\% - ,i;; , - ,‘?1 . ,:,7 ’ - 2'7 ’

AMSAA

TECHNICAL REPORT NO. 59

o

oD

e

o COMPARISGN OF BAYES JAN AND CLASS ICAL
ﬁ /NALYS IS FOR A CLASS OF DECIS ION PROBLEMS
(=
<

Erwin M. Atzinger
Wilbert J. Brooks

DDC

| AR = nry
1

[COLE U W
C

Approved fur public release;
distribution unlimited.

U.S. ARMY MATERIEL SYSTEMS ANALYSIS A'GERSY 3
Aberdesn Proving Ground, Maryland (9




FMWWM]MWWWM

Destroy this report when no longer needed. Do mot return it to

DISCLAIMER

The findings in this report are not to be construed as an official ‘
Departinent of the Army position. ' v

WARNING

Information and data contained in this document are besed on
the input available at the time of preparation. The results may be
rabject to change and should not be construed as representing the
AMC position unless so specified.

Mstzion fw

A

WNITE SECTIOR

DWEF SECTION []

BRANRDWCEY [w)

JTIEICATION .. ..
»

SIETRINTION/AVAILADILITY ©OER
F

8§71, | AVAIL wd/wr SPEBIAL




Unclassified
‘ Securux Classification

POCUMENT CONTROL DATA-R & D

(Security classification of title, body of abatract and indext

V] fon munt be eniered when the ovaraill report is clussifled)
1. ORIGINATING ACTIVITY (Corperate suther) 30, REPOAT BECURITY CLASMPFICATION
US Army Materiel Systems Analysis Agency ...énouyNCLASSIFIhD

Aberdeen Proving Ground, Maryland
3. REPORY TITLE

COMPARISON OF BAYESIAN AND CLASSICAL ANALYSIS FOR A CLASS OF DECISION PROBLEMS

4. DESCRIPTIVE NOTES (Type of report and Incluaive dates)

8. AUTHON(S) (’Jul name, middle initial, last name)

Erwin M. Atzinger
Wilbert J. Brooks

¢ AEPOAT DATE 78. TOTAL NO. OF PAGES 76. NO. OF REFS

April 1972 64 7

0. CONTRACT OR GRANT NO. B8, ORIGINATOR'S REPORY NUMBKR(S)

b PROJRCT O 1 D765801MM] 1 Technical Report No. 59

¢,

8. OTHER REPORT NO(S) (Any other numbers tha! may be asaligred
thia repert)

o

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited,

11, SUPPLEMENTARY NOTES 12, SPONSOMING MILITARY ACTIVITY

US Army Materiel Command
Washington, D. C.

3. Aa]’ﬂAGT

This report is concerned with decision making under uncertainty for the class of
problems where the uncertain parameter is the Bernoulli success probability, p. For
decision making purposes the desired information is frequently the probability of

and Bayesijan points of view. The use of the posterior beta distribution obtained

from the Bayesian updating procedure is discussed for this class of decision problems.
A method for constructing a prior distribution, and a detailed example of the updating
procedure with emphasis on this method, are also presented.

A comparison is made of the Bayesian and the most popular classical point and
interval estimation techniques. These techniques are not directly applicable in
evaluating the chances of meeting a specific requirement for p. However, for certain
non-trivial estimation problems, where a point of interval estimate is sufficient,
the Bayesian procedure deserves consideration.

meeting a specific requirement for p. This problem is analyzed from becth the classical

DD /2% 1473 sislire 2ot e 1 o mene Unclassified
“~Recurity Classification




'-

: .;El“lﬁ" sidlll“ellh
! Ve KEY WOROS LINK A LINK B LiNK €
‘ ALK wr ANOLE wT noLk wY
'

Success probability

Reliability

Decision making

Uncertainty
: Bayesian
\
i

R
Unclassified
Becurity Classification

R



TECHNICAL REPORT NO. 59

COMPARISON OF BAYESIAN AND CLASSICAL

ANALYSIS FOR A CLASS OF DECISION PROBLEMS

Erwin M. Atzinger

Wilbert J. Brooks

April 1972

Approved for public release;
distribution unlimited.

RDTEE Project No. 1P765801MM11

U,S. ARMY MATERIEL SYSTEMS ANALYSIS AGENCY
ABERDEEN PROVING GROUND, MARYLAND




U.S. ARMY MATERIEL SYSTEMS ANALYSIS AGENCY

TECHNICAL REPORT NO. 59

EMAtzinger/WJBrooks/pal
Aberdeen Proving Ground, Md.
April 1972

COMPARISON OF BAYESIAN AND CLASSICAL
ANALYSIS FOR A CLASS OF DECISION PROBLEMS

ABSTRACT

This report is concerned with decision making under uncertainty

for the class of problems where the uncertain parameter is the Bernoulli
success probability, p. For decision-making purposes the desired infor-
mation is frequently the probability of meeting a specific requirement
for p. This problem is analyzed from both the classical and Bayesian
points of view. The use of the posterior beta distribution obtained
from the Bayesian updating procedure is discussed for this class of
decision problems. A method for constructing a prior distribution, and

a detailed example of the updating procedure with emphasis on this
method, are also presented.

A comparison is made of the Bayesian and the most popular
classical point and interval estimation techniques. These techniques
are not directly applicable in evaluating the chances of meeting a
specific requirement for p. However, for certain non-trivial estimation
problems, where a point of interval estimate is sufficient, the Bayesian
procedure deserves consideration.
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COMPARISON OF BAYESIAN AND CLASSICAL
ANALYSIS FOR A CLASS OF DECISION PROBLEMS

1. INTRODUCTION

In the materiel-acquisition, decision-making process, much of
the critical decision information concerning a system's capability is
provided through test and evaluation of the system. A test result can
often be scored as a success or a failure resulting in a type of data
classification characteristic of a Bernoulli process (i.e., a process
in which there are two mutually exclusive possible outcomes on each
trial and where the outcomes on any given trial or sequence of trials
do not affect the outcomes on subsequent trials). For example, missile
system test flight data that are scored only as a hit or miss can be
placed in this category.

Historically, one of the major objectives in test and evaluation
has been to estimate the unknown Bernoulli success parameter, p. Where
a point estimate is sufficient, the maximum likelihood estimate (the
observed proportion of success) is one of the most popular of the classical
estimates.1 On the other hand, if a measure of uncertainty is desired,
the classical interval estimates, based theoretically on the binomial
distribution or on some large sample approximation thereof, are often
used.

It is recognized that other classical point and interval
estimation techniques do exist which may be applicable to this class of
problems: the moving average and exponential smoothing are two of the
alternatives. For this report, however, only the previously mentioned
point and interval estimation techniques are considered since they appear
to be the most popular. Throughout the report these techniques will be
referred to as the classical techniques,

lMood, A.M.; Graybill, F.A.; Introduction to the Theory of Statistics,

Second Edition; McGraw-Hill Book Company, New York; 1963; p. 178.




In most real world decision situations one is confronted with
a requirement that the probability of success, p, exceeds some specified
value. Using the classical interval estimate, the best that one can do
is determine whether the required value of p lies within the interval.
No probability statement can be made about the unknown true value of p
lying within this interval, and certainly no statement can be made
concerning the probability that p will exceed the specified requirement.

Since, for large complex systems, extensive testing can be
prohibitively expensive in both time and cost, many decisions must be
made with a limited amount of test data. Certainly, in such situations
all available information should be taken into consideration. In
particular, two sets of test observations frequently exist in systems
test and evaluation; one is based on production hardware, and the nther
on non-production hardware (R§D and Industrial Prototype hardware).

The population of interest is usually the production hardware, but
certainly the non-production observations do contzin some useful
information. Given these two sets of observations, the classical
analyst can either ignore the non-production data or consider the
combined population. In either case, he still will not be able to
assess the probability of meeting the requirement.

More recently, Bayesian procedures, tailor made to address
this type of decision problem, have been applied. Accoxrding to Bayesian
philosophy, any quantity whose exact value is un%nown can be treated
as a random variable. Thus, a probability statement can be made as to
whether such an unknown parameter does or does not lie in a calculated
interval. In addition, a statement can be made concerning the probability
of exceeding a specified level. Of equal significance is the fact that
the Bayesian approach provides a mathematically tractable technique for
combining prior information with objective test data.

The objective of this report is to critically examine the
classical and Bayesian procedures in an attempt to expose to the reader

the merits of the Bayesian approach for the Bernoulli parameter class
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of decision problems described earlier, Although the Bayesian approach
is not a panacea, it is not difficult to see the potential for this
approach in light of the current emphasis on risk analysis and decision
risk analysis in the materiel acquisition process.

Although certain topics presented in this report have been
discussed by others, they are repeated here since, to the authors'
knowledge, there does not exist a comprehensive investigation of the
Bayesian procedure applied to this class of decision problems.

Specifically, for the Bernoulli process (success parameter p)
problem, this report includes:

A description of the standard Bayesian updating procedure.

A comparison of the classical maximum likelihood and
Bayesian point estimates with respect to expected squared
error loss.

® A critical examination of the classical and Bayesian
interval estimates,

® A discussion of the applications of the Bayesian procedure
to the decision problem,

® A description of a proposed method for constructing a
prior distribution from prior test observations and all
other prior information.

® A detailed example illustrating the Bayesian updating
procedure,

2, BAYESIAN UPDATING PROCEDURE

This section contains a detailed description of the Bayesian
updating procedure. It is introduced here to familiarize the reader with
the terminology and notation characteristic of the Bayesian approach.

This information will aid the reader in understanding the topics discussed
in the report.

In estimating the uncertainty in the estimate of the average
success ratio (p) for any Bernoulli process, a Bayesian updating procedure
can be used. For the class of problems considered in this paper, the

observations can be logically broken into two classes: one is used to

9




estimate the prior distribution of p (£ successes in m trials) and the
other is used to update this prior distribution of p (k successes in
n trials). The conditional distribution of k successes in n trials,
given p, is binomial and its probability density can be expressed as

n, k n-k
fepkIp) = G P -p,

where k = 0,...,n. If p is assumed to have a beta distribution with
parameters £ and m-£, then the probability density of p for 0 < p < 1 and
where C(£,m)* is the normalizing constant is given by

£,(p) - cee,mptta-pmEl,

Given this prior distribution of p, it is now possible to update this
distribution with the n observations by applying Bayes theorem:**

®p* - *oe,mptt a-p™ !

ot a-m™Fempt ap™ e
o

Combining the terms in the numerator, canceling out the constant term

C(Z,m), and performing the integration, we reduce the above equation to

,k(PIR) = C(k+E, n+m)pk+£ 1( p)n—k+m‘£-1,

which is again a beta distribution with parameters k+£ and (n+m)- (k+£).
The mean and variance of the posterior beta distribution are

* I'(m
Cem D
**Bayes theorem states that

SRy KIPYE @)
k@10 = Sy jfkh,ckrp)f ®1e

10
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, and

2 _ _n(l-y)
(n+m+l) *

respectively,

it should be noted that the posterior mean is the weighted average of
the prior and update success ratio.

; In certain instances, the analyst may want to weight the
prior distribution. This can be done by applying a weighting factor,
W, to the parameters £ and m which results in a prior distribution
Y for 0 < p < 1 of the form

wl-1 w(m-£)-1
£,(p) = COut, wm)p"<t (1p)" (M0 L,
The updating procedure is thcon applied to this weighted prior distribution
as in the unweighted case. The significance of the weighting factor
and a method for selecting this factor are presented in Section 5.

The rationale for selecting a beta prior and a discussion of
the application of this updating procedure to decision problems are
deferred to Section 4.

3. ESTIMATION
3.1 Introduction.

In estimation theory, the general method used to estimate an

unknown population parameter © is to select a random sample from the
population, and then use the information contained in this sample to

determine a point or interval estimate, say 0, of the parameter 0.
For the class of problems being considered in this paper, the population
of interest is that defined by a point binomial distribution* with the

probability of success, p, being the unknown population parameter. In

the following sections the classical maximum .ikelihood and Bayesian

*A discrete random variable X is said to have a point binomial distribution
if its probability density function is of the form

X 1-x
. p (1-p) x=0,1; 0 <pc=<1
£(x;p) = { 0 elsewhe;e
11

PP LR N el ini Lomrloail . - S L P T U T o hisa - ‘M_J




1

point estimation procedures and ;he classical and Bhyesian interval
. estimation procedures are examinéd, The discussion is tailored to the \
class of problems being considered herein,

1
| i \ \
. \ !

3,2 Point Estimation.

. o
In point estimation, the squared error loss function,* (9-0)2, !

4 ’ \ is often used to reflect the loss incurred in using the point estimator
: O to estimate the parameter ©, Since the value of © is dependent on
&\ : the sample data, © is a random variable and the squared error loss is

\
considered to be a random functijon of the parameter 0. To eliminate
the dependence on the particular random sample which is chosen, the t
. , ,l . p E)
‘mathematical expectation of the loss function, known as the risk i
i function,** is used as an indicator of the quality of the estimator O}
For squarég error ldss, the risk or expected loss reduces t¢ \
. : . 1
\ E[(6-0)°] = Var (8) + [E(6)-0]°. | |
Thus, risk is a function of the unknown parameter © and is equal to the
variance of the estimator plus the square of it? bias.*** A good
estimator is 1nterpret§d as one which minimizes the risk or expected L

loss over the critical range of the parameter 0.

\ ! The classi:ﬁl maximum likelihood estimate of the population
proportion, p, of a Bernoulni process, generating n sample observations,
is the observed sample proportion of Successes) ﬁ = %3 where k is the
nunber of successes and n is the number of sample observaiibns. 1t

has\been shon that this maximum likelihood estimate enjoys many desirable \
characteristics., Among these are unbiasedness and minimum variance.

Thus, within the class of unbiased estimates ﬁ minimizes the risk

function or expected loss over the entire range of the parameter p.

\
*No justification will be given in this paper for the use of a squared . i
error loss function. The interested reader should refer Fo Reference 1.
\

**Risk as defined here is often referred to as expected mean square error.

***Bias is defined as the difference between the unknown parameter and
the mathematical expectation gf its estimator,

12 ! \




\

\ : ~ .
; The risk in this unbiased case reduces to the variance of p (i.e.,
Var (p) = 21%:220.* For these reasons, the maximum likelihood estimate
ﬁ is often used, without reservation, as the best estimate of the

: population proportion p.
\
I - A fact which.is often overlooked, however, is that a biased

estimate is not n?cessarily to be rejected as inferior. The fact is

that biased estimators exist which may, for a non-trivial range of the

\
parameter p, result in a lower expected loss than the maximum likelihood

l \ estimate ﬁ. Consider, for example, the Bayes estimator (Reference 1)

A
P

p = %%%, which is derived using a squared error loss function and the

assumption of a uniform or rectangular prior distribution for p.  Since

2 k np+l 2 k+1 1-
E[p] = [n:;] nn:2 and Var (p) = Var (n:2 ='%EL;;%l.
. n+

A the expected mean square error for the Bayes estimator is given by

E[(p-p)°]

var (p) - (E[p]-p)°

- np(-p) _ (np+1)
\ (n+2)2 n+? p)

l
= [(n-4)p(1-p) + 1],

(n+2)

Figures 3.1 and 3.2 exhibit risk aS\F function of the pop-
&latlon parameter, p, for both the classical maximum likelihood estimate
and the Bayes estimate for sample sizes of n = 10 and n = 100, respec-
tively. Note that, for large sample sizes, they are approximately
equal. HoweVe?, for small sample sizes, which are oﬁten the case in
many-real world problems such as missile test and evaluation, the two
can differ significantly. In particular, for n = 10, over the range
. 0.13 <p 5_0.8ﬁ,lthe biased Bayes estimator is the bettel estimator in the '
expected squared error loss sense,

The curves in Figure 3.1 and 3.2 which represent the risk

of the Bayesian estimator, were generated assuming a uniform prior

*Note that for the Bernoulli process described above, the random variable
k has a binomial distribution with parameters n and p, Reference 1,
page 182,

1
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distribution. This assumption implies essentially complete ignorance
on the part of the decision maker, of the value of the parameter being
estimated. That is, all values of the parameter are assumed to be
equally probable, This sssumption is not only conservative, but is
somewhat unrealistic for the class of problems under study in this
vaper,

To examine the impact of a more realistic prior distribution
on risk (as a function of the population parameter p) the following
comparisons are made:

1, A comparison is presented in Figure 3.3 of the risk for
the classical maximum likelihood estimate for a sample size of 10, the
Bayes estimate assuming a uniform prior distribution with 10 update
observations, and the Bayes estimate assuming a beta prior distribution
with parameters £=3 and m-£=3 (i.e., success proportion = % = 0.5) with
10 update observations.

-~

<. A comparison is presented in Figure 3.4 of the risk for
the classical maximum likelihood estimate for a sample size of 10, the
Bayes estimate assuming a uniform prior distribution with 10 update
observations, and the Bayes estimate assuming a beta prior with
parameters £=5 and m-£=1 (i.e., success proportion of 5/6) with 10
update observations.

As can be seen in Figure 3.4, making stronger prior assumptions
can be beneficial in some instances and detrimental in others. If the
true nopulation success proportion is less than 0.5, the risk in using
the Bayes estimator with beta prior (£=5, m-£=1) is considerably larger
than the risk of using either of the other estimates. On the other
hand, if the true population success proportion, p, is larger than 0.5,
the risk in using the Bayes estimator with prior beta (£=5, m-£=1) is
substantially less than the risk associated with either the classical
maximum likelihood or the Bayes (uniform prior) estimates. A decision
maker who strongly suspects a population success proportion larger
than 0.5 should, in the interest of minimizing his risk over the

16
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realistic range of this proportion, choose to use the Bayes estimate
based on the beta prior distribution with parameters £=5 and m-{=1.

3.3 Interval Estimation.

35.3,1 General Dsscription. Generally, the single point

estimate of the population proportion of successes, p, will be incorrect
since the probability is very small that the estimate is exactly equal
to the true population proportion. Some measure is needed of the
uncertainty or error introduced in using this point estimate, This

is certainly the case in risk analysis where the objective is to

analyze uncertainty,

The classical statistical procedure most commonly used to
account for this uncertainty is interval estimation, This procedure
entails taking a random sample of n Bernoulli trials and then based
on this sample, computing lower and upper confidence limits P and Py
respectively, Associated with the confidence limits is a confidence
coefficient, 1-a. The confidence coefficient is often misinterpreted
as the probability that the true population proportion, p, will lie in
the calculated interval (pL, pu). This would imply that the parameter,
p, is a random variable contrary to classical assumptions, Actually,
the interval, being the random variable in this approach, may or may not
encompass the true value of the parameter, depending on the particular
sample selected. What the confidence coefficient does represent is
the proportion of such intervals which would be expected to cover the
true population proportion if a large number of intervals were computed
using independent random samples and the same estimation procedure.

Of course, in most instances, the analyst cannot afford either the
dollars or the time required to take repeated random samples. Thus,

in practice, the analyst will act as though the interval is correct

if the confidence coefficient is high. That is, for a confidence
coefficient equal to 0.95, the analyst knows that the particular
interval obtained from the sample data was generated by a procedure
which would yield an interval that covers the population proportion, p,

19




for 95 percent of the random samples selected, It is for this reason
only that he is willing to assume that the particular interval he
generated does cover the population proportion,

The Bayesian approach to interval estimation dictates that
the information contained in the random sample should be incorporated
with prior information through the use of Bayes theorem (see Section 2),
The Bayesian analyst contends that the decision maker is not interested
in some specified proportion of valid estimates in the long run, but is
interested in combining sample t- .ata with ary prior information
to make a correct decision.

In the Bayesian procedure, the population parameter, p, is
assumed to be a random variable with a specific prior probability
distribution. This revision is accomplished mathematically by using
Bayes'! theorem, and the result is called the posterior probability
distribution of p. (Details of this procedure are contained in Section 2.)
Lower and upper limits, P and Py can then be obtained such that the
probability that p lies in the interval (pL, pU) is equal to some

specified confidence level, 1-a. Thus, the popular confidence interval
interpretation, which is incorrect in the classical case, is valid

in the Bayesian framework. The following section defines and discusses
classical and Bayesian confidence intervals in relation to the problem
of estimating the proportion of successes in a sequence of n Bernoulli
trials. Without loss of generality, the upper confidence limit is
assumed to be equal to 1 and the discussion is limited to the lower
confidence limit, Py

3.3.2 Definition of Classical and Bayesian Confidence Intervals,

Given an estimate ﬁ = §~of the parameter p of a Bernoulli process, the
classical 100(1-a) percent lower confidence limit Py, is defined as the
value of p such that

n
2: (;) Py (l-p)n-y = o (Reference 1).
=k

1
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Tables of the cumulative binomial distribution can be used directly to
obtain a solution to this equation., Several alternatives are available,
however, which simplify the computation considerably. The first is
achieved by noting that the cumulative binomial is related to the
incomplete beta function by the following relationship:

2 (Jp’(lp) ”=1 (k, n-k+1),
y—
where

P
!Ouk-l (1-u) n-k g
T . ¢))

. uk-l (1-u) n-k

Ip(k, n-k+1) =

This function has been tabulated by Pearson2 and is easier to use than
the cumulative binomial. The lower confidence limit, in this case,
is given by the solution to IP (k, n-k+1) = a.,

A second alternative is obtained by recognizing that the
expression on the right hand side of Equation (1) is P [0 < U < p]
where U is a random variable having a beta distribution with parameters
k and n-k+l. Thus, the lower confidence limit, Py is given by the
solution to P [0 < U< p] =aor P [p< U< 1] = 1-a, where U has a
beta distribution with parameters k and n-k+l,

In the Appendix it is shown that by applying the transformation

k__y
n-k+1

14 (——m

U =
- k+1)v

the lower limit Py reduces, in this case, to

P, = n=k+1, ! (2)

2Pearson, K. Ed., Tables of the Incomplete Deta - Function, University

Press, Cambridge, England, 1934,

f et




where V'l-a is the 100(1-a) percent point of the F distribution with
2(n-k+1) and 2k degrees of freedom, Since tables of the F distribution
are generally more available than those of the cumulative binomial
distribution or the incomplete beta function, this alternative is
clearly of practical value.

Note that the classical confidence limits discussed to this
point are exact. Several methods do exist which, for restricted ranges
of the parameters n and p, give fairly accurate approximations. However,
for the sample sizes of the class of problems being considered in this
paper, these approximations are generally inadequate.

The Bazyesian lower 100(1-a) percent confidence limit, P> of
the Bernoulli parameter p is defined as the solution to the equation ]

1
Plp, <p < 1] =j’p £51x @/K) dp = 1-a,
L

where f K (plk) is the posterior beta distribution with parameters .
k+£ and (n+m)- (k+{) which was derived in Section 2, Note that £ and ]
m-£ are the parameters of the beta prior distribution which was used in
the derivation. Thus, P, is given by the solution to the equation

P[py <U < 1] = l-a,

where U has a beta distribution with parameters k+£ and (n+m)-(k+{).

As in the classical case, the Bayesian lower confidence limit
can be expressed in terms of the F distribution. By using the trans-
formation

k+{ v
g = orm)-(k+Z)
B k+Z ’
1 v
n+m) - (k+

aiong with the theory introduced in the Appendix, it follows that




1 , (3)

PL = !m-m!-ékh@) '
1 k+ V1-a

' .
whexre v l-a is the 100(l-a) percent point of the F distribution vith
2[ (n+m)- (k+£)] and 2[k+£Z] degrees of freedom.

3.3.3 Comparison of Bayesian and Classical 95 Percent Lower
Confidence Limit. In Figure 3.5, a comparison is made of the classical
lower 95 percent confidence limit with the lower limits of three

Bayesian procedures, each unique in its prior assumptions. A sample

of n=16 update observations is used in the comparison and the results
are presented as a function of the number of successes, k, which could
result in the 16 trials. For the convenience of the reader, the results
are also presented in tabular form in Table 3.1. Note that for k < 12
all three Bayesian procedures result in a shorter* confidence interval
than the classical procedure. Even the most conservative Bayesian
procedure, that corresponding to a uniform prior distribution (£€=1, m=2),
is better than the classical procedure over the entire range of k.

This fact is true, independent of n and k, since the ratio of the Bayesian
lower limit with uniform prior (£=1, m=2), given in Equation (2), to

the classical lower limit, given in Equation (1), is greater than one,

In Figure 3.5, one should observe that, over a limited range
of k, the classical procedure does result in a shorter interval than
the Bayesian procedure with symmetric prior. This should serve to
caution the user that the Bayesian procedure can lead to poor results
if insufficient effort is devoted to the rational selection of the
prior probability distribution, No one can argue the fact that the
assignment of prior probabilities is a problem area in Bayesian analysis.
Because the selection of the prior probability distribution involves
using subjective judgment, many classical statisticians choose to rule
out the Bayesian procedure as a viable estimation technique. The

classicists choose to be somewhat conservative in their estimates and

*In using an interval to estimate a parameter, minimum length is a
desirable characteristic of the estimator.
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95% LOWER LIMIT

/CLASSICAL
\ BAYESIAN ( UNIFORM PRIOR)

/—BAYESIAN ( SKEWED LEFT BETA PRIOR)

N N
\\

N\

5k \
BAYESIAN ( SYMMETRIC
Q BETA PRIOR )
4L
3b \
2F ) \

NOTE : THIS COMPARISON IS MADE
FOR A SAMPLE SIZE OF 1l6.

{ ] 1 ] 1 1 I 1 )

16 14 12 10 8 6 4 2
NUMBER OF SUCCESSES

Figure 3.5 Comparison of the Classical and
Bayesion 95 % Lower Limits.
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make absolutely\np prior\assumptions concérning the Rarameterh It is
the contention of the authors that, ip tecday's decision-making world,
I the complete absence of pertinent information prior to sahpling is
ﬁare. As the result of the test and evaluation of a system, some iest
results exist (RGD and/or Industrial Prototype test results) and/or
3 engineering Judgment upon which to base a prior distribution. Therefore,
: in many realistic anblem areas th? conservative classical lower limit \
can and should be improved upon.

\ The Bayesian procedure gprovides a technique for updating prior
knowledge with. sample data and permits one to be conservative, but does
not foice stirict conservatism on the analyst as do the'classical\tech-
niques. In later sections, ?urther discussion is provided concerning
the value of Bayesian techniques in decision-oriented problems and the

rationall selection ot prior probability distributions.
|

'\ The reader interested in examining the comparison between
classical and Bayesian lower limits for other prior assumptions and

1: \ other confidence levels is referred to a report by Benton.3 In that

) report, tables are aﬁso provided for the 0.99, 0.975 and 0.95 Bayesian
lower confidence 11m1ts (assuming a uniform pr1or) for sample sizes up

i

i \ to n=25, \
\
4, THE BAYESIAN PROCEDURE APPLIED TO DEQ;SION MAKING)\
|

\ In the Bayesian update proceduré, presented in Section 2, a
posterior beta distribution was derived by updating a beta prior dis-
| tribution with Bernoulli type test data. A posterior beta distribution
'x : was seen, in Section 3, to be the driving force in both the Bayesian '
point an? interval estimation of the Bernoulli success parameter, p.
However, ‘as discussed in the introduction, neither classical ndr Bayesién

Point and interval estimation procedures directly address the decision
: 1

3Benton, Alan W., An Investigation of the Characteristics of Bayesian

Confidence Intervals for Attribute Data; Technical Memorandum No. 14,

November 1969; Aberdeen Research and Development Center, Aberdeen
Proving Ground, Maryland.

\
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maker's problem. Thus, it i§ in this decision making context that the
Bayesian proceqPre, specifically the betq posterior distribution, proves
to be most useful. Statistical interprethtions based on the poFterior
beta distribution are much more realistic for the decision maker than any
interpretations gvailable using either classical or Bayesian point and \
interval estimation theory. . '

Before we proceed Lith a discussion of the advantages and
disadvantages of the Bayesian procedure as related to decision making,
recall that the p§sterior probability density of the parameter p
(Bernoulli success probability) for 0 < p < 1, is of the form '

, I (n+m) i k+f- 1 [ (n#m) - (k+2)]-1
L SRCIV - et P O '

where
number of update observations,

i
number of update successes, \

number of prior observations, and

t 3 = B
U

number of prior successes. ! \
\ \ ! . .

: Thus, p is a random variabie having a beta distribution with
k+£ and (n+m)-(k+£) degrees of freedom. In Fxgure 4,] the beta posterior
probability density function is displayed for n-20 k= 15 m=10, and

an. Its corresponding cumulative distribution function is provided in

Figure 4.2. This specific case will be used as an illustration in the

discussion to follow. )

Faced with a decision coAcerning an unéertain parameter p,
and given its posterior beta distribution, the decision maker has
several optinns available to him. He can use the cpmulative distribution
function of the varlable P ﬂirecaly to address questions such as the

following:
\
® What is the probability of meeting a specific requirement
for p?

® What is a more reasonable requirement iif the above
probability is unsatisfactory?
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For example, it is not too difficult to imagine the variable
¢f interest, p, being a missile system reliability. The requirement
for missile reliability will usually be specified in a requirements
document, and the decision maker will certainly be interested in the
chances of the missile system meeting this requirement. If the require-
ment is for p to be at least 0.7, then using the cumulative distribution
in Figure 4,2, he notes that the estimate of the probability that p > 0.7
is approximately 0.48. Since this probability is relatively small, the
decision maker may also be interested in the fact that the estimate of
the probability of exceeding 0.4 is 0.99. This additional information
can provide valuable insight which may enable the decision maker to

rationally specify a new acceptance criterion for p.

Another use of the posterior beta distribution of p occurs
when using a Monte Carlo simulation to examine the uncertainty in some
function of the variable p, where the function may or may not include
elements of uncertainty other than p. Such a situation can be envisiuvned
for the case previously considered where p represents a missile system
reliability.

Suppose for example the variable of interest is the single
shot kill probability;

Pgsk = Rgse " Ry * Ppp * Mo
where

pSSK = the single shot kill probability for the missile system,
RGSE = the reliability of the ground support equipment,
RM = the reliability of the missile,

PPF = the probability of proper fuzing, and

ML = the probability of a kill given proper fuzing.

The uncertainty in the single shot kill probability will
depend on the uncertainty in the estimates of RGSE’ pPF’ and ML as well
as the estimate of RM. The uncertainty in the estimate of RM can easily
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be introduced into a Monte Carlo simulation by sampling from the posterior
cumulative distribution function of p,

According to the foregoing discussion, the posterior beta
distribution appears to be a valuable decision-making tool. There are,
however, certain other advantages and disadvantages which should be
examined. The apparent artificial use of a beta distribution as a
prior distribution in the updating procedure of Section 2 is certainly
a questionable area, In relation to decision making, when a Bernoulli
success parameter is the decision variable, several points can be made
in defense of the beta distribution. First, the beta is of a form which
lends itself quite readily to the distribution of a proportion. Its
range is the unit interval; it is unimodal and can be skewed in either
direction, Thus, by judicious choice of parameters, the beta probability
density can easily be put into a form which will satisfactorily reflect
one's prior beliefs, Since all available information concerning the
parameter p should be used by the decision maker, the beta prior assumption
has the additional advantage that it drastically simplifies the mathematics
involved in the update procedure. Any last mirute test results can
readily be used to update the posterior beta distribution by merely
repeating the update procedure with the posterior beta distribution now
assuming the role of the prior beta distribution. Further, each update
of the distribution reduces the impact of the subjectivity inherent in
the initial prior assumption.

Several arguments against the Bayesian procedure also immediately
come to mind. Foremost is the inherent subjectivity present in the
technique. Certainly the classical analyst who firmly believes that
the only legitimate types of probabilities emanate from frequency-of-
occurrence data may find it difficult to accept the idea of using
subjective or personalistic probabilities in forming a representative
prior distribution, It is the Bayesian analyst's contention, however,
that a reasonable decision maker will have intuition concerning an
uncertain situation and will modify his feelings on the basis of sample

or experimental evidence. He will certainly not blind himself to a
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large portion of the information available merely on the basis that it
may be subjective, As pointed out by Hamburg, "If only objective
probabilities have meaning, then one cannot handle some of the most
important uncertainties involved in problems of decision making."4

Another argument against the Bayesian procedure is that
different analysts may come up with differing recommendations depending
on their particular prior assumptions. In most situations, however,
this argument is unwarranted since the individual assumptions are

‘ clearly visible and can be used as a basis for further arbitration.

On the positive side, a desirable feature of the subjective
| Bayesian approach is that although it allows the freedom to be conser-
vative, it does not force conservatism on the analyst as dc the classical i
techniques. The relevance of this point became evident in the comparison
of the Bayesian and classical lower confidence limits in Section 3.
Certainly a rational choice of a prior distribution representing the
decision makers beliefs is far superior to the conservative classical
viewpoint of ignoring a large portion of the available information.

Drake summarized the Bayesian philosophy in the statement, '"The Bayesian
analyst believes that assisting in the consistent employment of all

available data for a decision is part of his job, rathcr than a task
to be left to some mysterious decision maker a few echelons up."5

Many arguments comparing the classical and Bayesian philosophy :
are available in other sources (e.g., References 6 and 7). It is not

the purpose of this section to dwell on these philosophical implications.

4Hamburg, Morris, Statistical Analysis for Decision Making, Harcourt,
Brace and World, Inc., New York, 1970.

sDrake, Alvin W., Bayesian Statistics for the Reliability Engineer,
Proceedings of the National Symposium on Reliability and Quality Control,
IEEE, 1966, pp., 315-320.

6Pozner, A.N., A New Reliability Assessment Technique, Technical Conference
Transactions, American Society for Quality Control, 1966, pp. 188-201,

7Breipohl, A.M,, R.R. Prarie, W.J. Zimmer, A Consideration of the Bayesian
Approach in Reliability Evaluation, IEEE Transactions on Reliability,
October, 1965, pp. 107-113,
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It is, however, intended to demonstrate that the Bayesian philosophy dces
lend itself to decision problems concerning the Bernoulli parameter, p.
In summary, the relevant points are:

® The fears concerning the Bayesian assumptions are often
unwarranted,

® The decision maker can easily relate to statisticai
interpretations based on the posterior beta distribution.

® The Bayesian procedure should be given consideration in
Bernoulli type decision problems.

One area of Bayesian analysis which needs further discussion is
constructing the prior beta distribution, There are two basic problems
to be considered in constructing the prier distribution:

¢ What is the prior distribution?

® Should the prior distribution dominate the posterior
distribution?

Very simply stated, the prior will dominate the posterior distribution

if the number of prior observations (m) exceeds the number of uvpdate
observations (n). Recall that for this class of problems, it is assumed
that some test data exist on which to base the prior distribution. These
two problems depend on three basic considerations-

® How representative are the prior observations or is a signif-
icant difference in the update success proportion likely?

® How many prior and update observations are there?

© Does the prior beta distribution described by the specified
parameters reasonably refiect the uncertainty in the estimate?

These three considerations which reflect the state of prior
knowledge can be taken into account in a rational manner to construct a
meaningful prior distribution. The next section is devoted to a discus-
sion of a proposed method for constructing a prior distribution for this

Bernoulli-type problem.

5. METHOD FOR CONSTRUCTING THE PRIOR DISTRIBUTION

5.1 Introduction.

As discussed in Section 4, one of the major criticisms of the

Bayesian procedure is that the selection of the prior distribution is
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arbitrary. Although this argument is valid in some instances, this is
certainly not always the case, The authors believe that, for the class
of problems being discussed in this paper, there is a rational and
systematic way of constructing the prior distribution. It is emphasized,
however, that the method presented in this section is a suggested
approach and should not be construed as the only rational approach to
the problem.

5.2 Method - General Discussion,

The method described in this section is intended to provide a
rational systematic approach for analyzing one's state of knowledge,
taking into account three basic considerations for constructing a prior
distribution, These considerations are:

® Are the prior observations representative of the update

observations, i.,e., Is a significant difference expected
in the update proportion of successes?

® Are the number of prior observations greater than the
number of update observations?

® Does this prior distribution reflect the uncertainty in the
estimate, or are the limits of the prior distribution
reasonable?

Test observations are assumed to be the foundation for con-

structing the prior distribution for the class of problems addressed
in this report. For instance, if the success proportion of interest
is production missile reliability, then the prior observations may be
based on industrial prototype and R&D missile flights,

If design problems are diagnosed and design changes implemented,
there may be some question as to just how representative these observations
are of the population of interest. One potential aid in reducing the
bias associated with design changes is to ''mo-test'* the design failures.
Of course, even using this type of scoring criterion, there still may
be reason to suspect that a significant improvement in the update

*A no-test is a test observation that has been eliminated from the data
set.
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observations is likely, since in all instances it is assumed that the E
update observations are from the population uf interest.

As mentioned previously, these prior test observations serve
as the foundation for constructing the prior distribution., For example,
if there are £ successes out of m prior observations, then a beta

distribution with parameters £ and m-£ would serve as the initial beta
distribution.

This distribution is then modified by use of all available
subjective information (based on engineering judgment, experience with
similar systems, etc.) to form what will be referred to as the prior
distribution.

It should be recalled that the two basic questions being
addressed are: (1) What is the prior distribution? and (2) Should
the prior distribution dominate the posterior distribution? In light
of the initial beta distribution, these two questions can be addressed
by examining the three basic considerations mentioned earlier,

Perhaps the most important consideration is the first one
concerning whether the prior observations are representative of the
update observations since it impacts both questions. Note that the
first question (What is the prior distribution?) has two parts. The
first part is whether the most likely value of the success proportion

seems reasonable in light of all other prior information (i.e., Is a
significant difference in the update success proportion expected?)
The second part addresses whether the distribution accurately reflects

the uncertainty. However, before the uncertainty consideration can be

evaluated, one must determine if the dominance problem need be considered. |
This dominance problem depends on the first consideration. If the most

likely value of the initial beta distribution does seem reasonable

(i.e., no significant difference is expected), then whether the prior

distribution dominates the posterior distribution doesn't really matter.

In essence, one is indicating that the prior data are thought to be

reasonable. Hence, the relative number of prior and update observations
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! is not important. The only important consideration remaining is
| whether a prior distribution with parameters £ and m-£ accurately
reflects the uncertainty in the estimate of the success proportion.

On the other hand, if there is reason to suspect a significant
difference in the most likely value of the success proportion, then one
would want to shift the prior distribution to a more reasonable value.
0f course, what constitutes a significant difference in the most

; likely value is dependent on both the specific problem and the analyst's
’ judgment .

The problem now confronting the analyst is how can this prior
distribution be shifted? One way of doing this is to decrease the
number of observations (m) by some number, e, while keeping the number
of successes (£) constant. This is a reasonable approach wi:en the
most likely value (ML) is thought to be low; e can be obtained alge-
braically in the following manner. Simply specify a more reascnable
most likely value and solve the following equation for e:
£-1

m-e-2

ML* =

This is simple to apply since £ and m are known and it is intuitively
appealing since it precludes assigning more weight to a prior distribution
than the available data would suggest.

On the other hand, if the most likely value is thought to be
high, then one could reduce the number of successes (£) by some fixed
number, e, while keeping the number of observations constant. Once again

one can solve for e by specifying a more reasonable most likely value
and solving the equation

ML =

Note that this latter case is not thought to be very likely in realistic
situations, but it is presented for completeness sake.

*The most 1ikely value of a beta distribution is ML = %}% .
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After determining e,* a new beta distribution exists with param-
eters £ and m-e-£ or £-e and m-£+e, depending on the particular situation.
Given either of these sets of parameters, the problem of whether the
prior distribution should dominate the posterior distribution becomes
important. To examine this, one must consider whether the number of
prior observations (i.e., m or m-e¢) is greater than the number of update
observations, since the distribution having the most observations will have
the greatest impact on the posterior distribution, Recall from Section 2
that the posterior mean is the weighted average of the prior and update
success ratio. If one suspects a significant difference in the success
proportion, then the update observations should have at least equal weight
or dominate the posterior distribution.

Whether the update observations should dominate the posterior
distribution depends on whether this prior distribution reflects the un-
certainty in the estimate of the success proportion. The next problem
for the analyst is: How does one determine whether the prior accurately
reflects the uncertainty in the estimate? Generally, a few brief calcula-
tions and a plot** should provide all of the information needed to evalu-
ate whether the prior accurately reflects the uncertainty, For instance,
if the limits of the prior distribution are 0.4 to 0.6 (i.e., 99 percent
the area of the distribution is contained within these limits), but one
suspects that the success proportion can take on values between 0.6 and

0.75, then this distribution does not accurately reflect the uncertainty
in the estimate,.

The final problem confronting the analyst is how does one make
this prior more accurately reflect his state of knowledge., This is
achieved in general by reducing the weight of the prior. For instance,
if the prior data were 10 successes out of 20 observations, then this

could be treated as 5 successes out of 10 observations or 2 successes out of

4 observations by assigning a 0.5 or 0,2 weight*** to the prior observations.

*Note e should be rounded off to the nearest integer.

**This will be explained in detail in the example.

***Throughout this report W is used as the symbol for prior weight.
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Selecting a prior weight is not an exact science and should
not be approached as such, The best approach is to reduce the prior
weight by 0.25 or 0.2, examine this new prior distribution, and decide
if it more accurately reflects the uncertainty in the estimate. If it
does, then stop. If it doesn't, then repeat the procedure with a
smaller prior weight. Each time reduce the prior weight by the same
amount,

Before describing the method in detail, some state vector
notation must be introduced. Since there are three basic considerations,
all of the states of knowledge can be described with a three-dimensional
state vector. In addition, all of the considerations can be handled
with yes/no logic (i.e., the dimension of each component of the vector
is two); therefore, there are eight possible states of knowledge
(vectors). Thus, the state vector S(NO, YES, YES) represents a state
in which the responses to the three basic considerations a, b, and ¢
are NO, YES, and YES respectively,

Finally, two points should be made. First, the previously
mentioned considerations are not independent. For instance, if one
expects a significant difference in the update proportion of successes,
it is likely that the prior observations will not reflect the un-
certainty., In addition, if the number of prior observations is greater
than the number of update observations, one would probably want to
reduce the prior weight (i.e., the prior should not dominate the posterior
distribution in this case). This method provides a framework for
analyzing these three considerations sequentially. After each has been
analyzed separately and the initial beta parameters modified in light of
the first consideration, the total state of knowledge can be ovaluated,
and the trade-offs considered in weighting the prior distribution., A
more detailed discussion of the trade-offs is deferred until the method
is described in detail.

Second, the range of the prior weight is restricted to a
number greater than zero and less than or equal to one (i.e., 0 < W < 1),
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The reason for the lower bound is obvious.

It is not meaningful to
talk about negative weights,

Further, it is assumed that there is

some useful information in the prior observations. Thus, a prior

weight of zero, indicating no useful information, is not considered.
The rationale for the upper bound warrants a more detailed explanation.

To assign a weight greater than one would imply more certainty than the

data reflect. Even if the observations for the prior were taken from

the same lot, one would not want to count each observation more than

once, For example, if the number of defective items in a lot are being

estimated and two samples are drawn from this lot, then there is no

rational basis for counting observations from the one sample more than

the observations from the other. Therefore, in situations where the

prior observations are not from the same lot, it is not reasonable to
assign a weight greater than one.

5,3 Method.

Recalling the three primary considerations, Figure 5.1 depicts

the eight possible states of knowledge. Starting at the top of the flow

diagram, the user begins by asking the question "Is there any reason to
suspect a significant difference in the update proportion of success?"
If the answer to this question is no, then the analyst must consider
whether there are more prior observations than update observations. If
there are fewer prior observations, then the next stage is to answer

the question, '"Does this prior reflect the uncertainty in the estimate?'
As mentioned previously, this can be done by examining the prior

distribution (i.e., the range and standard deviation). If the answer

to this question is no then the state vector S(NO, NO, NO) has been

obtained, Hence, the flow diagram provides a systematic questioning

procedure for determining the state vector, modifying the prior dis-

tribution in light of the first consideration, and assigning a weight to

the prior distribution. For each of the eight possible state vectors,

guidance is given for assigning a prior weighting factor. In some

instances, the guidance is specific while in others it provides an
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upper bound. In the next few paragraphs, each of the possible state
vectors will be analyzed, and the rationale for‘}ecommending a partic-

ular weighting factor will be discussed.

! Going from left to right, the components of the state vector
will correspond to comsiderations a, b, and ¢, respectively. (See |
Figure 5,1.) 1
1 a. S(NO, NO, NO) is the state vector indicating that there '
is no reason to suspect a significant difference in the success pro-
portion; the number cf prior observations is lesg than or equal to the
number of update observations and, based\on availsble information, the
priqr does not reflect properly the uncertainty in the estimate. Given
this state \vector, uné must now ask, "Is the prior distribution more or \
less uncertain than is thought to be reasonable?% A prior distribution '
v © is said to be more uncertain if the range of the distribution is greater
than is thought to be reasonable. In thks case, a prior welight equal
to one should be used (i.e., if {here are ten observations, then count
i ) them as ten observations), The rationale for using a prior Qeight of
| one is:’ )
® There is no reason to suspect a drastic difference in the

update success proportion; hence, there is no reason to
adjust the most likely value of the success proportion.

® Since the number of prior observations is less than or
equal to the number &f update observatio§s, the prior
i will npt dominate the posterior distribution,

® The prior is thought to be more uncertain than would

appear reasonable., The way to decrease the uncertainty

is to increase W (i.e., W > 1), but to do this would exceed
\ _ the upper bound on W. '

- ' On the other hand, if for S(NO, NO, NO) the prior estimate is
thought to be less uncertain* than is reasonable, then a weight less

*This is perhaps a bad choice of words since less uncertain really
) implies more certainty in the estimate, . !
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than one, which will in effect cause the uncertainty to be reflected

more reasonably, should he used. The exact value of W depends on the
problem,

b. S(NO, NO, YES) is the same state vector as S(NO, NO, NO)
except that the prior distribution does reflect the uncertainty in the
estimgte, Thus, it is reasonable to assume that the rationale for the
first two elements of the state vector is the same (i.e., no adjustments
to the prior weight or most likely value). Because the prior distribution
does reflect the uncertainty in the estimate, there is no reason to

adjust the prior weight. Therefore, a prior weight of one should be used
in this case.

¢. 'S(NO, YES, NO) is the state vector which indicates that
there is no reason to suspect a significant difference in the update
success proportion, that the number of prior observations is greater
than the number of update observations, and that the prior does not
reflect properly the uncertainty in the estimate. Once again the
analyst is faced with two possibilities, Is the prior distribution
nore or less uncertain? If it is more uncertain, a prior weight
greater than one would have to be used, in effect, to decrease the
uncertainty. However, this is not justified since a weight greater

than one exceeds the upper bound on W. Therefore, a prior weight of one
is recommended.

On the other hand, if the prior distribution is less uncertain,
the prior weight should be 1less than one. How much less than one depends
on the particular problem and the amount by which it is felt the prior
fails to reflect properly the uncertainty. Once again there was no
reason to adjust the most likely value of the prior distribution.

d. S(NO, YES. YES) is the same state vector as S(NO, YES, NO)
except that the prior distribution does reflect properly the uncertainty
in the estimate, Based on this state of knowledge, there is no reason
to adjust the prior weight (i.e., W=1) or the most likely value. Of
course, some analysts might argue that the prior distribution should
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never dominate the posterior distribution, but this is not thought to
be valid in 1light of the state of knowledge. However, if the analyst
feels strongly about this, the weight could be reduced, but the lower
1imit should be W = %.* This weight, W, would give the prior and
update equal weight in the posterior distribution.

Before continuing with a discussion of the selection of a
prior weight for the remaining states, it should be pointed out that
in all of the remaining states the initial beta distributions will be
shifted to more reasonably reflect the most likely value of the success
proportion, All of the guidance given for the prior wcight will then
apply to the modified beta distribution,

e, S(YES, NO, NO) is the state vector which indicates that
there is reason to suspect a significant difference in the update success
proportion, that the number of prior observations is less than or equal
to the number of update observations, and that the prior distribution
does not reflect the uncertainty in the estimate. Before continuing,
one must ask the following question '"Is the prior distribution more or
less uncertain than is thought to be reasonable?'" If it is more
uncertain, use a prior weight of one. The rationale for this is:

¢ There is a reason to suspect a significant difference in

the update success proportion; hence one would probably
want the update to have at least as much or more weight
in the posterior distribution. Therefore, the weighting

factor selection is dependent on the number of prior and
update observations.

® For this state vector, the number of prior observations is
less than or equal to the number of update observations.
Hence, the update information will have at least equal
weight (even if W=1).

® Finally this prior distribution is thought to be more
uncertain; therefore, this would tend to suggest a weight
greater than one. Once again this is unrealistic, because

a prior weight greater than one exceeds the upper bound on W.

In addition, the fact that there is reason to suspect a

*m is the number of update observations and n is the number of prior
observations.
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drastic difference in the success proportion of the

update observations would tend to imply weighting the

prior distribution less. 1In this instance, the update

observations will have at least equal weight, and it is

not necessary to reduce the prior weight. Therefore, in

light of all of this information, a prior welght of one is

thought to be most reasonable,

On the other hand, if the prior distribution is less uncertain

than is thought to be reasonable, the prior weight should be less than

one. Again the exact value is a function of the particular problem.

f. S(YES, NO, YES) is the same state vector as S(YES, NO, NO)
except that the prior distribution does reflect properly the uncertainty
in the estimate. Based on all of this information and the rationale
for the first two components of S(YES, NO, NO) a prior weight of one is
recommended,

g. S(YES, YES, NO) is the state vector that indicates that
there is a reason to suspect a significant difference in the success
proportion, the number of prior observations is greater than the number
of update observations and the prior distribution does not reflect
properly the uncertainty in the estimate., Again the analyst must ask
the question, "Is the prior distribution more or less uncertain than
is thought to be reasonable?" If it is more uncertain then use a prior
weight W = =, The reasons for selecting this weight are as follows:

® A drastic difference is suspected in the update success

proportion, Therefore, one would probably want the update

to have at least as much weight as the prior, and a prior
weight of W = g, satisfies this requirement.

® However, for this state vector the number of prior observations
is greater than the number of update observations. Using
a prior weight of one, the prior would dominate the posterior.
Therefore, 1t seems reasonable to use as the greatest
prior weight B i The question that still remains is should

the prior weight be less than W = %7.
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® Since tho prior distribution is more uncertain than is
thought to be reasonable, one might be inclined to use
a prior weight greater than one, but once again a prior
weight greater than one exceeds the upper bound on W.
Because the prior distribution should not dominate the
posterior distribution and the prior distribution is
already thought to be more uncertain than is reasonable,
a prior weight, W = v e is thought to be the best compromisc.

This trade-off accepts a little more uncertainty in the
prior estimate while allowing equal weight to be given the
update distribution,

On the other hand, if the prior is less uncertain than is
thought to be reasonable the prior weight should be less than or equal
to W = %T- The roason is that even if a weight greater than %T would
reflect the uncertainty in the estimate, one would still want the update
observations to have at least equal weight in the posterior distribution.

h. S(YES, YES, YES) is the same state vector as S(YES, YES, NO)
except that the prior distribution does reflect the uncertainty in the
estimate that is thought to be reasomable. Therefore, a prior weight
of W = %T is recommended, The trade-off again is in terms of having
the update weigh as much as the prior and increasing the uncertainty
in the estimate. Once again it is thought that the update should have
least equal weight, but this is constrained by the increase in the
uncertainty. Therefore, it is thought that a prior weight of W = %T
is the best compromise.

Before continuing with an example, it should be emphasized
again that this method is a general framework for systematically

shifting the prior distribution and selecting a prior weight in light
of the analyst's state of knowledge. This is not a prior weight index;
other weights might be assigned equally well under the same logic.

Its application is indeed largely a matter of personal preference

and intuition. As indicated carlier, it is always good procedure

to test the sensitivity of the posterior solution to the prior weight
selected. The example that follows should give some insight into the
practical application of this method.
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6. EXAMPLE

6.1 Background,

; To illustrate the application of the Bayesian procedure and
the method for constructing the prior distribution, the following
hypothetical decision problem is described, Assume that the US Army

is developing a surface-to-air missile to provide forward air defense
for the Field Army. The tactical production decision is to be made

in about a year, and to date there have been test firings with Research
‘ and Development rounds (40 firings) and Industrial Prototype rounds

] (30 firings). In the near future, the Initial Production Tests are to
’ . be initiated, and it is anticipated that by the decision date there
will be 20 test firings with production missiles. One of the important
questions facing the decision maker is, '"Will the system meet the

production missile reliability (RM) requirement?"

Unfortunately, only a limited amount of production test flight
data will be available by the decision date, and if only production
missile test data are used to estimate RM' then a great deal of poten-
tially useful information is being ignored. Further compounding the
problem is the fact that the contractor is claiming that the quality
control program at the manufacturing plant has been improved, and as
a consequence the reliability is significantly higher than that demon-
strated to date by non-production rounds. The contractor's past
performance and the fact that no concrete procedure changes have been
instituted at the manufacturing plant make one suspect the claim.

Therefore, the problem is how can the non-production missile data and
all other pertinent infoimation be meaningfully combined with the
production data for decision-making purposes.

6.2 Scoring of Missile Flights.

The results of a hypothetical scoring of the Research and

Development, Industrial Prototype and Production missiles are summarized
in Table 6.1, Developing a rationale for scoring non-production and
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production flights is a large task, but not an impossible one. No
example of a scoring criterion is provided here because it is not
thought to be germane to this example., One point that should be made,

however, is that the objective in developing a scoring criterion

should be to remove all possible biases. For instance, if as a result

of the non-production flights, design problems were diagnosed and corrected

then these flights should not be counted as observations. Based on the
hypothetical scoring of the missile test flights in Table 6.1, there
are 40 observations for the pre-production rounds and 20 observations

for production rounds (i.e., '"no tests' do not count as obscrvations).

TABLE 6.1 MISSILE FLIGHT FIRING SUMMARY

Type of Missile Successes Failures No Tests
Research and Development 15 10 15
Industrial Prototype 10 5 15
Production 16 4 0

6.3 Application of the Method for Constructing the Prior Distribution.

To apply the Bayesian procedure described in this report in
a real-l1ife situation, the problem must have the attributes described

earlier, (Bernoulli process test data for update and prior) which this
problem obviously does.

When we recall the method which was presented in Section 5
for constructing the prior distribution, we ask the question, ''Is there
any reason to suspect a significant difference in the success ratio for
production missiles?' In this hypothetical example, this ratio, based

on contractor claims and on development and test agency engineering
judgement, is suspect.

All of the expert judgment indicates that the most likely
value of the initial beta distribution is low. Therefore, a more

reasonable value must be specified and ML = Egééi-must be solved for e,
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From the information obtained by the development agency engineers,
contractor engineers, and test agency engineers, a more reasonable
most likely value is thought to be 0.75. Given ML = 0.75, £=25,
and m=40, the previous equation can be solved for e. In this in-
stance e=6, and the adjusted prior beta distribution now has param-
eters, 25 and 9.

Next, there are 34 prior observations and 20 update obser-
vations, In addition, the prior is less uncertain than is thought to
be reasonable. Hence the state vector is S(YES, YES, YES), and the
prior weight recommended is W :_%7 (i.e, W 5.%% . Since 20/34 is
approximately 0.59, an upper bound of 0.6 would probably be used for
computational ease. The reason for this bound on the prior weight
is that, s.nce a significant difference in the update success propor-
tion is expected, the update observations should have at least as much
weight as the prior observations in the posterior distribution. The
exact value of W depends on which prior weight less than or equal to

0.6 will most reasonably reflect the uncertainty in the estimate.

To illustrate the impact of a dominant prior consider the
following example. Suppose a significant difference in the update
success proportion was expected, and after shifting the most likely
value of the prior distribution, there were 16 successes out of 40
observations, Even though an effort has been made to select a reasonable
prior distribution, one would still want the update information to have
at least as strong an influence as the prior information in the posterior
distribution. If a prior weight of one is used, and there were 13 successes
in 20 update observations (i.e., a 0.65 success proportion), then this
extreme variation in the upcdate success proportion would not be adequately
represented in the posterior distribution. In this instance, the mean
of the posterior distribution of the reliability is equal to 0.483.
However, the probability of the true reliability exceeding 0.65 (the
success proportion for the update observations) is almost zero, which
is not reasonable if the update information is to be emphasized. A
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maximum prior weight of 1/2 will give at least equal weight to the
update information and allow the update to have at least an equal
; influence on the posterior distribution.

. Before continuing, two points should be emphasized. The
first is that the determination of the prior weight is not an exact
quantitative science and should not be approached as such, The question
which is to be answered is whether the prior should or shouid not
dominate the posterior. In the preceding example, distinguishing
between prior weights of 0.45, 0.50, or 0.55 is meaningless. It is
probably not possible to make such a fine distinction, The second
consideration is that another set of circumstances could yield an
entirely different prior weight. .

Using a prior weight equal to 0.6, the parameters of the
prior beta distribution for the missile example are 15 and 5.4,

respectively. These are based on 25 successes in 34 pre-production

missile test firings. For computational ease, the parameters can be
rounded off to 15 and 5 without any significant impact on the final

results.,

The last step in applying the method is for the analyst to
decide if the prior distribution should be weighted less than 0.6,
Weighting the prior distribution less than 0.6 depends on whether a
prior weighted by 0,6 properly reflects the uncertainty.

In the missile example, the prior distribution with W = 0.6
has as its mean 0.75 (mode 0.78) and the limits of the distribution
are approximately 0.46 and 0.98 (see Figure 6.1). The question is,
"Is the true estimate likely to lie outside the limits of the distribution?"
In this example, the limits of the distribution are thought to be
reasonable. On the other hand, if the limits of the distribution are
significantly narrower than is thought to be reasonable, then the
prior weight can be further reduced to reflect this uncertainty. It
should be noted that reducing the prior parameters by some factor

merely increases the variance or spread of the prior distribution but

does not affect the mean.
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Given the parameters of the prior distribution (£=15 and
m-£=5) and the update distribution parameters (k=16 and n-k=4) in
this example, the posterior probability density function of Ry is

30 8
I (40)Ry™" (1-Ry)
fRMIlﬁ(RMI16) = TOTE) 0 < Ry < L.

This distribution has as its mean 0.775 and standard deviation 0.07

(see Figure 6.2). If, in this hypothetical example, the RM requirement

is 0.85 or greater, then by use of the foregoing posterior probability

density, the probability of achieving this requirement is approximately
0.12 (see Figure 6.3).

While this is not a favorable result, the following steps
can be taken:

® Some less stringent requirement could be evaluated
(e.g., the probability that RM is greater than or equal
to 0.7).

® The distribution could be examined to determine the
lower 1limit,

°

However, the sensitivity analysis should not be conducted
indiscriminately (i.e., don't play a numbers game). There should be

a legitimate reason for changing the prior distribution. These reasons

will generally revolve around debate over the rationale (assumptions)

for selecting the most likely value and/or the prior weight. For

example, there may be two distinct opinions about the prior weight;
one group may be optimistic (smaller weight) while the other group

may be pessimistic (larger weight). After analyzing the rationale

behind both of these opinions, the analyst may have selected a weight

somewhere between these two schools of thought. In this example it

is legitimate to do some sensitivity analysis to examine the impact of
the optimistic and/or pessimistic peint of view.

The only one of these three possible activities that deserves

illustration is sensitivity analysis, In this example, only the prior
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Figure 6.3-Cumulative Posterior Beta Distribution

*
F(Rmo) = P[Ry S Ryg] (le., THE PROBABILITY THAT THE
TRUE RELIABILITY (Ry) IS LESS THAN OR EQUAL TO Ryo)
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\weight will be modified. To examine the impact of being uptimistic,
'a prior weight of 0.4 is used., By use of this weight, the parameters
of the prior distribution are 10 and 4,\respectivdly. This gives rise

to the following posterior probability density function: \
1 . \ 1
‘-, r 3k, 2 a-ry’ \

fRMlm(.RMIm) = Fezeyr 0 < Ry <l

with mean 0.76 and standard deviation 0.07 (se§ Figure 6.4), Based on
this new posterior distribution the probability that RM is greater than
or equal to 0.85 is now 0.11 (see Figure 6.5). Hence, the posterior in

this case is not sensitive to & prior weight change of 0.2, \

. \ : \ \
What is really being done in the sensitivity analysis is
| \
that the uncertainty in the estimate is being increased or decreased

aﬁ the number of prior observations decreases or increases while the

mean and mode are being shifted toward or away from the update success

ratio. \ .-

The preceding example serves to illustrate the Bayesian
procedﬁre and the method fo% constructing a pr%or weight; 1t should
also demonstrate that) one can systematically evaluate and combine
relevan.: objective and subjective information for decision making
purposes. <The Bayesian procedure described in this paper was used
to estimate the uncertaincy in the estimate of missile reliability\in
a recent study with little more effort then is normally required for a
reliability evalvation using the classical procedures. This escimate
was then used in a Monte Carlo simulation to estimatg the distribution;
of effectiveness for the missile againc* the postulated threat in the
various modes of attack. Based cn this application, the procedure

was found}to be of significant value for analysis in support of the
decision making process. The need for having a systematic procedure '
for analyzing one's state of knowledge became apparent in the appli-
cation, and the method desFribed in Section § was ‘developed.
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7. SUMMARY AND CONCLUSIONS

This report is concerned with decision making under uncertainty
for the class of problems where the decision variable is the Bernoulli

success probability, p. The problem is analyzed from classical and
from Bayesian points of view.

Historically, either classical or Bayesian point or interval
estimation has been the standard approach to this problem. In using
classical techniques, it is difficult to account for all of the
information concerning the unknown quantity which comes from any
source other than the particular sample which has been taken. Further,
none of the above approaches, either classical or Bayesian, addresses

i ey

the decision problem directly, By use of the results of these procedures,

one cannot make probability statements about meeting or exceeding a
specific requirement for p, nor can one readily examine the uncertainty

in p for the purpose of defining a more reasonable requirement for p.

As discussed in Section 4, the use of the posterior beta
distribution, obtained in Bayesian updating, is a viable alternative
to the above-mentioned procedures, It takes into account prior in-

formation and can alsc be used directly in the decision-making process.

Unfortunately, there still seems to be some mystique sur-
rounding any application of Bayesian statistics. This is due in some
instances to a disagreement with the Bayesian philosophy and in others
to the lack of a true understanding\gf the mechanism of the Bayesian
approach. In this respect, many of the popular objections have been
examined and found to be unwarranted for this class of problems.
Perhaps one of the most widely used arguments against the use of the
Bayesian procedure is the apparent absence of a rational basis for
constructing a prior distribution. For this class of problems, however,
the argument has very little substance since, in general, there will
certainly be a basis for selecting the form of the prior distribution,
and there does exist a rationale basis for constructing a prior
distribution, as evidenced by the suggested method in Section 5.
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In relation to point and interval estimation, Section 3
contains a detailed comparison of the classical maximum likelihood
and Bayesian point estimates with respect to expected squared error
loss, It also contains a comparison of the lower confidence limits
resulting from a classical and a Bayesian approach. In both these
instances it is shown that, in many non-trivial practical situations,
the Bayesian procedures provide more realistic estimates when using
minimum expected squared error loss and greatest lower bound as the
criterion for determining the best point and interval estimates.

Thus, it is the contention of the authors that the Bayesian
approach, although not to be applied indiscriminately, should be given
serious consideration when drawing inferences concerning the Bernoulli
process success probability, p. This is particularly true in the

decision making context.
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APPENDIX

. BETA TO F TRANSFORMATION

A random variable U is said to have a beta distribution

with parameters a and b, if its probability density function is of the
form

f(u; a,b) = ﬁé—‘)'—*—b(%-}- ud-1 (1-u)b'1

T
' 0<u<l
| a>1l

b > 1.

; Consider the transformation
f a
r‘ Y
z' U=— (1)
b gV ’

, The Jacobian of the transformation (1) is

a
godu_ T
v (1+9) v

Thus, the probability density function of V is given by

-1 b-1
5 5 b
I'(a+b)
glvi a,b) = vyreby | = 1-—= a7
1+Bv 1+Fv (1+Bv)

1
r(a+b) ,2a.2 a- -(a+h
0 < v ¢ » ;
a>1
b>1

which is the probability density function of a random variable having :
an F distribution with 2a and 2b degrees of freedom.
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Using transformation (1), one can make probability statements
concerning a beta variate using tables of the F distribution (This
is desirable since they are more available.). For example the
100(1-a) percent lower confidence limit for the Bernoulli success probability

is given by the value of P, which satisfies the equation

L
P[pL <U<1] = 1-a (2)
where U has a beta distribution with parameters a and b. Using

transformation (1) probability statement (2) is seen to be equivalent
to

P[pL‘< — < 1] = 1-a (3)

| where V has an F distribution with 2a and 2b degrees of freedom.

: After some algebraic manipulation, statement (3) is seen
f to be equivalent to

PO <V <& (%I - 1) = 1-a 4)

1
where V has an ¥ distribution with 2b and 2a degrees of freedom.
“The solution to equation (4) is then given by

1
P, = ;

where V'l-a is the 100(1-a) percent point of the F distribution with 2b and

2a degrees of freedom.
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