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3 VORTEX FORMATION IN CHANNEL BETWEEN BI40KS OF FRIC TION THRUST BEALRINGS

3 fArticle by M. Ye. Podol'skiy; Moscow, Mashinovedeniye, Russian, No 5,
3 1970, pp 92-99}

The load capacity of friction thrust hcarings s not only determined
by phenomena that occur in the lubricant f£i‘'m, bvt also depends largely on
whzt happens in the bearing as a whele. Th.s is expiained basically by
three ciicumstances. First, h at transter through the blocks and collar

PO

3 and thermal processes in the film that :: transported through the channel
3 hetween the blocks from bencath one hlock to the other have a considerable
E influence on the temperature laycer of the film. Since the viscosity depends

on tcmperature, the noted phenomeax have s diract effect on the magnitude of

the hydrodynamic reaction of the lubric. nt wedge. Second, the transfer of

neat to the oil flowing in the hody of the bearing is accompanied by unecven
heating of the blocks, which causes warping. distortion of the geometry of
the lubricating film and in great measmie leads to reduction of its load

F capacity. Finally, vacuum zones may form withir the bearing under known

3 conditions, which, as shown experimentally !¢}, has a negative effect on

working capacity. Analysis of the bloch chinnel is ohviously very

3 important in investigation of the hydro. wnamics and heat exchange in the

f body of a bearing, since oil flcws ditcctly from it into the o0il wedge.

3 Ixperimental studies [2, 6] and nl<o - «~<ts on dctermination of the optimal
filling cocfficient [7] show that proceases in the block channel actually
have a considerable i.fluence on boaring operation and, in particular, on
its thermal regime [2]. Here, so far .. caa be judged according to [6],
thc main fcature of oil motion in the (huapnel is the formation of longitudinal
vortexes. The latter are created as o :esulr of rotation of the volumes of
vil hetween the blocks under the infiuewe of ferces of friction from the

-~ Learing collar.

An attempt is made below to carr, out an approximate analysis of the
hydrodyramic phenomena that eccunr in the block channel, which, in turn, can
serve as the basis for refining thermai catlculations and explaining
conditions that cn ure the absence of vicuum Zones.
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The problem is laid out schematically as foliows. The channel is
r--placed by a recess of rectangular cross section (Figure 1), the open
sive of which is bounded by a moving plate. The distance between the
plate and the walls of the groove is h and the depth of the groove is b.
It is also assumed that there is no motion of the lubricant along axis z.
Analysis of twisting of the flow with consideration of longitudinal flow
aleng the channel is described ia the second part of this work.

z
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(] p/
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Figure 1.

The j:lane problem of the mction in the slot was solved [4, 11] tor
h = ¢ and [S] for h # 0. In these works the complete system of Nevier-
Stokes equations is cxamined and they are numerically integrated with the
ai1d of computers. Due to the limit.d memory voiume of the computer, however,
the solution was found only for a comparativaly small number of Reynolds
numbers Re = Ub/v. Meanwhile the problem can be simplified for high
Reynolds numbers (for the block chanke! Re = 10%-10%) by dividing the flow

into two zones: 1) bhoundary iayer and 2) nonviscous core, in which the
forces of friction can be ignored.

In this statement for the case h = G, as it applies to the diagram
in Figure 2 (wall 1 is fixed and wail 2 rotates around axis 0), the probiem
was oxamined in [10, 12-14]. Here, in view of the symmetry of flow it was
assumed that the pressure gradient a’ong the boundary is equal tc zero and
the velocity on the periphery U® = const.

s
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On the hasis of analysis of tne equations of laminar asymptotic
houndary 1.ver. aritten in the Prandtl-Mises form, the authors of

{10, 12, 11j shcwed that the mean square velocity in the boundary layer
along each !in: is the same and equal to

. i¢

Hence for velocity U° is found the oxpression
U'=10Uygs, s=I1/L, (2)

vhere Ui, is the velocity of wall 2, It was also shown [10] that in the

general case of plane flow with closed streamlines the vortex rot v in the
nonviscous core has a constant value.

The application of this approach to cavities of rectangular form
poses known difficulties in connection with the fact that the pressure
through the length of the boundary layer is constant and, moreover, vortex
formation is possibls in angles A and B of the grooves. Angular vortexes
wcre actually discovered both as a result of numerical solution of the
complcte Navier-Stokes equation system [4, 5, 11] and experimentally [12].
‘lcanwhile cxperimental iavescigation, carried out for a groove of square
cross section for Re = 103 (the pressure here was laminar) revealed that
the pressure gradient along the perimeter of the groove is small and the
velocity along the periphery of the core is approximately constant and
cqual to U° = O.SU0 [12]. This vesult can be explained by the fact that

the formation of angular vortexes leads to separation of the streanlines
from the walls, with the result that their form approaches circular and
the flow in the nonviscous core becomes close to the flow accerding to the
diagram in Figure 2. As regards the numerical value of velocity along the

periphery of the vortex U® = O.SUO, it can be found from (1) for L = 41,

i.e., schematic reprcsentation of the flow in the form of a flow cove and
unbroken laminar boundary layer yields suitable results for grooves of
square cross section. Apparently the pressure gradient along the stream-
lines can be regarded equai to zero only for square grooves. In grooves
of rectangular cross section the difference of the streamlines in the core
from circles will be morc pronounced, lcading to variability of velocity
and pressurc along the periphery of the core. Meanwhile in the practical
scnse the first case is of greatest importance, since the form of cross
scction cf the block channel in most heariags is close to square. From
now on, therefore, the pressure gradient will be assumed equal to zero.

Examined below, in the specified statement, is the problem of vortex
formation in the channel with consideration of the effect of tne lubri:iant,
transferred from bencath one block to beneath the other (h # 0). At the

cnd of the article arc presented certain considerations of twisting of .he
{low in the turhulent flow regime,
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We will examine the motion of the lubricant according to the diagram
in Figure 3.

We will separate the region filled with oil into thiee zones:
nonviscous core IIT, bouadary layer II, oil stream I, forced from beneath
the preceding block. We will assume that there is a separating streamline,
which separates zones I and II. From the phys:cal standpoint this assump-
tion is quite nstural. It is also substantiated by the results of
muaerical solution [5}]. <E£ince the thickness of the layer in :one I is
smi1ll, the motion of the lubricant in regior I, as in region II, can be
decribed by the boundary layer equations. The latter, under the condi-

tions of thc examined problem, are conveniently taken in the Prandtl-Mises
X form [3]. Then, assuming 3p/ox = 0, we obtain

\L_i’
3
:
k]
E
i
E|
2
]
£
3
i
3
3
3
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Here x, is a coordinate on the streamline, Y, is the stream function
3 (v, = W, /dy,, v, = -ay,/3x,), u,, v, are the longitudinal and lateral
3 velocity components, respectively, v, is the lateral coordinrate.

-

i ¥
TR 1T VY 1 (N P D OO PR S

The order of the solution of the problem is as follcws. We are
given an expression for the velocity on segment abc, scparating the stream-
lines. Let this exprcssion contain n unknown parameters. Then, after
determining the velocitics in zones I and II, we calculate the fcrce of
friction on line abc approaching it from zones 1 and II, respectively.
Having now broken linc abc down into n segments and requiring that the .
forces of friction on each of them, determined oy the above-stated method, ‘
arc cqual to each other, ‘'we find n equations fer determination of n
unknown paramcters. Further, we restrict ourselves to the simplest case
of the uniparametric problem. Then all that remains is to calculate the
surmmary force of friction on the streamline abc.

GTTTYPOTIYT AR

AT VLRt ) LN

To find the approximate solution of thec problem, following [12, 14],

we wgll I%nearizc cquation (1), averaging the coefficient in front of
3?"* foyg,*.

In addition we will proceed to the dimensionless variables and

introduce thc Reynolds number Re, assuming (L is the dimensional length
of coptour ahcdc)

__ 2az, __ 2ay. gl __ e R __ UL .
L 1] y= L » - :.' v—"_ﬁ:r B—?nv“. (_))

Then we obtain approximately for zones I and I1

an2 a: 2 2 2
__=x'=__'i:‘ .fa_u_=-,_==_‘2’i‘ $= _“’_'., -,_,==._u’_‘..' x;:_._i'i:_ €))
dx o 9x UL 4R 4n*Re’

4
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where u and u,, are the averaece vialues of the dimensionless velocity in

zones T and II.

Satisfying the condition of periodicity in terms of x in zone T1I,
we seek u? in the form of the rea! part of the series

-~

=~ peut. 5. Za. (*p)exp(ikz).

-3

2

u

Substituting thi: into the -.econd of equations (4), we obtain for
ak’l;')} the equation systcm

: ik
Lo koo
d‘r. A:z
. Viev®ug *he boundary icoyer as awymptotic [10, 12-14], we find that
T, yeianeit .. U thercfore functions :xk(¢; should be bounded at y + «.

olving 1 -~ .tions for ak';fu with consideratien of this circumstanc-,

u® == a4 + 2Bem. v 2 7w eapf —--}"E(i + i)y +ikz], 192 =-!}-I—2_ 3)
- E2)

1he coefficients ay g W A, are Jdetermined as a function of the

form of the function u(x) on the separating streamline abe. We will
consider that ¥ = 0 on line 2be anl assume

u’=‘bco:=-—x—.~ (§ =0, —as<tz<ns).

2s (6)

Then, . ssuming that velocity u : O on {den and expanding u’(x, ¥ =
= 0) into a Fourier series on the secgment -7 < x < 7, we obtain

W cos kats
= : e 2 e n = e D = — @, :
ap =50, @ de b o—-{1:2s)F - x . 7)

The summary force of trictinon on the scparating streamline will be
{with an accuracy to a constant cofactor)

- (’“- e (8)

ks
=
4
z
4
]
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SuHystituting here u? fiom (5) aud a from (7}, we find

1 =—22p, =YY Sinzks
1 % - V24 k(1 — 475%)

(9)

AT L aainy

- (1)~ y
£(0,25 {g}’?.n-}-i[é—(.?n-}-l)‘] + 8;:2_}z0,5.

We will now cxamine zone I (the first of equations (4)). Egquation
(i) must be solved for the conditions

@_,05_2';. . for ¢ =0, u*=14 for $=—c. (10)

2

u

vl 2

Here (-c) is tke stream function on the moving plate. If we assume

3 that the oil flow rate through unit width of zone I is 0.5U h then (sec
(13) ¢ = 0.5h/L.

VI

We will seek the solution in the form

T TR TRNT

. __ ¥ xi xt
o= "":"’*‘ a,(p)exp (—2) + a-(})exp (-—-Es-), an
h where in view of (10) the functions a (lb) and o_ (w) should satisfy the
conditions
@ {0)= ~_,(0 =-J—‘-‘1). — = — = =———c—-
( ) 1(0) 4 v a(—6) a, ( 64) 0, ' 2,‘;7; ©12)

Substituting (11) into (4) we find for o and a, differential

equations of tne second order. Solving these equations for conditions (12)
and then substituting oy and a4 into (11) we find

SRR R, jshid )t iy 2 ¥ _
: e Y T{ e Lk hal R D)

Hence for the iorce of friction on line abc on approach from zone I
we obtain with the aid of (8)

T=— (1~ 6x(8)0.],
2 (b)) = (sh 28, + sin 2,) (ch 25, + ¢ 3 26,) o
sh* 28, -F sin® 26, =
6

e o . _..,..r_frsﬁ
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Further we will examine the case of small 61.
when &, < 1 the function X(8,) * 61”, so that

Calculations show that

rz—’;-‘-u-a».,). (14)

Equating (9) and (14) we obtain the equation

The value Uy, » OR the basis of (1), is assumed to be equal to u 2

. 2
on the outer boundary of the boundary layer in zone II [12, 14]. We obtain
(see (5) and (7))

ll;,." = Sd)m_

(16)
Assuming now (for a square groove) s = 0.25, we find from (15) and
16) :
v e kYR
-0, =9¢'0,% ¢ =283 }: . an

We will assume h = 20 mkm = 20+10°% m, U, = 50 m/sec, v = 0.2+107"

m’/sec, L = 81072 m (to this value of L corresponds a block channel width
of approximntc'¥ 2 cm). Then R = 3.2+107", ¢° = 6.13 and equation (15)
yiclds ¢m = 0.9°. The dimensionless velocity on the periphery of the

vortex, in view of (15) is 0° = /G~ = /5B or for s = 0.25 o - 0.5/

It follows from the ahove calculaticnc that the lubricating film decreases
the velocity on the periphery of the vortex, but this reduction is small
when the thickness of the fili is small (in the examined case we have

instead of U” = 0.5 0" = 0.5/679 = 0.47). This finding means that the
flow is close to that obtained if the layer is absenu altogether, i.e.,
if h = 0. For h = 0, hcwever, the velocity on the line Y = 0 - ws < x <
< ms is constant. Therefore in the examined conditions for velocity on’

'ising these results for estimating the value 51 from (12) and assuming
uml = J0.5(1 + ¢m) = 1, we obtain

h —
&y = -'.’.L- 2 VR = 014,

-

g e
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the separating streamline it is advisable to assume u” = ¢m = const instead
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of dependence (6). Finding for this case the solutiorn analogous to the

3 . preceding, we again obtain for ¢ equation (15), but now f(s) is deter-
3 mined according to the equation

9 = ain®
f f(s)=-:7 sin® kns

. n}’2~=l kfﬁ
E 7(0,25) = ;%@( 1 +$—§)( 1 —z%) r (?} - 0,649,

where Z(x) - ¢ is the Riemann function, c(%ﬂ = 2.61 [9].

: For the above-exzmined case we have ¢0 = 0.17, @m = (.85, u0 =

= 0.5/0.85 = 0.4%, i.e. uo close to the value obtained above,
We will now examine the problem of vortex formation in a groove in
the assumption that the motion is turbulent. Here we will assume h = 0.

In this case the region occupied by oil is brcken dovm into two parts:
the flow core and turbulent boundary layer.

The boundary layer equations will be

a . (]
E S S S B S Y NPy

dy. o Oy, Oz oy (18)

; The force of friction T, is given by the dependences [1]

3 T= llia_'. for I<y.<b, 1= Pk:-‘h:( ?i.“) for w26, U9
3 . %

i where

% ou, Ju,

é ay. Vo ==t,~0 oz, L.=a,+o‘

Here 60 is the thickness of the laminar film, p is the density of
the lubricant, Y and k1 are constants.

Writing (18) ir Prandtl-Mises variables, we obtain

(o _ o,
oz 3";:: (20)

- x a £ a P
[ e

e ey st
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Integrating (20) in terms of x, within the limits from zero to L

and corsidering that on the outer boundary of the boundary layer friction
is equal to zero, we will have

L
to'. dz.'———O. .

Equation (21) represents the obvious condition of equilibrium of
the boundary layer.

Through 1,, and T,., we will denote the average forces of friction
*1 *2

on the wall on two segments,arespectively: z,=(0,]) and r.&€ (L=
Then ‘we have from (20) [see also (2)]

TotS = Tex(1 — s)._ (22)

1f, following Prandtl's example [8], we assume tha: tho force of
friction is constant on a line perpendicular to the wall, then, by

integrating equations (19) for the segments z.€ (0,1) and z.& (L —1),
we obtain )

__ Ui (1 —u")? , U2a®
; ME T ¢ Zyr =2 ;a ¢, <. (23)

where S and c, are the ccefficients of resistance, determined by the
formulas (61 and Gé are’the boundary layer thicknesses)

kot . vip
c;=(-—-—ln—§1+——') . & :=—"—-3}'_—p (i=1,2).
w Kk Ck Ve .

Formulas (23) shcw that the rec.stance of friction can be determined
according to the formulas for tubes if the difference of velocities on the
cuter hboundary of the boundary layer and on the wall is regarded as the

characteristic velocity. Using on this basis the interpolation formulas
for the coefficients of resistance [1], we obtain

0 ~023 ° —03s
¢, = 0,225 [M] , ea== 0,0225[ Uow's: ] ) (24)

v v

We will now consider that on each of the segments thc thicknesses
of thc houndary layers are approximately constant. Then, from (22), (23)

and (24) we obtain
(11-u° 6.)% o’ __]/ s (25)
e 8 1—w VN i—5

FTD~t1C~-23-1639-71 9

e




The ratio of thicknesses 61/62 can be found by assuming that the o0il

flow rates in films 1 znd 2 are equal to each other. Then, assuming for )
velocity the 'one-seventh" wall {1},
we have §,/6, = 7u®/(1 + 71°) and

form:la (24) yields®

u®

08 I

N

L (")
n [ s=——-—.—°—
R 14 ¢* () 26)
e 7(1—u% 1% o°
; sy =[ ]
P TR T Y Ry +u i1—u

Figure 4. . * The graph of the function

. u® = u(s), plotted according to
formula (26), is illustrated in Figure 4 (curve 2). Also shown here is
curve 1, plotted according to equation (2), obtained for the case of a
laminar boundary layer. Comparison c? curves 1 and 2 shows that the
intensity of twisting of the flow core in the turbulent regime is less as

a whole than in the laminar regime. For s = 0.25, in particuiar, u® = 0.36.

The twisting of the flow can be judged indirectly on the basis of
the pressure drop, which forms through the cross section of the channel
as a result of centrifugal forces. It can be determined according to the
fornula Bp = 0.5pv,?, where Vo is the velocity on the periphery of the
twicted core.

The values (0.2-0.4)U0 are given in [6] as the approximate values

for v,. The latter in the laminar regime of motion are less than those

0
that follow from the equations d:rived above (for channels of square
form Vo = O.SU0 in laminar flow «nd vy = 0.36U0 in turbulent flow),

which is explained, in particular, by the fact that the twisting of the
oil entcrin§ the channe! develops gradually., Therefore the value
dp = 0.50(u UO)2 should be viewed as the limiting value, established

during complete twisting of the flow. Analysis of this problem will be
given in ths second part of this work.
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