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Abstract 

The dependence of the stress field on a continuous periodically varying 

stiffness which approximates a layered material is studied. This dependence 

is compared to the solution for the usual approximation of '"converting this 

class of problems to the superposition of an anisotropic one and a residual 

boundary problem. The region of applicability of the usual approximation is 

found to be as expected geometrically but surprisingly large as far as variation 

of stiffness is concerned. 
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Introduction 

Inhomogeneities in stiffness of isotropic elastic materials occur in 

several areas of technology.  In particular various applications in rock mechan- 

ics, layered materials and composite materials are related directly to such 

inhomogeneities [1,2,3]*. When an elastic modulus varies periodically with one 

Cartesian coordinate the usual situations occuring in rock mechanics and layered 

materials can be represented. This work is concerned with such a case. 

Let the wavelength of elastic modulus variation be L and some charac- 

teristic dimension for a particular boundary value problem be c . When 

L « c an analytical procedure has been described [2] for "converting" the 

inhomogenous problem into the superposition of two problems which are 1) an 

anisotropic material problem with the original configuration and boundary condi- 

tions and 2) a residual boundary problem whose effect on the stress distribution 

should be important only a few wavelengths into the body from the surface. 

This superposition technique is currently the standard procedure for 

dealing with this class of problems. The reason is that more solutions and tech- 

niques [4] are available for solving anisotropic problems than for inhomogenous 

problems. Also, the residual boundary problem can be approximated as a local 

one independent of the configuration of the particular problem under considera- 

tion. Presumably this inhomogenous residual boundary problem can be solved 

"once and for all" for a particular type of stiffness variation and inclination 

of the boundary to the layers. 

The residual boundary problem has received some attention in the liter- 

ature. When the variation of the stiffness is discontinuous (e.g., bonded, 

layered materials) the residual boundary problem has been considered by 

*Nuinbers in brackets refer to the References at the end of the paper. 



Bogy [5], When the stiffness variation is sinusoidal with small amplitude com- 

pared to the mean and the boundary is perpendicular to the layers the solution 

to the residual boundary problem may be found in [6]. In [5,6] a strong depend- 

ence of the stresses on Poisson's ratio is found. 

The object of this work was to solve an elementary problem with contin- 

uously varying, large, stiffness changes without resorting to the superposition 

technique described above. By solving this inhomogenous elastic problem of an 

infinite slab under tension perpendicular to the layers it was hoped the region 

of applicability of the superposition technique could be more firmly established. 

It is best to have an exact solution to an appropriate inhomogenous problem for 

this purpose but none are currently available. 

Figure 1 shows the problem considered here. The infinite slab has a 

thickness 2c and the wavelength for the shear modulus variation is L . The 

problem is two dimensional so that a very elementary numerical procedure may be 

used to approximate values for the stresses. The solution for the dimensionless 

stresses o^A^g , ^yy/^yc and 0
Xy

/aAVG dePends on the following constant 

parameters: 

v s Poisson's ratio 

L/c = Material property variation wavelength/characteristic dimension of the body 

e = A measure of the stiffness variation 

The practical ranges of these parameters chosen here for study are 

0.1 S v * 0.5 

0.1 $ L/c $ 3.0 

0*es 0.7 

In the following two sections the problem is formulated and an approxi- 

mate solution technique outlined. Then the solution presented in [6] which 
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employs the superposition of anisotropic and residual boundary solutions is 

given for the problem of Figure 1. Subsequently numerical results are presented 

comparing the approximate solution obtained here to the perturbation solution 

from [6] and conclusions are drawn. 

Formulation of the Problem 

Since the shear modulus G(x) is periodic in x the stresses o.. are 

also periodic. With the notation 

f(x) = {1 - ecos(2irx/L)} -1 (1) 

the relevant plane strain stress-strain relations are 

U»x ~(l-v) -V 0 

% 
_    f(x) 

2G o 
-V (1-v) 0 

u.     + V, 
_ y      * 

0 0 2 

XX 

yy 

xy 

(2) 

where u and v are the x and y displacements. The stresses o  . a J r xx   yy 

and o   can be deduced from the Airy stress function i|»(x,y) so that they xy 

satisfy the force equilibrium equations for this static plane strain problem as 

xx   T'yy      yy <!>,    and  a   = ip, xx       xy     xy (3) 

while a   is given by v(o  + a ) and o   as well as a   vanish. zz    6    ^    xx   yy       xz yz 

Combining equations (2) and (3) to eliminate u and v yields 

f'x 
gW = *'xxxx + 2*'xxyy + *'yyyy + 2 T" (*'xx + ^'yy^x 

f,. 

F-(*'xx " l^T ♦»yy' = 0 

(u) 



(5) 

Appropriate boundary conditions for this problem are deduced as follows: 

0*y * 0yy vanish ^ y s ±c "•" *»xx(x,±c) = 0 » ♦»Xy(x»±c) = 0 

no net shear force on cross-section -* (|/, (xt-c) = i(;, (x,+c) 

no net moment on cross-section -»■ c{i(;. (x,c) + ♦, (x,-c)} = i|»(x,c)-^(x,-c) 

net axial force/depth is 2aAVGc ■* ♦, (x,c) - ♦»yCx.-c) = 2oAVGc 

It is noted that the usual step of replacing v in the plane strain formulation 

by -r-—   "ill yield the formulation for plane stress. 

Outline of Solution 

The following series approximation for t|» in terms of the (m-l)n 

arbitrary constants H. . (i = 2,3...in; j = l,2...n) was chosen 
i,] 

* = 7 aAvr (y    - c  ) +    [        I    H„ .n {cos(irky/c) -  (-1)*} cos(2nqx/L) 
2    AVb k=l    q=l    ^K'q 

m/2-1   n . 
+      I        I    "ov*!      {cos[(2k+l)iiy/2c] - (-1) (2k+l)cos(iry/2c)} cos(2irqx/L) 

k=l    q=l    2K+J-^ 

40AVG(y2-c2) + X      I  Vq % ^ (6) 

ifr from equation (6) satisfies all the boundary conditions given in equation (5). 

The H.   are determined using the h. (x,y) as weighting functions so that 
*.;q *;q 

L   +c 

i      h   g(i|() dx dy = 0     £ = 2,3...m; q = l,2...n (7) 

x=0 y=-c 

when i   from equation (6) is substituted into (7). The resulting (m-l)n 
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course, m and n . These equations were programmed and solved on a digital 

computer for about 150 specific choices of L, e, v, m and n . The 

Hi.jj/L o   were subsequently used to find at*/atyG   by means of equations (3) 

and (6). In addition to the dimensionless stresses 0
XX/

0
*VG' 

0
W^

0
AVG 

and 

o /o...„ the dimensionless, plane strain, octahedral, shear stress T/o,ur was xy AV6 ,   » r AVG 

evaluated from 

T/VG = ^^»"''""XX^AVG'2 + <0W
/0*VG)2] " l<1«^2»2)(oxx/<'AVG)(''Sy/<'«VG) 

+ <^/vG>2'in w 

These dimensionless stresses were evaluated for combinations of x/L and y/c 

of interest. Values of m and n were increased in trial runs and correspond- 

ing variations in T  /OA,,„ for fixed L, e and v were observed. It appears 
max AVG 

that an accuracy of a few percent can be expected using m and n equal to "+ 

in the range of L, e and v considered. Due to the large number of cases 

computed it was necessary to use the minimum values of m and n which yield 

results of acceptable accuracy. 

Perturbation Solution 

Nusayr and Paslay [6] recently determined the stresses near the boundary 

for the material described in Figure 1 using a perturbation technique. The 

stresses near the boundary in the present problem, therefore, should match the 

solution in [6] when the restrictions of [6] apply. These restrictions are that 

L/c and e be small compared to one. The solution is 



o /a.„r  = l-e{v/(l-v)}{l.(2irc/L)[l-(y/c)]}e"(2irc/L)i:i"(y/c):,cos(2irx/L) 

0 /04UP s -e{v/(l-v)}{l+(2irc/L)[l-(y/c)])e'(2l'c/L)Cl"(y/c):,co8(2irx/L)     (9) 
yy AVb 

0 /oAWr = +c{v/(l-v)}(2irc/L)[l-(y/c)]e"
(2l,c/L),:i"(y/c):,sin(2irx/L) 

xy Avb 

where e « 1 , L/c « 1 , 0 ^ x ^ L/2 and 0 « y ^ c . In this paper 

equations (9) are referred to as the perturbation solution. 

Numerical Results 

In the above it was pointed out that attention here was restricted to 

ranges of the parameters of 0.1 ^ v $ 0.5 , 0 * e $ 0.7 and 0.1 $ L/c f  3.0. 

These ranges cover the region of roost practical interest. Computations were 

made for enough combinations of these parameters to indicate trends in the 

solutions and to provide curves suitable for applications. 

Frequently the most important quantity for a designer to have is the 

maximum value of a yield criterion. In this case the plane strain octahedral 

shear stress criterion was evaluated and designated T . For each computed 

solution the maximum value of T/aAVG was chosen from a grid of computed values 

over the region 0 s x g L/2 and 0 * y $ c . In every case the maximum value 

of T/oiV- was on the x = L/2 boundary of this region. Figure 2 shows 

results obtained from the computations. The three plots for different values 

oi   v show the strong dependence, mentioned above, of the solution on Foisson's 

ratio. When v = 0.1 the influence of the considered e and L/c variations 

on T  /o.,.„ is negligible. When v = 0.5 the influence of increasing e 
max AVG 1 

from 0 to 0.7 can almost double the value for the yield criterion ^j^0^^' 

The influence of increasing L/c is to decrease the severity of the change of 

t. 



T  /o.„„ with e as one intuitively might expect. The curve for v = 0.3 
max AVG 

shows behavior intermediate to those for 0.1 and 0.5 . In Figure 2 the 

dashed curves show the predictions of the perturbation solution, equations (9). 

As long as L/c «1.0 the perturbation solution gives art acceptably accurate > 

prediction for T^/O^ . 

An effect in this solution that can be easily comprehended is the devel- 
, i 

opment of o   due to differential lateral contraction at x = 0 and x = L/2 . 
yy 

A tensile o /oAVG develops at x = 0 , y = 0 while a compressive oyy/oAVG 

developes at x = L/2 , y = 0 . These are the minimum and maximum values of 

a   /a.„„    in the region 0 $ x $ L/2   and 0 S y S c .    In each computed case 
yy AVG        e 

the value of the maximum o   was greated than the absolute value of the minimum 
yy 

o  . The perturbation solution gives <7  max = | a     ^ |. Figure 3 shows 

results for a in the same format as Figure 2. It is apparent from these 
yy max 

curves that the Poisson's ratio influence is present, that o  max is the order 

of 2eva.„„ for L/c < 1.0 and that the perturbation solution gives reasonable 
AVG 

estimates for a      over the range of parameters considered, i 
yy roax 

Conclusions , 
- 

The results of the analysis presented here help to make clear the influ- 

ence of isotropic inhomogeneities in isotroplc elastic materials. the numerical 

results in Figures 2 and 3 indicate the influence on J
max^afiyfQ   and 

o    /o   of Poisson's ratio v , the inhomogeneity wavelength-characteristic 
yy max AVG 

length ratio L/c and the inhomogeneity strength parameter c . The applicabil- 

ity of a perturbation solution which approaches the solution to the prohlem as 

L/c ■* 0 and e -»- 0 is shown to have a wider applicability in the solutioh 

to the problem considered here than the author originally anticipated. It is not 
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surprising that the pierturbation solution fails to adequately predict T  /o.vr 
i 

for L/c > 1 however the range of e values for which t w/o.„r and 

i o    /
0
AVG 

are» ^or rBOSt  purposes, adequately predicted is surprisingly 

large.    •  '    ,     . 
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Figure Captions 

Figure 1   Configuration and description of material properties for the 

problem under consideration. 

Figure 2   Dependence of the maximum plane strain octahedral shear stress 

T  /o.,«, on the material variation parameter c , the material 
max AVG r 

wavelength/characteristic length parameter L/c and Poisson's 

ratio v . Solid lines give the solution presented here while 

dashed lines give the perturbation solution from [6] which is 

independent of L/c . 

Figure 3   Dependence of the maximum la i , o     , on the material 0 yy    yy max 
variation parameter e , the material wavelength/characteristic 

length parameter L/c and Poisson's ratio v . Solid lines give 

the solution presented here while dashed lines give the perturba- 

tion solution from [6]. 
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