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The detection of spread-spectrum multiple-access signals relayed through a hard-
limiting repeater is of considerable nractical interest in satellite communication.
Analysis of the nroblem is difficult because of the nonlinear characteristic of the
limiter. The approach generally taken is to calculate the receiver output .ignal-tb-
noise ratio (SNR) and then to use results relating error probability and SNR, which
are strictly valid only for a linear channel.
STh~e"study provides a method for analyzing accurately the detection of a hard-

limited PSK signal buried in noise Laving non-Gaussian components, by using a cor-
relation detector. The problem is of both theoretical and practical interest. The
probability of error is shown to be directly calculable from the characteristic
function of the receiver output, without the need of obtaining the probability den-
sity function, which generally requires a difficult inverse transformation of the

characteristic function. Thia approach might be of some theoretical interest in
solving related problems. , I A•

The detection of a biphaie-modulated spread-spectrum signal relayed through a
hard-limiting repeater is analyzed without resorting to heuristic SNR arguments. An
analytical expression for the error probability at the receiver output is obtained
by considering the noise present at both the satellite repeater Input ard the ground
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ABSTRACT

The detection ot spread-spectrum multiple-access signals rclayed

through a hard-limiting repeater is of considerable practical interest 4

in satellite communication. Analysis of the problem is difficult be-

cause of the nonlinear characteristic of the limiter. The approach

generally taken is to calculate the receiver output signal-to-noise

ratio (SNR) and then to use results relating error probability and SNR,

%%hich are strictly valid only [or a linear channel. f
This study provides a method for analyzing accurately the detection

of a hard-limited PSK signal buried in noise having non-Gaussian con-

ponents, by using a correlation detector. The problem is of both theoret-

ical and practical interest. The probability of error is shown to be

directly calculable from the characteristic function of the receiver

output, without the need of obtaining the probability density function, ,

which generally requires a difficult inverse transformation of the

characteristic function. This approach might be of some theoretical

interest in solving related problerms.

The detection of a biphase-modulated spread-spectrum signal relayed

through a hard-limizing repeater is analyzed without resorting to heuristic

SNIR arguments. An analytical expression for the error probability at the .

receiver output is obtained by considering the noise present at both the

satellite repeater input and the ground receiver input. Numerical evalua-

tion of the error probability expression is presented for various values

of processing gain and up-link and down-link input noise levels.

The detection of a binary PSK signal after transmission through a

hard limiter is also analyzed. The error rate in this case is obtained

in the form of a series containing either confluent hypergeometric func-

tions or modified Bessel functions. Numerical results for both the spread-

spectrum case and the PSK case are compared with those for a linear re-

peater, to assess the system performance degradation caused by limiting.
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gVALUATION

The significance of this report is that it derives the wyression

for the detected error probability for a biphase modulated signal trans-

mitted through a baxidpass bard limiting channel. Taus, RAWC engineers

can obtain the exact performance of such a communications relay channel,

or any receiver containing a hard limiter. CMearly evident from this

report is the parametric range ovar which the usual linearizing assumption

is valid. The analysis set forth therein provides a framework for exact

future analysis of n.u-linear channels such as those used with mo.'e

complicated signal st-actures, multiple access, and soft limiting

or other non-linear channels.

N J. /PATTI, Project ngineer
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* I INTRODUCTION

The performance of digital communication systems is usually charac-

terized by the probability of error in the detection of the transmitted

signal at the receiver. When the system contains a nonlinearity, such

as a limiter, it is difficult to evaluate the effects of the nonlinear

device on the system performance. The approach generally tPken is to

calculate the receiver output signal-to-noise ratio (SNR), and then to

use results relating the error probability and the SNR, which are strictly

valid only for a linear channel. A comprehensive investigation of the

effect of hard limiting on signal detectability for a system consisting

of a limiter, a narrowband filter, and an envelope detector in casc-.!e

is given in Refs. 1 and 2. Aein 3 considered the channel structure in

which the narrowband filter and the envelope detector have been replaced

by a correlation detector, and he analyzed the effect of limiting on the

probability of error in the detection of a constant-envelope, phase-

coded spread-spectrum signal. Aein derived the expression for the bit-

error probability under the following assumptions:

(1) The SNR at the limiter input is small.

(2) The processing gain (TW product) of the system is large.

He showed that under the above limitations the amplitude distribution of

the interference (the sum of down-link and up-link retransmitted noise)

at the receiver output is, to a good approximation, Gaussian and that

the limiter can be regarded as a quasi-linear device that degrades the

system performance by TT/4 or -1.05 dB.

References are listed at the end of the report.
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This study derives an expression for the error rate without re-

sorting to the simplifying assumptions made by Aein. Consequently, the

bit-error probability expression derived here is valid for a considerably

larger range of values of SNR and processing gain. The analysis shows

that the amplitude distribution of the interference also has non-Gaussian

components, which must be considered when dealing with low error rates.

The expression for the error probability is given by a series whose

leadiig tem is identical with Aein's result when the SNR at the limiter

input is small and the processing gain is large.

The specific model fo- the communication system considered in this

study is shown in Figure 1. The input to the limiter consists of a single

biphase-modulated, constant-envelope, phase-coded, spread-spectrum signal

and a band of zero-mean, stationary Gaussian noise. The bandpass filter

preceding the limiter is assumed to be wide enough %o pass the signal

with negligible distortion and to limit the iiput noise to a narrow

bandwidth that is small compared to the center frequency of the filter.

The limiter has a hard-limiting characteristic that limits its output to

either I or -1. It is followed by an ideal zonal bandpass filter that

confines the limiter output spectrum essentially only to the fundamental

band of the signal. After passing through the satellite repeater, the

signal is transmitted to the receiver, and independent thermal noise is

added to it on the down link. The receiver processes the composite sig-

"nal, extracting the information-bearing signal through a correlation

operation with a locally generated replica of the transmitted code of

the desired signal. It is assumed that bcth chip and bit synchronization

at the receiver has been achieved and is maintained.

The applicability of the system model of Figure I is much wider than
the objective of this study, which is detection of a single biphase-coded

spread-spectrum signal at the receiver after transmission through a hard-

limited satellite repeater. The model is equally valid for the -. talysls

2
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i ~ of the error rate of a hard-ltmited PSK sign~al. In th~is case, the re-

ceiver reference signal is synchronized in both phase and frequency with

the desired transmitted signal, for successful demodulation of the signal

at the receiver. An analytical expression for the error rate in the de-

tection of a single PSK signal has been obtained in the form of a series

containing either confluent hypergeometric functions or modified BesseI

functions. The expression is valid for arbitrary values of up-link and

down-link SNRs.

In the absence of down-link noise, the model represents a system

with a limiting front end in a receiver operating with a linear channel.

In some practical applications, this may be desirable from consideration

of dynamic range requirements. The general expression fo= the bit error

rate for both spread-spectrium and PSK cases may be extended to include

this situation by setting the down-link noise equal to zero.

The expression for the bit error probability may also be used to

treat the case of code-division multiple access (CDMA), involving a large

number of spread-spectrum signvls at the limiter input. The noise •ource

at the limiter may be regarded as the sum of all the undesired signals

entering the limiter in addition to the desired signal. The accuracy of

the results would, of course, be dependent upon how closely the amplitude

distribution of the sum of the undesired signals at the limiter input

represented a stationary, zero-mean Gaussian distribution. The Justif,.ca-

tion is usually provided by invoking the Central Limit Theorem of proba-

bility theory if the numbe.r of signals at the limiter input is large and

the constant RF reference phase of each 3ignal is nudependent of all

others.

- -- -- - - - -- , - -- - - . -- - - -- - --4- -- -



II MATHEMATICAL ANALYSIS

A. Error Prebability

At the receiver output, the decision whether a mark or space has

been transmitted is made on the basis of whether the filter output (see

Figure 1) at the sampling instant is positive or negative. If it is

assumed that the transmission of a mark or a space signal is equally

prabable and that the noise at the low-pass filter output has a zero-mean

value, then the probability of error, Pe in a decision is equal to the

error probability in either a mark or a space signal. Thus,

• p =P =p .

e em es

The probability of error in detecting a mark is equal to the probability

that the filter output will be negative at the sampling instant. Thus,

P P is given bye

0

P =P = p(z) dz , (1)
e em

where p(z) is the probability density funAtion of the filter output. To

calculate PeY one needs to determine p(z), which may be obtained by first

calculating the characteristic function of the receiver output Z and then

taking the Fo...ier transform. Alternatively, P can be obtained directly
e

from the characteristic function of Z. In the Appendix it is shown that,

if Z is any random variable of probability density function p(z) and

characteristic function C (v)z , its cumulative distribution function, P(a),z

is given by

5



j• 1 1 Im (v dv •

P(a) = dz i 2 f [ (v) e (2)Sj2 pTz m z v

where I denotes that only the imaginary part has to be taken. Compari-
m

son of Eqs. (1) and (2) shows t.at

10SP P(G) 1 1 fI[,v dv(3

e 2 TTJ I[ v v

0

Thus, the plan of approach for calculating P will be to determine C (v)e z

and then to perform the integration. It should be noted that Eq. (3) is

a general result which can be used to determine P for a linear as well
e

as a nonlinear channel of arbitrary transfer characteristic.

B. Determination of C (v)
z

To derive the mathematical expression for C (v), it will be neces-
z

sary to obtain the expression fcpr the receiver output Z. To achieve

this, we write an expression for the limiter input and then systematirally

proceed to develop the expression for the receiver output.

The input t, the limiter is assumed to consist of two components,

the signal component and the up-link Gaussian noise.

1. The Signal Component

The signal component is represented as

s(t) A cos [w t + ý(t) + 0(t)] (4)
0

During any bit interval, the information modulation, 0(t), is either 0

or 'a, depending upon whether a mark or a space is being transmitted.

]6



Here ý(t) is the pseudo-random code, which enables the receiver to re-

cover the desired signal in the presence of interference and noise.

Since the keying rate of the code is generally several orders of magni-

tude greater than the information rate, the required transmission band-

width is usually very much larger than is required by information modula-

tion alone. The analysis is independent of the specific form of ý(t);

typically, the phase coding used in digital systems is either binary or

quaternary.

2. Up-Link Gaussian Noise

The expression for up-link narrowband Gaussian noise is

n(t) = x(t) cos w t - y(t) sin w t (5)

where x(t) and y(t) represent, respectively, the in-phase and quadrature

components of the noise. For analysis it is convenient to represent n(t)

relative to the code of the desired signal:

n(t) = x (t) cos [W t + $(t)] - y (t) sin Eo t + 0(t)] (6)

No loss of generality oc=urs in this pricedure, provided that x 1t) and

y 1 (t) are treated appropriately. They are independent, identically dis-

tributed Gaussian processes, related to x(t) and y(t) by the following

expressions:

x 1 (t) = x(t) cos 0(t) + y(t) sin 4(t) (7)

y(t) = y(t) cos 4(t) - x(t) sin §(t) . (8)

It is important to note that x It) and y (t) are, in general, neither

stationary nor independent of the desired signal, since

R (t - t') = R(t - t') cos M(t) - 1(t')] (9)

7
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where the covariance functions Rlt - t') and R (t - t') are defined as:

of t -t') = EC(t)':(t')] = E~y(t)'y(t')]- (10)

Samples of (x are statistically independent for It : values

that make the (x, y) samples independent.

Thus, the limiter input may be expressed as:

f t = A cos (w t + $(t) + 0(t)] + x (t) cos [W t + t(t)]

y- Y(t) sin [W t + M(t)]

= R(t) cos [w t + ý(t) + p(t)] (12)
0

where the envelope, R(t), and the phase, p(t), are given by

R(t) = 
4 (A cos 0(t) + x (t)] 2 + y2 (t) (13)

y Mt)

w(t) = arc tan A cos 0(t) + x Ct) (14)

The bandpass limiter is assumed to be ideal in the sense that

its output, f (t), is given by:
0

f Mt) = cos [W t + ý(t) + Cq(t)] (15)
0 0

i.e., the envelope variation has been completely removed without dis-

torting the phase modulation.

The signal is t),en transmitted to the ground receiver, and

noise is added on the down link and in the receiver front end. Assuming

I



that this noise is also stationary, zero-mean, and Gaussian, the receiver

input may be expressed as

g(t) = a cos [w t + 4(t) + cp(t)] + u(t) cos [w t + ý(t)] - v(t) sin [w t + (t)ý '
0 0 0)

(16)

where a is a constant determined by the amplification in the satellite

repeater and the losses on the down link. Note that the down link noise

is also expressed relative to the code of the desired signal, analogous

to Eq. (6).

The correlation operation at the receiver involves multiplica-

tion of the receiver input, g(t), by the synchronized receiver reference

2 cos [w t + 4(t)], followed by appropriate low-pass filtering, which is
0

equivalent to an integration operation over tne bit interval T of the

data signal. Neglecting the filterable double-frequency term, the re-

ceiver output is given by:

T

Z T [a cos cp(t) + u(t)] dt (17)

0

where CY is a correlator-gain normalizing constant.

To avoid the mathematical difficulty involved in solving the

above stochastic integral, we follow the approach used in Refs. 1, 2,

and 3 and approximate the integral by a sum taken at intervals AT equal

to I/W. where W is the brndwidth of the repeater equal to the reciprocal

of the correlation time of the p-n codd. Furthermore, we select

a = /n/a, which normalizes the receiver output noise power due to up-link

noise to t'alf in the absence of signal and d'wn-link noise. Thus, Eq. (17)

becomea

9



n n

z cos k+u n = TW , (18)

k=l k=l

Z ±1 , (19) Z

where n represents the TA product of the systei. Clearly, Z can be re-

garded as composed of the sum of two statiotically independent variables,

Z + Z where Z is the correlator outcut due to the limiter output
1 2' 1

signals, and Z2 is the resulting outr.t caused by the receiver down-link

noise.

Since the uncorrelate• noise processes at both the limiter in-

i• put and the receiver input .u'c assumed to be Gaussian and to have a

symmetrical power densit -. ,"pectrum with respect to the carrier frequency,

samples of limiter in[& (signal plus noise) and down-link receiver noise

spaced 1/W ser Is ;p'art will be statistically independent. Furthermore,

the effect, .MAing is merely to remove the amplitude modulation

without dl,. 'ng the phase modulation; therefore, statistical inde-

pendence will also be maintained between the samples at the limiter

output.V Thus, it can be assumed that in Eq. (18) p and u represent

iden/.tally distributed statistically independent random variables

spaced at intervals 1/W seconds apart.

The characteristic function of the sum of two independent

quantities is equal to the product of the individual characteristic

function. Thus, C (v) is given by
z

C (v) = C (v).C (v) (20)
z z z

1 2

10 -4



where C (v) and C (v) are, respectively, the characteristic functionsz1 z2

of the received signal and the Gaussian down-link noise in Eq. (19). If
2

a is the total down-link noise power at the receiver input,

-v 2 2/2a2C (v) =e (21)
z2

In Eq. (18) Z represents a sum of n identically distributed

sinusoids. Therefore, C (v) can be written as

C (v) = [C(v)]n (22)zl

where 2" vc~v) f inn cos c

Sp(cp) dcp . (23)

o

The probability density function p(cp) of the phase, when a mark is trans-

mitted, i.e., 9(t) = 0, in Eq. (14), is expressed by the relationship4

-A, 2C 2 2p l- 2 fa -(r - ZAr cos cp)/2a

2 o

2
Here a represents the total noise power at the limiter input. Expanding1

the exponential function in Eq. (23) in a power series yields

IM

pv)= (4 ) , (25)

p-o

where 27

m= f cosPcp p(p) d~p (26)

this the p moment of cosW.
11



;i
Taking the logarithm in Eq. (22),

(v) = nlnC(v) nin I+ - ~ 2.
in [ pti • (27)

p=l

and then expanding log (I + x) in a power series yields

z I
r=l

or

r--j : 'ivj

C (v) =e (29)zi

th
where X is the r semi-invariant or cumulant. The general relationshipr

between k and m is given by Cramer.6 The first six semi-inva~iants and
r p

the moments are related as follows:

X m

2X. =.m -m
2 2 1

3 =m -3mm2 + 2m 1
3 12 1

2 2 4
m -3m -4m m + 12mm -6m

44 2 1 3 1 2 1
3 2 2

X m -5m m -60mm + 20mm 30m
5 5 4 1 172 1)3 1 2

5J-10m m + 24m5

2 3 1
2 3 4

= - 6mm + 30m m -120m m+ 360mm
6 6 5 1 4 1 a 1 2 1

2 2 2
m m m 270mm - lOn

4m2 12r 3 1a2 3

3 6 (30)
+30m 120m 3032

12
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These six semi-invariants will suffice for the exparsion of C (v) through
S-2

terms of order n 1

The expression for C (v) in Eq. (29) can also b-e written as
z1

(i fn v v2/)E nu -~ Ov r

11 iZl ' =o J =3

The exponential factor is recognized as the characteristic function of a

Gaussian random variable of mean /_ XI and variance X 2. The expression

for C (v);involves'the product of the Gaussian characteristic function
1

and the powers of v. It can easily be shown by expanding Eq. (31) that,
following the leading Gaussian term, the successive higher-order terms

1/2 3/2 2
in the series are inversely proportional to n , n, n , n 2 and so

forth. Thus,

22
(i/ x ,-X v /2)

1 (2 3 3 1 X4 4 X3 6)
C (v) e1v+ v

Cz(V 1 : /n 66 - n \7•4 v -- 72v

) 3

i v5  3 v9
+ 3/2 - 2 144 1296-- 9
n/

2 24
IX X X X X X

1 6 6 4 8 358 4 10 3 12+. • 1 0 v + v +-+v - v v
2 72 1152 720 v 1728$ 31104n

/ (32)

C. Determination of the Moments

The. six moments required for the determination of the semi-invariants

p.may be obtained by first expanding cos Pp in Eq. (26) in a Fourier cosine

series.

13
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2
Scos(p -i))iq' p+ 2 P.(pi2 w) 2  

, p ev-n

2

Cos P•

__p-l) 2 os(p - 2i) cp , p odd (33)

(p i)..i'. 2 p
i=o

and then evaluating the integral in Eq. (26) by using the result:6

2r[ p
I p-2i ~2  +1J cos (p - 2i) 0 p(cp) dcp= p 21 + 1)

0

I F(2 - i, p - 2i + ,34)

where
2 2 2

P= A /2C (35)
11

is the limiter input SNR; r( ) is the gamma function; and 1 F (a, b, -x)

is the confluent hypergeometric series defined as

2

F (a, b, -x) 1) x (36)
i1 b +t b(b+) 2

For even values of p, the hypergeometric function in Eq. (34) can be ex-
-x

pressed in closed form in terms of x and ' ; while for odd values of p

it is expressible in terms of modified Bessel functions, I and II, x and
0

-x/2 With the relationships given in Table 1, the following expressions

can be derived for the six moments:

ml Pl - / 2 ) ) 1

14



Table 1

Cl.,ED-FORM REPRESENTATION OF CERTAIN CONFLUENT

HYPERGEOMETR IC FUNCTIONS

-/2r.~
F (1/2, 2, -x) e-x Io(x/2) + I (x/2)I

4 -x/2r
F (3/2, 4, -x) - e I (x/2) + (1- 4/x) I1 (x/2)]

11x 10o

F (5/2• 6 -x) 32 ex 2  1 - 8/x) I (x/2) + (1- 4/x + 3/2) 2 (/2

I11, 32 0 1

F1 (1,3, --x) "j• e+ -x -• e (
x

F (1, 3, 5X) x 22

F (3, 7, -x) [x 3 9w2 + 3 6 x 6 0 + 3e-X (2 (x2 + 8x + 20)]
x

2
-p 1

e -1m =1I+ -2 
2

2p 1

2'

m p -eI [p 4l -
2/p1 ~ p 2\

-p 1p, I

7 e 1 -1 1 4 2 2

2
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5 31

2 2 2

-p1  3 4

25 15 e- 1 6 4 _(2 2)1
6 32 32 2 4

p1 Pi PIL[ P 2

1 6 4 2 -p1  4 2+-- Pl 9p, + 36pl 60 + 3e 1+ 8p1: 20)] (37/) i

32 pl

The dependence of the six moments and that of the semi-invariants
2

on the limiter input SNR p1 are shown in Figures 2 and 3, respectively.

These are obtained by numerically evaluating Eqs. (3?) and (30). For
2

large pl' all moments approach unity, while the semi-invariants, except

X which is identical to ml, approach zero. These results are consistent

with those to be expected. The contribution of the limiter input noise
to the receiver output must decrease with an increase in i.,put SNR. In

2
the limit when 21 approaches infinity, only the signal component remans,

and there is no contribution from the up-link noise; i.e., all = 01r

for r = 2) 3, 4 ....

D. Calculation of P

Substitution of Eq. (21) and the imaginary part of Eq. (32) in

Eq. (3) yields the following series for the bit-error probability:

16
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!i sin fl v) e 'v 2 2/ 2= 2- TTf-- e o dv
W2 2

+ v2 cooC/j X v) ev /2 dv

0

X22 21 f 4 3 3 _v 2 /2-nn- v --- 72v) sin(/n XI q) e -

0f

S'2.2
1 c 5 v4 X3 X4 6 -v3 8) e dvS•120 -f4-----4 v + 1296 v) cos(/n X1v)

co2/ 5 + v + 3 k 1 4X3

1/9
2 1152 720 1728

4
3  -22

+ 310-' v" sin(/in X1v) ev /2 dv
311041

+ ... (38)

where
2

2 crc =- +x (39)2 2
a

The solution of the first integral is given in terms of error

function, 7 and all the other integrals may be evaluated with the aid Cof

the following two integrals:
1
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2 2 2/2

v cos(/vii, v)e- v/2 2 H p) 40)o V p- e 2p
0e

22 2

ITT

v i(n ~_ dv =H (p) ,(41)

where Hep is the Hermite polyiomials of the order p, and p2is the

receiver output SINR defined as -- 1 >

2 Z-
Z (42)P z2 _ z 2 01 2 (2

2
With the use of Eqs. (37) and (39) p may be expressed in terms of up-

link and down-link SNR:

4 2
2 2\2

2±rr P2 p2 e 1 l + p +2

p 2 2n- •T A (43)

22

where p1 is the limiter input SN-x as defined by Eq. (35), and

2 2 2 2
p2 a2/20 Pt/a (44)

is the down-lini. received satellite-powir-to-noise ratio. P is the
t

satellite output power referenced to the ground terminal ard contains

both signal and up-link noise as delivered by the limiter.

Evaluation of the integrals in E'j. (38) yields the following series

expansion for P :
Se, I



2
"3 e-P /2

Pe =*• -erf .... H (p)
L ''J 6n 2

e 22 VT 4 1/ 2 3

-p /2XI2
1 4 P - H (P) + ]

1 e-p / )•3"•2 H*3 He8

+ 4 P),f U e 12 +(P0) _ e7

o 0 4 e3 24-72 4

+ 305 3 4 3
w-i - H (p)+ H (p) +re

3/2e 5n Table 2. 4"

n 01i 12 % 144 21 06 '-----296 a 8

2 2e / 6 ~ (4 35
+ _ ..... 6 H I(p)+ -+ -0 H (P)
2 6 f~W 720 e 1152 720 07e
n otL C

+ - 4 24H (P) + 36 H (p (5

1728 Ot 9 31104 Cy 1

where erf( ) is the error function. The Hermit. polynomials H (p) are

given in Table 2.n

Following the leading error function term, the first correction

term is inversely proportional to the square root of the TW product n,,

and the successive higher-order terms are inversely proportional to n.

n 3/, n 2, and so forth. Such an expansion is well known as an Edgeworth

series. The first term in the series yields the probability of error

resulting from the receiver output component that is Oaussian-distributed;

the succeeding terms provide the contribution of the non-Gaussian com-

ponents. The properties of an Edgeworth series have been investigated

in detail by Cramir, who has shown that, under -fa-rly general conditions,

21



Table 2

HERMITE POLYNOMIALS

H (•)
e

H Wx x

e1

3

42
H (x) x -6x +3

e

H () 5 103
H x- lx+ 15x

5

H (0) x6 - 15x4 + 45x - 15
e6

H W x -21x +105x -105xe7

8 6 4 2
H (:) x -28x + 210x -420x + 105

e
8

9 7 5 3
H (x) x 36x + 378x - 1260x + 945x

e9

10 8 6 4 2
H (x) x - 45x + 630x -

3 150x + 4725x 945
e

10

11 9 7 5 3
H (x) x - 55x + 990x - 6930x + 17325x - 10395x

11

H (x) - 66x0 + 1485x 8  13860x" + 51975x4 
- 62370x + 10395

°12
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-1/2
the series gives an asymptotic expansion of P in powers of n with

e

a remainder term of the same order as the first term neglected. Since
-2

we have included the terms up to the order n , the truncation error

may be expected to be of the order of the next term, which would be

proportional to n 2 . For the range of values of pOl 0, and n that

would be of interest in practi-al applications, it is expected that the

first five terms of the Edgeworth series expansion will given an accurate

approximation of the error rate. For most purposes, the expansion of

P through terms of 1/n will suffice; however, for very low error rates

(MO-5 ) the higher-order terms will be needed.

The contribution of higher-order terms in Eq. (45) is primarily

dependent on the values of p and n. Generally, when n is small (between

20 to 50) the up-link SNR must be high (around 0 dB) to achieve low

-5error rates (<10 ). Under these conditions, it is essential to con-

sider the higher-order terms, since their contribution to the error

rate will be significant. As the processing gain n is increased (by

raising the code chip rate), the required repeater bandwidth W also
2

increases, and consequently the up-link SNR p1 decreases as a result

of the enhancement in the noise powe'- brought about by the increased

repeater bandwidth. In the limit, as n becomes very large, all the

higner-order terms in Eq. (--6) approach zero, and P is given by the

leading error-function term resulting from a Gaussian distribution

of noise at the receiver output:

1
P = [1 - erf(p//2)] (46)

2

For large n, the up-link SNR p1 will also approach zero; Eq. (43) thus

reduces to

23



2 2
2 Pn P" 2 2

2n 4 2 (47)
I+ 02

These asymptotic results for larg*, n are in complete agreeme'nt -'ith the

results obtained by Aein. 3

For a linear system the error probability in detecting a spread-

spectrum signal in the presence of Gaussian noise is given exactly by

Eq. (46). The corresponding expression for the receiver output SNR is

22 1 
22 01" 2

0 =2n -(48)
2 21 + O1 + P2

Thus, when n is large, the distribution of the up-link noise at

the receiver output for a hard-limited system will be approximately

Gaussian, provided also that the up-link SNR is small. Comparison of

Eqs. (47) and (48) Phows that under these conditions hard. limiting

degrades the system performance by a constant factor of n/4 or - 1.05

dB.

When the up-link SNR is high, the error rate will be determined

primarily by the Gaussian down-link noise. The higher-order terms will

be small compared to the leading error-function term, since all the
2

semi-invariants except ), approach zero at large values of p1, as can
2be seen from Figure 3. In the limit, as p becomes very large, P is

given by Eq. (46), and Eq. (43) reduces to:

2 2 2
p - 2n p2 , pl I + " (49)

The same asymptotic result is obtained for a linear system [Eq. (48)],

as wouLd be expected.

2.4



The expression for the error rate can also be ti3ed for th6 code-

division multiple access (CDMA) case, involving a large number of constant-

envelope phase-coded spread-spectrum carr~ers at the limiter input. The

noise source at the limiter is then the sum of all the undesired signals

entering the limiter in add8.tion to the desired signal. The up-link
S~2

SNR p1 is thus the ratio of the desired signal power to the sum of the

powers of all the undesired signals and the satellite repeater noise.

The accuracy of the result is, of course, dependent on how closely a

finite sum of p-n carriers can be modeled as a stationary, zero-mean

Gaussian process.

For some practical applications, it may be desirable, from con-

sideration of dynamic rarge requirements, to incorporate a limiting

front end in a receiver operating with a linear channel. The probability

2
of error in this case is obtained by considering a equal to zero, i.e.,

2
no down-link noise (a' ) in Eq. (45).

25
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III DETECTION OF A BIPHASE PSK SIGNAL

The error probability in the detection of a hard-limited binary

phase-shift-keyed signal can be determined by employing essentially

the same analytical approach as is used for the spread-spectrum signal.

In this case, the signal at the limiter input is a constant-envelope,

sinusoidal carrier

3

s(t) = A cos [w t + 0(t)] (50)0 ,

where the binary phase coding 0(t) is either 0 or n, depending upon

whether a mark or a space is being transmitted. The above expression

corresponds to R(t) = 0 in Eq. (4). If T is the duration of each data

bit, the information bandwidth is I/2T; the required RF transmission

bandwidth W is equal to 1fF; and the time-bandwidth product is one.

The calculati.on of the receiver low-pass filter output follows;

it is analogous to that for the spread-spectrum case. The filter out-

put is given by

Z = cos (P+ , (51)
aI

which corresponds to n equal to one in Eq. (18).

To determine the error probability by using Eq. (3), we need the

characteristic function of the filter output. This is given by

C (v) = iE ecos•1 • a

26



I'

where EE I represents the expected value or expectation. Substituting

the imaginary part of Eq. (52) in Eq. (3) yields:

2 2 2
1 1-v 2/2a dvP = - -- E[,sin(vcos ýp)] eV (53)"e 2 1. v

0

* 1 F /
1 Eerf cos (54)

2 2 (72=0

since the integral in Eq. (53) can also be 6xpressed in terms of the

error function:'7

/ ~ ~~~~ 2 i~csc)- 2 2  2t a soscp J, ev a/2a dv (55)S :' erf -Cos ý0 = w
ON ~,TTf

ii
By using the expression

sin(vcos' ) -2 _ 1)n J2rrl (v) cos(2n +1) p ,(56)

n=o

Eq. (,55) becomes

erf.a Cos 1Jn f 2 n + -(v) v2 2/2a2 dv.cos(2n + 1) •p

n=o 0 o (57)

The above integral is attributed to Weber and Sonine; its solution is

given in terms of a confluent hypergeometric series. 9 The result is:

27,



a 2 (-l)n.. n + [ I a

erf a- cos cp 2 (2nH 1)' ! %
er aC20 C - Ei (2n 17(~o

1Fl n + 2n + 2, -a cos(2n + 1) cp , (58)

where F1( ) is the confluent hypergeometric series, and r( is the

gamma function. Substituting Eq. (58) in Eq. (54) yields:

poe(_ n + _,2n)n

P -- -- ( n

n=o

(F n + 2n + 2, - J cos (2n + 1) tp p(w) d•p (59)

22I
01

The expected value of the cosine function in Eq. (59) can be evaluated

with the aid of Eq. (34):

2rr Pn~

cos (2n + 1) p(cp) dcp A 2n+l n +n + 2, -(20 n + W) F1 1 2) 2n+2

f 1 201

(60)

Substituting Eq. (60) in Eq. (59), we obtain the following expression

for the probability of error:
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OD )1.~ + .V~
11 2)_______ 2n+l 2n+l

e 2 - a [(2n+ 1)]21
n1=o

1F (n + -1 2n +2, P2 1 F n + , 2n + 2, -P,2) (61)

where

2 2 22= A /20 = limiter input SNR,

and

2 2 2 2P2 = a /2a2 Pt - down-link received satellite-power-to-noise-
power ratio.

Here " is the satellite output power referenced to the ground terminalt

and contains both signal and up-link noise as delivered by the limiter.

The series in Eq. (61) is corvergent, which may be shown as follows.

We have the general relation

.11(a. b, -X)I i ,Re a > 0 (62)

Hence, the series in Eq. (61) will converge, if the daminating series

obtained by setting both the confluent hypergeometric functions equal

to one converges. The resulting series is absolutely convergent for
2 2

all values of p1 and p2. This can easily be shown by D'Alembert's

ratio test for absolute convergence:

Lm Ul =Lim 2 0 (63)Imn-d• U-n n.-• 2(2 2pp) 0

n1 On+ 3) (2n + 2)
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An alternative expression for P which is more suitable for numeri-
e

cal computation is obtained by replacing the confluent hypergeometric

function by the relationship

_______ 221
F n + - , 2n + 2, - e n 2 (P +

2 ) 2n [In (p/ 2 ) + l(p 2  (64)
p

The expression for P then becomes:
e

(2+2)/2 (- P_)2 P2() P]

P =1 p 2 e\ 1  2  + 1

Se 2 2 P (2n-I-I)

• ý 2 1 +n+1( (65)

It is interesting to examine the behavior of Pe for large SNRs.

Wht-.n p1 is large, the confluent hypergeometric function in Eq. (61)

may be replaced by its asymptotic expansion for large negative argument.

The result is:

C ( _,) nl., n+ ) 2n-il F2n+)

e 2 + (2n + 1)! p2  1 2'

n=o

1- (I - erf Pp ->P 0 (66)
2 P2]
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since the series represents 1/2 erf p2, as may be seen from Eq. (58).

Equation (66) is the expected result for ideal limiting in the absence2

of up-link noise. Similarly, when p2 is large, P is given by:

Pe = (l- erf p1 ), P2 • . (67)

This is identical with the expression for the error probability in

detecting a PSK signal in the presence of Gaussian noise by using a

correlation detector. Thus, incorporation of a limiting front end in

a receiver operating with a linear channel will not degrade the signal

detectability compared to a linear correlaticn receiver.

3
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IV NUMERICAL R ESULTS

A. Output SNR

2
Figures 4 and 5 show the receiver output SNR p [Eq. (43)] as a

2 2
function of up-link and down-link SNR p1 and p2. respectively. The

dashed lines are similar curves for a linear system. The output SNR

for a linear system is given by Eq. (48).

2
At low values of p 2 Eq. (43) reduces to Eq. (47). Comparison of

Eqs. (47) and (48) shows that the presence of a limiter degrades the

output SNR by a factor of Tr/4 or -1.05 dB compared to a linear system.

As p2 increases, the degradation in p decreases, and eventually there

is an improvement in the receiver output SNR over that of a linear sys-
2

tern (Figure 4). .et p12represent the up-link SNR that will yield the
2

same value for p for both a hard-limited and a linear system for a

given value of p2.
2 2

Figui 4 shows that for p1 > P1 0 there is an improvement in the SNR
2

for a hard-limited system. However, as p1 becomes larger, the improve-
2

ment gets smaller. This is because p is now determined by the down-

link noise. The same out,:,at SNR is obtained for both a hard-limited

and a linear system when there is no up-link noise. Figure 4 also shows

2 2
that p increases with decreasing p . The minimum value (approximately

10 2
-4 dB) is obtained when there is no down-link noists.

In the absence of down-link noise and a large up-link SNR, Eq. (43)

simplifies to:

2 4 2 2
p - ~np p� 32
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Davenport has shown that a bandpass limiter degrades the input SNR,2 2
by a factor of TT/4 at low values of P but provides a constant

2
improvement of 3 dB at high values of p1. Equation (43) shows that, if

the bandpass limiter is followed by a correlation detector, the degrada-

tion in the input SNR will remain r/4 at low values of P2; however, at

2 
2

large values of p1 there will be an improvement of p , which is propor-

tional to the square of the input SNR.

B. Probability of Error for a Spread-Spectrum Signal

The expression for the probability of error in the detection of a

constant-envelope spread-spectrum signal after transmission through a

hard limiter is given by Eq. (45). The semi-invariants are functions
2

of up-link SNR pI and are shown plotted in Figure 3. Figure 6 shows

P as a function of p2 for constant values of p2 The dashed lines are
e12

similar curves for a linear system. The probability of error for a

linear system is given by Eq. (46), where the receiver output SNR is

determined by Eq. (48). Figure 6 shows that P decreases monotonically
e 2

with increasing up-lirk SNR; however, at large values of pI the perfor-

mance of the system exhibits an irreducible error probability represented

by the bottoming of the error rate, which depends on the SNR on the

down link. This means that, as more power is placed in the information-

bearing signal, the ultimate performance of the system is governed by

2
the down-link SNR For large values of plY all tne semi-invariants

except X approach zero, and Eq. (45) reduces to Eq. (46), which is

then identical with the expression of P obtained for a linear system.
e

Figure 6 shows that the error rate for a hard-limited system is higher
2

than that for a linear system at low values of p1 but that it gets
2

smaller as the up-link SNR is increased. Of course, if p1 became very

large, the error rate for a hard-limited system %nd that for a linear

system will approach the same limiting value, which is determined by
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the down-link SNR. The improvement in the error rate performance of a

hard-limited system results from the fact that the receiver output SNR
2 2

p is higher than that for a linear channel, when the up-link SNR p1

has become sufficiently large (pO > PA. Examination of Eq. (45) shows

that in this region the major contribution to the error rate is provided

by the leading Gaussian term. The successive higher-order terms tend

to increase the error rate, but their contribution is so small that P
e

still remains lower than for a linear system.

In Figure 7 the error rate is shown as a function of the down-link
2

received satcllite-power-to-noise-power ratio p2 for different values
22

of P V The dashed lines represent the error rate that is obtained if

only the leading Gaussian term in Eq. (45) is considered, nd the output

2
SNR p is determined from Eq. (43). The contribution of e higher-

order terms is the difference between the solid and the dashed lines.

It can be seen that this contribution would be significant at low error
2 2

rates (<10"5) and moderate values of p2 (>O0 dB) . As p2 increases,

the error rate performance of the system is determined primarily by

the contribution of the up-link noise at the receiver output, and the

higher-order terms in Eq. (45) must be considered. The curves of Figure

7 also show a bottoming of the error xate, representing the irreducible

er:'or probability brought about by the presence of the up-link noise.

Figure 8 shows the error rate as a function of the processing gain
2 2 2

for constant values of p and two values of p0. The curves for P2
1 ~2*

i.e,, no down-link noisc, represent the case of a limiting front end

incorporated in a receiver operating with a linear channel. When the

3
error rate is low (<10-), the higher-order terms in Eq. (45) must be

considered, particularly when the processing gain is small, and the up-

link SNR is greater than -10 dB. This can be seen clearly from Figure

9, where P is plotted as a function of the up-link SNR for constant
e
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values of n in the absence of down-link noise. The dashed lines represent

the error probability if only the leading errcr-function term in Eq. (45)

is considered. If the up-link SNR is kept constant (by either increasing

the transmitted signal power or reducing the data rate), while the

processing gain is steadily increased, the error rate decreases rapidly

but the contribution of the higher-order terms becomes increaingl-

significant. This may'be explained as follows: As the process-. 3 in

2
is increased, the output' SNR p increases linearly with n, as s

2
Eq. (41). For p >6 dB, the leading term in Eq. (45) may be ap,

mated by the relationship

_p212
*2 erf(p/J ) (68)

whicl is obtained by replacing the error function by the first term of

its asymptotic expansion for large arguments. Thus. Eq. (451 becomes

P 2••- + higher-orde.' term (59)

I

An !n is increased, the first higher-order term increases linearly with

n, since p = n% 1 y. All the semi-invariants, however, remain un-

changed, since the up-link SNR is kept constant. Similarly, it can be

shown that the other higher-order terms also increase. The same will

also be true in the presence of down-link noise if both 1) and p2 are

held constant while n is increased. Thus, under these conditions the

receiver outpUt noise will not approach a Gaussian distribution even

at large prqcessing gains, and it will he essential to consider the con-

tributions of the higher-order terms in the calculation of the error rate.
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Investigation of Eq. (45) has shown that the series expansion up

-2
to the order n gives an excellent approximation of Pe. even at very

-5 -6e
low error rates (<10- ). Only for P < 10- and n 4 25 will more termse

be required in Eq. (45). In practical systems the processing gain is

usually larger (n > 50), and Eq. (45) may be used to determine P eor
2 2

virtually all values of p1 and p2.

An idea of tne effect of the higher-order terns in the calculation

of the error rate may be obtained from a few selected cases considered

in Table 3. If only the 1,ading error-function term in Eq. (45) is

considured, the resulting error rate is as shown under the column en-

titled One Term. The other columns in Table 3 show the modification of

P as higher-order terms are included. Thus, the last column represents
e

the error rate if all the terms in Eq. (45) are considered. It id clear

that the higher-order terms provide improved accuracy and convergence

of Pe, particularly when n is small. Even when n 1.s large, inclusion

-1
of the terms through the order n is desirable when dealing with low

error rates.

If the up-link transmitted signal power is held constant while

the processing gain is steadily increased by raising the chip rate,
2

P1 will decrease as a result of the increase in the noise power at the

limiter input, brought about by the increase in the transmission band-

2width W. In the limit, as n becomes very large, p1 approaches zero,

and Eq. (43) reduces to Eq. (47). In the absence of down-link noise,

2
p reduces to:

2 r A E7p =2WT - - - =4- . , (70)
4 2 TJ 4

where E = A • T represents the signal energy. This shows that an in-

crease in the processing gain will not affect the output SNR and that
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2:!
thcrefore all the terms in Eq. (45) containing p will also remain un-

affected. However, the effect of the non-Gaussian terms will decrease,
-1/2 -1 "since they are nroportional to n , n , and so forth In the limit,

as n becomes very large, the contribution of the up-.,ink noise at the

receiver output will tend to be a Gaussian distribution, and the error

rate will be given by the leading term in Eq. (45). The presence of

down-link noise will not change the Gaussian distribution at the receiver

output, and the error rate will still be determined by the leading term

in Eq. (45), with the corresponding receiver output SNR given by Eq.

(47).

Figures 10 through 13 provide additional numerical results for the

error rate.

C. Probability of Error for a PSK Signal

Numerical evaluation of the error rate for a PSK signal as a func-
2 2

tion of p] with ,2 as the parameter, is shown in Figure 14. Similar

curves for P as a function of p2Y with p as the parameter, can be
2 2

obtained by merely interchanging p and p2in Figure 1, since Eqs. (61)
2 12} 2

and (65) are symmetrical in p and p2. Both Eq. (61) and Eq. (65) were

programmed, and the results obtained were identical with those expected.

However, Eq. (65) converges faster when both P 2and p ar large (>6 dB)2
1 2

which iill be thc case in practice. The dashed lines show the error

rate for a linear system [Eq. (46): n = 1]. The system exhibits a

bottoming of the error rate, representing an irreducible error prob-

ability, which depends on the noise present on either the up link or the
2 "1.

down link, depending upon whether the abscissa is p2 or P, It can be
22 1

seen in Figuze 1.4 that, as p1 tends to infinity, both a hard-limited

system and a linear system tend to the limit given by Eq. k66). The

significant differeace, however, :s that a hard-limited system approaches
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2
the limit much faster, i.e. at lower values of 1 than a linear system

2 2 2
for any constant value of p2. As both p1 and p2 approach infinity,

i.e., perfect phase measurement at the receiver, P approaches zero.
e
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I

V CONCLUSIONS

The principal conclusion of this research effort is that the error

rate in the detection of a constant-envelope spread-spectrum signal after

transmission through a hard limiter can be calculated very accurately

by using an Edgeworth series expansion. The series provides an asymptotic

-1/2
expansion of the error rate in powers of n , where n is equal to the

TW product or the processing gain of the system. Inclusion of the terms
S--2

up to the order n should be fully adequate to calculate the error rate

for virtually all ranges of values of up-link and down-link SNRs and

for the system processing gain normally encountered in practical applica-

tions. Even when n is small (n = 25), Eq. (45) containing the first

five terms of the Edgeworth series can be used to calculate very low

-6
error rates (P e 10 ). As n increases, the validity of Eq. (45)e

extends to even lower error rates. In the limit, as n becomes very

large, P is determined by the leading error-function term of Eq. (45),
e

which is also identical with the result obtained by Aein. 3

The expression for the error probability can also be used for the

code-division multiple access (CDMA) case, involving a large number of

constant-envelope, phase-coded spread-spectrum carriers at the limiter

input. The noise source at the limiter is then the sum of all the un-

desired signals entering the limiter in addition to the desired signal.

The accuracy of the results is, of course, dependent on how closely

the amplitude distribution of the sum of the undesired signals at the j
iJ.miter input represents a stationary, zero-mean Gaussian distribution. I.
The justification is usually provided bv invoking the Central Limit

Theorem, if the number of signals at the limiter input is large, and

the constant RF reference phase of each signal is independent of all othtr s.
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The error rate in the detection of a PSK signal may be calculated

from either Eq. (61) or Eq. (65) for arbitrary values of up-link and

down-link SNRs. However, Eq. (65) appears to be more suitable for

numerical computation, particularly when p and p2 are greater than 6 dB.

This would normally be the case in practice to achieve error rates less

than 10 P It should be noted that the model for the PSK case assumes

that the repeater bandwidth is just wide enough to pass the signal with

negligible distortion and to limit the input noise to the bandwidth

of the signal. This would be the situation in a channelized satellite

repeater, where each channel was used to transmit and limit a single

PSK signal.

The conclusions reached in this report are equally valid for the

case of no down-link noise which would represent incorporation of a

limiting front end in a receiver operating with a linear channel. In

some practical applications, this may be desirable from consideration

of dynamic range requirements.
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* Appendix

f.ELATIONSHIP BETWEEN THE CUMULATIVE DISTRIBUTION FUNCTION

,* AND THE CHARACTERISTIC FUNCTION OF A RANDOM VARIABLE

If Z is a random variable of cumulative distribution function P(z)

and characteristic function C(v), we have1°

1 1 1 Cve-ivz •

P(z) = - - - dv2 21T v

co2

2 + f e-ivz dv (A-l)

since

coJ dv
-00

v

The integral in Eq. (A-1) can also be written as:

-00 M0= dv IC(v) e- _C (-v)eZ

Viv -- I
co -00

co
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where C(v) = C(-v) represents the complex conjugate of C(v). Further-

more, the two functions in Eq. (A-2) Are also complex qonjugates of

each other. Thus,

-ivz - ivz
C(v) e -C(v) e = 21 i C(v) e (A-3)

where I denotes that the imaginary part must be taken.
m

Finally, with the aid of Eqs. (A-2) and (A-3),, P(z) can be expressed

as

PI) 2. I

O
P(z) '~2 j m [CCv) eJivz] dv(A4

0
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