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ON THE EQUIVALENCE OF INFORMATION STRUCTURES
IN STATIC AND DYNAMIC TEAMS

by
Y. C. Ho K, C. Chu
Pierce Hall Systems Control, Inc,
Harvard University 260 Sheridan Avenue
Cambridge, Massachusetts Palo Alto, California

In team theory, we visualize N decision makers (DM) or team
members each receiving individual information. There are two important
classes of information structures: (i) each DM's information only depends
on certain primitive random variables £ of the external world (ii) each
DM's information depends not only on £ but also the actions taken by
other DMs, The first class can be called STATIC team theory or static
information structure and the second DYNAMIC in the sense that the time
order in which the DMs act is irrelevant in the first case while causality
plays a definite role in the second, DM who acts later obviously cannot
affect the information received by DM who acts precedent or concurrent
with him. Radner [1] has established certain necessary, and sufficient
conditions for optimality of the decisions of the DMs for a wide class of
static teams. Ho and Chu [2] solved the linear-quadratic-gaussian
dynamic teamr problems by showing their equivalence to the static case
under certain further assumptions on the information structure of the
team, In this note we generalize the conditions of equivalence to non-

linear and nongaussian cases,
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Let £ be a random vector defined on a basic probability space
Q, F, #). u= [u1 y Ugy veey uN] be the decision (control) vector of the

N DMs. Let 2z, be the information available to the ith DM,

zy = ni(E,uj,uk etc,), = ni(E,,gj) (1)

where n, are assumed to be measurable functions of § and 3 etc, In
general this information is affected by the decision variables of some of
the DMs that act before i, Let j be one of those DMs which do so, we say
DM j is a precedent of DM i and denote it by j 4 i. In (1) Ej represents
the decisions of all those j such that j ¢ i, For causal system, there is
always some starting DMs without any precedents for them and their
information depends only on £, The precedence relation is assumed to be
fixed in advance and does not depend on random events and decision out- |
comes. This precedence relation is generally a partial ordering [2]. We

can then partition the N DMs into the following disjoint sets:

k
A= {1,2,...,N} = A ,
=1
where
A = {i|zi = n;(€)}, the set of starting DMs,
‘/’2 = {i(ziz ni(gsﬂj)’ j G'Ai}
) k-1 k-1
e = Ul=nEy), de O oL E LA

The decision rule (control law) of DM i is assumed to be a function of its

own information

ug = yi(zi) i=1,...N (2)

“"I‘ .

m.a’ﬂ ﬁw‘“

R Y
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where y; belongs to the set l"1 of all admissible (Borel) measurable
functions from the space of z; to the space of u,. Consequently for fixed
Y= lyp-- 'YN]’ z; induces subfields # C #. The above set up is in
complete harmony with the usual dynamic stochastic system statement of

a team problem, For example, we have,

x = flx,, u,w,) t=1,,..,N (3)

t+1
y, = hix,,v,) (4)

where Xy, Wy, v, are external random variables playing the part of § and

{y, |7 € subsetof {1,...,t}} = =,

The point is that the intermediate variables x, are irrelevant in a

decentralized setting and can always be elirninated via substitution. Only

are the information available to u, .

u and § and the information structure as specified by (1) count,
Definition 1. Information zj is said to be nested in z; if there exists a

measurable function fij from the space of z, to the space of zJ. such that

zj = fij(zi) ¥ £ and u (5)

Equivalently, we say % is nested in z if

F. C F;

; i Vyel”=1"1xl"2x...xl" (6)

N

Definition 2, An information structure n = [n CRRRE nN] is said to be

partially nested if for all j, i € {1,...,N}, j41i implies 2 is nested in z..

By definition, in static team there are no precedents for any of the
decision makers; hewnce, any static team is trivially partially-nested.

A particularly simple and common form of partially nested

information is

G Dt 1 ik RS AT i ki
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{zjlj‘“}
g, = ¥ i . (7)
Z{ = ﬂi(E,‘_l,j)

In other words if Uy affects the information received by the ith DM, then
the ith DM will also know what the jth DM knows (as part of zi). In this
case, fij is simply a row matrix of {1, 0} which picks out certain
components of z,.
Definition 3. Information z, is said to be equivalent to information 2 if z,
and 2, are mutually nested, i.e. fij in (5) is invertible, The equivalent z,
and z-i referred here may represent the information of two different DMs
or two different forms of information available to one DM. In the latter
case, any strategy u, = yi(zi) that can be realized by z; can always be
duplicated by Zj and vice versa. Yet the computation of strategies based
on one information structure may be simpler than the other particularly if
the latter is of static nature,

In the theorem below we shall state a condition on the equivalence
between dynamic and static information structure, To this ends, suppose

we can write

N
1}

ny&, 1) (8)

A :
(R (8), ) 2 K(R(8;y) for fixed u,

Theorem 1. Given a team with partially nested information structure p,
if furthermore (8) is true and Ki is invertible for all i and Ej’ then the
information structure éi 4 {)i(g) is equivalent to z, = ni(E,gj) fori= 1,2,

., N.
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Proof: It is clear that we can choose

(8)=% ieN, (e K =1, the identity function).

Next we write from (8)

[}
[}

m (A8, ) = ny (B (8), 3,80 jeN,
ie N,

]

Since Qj z is partially nested, yj(Qj) is a known quantity. Hence/we can
J

write
A _Aey -l
zi = Tll(g) = Ki (zi’xj(zJ)) s
i € t/’é j € n/‘i
and
= A ' A r
zi = Ki(zi’xj(zj)) ’

This process can obviously be iterated for i € o, Ay o "Aic' The
collected equivalent information structure ﬁ = [fjl, ceey QN] is a static one,
Examples. In all examples below we assume (7) and illustrate particular

useful cases of (8).

(23 49) CAIERY
i) z, = é:)
z! = HE+ 2, D..u, 12zl - Y D.yiz) = HE
i i iei ijj i i g W i
The above transformation can be used recursively to produce a set of fz\i
which are linear combinations of £ only, This trick was used to prove the
optimality of a wide variety of LQG problems with partially nested

information structure [2].
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(213 43) (2}1541)
(i) z; = &> :
- ' A - - on
Example (ii) shows that one of the crucial requirements for equivalence is
that the effect of u be additive. :
{zlit3)
(iii) z, =
1
Ai(Ej) is an invertible matrix for all admissible u, then again :
{Zj'lj<i} . __
z, &
A a1 _ ‘
The example shows that if the effect of the previous uis multiplicative
then invertibility in some form is required. For example, if Y turns off
some measurement system such that Ai(t_xj) = 0 for alliy j then the system
may still be partially nested but not equivalent to a static one, C

Examples (i) - (iii) can be combined to yield the following assertions:

Assertion 1. The dynamic team in Figure 1 has an equivalent static

information structure d
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t t
NLD -——-)(:P——-) ALD

NLD - Nonlinear Dynamic System NL - Nonlinear Transformation, 8¢

ALD - Additive Linear Dynamic I -« Invertible Transformation, kt
Systems, Eq, (%)

Xyl = g(ut) + A.xt + W, (%)

Zt= kt(at) ('}t: j

tle <

{zT |7 < &) :

Xy, Wy, v are externally specified random variables. o

t
t-1 A
ot o =
ep - H o2 AT g(u) = 2
i=1 a A
Zt @ = zt .

{/z\_'r l7 < t)

Figure 1
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Assertion 2, The dynamic team in Figure 2 has an equivalent static
B i AL Y g q

3Ry e N

’ information structure provided (gt(ut)A)"1 exist for any admisaible u,.

wé w, - Xy o
b —— NLD .\)(:;? MLD x )l I —-z-) \
. . t

g ‘ NLl _ NLD ‘
\ | T"i

4

L
(24

T

T T
—_—
et

l\>ILD - Muliiplicative Linear Dy'nalnic System, Eq. (')

@ - Multiplication of a vector by a scalar \

Xl E gt(“t)A"‘twt | )

{z![7 < 1)

\ !

J—
r;t.'
L
[
up
]
o+

Ve Weare scalar random sequences externally specified x; is a random

variable,
: t -1
\ - 1TTI (8;(u)A)" 2} =

A \ zt &>

A I
{z, I < 8} ‘_
t

V' \ ' Figurc I2.

T T 1 T T T

r . - 3
; Finally, we have the easy generalization of the Radner theorem, B
-l ;
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Theorem 11, Let a dynamic team have partially nested informaticn

|
structure n which is also equivalent to a static one 4\1 Let the

performance function of the team be
J(Y) = E{‘y[u, g] }

where £ is a primitive random vector with given prior p-robability
distribution p(§). If (a)# is convex and differentiable in u, for alli a=d
for a, e. &, (b) J(y) is locally finite* and (<) IanJ(y) > - oo, then there is

a unique local optimal decision u, = 'y:‘(zi) for all i, Furthermore, if
'l
Jiy) = E{% uTQu + uTSE + uTc} : : (9)

\

: . TR P .
where Q, S, c are constants, £ is gaussian with finite covariance, Qi
. . . ¥ o, .. A . . .
linear in § for all i, then Y; is linear in 7 and possibly nonlinear in z;.
Also we have the extension

Corollary, \If p(E) in theorern II has th"g form \

p(&) = £[(&-m)T X (g -m)] (10)

then the optimal decision rule to ($) is again linear in Q’i'

Proof: Density functicns of the form (10) are called spherically
(elliptically) invariant, of which gaus]sian distribuiion is a special case.
Vershik [3] and Blake and Thomas [4] have shown that all mean-squére
estimaltion problems with this class of random variables have linear
solutions, More specifically, the Bayesian conditional mean E[§ [Q = HE ]

is linear in ’z\, and it is always true that

W
For definition, see [1].
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EE[2 = m+xaT @) (2 - Hm) , (11)

when § is spherically invariant,
There is no loss of generality by letting m = 0, If we agpsume linear

decision rule

u = A% +b (12)
1 11

i

and solve for the optimal Ai and bi’ i.e,, substitute (11) and (12) into

Eq. (19) of [2]), we find, that

T, _ T .
JZQiJ.AJ.(HjXHi) = = 8,XH, ¥i (13)
pF = Tl (14)

Everything remains the same as the gaussian case, except X here is not

necessarily the covariance of &,

Conclusion

The matter discussed in this report concerns the reduction of
information structures in dynamic team decision making to static cases,
All the DMs are assumed to be rational. Partially-nested information
structure is a system in which the DM knows what his precedents have
known and by this he deduces what they have done. Based on this concept,
the condition on information equivalence has been derived. The essence
of information obtained may be disguised in §arious forms in many
dyramic team problems. Our thezorems clarify the information structure

in several classes of problems.,
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ON THE RELATIVE LEADERSHIP PROPERTY
OF STACKELBERG STRATEGIES

N laad

By

Tamer Basar

i

i Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

O

ABSTRACT

The relative leadership property of Stackelberg strategies has been
investigated via a scalar nonzero-sum two-person differential game

problem. It is shown that, depending on the parameters of the game,

Pl B e e i S G TR 4 e e T fa2

there exist three different types of solutions for this class of games. {
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Introduction

In a recent paper [Ref. 1] Simaan and Cruz have obtained the open-
loop Stackelberg solution for a class of deterministic nonzero-sum two-
person games under the leadership of one of the players, One of the
properties of the Stackelberg strategies, as discussed in Ref. 1, is that
if one of the players acts as the leader in the game then both players
might benefit from this leadership in the sense that both of them might
end up with better payoffs than the ones obtained from the Nash strategiesf
This property of the Stackelberg solution brings up the question of as how
to decide on which player should lead the game and which player should
follow. Further, there is the question of whether it is always profitable
for either player to act as the leader rather than be the follower.

In this note, we address ourselves to these questions via a scalar
nonzero-sum differential game problem which is related to Example 5 of
Ref. 1. We show that there are situations in which a player would prefer
to be the follower rather than he the leader and that this leads, in generai,
to three different types of solutions for this class of games., The
concept introduced and the conditions derived for the scalar example
can readily be extended to encompass a more general class of nonzero-

sum game problems,

1t is important to note that we are restricting ourselves to noncooperative
solution concepts, Otherwise, pareto-optimal solution should be
considered in making the comparison,

TN AR B s

- -
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A Linear Quadratic Differential Game

Congider the following generalized form of Example 5 of Ref, 1,

The dynamics are described by the scalar linear differential equation

TP T T,

X=up-u, x(0) = x5 (1)
‘ where uy and u, are controlled by player 1 and player 2 respectively
g" and are measurable functions of t ¢ (0,1] and X, The costs to players
) L 1 and 2 are given by the quadratic payoff functions Jl and J, respectively,
: where
g 1
]
1 i 1 2 1 2
3 Jl(u1 , u2) =50y Xt ch f uy dt , (2a)
0

I A RN

1
1 2 1 2
Jz(u1 , uz) =5 €y X + _Zce f u, dt s (2b)
0

|
|
1
|
|
|
|
i

/ : s
cp >0, e >0, S £0 y Cp # 0, and Xe denotes the terminal state (i. e,

x(1)). Note that this formulation becomes identical to Example 5 of Ref, 1

Aol S i T A

Nr

whencl=l,cz=-1. Loz
Now denote the Stackelberg control of the i'th player when the j'th

player is the leader by uisj and the corresponding Stackelber'g payoff '
J i - (5

Ji(ulsj , quj) by Ji . Then it follows from Eqs, (48) - (53) of Ref. 1

that the open-loop Stackelberg solution with player 2 as the leader is given

|

by '
]

_clcp(l + clcp) i

2
(1+clcp) + ¢

i
t

U1g2 (3a)

2%
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3 .
(1+clcp) % € ¢,

Y282 X0 ’ (3b)

under the conditions

{1+ clcp) >0 (4a)

(1+ ;e )+ cpe, >0 , (4b)

and the corresponding Stackelberg payoffs are

3
2.1 Sltasy) X2 (5a)
L2 e )® 4 cpe 20 70
P 27e
2 1 2 2
JZ = E xo (5b)

2
[(1+c1cp) + CZce]

Using a symmetry property of the original differential game, the
open-loop Stackelberg solution with player 1 as the leader can readily be

obtained from (3a) - (5b}, i.e.

clcp
u - . x (6a)
181 2 0
(1+c2ce) + clcp
c,¢ (1 + c,c )
_ 27e 2 e
Urgl = %y , (6b)

2
(1+c2ce) + Clcp

under the conditions

(1 + czce) >0 (7a)
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2
{1+ ceCZ) + Clcp >0 . {7b)

and the corresponding Stackelberg payoffs are

c
N3 L x0 (8a)
[(l+czce) + clcp]
3
c, (l+c,c )
J1 . 1 2 Z2'e x (8b)
2 [(1+cc)2+cc]2 0
27e 1%p
. N N
Denoting the Mash payoffs of players 1l and 2 by Iy and J,
respectively, it is certainly true that
l N 2 N
I <0 , Ty < 05 R (9)

that is, the leader will always do better (in the sense of achieving a lower
payoff) than his Nash solution., [The inequalities in (9) are strict because
of the assumption ¢, {0, c, 4 0. ] However, relaticn (9) does not
necessarily imply that the best each player can do (in a noncooperative
sense) is to be the leader in the game. In fact, such a statement will not
always be true as will be shown in the sequel.

In order to derive the conditions under which Ji < J;;“ and/or

5 < g}

2 2
be satisfied. Then .T} 5.]";' implies {after some straightforward but

, we will first have to require relations (4a), (4b), (7a) and (7b) to

extensive manipulations) either

(i) c, >0 (10a)

S e e e o o i = AR

Ol e
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or
2 2+c,c
) cy<0, - <1+ —LR (10D)
. €5, (1+c1cp)

That is, if either (10a) or (10b) is satisfied, player 1 can achieve the
lowest possible payoff (in a noncooperative sense and assuming that
player 2 acts rationally) by being the leader in the game. [Note that if
J}= 3, i4j, then player i achieves the same payoff by being either the
leader or the follower. In such a paradoxial situation we assume that he
acts as a leader. ]

Similarly, the conditions under which player 2 would rather prefer

to be the leader (i. e. Jg < J;) are either

(iii) <y >0 (11a)
or
2 2+c2ce
(iv) ¢y <90, - < 1+ —_— (11b)
Cle (1+C2ce)

provided that relations (4a), (4b), (7a) and (7b) are also satisfied,

To summarize these results and to indicate their immediate
implications in a compact form, denote the setof c; 1 0, ¢, {0, ¢ >0,
cy > 0 which satisfy (4a), (4b), (7a) and (7b) by 2. Further, denote the
quadzruple {cl, <)) cp, ce} by a. Let l"1 be the set of a € 2 which
satisfy either (10a) or (10b), and I, be the set of a € 2 which satisfy either
(11a) or (11b). Then we have the following conclusions, (Note that any

given a specifies the game completely).

() [,ce, TI,Cn
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2) I; NT, ¢ (this will be proven in the sequel via a
numerical example - Example 2)

(3)  (Q-TI)) N (Q-Iy) 3§ (this will also be proven in the sequel
via a numerical example - Example 4)

(4) Player i wants to be the leader iff a € I‘i .

(5) Player i wants to be the follower iff a ¢ -Q-I"i .

(6) Both players want player i to be the leader iff a € I‘l M($2- I"j),

ity

(7)  Either player wants himself to be the leader iffa eI} N T, .
(8) Either player wants himself to be the follower
iff a € (Q-I"l) ~ (Q-l"z) .
Hence, associated with the nonzero-sum differential game considered
in this note, we have 3 different types of solutions, depending on the

parameters defining the game;

TYPE A: - CONCURRENT SOLUTION

If ae I"ir‘\(Q-l':j), i{j, it follows from item (6) that the players
mutually benefit from the leadership of the i'th player and hence they
'tcollectively'' decide to play the game under player i'th leadership (even
though it is a noncooperative game). We call this a concurrent solution,
since there is no reason for either player to deviate from the corresponding

Stackelberg solution which was computed under mutual agreement,

TYPE B: - NONCONCURRENT SOLUTION

If aell N [,, either player knows that he vill do best (in the
noncooperative sense) if he himself is the leader (item 7). Hence either

player will try to announce his strategy first and thus force the other

e el e e
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é player to pick the Stackelberg strategy under his leadership. In this case,
the one who can process hia data faster will certainly be the Jeader and

i’

announce his policy first. However, if the ''slower'' player does not

i actually know that the other player can process his data faster than he does
and/or if there is a delay in the information exchange between the two
players (which is the case in many economic situations), then he might
tend to announce a Stackelberg strategy under his own leadership quite
unaware of the announcement of the other player; this certainly results in

a nonequilibriurn situation,

ETP T e <

TYPE C: - STALEMATE SOLUTION

Som s e ol

If ae@-I7)N (2-I,), then neither player wants to be the leader

(item 8), Both players will rather prefer to wait for the opponent to
announce his policy first -- which will result in a ''stalemate''. In order
to come up with a reasonable solution for this case, one has to introduce

some negotiation or bargaining between the players. The question of the

exigtence and nature of the bargaining procedure that would result in a

concurrent solution is yet an open problem that requires further

]
! i"

investigation,
We next consider numerical examples to illustrate these three
different types of solutions,

Example 1

o= fep=1, cp= -1, e =1, c = 0.5}

) A M i A e T

i T s i

It can readily be checked that a € I, N(Q-T}), and hence this example

e Elwairn s

admits a Type A solution with player 2 being the leader. This example

can also be considered as a velocity-controlled pursuit-evasiongame of g
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the nonzero-sum variety in whirh the pursuer (player 1) has less weight
on his control than the evader (player 2) [i.e. zl— < -21--]. Under this

P e
condition the pursuer would prefer to wait and act second, and the evader

would rather prefer to act first,

Different Stackelberg payoffs for this example ave

1 2 1 2

Jl = 0.400 X0 Jz = - 0,040 Xq

2 2 2 _ 2

Jl = 0,326 X Jz = =~ 0,143 X4
Example 2

a = {cl=1, ¢y = =1, ¢ =0.2, ce=0.8}

P

For this game a € 1"1 N I, and hence it admits a Type B solution, i. e,
neither player 1 (the pursuer) nor player 2 (the evader) want to be the
follower. Note that the only difference of this example from the previous
ona is that now the pursuer has more weight on his control than the evader.

Different Stackelberg payoffs for example 2 are

1 2 1 2

Jl = 2.08x0 J‘z = « 0,069 N

2 2 2 2

J1 = 2,11 Xq J2 = - 0,78 Xq
Exam21e3

a = {clzl, c2=1, cp:l, ce=0.5}

This example also admits a Type B solution, i.e. a €I} NI,. Different

Stackelberg payoffs for this game are
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1 _ 2 1 2
Jl = 0,154 Xq JZ = 0.160 X

2 2 2 2
3% = 0.198 %] 2 = 0.111x]

Example 4

: 1 1

a = {Cl = -1, C2= -1, Cp = 3‘, Ce = -5-}

For this final example, a € (2~ l"l) N (Q-I"z) and hence it admits a Type C
golution. Both players want to be the follower and this leads to a
'"stalemate'’' solution. One has to introduce some cooperation between
the players in order to derive a concurrent solution (if such a solution

exigts), Different Stackelberg payoffs for this example are

1 _ 2 | 2

J] = -4.5x%, Jo = =12 x,

2 n L2 2 2

Jy = --lg.x0 Jy = -4.5x%,
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