)
L1
~
™M
N
N
Q
¢

THE ACCELERATED BOUND-AND-SCAN ALGORITHM FOR INTEGER PROGRAMMING

by

Bruce H. Faaland
Frederick S. Hillier

TECHNICAL REPORT NO. 34
May 15, 1972

PREPARED UNDER CONTRACT
NO0O14-67-A-0112-0058 {NR-047-061)
FOR THE OFFICE OF NAVAL RESEARCH

Frederick S. Hillier, Project Director

This research was supported in part by
National ScienceFoundation Grant GJ-31521.

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

This document has been approved for public release and sale;
its distribution is unlimited.

DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

The Accelerated Bound-and-Scan Algorithm for Integer Programming
by
Bruce H. Faaland and Frederick S. Hillier

1. Introduction

The second author [12] recently presented his Bound-and-Scan Algorithm

for solving the pure integer linear programming (IP) problem,

maximize cTx (1)
subject to
Ax < b (2)]
X > 0 (3)
(8)

X integer,

where A 1is an m x n matrix, b 1is an m-vector, and ¢ is an n-vector.
The encouraging computational experience with the algorithm suggests that
the techniques proposed in [12] deserve further attention, Of particular
interest 1s the extremely efficient procedure used to construct partial
solutions for the "nonbasic" variables (nonbasic in the optimal linear
programming solution), as describsd in Section 6. The remaining variables
are called "basic" variables.

Given two problems of similar size and structure, the Bound-and-Scan Algoritam

would generally be more efficient for the probiem with fewer basic variables
(and hence more nonbasic variables). This observation leads very naturally

to the question: Is it possible to restructure the problem initially so that

the restructured problem has fewer basic variables? The theory of equivalent

B N

integer programs, introduced by G. Bradley [2] provides a partial
answer to this auestion. This theory says that there exists an equivalent
problem in which the number of basic variables is generally less than

or otherwise equal to the number of basic variables in the original problem.

Solving an equivalent problem with fewer basic variables 1s one
possibility for improving upon the Bourd-and-Scan Aigorithm. Another would
be to extend to the basic variables the efficient bounding procedure for
constructing partial solutions for the nonbasic variables. These twe
ideas provide the primary motivation for the basic enumeration scheme ot
the Accelerated Bound-and-Scan Algorithm to be described beiow.

Certain of the linear programming constraints (2,3) which hold

with equality at x(o)

are called binding constraints To define these,
recall that before the simplex algorithm i1s applied to the linear program
(1,2,3), the inequality constraints (2) are first transformed to equaliity

constraints

by the addition of slack variables s. The binding constraints consist of
those constraints among (2) whose slack variables are nonbasic 1n the
optimal linear programming solution, and those among (3) which correspond

(0)

tc nonbasic variables at x Thus, exactly n ot the (ntm) constraints

(2,3) are binding constraints. Let these binding constraints be represented as

by + Ajx = 0. (5)

E IR SRS L S St R TS L8]

e i LR

s =1 i

il D . s b 1

Wtk

bbbl Londilk Lo

bl kit

i, sl

iy

|

SR, —- -

-

[T ——]

The other m constraints are called non-binding constraints and will be

represented as

b, + Ayx > 0. (6)

The integer program over the cone (the "cone problem") is the
problem obtained from the integer programming problem by deleting the

nonbinding constraints (6). The cone problem is therefore

maximize cTx (7)

subject to by + Ayx 20

X integer .

when the basic enumeration scheme is used to solve the integer
program over the cone, the algorithm will be called the "cone algorithm."
It will be shown that the cone algorithm is mathematically equivalent
to the Bradley-Wahi enumeration algorithm [3] for the corresponding
cone prablem.

The feasible region for the cone problem is generally larger than
the feasible region for the integer programming problem. Any algorithm
designed to solve the more restricted problem must consider the additional
constraints present in the integer program. Three techniques are developed
in Section 8 for dealing with these constraints. The first of these
techniques is the standard device of considering only values of variables
between fixed upper and lower bounds. The bounds are calculated once at
the outset and are based on all the constraints of the original problem
rather than on just the cone constraints. The second method of dealing

with the additional constraints of the IP problem is to use a scanning

ST P LT B R N D

procedure whenever an infeasible solution within the cone is generated.

The scanning procedure allows the algorithm to "skip over" possibly many

L e Sl L 4t

n

bt i o

~

. 1 . 4 I
o butlu Lty Bith gt gt Gl el Lk el
., a s

other infeasible solutions in the basic enumeration scheme. The third
technique 1s a means of recognizing and eliminating redundant constraints.
Constraints which must be considered at the start of the algorithm may
become superfluous as improved solutions to the [P problem are found.

When the cone algorithm is supplemented by these three techniques,
the resulting algorithm will be called the “"skeleton version" of the
Accelerated Bound-and-Scan Algorithm. Additional options for the algorithm
also are available. In parcicular, conditional bounds on variables might
be calculated by techniques suggested in[12]or in (5, Ch. VI1]. Surrogate
constraints [7] might be very useful in determining the feasibility of
solutions generated within the cone.

As in[12], the two main assumptions used by the Accelerated Bound-
and-Scan Algorithm are first, that the optimal noninteger solution x(o)
to (1,2,3) 1s unique, and second, that a good feasible integer solution

F) to (1,2,3,4) has already been identified. Efficient heuristic

i
procedures for obtaining x(F) are available[13] when (2,3) possess
interior points. Otherwise, the system of Diophantine equations must

first be solved to eliminate the equality constraints An additional

assumption made here is that all elements of A,b and ¢ are integer-valued.

In Section 2 the theory of equivalent integer programs is reviewed.
The fundamental congruence system used by the algorithm is derived in
Section 3. Section 4 presents the basic enumeration scheme, and Section §
outlines the cone algorithm In Section 6 the special computational
property of the nonbasic variables is displayed, and in Section 7 the'cone
algorithm ts _ompared with the Bradley-Wahi cone algoritim. Section 8
presents the skeleton version of the Accelerated Bound-and-Scan Algorithm,

and computational experience 1s gi:en 1n Section 9, toliowed by conclusions

1in Section 10.

f
!
!
i
i

e
e s et b R B N . o i

Cata

2. Equivalent Integer Programs and the Cone Problem

Bradley [2] has shown that the integer programming problem {s

equivalent to infinitely many other integer programming problems of the

form
maximize e + (cTK)y (8)
subject to (AK)y < b - Ae
Ky<e
y integer,

where K 1s an n x n unimodular matrix (a square integer matrix whose
determinant equals plus or minus one), and e 1is an integer n-vector.
Problem (8) may be solved insteed of problem (1,2,3,4). The correspondence

between the solutions x and y 1s given by

x
u

Ky + e (9)

and

K™V (x-e). (10)

<
u

The following results are fundamental in the selection of the

equivalent problem (8) to be solved.

Theorem ! (Hermite [2]): Given an n x n integer matrix C of full
rank, there exists an n x n unimodular matrix K such that CK fis
lower triangular with positive diagonal elements, and each off-diagonal
element 1s nonpcsitive and strictly less in absolute value than the

diagonal element in its row.

CK is called the Hermite normal form of C.

e

Theorem 2 (Bradley [2]): The integer programming problem (1,2,3,4)

is equivalent to an integer programming problem such that in the new

problem the n x n coefficient matrix of the binding constraints is in Hermite
normal form and each element of the constant column of the binding constraints
is nonnegative and strictly less than the corresponding diagonal

element of the coefficient matrix.

The equivalent problem mentioned in Theorem 2 is of the form,

maximize cTe + (cTK)y (M)

subject to (b]+A]e) + AKy 20
(by*Ase) + AKy 2 0

y integer,

where A]K is the Hermite normal form of A].

In the new variables y the cone problem is

maximize cTe + (cTK)y (12)

subject to (by*Aye) + (AK)y > O

y integer.

There are reasons for choosing K so that AIK is the Hermite
normal form of A1. The matrix A] is singled out because in general the
binding constraints are the constraints most likely to be violated by
an integer solution in the vicinity of the optimal linear programming
solution. In the Accelerated Bound-and-Scan Algorithm, the binding constraints
serve as a filter for examining possible solutions. It may therefore

be desirable to select the equivalent problem so that the binding constraints

have as "simple" a Yorm as possible. The lower triangular property of

= s i E—— R

et el

(T

s Lt s L ok

!
)
{
bl
)|
]
|

e

A,
L

i

the Hermite normal form makes it feasible to apply either the Fourier- E
Motzkin elmination proceaure suggested by Bradley and Wahi [3] or the

Accelerated Bound-and-Scan Algorithm to be described below. Another i

appealing property of the Hermite normal form is that typically many of

the diagonal elements of the integer matrix A]K will be unit elements.

R P

Each unit element along the diagonal of A]K corresponds to a simple

TS

ncunegativity constraint y139, and hence to a nonbasic variable in the
oytimal linear programming solution. If the rows of A; are initfally
ordered so that the binding nonnegativity constraints of the original
problem precede the binding functional constraints, the equivalent cone
problem (12) will have at least as many nonnegativity constraints (and
hence nonbasic variables) as the original cone problem, and usually

many more. This ordering of the rows of A] will be assumed (as the
most convenient one) for the algorithm.

The phenomenon of many unit elements along the diagonal of A]K
is consistent with a well know interpretation of the procedure for
obtaining the Hermite normal form of a matrix. The procedure may be
viewed as successive applications of the Euclidean algorithm for finding
the greatest common divisor (gcd) of two integers. For example,
the first diagonal element of the Hermite normal form A]K is the
gcd of the n integers in the first row of A]. In general, the jth
diagonal element of A]K is the gcd of (n-j+1) integers. The following
simple result may make plausible the occurrence of unit elements along

the diagonal of the Hermite normal form A]K if the elements of A]

are generated randomly. The notation (k],"',Kt) denotes the gcd of

k],"',kt. and [z] denotes the greatest integer less than or equal

to 2.

Theorem 3 Let k1.....kt be independent, identically distributed random
variables with the probability mass function

i
P(kJ =g) = é%- s = 21, £2,...,%m, I
i

for a1l j = 1,,..,t. Then

P((kyseensky) = 1) 21 = 1.7 (Cm/i/m)t. (13)

| Proof é
E 1 PUkyaeenky) = 1) = 1= L0 P((kyaeeoky) = 1) B
] ~1- §1T2 P(i divides every kJ' J= 1, ..,t)
3
%_ «1- 5,0 {midmt

|

Consider as an example the case where m =6 and t = 5. Then by
(13) the probability that five randomly generated integers have gcd

: equal to jne is at least .96.

e g

e integer variables Yyreeos¥p' |

3. The Fundamental Congruence System
1

If tﬁe objective function value z 1s treated as a parameter,

the equiva]ent cone problem (12) can “e replaced by the inequality system'

n

’ !
1 H

hy1¥y | Z By
|
hy1yy + hyo¥, 2 8, (14)
. \ v“

hn]yl * hn2y2 oot hnnyn.—- Bn’

where | :

|

hij = (A1K)1J 1.3 =].ut s oMy ‘7
Bi = (b]+A1e)1 is=],.:-.,n,
'.gj=(cTK)J i=T,...n

The Acée]erated Bound-and-Scan Algorithm is based on system (i4;.
Fdr'a fixed value of 2z corresponding to a known feasible solution, \
tue (n+1) constraints of (14) define an n-simplex S (in Euclidean
n-space) 1n which the optimal solution to thef1nteger programming problem
must 1ie. The n-simplex S 1is a convex set,rand therefore every point
in S can be expressed as a convex combination of the vertices y(j)

(1 = 0,.,.,n) of S. That 1s, for every y 1in §$ there exist

. '+
il ;.‘mmnm

o g) R

unique extreme point weights 91:(1 = 0,1,---,n) such that

v b AN AR L

n 1) . ;

y = Iiho o9) (15) \

n N |y
Lizg ey =1 g

pi _>-O i = 0,],"',“. " :3;

An equivalent representation would be 3

(1)_ (0)) | ' (16)

The integer requirement on y 1is satisfied by considering only

extreme point Qe1ghts PYst " sPy which satisfy the congruencé system

YO s g e My @) 20 (mod 1) (17) ;
Lizg pj =1 i
!
p; 20 ; i=1,-,n. e
Lemma 1 The coefficient matrix of (17) is lower triangular with f
strictly positive dizgonal entries. That is, (17) is of the form:]
°1 -
; Sz 0 (mod1) (18) o

p; 20 i =1,...,n,
where Bi1>0 for 1 =1,...,n.

At i S

Proof The linear programming solution y(o) is found by dropping the

objective function constraint

I
Iy eyt Tt gy 2z -ce

from (14) and solving the simultaneous equation system

1Yy = By
Ay * hpgyp * oor +hp v = 8,

Since (19) is a lower triangular equation system, the first J components

ygo) (0)

of (19).

,-",y§0) of y are uniquely determined by the first Jj equations

The extreme point y(l). i =1,---,n, is the unique solution to the

equation system

h11Y4 = B

hicg, W PR i Yo = 85 (20)
.

9151 + oo gy, = 2ce

higg 1 ¥ * Ry 61 = By

hn’ly] oo * hnnyn= Bn’

h

obtatned from (19) by replacing the it equation of (19) by the equation

T
9])’]+"'+9nyn=2-ce.

o

’
s e i 4 .

it N

PN EMPR

Since the first (i-1) equations of (20) form a lower triangular system

identical with the first (i-1) equations of (19), (y§1)-Y§O)) =0 for

all j =1,-++,i-1, so the constraint matrix of (17) 1s lower triangular.

To show that Bii>0’ it is sufficient to show that 0y is an

increasing function of ¥y. From equation (44) in [12], it follows that

i-1

where

g (i)
Qi = Zj=-l hinJ - B.i.

By the construction of (14), h;;70, and by Lemma 3 in [12], Q;>0.

Therefore Bii>0’ and the proof of Lemna 1 is complete.

It should be pointed out that the congruence system (18) is not
unique. Each of the n! orderings of the rows of A] yields a
(possibly) different system (14), which in turn determines (18). The
ordering of the rows of A] may play an important role in the

computational efficiency of the algorithm.

4. The Basic Enumeration Scheme

The basic enumeration scheme for the Accelerated Bound-and-Scan
Algorithm is a systematic way of enumerating implicitly all solutions
to congruence system (18), and hence all lattice points within the
n-simplex. Such an implicit enumeration scheme may be used to solve
the cone problem. The “cone algorithm" proceeds by considering

sequences of partial solutions to system (18).

o St e L L e ikt

L,

An "eligible partial solution" through variable Py is a specification

(o **+20%) of the values of py,*+",p; which satisfies

dy B Py
: + : : 0 (mod 1) (21)
dj Bj] Bjj °j

2111 Pj < L

0.‘.01251 1=1,", .

The term Si is an upper bound on the maximum weight which may be placed

1th

on the extreme point and still yield a solution which satisfies

both the binding and nonbinding constraints. In general Sii]’

th extreme point violates a nonbinding constraint.

and 5i<] if the i
For the cone problem Si =1 forall i =1,---,n 3ince the nonbinding a
constraints are not present in the problem. The determination of the Si
is discussed in Section 8. Eligible partial solutions through p, are
called "completions," for they completely specify a lattice point
within S,

Suppose an eligible partial solution (of," .QE_]) through
Pr-1 has been specified. The algorithm must determine by some procedure
whether there exists a value for o, such that PR H IR R B
an eligible partial solution through Py This procedure is called a
"forward step" in tne algorithm. If f denotes the fractional part of
dk+2§;} ByyeY, 1.e.,

k-1) k-1 _
Kt List Byiel - [d*liaq Byyedd s (22)

—”
"
[=%
+

13

Ty, W"""}"‘WW‘W’M

f B o =0 (mod 1) (23)
[Eetvo, < (24)
0<op = Bk' (25)

Consider first the integer restriction (23), and let t dencte the
smallest value P My take on and still satisfy (25). If f =0,
then o, =0 satisfies (23); clearly t =0 1in this case. Recall
from Lemma 1 that B,,>0. If 0<f<l, then t must be chosen so
that f+Bkkt = 1. Therefore

(l-f)/Bkk if 0<f<]
t= (26)
0 if f=0.

From (23) the only possible values P can take on , given the eligible

partial solution (p?,"',pz_]), are

pk = t:t +]/Bkk’...’t + r/Bkk ? (27)

where r 1is the largest integer such that
t + r‘/Bkkf_Ek .

The algorithm sets Py at t and checks conditions (24) and
(25). If either (24) or (25) is violated, it is obvious that no larger
value of

Pk would satisfy these conditions, and hence there can be

no completion for the pa~tial solution (p?."',o:_l). The algorithm

would then backtrack to search for a new eligible partial solution

1
s ‘.‘M

SRR T e

i e

o it it B

I e a1

W L

Bt

through o, _; by resetting Pr.7 at ef_y*1/B,_y .y and checking
1]
simply whether

k-1
Lia o7+ 1By ka1 & (28)

Pk-1% /By k=1 £ Pk

Notice that if the terms l/BH (i =1,...,n) are stored, the partial
sum of extreme point weights can be updated by only an addition and/or
a subtraction each time a forward or a backtrack step is made.

Suppose p, = t satisfies conditions (24) and (25), so that an
eligible partial solution through variable oy has been found. The
algorithm then attempts to construct an eligible partial solution through
P+ and continues the forward steps until either a completion within
the n-simplex has been found (an improved solution), or an eligible
partial solution through the next variable cannot be found. In the
latter case the algorithm backtracks until the next eligible partial
solution is found before starting the forward steps again. When the

algorithm backtracks to I and no new eligible partial solution

through P exists, the algorithm terminates.

The integer programming problem may be posed (see Theorer 2 in[12])
as the problem of finding the feasible lattice point which places the
(0)

greatest weight on the extreme point x If a completion has been

generated, it must be checked for feasibility in the general integer
programming problem against the nonbinding constraints. This process

js discussed in detail in Section 8. Since there are no nonbinding

constraints in the cone problem, every completion 1s a feasible completion for
the cone problem. In either problem, once a feasible completion has been found,

the algorithm backtracks to on-1 Every subsequent solution generated by

the algorithm is required to have a larger objective functi,s value than

15

that of this improved solution. A necessary condition for any partial solution

(p?.,...pg) to be an eligible partial solution is that

where (1-212]3i) fs the value of o for the best feasible solution
(3].....Sn) known at the current stage of the algorithm. Condition

(29) replaces the condition
$idiey <1

1n the definition of an eligible partial solution once a feasible

completion (3].....Eh) has been found.

5 The Cone Algorithm

The cone algorithm is the basic enumeration scheme applied to the

integer program over the cone. Since Sj

problem, the condition p.<p. 1is superfluous and is not used in the
i3

=1 (j=1,...,n) 1in the cone

step-by-step description given below.

Outline of Cone Algorithm

Step 1. Set Bg = l/BJj for j=1,...,n. Set Best =1, Sum =0,
k =1, and go to Step 3.
Step 2. Reset k = k+1. If k>n, go to Step 8.
Step 3. Let f be the fractional part of dk+2§;} B oy
Step 4. If f =0, set PR = 0 and go to Step 2. Otherwise set
o = (l-f)B;.
Step 5. Set Suml = Sum + Ok
Step 6. If Suml > Best, go to Step 7. Otherwise reset Sum = Suml and

go to Step 2.

16

i ikl b 1t e it i N bt 8 i i

Step 7. Reset k = k-1. If k =0, stop. Otherwise reset Sum = Sum-pk
and o, = o *BF. Set Sum = Sumte, , and go to Step 6.

Step 8. An improved completion has been found. Store the solution
(p],"',pn). Reset k =n, Sum = Sum-p , and Best = nglpjn
Go to Step 7.

6. A Special Property of the Nonbasic Variables

Assume the Yy (k = 1,...,n) are ordered so that the first
" variables correspond to nonnegativity constraints in the equivalent
cone problem (12). Each of the Yk (k = 1,..,,n]) would be nonbasic in
the linear programming solution, and as noted in {12], each
Yy (k = 1,...,n]) has the value zero at all extreme points y(i) of the
n-simplex except one which is designated y(k). That is, yéi) =0 for
all 1 =0,1,...,n, 1%k, and yﬁk)>0. An immediate consequence of

this property is that the coefficients of the first Ny rows of congruence

system (18) have the following special form. For k = 1,...,n],

d =0 (30)
B = 1
Bkj =0 j= 1, ..,k=1
Therefore
okzyk/Bkk k=1,.,.,n]. (3))

Compare this expression with {27). If 15y5p1. the fractional part f

of (22) is zero, so by (26) t = 0, and (27) reduces to (31).

17

§
§
i
3

0Dl gl gl Rt et

e L s

B
3
E
3
3
E
3
3
E
3
;

e

R L g

S

g UG

From a computational point of view, the essential difference
between those extreme point weights ok which are associated with
‘nonbasic variables and thosc which are not is that for the former
the fractional part is knownto be zero, whereas for the latter f

must be calculated. The calculation of f at each forward step

. A o 71T

is by far the most expensive part of the cone algorithm, and should
be avoided whenever possible. Given the special property (31),
Step 3 of the Cone Algorithm Outline should therefore be revised to

read:

Step 3'. If kfﬁ], set p, = 0 and go to Step 2. Otherwise

let f be the fractional part of dk+2¥;}Bk1p1.

This technique is equivalent to the procedure for constructing partial
solutions for the nonbasic variables in the original Bound-and-Scan Algorithm.
Thus the goal of extending the efficient bounding procedure for the nonbasic
variables to the basic variables as weil as been attained -~ with the one
essential computational difference described above.

7. Comparison with the Bradley-ahi Cone Algorithm

The implicit enumeration algorithm for the cone problem devised
by Bradiey and Wahi [3] is also based on (14). To this system Bradley
and Wahi apply the Fourier-Motzkin elimination method, elminating the

variables in the order Yo¥n1r- Y7 As a result of this elimination
procedure, conditional upper and lower bounds on each variable (with

respect to the cone) may be calculated relatively easily. The continuous

i A e 4l $a e ke

upper bound on Yi» given that the first (i-1) variables are fixed at
y?,...,y?_], is a linear function U1(~) of z,yf,.t.,y*i_]. The

conditional lower bound is a linear function Li(') of only {

e ¥y i

Suppose that Yyseeooy correspond to nonnegativity constraints

n
1
in the equivalent cone problem. It is possible to show for i<n, that ,

] i

Ug(+) can be calculated from U, ;(:), using only a fixed number of

arithmetic operations independent of 1, and that Li(') : 0. For }
is= n]+l....,n. there appears to be no way to reduce the number of
multiplications and additions, 2(i-1), required to compute Ui(') !
and Li(')’

It is now possible to show that the cone algorithm and the Bradley-
Wahi algorithm are mathematically equivalent in the sense that they will
generate the same sequence of eligible partial solutions for a given
cone problem (14).

There is a one-to-one correspondence between partial solutions in
variables S ERRERT and partial solutions in variables Yyee oYy
An eligible partial solution in either variable system represents a
lattice point within the k-simplex forimed by the projection of the
n-simplex onto the space of the first k variables Yyseoo oYy

Assuming the same ordering of the Y variables in each algorithm,
it will be shown that eligible partial solutions are constructed in the
same order in both algorithms. Consider first the forward step. Assume
that the algorithms have each constructed an eligible partial solution
through variable k which corresponds to the same lattice point in the
k-simplex. Each algorithm attempts to construct an eligible partial
solution through variable (k+1) by setting variable (k+1) at its
calculated lower bound with respect tu the projected (k+1) simplex.
By the proof of Lemma 1, Oks] is an increasing function of Va1
Therefore, the lower bound value for O+ must correspond to the lower

bound value for Y1 and the partial solutions generated by the algorithm

represent the same lattice point. Next, consider the backtrack step.

When the Bradley-Wahi algorithm backtracks to Yir it increases Yy to
(yk+l). which is equivalent to increasing o, to (°k+8§ as in Step 7
of the cone algorithm. Thus, the cone algorithm and the Bradley-Wahi
algorithm are mathematically equivalent.

The computational effort required by each algorithm will be
compared next. Since partial solutions are constructed in the same
order, it 1s:sufficient to compare the work required on forward and
backtrack steps. The two algorithms seem to require the same
computational effort on forward and backtrack steps 1nvolv1ng. ok for
k<ny. For k»n] the Bradley-Wahi algorithm has the advantage in the
backtrack step because it needs only to reset Yy at yk+l and check
whether the upper bound Uk has been violated. The cone algorithm,
on the other hand, requires another two additions in Step 7 to adjust
Sum besides the addition required to reset oy at pk*BE.

However, the cone algorithm is superior on the more expensive
forward steps. The Bradley-Wahi algorithm requires 2(k-1) multiplications
and additions on a forward step to calculate Ly and U,. L fs calculated
to determine the value at which Yk should be set, and Uk is needed
to decide whether this value of Yy results in a eligible partial
solution. The cone algorithm uses k multiplications and additions to
find the lower bound for ok and verify whether it results in a eligible
partial solution. HNote that the total number of forward steps must
equal the total number of backtrack steps The two algorithms therefore
seem to be roughly comparable in computational effort needed to solve
the cone problem.

It should be emphasized at this point that the cone problem,

becauce of its fewer constraints and simpler form, is easier to solve

than the original integer programming problem (1.,2,3,4). Furthermore,
20

the Bradley-Wahi algorithm deals only with the cone problem. The Accelerated

effectively with the nonbinding constraints, and therefore with the

Bound-and-Scan Algorithm has several features which enable it to deal _ g
|

original integer program.
One of these features, the scanning procedure, uses to advantage

the unit coefficient on the variable 0y in the relationship
212191 hy] (32)

among pyse«-s0 The upper bounds and estimates of computational effort given 1n

nQ
a companion paper [4] are also derived using (32). Although it might be possible
to perform the same type of analysis in variables Yyoeooo¥ the work

is simplified by the unit coefficient property of (32). Certainly

the scanning procedure is more efficient because of this property. .

8. The Skeleton Version of the Accelerated Bound-and-Scan Algorithm

Sinc. the n-simplex S 1is determined by only the binding constraints

and the additional objective function constraint in (14), S may include

L ¢ . et

points which violate a nonbinding constraint, and are therefore not feasible
for the original integer programming problem (1,2,3,4). To exclude
from consideration some (but not necessarily all) of these infeasible
points, upper bounds 51 on the extreme point weights ey Mmay be found
by linear programming or by ad hoc methods suggested in [12].

The addition of upper bounds on the 04 is one of three techniques
in the "skeleton version" of the Accelerated Bound-and-Scan Algorithm for

dealing with nonbinding constraints. The second technique is a scanning

procedure. Suppose a completion (p{....,p;) which satisfies all the

*)

conditions in (21) has been generatad by the algorithm If (p?,..n,pn

satisfies the nonbinding constraints, a new improved solution has been

o b A 1y

found. If not, the algorithm could proceed by generating the next completion‘
according to the enumeration scheme. However, {f the current completion
ﬁioIates a certain nonbinding constraint, there is a good chance this
constraint will also be violated by the next scveral completions that would be

generated by the enum:ration 'scheme. The purpose of the scanning procedure is

o L, O

to determine the next eligible partial solution which can possibly lead to a feasi-
ble completion, so that the enumeration scheme can be restarted from that point.

The m nonbinding constraints (9) can be represented in the

oy variables through changes in variables given by (6) and (16) as
Loy -A2K<¥(”-y(°))m, < '(b2+A2e+A2Ky(0))- (33)
Let
n)
Z{;] T1D.| <T (34)

be any one of the m nonbinding constraints, and let (pf.....p;) be a
completion which has been found to violate (34). Then the scanning procedure 7
may be summarized as follows. (In Step 7 of the outline, the notation f

<t> designates the smallest integer greater than or equal to t.)

OQutline of the Scanning Procedure

Step 1. Set k =n

Step 2. Set vy = arg {=k min n
ck-1

Step 3. If T.o% < T, go to Step 8.
Li=] '{P{ =

Ti' If Ty<0, go to Step S.

Step 4. Reset k = k-1. If k =0, algorithm terminates. Otherwise,
go to Step 2.

Step 5. If X?;} Tio} + (1-Z$;} 01) T>T, go to Step 4.
Step 6. If T # Tv’ go to Step 8. :

s Rl « 2 AL i i e b

el il

i

Sl bWl 11

b Al L

Lo

i 1
]
' Step 7. set ut = (T-I¥) T.om)/T | |
: R i=1 P Ty
- Set r = <(9*-pz)Bkk> 1nd reset of =\°E+r/8kk' |
E Exit scanning precedure.’ ‘ \
T Step 8. Reseﬁ k = k-1. If k =0, algorithm terminates. Otherwise,
reset of = off + ?E; | '
Exit scanning procedure. !

Tne heart of'the scanning procedure lies in the tests performed in

f * Stup 3 and Step 5. At each of these steps it has already been determired .

that the algorithm must backtrack at 1ea§t to variab]e- Pk in order

to find the next eligible partial soluti&n wiich can possibly lead to a
completion satisfsing (34). If Io],...,ok_] are fixed in a pqrtia]

€O iui ion (o§,..;,r:_1), uh to (l-Z?;} p;) may be allocated.to the
oxtreme puirt weime. 2rt Py in any possible comeletion. Supyose
this i< ollcocsteq ir i mosv. favorable way toward satisfying (34). Zero
welgrt woula ba siiizoed 10 240l ,p (as in Step 3) if T.20. And if

. e . - .
all e weight W3-, 9;) would be assigned to T (as in Step 5).

v o.n
R
Nl

v

Tnif ~5cd puent Truvices, of ciurse, a test thch is only a necessary
¢aadisicr far the exifcrze of 1 feasible completion of a partial solution.
ine scancing procecys: cunstructs the next partial solution which satisfies
Lris Lugt '

Tne oyrpartance of wsing a scanning procedure ih conjuncgion with the
nant-wining consirgicots ves pointed out 1n [12]. The procedure
Siccyrted in thiy cectin.. ti ased on the sceanning procedure used 1n the
orfgtal” 3uund-are Sodr Algoritim, |

Tre Yy tatdird prooedern” suggested here is to stop at the first
Siaralen nengingiar sapstraant, construct the ne;t partial solution which
Yot LS iDly kAl w4 calelien satisfying the violated Eonstraint. and

23

——

1) o 8 T 1 e S

o

il P

" L i et sl :‘mm‘.‘uw v o o i I 4 i 01
. A bl kgl U otek

I
|
1{
ety
b e oSl

1

oy

then restart the enumeration scheme at this new partial sotutfon. A possible

variant to this approach would be to use arguments similar to those in

Step 3 and Step 5 to determine whether this new partial solution can possibly

lead to a completion which satis%ies the nonbinding constraints that have

i LA i) ol ‘w#mmﬁmm;m‘ il

.
o ———— 1o

\ not yet beén_checked.

The third technjque for taking the nonbinding cons traints into account
is the elimination of redundant nonbinding constraints at various points in
the algorithm. A nonbinding constraint (34) which is satisfied by every
subsequent completion within the n-simplex S 1is called a redubdant cons traint.
It may be dropped from the problem, thus eliminé;ing the arithmetic operatdons *
required to check it for feasipility. | |

Redundant constraints are easily recognizable in the formulation of the

II problem which uses variables CINTRRRY I Let Ca],. ,ﬁfn) "be the best ‘) ﬂ

feasible solution jknown at the current stage of the'algorithm, and let é

Lo

o : 212131‘ Consider any nonbinding constrairit (34), and let T* = max T,. !
' 72T, ..4n0 !
If T=<0, constraint (34) is redundant, and if T+>0, a sufficient condition

for constraint (34) to be redundant is that

T < jay, % T - (%)
After calculating the right-hand side once at the outset! condition (35) would :
be checked every time an improved feasible solution has Been generated by
the algorithm.

An outline of the ske‘eton version of the Accelerated Bound-and-Scan

Algorithm follows. iIt incorporates the cone algorithm, the Specia1 procedure for
nonbasic variables, upper bounds on variables, the scanning procedure, and the

elimination of redundant constraints. The scanning procedure outline is used as

a éubroutyne in Step 9.

\‘
ig

Step

Step
Step

Step

Step

Step

Step

Step

Step

Step

Qutline of Skeleton Algorithm

* =
1. Set Bj]/Bjj

k =1, and go to Step 3.

for j=1,...,n. Set Best =1, Sum=20,

2. Reset k = k+1. If k>n, go to Step 8.

3. If k<n, set Py = 0 and go to Step 2. Otherwise let f be
, k-1
the fractional part of dk+zi=l Byifi

4, If f =0, set P = 0 and go to Step 2. Otherwise set
oy = (]-f)BE.

5. Set Sum] = Sum+pk

6. If Suml>Best or if 5, >p ., g0 to Step 7. Otherwise reset
Sum = Suml and go to Step 2.

7. Reset k = k-1. If k =0, algorithm terminates. Otherwise
reset Sum = Sum-pk and oy = pk+B€. Set Suml = Sum+pk, and
go to Step 6.

8. Check the nonbinding constraints until one is found which is
violated by (p],...,pn). If al) nonbinding constraints are
satisfied, go to Step 9. Otherwise go to Step 10.

9. An improved solution has been found. Store the solution
(p],...,pn). Reset k = n, Sum = Sum-on, and Best = nglpj.

Eliminate redundant nonbinding constraints and go to Step 7.
10. Represent the violated nonbinding constraint as
LimTieq < T
Set (p?,...,p;) = (o],...,pn). Enter the scanning procedure. The
scanning procedure will either indicate that the algorithm terminates,
or it will produce a new partial solution (p* -..,p:). Set

1°
k-1

(p],...,pk) = (p?,...,p:) and Sum = Zi;]p1. Go to Step 5.

25

RO

e) o o SN T i AR S 1 i
.
by

o L s e s e e

s

PN ST R TP

o s e

s o i

kit L L

L e

Ledy

i

i

ety . O

The algorithm outlined above is called the skeleton algorithm

because it includes only the three simple techniques for handling the
nonbinding constraints: bounds on variables, the scanning procedure,

and the elimination of redundant constraints. It is suggested that these

e e — L

g three techniques always be used. Additional options which may be used
include conditional bounds on variables (as discussed in [12] or in
(S, Ch. VII]) and surrogate constraints [7]. These options will be

further developed and evaluated in a future paper.

ST TP T T8, () RV}

26

.
et s L M

9. Computational Experience

In order to test the computational efficiency of the Accelerated Bouna-
and-Scan Algorithm, a FORTRAN code was written for the IBM 360,67 system by
the first author. The two main parts of the code (1) obtain the Hermite
normal form of A1 and (2) execute the iterative portion of the sigo-ithm
in 1ts skeleton version outlined i1n the preceding sect.on. The Hermte
normal form is obtained in a straightforward but relatively nefficient way,
and a retrospective comparison with the computational experience {see (3]
of Bradley's algorithm [1] for doing this indicates that rewriting this
part of the code could reduce the executive times to approximately 10% ot
their current values The iterative portion of the algorithm was encodea
with somewhat more care. The initiai feasible solution for the algor.thm
has been obtained by using an available code for a basic heuristic procedure
developed by the second author [13]. Part of the work required to
set up the algorithm (primarily finding the vertices of the n-simpiex $)

15 done by borrowing the initial part of the code for the Bound-and-Scan
Algorithm [12]. When tabulating computational results, the total time -~equirea
by the algorithm is broken 1nto the following four components: (1) LF - t.me
required by the simplex method to solve the continucus version of the prublem,
(2) Heur. = remaining time required by the heuristic procedu-e to 1Ind ¢ gced
feasible solution to 1ni1ti1ate the algorithm, (3) Setup - remain.ng time
required to set up the algorithm (mostly finding the Hermite normar fo'm ¢t
A,). and (4) Iter. = time required to execute the 1terative portion ot the
algorithm in its skeleton version.

The code has been used to solve a number of test problems taken rv:om

the 1iterature. These include some of Haldi's "tised-charge probiems" (+(C)

and "IBM test problems" (IBM), as well as Woclsey's 5-point "ccmbinatoria!

—— it o]

il bl

problem" (COMB-5), al) of which are reproduced by Trauth and Woolsey [i5].
In addition, the code was applied to two of Petersen's problems [14] (PET)
of the Lorie-Savage capital budgeting variety. The results are shown in
Table I,* where the size of each problem is identifieda by m, the number
of functional constraints, and n, the number of original variables

(excluding slack and artificial variables). The times shown in parentheses

are those that would have been obtained if Bradley’s code for obtaining
the Hermite normal form of A] in a more efficient way [1) had been used
instead, according to Bradley's reported times [3] on the same probiems.**
Table I also gives the available execution times on these problems
for several other algorithms: (1) Hillier's Bound-and-Scan Aigorithm [12]
run on the IBM-360/67 system, (2) Gorry and Shapiro's Adaptive Group-
Theoretic Algorithm [10] run on the 1BM-360/65 system, (3) Gomory's Fractional
Algorithm [9] with Haldi and Issacson's LIP 1 code [11])*** run on the 1BM-7090
computer, as reported by Trauth and Woolsey [15], (4) Gomory's Ail-Integer
Algorithm [8] with Woolsey's IPSC code*** [16] run on the CDC-3600 computer,
as reported by Trauth and Woolsey [15], ana (5) Geortrion's Implicit
Enumeration Algorithm [6] run on an IBM-7044 computer. (A blank indicates
that no time has been reportea for that problem.) Geotfricn's aigorithm 1s
tor the special case of 0-1 variables, so that (except tor the Petersen

problems) a binary representation of the variables was used as described 1n

* An attempt also was made to apply the code to two prcblems not shown 1n

Table i: (1) IBM-4, which violated the assumption that the optimal non-integer
sciution is unique, and (2) COMB-4, where the simplex method obtained an
integer-valued optimal solution so the algorithm was not needed.

** Bradley's code actually was run on a somewhat slower computer (the 1BM-7040- |
7094), but this has been 1gnored to compensate for the fact that Setup includes !
siightly more than constructing the Hermite normal torm of A].

»*»#*Thase codes have been chosen since, according to Trauth and Woolsey's data,
they appear to be the best available for the respective algorithms.

28

H
:
i
]
¢
{
1
[
H
3y
A

(el. Hfs times were given in minutes to two decimal places, so they have been

. - converted to seconds here simply by multiplying by 60, except that his reported
times of 0.01 minute are given just as < 1 second. It should be emphasized that
the algorithms were run on different éomputers. so the execution times are not

directly comparsble.

TABLE !
EXECUTION TIMES FOR STANDARD TEST PROBLEMS

Other Algorithms
Accelerated
Bound-and-Scan Hillieri Gorry-| Gomory| Gomory |Geoffrion
Algorithm B-and-SiShapiro| Fract.|Al1-Int. | Imp.En.
(18M-360/67) : Ad.G.T, LIP1 1PSC
AI i i
Prob1eml mln] LP Heur.lSetup Iter.| TOTAL 1360/67 | 360/65! 7090 |CDC-3600 7044
1
P L 1
4 FCc-1 41 5, 0.03(0.04 i 0.23,0.02 | 0.32 i C.41 | 1.83 0.74
i . (0,03) (0.12) ¢ |
- FC-2 | 4| 5]0.030.00+ 0.2310.01| 0.27 | . 1.35 | 0.89
: ! ' (0. 03) (0.07) | '
FC-3 4(5!0.03]0.05: 0.23,0.02| 0.33 | 0.82 1.88 1.0
— ; (0.02), (0.12)
FC-4 4| 5,0.,03]0.03 ;(0 22) 0.00+ (0.88) i 0.47 1.48 0.63
: i 0.08)
FC-5 - | 6| 5{0.09(0.05 ' 0, 26 '41.37 1 81.77 | 9.01 | 79.90
; (0.0) 41 54) |
FC-6 6] 5!0.10]0.06 1 0.26 21.65 ! 22.07 [7.57 | 43.48
1(0.03) (21.84) |
FC-7 * 45! 0.03)0.03 ! 0.23 41.48: 41,77 l i 7.83 1 > 100 1.8
| | +(0.03) (41.57) i
FC-8 : 4| 5| 0.03,0.05 | 0.22 21.5 121,81 6.42 | > 100 3.0
! (0, 03) (21.62)
FC-9 | 6/6]0.06[0.03 0.3110.03] 0.43 { 5.78 | 3.23 | 5.48
| (0. 03) (0.15)
IM-1 1 717{0.08!0.03 0.41;0.00} 0.53 ! 0.24 1.87 0.92 <
- (0.04) (0.16) |
184-2 | 7| 7}0.08{0.06 | 0.4170.004 0.55 | 0.27 | 3.02 | 1.04 1.2
| (0.04) (0.18) | g
IB¥-3 {3}4)0.02{0.01 | 0.15!0.03! 0.2 0.55 0.16 2.87 { 0.48 <1
] (0.01) . (0.07)
IBM-5 11515| 0.60 1 0.18 2.17! 6.331 9.28 66.48 | 62,82 114
| . (0.18), (7.29) !
18M-9 150 115110.03 | 0.53 ==+ == 1 >100 14.99 473.10 | 95.39 26.4
COMB-5 120 10| 0.79 ;1.30%| 1.31 1 0.10% 3.50* 19.80 | §5.37 4
. (0.10) (2.29) >
PET-4 - 1020 1.62 {0.40 } 2.8910.19| 5.10 2.79 2.4 {
PET-5 |10 28| 0.61 !0.51 5.33] 3.82{10.27 8.7 14.4 3

* For COMB-5, the heuristic procedure failed to find a feasible solution and a known
optimal solution was substituted, so Iter. only gives the time required to verify optimality.

29

T e L M

In order to further evaluate how the execution time for the Accelerated A
Bound-and-Scan Algor{ithm might tend to vary with problem size for problems
of similar structure, the code also was applied to 16 randomly generated
probiems., Four of these were "Type III" problems used previousiy by the §
second author to test his heuristic procedures [13] and Bound-and-Scan ?
Algorithm [12] (approximately 1.5 seconds total were required for the simplex |
method, a heuristic procedure, and this algorithm on each of these problems).
The other 12 are new "Type V" problems whose parameters are integers randomly

generated from the intervals indicated in Table II.

TABLE I1

DESCRIPTION OF THE RANDOMLY GENERATED TEST PROBLEMS

Problem type
111 v

¢ 0,99] fo,5]
245 fo,1] (0,5]
i 1 10 for V-1 to V-9
20 for V-10 !
40 for V-11
80 for V-12

The computational results for these problems are given in Table IIl1. Since the
problems proved to be "too easy" for the iterative portion of the algorithm, H

the most interesting results are the setup times and their very stable

dependence on problem size.

TABLE III
EXECUTION TIMES FOR RANDOMLY GENERATED TEST PROBLEMS

Problem | m n . LP | Heur. | Setup | lter. | TOTAL
11-2 | 1515 0.5 | 0.15 2,08 | 0.01 | 2.85
111-4 | 15.15°0.60 | 0.13 212 | oo | 2.86
I11-5 | 15 I15%‘ 057 000 ¢ 210 | 00, | 278
111-8 | 15115 061 ; 0.16 215 | 00 é 2.93
V-1 5 |5 005|003 | 0.2 000+ | 032 |
V-2 5 {10 0.07 f 0.08 i 0.70 g 064 | 1.49
V-3 5 |15{0.1 i 0.14 1.4 f 603 | 1.69 l
V-4 5 |20{0.13 ; 0.13 | 240 | 000+ | 2.66 |
V-5 5 {25023 (029 | 403 005 | 460
V-6 5 |40 |0.23 ; 0.70 | 125 007 ni2s |
V-7 10 {15]0.31 ¢ 0.11 183 000 | 22
V-8 20 |15 | 1.47 ‘ 0.33 262 0.01 | 442 i
v 40 1569 |02 528 . 003 |1z44
L N0 1570 31 | 0.20 1.80 1005 | 2.3
L var o Twislo2s 0.20 180 i 005 | 23z
v-12 110 Ils 0.30 |_E']9 1.79 | 0.03 2.3

10. Conclusions

. A basic consideration motivating both the Bound-and-Scan and
Accelerated Bound-and-Scan Algorithms is the availabiiity of heuristic
procedures such as those developed by the second author [13]. Tre
heuristic procedures normally can find a very good (frequently optimal)

feasible solutfon extremely quickly, Since the numbar of better feasible

solutions should be relatively small, an

ol

e m et L mvapm A A m e . e e e ——————AR

e —.
hdly
.

optimal solution can then be identified efficiently 1f these better feasible
solutions can be directly enumerated 1n an efficient way. Both algorithms

: are carefully designed to attempt to efficiently enumerate a sequence of

[TTR WY T T MM\W‘F‘
!

improving feasible solutions until no better ones remain. Computational

l experience obtained from unrefined computer codes of simpie versions of these
; algorithms has been encouraging to the authors, suggesting that this basic
|

approach may have considerable potential.

e e e
St "

" TR T
b LUl ot W s i

The Bound-and-Scan Algorithm constructs each new 1mproved feasible
¢ solution by successively assigning appropriate integer values to the

variables, beginning with the variables that are nonbasic 1n the optimal

Aol il

tinear programming solution and concluding with the bastc variables. The
construction procedure for the nonbasic variables 1s extremely efficient, and

1t generates only those partial solutions which have improved completions

(perhaps non-integer) that satisfy all of the binding ccnstraints (5). On

e et sl L s il] L L ol

the other hand, the procedure for the basic¢ variables 1s much lec: efficient, {

and 1t can generate "excess" partial solutions having no such ymproved i

sl

completions . The Accelerated Bound-and-Scan Aigorithm attempts to rectity

[T R

this by using a transformation of variables that may increase the number of

Lol il

i
nonbasic variables, and that aiso ailows applying a slight modification of !
the procedure for nonbasic variables to the basic variables. Thys tends to P

]
i

greatly accelerate the 1terative portion of the algo~ithm * The price that

i

1s patd for this acceleration is the extra setup time to pertorm this

N T VR A L e

transformation by constructing the Hermite notmal rorm This extra time 1s

fairly well predictable However, as indicated i1n Tables 1 ana 1I[, this !

T ST T T W

* An acceleration is not guaranteed, however, since the transformation of
| va/1ables can increase the computational effort required to generate the

same completions, e.g., by generating a value of B‘\ tor 1 -+ n]*l that
1s tremendously larger than those for 1 > n]+1.

b
;g.
P

setup time is significant for problems of moderate size {even recognizing that
the times given are an order of magnitude larger than necessary with the best
avatlable procedure and code). Furthermore, if the elements ot A‘ are
large, then the code for constructing 1ts Hermite normal form may fa)) because
of overflow. Therefore, the Accelerated Bound-and-Scan Algorithm should not
automatically be preferred to the original Bound-and-Scan Aigorithm

Available comparative computaticnal experience 1s given 1n Tabie I.
It appears that the current code for the skeleton version of the Accelerated
Bound-and-Scan Algorithm is at least competitive with the other algorithms,
and this would be even more true if the best available code were used 167
the setup (see the times in parentheses) However, 1t has often been
observed that there probably will never be an integer programming aigorithm
that 1s superior to all others on all problems, and that certainly continues
to be the case here. The apparently best avaiiable codes (according tu
Trauth and Woolsey's data [15]) for Gomory's Fractional and A}i-integer
Algorithms performed better on some of the difficult probiems. The Gorry-
Shapiro algorithm tended to be slower on the easy proubelms but,
unfortunately, a meaningful comparison 1s not possible since Gorty &nd
Shapiro did not report any times on the standard difficult problems
Geoffrion's algorithm was an impressive pertformer on a siower computer
It continues to appear that a good 0-1 algorithm (ana this 15 a very good
one) should tend to be superior to a general algcrithm on a 0-1 problem,
or perhaps even on a generatl integer programming prcblem having very smal:
upper bounds on the variables. A cocmparison with the Brad)ey-wWahi
algorithm for the cone problem has been given in Sectioin 7

However, one extremely important current advantage cf the

Accelerated Bound-and-Scan Algorithm nver the others s that its

computation time can be quite accurately estimated n advance for any

Ll e

U

given problem. The {irst author [4] presents methods for doing this, as well
as establishing upper bounds on computational effort, 1n a comparicn paper
Therefore, the user can learn in advance whether this algorithm will solve
his problem in a reasonable length of time or another algorithm shculd be
tried instead.

Another attractive feature of this algorithm 15 that 1t 1s primal
in nature. It starts with a good feastble solution ana then successively
tinds better ones. Therefore, 1f the algorithm must be terminated betore
compietion, a near-optimal solution wiii stil) be provided.

These two features suggest another interesting possibiinty to~ the
use of this algorithm. Suppose that the estimated execution time tor a
given problem is excessive, and it appears that the same may be true fTor
other available algorithms as well (perhaps because the problem is large
without special structure) [t the optimal sclution s oniy slightly
better than the feasible solution provided by heuristic procedures then
*t may not be worth a long comp.ter run to try tO 1mprove upon this
feasible solution. Therefore, the Accelerated Bcund-and-S.an Algo~ithm can be used
instead to find the optimal soiution only f 1t 1s s.bstant:a iy better,
and otherwise verify that 1t 's not. This s done 5 mpiy by setting some
stricty positive iower bound Lo oOn the values 59 that wili be
considered, so that the aigorxth;rkwll seek only teasibie solutions «x
such that c'a = ch(F)ﬂ'po[ch(o) - ch(F)], whecs »'F) s the teasible
solution provided by heur:;t1c procedures and x(o) 1$ the cptimal solution
to the iinear program (1,2,3) If pg e si1gnificantiy g-eater than 2ero,
this can reduce execution time drama;:cally

There remain a number of important possibilities for improving and

generair2ing the Accelerated Bound-and-Scan Aigorithm (or the Bouna-and-Scan

34

s A A
r~amiaaio

e i e o, Bl 8

»Algorithm) that are being investigated by the authors. These include the
additional options for the algorithm mentioned at the end of Section 8.
Also, the ordering of the rows of A] can greatly affect computaticna!
effort by changing the relative magnitudes of the B11 for 1 > nys and
the implications of this are being studied. The algorithm's assumption
that x(o) fs unique is an unfortunate restriction, and some ways of
eliminating this restriction are being explored, inciuding those proposed
for similar algorithms by the second author [12] and by Bradley ana wah»
{3]. Finally, high priority will be placed on extending the algor:thm

to the mixed integer linear programming problem.

35

e 1 o i A Al 1 B

L R P AL bt S

gy it gl

T T (R AT TP

Ll P

N P

T

10.

12

REFERENCES

BRADLEY, Gordon H., “Algorithms for Hermite and Smith Normal Matrices
Snd L1?ear Diophantine Equations", Mathematics of Computation,
Ct-) an.

BRADLEY, Gordon H , "Equivalent Inte?er Programs ana Canonical
Problems", Management Science, Vol. 17, Nc. 6 (i971), pp 354-366.

BRADLEY, Gordon H and wAHI, Pran N., "An Aijorithm for integer Linear
Programming: A Combined Aigebraic and Enumeratiron Appicach",
Report No. 29, Depa-tment of Administrati.e Sciences, Yaie
University, December 16, 1970 (Revised February, 1971,

FAALAND, Bruce, H , "Estimates and Bounds on Comp.tat:onal Ettort 1n
the Accelerated Bound-and-Scan Algorithm", Technica. Report #35
(submitted to Operations Research?

FAALAND, Bruce H , "Some Algebraic and Number Thec etic Methods 1n
Integer Programming”, Ph D. dissertation, >tentora University, 1971

GEQFFRION, A.M , "An improved .mplicit Enume-ation Approach fcr Integer
Programming", Operat:ons Research, Vo« 17 (i969), pp 437-454.

GLOVER, Fred, “Sur-cgave Constraints", Operat.ons Research, Vo). 16,
No. 4 (1968), pp 741-749.

GOMORY, Ralph E., "Ali-integer [nteger Prog-amming Aigorithm", In
J.F. Muth and G L Thompson (eds.), Industria. Scheduling, pp 193-
206, Prentice-Hal', New York, 1963, tirst 1ssued 1n 960

GOMORY, Ralph E , "An Aigcor1thm for Integer 30iutions 16 L:near
Programs”, 1n R.L Graves and P hclite (eds), Recent Advan.es 1n
Mathematical Prog'amming, pp. 269-302, McGraw-H1: , New Yecrk,
1963; first 1ssued in 1960

GORRY, G. Anthony, ena sHAriRO, ceremy F , "An Aacpt..e Group Theoretic
Algorithm for Intege- Frogramming Problems", Mansgement Science,
Voi. 17 (197)), pp 285-306.

HALDI, John, ard 1S>AC50N, .eonard M., "A Computer Code for Intege:
Solutions to Linear Frograms", Operations Resea‘ch, vor 13
(1965), pp 946-959

HILLIER, Frederick S , "A Bound-and-Scan Algorithm 1or Pu:e Integer
Linear Programming with General Variab.es", Ope;ations Reses:Lh, vo:.
17, No 4 ?1969); pp 638-679.

HiLL1ER, Frederick &, "Efficient Heurtstic Proceauses 10° .rteger
rrogramming with an interior", Operations Resea-ch, voi- 7, No. 4,
(1969), pp 600-637.

36

AT Ty e

T - S AR,
i ;

5.

k.

]t‘

FETERSEN, Cliffexd €., "Comgutational txperience with Yariants of
the Ba14s Ajvorithm Applivd t; the S2lection of R&D Projects”,
13 {1967), pp. 736-750.

Haragamng lictence. Vo',

TRRSG, CLA. Jr., and &CNOEY, R.E., “jnteger Linear Programming:

A Study in Conpuiatioazl tfficrency”,
(1969), pp 48]-493.

Manageent Science, Vol. 15

WOOLSEY, R.U., and TRAUTH, € .A., Jr , "A Pachine Independent Integer
Lin2ar Program”, Sandia Lahoeztorfes Resezrch Report SC-RR-66-433,

Ju'y, 1956.

CINCLASS T FLRD
Y P

\ L)

DU mmuu-m

in-uuﬁnuinundnuuu ‘of choost and --nu--nto-h-ouu-a-uuumhn-uouuuna
DRIGIATING ACTIVITY (N holg - . |86, REPOAT SEEPNITY € LASSIPISA TION
Deparmnt of Operations Research . nclassified
Stanford University . _ 26 enous .
Stanford, Californiaz . - eo—— :
% REPORT TITLE °

The acce]eraied bound-and-scan algorithm for 1nteger programming

e DICNPTIVE ROTES (Type — 5 —r]
Technical Report = : S

mmwam:::nm:#mrﬁ ' -
Bruce H. Faaland and Frederick S. Hﬂl'ler

f<REFoRT OAYE — . Te VOVAL NG, OF PASES |70 No. OF REve
May 15, 1972 . R 37 . 16 .
8o CONTRAGY OR GRANT NO. | | 9o omemaTOR's REPORT NUMSER®)
.N000714-67-A-0112-0058 . Teghni cal Report-No. 34

& PROJRGT NO.

(NR-047-061)

[T F3 40 uroav noﬁ) (Any oither numbere Mﬁyuuolmu i

. . Technical Réport No. 9'--NSF GJ-3152]

10. AVAIL A.lLIWILIIlI'I’A'I’lON NOTYICES

This document has been approved for pubH c re'lease and sale; its distribution-‘
1s unlimited.

1. SUPPL EMENTARY NOTES B 12. SPONSORING MILITARY ACY

Operations Research ll"':r'ogra'm (Code 434)
N
13 MpSTRACT,
\S&

0ffice of Naval Research
Washington, D.C. 20360

This paper presents a new 1mp11c1t enumeration a190r1thm for solving the
- pure i{nteger 1inear programming problem. The theory of equivalent integer
programming problems is first used to reformulate the problem. A technique,
originally used with particular success in the bound-and-scan algorithm to
deal with only a subset of the variables, is extended to all of the variables
in the restructured problem. In addition to the resulting basic enumeration
scheme, the algorithm. includes a scanning procedure and a method for
{dentifying constraints which become redundant during the course of the
algorithm. Computational experience on standard test problems is reported. /

N
A

DD .52.'.'.. 1473

