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Abstract

In a previous paper we have derived a number of simple approxi-

motions for the thermodynamic and structural properties of liquids.

Here we test these approximations by applying them to models for ionic

solutions and atomic liquids and comparing the results with those

obtained from Monte Carlo and molecular dynamics simulations. In

particular, the pair-correlation functions for 1-1 primitive model

aqueous ionic solutions are calculated using the EXP approximation.

The internal energy for 2-2 salts is obtained from the ORPA+B 2

approximation. The pair-correlation function for the Lennard-Jones

fluid is calculated with the EXP approximation. In all cases the re-

sults obtained agree closely with those obtained from computer ex-

periments. Thus, the ORPA+B 2 approximation for the free energy and

lme EXP approAimatii', for the pair correlation function providc a thcry

that is both very accurate and applicable to a wide variety of classical

fluids.



I. Introduction

This paper Is the third In a series concerning optimized cluster

expansions for equilibrium classical fluids. The first article' (I),

presents general graphical methods and some simple approximations for

describing fluids composed of spherical particles. The second 2 (II)

generalizes the methods to apply to molecular fluids. The object of

this third article is the study of the accuracy of the methods. In

particular, we apply the ORPA + B2 approximation for the free energy

tEo. (5.5) of I] and the EXP approximation for pair-correlation func-

tions (Ea. (5.7) of I] to two different model fluids. These approxi-

matlons are the principal results of paper I. Their molecular analogs

are the principl results of paper II.

In Section IT, we study the primitive model electrolytes for 1-1

and 2-2 aqueous ionic solutions. The pair-correlation function Is com-

puted for 1-1 salts using the EXP approximation. The internal energy

for 2-2 salts is obtained from the ORPA +B2 approximation. The calculated

results agree closely with those obtained from Monte Carlo computer ex-

periments.

The pair-correlation function for simple liquids is studied in

Section III. The EXP approximation Is used to calculate g(r) for the

Lennard-Jones flui6. The results obtained agree virtually perfectly

with tnose obtained from molecular dynamics computer experiments.

Some conrluding remarks are 'nade in Section IV.

Throughout the paper, the notation and terminology is the same

as that used in I.
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II. Ionic Solutions

In this section, we consider the symmetric primitive model for

aqueous Ionic solutions which represents solvated Ions as charged hard bpheres.

The cations and anions have the same hard sphere diameter, d, and the

same magnitude of charge, ze, where e is the magnitude of the elec-

tronic charge. We let the subscripts I and 2 denote anions and cations,

respectively. Then the pair Interaction3 between an ion of type a

and an Ion of typ,. y is ud(r) + u ay(r), where ud( r) is the hard core

potential (the reference interaction),

ud(r) = , r<d ,

= 0, r>d

and u Y(r) Is the perturbation

u .. (r) = z.z. e 2 /er, r>d , (2.2)

Here, z L=(-l)az, and e is the dielectric constant of the solvent.

The number densities, p, and P2, of the two ions are equal because of

electroneutral i ty.

The perturbation potential, u (r), can be chosen arbitrarily

for r<d without changing the physical properties of the model fluid.

The particular functional form we adopt for u oy(r) in this region is

the one which satisfies the optimization condition discussed in I and

which hence improvus the accuracy of truncated cluster expansions.

Monte Carlo computer experiments have been performed by Card and

Valleau' for primitive model electrolytes which simulate aqueous ionic

solutions of 1-1 (i.e., z= 1) and 2-2 (z=2) salts. We report below

results obtained when the EXP and OROA 4 B2 approximations are applied

to these same models.
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The salt concentrations for which the computer experiments have

been performed are sufficiently small that the Percus-Yevick (PY)

theory for the hard sphere reference system can be used without loss

of accuracy. When the PY theory is used, the solution of the variational

problem which gives the optimized u (r) for r<d (Fq. (4.1') of I]

Is equivalent to the solution of the mean-spherical model (MSM) e,.u~rton

for the fluid.5 Walsman and Lebowitz 6 have solved this problem anc yt-

Ically for the symmetric primitive model. With their solution, one finds

that
1

u (r) (z z oy/Dd) (2B-B 2 r/d) , r<d, (2,3)

and

a N- (12rrd3)' [6x + 3x 2 + 2 - 2(1 + 2x)3/2 ] 
. (2.4)

In these equations,

x = td = [Srrz2e2 c/k 8 Tcl ,/2 (2.5)

B = x t x-+x-x(l+2x)/2] (2.6)

where c=pl =02 Is the salt concentration. The quantity )t is the

familiar Debye inverse screening length.

Using Eqs. (2.4) and (2.3), it Is a straightforward calculation j
to apply the ORPA 4 B2 approximation (En. (5.5) of I] and the EXP j
approximation (Eq. (5.7) of Il and compare the results with those ob-

tained from Monte Carlo simulations' of ionic solutions. Figures 1

and 2 show the pair correlation functions for 1-1 salts for concen- I
trations between .009 and 2 M. In Table I, the contact values of the

pair correlation function are given for these solutions. For 2-2 salts,

the configurational energy is shown in Table II. In ib1 these cases

t!
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the agreement between the two methods Is qulte good. The energy re-

suits for 2-2 salts are particularly interesting since they exhibit

the rapid convergence of the optintized cluster expansion. Note that -

the perturbation in this case Is not small. At hard core contact,

luCY (r)l is greater than 6 k8 T! j
It should be noted that although the solution of the MSM equa-

tions is used to obtain the optimized renorinclized potential, the results

of the ORPA i B2 and the EXP approximations ore not the same as those

of the MSI equation. For 1-1 and P-2 sails, the MSM predictions for

the internal energy disagree significantly with those of the Monte

Carlo and ORPA+B 2 calculations (see Table II). The disagreement is

especially strikin9 at very Io-.. concentrations. The rcaon for the

disagreement ih that the MSM is qualitAtivcy incorrect at low concen-

trations. The correct low density limit for n r) is expt-u (r)/kBT

for r>d y. The MSM equation, ho,..wever, give- 1 - uCtY(r)/kBT. In fact,

the MSM result (for the 1-1 and 2-2 salts studied In this section) has I

the urphysical feature that a (r) is neq,'tive for distances zit and

near contact of the hard spheres (see Table I). The XP approximation,

on the other hand, has the correct loq density limit and predicts

a g9(r) that is always non-necative. Similarly, the ORPA 48B6 results I
for thermodynamic properties are much more accurate at low concentr,tions

than those derived from the physically incorrect MSM correlation functions.

The Important reason why the results of the optiruized cluster theory

are so accurate is that the optimization condition is used in the choice I
of perturbation and renormalized potentials. The optimization p,'o- j
cedure is much more significant than the specific form of cluster

theory which we used. There are several ways of obtaining formally

exact infinite series for the properties of fluids, for example the

Mayer cluster series 8 and the mode expansion. * , 1 These series can be
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partially summed in a variety of ways. For example, chains of per-

turbation bonds can be summed as in the Mayer Ionic solution theory',

or generaliod chains con be summed as in the y expansion theory.''

Finally, these partially summed series can be reqrouped in a variety

of ways. For example, terms of the same order in the concentration

can be grouped together, or the y ordering or I' ordering procedures4-

could be used. Each of the resulting series Is formally exact and so

they are all equivalent to each other. For practical computations,

however, an infinite series Is usefl only if all but a few

terms can be neglected without appreciable loss of accuracy.

ror series which contain renormalized potentials, the optimization con-

dition improves the convergence so well that for many problems the

terms of significance can be easily identified and evaluated and the

others can be neglected. In this papcr we have chosen a series based

on the Mayer cluster theory and a summation technique which is suggested

by the y expansion, but results of comparable numerical accuracy could

also be obtained using a number of other types of series, provided the

optimization procedure is employed.12

The advantage of u-.ing an expansion of the form used herein is

that all the terms in the expansion are known fairly explicitly. As

a result, the significant terms in the series for the free energy and g(r) can

be easily Identified (as was done in paper I). In contrast, the successive

terms in the mode expansion and the y expansion are not easily expressed

in ways which readily allow one to assess their importance. Thus,

accurate theories are easier to obtain with the cluster expansion

methods used herein than with some other theories. For example for 2-2 salts

at low concentrations, the ORPA 4 B2 approximation is more accurate than

the optimized mode expansion' ° truncated after the two-mode term,

becauce the higher mode terms contain contributions which are signifi-

cant but which are difficult to obtain in simple form.



III. Simple ULulids

In this section we consider the Lonnard-Jones fluid. The total

potential energy Is a sum of pair potentials of the 6-12 type, Specifically,

the two-porticle interaction is

w(r) 4 t(o/-) - (/,-) (r.I)-)

where c -"nd o are constants with the units of energy and length, re-

spectively. j
The analysis of thlb fluid begins with the separatlo.i of the

potential Into a reference part, uo(r), and a perturbation u(r'..

Since It is desirable , 't for the reference potential to be harshly

repulsive (i.e., the Mayer f-function for u0 (r) should closely resemble

the f-function for a hard sphere potential), and since It is also

desirable for the perturbation to be a slowly varying function of

position, a very convenient choice for u0 (r) and u(r) Is

uo(r) = w(r) - , r<2'/  o ,a

, r> 2 '1/6

u(r) -r<' o,

w(r) , r>2'/I  a . (3. )

The sum uo(r) u(r) is w(r). The reference potenitial contains all

the renulsive forces in w(r) and no other forces. The perturbation con-

tains all the attractive forces. The motivation for this particular

separation of w(r) is discussed in rore detail by the authors in pre-

vious publications.' 1 ' 
t

S!ncP the reference interaction is not a hard core repulsion, the
4
j

optimization method developed in papur I i- not directly applicable

to the Lennard-Jones system. As a result, it is convenient to introduce

the trial %ystem in which the pair potential is
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I

wT(r) ud(r) - u(r) (3.3)

[The subscript "T" is used to denote properties of the trial system.]

The optimized cluster expansio;i methods can be used to predict the

properties of the fluid with the pair potential w (r). Once thcse prop-
T]

ertles are knowqn, the properties of the Lennard-Jones fluid are straight-

forwardly obtained through the application of a type of clustcr expan-

s$on's (which we have called the "blip function" expansion). The

formulas needed to arrive at the Lennard-Jones properties frcm the

trial properties are given in Eqs, (ll)-(l4) of Ref. 14.

We have used the EXP approximation for g(r) tEa. (5.7) of I to

calculate gT(r) ; and then with the blip function nxpansion we deter- I

mined g(r) for the Lennard-Jones system. Tne hard sphere radial dis-

tributio function, gd(r), is neuded to perform these computations.

This function hos been expressed In convenient armlytic form hy V 'rlet

and Weis, 16 and we use their expressions. The optimization condition,

Eq. (4. 1) of I, is solved numerically using the calculational procedure

outlined In Section III of Reference 13. Some of our resuIs are graphed

in Figs. 3 and 4 and tabulated in Tables III and IV. These results are

compared with those obtained from Verlet's molecular dynamics experi-

ments. Also shown for comparison are the predictions of the high

temperature approximation 3" (HTA) and the optimized ,'andon phase

approximation"' (ORPA).

The results in Figure 3 and Table III describe a state which is

near the critical temperature but at a density slightly hinher than

critical. Figure 4 and Table IV concern a high density, low tempera-

ture state near the triple point, It can be seen that the HTA, ORPA,

and EXP results represent a sequence of approximations that converqe

very quickly to the correct answer and that the accuracy of tie EXP

approximation is excellent.
b.,



IV.- Concludi nq Remark~s

The results tabulated and graphed above demonstrate the accuracy

of the approxin tions'developed in paper I and generalized In II. It

Is seen that the ORPA+B 2 and EXP approximations are capable of treat-

Ing fluids inwhich the trad'itional perturbation Oarameters are large.

While these approximations are rigorously exact for low densities and/or

wzak nteractlons, our results' show that they remain accurate when the

density Is large,%,when the strength of the perturbation interaction Is

large, end when the range of the interaction is large. Thus, -the

ORPA B2 and EXP approximations provide a comprehensive theory of

classical fluids -- a theory which is useful for many classes oflsystems.

Further, the approximations are ccnputationally simple to use. The

features of wide applicability'and simplicity have motivated us to

crpl thc e . ..ethod (along the iAs of prr 1I) to st'Mv I,-

.quid water. This investigation is the subject of a fu ure paper.

I
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Table I. Comparison of Radial Distribution Functions at Contact
for a 1-1 Symmetric Primitive Model Aqueous Electrolyte
Solution. 

a

b c c
(g+-) C (9+-) SM (9+-)EXP (g) )4+) S (9++)EXP

.00911 5.22+.40 2.49 4.43 .270+.068 -.486 .226

.1038 3.254.07 2.20 3.32 .319-.012 -.175 .309

.475 7.6?+.04 1.99 2.68 .418+.018 .118 .413

1.000 2.."3+. 05 1.90 2.45 .505+.77 .358 .522

1.968 2.384 .07 1.93 2.45 .706. 028 .631 .669

a. For these calculations, the Ionic diameter is 4.25 R, the dielectric
constant or the solvent Is 78.5. and the te"perature is 2980K. Here
g,. Is the pair correlation function at contact for ions of different

charge, and 9++ Is the sme quantity for ions of the same charge.

MC denotes Monte Carlo results of Card and Valleau (Ref. 4). MSM and
EXP denote the man spherical model and EXP approximations, respectively.

b. The salt concentration in moles per liter.

c. Monte Carlo results for 200 ions.
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Table II. Excess Internal Energy for a 2-2 Symnetric
Primitive Model Aqueous Electrolyte Solutlon.a

-tAE/2Nk T
B5

c ORPAc ORPA-F B2d MC e

.0625 1.46 2.02 1.893+.017 .13

.250 2. 18 2.55 2.473+.019 .08

.5625 2.64 2.90 2.822-1.008 .08

1.000 2.98 3.19 3.091+.011 .10

2.000 3.38 3.57 3.509+.016 .06

a. In this model, the ionic diameter is 4.25 R, the dielectric
constant I-, 78.358 and It is temperature independent, the
temperature is ?98. 160K. The ouantity LE is the configura-
tional internal energy of the ions and 2N is the total number
of Icns.

b. Salt concentration In moles per liter.

c. Obtained from differentiation of the ORPA for the free energy.
For symmetric primitive model electrolytes, the energy euuation
applied to the MSM gives identical rcsults.

d. Obtained from differentiation of the ORPA+ B2 approximation

for the free energy.

e. Monte Carlo predictions (Ref. /4).

f. Difference between the ORPA+B 2 and Monte Carlo results.

_ I'
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Table III. Comparison of Radial Distribution Functions for
the Lennard-Jones Fluid for p= .50 and 1*' 1.36

r/o gHTA(r) a  gORPA(r) b  9EXP(r) g (r)d Ae

0.840 0.000 0.000 0.000 .000 .000
0.880 0.001 0.00, 0.001 .001 .000
0. 920 0.053 0.054 0.054 .059 .015
0.960 0.404 0.411 0.420 .428 .008
1.000 1.055 1.087 1.128 1.109 -.019
1.040 1.579 1.653 1.737 1.694 -.043
1.080 1.770 1.889 2.007 1.961 -. 046
1.120 .713 1.870 2.005 1.946 -.059
1.160 l..-83 1.749 1.868 1.830 -.038
1.200 1.468 1,610 1.692 1.658 -.054
1.2/40 1.368 1.474 1.521 1,491 -.030
1.280 1.280 1.350 1.373 1.335 -.038
1.320 1.204 1.241 1.249 1.227 -,022
1.360 1.139 1.148 1.150 1.129 -. 021
1.400 1.083 1.072 1.071 1.059 -.012
1.480 0.996 0.960 0.961 .929 -. 032
1.560 0.938 0.894 0.898 .881 -. 017
1.640 0.904 0.865 0.869 860 -.009
1.720 . U92 0.863 0.866 854 -. 0i2
1.800 0.899 0.883 0.885 .894 .009
1.880 0.923 0.920 0.920 .938 .018
1.960 0.961 0.972 0.972 994 .022
2.040 1.007 1.029 1.030 1.047 .017
2.120 1.032 1.060 1.062 1.075 .013
2.200 1.040 1.068 1.069 1.073 .004
2.280 1.037 1.056 1.057 1.056 -.001
2.360 1.027 1.037 1.037 1,030 -.007
2.400 1.022 1.026 1.027 1.022 -.005

a. High temperature approximation.

b. Optlmi/cd random phase approximation

c. EXP approximation.

d. Molecular dynamics. Ref. 17.

e. The difference between the molecular dynamics result and the EXP
approximat ion.
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Table IV. Comparison of Radial Distribution Functions for the
Lennard-Jones Fluid for P0 = .85 and T' - .88

ri gHTA(r 9OR p,(r)b gEXP(r) 9MD(r)

0.840 0.000 0.000 0.000 0.000 .000
0.880 0.000 0.000 0.000 0.003 .003
0.920 0.019 0.018 0.014 0,030 .016
0.960 0.445 0.428 0.339 0.412 .073
1.000 1.813 1.750 1.492 1.511 .019
1,040 2.918 2.839 2.599 2.546 -.053
1.080 2.956 2.924 2.855 2,871 .016
1.120 2.432 2.480 2.551 2.594 .043
1.160 1.918 2.013 2.108 2.151 043
1.200 1.558 1.648 1.705 1,744 .059
1.240 1.290 1.356 1.378 1.386 .008
1.280 1.083 1.119 1.123 1,121 -.002
1.320 0.921 0.931 0.930 0.940 .Ol0
1.360 0.797 0.788 0.790 0.817 .027
1.400 0.710 0.686 0.693 0.742 04 9
1.480 0.624 0.590 0.6P3 0.622 .019
1.560 0.630 0.600 0.611 0.599 -.012
1, 640 0. 694 0. 676 0, 681 O,.656 -.025

1.720 0.793 0.786 0.788 0.757 -. 031
1.80 n  0.910 0.914 0.913 0.907 -.006
1.880 1.038 1.047 1.047 1,072 .025
1.960 1.172 1.181 1.183 1.198 .015
2.040 1.283 1.293 1.295 1.267 -.028
2.120 1.253 1.270 1.274 1.2146 -.028
2.200 1.125 1.143 1.145 1.151 .006
2.280 0.995 1.001 1.001 1.021 .020
2.360 0.901 0.893 0.894 0.923 .029
2.400 0.875 0,862 0.864 0.881 .017

F a. High temperaturc approximation.

b. Optimized randon phase approximation.

c. EXP approximation.

d. Moiccular dynamics. Ref. 17.

e. The difference between the molecular dynamics re.!ult and th- EXP
approxr;nat ion.
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Figure Uttions

Figure 1. Pair-correlation functions for a 1-1 symmetric prhmitive

model oaueous Ionic solution. The Ionic diameter is 4.25 R, the

dielectric constant uf the solvent iq 78.5, and the temperature is

7980K. The salt concentration Is .00911 M. The points are the

results of Monte Carlo calculAtions (Ref. 4) for 200 Ions. The

curve- are the results of the EXP approximation. The upper and

lower set of results correspond to the function for unlike and like

charged species, respectively.

Figure 2. Pair-correlation functions for a 1-1 symmetric primitive

model oauoous ionic solution. Triangular and circular points

are Monte Carlo results for .425 14 and 1.986 M, respectively,

and the smooth curves are the exponential approximation results.

See the caption of Fig. I for additional details.

Figure 3. Pair-correlation functions for the Lennard-Jones fluid for

a state near the critical point. The open circles are molecular

dynamics result- (Ref. 17). The dashed, dotted, and solid curves

Pre the results for the high temperature approximation, the optimi.ed

random pha-e approximation, and the EXP approximation, respe-tively.

Figure 4. Pair-correlation functions for the Lennard-Jones fluid for

a state near the triple point. See caption of Fig. 3 for'additional

Information,
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