

ANATUDO TE TUD		
Security Classification		
DOC	MENT CONTROL DATA - 4 5 P	
(Security closellisation of fills, body of obest 1. ORIGINATING ACTIVITY (Cognoste suffer)	at and indexing expectation a vot be entires when the state of the sta	UALTY CLASSIFICS
Foreign Technology Div:	sicn UNCL	ASSIFIED
U. S. Air Force		
. REPORT TITLE		
WITH COMPOSITION	OPERTIES OF BURIDE MATERIALS	5
4. DESCRIPTIVE HOTES (Type of sepera and in" sive	der(ee)	
1 AUTHORISI (First name, middle initial, last name)		
Kotsch, H.		
A REPORT DATE	74. TOTAL NO. OF PAGES	T. NO. UF NEFS
-1970 N. CONTRACT OR BRANT NO.	1.6	LA(F)
L PROJECT NO. 735001	FTD_HC_03_1845 r	71
۰.	B. OTHER REPORT (1013) (Any other	ce numbere that may
	-	•
б. 18. Паченані Філь ататаляна		<u>ر</u>
Approved for public rel	ease; distribution unlimited	d. TV
Approved for public rel	ease; distribution unlimited	i. Iv Logy Divisi
Approved for public re]	ease; distribution unlimited In SPONSORING MILITARY ACTIVI Foreign Technol Wright-Patterso	i. TV Logy Divisi Dn AFB, Ohi
Approved for public re]	ease; distribution unlimited In SPONSORING MILITARY ACTIVI Foreign Technol Wright-Patterso	i. Iogy Divisi on AFB, Ohi
Approved for public rel	on properties such as creep t strength, hardness and oxi naterials of Cr- Ni- B, Cr- onchtration ranges. 40 to 90 ent B and 0 to 30 at percent its obtained are discussed i ter Kolomytsev and his co-wo	d. logy Divisi on AFB, Ohi strength, dation Mo- B and o at per- Ni and Mo on terms of orkers.
Approved for public rel	ease; distribution unlimited Foreign Technol Wright-Patterso on properties such as creep t strength, hardness and oxi naterials of Cr- Ni- B, Cr- oncontration ranges. 40 to 90 ent B and 0 to 30 at percent its obtained are discussed i ter Kolomytsev and his co-wo	t. logy Division AFB, Ohi strength, dation Mo- B and at per- Ni and Mo n terms of prkers.
Approved for public rel	ease; distribution unlimited Foreign Technol Wright-Patterso on properties such as creep t strength, hardness and oxi naterials of Cr- Ni- B, Cr- onc~ntration ranges. 40 to 90 ent B and 0 to 30 at percent its obtained are discussed i ter Kolomytsev and his co-wo	t. logy Division AFB, Ohi strength, dation Mo- B and at per- Ni and Mo n terms of prkers.

		UNCLASSIFI	ED .								
1		Security Classific	1007 1007	كالأعين المراجع المتخف الزار عماري		LINK	A	LIN		LINI	(C
	14.	•	KEA ACUDE			IALE	WT	ROLE	WT	ROLE	W1
•		Metallurgi Boride Powder Met Metal Cree Metal Bend Sintered M Chromium A Titanium A Molybdenum Boron Allo Impact Str	c Conference allurgy p ing etal lloy lloy Alloy y ength								
		Nickel All	.oy								
			1								
			:		•						
New Colorado		•									
						Ľ	INCLAS	SSIFI	3D		

FTD-HC-23-1815-71

New York and the second se

語なない

UNEDITED ROUGH DRAFT TRANSLATION

and the second second

by Joint Publications Research Services

CHANGE OF TECHNICAL PROPERTIES OF BORIDE MATERIALS WITH COMPOSITION

By: H. Kotsch

200

and the second states of the s

English pages: 16

Source: International Powder Metallurgy Conference, Karlovy Vary, CSSR 1970, Vol. 4, pp. 315-332

Approved for public release; distribution unlimited.

CZ/GE-0000-70-004-000

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FORE/CIT TEXT WITHOUT ANY ANALYTICAL OR ELITORIAL COMMENT. STATEMENTS ON THEORIES. ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PRÉPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, CHIO.

FTD-HC-23-1815-71

STATISTICS HANDLED

Date <u>3 April 19 72</u>

CHANGE OF TECHNICAL PROPERTIES OF BORIDE MATERIALS WITH COMPOSITION

[Paper by H. Kotsch, Dresden, GDR, Presented at the International Powder Metallurgy Conference, Karlovy Vary, CSSR; 1970, Vol 4, pp 315-332]

1. Introduction

出出,生产产生力的在在2

and the state of

In the manufacture of sintered materials, on the basis of borides of the transition metals, reactions between hard material and the metallic components occur during sintering. In this case generally multiphase sintered bodies are formed.

In the following paragraphs some relationships between the properties of sintered bodies and their phase structure will be discussed.

2. Preparation of Samples

Specifically, materials will be studied which contain in addition the metals nickel, chromium and molybdenum or alloys on the basis nickel-chromium or chromium-molybdenum besides the borides Cr_2B , CrB, CrB_2 and the mixed boride CrB_2 -TiB₂.

The borides were made following the boron carbide process. Suitable mixtures with the additional metals or alloys were subjected to a heat treatment in hydrogen just below the final sintering temperature of the respective materials before being pressed to a test piece. This heat treatment already caused partial reactions between the components; pressing properties and sintering behavior were improved.

Final sintering of the materials -- discussed in detail in earlier publications [1-3] -- was carried out exclusively in a hydrogen atmosphere in a molybdenum furnace with titanium as a getter.

FTD-HC-23-1815-71

3. Results

3.1 Materials in the System Cr-Ni-B

Bending-Fracture-Strength

The values for bending-fracture-strength of nickel containing chromium boride materials obtained at room temperature have been plotted in Fig. 1 on the chromium side of the isothermal cut through the ternary system Cr-Ni-B as established by Kolomycev [4] at 1000°C.

The highest values for bending-fracture-strength numbering 100 kp/mm² and higher are found in the three phase region $\eta + \alpha + \gamma$ for materials consisting of 10-20 at. % nickel and less than 20 at. % boron.

With increasing boron content (> 20 at. %), that is, with an increasing share of Cr_2B , the strength of these materials decreases steadily within this three-phase-region in order to assume values between 20 and 40 kp/mm² in the vicinity of the pure Cr_2B phase.

Materials after sintering containing the higher-boron chromium-boride-phase Cr_5B_3 ($_{\mathcal{S}}$) and CrB ($_{\mathcal{S}}$) exhibit a similar low bending-fracture-strength.

Therefore, compositions with higher nickel content lose their strength at temperatures between 700 and 980°C while for compositions with lower nickel content located in the ternary system close to the pure chromium boride phases the decrease in strength usually only takes place at temperatures above 1000°C, due to the high share of high temperature phase.

- 2 -

FTD-HC-23-1815-71

lika berakan katakan kana nakerakan dalaran inderationa kada kana berakan katakan katakan kata kana dalara dara

As an example, strength behavior and bending of two materials with different nickel content from the three phase region **r**+**s** at various testing temperatures is shown in Fig. 2. It is seen clearly that the lock-nickel composition loses its strength only at temperatures above 1050°C. **1997**

Oxidation Behavior and Hardness

From Fig. 3a it can be seen that the occurrence of low melting phases also influences the oxidation behavior of the sintered materials.

Thus, materials located in the $r \cdot \bullet \cdot \epsilon$ region which exhibits a weight increase of 2 mg/cm² and less after a 100 hour heat treatment at 950°C show weight increases already of between 10 and 15 mg/cm² at 1000°C. Increased susceptibility to oxidation and deviations occurring from the parabolic curve support the beginning appearance of a eutectic between the phases r and \bullet .

The materials of the $r \cdot \bullet \cdot n$ region are considerably more oxidation-resistant. Weight increases amount to 1 mg/cm² and less. Obviously, this good resistivity against oxidation can be explained by the presence of the \bullet -chromium mixed crystal. Compositions containing more \bullet -phase show the best behavior.

In Fig. 3b are plotted the R_A -hardness of the materials in the ternary system Cr-Ni-B. High hardness of the materials in the r+4-7 region is conspicuous. As can be expected, materials with higher Cr₂B content (*-phase) have higher hardness; however, compositions containing less *-phase (for example, 61.0 Cr, 19.6 B, 19.3 Ni, or 76.3 Cr, 12.3 B, 11.4 Ni in at. %) with . R_A units show a relatively high macro-hardness. Since both materials just mentioned also exhibit micro-hardness values up to 3000 kp/mm² for individual structure components and also possess the highest values for toughness of the compositions investigated in the system Cr-Ni-B ($r_{M} = 80-100 \text{ kp/mm}^2$) this group ought to claim a certain technical interest with regard to wear strength.

FTD-HC-23-1815-71

Since in the ternary systems Cr-Co-B and Cr-Fe-B more or less the same phase conditions are present as in the ternary system Cr-Ni-B, high-temperature strength of materials on the basis of chromium boride cannot be improved through exchange of nickel with cobalt or iron as was confirmed through our own experiments.

The high-temperature strength is limited by the occurrence of low melting phases of the binder metal with boron, or of mixed crystals with a higher cortent of the binder metal; therefore it cannot be expected that by changing the boride phase in the initial mixture, for example, replacement of C:B by TiB₂, the high-temperature strength of the sintered materials can be increased considerably. It is therefore more favorable to use high melting metals and alloys, for example, chromium and chromium-molybdenum alloys as additions rather than the group of the iron metals.

3.2 Properties of Materials in the System Cr-Mo-B

The properties of the compounds in the system Cr-Mo-B inves' gated by us were evaluated with the aid of the chromium side of the isothermal section for this system established at 1000°C by Kolomycev, Moskaleva and Shetkov [5].

Fig. 4 represents the strength $\sigma_{\rm hE}$ of the sintered material investigated at 1200°C. Compositions with at least 3.5 at. % molybdenum and less than 30 at. % boron have the higher values for high-temperature strength. According to the phase diagram, molybdenum is present principally as the CrMo-mixed crystal (\ge -phase) and as the ternary CrMoB-phase of variable composition (phase T). Highest values for bending strength reaching 80 kp/mm² and more are found in the hatched area between 15-25 molybdenum, 12-22 boron, and 55-67 chromium (at. %). This area extends into the phase regions of \le T as well as = + T + =.

Fig. 5 shows the values for bending-fracture-strength at room temperature. As can be seen on the line of the binary region Cr-B as well as in the ternary region Cr-Mo-B, increased appearance of \leftarrow -Cr or the \leftarrow -CrMo-mixed crystals, respectively, are responsible for an increased strength.

Compositions containing more than 16 at. % molybdenum have the highest values for strength. The influence of the ternary phase T on strength can be considered to be small.

As opposed to the behavior during static testing (bending-fracture-strength), during a dynamic test of impact resistance, the strength behavior of the individual phases

- 4 -

as well is the influence of brittle component is more pronounced (Fig. 6). It can be proven unmistakably that the brittle boride phases CrB, Cr_5B_3 and Cr_2B , and also the ternary phase T exer. a scronger influence even if there exists a certain analogy to the curve of the bending-fracturestrengths in Fig. 5. Impact strength increases with inreased \leftarrow -chromium or \leftarrow -CrMo-mixed crystals, respectively, that here, too, compositions with more than 16 at. % lybjonum yield higher Loughness. がいていていてい

The highest values occur in the three phase region 3 + 7 + 6. This is very likely caused by the presence of the Cr2B-phase; the CrB-phase and also the T-phase increase further the crep

3.3 Properties of Materials in the System Cr-Ti-Mo-B

The properties, especially long-time-rupture-strength of the materials in the a+T or n+r+a region, respectively, of the ternery system Cr-Mo-B frequently can be improved by the introduction of titanium in the form of TiB₂ or better yet as the mixed boride TiB₂-CrB₂.

Since titanium diboride forms a continuous series of mixed crystals with chromium diborile as well as molybdenum diboride [6], it can be assumed that the titanium will be dissolved above all in the Cr-Mo-mixed boride (phase T), that is, a mixed boride (Cr, Mo, Ti)_xB_y is present. Similar relationships were also surmised by G. V. Samsonov [7].

The properties of materials in the system Cr-Ti-Mo-B have already been reported on [8].

The properties of a material of the system Cr-Mo-B are listed in Table 1 with those of two materials of the system Ci-Ti-Mo-B, which have approximately the same chemical composition except for different contents of titanium comparing the properties; it is striking too that the citanium containing materials possess higher long-time-rupture-strength, better oxidation resistance, and slightly lower bending strength at room temperature. Creep resistance of the materials increases with increasing titanium content. A material with a higher titanium content yields the highest long-time-rupture-strength $\sigma B/1000$ with 24 to25.5kp/mm² with an elongation between 3.5 and 5.0%.

The above presentation gave a qualitative evaluation of the relationship between a few properties of the materials investigated and structure parameters. Of course, this interpretation is not complete, one reason is the presence of further magnitudes of influence which influence data, the other reason follows from the phase diagrams used for the comparison "presenting cuts at 1000°C which do not have to meet accurately, in each case, the relationships during the production of technical samples. Still, the considerations submitted permit some insight which is of interest for the understanding of properties of materials.

> Central Institute for Solid Physics and Materials Reserch, Dresdon, the German Academy of Sciences, Berlin.

あっていたいないないであっていろう いろうちょうちょうちょう へん

Bending-fracture-strength and bending of $Cr_2B/CrNi$ materials vs temperature Fig. 2.

Key:

(a) (b) (c) Bending Bending-fracture-strength

Temperature

AND THE REAL PROPERTY OF THE PROPERTY OF THE

ACCURACE STATES

ternet with a state of the second state of the second state

1833 CONTRACTOR OF CONTRACTOR OF CONTRACTOR

AND DECEMBER OF THE PARTY OF TH

のないできょうとうとう。

Fig. 3. Oxidation resistance (100 h, 1000°C and RA-hardness cf sintered alloys (at. %) in the system Cr-Ni-B

Key:

(a) Upper series of num- (b) Lower series of numbers bers are weight in- are R_A hardness crease [mg/cm²]

- 9 -

N REAL PARTY

and be associated in a second state of the second second second second second second second second second second

headismichicates shi

Fig. 4. Bending strength of sintered materials in the ternary syste. Cr-Mo-B at 1200°C

Key:

(a) bB at R_T (kp/mm²) (b) Bending at 12000C

•

- 10 -

Fig. 5. Bending strength of sintered materials in the ternary system Cr-Mo-B at R_T

Key:

(a) At R_T

- 11 -

ž

and the second s

のないのでいたのできょうのなんべき

158

そうしょうちょう ひょうちょう ひまんない おおがんがいない ひとうなん ひがんない

Fig. 5. Impact toughness (falling ball method) of sintered materials in the ternary system Cr-Mo-B at 20°C

Key:

and a standard

(a) Impact toughness in cmp/mm^2

- 12 -

Der Trant

Fig. 7. Long-time-rupture-strength of sintered materials in the ternary system Cr-Mo-B

Key:

orrandrosoldnetottalaeteksinen etalanasteksinen etalaiteksinen etalaitetta († 1831) hetavatura billikkinetta eta

(a) Long-time-rupture strength $\sigma_{B/300}$ (kp/mm²)

- 13 - 1

	n				
	Table 1. Properties of Ma	Materials of the System Cr-Ti-Mo- Material group			
•, •,• •	Chemical composition [at. %] Chromium Titanium Boron Molybdenum	Cr-Mo-B 52.0 27.2 20.8	Cr-T: 48.3 3.5 27.5 20.7	L-Mo-B 41. 10. 27. 20.	
	Density [g/cm ³]	7.56	7.45	7.2	
	Bending strength øbB [kg/mm ²]		· ·		
	200 9800 12000	40-48 61-69 50-60	34-38 43-51 50-60	32- 48- 50-	
	R _A hardness, 62.5 kp load	83.2-85.0	89.5-93.5	84.2-9	
•	Increase of forging scale after 100 h at 1000°C in air [mg/cm ²]	1.3	0.1-0	0.8	
	Corrosion loss in 18% HCl after 100 h at 20°C [mg/cm ²]		<0.5		
•	Long-time-rupture- strength at 1000°C [kp/:m ²]				
•	σ B/100 Expansion [%]	22 1.0-3.6	24-26 0.5-3.7	25-2 0.3-0.	
	C B/1000 Expansion [%]	20 10 -1 4	23-25 5.0-10.5	24-2 3•5-	
、	FTD-HC-23-1815-71	- 14 -			

and the second second

BIBLIOGRAPHY

CANA-DURING STREET

- Kotsch, H., "Sintered Materials on a Chromium-Boride Basis," <u>Wiss. Z. Techn. Hochschule Dresden</u> (Scientific Journal of the School of Technology of Dresden), Vol 9, No 5, 1959-1960, pp 1203-1206.
- Merz, A. and Kotsch, H., "Investigations of Chromium-Boride Materials," <u>II. Internat. Pulvermet. Tagung Eisenach, Abh.</u> <u>Dtsch. Akad. Wiss. Berlin</u> (Second International Powder Metallurgy Conference Eisenach, Transactions of the German Academy of Sciences, Berlin), 1962, pp 423-430.
- 3. Kotsch, H., "High Temperature Materials on a Boride Basis," <u>Dtsch. Akad. Wiss. Berlin, Forsch. Gemeinsch. Wiss. Grund-</u> <u>lagen Mod. Techn.</u> (German Academy of Sciences, Berlin, Research Community for the Scientific Fundamentals of Modern Technology), (Berlin), Series A: Conferences, Vol 9, 1963.

"New Materials Through Powder Metallurgical Processes," pp 109-118.

- 4. Kolomycev, P. T., Moskaleva, N. V., and Snetkov, A. Ja., "Structure Investigations on Alloys of the System Ni-Cr-B," <u>Dokl. Akad. Nauk SSSR</u> (Transactions of the USSR Academy of Sciences), Vol 144, No 1, 1962, pp 112-114.
- 5. Kolomycev, P. T., Moskaleva, N. V., and Snetkov, A. Ja., "Phase Composition and Some Properties of Alloys of the System Mo-Cr-B," <u>Poroskovaja Metallurgija</u> (Powder Metallurgy), Vol 9, No 10, 1969, pp 76-81.
- 6. Post, B., Glaser, F. W., and Moskowitz, D., "Transition Metal Diborides," <u>Acta Met</u>., Vol 2, 1954, pp 20-25.
- 7. Samsonov, G. W., Markowski, L. I., Shigatsch, A. F., and Waljaschko, M. G., "Boron, Its Compounds and Alloys," <u>Proceedings of the Ukrainian Academy of Sciences</u>, Kiev, 1960, pp 489-493.
- 8. Kotsch, H., "Investigations of High-Temperature Materials on a Boride Basis, <u>II. Pulvermetall. Konferenz</u> (Second Powder Metallurgy Conference), Krakow, 1967, pp 711-723.

FTD-HC-23-1815-71

- 15 -

Summary

Consideration on properties such as creep strength, bending strength, impact strength, hardness and oxidation resistance of sintered materials of Cr-Ni-B, Cr-Mo-B and Cr-Ti-Mo-B systems in concentration ranges 40-90 at % Cr, 0-50 at % B and 0-30 at % Ni and Mo respectively.

L. Construction for a second filling to which the second second fill the second s

1

The results obtained are discussed in terms of equilibrium diagrams after Kolomytsev and his co-workers.