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Estimates and 3cu~ds on Computational Effort

in the Accelerated Bound-and-Scan Algorithm
by

Bruce H, Faaland

A. Introduction

The pure integer linear programming (IP) problem is

maximize ch (1)
subject to  Ax < b (2)
x>0 (3)
x  integer, (4)

where A 1s an m x n matrix, b 1is an m-vector, and ¢ 1is an n-vector.
A difficulty shared by the many algorithms which have been proposed for
solving the IP problem is that their computation time varies greatly from
problem to problem of similar size and structure. The purpose of this
paper is to give uppzr wounds and estimates on the number of arithmetic
operations needed by the Accelerated Bound-and-Scan Algcrithm to solve any
given problem.

The Accelerated Bound-and-Scan Algorithm solves the integer programming
probiem (1,2,3,4) by implicit enumeration of all jattice points within a
certain n-simplex in Euclidean n-space. The number of arithmetic operations
required by the algorithm wili be given as a function of the number of
eligidle partial solutions through each variable. Methods for obtaining
upper bounds and estimates on the number of eligible partial solutions, for
any given prob’em, will be discussed in detail. The basic too'- of analysis
used are various results from the theory of partitions of numbers, the Central-

1imit theorem, and geometrical interpretations of the algorithm. Many of the
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results described here also apply to the Bradley-Wahi algorithm [3].
See [9] for details on the relationship of the Bradley-Wahi algorithm

to the Accelerated Bound-and-Scan Algorithm.

B. Analysis of Arithmetic Operations

A somewhnat simplified version of the skeleton algorithm will be
analyzed here. The "simplified algorithm" includes the basic enumeration
scheme and bounds 51 on variables 04 used in the skeleton algorithm,
but it does not include the scanning procedure or the method for eliminating
redundant nonbinding constraints. Inctead, whenever a completion within the
n-simplex is generated, the m nonbinding constraints are checked in
sequence for feasibility. If all m nonbinding constraints are satisfied,
an improved solution has been found. Otherwise, the basic enumeration
scheme continue$ where it left off as soon as 1t has been determined that
some nonbinding constraint is violated by the completion.

The simplified algorithm is considered instead of a more sophisticated
(and probably more efficient) version of the algorithm in order to make the
analysis tractable. The simplified algorithm includes the cone algorithm
as a special case, and the results of the analysis for the simplified
algorithm provide partial answers to fundamental questions which arise
regardless of the level of sophistication in the design of the algorithm.

These questions include (a) What 1s the greatest amount of time the

algorithm could take to solve a given problem? (b) What is the expected
computation time? (c) How should the variables and nonbinding constraints
be ordered to minimize the expected computation time? (d) How does the
computation time increase as the number of variabies is increased? and

(e) How is the computation time affected by the quality of the starting

solution?
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In the following it will be necessary to refer to equation numbers

in [9]. Equation number q 1in [9] will be designated by (9.q),
whereas equation number q 1in this chapter will be labeled (q). It should

also be noted at this point that only the "iterative portion" of the algorithm ;;
is being considered; the relatively predictable and minor “setup time" {is
being 1gnored.

3 The basic idea of the Accelerated Bound-and-Scan Algorithm is to

examine all completions which may yield a larger objective function value than by
the current best solution. To arrive at a completion, a sequence of partial

solutions is constructed. The computational effort required by the algorithm

depends on the number of partial solutions and on the amount and type of

computation required to generate each partial solution.

A L L . § iy

Partial solutions are generated on either a “"forward step" or a

“backtrack step" in the algorithm. Each will be examined in terms of

the computational effort it requires.

ST W i TR

Suppose (p?,-~-,p§_]) is an eligible partial solution, but not a

S L4 Y L T AP P R VA

completion. The forward step consists of setting I at t in (9.26) :
to form the next partial solution. Consider the work required to find t.

If ken,, f =0 by (9.30) and t =0 by (9.26); thus, if kengs

']’
(pT,"',p;_],O) is automatically an eligible partial solution. No multi-
plications or additions are required. If k>n], the calculation of t
first requires (k-1) multiplications and k additions *o obtain f, and

then one additional multiplication and addition in (9.26) to obtain t.

— ol

(Assume that pricr to the iterative part of the algorithm the ]/Bkk'

k=1,--.,n, have been calculated and stored.) To test whether

(p?,"‘,pz_].t) is an eligible partial solution, t must be added to the

Vk;} ot in (9.24), resulting in one more addition. Therefore,

running sum

when k>n], (k+2) additions and k multiplications are needed on the forward

bt Wl el im0 811 Wt Bl
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step, but if kgp], none are required. If (p?....,p{_]) {s a completion
(k-1 = n), the nonbinding constraints must be checked for feasibility,
requiring at most mn multiplications and additions, where m {s the
number of rows of A 1in (2).

It is now possible to give the following lemma. ;

Lemma 1 Let AF be the number of additions and MF the number of multi-
plications done during the forward steps of the simplified Accelerated
Bound-and-Scan Algorithm. If EJ is the number of eligible partial

solutions through variable j, ;
Ap < Z"'] (j+3)E, + mnE
F— j"'n] J n*
and

M :zg;;] ($+1)E; + moE, -

Proof The proof has largely been given above. Every time one of the Ej
eligible partial solutions (o{."'.o}). ni<d<n, 1s generated, (3+3)
additions and (j+1) multiplications are required. If j = n, at most
mn of each are needed.

The “backtrack steps" of the algorithm will now be analyzed. Suppose
again that (pf,---,pz_]) is an eligible partial solution and that Py
is set at t during the forward step of the algorithm. If (o%,---,0¥ ;,t)
is an eligible partial solution, the algorithm proceeds with an additional
forward step. If it is not an 2ligible partial solution, the algorithm
attempts to construct a new eligible partial solution up to variable k-2
by resetting o, _, at p§_2+1/Bk_2'k_2. This operation initiates the
"backtrack step" and requires a single addition. (Recall that the

/B4y are stored, 1 = 1,--+,n.) To check whether (p{,---.pﬁ_3’ok_2) is é
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an eligible partial solution, 1/Bk_2.k_2+(-p§_]) must be added to

k=)
bi=1°F

backtrack step. If the partial solution is not eligible, another

That requires two more additions, or three in all during a

backtrack step to Cr-3 is made, requiring another three additions.

If it is eligible, a forward step is then made. There is one exception
to this description. Once a completion (of,~'-,p;) has been found

and tested against the non-binding constraints, the algorithm "backtracks"

to o, by resetting e, at p;+1/Bnn. Since adjusting 212]p$ requires

n

only one addition, backtracking to Py requires only two additicns.

Lemma 2 Let AB be the number of additions and MB the number of multi-
plications done on the backtrack steps of the Accelerated Bound-and-Scan

Algorithm. Then

. n-1
Ag < 3 ZJ=] Ej + 2

and

Proof The algorithm can backtrack to variable j, i.e., reset o at
pg+]/8jj, i1 and only if an eligible partial solution (QT,..,,QE) has
previously been constructed. Therefore the number of times the algorithm
backtracks to variable j 1s at most Ej, and three additions are needed

for each such occasion

The following fundamental theorem follows immediately from Lemmas

1 and 2.




Theorem 1 I¥ AT is the number of additions and MT the number of multi-

plications required during the iterative part of the simplified Accelerated
Bound-and-Scan Algorithm, then

A< zj=n (j+3)E + mnE + 3 ZJ ] E + ZEn R (5)

and

< D, (34D + mE,. (6)

The only arithmetic operations done during the iterative part of
the algorithm are additions and multiplications. No divisions are necessary,
and subtractions have been assumed to be equivalent to additions in
computation time. Comparison and assignment operations have been ignored,
but they could easily have been counted. The importance of Theorem 1 is
that if the time to do an addition and the time for a multiplication are
known, and if upper bounds (or estimates) on the Ej are known, it is possible
to give an upper bound (or an estimate) on the time required by the
Accelerated Bound-and-Scan Algorithm to solve any particular case of problem

(1,2,3,4). Upper bounds on the Ej will now be developed.

C. Some Upper Bounds

Lemma 3 The number of eligible partial solutions tarough variable 04
defined as the number of solutions to (9.21), is bounded above by the
number of distinct solutions to the system

B O ["1

0 (mod 1) (7)

o
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Proof The lemma will be proved by defining - one-to-one mapping from the

set of solutions to (9.21) into the set of solutions to (7). Consider
any solution (of.---.pg) to (9.21). By (9.27) each o} 1s of the form

of =t + /By 1T,

where y? is a non-negative integer, and 05;¥<1/811. The solution

(of.-~'.pg) also satsifies

and
Iidy o <.
Corresponding to every solutfon (pf.'--.pg) to (9.21) is a solution
(p],---,pj) to (7) obtained by letting
Py = D‘{ = t* ‘yi/Bﬂ 1=1,,].

To see that (o]."',pj) is feasible for (7), notice that Bise5 = ¥
an integer; 5,20 since y}>0 and By;>0; since o <o, piiﬁi and
<1,

Lin 1°1
It still remains to be proved that the mapping is one-to~one.
Suppose it is not. Then two different solutions o* = (p?,...,pg) and

= (cf*."'.og* to (9.21) must correspond to a single solution to
(7). Let k denote tue first index for which oY ¢ of*. Recall that
ok = tRYE/B, and px* = tireyr/B . If of # eX*, then either
t; ¢ t;* or yﬁ ¥ yk . But yi must equal yi*, for otherwise p* and
k
because t¥ and t;* are functions only of the first (k-1) components

o** map into diffe.ent solutions to (7). And t¥ must equal t:*

of o* and p** vrespectively. Therefore, there are at least as many

solutions to (7) as there are to (9.21), as was to be shown.




Lemma 4 The number of solutions to (7) 1s equal to the number of integer

solutions to the inequality

5121 Yi/Byy £ (8)

Of_yiiy.l 13])"'vj|
where 91 = [51811] for i = 1:”‘!j'

Proof ~ The condition Byie; = 0 (mod 1) simply says that Bijo; must be
vn integer, say Yq- Then Py = yi/Bii substituted into the requirements

0spispy (1= 1,04+,3) and 21£1°15J results in (8)

I'f the Bii are rational, it is pozsible to calculate precisely

the number of solutions to (8) by solving & related problem in the theory
of partitions of numbers. The theory of partitions [11] deals with the
problem of counting the number of nonnegative integer solutions to cquations

of the form

.
Lisy 2y = @

where 157, and a are known positive integers. The problem may be

r
posed as that of counting the number of ways the integer a may be divided
inte parts of sizes a1, If only 91 parts of size aj are available,
the problem becomes one of finding the number of integer solutions to the

bounded variable Diophantine equation

Lisy a9y = @ (9)
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As-ume the Bii in (8) are rational. Axsufficient}condition for this
to be true is that the coefficients of the original IP problem be rational. !
Recall tﬁat the .Bii are also positive. It is possible therefore to multiply
both sides of (8) by a positive integer and obtain a new inequality whose
coefficients are positive integers. The anition of an integer valued s]aﬁk
variable to this inequality results in an equation of}tyoe (9).

Oné way of counting the number of integer solutions has been developed
previously by the author [7], and 1s restated here as Theorem 2. The notation

“k|s"* means "the integer k divides the integer s".

Tneorem 2 Let F(a) dencte the number of integer solutions to (7) and
Py = ajy+1)s = 1,.0,r. Pofine

= ) r r - > e 0
Q = 2‘1=] “ z'i:] Py s =1, -P

s : i
ivas : 1;Pj|s

1

Then F(0) =1 and \

eea. : (10)

fl
—
-

VOF(s) = (1/s) [2g QF(s-2) s

Proof See ([7].

A1tﬁough Theorem 2 can be used to ca];ulate upper bounds on computational
\‘effort in the Accelerated dound-and-Scan Algorithm, it\is Tikely to ge very
expensive because tne calculation of F(a)‘ by (10) requires
142+ --+3 = éi%tll multiplications and additions. Theorem‘3 is another

procedure (first presented in [8]) for calculating F(a) which requires

. elementary arithmetic operations proportional to a.




Theorem 3  Let Gk(w) be defined for all w = 0,1,°+-,a and k = 1,000 ,r

to be the number of integer solutions to the bounded variable linear

Diophantine equation

ko
Liz] 33 =

Oiyi_yi i =_-]9.".k : (18)

N

Y; is an integer 1 =1, -,k

Let yi = min {9], [a/h{]}. Then

1 w = O,a],Za],"',yia]
0 otherwise, ‘
3
and for k = 2,--+,r,
Gk(w) = sz‘l(w) w = O’],...'ak-]’ (20)
and i
Gk-l(w+ak)+6k(‘“) 0 <wc« akik '
Gk(m"'ak) = y (21)

Proof See [8].

Algorithms based on Theorem 2 or Theorem 3 may be used to calculate
tne number of integer solutions to equation (9). It would be very useful,

however, to approximate this number by an explicit function of a1>° 8,3,

r
and r. Such an explicit function would provide:infonnation on the rate

of growth of the number of eligible partial solutions up to variable r as

r and the coefficients vary.

A




E. Cesaro [5] stated, without proof, that the number of positive

integer solutions to the egquatioun

r _
Li=y 3¥; = a (22)

is approximately equal to

SUICA M RAERE (23)

Lemmas 5 and 6 will put Cesaro's conjecture into a precise form. Theorem 4

will apply the results of the lemmas to the inequality

k .
Li=1 ¥i/Bi; <1 (24,

y; 20 =,k

which is the same as (8) without the upper bound restrictions Y1:9i
(i = 1,-++,k). The number of nonnegative integer solutions to (24) is an
upper bound on the number of eligible partial solutions through variable
k for both the IP problem and the cone problem.

The form of (22) which is most useful for the analysis here is the
case in which one of the variables Yis SaY Yy represents an integer
slack variable. Assume then that ay < 1 and the a, (j = 2,---,r) are

J
otherwise arbitrary strictly positive integers.

Lemma 5 Let ay,ctsay and a be strictly positive integers. If a; = 1,
the number of integer solutions (y],--’,yr) to equation (22), al1 of whose

components Y; are strictly positive, is bounded above by (23).

Proof For s = 1,---,r and all integer i, let Fg(i) denote the number

of strictly positive integer solutions to the equation




igosr v

A T RN 1 2y i e

Iy a5 = 1 . (25)

The proof of the Temma will be by induction on s. Consider first the
case s =1, Since ay =1, F{(i) = 1/a; = 1 for all strictly positive

f. WNow assume the lemma is true for all s<k. Notice that for k>2,
(i/a,]
Since Fp_,(h) 1is nondecreasing in h,

a -1
Fe_y(isda) < (7a) T&o FEy (i-3a,4p). (27)

Therefore,

/kJ a-] _7
Iy Ora) Z Fe.q (1-Ja +p)

A

F(i) <

n

(]/ak) Zz-i [1/ak]a ﬁ-1(1)

|A

(1/a) ZQ;O Fx.1(2) since F () 20

HE

(]/ak) Z;;; zk'z/((k-z)! 5 } 3; ) by the induction hypothesis

I LW k-1
(1/a,) 1,20 j£ (t"" %/ ((k-2)! 1 Mjeq 8 )} dt

1A

L]

k-2 k-1
(1/a,) JJ 7 ((k-2)1 1] a0 at

1k 1

#l

=Dtk ag)

as was to be shown.
Lemma § stated that the number (23) 1s an upper bound on the number of
strictly positive integer solutions to (22). Using very similar arguments,

Lemma 6 below states that (23) is a lower bound on the number of nonnegative

integer solutions to (22).

b
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Lerma 6 Let L IERRRELM be strictly positive integers. If ay = 1,

the number of nonnegative integer solutions to equation (22) is bounded

below by (23).

Proof For s = 1, ,r and for all integer i, let Fs(i) denote the
number of nonnegative integer solutions to (25). Of course, if 1<0,

F (i) = 0. Since a,

1, Fs(i) is a nondecreasing function of i, and
F (1) (l/a ) = 1 for all nonnegative integer i. To complete the induction
proof, assume the lemma is true for all s<k. For k>2,

. Li/a,] o
Fk(1) =) 520 Fk_](l-Jak)

[i/a,] -] .
21 o (73 zp 0 Fr-10i-da-p)

= (1/a) Zz =i-[i/a ]a -2, * Fra1(2)

) i ] = i <
(V/a,) 1,20 Fop(8) since Feop(e) =0 if & < 0.

|v

(1/ak) 2210 k-2 /((k=2)! .; aj) by the induction hypothesis

(173 §,4 42yt 18] ay)

|v

J
(ra) S50 F (1K 2 2y ok e
k' Lol SRR LT

) )dt

k-2 k-1
(l/a j; %/ ((k- 2)!nJ Y

kel k
=1 /((k'])'ﬂJ=] aj);

as to be shown .

Theorem 4 Let E, be the number of nonnegative integer solutions to (24).

K
Then

Er < Ek < Ef*, (28

o u‘tﬁv"\:v&laﬂ

R T At b B b




where F

Ep = (g8 By 157kt nfy <ngly B), (29) *

1#]
and ’

= (00 Sy Byy + Igdy 1yl 8y D0 gl Ingd 8y D). (30)
1#3 i1

Proof Since Bi1>0 for all i =1,--+,k, (24) 1s equivalent to

K ok k

Ly=1 (My=y Byy)¥y < Myoy By (31)
it)

Y2 0 §e ek

The number of solutions to (31) is greater than or equal to the number of

solutions to o

Lj=1 < > Y5+ Yo = [1420844) (32) o
1#3 ;
>0

J= 0,0 ke

Applying Lemma 6 to (32) results in (29). To prove (30), consider the

transformation of variables nj = yj+l; zj is a positive integer 1f and

only if y. 1is a nonnegative integer, and (31) is eguivalent to

J

K .k K Ko,k
Lj=1 (Mymy Byglag <Myoy By + Jyoy (My2y Byy) (33)
it i#

The number of solutions to (33) is bounded above by the number of solutions to

k o

K . k i K K
Diey [Myay Byqdog * gy = 1 ¢ [nyoq Byy + o,
i#] i#j
4> 0 G= 1,0 kH].

14




Applying Lemma 5 to (34) results in (30), as was to be shown. Results similar
to those of Theorem 4 may also te found in Padberg (16].

Notice that E: is approximately equal to

K
M y=184¢/k!s (35)

and E;* is approximately equal to

(/kt) (oS8 + 18 m S Qe Q/m By + F % 78 0% se)
i#)

The expression (35) has an interesting geometrical intrepretation.
If the yi(i = 1,-+,k) are considered as continuous variables, the region
defined by (24) is a k-simplex with vertices (0,-..,0), (B]],O,-.-,O),
(0,822.0.---,O).---,(O.---,O,Bnn). By [10] its volume is precisely (35).
That is, the estimate (35) of the number of lattice points within the
regicn (24) is simply the volume of the region.

The Accelerated Bound-and-Scan Algorithm examines lattice points
within an n-simplex. In the process of constructing the completions
within the n-simplex, lattice points within lower dimensional projected
k-simplices (partial solutions) are also examined. According to Theorem 1,
the computational effort in the algorithm depends on the number of
eligible partial solutions through each variable, that is, the number of
lattice points within each projected k-simplex. One very crude way of
estimating the computation time would be to use (35) or (36) as an estimate
of Ek’ the number of eligible partial solutions through variable k.

This raises a very natural question: Is there an optimal ordering
of the variables which minimizes the estimated computation time? A change

in the ordering of the variable; corresponds to a change in the ordering uf

15




the binding constraints (9.8). Each of the n! orderings of these constraints
corresponds to a different inequality system (9.14)., However, for a given
system (9.14), the first ny variables can be reordered without disturbing
the lower triangular property of (9.14) and (9.18). If either (35) or (36)

is taken as the estimate of the number of eligible partial solutions through
variable k, the first n, variables should be ordered in increasing

order of the 311. This is equivalent to ordering the first m variables
in increasing order of their ranges within the n-simplex. Such an ordering
is in agreement with the computational results reported by Cabot [4] on

the knapsack problem.

Another question which can be answered to some extent by the use of
volume as an approximation to the number of eligible partial solutions is:
How does the quality of the starting solution affect the computational
effort of the algorithm?

Denote by Vk the volume of the region defined by (24); Vi is given

by (35). If an improved starting solution is known, the region corresponding

to (24) is given by

k
Li=y ¥i/Byy < @

yy2 0  i= 1,k

for some a<l. The volume of this region is equal to Vk o’ where
]

= k .k
Vk a = (ﬂ1=-| 0811)/k! = Q Vk-

Therefore, the estimate of the number of eligible partial solutions through
variable k 1is reduced by a factor of <f. This can result in a substantial
reduction in computational effort, particularly for large k. That the

reduction in computational effort can be so great is in general agreement with

16
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the common observation that the efficiency of implicit enumeration algorithms

is highly dependent on the quality of the starting solution.

The volume of a k-simplex may not be a good estimate of the number of
lattice points within it. The extent to which this estimate can differ

from the actual number 1s discussed next.

D. Volume and the Mumber of Lattice Points Within an n-Simplex

The relationship between the volume of a region and the number of lattice

paints within the region has for a long time been of interest in number
theory. The Minkowski geometry of numbers [12] for example, specifies the
minimum volume that an arbitrary convex body symmetric about the origin

must have to guarantee the existence of a lattice point other than the origin
within the body. Another example of interest is the following theorem

proved by G. Pick in 1899.

Theorem 5 Let S be a simplex in E2 (a triangle) with integer vertices
and area V(S). If b 1is the number of lattice points on the boundairy of

S and c¢ 1s the number inside, then
V(S) = b/2+c - 1. (37)

See Coxeter [6] for a discussion of this theorem.
The following example shows that Theorem 5 cannot be generalized

k whose k+1

directly to simpliices in EX. For k>3 the k-simplex in E
integer vertices are (0,0,---,0), (1,0,-++,0), (0,1,0,+++,0), -,
(0,0,°++,1,0) and (1,1,°°+,1,j) has volume j/k!, but the only
lattice points within the simplex are the k+1 vertices. So for fixed

k the volume may be any positive integer multiple of 1/k!, but

c=0 and b = k+1, values independent of .
17
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Under the assumptions of Theorem 5, (b+c), the total number of

lattice points in triangle S, must satisfy

(btc) < 2v(s) + 2 (38)

(btc) > V(S) +1. (39)

The above example shows that (39) cannot be generalized directly. However,

relationship (38) has an analog in Euclidean k-space Ek:

Theorem 6 If S 1is a k-simplex in Ek with integer vertices and volume

V(S), the number of lattice points within S 1s at most k! V(S)+k.

Proof Let x(o),x(]).-~-,x(k) be the vertices of S. Every point x in

S can be expressed as convex combination of the vertices of S:

X = x(o) + }:1':] 01(X(1)-X(0))

2151 Py L !

The only points x in S of interest are those which satisfy the linear
congruences x = 0 (mod 1). Since x(o) is an integer vertex, x = 0 (mod 1)
if and only if x-x(o) 20 (mod 1). Therefore the number of lattice points

x in S 1is the number of distinct, but not necessarily integer,

(p]."',pk) which satisfy

21k p-(x(i)‘X(O)) : 0 (mod 1).

=1 ™ (40)
k
Lizg #j <1
py 20 i=1,00 .k




Notice that the above congruence system in variables p]."'.pk has a
non-singular coefficient matrix of integers. The solution set of this
system is preserved by the following elementary row operations:

(a) multiplication of a row by -1,

(b) 1interchange of two rows,

(c) addition of an integer multiple of one row to another row.
Using only the row operations specified above it is possible to transform

the congruence system into one in which the coefficient matrix 1s in Hermite

normal form [1]:

°1
2
. : = 0 (mod 1),
k
21=]p1i]
01 >0 1= ]0 N
where
Bij is an integer j=1, oKy 1= 3, ks
BJJ>0 j:]’...’k;
0 <8y < 8 Jeleks 4 g,

We now show that the system (41) can be satisfied by at most

(By1Bpp"**Byy) + k

distinct values of (p]."',pk). Ifany o, =1, Jj=1,--+,k, then all

J
other o4, 1 § j, must take the value zero. The k ways in which this can

19
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happen (some oy * 1, J = 1,---,k) determine the k lattice points
x(])."',x(k). How consider the number of ways system (41) can be
satisfied with the additional requirement that pj<] for all

J = 1,00+ k. To satisfy the congruence system o, must be chosen so

that
Bnp] =0 (mod 1).

Since we have counted Py = 1 already, Py can take on at most the

B,-1
¥ ] LN ] ] L B
By, Vvalues O‘B]]’ By Now suppose that p,," .o _; have

been set at feasible values op%*, **,o* ,. Then p_. must be chosen
1 s-1 5

so that if f 1is defined to be the fractional part of 23-] stp*

=] j’
Bssps = -f (mod 1).
0 f=0
Let t =
= 0<f<l.

Then, excluding the case o = 1 which has already been counted, Py

B
can take on at most the BSS values t.t+§l—.--~,t+-%§l]. Therefore,

there are at most (Bll"'Bkk) ways in whizz the syst:; {41) can be
satisfied by distinct (oy,-"*s0,) forwhich no o, = 1, § = 1, k.
Since there are k ways in which one can choose some ¥ =1,
j = 1,-++,k, there are (B]]"'Bkk)+k ways to solve (41) and hence
(40).

The relationship of the upper bound to the volume of the k-simplex
fs very interesting. The volume V(S) of an k-simplex S with vertices

x(o)."°.x(k) is given by [10]:
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(xﬁl):x,((o)) C e (_x,((k):xl((o))

td

V(s) = er det

where |Z| denotes the absolute value of Z. The matrix whose determinant
is taken to compute V(S) 1is just the coefficient matrix of the congruence
system (40). The absolute value of the determinant is not changed by

the row operations in (a), (b), (c). Since By;70, i1, 0k,
B]] * * * Bkk = k! v(s).

We may conclude that if S 1is an k-simplex with integer vertices and volume

V(5), the number of lattice points within S s at most
KIV(S) + k.

This upper bound is sharp, as illustrated by the following example.
The simplex with vertices O,e],~-',ek, where ej is the jth unit coordinate
vector, is called the standard k-simplex. The only lattice points in this
k-simplex are the k+1 vertices. Let us verify that this agrees with the
upper bound (B]]'°°Bkk)+k. Letting x(o) =0, x(i) T ey 1 =1,"",k,
the congruence system is already in Hermite normal form with B,. = 1,

JJ
J=1,-+-,k, so (B]]"'Bkk)+k = k+1.

E. Estimating the Wumber of Eligible Partial Solutions

In the previous section it was shown that the volume of a k-simplex with
integer vertices may differ from he number of lattice points within it by
as much as a factor of k! In spite of this possible shortcoming, the volume

remains a useful, though rather crude, tool for specifying the order in which
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the variables should be placed and for demonstrating the importance of
finding a good starting solution.
In this section a somewhat more sophisticated technique is used to

approximate the number of eligible partial solutions through each variable

J. It is based on the observation that the number of solutions to (7)
is equal to tne number of eligible partial solutions through variable
if J<nys but if j>n], the number of solutions to (7) is an upper
bound which may be significantly nigner. Tneorem 3 is appropriate for
j;n]. but for j>n] anotner approach would be useful.

The approach developed in this section is to compare the basic
enumeration scheme of the algorithm to a stochastic process in whicn the
extreme point weights are random variables. The design of the stochastic
model will require certain subjective judgments about the behavior of the
algorithm.

To simplify the analysis, assume that Sj =1 forall j=1,-,n.
This assumption is required only for the approximation of Ej for j>n].
For j<n,, Theorem 3 (which allows Ej{l) may be used to calculate EJ.

I[f a total enumeration scheme invo]ying the oy variables were

used to solve the IP problem, all lattice points witnin the parallelepiped,

(44)

corresponding to (9.16) would be enumerated. Of course, the algorithm uors
not enumerate all lattice points within the parallepiped, but 1t doe. consider
partial solutions (p],"',pk) for which th]pj;}. In the design of tne
stochastic model, the first subjective judgment is that the bLiehayivr af the

extreme point weights Pyst 00 in a total enumeration Solicvie Loy B

n

approximszted by n independent random variablec urtforn y 0y lvitiut o vetwee.
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zero and bne. 1f the extreme point weights were so distributed, any
rea]izatibn (p],"',p ) would correspohd to a random "continuous"
point in the para]lepiped, rather than to q random lattice point.

Recall that the obJect1ve of this analysis is to abproximate
the numbet of eligible partial solutions through variable k for every
k = n]+1,---,n. Let‘ k be any integer, n]<k£p, and suppose
(p],"‘,pk_]) is anieligible part?aﬁ solution through variable k-1.

Then there exists an eligible partial solution through variable k of

the form (pq,"" "0, _1sp,) if and only if conditions (9.23) and (9.24)
hold:

f + Bkkpk =0 (@od 1) (9.23)

0 i_ok <1- Z?;} oy » \ (9.24)

i \

i ' v

where f 1is the frécttona] part of

k-1 , .
de + 151 Byyey

| If the pj are assumed to be random variables in the model then f

is also a random variable. In the design of the stochéstic model, the

seccnd subjectiﬁe Jjudgment is that for k>n] the fractional nart f may

be approximated by a random variable .iformly distributed between zero

and one; and that f is independent of the part1a1 sum ZJ ] P; Under these
assumptions, f = 0 occurs with probability zero for k>n], so that the

number of eligible partial solutions through variable k, Efor any partial

solution (p],---,ok'])L is the largest integer Wy such that

k-1
(1-6)/B + (w18 <V = 557 05




‘"[Bk“ ZJ]OJ)+fJ- \ _ '

Let ¢, denote the random variable

P = B O -1511 og)-

1

‘Lemma 7 Let f be a random variable uniformly distributed between zéro and

one, and suppose f is independent of the random variable C(’k. If

Nk) g(?k)’ ..|
where € denotes the expectation operator. :

i
|

Proof Let g(wkl‘?k) denote the conditional expectation of Y qiven

9, Then

Bl [4,) = [¥,IP(4 -[9, 1+F<1) + (NkJn)F@k-m]@)
| < B IP(F1-BAE0, D) + ([, J61IP(F21-% 4[4, )
= @ (-F#00) + ([41) &9
= % : |
Therefore,
Elu) = B 19)) = E@,).

as was .to be shown.
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At this point it 1s appropriate to review the motivation for considering
the stochastic model. The purpose of the model is to provide a tractable
means of estimating Ek’ the number of eligible partial solutions through
I For each eligible partial solution through variable (k-1), there
will be a certain number, W s of values of Ok which yield an eligible
partial solution through variable k. In the stochastic model the E

k
and Wi (for k>n]) are random variables with the property that

E(EIE ) = 2) = 2€(u)) = 26(Q,).
Therefore, in the stochastic model,
) = &k, ) ER@).
By induction, for k>n]

B(e,) - €9, (45)

J n +1

where En] is a constant which can be found trom Theorem 3.

It is sti1l necessary to interpret and calculate the expression
é@pk) in (43). If a total enumeration scheme were used to solve the
IP problem, all values of ok given in (9.27) would be enumerated.
However, an implicit enumeration scheme is used which considers only

partial solutions (p],"‘,pk) for which
Ly < K= T,eoom,

The following model is used to approximate the behavior of the partial

sums Hk = thlpj. Assume initially that the o, are independent random

J
variables, uniformly distributed between zero and one. The uniform

distribution is used to approximate the aistribution of values that each

Py would assume in a total enumeration scheme. In a total enumeration
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scheme Hk may be approximated by the sum of k independent, uniformly
distributed random variables. Each 0 would have mean 5(pj) = 1/2

and varfance V(pj) = 1/12. By the Central-limit theorem [15, p. 149],

Hk would be approximately normally distributedwith mean k/2 and variance
k/12. However, the algorithm allows only the values Ppst Py for which
O<H <1. Therefore the distribution of H ~ 1in this implicit enumeration
scheme may be approximated by a truncated normal distribution.

The following lemma is easy to verify.

Lemma 8 Let HE be a normal random variable with mean k/2 and variance

k/12, anu let Hk be distributed according to the conditional distribution

of H;, given Ogﬁigj. Then
E(H,) = k/2 - YRTTZ in(q,) - n(-/F)H/(N(qy)-N(- /TK)}, (46)
where

and n(x) and N{x) are respectively the density function and cumulative
distribution function of a normal random variable with mean zero and variance
one.

Note that
E) =8, 0-Kn ). (47)

The suggested approximation to the number of eligible partial solutions

through >, 1% given by E(E ) 1in (45). Combining (45), (46), and (47),
k 3

the estimate @(Ek) for k>n] is

ot 81 o il A, s
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E(Ek) = En]njtn]ﬂBjj”‘(J‘])/2”(3'”; 12 G(QJ-I)'"("3(3'|>)/«N(qj-l)'N("gw'l)))'

Let

ag = 1-(3-1)2/TFTITTZ (alag_y)-n(-/STN)a ) -1(-/ATT).  (48)

Then the ay may be calculated using tables of the normal distribution.
The values of ay are independent of the data of the problem and may be
stored in a table in a computer program. Using this table, the estimate

of Ek is

- k
g(Ek) = En] nj=n]+~|Bjj(!j- (49)

F. Checking the Nonbinding Constraints

Once a completion within the n-simplex has been generated by the
simplified version of the Accelerate ' Bound-and-Scan Algorithm, the m
nonbinding constraints are checked for feasibility. This process requires,
as Theorem 1 notes, at most mn additions and multiplications for each
completion. However, if the completion violates one of these constrainte
the computation needed may be significantly less because control returns
to the basic enumeration scheme as soon as the infeasibility has been
discovered.

The m nonbinding constraints are checked in some particular sequence.
If P

i
ith nonbinding cons’ .i!nt, the expected number of multiplications and

js defined to be the probability that a completion satisfies the

additions needed to check the nonbinding constraints in the course of the

algorithm is given by
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E(En) (Zi;} (1n)(1-P1)(n;;}PJ) + mn n?;}Pj}, (50) _ ??

where E(En) represents the expected number of completions. !

If the P1 (i =1, ++,m) are know, the nonbinding constraints

should be ordered so that
P] <_P2 <P (51)

to minimize (50). The ordering (51) simply says that tha constraints most i

likely to be violated by a completion should be checked first. However,
the P, (f =1,++,m) are not known, so it becomes necessary to estimate
them,

One estimate of Pi would be

P1 X V(Ri)/V(S) s

where V(S) denotes the volume of the n-simplex S and V(Ri) is

the volume of the region R,, where Ry = {xeS: X satisfies the ith

nonbinding constraint}. The calculation of V(S) by (42) is relatively
simple, but the calculation of V(Ri), though mathematically trivial, ;
is somewhat complicated by the difficulty of determining the limits of E fj
intagrution. 4
Another estimate of the P1 could be obtained by a simple
experiment. Suppose N points (o],"',pn) are generatad randumly

within the n-simplex. Choose the estimate

i U SRt

P1 ¥ N1/N ’ (52)

|

where N1 is the number of points satisfying the ith nonbinding constraint. ) §
To generate a single point, select each o, (f =1,---,n) according to a f
i

uniform distribution on the interval [0,1]. If Hn E 21:]p1ij, then
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(p]."’.pn) represents a point within the n-simplex. If Hn>1, continue
by selecting additional (p],...,pn) until the condition H <1 {is satisfied.

The major - back to this experiment is that for large n the
probability that nglpjjj is very small. It is 1ikely that many random
points (on the average, n!) within the parallepiped (44) would have to be
generated for every point within the n-simplex. Rather than perform the
experiment every time a new integer programming problem is to be solved, it
would be possible to construct a table of N random points (p],°",pn)
for which Zj:]pjgj. The values of (p;,**",0,) 1in this table are
independent of the data for any particular integer programming problem.

The table would have to be constructed only once, and it would be used for
every problem solved by the algorithm,

Although the table would have to be constructed only once, the number
of points (approximately Nn!) which would have to be generated for moderately
large n might be prohibitively larga. For this reason the following
modification to the experiment is suggested for large n. Recall that
every point x within s n-simplex S with vertices x(o),x(]),--o,x(")

may be represented as
X = x(o) + 212101 (X(1)-X(0))

where Lite <1

]_)_pi>0 'i=],"‘,n.

In the experiment each o, 1{s selected according to a [0,1] uniform
_chn

distribution, and if H, = zi=]pii], (p],"’,pn) represents a point

within the n-simplex. If it were possible to generate the Py directly

so that Hni]' the major drawback to this approach would be eliminated.

29
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Consider the following approximation to the experiment. It is based on the

observation that, for points in the n-simplex, H_  1{s approximately distributed

n
as a truncated normal distribution.

Let HI. for k=1,-++,n, be a normal random variable with mean
1/2 and variance k/12, and let Rk(t) be distributed according to
the conditional distribution of H¥, aqiven O<HE<t. In the experiment,
first generate a value for Rn(l), and let o = 1-Rn(1). Next generate
a value for R _,(1-p,), and let o o= 1-R _,(1-p ). In general, the

kth extreme points weight o, s generated by letting

= n n
ok = (Flimkerey) = RU-Limgee)s

where values for P+l P have already been specified.

The design of the experiment is explained in the following way.
There are (n+1) extreme points in the n-simplex. In order to determine all
0y (i =0,1,--+,n), 1t is necessary to specify only the weights py oOn
n of the extreme points since 212001 = 1. Note that the partial sum

21 0° is approximately distributed as Rn(l) within the n-simplex. Given

P Pha]? " Pkl the partial sum

i=0 P4

is approximately distributed as Rk(]-212k+]pi) so that given

O " Pke]? the kth extreme point weight o, = = (1- 21 k+1P4" Zi_op is
n

approximately distributed as ]-Zi=k+]p1-Rk(]~Zi=k+]pi). Each

o *a0y is generated, in that order, thereby guaranteeing that

n**n-1*"
Hﬁg'
Although this approach of using the truncated normal distribution
eliminates excessive computation which would otherwise be required, it has
one outstanding weakness: the use of Rk(]'zi:k+1°1) as an approximation
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for small k to the partial sum Z§§3°1- This difficulty may be
circumvented by performing a hybrid experiment. Let ko be some
fixed positive integer such that for kzko. tha truncated normal
distribution is an “"acceptable" approximation to the partial sum
Z1=0p Generate o.,c**,p, using R (-) as described above for

o

k = n,n-],---.ko. To generate p],"',pk e select each p1

(1= 1,'--,k0—1) according to a uniform [0 1] distribution. If

[

k- t o L] n
Hko_] Z1g131§j1-21=k0p1), then (pq,***.0,) represents a "random
point within the n-simplex. If this condition on H, _; 1s not satisfied,

0
continue selecting additional (py,**",0, _y) until it is satisfied.
0

G. An Example
The data for the example below is given in the form of (7). Suppose

that all eligible partial solutions through variable py are given by

the solutios to the system

%, =0  (mod 1)
8p2 = 0 (mod 1) (53)
1/8 + Py + 4p2 §/4 = 0 (mod 1),
where
D] +02+O3<_]
and
oy 20 (i =1,2,3).

There are only two soluticns to (53), given by (p],pz,p3) = (1/4,
1/8, 1/2) and (p],pz.p3) = (1/4, 3/8, 1/2). According to Lemma 3, the

number of solutions to (53) is bounded above by the number of solutions

to the system




0 (mod 1)

-

©
-t

1t

0 (mod 1) (54)

(@/1 =0 (mod 1),

(o]

©
N

m

where

and Py 2 0 (1 =1,2,3).

There are 24 solutions to (54), indicating that Lemma 3 does not
necessarily provide good approximation. However, the volume of the

3-simplex is 8/3! = 4/3, and the approximation (45) gives f(E3) = 1.88.

H. Summary of Estimates and Bounds on Computational Effort

This chapter has examined in detail the computational effort required
by a simplified version of the Accelerated Bound-and-Scan Algorithm. It was
shown in Theorem 1 that the computational effort (additions and multiplications)
may be expressed as linear functions of the Ek, the number of eligible

partial solutions through each variable k.

Corollary 1 If A;- is the number of additions and MT the number of
multiplications required by the iterative part of the simplified alaorithm,
» A < zg;,}] (#3)E; + mn €+ 31001 E + 26
M < Zg;n] (j+1)EJ +mn E .
Upper bounds for AT and MT are g1ven in Corollary 1. These upper bounds
are exact if no improved solution is found and if all m non-binding
constraints must be checked for every completion generated.

Upper bounds on the Ek were developed next. Once upper bounds on
the Ek are known, upper bounds on the AT and MT given in Corollary |

may be calculated.
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Coroilar! 2 E 1s bounded above by the number of solutions to the inequaltiy

Tyt ¥q/Byy 21 (55)

0 <y; <¥q» ¥y integer 1 =1, k.

Methods for calculating the number of solutions to (55) were given in Theorems
2 and 3. The bound of Corollary 2 is exact if k5n1.

Let Ek be the number of solutions to (55) when the upper bound
restriction y1591 is dropped. Crude upper and lower bounds &n Ek as
explicit functions of the 811 were derived in Theorem 4 in order to Show
that the nonbasic varfables should be ordered according to increasing 811.
The lower bound on Ek was shown to be the volume of the k-simplex which 1is
the projection of the n-simplex onto the first k variables. The importance
of having a good starting solution was discussed.

In Section D it was shown that the volume of a k-simplex with
integer vertices may differ from the number of lattice points within it by
as much as a factor of k!

In Sectinn E an estimate of Ek for k>n] was developed, and in
Section F an experiment was designed to find an estimate P; of the
probability that a completion satisfies the ith non-binding constraint.

Assuming that the non-binding constraints are ordered so that

I

it is poséible to estimate the computational effort in the algorithm as

follows.

Corollary 3 Let E(AT) and EIMT) denote respectively the estimated

number ot additfons and multiplications in the algorithm. Then

El
=
|
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E(Ar) = (n, +3)s + zk_n +1(k#6)E, (nJ any+1835%) a,) .

+E, (n jan +]Bjjad){2+ZT ](1n)(1 -p )(n\1 1Py)+ mnnj.] 3}
+3 23 2 Ey.
and

EMy) = (ny#)E, ¢ zk,n (K 1E (n.k ay)

J=n, +1 jJ
n
+ En]("j=n]+133j°3) {0 1 (in)(2- P“(nJ ] j) + mnnJ 1 Pybs

where Eyoveoot are calculated using Theorem 3, the P1 are given by i

n
1
(52), and the aj are given in (48).

Corollary 3 follows directly from Corollary 1 and equation (49)
and (50).

The estimates of Corollary 3 are conservative in the sense that they
assume no imprcved solution is found during the course of the algorithm.
Such an assumption may be very realistic, since the Hillier heuristic procedures
often fihd an optimal solution {o the problem. Computational experience
reported by Hillier [13] indicates that his better heuristic procedures
obtained an optimal solution to the IP problem on approximately half of his
test problems. When his more powerful multiple-solution approaches were
used, an optimal solution was found on about three quarters of the problems
If such a heuristic procedure is used to obtain a starting solution in the
algorithm, and 1f that solution is actually optimal, the estimates of

Corollary 3 may be quite accurate. If an improvea solution is found, the

estimates may be somewhat conservative .




This chapter has presented bounds and estimates of the computational
effort required by a simplified version of the Accelerated Bound-and-Scan
Algorithm to solve any given problem. The simplified version of the
algorithm includes the basic enumeration scheme and bounds 51 on
variables Py used 1n the skeleton algorithm,but it does not include
the scanning procedure or the elimination of redundant constraints.

A very natural question to consider at this point is how the bounds

and estimates would change 1f the more sophisticated skeleton algorithm
were analyzed. In general one would expect the astimates given for

the simplified algorithm to be somewhat conservative if the skeleton
algorithm were used. However, it would be possible for the skeleton
algorithm to require more computational effort on a given problem.
Fortunately, it is possible to bound this additional computational
effort, and as a result derive bounds for the skeleton algorithm.

Once the right-hand side of (9.35) has been calculated once
for each nonbinding constraint at the outset of the algorithm, no
additional multiplications or additions are required tu check for
redundancy in the iterative part of the skeleton algorithm.

The scanning procedure may require more additions and multi-
plications than the corresponding procedure for checking the nonbinding
constraints in the simplified algorithm. The scanning procedure can
be entered only once for each of the En possible completions generated
by the skeleton algorithm. In the worst possible case, all m nonbindina
constraints would be checked for feasibility for each completion
before the ccanning procedure is entered. The most computation
which could occur in the scanning procedure (for a given compietion) would

result in nin-1) additions and (n(n-1)/2)+1 multiplications
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in Step 5 and three mu:ltiplicaticny ane asditious in Stes 7, av

n(n-1)+3 additions and ({n(n-1)72}+& myttiplications in all,

Corollary 4 If Ap is the number of additions and M, the nudber

of multiplications requirec by the flevalive gart of the skoteton
version of the Accelerites gound-aaa-Scar Algoritam,
< zn" (|+3)£ + ]'_‘!‘\-}.
AT - J'“] ’ J '

&Jw" §j + {m"‘n‘\ﬂ"];bh: tnl
and

u :zg:,‘,] (Ge1E, 2 (rnenie-2}/244)E

where the Ej (or upper bounds on the Ay be Cainulaced from

Theorem 2 or Theorem 3.

The proof of Comillary 4 tolluws trom {aruilavy i

38

e e e

o o b




-

- 1 U R B

|
|
|

1n.

1.

12.

13.

REFERENCES
\

BRADLEY, Goraon H | "Aichvthms for Hermyte ana Smith Normal Matrices
and Linear Diophant ne Quat c¢ris”, Report No 34, Department of
Administrative >ciences, tate University, June 1970

BRADLEY, Goidon H , "Egquivalent integer Frograms and Canonica’
Problems", Management Science, vol 17, No 5 (Janua-~y 1971,
pp 354-366

BRADLE“, Goraon H  and WAHIl, Prare N, "An Aigorithm 197 integer Linea:
Programming: A Combined Aigebraic and Enumerat.on Approach”,
Report No 29, Depa tment of Admirist-at ve >iences, rale
University, December 1969 (Rev-.sed Feb-uary 1971

CABOT, Victor A, "An Enumeration Algorithm for Knapsack Probliems",
Operations Reseakch. Voi i8, No 2, (March-Aprit i1970), pp 306-31°

CESARG, E , Mempir.es de ‘s Scoirete Roya e qges Sguen;eé de L.ege,
Seres 2, vol 0. p 229 (May 1885,.

| _
COXETER, H S M, lr.-.a.iticn to Geumetl,y, witey, New vork 1969.

FAALAND, Bruce, "Un the Number ot Soiutions to a Diophantine Equation”,
Techn,cal Repo:t No 18, Cunt-act NOOGI4-0/-A-C412-0058, Department
ot Operations Resear h, >tanto-d University, November 2, 1970
{to appear 1n ueurha' &' CombInatoria: Thediy,

FAALAND, Bruce, "“50 vliun Ot the Va.ue-.ndependent Knapsack rrcbiem by
Fartitioning”, Te.hn.car Repprt No 2z, Cuntract NOOO:4-67-A-01,2-0058,
Depa’ tment ot Operct uns Researih, Stanfura Uni.ersity, February 2,
1971 (to appear n Qperaticns Researchy

FAALAND, B-ruce and Hlu..ER. t-ede-ick > , “lhe Acceierated Bouna-and-Scan
Algorithm for .nteger Frey-emmnng” Technica: Report No 34,
Contract NOOO:4-6/-A0 Z-0056, and Techricat Report No 9, Contract
NoF Gu-31521, Depa. tment o' Operations Resea-ch, Stantord University,

- ————————— ———

FLEMING, Wende:. H , funclicns 01 de.e-al Varaables, Adaison Wesley,
Palo Alta, :965

GUPTA, H . "ra TrlrCn: - A Su-.ey”, uNB>-B, Vv /4B, No. | (uvanuary-
March 1970), pp  '-79 '

1

}HANLOCK, Hacris, Foun@aiions 6 the Theory o' Aigebraic Ndmbe(s.

MacM:idar Company, New 10 k. 1931

HictiER, Frederick S , "Ef1110.ent Heur st Froceaures tor Integer
Linear Prog:ammrg with an anteryor”, Ope:alivns Research, voi 17,
No 4 \uuliy-August 1969, pe 500-64.

37




14.

5.

16.

HILLIER, Frederick S., "A Bound-and-Scan Algortthm for Pure Integer
Linear Programming with General Var1a9]es". gg rations Research,

Vol. 17, No. 4 (July-August 1969), pp. 638-6

MOOb. Alexander M. and GRAYBILL, Franklin A., introduction to the TheOry

of Statistics, McGraw-Hill,

New York, 1963

PADBERG, Manfred W., "A Remark on an Inequality tor the Number of
Latt1ce Points in a Simplex", Management Sciences Research Repo-t
No. 222, Carnegie-Mellon University, Octcber 1970.

\

!
\

38 '

o -

[

i T i



RS o i

Flr =

f . Security Classification

DOCUMENTCONTROLDATA « R&D

: nmm/-mommm ol tit1e; body of abatract and indaaing ennctetion must be entered whon the ovarull fepert 1o mmc'-o
g 1. ORIGINATIN G ACTIVITY (Corporate authos) . . Jae meronT skguRIYY 6 LAINIFICATION
' Department of Operations Research ‘ : ',' Uﬂclassified

] . 25 enouP

Stanford University .
Stanford, California._ 94305

b B N!PORT TITLe . R
Estimates and bounds on computationa1 effert in the accelerated bound-and-scan

algorithm
-J 4. DESCRIPTIVE NOTES (Type of npon w heholv- alu)

Techrical Report -
3. AUTHOR(S) (Last name, tirel name, inltial)

Bruce H. raaland

P ‘ - '
6. REPORT DATE I : 78. YOYAL NO, OF PAGKS 75, NO. OF REFS
May 15, 1972 . Co - 38 . 16
94a. ORICINATON'S REPORY NUMBER(S)

8a, CONTRAGT OR GRANY NG, ' . :
N00014-67-A-0112-0058 , " | Technical Report No..35

b PROJECT NO,
(NR-047-061) .
. ar.u':.u nJlom' No(S) (A ny other numbere thal may de aseigned

Technical Report No. 10 - NSF GJ- 31521

d
10, AVAILADILITY/LIMITATION NOTICES

This document has been approved for public release and sa1e its distribution
~ 1s unlimited

T T T AT

1t. SUPPL ENENTARY NOTES : 12. BPONSORING MILITARY ACTIVITY
. : , : Operations Research Program.(Code 434)
- -O0ffice of Naval Research
\L Washington, D.C. 20360

ABSTRACT

‘Methods for obtaining estimates and bounds on computat1ona1 effort in the
Accelerated bound-and-scan algorithm are presented. The basic tools of-
analysis used are various results from the theory of partitions of numbers,
the Central-limit theorem, and geometric interpretations of the algorithm.
The results of the analysis are used to provide partial answers to questions
such as (a) What is the greatest amount of time the algorithm could require
to solve a given problem? (b) What is the expected computation time?
(c) How should the variables and constraints be ordered? (d) How does the
computation time depend on the pumber of variables? and (e) How is the
computation time affected by the quality of the starting solution?

i

DD A, 1473 o UNCLASSIFIED

Secutity Classification




UNCTASSIFIED

Security Clessification

1.
KEY WORDS

LINK A Link® T LNk e

OPERATIONS RESEARCH
MATHEMATICAL PROGRAMMING
INTEGER PROCRAMMING

INTEGER LINEAR PROGRAMMING
ALGORITHMS ,

INTEGER PROGRAMMING ALGORITHMS
IMPLTCIT ENUMZRATION ALGORITHMS

noL¥ wY ROL K wr nRoLE | wy

INSTRUCTIONS

1, ORIGINATING ACTIVITY: Enter the name and sddress .
of the contractor, subcontractor, granteo, Department of Deo-
fense activity or other organization (corperate author) iasulng
the report, :

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security claaulfication of the report. Indicate whether -
“Restricted Date’’ ls included. Marking is to be in accord-
anceo with appropriate security reguletions.

26, GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armied Forces Industriol Manust. Enter
the group number. Also, when spplicable, show that optional
mu:ln:s have been used for Group 3 and Group 4 as author~
ized.

3. REPORT TITLE: Enter the complets report title in al)

capital letters, Titles in all cases should be unclansliied.
If & meaningful title cannot be elected without classifica

tion, show title classification in all copitals in parenthesis
immediately fol’owing the title.

‘4, DESCRIPTIV': NOTES: If epproprlate, enter the type of
report, u.g., interim, progress, summary, nnnual, or final.
Glve the inclusive datea when a specific reporting period is
covered,

S, AUTHOR(S): Enter the nams(s) of suthor(s) as shown on
or in the report. Enter 1ast name, first name, middle injtial
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement,

6. REPORT DATE: Enter tine dais of the report as day,
month, year; or month, yeur. If more th.an one date appenrs
on the report, use dute of publication,

7a. TOTAL NUMBER OF PAGES: The total page count
nhould follew normal peglnuiion procedures, L.e,, enter the
number of pages contalning tnformnation

7b. NUMBER OF REFERENCES Enter the total number of
referencesn cit2d !n the report.

Ba. CONTRACT OR GRANT NUMBER: 1If oppropriate, enter
the applicable number of the contract or grant under which
the report was written,

80, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department tdentificution, such su ptoject number,
subproject number, system numbern, taak nurber, ste,

9a. ORIGINATOR'’S REPORT NUMBER(S): nter the offi-
clal report number by which the document will ba identifled
and controlied by the originating activity, This number must
be unlque to this report.

95, OTHER REPORT NUMBER(S): If thie repost has heen
assigned any other report numbers (either by the originator
or by the sponsor), aleo enter thio number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those|

imposed by security dn'-mcauon; using stonderd statements
such as: -

(1) **Quelified requesters may obtein copies of this
report from DG .

(2) “Forelgn announcement and dissemination of this
report by DDC is pot authorized.”’

(3) *U. 8 Government sgencies may obtain coples of
this report directly from DDC, Other qualificd DDC
users ahall request through

”

.

(4) 0. S. mifltory agencles may obtain coples of this

report directly from DDC, Other qualified users
shall request through

(5) " Al distribution of this report is controlled Qual-
ified DDC uzers shall request through .

If the reposrt has been furnished to the Office of Technlcat
Services, Department of Commerce, for sale to the public, Indi.
cate this fact and enter the price, if known

11, SUPPLEMENTARY NOTES: Use for additlonal explans
tory notes.

12, SPONSORING HILITARY ACTIVITY: Enter the name of
the departmental project office or lsboratory sponsoring (pay-
ing for) the resesrc:: and development. Include address.

13. ABSTRACT: Enter an abstrect giving a brief and factual
summary of the document indicetive of the report, even though
it moy also sppear elsewhere in the body of tha technical re-

port, If mdditional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of clansifad reports
be unclassified. Each paragraph of the abatract shall end ©ith
an indicstion of the military security classification of the la-
formstion in the paragraph, represented as (T3), (3). (C), or (U).

Thore i no limitution on the length of the abstract. How-
ever, the suggested leagth is from 150 to 225 words.

14. KEY WOPDS: Xey words are technleaily meaningful terms
or shore phrases that characterize & report and may te used as
index entries for cataleging the report. Key words must be

‘selecied so that no ascurity classification is required. Identi-

fiers, such s equipment model fesignation, trude name, military
project codu name, geographic location, may be used as key :
wordz but will be followed by an indication of technical con-
text. The assignmen: of links, roles, and weights e opticasl.

D.D 15 1473 (BACK)

Unclassified
Security Clessificatica




