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ABSTRACT

A series of numerical experiments axe described which solve for

the time-dependent flow field around a circular cylinder accelerated
to supersonic speeds. This study is performed using a computer

program developed by Scala and Gordon which models the full time-

dependent Navier-Stokes equations. Results are presented for i~nolh

two flow past a cylinder at freestream Reynolds numbers of 15.0,

46.8, 157.2, and 704.6, based on cylinder diameter.

The numerical results are compared with analytical solutions and

experimental measurements and the accuracy of the numerical results

is discussed. These comparisons show where our numerical solutions

of the Navier-Stokes equations fail to give accurate results.
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I. INTRODUCTION

This report describes a series of numerical experiments based on

a computer program developed at the Gereral Electric Company by Scala
1*

and Gordon . This program which is bused on the full time-dependent

Navier-Stokes equations is used to calculate the flow field around a

circular cylinder accelerated to a supersonic velocity. The validity

of our numerical results is determined by comparison with analytical

solutions and experimental wake measurements.

Accurate numerical solutions of the full Navier-Stokes equations

are desirable for many problems in weapons technology. For problems

like the internal flow in fluidic devices or the wake flow behind a

ballistic missile the simplifying assimptions of inviscid flow or

high Reynolds number boundary-layer flow are not applicable. To

describe the flow field in such problems it is possible to resort to

numerical solution of the full Navier-Stokes equations.

Several numerical solutions of the Navier-Stokes eguation6 have

been published for compressible viscous flows, such as those of
2 3 4 5Crocco , Thommen , Scala and Gordon , Allen and Cheng , and Trulio

and Walitt 6 '•. The flow detail exhibited in these solutions is quite

remarkable, but in certain regions of the flow field the numerical

solutions may not be very accurate. At the present time we should

accept the results of anuy such numerical computation with great

caution since the mathematical theory on which the numerical solution

is based is inadequate. There are no rigorous proofs of stability or

convergence of the numerical methods employed for these solutions, nor

are there any proofs of uniqueness. It is necessary to assess the

validity of any such numerLcal computation by comparing it against

known analytical solutions and experimental measurements.

Results are presented for Mach two flow past circular cylinders

at Reynolds numbers 15.0, 46.8, 157.2, and 704.6. The numerical

solutions are compared with analytical solutions for the density ratio

* RefeAencms aes farted on page 48
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across the bow shock, shock structure; and shock standoff distance.

The validity of the cylinder wake-region calculations is determined by
8

comparison with experimental hot-wire wake measureiments

I1. FORMULATION OF THE PROBLEM

The governing equations on which our numerical solutions are based

are formulated within the framework of classical continuum mechanics.

The Navier-Stokes equations are formed from Cauchy's First Law of

Continuum Mechanics

Du~ SrP - = 9x
Dt 6xj

when the stress tensor TI is expressed as a linear function of the

deformation gradient. We thus assume
u buI 8u.2)T ij = ( -P + X x 8-,- •ij + _P• . (2)

ijm xi

The basic equations have been written here in Cartesian tensor

notation for simplicity. The viscosity coefficients appearing in

equation (2) are further assumed to be related by Stokes postulate

3X + 2P = . (3)

Equation (3) can be shown to be valid for monotomic ideal gases.

The Navier-Stokes equations give us three equations to relate the six

field functions. We also use the continuity eoaation

PP + (4) 1
Dt 6x

the energy equation
au.

T + ui ( T u2PC • • + 1 •'7)

au. 6u au
m I i +

14
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and the equation of state for a perfect gas

p = pET (6)
In this study the time-dependence in equations (1), (4), and

(5) is retained and we seek steady-state solutions of the governing

equations by time-wise integration from a prescribed initial state.

The steady state is thus approached asymptotically with time.

The partial derivatives in the governing equations (1) thru

(6) are replaced by differences in both space and time. This

approximation reduces the system of nonlinear partial differential

equations to a system of nonlinear algebraic equations which can be

solved by numerical iteration. The set of difference equations Used
I

in this procedure was developed by Scala and Gordon
The complete system of equations is formulated in general two-

dimensional orthogonal coordinates. This system of equations together

with their difference approximations are listed by Scala and Gordon1

In the present study we consider time-dependent flow past a cylinder

using cylindrical coordinates (R,G) with G measured from the forward

stagnation point.

III. DIFFERENCE EQUATIONS

The complete set of difference equations used in -he computer

program to approximate the governing equations are discussed in

detail by Scala and Gordon 1. The procedure followed is to split the

full system of governing equations into "hyperbolic" subsystems and

parabolic terms which are differenced separately and then combined

into a final set of difforence equations.

The second-order viscous terms, the parabolic termsara

differenced using an alternating explicit-implicit scheme . At

every time step the calculation at each interior point is alternated

between an implicit formula and an explicit formula. According to

this procedure implicit equations are used for the calculations at

every alternate interior mesh point (with respect to both R and e) at

15



time t = (n) At. At the remaining interior mesh points explicit

equations are used for time t = (n) At. A time t = (n+1) At the

explicit points of the previous time step become implicit and vice

versa. This procedure then repeats for subsequent time steps.

The "hyperbolic" subsystems are made up of both the inviscid

terms and the lower order viscous terms. These "hyi.erbolic" terms are

differenced by transforming them to diagonal form and then differencing

them according to the sign of the characteristics. The calculations

for these terms are then alternated between explicit and implicit
equations in the same manner as described for the second-order terms.

The set of difference equations used in these cal.ulations and

the manner in which they are numerically integrated introduced several

uncertainties into the accuracy of the numerical solutions. In the

present difference formulation the first-order nonlinear terms

involving spatial derivatives of 4(T) and k(T) in the momentum
equations are treated like hyperbolic terms. These terms do not

necessarily remain hyperbolic throughout the flow field. The amount

of error introduced into the steady-state solutions by this approximation

cannot be evaluated.

The second uncertainty arises from the implicit evaluation of the

second-order cross-product derivatives (a2U/aRa6 , etc.). These

derivatives are approximated at alternate time steps by assuming that

implicit quantities are known from the previous time step. This

simplification eliminates the iterations needed if the true implicit

equations were used at each alternate time step. This procedure

introduces some uncertainty into the time-dependence exhibited by the

numerical solution. It is not known what effect, if any, this procedure

has on the final steady-state numerical solution which is obtained

asymptotically with time.

16



IV. INITIAL CONDITIONS AND BOUNDARY CONDITIONS

The treatment of the time-dependent Navier-Stokes equations

requires the specification of both initial conditions (t=O) throughout

the flow field and boundary conditions (t > 0) on all boundaries.

Figure 1 gives a schematic representation of the flow field surrounding

a cylinder traveling at supersonic speed. The flow field is character-

ized by a region far upstream of the body in which viscous effects are

negligible. There are two shock regions in the flow field; the bow

shock and the wake shock regions. Near the surface of the cylind'r

viscous effects become predominate and this region is characterized by

a viscous layer which merges into a wake region downstream. In the

wake region neither inviscid nor boundary-layer considerations are

valid.

For times -< 0 in our numerical computations we assumed a uniform

flow having freestream conditions throughout the flow field. For times

t > 0 the velocity components on the surface of the cylinder were

brought linearly to zero and held at this value. The following

velocity boundary conditions were specified on the cylinder's surface

u(el) Bui) (,)
v(ei) -- Bv~el)

where t I t)/tl for 0 g t tI

1  t fr:tt,(8)

0 for t > tI

For times t Z t we thus specify the no-slip condition on the surface

of the cylinder.

Physically, the process of initialization described by (7) and

(8) treats two different types of initial conditions. If t1 is less

than the time step At used in the numerical integration, then we model

a cylinder impulsively accelerated from rest. If t > At we treat

flow past a porous cylinder with the amount of mass flux through the

surface decreasing to zero between times t=O and t=t1

17
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In the latter case, for times t < tI, mass exits the downstream

surface of the cylinder into the flow field. We specify the density

of this mass to be

p -- (3 + B) (9)

for times 0 r t < t . The procedure followed by Scala and GordonI 1
for specifying density boundary conditions is that whenever the flow

enters the computation region through a boundary the density must be

specified as a boundary condition, otherwise it is calculated at that

boundary. The results of our calculations show that this boundary

condition, may be incorrect but it is not known whether the problem

is properly posed as stated.

The boundary condition for the temperature on the cylinder's

surface is specified by the assumption of an adiabatic wall

B 0

It is hoped that the time-dependent history of the solution

resulting from these initialization procedures will have a physical

counterpart. It is assumed, however, that the resulting steady-state

solution will be unique, independent of the initialization process

prescribed. This assumption, unfortunately, cannot be verified

analytically.

In our computations we choose the steady state from observations

of the time-dependent flow in the bow shock and wake regions. At

time zero the bow shock forms adjacent to the cylinder and then

propagates upstream, gradually reaching a standoff distance which

does not change appreciably with time. Tile wake flow then establishes

itself after the bow shock has reached its steady-state position.

After the bow shock is stationary we monitor the wake flow until this

flow is invariant, or almost so, after several hundred time steps.

The flow field at this stage is then said to represent the steady-state

19
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solution.

The specification of boundary conditions far from the cylinder

poses a difficult numerical problem. We have used two different

techniques in this study in an attempt to determinri the influence

of these boundary conditions on the accuracy of the numerical

solution. The first method follows that used by Scala and Gordon

We specify "artificial" boundary conditions along an outer boundary

located at a finite distance from the cylinder's surface. The second

technique has been used by Sills 1. In this method a coordinate

transfornstion is used to map the interval [O,-] of R onto a finite

interval [0 1]. The proper boundary conditions at infinity can then

be specified at the boundary of the transformed region. Table Al

shows which method was used for each calculation.

In the former case, with the outer boundary located at a finite

distance from the cylinder, we prescribe the outer boundary to be

s - [i + 4 (m-l) x 5 -ý (M-1) x4  ]; (14)

where (x - -(12)

The value m determines the degree of difference mesh stretching

downstream of the cylinder. Our calculations were carried out for

ci 2.5. With this value of m the outer boundary downstream of the

cylinder (8 = 1800) is two and one-half times farther from the

cylinder than at 0 = 0°. Figure 2 shows a schematic of the region

of computation with m = 2.5. Transformation (11) facilitates the

use of a fine difference mesh upstream in the bow shock region and a

coarse mesh downstream in the wake region.

For those calculations in which the mapping was employed, the

radial coordinate was transformed by

a- e (R-R) (13)

The arbitrary constant a is a stretching factor which determines the

location of the image points. This transformation permits the

21.



specification of boundary conditions at infinity while allowing the

interior grid points to be concentrated near the cylinder. It should

be noted that the use of this transformation results in a solution

which is inherently asymptotic at the outer boundary. As long as the

derivative 6/bg remains bounded as • - 1 in the computational plane,

then a/aR - 0 as R - -. This inherent asymptotic behavior may

unnecessarily result in an overspecification of boundary conditions

in the numerical computation.

In our numerical solution we have made a symmetry assumption about

the flow field in order to reduce the computer storage requirements and

computation time. We assume a plane of reflective symmetry bisecting

the cylinder's cross section and numerically treat flow in the upper half

plane 0 ! e < r . We thus specify symmetry boundary conditions along

boundaries at e 0 and 0 = 1800. The symmetry conditions prescribed on

these boundaries are

a=0, L = 0 and V = 0 (14)

No boundary condition was prescribed for the density on these bound-

aries for the calculations with a finite outer boundary (11). This
I

follows the procedure used by Scala and Gordon . For the calculations

using the mapping (13) we additionally specified

bp 0 (15)

along the boundaries at 6 = O' and =- 1800.

In all calculations we prescribed freestream velocity components

and freestream temperature along the outer boundary, whether using

(11) or (13). F-reestream values were specified for density at the

outer boundary whenever the flow at a boundary point was directed into

the computation region when using (11). For the calculation using

the mapping (13) freestream values for density were always specified

at infinity.

22



Figure 5 shows the domain of computation and boundary conditions

for two of the cases calculated using the finite outer boundary (il).

The boundary conditions specified on each boundary axe shown in thin

figure. The two oute" ,•udaries shown in this figure correspond to

their locations for t lculations performed for Re 46.8.

V. DESCRIPTION OF COMPOTATIONS

Numerical compubations were perfor2m.ld for Mach two flow past

circular cylinders at freestream Reynolds numbers of 15.0, 46.8,

157.2 and 704.6, based on cylinder diameter. Appendix A contains the

dimensional values assigned to the flow field variables for each case.

Each case will be referenced by its approximate freestream Reynolds

number. The four cases for a Reynolds number of 46.8 are differentiated

by a suffix (i.e. 47-1, 47-2, 47-3 and 47-4).
The largest cylinder considered had a diameter of approximately

one-half inch (Re = 704.6). The calculations for this case represent
an upper limit of the type of calculation that can be performed in a

reasonable amount of computer time using this computer program. All

t. calculations were performed on the BRIESC II computer at the Ballistic

1' Research Laboratories. I
The difference mesh was constructed so that the angular spacing

remained constant at
a e : 6 °(1 6 )

AO ( /3o) = (1

for all computations. The length of a mesh element in the radial

direction varied with the different computations. The smallest mesh

was employed in case 47-1 for flow past a 3.056x1O0' ft diameter

cylinder with LR = 1.030x10" ft along the forward stagnation stream-

line. The largest mesh occurred in calculations such as case 47-.,

which used transformation (13). In such cases the mesh elements

farthest from the cylinder stretched from some finite radial coordinate

to infinity. The radial mesh variation was chosen by specifying a' in

transformation (1.3) so that there would be several mesh points per

23
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freestream mean free path across the bow shock at all times..

A. Be = 704.6
d*

The calculations for Re 704. were initialized from time zero.
d.

The velocity components on the surface of the cylinder were brought

linearly from their freestream value to zero in a period of 6 ýsec

(tI = 6xlO-6 sec). The boundary conditions prescribed for this case

are those used with the finite outer boundary.

This case was run from time zero to a non-dimensional time of

S= 4.80 at which time the flow field was still unsteady. These

calculations required approximately 40 hoc)rs of computer time on.

BRLESC II. On the basis of the shock speed and standoff distance at

T = 4.80 was estimated that an additional 30 to 40 hotirs of computer,

time would be required before the flow field would reach steady-state

conditions. The calculations for this case were not carried beyond

this point.

A particular difficulty arose with the density calculations at the

forward stagnation point on the cylinder. The density at the forward

stagnation point increased rapidly with time from its freestream value

at time zero, reaching a peak value approximately 12 time.s the free-

stream density at t = 6 psec. Figure 4 shows the density variation in

the vicinity of the forward stagnation point for the first 12 P sec.

For times after t = 6 psec the density at the forward stagnation point

decreased monotonically with time. At t = 12 psec the stagnation point

density had decreased to approximately seven times the freestream

value.

A second calculation was run for this case with t 3 sec, one-

half the value used previously . The peak stagnation point density

' The calcutations 60or thi ca• e were performed by DA. Pa~u Gordon
whAe a s6ummer emptloyee at the BRL. He adapted hZ. or'iginal compbtteA

programI to BRLESC 11 and checked it for compatibitity with oWL Computer
by kunning a previously computed caAe.

25
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was lowered by approximately two percent, but now occurred at t 3 Psec

instead of t = 6 psec. These two colculations show that the time

history of the stagnation point density is quite dependent on the

initialization process prescribed.

The peak values of the density predicted at the fowardc stagnation

point are incorrect. Figure 4 shows that there is a density

discontinuity for t = 12 IJsec at the forward. stagnation point. This

discontinuity results because the numerical computations do not

satisfy the symmetry condition

ae (17)

along 6 = 00. By additionally specifying (17) this discontinuity is

eliminated.

B. Re = 46.8d

Three sets of steady-state numerical solutions were obtained for

Red = 46.8. These calculations were for a cylinder of approximately

1/32 inch diameter. The first case (47-1) was started at time zero

and run until the steady-state solution was reached at T = 26.2

after approximately 5100 time steps. This case required 13 hours of

computer time on BRLESC II. Figure 3 shows the placement of the outer

boundary used for case 47-1.

A second calculation (47-2) was run to evaluate the effect of

specifying freestream conditions at the outer boundary. For this

second case the outer boundary was placed farther from the cylinder

than in the first case as is shown in Figure 3. This case was

initialized at T = 26.2 by interpolating from the steady-state flow

field of case 47-1. The governing equations were then integrated in

time until a new steady-state solution was reached for this boundary

location. This required approximately 2200 additional time steps.

The numerical solution achieved a new steady state at T 42.1 after

18 additional hours of computer time.

27



The first two cases (47-1 and 47-2) used the boundary conditions

described previously for use with a finite outer boundary. No

additional density boundary conditions were specified. The calculations

for case 47-1 were initialized with t= 2 psec. A value of t was not

necessary for case 47-2 since it was started by interpolation at

T = 26.2.

The third case (47-3) employed the coordinate mapping (13) with

the outer boundary at infinity. In this case we addlitionally specified

a symmetry condition for the density.

(18)

along the boundaries at e = 0° and 0 = 1800. This case was started
at time zero with t< At and thus treated a cylinder Impulsively

accelerated from rest. The steady-state solution was reached at

3 = 59.08 after 12 hours of computer time and approximately 2900

time steps.

None of the steady-state solutions fox Red 146.8 predicted

separation. The effect of the downstream symmctry conditions on the

numerical solutions could not be determined from these calculations.

In order to determine if the symmetry boundary conditions were

restricting "numerical separation" a fourth ease 47-4 was run.

Case 47-4 was set-up with a difference mesh surrounding the

cylinder (0 3 , • 5600). The number of mesh elements used was twice

that of case 47-5. The mesh size was identical to that used in case

47-5. This 3600 placement of nodes eliminated the necessity for the

specification of downstream symmetry conditions. This case was

started at time zero in the same manner as case 47-3 and run to a

non-dimensional time T = 7.90. A comparison of cases 47-5 and 4-7-4

showed them to be almost identical at each time step and it was

concluded that their steady-state solutions would be the same. The

calculations for case 47-4 were stopped at this point. These results

indicated that separation was not restricted by our symmetry boundary

conditions.
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Figure 5 shows a comparison of the three steady-state numerical
solutions in the wake region. Near the cylinder (R/Ro < 5) the two

calculations using a finite outer boundary (cases 47-1 and. 47-2) are

in agreement. The calculations for case 47-3, using the coordinate

mapping, piredict higher densities near the cylinder than predicted.

by the first two cases. The calculations for cases 47-1 and 47-2

fail far downstream of the cylinder. These two cases predict large

gradients of velocity, density and temperature far downstream. In

the physical flow field large gradients would be present if there were

a wake shock but would be opposite in sign to those predicted by these

calculations. The large gradients predicted downstream in cases 4'-l

and 47-2 a-.e typical, of those in rarefaction waves. These gradients

result from the unnatural acceleration the flow experiences in the

numerical solution by the specification of freestream boundary

conditions downstream of the cylinder.

The niuerical solution for case 47-3 predicts a more realistic

qualitative behavior far downstream (R/RH0 > 10). The large gradients

are eliminated in this solution as a result of the asymptotic behavior

of the coordinate mapping. None of the three steady-state solutions

for Red = 46.8 predicted a wake shock downstream of the cylinder.

In cases 47-1 and 47-2 no density boundary condition was specified

along the downstreaxm portion of the outer boundary (refer to 4 in

Figure 3). Both of these cases predict densities mucl lower than free-

stream at the outer boundary along e = 1800. Case 47-ý predicts a

density downstreamr which asymptotically approaches the freestream

value. It thus appears that the mapping and boundary conditions used

in case 1 7-3 produce better qualitative results downstream of the

cylinder than the calculations prescribing freestream boundary

conditions along the finite outer boundary.

Figure 6 shows the density distribution across the bow shock at

its intersection with the stagnation streamline. The numerical

solutions for Red = 46.8 predict shock thicknesses of two to three

mean free paths. The analyt'ical viscous norual shock solution of
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Morduchow and LibbyU shown in this figure has a shock thickness of

two mean free paths. The good resolution of the shock region in our

numerical computations is due to the very fine difference mesh used

in the bow shock region; less than one mean free path in the radial

direction. Numerical solutions typically spread shocks over many

mesh widths and thus predict innacurate shock thicknesses. Walitt12

calculates shock thicknesses on the order of 90 mean free paths for

Mach two flow at Red = 1409.

Figure 7 shows the time history of the density ratio across the

bow shock at 9 = 00. The numerical calculations for case 47-1 predict

a steady-state density ratio which is seven percent higher than that

predicted analytically. The analytical solution used for comparison

is the normal shock solution with first-order corrections for shock

curvature due to Chow and Ting1 . The numerical calculations for case

47-3 predict a steady-state density ratio which is 14 percent higher

than this analytical solution. The Rankine-Hugoniot normal shock

solution is also shown in Figure 7.

Figure 8 shows the density distribution along the stagnation

streemOAne predicted by the three steady-state numerical solutions.

Near the cylinder case 47-3 predicts much higher densities than

either case 47-1 or 4'r-2. Case 47-2 is seen to predict a larger

standoff distance than either of the other two cases. These results

show that the manner in which the boundary conditions are specified

for the numerical solutions has a very large influence on the density

distribution predicted near the cylinder; both upstream and downstream.

None of the three steady-state calculations for Re = 46.8d
showed any tendency toward separation as we would expect on the basis

14
of the incompressible experimental results by Taneda1 . His results

show that for incompressible flow past cylinders a separation bubble

forms downstream for Reynolds numbers above Re ; 5. For Reynolds
d.

numbers above Red *• 45 part of the separation bubble is shed alternately
from each of the two recirculation regions. In the physical

incompressible flow field symmetric separation is unstable for
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Reynolds numbers above Red 45. A calculation for Red 15.0 was

run to make certain that our symmetric downstream boundary conditions

were compatible with the stability of the flow field.

C. Red = 15.0

The n2nerical calculations for Red = 15.0 employed the coordinate

mapping (13) and the boundary conditions previously described for use

with the mapping. The computations were started at time zero using

the initial conditions for the impulsively accelerated cylinder. The

steady-state solution was reached at T = 47.7 after 15 hours of

computer time and approximately 3000 time steps.

The mesh size used in this computation was identical to that

used for case 147-3. The density was the only freestream flow

variable which differed from that used in case 47-5. Table.AI shows

the values specified for the freestream flow quantities in this case.

The purpose of this low Reynolds numbur ease was to determine if

our specification of downstream symmetry boundary conditions restricted

separation in the higher Reynolds number solutions described previously.

The steady-state numerical solution for case 15 showed no tendency

toward separation. It thus appears that our symmetry boundary condition

is compatible with the numerical computation and does not prevent

separation.

Figure 9 shows the steady-state density and temperature distri-

butions along the stagnation streamline for Rod = 15.0. The density

ratio predicted by this numerical solution across the bow shock is

2.77. This is three percent higher than that predicted by the normal
13

shock solution with first-order corrections for shock curvatuve

The standoff distance predicted by this numerical solution is

expectantly larger, approximately 45 percent larger than that

predicted by the numerical calculations for Red = 46.8.

It is interesting to compare this solution for case 15 with the

solution for case 47-5. Both of these cases employed the same mesh

sizes with all freestream flow quantities identical except for the

density. Cases 15 and 47-5 used identical initial conditions and
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boundary conditions and both used the coordinate mapping (13). The

numerical solutions in the bow shock region are quite different.

Case 47-3 predicts a density ratio across the bow shock which is

much too high as described previously. Case 15 predicts a density

ratio across the bow shock which is quite close to the analytical

result.

Sinne both case 15 and case 47-3 use the same initial conditions,

mapping, and boundary conditions it appears that the number of mesh

points across the bow shock is the crucial difference between these

two calculations. Case 15 has almost three times as many mesh points

across the bow shock at 9 = O° as case 47-3. This is because the gas

mean free path is larger in case 15 and the shock is consequently

thicker. Case 15 had 12 mesh points across the bow shock where it

intersected the stagnation streamline (almost four mesh points per

mean free path).

D. Red = 157.2

A numerical calculation was made for a Reynolds number of Red

157.2. The purpose of this calculation was to obtain a numerical

solution which could be compared with experimental wake measurements 8

taken for the same Mach number and Reynolds number. These hot-wire

measurements taken downstream of a circular cylinder at Red = 157.2

in a Mach two freestream show that a wake shock is present in the

flow field.

Several attempts were made to start the integration of case 157

at time zero using the "impulsive acceleration:' initial conditions.

These initial conditions produced excessive density ratios at the

forward stagnation point on the cylinder. The density ratio reached

values in excess of an order of magnitude larger than that for a

flow undergoing an unsteady isentropic compression. Due to these

inaccurate numerical results during the first few time steps this

procedure was abandoned in favor of interpolation from another steady-

state solution.
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The numerical computation of case 157 was started at T 39.08 by

interpolating from the steady-state flow field of case 47-3. The free-

stream density, velocity, and temperature used for case 157 were

identical to that used in case 47-3. The viscosity relation used for

case 157 was varied from that used in case 47-3 to produce a higher

Reynolds number. Table Al shows the values used to prescribe the free-

stream flow field.

The numerical solution reached the steady-state at ' = 58.14
after nine hours of computer time and approximately 1500 time steps.

Since the initial computations were performed by interpolating from

a lower Reynolds number solution the time dependence for case 157 does

not represent a cylinder accelerated from rest. The use of this

interpolation technique for starting a solution offers a possible

approach for obtaining an even higher Reynolds number solution in a

reasonable amount of computer time.

The numerical computation for Red = 157.2 predicted a bow shock

standoff distance of &/R° = 1.282. Figure 10 shows a comparison of the

time history of the standoff distance for each calculation. The stand-

off distance calculated for Red = 157.2 is six percent larger than that

predicted by inviscid calculations. Our numerical solutions predict

that the standoff distance increases with decreasing Reynolds number.

This variation of standoff distance is as we would expect.

The density ratio across the bow shock predicted by the numerical

calculations for Red = 157.2 is much too large. At the point where

the bow shock intersects the stagnation streamline a density ratio

of p21p- = 3.5 is predicted by the numerical computations. This is

29 percent larger than predicted analytically by viscous normal shock

solutions corrected to account for shock curvature13 The cause of

this large discrepancy appears to be that more mesh points than we

used are needed in the vicinity of the bow shock.

Figure 11 shows the density distribution through the bow shock

along e = 0 in terms of the freestream mean free path. The numerical

calculations for Red 157.2 predict a shock thickness of approximately

three mean free paths while the analytical viscous normal shock
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solutionII predicts a shock thickness of two mean free paths. Also
apparent in Figure 11 is the large discrepancy between the Rankine-

Hugoniot and numerical solution for the density ratio across the bow

shock.

Figure 12 shows the pressure coefficient predicted throughout the

flow field for case 157. Upstream of the cylinder ( X/Ro = - 2) the

bow shock is quite pronounced By the time the flow reaches X/R°

the bow shock has been smeared over many mesh widths. This smearing

or weakening of the bow shock is seen to continue as the flow moves

downstream. The pressure coefficient at the forward stagnation point

is Cr = 2.29. The bow shock is being smeared out by the asymptotic

behavior of the coordinate mapping (13) used for the computations.

This smearing or weakening of the bow shock is caused because free-

stream conditions are specified at infinity and the condition

8/aR - 0 as R -+ co (19)

is inherent to the coordinate mapping (13). The approximate location

of the wake shock is also shown in Figure 12 for reference.

Figure 13 shows the pressure coefficient in the wake region

predicted by the numerical solution for case 157. Near the rear

stagnation point (6 = 1800) the pressure is less than its freestream

level. By the time the flow along the rear stagnation streamline

reaches X/R° - 4 its pressure level has exceeded that in the freestream.

These profiles exhibit "shock-like" gradients in the wake region

(i.e., X/Ro = 3, Y/Ro - 1.5). The dashed curve shown in Figure 13

represents the locus of points of maximum positive pressure gradient.

Pressure increases as we cross this dashed line moving downstream.

These gradients result from a compression of the flow and appear to

represent the wek shock in the physical flow field. The numerical

and experimental results8 in the wake region cannot be compared

directly since the experimental measurements were taken at X/Ro 70

and the wake shock is smeared out in our numerical solution by

X/Ro• 13 due to our placement of node points and the asymptotic

I I-"TTT 7-iI I 41
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I]
behavior of the coordinate mapping. We conclude that the numerical

computations predict "shock-like" gradients in the wake at Re = 157.2
d

which may represent tile wake shock present in the physical flow field

at this same Rleynolls number.

The numerical computations for Red = 157.2 predicted a small

recirculation region downstream of the cylinder. The separation

bubble predicted in these numerical calculations is shown in Figure 14.

Separation is predicted to start ab e - 1580. On the basis of

incompressible flow results this separation is very much delayed. For

incompressible flow the separation point is located at 0-- 1090. At

the present time it is not known whether this delayed separation is a

result of compressibility effects or errors in the numerical

computations. It should be noted that the numerical computations for

led - 15.0 and 46.8 predicted no separation bubble downstream of the

cylinder.

VI. CONCILTSIONS

This report has described a series of numerical experiments for

the purpose of evaluating the accuracy of typical numerical solutions

of the full Naviel-Stokes equations. A computer program developed by

Scala and GordonI was used in this study to solve for the steady-

.state flow field around. cylinders accelerated to supersonic velocities.

Steady-state solutions ,,ere obtained for Mach two flow past cylinders

at Reynclds numbers of 15.0, 46.8, and 157.2.

Our compltation- have shown that the density levels predicted

downstream of the bow shock are higher than we would expect on the

basis of analytical normal shock solutions corrected to account for
shock curvat-urel. The degree of error present in our numerical

solutions Is closely linked to the spacing of mesh points In regions

where large d The epresent. The steady-state calculations for

Re = 15.0 had 12 mesh points aerobs tbe bow shock and had three per-

cent too high a density ratio; the calculation for Re 157.2 had

29 percon" too high a density ratio but only 5 mesh points across
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the bow shock. It thus appears necessary to use very fine mesh

spacings in flow regions having large gradients for accurate

numerical calculations. Three or four mesh points per mean free

path appear to be necessary in the region of the bow shock.

The numerical solutions for Red = 15.0 and 46.8 did not

predict separation. The computation for Re = 15T.2 predicted a

small separation bubble on the downstream side of the cylinder. For

this case separation begma at e = 180° then the separation point

shifted with time reaching a steady-state position at e - 158 0  Our

numerical results thus predict very late separation compared to

incompressible flow past a cylinder. Walitt12 predicts separation at

e - 142? in a numerical calculation for Mach two flow past a cylinder

at Red = 1409. The accuracy of our numerically predicted separation

point is unknown.

Steady-state nmerical solutions were obtained for Red = 15.0,

46.8 and 157.2 by employing the coordinate mapping suggested by

SillslO Our calculations have shown that this coordinate mapping is

compatible with initial-boundaay-value problems of the present type.

This mapping smooths out gradients far from the body. This smoothing

process is beneficial in the wake region. The mapping eliminated the

large unnatural gradients which resulted from specifying "artificial"

frcistream conditions downstream of Uhe cylinder. The two methods of

specifying boundary conditions dowristream are discussed and compared

in the calculations for Re( = 46.8.8

Experimental wake measurements at Red = 157.2 have shown that a

wake shock is present in Mach two flow at this Reynolds number. Our

numerical computations for Be = 157.2 predict large pressure anddi

temperature gradients at the edge of the inner wake which appear to be

the numerical equivalent of the wake shock in the physical flow field.

It is not clear, however, that the details of the wake region are

accurately predicted by these calculations. The numerical calculations
for Be d = 15.0 and 46.8 predicted no wake shock. There is no experi-

mental data for Reynolds numbers as low as 46.8.
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The presernt numerical experiments havc been for cylinders of

approximately 1/32 inch and 1/2 inch diameter. To maintain a desired

level of accuracy the number of mesh points used in a computation must

increase if larger cylinders are considered. In view of the large

computer times required for our calculations these small cylinder

sizes represent an upper limit of our present capability. The

calculation of a typical steady-state solution required from nine to

eighteen hours on the BRLESC II computer. For a given problem it is

impossible to predict in advance the degree of error which will be

present in the steady-state numerical solution. Our computations have

shown that errors of ten to twenty percent may result in numerical

solutions of the Navier-Stokes equations even under carefully

controlled conditions. I
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The following gas properties were held fixed for all the

numerical cases considered

R _ 5.52x101 ft-lbf/lb - oR , (Al)
2 m

3 = 1.38x10 ft-lbf/lb OR (A2)V F

Y 1.40 . (A3)

The freestream Reynolds number was varied by changing the cylinder

size or freestream conditions of the flow. The specific values used

for each case are shown in Table A-I. These dimensional variables

are input quantities for the computer program developed by Scala and

Gordon1. Each case is specified by its approximate Reynolds number.

The four cases for Red = 46.8 are differentiated by a numerical

suffix (i.e. 47-1). Table A-I also shows which calculations were

performed using the coordinate mapping and the number of mesh points

used for each calculation.

iI
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