, f)-gr=fi{rl{x. i). r2.  x. f) (18) 
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(1) 
(in which r. (x, t) is a known fonction) satisfying the initial condition 

irre sei on tbe curve        \J      x 
OcZs D C (0 ■ 

1        ',(x. Olto  = ^(/~(x. 0. /,<x. <). x. <>: 
*****.     "^ • -  - -. 

I 

Biia problea obviously has the solution Vr^x, t) uniquely defined ever 
(1) * 

the entire zone    £g' ..  ö<*£2 
aiKi di**eren**atol* *■ *&*» »o06 for sufficiently 

saall T; here the values of tbe solution in the zone       ££    .  C^C- continuously 

adjoin the values of the function r°(x, t) at the line   OJd2. 

So tbe left of tbe line   Q^ *   we assuse that the function r_(x, t) is 

independent of the variable x and that it takes on tbe saae values as it does at 

tbe line     ö^£   i*    3heQ the process of successive approxisstions is repeated. 

fe"0, Suppose we know the LipecMfcz-continuous function*rT '(x,  t) to tbe left 

of   OiC^m    Let us define 

tbe problea 

^(x, t) i in tbe zone     ggj * Oo£,2 as ~-a s:--"-c- ;f 

-JT+liCi.  rt (x, <), x. 0-^-=       < 

& 
=/i (ri- *» (x. 0. x. 4     (19) 

r,(x./)l      =/?(x.* 
ox. ff®. 

■ 

Figure 4.51 
in) 

Analogously, the line    Q \JP        is located tc tbe left of 0<i^l, and the 

unique differentiable integral curve    /)^> cf tbe equation 

•«■ 

"S- = Oi(''l(x. 0. rc(x. 0. x. 0.     x(0) = 0. (21) 
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exists In the »one ^CM*^>^\ 'Ji&x* 4-51). B>en the function^ (x, t) is 

deflnei ID the sons  j£*C^£~ &s  the solution of the problsa 

J + Wr,(«;ft r,x. *)^J-=/,(M*- ft- rj. x. Q.    (22) 

(23j 

(* it is »sensed to be independent of x to the left of   öXP   1 *n<* continuous 

st the line   ()}£*• 

Vo prove the convergence of successive apprcxinaiicas,  let as estia&xe, 

just ss in subsection 6, the derivatives      &     it.    5*     ft m 

Suppose 
|r,(x. OK«    p—i. a».     « = i. 2. ...v 

jB-n ä«-s     !? , 
I   »i (x. 03<  C,.   |«,!|ar-<C. 

and the quantity Ä has the sase significance as in Subsection 6. 

Fros equation (19) we derive an equation analogous to (3.6.11)1 

Similarly as with (12), ve have an equation far the nsjarant of p,: 

using siailar operations as in subsection 6, fros this it readily follows that 

|A(«-4I< 
£+1 

l-(C-ä-l)*UE* +«r-d 
If 

r< 
2CC+1} *_("£*+p 
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then when 0$t^ t^T 

u 
f*,(x. Si<2(C+I). (») 

Let as else siaüarly write oat the eooetias for^i; the initial valoe*p,(x,t) is 
(n* 

calculated at the line ojr^     froe caoii*^0B (25)» 

>:. 

lere w» nenote ay —v- ««s JV"» ooncisely, the csrrespondix« derivatives of the 

right haJf of (25).    according to ogwditloa« (5-5-12) 

therefore frr sufficiently snail ? tat ienaannatcr in foranla (26) will not tend 

tc zero, and in riew of (2?) we ran asssae that the  socatants 3 ami 1- exist 

areseding, we get the result"that 

sach that at the line  O^w        /M^U. t)^< 3C « £ - 3 .        Just t 

Sew s^leciing 
r= 

r< i 

jJt*.0l<iOr 

.:-..-' FOTVTJT-  *C*,-: V^-5 

(27) 

}.     <2» 

we hrtaix the result        that whet - < t <^ 7, estimates    If,  »hi    ir.  tre sisnil- 

taneacsljr satisfie-i frr acy - =» ".  i i.e.,  all srrcessiT'e ajyrcxinasice» 

-iv-   ::■._-. :i-i  first  :r::^;:rH. 

?   ^    Let xs r—t.teec to proving tire  =«n«rgenae cf snirte-ssi-pe sryr-rxiTniitirta» 

of r{i,  t), asst^amg that the T&1-.» -f 7 is gfrer ij frrnds (29).    Let -us 

selects  the   rammte psrt   :f the  itmaiciE     J^F-d ~ ""^^^ - "  *'  2,  5»   •■-   s^ 

let  _s  ro_rc  it   17   the   ::rjtiti:-  1 ^t •$• IT1^   ?.  «aere 

that the rcanmas. ?*c"*  "-  ttmains 

is arffirieEtir snail 

- t-; - 
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Lines i~ (n> 

and irtrc- 

A \J j.   where n» 1, 2,  ...    Since the inclinatior. cf the line /?j£ -j 

at tfae point     (0, 0) does not depend an tfae number a, and tfae quantities 

*r' and^ hare uniformly bounded derivatives, tfaen tills can alvay«  be done. 

Let as denote by G this coaaon part of tfae domains      **f i  cjf~ 

dnoe tfae following notationi 

wfaere CT   is tfae intersection of tfae domain G vita tie strip 0 < X < x. 

denote by x -*S^ (t) tfae equation of tfae line c &?l -    **oa 09) ««* 

as readily c'ttain estimates  (we produced similar estimates in sebsec- 

from equations (,2"^) 

Bere we 

(20) we 

tion 6 of tfae section) 

ani, finally,   rar cfctair the estimates 

<? _  ff _' ** «• i»-n 
Ara(0<Jlmf-](i).i.Jlrai-|{0-r-JfaxA{9<AA 7, (IV 

frrm ero=iit»a (22) and (2J).    lere Ä «^ X are  certain bouacei c/uartitiee. 

übe ciifsm cczrrerigence of tfae seaoences /^ j,i r, l, a-jd £ Z^j readily 

f:llr%efrnn. tiese fcradas. 

In view of their urifent crcveraenr*.  tie riant.ties 

7.(x. /)= Ba 7, (x. ft.     7j(x. /5= £ar,(z.Q. 

satisfy L'i S system cf e^saxiaaa ("5);  tie line  Oit-    (x_ (tj - lia     i«(t)) is 

the f-^-rgral  rc^rre cf e-caaticc [6), anf tfae faaction r-(x,  t) satisfies tfae 

DoanitioB {^) at ^fae line    C £_.  . 

let us nrw prcoeec t: '■T*-^'~'~-F tfae serani CAM. 

J 
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a. 

ri^are 4-52 

*en inequalities (7) ere satisfied, as ve bare already oted, the solu- 

ticm contain» two discontinuity lineei 3*f  with index 1 and CX.'     with 

Index 2. issuing fron the point (0, 0} (Figure 4.32). On analogy with the 

preceding, let as Introduce functions ^(x, t) andr^x, t), which are required 

to coaply with the follovlngs 

1) 5he functions r^ and r^ are defined in the zone j£* Oj£Z  containin&* 

the acne <*|fD ^«*^n » **""* *■"■ ** *bis zon* bounded first derivatives satis- 
fying systen of equations (1). 

(30) 

2) 9he integral curve    OaC       of the equation 

— =i), (rj(x. A. /-,(*, A. x. A. 

pea#i=g through the point (0, 0), when 0^ t $. T lies in the »one J£? C>j£Z, 

arc. the integral curre öot _   of equation 
-I 

T^Dt&ti*- 0- 's(x. 0. x. /% (51) 

issci^g     frear tbe peirt (0, 0) lies in the acne  $£ 1 C^Cy vbeE ° ^ *  ^ 

'it'. GU.   «Ätir.Cx. A. A.fx. A. x. ft. /J5» -—^. - \   / 
?iC*. AWa*"*i &t* 0. r,(x, ft. x, A. (J3) 

--::- 

,   , .  



are satisfied at the lines 0£C~   and ^«^L • If the fractions r. anii. 

and the lines 0*L  D and £=*£- satisfying  these requirements are constructed., 

then the solution of Osachy's problem (l)f (3) is giver, by the formels 

C %. t) 
r(x, 0-1 

L r (xf t) 

^(x, t) in the zone    J£    O o£ D , 
1 ^2 

outside the zone    oC-n O^C-* • 
(54) 

We outline the method of successive approximations by vhich the functions 

~,  and r? can be constructed; here we omit several several details that are common 

to the preceding construction. 

Let us introduce the notation 

9     © 
r,(x. 0T, —*,(/•(-<% r,(+0). 0. 0} 

• •-  • 
r,(x. 0»=r,=Ä,(r*(+O). r,(-0), 0. 0) 

and let us define the line O^CD ** ^ ^^S^al curve of the problem 

(85) 

"1 

-5- = Oi Ci. r,(x. 0, x, 0,  x(0)=0, 

and the line ^ ^ - as the integral curve of the problem 

4rs<M't> '.('■ 0. x, 0. x(0)=o.% (36) 

If T is sufficiently small,  then when 0 ^-1 <   T the curve     Q jS'L 

the left of 0& 1» correspondingly,    o)£c T\   to the ri^lt of O^C.2' 
2 (1) 

Sext, let us define the subsequent approximation vK(x,  t) as the solu- 

tion of the Cauchy's prcblea 

to 

m $ p> P> 
* +5,<'i-'»(*• 0. x, 0^=/,^. /-,(x.0. x.O. "3F 

2> « 
?i(x. 0!o?Oj=Ai(?i(x. 0. '«(*■ 0. x. 0. 

and,r''(if  t) — as the solution of the Cauchy's problem 

IT 
.1» 1 e n 

(37) 

(38) 

dr- + 5«C,(x. 0. ^ x. 0^i =/,(r, (x. 0, rr x. 0,      (39) 

^(x. 0^*,—#*,(»•,(*. 0. fe(x. 0- x, .). 
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w 
B»e solution of the problea (37),  (38) can be defined In tbt SOY» 

j£* 0£-, let ua also define the solution of Cauofay's problea (39)»  (40) in 
(i)        (1) this saae zone, and exterior to this zone let us assume tbatvr/ andTK conti- 

OJ^ O) »     2 
nuously adjoin the values at the lines ö<£]   and C^tz 

on the coordinates of x. 

and do not depend 

Hr.en.  the process of successive approximations becoaes routine. Suppose 

we know the approxiaation* r '(x, t) with a bounced coordinate. First let us 

define   the lines 0£tö     and OoCp   as integral curves of the problea« 

(,-D 

"Z- = Di( 'i (*. 'X r,(x. ff; *, fl.  x(Q)«Q,    <41) 1 
la—n («-D 

-« =Di( '» (*. 0. M*. 0. *• 0.  x<0)—0. (42) 

These integral curves, for sufficiently small T, lie within the zones 

££*0£  and j£^ 0<£~, respectively.    We can be convinced of this bj investi- 

gating the field of directions of differential equations (41) and (42) at the 

lines 0^£*   ,   Oott    and   Oä£    ,   O oCz> quite analogously to the preceding. 

TSien, let us define nc'Aji, t) by means of the solution of Cauchy's problea 

fi? (<)    («-11 # ;«)   <*-« 

'«<*■ Oi&J««i( '» (*• 0. r0(x. 0, x. 0 

,(§) 

(43) 

in the zone ^C t 0^£z ; let us find*ri(x, t) in this same zone from the conditions 

-JT+ljC rx (x. 0. r,. x. ()-£=/,( r, (x. /). r,. x. 0. 
g» (■-» 
'i<x- '>!&£ =Ä,( r, (*, 0, r0(x. 0, x, 0 

(44) 

<«; <"jL 
and 1st us takevr.j and^ri a3 independent of x exterior to the zone ££ t O ^£ 

(Figure 4.5})«    we will not present here the cumbersome operations involved 

with the estimates of the first derivatives of the successive approximations 
(n)        (£) 
r/ and^', since they sainly repeat those given earlier, but we will present only 

the results.    If system (1) satisfies the above enumerated requirements, and if 
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(ß)  (B) 
solution ii  and r' remain bounded for any n - 1, 2, ..., then there exists a 

T > 0 such that when 0 < t ^ T all successive approximations r(x, t) have 

bounded first derivatives. 

We will denote by the zone at, 0*CZ   the domain of the variables x, t 

in which the functions *?.{(xt t) and^x(x, t) are simultaneously determined 

(Figure 4.53). 

Figure 4-53 

Exterior to the zone <$f ( otic   we predetermine r(x, t) in order that in 

the process of successive approximations there is no reduction in the domains 
S/w' V&)      (n»1) 
<SC, ^°Cz because the functionsx r.  andK T' are unknown in the domain of deter- 

minacy of the solutions of Cauchy's problem (43) and (44). 

Finally, let us note the elements of the proof that the method of successive 

approximations converges in order to explain the requirements that insure conver- 

gence. 

In the general portion of the zones   ot , 0<Z.,   for all n - 1, 2,  ...  (such 
In) (n ) 

exists and fcr sufficiently small T contains the linea OotD   and Ö ££$_   for 

all n ■ 1, 2, ...), on analogy with the foregoing it is not difficult to obtain 

the estimates 

iri (0 < mix 
dRt (rj. r^x.Q («-« (*-» _  (/i-J) 

A ?j (0+AK4 r, (Q + MA x0f{t) 

(<—I. 2; J + f). (45) 

(46) 
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El ,   . d#i 
*^ In formula (45) the expression for -jppr is computed for some value of the first 

argument that is intermediate for the successive approximations. Prom formulas 

(45) and (46) follows tnat 

^(0<Hf [+*}*"?(0  »-I. 2; y^O. (47) 

Hence it follows that, further, 

<t>   f  I dRi 
4r,(0<{maxU=- 

Since 
(' 1. 2; y*/> 

mix— +*}A r, 
I *"« i   J 

r, (/) (48) 

<1 

for arbitrary r., r2, r , and r , from this it follows that there exists a small 

T > 0 for which inequality (48) can be strengthened such that 

(«)        (1-2) 

&7,(0<pA 7t (0, o<ß<i  (i = i. 2). 

Hence follows the uniform convergence when 0 $ t .< T of successive approxima- 
/nx " ^ ^») c») 

tions are r (x, t) and the discontinuity lines 0<i£D   and Oo£D  . 

Thus, we can show that there exist the limit functions "?. (x, t) ■ 
(n) X 

lim  r:(x, t) (i m  1, 2) which satisfy the above formulated conditions. This 

concludes the proof of the existe >oe of the solution of Cauchy's problem (1), 

(3) for the case when conditions '*■) are satisfied*). 

8. Remarks on the uniqueness, of the discontinuous solution of a system 

of two equations. We will briefly discuss here the uniqueness of the dijeonti- 

nuous solution of r(x, t), whose construction was presented above. 
c»->) 

Prom the known approximation r  (x, t), we construct in the preceding 
c) 

section the following approximation'r (x, t). We briefly outline the procedure 
<r»)    .        . 

of constructing the approximation r  (x, t) using the equality 

*) Note for more general systems, however, only for the initial functions 

differing little from the constant function was the existence of generalized 

solution recently proven by D. Glimm [66]. 
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r(X.t)^Tr  (x), <D 

where by T we denote the nonlinear operator that converts approximation 

Tf     (x, t) to the approximation*?'(x, t).  We showed above that for each of 

the configurations considered the following equality obtainsi 

\\7(x, 0- t  (*. OKM ' <*■ 0- ' (*. 0|. 0<ß< 1. (2jf< 

where by the norm    j| r(x, t)fj    we refer to the maximum of the modulus r.(x, t) 

in the G region.    Inequality (2) can also be written as 

(a-l)        (*-J) 
\T 7 ~r7 r   - r  |.     0<ß<I. («)! 

Now let us assume that there exists two distinct solutions r(x, t) and 

r(x,t) of the above-considered Cauchy's problem. Two possibilities are feasi- 

ble heres 

1) solution r and r correspond to two distinct configurations} and 

2) solution r and r correspond to the same configuration of the disconti- 

nuity lines and the rarefaction waves. 

However, the first possibility can be striken out at once, since it is 

equivalent to the nonuniqueness of the stable generalized solution of the prob- 

lem of the decay of an arbitrary discontinuity, and, as we have seen in subsectkn 5, 

this is precluded by the requirements imposed on the oystsm of two quasilinear 

equations- 

Therefore it remains for us to consider the case when the solutions 

r(x, t) and r(x, t) correspond to the second configuration. This means that 

there exist two solutions r(x, t) and r(x, t) satisfying the requirements that 

were formulated in subsection 7 an<i satisfying the same operator equationi 

r(x, f)*=Tr(x. t).    r(x. Q«- ; r(r. i). (4) 
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method of estimates which were presented above for successive approximations 

is applicable to solutions x and r of equation (4)1 therefore fro« (4) follows 

the estiaate 

^    76 
which is lapossibls.    Hence we conclude that r ■ r.    3ms we have proven the 

uniqueness of the stable generalized solution of Cauchy's problem (5«7»1)> 

(3.7.3). 

OJX  second remark deals with the region in which a discontinuous solution 

of a system of two quasilinear equations can be constructed. As long as the 

number of singularities of this solution (discontinuity lines and rarefaction 

waves) ruaains finite, we can adopt this method of constructing the solution bj 

decomposing the ragion into areas in which the singularities are isolated. How- 

ever, solution singularities ar^se even from smooth initial data, and heir 

number can be multiplied, possibly, even unboundedly. 

This fact makes difficult to the construction of discontinuous solutions 

of a system of two quasilinear equations in the large, i.e., for any t > 0. 

Let us note, however, that in most cases of practical interest the 

number of singularity resins bounded. 

9« Viscosity method for a system of quasilinear equations. Phenomena of 

the viscosity method. In Chapter Two we saw that shock waves in a gas or liquid 

can be considered as the limits of flows of a viscous and thermally conductive 

fluid and we became acquainted with the application of some linear viscosity 

(Reumsnn-Hictsmyer viscosity). In subsections 2 and 7 of Section II of this 

chapter it was. shown that a stable generalized solution of one quasilinear 

equation is the limit of solutions of an t quation containing "viscosity" as the 

viscosity coefficient tends to zero. 

The viscosity method has not yet bjen adequately studied for systems of 

quasilinear equations. With the axample of a homogeneous system of quasilinear 

equations 
, du j_ dy (u)     . 
"cFT-35- = 0.  «=?{«, «,}. 
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that is hyperbolic in the narrow sense; 

$,(«)<&»(*)< •'■• <£«*] 
we will show that the choice of any given viscosity is substantial and requires 

great care. 

We will write the 3j--,t- r? equations containing viscosity ccrreeponäiDg 

to (1) in th« for« 

£^=Ä£. 00 

where B^ ) is a n x n square matrix. Thus we will confine ourselves to the 

class of "divergent"*) viscosities. 

First let us make several very general remarks. Obviously, the matrix E 

must be chosen so that the following requirements are neti 

a) the formulation of Cauchy's problem is correct for system (2)» 

b) solutions u^ are smooth when t > 0 for any piecewise-cnntinucus and 

piecewise-smooth initial data; 

c) the convergence (for any norm, for example, in the everage) of solutions 

u^   as M~~*" 0 to stable generalized solutions u(x, t) of system (1) holds. 

At prese.it it is impossible to indicate which are the sufficiency condi- 

tions, which one met will cause conditions a) - c) to obtain, in view of the 

fact that systems (2) have not been studied closely enough. Therefore we will 

attempt to delimit the clazz  of matrices B by relying on certain very simple 

analogies. 

Let us consider the case of linear systems (1) and (2) with constant 

coefficients, when <fm Au and A, B are coefficient matrices. 

First, let us note that when any solution u^ (x, t) is representable in 

the form u^x, t) - u (x/n, t/xi), 

where u(x, t) is the solution of the system 

(3) 
2u *) The divergent form of viscosity in the form ^ojrB ensures that 

Hugonict's conditions are satisfied at the front of a blurred shock wave 

(compare Chapter Two, Section V). 
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i; Ibis syste» bsa particular solutions of the fors 

::jä 
where u    is the eigenvector (right), and (- -—j ) is the eigenvalue of the nstrlx 

3 ♦ ii/v •    &   ^* a** *he eigenvalues of nstrix B,  dien as |v| -^öOf   A- 

ijb . v"    + 0(v ).    According to requireaent a), we vish to satisfy the condition 

u(x, t) —•» 0 as       u(i, Oj —*■ 0, 

therefore we sust require that Be /$ ..  > 0        (j - 1t 2,  ..., n).      (5) 
v" 

bold« Actually, when Ee£ . < 0, ve can specify ;"<be sequence of initial function«, 
*©    ,   »     iyx / 

say, uv (x, 0; - u e  /v ,      which as V —^o^ 

tends to zero, but for soae solution uv (x. t), according to (4}, it tends (in 

absolute value) to OO  for any z > 0. 

Condition v5) i8 the well-known condition for the correctness of Cauchy's 

problem for system of equations (3} according to Hadaaard. 

Recently attention was directed to the fact that (cf [65]) conditions (5) 

are in some sense insufficient for the correctness of the problem under considera- 

tion. 

Let us consider the behavior of the numbers A. for small V. If <£. are 
. J 

eigenvalues of matrix A and r. and £.  are the corresponding eigenvectors 
J      J 

(as usual, we will assume that cL .  are real and distinct), then as we can readily 
J 

see, *JL=- 
a>v+/v»(//ßr/+P(vV; 

If for some j - j (J..  Br. )< 0, then by (4) a system with viscosity will have 
0   Jo Jo 

particular solutions of the form       _-,  .. .. _ _.. ...j, . 
Vfifl.ArTVll    V>1 M£; 

"#'=*« -1 
where v^ is a bounded (as M—*- 0) function, which as JU-* 0 will tend, for 

any t > 0, to cO . According to requirement c), we must exclude this possibility 

and require that along with condition (5) the following condition is met: 

(/yß/-y)>o    (Ai. 2..... »). (6) 

Note that requirement (6) implies that the diagonal elements of the visco- 

sity matrix in the system arising from (3) after it has been reduced to Riemann 

invariants must be positive.    - 623 - 

-,«-» mfT*,^z ■ii^tifaHyfewii^irtiirf^i/^prfir-f'irTh'"^ 



, cooditi Gta »Mingy vith • 11a—1 

for the nonlinear aystea a* well. 

Let us consider to here a eisple ex&apie. 

(5), (6) it also be satisfied 

X -Pi He will seek the particular eolations iM v 

dent only on a single variable y - (x - 9t)/a, i.e., 

fia function n^Cy) satisfies the ayates of equations 
>- ■ 

) of a>ata« (2) deper- 

5-»«^-^ o4»-M<v-nei-^. 
which admits of integration 

«bare C is an arbitrary, constant vector. 

(T; 

i cO , i.e., 

Me require of this solution o^ _thai it tends tc ccsatant values as j 
as y —•» -OQ, 

•*#     <- u+  ss 7 —•- -»-co. 

For this solution to exist, it is necessary that the points u    - u~, u   - 

a   be stationary points of systes (7), i.e.,        F(u ) - F(u ) - 0. 

These conditions can be rewritten as    <p(u ) -  <p(u ) - D(u    - u ). 

Hence we conclude that the states u , u   anst be related by äsgoniot's conditions. 

First, however,  it is still insufficient for the existence of the integral 

curve u    (y) of systea (7) passing through the points u    when y » - co end u 

when y - *0o . 

Let us explain several additional necessary conditions; to do this we re- 

write system (7) as du#/äy   m B    (uyt()F(uX(), 

where B      is a matrix inverse  tc B.    Sxpand the right side of this systea in a 

series in the neighborhood of a stationary point, for example, u   - u .    Then 

^(v-.-)=ß-,(.-)(^S>)L#.(*,-.-)-l-0(!«(l_«-[»)-j 

-jrVH^-^v^O+OU».--'!}  : 
Multiplying the system scalarly by the vector (u^  - u ), we get 

.   37' T-- 
<={**-f)B-x{l-)[A{*-)-DE){H-*-) + 0{\*%-*-r). 
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(U. -fA.-)~ 
When the variable y increases, the quantity ~ 

2 
does not decrease in the 

neighborhood u • U-J therefore if the integral ~e u {y) of system (7) exists, 

the matrix B-1(u-)(A(u-)- DE) cannot be negatively determinate. We quite simi­

larly establish thai; the matrix B-1{u+)[A(u+)- DE] cannot be positively deter­

minate. 

Suppose there exists the desired solution u~{y) of system (7). Then 

the limit 

{ ~~-llrn 1111> (.t; f)=- 11 (x, t)- + 
J&·,.O II 

when X - Dt< 0, 

".~~hen x - Dt>O. 

is a di8continuoue function which satisfies Hugoniot 1 s condi~ions at the disconti­

nuity line x • Dt and, therefore, the integral laws of conservation of system (1). 

However, this solution can be an unstable solution of system (1), since 

the conditions for the existence of solution u (y), which were discussed above, 
- + and the conditions for the stability of the discontinuity u , u are distinct. 

I~t us confirm this with a simple example, set up in the work (5). Suppose 
n ~ 2;. · cp(u)·==: {:- u2: .p (u1))"i .(>' (u1) <.O. p" (u1) > o.·. 

Then system (1) is a system of equations of isothermal flow of a normal gas (of 

Chapter Two, Section II). 

Suppose u + .. { 1, 0 } , D > 0. Let us show that there exists a solution 

u (y) when u7 > 1. Such a solution, as .A_,. O, changes a rarefaction wave 

into a shock wave, an,:. as we have seen in Chapter Two, this solution is an un­

stable solution for equations in gas dynamics. 

Let us select the coefficient, positively determinate matrix 

Then 
8 = (: ~), . ~. b ; o. c + 0. 

. s-; :.:,( ~ 'o )· ,. 
4 

• • c(ab -} .•. 

Eigonvnluen of the matrix B-1(A(u)- DE), aa we can eaail.y check, are 

:roo·~·-l of tho rp.1ad.rl"\tic equation 
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According to Bhgoniot' s condi tiona, : . t · : p (1)- p (uf). 1 

D a:::: --1 I I 
. . . "J . ·• . ·~ 

tmd according to our assumptions u~ > 1, D ) 0. Since p' (u
1

) < 0 and p"(u
1 

)<O, 
tl:'.1en there follow the inequalities 1 

or 
·. ·v-p·<I>>n>y-·.P'(u;).: 
p'(l)+D2<0 • . J!'(ui)+D'_>~O. · ~ \ :' 

Since a, b > 0, it followR that the roots of quadratic equation (8) when u
1 

• 

u. ""1 have different oigns. Thus, eigenvalues of the matrix B-1(A{u+)- DE) . .,.. 

are of different signs. This implies that the point u • u+ is a saddle point. 

Conversely, at the point u • u- the ~oots of quadratic equation (8) are 

of the same sign (if they are real). Therefore for the integral curve connect-
- + . ( ) ing the pointe u , u to exist, we must require that the roots of equation 8 

be real and positive, i.e., that the matrix B-1(u-)[A(u-)- DE] be positively 
defined. This will hold provided that the following inequalities are satis-
fied: 

1,..fe cnn easily aee that these two inequalities can be satisfied by fixing the 

arbitrary c > 0 and choosing the quantity D > 0 to be sufficiently small. 

Suppose the quantities a, b, o, D >o are such that these inequalities 

nre satisfied. Then the point u- • {u~, u;} is a node (u~ > 1, u; < 0), and 

the point u + .. £1, 0 } ia a saddle point. 

., 

: . t 

u, 

Figure 4·54 
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Thua, the pattern of integral· curves ot• system (7} in the plane ot vari-

. able u1 , u2 is of the form shown in Figure 4·54. 1!le arrows of the tisure indi­

c~te ~he direction of increa~e of variable y. Thus, given the reatriotiona made, 

~here o:d.ata an integral curve u • ~ {y) passing through the pointe u-, u +. 

Ey passing in the solution u~ the parameter ~ to zero, at the limit we 
gat ~ shock wave of rarefaction, whiob is unstable. 

Thus far we have not taken conditione (6) into account. In our case, ae 

we can easily v~riry, r.~~~{1~4)~V:·.;~·<~s;·~;+..~:;l'C~.::J:. 
·"·i"h'·: .• ~ • .::,~.~_~1"- ~:_ ' . , ... 'l' 't·.:;'}n·· ,··!A 
:J.,~{2~-~,Yr.7 R .(P,khJ~~;f·~·p'· . =~I 
"•····-- ...... "-' ... : ;~. -· ___ ::_. __ .... . •:;:\:'1>;11:1Jioo;.. ..... ~w. ...... 

If conditione {10) are satisfied, under which we obtained the unstable 

shock wave, then by (9) (I Br1) _ < (a + b)D - c <. 0, 
""1 u1.u1 

i.e., (6) has been violated •. 

An even simpler and more s1rlking example*) is represented by system (2) in 
the case 

When 

1
·,-··, . • . ":.. ;. ,:· , . (··1 · ... )"t·:./·~_·· ··lfl•·'T" ··' .,,,.'. . . .. rt: +"'1 l/ • , 

(!.·· ... ;· {.2 ..2}. ~: .. y"'-1"-· f." Cl.,"r;CI. 'j 
, !• ~ ! .. "•,' '"2 'I' 'a' • • ' I ·• ' '" 'I'' ' ~· '• 

;,(11) .... .. I T • ,: .- . . . " ,'. .. ·: ·; ;: t· . . •·.·. :lf-1~ .. ~··· :~.:;_ T · ·::/ · : .. .. : · .. · · 1 . .:....u:· · i -_ .. :.y;:' .. ;_.·.·~ 
[:_.. . ::. . :-:. . ' . . . .. . . . . . . . . ·. . . .:.: .'~ ~ 

~i~~~~···,; .. ·~. ·z 
.~~1il:!·.;;.;,(l.rv :;. • 
-~!':!~~·;;:'1''\Y.T•)'t t:::. -.' _ 

matrix B is positively defined, and moreover it is always symmetric and, 

{ 

I t. 
obviously, satisfiea condition (6). System ( 1) when <P • ..!:!.t , &.e;4J decomposes 

' z 2 
:i.nto tl,•o E. Hopf aqua tiona: 



this, 

NotB that the integral curve in this case passes through the point u
1 

• 

at which t.he eigenv·alues of system (1) ~1 • u
1

, ~ • u coincide 
. 2 2 

the system is not hyperbolic· in the narrow sense). Precisely because ot 
ccncH.tion (6) ia insufficient in the given case. 

~fhather similar examples with a symmetric viscosity matrix are posstble 

for systBms that are hyperbolic in the narrow sense is not known. 

Let ua consider the viscosity matrix . 

which obviouely satisfies vendition (6). 
B • b{u)E, 

Let us show that in this esse when n • 2, system {7) cannot· have solutions 

which aa JJ~__,.. 0 correspond to unstable discont:f.nuities. 

Actually, if the integral curve uM (y) passing .through the points u-{;y • 

- oo ) and u + (y .. 00) exists, then it is impossible for the following inequalities 

to be satisfied: S k(u -) < D < gk(u +) . ( 11) 

for any k • 1, 2. Actually, suppose that these inequalities do hold, for example, ·· 

for k • 1. Then, since ~2 (u) > $l (u), then S 2 (u +) > D. nterefore the mat~ix 
B-1 (u+)(A(u+~)-:) ,. b~u..T) (A(u)- DE) • oc~.J..> (A(u+)- DE) h&s the eigen-· 

values ~K ( t.t. - which are both positive acoo:cding to ( 11 ) • As we have seen };, { u..'~) 
above, in this esse no integral curve of system {4) connecting the points u-

.?.nc'l. u+ exieta, therefore it is impossible to satisfy (11). The impossibility of 

(11) when k • 2 is similarly proven. 

A-.'10. thus, in the case B .. b ( u) ( 11 ) cannot be satisfied for any integral 

curve. 

l~ote that from this it does not yet follow that whole solutions u..;« {y) 

rw ~L{-,.,. 0 will tend to stable eolutiona of system (1 ), sinoe stability oondi• 

t:l.c:r.s c•wra not formulated in the form of inequalities (:;.1.10) and (3.1.11) for 

n:::.:-h:i. t:r"ary sya terns. Non'9 the lese, for systems for which these inequalities 

[::u.ar.antee uniqueness, viscosity matrices of this type yield only stable·solutiona. 

Some advantagea of a unit viscosity matrix can be established also in 

more genernl c~8eo (cf [62)). General viscosity matrices, but for systems of 

a mo~J spacial type, have been treated in the work (34). The advantages of a 

'.mit v:l.ocordty matrix does not of couroe imply that it is to be preferred. In 

prnctice more complex vtscoeity matrices have to be used. Thus, tor example, th• 
1'v:tncos:tty l!'.a.trix" 1.o not a unit matrix for a vieoous and thermally conductive .D.uid. 
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Section IV. Applicationa of the General 'l'herory or Sy-stems or B;yperbolio QaJui­

linear Equations 

In this section we will point out a number of problema in p}O'aioa, ohe­

ro.:!.st:cy, and msthemat:lcs that are related to the theory of sy-stem or hyperbolic 

qu~ailinee.r equations. 

The beat kuovn applicstion of sy-stems or hyperbolic quaailinear equations 

is the study of one-dimensional nows of compressible gaeea and f'luida devoid 

of vie~o~ity and thermal conductivity. Chapter Two discusses this problem in 

detail alor~ with its relationship to the theory of systems of quasilinear equa­

-tions. 

Oth~r well-known e:v1.mples o:f problems rele.ted to systems of quaailinear 

equa tiona in~lude thG motion of an incompressible fluid irJ shallow ohannels 

("shallo~ Hater" theory), auperscnic s~eady flow of gas or liquid in the two­

diwenaional case, problems in the nonlinear theory of elasticity, filtration 

theory, and certain others, We now dwell in brief on several of those. 

1. "Sha~.lm1 we.t('r'.' theory. Suppose that a heavy (in the gravity field) 

incompressib:.e fluid flows in the channel that has the shape shown in Figure 

4.55. We will assume that the liquid is devoid of internal friction, friction 

egainst walls and boi~0m of the channel, and that the level of the fluid above 

the bottom of the channel h is a small quantity compared with the dimensions 

of tho bottm11 irregv.la:ri ties, characteristic flow dimensions, and sc on.. W.t 

'\c!:l.ll f:lasume that the flow of the !.iquid characterized by one three-dilDE\nsional 

Yr::.-:i.able x and depend on time t. Thus we will assume that the velocity of the 

J.:tquid u han a nonzer0 com:ronent ux' which we will denote by u, and we can negleot 

~he remainine components; in addition, we will assume that the level h depends 

alao only on x ~nd t. 

'fli th these 

thr:J liquid. 

Figure 4·55 
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Suppose b(x, t) is the level of the liquid measured from the channel 

bottom at the p~lnt x, f is the density of the liquid, .,(, is the channel width, 

and u(x, t) is the velocit,y of the liquid directed along the x axis. 

'lbe amon11t of liquid present at instant t betweon two cross sections 

or the channel divided by the plane~- x • x., , x • x
2 

is obviously th& quantity 

:. s ·:~~:~~~·-··· ~! :·-~:- ~~~ ::.:~·- .. :. ·.·- · .. ~>: --
t:!r:.<x~ 1)~~,~ L ~<~~-?-"~~ 

The cl'-.ange in the am~t of liquid in this part of the channel between 

the instants t • t 1 and t • t 2 is the quantity 
j ·ii:-~·:Jt;~·~ .... ... ;-~ .... ? ;~··~:·t·~ .. _--,~ ... _-·y~ ... _.~.' .. ;; ... ;;·-:r··: ;r~: .... 

l·: -~l-(h (x. ~.l ~ (x, ti).J.dx.: ;:: ·.- · · · -.
1
/ _. : (l) • 

-which, obviwaly, must be equal to the amount of :liquid flowing during the time 

from t • t 1 to t • ~2 to the planes x • x1 and x • x2 , that is, the quantity 

.· .... ;-,, ...... -:: ~-: .... ~ --· ··:·-· ... - .... ' 

: ....:.:~ J (~ (i'2• I);, (x2• I).:_ h (x1• I) a (x1• I)) dt. 
t '· . . . . ' . • . 
1--. . ~- : . ' - . ·. ' .. ·' ,, . 

. (2). 

Eq,ua t:L"lg ( 1 ) to the quantity (2), we get the equation 
{-. ..,, .... -·-"T'•· t • - • . • '• . • • • ~ • 

_1 (J,}:'•~· -~-•_<x: t1)~_dx~l {httl.r-.r,-httl.r_;.]dt='=O. (3)'.; 

l _:~~ -- o> --· - ~ • : 

't!hich cbvicus1y is the integral law of conservation of the mass of liquid. 

Aa usual, the following integral law or conservation stems from (3)• 

it is valid for any closed contour C of the plane of variables x, t, and the 

diffe!'.'ential equation ~ h/a t + (~j;, x) hu • 0 (5) 

in the case of smooth flrJWa. 

The change of to'c&l mome:ttum of the liquid in that section of the channel 

during the time from t • t 1 to t • ?2 is equal to the quantity 

q>trr-,.:~:- ·:~ .2;;,;1~~;1. ·dx·~·.-\]-:-.-~ ;: ---- ~--~ ::: ··v:·1 
t·:. :~~~.~:_'·.·~~~--~· . ~:.' .. :.~"~_t_;.,_ ~~-!~~- . i( _ _. ·~ ... :..~~J 

The momentum of the liquid varies in this part or the channel due to two effe~tsa 

t.he transport of momentum by the flow through the planea x • x1 and x • x2 in ~ ·· 

the amount - 630 -
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. . ... --·-···-··· ·····--·----·- --·- --·-···---·-···-----.---·-----·-·-·- --------

and also the momentum·of the pressure forces and the planes x • x
1 

and x • x
2

• 

Calculate the total presaure p(x, t} acting in the channel cross section •. 

Assuming that at the free surface of the liq~id z • h the pressure is zero, we 

will have by the barometric formula p • pg(h - z) (g is gravitational accelera-

tion) and • . 
1

- . ia-..tt.- .. ( · - -· , . 

. p(x. ~- .. l rpd~~lpj 1 (~-z)dz~{lpgh'·. 
Tnerefore the momentum of the pressuce :~rces in the sections x • ~ and x • x

2 
during the time fLOm t • t 1 to t • t 2 is given by the quantity 

. '• ... . .. 
- l!!f J {h2 (x2• f)- h2 (x1• _t)) dt. (9) . 

. J, .. . 

?~o"' equating (6) to the sum of (7) and (9), we get the integral law of 
conse~~ation of momentum of the liquid 

:r, - . . '· . ··. . 

J [ hu 11_,,- lt.'ll1_ 1.] dx + J { ( hu2 + K ~1 L-x.-
~ ~ 

.. "' ~ l 

- [ hu2 + g ~] L-.r,} d~ = 0. (10) 
L. • 

Equation (10) can be written as the integral law of conservation of momen-
tum 

. -, . 
(ll)' 
...... 

from which follows this differential. equation for smooth flowsa 

Combining equations (5) and (12), we get a system of two quasili~'ar equa• .. ·· 
tions for h(x, _t), u(x, t)a 

- . 

die tJiul blul -~ :. ,"' ... 
T + dZ" = o. . ""7 -1- u ( h~_'.t,-f tt2J = o. 

.. ::.· 
(13) 
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low we can easily note that the ays tea. of eqraticn (1?) coincides with the 

systex of equation la gas dyasxics of as isestropie flow of as ideal gas vitfa 

adiabat index  V- 2.    In fact, if the quantity fc is denoted by  /*   and if we 

assuae «hat p • {g/2) r, then ays sea (13) ten» into the ocrrespopding systex 

far the case under oonsid*rrtioe (of Sh&jter 7J*c). 

Pro« this wpariaoa wi ;a^ is particular conclude thai the ayste* (ij) 

is a system of hyperbolic qaasilinear equations and that ita solstices ere general- 

ly speaking discontireooa.    Corresponding to the discontinuity of the solution 

cf systea ('•J) is the sadden increase in the level h(x. t}, the so-called Vater 

leap." Se äsual JSigoniot's conditions and stability conditions oust be satisfied 

at the dlscoctösatity front. 

2. Plane steady state flow of a coanressible gas.    Another well-knows 

exasEle cf a systen if hyperbolic ipasilia&ar equations is tne systex of equations 

describing a plane steady state supersede flow of a cospressible gas.    If s, ▼ 
are the crrcoonents cf the velocity vector q,  then this systex is of the for« 

4» 
7TF 

= 0, 

W-3-+--rr=C- 

*   .   1 #* 
•ir-*-*£-*-> ?7=0- 

'.7+-»7 =a 

o> 

ifci3 systex describes only snooth flows.    5be conservative far« of equa- 

tions (1) require when considering discontinuous flows is presented below. 

2se characteristic eq-saiion (of the fourth degree) fcr systea (1) is of 

the fora 

.    -.- -    -    -% 

:r 0 

0 

0 

p 

0 

0 

0      o—(a 
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where £ » -iy/dx is the characteristic direction of system (1). 

The first cof actor gives a double root ^ - v/u. de corresponding charac- 

teristic is enviously s streamline. Thus it is doubly degenerate. The second 
2   2   2   2 

cofactar is the left side of (2) has real roots only when q«u+v^c. In 

the acoustic case (q • c), both of these roots coincide and system (1), as we 

can easily check, is sot hyperbolic. In contrast, in the supersonic case (q c) 

it is of the hyperbolic type, fo see this, it sufficee to verify that corres- 

poaälng to each eigenvalue 4; » v/u there are two linearly independent eigenvectors, 

that is, two independent equations in the characteristic form of system (1). Un- 

ooapllcsted assipulstiosa lead to the following two equations that contain only 

differentiation along the 3treasiir.es i 

$-\ 

**+*<***)-• 
(here d/dq ■ u 3/3x   +   v &/7*j).    Belatjon (3) implies the constancy of entropy 

st the streamline and, obviously, is independent of equation (4). 

Introducing the function H( f, S) given by the equation 

from equations (3) an»*. (4} -e get       d/dq \l'xf
y , 3) +   q /i.    < ").        (5) 

Thus, the streamlines correppune to two Riemann invariants! entropy S and 

3 - E - -jq . The equality B ■ constant fallowing from (5) is called Bernoulli's 

integral. 

The expression of the remaining (so-called acoustic) characteristic values 

of system (1) is as follows 1 
. . ± — uv ± e Yq* — c* __        v* — e*  

a»—«' ~ WT(V~q* — <* 

The characteristics dy/dx ■ ^      form with the streamlines the angles 

oi and -oC , respectively, where       sin^t - c/q - 1/M,      M - q/c 

(the angle eC  is called Mach'3 angle, and the function M is the Mach number). 

In conclusion, we present the divergent form of equations (1)1 
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«aspi**rti*»sffies«™«w-«K?5!«w»*T-.- 

,! 

M+fr ■o, 

^f'+f+*)]+4h(»+f+.*B-i 

3. Chemical sorption and chromatigraphy problems [64]. Suppose that 

through a tube containing a sorptively active substance (sorbent) flows a liquid 

or gaseous mixture of compounds that are to be separated. Avoiding effects 

associated with the influence of tubing walls, we will assume the problem to be 

one-dimensional. Suppose t is time, x is coordinate along the axis of the 

sorption column, u. is the concentration of i-th component in the mixture, a. 

is the concentration of the i-th component in the sorbent, and V is the velocity 

of the mixture on the column, assumed constant. 

Neglecting diffusion flox*s of substances both in the mixtures as well as 

in the sorbent, we write the equations of conservation cf mass for each compo- 

nent 1 

*t 

J (l"i+«/H-,,-[«1+ «ilU,}rf*+ 
1, 

<• 

0-1.2 n), 

which for smooth u., a. reduced to the differential equations 

du,    , l) v^fi(«. + «i)-o. (2) 

We will make the assumption that the sorption is instantaneous, that is, we «ill 

assume that at each point of the tube and at each time instant equilibrium obtains 
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w between the sorted substance and the free mixture/* Mathematically, this is 

expressed by the fact that the concentration of the «sorted substance is deter- 

mined by the composition of the mixture, that is, the following functions hold} 

Equation (3) usually called equations of the Sorption isotherm. Given this 

condition, system of equations (2) is rewritten as 

- 

^ W. tff   "y i..- ■„■ jt    1* :>,       ■;■■   .:_S±£LXtlUUl   .1 *.« T 

where u ard f are vectors with n components. 

Characteristic values g »^(u) of system (4) are determined from the 

equation 

Let us denote by A»A(u) the eigenvalue of the matrix ((df./au.)). 

The:', obviously, from equation (5) we get 

M\ 

We will assume (actually this follows from general principles of sorptiou) that 

all eigenvalues Ak(u) of the matrix ((^f./au.)) are positive, i.e., the 

natrix &f/ä u is positively  defined.   Tften from (6) it follows that the 

eigenvalues §* £k(u) of system (4) satisfies the inequalities 

t>w=-TThä<v   (K>0)- (7) 

i.e., the velocity *?k(u) of *be characteristics  dx/dt - £k(
u^   (8) 

of system (4) is smaller than the flow velocity V. 

Let us consider in greater detail the case of a special sorption isotherm 

(3) when 

«»1 

('=1. 2 n). (9) 

03 usually called the case of Langmuir sorption. Here a. is the saturation adsorp- 

tion and k. is the sorbability factor. 
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Introducing the notation v. - k.u., f. - a^k.   (Henry's coefficients), 

l«t us rewrite the equations of La igmuir's isotherm (9) as 

: ■'..'.-' 1+l*!f 
and system (4) as *^"*. 

■      ••■       " ■. ■■ * 

&<?±9m+y%~b Hi) 

We will assume that all Henry's coefficients f.  are distinct (if a series of 

f .  coincide, then the problem can be reduced to the case when /^ are distinct), 

and we will number them in increasing order: 

Ti < f2 < ••• < A- (12) 

For isotherm (10), the eigenvalues   A are determined from the equation 

Det(((r<p-X)d,/-r<tr4))=!=0. (13) 

Let us consider the case when v. / 0 for all i ■ 1, 2, ..., n. Then equation 

(15) is transformed to become 

.^fi^v-'Hg^o-jiSai)-* <»» 
Equation (14) can also be written in the form   F(A, v) « 1,  (15) 

where 

^^SÄ- (16) 

p'K(X. v)=2I/>* (n.p - *r3 > 0 (vM > o).  (i7) 
Since 

*-i 

then the function F(A, v) is a monotonically increasing function of variable 

A , which has zones at the points /\* » _/"*, p >0 (Figure 4.56). Since the 
K      it 

roots A» X (v) are t»ie abscissae of the points of intersection of the graph of 

function F(A»v)with the straight line F - 1 (Figure 4-56) and 
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0<FcO.W) = S^-=i-i<I. 
*-I 

We conclude that equation (15) has n real, distinct, positive roots A» A. (v). 

These roots satisfy the inequalities 

0 < X|(v)<X,. X,_, < X,(v) < X,. 08) 

and by formula (6) tne characteristic values  £» 5 (v) of system (11) are also 

real, distinct, and positive; here   V > %  (v) >£,(v) > ... > %. (v) >0  , (19) 

i.e., given the condition _/ .v. / 0 system (11) is hyperbolic in the narrow 

aense. 

k   r k 
Calculating the left eigenvectors _/. - ljf_.  I of system (11), we find 

(with an accuracy up to the multiplier) 

k> 
and the right r - [  r.p 

(20) 

(21) 

Figure 4»5^ 

Note also certain singularities of system of equations (11). 

For system (11) there exist n Riemann invariants, so that the system can 

be reduced to the form 

where 

^-+4*(/?)4r=0    (' = 1.2 »). (22) 

R,(v) = 
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Discontinuities of the solution v(x,  t) of system (11), as usual,  sat- 

isfy      Bugcniot's conditions, which in this case becc 

Ofo+?(«#-V|ti.     D = %-. (2S) 

and the stability condition     £k(v(x - 0,  t) > D > 4f.(v(x * 0,  t)).        (24) 

It is interesting to note that far system (11) the rarefaction waves 

(fi. - constant when i / k) of the k-th type coincide with äugoniot's adiahat of 

the k-th type, i.e., a straight line B-(v) * constant (i + k) gives a solution 

of equations (23). 

Due to toe äMfaHxe in the velocities of the characteristics  ^. (v) is explain» 

by tie means which the components of the aixture in the sorbent are separated. 

The »ethod of separating the components, based on differences in Henry's coeffi- 

cients,  is called chromatography. 

4.  Applications in differencial geometry.    Problems in geometry are related 

to nonlinear differential equations.    Iherefore geometers first began systematic 

study of nonlinear differential equations and their solutions.    It is not aere 

chance that the outstanding geometer of the past century Riemann obtained 

fundamental results in gas dynamics, which have in many respects remained 

unsurpassed even at the prenent time. 

We will here point to the relationship between the theory of quasilinear 

equations with one of the fields of differential geometry — the theory of 

surfaces. 

Suppose that at some smooth surface in three-dimensional space the follow- 
2 2        2 2 ing metric is implemented:        ds    - dx    + B (x, y)dy  , (1) 

where the lines y - constant are geodesic lines on the surface, and the lines 

x - constant represent a boundary of trajectories orthogonal to them.    Thia 

system of coordinates (x, y) plotted at the surface is called a semigeodesic 

system. 

The gaussian curvature K(x, y) of the surface is defined only by the metric 

(1), using the formula   G"(x, y) + K(x, y)B(x, y) - 0.       (2) 

If only metric (1) is given (the first quadratic form), then the question 

of whether a surface exists in three-dimensional Ekac]idean space that realizes 
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** this ae^ric reduces to finding the coefficient« L(x, y), »(x, y)» *ad l(x, y) 

of the second quadratic fez«.    Sfeese usef icierts auat aatisfy the aain equa- 

tioaa of the theory of surfaces — the Peterson-Qodacci equationa*)« 

faT    i -i'*J!£ ML 
-a. «• 

.v, (W+Ä) —£*-    <3> 

Gto the other head, the gsnssi&n curvature of the surface ran be calculable also 

externally, through the coefficients of the second quadratic form. %e Gauss 

foratla B2K » II - k2 (4) 

is used for this purpose, low if we cancel out of equrtion (3)* using (4) one 

ol the quantities L, X, and I, and we get a aystea „I two quasilinear equations 

with two independent variables x, y with respect to the two unknown functions. 

Investigating this syctea of equations, we can readily establish that it 

is a elliptical in the case K > 0, parabolic vben K « 0, and hyperbolic in the 

case Z < 0. 

Bias, for th-j case of negative gaussian curvature X  0, the Beterson- 

Codacci equations^ reduce to a systea of two hyperbolic quasi?icear equations. 
2 2 / x 

Bie integral curves of the equation    Lf*r -r ZMdxdy + My - 0     \5) 

will be characteristics in this case, lines which are called asyaptctic lines 

of the surface, in geometry. 

As we have seen in Chapter One, Mesann invariants can be introduced for 

any systea of two hyperbolic quasilinear equations. Uncomplicated calculati:ns 

lead to the following expressions for the invariants: 

•B ~-M-BY=K 
, S — B —rf—'   y  ■——, 

I 

*>, 

after which equations (3) are reduced to the loir» 

■+ 
ds   .    r   ds /1   1    7\ 

B T 
(s—r)T«?       s dQ] 

Q = laY^K {x, ».    B = B (x, y). 

(T) 

*) cf Blya8hke,  Differential Geoaetry. 
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If we mi«— r - ig ^,, 3 m tg q>      ±en  f> ,   <f_   are armies foraed at tbe 

surface by tbe direction of tbe asyaptotic lines, (characteristics) with tbe 

directioB of the geodesic lines y - constant,    acre tfc* ayatea (7) is alsc 

written in tbe fallowing fcras 

% = «*** r-15— 
a, 1 w_    *? 

£—•k4+ÄÄ« 2 <*I 
* 

BOM we construct cs the basis cf systez ol equation (7) or (8), we can 

readily note that systea (?) is a weakly-nonlinear systea cf gussiiinear equa- 

tions, since 
B{x.j) 

5be regular surface of negative gaussian curvature K(x, y) < ? exaibitp differ- 

ent directions of the asymptote lines (chaiacterijtics), so that we can aisuse 

that at the regularity points r / s,  i.e.,    Jji /   5_,  i.e., systeas (?) and (8) 

are hyperbolic in the narrow sense at the regularity points. 

is we have seen in Chapter One, weakly nonlinear systeas hare a reaark- 

able property: solutions of such systems reaain continuous ard ssooth as long 

as the solution itself is bounded.    A similar property also hclds for solutions 

of systea (7) or (8). 

At the beginning of this century, D. Hubert foraulated a hypothesis 

which states that no coaplete regular surface with negative gaussian curvature 

K(x, y)< £ <3 eabedded in a three-dinensional Euclidian space exists.    3e 

also gave a proof of this statement for the case of constant gaussian curvature 

K - -1.    Since systes (8) is weakly-nonlinear,  the cause of the ncnexietence of 

tbe surface K(x, J) ^ -'  is not th*> foraation of discontinuity of the solution 

(as we would have thought), and also not the unboundedness of the solution (as 

can be sees fro-s the expression (8),  the solution re^iliis bounded at the endpoint 

x, y).    Xerefore the cuase of the nonexistence of solutions of system (8) in 

the large is the degeneracy of the surface,i.e.,  the case <p.  -  <p~j iX> ■ 0»    In 

all known cases,  actually, at the edge of the surface we obtain the result that 

cO m 0 and the surfact   cannot be extended smoothly beyond the bound (edge). 
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lote that ia rasest years proof of the hypctb^si« f 

restrictions sc säe äerivetiTes af l(x, 7) fcea been 

5-    Sbjoations of mpirlir byiiuiji 

differentiai*) equaticcs öeecrihiBg the 

ccnancti- $ gas in a «agaetic field. 

Si*« 

Ja tale eectioB we «ill obtain 
! acticm of an electzv 

If we let S «ail 3 äeacte, reypectieeljr, the icteaeit}  of en electrical 

ans a aagoetic field, töes the fcrce   f acting oa the aide of the electrseagne-- 

tic field for unit voluae of gas  can, as we know**) be written a* 

f=t*+±uxm: 
A. t-i 

where   P   is the density of the electrical charge,  j ia tbe density of the 

electrical current, and c is the speed of light.    The aaaaeian system of unite 

for eiectroaagr lic quantities has been adopted in fcraula (l). 

üben as electrical current j passes iirough a fixed substance,  the follow- 

ing aauust of energy (joule beat) is released per unit tiae per unit Tcluaei 

For the case when the conductor moves at Telocity u, Q. - E'j*, «sere £'  and j' 

can be written in the following fcra, based on fcraulas of electrodrnanics with 

an accuracy up to terns of the order u /c : 

r=£+-Lf.xf,,   /=/_p#.. ® < 

where B is the induction of the magnetic field. 

Electromagnetic fields satisfy the Maxwellian system of equations 

fotlf = — 7+Tir.  rot£=-T-3r. 

div0 = 4.-qp,.  div£ = 0. 

*) In studying discontinuous solutions, we must derive J;he integral 

laws of conservation. For simplicity we will confine ourselves here to use 

smooth solutions of equations of magnetic hydrodynamics. 

**) I. Ye. Tamm, Osnow teorii elektrishestva (Fundamentals of the 

Theory of Electricity). 
- 641  - 

m«^.^^.-^ ii.  ■ in   «mirtur- WBifi-MifrfiYiiiiii^ 



.. ;~ .~ 

.He~ D • f E, B • AH (.! and J.L are the electrical and magnetic permeabili ties 
of the gases). 

We will assume that the mediWil ve are considering satisf~es the condition 

of quasineutrali~. This implies that the combined electrical charge of an1 

voh1oo element is zero ( fe • 0). '!hen j' • j. Usually a medium satisf'ying 

the cor~ttion of quasineutrali~ is called a plasma. 

;·i:;a.: ... ·-, for a well-insulated plasma we can assume with sufficient 
accura~r that B • H, D - E. 

~t us use Ohm's lav to determine the deMity of current ja 

(4) 

We obtain equationb describing plasma motion. They consist of two groupsa 

Maxwell equations in a moving medium and hydrodynamic equations. The latter 

~1st allov for the action of electromagnetic force (1) and the release per unit 
volume of Joule heat Q • j 2/tT • 

Obviously, the continuity equation remains unchangedz 

· t+d~vp.-~. (lS) 

and the force f enters into the equations of motiona 

"' t L -n-+<aV>•+-grad p-= • 
,G( p p (6) 

and Joule heat appears in the equation of the energy balance written for entropy 

S per unit mass of gas: 

(1) 

Thus, a complete system of equations describing the-motion of plasma in 

an electrical field is the system (3)-(7). Here the electromagnetic equations 

(3), (4) are related with the "hydrodynamic" equations (5)-(7) only by the right 

sides: the function 3 dependent on velocity u appears in (3), and the functions 

j and f dependent on E and H appear in (5)-(7). 

In most case of practical interest, the system (3)-(7) can be somewhat 

simplified. The point is that even for a case of a fair~ cold plasma, we can 

ordinarily neglect in system (3) the displacement current ..l-
17 
•• i!.E. compared with 

4- c)t 
the conductivity current j. Here obviously, we must discard the equation 
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div D .. O. '!hen fr001 the system of equations (3)-(7) we cancel out E, ar.id 

equations (3) become 

dlvH=O. } 

.!G-.+ ~t [tw rotH- (il X H))== o. (8) 

Comlider the further simplification of the system, assuming that the 

electroconductivity of the plasma (J" i!P infinitely great, that is, the gas under 

consideration i~ an ideal conductor. With this assumption, Ohm's law (4) is 

replaced by the condition o! the finiteness of current j, i.e., with the equation 

and equations (8) become 

E ·-(1/c)[uxH], 

div H • 0, 

(9) 

The ~ystem of equations (5)-(7) is very consid~rebly simplified in this case. 

Since 

c I t t J =iii" rot II. = 7 (J X H] =.en [rotH XHJ 
and 

rotH X H =-grad !f + -§x (H.rlf) + f,(H If)+ 1z (H.H), 

thel'l equdtions(6) ~r~ transf.,:rmed to be::ome 

anc! equatior! (7) changes into adiabaticity condition 

dS -at-: + (uV) S = 0. 

(10) 

(II) 

Let us conside~ one-dimensional motion, that is, let us assume that all 

the quantiUeo depend only on x and t. Then from equations (9) it follows that 

at H • H • constant. 
X 0 

L~t us write our system of equations (5), (9), (10), and (11)a 
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O^ 

' X X        J X 
tiaa».    «riüaf «*  ±*r*ir*rristi-c *-?2*Tiu£ for ^jries  SIj, ** gt\ 

affle 
-,-■   *- 

5..  ►•_ 

^be firs-   Dcfaclrr £^.-res äse -j.«g=s]  erTrrpj ^axarT-eristi-    streanliiae) 

X   ■ u ,  Tie seoraai cifac^-cr gs"^* täe so-called Alfrer. rü&racTeristiss  £f  .  - 

a    ♦, a.    Finallj,  The J«sT  cofactor in \*5) gi^es ac addlTirral for real rocTs: 

-*, x «. 
wsei 

»2 

-   >? 

?*   ^arac^erioTi^s are  i-alled, re^-ectivt y    sic* arid fasT sagr-ioacoustic charac 

terjstics. 
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(I   • 0), we tavc • • •_ ■» 0, susfe tfeat ayste» (12) hu a fii*fcl4 

^       x 

!5» Ö3M iaätgershfT i ejnitiaai f^r äi» =hara.neristic «re the focrth, 

flits., sai »»-»WL*. erM-ims  :' syjtin    *2y.    Ts cetais it adiiticraü two «»50»- 

?TOB «7»«em    *2} we get 

. * I # /  . p 

"T WJsr-+-r.-jF7+"F-*r "*■* .-V- 
Äerefcre the iesireÄ relaiiar» «sie a« fellow 

?rtm the»e it follow that alocg the  streamline        S^p - ooostar-t. ' i 

'me am state that equality (14/ expresses the •frexenness" of the 

aetic field. 

using integral (14), ve reduce system (12) in the case 3   - 0 to three 

erratic» 1 

*+ 

*bere p .   denotes the so-called effective magaetohydrodynaxlc pressure: 

- p(f, S) ♦ A \ [ 9 - effective] 

2» quantity A, just as entropy 3, cas vary in the transition froa one 

streamline to another, but is constant along any of then. 

propagate relative to the gas vith the velocity ,/ c^ + *cr j> c. 
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