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VORTEX FOR.IATION IN CIIA\'NI.L B!ETWEE.N ISI',CKS OF FRI( HION THRUST EEAIINGS

[Article by M. Ye. Podol'skiv; Mloscow, Ntshinovedeniy:, Russian, No 5,
1970, pp 92-991

The load capacity of friction thrust hearings ts not only determined
by phenomena that occur in tbe ltifricmant fi "i, bit also depends largely on
whzt happens in the hearing as a wh',e(-. Th.s is explained basically by
three ciicumstances. First, h at ir.s'sfer through th,: blocks and collar
and thermal processes in the film that ..; transported through the channel
between the blocks from lieneath one, blok to the other have a considerable
influence on the temperature layer of the film. Since the viscosity depends
on temperature, the noted phenonena havt- a vir,'ct effect on the magnitude of
the hydrodynamic reaction of the lubric, nt wedge. Second, the transfer of
heat to the oil flowing in the body of !he hearing is accompanied by uneven
heating of the blocks, ihich causes wa'ri-i;g. distortion of the geometry of
the lubricating film and in great measuie leads to reduction of-its load
capacity. Finally, vacuum zones may fo,1M WithiT. the bearing under known
conditions, which, as shown experimentally l'61, has a negative effect on
working capacity. Analysis of the bloc. chinnel is obviously very
important in investigation nf the hydro.'.-Iamics and heat exchange in the
body of a hearing, since oil flcws di:et.-tl from, it into the oil wedge.
Experimental studies [2, 61 and al,, '--ts Oin determination of the optimal
filling coefficient [7] show that pro,,-..svez in the block channel actually
have a considerable i.,fluence on hc:triiw, op-cration and, in particul3r, on
its thermal regime 121. tit-re. so far c:a. he judged according to [61,
the Pain feature of oil motion in the C';uutH,: is the formation of longitudinal
vortexes. The latter are created as z, :e--l? of rotation of the volumes of
oil between the blocks under ihe infio, '-e, .), forc..-s of friction from the
-ehaaring col lar.

An attempt is made below to c.irr. out an approximate analysis of tht-
4ydrodynamic phenomena th:!t occi.r in 0.-v hloc) chancnl, which, in turn, can
serve as the basis for refining the.rama1 ca'kulations and explaining
conditions that en ure the absence of 'ictium :.)11e;.
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The problem is laid out schematically as follows. The channel is
r..placed by a recess of rectangular cro-s section (Figure 1), the open
sine of which is bounded by a moving plate. The distance between the
plate and the walls of the groove is h and the depth of the groove is b.
It is also assumed that there is no motion of the lubricant along axis z.
Analysis of twisting of the flow with consideration of longituiinal flow
along the channel is described in the second part of this work.

A

Figure 1.

The p:lane problem of the motion in the slot was solved [4, 11] for
h = 0 and [1] for h / 0. In these works the complete system of Navier-
Stokes equations is examined and they are numerically integrated with the
aid of computers. Due to the limitl-d memory volume of the computer, however,
the solution was found only for a comparativ-ely small number of Reynolds
numbers Re = Ub/v. Meanwhile the problem can be simplified for high
Reynolds numbers (for the block channel Re = 10• -10) by dividing the flow
into two zones: 1) boundary layer and 2) nonviscous core, in which the
f.rces of friction can he ignored.

In this statement for the case h = 0, as it applies to the diagram
in Figure 2 (wall 1 is fixed and wail 2 rotates around axis 0), the problem
was examined in [10, 12-14]. Here, in view of the symmetry of flow it was
assumed that thc pressure gradient along the boundary is equal to zero atid
the velocity on the periphery U1 = const.

C?.. 0i. -

Fipure 2. Figure .3.
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On !he hasis of analysis of the equations of laminar asymptotic
ioundary 1 .,'er. written in the Prandtl-Mises form, the authors of
'10, 12, 11; shoied that the mean square velocity in the boundary layer
along each ýin-. is the same and equal to

u. - -- JzLdx = P -- consL (1)

Hence for velocity U0 is found the expression

where V0 is the velocity of wall 2. It was also shown [10] that in the

general case of plane flow with closed streamlines the vortex rot v in the

nonviscous core has a constant value.

The application of this approach to cavities of rectangular form
poses known difficulties in connection with the fact that the pressure
through the length of the boundary layer is constant and, moreover, vortex
formation is possibli in angles A asid B of the grooves. Angular vortexes
were actually discovered both as a result of numerical solution of the
complete Navier-Stokes equation system [4, 5, 111 and experimentally [12).
'lcanwhile experimental inves'cigation, carried out for a groove of square
rross section for Re = l05 (the pressure here was laminar) revealed that
the pressure gradient along the perimeter of the groove is small and the
velocity along the periphery of the core is approximately constant and
,-qual to U0 = 0.SU0 [12]. This result can be explained by the fact that

the formation of angular vortexes leads to separation of the streanlines
from the walls, with the result that their form approaches circular and
the flow in the nonviscous core becomes close to the flow according to the
diagram in Figure 2. As rerards the numerical value of velocity along the
periphery of the vortex 1J 0.50, it can be found from (1) for L = 4Z,

i.e., schematic representation of the flow in the form of a flow core and
unbroken laminar boundary layer yields suitable results for grooves of
square cross section. Apparently the pressure gradient along the stream-
lines can be regarded equal to zero only for square grooves: In grooves
of rectangular cross section the difference of the streamlines in the core
from circles will be more pronounced, leading to variability of velocity
and pressure along the periphery of the core. Meanwhile in the practical
sense the first case is of greatest importance, .ince the form of cross
section of the block channel in most bearings is close to square. From
now on, therefore, the pressure gradient will be assumed equal to zero.

Examined below, in the specified statement, is the problem of vortex
formation in the channel with consideration of the effect of tne lubricant.
transferred from beneath one block to haneath the other (h j 0). At t!i
end of the article arc presented certain considerations of twisting of .he
flow in the turbulent flow regime.

:'.= -,: -23- 83• Y !3



We will examine the motion of the lubricant according to the diagram
in Figure 3.

We will separate the region filled with oil into three zones:
nonviscous core III, boundary layer II, oil stream I, forced from beneath
the preceding block. We will assume that there is a separating streamline,
which separates zones I and II. From the phys:cal standpoint this assump-
tion is quite natural. It is also substantiated by the results of
nu:ierical solution [5]. Since the thickness of the layer in zone I is
sr.:,ll, the motion of the lubricant in region I, as in region II, can be
d.--:cribed by the boundary layer equations. The latter, under the condi-
tions of the examined problem,, are conveniently taken in the Prandtl-NMsises
form [3]. Then, assuming ýp/Ix = 0, we obtain

aa8,.: a2U.2

V -ý~Vadx. .- :

Here x. is a coordinate on the streamline, V., is the stream function

(.= ./•y., v. = -Clip./ax.), u., v. are the longitudinal and lateral
velocity components, respectively, y, is the lateral coordinate.

The order of the iolution of the problem is as follows. We are
given an expression for the velocity on segment abc, separating the stream-

lines. Let this expression contain n unknown parameters. Then, after
determining the velocities in zones I and II, we calculate the fcrce of
friction on line abc approaching it from 7ones i and II, respectively.
1lhving now broken line abc down into n segments and requiring that the
forces of friction on each of them, determined cv the above-stated method,
arc equal to each other, we find n equations fer letermination of n
unknown parameters. Further, we restrict ourselves to the simplest case
of the uniparametric problem. Then all that remains is to calculate the
summary force of friction on the streamline abc.

To find the approximate solution of the problem, following [12, 14],
we will linearize equation (1), averaging the coefficient in front of

In addition we will proceed to the dimensionless variables and
introduce the Reynolds number Re, assuming (L is the dimensional length
of cortour abcdc)

X 1X. =2.y. u. v. U.Lz -- -- u - -- v =Re • .(3)
U. L U.' 2av

Then te obtain approximately for zones I and II

Xz X1 , ,Oz..- x.Z 4- --'£ - --"' VL "4--- ' " 4i Re4



where u and U2 are the average valiue., of the dimensionless velocity in
lm 2

zones I and II.

Satisfying the condition of periodicity in terms of x in zone .,
we seek u 2 in the form of the rea! part of the series

u -nero. •,. Ž1 aA (;)explzkx).

Substituting thi:. into Ihe ..econd of equations (4), we obtain for
ak'ý) the equation systenm

Vie'-,g *-'he boundary Lyer as :3,.ymptotic [10, 12-14), we find that

:v( i? .I •therefore fu Tction.; a should be bounded at ' - .

"olving ti -- .tions for ak'; 1 with consideration of this circumstanc:,
+. f'i nd

u2a: ...+ 2 ent.,n. ,,-l-ig -- O:--i'x], 112=~i2- S

"lhc coefficients akO *in( a,,) .irt: determined as a function of the

form of the function u.(x) an thy s.alprating streamrlinc abc. We will
consider that P = 0 on line nb- an! issume

u= 'lcO•- (1 -- 0, --a.<x< ). (6)

Then, . ssuming tOat. velocity ii = 0 on idea and expanding u (x,•iP
= 0) into a Fourier series on ihe segment -v < x < ., we obtain

(()ý cosk-; s 2
a., = s$., at, -- ( )= -. 7)

The summary forc- of fricti on on the separating streamline will he
(with an .ccuracy to a cnSranl cof:,actor)

dx. (8)

.+- , I



Substituting here u 2 fiom (5) aid akO from (7), we find

_• sin 2nks

(9)f. (--,25)
V2,5).. )C9i +1 [4 ~(2n+ 1)2] + i;05

We will now cxamine zone I (the first of equations (4)). Equation
(i) must be solved for the conditions

U -a). -.os for =0, uz= for •=-c. (10)
2 2s

Here (-c) is the stream function on the moving plate. If we assume
that the oil flow rate through unit width of zone I is O.5Uoh, then (see
(1)) c = O.5h/L.

We will seek the solution in the form

U2 - + a(+ x + a-.(*) exp - ,( )

where in view of (10) the functions a1 (9)) and a- (4) should satisfy the
conditi ons

a. (0) -,(0) at•. a(--6.) = a, (--6.) = 0, 6,. -•_

4 2xjrs (12)

Substituting (11) into (4) we find for a I and a- differential

equations of tne second order. Solving these equations for conditions (1I)
and then substituting a1 and a1 into (11) we find

U . ea 9•s !6
A= - h Ih-- O 2x , j (13 )

Hence for the ;nrce of friction on line abc on approach from zone I
we obtain with the aid of (8)

1'= .. if-
C

x(J,) (sh 2 6, +sin26,) (ch26, +L s26,)
st 26,- sin: 26,
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Further we will examine the case of small 6V Calculations show that

when 61 < I the function X(I) 61- , so that

T ---•( n --00.). (14)
C

Equating (9) and (14) we obtain the equation

inq rn 0 g) (s) h- 1 R (5
,,'S'•: s LYU=•

2 2The value u2m , on the basis of (1), is assumed to be equal to u2

on the outer boundary of the boundary layer in zone II [12, 14]. We obtain
(:;ee (5) and (7))

(16)

Assuming now (for a square groove) s = 0.25, we find from (15) and
(16)

I - 2,)8 = •*" - (17)

We will assume h = 20 mkm = 20-10- 6 m, U0 = 50 m/sec, v = 0.2"10-4

m2/sec, L = 8.1f- 2 M (to this value of L corresponds a block channel width
of" approximatc'IT 2 cm). Then R = 3.2-10-". ýO = 0.13 and equation (1S)
yields 4'm -- 0.9 . The dimensioi:less velocity on the periphery of the

yed m 0 . h ienii h
vortex, in view of (15) is U( = a = - s- or for s = 0.25 U =0.5 .

t o) m
It follows from the above calculaticn: that the lubricating film decreases
tlt: v,..ocity on the periphery of the vortex, but this reduction is small
when the thickness of the filh; is small (in the examined case we have

instead of U0 = 0.5 U O.5v0 .9= 0.47). This finding means that the
flow is close to that obtained if the layer is absenx altogether, i.e.,
if h = 0. For h = 0, hcwever, the velocity on the line ip = 0 - Tis < x <
< ns is constant. Therefore in the examined conditions for velocity on*

11Jsing these results for estimating the value 61 from (12) and assuming
u /0.5(1 + tý ) 1, we obtain

6. 2a M 0. 1".L



2

the separating streamline it is advisable to assume u = (m D const instead

of dependence (6). Finding for this case the solution analogous to the
preceding, we again obtain for 1 equation (15), but now f(s) is deter-mined according to the equation

sin kns!()--,,T2--,. k•-Fk-

1 -3

3where t(x) - 1 is the Riemann function, 2, = 261 [9].

0 0
For the above-exzmined case we have 0 = 0.17, D = 0.85, u =

= 0.5/0.85 = 0.46, i.e. u0 close to the value obtained above.

We will now examine the problem of vortex formation in a groove in
the assumption that the motion is turbulent. Here we will assume h = 0.
In this case the region occupied by oil is broken down into two parts:
the flow core and turbulant boundary layer.

The boundary layer equations will be

au. oa. I or. 4a. 4V.
- - - o. (18)

The force of friction T, is given by the dependences [1]

.Dt for 0 r=pk~y.2L for y.,, (19)

where

D .y. =,- ; *' , ,

Here 60 is the thickness of the laminar film, p is the density of

the lubricant, ' and kI .are constants.

Writing (18) in Prandtl-Mises variables, we obtain

Da. ar.
. .D, -.- (20)



Integrating (20) in terms of x. within the limits from zero to L
and coirsidering that on the outer boundary of the boundary layer friction
is equal to zero, we will have

L .

I o (21)

Equation (21) represents the obvious condition of equilibrium of
The boundary layer.

Through r.1 and T* 2 we will denote the average forces of friction

on the wall on two segments, irespectively: x. c (0, 1) and X. a- (tL- -)
Then'we have from (20) [see also (2)]

.,s --. ±(1 -- s). (22)

-If, following Prandtl's example (8], we assume thaz the force of
friction is constant on a line perpendicular to the wall, then, by
integrating equations (19) for the segments z. e (0,1) and x. e (1,L--I),
we obtain

2---' -Cit --- (23)

where cI and c2 are the coefficients of resistance, determined by the

formulas (61 and &2 are'the boundary layer thicknesses)
2

C,---1-6 k---I-- =-] ,,=--k. _y= (i = 1, 2).

Formulas (23) shcw that the ref':stance of friction can be determined
according to the formulab for tubes if the difference of velocities on the
outer boundary of the boundary layer and on the wall is regarded as the
characteristic velocity. Using on this basis the interpolation formulas
for the coefficients of resistance [1], we obtain

c, = ,225[ 2- c2 = 0,0225 [ UW6 (24)

We will now consider that on each of the segments the thicknesses
of the boundary layers are approximately constant. Then, from (22), (23)
and (24) we obtain

,. ," D - - - 8 (25)

FT~1~D-1 C--23--18 3- 719



The ratio of thicknesses 61/62 can be found by assuming that the oil

flow rates in films 1 and 2 are equal to each other. Then, asstuming for
velocity the "one-seventh" wall [1],
we have 61/6,) = 7u 0 /(l + 7u 0 ) and

formtula (24) yields1

S
+ +ep(uo)•" c~u') [ 7( -- u)]/ 11, (26)

£TZ 7(1- tS a

Figure 4. The graph of the function
0. u " uO(s), plotted according to

formnila (26), is illustrated in Figure 4 (curve 2). Also shown here is
curve 1, plotted according to equation (2), obtained for the case of a
laminar boundary layer. Comparison cf curves 1 and 2 shows that the
intensity of twisting of the flow core in the turbulent regime is less as
a whole than in the laminar regime. For s = 0.25, in particular, u° = 0.36.

The twisting of the flow can be judged indirectly on the basis of
the pressure drop, which forms through the cross section of the, channel
as a result of centrifugal forces. It can be determined according to the
formula Ap = O.5pv 0

2 , where v0 is the velocity on the periphery of the
twxzted core.

The values (0.2-0.4)U 0 are given in [61 as the approximate values

for vO. The latter in the laminar regime of motion are less than those

that follow from the equations d('rived above (for channels of square
form v0 = 0.SU0 in laminar flow 4nd v0 = 0.36U0 in turbulent flow),

which is explained, in particular, by the fact that the twisting of the
oil entering the channel develops gradually. Therefore the-value
Ap = 0.Sp(u 0 U0 ) 2 should be viewed as the limiting value, established

during complete twisting of the flow. Analysis of this problem will be
given in the second part of this work.
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