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ON THE EQUIVALENCE OF INFORMATION STRUCTURES

* •IN STATIC AND DYNAMIC TEAMS

by

Y. C. Ho K. C. Chu
Pierce Hall Systems Control, Inc.

Harvard University 260 Sheridan Avenue
Cambridge, Massachusetts Palo Alto, California

In team theory, we visualize N decision makers (DM) or team

* members each receiving individual information. There are two important

classes of information structures: (i) each DM's information only depends

on certain primitive random variables • of the external world (ii) each

DM's information depends not only on • but also the actions taken by

other DMs. The first class can be called STATIC team theory or static

I~ information structure and the second DYNAMIC in the sense that the time

order in which the DMs act is irrelevant in the first case while causality

plays a definite role in the second. DM who acts later obviously cannot

- !affect the information received by DM who acts precedent or concurrent

.. .with him. Radner [11 has established certain necessary, and sufficient

conditions for optimality of the decisions of the DMs for a wide class of

static teams. Ho and Chu [21 solved the linear-quadratic-gaussian

dynamic team problems by showing their equivalence to the static case

under certain further assumptions on the information structure of the

* team. In this note we generalize the conditions of equivalence to non-

linear and nongaussian cases.

H.
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Let • be a random vector defined on a basic probability space I'
S1l, ~'9, �IF. u = [uI, u) , , UN] be the decision (control) vector of the

N DMs. Let z. be the information available to the ith DMP

z= vi (R,uj, uk etc.), = u (1) f
where t1, are assumed to be measurable functions of • and u, etc. In

general this information is affected by the decision variables of some of

the DMs that act before i, Let j be one of those DMs which do so, we say

DM j is a precedent of DM i and denote it by j 4 i. In (1) u.represents

the decisions of all those j such that j 4 i. For causal system, there is

always some starting DMs without any precedents for them and their

information depends only on 9. The precedence relation is assumed to be

fixed in advance and does not depend on random events and decision out-

comes. This precedence relation is generally a partial ordering [2]. We

can then partition the N DMs into the following disjoint sets:

k
A,= {l,Z,...,N) U .4t

where

-4i= {ilzi ni(.)1, the set of starting DMs,

SA' {i zi n i(, u.), j (i

k-l k-l
jk -- izi = u)' j E U .4A, i • U .4}

1=1 1=1

The decision rule (control law) of DM i is assumed to be a function of its

own information

ui .. -i) i l .. N
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where yi belongs to the set r. of all admissible (Borel) measurableI
functions from the space of z. to the space of u.. Consequently for fixed

N =['l).. ,•/,z. induces subfields ,F: C Jr. The above set up is in

Scomplete harmony with the usual dynamic stochastic system statement of

a tearn problem. For example, we have,

: f(xt, I .... N (3)!• X~~t+l utý wt) t

Yt h(xt, vt) (4)

where x1 w, v are external random variables playing the part of g and
{Y y 7 ' subset of { 1,... ,tj) :zf are the information available to

The point is that the intermediate variables xt are irrelevant in a

decentralized setting and can always be eliminated via substitution. Only

u and E and the information structure as 3pecified by (I) count.

Definition 1. Information z. is said to be nested in z. if there exists a

measurable function f. from the space of z. to the space of z. such that

z. f..(z.) V • and u (5)

Equivalently, we say 7. is nested in z. if

iF C: v -y c r= r1 xr x.. X r1 (6)
J 1

Definition 2. An information structure n7 r,[.7 1' "N] is said to be

partially nested if for all j, i c {1, . . . ,N}, j Ii implies z. is nested in z..

By definition, in static team there are no precedents for any of the

decision makers; hex. ce, any static team is trivially partially-nested.

A particularly simple and common form of partially nested

information is
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Z (7)

In other words if u. affects the information received by the ith DM, then3!
the ith DM will also know what the jth DM knows (as part of zi). In this

case, f. is simply a row matrix of { 1,0) which picks out certain

components of zi.

Definition 3. Information z. is said to be equivalent to information z. if z.
1 2

and z. are mutually nested, i.e. fe. in (5) is invertible. The equivalent z.

and z . referred here may represent the information of two different DMs

or two different forms of information available to one DM. In the latter

case, any strategy ui Ni(zi) that can be realized by zi can always be

duplicated by z. and vice versa. Yet the computation of strategies based

on one information structure may be simpler than the other particularly if

the latter is of static nature.

In the theorem below we shall state a condition on the equivalence

between dynamic and static information structure. To this ends, suppose

we can write

z 17i =f,_uj) A u)f

=•(9 u• K00(.,i();. u)for fixed e.-3

Theorem 1. Given a team with partially nested information structure 27,

if furthermore (8) is true and K. is invertible for all i and u., then the

information structure &z .(•) is equivalent to zi li(•, u.) for i 1, 2,

.. N.ti
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]Proof: It is clear that we can choose

= 1i ri z. i c N, (i. e. K. 1, the identity function).

Next we write from (8)

zi A- z7isM, uptl ne(djz j E NI
i c N

Since z. is partially nested,() is a known quantity. Hence/we can3j j 33;
write

z l zi (zj

and

z. j (A j)) ,

This process can obviously be iterated for i Ajc , ' ,AA'. The

collected equivalent information structure A A is a static one.

Examples. In all examples below we assume (7) and illustrate particular

useful cases of (8).

Sj 4 i j i D (

(i)i

The above transformation can be used recursively to produce a set of z.
1

which are linear combinations of g only, 7.his trick was used to prove the

optimality of a wide variety of LQG problems with partially nested

information structure [2].
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z! h. (g) + dW(u.) JZ - d (Xj(z h

Example (ii) shows that one of the crucial requirernents for equivalence is

that the effect of u be additive.

(iii) zi -

LZi = Ai(u.)hi(e) + bi(u.

A.(uLj) is an invertible matrix for all admissible u, then again

{Z! -i j i)

1A) b" Xj(zj))] --

The example shows that if the effect of the previous u is multiplicative

then invertibility in some form is required. For example, if u. turns off

some measurement system such that A =(u.) 0 for all i Ir j then the system

may still be partially nested but not equivalent to a static one.

Examples (i) - (iii) can be combined to yield the following assertions:

Assertion 1. The dynamic team in Figure 1 has an equivalent static

information structure
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NLD - Nonlinear Dynamic System NL - Nonlinear Transformation, gt

ALD - Additive Linear Dynamic I - Invertible Transformation, kt
Systems, Eq. (*)

-1,t + t Z= kt( --, ,

Sx,- n, V n are externally specified random variables. 
, 

-

ox g (ut Ax +tIiu) wA

zt4-1 I [ ?4- <t, zt t

(i~t

; k4

•< 0

'' H-• A. gi. 
..

ZI•

t

Figure 1



Assertion Z. The dynamic team in Figure 2 has an equivalent static

information' structure provided (gt(ut)A)-1 exist for any admissible ut.

k

iv

Skt NLN

U t

ST t

ALD MultLiplicative Linear Dyna'ni'c System, Eq. (5

-Multiplication of a vector by a scalar

X + 11

I'I
are r r e xte

variable.
vt t r scalar random sequences externally specified xI is a random "

S(g,(u.)A) - I z IA

T.1; < t} )i

' Figure 2

Finally, we have t;he easy generalization of the Radner theorem.

~1
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Theorem II. Let 4 dynamic team have partially nested information

Astructure ti which is also equivalent to, a static one r). Let the

performance fumction of the team be

J E) {.9.[u,Cg

where • is a primitive random vector with given prior probability

distribution p(g). If (a).4 is convex and differentiable in u. for all i a-,d

for a. e. , (b) J(y) is locally finite and (c) Inf J(y) > - oo, then there is

a unique, local optimal decision u. = 'y (z.) for all i. Furthermore, if

J(Y) = E{IuTQu+ uTSE + uTc} (9)

where Q, S, c are constants, C is gaussian with finite covariance, A

* A
linear in g for all i, then y, is linear in z. and possibly nonlinear in zi.

F.i Also we have the extension

Corollary. If p(E) in theorem II has thý form

p(M) f[ m)TX-(9- m)] (10)

then the optimal decision rule to (9) is again linear in z..

Proof: Density functicns of the form (10) are called spherically

(elliptically) invariant, of which gaussian distribuLion is a special case.

Vershik [31 and Blake and Thomas [41 have shown that all mean-square

estimation problems with this class of random variables have linear

solutions. More specifically, the Bayesian conditional mean E[E 1z H9]

is linear in z, and it is always true that

For definition, see [1].

, A.• • 'I •IIIIi
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E(z~ m + XHT(HXHT)(0 Hm) G (1)

when C is spherically invariant.

There is no loss of generality by letting m 0. If we assume linear

decision rule

u. = A.1. + b, (12)

and solve for the optimal Ai and bi, i.e. , substitute (11) and (12) into1i
Eq. (19) of [2], we find, that

a Q.A. (H XH T S X- xIT Vi (13)

bT cTQ1 (14)

Everything remains the same as the gaussian case, except X here is not

necessarily the covariance of •.

Conclusion

The matter discussed in this report concerns the reduct-on of

information structures in dynamic team decision making to static cases.

All the DMs are assumed to be rational. Partially-nested information

structure is a system in which the DM knows what his precedents have

known and by this he deduces what they have done. Based on this concept,

the condition on information equivalence has been derived. The essence

of information obtained may be disguised in various forms in many

dynamic team problems. Our theorems clarify the information structure

in several classes of problems.
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ON THE RELATIVE LEADERSHIP PROPERTY

OF STACI(ELBERG STRATEGIES

By

Tamer Basar

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

The relative leadership property of Stackelberg strategies has been

investigated via a scalar nonzero-sum two-person differential game

problem. It is shown that, depending on the parameters of the game,

there exist three different types of solutions for this class of garnes.

Preceding page blank
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Introduction

In a recent paper [Ref. 1 Simaan and Cruz have obtained the open-

loop Stackelberg solutio.i for a class of deterministic nonzero-sum two-

person games under the leadership of one of the players. One of the

properties of the Stackelberg strategies, as discussed in Ref. 1, is that

if one of the players acts as the leader in the game then both players

might benefit from this leadership in the sense that both of them might

+
end up with better payoffs than the ones obtained from the Nash strategies.
This property of the Stackelberg solution brings up the question of as how

to decide on which player should lead the game and which player should

follow. Further, there is the question of whether it is always profitable

for either player to act as the leader rather than be the follower.

In this note, we address ourselves to these questions via a scalar

nonzero-sum differential game problem which is related to Example 5 of

Ref. 1. We show that there are situations in which a player would prefer

to be the follower rather than be the leader and that this leads, in general,

to three different types of solutions for this class of games. The

concept introduced and the conditions derived for the scalar example

can readily be extended to encompass a more general class of nonzero-

sum game problems.

It is important to note that we are restricting ourselves to noncooperative
solution concepts. Otherwise, pareto-optimal solution should be
considered in making the comparison.

i'1



A Linear Quadratic Differential Game

Consider the following generalized form of Example 5 of Ref. 1.

The dynamics are described by the scalar linear differential equation

x()-x 0)

where u and u2 are controlled by player 1 and player 2 respectively
I!)..and are measurable functions of t c (0, 1] and xO The costs to players

1 and 2 are given by the quadratic payoff functions J and J 2 respectively,

where
1

I'
F I "

c 0 C 0, 1 0 ,c 2i + an X1 dt (2a)

•l(U lsj u25 ) by . folow frm(8 '53 fRf

p by

lUl , c2cx2 + c u2 dt, (2b)

P4, 0

Ic > 0 c > 0 c / 0 C 0 and x denotes the terminal state (i. e. :S~ p 2 / ' f !

S~x(1)). Note that this formulation becomes identical to Example 5 of Ref. 1 .

'-• ~when c1 I c2 1.

• Now denote the Stackelberg control of the i'th player when the j'th

player is the leader by u..- and the corresponding Stackelberg payoff i

J.i(Uls Us) by J! . Then it follows from Eqs. (48) -(53) of Ref. I
1 !s I.Z•

that the open-loop Stackelberg solution with player 2 as the leader is given •

by

_C C (l, + ClC )
U 1 1) P xo (3a)Uls2 (ll +0~e
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V.c
p e) 2  C2 O, (3b)u~s (+ClC c c c 0

under the conditions

(1+ clcp) > 0 (4a)

(1+ c +Cp + czce > 0 (4b)

and the corresponding Stackelberg payoffs are

2 1 Cl(l+CC) I2a

1 2 2 2 x 0,2(0a)
[(+ClCp + 2Ce]2

2 1 2c_ 2_(5b)
2 2 [(l+clc) 2 + c 2 ce] 0(5b)

Using a symmetry property of the original differential game, the

open-loop Stackelberg solution with player 1 as the leader can readily be

obtained from (3a) - (5b), i. e.

Clp x0 (6a)
lsl ((1+c2 Ce)2 + c

ip

C Ce(1 + CZC) (6b)

(l+C 2 ce) + cIc 0

under the conditions

(I + c 2 c) > 0 (7a)
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(+ CeC2)2 + ClCp > 0(b)

, and the corresponding Stackelberg payoffs are

1 C1  2

,2 x0 (8a)
[(l+c C) + clcp]

3
"3 1 cZ(l+cZce)

.1 2 0 (8b)
[(1+c 2 c) + c 1 c ,)

NDenoting the Nash payoffs of players 1 and 2 by J1 and J

respectively, it is certainly true that

1 N Z N3J1 < J 1 Jz 2 1 2 9

that is, the leader will always do better (in the sense of achieving a lower

payoff) than his Nash solution. [The inequalities in (9) are strict because

of the assumption c 1 0, c 2 . 0. ] However, relation (9) does not

necessarily imply that the best each player can do (in a noncooperative

sense) is to be the leader in the game. In fact, such a statement will not

always be true as will be shown in the sequel.

In order to derive the conditions under which J -< J and/or

S<- ,we will first have to require relations (4a), (4b), (7a) and (7b) to

I Te.< implies (after some straightforward but

extensive manipulations) either

(i) c 2 >0 (lOa)
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or

2 Z+c c
(ii) c 2 <0, - - < 1 + . (lOb)

-czc (l+clcp)

That is, if either (10a) or (lOb) is satisfied, pkayer I can achieve the

lowest possible payoff (in a noncooperative sense and assuming that

player 2 acts rationally) by being the leader in the game. [Note that if

j-i = j4 i f j, then player i achieves the same payoff by being either the

leader or the follower. In such a paradoxial situation we assume that he

acts as a leader. ]

Similarly, the conditions under which player 2 would rather prefer

to be the leader (i. e. J• _ <) are either

(iii) cI > 0 (1la)

or
2+cce

(iv) c 1 < , - <1+ + e (lib)
cc c (l+c C)

provided that relations (4a), (4b), (7a) and (7b) are also satisfied.

To summarize these results and to indicate their immediate

implications in a compact form, denote the set of c1 4 0, c2  0, c > 0,

ce > 0 which satisfy (4a), (4b), (7a) and (7b) by 9. Further, denote the

quadruple I, CZ, Op, 9ce} Iby a. Let I be the set of a c Q which

satisfy either (10a) or (10b), and r.Z be the set of a E .Q which satisfy either

(Ila) or (Ilb). Then we have the following conclusions. (Note that any

given a specifies the game completely).

(•) IF C n r. cf
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(2) r1 r r2 r , (this will be proven in the sequel via a

numerical example - Example 2)

(3) ( (0--r (this will also be proven in the sequel

via a numerical example - Example 4)

(4) Player i wants to be the leader iff u c r.

E (5) Player i wants to be the follower iff a e Q-, .
I

(6) Both players want player i to be the leader iff a C Fi. r(-r.), -.

(7) Either player wants himself to be the leader iff a c r1 n r2.

(8) Either player wants himself to be the follower

iff a C (0- r,) r (n- r 2

Hence, associated with the nonzero-sum differential game considered

in this note, we have 3 different types of solutions, depending on the

parameters defining the game:

TYPE A: - CONCURRENT SOLUTION

If a c r. n p-((.), i J j, it follows from item (6) that the players

mutually benefit from the leadership of the i'th player and hence they

"collectively" decide to play the game under player i'th leadership (even

though it is a noncooperative game). We call this a concurrent solution,

since there is no reason for either player to deviate from the corresponding

Stackelberg solution which was computed under mutual agreement.

TYPE B: - NONCONCURRENT SOLUTION

If a c rn n r., either player knows that he v-iiU do best (in the

noncooperative sense) if he himself is the leader (item 7). Hence either

player will try to announce his strategy first and thus force the other

14~ L-
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player to pick the Stackelberg strategy under his leadership. In this case,

the one who can process his data faster will certainly be the leader and

announce his policy first. However, if the "'slower" player does not

actually know that the other player can process his data faster than he does

and/or if there is a delay in the information exchange between the two

players (which is the case in mary economic situations), then he might

K. Itend to announce a Stackelberg strategy under his own leadership quite

unaware of the announcement of the other player; this certainly results in

a nonequilibriurni situation.

TYPE C: - STALEMATE SOLUTION

If i C(Q-rI) n (6-r.), then neither player wants to be the leader

(item 8). Both players will rather prefer to wait for the opponent to

announce his policy first -- which will result in a "stalemate". In order

to come up with a reasonable solution for this case, one has to introduce

some negotiation or bargaining between the players. The question of the

existence and nature of the bargaining procedure that would result in a

concurrent solution is yet an open problem that requires further

investigation. :

We next consider numerical examples to illustrate these three

different types of solutions.

Example I
a= I , c 2. 1, c I) ce 0. 51

it can readily be checked that a c r2 f- (n-r1), and hence this example

admits a Type A solution with player 2 being the leader. This example

can also be considered as a velocity-controlled pursuit-evasiongame of
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the nonzero-sum variety in whi'ýh the pursuer (player 1) has less weight

on his control than the evader (player 2) [1. e. < Under this
7p Ce

condition the pursuer would prefer to wait and act second, and the evader

would rather prefer to act first.

Different Stackelberg payoffs for this example are

j 1 20.400 x0 J - 0.040 x0

2 2 2 2
1 0.3-6x J - O. 143 x

10 2 0

Example Z

a = {c 1=, c I-1, Cp 0., ce2 0.81

For this game a 4 r1 n rz and hence it admits a Type B solution, i.e.

neither player 1 (the pursuer) nor player 2 (the evader) want to be the

follower. Note that the only difference of this example from the previous

onei is that now the pursuer has more weight on his control than the evader.

Different Stackelberg payoffs for example 2 are

* 1 2 1 2
SJ = 2.O8x 3z 0.069 x

1 0 2 0

= 2. 11 x J2 0. 78 x0

E.xample 3

a = 1, c2 = 1, c 1, c 0.51

This example also admits a Type B solution, i. e. a c r1 n r.. Different

Stackelberg payoffs for this game are
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1 2 1 2
3 - 0. 15 4 x 0 O2 0.160x 0

0. " 198x0 2 Ol.lxo

Example 4

a.= c1= -1, c2 = -1 lCp =-' e

For this final example, a c (f2-r 1 ) n (P-rd) and hence it admits a Type C

solution. Both players want to be the follower and this leads t o a

"stalemate' solution. One has to introduce some cooperation between

the players in order to derive a concurrent solution (if such a solution

exists). Different Stackelberg payoffs for this example are

J -4.5x02  
- 12x 2

0 2 0

2 2 2 2J1 1 Z • x 0 J 2 4. 5 " x 0
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