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13. Ab{l"RACT

-~Two-dimensional numerical techniques have been applied to obtain solutions of
problems of stress wave interactions with cracks in rock media. The SHEP code, a
finite~difference Lagrangian program that Incorporates a comprehensive elastic-plastic-
hydrodynamic behavioral model, was utilized as the basic numerical program in this
study. Significant new capabilities of the code developed during this program were (a)
the treatment of antiplane shear, or out-of-plane displacement (where the motion is de-
pendent only on the in-plane coordinates) and (b) the incorporation of a dynamic brittle
fracture criterion,(linown as the Griffith criterion),

C

In-plane prgb‘lems considered were the propagation of a stress wave through a
semi-infinite space containing (a) a semi-infinite crack, (b) a finite stationary crack,
and (c) a finite running crack. The crack was oriented at a 30° angle with the wave front
in these problems, The computations demonstrated that it is possible to observe the
diffraction of the shear wave fronts and to follow the flow of energy through the crack.

An ideal but relatively simple problem was chosen as a test vehicle for the oui-of-
plane program, namely the antiplane shear loading of a crack. In the case of a station-
ary crack, the cude solution was shown to give excellent agreement in all respects with
the analytical solutioa. Using the Griffith criterion, moderately good agreement was
obtained for the case of the running crack.
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ABSTRACT

Two-dimensional numerical techniques have been applied to obtain
solutions of problems of stress wave interactions with cracks in rock media.
The SHEP code, a finite-difference Iagrangian program that incorporates a
comprehensive elastic-plastic-hydrodynamic behavioral model, was utilized
as the basic numerical program in this study. Significant new capabilities
of the code developed during this program were (a) the treatment of antiplane
shear, or out-of-plane displacement (where the motion is dependent only on
the in-plane coordinates) and (b) the incorporation of a dynamic brittle frac-
ture criterion (known as the Griffith criterion).

. In-plane problems considered were the propagation of a stress wave
through a semi-infinite space containing (a) a semi-infinite crack, (b) a
finite stationary crack, and (c) a finite running crack. The crack was
oriented at a 30° angle with the wave front in these problems. The compu-
tations demonstrated that it is possible to observe the diffraction of the
shear wave fronts and to follow the flow of energy through the crack.

An ideal but relatively simple problem was chosen as a test vehicle
for the out-of-plane program, namely the antiplane shear loading of a crack.
In the case of a stationary crack, the code solution was shown to give
excellent agreement in all respacts with the analytical solution. Using the
Griffith criterion, moderately good agreement was obtained for the case of
the running crack.

In running the SHEP program, it is necessary to dampen oscillations
at the wave front by the incorporation of a fictive vi'scosity. In the case of
pressure, a quadratic viscosity component is added. In the case of shear,
a linear term is normally added. A linear viscosity tends to increasingly
spread the wave front, however. A study of the origins of this viscosity
term has led to the development of an alternate formulation for the viscosity
term which is cubic and applies both to pressure and shear. This alternate
formulation will eventually replace the so-called anisotropic or Navier
Stokes linear viscosity.
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1. INTRODUCTION

‘The objective of this program was to apply two~-dimensional numer-
ical techniques to the solution of problems of stress wave interactions with
individual; plane cracks in rock media. Computer codes suitable for solving
a wide ;:aynge of fluld and solid mechanics problems have been available or
under development for several years and efforts to extend these techniques
to the quantitative analysis of wave interactions with cracks and of crack
motion are now feasible. Shock Hydrodynamics two-dimensional SHEP (Shock
Hydrodynamic Elastic Plastic) code was utilized for this purpose in this
.progrém. Analytical studies were also conducted in conjunction with the
numerical work.

2, SUMMARY
2.1 PROBLEM AREA

Excavation processes in rock media typically involve the action
of strong dynamic stresses introduced either from explosive, mechanical, o
other impulsive loading sources. The propagation of stress waves in homo-
geneous, isotropic media is reasonably well understood. In-situ rock media,
however, typically contain large scale discontinuities in the form of cracks,
joints, and faults. Interactions of stress waves with these discontinuities
can cause slippage along the cracks, or extension (propagation) of the
cracks, or separation, The interactions can also alter the characteristics
of the stress wave transmitted across the discontinuity.

This study is concerned with an analysis of the detailed mechan-
isms involved when strong stress waves interact with the crack surfaces in
jointed rock media., Of particular interest are cracks which are obhliquely
oriented relative to the wave front. The understanding thus obtained can
contribute to the advancement of knowledge of excavatfon processes in
various media, and how to control and/or improve such processes.
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The technical approach used to study the details of stress wave-:
crack interactions was based on two-dimensional numerical ana\lyses of the
dynamic phenomena occurring under various conditions of stress wave loading
and crack orientation relative to the wave front. The computer program used
to obtain the numerical solutions was the SHEP code., SHEP is a finite- .
difference Lagrangian program employing a comprehensive hydrodynamic-
elastic-plastic behavioral model. SHEP has been under intensive use and
development for the past six years and has been applied to a broad spectrum
of wave propagation problems. "

A major difficulty in examining wave interactions with.discontinli-
ties such as cracks or fracture surfaces:arises due to the constraint of the
continuum model which is normally assumed in numerical analyses of wave
propagation. Special routines in the SHEP code alleviate this difficulty by
permitting crack surfaces to be explicitly defined in the computational grid.
Thus the grid 1s not coupled across the crack, and slippage and/or separa-
tion can occur., * '

2.2 PLAN OF RESEARCH ' ;
‘-f}&?‘fs- w\-&’/ﬂ‘k !
The contract work was divided into the following two tasks,

corresponding to analyses of stress wave interactions with ! |

i
a) single, semi-infinite cracks and
b) single, finite-length cracks. ,

2.2.1 Task 1 - Interaction of Stress Waves with Singlel
Semi-Infinite Cracks .

This task was concerned with the analysis ¥pertaining to cracks
which are semi-infinite in extent, or which intersect with the ground sur-
face. The work initially consisted of the selection and determinaticlm of
the problem specifications (such as media properties, loading wave char-
acteristics, and crack orientation and condition). SHEP code 3solutions of
the problems defined were then set uﬁ and run. These solutions provide:
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completeﬂiquantitatlive data for all the state and motion variables of interest
throughout the computing field at regular intervals of time, In addition,
spatial plots of the principad .stress, particle velocity, and displacement
flelds were obtained at selected times during the event. Following comple-
tion of the solutions, analysis and interpretation of the results were per-
formed to characterize the transnutted stress waves.

. .
[ i . i
H

| 2 2.2 Task 2 - Interaction of Stress Waves with Single,
! . Pinite Cracks

| :
This task was concerned with cracks of finite length, so that the

interaction of a stress wave with a crack tip could be examined. The prob-
lems were selected so that comparisons between the cases of semi-~infinite
(Task 1) and finite (Task 2) cracks could be made,

' Also included in this task was the development of a dynamic
Griffith fracture criterion, to enable the study of crack propagation. In
conjunction with' this, . the SHEP code was generalized to accomodate anti-~
plane shear, or out-of-plane displacement.

T4 verify the suitability and accuracy of the code, and modifica-
tions made thereto during the course of the program, for analyses of wave/ ..
crack interact.ions analytic solutions of selected test problems were obtained

and used to check out corresponding numerical solutions obtained with the

code. ' | ,

2.3 MAJOR ACCOMPLISHMENTS

Primmary program accomplishments includad

a)) The completion of SHEP code solutions of three
! ‘ in-plane stress wave/crack interaction problems.
i b) The codification of the equations of anti-plane
' ghear (z-independent) to provide a new capability
‘ for SHEP code analyses.
| ¢)  The formulation of a dynamic Griffith criterion
' for analyses of crack propagation with the SHEP code.

3



These items are summarized in the following sub-sections.

2,3.1 In-Plane Numerical Solutions

Three problems of wave interactions with cracks were selected for
analysis by means of code solution, as depicted in Figure 1. These problems
were chosen to demonstrate the utility of numerical techniques for obtaining
detailed information on the response of cracked media subjected to impulsive
loads, in general, and, in particular, for assessments of the wave inter-
actions in the vicinity of a crack. It is noted that the explicit definition of
a crack surface such as specified in these problems is not generally amen-~
able to treatment through conventional code techniques, which normally
assume a continuous material model.

The rock medium selected for these problems was granite. The
material properties assumed for the granite are described in Section 3.2 of
this report. The problems were run in plane geometry, assuming plane strain;
the variables are thus independent of the z-coordinate (perpendicular to the
cross-section shown).

The first problem selected for analysis (Case .l).consisted of inter-.
actions of a stress wave with a crack oriented at a 30° angle with the wave
front, The stress wave was generated by uniformly loading the left face of
the granite block with a pressure pulse. A triangular pressure pulse of 5
kilobars peak magnitude and 0.2 millisecond duration was used for this
problem, as sketched below:




CASE 1. INTERACTION OF STRESS WAVE WITH SINGLE, SEMI-INFINITE CRACK

Loading Surface-——s
— Crack
—r = Granite Slab

CASE 2. INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH CRACK

|||

Crack Tip
309

o
—
—— i

CASE 3. INTERACTION OF STRESS WAVE WITH SINGLE, FINITE-LENGTH
CRACK, WITH CRACK GROWTH

Inltial{Crack Tip
30°

BN

Figure 1. Specifications of Problems for SHEP Code Solutions.



The crack in this problem was characterized by a free slip condi-
tion and zero width. Opening of the crack was allowed to occur if stress
components normal to the crack went into tension.,

The second prohlem considered (Case 2) involved the interaction
of a stress wave with a finite-length crack. The angle of orientation of the
crack and the applied pressure loading were the same as in the first problem.
The crack extended from the loading surface (lower left) to the crack tip,
situated on the horizontal mid-plane of the block.

Case 3 was the same as the second problem, except that crack
growth was permitted. This case demonstrates the provisions in the code
which can be used to model crack propagation. In this case, dynamic de-
coupling of lattice points in the computing mesh occurs when a specified
criterion is satisfied.

SHEP code solutions of these three problems were successfully
completed. Plots depicting the particle velocity field and the principal
stress field occurring in the test block were obtained for several times during
the interactions. In addition, time histories of pertinent parameters at
several stations in the field were recorded. These results are discussed in
detail in Section 3 of the report, Some representative results of these code
solutions are shown here, in Figures 2 to 7.

For Case 1, the principal stress field, for a time of .3 msec, and
the particle velocity field, for a time of .5 msec, are shown in Figures 2
and 5. As the wave encounters the crack, the principal stress vectors may
be seen (Figure 2) to rotate into a direction transverse to the crack surface,
reflecting the fact that the crack surface can not bear shear stress. This
interaction produces a dilatational wave and trailing shear wave which
propagate across the block, as indicated in the velocity field plot (Figure 3).
The pzak stress in the transmitted wave was reduced by about 25% from that
in the incident wave.
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An example of the results of the Case 2 solution is shown in
Figure 4, which depicts the particle velocity field occurring at a time of
.6 msec. In this interaction, the wave system is divided approximate ly in
half, the part above the crack tip appearing as a simple plane wave, and
that below as a dilatational wave and trailing shear wave, as in the pre-
vious solution. Starting from the crack tip, a disturbance propagates intc
the plane wave region above and the "cracked" region below, altering both
flow fields and creating an expanding region of transition between them.

In Case 3, where crack growth was allowed, the criterion used
for decoupling of points beyond the crack tip was that each of the cells
surrounding a lattice point must have failed, i.e., at some time reached a
state on the granite failure surface. This was a conservative criterion, since
the failure surface generally rapresents states where virtually complete frac-
ture occurs. Use of more sensitive criteria can be employed, and develop-
ment of a dynamic Griffith criterion was subsequently undertaken, as
described below. The crack growth occurring in this solution is indicated
in Figures 5, 6, and 7, which are plots of the particle velocity field for
times of .5, .6, and .7 msec. The extent of the crack in each plot is indi-
cated by the circled lattice points.

2.3.2 Dynamic Griffith Critcrion

In connection with efforts made under the program to endble the
study of propagation of cracks under stress wave loading, the incorporation
of equations into the SHEP code which govern the rate of propagation of a
brittle crack surface in an elastic material was undertaken. These equations
are known as the Griffith criterion and they provide a relation between power
input to the body and the rate of uptake of this power by strain energy,
kinetic energy, and new surface energy. The concept of surface energy is
the feature that was introduced by Griifith in the early 1900's, and it
requires the determination of an additional material parameter, namely the
surface energy per unit area. An algorithm appropriate for the SHEP code



was programmed and tested on a model problem. The results indicated that
the effective crack propagation was slower than predicted theoretically. It
is expected that improved results would be obtained with an alternate form
of the fictive viscosity.

2,.3.3 Analytical Comparison Problems

To verify the SHEP code solutions and the formulation changes
made, comparisons of numerical results with analytical solutions of model
problems were made.,

As part of this effort, the capability was added to the code for
the treatment of anti-plane shear, or out-of-plane displacements, with the
restriction that the motions are independent of the z~coordinate, so as to
retain the two-dimensional character of the code. This was done primarily
since the only elasto-dynamic solutions currently available for an accelera~-
ting crack are those for the case of anti~plane shear, although it also repre-
sents a useful tool in numerical analysis which has heretofore been
unavailable,

A model problem of simple, shear motion of a slab was first
solved with the modified code. The results of the code solution showed
excellent agre2ment with the analytical solition for this case. A full, two-
dimensional problem involving the interaction of an anti~plane shear wave
with a stationary crack was then set up and run, Excellent agreement with
the analytical solution was also achieved for this case.

3. NUMERICAL SOLUTIONS OF IN-PLANE PROBLEMS

As noted above, numerical solutions of three problems involving
the interaction of stress waves with cracks were performed. The specifica-
tions of these problems were given in Section 2.3.1.

14



3.1 COMPUTATIONAL METHOD

3.1,1 Physical Model

The computer program used in this study was the two-dimensional
SHEP code, which solves the equations of motions for elastic-plastic bodies
by means of a finite-difference lagrangian-cell technique. SHEP has been
under intensive use and development for the past six years and has been
previously documented® and distributed to interested parties. The mathema-
tical formulation is basically the same as that described by Wilkins®. To
delineate the boundary between elastic and plastic deformations, various
yield criteria may be used, such as von Mises, Mohr-Coulomb, or arbitrary
functions. Within the chosen yield surface, the deformations are con-
sidered to be elastic, i.e., when

J3]'2<Y (1)

where ]'2 is the second invariant of the deviatoric stress tensor and Y is the
yield strength. Excursions on the yield surface can be made in accordance
with either the Prandtl-Reuss or plastic potential flow rules.

To model a crack surface, SHEP contains provisions for inserting
surfaces of discontinuity, which consist of grid lines having a dual set of
lattice points, These surfaces are discussed in the following section.

3.1.2 Surfaces of Discontinuity

In a norma) Lagrangian computational grid, material elements on
either side of an interface at any point are coupled to each other for the
entire problem; they are, i.e., locked or welded together along the line
segment connecting any two lattice points along the interface, At any inter-
face, which may represent a crack within a material or the boundary between
two different materials, there are, however, in general, special boundary
conditions which apply, and, in addition, there is the possibility of forces

15



which may be set up that tend to cause the materfals to slip past each
other or to separate., A gas flowing past a metal surface is an ekxample of
such a case. The onset of material fracture during a problem also gives rise
to the requirement for treating the oecouplinq or uncoupling of elements |
which are, in this case, within an originally competent material. For e'lppli-
cation to problems in fracture mechanics, such as in this program, the latter
requirement is particularly important. ;

A formulation of sliding inierfaces for lagrangian codes, as re-
ported by Wilkins®, provided a capabilivy for the numerical treatment of
problems involving sliding of two materials along an interface. This formu-
lation served as the basis for develor..ant of the surfape of 'discontinuity
capability currently available in the SHEP code, ! | ;

The basic features of the surface of discontinuity formulati_on are
illustrated in Figure 8, The grid line corresponding to the surface of dis-.
continuity is known in common parlance as a slide line, At the startofa | |
problem, the lattice points along the slide line may be individually desig-
nated as decoupled points, corresponding to their lying on an interface, or
as coupled points, in which case their behavior is the same as in an ordinary
mesh, For decoupled points, special sets of governing equations are used
to individually determine the motion of the point pairs, to'refleét the fact | v
that there is an interface, such tnt, e. g.,’ shear stress cannot be supported
If forces are present which tend to cause slippage the decoupled points will ;
thus disengage and move separately along the slide line. !

Additionally, the development of tensile stresses notmal to an
interface will tend to cause material separation and formation of voids. Pro-
visions have been made in the code to treat this phenomenon, also.

1

The void opening test is made by computing the stress por_mal to
the interface at a decoupled slide point and comparing this value with a
selected critical value of stress required for uncoupling.' If the computed
stress is greater than the critical value (in tension), then that point is
designated as a free surface point. The newly formed free point is then
moved in accordance with the regular eqlations of motion for a point on a

free surface. ! ' , | '

16 |
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For the problems performed in this study, the critical value for
uncoupling was set to zero, such that any tensile stress would tend to cause
separatlon; In other applications, e.g., for the interfaces in laminated
materials, this value could be set equal to the bond strength,

Void closure may also occur and is treated in the code by appro-
_priate tests to determine if the materials have come in contact. If so, the’
equations of the surface of discontinuity are restored, and the materials may
subsequently slip or re-open, as before.

Iattice points along the slide line which are initially designated
as coupled points may dynamically decouple, individually, during the course
of a problem, if a selected criterion is mei, Various decoupling, or fracture,
criteria may be used. Once the lattice points are decoupled, the equations
of the surface of discontinuity are invoked. A mechanism is thus provided
which can be used to model crack propagation within a mateiial.

Additional information on the code operations and the mathema-
tical basis of sliding interfaces has been previously reported.®~*

3.2 MATERIAL PROPERTIES

The rock medium in these problems was granite. The properties
gselected for the granite were:

Density: P, = 2.69 gm/cm3

Dilatational Velocity: vy = .579 cm/usec
o

Shear Velocity: vg = .330 cm/usec
o

These values imply the following other properties:

Bulk Modulus: Ko = ,512 Mb
Shear Modulus: G0 = ,293 Mb
Polsson's Ratio: Vo = .26
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The subscript o in the above indicates that these are normal, pre-shocked
values. These values were selected from previous studies involving granite
media,5/®.

The equation of state of granite, suitable for the low-pressure
regime applicable in these problems, was formulated as follows.

P=Au+Bu26+ Gpe P< .04 Mb (2)

where

6 = lforu>0
6= 0farpus< 0

The symbols are defined as

specific internal energy

pressure
= p/ P, = relative density

n ~ 1 = compression
= density

VT FEF S g o
N

The values of the coefficients are:

A = .512 Mb
B= 1.49 Mb
G = 2.1

No hydrostatic tension was permitted, i.e., Pmi 0.

n=

A Mohr-Coulomb type yield model was used, i.e.,

Y = .0003 + (1-e"P/+0003) 45004 + 1.33 P) 3)

where Y is the yleld strength, in megabars. The maximum value permitted
for Y was 10 kilobars. ’
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3.3 CASE 1 - INTERACTION OF STRESS WAVE WITH SINGLE,
SEMI-INFINITE CRACK

The computational grid set up for the :zode solution of Case 1 is
shown in Figure 9. This grid contains 2690 cells, with the basic cell size
set at 10 cm x 10 cm. Beyond a central region of interest the cell dimen-
.sions geometrically increase in order to conserve the total ceil count and -
computational time, Representative results of the code solution, as depicted
by particle velocity fields and/or principal stress fields for times of .3, .5,
and .92 msec, are shown in Figures 10 to 12 and in Figures 2 and 3 in the
Summary, Section 2,3.1. For clarity in reading these plots, the field of
view wau limited to the central region of interest.

For the stress field plots, the principal components of the stress
tensor for each cell ure shown, as follows: The magnitude of the two princi-
pal stresses in the x-y plane are plotted in their corresponding principal
directions. The third principal stress (in the z direction) is plotted along
the line bisecting the other two principal directi~ns, Vectors pointing to
the right are compressive, to the left, tensile. An example of how a stress
tensor is plotted is sketched below:

Tensile —e— «- Compressive

y Principal Stresses
in x-y Plane
Cell Center

Principal Stress
in z Direction
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The edits of the velocity vector field plot the direction and magni-
tude of the velocity of each lattice point in the computing grid. The vector
lengths for both the principal stress and velocity fields are scaled to the
unit length indicated above each plot; the units are Mb/cm and (cm/usec)/cm,
respectively, On the more recently produced plots, the scale is also graphi-
cally depicted in the upper right hand corner.

As the stress wave interacts with the crack, the material on the
right side of the crack is driven by the stress component normal to the crack,
since shear stresses cannot be supported. As shown in Figure 1'0, the velo-
city vectors along the crack at the shock front are thus directed normal to
the crack, turned downward 30°. Also, as shown in Figure 2, note that the
principal stress tensors in the material along the right side of the crack are
rotated into a direction transverse to the crack surface, again reflecting the
fact that the crack surface can not bear shear stress. As the incident wave
runs along the crack, a dilatational wave and trajling shear wave are formed
which propagate across the block. The transmitted shock front remains
approximately planar and oriented at 90° to the x axis. In the shear region
behind the shock, a distinctly downward velocity flow is evident. This
action induces material slippage along the crack, the material on the right
side of the crack moving downward and to the left, along the crack, relative
to the material on the left side, In addition, there was a slight separation,
or opening-up, of the materials on either side of the crack, which were
{nitially in contact.

Time histories of the material displacement at the points indicated
in Figure 13 were recorded during the code solution. The slippage of
material initially at the point x = 100 cm, y = 0 cm, as given by the distance
between points on opposite sides of the crack (points B and C in Figure 13),
is showr in Figure 14. The extents of the downward (y-direction) displace-
ments of these points are shown in the time histories given in Figure 15,

The downward displacements of other points in the field, at x = 55, 158,
203, and 253 cm (points A, D, E, and F) along the central horizontal plane
(v = 0), are shown in Figure 16, The forward (x-direction) displacements of
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' .
these points during this time were all ~ 0 25 cm,' The perturbatlon of flow,
as measured by the downward thrust of material, is seen t6 diminish as the

-
distance from the crack increases,

Stress (ox) - time profiles at polnts A, D, E, and F are shown in
Figure 17, The peak stress in the transmitted wave (polnts D,E, and F) is.
seen to be reduced by about 25% from that in the 1nc1dent wave. The afore- _
mentioned two-wave structure in the transmitted wave and the reflected wave
at point A are also displayed in these plots. '

3.4 CASE 2 - INTERACTION OF STRESS WAVE WITH SINGIE,
FINITE-LENGTH CRACK | y,

The initial configuration of the Lagrangian grid set up for this |
problem is shown in Figure 18, The crack extends from the loading surface
(lower left) to the crack tip at x = 200 cm, y= 0.

Representative results of the SHEP oode solution of this problem,
as depicted by the particle velocity fields for times of .3, .4, .5, 1.6, and
1 msec, are shown in Figures 19 to 22 and in Flgore 4 ln the Summary,. i
Section 2.3.1, Associated principal stress fields for times of .4, .5, and
7 msec are shown in Figures 23 to 25, Fér clarity in reading these plots,
the field of view is limited to the central region of interest, o

i

The response of the granite in this problem is, of n°cesslty,
similar to that in the semi-infinite crack problem, until the wave front
reaches the crack tip. Subsequently, the wave system is divided approxi-
mately in half, the part above the crack tip appearing as a slmple plane
wave, and that below as a dilatational wave and trailing shear wave, as in
the previous solution. Starting from the crack tip,.a dlsttn'oance;, or bow '
wave, propagates into the plane wave region above and the “cracked" * .
region below, altering both flow flelds and creating an expanding region of
transition between them. The diversion of flow around the crack tip may be '
seen in Figures 19 and 20.
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Time histories of the material displacement at the locations indi-
cated in Figure 26 were recorded during the code solution. The slippage of
material at three points along the crack, as given by the distance between
points on opposite sides of the crack, designated as (W,X), R,S), and
(M,N) in Figure 26, is shown in Figure 27, The material on the right side
of the crack is moving downward and to the left, along the crack, relative
to the material on the left side, The extents of the downward (y-direction)
displacements of these points and the crack tip (point 1) as a function of
time are shown in Figure 28. The spatial trajectory of the point pair (W,X)
on the crack surface during the time span of the solution is plotted in Fig-
ure 29. Time-histories of the vertical displacements of points above and
below the crack tip along four vertical cuts (x » constant) through the target
are shown in Figures 30 to 33. The downward shift of material persists at
all these stations, but in smaller amounts as the distance from the crack
increases.

Stress (ox) - time profiles at points H, I, J, and K, along the
horizontal plane through the crack tip (y » 0), are shown in Figure 34. Note
the increase in stress over that of the loading level near the crack tip.
Stress profiles along the vertical plane through the crack tip (X » 200 cm)
are shown in Figure 35. The points above the crack tip show a peak stress
of 5 kb - corresponding to the loading or incident shock level, and those
below the tip to about 4 kb ~ the transmitted stress level, Stress-time pro-
files along a vertical plane to tt right of the crack tip, at x as 300 cm, are
shown in Figure 36. Here the stress level is reduced at points above as
well as below the crack tip. Time histories of the shear stress (oxy) at
points along the vertical plane through the crack tip are shown in Figure 37.

3.5 CASE 3 - INTERACTION OF STRESS WAVE WITH SINGLE,
FINITE-LENGTH CRACK, WITH CRACK GROWTH

For this case, the same proolem as in Case 2 was solved, but
with the provision in the code for permitting growth of the crack activated,
as described previously.
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Representative results of this code solution, as shown by the
particle velocity fields for times of .5, .6, .7, and .9 msec, are given in
Figures 5 to 7 in the Summary, Section 2.3.1, and in Figure 38. Associated
principal stress fields for times of .5 and .6 msec are shown in Figures 39
and 40. Propagation of the crack does occur for this loading; the extent of
the crack at any time is indicated by the circled lattice points. For this
loading function, the fracture criterion used was met at relatively late times
after the shock front has passed, so that the effect of crack growth on the
transmitted wave is not large,

9. ANTIPIANE SHEAR LOADING OF A STATIONARY CRACK

4,1 FORMUILATION

The antiplane shear loading of a crack results in equal and oppo-
site out-of-plane displacements in the quarter planes adjacent to each of
the two sides of the crack. When this type of shear loading is applied to
a crack surface, no in-plane displacement components are generated. The
one out-of-plane displacement component {s then governed by D' Alembert's
equation:

ow = w -dw= 0 (4)

where
s = ct (5)

c= /S (©)

An immediate advantage thus accrues in dealing with an out-cf~plane prob-
lem; namely the solution can be expressed in harmonic fuactions rather than
biharmonic functions. In addition, the only elasto-dynamm solutions that
are currently available for an accelerating crack are those of Kostrov’,
Eshelby,® and Achenbach®. Because of these advantages, it was decided
to modify the SHEP code to include computations for the two out-of-plane
shear stress components and the one out-of-plane displacement component,
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all three of which depend only on the in-plane coordinates. The governing
equations are as follows:

ac’xz aqyz SE g oo
X + dy + Y I =PV (7)
E =-(P+q) Vv +a):vq] ®)
= §(vi+aw) (9)
d =7 (va+qv) (10)
where
G is the shear modulus
and

n is the linear fictive viscosity, taken to be
proportional to the mesh size.

The difference form of these equations follows the same format as used by
the rest of SHEP. The form of the Jauman-Oldroyd derivative is given in the
Appendix,

4.2 ANALYSIS

In order to check out the validity of the computer code, it is
mandatory to compare the computational results with one or more analytical
solutions. The most convenient solution available for this purpose is that
which describes the propagation of an out-of-plane (antiplane) shear wave
emanating from a uniformly loaded crack. In the following, the out-of-plane
solution is presented and used to check out the corresponding code solution
that was perfarmed for this problem,

Consider an infinite elastic space perforated by a semi-infinite
crack surface lying at [x = 0, ~o<y < 0). To the crack surfaces x = 0+and
x =0, we apply a step load in time uniformly distributed, namely
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= -SH(s) - + (11)
L

Tx ix:O

The loading situation and associated waves are shown in the following sketch: '

¥ ' ,

o
T yz|= = SH(s) ———< .— Pplane Wave ’ f

Crack—r

The plane [x =0, 0 £ y <=]is a plane of antisymmetry, on which the out-of-
plane displacement w is zero. In the right half-space the displacement is
positive, or out-of-the-paper, and vice versa., '

This problem is a standard one {n wave propagaﬁon'the,ory and ls:
readily solved by the Wiener-Hopf technique and the C'aigniard method. It
can also be treated by the method of tharacteristics and the theory of '
Abelian integrals. In either event, one arrives at the solution:

' : ‘ | ; | ' '-‘ll
w: = ;rl- {JZ: (s-r) (CS%'_ sn%) ~ (s + r csB) arctarp »,/{-;-é-s—e-

L = . . ,
+ (s -r cs@) arctan y f—_ga . . (12).
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where * denotes 6 ﬁos'itive or negative respectively, superscript B denotes
the bow wave contribution, and r is the radial distance from the crack tip.
The total solution is given by . :

i

* Total : : ‘Bow Wave : Plane Wave
] , H
'Sg _1_' = -Sq wE ' + (s-x) H (s-x) (13)
g . g v
! i
T ' i
4,3 NUMERICAL SOLUTION

A SHEP code fun was set up for this problem using a grid containing
5000 cells of uniform size.' The sample body was taken to be 1 cm in the
X direction and'+ 1 cm'in the y direction, as shown in the following sketch:

el

| y (em) E:
! Clamped —.;
Surface - |
. ".____..-* Crack Tl-p
. q J '
éﬁrafgigg e— Crack
I. .
. =1 . !
j 0 1
! X (cm) —

Geometry for SHEP Gode Run |

t i '
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‘Since the problem is antisymmetric, it is sufficient to compute the wave
pro"pag'ation in just one-half of the body and impose the boundary condition
that the displacement is zero along the plane x= 0, y 2 0, above the crack
tip.

The material was characterized by a density = 2 gm/cm3 and a
shear modulus = 100 kb. The crack was loaded uriformly with a shear stress,

sz‘ Of -1 kb.

With the analytic solution in hand, it is convenient to perform a
number of checks on the computational solution. We have the following
derived relations for the displacement or stress at three angles:

S w =1+ 2{ /R0 -L) -arctan J/E -1
s lg= - I T ) s r
f (15)
3tz =2 J & -1l-arctan 4/ £ -1 (16)
S g=+L T r r
2
S
T +T |
Xz A 1 1 r
—_ = - 5 - < arctan (17)
S 8 =0 2 2
In addition, we have the relations:
2
. 5.C S
Pp = g 2 (18)
P. = §2_C (d_-s) (19)
P~ G 'o

where P denotes the rate of work (power input) done on the body. In Egns.
(15 - 17) we note that the right-hand sides are all functions of (f—). This
is so because there is no length-scale in the problem,
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Plgures 41, 42, and 43 show respectively plots of Eqn. (15), (16),
and (17) versus- » the fractional distance to the wavefront, along with the
corresponding results from the code solution., Excellent agreement is noted
in all three cases,

The computer program also tabulates the total strain plus kinetic
energy, the time rate of change of which is equal to the power input, At the
time the bow wave has ﬁlled the sample body, the tabulated rate of energy
change was 1,112 x 10 (ergs/cm) /i sec, in excellent agreement with the
theoretical computed power input of 1,113 x 10 (ergs/cm) fusec.

In Figure 44, we show the stress field at the time at which the
bow wave has just about filled the sample body. At each field point is
plotted a vector equal in magnitude to

2
M = /( )+(J’z) (20)

and having a phase angle equal to

- .
® = arctan Xz (21)
T vz

Thus the field vectors are given by:

V = Mel® : (22)

One can clearly see the position of the plane and bow waves, In the plot,
the front of the plane wave appears to have advanced a distance beyond the
theoretical value of 1, This is due to the non-dissipative artificial viscos-
ity terms used in the program which smoothly spread the wave across several
cells at discontinuities, as seen, for example in the stress profile of

Figure 43, In the bow wave, as the angle increases, the spreading is seen
to narrow, since the amplitude of the wave front decreases to zero at

/8
9=E.
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At the crack tip both Tyz and Tyz become singular, The computer
run recorded highest values near the crack tip (one~half cell width away) of
~ 5 kb, The approach to infinity is limited therefore by the fineness of the
mesh used in approximating the continuum by a grid., This, however, did
not affect the good accuracy of the solution at points in the body away from
the singularity.

S. ANTI-PIANE SHEAR LOADING OF AN ACCELERATING CRACK

5.1 ANALYSIS

In the case of a running crack, we have an infinite elastic space
perforated by a semi-infinite propagation crack surface, lying at
[x =0, -» <y< d (s) ], where d(s) is the distance the crack has propaga-
ted from the origin in time s. The driving force for the crack propagation is
provided by an anti-plane shear stress

Tyz ™ ~ SH(s) . R (23)

applied to both faces of the crack, and following the crack as it propagates.
Ahead of the crack, on the plane x = 0, the displacement w is always
zero,

The above problem may be attacked by first determining a Green's
displacement function, which is the displacement arising from a unit fbrcé/
unit thickness applied at a point on the (x = 0) surface designated by Yor
and at a time Sqr for a duration Aso. The solution to this problem is well
known and has the form

2 2
I-‘Aso H[s-som/(y-yo) +x" ]

YG = TG -
As-so)2 - (y-yc,)2 - ¥

(24)

The total displacement at any point (x,y) and at any time s is then given
by:
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TO/S dy,,

dy,
W= —%— ds £ +
¥ jn{/ 2 2 / 2 2 .2
(8-5)" - (y-v)) (8-8)" - (y-v))" - x

(25)

where To is the stress applied ahead of the crack and is
to be determined by the condition that w is
zero ahead of the crack on the surface x = 0.

‘The Umits in Eqn. (25) are in part determined by the Heaviside function
appearing in Eqn. (24), but are more simply described after carrying out an
automorphic transformation® to new variables.

-3 26
¢ T (26)
n = S+y 27

These variables have the property that they allow the square root appearing
in Eqn. (25) to be factored. One can then arrive at an Abel integral equation
for (TO/S), under the condition that w = 0 ahsad of the crack. After a lttle
algebra, we arrive at the following results:

(arctan,/ 23t Aoyt @) _ fooytdGoytd )

) L]
I
Ao

-(—;g]l: 12_r {arcsinﬁ(s+§-g 4 +/[d (s +y - d) -y]_[s+y-d(s+y-d)]}
(29)

x=0

The function (d (s - y+d (s -y+d (s ~y+ . . . has the property that
d- 0as y~ sandthe functiond (s +y~-d(s+y-d(s+y-. . . has the
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property that d ~ 0 as y - -s. We now apply the Griffith criterion (discussed
below), perform a few operations with delta functions® , aud arrive at the
following result for the crack propagation function:

*
%—,;=(-§;-1-%+Zarctan-ss—)H(s-s*) (31)
where
g% = Lr% (32)
48

and where I" is the specific surface energy. From Eqn. (31) we conclude
that

*
i 1§
- = ——— (33)
¢ 2
S*

1+ 6550
so that the crack accelerates to sonic velocity. The start of crack propaga-
tion is delayed by a time s* until the energy inside thz bow wave has built
up to a critical value. Figure 45 shows how d/s* depends on s/s*, a no-

parameter plot.

5.2 THE GRIFFITH CRITERION

To improve the physical significance of the numerical solutions,
the conclusion was reached that a more realistic, dynamic criterion for pre-
dicting and following the course of crack propagation in flawed, jointed,
brittle media should be incorporated in the numericial method. A necessary
step in making such a formulation change is to check the new code through
comparisons 'th analytical results from a model problem, such as the one
described in the previous section.

The modifications needed to follow crack propagation are three-
fold. These are tne logic associated with the crack geometry and crack
prc pagation, the velocity threshold criterion, chosen here to bz the Crlffitn

68



{8

5 6 7 8 3 10
.
*
s

Figure 45. Antiplane Crack Propagation.
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criterion, and the velocity orientation criterion, chosen to be the direction
transverse to the maximum principal stress vector.,

The Griffith criterion is a power balance. It states that the total
work done on the body by surface traction goes into increase of strain
energy, increase of kinetic energy, and increase of surface energy. This
takes the form:

t . J
jop ) dt'= U+ Uy+ r© (d-d) (34)
where t! is a dummy time variable

P= § t: v da, (the power input) (35)
U= _J'W d V (strain energy) (36)
U, = f Kd V (kinetic energy) (37)
W = =-2G Y, + -;— X + %G)yz (strain energy density) (38)
y = € (dtlatation) ) (39)
¥p = % ()/2 - ei € ;() (second strain invariant) (40}

1
€= 2 (uj;k + uk”) (strain) (41)
v = ﬁi (velocity) (42)
ti is the stress tensor

u is the displacement vector
{ is the tensor element of area

dv is the volume element

po k
K = -V vy (kinetic energy density) (43)
po is mass density

U1 and U2 are zero at zaro time
r is the specific surface energy
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d is the instantaneous crack length (in 2D) o
crack area (in 3D)

do is the initial crack length

When the crack 18 not moving, d =0, in which case

[fPwyar = v+ v, (49)
o
The only basis for Eqn. (44) becoming an inequality arises when the boun-
dary conditions involving the crack surface change with time, This state-
ment requires elaboration.

Suppose we refer to the problem discussed in the previous section,
namely, the one in which shear stress S is applied to part of the boundary
of a rectangle, the remaining boundary being clamped. The stressed portion
of the boundary is the crack, cf. figure below

free

free

sz = =5 — Crack of
Length d A

fixed

For this case, when the crack is not allowed to run, Eqn. (44) is identice lly
satisfied.
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! . !
: !
Imagine now, that after some time t , the crack starts to run, do

increases, and the stress S 1is allowed to follow the crack. In this case,
the left hand side of Eqn. (44) becomes: i : :

t t, +At .
[ pey at | s YT peyae| |
. : . - i :
o dwd, t, d=d_+ Ad
t, +2At , -‘ ..
+ Pty dar | +.o 04 o €tc,
t,+ At d=d°+ ZAd’ 1

Because of the crack motion, energy is absorbed by the creation of fresh ;
surface and Eqn. (44) becomes an inequality.

In order to follow this motion, we proceedlas follows: We allow
the wave to propagate for some delay time (defined in Eqn. (32)7) with the
crack at its initial position. We then advance the crack a small distance
Ad, which will be chosen to be a fraction of cell length, Wé then let the'
wave propagate for one increment of time At, énd calculate the qtixantity:

ty t,+At : t + a4t
[ P dr | + P(t') dt' | - (U, +U,)
o d =d te d =d°'+Ad

r = Adcaxlc

| (45)

: : !
If this calculated Ad turns out to be equal to the chosen Ad, then the time
increment At is recorded, and the crack is advanced anl:ther ad. If tixe
calculated Ad turns out to be less than Ad chosen, additional time incre-
ments are allowed to elapse until equality is achieved. Each time equality
is achieved, the crack is advanced another Ad. A numerical plot of Ad vs
time can thu:; be constructed and compared with the plot from the analytic

1

solution shown previously (Figure 45), - .
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In setting up the problem shown above, we have assumed that the
load is applied directly to the crack surface. In the event a wave is allowed
to impinge upon the crack by approach from infinity at any angle, the problem
posed in this fashion can always be decomposed into a combination of a
plane wave traveling in the absence of a crack, and the problem shown
abox)e where the cr’ack is loaded directly. Furthermore this problem can
always be reduced from a full-space problem to a half-space problem by
virtue of the antisymnletry of the shear loading. Similarly, in dealing with
t,he in-plane problem, we can use symmetry to reduce the problem to that
of a half~space. Thus the problem posed above is a very general model .

problem, ' .

4
*

Initially, the code was checked for.the case when the crack is
not running (Eqn. (44) ). To verify that the computation of the power integral
on tpe left-hand side of Eqn. (44) matches within a few percent of the com~
putation, of the total energy, which is a standard output of the SHEP program,
it was necessary to compare the computation of the velocity with the ana-
lytical solution given by’ '

' Gw'_,_2 s . 5
] 1 Se _l;ﬂarctn = 1 H (s-r) (46)

At the point where the bow wave joins the plane Wave, we have:

| %—f— -1 : - (47)

Because of the discrete nature of the computational algorithm
used to calculate w in SHEP, the computed velocity is not constant in
time; but rather flu¢tuates around unity, the vibraltion gradually damping to
zero amplitude. Both the amplitude and logarithmic decrement of these
vibrations can be controlled by varying the artificial viscosity and the time
increment. We therefore performed a series of runs to determine appropriate
values for the viscosity coefficient and time step.

l !
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- Figure 46 shows a plot of normalized velocity at the wave front
asa function of time measured in numbers of cells in the bow wave, Itis
observed that eritical damping occurs somewhere between the values of the
viscosity coefficients, C A = .25 and CA = .75, Variation of the time step
had little or no effect upon the vibration in the range of At studied.

The meaning of Figure 46 is that the front of the wave is spread
out over about 4 cells on either side of the front, As we shall see below,
this uncertainty in % implies an equivalent uncertainty in P, and, a for-
tiori, an exaggerated uncertainty in [It P(t') dt' - U1 - UZ]' Thus it will

o

be extremely important to develop a better form for the fictive viscosity in
order to narrow the spreading of the wave front. Such a form will be dis-
cussed below,

Holding in abeyance for the moment the question of improving the
viscosity function, the Griffith criterion as displayed abovs was used to
follow the propagation of the semi-infinite crack. The wave was allowed to
propagate for 90 cycles with the crack unextehded; then the crack was
extended one cell, and the additional time needed for dynamic instability
to arise was computed according to the algorithm provided above. In this
way the crack was extended three times, and the results of the computation
are shown in Figure 47, We note that the crack runs effectively slower than
the theoretical sonic value. Further work remains to be done to refine the
algorithm and the viscosity.

5.3 THE FICTIVE VISCOSITY

As soon as a continuum is replaced by a discrete grid, it becomes
possible to replace a slowly changing function by a periodic one. For
example, the simple function

y=0 - (48)

can be replaced by
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Figure 46, Velocity Time Histories for Various Artificial
Viscosity Coefficients.
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Yy = Asinng (49)

where

n=-% (50)
Ax

This is an extreme case but it demonstrates the point. What the difference
equations actually offer depends on the outcome of a stability analysis.
Such analyses have been carried out and they lead to the idea that a fictive
viscosity must be incorporated in the constitutive law to produce damping
and stability. The penalty that one pays is a spreading of a wave front.

Von Neumann and Richtmyer!® suggested that a quadratic vis-
cosity term be used to produce effective damping, and this has indeed been
prdved to be a useful tool. Other people have used a linear viscosity term
with less striking results. The linear viscosity spreads the wave in an
Increasing manner, Thus it appears that the quadratic viscosity is an
indispensable tool.

For the out-of-plane motion that we have been discussing, there
is currently not available a quadratic viscosity formulation; thus a lnear
viscosity was used in the computation discussed above, It is possible
however to suggest a cubic formulation, and the formulation which we pro~
pose below will be evaluated during work on a related program, The etymo~
logy is as follows.

The constitutive theory of fluld dynamics leads to the most general
representation of one isotropic tensor (the stress tensor) in terms of another
isotopic tensor (the strain rate tensor), namely:;

- —
-

?=-pf+a13+a23- d (51)

where p is the hydrostatic pressure and o) and o, are scaler functions of
the scaler invariants: { Iqe Hgo IIId]
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where

IdzTr{3}=v-a=¥=-% (52)
my = my T {d) (53)
II, = Det {:3.} (54)

The terms multiplied by (ozl, °‘2) represent the dissipative contributions to

the total stress. One way of incorporating quadratic dissipation is to take
[az = constant]. This term however contributes only to the normal stresses,
not to the shear stresses., The result produces what is known as a "normal
stress" or Weissenberg effect, This effect is not useful for the flows that

we deal with in fracture mechanics.

An alternative way of introducing nonlinear viscosity is to set
[ozz = 0] and take:

ay=2v p (1-71) ' (55)
where Vo is the kinematic viscosity
and T is a relaxation time,

This form is very interesting for several reasons. First of all, the product
(pvo) is the linear viscosity coefficient n o+ Thus the effect of linear vis-
cosity is included. Because of conservation of mass, Eqn. (55) may be

rewritten as:
a)=2v (p+7p) : (56)

which evinces the typical form of viscous relaxation. Thirdly the quadratic
term (‘rld) enters in the form according to which real materials behave;
namely, the apparent viscosity decreases with increasing shear rate.
Finally, if the linea: term in Eqn. (55) is dropped, the expression above
reduces exactly to the form suggested by Richtmeyer and Von Neumann,
Thus Eqn. (56) displays a useful form for introducing quadratic viscosity
into all components of the stress tensor,
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In the event the flow is isochoric as it is in the case of anti-
plane shear, one can not introduce a quadratic viscosity, because Id =0,
One can however introduce a cubic viscosity by using the form:

¢)=2v_p (1+ ,Snd) (57)

In both forms suggested for ®;, v, can be taken proportional to the square
of the mesh size. In the compressible farm, involving quadratic viscosity,
T can be taken proportional to the time step, and in the isochoric form,
involving cubic viscosity, 8 can be taken proportional to the square of the
time step.

For the compressible or quadratic form, we have repeated ths
Von Neumann-Richtmeyer analysis. This analysis leads to the equation:

dx = ~2T1 du (58)

/1+(r+1) :—o u(u;)-u) -1

It is easy to show that, asu—- {0, up] , X= +w, This is in major contra-
diction to the Von Neumann analysis, where x - a finite length., What Von
Neumann and Richtmeyer then did was to tack on to the shock front two
straight-line constant velocity regions, with a concatenate discontinuity
in curvature, Because the flow equations are second order, this solution
does not satisfy the original differential equation and must be regarded as
an approximate representation. The representation shown above does not
suffer from this limitation, and can, by variation of T and \ be made to
approach the shock discontinuity as closely as desired., Figure 48 shows
a plot of particle velocity profile for

I - 107, 1075, ana 1077
v
(o]

and T = 10_8 sec,

One observes that the shock thickness can bs made to take on a broad range

of values,
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APPENDIX

CORRECTION TO THE ROTATIONAL TERM IN THE STRESS CALC ULATIONS

During the examination of the formulation of the code preparatory to
making the modifications discussed in Sections 4 and 5 of the report, an error

in the sign of the rotational correction term in the stress calculations, as

Al, was discovered, In addition, from the

A2

originally proposed by Wilkins
standpoint of material objectivity ', the form of the rotational term is seen

to be written in only an approximate form. These statements are documented
below. The sign was corrected in our code and a check of the correction

was made by running a model problem. The results confirmed the sign correc-

tion and, in addition, verified the accuracy of the SHEP code.

In SHEP, the constitutive equations are correctly* subsumed in the

formA3:
tyy = 8y~ 6P 0 | (A1)
N f )
sij = 2G (eij -3 9511) (A2)
6 = 4nJ (A3)
dv
] = 55 (A4)
dVo
where
t is the cartesian Couchy stress tensor

sij is the stress deviator tensor
P is the pressure

J is the local volume ratio, equal to the square
root of tha third stretch invariant.

*The term “"correctly" implies that Eqn. (A2) satisfies the principle of
material objectivity.
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G is the shear modulus
6 is the dilatation
eij is the Cartesian strain rate tensor
\'4 is the local instantaneous specific volume
and in (A4), ag-\;— is the particle-differentiator.
o

From Eqn. (A3) and (A4), it follows that

\'4
I =5 (A5)

Furthermore in Eqn. (A2), the dot over ei‘1 denotes the material derivative
while the hat over s i denotes the Jaumann-Oldroyd derivative. The form
of the latter is given by:

?1k = éik =V bkt by Yk (A6)
where

o= ey + Wy (A7)
or

iu_’;_vm_ -, (28)
where

wU is the spin tensor.

The last two terms on the right hand side of Eqn. (A6) correspond to
Wilkins' GU; a simple calculation reveals that the entire form of Eqn. (B-14)
on page 78 of Reference Al is formally incorrect because of a sign error.,

The sign error apparently arose in the following way: Wilkins intro-
duces an angular velocity vector, which he denotes by [sin w ] The angular
velocity vector is correctly taken as the curl of the velocity vector which,
according to the usual right-handed correction, corresponds to a counter-
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clockwise rotation. Wilkins then uses the rotation angle w to transform the
stress components to new rotated components. The transformation equations
he adopts are taken from TimoshenkoA3. Presumably Wilkins changed the
signs of the terms that are odd in w, because Timoshenko shows a diagram
in which the rotation is clockwise. What one must notice, however, is that
Timoshenko's picture is based on a left-handed system of axes. Thus Timo-
shenko's equation should have been subsumed without the sign change.

"To further check cur logic, we ran the following simple problem. A

slab is set into simple shear motion, cf:
1 '|F

AR X

Nonlinear (Poynting) effects are associated with the !engtheniny of the
originally upright fibers. The correct rotation terms (with the right sign) pre-
dict a tensile stress in the lengthened fibers, in agreement with the analytical
solutica. The original program, with the incorrect sign, predicts compression.
Keep in mind that these are second order stresses and thus the effect of this
er.or on the overall computation becomes important only when the first order
stresses are comparable to the shear modulus of the material. The reason is
that the second-order stresses go as the square of the first-order stresses,
e.g., in the shear problem:

(]
&~ B (a9)
In the process of making these chang:s in SHEP, we checked out a
model problem, namely the simple shear at constant velocities of an infinitely
long slab (@ 1-D problem). The results, in terms of the stress at the moving
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surface and the stress at the fixed surface are plotted in Figures Al and A2,
respectively. The analytical solution is just a sum of Heaviside step functions.,
The agreement with the analytical solution is attested to by the fact that the
computed jumps fall directly (within 1%) on the grid line (both coordinate axes
are non-dimensionalized). The general solution looks like

T ©
- X __ 3 [H(s-y-2nh]+ H (s + y - 2h - 2nh) ] (A10)
o n=0

where v
M, (the Mach number) = -g_

s = ct

and h is the height of the slab.
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Figure Al, Shear Stress at the Moving Surface
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