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E Estimates and 3'-jnds on Computational Effort

in the Accelerated Bound-and-Scan Algorithm

Fby

Bruce H. Faaland

A. Introduction

The pure integer linear programming (IP) problem is

maximize c'x (1)

subject to Ax < b (2)

x > 0 (3)

x integer, (4)

where A is an m x n matrix, b is an m-vector, and c is an n-vector.

A difficulty shared by the many algorithms which have been proposed for

solving the IP problem is that their computation time varies greatly from

problem to problem of similar size and structure. The purpose of this

paper is to give upp:, bounds and estimates on the number of arithmetic

operations needed by the Accelerated Bound-and-Scan Algorithm to solve any

given problem.

The Accelerated Bound-and-Scan Algorithm solves the integer programming

problem (1,2,3,4) by implicit enumeration of all lattice points within a

certain n-simplex in Euclidean n-space. The number of arithmetic operations

required by the algorithm will be given as a function of the number of

eligi:)le partial solutions through each variable. Methods for obtaining

upper bounds and estimates on the number of eligible partial solutions, for

any given problem, will be discussed in detail. The basic too'- of analysis

used are various results from the theory of partitions of numbers, the Central-

limit theorem, and geometrical interpretations of the algorithm. Many of the
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results described here also apply to the Bradley-Wahi algorithm [3].

See [9] for details on the relationship of the Bradley-Wahi algorithm

to the Accelerated Bound-and-Scan Algorithm.

B. Analysis of Arithmetic Operations

A somewhat simplified version of the skeleton algorithm will be

analyzed here. The "simplified algorithm" includes the basic enumeration

scheme and bounds Pi on variables p. used in the skeleton algorithm,
but it does not include the scanning procedure or the method for eliminating

redundant nonbinding constraints. Instead, whenever a completion within the

n-simplex is generated, the m nonbinding constraints are checked in

sequence for feasibility. If all m nonbinding constraints are satisfied, I

an improved solution has been found. Otherwise, the basic enumeration -

scheme continueS where it left off as soon as it has been determined that

some nonbinding constraint is violated by the completion.

The simplified algorithm is considered instead of a more sophisticated
(and probably more efficient) version of the algorithm in order to make the

analysis tractable. The simplified algorithm includes the cone algorithm

as a special case, and the results of the analysis for the simplified

algorithm provide partial answers to fundamental questions which arise i
regardless of the level of sophistication in the design of the algorithm. I

These questions include (a) What is the greatest amount of time the I
algorithm could take to solve a given problem? (b) What is the expected I
computation time? (c) How should the variables and nonbinding constraints

be ordered to minimize the expected computation time? (d) How does the -

computation time increase as the number of variables is increased? and j
(e) How is the computation time affected by the quality of the starting

solution?
2



In the following it will be necessary to refer to equation numbers

I in [9]. Equation number q in [9] will be designated by (9.q),

whereas equation number q in this chapter will be labeled (q). It should

also be noted at this point that only the "iterative portion" of the algorithm

is being considered; the relatively predictable and minor "setup time" is

being ignored.

The basic idea of the Accelerated Bound-and-Scan Algorithm is to

examine all completions which may yield a larger objective function value than

the current best solution. To arrive at a completion, a sequence of partial

solutions is constructed. The computational effort required by the algorithm

depends on the number of partial solutions and on the amount and type of

computation required to generate each partial solution.

Partial solutions are generated on either a "forward step" or a

"backtrack step" in the algorithm. Each will be examined in terms of

the computational effort it requires.
A

Suppose (I',..,Pk 1 ) is an eligible partial solution, but not a

completion. The forward step consists of setting 0k at t in (9.26)

to form the next partial solution. Consider the work required to find t.

If k<nl, f = 0 by (9.30) and t 0 by (9.26); thus, if kcn l ,

j,

(I'.0 ) is automatically an eligible partial solution. No multi-

plications or additions are required. If k>n l, the calculation of t

first requires (k-l) multiplications and k additions to obtain f, and

then one additional multiplication and addition in (9.26) to obtain t.

(Assume that prior to the iterative part of the algorithm the I/Bkk'

k = 1,...,n, have been calculated and stored.) To test whether

(P*"" "'Pk-lt) is an eligible partial solution, t must be added to the
7k-1 P

running su i= P in (9.24), resulting in one more addition. Therefore,

when k>n l, (k+2) additions and k multiplications are needed on the forward
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step, but if k<n1, none are required. If (P,... ,p.l) is a completion

(k-i = n), the nonbinding constraints must be checked for feasibility,

requiring at most mn multiplications and additions, where m is the

number of rows of A in (2).

It Is now possible to give the following lemma.

Lemma 1 Let AF be the number of additions and M the number of ulti-

plications done during the forward steps of the simplified Accelerated

Bound-and-Scan Algorithm. If E is the number of eligible partial

solutions through variable j,

SAF <n-Inl (j+3)E. + mnEn

and

n-1
MF < (J+l)E + mnE

Proof The proof has largely been given above. Every time one of the E

eligible partial solutions ,,nJ<n, is generated, (J+3)

additions and (j+l) multiplications are required. If j = n, at most

mn of each are needed.

The "backtrack steps" of the algorithm will now be analyzed. Suppose

again that (p*, .. ,Pk_,) is an eligible partial solution and that

is set at t during the forward step of the algorithm. If (P"'rP*-It)

is an eligible partial solution, the algorithm proceeds with an additional

forward step. If it is not an eligible partial solution, the algorithm

attempts to construct a new eligible partial solution up to variable k-2

by resetting Pk2 at p2+l/Bk2,k. This operation initiates the

"backtrack step" and requires a single addition. (Recall that the

I/Bii are stored, I = l,-..,n.) To check whether (pr,..-,p 3,Pk2) is
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an eligible partial solution, I/B k2k2+ must be added to

Lk-10 , That requires two more additions, or three in all during a

backtrack step. If the partial solution is not eligible, another
backtrack step to Pk-3 is made, requiring another three additions.

If it is eligible, a forward step is then made. There is one exception

to this description. Once a completion 4p ,') has been found

and tested against the non-binding constraints, the algorithm "backtracks"

to n by resetting 1n at p*+I/Bnn Since adjusting iLp2  requires

only one addition, backtracking to pn requires only two additions.

Lemma 2 Let AB be the number of additions and MB the number of multi-

plications done on the backtrack steps of the Accelerated Bound-and-Scan

Algorithm. Then

AB  < 3 2 -l Ej + 2En

and

M =0.B

Proof The a!qorithm can backtrack to variable j, i.e., reset pj at

p+I/Bj if and only if an eligible partial solution ( , ) has

previously been constructed. Therefore the number of times the algorithm

backtracks to variable j is at most Ej, and three additions are needed

for each such occasion

The following fundamental theorem follows immediately from Lemmas

I and 2.
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Theorem I If AT  is the number of additions and MT the number of multi-

plications required during the iterative part of the simplified Accelerated

Bound-and-Scan Algorithm, then

AT in I (J+3)E + mnEn + 3 n- E + 2En (5)
J~n n ii.1 n

and

M_ (j+l)Ej + mnEn. (6)

The only arithmetic operations done during the iterative part of

the algorithm are additions and multiplications. No divisions are necessary,

and subtractions have been assumed to be equivalent to additions in

computation time. Comparison and assignment operations have been ignored,

but they could easily have been counted. The importance of Theorem 1 is

that if the time to do an addition and the time for a multiplication are

known, and if upper bounds (or estimates) on the E are known,it is possible

to give an upper bound (or an estimate) on the time required by the

Accelerated Bound-and-Scan Algorithm to solve any particular case of problem

(1,2,3,4). Upper bounds on the E. will now be developed.

C. Some Upper Bounds

Lena 3 The number of eligible partial solutions tnrough variable 0j,

defined as the number of solutions to (9.21), is bounded above by the

number of distinct solutions to the system

"1J - 0 (mod 1) (7)
(B 11 0

O < Pi < 1 I l, - j
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Proof The lemma will be proved by defining - one-to-one mapping from the

set of solutions to (9.21) into the set of solutions to (7). Consider

any solution ( to (9.21). By (9.27) each P* is of the form

pt - t + yt/B11  I - l,..J,

where y is a non-negative integer, and O~t*<I/Bii. The solution

(o ,'" ,p ) also satsifies

0' 1_i  I= l,...,j

and

Corresponding to every solution (p ,...,p]) to (9.21) is a solution

to (7) obtained by letting

pi = p - t = Yl/Bii = ,.,J.

To see that (pl,'",pj) is feasible for (7), notice that Blip i =y,

an integer; pi>O since y ±O and Bi>0; since pil_., pi1 j i and

It still remains to be proved that the mapping is one-to-one.

Suppose it is not. Then two different solutions p* = and

*= (pr*,." ,c *) to (9.21) must correspond to a single solution to

(7). Let k denote t,,e first index for which Di  Recall that

P= t*+y*/Bkk and p** = t**+y**/Bk " If P**, then either

t* t * or y* y**. But y* must equal y*, for otherwise o* and

p** map into diffL.-ent solutions to (7). And t* must equal t*

because t* and t * are functions only of the first (k-l) components

of p* and p** respectively. Therefore, there are at least as many

solutions to (7) as there are to (9.21), as was to be shown.
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Lemma 4 The number of solutions to (7) is equal to the number of integer

solutions to the inequality

~ y__1y/B11  1 (8)

0 <-Y < Yi

where Yi = -iBii] for i !,'",j.

Proof The condition BiP i  0 (mod 1) simply says that Bii i must be

z n integer, say yi. Then P. = yi/Bii substituted into the requirements

OLP i< (i 0 l,'.,J) and ZlilPi l results in (8)

I f the Bii are rational, it is po-sible to calculate precisely

the number of solutions to (8) by solving a relat. problem in the theory

of partitions of numbers. The theory of partitions [11] deals with the

problem of counting the number of nonnegative integer solutions to equations

of the form

iIirl_ aiY i  = a,

where al,. ,ar and a are known positive integers. The problem may be

posed as that of counting the number of ways the integer a may be divided

intc. parts of sizes al,...,ar. If only Yi parts of size aj are available,

the problem becomes one of finding the number of integer solutions to the

bounded variable Diophantine equation

tr: aiYi = a (9)

0 <Y <Y i
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A4.ume the 8 in (8) are rational. A'sufficient;condition for this

to be true is that the coefficients of the original IP problem be rational.

Recall that the Bii are also positive. It is possible therefore to multiply

both sides of (8) by a positive integer and obtain a new inequality whose

coefficients are positive integers. The aqdition of an integer valued slack

variable to this inequality results in an equation of type (9).

One way of counting the number of integer solutions has been developed

previously by the author [7], and Is restated here as Theorem 2. The notation

,kls '° means "the integer k divides the Integer s".

Theorem 2 Let F(a) dencte the number of integer solutions to (7) and

Pi ai(Yi+l), i = l,.-.,r. P-fine

Qr irl " i=l pi s .= ,'",a.

i-)aijs i 3P~
il

Then F(O) 1 and

I F(s) (1/s) JSl QF(s-z) s = 1,--,a. (10)

Proof See [7].

Although Theorem 2 can be used to calculate upper bounds on computational

effort in the Accelerated dound-and-Scan Algorithm, it is likely to be very

expensive because the calculation of r(a) by (10) requires

1+2+'-'+a = a(a+l) multiplications and additions. Theorem 3 is another

procedurs (first presented in [8)) for calculating F(a) which requires

elementary althmetic operations proportional to a,
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Theorem 3 Let Gk(w) be defined for all w = 0,l,...,a and k l,...,r

to be the number of integer solutions to the bounded variable linear

Diophantine equation

k aSikl aiYi =

0 < Yi - Yi i I,,k (18)

Yi is an integer i =1, -,k.

Let y.' min {YI, [a/h ]). Then

w -,= 1 2a, ,Y ,al

G1 (W) (19)
otherwise,

and for k = 2,...,r,

GR(w) Gk l(U) W Oil,...,ak-l, (20)

and

Gk-l(+ak)+Gk(w) 0 < < akYk
Gk(w+ak) (21)

LGk.I (w+.3k)+Gk()-Gk_ l(w-akyk) ak k <_ < a -a

Proof See [8].

Algorithms based on Theorem 2 or Theorem 3 may be used to calculate

the number of integer solutions to equation (9). It would be very useful,

however, to approximate this number by an explicit function of al,-.ar a,

and r. Such an explicit function would provide information on the rate

of growth of the number of eligible partial solutions up to variable r as

r and the coefficients vary.
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E. Cesaro [5] stated, without proof, that the number of positive

integer solutions to the equati.on

lirl aiY i = a (22)

is approximately equal to

arl /((r-l)! a. r ) . (23)

Lemas 5 and 6 will put Cesaro's conjecture into a precise form. Theorem 4

will apply the results of the lemmas to the inequality

k 1i Yi/ii /B (24,

Yi 0 i 1 ,'",k,

which is the same as (8) without the upper bound restrictions yi_

(i = 1,"-,k). The number of nonnegative integer solutions to (24) is an

upper bound on the number of eligible partial solutions through variable

k for both the IP problem and the cone problem.

The form of (22) which is most useful for the analysis here is the

case in which one of the variables yi, say Yl, represents an integer

slack variable. Assume then that a1  I and the a. (j = 2,-.-,r) are

otherwise arbitrary strictly positive integers.

Lemma 5 Let a1,...,a and a be strictly positive integers. If a1 = 1,r

the number of integer solutions (yI"'. Yr) to equation (22), all of whose

components yj are strictly positive, is bounded above by (23).

Proof For s = l,-..,r and all integer i, let F*(i) denote the number
5

of strictly positive integer solutions to the equation

III
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= ajyj =1 .(25)

The proof of the lemma will be by induction on s. Consider first the

case s = 1. Since a1  1, F*(i) - I/a, I for all strictly positive

i. Now assume the lemma is true for all s<k. Notice that for k>2,

[i/ak]
F*(i) k] j= F*- (i-Jak)" (26)

Since F*.1 (h) is nondecreasing in h,
ak-

F*-l(i-jak) (1/ak) po F*-I (i-jak+P)' (27)

Therefore,

[i/ak] ak-
F*(i) j=k (l/ak) jp-O F*-I (i-Jak+P)

(/ak) k-i
k) 42=i-[i/a ]a k F (I)

(i/ak 0J F*1 t since F

I k-2k-i(1/a k) 4. I/((k-2 )! nj= aj) by the induction hypothesis

.(i/ak) 4:0 3 {tk-21(k.2), iijIk- aj)} dIt
1-O k-

(1/ak) {tk-2 /((k-2)1 nj- l a1 )} dt

= ik-I /((kkI)' a.• j=1 aj),

as was to be shown.

Lemma 5 stated that the number (23) is an upper bound on the number of

strictly positive integer solutions to (22). Using very similar arguments,

Lemma 6 below states that (23) is a lower bound on the number of nonnegative

integer solutions to (22).

12



Lemma 6. Let a ...,ar be strictly positive integers. If a1  1,

the number of nonnegative integer solutions to equation (22) is bounded

below by (23).

Proof For s 1,--,r and for all integer 1, let F MI denote the

number of nonnegative integer solutions to (25). Of course, if 1<0.

F (I) = 0. Since a,1 1, F (i) is a nondecreasing function of i, and
5

F1(i = (]/a,) = 1 for all nonnegative integer i. To complete the induction

proof, assume the lemma is true for all sk. For k>2,

Fk~i) = [1/a]
F ~ Fkl -jak

k( ()/ak) ~2i[/k)a~klFli

(1/a I a

( (/aa LP=O F/~N J 0-jl

=(1/a) F ( k/k ) 9C~a)

(1/ak F2~ sic Fk/k2 (k-1i <0

k ( e/=k j ~k/~k)2 k a)J

.k k- k-

k E=1 * ~

X13



where

kI k

and

E* (1+[n k B1  + Ij Tk ii ])k/(k! n k k B11]). (30)

Proof Since B. >0 for all i = 1,--,k, (24) is equivalent to

11k(nk BiyjII B1  (31)

1~ ~ yj .0 j 1 . k

The numbder of solutions to (31) is greater than or equal to the number of

solutions to

=1~ \j i Yj + =k~ knt~ i (32)

y.>10 j=l,..,k+l.

Applying Lemma 6 to (32) results in (29). To prove (30), co:nsider the

transformation of variaibles i. = y.+1; z . is a positive integer if and

only if y3 is a nonnegative integer, and (31) is equivalent to

=1 B ii +l B=1)iH k +B il ) (33)
I tj it

i.> 0 j= ,*k

The number of solutions to (33) is bounded above by the number of solutions to

Zjl rj~B1]~ I~ + Cr B1  + Ijl kj1 (34)Jjt [nt, iijj '~l ~ l i 1 jl B11 ]
I ~j i ~j

z. > 0 j 1,.,kl

14



Applying Lemma 5 to (34) results in (30), as was to be shown. Results similar

to those of Theorem 4 may also be found in Padberg [16].

Notice that E* is approximately equal to
kk

i=B ii/kit (35)

and E** is approximately equal to

k k kk k k k )-1 36(1/k!) {l+nri=llB +lj= 1  Ii 1 l+(l/H 1Bii) + 1J=I(l/Bjj) . (36)

i j

The expression (35) has an interesting geometrical intrepretation.

If the yi(i = l,...,k) are considered as continuous variables, the region

defined by (24) is a k-simplex with vertices (0,...,0), (B11,0,...,0),

( 2,0,.O),.,(O,..OBn). By [10] its volume is precisely (35).

That is, the estimate (35) of the number of lattice points within the

region (24) is simply the volume of the region.

The Accelerated Bound-and-Scan Algorithm examines lattice points

within an n-simplex. In the process of constructing the completions

within the n-simplex, lattice point. within lower, dimensional projected

k-simplices (partial solutions) are also examined. According to Theorem 1,

the computational effort in the algorithm depends on the number of

eligible partial solutions through each variable, that is, the number of

lattice points within each projected k-simplex. One very crude way of

estimating the computation time would be to use (35) or (36) as an estimate

of Eks the number of eligible partial solutions through variable k.

This raises a very natural question: Is there an optimal ordering

of the variables which minimizes the estimated computation time? A change

in the ordering of the variabl corresponds to a change in the ordering jf

15



the binding constraints (9.8). Each of the n! orderings of these constraints

corresponds to a different inequality system (9.14). However, for a given

system (9.14), the first n1 variables can be reordered without disturbing

the lower triangular property of (9.14) and (9.18). If either (35) or (36)

is taken as the estimate of the number of eligible partial solutions through

variable k, the first n1  variables should be ordered in increasing

order of the Bii. This is equivalent to ordering the first n variables

in increasing order of their ranges within the n-simplex. Such an ordering

is in agreement with the computational results reported by Cabot [4] on

the knapsack problem.

Another question which can be answered to some extent by the use of

volume as an approximation to the number of eligible partial solutions is:

How does the quality of the starting solution affect the computational

effort of the algorithm?

Denote by Vk the volume of the region defined by (24); Vk is given

by (35). If an improved starting solution is known, the region corresponding

to (24) is given by

jik~l yi/Bii < c

Y i > 0 i = 1, .. ,k

for some ctl. The volume of this region is equal to Vk, where

Vk,a, ( I Bii

Therefore, the estimate of the number of eligible partial solutions through
k

variable k is reduced by a factor of . This can result in a substantial

reduction in computational effort, particularly for large k. That the

reduction in computational effort can be so great is in general agreement with

16



the common observation that the efficiency of implicit enumeration algorithms

Is highly dependent on the quality of the starting solution.

The volume of a k-simplex may not be a good estimate of the number of

lattice points within it. The extent to which this estimate can differ

from the actual numbter is discussed next.

D. Volume and the Number of Lattice Points Within an n-Simplex

The relationship between the volume of a region and the nurber of lattice

points within the region has for a long time been of interest in number

theory. The Minkowski geo-etry of numbers [12) for example, specifies the

minimum volume that an arbitrary convex body symmetric about the origin

must have to guarantee the existence of a lattice point other than the origin

within the body. Another example of interest is the following theorem

proved by G. Pick in 1899.

2Theorem 5 Let S be a simplex in E (a triangle) with integer vertices

an% area V(S). If b is the number" of lattice points on the boundar-y of

S and c is the number inside, then

V(S) = b/2 + c - 1. (37)

See Coxeter [6] for a discussion of this theorem.

The following example shows that Theorem 5 cannot be generalized

directly to simplices in Ek. For k>3 the k-simplex in Ek whose k+l

integer vertices are (0,0,..*,0), (l,O,.",O), (O,l,O,..,O),...,

(0,0,'",I,0) and (l,l,",l,j) has volume j/kI, but the only

lattice points within the simplex are the k+l vertices. So for fixed

k the volume may be any positive integer multiple of 1/k!, but

c = 0 and b = k+l, values independent of j.

17
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Under the assumptions of Theorem 5, (b+c), the total number of

lattice points in triangle S, must satisfy

(b+c) 2V(S) + 2 (38)

(b+c) L V(S) + 1 . (39)

The above example shows that (39) cannot be generalized directly. However,

relationship (38) has an analog in Euclidean k-space Ek:

Theorem 6 If S is a k-simplex in Ek with integer vertices and volume

V(S), the number of lattice points within S is at most klV(S)+k.

Proof Let x(O),x(1),.--x ( k) be the vertices of S. Every point x in

S can be expressed as convex combination of the vertices of S:

x . x(0 ) + ik p(x(i)-x(0 ))

rk
'i=l 'i -!

Pi >O = l,",k.

The only points x in S of interest are those which satisfy the linear

congruences x = 0 (mod I). Since x( 0 ) is an integer vertex, x a 0 (mod 1)

if and only if x-x(0) -- 0 (mod 1). Therefore the number of lattice points

x in S is the number of distinct, but not necessarily integer,

(Pl "' 'Pk) which satisfy

k o(X0() -x (0 ) ) - 0 (mod 1). (40)
k

li=l Pi (4l

_0 i = l,'" ,k.

18



Notice that the above congruence system in variables PI""'Pk has a

non-singular coefficient matrix of integers. The solution set of this

system Is preserved by the following elementary row operations:

(a) multiplication of a row by -1,

(b) interchange of two rows,

(c) addition of an integer multiple of one row to another row.

Using only the row operations specified above it is possible to transform

the congruence system into one in which the coefficient matrix is in Hermite

normal form [1]:

B11l P1

21 B22  p2

0 (mod ),
B, Bk B1 41)

Bkl k2**kk ~ k (41

Pi 0

where

B is an integer j = l,...,k; i = j,-,k;

B > 0 j = l,...,k;

0 < Bij < Bjj j - l,',k; i > J.

We now show that the system (41) can be satisfied by at most

(B11B 2 2'"Bkk) + k

distinct values of (Pl,...,pk). If any pj = 1, j - 1,'--,k, then all

other pi, i f j, must take the value zero. The k ways in which this can

19



happen (some P - 1, j - , ,k) determine the k lattice points

x( I) ...,x(k) Now consider the number of ways system (41) can be

satisfied with the additional requirement that pj<l for all

J = 1,...,k. To satisfy the congruence system p1  must be chosen so

that

B11Pl _ 0 (mod 1).

Since we have counted pl = 1 already, p, can take on at most the
B11  values 0 ull l,

0,- Now suppose that pl" ps- have

been set at feasible values ,P -I Then ps must be chosen

so that if f is defined to be the fractional part of 2s-l BsP*,

BssPs -f (mod 1).

Let t 0 f - 1
S 1-f O f < l.

Then, excluding the case ps 1 which has already been counted, ps

can take on at most the Bss values t,t s, .  ,t- Bss-'  Therefore,ss Bss"

there are at most (Bll...Bkk) ways in which the system (41) can be

satisfied by distinct (l"'Pk ) for which no Pj - 1, j - 1,,.,k.

Since therL are k ways in which one can choose some pj i,

1,- ",k, there are (Bll'"Bkk)+k ways to solve (41) and hence

(40).

The relationship of the upper bound to the volume of the k-simplex

is very interesting. The volume V(S) of an k-simplex S with vertices

(0) .. (k)
x , ' ,x is given by £10]:

20



XiM ( () () (k)_ (0),~)x() x(k)x()

~k Xk k (x k

where jZj denotes the absolute value of Z. The matrix whose determinant

is taken to compute V(S) is just the coefficient matrix of the congruence

system (40). The absolute value of the determinant is not changed by

the row operations in (a), (b), (c). Since B j>,0 j = l,"',k,

Bl * * ' = k! V(S).

We may conclude that if S is an k-simplex with integer vertices and volume

V(S), the number of lattice points within S is at most

kIV(S) + k.

This upper bound is sharp, as illustrated by the following example.

The simplex with vertices Oel,..ek, where ej is the jth unit coordinate

vector, is called the standard k-simplex. The only lattice points in this

k-simplex are the k+l vertices. Let us verify that this agrees with the

upper bound (Bll"'Bkk)+k. Letting x(0) = 0, x(i) X ei, i = 1,"',k,

the congruence system is already in Hermite normal form with B.. = 1,

j = 1,...,k, so (B11...Bkk)+k = k+].

E. Estimating the Number of Eligible Partial Solutions

In the previous section it was shown that the volume of a k-simplex with

integer vertices may differ from he number of lattice points within it by

as much as a factor of k! In spite of this possible shortcoming, the volume

remains a useful, though rather crude, tool for specifying the order in which
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the variables should be placed and for demonstrating the importance of

finding a good starting solution.

In this section a somewhat more sophisticated technique is used to

approximate the number of eligible partial solutions through each variable

j. It is based un the observation that tne number of solutions to (7)

is equal to tne number of eligible partial solutions through variable j

if jn 1 , but if jnl, the number of solutions to (7) is an upper

bound which may be significantly higner. Tneorem 3 is appropriate for

&1-n, but for j>nl another approach would be useful.

The approach developed in this section is to compare the basic

enumeration scheme of the algorithm to a stochastic process in which the

extreme point weights are random variables. The design of the stochastic

model will require certain subjective judgments about the behavior of the

algorithm.

To simplify the analysis, assume that pj = 1 for all j = 1,...,n.

This assumption is required only for the approximation of E. for j>n I.

For j'.nl , Theorem 3 (which allows Apjl) maybe used to calculate E.

If a total enumeration scheme involving the Ok  variables were

used to solve the IP problem, all lattice points witnin the parallelepiped,

Y (0) +Zln, pi(y(i)_y(O))
- (44)

0 pi  < 1

corresponding to (9.16) would be enumerated. Of course, the algorithm -,oe;

not enumerate all lattice points within the parallepiped, but it doe. conid.r

partialsolutions (P "" for which IjIPjCI. In the design, o, tnop a r t i a l s o u i n P s * b k= j

stochastic model, the first subjective judgment is that thr. ben, vii.ir tif rl.fc

extreme point weights pl,"',pn in a total enumerat.n Sr Itli •,

approximted by n independent random variablec ur,1fnr,, .> " ,ttee,



t

zero and bne. If the extreme point weights were so distributed, any

realization l would correspond to a random "continuous"

point in the parallepiped, rather than to a4 random lattice point.

Recall that the objective of this analysis is to a proximate

the number of eligible partial solutions through variable k for every

k = nI+l,- -,n. Let, k be any integer, n1<k~n, and suppose

is an eligible part~al solution through variable k-l.

Then there exists an eligible partial solution through variable k of

the form (P" 'Pk-l'Pk) if and only if, conditions (9.23) and (9.24)

hold:

f + BkkPk 0 (i. od 1) (9.23)

k-l(924)~0 < Pk  1 - yj:I 11j '( ,

where f is' the fractional part of

d k-1

dk + lj:I BkiPi"

If the pj are assumed to be random variables in the model then f

is also a random variable. In the design of the stochastic model, the

seccnd subjective judgment is that for k>n I the frictional part f may

be approximated by a random variable .iformly distributed between zero
k-1

and one, and that f is independent of the partial sum Pj. Under these

assumptions, f = 0 occurs with probability zero for k>nl, so that the

number of eligible partial solutions throuqh variable k, 'for any partial

solution (PI"" "'Okl)" is the largest integer wk such that

' k-l
(1-f)/Bkk + ("k-1)/Bkk 4"- Pj'

or
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= [Bkkl~~P) ]

Let fkdenote the random variable

= kk ( 'a1 Pj).

Lemmna 7 Let f be a random variable uniformly distributed between zero and

one, and suppose f is independent of the random variable Ik f

then

wk ~ ~ kck~l

where ~.denotes the expectation operator.

Proof, Let e(wkI'k) denote the conditional expectation of o given

Then

q(wkI 4 k) 1'!k)P(Tk-1[Wk)+f<l) + Nl'(IkRlf)

=fl~<-'k[Vl + _1f~1Pf--F+q1

[(k (l1 'k+~'k) + ('11(k'

Therefore,

E(wk) =(~ klq)

as was to be shown.
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At this point it is appropriate to review the motivation for considerinq

the stochastic model. The purpose of the model is to provide a tractable

means of estimating Ek, the number of eligible partial solutions through

For each eligible partial solution through variable (k-l), there

will be a certain number, wk. of values of which yield an eligible

partial solution through variable k. In the stochastic model the Ek

and k (for k>ni) are random variables with the property that

E(EkIEkl = ) ZE(k) == ( d)

Therefore, in the stochastic model,

8(Ek) = E(Ekl) (k ).

By induction, for k>n 1

E(E k  = Ij E(Ij))En (45)
k j=n + 1 n

where E is a constant which can be found from Theorem 3.

It is still necessary to interpret and calculate the expression

( k ) in (43). If a total enumeration scheme were used to solve the

IP problem, all values of qiven in (9.27) would be enumerated.

However, an implicit enumeration scheme is used which considers only

partial solutions (Pl""'Ok) for which

jklp j  < 1 k =  1,-.,n.

The following model is used to approximate the behavior of the partial

H k
sums lj Assume initially that the pj are independent random

variables, uniformly distributed between zero and one. The uniform

distribution is used to approximate the aistribution of values that each 4

pj would assume in a total enumeration scheme. In a total enumeration
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A
scheme H1k may be approximated by the sum of k independent, uniformly

and variance v(pj) = 1/12. By the Central-limit theorem [15, p. 149],

Hk would be approximately normally distributedwith mean k/2 and variance

k/12. However, the algorithm allows only the values Pl'...pk for which

O<Hk<l. Therefore the distribution of Hk in this implicit enumeration

scheme may be approximated by a truncated normal distribution.

The following lemma is easy to verify.

Lemma 8 Let H* be a normal random variable with mean k/2 and variance I
k/12, anu let Hk be distributed accordinq to the conditional distribution

of H*, given OH*<I. Then

E(Hk) = k/2 - A717 {n(qk) - n(-v'M)}/{N(qk)-N(- /M)}, (46)

where

qk = VT" (l-k/2)/ /T ,:

and n(x) and N(x) are respectively the density function and cumulative

distribution function of a normal random variable with mean zero and variance I
one.

Note that

6(= k )  Bkk(l-(Hk-1)). (47)

The suggested approximation to the number of eligible partial solutions

through ;.k is given by (Ek) in (45). Combining (45), (46), and (47),

the estimate I(Ek) for k>n I is

2 6
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E B .l-(Jl)/2V~j- (nqj_--n(-N (q

Let

= -(J-l)2+(T-1/T712 (n(qj 1 )-n(-/C-)/ n(qj 1 )N(-3 ) . (48)

Then the aj may be calculated using tables of the normal distribution.

The values of mj are independent of the data of the problem and may be

stored in a table in a computer program. Using this table, the estimate

of Ek is

P(E k  E nk B (49)

F. Checking the Nonbinding Constraints

Once a completion within the n-simplex has been generated by the

simplified version of the Accelerate: Bound-and-Scan Algorithm, the m

nonbinding constraints are checked for feasibility. This process reqjires,

as Theorem I notes, at most mn additions and multiplications for each

completion. However, if the completion violates one of these constraints

the computation needed may be significantly less because control returns

to the basic enumeration scheme as soon as the infeasibility has been

discovered.

The m nonbinding constraints are checked in some particular sequence.

If Pi is defined to be the probability that a completion satisfies the

.thi nonbinding cons' .:nt, the expected number of multiplications and

additions needed to check the nonbinding constraints in the course of the

algorithm is given by
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~(En) ~ ~ ) + m 11 ~ ~ (50)
ii

1=1 jl l -

should be ordered so that

P (51)

to minimize (50). The ordering (51) simply says that tha constraints most

likely to be violated by a completion should be checked first. However,

the P1 (i = 1," -,m) are not known, so it becomes necessary to estimate

them.

One estimate 6f P.i would be P -

where V(S) denotes the volume of the n-simplex S and V(R1) is

the volume of the region R1, where R {xcS: x satisfies the ith

nonbinding constraint}. The calculation of V(S) by (42) is relatively

simple, but the calculation of V(R.), though mathematically trivial,

is somewihat complicated by the difficulty of determining the limits of

Another estimate of the P could be obtained by a simple

experiment. Suppose N points (P1 l, are generatel randmoly

within the n-simplex. Choose the estimate

P, -. N1/N ,(52)

where N1 is the number of points satisfying the ith nonbinding constraint.

To generate a single point, select each p1 ece 1,.n.,n) accordin to ta

uniform distribution on the interval [0,1]. If H then
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(Pl'"'Pr) represents a point within the n-simplex. If Hn>1 continue

by selecting additional (Pl,...,pn) until the condition HnI is satisfied.

The major ' back to this experiment is that for large n the

nprobability that ljlPj.l is very small. It is likely that many random

points (on the average, nl) within the parallepiped (44) would have to be

generated for every point within the n-simplex. Rather than perform the

experiment every time a new integer programming problem is to be solved, it

would be possible to construct a table of N random points "

for which jnlpj<_l The values of i in this table are

independent of the data for any particular integer programming problem.

The table would have to be constructed only once, and it would be used for

every problem solved by the algorithm.

Although the table would have to be constructed only once, the number

of points (approximately Nn!) which would have to be generated for moderately

large n might be prohibitively large. For this reason the following

modification to the experiment is suggested for large n. Recall that

every point x within an n-simplex S with vertices x(), x(l) ...x(n)

may be represented as

x : x(0) + 1inlPi (x(i)-x (0 )

where lin _ 1

S Pi > 0 i = 1,.. ,n.

In the experiment each pi is selected according to a [0,1] uniform

distribution, and if Hn = ) pl,..pn represents a point

within the n-simplex. If it were possible to generate the pi directly

so that H nl, the malor drawback to this approach would be eliminated.
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Consider the following approximation to the experiment. It is based on the

observation that, for points in the n-simplex, Hn  Is approximately distributed

as a truncated normal distribution.

Let Ht, for k = l,...,n, be a normal random variable with mean

1/2 and variance k/12, and let Rk(t) be distributed according to

the conditional distribution of H*, given OHk<t. In the experiment,

first generate a value for R (1), and let P - l-R (1). Next generaten n n

a value for R nl(1-pn), and let Pn-l = 1-Rn-l0lPn) In general, the-

kth extreme points weight Pk is generated by letting

Pk= (l-ink+lPl) " Rk(l i =k+IPi )

where values for Pk+l'" Pn have already been specified.

The design of the experiment is explained in the following way.

There are (n+l) extreme points in the n-simplex. In order to determine all

Pi (i = 0,1,...,n), it is necessary to specify only the weights pi on

n of the extreme points since jinoPi = 1. Note that the partial sum
n-I
l=Opl is approximately distributed as Rn (1) within the n-simplex. Given

pnPn_1,...,Pk+1, the partial sum

k-l

is approximately distributed as Rk(li n  so that givenkl =k+iPi), ota gvn:

P the kth extreme point weight 0k (....Pk Pk= :-ik+iPi-1i.O0 i) is
nn

approximately distributed as -in i-R -nk+ Each

Pn 'n-l'"' 'pl is generated, in that order, thereby guaranteeing that

Hr l.

Although this approach of using the truncated normal distribution

eliminates excessive computation which would otherwise be required, it has

one outstanding weakness: the use of Rk(l-Zink+lpi) as an approximation
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for small k to the partial sum Olo This difficulty may be

circumvented by performing a hybrid experiment. Let ko be some

fixed positive integer such that for k>k O, the truncated normal

distribution is an "acceptable" approximation to the partial sum

klOP Generate pn,..,k using Rk() as described above for

k n,n-l,...,k o. To generate ,. k , select each pi

(i = l,...,k0-l) according to a uniform [0,I] distribution. If

Hko l -  - ,i<(l'-nkopi) then (pl,'.Pn) represents a "random"

point within the n-simplex. If this condition on Hko-l is not satisfied,
0

continue selecting additional (Pl,'",Pk 0 until it is satisfied.
0

G. An Example

The data for the example below is given in the form of (7). Suppose

that all eligible partial solutions through variable p3  are given by

the solutions to the system

4p1 -0 (mod 1)

8p2  0 (mod 1) (53)

1/8 + p, 4 +(0aY4 0 (mod 1),

where

P1 + P2 + P3 1

and

Pl>-  (I = 1,2,3).

There are only two solutions to (53), given by (pl,p 2,p3) = (1/4,

1/8, 1/2) and (pl,p 2,P3) (1/4, 3/8, 1/2). According to Lemma 3 the

number of solutions to (53) is bounded above by the number of solutions

to the system
31



4p1  - 0 (mod 1)

8P2  50 (mod 1) (54)

0 (mod 1),

where

Pl +  2 + P3 <_.1

and Pi L- 0 (1 - 1,2,3).

There are 24 solutions to (54), indicating that Lemma 3 does not

necessarily provide good approximation. However, the volume of the

3-simplex is 8/3! = 4/3, and the approximation (45) gives e(E 3) = 1.88.

H. Summary of Estimates and Bounds on Computational Effort

This chapter has examined in detail the computational effort required

by a simplified version of the Accelerated Bound-and-Scan Algorithm. It was

shown in Theorem 1 that the computational effort (additions and multiplications)

may be expressed as linear functions of the Ek, the number of eligible

partial solutions through each variable k.

Corollary 1 If AT- is the number of additions and MT the number of

multiplications required by the iterative part of the simplified alaorithm,

dAT n-1 (j+3)Ej + mn En + - Ej + 2En,and AT 3j=n, 1l

MT ,n 1 (j+l)Ej + mn En-

Upper bounds for AT and MT are given in Corollary 1. These upper bounds

are exact if no improved solution is found and if all m non-binding

constraints must be checked for every completion generated.

Upper bounds on the Ek were developed next. Once upper bounds on

the Ek are known, upper bounds on the AT and MT given in Corollary I

may be calculated. 32



Corollary 2 Ek is bounded above by the number of solutions to the inequaltly

i y/Bi 1 (5)

0 -Yi <Yi' Yt integer I 1,...,k.

Methods for calculating the number of solutions to (55) were given in Theorems

2 and 3. The bound of Corollary 2 is exact if k<n 1.

Let E be the number of solutions to (55) when the upper bound
kI

restriction yt<_Yj is dropped. Crude upper and lower bounds 4n k as

explicit functions of the Bi1 were derived in Theorem 4 in order to show

that the nonbasic variables should be ordered according to increasing Bii.

The lower bound on was shown to be the volume of the k-simplex which is

the projection of the n-simplex onto the first k variables. The importance

of having a good starting solution was discussed.

In Section D it was shown that the volume of a k-simplex with

integer vertices may differ from the number of lattice points within it by

as much as a factor of k!

In Section E an estimate of Ek for k>n I was developed, and in

Section F an experiment was designed to find an estimate P1  of the

probability that a completion satisfies the ith non-binding constraint.

Assuming that the non-binding constraints are ordered so that

I<P < < Pm'

it is possible to estimate the computational effort in the algorithm as

follows.

Corollarl3 Let 8(AT) and t(MT) denote respectively the estimated

number ot additions and multiplications in the algorithm. Then
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J() nl+ 3)En1  Ekn+I~~Jn1 I k~1  B -

+En (Ijinl+lBJ Il){2+ (in)l-P)(n 1  + nnl
n,

+ 3 Jl EP

and
E(MT ) ,,(nl+l)En+ [knl+1(k+l)En l ( n j ~ n l Bj j t

El ( J~nl+I ) { :  (in)(l-P1 (niJpl j) + mnfl2j_

where EP ... En  are calculated using Theorem 3, the P1  are given by

(52), and the a are given in (48).

Corollary 3 follows directly from Corollary 1 and equation (49)

and (50).

The estimates of Corollary 3 are conservative in the sense that they

assume no improved solution is found during the course of the algorithm.

Such an assumption may be very realistic, since the Hillier heuristic procedures

often find an optimal solution to the problem. Computational experience

reported by Hillier [13] Indicates that his better heuristic procedures

obtained an optimal solution to the IP problem on approximately half of his

test problems. When his more powerful multiple-solution approaches were

used, an optimal solution was found on about three quarters of the problems

If such a heuristic procedure is used to obtain a starting solution in the

algorithm, and if that solution is actually optimal, the estimates of

Corollary 3 may be quite accurate. If an improveo solution is found, the

estimates may be somewhat conservative .
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This chapter has presented bounds and estimates of the computational

effort required by a simplified version of the Accelerated Bound-and-Scan

Algorithm to solve any given problem. The simplified version of the

algorithm includes the basic enumeration scheme and bounds pi on

variables pi used in the skeleton algorithm,but it does not include

the scanning procedure or the elimination of redundant constraints.

A very natural question to consider at this point is how the bounds

and estimates would change if the more sophisticated skeleton algorithm

were analyzed. In general one would expect the estimates given for

the simplified algorithm to be somewhat conservative if the skeleton

algorithm were used. However, it would be possible for the skeleton

algorithm to require more computational effort on a given problem.

Fortunately, it is possible to bound this additional computational

effort, and as a result derive bounds for the skeleton algorithm.

Once the right-hand side of (9.35) has been calculated once

for each nonbinding constraint at the outset of the algorithm, no

additional multiplications or additions are required tu check for

redundancy in the iterative part of the skeleton algorithm.

The scanning procedure may require more additions and multi-

pli;-!tions than the corresponding procedure for checking the nonbinding

constraints in the simplified algorithm. The scanning procedure dan

be entered orly once for each of the En possible completions generated

by the skeleton algorithm. In the worst possible case, all m nonbind1ii

constraints would be checked for feasibility for each completion

before the .canning procedure is entered. The most computation

which could occur in the scdnning procedure (for a given completion) would

result in n(n-l) additions and (n(n-l)/2)+l multiplications
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in Step 5 and three mA.1tiphc-,itocss 4yto iiioli in Sto..,- 7, or

n(n-1)+3 additions arid mult)'?)4 ~ iitions ir. all.

Corllay4 If AT. is t-hc ratawtr vf Wdlt~cons and R4, t h t-ii

of multiplications req-jirea. by tp.*, tte'r t part of trie ctw

version of the Accelerkteu oni ~ Aarti

AT in 0+3)L - E

and

mT in- + *1 mn1,r- 2,

where the E (or upptr boid onV, 1i i ti r 11 a %..4 V.~i fo

Theorem 2 or Theorem 3.

The proof of Cor~lary 4 $fol~hvs ifrcr c r!h~.
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