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The Accelerated Bound-and-Scan Algorithm for Integer Programming

by

Bruce H. Faaland and Frederick S. Hillier

1. Introduction

The second author [12] recently presented his Bound-and-Scan Algorithm

for solving the pure integer linear programming (IP) problem,

maximize cTx (1)

subject to

Ax < b (2)

x > 0 (3)

(4)
x integer,

where A is an m x n matrix, b is an m-vector, and c is an n-vector.

The encouraging computational experience with the algorithm suggests that i
the techniques proposed in [12] deserve further attention, Of pdrticular

interest is the extremely efficient procedure used to construct partial

solutions for the "nonbasic" variables (nonbasic in the optimal linear

programming solution), as describ2d in Section 6. The remaining variables

are called "basic" variables.

Given two problems of similar size and structure, the Bound-and-Scan Algoritim

would generally be more efficient for the problem with fewer basic variables

(and hence more nonbasic variables). This observation leads very naturally

to the question: Is it possible to restructure the problem initially so that

the restructured problem has fewer basic variables? The theory of equivalent



integer programs, introduced by G- Bradley [2] provides a partial

answer to this question. This theory says that there exists an equivalent

problem in which the number of basic variables is generally less than

or otherwise equal to the number of basic variables in the original problem-

Solving an equivalent problem with fewer basic variables is one

possibility for improving upon the Bound-and-Scan Aigorithm. Another would

be to extend to the basic varitbles the efficient bounding procedure for

constructing partial solutions for the noribaslc variables. These two

ideas provide the primary motivation for the basic enumeration scheme of

the Accelerated Bound-and-Scan Algoiithm to be described below

Certain of the linear programming constraints (2,3) which hold

with x(0)
with equality at x are called binding constraints To define these,

recall that before the simplex algorithm is applied to the linear program

(1,2,3), the inequality constraints (2) are first transformed to equality

constraints

Ax Is z b

by the addition of slack variables s. The binding constraints consist of

those constraints among (2) whose slack variables are nonbasic in the

optimal linear programming solution, and those among (3) which correspond

to nonbasic variables at x(0 )  Thus, exactly n ot the (nim) constraints

(2,3) are binding constraints Let these binding constraints be represented as

b A1 x 0. (5)
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The other m constraints are called non-binding constraints and will be

represented as

b2 + A2 x >0. (6)

The integer program over the cone (the "cone problem") is the

problem obtained from the integer programming problem by deleting the

nonbinding constraints (6). The cone problem is therefore

maximize cTx (7)

subject to b1 + Alx > 0

x integer

When the basic enumeration scheme is used to solve the integer

program over the cone, the algorithm will be called the "cone algorithm."

It will be shown that the cone algorithm is mathematically equivalent

to the Bradley-Wahi enumeration algorithm [3] for the corresponding

cone problem.

The feasible region for the cone problem is generally larger than

the feasible region for the integer programming problem. Any algorithm

designed to solve the more restricted problem must consider the additional

constraints present in the integer program. Three techniques are developed

in Section 8 for dealing with these constraints. The first of these

techniques is the standard device of considering only values of variables

between fixed upper and lower bounds. The bounds are calculated once at

the outset and are based on all the constraints of the original problem

rather than on just the cone constraints. The second method of dealing

with the additional constraints of the IP problem is to use a scanning 4

procedure whenever an infeasible solution within the cone is generated.

The scanning procedure allows the algorithm to "skip over" possibly many
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other infeasible solutions in the basic enumeration scheme. The third

technique is a means of recognizing and eliminating redundant constraints.

Constraints which must be considered at the start of the algorithm may

become superfluous as improved solutions to the P problem are found.

When the cone algorithm is supplemented by these three techniques,

the resulting algorithm will be called the "skeleton version" of the

Accelerated Bound-and-Scan Algorithm. Additional options for the algorithm

also are available. In parcicular, conditional bounds on variables might

be calculated by techniques suggested in[12]or In(5, Ch. VII]. Surrogate

constraints [7] might be very useful in determining the feasibility of

solutions generated within the cone.

As in[12, the two main assumptions used by the Accelerated Bound-

and-Scan Algorithm are first, that the optimal noninteger solution x(O)

to (1,2,3) is unique, and second, that a good feasible integer solution

x(F) to (1,2,3,4) has already been identified. Efficient heuristic

for otainng x(F)
procedures for obtaining x are available[13] when (2,3) possess

interior points. Otherwise, the system of Diophantine equations must

first be solved to eliminate the equality constraints An additional

assumption made here is that all elements of A,b and c are integer-valued.

In Section 2 the theory of equivalent Integer programs is reviewed.

The fundamental congruence system used by the algorithm is derived in

Section 3. Section 4 presents the basic enumeration scheme, and Section 5

outlines the cone algorithm In Section 6 the special computational

property of the nonbasic varlables is displayed, and in Section 7 the cone

algorithm is ompared with the Bradley-Wahi cone algorithm. Section 8

presents the skeleton version of the Accelerated Bound-and-Scan Algorithm,

and computational experlence is gi..en In Section 9, toliowed by conclusions

in Section 10.
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2.. Equivalent Integer Programs and the Cone Problem

Bradley [2] has shown that the integer programming problem is

equivalent to infinitely many other integer programming problems of the

form

maximize cTe + (cTK)y 
(8)

subject to (AK)y b - Ae

-K y e

y integer,

where K is an n x n unimodular matrix (a square integer matrix whose

determinant equals plus or minus one), and e is an integer n-vector.

Problem (8) may be solved instead of problem (1,2,3,4). The correspondence

between the solutions x and y is given by

x = Ky + e (9)

and

y K (x-e). (10)

The following results are fundamental in the selection of the

equivalent problem (8) to be solved.

Theorem I (Hermite [2]): Given an n x n integer matrix C of full

rank, there exists an n x n unimodular matrix K such that CK is

lower triangular with positive diagonal elements, and each off-diagonal

element is nonpositive and strictly less in absolute value than the

diagonal element in its row.

CK is called the Hermite normal form of C.
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Theorem 2 (Bradley (2]): The integer programming problem (1,2,3,4)

Is equivalent to an integer programming problem such that in the new

problem the n x n coefficient matrix of the binding constraints is in Hermite

normal forM and each element of the constant column of the binding constraints

is nonnegative and strictly less than the corresponding diagonal

element of the coefficient matrix.

The equivalent problem mentioned in Theorem 2 is of the form,

maximize cTe + (cTK)y (11)

subject to (b1+AIe) + AIKy> 0

(b2+A2e) + A2Ky 0

y integer,

where Y is the Hermite normal form of A,.

In the new variables y the cone problem is

maximize c e + (c K)y (12)

subject to (bl+A e) + (A K)y > 0

y integer.

There are reasons for choosing K so that AIK is the Hermite

normal form of A1. The matrix A1  is singled out because in general the

binding constraints are the constraints most likely to be violated by

an integer solution in the vicinity of the optimal linear programming

solution. In the Accelerated Bound-and-Scan Algorlthm, the binding constraints

serve as a filter for examining possible solutions. It may therefore

be desirable to select the equivalent problem so that the binding constraints

have as "simple" a 1:orm as possible. The lower tridngular property of
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the Hermite normal form makes it feasible to apply either the Fourier-

Motzkin elmination proceaure suggested by Bradley and Wahi [3] or the

Accelerated Bound-and-Scan Algorithm to be described below. Another

appealing property of the Hermite normal form is that typically many of

the diagonal elements of the integer matrix A1K will be unit elements.

Each unit element along the diagonal of A1K corresponds to a simple

nrinegativity constraint yi0, and hence to a nonbasic variable in the

otimal linear programming solution. If the rows of A, are initially

ordered so that the binding nonnegativity constraints of the original

problem precede the binding functional constraints, the equivalent cone

problem (12) will have at least as many nonnegativity constraints (and

hence nonbasic variables) as the original cone problem, and usually

many more. This ordering of the rows of A1 will be assumed (as the

most convenient one) for the algorithm.

The phenomenon of many unit elements along the diagonal of AIK

is consistent with a well know interpretation of the procedure for

obtaining the Hermite normal form of a matrix. The procedure may be

viewed as successive applications of the Euclidean algorithm for finding

the greatest common divisor (gcd) of two integers. For example,

the first diagonal element of the Hermite normal form A1 K is the

gcd of the n integers in the first row of A1 . In general, the j

diagonal element of A K is the gcd of (n-j+l) integers. The following

simple result may make plausible the occurreice of unit elements along

the diagonal of the Hermite normal form A1 K if the elements of A1

are generated randomly. The notation (kI . ..,Kt) denotes the gcd of

k l , ' ' ' , k t , and [z] denotes the greatest integer less than or equal

to z.
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Theorem 3 Let k1 ...,kt be independent, Identically distributed random

variables with the probability mass function

P(k S) S ±1, ±2,,..,±m,

for all J * 1...,t. Then

P((k,.,..,kt) = 1) > 1 -s1k2 ([m/i]/m) (13)

Proof

P((k,...,kt) 1 )= 1 - im2 P((kl,..,,kt) = 1)

M-i=2 P(I divides every k , j 1- ,.,t)

-1=2 (m/i]/m)t

Consider as an example the case where m = 6 and t 5- Then by

(13) the probability that five randomly generated integers have gcd

equal to ane is at least .96.
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3. The Fundamental Congruence System

If the objective function value z is treated as a parameter,

the equivalent cone problem (12) can >e replaced by the inequality system

i n integer variables Yl e.' ' yn:

glYl + 2Y2  gnYn z cTe

h2lyl + h2Zy 2  > 02  (14)

hnlYl + hn2Y2 +'°°+ hnnYn OW

where

h = (AiK)ij i,j = l,o..,n,

i  = (bl+Ale) t  i = 1 .,,,n,

•.gj (cTK)j j 1,.. .,n.

The Accelerated Bound-and-Scan Algorithm Is based on system (14)

cor a fixed value of z corresponding to a known feasible solution,

tilP (n+l) constraints of (14) define an n-simplex S (in Eucliclean

n-space) in which the optimal solution to the:Integer programming problem

must lie. The n-simplex S is a convex set, and therefore every point

in S can be expressed as a convex combination of the vertices y(i)

('I - O,,,.,n) of S. That is, for every y in S there exist

9



unique extreme point weights p1  (i 0,1,...,n) such that

n M

y = py(15)

I:0
jin~o Pi"

0 1 = O,l,...,n.

An equivalent representation would be

y Y (0) + jinl.i(y()y (0)) (16)

ji=I Pi <I

P >.0 =l,",n.

The integer requirement on y is satisfied by considering only

extreme Doint Weights pl "" p which satisfy the congruence system

(0) + ]inl n i(y(i)_y(O)) 0 (mod l' (17)

,in ,1 Pi <-

Pi >  0 i= I " n

Lemma 1 The coefficient matrix of (17) is lower triangular with

strictly positive diagonal entries. That is, (17) is of the form:

+ "0 (mod 1) (18)

i pi < 1

Pi >0 1 = ,...,n,i

where B iO for i = 1 ,n.ii 110 -

1 1 = . .. ' "...1 y i 0 - I II,



-- -________ -______ *..- -. ~I

Proof The linear programming solution y(O) is found by dropping the

objective function constraint V

glYl + g2Y2 + + gnYn z - cTe

from (14) and solving the simultaneous equation system

h llY I  = 1

h + h2 2Y2  = 82 (19)

hnlY1  + hn2,2 + hnnYn an

Since (19) is a lower triangular equation system, the first j components

(0) Ir(0)
y (0) O) of y(O) are uniquely determined by the first j equations

of (19).

The extreme point y(i), i = l,-- ,n, is the unique solution to the

equation system

hI y 1Y 1

hi-llY+ " + hi i-i- Yi-l = Bi-1 (20)

glyl + + gnYn zcTe

h i+llyl + ... + h i+1 ,i+ ly i+ l  = i+l

hnlY 1  + + hnnYn= an

obtained from (19) by replacing the ith equation of (19) by the equation

gly + .+ gnYn = z cTe.

11
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Since the first (i-1) equ'Ations of (20) form a lower triangular system
identical with the first (i-1) equations of (19), (yj -yj ) = 0 for

all j 1,...,i-i, so the constraint matrix of (17) is lower triangular.

To show that B >O, it is sufficient to show that pi is an

increasing function of Yi. From equation (44) in (12], it follows that

Pi = (J' hijYj'B )/Qi + (hii/Qi)Yi,

where

Qi -jil hijyji -

By the construction of (14), h i>0, and by Lemma 3 in C12], Qi>0.

ii1
Therefore Bii>0, and the proof of Lemna 1 is complete.

It should be pointed out that the congruence system (18) is not

unique. Each of the n! orderings of the rows of A1 yields a

(possibly) different system (14), which in turn determines (18). The

ordering of the rows of A1  may play an important role in the

computational efficiency of the algorithm.

4. The Basic Enumeration Scheme

The basic enumeration scheme for the Accelerated Bound-and-Scan

Algorithm is a systematic way of enumerating implicitly all solutions

to congruence system (18), and hence all lattice points within the
n-simplex. Such an implicit enumeration scheme may be used to solve

the cone problem. The "cone algorithm" proceeds by considering

sequences of partial solutions to system (18).

12



An "eligible partial solution" through variable pj is a specification

((,.-',p) of the values of pl,"',pj which satisfies

+ K. 0 (mod 1) (21)

j Bjl B 1

O <Pi LPi I 1-. j.

The term Pi is an upper bound on the maximum weight which may be placed

on the ith extreme point and still yield a solution which satisfies

both the binding and nonbinding constraints. In general P<l,

and Pi<1 if the ith extreme point violates a nonbinding constraint.

For the cone problem Pi = 1 for all i = l,...,n since the nonbinding

constraints are not present in the problem. The determination of the Pi

is discussed in Section 8. Eligible partial solutions through p n are

called "completions," for they completely specify a lattice point

within S.

Suppose an eligible partial solution (, through

Pk-l has been specified. The algorithm must determine by some procedure

whether there exists a value for Pk such that ( ' OI'Pk ) is

an tligible partial solution through Pk" This procedure is called a

"forward step" in the algorithm. If f denotes the fractional part of

d +kkl B .k.,

f dk Lil ki*. [d+knl Bki0ki] , (22)

13
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0 k must be chosen to satisfy

f + B 0 (mod 1) (23)

k- I . + Pk <1(24) i

iii

o _< ok -< k"(25) :

Consider first the integer restriction (23), and let t denote the

smallest value 0k may take on and still satisfy (25). If f = 0,

then pk o satisfies (23); clearly t = 0 in this case. Recall

from Lemma 1 that Bkk>O. If O<f<l, then t must be chosen so

that f+Bkkt = 1. Therefore

l-f)/B if 0 < f < 1
t z (26)

0 if f= 0.

From (23) the only possible values Pk can take on , given the eligible

partial solution (pt,."Pk -1 )9 are

Pk = t,t + I/Bk-- it + r/B , (27)

where r is the largest integer such thatlI
t + r/B kk 1- Pk

The algorithm sets Pk at t and checks conditions (24) and

(25). If either (24) or (25) is violated, it is obvious that no larger

value of Pk would satisfy these conditions, and hence there can be

no completion for the pa-tial solution (o*,-4°,p* ). The algorithm

would then backtrack to search for a new eligible partial solution

14



through Pk-1 by resetting Pk-I at P.l+l/Bklkl and checking

simply whether

k-l o* + I/Bk-lk- (28)

k I 1/Bk-l,k-! 1 Pk-l'

Notice that if the terms 1/Bii (i = 1,... ,r) are stored, the partial

sum of extreme point weights can be updated by only an addition and/or

a subtraction each time a forward or a backtrack step is made.

Suppose Pk = t satisfies conditions (24) and (25), so that an

eligible partial solution through variable Pk has been found. The

algorithm then attempts to construct an eligible partial solution through

Pk+l and continues the forward steps until either a completion within

the n-simplex has been found (an improved solution), or an eligible

partial solution through the next variable cannot be found. In the

latter case the algorithm backtracks until the next eligible partial

solution is found before starting the forward steps again. When the

algorithm backtracks to pit and no new eligible partial solution

through p1  exists, the algorithm terminates.

The integer programing problem may be posed (see Theoreri 2 in [12])

as the problem of finding the feasible lattice point which places the

greatest weight on the extreme point x(0 ). If a completion has been

generated, it must be checked for feasibility in the general integer

programming problem against the nonbinding constraints. This process

is discussed in detail in Section 8. Since there are no nonbinding

constraints in the cone problem, every completion is a feasible completion for

the cone problem. In either problem, once a feasible completion has been found,

the algorithm backtracks to pn-l" Every subsequent solution generated by

the algorithm is required to have a larger objective functiti value than

15



that of this improved solution. A necessary condition for any partial solution

(p*, ..,p*) to be an eligible partial solution is that

i l p (Zi pl1, (29)

where (l-ni2l'i) is the value of Po for the best feasible solution

n) known at the current stage of the algorithm. Condition

(29) replaces the condition

in the definition of an eligible partial solution once a feasible

completion has been found.

5 The Cone Algorithm

The cone algorithm is the basic enumeration scheme applied to the

integer program over the cone. Since pj = 1 (i = 1,...,n) in the cone

problem, the condition pj.pj is superfluous and is not used in the

step-by-step description given below.

Outline of Cone Algorithm

Step 1. Set Bt = l/B for j = 1,...,n. Set Best = 1, Sum = 0,

k = 1, and go to Step 3.

Step 2. Reset k = k+l. If k>n, go to Step 8.

Step 3. Let f be the fractional part of dk+jk1 B1Ste 1=1kili •

Step 4. If f = 0, set 0k = 0 and go to Step 2. Otherwise set

k  (l-f)B*.

Step 5. Set Sum' = Sum + Ok"

Step 6. If Suml > Best, go to Step 7. Otherwise reset Sum = Suml and

go to Step 2.

16



Step 7. Reset k - k-l. If k a 0, stop. Otherwise reset Sum Sum-Pk

and Pk Pk+Bk" Set Sum' - Sum+Pk, and go to Step 6.

Step 8. An improved completion has been found. Store the solution

Reset k = n, Sum = Sum-Pn , and Best = n

Go to Step 7.

6o A lpecial Property of the Nonbasic Variables

Assume the yk (k = l,...,n) are ordered so that the first

nI variables correspond to nonnegativity constraints in the equivalent

cone problem (12). Each of the Yk (k = l,..o,n ) would be nonbasic in

the linear programming solution, and as noted in [12], each

Yk (k = 1,...,n,) has the value zero at all extreme points y(i) of the

n-simplex except one which is designated y(k). That is, yki) 0 for

all i = O,l,...,n, i t k, and y(k)>0. An immediate consequence of

this property is that the coefficients of the first nI rows of congruence

system (18) have the following special form. For k = 1,...,n 1 ,

dk = 0 (30)

(k)
Bkk = yk

Bkj = 0 j =

Therefore

/Bk 1,...,n I. (3i)

Compare this expression with (27). If l<k<n l , the fractional part f

of (22) is zero, so by (26) t = 0, and (27) reduces to (31).

17



From a computational point of view, the essential difference

between those extreme point weights Pk which are associated with

nonbasic variables and thoso which are not is that for the former

the fractional part is knownto be zero, whereas for the latter f

must be calculated. The calculation of f at each forward step

is by far the most expensive part of the cone algorithm, and should

be avoided whenever possible. Given the special property (31),

Step 3 of the Cone Algorithm Outline should therefore be revised to

read:

Step 3'. If k<n1l, set Pk = 0 and go to Step 2. Otherwise

let f be the fractional part of dk+iBki-i .

This technique is equivalent to the procedure for constructing partial

solutions for the nonbasic variables in the original Bomd-and-Scan Algorithm.

Thus the goal of extending the efficient bounding procedure for the nonbasic

variables to the basic variables as weil as been attained - with the one

essential computational difference described above

7, Comparison with the Bradley--',,Iahi Cone Algorithm

The implicit enumeration algorithm for the cone problem devised

by Bradley and Wahi [3] is also based on (14). To this system Bradley

and Wahi apply the Fourier-Motzkin elimination method, elminating the

variables in the order ynYn-l,...,ylo As a result of this elimination

procedure, conditional upper and lower bounds on each variable (with

respect to the cone) may be calculated relatively easily. The continuous

upper bound on yi, given that the first (i-1) variables are fixed at

is a linear function Ui() of z,y*,. .,y*i 1 . The

conditional lower bound is a linear function Li(.) of only

Y7' 'yT'-l"
18
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Suppose that YI""YnI correspond to nonnegativity constraints

in the equivalent cone problem. It is possible to show for 1._n, that

Ui(.) can be calculated from Ui1(. using only a fixed number of

arithmetic operations independent of i, and that L Z . For

i = n1+l,...,n, there appears to be no way to reduce the number of

multiplications and additions, 2(1-1), required to compute Ui(.)

and Li(').

It is now possible to show that the cone algorithm and the Bradley-

Wahi algorithm are mathematically equivalent in the sense that they will

generate the same sequence of eligible partial solutions for a given

cone problem (14).

There is a one-to-one correspondence between partial solutions in

variables PP'.. Pk and partial solutions in variables y,..'"Yk"

An eligible partial solution in either variable system represents a

lattice point within the k-simplex formed by the projection of the

n-simplex onto the space of the first k variables Yl""'Yk"

Assuming the same ordering of the Yk variables in each algorithm,

it will be shown that eligible partial solutions are constructed in the

same order in both algorithms. Consider first the forward step. Assume

that the algorithms have each constructed an eligible partial solution

through variable k which corresponds to the same lattice point in the

k-simplex. Each algorithm attempts to construct an eligible partial

solution through variable (k+l) by setting variable (k+l) at its

calculated lower bound with respect tu the projected (k+l) simplex.

By the proof of Lemma 1, Ok+l is an increasing function of Yk+l"

Therefore, the lower bound value for Pk+l must correspond to the lower

bound value for yk+l' and the partial solutions generated by the algorithm

represent the same lattice point. Next, consider the backtrack step.

19



When the Bradley-Wahi algorithm backtracks to Yk' it increases Yk to

which is equivalent to increasing Pk to (Qk+B*) as in Step 7

of the cone algorithm. Thus, the cone algorithm and the Bradley-Wahi

algorithm are mathematically equivalent.

The computational effort required by each algorithm will be

compared next. Since partial solutions are constructed in the same

order, it is: sufficient to compare the work required on forward and

backtrack steps. The two algorithms seem to require the same

computational effort on forward and backtrack steps involving Pk for

ken,. For kn I the Bradley-Wahi algorithm has the advantage in the

backtrack step because it needs only to reset Yk at Yk+I and check

whether the upper bound Uk has been violated. The cone algorithm,

on the other hand, requires another two additions in Step 7 to adjust

Sum besides the addition required to reset Pk at Ok, Bk.

However, the cone algorithm is superior on the more expensive

forward steps. The Bradley-Wahi algorithm requires 2(k-1) multiplications

and additions on a forward step to calculate Lk and Uk. Lk is calculated

to determine the value at which Yk should be set, and Uk is needed

to decide whether this value of Yk results in a eligible partial

solution. The cone algorithm uses k multiplications and additions to

find the lower bound for Ok and verify whether It results in a eligible

partial solution. Note that the total nuner of forward steps must

equal the total number of backtrack steps The two algorithms therefore

seem to be roughly comparable in computational effort needed to solve

the cone problem.

It should be emphasized at this point that the cone problem,

because of its fewer constraints and simpler form, is easier to solve

than the original integer programmiing problem (1.2,3,4). Furthermore,

20



the Bradley-Wahi algorithm deals only with the cone problem. The Accelerated

Bound-and-Scan Algorithm has several features which enable it to deal

effectively with the nonbinding constraints, and therefore with the

original integer program.

One of these features, the scanning procedure, uses to advantage

the unit coefficient on the variable pi in the relationship

Sn
~ < I(32)

among Pl'n'Pn" The upper bounds and estimates of computational effort given in

a companion paper [4] are also derived using (32). Although it might be possible

to perform the same type of analysis in variables YI"n' the work

is simplified by the unit coefficient property of (32). Certainly

the scanning procedure is more efficient because of this property.
I

8. The Skelton Version of the Accelerated Bound-and-Scan Algorithm

Sinc the n-simplex S is determined by only the binding constraints

and the additional objective function constraint in (14), S may include

points which violate a nonbinding constraint, and are therefore not feasible

for the original integer programming problem (1,2,3,4). To exclude

from consideration some (but not necessarily all) of these infeasible
points, upper bounds Pl on the extreme point weights pi may be found

by linear programming or by ad hoc methods suggested in [12].

The addition of upper bounds on the pi is one of three techniques

in the "skeleton version" of the Accelerated Bound-and-Scan Algorithm for

dealing with nonbinding constraints. The second technique is a scanning

procedure. Suppose a completion (i,...,o)which satisfies all the

conditions in (21) has been generat.!d by the algorithm If

satisfies the nonbinding constraints, a new improved solution has been

21



found. If not, the algorithm could proceed by generating the next completion

according to the enumeration scheme. However, if the current completion

xiolates a certain nonbinding constraint, there is a good chance this

constraint will also be violated by the next scveral completions that would be

generated by the enunv.,ratian'scheme, The purpose of the scanning procedure is

to determine the next eligible partial solution which can possibly lead to a feasi-

ble completion, so that the enumeration scheme can be restarted from that point.

The m nonbinding constraints (9) can be represented in the

Pi variables through changes in variables given by (6) and (16) as

,inl -A2K(y(i)y(O))pjI  -(b2+A2e+A2Ky (0)) (33)

Let

J1nl Tip i <_ T (34)1

be any one of the m nonbinding constraints, and let ( be a

completion which has been found to violate (34). Then the scanning procedure

may be summarized as follows. (In Step 7 of the outline, the notation

-t> designates the smallest integer greater than or equal to t.)

Outline of the Scanning Procedure

Step 1. Set k a n
Step 2. Set y a arg min Ti  If T <0, go to Step 5.Stp2 Sty= r =k,... ,n " y

Step 3. If Tip* < T, go to Step 8.

SLep 4. Reset k a k-l. If k = 0, algorithm terminates. Otherwise,

go to Step 2.

Step 5. If T Tp + (l- =p( T>T, go to Step 4.

Step 6. If Tk 0 T, go to Step 8.
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Step 7. Set u* (T-1 k- Tipf)/T.

Set r < (u*-p*)Bkk> and reset P* ,P+r/B~.2k kk k k

Exit scanning procedure.-I
Step 8. Reset k k-I. If k = 0, algorithm terminates. Otherwise,

reset Q* =P* +*
k k 'k*

Exit scanning procedure.

Ine heart of'the scanning procedure lie in the tests performed in

Step 3 and Step 5. At each of these steps it has already been determin~ed

that the, algorithm must backtrack at least to variable in order

to find the next eligible partial solution wiich can possibly lead to a

completion satisf~ing t3i).. If pit- 11Pk are fixed in a partial

S.L- j(~fi (C~t,. .ato(-1p)may be allocated to the

extrene pojlrt w(-.' t ...,n in any possible com~pletion. Suppose

Ijsi. .Ilcciteld lr L' osr; favorable way toward saiisfying (34)'. Zero

lo? q:'it Woula 11'! 'e t<1 o 'n (as in Step 3) if Tr O. And if

. I i I~ e~~t 0 ' would be assigned to T. (as in Step 5).

' Sci ,-c or.~; f ce"urse, a test which is only a necessary

c',~~c~ f , ~ ~.:crz of i feasible completion of a partial solution.

~ ~~ii ina; r9~e~I-~cunst-ucts the tiext partial solution which satisfies

.r. ~rrt.n'~C~f~ jj~a --Lanning procedure in conjunction with the

flO( ~ ~ ~ ~ we xi."sv.~ti~. v~ r ntedI out in r1l2]. The procedure

-ec~ d In 5h ectio-. ii. 'e on thle scanning procedure used in thej

Ti~ ';'a~K'r~ ~ iicges ted here is to stop at the first

oorijnmia- construct the next partial solution which

5j, WAS it)y Cu ly C;?lctrISdt"sfyinq tile violated constraint, and

= ==-~ -- -23.
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then restart the enumeration scheme at this new partial solution. A possible

variant to this approach would be to use a'guments similar to those in

Step 3 and Step 5 to determine whether this new partial solution can possibly -

lead to a completion which satisfies the nonbinding constraints that have

not yet been checked.

The third technique for taking the nonbinding constraints into account

is the elimination of redundant nonbinding constraints at various points in

the algorithm. A nonbinding constraint (34) which is satisfied by every

subsequent completion within the n-simplex S is called a redundant constraint.

It may be dropped from the problem, thus eliminadting the arithmetic operations

required to check it for feasilbility.

Redundant constraints are easily recognizable in the formulation of the

I problem which uses variables Pl ""'Pn Let n' ) -be the best

nn
feasible solution iknown at the current stage of the 'algorithm, and let

-i=l Consider any nonbinding constraift (34), and let T* I max Ti.

If Tw<O, constraint (34) is redundant, and if T,>O, a sufficient condition

for constraint (34) to be redundant is that

< , max nTi  . (35)

After calculating the right-hand Side once at the outset, condition (35) would

be checked every time an improved feasible solution has been generated by

the algorithm.

An outline of the ske'eton version of the Accelerated Bound-and-Scan

Algorithm follows. It incorporates the cone algorithm, the special procedure for

nonbasic variables, upper bounds on variables, the scanning procedure, and the

elimination of redundant constraints. The scanning procedure outline is used as

a subroutine in Step 9.
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Outline of Skeleton Algorithm

Step 1. Set Bt = 1/8 for j = 1,...,n. Set Best 1, Sum 0,

k 1 1, and go to Step 3.

Step 2. Reset k k+l. If k'n, go to Step 8.

Step 3. If k<nl set pk = 0 and go to Step 2. Otherwise let f be

the fractional part of dk+'i=l Bkili J

Step 4. If f = 0, set =0 and go to Step 2. Otherwise set

k  (l-f)B*.

Step 5. Set Sul = Sum+Ok

Step 6. If Suml>Best or if Pkpk, go to Step 7. Otherwise reset

Sum Suml and go to Step 2.

Step 7. Reset k = k-l. If k = 0, algorithm terminates. Otherwise

reset Sum = Sum-k and k = pk+Bk . Set Sumi = Suf+ok andSmoPk P kSu' SmP'

go to Step 6.

Step 8. Check the nonbinding constraints until one is found which is

violated by ( If all nonbinding constraints are

satisfied, go to Step 9. Otherwise go to Step 10. A

Step 9. An improved solution has been found. Store the solution

Reset k - n, Sum = Sum-on , and best = j.p.

Eliminate redundant nonbinding constraints and go to Step 7.

Step 10. Represent the violated nonbinding constraint as

inl~
: i <i T .

Set ( (pl""'°n)" Enter the scanning procedure. The

scanning procedure will either indicate that the algorithm terminates,

or it will produce a new partial solution (p*.. ,p*). Set

Vk- G
(,Olt,..., pO (p*,...,p*) and Sum = i=ll Go to Step 5.

25
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The algorithm outlined above is called the skeleton algorithm

because it includes only the three simple techniques for handling the

nonbinding constraints: bounds on variables, the scanning procedure,

and the elimination of redundant constraints. It is suggested that these

three techniques always be used. Additional options which may be used

include conditional bounds on variables (as discussed in [12] or in

[5, Ch. VII]) and surrogate constraints [7]. These options will be

further developed and evaluated in a future paper
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9, Computational Experience

In order to test the computational efficiency of the Accelerated Bouna-

and-Scan Algorithm, a FORTRAN code was written for the IBM 360/67 system by

the first author. The two main parts of the code (1) obtain the Hermnte

normal form of A1  and (2) execute the iterative portion of the aigo--ithn,

in its skeleton version outlined in the preceding sect~on. The Hermte

normal form is obtained In a straightforward but relatively )nefficient wdy,

and a retrospective comparison with the computational eAperlence (see [3],

of Bradley's algorithm [I] for doing this indicates that rewriting this

part of the code could reduce the executive times to approximately i0% ot

their current values The iterative portion of the algorithm was encodea

with somewhat more care. The initial feasible solution for the algo,.thm

has been obtained by using an available code for a basic heuristic proceaLue

developed by the second author [13). Part of the work required to

set up the algorithm (primarily finding the vertices of the n-simpleA S)

is done by borrowing the initial part of the code for the Bouna-and-SLan

Algorithm [12]. When tabulating computational results, the total time ^equlrea

by the algorithm is broken into the following four components: (1) II- tine

required by the simplex method to solve the continuous version of the prublei,

(2) Heur. = remaining time required by the heuristic procedu'e to Tind a g(d

feasible solution to initiate the algorithm, (3) Setup - remain.ng tine

required to set up the algorithm (mostly finding the Hermite no'ma, fo-m of [
A1), and (4) Iter. = time required to execute the iterative portion it the

algorithm in its skeleton version.

The code has been used to solve a number of test problemb taken T,'Gff|

the literature, These include some of Haldi's "TiAed-charge problems" (fC)

and "IBM test problems" (IBM), as well as Woolsey's 5-point "ccmbinctu d'
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problem" (COMB-5), all of which are reproduced by Trauth and Woolsey [15].

In addition, the code was applied to two of Petersen's problems [14] (PET)

of the Lore-Savage capital budgeting variety. The results are shown in

Table I,* where the size of each problem is identified by m, the number

of functional constraints, and n, the number of original variables

(excluding slack and artificial variables). The times shown in parentheses

are those that would have been obtained if Bradley's code for obtaining

the Herinite normal form of A1 in a more efficient way [1] had been used

instead, according to Bradley's reported times [3] on the same problems.**

Table I also gives the available execution times on these problems

for several other algorithms: (1) Hillier's Bound-and-Scan Algorithm [12)

run on the IBM-360/67 system, (2) Gorry and Shapiro's Adaptive Group-

Theoretic Algorithm [10] run on the IBM-360/65 system, (3) Gomory's Fractional

Algorithm [9] with Haldi and Issacson's LIP 1 code [11]**, run on the IBM-7090

computer, as reported by Trauth and Woolsey [15], (4) Gomory's Ail-Integer

Algorithm [8] with Woolsey's IPSC code*** [16] run on the CDC-3600 computer,

as reported by Trauth and Woolsey [15], and (5) Geortrions Implicit

Enumeration Algorithm [6] run on an IBM-7044 computer. (A blank indicates

that no time has been reportea for that problem.) Geottrion's algorithm is

tor the special case of 0-1 variables, so that (except tor the Petersen

problems) a binary representa*1on of the variables was used as described in

An attempt also was made to apply the code to two problems not shown in
Table 1: (1) IBM-4, which violated the assumption that the optimal non-integer
soiution is unique, and (2) COMB-4, where the simplex method obtained an
integer-valued optimal solution so the algorithm was not needed

Bradley's code actually was run on a somewhat slower computer (the IBM-7040-
7094), but this has been ignored to compensate for the tact that Setup includes
slightly more than constructing the Hermite normal form of A1.

***These codes have been chosen since, according to Trauth and Woolsey's data,
they appear to be the best available for the respective algorithms.
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[6]. His times were given in minutes to two decimal places, so they have been

converted to seconds here simply by multiplying by 60, except that his reported

times of 0.01 minute are given just as < 1 second. It should be emphasized that

the algorithms were run on different computers, so the execution times are not

directly comparable.

TABLE I

EXECUTION TIMES FOR STANDARD TEST PROBLEMS

Other Algorithms
Accelerated

Bound-and-Scan Hillier Gorry- Gomory Gomory Geoffrion
Algorithm B-and-S!Shapiro Fract. All-lnt. Imp.En.

(IBM-360/67) Ad.G.T, LIP 1 IPSC

Problem m n LP Heur.l Setup I Iter. TOTAL 1360/67 360/65 7090 CDC-3600 7044

FC-1 4 5 0.03 0.04 1 02 0.02 0.32(012I, 0.41 I 1.83 0.74(0.03 01
FC-2 I 4 51 0.03 0.00+ 0.23: 0.01 0.27 1.35 0.89

1 (0.03) (0.07) I
FC-3 4 5! 0.03 0.05 0.23 0.02 0.33 I 0.82 1.88 1.01

4(0.02), (0.12) 1.48 0.63
FC 4 4 510.03 0.03 0.22: 0.00+ 0.28 0.47

(0.02), (0.08)
FC-5 1 6 5 0.09j 0.05 0.26!41.371 41.77 9.01 79.90

S0i(0.03) 1(41.54) 9F -6 61 0 .10 0.06 1 0.26 i2 .5 22.07
FC 1. (2 7.57 43.48

1 (0.03) . 2184)
FC-7 4 51 0.03 0.03 0.23 41.48:41:77 I 7.83 > 100 1.8re-8 i j I .(0.03) ;(41.57) \ "I 6 4 0 .
FC-8 4 5 0.03 0.05 0.22 21.51 21.81 6.42 00 3.0

,(0.03) (21.62) I

FC-9 6 61 0.06 0.03 0.31 !0.03 0.43 1 5.78 I 3.23 5.48
IM- 77 .(0.03), (0.15)' 0

IBM-1 7 7 0.08 0.03 1 0.41'0.01 0.53 0.24 1.87 0.92 < 1
- 7j (0.04) (0.16)1

IBM-2 7 7 0.08 0.06 0.41 0.001 0.55 0.27 3.02 1.04 1.2I (0.04)' (0.18)
18M-3 3 4 1 0.02 0.01 0.15 , 0.03 0.21 0.55 0.16 2.87 0.48 < 1
IBM- 1 0.60 0.18 (0.01)1 (0.07)M 51 0.60 0.18, 2.17 6.33 9.28 66.48 1 62.82 114

S1(0.18)11 (7.29)
IBM-9 50 15 10.03 10.53 -- >100 14.99 473.10 j95.39 26.4
COMB-6 20 10 0.79 1.30* 1.31 0.10* 3.50 . 19.80 95.37l(0.10) ((2.29)
PET-4 10 20 1.62 '0.40 2.89 0 19 5.10 2.79 2.4
PET-S 10 28 0.61 0.51 5.33 3:82 10.27 8.77 14.4i1 i -

* For COMB-5, the heuristic procedure failed to find a feasible solution and a known
optimal solution was substituted, so Iter. only gives the time required to verify optimality.
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In order to further evaluate how the execution time for the Accelerated

Bound-and-Scan Algorithm might tend to vary with problem size for problems

of similar structure, the code also was applied to 16 randomly generated

problems. Four of these were "Type II" problems used previousiy by the

second author to test his heuristic procedures [13] and Bound-and-Scan

Algorithm [12] (approximately 1.5 seconds total were required for the simplex

method, a heuristic procedure, and this algorithm on each of these problems),

The other 12 are new "Type V" problems whose parameters are integers randomly

generated from the intervdls indicated in Table II.

TABLE II

DESCRIPTION OF THE RANDOMLY GENERATED TEST PROBLEMS

Problem type

III V

c [0,99] [0,5]

aij [0,1] [0,5]

b 1 10 for V-1 to V-9

20 for V-lO

40 for V-ll

80 for V-12

The computational results for these problems are given in Table I11 Sinr.e the

problems proved to be "too easy" for the iterative portion of the algorith,

the most interesting results are the setup times and their very stable

dependence on problem size,
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TABLE III

EXECUTION TIMES FOR RANDOMLY GENERATED TEST PROBLEMS

Problem m n LP Heur. Setup Iter. TOTAL

111-2 15 15 0.55 0.15 2.14 0,01 2.85

111-4 15 15 0.60 0.13 2 12 0 01 2.86

III-5 15 15 0 57 0.10 2,10 0.0. 2 78

111-8 15 15 0 61 0,16 2 15 0 01 2.93

V-i 5 5 0-05 0.03 0.24 0 00 1 0.32

V-2 5 10 0.07 0.08 0.70 0 64 1.49

V-3 5 15 0.11 0.14 1,41 0 03 1.69

V-4 5 20 0.13 0.13 2.40 0.00, 2.66

V-5 5 25 0.23 0.29 4,03 0.05 4 60

V-6 , 5 40 0.23 0.70 11,25 007 11 25

V-7 10 15 0.31 0.11 1.83 0.0, 2.26

V-8 20 15 1.47 0,33 2 62 0.01 4 42

V-9 40 15 6.91 0.22 5.28 0 03 1.44

11 1V-U 31 i020 1.80 0 03 2.34

V-11 10 15 0.29 0.20 1,80 0 03 2 32

V-12 10 15 0.30 0.19 1.79 0.03 2.31

10. Conclusions

A basic consideration motivating both the Bound-and-Scan and

Accelerated Bound-and-Scan Algorithms is the availability of heuristic

procedures such as those developed by the second author [13], Tre

heuristic procedures normally can find a very good (frequently optimal)

feasible solution extremely quickly. Since the number of better fedsible

solutions should be relatively small, an
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optimal solution can then be identified efficiently if these better feasible

solutions can be directly enumerated in an efficient way, Both algorithms
are carefully designed to attempt to efficiently enumerate a sequence of

Improving feasible solutions until no better ones remain. Computational

experience obtained from unrefined computer codes of simple versions of these

algorithms has been encouraging to the authors, suggesting that this basic

approach may have considerable potential.

The Bound-and-Scan Algorithm constructs each new improvea feasible

solution by successively assigning appropriate integer values to the

variables, beginning with the variables that are nonbasic in the optimal

iinear programilng solution and concluding with the basic variables. The

construction procedure for the nonbasic variables is extremely efficient, and

it generates only those partial solutions which have improved completions

(perhaps non-integer) that satisfy all of the binding ccnstraints (5). On

the other hand, the procedure for the basic variables is much lec efficient,

and it can generate "excess" partial solutions having no such improved

completions The Accelerated Bound-and-Scan Algorithm attempts to rectify

this by using a transformation of variables that may increase the number of

nonbasic variables, and that also allows applying a slight modification of

the procedure for nonbasic variables to the basic variables- This tends to

greatly accelerate the iterative portion of the algorithm * The price that

is paid for this acceleration is the extra setup time to pertorm this

transformation by constructing the Hermite notnal orm This extra time is

fa'fly well predictable However, as indicated in Tables I and II, this

" An acceleration is not guaranteed, however, since the transformation of
va;iables can increase the computational effort required to generate the
same completions, e.g., by generating a value of B, totr ' nlil that
is tremendously larger than those for i > n,4l th
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setup time is significant for problems of moderate size seven recognizing that

the times given are an order of magnitude larger than necessary with the best

available procedure and code). Furthermore, if the elements ot A1  are

large, then the code for constructing Its Hermite normal form may fail because

of overflow. Therefore, the Accelerated Bound-and-Scan Al~orithm should not

automatically be preferred to the original Bound-and-Scan Algorithm

Available comparative computational experience is 9ven in Table II

It appears that the current code for the skeleton version ot the Accelerated

Bound-and-Scan Algorithm is at least competitive with the other algorithms,

and this would be even more true if the best available code were used lor

the setup (see the times in parentheses) However, it has often been

observed that there probably will never be an integer programming aigorith,

that is superior to all others on all problems, and that certainly continues

to be the case here. The apparently best avaliable codes (according tu

Trauth and Woolsey's data (151) for Gomory's Fractional and Al-integer

Algorithms performed better on some of the difficult problems. The Gorfy-

Shapiro algorithm tended to be slower on the easy prubelms but,

unfortunately, a meaningful comparison is not possible since Gorty and

Shapiro did not report any times on the standard ditiicult peoblems

Geoffrion's algorithm was an impressive pertormer on a s'ower computer

It continues to appear that a good 0-1 algorithm (and this is a very good

one) should tend to be superior to a general algorithm on a 0-1 problem.

or perhaps even on a generai integer programing problem hav ng very smali

upper bounds on the variables. A comparison with the Braa~ey-Wahi

algorithm for the cone problem has been given in Sctioi 7

However, one extremely important current advantage cf the

Accelerated Bound-and-Scan Algorithm over the others is that its

computation time can be quite accurately estimated )n advance for any
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given problem. The first author [4] presents methods for doing this, as well

as establishing upper bounds on computational effort, in a compafion paper

Therefore, the user can learn in advance whether this algorithm will sove

his problem In a reasonable length of time or another algorithm should be

tried instead.

Another attractive feature of this algorithm is that it is primal

in nature. It starts with a good feasible solution ana then successively

tlinds bettor ones. Therefore, if the algorithm must be terminated betore

completion, a near-optimal solution wlfi still be provided

These two features suggest another interesting possibiliity to, the

use of this algorithm Suppose that the e4timated exeLution time tot a

given problem is excessive, and it appears that the some may be true Tor

other available algorithms as well (perhaps because the problem is large

without special structure) If the optimal solution ;s only slightly

better than the feasible solution provided by heuristic procedures, then

,t may not be worth a long comp,.ter run to try to improve upOn this

feasible solution, Therefore, the Accelerated Boknd-ana-S~an Algorithm Lan be used

instead to find the optimal so'ution only if it IS s.bbtantka''iy better,

ana otherwise verify that it is not. This is done s mply by setting some

str)ct'y positive lower bound on the values 0 trat will be

considered, so that the aigorithm will seek onl) teasible solutions x

such that cTA ' CTx(F) , PO [cTX (0) - cTx(F)], whe,-i ,&Fj s the teas'ble

solution provided by heuristic procedures and x -) is the optimal solution

to the linear program (1,2,3) If PO is significantiy 9-eoter than 2ero,

this can reduce execution time dramatically

There remain a number of important possibilities fo( Improving and

generalizing the Accelerated Bound-and-Scan Aigorithai (o t he Bouna-ana-Scan

34



Algorithm) that are being investigated by the authors. These include the

additional options for the algorithm mentioned at the end of Section 8.

Also, the ordering of the rows of A1 can greatly affect computaticna!

effort by changing the relative magnitudes of the B11  for I > n1 , and

the implications of this are being studied. The algorithm's assumption

(0)that x Is unique is an unfortunate restriction, and some ways of

eliminating this restriction are being explored, including those proposed

for similar algorithms by the second author [12] and by Bradley and wahi

(3]. Finally, high priority will be placed on extending the algorithm

to the mixed integer linear programing problem-
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