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ABSTRACT

This report is concerned with decision making under uncertainty

for the class of problems where the uncertain parameter is the Bernoulli

success probability, p. For decision-making purposes the desired infor-

mation is frequently the probability of meeting a specific requirement

for p. This problem is analyzed from both the classical and Bayesian

points of view. The use of the posterior beta distribution obtained

from the Bayesian updating procedure is discussed for this class of

decision problems. A method for constructing a prior distribution, and

a detailed example of the updating procedure with emphasis on this

method, are also presented.

A comparison is made of the Bayesian and the most popular

classical point and interval estimation techniques. These techniques

are not directly applicable in evaluating the chances of meeting a

specific requirement for p. However, for certain non-trivial estimation

problems, where a point of interval estimate is sufficient, the Bayesian

procedure deserves consideration.
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II
COMPARISON OF BAYESIAN AND CLASSICAL

ANALYSIS FOR A CLASS OF DECISION PROBLEMS

1. INTRODUCTION

In the materiel-acquisition, decision-making process, much of
the critical decision information concerning a system's capability is

provided through test and evaluation of the system. A test result can
often be scored as a success or a failure resulting in a type of data
classification characteristic of a Bernoulli process (i.e., a process

in which there are two mutually exclusive possible outcomes on each

trial and where the outcomes on any given trial or sequence of trials
do not affect the outcomes on subsequent trials). For example, missile

system test flight data that are scored only as a hit or miss can be

placed in this category.

Historically, one of the major objectives in test and evaluation
has been to estimate the unknown Bernoulli success parameter, p. Where

a point estimate is sufficient, the maximum likelihood estimate (the

observed proportion of success) is one of the most popular of the classical

estimates. 1 On the other hand, if a measure of uncertainty is desired,

the classical interval estimates, based theoretically on the binomial
distribution or on some large sample approximation thereof, are often

used.

It is recognized that other classical point and interval
estimation techniques do exist which may be applicable to this class of
problems: the moving average and exponential smoothing are two of the
alternatives. For this report, however, only the previously mentioned

point and interval estimation techniques are considered since they appear
to be the most popular. Throughout the report these techniques will be

referred to as the classical techniques.

1 Mood, A.M.; Graybill, F.A.; Introduction to the Theory of Statistics,
Second Edition; McGraw-Hill Book Company, New York; 1963; p. 178.
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In most real world decision situations one is confronted with

a requirement that the probability of success, p, exceeds some specified

value. Using the classical interval estimate, the best that one can do

is determine whether the required value of p lies within the interval.

No probability statement can be made about the unknown true value of p

lying within this interval, and certainly no statement can be made

concerning the probability that p will exceed the specified requirement.

Since, for large complex systems, extensive testing can be

prohibitively expensive in both time and cost, many decisions must be

made with a limited amount of test data. Certainly, in such situations

all available information should be taken into consideration. In

particular, two sets of test observations frequently exist in systems

test and evaluation; one is based on production hardware, and the other

on non-production hardware (R4D and Industrial Prototype hardware).

The population of interest is usually the production hardware, but

certainly the non-production observations do contain some useful

information. Given these two sets of observations, the classical

analyst can either ignore the non-production data or consider the

combined population. In either case, he still will not be able to

assess the probability of meeting the requirement.

More recently, Bayesian procedures, tailor made to address

this type of decision problem, have been applied. According to Bayesian
philosophy, any quantity whose exact value is unknown can be treated

as a random variable. Thus, a probability statement can be made as to

whether such an unknown parameter does or does not lie in a calculated

interval. In addition, a statement can be made concerning the probability

of exceeding a specified level. Of equal significance is the fact that

the Bayesian approach provides a mathematically tractable technique for

combining prior information with objectiw' test data.

The objective of this report is to critically examine the

classical and Bayesian procedures in an attempt to expose to the reader

the merits of the Bayesian approach for the Bernoulli parameter class



of decision problems described earlier. Although the Bayesian approach

is not a panacea, it is not difficult to see the potential for this

approach in light of the current emphasis on risk analysis and decision

risk analysiF in the materiel acquisition process.

Although certain topics presented in this report have been

discussed by others, they are repeated here since, to the authors'

knowledge, there does not exist a comprehensive investigation of the

Bayesian procedure applied to this class of decision problems.

Specifically, for the Bernoulli process (success parameter p)

problem, this report includes:

* A description of the standard Bayesian updating procedure.

* A comparison of the classical maximum likelihood and
Bayesian point estimates with respect to expected squared
error loss.

* A critical examination of the classical and Bayesian
interval estimates.

* A discussion of the applications of the Bayesian procedure
to the decision problem.

* A description of a proposed method for constructing a
prior distribution from prior test observations and all
other prior information.

* A detailed example illustrating the Bayesian updating
procedure.

2. BAYESIAN UPDATING PROCEDURE

This section contains a detailed description of the Bayesian

updating procedure. It is introduced here to familiarize the reader with

the terminology and notation characteristic of the Bayesian approach.

This information will aid the reader in understanding the topics discussed

in the report.

In estimating the uncertainty in the estimate of the average

success ratio (p) for any Bernoulli process, a Bayesian updating procedure

can be used. For the class of problems considered in this paper, the

observations can be logically broken into two classes: one is used to

9



estimate the prior distribution of p (Y- successes in m trials) and the

other is used to update this prior distribution of p (k successes in

n trials), The conditional distribution of k successes in n trials,

given p, is binomial and its probability density can be expressed as

fkjp(kjp) = (V) pk G-p)k

where k = O,...,n. If p is assumed to have a beta distribution with

parameters Y- and m-Z, then the probability density of p for 0 < p < I and

where C(Z,m)* is the normalizing constant is given by

f (p) = C(t,m)p '(l-p)m'-.
P

Given this prior distribution of p, it is now possible to update this

distribution with the n observations by applying Bayes theorem:**

n )p k l_p)n-kc (VZm)p f-I (l-p),-t-I

fp k(pik) = 1

n()pk(1.p)n-k CZ,m)pt" (l-p) M-idp

0

Combining the terms in the numerator, canceling out the constant term

C(Z,m), and performing the integration, we reduce the above equation to

fplk(Pik) = C(k+y, n+m)p k+fl(l-p)n-k~ m-. ,

which is again a beta distribution with parameters k+t and (n-m)- (k+t).

The mean and variance of the posterior beta distribution are

*V rrm)"oC(,m) = p zrC rnm-U)

**Bayes theorem states that

f£kp(k,p) f k (k JP f1(P)f plk(:Plk k) )k =pkp(k p)fp13(p)dp



k+Z

Sm n and

2 P (l-v)a ,•I'l respectively,S=(n+m+l)

It should be noted that the posterior mean is the weighted average of
the prior and update success ratio.

In certain instances, the analyst may want to weight the
prior distribution. This can be done by applying a weighting factor,

w, to the parameters Z and m which results in a prior distribution

for 0 < p < 1 of the form

£ (p) = C(wZ, wm)pWZl (l-p)WI(m-lp

The updating procedure is then applied to this weighted prior distribution

as in the unweighted case. The significance of the weighting factor
and a method for selecting this factor are presented in Section 5.

The rationale for selecting a beta prior and a discussion of
the application of this updating procedure to decision problems are

deferred to Section 4.

3. ESTIMATION

3.1 Introduction.

In estimation theory, the general method used to estimate an

unknown population parameter 0 is to select a random sample from the

population, and then use the information contained in this sample to

determine a point or interval estimate, say 0, of the parameter 0.
For the class of problems being considered in this paper, the population

of interest is that defined by a point binomial distribution* with the

probability of success, p, being the unknown population parameter. In

the following sections the classical maximum ,ikelihood and Bayesian

*A discrete random variable X is said to have a point binomial distribution
if its probability density function is of the form

P pX(l-p)l-x x = 0,1; 0 < p < 1
f(x;p) 0 elsewhere

11



point estimatioh procedures and tho classical and Bkyesian interval

estimation procedures are examinýd, The discussion is tailored to the

class of problems being considered herein.

3.2 Point Estimation.

^ 2
In point estimation, the squared error loss function,* (0-0),

'• is often used to reflect the loss incurred in using the point estimator

0to estimate the parameter 0. Since the value of 0 is dependent on

the sample data, 0 is a random variable and the squared error loss is

considered to be a random functi'on of the parameter 0. To eliminatO

the dependence on the particular random sample which is chosen, the

!mathematicalexpectation of the loss function, known as the risk

function,** is used as an indicator of the quality of the estimator O

For squardd error loss, the risk or expected loss reduces tQ
E[(E)-O)2= Var (0) + [E(O-]2

Thus, risk is a function of the unknown parameter 0 and is .equal to the

variance of the estimator plus the square of it1 bias.*** A good

estimator is interpreted as one which minimizes the risk or expected

loss over the critical range of the parameter 0.

The classi:lI maximum likelihood estimate of the population
proportion, p, of a Bernoulli process generating n sample observations,

is the observed sample proportion of 'uccesses', p ̂ ., where k is the
i n

number of successes and n is the number of sample observations. It

has been shown that this maximum likelihood estimate enjoys many desirable

characteristics. Among these are unbiasedne~s and mfnimum variance.

Thus, within the class of unbiased estimates p minimizes the risk

function or expected loss over the entire range of the parameter p.

*No justification will be given in this paper for the use of a squared
error loss function. The interested reader should refer to Reference 1.

**Risk as defined here is often referred to as expected mean square error.

***Bias is defined as the difference between the unknown parameter and
the mathematical expectation Qf its estimator.

12



The risk in this unbiased case reduces to the variance of p (i.e.,

Var (p) f For these reasons, the maximum likelihood estimaten

Sis often used, without reservation, as the best estimate of the

population proportion p.

I A fact which is often overlooked, however, is that a biased

estimate is not npcessarily to be rejected as inferior. The fact is

that biased estimators exist which may, for a non-trivial range of the

parameter p, result in a lower expected loss than the maximum likelihood

estimate p. Consider, for example, the Bayes estimator (Reference 1)
k+l

p n- which is derived using a squared error loss function and the

assumption of a uniform or rectangular prior distribution for p. Since

k~l A = k+l np(l-"E"p k E[W- n-2 and Var (p) = Var +-) f (n+2)E~]=En-4- n+n+22
f n+2(n+2)

the expected mean square error for the Bayes estimator is given by

E _(p-p)2] = Var (p) - (E[p]-') 2

-(np+l)_P2

(n22 n+2
(n÷2) t•.•p

1l

- [(n-4)p(1-p) + 1].(n+2)

Figures 3.1 and 3.2 exhibit risk as a function of the pop-

\Lation parameter, p, for both the classical maximum likelihood estimate

and the Bayes estimate for sample sizes of n = 10 and n = 100, respec-

tively. Note that, for large sample sizes, they are approximately

equal. However, for small samfle sizes, which are o~ten the case in

many-real world problems such as missile test and evaluation, the two

can differ significantly. In particular, for n = 10, over the range

0.13 < p - 0.86, the biaseý Bayes estimator is the bettet estimator in the

expected squared error loss sense.

The curves in Figure 3.1 and 3.2 which represent the risk

of the Bayesian estimator, were generated assuming a uniform prior
-Note that for the Bernoulli process described above, the random variable

k has a binomial distribution with parameters n and p, Reference 1,

page 182.

.Loc. Cit. 13
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distribution. This assumption implies essentially complete ignorance

on the part of the decision maker, of the value of the parameter being

estimated. That is, all values of the parameter are assumed to be

equally probable. This assumption is not only conservative, but is

somewhat unrealistic for the class of problems under study in this

paper.

To examine the impact of a more realistic prior distribution

on risk (as a function of the population parameter p) the following

comparisons are made:

1. A comparison is presented in Figure 3.3 of the risk for

the classical maximum likelihood estimate for a sample size of 10, the

Bayes estimate assuming a uniform prior distribution with 10 update

observations, and the Bayes estimate assuming a beta prior distribution

with parameters t=3 and m-t'3 (i.e., success proportion = j- 0.5) withm
10 update observations.

2. A comparison is presented in Figure 3.4 of the risk for

the classical maximum likelihood estimate for a sample size of 10, the

Bayes estimate assuming a uniform prior distribution with 10 update

observations, and the Bayes estimate assuming a beta prior with

parameters t=5 and m-t=l (i.e., success proportion of 5/6) with 10

update observations.

As can be seen in Figure 3.4, making stronger prior assumptions

can be beneficial in some instances and detrimental in others. If the

true population success proportion is less than 0.5, the risk in using

the Bayes estimator with beta prior (t=5, m-L=l) is considerably larger

than the risk of using either of the other estimates. On the other

hand, if the true population success proportion, p, is larger than 0.5,

the risk in using the Bayes estimator with prior beta (Z=S, m-t=l) is

substantially less than the risk associated with either the classical

maximum likelihood or the Bayes (uniform prior) estimates. A decision

maker who strongly suspects a population success proportion larger

than 0.5 should, in the interest of minimizing his risk over the

16
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realistic range of this proportion, choose to use the Bayes estimate

based on the beta prior distribution with parameters t=5 and m-n=l.

3.3 Interval Estimation.

3.3.1 General Description. Generally, the single point

estimate of the population proportion of successes, p, will be incorrect

since the probability is very small that the estimate is exactly equal

to the true population proportion. Some measure is needed of the

uncertainty or error introduced in using this point estimate. This
is certainly the case in risk analysis where the objective is to

analyze uncertainty.

The classical statistical procedure most commonly used to

account for this uncertainty is interval estimation. This procedure

entails taking a random sample of n Bernoulli trials and then based

on this sample, computing lower and upper confidence limits PL and pU'

respectively. Associated with the confidence limits is a confidence

coefficient, 1-a. The confidence coefficient is often misinterpreted

as the probability that the true population proportion, p, will lie in

the calculated interval (PL' PU). This would imply that the parameter,

p, is a random variable contrary to classical assumptions. Actually,

the interval, being the random variable in this approach, may or may not

encompass the true value of the parameter, depending on the particular

sample selected. What the confidence coefficient does represent is

the proportion of such intervals which would be expected to cover the

true population proportion if a large number of intervals were computed

using independent random samples and the same estimation procedure.

Of course, in most instances, the analyst cannot afford either the

dollars or the time required to take repeated random samples. Thus,

in practice, the analyst will act as though the interval is correct

if -the confidence coefficient is high. That is, for a confidence

coefficient equal to 0.95, the analyst knows that the particular

interval obtained from the sample data was generated by a procedure

which would yield an interval that covers the population proportion, p,

19



for 95 percent of the random samples selected. It is for this reason

only that he is willing to assume that the particular interval he

generated does cover the population proportion,

The Bayesian approach to interval estimation dictates that

the information contained in the random sample should be incorporated

with prior information through the use of Bayes theorem (see Section 2).
The Bayesian analyst contends that the decision maker is not interested

in some specified proportion of val3d estimates in the long run, but is

interested in combining sample t ata with any prior information

to make a correct decision.

In the Bayesian procedure, the population parameter, p, is

assumed to be a random variable with a specific prior probability

distribution. This revision is accomplished mathematitally by using

Bayes' theorem, and the result is called the posterior probability

distribution of p. (Details of this procedure are contained in Section 2.)

Lower and upper limits, PL and pU, can then be obtained such that the

probability that p lies in the interval (PL' PU) is equal to some

specified confidence level, I-. Thus, the popular confidence interval

interpretation, which is incorrect in the classical case, is valid

in the Bayesian framework. The following section defines and discusses

classical and Bayesian confidence intervals in relation to the problem

of estimating the proportion of successes in a sequence of n Bernoulli

trials. Without loss of generality, the upper confidence limit is

assumed to be equal to 1 and the discussion is limited to the lower

confidence limit, PL'

3.3.2 Definition of Classical and Bayesian Confidence Intervals.

kGiven an estimate p = of the parameter p of a Bernoulli process, the

classical 100(1-a) percent lower confidence limit PL is defined as the

value of p such that

En)• pY (l-p)fny = a (Reference 1).
y=k

Loc. Cit. 20
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Tables of the cumulative binomial distribution can be used directly to

obtain a solution to this equation. Several alternatives are available,

however, which simplify the computation considerably. The first is

achieved by noting that the cumulative binomial is related to the

incomplete beta function by the following relationship:

E (fn) pyY (-p)ny = I (k, n-k~l)
y=k Y p

where

.fuk-I (1-u)n-k du

I (k, n-k+l) 0 (1)po

fou - (1-u) `kdu

This function has been tabulated by Pearson 2 and is easier to use than

the cumulative binomial. The lower confidence limit, in this case,

is given by the solution to Ip (k, n-k+l) = a.

A second alternative is obtained by recognizing that the

"expression on the right hand side of Equation (1) is P [0 < U • p]

where U is a random variable having a beta distribution with parameters

k and n-k+l. Thus, the lower confidence limit, PL' is given by the

solution to P [0 < U < p] = a or P [p < U < 1] = l-a, where U has a

beta distribution with parameters k and n-k+l.

In the Appendix it is shown that by applying the transformation

k

U n-k_+lV= k
n+

the lower limit PL reduces, in this case, to

1 (2)
P 1+ (n-k+l ( 2

2Pearson, K. Ed., Tables of the Incomplete Deta - Function, University
Press, Cambridge, England, 1934.

21



where v is the 100(1-a) percent point of the F distribution with

2(n-k+l) and 2k degrees of freedom, Since tables of the F distribution

are generally more available than those of the cumulative binomial

distribution or the incomplete beta function, this alternative is

clearly of practical value.

Note that the classical confidence limits discussed to this

point are exact. Several methods do exist which, for restricted ranges

of the parameters n and p, give fairly accurate approximations. However,

for the sample sizes of the class of problems being considered in this

paper, these approximations are generally inadequate.

The Bayesian lower 100(1-a) percent confidence limit, PL' of

the Bernoulli parameter p is defined as the solution to the equation

1

1 ] =1 fplk, (plk) dp = 1-a,
PL

where fplk (plk) is the posterior beta distribution with parameters

k+L and (n+m)-(k+Z) which was derived in Section 2. Note that Z and

m-t are the parameters of the beta prior distribution which was used in

the derivation. Thus, PL is given by the solution to the equation

P[PL < U < 1] = 1-a,

where U has a beta distribution with parameters k+Z and (n+m)-(k+C).

As in the classical case, the Bayesian lower confidence limit

can be expressed in terms of the F distribution. By using the trans-

formation

k+L

U = (n+m)-(k+Z)
1.(n+m) - (kZ)V

along with the theory introduced in the Appendix, it follows that

22



= ! L(3)PL 1.(• )-kt V
le t (nm. -a

where v is the 100(1-a) percent point of the F distribution vith

2[(n+m)-(k+t)] and 2[k+t] degrees of freedom.

3.3.3 Comparison of Bayesian and Classical 95 Percent Lower
Confidence Limit. In Figure 3.5, a comparison is made of the classical

lower 95 percent confidence limit with the lower limits of three

Bayesian procedures, each unique in its prior assumptions. A sample

of n=16 update observations is used in the comparison and the results

are presented as a function of the number of successes, k, which could

result in the 16 trials. For the convenience of the reader, the results

are also presented in tabular form in Table 3.1. Note that for k < 12

all three Bayesian procedures result in a shorter* confidence interval

than the classical procedure. hven the most conservative Bayesian

procedure, that corresponding to a uniform prior distribution (t=l, m=2),

is better than the classical procedure over the entire range of k.

This fact is true, independent of n and k, since the ratio of the Bayesian

lower limit with uniform prior (4=l, m=2), given in Equation (2), to

the classical lower limit, given in Equation (1), is greater than one.

In Figure 3.5, one should observe that, over a limited range

of k, the classical procedure does result in a shorter interval than

the Bayesian procedure with symmetric prior. This should serve to

caution the user that the Bayesian procedure can lead to poor results

if insufficient effort is devoted to the rational selection of the

prior probability distribution. No one can argue the fact that the

assignment of prior probabilities is a problem area in Bayesian analysis.

Because the selection of the prior probability distribution involves

using subjective judgment, many classical statisticians choose to rule

out the Bayesian procedure as a viable estimation technique. The

classicists choose to be somewhat conservative in their estimates and

*In using an interval to estimate a parameter, minimum length is a
desirable characteristic of the estimator.
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make absolutely no prior/ assumptions concerning the parameter.• It is

the content'.on of the authors that, ip today's decision-making world,

the complete absence of pertinent information prior to sampling is

rare. As the result of the test and evaluation of a system, some ýest

results exist (R&D and/or Industrial Prototype test results) and/or

engineering judgment upon which to base a prior distribution. Therefore,

in many ,realistic problem areas th conservative classical lower limit

can and should be iroved upon.

The Bayesian procedure provides a technique for updating prior

knowledge with. sample data and permits one to be conservative, but does

not foie st ict conservatis on the analyst as do the'classical tech-

niques. In later sections, #urther discussion is provided concerning

the value of Bayesian techniques in decision-oriented problems and the

rationa a selection ct prior probayility distributions.

The reader interested in examining the comparison between

classical and Bayesian lower limits for other prior assumptions and

other confidence levels is rbferred to a report by Benton. 3 In that

report, tables are A&so provided for the 0.99, 0.975 and 0.95 Bayesian

lower confidence limits (assuming a uniform prior) for sample sizes up

to nz25.

4. THE BAYESIAN PROCEDURE APPLIED TO DEQISION MAKING)

In the Bayesian update procedure, presented in Section 2, a

posterior beta distribution was derived by updating a beta prior dis-

tribution with Bernoulli type test data. A posterior beta distribution

was seen, in §ection 3, to be the driving force in both the Bayesian

point an1 interval estimation of the Bernoulli success parameter, p.

However, as discussed in the introduction, neither classical nor Bayesian

point and interval estimatiIon procedures directly address the decision

3Benton, Alan W., An Investigation of theý Characteristics of Bayesian
Confidence Intervals for Attribute Data;Technical Memorandum No. 14,
November 1969; Aberdeen Research and Development .enter, Aberdeen
Proving Ground, Maryland.
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maker's problem. Thus, it is in this decision making context that the

Bayesian procedure, specifically the betas posterior distribution, proves

to be most useful. Statistical interpretations based on the posterior

beta distribution are much more realistic for the decision maker than any

interpretations ývailable using either classical or Bayesian point and

interval estimation theory..

Before we proceed with a discussion of the advantages and

disadvantages of the Bayesian procedure as related to decision making,

recall that the p~sterior probability density of the parameter p

(Bernoulli success probability) for 0 < p < 1, is of the form

f k)rn+m) pk+Z-I P [ (n+m) -(k+t) ]-i

fptk(P k) =-(k+Z)] P

where

n = number of update observations,

k = number of update successes,

m. = number of prior obIervations, and

t = ntunber of prior successes.

Thus, p is a random variable having a beta distribution with

k+A and (n+m)-(k+Z) degrees of freedom. In Figure 4.J the beta posterior

probability density function is displayed for n=20, k=lS, m=10, and

Z=61. Its corresponding cumulative distribution function is provided in

Figure 4.2. This specific case will be used as an illustration in the

discussion to follow.

Faced with a decision concerning an uncertain parameter p,

and given its-posterior beta distribution, the decision maker has

several options available to him. He can use the c¢mulative distribution

function of the variable p directly to address questions such as the

following:

* What is the probability of meeting a specific requirement
for p?

* What is a more reasonable requirement il' the above
probability is unsatisfactory?
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For example, it is not too difficult to imagine the variable

af interest, p, being a missile system reliability. The requirement

for missile reliability will usually be specified in a requirements

document, and the decision maker will certainly be interested in the

chances of the missile system meeting this requirement. If the require-

ment is for p to be at least 0.7, then using the cumulative distribution

in Figure 4.2, he notes that the estimate of the probability that p > 0.7

is approximately 0.48. Since this probability is relatively small, the

decision maker may also be interested in the fact that the estimate of

the probability of exceeding 0.4 is 0.99. This additional information

can provide valuable insight which may enable the decision maker to

rationally specify a new acceptance criterion for p.

Another use of the posterior beta distribution of p occurs

when using a Monte Carlo simulation to examine the uncertainty in some

function of the variable p, where the function may or may not include

elements of uncertainty other than p. Such a situation can be envisiuned

for the case previously considered where p represents a missile system

reliability.

Suppose for example the variable of interest is the single

shot kill probability;

~SSK R RGSE R PF ML'

where

PSSK = the single shot kill probability for the missile system,

RGSE the reliability of the ground support equipment,

RM =the reliability of the missile,

PF the probability of proper fuzing, and

N = the probability of a kill given proper fuzing.
L

The uncertainty in the single shot kill probability will

depend on the uncertainty in the estimates of RGSE, PP and ML as well

as the estimate of RM. The uncertainty in the estimate of RM can easily

30



be introduced into a Monte Carlo simulation by sampling from the posterior

cumulative distribution function of p.

According to the foregoing discussion, the posterior beta

distribution appears to be a valuable decision-making tool. There are,
however, certain other advantages and disadvantages which should be

examined. The apparent artificial use of a beta distribution as a

prior distribution in the updating procedure of Section 2 is certainly
a questionable area. In relation to decision making, when a Bernoulli

success parameter is the decision variable, several points can be made
in defense of the beta distribution. First, the beta is of a form which

lends itself quite readily to the distribution of a proportion. Its
range is the unit interval; it is unimodal and can be skewed in either

direction. Thus, by judicious choice of parameters, the beta probability

density can easily be put into a form which will satisfactorily reflect
one's prior beliefs. Since all available information concerning the

parameter p should be used by the decision maker, the beta prior assumption
has the additional advantage that it drastically simplifies the mathematics

involved in the update procedure. Any last minute test results can
readily be used to update the posterior beta distribution by merely

repeating the update procedure with the posterior beta distribution now
assuming the role of the prior beta distribution. Further, each update
of the distribution reduces the impact of the subjectivity inherent in

the initial prior assumption.

Several arguments against the Bayesian procedure also immediately

come to mind. Foremost is the inherent subjectivity present in the
technique. Certainly the classical analyst who firmly believes that

the only legitimate types of probabilities emanate from frequency-of-

occurrence data may find it difficult to accept the idea of using

subjective or personalistic probabilities in forming a representative
prior distribution. It is the Bayesian analyst's contention, however,

that a reasonable decision maker will have intuition concerning an

uncertain situation and will modify his feelings on the basis of sample

or experimental evidence. He will certainly not blind himself to a
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large portion of the information available merely on the basis that it

may be subjective. As pointed out by Hamburg, "If only objective

probabilities have meaning, then one cannot handle some of the most

important uncertainties involved in problems of decision making.''4

Another argument against the Bayesian procedure is that

different analysts may come up with differing recommendations depending

on their particular prior assumptions. In most situations, however,

this argument is unwarranted since the individual assumptions are

clearly visible and can be used as a basis for further arbitration.

On the positive side, a desirable feature of the subjective

Bayesian approach is that although it allows the freedom to be conser-

vative, it does not force conservatism on the analyst as do the classical

techniques. The relevance of this point became evident in the comparison

of the Bayesian and classical lower confidence limits in Section 3.
Certainly a rational choice of a prior distribution representing the

decision makers beliefs is far superior to the conservative classical

viewpoint of ignoring a large portion of the available information.

Drake summarized the Bayesian philosophy in the statement, "The Bayesian

analyst believes that assisting in the consistent employment of all

available data for a decision is part of his job, rathLr than a task

to be left to some mysterious decision maker a few echelons up." 5

Many arguments comparing the classical and Bayesian philosophy

are available in other sources (e.g., References 6 and 7). It is not

the purpose of this section to dwell on these philosophical implications.

4 Hamburg, Morris, Statistical Analysis for Decision Making, Harcourt,
Brace and World, Inc., New York, 1970.

5 Drake, Alvin W., Bayesian Statistics for the Reliability Engineer,
Proceedings of the National Symposium on Reliability and Quality Control,
IEEE, 1966, pp. 315-320.

6 Pozner, A.N., A New Reliability Assessment Technique, Technical Conference
Transactions, American Society for Quality Control, 1966, pp. 188-201.

7 Breipohl, A.M., R.R. Prarie, W.J. Zimmer, A Consideration of the Bayesian
Approach in Reliability Evaluation, IEEE Transactions on Reliability,
October, 1965, pp. 107-113.
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It is, however, intended to demonstrate that the Bayesian philosophy does

lend itself to decision problems concerning the Bernoulli parameter, p.

In summary, the relevant points are:

0 The fears concerning the Bayesian assumptions are often
unwarranted.

* The decision maker can easily relate to statistical
interpretations based on the posterior beta distribution.

* The Bayesian procedure should be given consideration in
Bernoulli type decision problems.

One area of Bayesian analysis which needs further discussion is

constructing the prior beta distribution. There are two basic problems

to be considered in constructing the prior distribution:

* What is the prior distribution?
* Should the prior distribution dominate the posterior

distribution?

Very simply stated, the prior will dominate the posterior distribution
if the number of prior observations (m) exceeds the number of update

observations (n). Recall that for this class of problems, it is assumed

that some test data exist on which to base the prior distribution. These

two problems depend on three basic considerations-

* How representative are the prior observations or is a signif-
icant difference in the update success proportion likely?

* How many prior and update observations are there?

* Does the prior beta distribution described by the specified
parameters reasonably reflect the uncertainty in the estimate?

These three considerations which reflect the state of prior

knowledge can be taken into account in a rational manner to construct a

meaningful prior distribution. The next section is devoted to a discus-

sion of a proposed method for constructing a prior distribution for this

Bernoulli-type problem.

S. METHOD FOR CONSTRUCTING THE PRIOR DISTRIBUTION

5.1 Introduction.

As discussed in Section 4, one of the major criticisms of the

Bayesian procedure is that the selection of the prior distribution is
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arbitrary. Although this argument is valid in some instances, this is

certainly not always the case. The authors believe that, for the class
of problems being discussed in this paper, there is a rational and

systematic way of constructing the prior distribution. It is emphasized,

however, that the method presented in this section is a suggested

approach and should not be construed as the only rational approach to

the problem.

5.2 Method - General Discussion.

The method described in this section is intended to provide a

rational systematic approach for analyzing one's state of knowledge,

taking into account three basic considerations for constructing a prior

distribution. These considerations are:

0 Are the prior observations representative of the update
observations, i.e., Is a significant difference expected
in the update proportion of successes?

0 Are the number of prior observations greater than the
number of update observations?

0 Does this prior distribution reflect the uncertainty in the
estimate, or are the limits of the prior distribution
reasonable?

Test observations are assumed to be the foundation for con-

structing the prior distribution for the class of problems addressed

in this report. For instance, if the success proportion of interest

is production missile reliability, then the prior observations may be
based on industrial prototype and R&D missile flights.

If design problems are diagnosed and design changes implemented,

there may be some question as to just how representative these observations

are of the population of interest. One potential aid in reducing the

bias associated with design changes is to "no-test"* the design failures.

Of course, even using this type of scoring criterion, there still may

be reason to suspect that a significant improvement in the update

*A no-test is a test observation that has been eliminated from the data
set.
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observations is likely, since in all instances it is assumed that the

update observations are from the population of interest.

As mentioned previously, these prior test observations serve

as the foundation for constructing the prior distribution. For example,

if there are I successes out of m prior observations, then a beta

distribution with parameters t and m-t would serve as the initial beta

distribution.

This distribution is then modified by use of all available

subjective information (based on engineering judgment, experience with

similar systems, etc.) to form what will be referred to as the prior

distribution.

It should be recalled that the two basic questions being

addressed are: (1) What is the prior distribution? and (2) Should

the prior distribution dominate the posterior distribution? In light

of the initial beta distribution, these two questions can be addressed

by examining the three basic considerations mentioned earlier.

Perhaps the most important consideration is the first one

concerning whether the prior observations are representative of the

update observations since it impacts both questions. Note that the

first question (What is the prior distribution?) has two parts. The

first part is whether the most likely value of the success proportion

seems reasonable in light of all other prior information (i.e., Is a

significant difference in the update success proportion expected?)

The second part addresses whether the distribution accurately reflects

the uncertainty. However, before the uncertainty consideration can be

evaluated, one must determine if the dominance problem need be considered.

This dominance problem depends on the first consideration. If the most

likely value of the initial beta distribution does seem reasonable

(i.e., no significant difference is expected), then whether the prior

distribution dominates the posterior distribution doesn't really matter.

In essence, one is indicating that the prior data are thought to be

reasonable. Hence, the relative number of prior and update observations
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Fi
is not important. The only important consideration remaining is

whether a prior distribution with parameters t and m-I accurately

reflects the uncertainty in the estimate of the success proportion.

On the other hand, if there is reason to suspect a significant

difference in the most likely value of the success proportion, then one

would want to shift the prior distribution to a more reasonable value.
Of course, what constitutes a significant difference in the most

likely value is dependent on both the specific problem and the analyst's

judgment.

The problem now confronting the analyst is how can this prior

distribution be shifted? One way of doing this is to decrease the

number of observations (m) by some number, e, while keeping the number

o£ successes (t) constant. This is a reasonable approach when the

most likely value (ML) is thought to be low; e can be obtained alge-

braically in the following manner. Simply specify a more reasonable

most likely value and solve the following equation for e:

&-1
ML* = Y_ .

L* M-e-2

This is simple to apply since t and m are known and it is intuitively
appealing since it precludes assigning more weight to a prior distribution

than the available data would suggest.

On the other hand, if the most likely value is thought to be

high, then one could reduce the number of successes (t) by some fixed

number, e, while keeping the number of observations constant. Once again

one can solve for e by specifying a more reasonable most likely value

and solving the equation

L-e-1
ML nm-2

Note that this latter case is not thought to be very likely in realistic

situations, but it is presented for completeness sake.

*Yhe most likely value of a beta distribution is ML = m-2
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After determining e,* a new beta distribution exists with param-

eters - and m-e-t or t-e and m-t+e, depending on the particular situation.

Given either of these sets of parameters, the problem of whether the
prior distribution should dominate the posterior distribution becomes

important. To examine this, one must consider whether the number of

prior observations (i.e., m or m-e) is greater than the number of update
observations, since the distribution having the most observations will ha'e
the greatest impact on the posterior distribution. Recall from Section 2

that the posterior mean is the weighted average of the prior and update

success ratio. If one suspects a significant difference in the success
proportion, then the update observations should have at least equal weight

or dominate the posterior distribution.

Whether the update observations should dominate the posterior
distribution depends on whether this prior distribution reflects the un-
certainty in the estimate of the success proportion. The next problem
for the analyst is: How does one determine whether the prior accurately

reflects the uncertainty in the estimate? Generally, a few brief calcula-

tions and a plot** should provide all of the information needed to evalu-
ate whether the prior accurately reflects the uncertainty. For instance,
if the limits of the prior dintribution are 0.4 to 0.6 (i.e., 99 percent

the area of the distribution is contained within these limits), but one

suspects that the success proportion can take on values between 0.6 and

0.75, then this distribution does not accurately reflect the uncertainty

in the estimate.

The final problem confronting the analyst is how does one make

this prior more accurately reflect his state of knowledge. This is

achieved in general by reducing the weight of the prior. For instance,

if the prior data were 10 successes out of 20 observations, then this
could be treated as 5 successes out of 10 observations or 2 successes out of
4 observations by assigning a 0.5 or 0.2 weight*** to the prior observations.

*Note e should be rounded off to the nearest integer.

"**This will be explained in detail in the example.

***Throughout this report V1 is used as the symbol for prior weight.
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Selecting a prior weight is not an exact science and should

not be approached as such. The best approach is to reduce the prior

weight by 0.25 or 0.2, examine this new prior distribution, and decide

if it more accurately reflects the uncertainty in the estimate. If it

does, then stop. If it doesn't, then repeat the procedure with a

smaller prior weight. Each time reduce the prior weight by the same

amount.

Before describing the method in detail, some state vector

notation must be introduced. Since there are three basic considerations,

all of the states of knowledge can be described with a three-dimensional

statA vector. In addition, all of the considerations can be handled

with yes/no logic (i.e., the dimension of each component of the vector

is two); therefore, there are eight possible states of knowledge

(vectors). Thus, the state vector S(NO, YES, YES) represents a state
in which the responses to the three basic considerations a, b, and c

are NO, YES, and YES respectively.

Finally, two points should be made. First, the previously
mentioned considerations are not independent. For instance, if one

expects a significant difference in the update proportion of successes,

it is likely that the prior observations will not reflect the un-

certainty. In addition, if the number of prior observations is greater

than the number of update observations, one would probably want to

reduce the prior weight (i.e., the prior should not dominate the posterior

distribution in this case). This method provides a framework for

analyzing these three considerations sequentially. After each has been

analyzed separately and the initial beta parameters modified in light of

the first consideration, the total state of knowledge can be ovaluated,

and the trade-offs considered in weighting the prior distribution. A

more detailed discussion of the trade-offs is deferred until the method

is described in detail.

Second, the range of the prior weight is restricted to a

number greater than zero and less than or equal to one (i.e., 0 < W < 1).
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The reason for the lower bound is obvious. It is not meaningful to

talk about negative weights. Further, it is assumed that there is

some useful information in the prior observations. Thus, a prior

weight of zero, indicating no useful information, is not considered.

The rationale for the upper bound warrants a more detailed explanation.

To assign a weight greater than one would imply more certainty than the

data reflect.. Even if the observations for the prior were taken from

the same lot, one would not want to count each observation more than

once. For example, if the number of defective items in a lot are being

estimated and two samples are drawn from this lot, then there is no

rational basis for counting observations from the one sample more than

the observations from the other. Therefore, in situations where the

prior observations are not from the same lot, it is not reasonable to

assign a weight greater than one.

5.3 Method.

Recalling the three primary considerations, Figure 5.1 depicts

the eight possible states of knowledge. Starting at the top of the f!ow

diagram, the user begins by asking the question "Is there any reason to

suspect a significant difference in the update proportion of success?"

If the answer to this question is no, then the analyst must consider

whether there are more prior observations than update observations. If

there are fewer prior observations, then the next stage is to answer

the question, "Does this prior reflect the uncertainty in the estimate?"

As mentioned previously, this can be done by examining the prior

distribution (i.e., the range and standard deviation). If the answer

to this question is no then the state vector S(NO, NO, NO) has been

obtained. Hence, the flow diagram provides a systematic questioning

procedure for determining the state vector, modifying the prior dis-

tribution in light of the first consideration, and assigning a weight to

the prior distribution. For each of the eight possible state vectors,

guidance is given for assigning a prior weighting factor. In some

instances, the guidance is specific while in others it provides an
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upper bound. In the next few paragraphs, each of the possible state

vectors will be analyzed, and the rationale for ýecmmending a partic-

ular weight'ing factor will be discussed.

Going from left to right, the components of the state vector

will correspond to considerations a, b, and c, respectively. (See

Figure 5.1.) 1

a. S(NO, NO, NO) is the state vector indicating that there

is no reason to suspect a significant difference in the success pro-

portion; the number cf prior observations is lesý than or equal to the
number of update observations and, basedlon available infornmation, the

pricIr does not reflect properly the uncertainty in the estimate. Given
this state\vector, on8 must now ask, "Is the prior distribution more or

less uncertain than is thought to be ,reasonable? ' A prior distribution

is said to be more uncertain if the range of the distribution is greater

than is thought to be reasonable. In this case, a prior weight equal

to one should be used (i.e., if ihere are ten observations, then count

them as ten observations). The rationale for using a prior weight of

one is:

0 There is no reason to suspect a'drastic difference in the
update success proportion; hence., there is no reason to
adjust the most likely value of the success proportion.

* Since the number of prior observations is less than or
equal to the number or update observations, the prior
will n'pt dominate the posterior disiribu ion.

* The prior is thought to be more uncertain than would
appear reasonable. The way to decrease the uncertainty
is to increase W (i.e., W > L), but to do this would exceed
the upper bound on W.

On the other hand, if for S(NO, NO, NO) the prior estimate is

thought to be less uncertain* than is reasonable, then a weight less

*This is perhaps a bad choice of words since less uncertain really
implies more certainty in the estimate.
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than one, which will in effect cause the uncertainty to be reflected

more reasonably, should be used. The exact value of W depends on the

problem.

b. S(NO, NO, YES) is the same state vector as S(NO, NO, NO)

except that the prior distribution does reflect the uncertainty in the

estimate. Thus, it is reasonable to assume that the rationale for the

first two elements of the state vector is the same (i.e., no adjustments

to the prior weight or most likely value). Because the prior distribution

does reflect the uncertainty in the estimate, there is no reason to

adjust the prior weight. Therefore, a prior weight of one should be used
in this case.

c. 'S(NO, YES, NO) is the state vector which indicates that

there is no reason to suspect a significant difference in the update
success proportion, that the number of prior observations is greater

than the number of update observations, and that the prior does not

reflect properly the uncertainty in the estimate. Once again the

analyst is faced with two possibilities. Is the prior distribution

more or less uncertain? If it is more uncertain, a prior weight

greater than one would have to be used, in effect, to decrease the

uncertainty. However, this is not justified since a weight greater

than one exceeds the upper bound on W. Therefore, a prior weight of one

is recommended.

On the other hand, if the prior distribution is less uncertain,

the prior weight should be less than one. How much less than one depends

on the particular problem and the amount by which it is felt the prior

fails to reflect properly the uncertainty. Once again there was no
reason to adjust the most likely value of the prior distribution.

d. S(NO, YES. YES) is the same state vector as S(NO, YES, NO)

except that the prior distribution does reflect properly the uncertainty

in the estimate. Based on this state of knowledge, there is no reason

to adjust the prior weight (i.e., W=l) or the most likely value. Of
course, some analysts might argue that the prior distribution should
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never dominate the posterior distribution, but this is not thought to

be valid in light of the state of knowledge. However, if the analyst

feels strongly about this, the weight could be reduced, but the lower

limit should be W - -. * This weight, W, would give the prior and
m

update equal weight in the posterior distribution.

Before continuing with a discussion of the selection of a
prior weight for the remaining states, it should be pointed out that

in all of the remaining states the initial beta distributions will be

shifted to more reasonably reflect the most likely value of the success

proportion. All of the guidance given for the prior weight will then
apply to the modified beta distribution.

e. S(YES, NO, NO) is the state vector which indicates that

there is reason to suspect a significant difference in the update success

proportion, that the number of prior observations is less than or equal

to the number of update observations, and that the prior distribution

does not reflect the uncertainty in the estimate. Before continuing,
one must ask the following question "Is the prior distributiop more or

less uncertain than is thought to be reasonable?" If it is more

uncertain, use a prior weight of one. The rationale for this is:

* There is a reason to suspect a significant difference in
the update success proportion; hence one would probably
want the update to have at least as much or more weight
in the posterior distribution. Therefore, the weighting
factor selection is dependent on the number of prior and
update observations.

0 For this state vector, the number of prior observations is
less than or equal to the number of update observations.
Hence, the update information will have at least equal
weight (even if W=1).

0 Finally this prior distribution is thought to be more
uncertain; therefore, this would tend to suggest a weight
greater than one. Once again this is unrealistic, because
a prior weight greater than one exceeds the upper bound on W.
In addition, the fact that there is reason to suspect a

*m is the number of update observations and n is the number of prior
observations.
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drastic difference in the success proportion of the
update observations would tend to imply weighting the
prior distribution less. In this instance, the update
observations will have at least equal weight, and it is
not necessary to reduce the prior weight. Therefore, in
light of all of this information, a prior weight of one is
thought to be most reasonable.

On the other hand, if the prior distribution is less uncertain

than is thought to be reasonable, the prior weight should be less than

one. Again the exact value is a function of the particular problem

f. S(YES, NO, YES) is the same state vector as S(YES, NO, NO)

except that the prior distribution does reflect properly the uncertainty

in the estimate. Based on all of this information and the rationale

for the first two components of S(YES, NO, NO) a prior weight of one is

recommended.

g. S(YES, YES, NO) is the state vector that indicates that

there is a reason to suspect a significant difference in the success

proportion, the number of prior observations is greater than the number

of update observations and the prior distribution does not reflect

properly the uncertainty in the estimate. Again the analyst must ask

the question, "Is the prior distribution more or less uncertain than

is thought to be reasonable?" If it is more uncertain then use a prior
n

weight W = fr. The reasons for selecting this weight are as follows:

* A drastic difference is suspected in the update success
proportion. Therefore, one would probably want the update
to have at least as much weight as the prior, and a prior
weight of W = n satisfies this requirement.

0 However, for this state vector the number of prior observations
is greater than the number of update observations. Using
a prior weight of one, the prior would dominate the posterior.
Therefore, it seems reasonable to use as the greatest
prior weight nm . The question that still remains is should

the prior weight be less than W =.
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Since tho prior distribution is more uncertain than is
thought to be reasonable, one might be inclined to use
a prior weight greater than one, but once again a prior
weight greater than one exceeds the upper bound on W.
Because the prior distribution should not dominate the
posterior distribution and the prior distribution is
already thought to bg more uncertain than is reasonable,
a prior weight, W - i., , is thought to be the best compromise.
This trade-off accepts a little more uncertainty in the
prior estimate while allowing equal weight to be given the
update distribution.

On the other hand, if the prior is less uncertain than is

thought to be reasonable the prior weight should be less than or equal

to W . r. The reason is that even if a weight greater than - would

reflect tfhe uncertainty in the estimate, one would still want the update

observations to have at least equal weight in the posterior distribution.

h. S(YES, YES, YES) is the same state vector as S(YES, YES, NO)

except that the prior distribution does reflect the uncertainty in the

estimate that is thought to be reasonable. Therefore, a prior weight

of W = L is recommended. The trade-off again is in terms of having

the update weigh as much as the prior and increasing the uncertainty

in the estimate. Once again it is thought that the update should have

least equal weight, but this is constrained by the increase in then
uncertainty. Therefore, it is thought that a prior weight of W = 1-

is the best compromise.

Before continuing with an example, it should be emphasized

again that this method is a general framework for systematically

shifting the prior distribution and selecting a prior weight in light

of the analyst's state of knowledge. This is not a prior weight index;

other weights might be assigned equally well under the same logic.

Its application is indeed largely a matter of personal preference

and intuition. As indicated earlier, it is always good procedure

to test the sensitivity of the posterior solution to the prior weight

selected. The example that follows should give some insight into the

practical application of this method.
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6. EXAMPLE

6.1 Background.

To illustrate the application of the Bayesian procedure and

the method for constructing the prior distribution, the following

hypothetical decision problem is described. Assume that the US Army

is developing a surface-to-air missile to provide forward air defense

for the Field Army. The tactical production decision is to be made

in about a year, and to date there have been test firings with ;esearch

and Development rounds (40 firings) and Industrial Prototype rounds

(30 firings). In the near future, the Initial Production Tests are to

be initiated, and it is anticipated that by the decision date there

will be 20 test firings with production missiles. One of the important

questions facing the decision maker is, "Will the system meet the

production missile reliability (R.) requirement?"

Unfortunately, only a limited amount of production test flight

data will be available by the decision date, and if only production

missile test data are used to estimate RM, then a great deal of poten-

tially useful information is being ignored. Further compounding the

problem is the fact that the contractor is claiming that the quality

control program at the manufacturing plant has been improved, and as

a consequence the reliability is significantly higher than that demon-

strated to date by non-production rounds. The contractor's past

performance and the fact that no concrete procedure changes have been

instituted at the manufacturing plant make one suspect the claim.

Therefore, the problem is how can the non-production missile data and

all other pertinent inforination be meaningfully combined with the

production data for decision-making purposes.

6.2 Scoring of Missile Flights.

The results of a hypothetical scoring of the Research and

Development, Industrial Prototype and Production missiles are summarized

in Table 6.1. Developing a rationale for scoring non-production and
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production flights is a large task, but not an impossible one. No

example of a scoring criterion is provided here because it is not
thought to be germane to this example. One point that should be made,

however, is that the objective in developing a scoring criterion

should be to remove all possible biases. For instance, if as a result

of the non-production flights, design problems were diagnosed and corrected

then these fl.ights should not be counted as observations. Based on the

hypothetical scoring of the missile test flights in Table 6.1, there

are 40 observations for the pre-production rounds and 20 observations

for production rounds (i.e., "no tests" do not count as obscrvations).

TABLE 6.1 MISSILE FLIGHT FIRING SUMMARY

Type of Missile Successes Failures No Tests

Research and Development 15 10 15

Industrial Prototype 10 s 15

Production 16 4 0

6.3 Application of the Method for Constructing the Prior Distribution.

To apply the Bayesian procedure described in this report in

a real-life situation, the problem must have the attributes described

earlier, (Bernoulli process test data for update and prior) which this

problem obviously does.

When we recall the method which was presented in Section 5

for constructing the prior distribution, we ask the question, "Is there

any reason to suspect a significant difference in the success ratio for

production missiles?" In this hypothetical example, this ratio, based

on contractor claims and on development and test agency engineering

judgement, is suspect.

All of the expert judgment indicates that the most likely

value of the initial beta. distribution is low. Therefore, a more

reasonable value must be specified and ML = must be solved for e.
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From the information obtained by the development agency engineers,

contractor engineers, and test agency engineers, a more reasonable

most likely value is thought to be 0.75. Given ML w 0.75, t=25,

and m=40, the previous equation can be solved for e. In this in-

stance e=6, and the adjusted prior beta distribution now has param-

eters, 25 and 9.

Next, there are 34 prior observations and 20 update obser-

vations. In addition, the prior is less uncertain than is thought to
be reasonable. Hence the state vector is S(YES, YES, YES). and the

n 20
prior weight recommended is W <.j- (i.e.,2W- ). Since 20/34 is

approximately 0.59, an upper bound of 0.6 would probably be used for

computationalease. The reason for this bound on the prior weight

is that, s.nce a significant difference in the update success propor-

tion is expected, the update observations should have at least as much

weight as the prior observations in the posterior distribution. The

exact value of W depends on which prior weight less than or equal to

0.6 will most reasonably reflect the uncertainty in the estimate.

To illustrate the impact of a dominant prior consider the

following example. Suppose a significant difference in the update

success proportion was expected, and after shifting the most likely

value of the prior distribution, there were 16 successes out of 40

observations, Even though an effort has been made to select a reasonable

prior distribution, one would still want the update information to have

at least as strong an influence as the prior information in the posterior

distribution. If a prior weight of one is used, and there were 13 successes

in 20 update observations (i.e., a 0.65 success proportion), then this

extreme variation in the update success proportion would not be adequately

represented in the posterior distribution. In this instance, the mean

of the posterior distribution of the reliability is equal to 0.483.

However, the probability of the true reliability exceeding 0.65 (the

success proportion for the update observations) is almost zero, which

is not reasonable if the update information is to be emphasized. A
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maximum prior weight of 1/2 will give at least equal weight to the

update information and allow the update to have at least an equal

influence on the posterior distribution.

Before continuing, two points should be emphasized. The

first is that the determination of the prior weight is not an exact

quantitative science and should not be approached as such. The question

which is to be answered is whether the prior should or should not

dominate the posterior. In the preceding example, distinguishing

between prior weights of 0.45, 0.50, or 0.55 is meaningless. ft is

probably not possible to make such a fine distinction. The second

consideration is that another set of circumstances could yield an

entirely different prior weight.

Using a prior weight equal to 0.6, the parameters of the

prior beta distribution for the missile example are 15 and 5.4,

respectively, These are based on 25 successes in 34 pre-production

missile test firings. For computational ease, the parameters can be

rounded off to 15 and 5 without any significant impact on the final

results.

The last step in applying the method is for the analyst to

decide if the prior distribution should be weighted less than 0.6.

Weighting the prior distribution less than 0.6 depends on whether a

prior weighted by 0.6 properly reflects the uncertainty.

In the missile example, the prior distribution with W a 0.6

has as its mean 0.75 (mode 0.78) and the limits of the distribution

are approximately 0.46 and 0.98 (see Figure 6.1). The question is,
"Is the true estimate likely to lie outside the limits of the distribution?"

In this example, the limits of the distribution are thought to be

reasonable. On the other hand, if the limits of the distribution are

significantly narrower than is thought to be reasonable, then the

prior weight can be further reduced to reflect this uncertainty. It

should be noted that reducing the prior parameters by somne factor

merely increases the variance or spread of the .prior distribution but

does not affect the mean.
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Figure 6.1 - Beta Prior Probability Density Function
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Given the parameters of the prior distribution (t=15 and

m-e=5) and the update distribution parameters (k=16 and n-k=4) in

this example, the posterior probability density function of RM is

r(40)RM30 (1-R8)8

RM, 16  r(31)r(9) o.

This distribution has as its mean 0.775 and standard deviation 0.07

(see Figure 6.2). If, in this hypothetical example, the RM requirement

is 0.85 or greater, then by use of the foregoing posterior probability

density, the probability of achieving this requirement is approximately

0.12 (see Figure 6.3).

While this is not a favorable result, the following steps

can be taken:

0 Some less stringent requirement could be evaluated
(e.g., the probability that RM is greater than or equal
to 0.7).

* The distribution could be examined to determine the
lower limit.

* One could examine the sensitivity of the prior distribution.

However, the sensitivity analysis should not be conducted

indiscriminately (i.e., don't play a numbers game). There should be

a legitimate reason for changing the prior distribution. These reasons

will generally revolve around debate over the rationale (assumptions)
for selecting the most likely value and/or the prior weight. For

example, there may be two distinct opinions about the prior weight;

one group may be optimistic (smaller weight) while the other group

may be pessimistic (larger weight). After analyzing the rationale
behind both of these opinions, the analyst may have selected a weight

somewhere between these two schools of thought. In this example it

is legitimate to do some sensitivity analysis to examine the impact of

the optimistic and/or pessimistic point of view.

The only one of these three possible activities that deserves

illustration is sensitivity analysis. In this example, only the prior
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\weight will be modified. To examine ihe impact of being ouptimistic,
a prior weight of 0.4 is used. By use of this weight, the parameters

of the prior diltributiorn are 10 and 4, respectively. This gives rise

to the following posterior probability density function:

1' (34)ý 25 (IRM7

fRM 1 1R6 11 6 ) = 1'(26)r(8) 0 RM <Ii,

with mean 0.76 and standard deviation 0.07 (seý Figure 6.4). Based on

this new posterior distribution the probability that R, is greater than

or equal to 0.85 is now 0.11 (see Figure 6.5). Hence, the posterior in
this case is not sensitive to a prior weight change of 0.2.

What is really being done in the sens\itivity analysis is
that the uncertainty in the estimate is being increased or decreased

as the number of prior observations decreases or increases while the

mean and mode are being shifted toward or away from the update success

ratio.

The preceding example serves to illustrate the Bayesian

procedure and the method foF constructing a prior weight it should
also demonstrate that one can systematically evaluate ani combine
relevan.: objective and subjective information for decision making

purposes. The Bayesian procedure described in this paper was used

to estimate the uncertainty in the estimate of missile reliability)in

a recent study with little more effort then is normally required for a
reliability evaluatidn using the classical procedures. This esdimate

was then used in a Monte Carlo simulation to estimatý-the distributior\

of effectiveness for the missile againr- the postulated threat in the

various modes of attack. Based on this application, the procedure

was found to be of significant value for analysis in support of the

ddci.sion making process. The need for having a systematic procedure
for analyzing one's state of knowledge became apparent in the appli-
cation, and the method des~cribed in Section 5 was d.veloped.
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7. SUMMARY AND CONCLUSIONS

This report is concerned with decision making under uncertainty

for the class of problems where the decision variable is the Bernoulli

success probability, p. The problem is analyzed from classical and

from Bayesian points of view.

"Historically, either classical or Bayesian point or interval

estimation has been the standard approach to this problem. In using

classical techniques, it is difficult to account for all of the

information concerning the unknown quantity which comes from any

source other than the particular sample which has been taken. Further,

none of the above approaches, either classical or Bayesian, addresses

the decision problem directly, By use of the results of these procedures,
one cannot make probability statements about meeting or exceeding a

specific requirement for p, nor can one readily examine the uncertainty

in p for the purpose of defining a more reasonable requirement for p.

As discussed in Section 4, the use of the posterior beta

distribution, obtained in Bayesian updating, is a viable alternative

to the above-mentioned procedures. It takes into account prior in-

formation and can also be used directly in the decision-making process.

Unfortunately, there still seems to be some mystique sur-

rounding any application of Bayesian statistics. Th4.s is due in some

instances to a disagreement with the Bayesian philosophy and in others

to the lack of a true understanding of the mechani&m of the Bayesian

approach. In this respect, many of the popular objections have been

examined and found to be unwarranted for this class of problems.

Perhaps one of the most widely used arguments against the use of the
Bayesian procedure is the apparent absence of a rational basis for

constructing a prior distribution. For this class of problems, however,

the argument has very little substance since, in general, there will

certainly be a basis for selecting the form of the prior distribution.

and there does exist a rationale basis for constructing a prLor

distribution, as evidenced by the suggested method in Section 5.
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In relation to point and interval estimation, Section 3

contains a detailed comparison of the classical maximum likelihood

and Bayesian point estimates with respect to expected squared error

loss. It also contains a comparison of the lower confidence limits

resulting from a classical and a Bayesian approach. In both these

instances it is shown that, in many non-trivial practical situations,

the Bayesian procedures provide more realistic estimates when using

minimum expected squared error loss and greatest lower bound as the

criterion for determining the best point and interval estimates.

Thus, it is the contention of the authors that the Bayesian

approach, although not to be applied indiscriminately, should be given

serious consideration when drawing inferences concerning the Bernoulli

process success probability, p. This is particularly true in the

decision making context.
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APPENDIX i

BETA TO F TRANSFORMATION

A random variable U is said to have a beta distribution

with parameters a and b, if its probability density function is of the

form

f(u; a,b) r(ab) U al (i-u)b-1

a> 1
b > 1.

Consider the transformation

a5-

FI U Vu = - z

+bV

The Jacobian of the transformation (I) is

a
j dU b

J = -q =(I +Ub) Vg

Thus, the probability density function of V is given by

a a [ a a

g(v; a,b) = r(a+b) +a 4 (+

0 <v<>

a> I
b>l

which is the probability density function of a random variable having

an F distribution with 2a and 2b degrees of freedom.
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Using transformation (1), one can make probability statements

concerning a beta variate using tables of the F distribution (This

is desirable since they are more available.). For example the

100(1-a) percent lower confidence limit for the Bernoulli success probability

is given by the value of PL which satisfies the equation

P[PL < U < 1] = 1-c (2)

where U has a beta distribution with parameters a and b. Using

transformation (1) probability statement (2) is seen to be equivalent

to

a V
b

where<V < 1] = 1-a (3)

where V has an F distribution with 2a and 2b degrees of freedom.

After some algebraic manipulation, statement (3) is seen

to be equivalent to

P[O < V <a (F_ - 1)] =1-a (4)
L

where V has an F distribution with 2b and 2a degrees of freedom.

The solution to equation (4) is then given by

1

PL 1+- v
a 1-at

where v 1-a is the 100(1-ct) percent point of the F distribution with 2b and

2a degrees of freedom.
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