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ABSTRACT

A series of numerical experiments are described which solve for
the time-dependent flow fleld around a circular cylinder accelerated
to supersonic speeds. This study 1s performed using & computer
program developed by Scale and Gordon which models the full time-
dependent Navier-3tokes equations. Results are presented for Moch
two flow past & cylinder aé freestream Reynolds numbers of 15.0,
46.8, 157.2, end TOh.6, based on cylinder diameter.

The numerical results are compared with analytical solutions and
experimental measurements and the accuracy of the numericel results
is discussed. These comparisons show where our numerical solutions

of the Navier-Stokes equations fail to give accurate results.

Preceding page blank




T ma T TR Tl N SRR Ty ST

TABLE OF CONTENTS
Pege
ABSTRACP L ] » * . . L L] L] ’ L] . i L] L] L] L[] . . . .

LIST OF ILIUSTRATIONS '+ 4 o o ¢« o o o o o o & o o &

-

LIST OF SYMBOLS « + o o ¢ 4 4 ¢ s o o 0 o s s v a v v G
T. INTRODUCTION + o o o o o o « o o o o o o o o o o o o o 1
IT. FORMULATION OF THE PROBIEM « « + o & v o « o o o o o o 1L
ITI. DIFFERENCE EQUATIONS + + + o o o o o o « s o « « o o « 15
IV. INITIAL CONDITIONS AND BOUNDARY CONDITIONS « « « » . . 17
V. DESORIPTION OF COMPUTATIONS o ¢ o o o o « « o o o s o 23

A, Re
B. Re
C. Re

7014‘06 ® & ¢ & & & 3 &6 ¢ 4 s @ s 2 s & 25
=)'I'608..l..‘Olll......'.!.27

i}

[N S o

1500 4 o o o o v o e o o v a e s e e 35
D. Red S - S T I T T S X
VI. CONCLUSIONS  « o = o o o o o o o o o o o o o o o o o« Ub
REFERENCES e s 8 s s e e e s e s s s s e e s e e s b8
APPENDIX A & o o o « 6 s o ¢ o o s o 5 5 5 ¢ « o o o 5l

DISTRE[ITION LIST . L] L L[] L] * . . . L . L] L L] * . L] L 55

Preceding page biank




T R L e T T T T

AT A

Figure

9.

10.

1l.

LIST OF ILIUSTRATIONS

Schematic Representation of Flow Fleld Surrounding
Cirecular Cylinder . v « 4 v o & o & o ¢ s ¢ o 4 o
‘Region of Computation with m = 2.5 . + + + « o .+ «

Domain of Computation and Boundary Conditions . . .

Density Along Stagnation Streamline (6 = 0° )for
Red=70u-6"""""""""’

¥low Varignles in Weke (6 = 180°) for Rey = 46.8. .

Shock Structure (6 = 0°) in Terms of Freestream
Mean Free Paths for Red=)+6-8‘ s o & & * & v o &

Time History of Density Retio Across the Bow
Shock (e = Oo) for Red = )4'6-8 ¢« » 2 e e v 5 s b

Steady-State Densitg Distribution Along Stagnation
Streamline (e = O ) fO‘r Red = )'1'6-80 e 8 o e s v »

Steady-State Density and Temperature Disgributions
Along the Stegnation Streamline (6 = 0°) for
RedzlS-onoo-nuctooo

e ® ¢ s 0 & s o @

Time History of Bow Shock Stendoff Distance . . . .

Shock Structure (6 = 0°) in Terms of Freestream

Mean Free Paths for Red = 15742 o v a6 o o o +

Numerical Solution for Pressure Coefficient for
Red=157.2000.'---.0-

¢« ¢ & o 2 ¢« 9

Numericel Solution for Pressure Coefficient in

Wake for Red = 157.2 o« « &

Separetion Bubble in Numerical Calculations for

Red=l57.2...-......

* e % s+ e s ¢ s & @ L]

Preceding page blank

Page

18
20

2L

26

20

33

3l

36
39

40

L2

43

L5




e

13

o o 0 g B 3 F @A
[ + <

= -4 & R

= v = v B~ v v}
@ M O

Q K X < o 3

13

=3 o <

> > o

LIST OF SYMBOLS

Specific heat at constant volume [Ft-1b./1b - R ]
Grovitational constant [1b_ - £8/1b, - sec” ]

Thermal conductivity [lb / °R - sec ] '

Stretehing factor for differcnce mesh [nondimensional)
Nurber of time steps [nondimensionall

Thermodynamic pressure [lbf/ft2] : ' i
Outer boundary defined by equation (11) [f£t]

Time [sec]

Carteslan velocity components [ ft/secl]

Anguler coordinate defined by equation (12) [ nondimensional]
Cartesian coordinates [£t]

Comoving derivative

Mach number [nondimensionall
Redial coordinate [ft)

Ges constant [ft-lbf/lbm-oRj
Cylinder redius [(£t] : ' !

?isﬁance slong 6 = O° From center of cylinder to outer ‘boundary
Tt .
Freestream Reynolds number based on cyllnder diameter
[nondimensional]

Temperature [ °R]
Redial velocity component [ft/sec] : t H
Tengentiel velocity component [£t/sec]

Distance downstream from center of cylinder Eft]
Disbance above center of wake [ft]

Mesh spacing constant in coordinate transformation (13) _
[nondimensional] | : ;

Ratioc of specific heats [nondimensionall]

Kronecker delta [nondimensional)

Transformed coordinate (1) [nondimensionall

Anguler coordinate [radians] ' '
Second coefficient of viscosity [lbf-sec/ft ] | '

Mean free path at freestream conditions [ ft]

Preceding page blank ?

- ,M_-——-L‘-« e ta b




L First coefficlent of viscosity [lb - seé/ftQJ

‘ € ' Transformed coordinate (13) [nondimensional]

M  Constant (3.1415 926556) [nondimensionalj
o Density [1b /ft5]

p, Density behtnd the bow shock [1b Jet2] ‘ .

T Time constant (T = t U /2 R ) [nondimen51onal]
T Stress tensos [1b /f*

Subscript

® Freestream conditions

e e o A e T e i T S

) el : i R T S T T VUV S UV W S PR :




I. INTRODUCTION

This report describes & series of numerical experiments based on
a computer program developed alt the Gerersal Electrilc Company by Scala
and Gordonl*. This program which is based on the full time-dependent
Navier-Stokes equetions is used to calculate the flow field around a
circular cylinder accelerated to & supersonic velocity. The validity
of our numericel results is determined by comparison with analytical
solutions and experimental wake measurements. ;

Accurate numerical solutions of the full Navier-Stokes eguations
are desirable for many problems in weapons technology. TFor problems
like the internal flow in fluidic devices or the wake flow behind a
ballistic missile the simplifying essumptions of inviscid flow or

high Reymnolds number boundery-leyer flow are not appliceble. To
describe the flow field in such problems it is possible to resort to
numerical solution of the full Navier-Stokes equatlons.

Several numerical solutions of the Navier-Stokes equatious huve
been published for compressible viscous flows, such as those of
Croccoz, Thommeni, Scala and Gordonh, Allen and Chengs, and Trulio
and Walitt6’7. The flow detaill exhibited in these solutions is quite
remarkeble, but in certain regions of the flow field the numerical
solutions mey not be very accurate. At the present time we should
accept the results of any such numerical computation with great
caution since the mathematical theory on which the numerical solution
is based is inadequate., There are no rigorous proofs of stability or
convergence of the numerical methods employed for these sclutions, nor
are there any proofs of uniqueness. It is necessary to assess the
validity of any such numerical computation by comparing it against §
known analytical solutions and experimental measurenents. '

Results are presented for Mach two flow past circular cylinders
at Reynolds numbers 15.0, 46.8, 157.2, and TOk.6. The numerical .

solutions are compared with analytical solutions for the density ratio

* References are Listed on page 48
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across the bow shock, shock structure, and shock standoff dlstance.

The validity of the cylinder wake-region calculations is determined by
comparison with experimental hot-wire wake measurcmentsa.

II. FCRMULATION OF THE PROBLEM

The governing equatlions on which our numerical solutions are hased
are formuleted within the framework of claegsical continuum mechanics.

The Navier-Stokes equations are Tormed from Cauchy's Flrst Law of
Continuum Mechanics

Du oT
S '
B &5, (1)

when the stress tensor Tjﬂ 1s expressed as a linear function of the

deformation gradient. We thus assume
aum Bui du, (2)
Tij =(-p+2 gg;—) 513 + (g;;" + g;ﬂ-) .
The basic eguations have becen written bere in Cartesian tensor

notation for simplicity. The viscosity coefficients appearing in

equation (2) are further assumed to be related by Stokes postulate
3+ 20 =0 . (3)

Equation (3) cen be shown to be valid for monotomic ideal gases.

The Navier-Stokes equetions give us three eguations to relate the six

field functions. We also use the continuity ecaation

du
Do o L.
the energy equation
du du
T i 0 9T i2
pey B t R Ex. T %, (k Bx,) A (Bx,)
1 1 ph L (b)
aui aui aum
R ( 5% T )
m m i

e e et



and the equation of state for a perfect gas

P = pRT . (6)

In this study the time-dependence in equations (1), (L), end
(5) is retained end we seek steady-state solutions of the governing
equations by time-wise integration from a prescribed initial staete.
The steady state is thus approached asymptotically with time.

The pertial derivatives in the governing equations (1) thru
(6) are replaced by differences in both space and time. This
approximetion reduces the system of nonlinsar partisl differential
equations to a system of nonlinesr algebraic equations which can be
solved by numerical iteration. The set of difference equations used
in this procedure was developed by Scala and Gordonl.

The complete system of equations is formulated in general two-
dimensional orthogonal coordinates. This system of equatlons together
with their difference approximations are listed by Scala and Gordonl.
In the present study we consider time-dependent f{low past a cylinder
using cylindrical coordinates (R,0) with © measured from the forward
stagnation point.

IITI. DIFFERENCE EQUATIONS

The complete set of difference equations used in vhe computer
program to approximate the governing equations are discussed in
detail by Scala and Gordonl. The procedure followed is to split the
full system of goverring equations into "hyperbolic" subsystems and
parabolic terms which are differenced separately and then combined
into a final set of diffsrence equations.

The second-order viscous terms, the parabolic terms,ars
differenced using an alternating explicit-implicit schemeg. At
every time step the calculation at each interior point is slternated
between an implicit formula and an explicit formula. According to
this procedure implicit eguations are used for the calculations at
every alternate interior mesh point (with respect to both R and G) at

15
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time t = (n) At. At the remaining interior mesh points explicit
equations are used for time t = (n) At. A time t = (n+l) At the
explicit points of the previous time step become implicit and vice
versg. This procedures then repeats for subsequent time steps.

The "hyperbolic" subgystems are made up of both the inviscid
terms and the lower order viscous terms. These "hyperbolic" terms are
differenced by transforming them to diagonal form and then differencing
them according to the sign of the characteristics. The calculations
for these terms are then elternated between explicit and implicit
equations in the same manner ag degcribed for the second-order terms.

The set of difference equations used in these caliculations and
the manner in which they are numerically integrated introduced several
uncerteinties into the accuracy of the numerical solutions. In the
present difference formulation the first-order nonlinear terms
involving spatial derivatives of W(T) and k(T) in the momentum
equations are treated like hyperbolic terms. These terms do not
necessarily remain hyperbolic throughout the flow field. The amount
of error introduced into the steady-state solutions by this approximation
cannot be evaluated.

The second uncertainty arises from the implicit evaluation of the
second~order cross-product derivatives (aeu/aﬁae , ete.), These
derivatives are approximated at alternate time steps by assuming that
implicit quantities ares known from the previous time step. This
simplification eliminates the iterations needed if the true implicit
equations were used at esch alternate time step. This procedure
introduces some uncertainty into the time-dependence exhibilted by the
numerical solution. It is not known what effect, if any, this procedure
has on the final steady-state numerical solution which is obtained
asymptotically with time.

16
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IV. INITIAL CONDITIONS AND BOUNDARY CONDITIONS

The treatment of the time-dependent Navier-Stokes equations
requires the specification of both initial conditions (4=0) throughout
the flow field and boundary conditions (t > O) on all boundaries.
Figure 1 gives & schematic representation of the flow fleld surrounding
& cylinder traveling at supersonic speed. The flow field is character-
ized by a region far upstream of the body Iln which viscous effects are
negiigivle. There are two shock regions in the flow field; the bow
shock and the wake shock reglons. Near the surface of the cylind-r
viscous effects become predominate and this region 1ls characterized by
& viscous layer which merges into & wake region downstream. In the
weke region neither inviscid nor boundary-layer considerations are
valid.

Por times < 0 in our numerical computetions we assumed a uniform
flow having freestream conditions throughout the flow field. For times
t > O the velocity components on the surface of the cylinder were
brought linearly to zero and held at this value. The following
velocity boundsry conditions were specified on the cylinder's surface

U(Gi) = Bug(ei) ,

(1)

where

(83 = 8)/61 foro0 s+t =t
b= ' (8)

0 for t > tl .

For times t = tl we thus specify the no-slip condition on the surface
of the cylinder.

Physically, the process of initimlization described by (T) and
(8) treats two different types of jinitisl conditions. If tl is less
than the time step &t used in the numerical integration, then we model
a cylinder impulsively accelerated from rest. If tl > At we treat
flow past a porous cylinder with the amount of mass flux through the

surface decreasing to zero between times t=0 and t:tl.

17

. R - o aa PR S LRy pE_t3 L E PSR
e ettt e v st e i N Db Satnte e - .

el s A




ISPULTLD J8TNOIT) FUTPUNOLING PTOTH
A0Td Jo uoTyequasaadsy OTgBwWeysg T ouamSrg

iafop" S

Aiopuriog

18

uoibay 1< P
PIOSIAY]




T R AT .
X AN (s

T TR

e B+

In the latter case, for times t < tl’ mass exlts the dowmstream

surface of the cylinder into the flow field. We speclify the density
of this mass to be

pm
p == (3 +8) (9)

for times 0 s ¢t < tl . The procedure followed by Scala and Gordonl
for specifying density boundary conditions 1lg that whenever the flow
enters the computation region through a boundary the density must be
gpecificd as a boundery condition, otherwise it is calculated at that
houndary. The results of our celculations show that this boundary
conditior. may be incorrect but it is not known whether the problem
ig properly posed as stated.

The boundary condition for the temperature on the cylinder's
surface is specified by the assumption of an adiabatic wall

3T

3R =0.

R =R, (10)

It is hoped thet the time-dependent history of the solution
resulting from these initimlization procedures will have a physical
counterpart. Tt is agsumed, however, that the resulting steady-state
solution will be unique, independent of the initializatlion process
prescribed. This assumption, unfortunately, cennot be verified
analytically.

In our computations we choose the steady state from observatiocns
of the time-dependent flow in the bow shock and wake regions. At
time zero the bow shock forms adjecent to the cylinder and then
propagates upstream, gradually reaching a standoff distance which
does not change appreclably with time. The wake flow then establishes
itself after the bov shock has reached its steady-state position.
After the bow shock 1s stationary we monitor the weke flow until this

flow is invariant, or almost so, after several hundred time steps.

The flow Tield at this stage is then said to represent the steady-state

19
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solution.

The specification of boundary conditions far from the cylinder
poses & difficult numericel problem. We have used two different
techniques in this study in en attempt to determine the influence
of these boundary conditions on the accuracy of the numerical
solution. The first method follows that used by Scela and Gordonl.
We specify "artificial" boundary conditions along an outer boundary
located at a finite distance from the cylinder's swrface. The second
technique has been used by Sillslo. In this method & coordinate
transformation is used to map the interval [O,w] of R onto a finilte
interval [0 1]. ‘he proper boundary conditions at infinity can then
be specified at the boundary of the transformed region. Table Al
shows which method was used for each calculation.

In the former case, with the outer boundary located at a finite
distance from the cylinder, we prescribe the outer boundery to be

s, = R2 [1+ 4 (m-1) © - 3 (m=1) xh 1; (11)

where )

The value m determines the degree of difference mesh stretching
downstream of the cylinder. Our calculetions were carried out for
m=2.5. With this value of m the outer boundery downstream of the
cylinder (6 = 180°) is two and one-helf times farther from the

cylinder then at 0 = . Figure 2 shows & schematic of the reglon
of computation with m = 2.5. Transformation (11) facilitates the

use of a fine difference mesh upstream in the bow shock region and a i
coarse nmesh downstream in the wake region.

For those calculations in which the mapping was employed, the

o

redial coordinate was transformed by

g€ =1-¢e Q(R-Ro) .

(13)
The arbitrary constent @ is & stretching factor which determines the
location of the image points. This transformation permits the

2l




specification of boundary conditions at infinity whlle allowing the i
interior grid points to be concentrated near the cylinder. It should i
be noted that the use of this transformation results in a solution ‘
which 1s inherently asymptotic at the outer boundary. As long &s the
derivative d/df remains bounded as § — 1 in the computational plane,
then 3/0R = 0 as R = o, This inherent asymptotic behavior may
unnecessarily result in an overspecification of boundary conditions
in the numerical computation.
In our numerical solution we have mede a symmetry assumption about
the flow field in order to reduce the computer storage requirements and
computation time. We assume & plane of reflective symmetry bisecting
the cylinder's cross section and numerically treat flow in the upper half
plene 0 s 6 <1 . . We thus specify symmetry boundary conditions elong 1
boundaries at 6 = 0 and 6 = 180°. The symmetry conditions prescribed on
these boundaries are

g% =0, %% =0end V=0. (14)

No boundary condition was prescribed for the density on these bound-
aries for the calculations with a finite outer boundary (11). This
follows the procedure used by Scale and Gordonl. For the calculations
using the mapping (13) we additionally specified

=0 (15)

along the boundaries at 6 = 0° and 8 = 180°,

In 8ll calculations we prescribed freestreem veloclty components
and freestream temperature along the outer boundary, whether using
(11) or (13). Freestream values were specified for density at the
outer boundary whenever the flow at & boundary point was directed into
the computation region when using (11). For the calculation using
the mapping (1%) freestream values for density were always specified
at infinity.

a2
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Figure % shows the domain of computation and boundery conditionc
for two of the cases calculated using the finite outer boundary (11).

The boundary conditions specified on each boundary are shown in this

figure. The two outer -.ndaries shown 1in this figure correspond to

thelr locations for t leulations performed for Red = 46,8,

V. DESCRIFPTION OF COMEUTATIONS

Numerical computations were performed for Mach two flow past
circular cylinders at freestream Reynolds numbers ol 15.0, 46.8,

157.2 and 704,6, based on cylinder dlameter. Appendix A containg the

dimensional values assigned to the flow fleld veriables for e&ach case.
Each case will be referenced by its approximate freestream Reynolds
number. The four cases for & Reynolds number of 46.8 are differentiated
bty & suffix (i.e. 47-1, 47-2, 47-% and 47-k4).

The leargest cylinder considered had a dismeter of spproximstely
one-half inch (Red = T0L.6)., The calculations for this case represent
an upper limit of the type of calculation thet can be performed in a
reasongble asmount of computer time using this computer program. All
calculations were performed on the BRIESC 1I computer at the Ballistic
Research Lsborsatories.

The difference mesh was constructed so that the angular spacing
remgined constant at

08 = ( 1/%0) = & (16)

for sll computations. The length of & mesh element in the radial

direction varied with the different computations. The smallest mesh
wes employed in case 47-1 for flow past & 3.056:{].0-3 £t diameter
cylinder with AR = 1.030x10 Tt along the forward stagnation stream-
line. The largest mesh occurred in calculstions such &as case Lh7-3
which used transformetion (13). In such cases the mesh elements
farthest from the cylinder stretched from some finite radial coordinate
to infinity. The radial mesh verletion was chosen by specifying « in

transformation (13) so that there would be several mesh points per

a3
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freestream mean free path across the bow shock at all times.

A, Red = TOL,.6

'
e t————_———

The calculations for Re, = 70h.6* were initialized from time zero.
The velocity components on the surface of the cylinder were brought.
linearly from thelr freestream value to zero in a period of 6 usec
(tl = 6x10'6 sec). The boundary conditions prescribed for this tase
are those used with the finite outer boundary.
This case was run from time zero to & non-dimensional time of
T = 4,80 at which tlme the flow field was still unsteady. These
calculations required approximately 4O hours of computer time on. ‘ 4
BRLESC II. On the basis of the shock speed and standoff'distance at
T = 4,80 was estimated thaet an additional 30 to LO hours oflcomputerI
time weould be required before the flow field would reach steady-staté
conditions. The calculations for this case were not carried:beycnd %
this point. ‘ ‘ : ' ’
A particular difficulty arose with the density calculations at the
forward stagnation point on the cylinder. The density at the forward .
stagnation point increased rapidly with time from itg freestreaé value , . i
at time zero, reaching & peak velue approximately 12 timés the freet
streem density at t = 6 usec. Figure 4 shows the density variation in
the vicinity of the forward stegnation point for the first 12 usec.
For times after t = 6 usec the density at the forward stagnaticn point
decreased monotonically with time, At t = 12 usec the stagnétion'point
density had decreased to approximately seven times the freestream
value. : '

A gecond calculation wags run for this case with tl = 3 psec, one- I '

half the value used previously ., The peak stagnation point density

¥ The calewlations for this case were perfoumed by Dr, Paul Gondon ‘
while a summer employee at the BRL. He adapted his oniginal compiter :

p/wg/mm7 20 BRLESC 11 and checked 4t for compatibility with ourn computer
by nunning a previously computed case,
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was lowered by approximately two percent, but now occurred at t = % usec
instead of t = 6 usec. These two celculations show that the time

history of the stagnation point density is quite dependent on the
initialization process prescribed.

The peak values of the density predicted at the foward stagnation
point are incorrect. Figure 4 shows that there is a density
discontinuity for t = 12 usec at the forwerd stegnation point. This
discontinuity results becausc the numericel computations do not
satisfy the symmetry condition

e -

3 ]
5% =0 (17) ;

alonz 6 = O°. By additionally specifying (17) this discontinuity is
eliminated.

B, Red = 46.8

Three sets of steady-state numerical solubions were obtained for 1
Red = 46.8. These caleculations were for a cylinder of approximately
1/32 inch diameter. The first case (47-1) was started at time zero
and run until the steady-state solution was reached at T = 26.2
after approximately 3100 time steps. This cese required 13 hours of
computer time on BRLESC II. Figure 3 shows the placement of the outer
boundary used for case L4T7-l.
A second calculation (47-2) was run to evaluate the effect of

specifying freestream condltions at the outer boundary. For this
second case the outer boundary was placed farther from the ¢ylinder
than in the first case as is shown in Figure ». This case was
initialized at T = 26.2 by interpolating from the steady-state flow
field of case 4T7-1l. The guverning equations were then integrated in
time until & new steady-state solution was reached for this boundary
location., This required approximately 2200 additional time steps.
The numerical solution achieved & new steady state at T = L2.1 after
18 additional hours of computer time.
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The first two cases (47-1 and 47-2) used the boundery conditions
deseribed previously for use with a finite outer boundery. No
additional density boundery conditions were specified. The calculsations
for case L4T7-1 were initimlized with t, = 2 psec. A value of t, was not

1
necessary for case 47-2 since it was started by interpolation at

T = 26:2.
The third case (47-3) employed the coordinate mepping (13) with

the outer boundary at infinity. In this case we additionally specified
a symmetry condition for the density. '

%‘l =0 (18)

along the bounderies at 6 = o° and 6 = 180°, This case was started
at time zero with tl < At and thus treated a cylinder impulsively
accelersted from rest. The stesdy-state solution was resched at

T = 39,08 after 12 hours of computer time and approximately 2900
time steps.

None of the steady-stehe solutions for Re, = 46.5 predicted
separgtion. The effeet of the downstream symmctry conditions on the
numerical solutions could not be determined from these calculations.
In order to determine if the symmetry boundery conditions were
restricting "numerical sepsration” a fowrth case L7-4 was run.

Cage L7-l was set-up with & difference mesh suwrrounding the
eylinder (0 < 6 < 360°). The number of mesh elements used was twilce
thet of case 47-3. The mesh size was identicel to that used in case
47-3. This %60° placement of nodes eliminated the necessity for the
specification of downstream symmetry conditions. This case was
started at time zero in the same manner as case 47-3 and run to &
non-dimensiongl time T = 7.90. A comparison of cases L7-% and L47-L
showed them to be almost identicel at each time step and it wes
concluded that thelr steady-state solutions would be the same. The
caleulations for case 47-4 were stopped &t this point. These results

indicated that seperation was not restricted by ouwr symmetry boundery
conditions.
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Figure 5> shows s comparison of the three sheady-state numerical
solutions in the weke reglon. Near the cylinder (R/Rj < %) the two
calculations using & finite outer boundary (cases 47-1 and 47-2) are
in agreement. The calcuwlations for case 4T-%, using the coordinate
mepping, predict higher densities near the cylinder than predicted
by the first two cases. The calculations for cases W7-1 and L7-2
fail for downstream of the cylinder. These two casesg predict large
gradients of velocity, denslty and temperature fTar cownstream. In
the physical flow field large gradients would be present if there were
& weke shock but would be opposite in sign to those predicted by thesc
calculations. The large gradients jredicted downstreem in cases L7-1
and L47-2 awe typical of those in rerefaction waves. These gradients
result from the unnatural scceleration the flow experiences in the
numerical solution by the specification of treesiream boundery
conditions downstream of the cylinder.

The muerical soclution for cese LT7-3 predicts a more realistic
quelitative behavior far downstream (R/RO > 10). The larpe gradients
are eliminated in this solution as a result of the asymptotic behavior
of the coordinate mepping. None of the three steady-state solutions
for Rey = 46.8 predicted a weke shock downstream of the cylinder.

In cases 47-1 and 4T7-2 no density boundary condition was specified
along the downstream porbtion of the outer toundary (refer to 4 in
Figure 3). Both of these cases predict densities much lower than free-
stream at the outer boundary along 0 = 180°. cCase 47-3 predicts &
densgity downstream which asymptotically approaches the freestream
value. It thus appears that the mapping and boundary conditions used
in case L7-% produce bebter qualitative results downstream of the
cylinder than the calculations prescribing freestream boundary
conditions along the finite outer voundary.

Figure 6 shows the density distribution across the bow shock at
its intersection with the stagnation streamline. The numerical
solutions for Re. = L6.8 predict shock thicknesses of two to threec

d
mean free peths. The analytical viscous norvel shock solution of

29

™




e e 3 T T S S

it T T

Lot

8=180°
.S Voo \ o
i‘

T o+ ~7;oco 47~3
/Tw Case 47~ Case 47-2
0.5 L 1 1 1
° s 10 15 20
1.0
P
05}
3
0
o

~X

§
o
»

0o 5 10 (] 20
R/Ro

flgure 5. Flow Variables in Wake (8 = 180°) for Red - 46.8

30

R P PP S P P




T At e

—0O~ Normal shock

O Case 47-|
35 & Case 47-2
O Case 47-3
2 -
oo
' e
0 1 1 1 1 ]

=2 By 0
Vo

Figure 6. Shock Structure (8 = 0%) in Terms of Freestream
Mean Frce Paths for Rey = 46.8

51

F
1




Morduchow and Libbyll

shown in this figure has & shock thickness of
two mean free paths.

The good resolution of the shock region in our
numerical computations is due to the very fine difference mesh used
in the bow shock region; less than one mean free path in the radial
direction. Numericel solutions typically spread shocks over many
mesh widths and thus predict innacurate shcck thicknesses.

walittt?
calculates shock thicknesses on the order of 90 mean free paths for
Mach two flow at Red = 1409.

Figure 7 shows the time history of the density ratic across the
bow shock at ® = (°. The numerical calculations for case 47-1 predict

a steady-state density ratio which 1s seven percent higher than that
predicted analytically.

i ol

The analytical solution used for comparison
is the normal shock solution with first-order corrections for shock

curvature due to Chow and Tingla. The numerical calcuwlations for case

47-% predict & steady-state density ratio which is 14 percent higher
than this an&lytical solution.

The Rankine-Hugonlot normal shock
solution 1s also shown in Figure T.

Figure 8 shows the density distribution along the svagnation
streamline predicted by the three steady-state numerical solutions.

Near the cylinder case 4T7-3 predicts much higher densities than
either case L47-1 or U7-2.

A e e i
LY it Mkt

Case L4LT-2 1s seen to predict a larger

standoff distence than either of the other two cases. These results

]
{
!

show that the mamner in which the boundary conditions are specified ;
for the numerical solutions has & very large influence on the density }
distribution predicted near the cylinder; both upstream and downstream, 3
None of the three steady-state calculations for Re, = 46.8 |
showed any tendency toward separation as we would expect on the basis

i
of the incompressible experimental results by Tanedalu. His results :

show that for incompressible flow past cylinders a separation bubble
forms downstream for Reynolds numbers above Red:z 5. For Reynolds

numbers above Red:w 45 part of the separation bubble is shed aliernately

from each of the two recirculation regions. In the physlcal

incompressible flow field symmetric separation is unstable for
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Reynolds numbers sbove Red ~z 45, A calculation for Red = 15.0 wes
run to make certain that our symmetric downstream boundary conditions
were compatible with the stability of the flow field.
C. Red = 15.0

The numerical calculations for Red = 15.0 employed the coordinate
mapping (13) and the boundery conditions previously described for use
with the mapping. The computations were started at time zero using
the initial conditlons for the impulsively accelerated cylinder. The

steady-stete solution was reached at T = W7.7 after 13 hours of

computer time and approximately 3000 time steps.

The mesh size used in this computation was identical to that
used for case L47-3. The density was the only freestream flow
variable which differed from that used in case 47-%. Table.AI shows

the values specified for the freestream flow quantities in this case.

The purpose of this low Reynolds numbcr case was to debtermine if
our specification of downstream symmetry boundary conditions restricted
separation in the higher Reynolds number soclutions described previously.
The steady-stete numerical solution for case 15 showed no tendency
toward separation. It thus appears that our symmetry boundary condition
is compatible with the numerical computation and does not prevent
separation.

Figure 9 shows the steady-state demsity and temperature distri-
butions along the stagnation streamline for Rcd = 15.0. The dcnsity
ratio predicted by this numerical solution across the bow shock 1s
2.77. This is three percent higher than that predicted by the normal
shock solution with first-order corrections for shock curvatuvela.
The standoff distance predicted by this numericeal solution is
expectantly larger, approximately 45 percent larger than that }
predicted by the numerical calculations for Red = 46.8. ‘

It is interesting to compare this solution for case 15 with the
solution for case 47-3. Both of these cases employed the same mesh
sizes with all freestream flow quantities identical except for the
density, Ceses 15 and 4T7-3 used identical initial conditions and
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boundary conditions and both used the coordinate mspping (13). The
numerical solutions in the bow shock region are quite different.
Case U7-3 predicts a density ratio across the bow shock which is
much too high as described previously. Case 15 predicts a denslty
ratlo across the bow shock which is quite close to the analyticael
result,

Since both case 15 and case L7-3 use the same initial conditions,
mapping, and boundery conditilons it eppears that the number of mesh
points across the bow shock 1s the crucial difference between ihese
two calculations. Case 15 has almost three times as many mesh points
across the bow shock at & = O° as case 47-3. This is because the gas
mean free path 1ls lsrger in case 15 and the shock 1s consequently
thicker. (Cmse 15 had 12 mesh points across the bow shock where it
intersected the stagnation streamline (almost four mesh points per
mean free path).

D. Red = 157.2

A numericel calculeation was mede for a Reynolds number of Red =
L157.2. The purpose of this calculation was to obtein & numerlcsal
golution which could be compared with experimental wake mea,surements8
teken for the same Machnumber &nd Reymolds number. These hot-wire
messurements taken downstream of & circular cylinder at Rey = 157.2
in a Mach two freestresm show that & wake shock 1s present in the
flow field.

Several attempts were made to start the integretion of case 157
8t time zero using the "impulsive acceleration” initial conditions.
These initial conditions produced excessive density ratios at the
forward stagnation point on the cylinder. The density ratic reached
values in excess of an order of magnitude larger than that for &
flow undergoing an unsteady isentropic compression. Due to these
inaceurate numerical results during the first few time steps this

procedure was abandoned in favor of interpolation from another steady-

state solution.




The numerical computation of case 157 was started at T = 39.08 by
Interpolating from the steady-state flow fleld of case L7-3, The free-
stream density, velocity, and temperature used for case 15T were
ldentical to that used in case L4T-3., The viscosity relation used for
case 157 was veried from that used in case 47-3 to produce & higher
Reynolds number. Table AI shows the values used to prescribe the free-
stream flow field,

The numericel solution reached the steady-stete at T = 58.1k
after nine hours of computer time and spproximately 1500 time steps.
Since the initlal computetions were performed by interpolating from
& lower Reynolds number solution the time dependence for case 157 does
not represent & cylinder accelerated from rest. The use of this
interpolation technigue for starting & solution offers & possible
approach for obtaining en even higher Reynolds number solution in a
regsonsble amount of computer time.

The numerical computation for Red = 157.2 predicted & bow shock
standoff distance of AJRO = 1.282. Figure 10 shows a comparison of the
time history of the standoff dlstance for each calculation. The stand-
off distance calculated for Red = 157.2 is gix percent larger than that
predicted by inviscid calculations. Our numerical solutions predict
that the standoff distance increases with decreasing Reynolds number.
This variation of standoff distance is as we would expect.

The density ratio across the bow shock predicted by the numerical
calculations for Red = 157.2 1s much %oo large. At the point where
the bow shock intersects the stagnation streamline e density ratio
of pe/poo = 3.5 is predicted by the numericel computations. This is
29 percent larger than predicted analytically by viscous normal shock
solutions corrected to account for shock curve.turel3 The cause of
this large discrepancy appears to be that more mesh points then we
used are needed in the vieinity of the bow shock.

Fligure 11 shows the density distribution through the bow shock
along 9 = 0° in terms of the freestream mean free path. The numerical
calculastions for Red = 157.2 predict a shock thickness of approximstely
three mean free paths while the analyticel viscous normal shock
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solutionll predlcts a shock thickness of two mean free paths. Alco
apparent in Plgure 1l is the large discrepancy between the Rankine-
Hugoniot and numerical solution for the density ratio across the bow
shock.

Figure 12 shows the pressure coefficient predicted throughout the
flow field for case 157. Upstresm of the cylinder ( X/RO = = 2) the
bow shock is quite pronounced By the time the flow reaches X/Ro = 1
the bow shock hes been smeared over many mesh widths. This smearing
or weakening of the bow shock ig seen to continue as the flow moves
downstream. The pressure coefficient at the forward stagnation point
is CP = 2.29. The bow shock is being smeared out by the asymptotic
behavior of the coordinate mapping (13) used for the computations.
This smearing cor weakening of the bow shock 1s caused because free-

stream conditions are specified at infinity and the condition
3/3R # 0 &8s R = (19)

is inherent to the coordinate mepping (13). The approximate location
of the wake shock 1s also shown in Figure 12 for reference.

Figure 13 shows the pressure coefficlent in the wake region
predicted by the numerical solution for case 157. Near the rear
stagnation point (& = 1800) the pressure is less than its freestream
level. By the time the flow along the rear stagnation streamline
reaches X/Ro'v 4 its pressure level has exceeded that in the freestresm.
These profiles exhibit "shock-like" gradients 1n the wake region
(i.e., X/Ro = 3, Y/RO ~ 1.5). The dashed curve shown in Flgure 13
represents the locus of points of maximum positive pressure gradient.
Pressure ilncreases as we cross this dashed line moving downstream.
These gradients result from a compression of the flow and appear o
represent the weke shock in the physical flow field. The numerical
and experimental results in the wake region cannot be compared
directly since the experimental measurements were taken at X/Ro'~ T0
end the wake shock is smeared out in our numerical solution by
X/RO'~ 13 due to our placement of node points and the asymptotic
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behavior of the coordinate mapping. We conclude that the numerical
computations predict "shock-like" gradients in the wake at Re, = 157.2

a
vhich may represent the weke shock present in the physical Tlow fleld

a8t this same Reynolds number.

The numericel computations for Red = 157.2 predicted & small
recirculation reglon downstream of the cylinder. The separation
bubble predivted in these numerical calculetions ig shown in Figure 1k.
Separation is predicted to start ab © ~ 158°. On the basis of
incompressible flow results this separation is very much delayed. For
incompressible flow the separation point is locatcd at O -~ lO9°. At
the present time it is not known whether this delayed sepsrstion is &
result of compressibility effects or errors in the numerical
computetions. It should be noted that the numerical computations for

Red = 15.0 and 44.8 predicted no separation bubble downstream of the
cylinder.

VI. CONCLUSIONS

This report has described & series of numerical experiments for
the purpose of evaluabting the sccuracy of typicel numericsl solutions
of the full Navier-Stokes equations., A computer progrem developed by
Scale and Gordonl was uced in this study to solve for the steady-
state flow field around cylinders accelerated to supersonic velocities.
Steady-state solutlions were obteined for Mach two flow past cylinders
at Reynclds numbers of 15.0, 46.8, and 157.2.

Our computations have shown that the density levels predicted
downctream of thic bow shock are higher than we would expect on the
bazis of analytical normal shock solutions corrected to account for
shock curvaturc j. The degree of error present in our numerical
solutions is closcly linked to the spacing of mesh points in regions
where lerge gradicnts are pregent. The steady-state celculations for
Red = 15.0 had 12 mesh points across the bow shock and had three per-
cent toc high a density ratio; the calculation for Red.: 157.2 hed

29 percent tco high a density ratio but only 5 mesh points across
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the bow shock. It thus appears necessary to use very fine mesh
spacings in flow regions having large gradients for accurate
numerical calculations. Three or four mesh points per mean free
path appear to be necessary in the region of the bow shock.

The numerlcal solutions for Red = 15,0 and 46.8 d1d not
predict separation. The computation for Red = 157.2 predicted a
small separation bubble on the downstream side of the cylinder. For
this case separstion begean at 8 = 180° then the separation point
shifted with time reaching & steady-state position at 6 ~ 158° Our
muerical results thus predict very late separation compared to
incompressible flow past & eylinder. Wa.litt12 predicts separation at
8 ~ 141° in a numerical calculation for Mach twc flow pest & cylinder
at Re,; = 1409. The accuracy of our numerically predicted separation
point is unknown.

Steady-state mmerical solutions were obtained for Red = 15.0,
46.8 and 157.2 by employing the coordinate mapping suggested by
Sillslo. Our calculations have shown that this coordinate mapping is
compatible with initilal-boundary-value problems of the present type.
This mapping smooths out gradients far from the body. This smoothing
process is benefticial in the wake reglon. The mapping ellminated the
large unnatural gradients which resulted from specifying "artificial"
freostream conditions downstream of the cylinder. The two methods of
specifying boundary conditions downstream are discussed and compered
in the celeulations for Re, = 1+6-8-8

Experimental wake measurements &t Red = 157.2 have shown that a
wake shock is present in Mach two flow at this Reynolds number. Our
numerical computations for Red = 157.2 predict large pressure and
temperature gradients at the edge of the inner wake which appear to be
the numerical equivalent of the wake shock in the physical flow ficld.
It 1s not clear, however, that the deteils of the wake region are
accurately predicted by these calculstions. The numerical calculations
for Rey = 15.0 end 46.8 predicted no wake shock. There is no experi-
mental deta for Reynolds numbers as low as 46.8.

Lo




The present numerical experiments havc been for cylinders of
approximately 1/32 inch and 1/2 inch diameter. To maintain & desired
level of mccuracy the number of mesh points vsed in a computation must
increase 1f learger cylinders are considered. In view of Lhe lerge
computer times required for our caleculations these small cylinder
sizes reyresent an upper limlt of our present capability. The
caelculation of a typicsl steady-state solution required from nine to
¢ighteen hours on the BRLESC II computer. For & given problem 1t is
impossible to predict in advance the degree of error which will be
present in the steady-state numericel solution. Our computations have
shown that errors of ten to twenty percent may result in numericel
soiutions of the Navier-Stokes éequations even under cerefully
controlled conditions.

b7




em e, O Y T

(&

-

REFERENCES

S. M. Scala and P. Gordon, "Salutions of the Navier-Stokes
Equations for Viscous Supersonic Flows Adjacent to Isothermal

and Adiabatic Surfaces," General Electric Report 698D1O01,
Philadelphia, Pennsylvania, April 1969.

L. Crocco, "Solving Numerically the Navier Stokes Equations,"

General Electric Report 63SD8G1, Philadelphia, Pennsylvania,
March 196k,

H. U. Thommen, "A Method for the Numerical Solution of the
Complete Navier-Stokes Equations for Steady Flows," General
Dynemics Report GDC-ERR-ANT3%, San Diego California, April 190%5.

3. M. Scale and P. Gordon, "Solution of the Time-Dependent
Navier-Stokes Equations for the Flow Around & Circular Cylinder,”
AIAA J., Vol 6, No 5, May 1968, pp 815-822.

J. S. Allen and S, 1. Cheng, "Numerical Solutions of the
Compressible Navier-Stokes Equations for the Laminar Near Wake,"
The Physies of Fluids, Vol 13, No 1, January 1970, pp 5T-51.

J. G. Truliv and L. Walitt, "Numerical Calculations of Viscous

Compressible Fluld Flow Around A Stationary Cylinder, NASA (R-1h(Y,
January 1970,

J. G, Trulio and L. Walitt, "Numericsl Calculation of Viscous

Compressible Fluid Flow Around An Oscillating Rigid Cylinder,"
NASA (R-1h67, October 1969,

C. W. Kitchens and C. C. Bush, “Hot-Wire Measurements in a
Cylinder Wake tor Low Reynolds Number Flow at Mach Two"

Balliutic Rescarch Laboratoeries Memorandum Report No. 211,
July 1971,

P. Gordon, "Nonsymmetric Difference Equations", SIAM J., Vol 15,
No 4, September 1uoh, pp 6OT-075.

J. A, 8ille, "Transformations for Infinite Reglons and Their

Applicationg to Flow Problems," AIAA J., Vol 7, No 1, Januay
109, pp 117-125.

M. Morduchow end P. Libby,
Dimensional Flow Equations
Compressible Gas", J. Aero.
Lok, pp oTh-08Lk.

"On A Complete Solution of the One-
of a Viscous, deat Conducting.
Sei., Vol 16, No 11, November

L8

Al st mmire s s

TR S D

cnit

e s ————



R

12, L. Walitt, "Numerical Studies of Supersonic Near-Wakes," Ph.D. I
Thesis, University of California, Los Angeles, California, 1969. i
13, R. Chow and L. Ting, "Higher-Order Theory of Curved Shock," ]
Aeronautical Research Laboratory TN 60-142, August 1560. C
b,

S. Tanedn, "Experimental Investigation of the Wakes Behind

Cylinders and Plates at Low Reynolds Numbers," J. Phys. Soc.
Jepen, Vol 11, No 3, March 1956, pp 302-307.

k9

;_MM PPV P U e - PRSI e et .
' . -
" - -
- S,



e e e e T T T ""'ﬂ

APPENDIX A

The following gas properties were held fixed for all the
numerical cases consldered

1

R = 5.52¢10" ££-1b,/1b_ =~ R , (81)
e = 1.38x10° £6-1b,/1b - °R , (A2)
Y = 1.0 . (A3)

The freestream Reynolds number wasg verled by changing the cylinder
size or freestream conditions of the flow. The specific values used
for each case &are shown in Table A-I. These dimensional variables
are input quantities for the cowputer program developed by Scale and
Gordonl. Each case 18 specified by its approximate Reynolds number.
The four cases for Re, = 46.8 are differentiated by a numerical
suffix (i.e. 47-1). Table A-I also shows which calculations were

performed using the coordinate mapping and the number of mesh points
used for each calculation.

Preceding page blank
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