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ABSTRACT 

Two-dimensional numerical techniques have been applied to obtain 
solutions of problems of stress wave Interactions with cracks In rock media. 
The SHEP code, a finite-difference lagrangian program that Incorporates a 
comprehensive elastic-plastic-hydrodynamic behavioral model, was utilized 
as the basic numerical program in this study.   Significant new capabilities 
of the code developed during this program were (a) the treatment of antiplane 
shear, or out-of-plane displacement (where the motion is dependent only on 
the in-plane coordinates) and (b) the incorporation of a dynamic brittle frac- 
ture criterion (known as the Griffith criterion). 

In-plane problems considered were the propagation of a stress wave 
through a semi-infinite space containing (a) a semi-infinite crack, (b) a 
finite stationary crack, and (c) a finite running crack.   The crack was 
oriented at a 30   angle with the wave front in these problems.   The compu- 
tations demonstrated that it is possible to observe the diffraction of the 
shear wave fronts and to follow the flow of energy through the crack. 

An ideal but relatively simple problem was chosen as a test vehicle 
for the out-of-plane program, namely the antiplaue shear loading of a crack. 
In the case of a stationary crack, the code solution was shown to give 
excellent agreement in all respects with the analytical solution.   Using the 
Qriffith criterion, moderately good agreement was obtained for the case of 
the running crack. 

In running the SHEP program, it is necessary to dampen oscillations 
at the wave front by the incorporation of a fictive viscosity.   In the case of 
pressure, a quadratic viscosity component is added.   In the case of shear, 
a linear term is normally added.   A linear viscosity tends to increasingly 
spread the wave front, however.   A study of the origins of this viscosity 
term has led to the development of an alternate formulation for the viscosity 
term which is cubic and applies both to pressure and shear.   This alternate 
formulation will eventually replace the so-called anisotroplc or Navier 
Stokes linear viscosity. 

Ill 
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1. INTRODUCTION 

The objective of this program was to apply two-dimensional numer- 
ical techniques to the solution of problems of stress wave interactions with 
individual, plane cracks In rock media.   Computer codes suitable for solving 
a wide range of fluid and solid mechanics problems have been available or 
under development for several years and efforts to extend these techniques 
to the quantitative analysis of wave interactions with cracks and of crack 
motion are now feasible.   Shock Hydrodynamics two-dimensional SHEP (Shock 
Hydrodynamic Elastic Plastic) code was utilized for this purpose In this 
program.   Analytical studies were also conducted in conjunction with the 
numerical work. 

2. ' SUMMARY 

2.1 PROBLEM AREA 

Excavation processes in rock media typically involve the action 
of strong dynamic stresses introduced either from explosive, mechanical, or 
other impulsive loading sources.   The propagation of stress waves In homo- 
geneous, Isotropie media is reasonably well understood.   In-sltu rock media, 
however, typically contain large scale discontinuities in the form of cracks. 
Joints, and faults.   Interactions of stress waves with these discontinuities 
can cause slippage along the cracks, or extension (propagation) of the 
cracks, or separation.   The interactions can also alter the characteristics 
of the stress wave transmitted across the discontinuity. 

This study is concerned with an analysis of the detailed mechan- 
isms involved when strong stress waves Interact with the crack surfaces In 
Jointed rock media.   Of particular Interest are cracks which are obliquely 
oriented relative to the wave front.   The understanding thus obtained can 
contribute to the advancement of knowledge of excavation processes In 
various media, and how to control and/or Improve such processes. 



The technical approach used to study the details of stress wave- i 

crack Interactions was based on two-dimensional numerical analyses of the 

dynamic phenomena occurring under various conditions of stress wave loading 
and crack orientation relative to the wave front.   The computer program used 

to obtain the numerical solutions was the SHEP code.   SHEP is a finite- 

difference Lagranglan program employing a comprehensive hydrodynamic- 

elastlc-plastic behavioral model.   SHEP has been under intensive use and 

development for the past six years and has been applied to a broad spectrum 

of wave propagation problems. 

A major difficulty in examining wave interactions with discontinui- 

ties such as cracks or fracture surfaces arises due to the constraint of the 

continuum model which is normally assumed in numerical analyses of wave 

propagation.   Special routines in the SHEP code alleviate this difficulty by 

permitting crack surfaces to be explicitly defined in the computational grid. 

Thus the grid is not coupled across the crack, and slippage and/or, separa- 
tion can occur. > 

2.2 PUN OF RESEARCH ' 

The contract work was divided into the following two tasks, 

corresponding to analyses of stress wave Interactions with , 

a) single, semi-infinite cracks and 

b) single, finite-length cracks. 

2.2.1  Task 1 - Interaction oi Stress Waves with Single. 
Semi-Infinite Cracks 

This task was concerned with the analysis pertaining to cracks 

which are semi-infinite in extent, of which intersect with the ground sur- 

face. The work initially consisted of the selection and determination of 

the problem specifications (such as media properties, loading wave char- 

acteristics, and crack orientation and condition). SHEP code solutions of 

the problems defined were then set up and run.   These solutions provide: 

i 

i 

i i 



complete quantitative data for all the state and motion variables of interest 
throughout the computing field at regular intervals of time.   In addition, 
spatial plots of the princip^«tress, particle velocity, and displacement 
fields werfe obtained at selected times during the event.   Following comple- 
tion of the solutions, analysis and interpretation of the results were per- 
formed to characterize the transmitted stress waves. 

i i     . 
i 

i       2.2.2  Task 2 - Interaction of Stress Waves with Single, 
! Finite Cracks 

1.1 

This task was concerned with cracks of finite length, so that the 
Interaction of a stress wave with a crack tip could be examined. The prob- 
lems wbre selected so that comparisons between the cases of semi-infinite 

(Task 1) and finite (Task 2) cracks could bs made. 

'     Also includeci in this task was the development of a dynamic 
Griffith fracture criterion, to enable the study of crack propagation.   In 
conjunction with'this, the SHEP code was generalized to accomodate anti- 

plane shear, or out-of-plane displacement. 

TO verify the suitability and accuracy of the code, and modifica- 
tions made thereto during the course of the program, for analyses of wave/ 
crack interactions, analytic solutions of selected test problems were obtained 
and used to check out corresponding numerical solutions obtained with the 

code. , 

2.3 MAK)R ACCOMPLISHMENTS 

Pribary program accomplishments included 

a)       The completion of SHEP code solutions of three 
in-plane stress wave/crack interaction problems. 

i b)       The codification of the equations of anti-plane 
shear (z-independent) to provide a new capability 

for SHEP code analyses. 
, c)       The formulation of a dynapic Griffith criterion 

1 for analyses of crack propagation with the SHEP code. 



These Items are summarized In the following sub-sections. 

2.3.1  In-Plane Numerical Solutions 

Three problems of wave Interactions with cracks were selected for 
analysis by means of code solution, as depicted In Figure 1.   These problems 
were chosen to demonstrate the utility of numerical techniques for obtaining 
detailed Information on the response of cracked media subjected to impulsive 
loads, in general, and, in particular, for assessments of the wave inter- 
actions in the vicinity of a crack.   It is noted that the explicit definition of 
a crack surface such as specified in these problems is not generally amen- 
able to treatment through conventional code techniques, which normally 
assume a continuous material model. 

The rock medium selected for these problems was granite.   The 
material properties assumed for the granite are described in Section 3.2 of 
this report.   The problems were run in plane geometry, assuming plane strain; 
the variables are thus Independent of the z-coordinate (perpendicular to the 
cross-section shown). 

The first problem selected for analysis (Case 1)-consisted of inter- 
actions of a stress wave with a crack oriented at a 30° angle with the wave 
front.   The stress wave was generated by uniformly loading the left face of 
the granite block with a pressure pulse.   A triangular pressure pulse of 5 
kilobars peak magnitude and 0.2 millisecond duration was used for this 
problem, as sketched below: 

P(kb) 

t (msec) 



CASE 1.   INTERACTION OF STRESS WAVE WITH SINGLE, SEMI-INFINITE CRACK 

Loading Surface- 

Granite Slab 

CASE 2.   INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH CRACK 

30°/ 7 
-Crack Ti) 

CASE 3.   INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH 
CRACK, WITH CRACK GROWTH 

Crack Tip 

Figure 1.   Specifications of. Problems for SHE? Code Solutions. 



The crack in this problem was characterized by a free slip condi- 
tion and zero width.   Opening of the crack was allowed to occur if stress 
components normal to the crack went into tension. 

The second problem considered (Case 2) involved the interaction 
of a stress wave with a finite-length crack.   The angle of orientation of the 
crack and the applied pressure loading were the same as in the first problem. 
The crack extended from the loading surface (lower left) to the crack tip, 
situated on the horizontal mid-plane of the block. 

Case 3 was the same as the second problem, except that crack 
growth was permitted.   This case demonstrates the provisions in the code 
which can be used to model crack propagation.   In this case, dynamic de- 
coupling of lattice points in the computing mesh occurs when a specified 
criterion is satisfied. 

SHEP code solutions of these three problems were successfully 
completed.   Plots depicting the particle velocity field and the principal 
stress field occurring in the test block were obtained for several times during 
the interactions.   In addition, time histories of pertinent parameters at 
several stations in the field were recorded.   These results are discussed in 
detail in Section 3 of the report.   Some representative results of these code 
solutions are shown here, in Figures 2 to 7. 

For Case 1, the principal stress field, for a time of .3 msec, and 
the particle velocity field, for a time of .5 msec, are shown in Figures 2 
and S.   As the wave encounters the crack, the principal stress vectors may 
be seen (Figure 2) to rotate into a direction transverse to the crack surface, 
reflecting the fact that the crack surface can not bear shear stress.   This 
Interaction produces a dilatational wave and trailing shear wave which 
propagate across the block, as indicated in the velocity field plot (Figure 3). 
The peak stress in the transmitted wave was reduced by about 25% from that 
in the incident wave. 

• 
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An example of the results of the Case 2 solution is shown in 
Flyure 4, which depicts the particle velocity field occurring at a time of 
.6 msec.   In this interaction, the wave system is divided approximately in 
half, the part above the crack tip appearing as a simple plane wave, and 
that below as a dilatational wave and trailing shear wave, as in the pre- 
vious solution.   Starting from the crack tip, a disturbance propagates into 
the plane wave region above and the "cracked" region below, altering both 
flow fields and creating an expanding region of transition between them. 

In Case 3, where crack growth was allowed, the criterion used 
for decoupling of points beyond the crack tip was that each of the cells 
surrounding a lattice point must have failed, i.e., at some time reached a 
state on the granite failure surface.   This was a conservative criterion, since 
the failure surface generally represents states where virtually complete frac- 
ture occurs.   Use of more sensitive criteria can be employed, and develop- 
ment of a dynamic Griffith criterion was subsequently undertaken, as 
described below.   The crack growth occurring in this solution is indicated 
in Figures 5,6, and 7, which are plots of the particle velocity field for 
times of .5, .6, and .7 msec.   The extent of the crack In each plot is indi- 

cated by the circled lattice points. 

2.3.2   Dynamic Griffith Criterion 

In connection with efforts made under the program to enable the 
study of propagation of cracks under stress wave loading, the incorporation 
of equations into the SHEP code which govern the rate of propagation of a 
brittle crack surface in an elastic material was undertaken.   These equations 
are known as the Griffith criterion and they provide a relation between power 
input to the body and the rate of uptake of this power by strain energy, 
kinetic energy, and new surface energy.   The concept of surface energy is 
the feature that was Introduced by Griifith in the early ISOO's, and it 
requires the determination of an additional material parameter, namely the 
surface energy per unit area.   An algorithm appropriate for the SHEP code 

13 



was programmed and tested on a model problem.   The results Indicated that 
the effective crack propagation was slower than predicted theoretically.   It 
Is expected that Improved results would be obtained with an alternate form 
of the Active viscosity. 

2.3.3 Analytical Comparison Problems 

To verify the SHEP code solutions and the formulation changes 
made, comparisons of numerical results with analytical solutions of model 
problems were made. 

As part of this effort, the capability was added to the code for 
the treatment of anti-plane shear, or out-of-plane displacements, with the 
restriction that the motions are independent of the z-coordinate, so as to 
retain the two-dimensional character of the code.   This was done primarily 
since the only e las to-dynamic solutions currently available for an accelera- 
ting crack are those for the case of anti-plane shear, although it also repre- 
sents a useful tool in numerical analysis which has heretofore been 
unavailable. 

A model problem of simple, shear motion of a slab was first 
solved with the modified code.   The results of the code solution showed 
excellent agreement with the analytical solution for this case.  A full, two- 
dimensional problem involving the interaction of an anti-plane shear wave 
with a stationary crack was then set up and run.   Excellent agreement with 
the analytical solution was also achieved for this case. 

3. NUMERICAL SOLUTIONS OF IN-PLANE PROBLEMS 

As noted above, numerical solutions of three problems Involving 
the Interaction of stress waves with cracks were performed.   The specifica- 
tions cf these problems were given in Section 2.3.1. 

14 



3.1 COMPUTATIONAL METHOD 

3.1.1 Physical Model 

The computer program used In this study was the two-dimensional 
SHEPcode, which solves the equations of motions for elastic-plastic bodies 
by means of a finite-difference Lagrangian-cell technique.   SHEP has been 
under intensive use and development for the past six years and has been 
previously documented1 and distributed to interested parties.   The mathema- 
tical formulation is basically the same as that described by Wilkins9.   To 
delineate the boundary between elastic and plastic deformations, various 
yield criteria may be used, such as von Mlses, Mohr-Coulomb, or arbitrary 
functions.   Within the chosen yield surface,   the deformations are con- 
sidered to be elastic, i.e., when 

yr^ < Y (1) 

where Jl ls the second invariant of the deviatoric stress tensor and Y Is the 
yield strength. Excursions on the yield surface can be made in accordance 
with either the Prandtl-Reuss or plastic potential flow rules. 

To model a crack surface, SHEP contains provisions for inserting 
surfaces of discontinuity, which consist of grid lines having a dual set of 
lattice points.   These surfaces are discussed in the following section. 

3.1.2 Surfaces of Discontinuity 

In a normal Lagrangian computational grid, material elements on 
either side of an interface at any point are coupled to each other for the 
entire problem;   they are, i.e., locked or welded together along the line 
segment connecting any two lattice points along the interface.   At any inter- 
face, which may represent a crack within a material or the boundary between 
two different materials, there are, however, in general, special boundary 
conditions which apply, and, in addition, there is the possibility of forces 

15 



which may be set up that tend to cause the materials to slip past each 
other or to separate.   A gas flowing past a metal surface is an example of 
such a case.   The onset of material fracture during a problem also gives rise 
to the requirement for treating the cecoupling or uncoupling of elements 
which are, in this case, within an originally competent material.   For appli- 
cation to problems in fracture mechanics/ such as in this program, the latter 
requirement is particularly important.   , ' 

A formulation of sliding imerfaces for lagrangian codes, as re- 
ported by Wllklns3, provided a capability for the numerical treatment of 
problems involving sliding of two materials along an Interface.   This formu- 
latlon served as the basis for development of the surface of discontinuity 
capability currently available in the SHEP code. i 

The basic features of the surface of discontinuity formulation are 
Illustrated in Figure 8.   The grid line corresponding to the surface of dis- 
continuity is known in common parlance as a slide line.   At the start bf a    , 
problem, the lattice points along the slide line may be individually deslg- 
nated as decoupled points, corresponding to their lying on an interface, or 
as coupled points, in which case their behavior is the same as in an ordinary 
mesh.   For decoupled points, special sets of governing equations are used 
to individually determine the motion of the point pairs, to reflect the fact 
that there is an interface, such that, e.g., shear stress cannot be supported. 
If forces are present which tend to cause slippage, the decoupled points will 
thus disengage and move separately along the slide line.  , 

Additionally, the development of tensile stresses normal to an 
Interface will tend to cause material separation and formation of voids. Pro- 
visions have been made in the code to treat this phenomenon, also. 

The void opening test is made by computing the stress normal to 
the interface at a decoupled slide point and comparing this value with a 
selected critical value of stress required for uncoupling.   If the computed 
stress is greater than the critical value (in tension), then that point is 
designated as a free surface point.   The newly formed free point is then , 
moved in accordance with the regular equations of motion for a point on a 

free surface. ' i ' 

16 i 



! 

a.   Normal Coupled 
Lagranglan prld 

Slide 
Line 

b.   Decoupled Grid With Relative 
Motion (Slippage) Along Material 
Interface, Fracture Surface, or 
Plane of Weakness 

.1 

still-coupled 
grlc- 

"Crack Propagation" With 
Subsequent Slippage Along 
Fracture Surface 

d. "Crack Propagation" With 
Subsequent Separation and 
Rejoining Along Fracture Surface 

Figure  8.     Schematic Illustrations of the Treatment of Slippage, 
Fracture) Void Opening, and Void Closing Along 
Surfaces of Discontinuity jin the SHEP Code. 
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For the problems performed In this study, the critical value for 
uncoupling was set to zero, such that any tensile stress would tend to cause 
separation.  In other applications, e.g., for the interfaces In laminated 
materials, this value could be pet equal to the bond strength. 

Void closure may also occur and is treated in the code by appro* 
priate tests to determine if the materials have come in contact.   If so, the 
equations of the surface of discontinuity are restored, and the materials may 

subsequently slip or re-open, as before. 

Lattice points along the slide line which are initially designated 
as coupled points may dynamically decouple, individually, during the course 
of a problem, if a selected criterion is me;..   Various decoupling, or fracture, 
criteria may be used.   Once the lattice points are decoupled, the equations 
of the surface of discontinuity are Invoked.   A mechanism is thus provided 
which can be used to model crack propagation within a material. 

Additional information on the code operations and the mathema- 
tical basis of sliding Interfaces has been previously reported.8"* 

3.2 MATERIAL PROPERTIES 

The rock medium In these problems was granite.   The properties 

selected for the granite were: 

3 
Density: P0=2.69gm/cm 
Dilatational Velocity:     v.   = .579 cm/isec 

o 
Shear Velocity: v.   = . 330 cm/nsec 

so 
These values imply the following other properties: 

Bulk Modulus: K0 =   .512Mb 
Shear Modulus: G0 ■   .293 Mb 
Poisson's Ratio: v0 -   .26 

18 



The subscript  o in the above indicates that these are normal, pre-shocked 
values.   These values were selected from previous studies involving granite 
media. B'e. 

The equation of state of granite, suitable for the low-pressure 
regime applicable in these problems, was formulated as follows. 

P = Au+Bn2 6+ Gpe P< .04 Mb (2) 

where 

6   =   1 f or n > 0 
ös   0 f or |i ^ 0 

The symbols are defined as 

e   ■ specific internal energy 
P ■  pressure 
IJ  = p/P- ■ relative density 
li   s ij ^ i = compression 

p   ■ density 

The values of the coefficients are: 

As .512 Mb 

B ■ 1.49 Mb 
G  -     2.1 

No hydrostatic tension was permitted, i.e., P .   =  0. 

A Mohr-Coulomb type yield model was used, i.e., 

Y =   .0003+  (l-e"P/-0003)(.00094+ 1.33 P) (3) 

where Y is the yield strength, in megabars.   The maximum value permitted 
for Y was 10 kilobars. 

19 



. . 

3.3 CASE 1 - INTERACTION OF STRESS ^A^E WITH SINGUE, 
SEMI-INFINITE CRACK 

The computational grid set up for the   ode solution of Case 1 Is 
shown In Figure 9.   This grid contains 2690 cells, with the basic cell size 
set at 10 cm x 10 cm.   Beyond a central region of Interest the cell dimen- 
sions geometrically increase in order tc conserve the total ceil count and 
computational time.   Representative results of the code solution, as depicted 
by particle velocity fields and/or principal stress fields for times of .3, .5, 
and .92 msec, are shown in Figures 10 to 12 and in Figures 2 and 3 in the 
Summary, Section 2.3.1.   For clarity in reading these plots, the field of 
view wat limited to the central region of interest. 

For the stress field plots, the principal components of the stress 
tensor for each cell are shown, as follows:  The magnitude of the two princi- 
pal stresses in the x-y plane are plotted in their corresponding principal 
directions.   The third principal stress (in the z direction) is plotted along 
the line bisecting the other two principal directions.   Vectors pointing to 
the right are compressive, to the left, tensile.   An example of how a stress 
tensor is plotted is sketched below: 

Tensile 

Cell Center 

■ 

Compressive 

Principal Stresses 
in x-y Plane 

Principal Stress 
in z Direction 
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The edits of the velocity vector field plot the direction and magni- 
tude of the velocity of each lattice point In the computlny grid.   The vector 
lengths for both the principal stress and velocity fields are scaled to the 
unit length Indicated above each plot; the units are Mb/cm and (cm/jisec)/cm, 
respectively.   On the more recently produced plots, the scale Is also graphi- 
cally depicted In the upper right hand corner. 

As the stress wave Interacts with the crack, the material on the 
right side of the crack Is driven by the stress component normal to the crack, 
since shear stresses cannot be supported.   As shown In Figure 10, the velo- 
city vectors along the crack at the shock front are thus directed normal to 
the crack, turned downward 30°.   Also, as shown In Figure 2, note that the 
principal stress tensors in the material along the right side of the crack are 
rotated Into a direction transverse to the crack surface, again reflecting the 
fact that the crack surface can not bear shear stress.   As the incident wave 
runs along the crack, a dilatatlonal wave and trailing shear wave are formed 
which propagate across the block.   The transmitted shock front remains 
approximately planar and oriented at 90° to the x axis.   In the shear region 
behind the shock, a distinctly downward velocity flow is evident.   This 
action induces material slippage along the crack, the material on the right 
side of the crack moving downward and to the left, along the crack, relative 
to the material on the left side.   In addition, there was a slight separation, 
or openlng-up, of the materials on either side of the crack, which were 
initially in contact. 

Time histories of the material displacement at the points indicated 
In Figure 13 were recorded during the code solution.   The slippaqe of 
material initially at the point x = 100 cm, y = 0 cm, as given by the distance 
between points on opposite sides of the crack (points B and C in Figure 13), 
is shown in Figure 14.   The extents of the downward (y-direction) displace- 
ments of these points are shown in the time histories given in Figure 15. 
The downward displacements of other points in the field, at x ■ 55, 158, 
203, and 253 cm (points A, D, E, and F) along the central horizontal plane 
(y ■ 0), are shown in Figure 16.   The forward (x-direction) displacements of 
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these point» during this time were aU ~ 0.25 cm.' The perturbation of flow, 
as measured by the downward thrust of material, is seen to diminish as the 
distance from the crack Increases. ' 

Stress (oj - time profiles at points A, D, E, and F are shown In 
Figure 17.   The peak stress In the transmitted wave (points D, E; and F) Is 
seen to be reduced by about 25% from that In the Incident wave.   The afore- 
mentioned two-wave structure in the transmitted wave and the reflected wave 
at point A are also displayed in these plots. ' 

i ; 

1 

3,4 CASE 2 - INTERACTION OF STRESS WAVE WITH SINGIE. ' 
FINITE-LENGTH CRACK , 

The Initial configuration of the Lagrangian grid set up for this   , 
problem is shown in Figure 18.   The crack extends from the loading surface 
(lower left) to the crack tip at x « 200 cm, y =   0. 

Representative results of the SHEP code solution of this problem, 
as depicted by the particle velocity fields for times of .3, .4, .5, .6, and 
1 msec, are shown in Figures 19 to 22 and in Figure 4 ^n the Summary, ' 
Section 2.3.1. Associated principal stress fields for times of .4, .5, and 
.7 msec are shown in Figures 23 to 25. F6r clarity in reading these plots, 
the field of view is limited to the central region of interest.     ' 

; i 
I 

The response of the granite in this problem Is, of necessity, 
similar to that in the semi-infinite crack problem, until the wave front 
reaches the crack tip.   Subsequently, the wave system is divided approxi- 
mately in half, the part above the crack tip appearing as a simple plane      * 
wave, and that below as a dilatational wave and trailing shear wave, as in 
the previous solution.   Starting from the cradk tip, a disturbance;, or bow 
wave, propagates into the plane wave region above and the "cracked"    l 

region below, altering both flow fields and creating an expanding region of 
transition between them.   The diversion of flow around the crack tip may be 
seen in Figures 19 and 20. 

: 
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Figure 17.,  Stress (ox) Profiles at ^our Stations Along the y = 0 
Plane, Case 1.     . , 
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Time histories of the material displacement at the locations indi- 
cated in Figure 26 were recorded during the code solution.   The ftlippage of 
material at tJree points along the crack, as given by the distance between 
points on opposite sides of the crack« designated as (W,X), (R,S)# and 
(M.N) in Figure 26, is shown in Figure 27.   The material on the right side 
of the crack is moving downward and to the left, along the crack, relative 
to the material on the left side.   The extents of the downward (y-direction) 
displacements of these points and the crack Up (point I) as a function of 
time are shown in Figure 28.   The spatial trajectory of the point pair (W,X) 
on the crack strface during the time span of the solution is plotted in Fig- 
ure 29.   Time-hi stories of the vertical displacements of points above and 
below the crack tip along four vertical cuts (x w constant) through the target 
are shown in Figures 30 to 33.   The downward shift of material persists at 
all these stations, but in smaller amounts as the distance from the crack 

increases. 

Stress (oj - rime profiles at points H, I, J, and K, along the 
horizontal plane through the crack Up (y* 0), are shown in Figure 34.   Note 
the increase in stress over that of the loading level near the crack Up. 
Stress profiles along the vertical plane through the crack Up (x« 200 cm) 
are shown in Figure 35.   The points above the crack Up show a peak stress 
of 5 kb - corresponding to the loading or Incident shock level, and those 
below the Up to about 4 kb - th« transmitted stress level.   Stress-time pro- 
files along a vertical plane to the right of the crack Up, at x « 300 cm, are 
shown in Figure 36.   Here the stress level is reduced at points above as 
well as below the crack Up.   Time histories of the shear stress (oxy) at 
points along the vertical plane through the crack Up are shown in Figure 37. 

3.5 CASE 3 - INTERACTION OF STRESS WAVE WITH SINGLE, 
FINITE-LENGTH CRACK, WITH CRACK GROWTH 

For this case, the same proolem as in Case 2 was solved, but 
with the provision in the code for permitting growth of the crack acUvated, 

as described previously. 
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Figure 26.   Locations of Time History Data Stations, Case 2. 
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Figure 28.   Vertical Displacement at Several Points Along the Crack, Case 2. 
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Figure 29.   Spatial Trajectory of Two Initially Opposite Points on the Crack 
Surface, Case 2. 
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Figure 30.   Vertical Displacement at Points Along the Vertical Plane at 
x « 150 cm, Case 2. 
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Figure 31.  Vertical Displacement at Points Along the Vertical Plane 
at x «200 cm. Case 2. 
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Figure 32.   Vertical Displacement at Points Along the Vertical Plane, 
at x «* 250 cm, Case 2. 
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Figure 33.   Vertical Displacement at Points Along the Vertical Plane 
at x «300 cm. Case 2, 
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Flfjure 34.     Stress (crx) Profiles at Points Along the Horizontal Plane at 
YMO, Case 2. 
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Figure 36.   Stress ( ox ) Profiles at Points Along the Vertical Plane at 
x M 300 cm, Case 2. 
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Figure 37.   Shear Stress ( o^y ) Profiles at Points Along the Vertical 
Plane at x «200 cm, Case 2. 
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Representative results of this code solution, as shown by the 
particle velocity fields for times of .5, .6, .7, and .9 msec, are given In 
Figures 5 to 7 In the Summary, Section 2.3.1, and In Figure 38.   Associated 
principal stress fields for times of .5 and .6 msec are shown In Figures 39 
and 40.   Propagation of the crack does occur for this loading; the extent of 
the crack at any time Is Indicated by the circled lattice points.   For this 
loading function, the fracture criterion used was met at relatively late times 
after the shock front has passed, so that the effect of crack growth on the 
transmitted wave Is not large. 

4. ANTIPLANE SHEAR LOADING OF A STATIONARY CRACK 

4.1 FORMULATION 

The antlplane shear loading of a crack results In equal and oppo- 
site out-of-plane displacements In the quarter planes adjacent to each of 
the two sides of the crack.   When this type of shear loading Is applied to 
a crack surface, no In-plane displacement components are generated.   The 
one out-of-plane displacement component Is then governed by D' Al^mbert's 
equation: 

QW  H  w      - Aw =   0 (4) 

where 

• -  ct (5) 

o-/f (6) 
An Immediate advantage thus accrues In dealing with an out-cf-plane prob- 
lem; namely the solution can be expressed In harmonic functions rather than 
blharmonlc functions.   In addition, the only e las to-dynamic solutions that 
are currently available for an accelerating crack are those of Kostrov7, 
Eshelby,8 and Achenbach9 .   Because of these advantages. It was decided 
to modify the SHEP code to Include computations for the two out-of-plane 
shear stress components and the one out-of-plane displacement component, 
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all three of which depend only on the In-plane coordinates.   The governing 
equations are as follows: 

do do o 
2S.+ 

E--(P+q) V+ V[(^ + ^ :7q] (8) 

"to-^Cvq+qV) (9) 

qD-  f  (Vq + qv) (10) 

where 

and 
G       Is the shear modulus 

ij        Is the linear flctlve viscosity, taken to be 
proportional to the mesh size. 

The difference form of these equations follows the same format as used by 
the rest of SHE P.   The form of the Jauman-Oldroyd derivative is given in the 
Appendix. 

4.2 ANALYSIS 

In order to check out the validity of the computer code, it is 
mandatory to compare the computational results with one or more analytical 
solutions.   The most convenient solution available for this purpose is that 
which describes the propagation of an out-of-plane (antlplane) shear wave 
emanating from a uniformly loaded crack.   In the following, the out-of-plane 
solution is presented and used to check out the corresponding code solution 
that was performed for this problem. 

Consider an infinite elastic space perforated by a semi-infinite 
crack surface lying at [x ■ 0, -»< y s 0].   To the crack surfaces x » 0+and 
x ■ 0  , we apply a step load in time uniformly distributed, namely 
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^•!x.o--SH"> 
. (ID 

The loading situation and associated waves are shown in the following sketch: 

rxz--SH(s) 

Bow Wave 

Plane Wave 

Crack 

The plane [x = 0, 0 s y < •] is a plane of antisymmetry, on which the out-of- 
plane displacement w is zero.   In the right half-space the displacement is 

positive, or out-of-the-paper# and vice versa. 

This problem is a standard one in wave propagation theory and is 
readily solved by the Wiener-Hopf technique and the Caigniard method.   It 
can also be treated by the method of characteristics and, the theory of 
Abelian integrals.    In either event, one arrives at the solution: , 

£wB 
S   ** K' Jl r (s-r fl ft ) (cs j - sn J) - (s + r csÖ) arctap vl+cs6 

*. (s -r cse) arctan V^ 1 _ cs^  } (12): 
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> 

wher^  ± denotes 6) positive or negative respectively, superscript B denotes 

the bow wave dontrlbution, and r is the radial distance from the crack tip. 
The total solution is given by . 

« 

Total 
■ i i 

S  W- 

fiwT 
S     + 

4.3 

i 

Bow Wave Plane Wave 

G     B + (s-x) H (s-x) (13) 

G     B 
(14) 

NUMERICAL SOLUTION 

A SHEP code run was set up for this problem using a grid containing 
5000 cells of uniform size.' The sample body was taken to be 1 cm in the 

,    x directipn and'i 1 cm'in the y direction, as shown in the following sketch: 

Clamped 
Surface 

Loading 
Surface 

x (cm) 
i 

Geometry for SHEP Code Run 
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. 

Since the problem Is antisymmetric, it Is sufficient to compute the wave 

propagation In just one-half of the body and Impose the boundary condition 

that the displacement Is zero along the plane x a 0, y ^ 0, above the crack 

tip. 
; 

The material was characterized by a density = 2 gm/cm   and a 

shear modulus ■ 100 kb.   The crack was loaded uniformly with a shear stress, 

T^of-lkb. 

With the analytic solution in hand, it is convenient to perform a 
number of checks on the computational solution.   We have the following 

derived relations for the displacement or stress at three angles: 

G. w 
S   s •--? 

= 1 + I Mf<l-f) - ^ctan /fTij 
(15) 

S 9 = + 2- ü - f 2 

= jf | >/§■- 1-arctan / f-- 1 / 

T      + T xz      yz 
S 6 = 0 

■ - •■ - i arcta 
*       w 

n/^- 
^ -1 

2 

(16) 

(17) 

In addition, we have the relations: 

S2c   s 
B   "    G    2 

V-^ (do-s) 

(18) 

(19) 

where P denotes the rate of work (power input) done on the body.   In Eqns, 

(15 - 17) we note that the right-hand sides are all functions of (p).   This 

is so because there is no length-scale in ths problem. 
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Figures 41# 42, and 43 show respectively plots of Eqn. (15), (16), 
and (17) versus- , the fractional distance to the wavefront, along with the 

corresponding results from the code solution.   ExceUent agreement Is noted 
In all three cases. 

" 

The computer program also tabulates the total strain plus kinetic 
energy, the time rate of change of which is equal to the power input.   At the 

time the bow wave has filled the sample body, the tabulated rate of energy 

change was 1.112 x 106 (ergs/cm)/u sec, in excellent agreement with the 
theoretical computed power input of 1.113 x 106 (ergs/cm)/!sec. 

In Figure 44, we show the stress field at the time at which the 
bow wave has just about filled the sample body.  At each field point is 
plotted a vector equal in magnitude to 

/ Tv- 2       T 2 
M  »/(-f)   +(-f-) (20) 

and having a phase angle equal to 

TX2 <p = arctan --^ (2!) 
Tyz 

Thus the field vectors are given by: 

V = Me1^ (22) 

One can clearly see the position of the plane and bow waves.   In the plot, 

the front of the plane wave appears to have advanced a distance beyond the 

theoretical value of 1.   This is due to the non-dlssipative artificial viscos- 

ity terms used in the program which smoothly spread the wave across several 
cells at discontinuities, as seen, for example in the stress profile of 

Figure 43.   In the bow wave, as the angle increases, the spreading is seen 
to narrow, since the amplitude of the wave front decreases to zero at 

e - 2 . 
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Figure 44. Shear Stress Field. 

65 



At the crack tip both T     and T_ become singular.   The computer xz yz 
run recorded highest values near the crack tip (one-half cell width away) of 
~ 5 kb.   The approach to Infinity Is limited therefore by the fineness of the 
mesh used In approximating the continuum by a grid.   This, however, did 
not affect the good accuracy of the solution at points In the body away from 
the singularity. 

■ 

5. ANTI-PLANE SHEAR LOADING OF AN ACCELERATING CRACK 

5.1 ANALYSIS 

In the case of a running crack, we have an Infinite elastic space 
perforated by a seml-lnflnlte propagation crack surface, lying at 
[x = 0, -• < y s: d (s) ], where d(s) Is ths distance the crack has propaga- 
ted from the origin In time s.   The driving force for the crack propagation is 
provided by an anti-plane shear stress 

Txz«-SH(s) (23) 

applied to both faces of the crack, and following the crack as it propagates. 
Ahead of the crack, on the plane x = 0, the displacement w  is always 
zero. 

The above problem may be attacked by first determining a Green's 
displacement function, which is the displacement arising from a unit force/ 
unit thickness applied at a point on the (x = 0) surface designated by y , 
and at a time s  , for a duration As  .   The solution to this problem is well 
known and has the form 

FAs        H[S-S   -/(y-y )2+x2    ] 
wr  = —pr2-      ; 0 0 (24) G       irG / "2 2      2 

/(s - so)   - (y - y0)   - x 

The total displacement at any point (x,y) and at any time   s   Is then given 
by: 
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Vs ^o 

s0)' - (y - y0)'     " y(8-8o)2.(y-y0)2-x2 

(25) 

where        T        is the stress applied ahead of the crack and Is 

to be determined by the condition that w  Is 
zero ahead of the crack on the surface x = 0. 

The limits In Eqn. (25) are In part determined by the Heavlslds function 

appearing In Eqn. (24), but are more simply described after carrying out an 
automorphlc transformation9 to new variables. 

€=-7=^ (26) 

V - —L- (27) 

These variables have the property that they allow the square root appearing 

in Eqn. (25) to be factored.   One can then arrive at an Abel integral equation 

for fT /S), under the condition that w = 0 ahead of the crack.   After a little 
algebra, we arrive at the following results: 

I      1 Farota^  / s - v + d (s-y + d) /s-y + d (s -y + d) ,     ,9Qv ^ = - [arctanv^   y 1 a (s - y + d)    " V y ,
y
d g 1% +*d) 

a ]    (28) 

^ =  f [arcsiny^g^|-d)-y + /[d (s+y - d) - y][s+y-d (s+y-d)] j 

(29) 
where 

D  =w|x=0 (30) 

The function (d (s - y +d (s - y + d (s - y + . . .   has the property that 

d-» Oasy-« s and the function d(s+y-d(s+y-d(s+y-. . . has the 
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property that d -♦ 0 as y -• -s.   We now apply the Griffith criterion (discussed 

below), perform a few operations with delta functions9 , and arrive at the 

following result for the crack propagation function: 

fi •<fr " 1 -| + 2arctan^) H (s - s*) (31) 

where 

,2 s*   =  *£% (32) 
4 S' 

and where r ie the specific surface energy.   From Eqn, (31) we conclude 

that 

ä .  LJJLL (33) 
C *   2 

so that the crack accelerates to sonic velocity.   The start of crack propaga- 

tion is delayed by a time s* until the energy inside the bow wave has built 

up to a critical value.   Figure 45 shows how d/s* depends on s/s*, a no- 

parameter plot. 

5.2 THE GRIFFITH CRITERION 

To improve the physical significance of the numerical solutions, 

the conclusion was reached that a more realistic, dynamic criterion for pre- 

dicting and following the course of crack propagatlDn in flawed, Jointed, 

brittls media should be incorporated in the numerical method. A necessary 
step in making such a formulation change Is to check the new code through 

comparisons 1th analytical results from a model problem, such as the one 

described in the previous section. 

The modifications needed to follow crack propagation are three- 

fold.   These are tne logic associated with tne crack geometry and crack 

prrpagation, the velocity threshold criterion, chosen here to be the Griffith 
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Figure 45.    Antiplane Crack Propagation. 
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criterion, and the velocity orientation criterion, chosen to be the direction 
transverse to the maximum principal stress vector. 

The Griffith criterion Is a power balance.   It states that the total 
work done on the body by surface traction goes Into Increase of strain 
energy, Increase of kinetic energy, and Increase of surface energy.   This 

takes the form: 

J* P (f) df =   üj + Uj + f (d - do) (34) 
o 

where        t'        Is a dummy time variable 

? =    ^ t* v  dai (the power Input) (35) 

Uj«   JW d V (strain energy) (36) 
U2=   J" Kd V (kinetic energy) (37) 

W =   -2G Y2 + f (K + | G)y 2 (strain energy density) (38) 

y   =   € ^ (dilatation) (39) 

^2 =   I ^2 " f k  € f^ (second strain invariant) (40) 

'jk85   i^k + "k^ <8traln) (41) 

Vj =   üj (velocity) (42) 

t* Is the stress tensor 

u, is the displacement vector 

da. is the tensor element of area 

dV Is the volume element 

K   =  ~Y~ v   vk (kinetic energy density) (43) 

p        Is mass density 

Uj and U« are zero at zero time 
T Is the specific surface energy 
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d is the instantaneoua crack length (in 2D) or 
crack area (in 3D) 
is the initial crack length 

When the crack is not moving, d =0, in which case 

J^Pff) df   « UJ+ U2 (44) 

The only basis for Eqn. (44) becoming an inequality arises when the boun- 
dary conditions involving the crack surface change with time. This state- 
ment requires elaboration. 

Suppose we refer to the problem discussed in the previous section, 
namely, the one in which shear stress   S  is applied to part of the boundary 
of a rectangle, the remaining boundary being clamped.   The stressed portion 
of the boundary is the crack, of. figure below 

free 

w = 0 

T     o -S xz Crack of 
uength d^ 

free 

fixed 

For this case, when the crack is not allowed to run, Eqn, (44) is identice lly 
satisfied. 
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Imagine now, that after some time tft< the crack starts to run, d 
increases, and the stress  S  is allowed to follow the crack.   In this case, 
the left hand side of Eqn. (44) becomes: , ' 

** t*+At 
f    P(f) df | + J P(f) df | 

" o d ■ dÄ       t* d e dÄ + Ad o        w o 

t# + 2At ' 
+  I* Pft') df | +. . . . etc. 

t#+ At d = dÄ+ 2Ad 

Because of the crack motion, energy is absorbed by the creation of fresh , 
surface and Eqn. (44) becomes an inequality. 

In order to follow this motion, we proceed as follows:  We allow 
the wave to propagate for some delay time (defined in Eqn. (32) ) with the 
crack at its initial position.   We then advance the crack a small distance 
Ad, which will be chosen to be a fraction of cell length.   We then let the 
wave propagate for one increment of time At, and calculate the quantity: 

! 
I 

t# t. + A t t + At    ! 

r p(f) df |      + ;       p(f) df | - (u, + u2) 
o                    d=dÄ      t#                            d=dJ + Ad         1       *  o       * o , Aj 

(45) 

If this calculated Ad turns out to be equal to the chosen Ad, then the time 
i i 

increment At is recorded, and the crack is advanced another Ad,   If the 
calculated Ad turns out to be less than  Ad chosen, additional time Incre- 
ments are allowed to elapse until equality is achieved.   Each time equality 
is achieved, the crack is advanced another Ad.   A numerical plot of Ad vs 
time can thu   be constructed and compared with the plot from the analytic 
solution shown previously (Figure 45). ' 
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, I 

Ih setting up the problem shown above, we have assumed that the 

load Is applied directly to the crack surface.   In the event a wave Is allowed 

to Impinge upon the crack by approach from infinity at any angle, the problem 

posed in this fashion can always be deromposed into a combination of a 
plane Wave traveling in the absence of a crack, and the problem shown 

above, where the crack is loaded directly.   Furthermore this problem can 
always be reduced from a full-space problem to a half-space problem by 

virtue of the antisymmetry of the shear loading.   Similarly, in dealing with 

the in-plane problem, we can use symmetry to reduce the problem to that 

of a h^lf-space.   Thus the problem posed above is a very general model 
t i 

problem.     , 

Initially, the code was checked forthe case when the crack is 

not running (Eqn. (44) ).   To verify that the computation of the power integral 

on the left-hand side of Egn. (44) matches within a few percent of the com- 

putation of the total energy, which is a standard output of the SHEP program, 
i 

It was necessary to compare the computation of the velocity with the ana- 

lytical solution given by: 

i ,        1^.'. 1 -| arctn/f^"! H (s-r) (46) 
' i 

) 

At the point where the bow wave joins the plane wave, we have: 

6vL 
Sc = 1 (47) 

i 

Because of the discrete nature of the computational algorithm 

used to calculate v&  in SHEP, the computed velocity is not constant in 

time; but rather fluctuates around unity, the vibration gradually damping to 
zero amplitude ,   Both the amplitude and logarithmic decrement of these 

vibrations can be controlled by varying the artificial viscosity and the time 

Increment.  We therefore performed a series of runs to determine appropriate 

values for the viscosity coefficient and time step. 
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Figure 46 shows a plot of normalized velocity at the wave front 
as a function of time measured In numbers of cells In the bow wave.   It Is 
observed that critical damping occurs somewhere between the values of the 
viscosity coefficients, CA = .25 and CA = .75.   Variation of the time step 
had little or no effect upon the vibration In the range of At studied. 

The meaning of Figure 46 Is that the front of the wave Is spread 
out over about 4 cells on either side of the front.   As we shall see below, 
this uncertainty In ^ Implies an equivalent uncertainty in P, and, a for- 
tiori, an exaggerated uncertainty In [J*1 PCt') dt' - U, - U2].   Thus it will 

o 
be extremely Important to develop a better form for the flctive viscosity in 
order to narrow the spreading of the wave front.   Such a form will be dis- 
cussed below. 

Holding in abeyance for the moment the question of Improving the 
viscosity function, the Griffith criterion as displayed above was used to 
follow the propagation of the semi-infinite crack.   The wave was allowed to 
propagate for 90 cycles with the crack unextended; then the crack was 
extended one cell, and the additional time needed for dynamic instability 
to arise was computed according to the algorithm provided above.   In this 
way the crack was extended three times, and the results of the computation 
are shown in Figure 47.   We note that the crack runs effectively slower than 
the theoretical sonic value.   Further work remains to be done to refine the 
algorithm and the viscosity. 

5.3 THE FICTIVE VISCOSITY 

As soon as a continuum is replaced by a discrete grid. It becomes 
possible to replace a slowly changing function by a periodic one.   For 
example, the simple function 

y=   0 (48) 

can be replaced by 
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Figure 46. Velocity Time Histories for Various Artificial 
Viscosity Coefficients. 
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y = A sin nir (49) 

where 
n " 7" (50) 

This Is an extreme case but It demonstrates the point.   What the difference 
equaUons actually offer depends on the outcome of a stability analysis. 

Such analyses have been carried out and they lead to the idea that a fictlve 

viscosity must be incorporated in the constitutive law to produce damping 
and stability.   The penalty that one pays is a spreading of a wave front. 

Von Neumann and Richtmyer10  suggested that a quadratic vis- 
cosity term be used to produce effective damping, and this has indeed been 

proved to be a useful tool.   Other people have used a linear viscosity term 
with less striking results.   The linear viscosity spreads the wave in an 

Increasing manner.   Thus it appears that the quadratic viscosity is an 
indispensable tool. 

For the out-of-plane motion that we have been discussing, there 
is currently not, available a quadratic viscosity formulation; thus a linear 
viscosity was used in the computation discussed above.   It is possible 

however to suggest a cubic formulation, and the formulation which we pro- 
pose below will be evaluated during work on a related program.   The etymo- 
logy is as follows. 

The constitutive theory of fluid dynamics leads to the most general 
representation of one Isotropie tensor (the stress tensor) in terms of another 
isotopic tensor (the strain rate tensor), namely: 

t=-pT+a1l+a2'3['   d (51) 

where p is the hydrostatic pressure and 0^ and «2 are sealer functions of 
the sealer  invariants: { Id, :id, llld} 
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where 
IH  - ft {I )  . 7. q - I -   - I (52) 

V * 

nd = IIId Tlr { d   ^ (53) 

md - Dtt {I 3 (54) 

The terms multiplied by (as, a») represent the disslpatlve contributions to 
the total stress.   One way of Incorporating quadratic dissipation is to take 

[«2 =    constant].   This term however contributes only to the normal stresses, 
not to the shear stresses.   The result produces what is known as a "normal 

stress" or Weissenberg effect.   This effect is not useful for the flows that 
we deal with in fracture mechanics. 

An alternative way of introducing nonlinear viscosity is to set 

[aj ■ 0] and take: 

Ofj» 2v0p (1 -r Id) (55) 

where        v        is the kinematic viscosity 

and r        is a relaxation time. 

This form is very Interesting for several reasons.   First of all, the product 

Oov ) is the linear viscosity coefficient n .   Thus the effect of linear vis- 

cosity is included.   Because of conservation of nass, Eqn. (55) may be 

rewritten as: 

al = 2 v
0 (P +Tp) (56) 

which evinces the typical form of viscous relaxation.   Thirdly the quadratic 

term (TIJ) enters in the form according to which real materials behave; 
namely, the apparent viscosity decreases with increasing shear rate. 

Finally, if the lineai term in Eqn. (55) is dropped, the expression above 

reduces exactly to the form suggested by Richtmeyer and Von Neumann. 

Thus Eqn. (56) displays a useful form for introducing quadratic viscosity 

Into all components of thQ stress tensor. 
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In the event the flow is Isochorlc as It is in the case of anti- 
plane shear, one can not introduce a quadratic viscosity, because I, = 0. 

One can however introduce a cubic viscosity by using the form: 

«!= 2vop (1+ ;3lld) (57) 

In both forms suggested for <*i» v    can be taken proportional to the square 
of the mesh size.   In the compressible form, involving quadratic viscosity, 
T can be taken proportional to the time step, and in the isochoric form. 

Involving cubic viscosity, ß can be taken proportional to the square of the 
time step. 

For the compressible or quadratic form, we have repeated tha 

Von Neumann-Richtmeyer analysis.   This analysis leads to the equation: 

dx =     ^^u  (58) 

-/ 1 + (r+ 1) •2:-  u (u   -"ü) - 1 
vo P 

It is easy to show that, as u-» {0, u ) , x -♦ ±«>.   This is in major contra- 
diction to the Von Neumann analysis, where x -• a finite length.   What Von 

Neumann and Richtmeyer then did was to tack on to the shock front two 

straight-line constant velocity regions, with a concatenate discontinuity 

in curvature.   Because the flow equations are second order, this solution 

does not satisfy the original differential equation and must be regarded as 
an approximate representation.   The representation shown above does not 

suffer from this limitation, and can, by variation of T and v  , be made to 

approach the shock discontinuity as closely as desired.   Figure 48 shows 
a plot of particle velocity profile for 

~- =   10"5, 10"6, and 10"7 

o 

and T  =   10     sec. 

One observes that the shock thickness can be made to take on a broad range 
of values. 
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APPENDIX 

CORRECTION TO THE ROTATIONAL TERM IN THE STRESS CALC UIATIONS 

During the examination of the formulation of the code preparatory to 
making the modifications discussed in Sections 4 and 5 of the report, an error 

In the sign of the rotational correction term In the stress calculations, as 
originally proposed by WllkinsA , was discovered.   In addition, from the 

standpoint of material objectivity    , the form of the rotational term is seen 

to be written in only an approximate form.    These statements are documented 
below.   The sign was corrected in our code and a check of the correction 

was made by running a model problem.   The results confirmed the sign correc- 
tion and, in addition, verified the accuracy of the SHEP code. 

form   : 

where 

In SHEP, the constitutive equations are correctly* subsumed in the 

^J   =   SiJ - 6iJ P W (AD 

% -«^ij -iÄV m 

6
     = -tnj (A3) 

J      -  HV" (A4) 

tj.      is the cartesian Couchy stress tensor 

Sj.      is the stress deviator tensor 

P        is the pressure 

J Is the local volume ratio, equal to the square 
root of tha third stretch invariant. 

♦The term "correctly" implies that Eqn. (A2) satisfies the principle of 
material objectivity. 
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G        is the shear modulus 

6        is the dilatation 

e^j      is the Cartesian strain rate tensor 

V        is the local instantaneous specific volume 

and in (A4),     -JTT-    is the particle-differentiator, 
o 

From Eqn. (A3) and (A4), it follows that 

J   =-f (A5) 

Furthermore in Eqn. (A2), the dot over e^ denotes the material derivative 

while the hat over s.. denotes the Jaumann-Oldroyd derivative. The form 
of the latter is given by: 

Jik  " sik " viJ ujkT uij vj,k 

viJ   = %   +  % W 

%v   =   'siv -vi.i ^v* ^ v< v (A6) 

where 

or 

vl 1 + vi i 

where 

<ti.. is the spin tensor. 

The last two terms on the right hand side of Eqn. (A6) correspond to 

Wilkins' 6^; a simple calculation reveals that the entire form of Eqn. (B-14) 
on page 78 of Reference Al is formally  incorrect   because of a sign error. 

The sign error apparently arose in the following way:  Wilkins intro- 

duces an angular velocity vector, which he denotes by [sin w ].   The angular 
velocity vector is correctly taken as the curl of the velocity vector which, 

according to the usual right-handed correction, corresponds to a counter- 
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clockwise rotation.   Wllklns then uses the rotation angle to to transform the 

stress components to new rotated components.   The transformation equations 
A3 he adopts are taken from Timoshenko    .   Presumably Wilkins changed the 

signs of the terms that are odd in to, because Timoshenko shows a diagram 

In which the rotation is clockwise.   What one must notice, however, is that 

Timoshenko's picture is based on a left-handed system of axes.   Thus Timo- 
shenko's equation should have been subsumed without the sign change. 

To further check i JT logic, we ran the following simple problem.   A 

slab is set into simple shear motion, cf: 

\\\\\\\\\ \ \\ 

Nonlinear (Poynting) effects are associated with the 'engtheninj of the 

originally upright fibers.   The correct rotation terms (with the right sign) pre- 

dict a tensile stress in the lengthened fibers, in agreement with the analytical 
solution.   The original program, with the incorrect sign, predicts compression. 

Keey in mind that these are second order stresses and thus the effect of this 
er.or on the overall computation becomes important only when the fl'St order 

stresses are comparable to the shear modulus of the material.   The reason is 

that the second-order stresses go as the square of the first-order stresses, 

e.g., in the shear problem: 

G 

T       2 
(A9) 

In the process of making these changis in SHE?, we checked out a 

model problem, namely the simple sheer at constant velocities of an infinitely 

long slab (a 1-D problem).   The results, in terms of the stress at the moving 
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surface and the stress at the fixed surface are plotted In Figures Al and A2, 

respectively.   The analytical solution is just a sum of Heaviside step functions. 

The agreement with the analytical solution is attested to by the fact that the 
computed Jumps fall directly (within 1%) on the grid line (both coordinate axes 
are non-dimensionalized).   The general solution looks like 

-g-.^.-y-. nnj 

where 
V 

M0 (the Mach number) = lo 
c 

s   =  ct 

»-^ 

and h is the height of the slab. 
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Figure Al.   Shear Stress at the Moving Surface 
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Figure A2.   Shear Stress at the Clamped Surface 
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