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§1. Suppose the motion of n-dimensional vector z, in Euclidean space

Rn, is described by a linear vector differential equation

z=A(t) z -u +v, (1)

where A(t) is a quadratic matrix of order n, continually dependent on t (- « <
< t < + «); the control parameters u and v belong to the convex compacts P(t),

Q(t) respectively, which are embedded in R" and change continually over (- = <
< t <+ «), Parameter u is controlled by the pursuer; parameter v -- by the

evader. Suppose a convex closed terminal set M is fixed in R". Pursuit be-

gins from point ﬁ)zllat moment to and is considered completed when z(t) (see

(1)) first contacts M.

The goal of the pursuer is to bring point z(t) to M as rapidly as possible.
It is assumed that the pursuer knows z(t) and v(t) at each moment in time t,
i.e. pursuit with discrimination of the evader is studied. The evader acts
arbitrarily, using measurable control v(t), which follows the requirement

v(t) €Q(r).
We will say that game (1) can be completed from position (zo, to) in a
finite time if there is a number t (zo, to) such that with any measurable change

v(t) the pursuer, using his information, can construct a measurable change u(t)
(u(t)(}P(t)), such that point z(t) strikes M not later than momemnt to + t(zo,

to).
One of the most important problems arising in the theory of pursuit is the
problem of separation of those points (zo, to) from which the game can be com-

pleted in a finite time. Strong results have been produced in this direction
for stable games (see [1-7] and others). The most complete results have been
produced by L. S. Pontryagin in [4]. They were produced by a direct method with




a wider area of application than that of the first direct method developed in

[3].

The present article is dedicated to a generalization of the second direct
method of L. S. Pontryagin (see [4]) to the unstable case (see (1)).

§2. In this paragraph, we will introduce certain concepts which will be
useful for the future.

A. Let U(t) be a convex compact belonging to R", continually dependent
onT in sector [p, q], where p < q. Let us study all possible measurable
vector functions u(+) in [p, q], sat1sfy1ng the condition u(t) €lJ(T) Let

us study the set of vector integrals ‘ u(t)dr and represent it by j U (1) de
p
It is not difficult to see that this set is a convex limited set. U51ng (8],

q
it is not difficult to prove that _|L/O?dr is a closed set. Thus, we have
P

the operation of integration of a closed set dependent on a parameter.

B. The geometric difference of two convex sets ,. . belonging to R!

refers (see [3]) to the set ¥, which consists of all vectors a translating

o,  into , i.e. a--%CY% . This operation is represented as: Ay = Ay XUy,

It is not difficult to show that closure of %, indicates closure of %, .

C. Suppose 2, 4. are arbitrary sets from R". The algebraic sum of
these sets refers to the set U, of all vectors a3 of the form a; = a; + a,,
where 0%, a;¢% , and will be written as Y, =9, -- Uy

D. In [4], L. S. Pontryagin introduced the concept of the alternative
integral from U(t), V(t), belonging to R" and changing continually over the
sector [p, q] (p < q) of convex compacts with the initial closed convex set

B. This integral is represented by the symbol j (U ) de Z V(1) dr)

i, p

We require the altered interval

‘ [U ()dt £V (1) dt], (2)

Blp

fixing not the initial integration set, but rather the final integration set.
In constructing integral (2), we will base ourselves on rational subdivisions
w of sector [p, q] by means of points p = Tg < Tp € e ST =4, where

Tys +e+» Tp_p aTE rational numbers. This rational subdivision w is compared
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with the convex set A A

% 1
Y= ((((B+ { Umdel % { Viya
(o o) v+

Tt Th-l
+ | U(r)dr)_;«: " V(t)dr)

g

which we will call the integral sum.

By integral (2), we refer to the intersection of sets zw with respect to

all rational divisions w:

1. q
| [ (e ¥ V() de] == ] Y.

4 @

(4)

We note that the existence of integral (2) as a non-empty set requires non-
emptiness of all L - Ifcaih,is not empty, the altered integral (2) is a

closed convex set.

Suppose integral (2) is not empty and rational point tlf'(p, q) is selected
on sector [p, q]. Let us study the rational divisions w” of the form p = Ty <

ST EL ST, <L <T = q.

Obviously,
Q .\_‘(.;C n ,\_‘,m‘ . (5)

»

Let us study the rational subdivision w”” of sector [tl, q] , generated by sub-

division w”. It follows from formula (3) that
I! l!

X (Mo + JU@) dr) £ (V (r)dr. (6)
p p

-

Rational subdivisions «“” are always even numbers. They can be renumbered:
ui‘, mé‘, v Let us represent by ui(i =1, 2, ...) the rational subdivision

produced by combining the points of the subdivisions w(“, ..., w{‘. The inte-
gral sum (3) corresponding to rational subdivision i will be represented by

r .
1
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Work [4] gives the following formulas:
ALV IV - AZUGV), (A1) XVDAXV)+U,

where A, U, V are convex sets in R", Using definition Eu and these formulas, it

i
is not difficult to show that Euib Zu 2 ... and that
1 2
II.'q o0
| WU (@) dv 2V () de] o= [} . (7
l‘. -1 ‘

Let us show that

r‘].\. - (‘T ot ‘\! U{r) d-r)‘.i "f V (%) dr. (8)

[ p p

Let us study the rational subdivision of sector [p, q] w{, generated by point

t1 (t1 is a rational number) and subdivisions My Obviously r]liyc:
o'

ke
\
cux,.

To prove inclusion (8), it is sufficient to prove inclusion

w e [l. ".
nx. N, +-1vm dT) x ‘ V (x) dr. (9)
i1 ‘ ¢ 1 ;» ip
Let us study point £y» satisfying the condition &€ r]:i@ . Due to equation
=1

(6), this inclusion indicates the relationship

t, 1,
e - | V{dic Y., - - | U (d)dr,

r »

which is correct with any i =1, 2, ... It follows from this that for any
given measurable vector function v(t), p <t f_tl (v(t) € V(1)), a measurable

vector function ui(r), p<rT f-tl (ui(r)f U(t)), can be found such that

“ "
|- j v (1) dc v——S u (Odv €N (10)
» » ’




On the strength of the assumed continuity'of sets U(t1), V(1) in sector [p, q],
the estimate Ini| < const is correct for n; - Therefore, it can be considered

that a certain subsequence of vectors ny» which we will represent by ny » con-
k
verges to a certain vector n*., The embeddedness of closed sets zu indicates

- i
4 r1sgm.

We can consider that subsequence u, () converges weakly in sector [p, tl]

to a certain function uo(-) (uo(r) (lj(r)). Then from equation (10) it follows
easily that

ot ‘" S |
Eot [v()di— [ () dv = n"€ ] B,
p 4

=l

Prom this we get

£ ¢ ('“ N b '5 U (x) ) _*_3" V (x) dr,

(B 14

i.e. inclusion (9) is proven and, consequently, inclusion (8) is proven. Using
inclusion (5) and equations (4), (7), we produce an important formula:

n.a B, q

\ W@ v @de C( | (U@ de £V @) dr] +
14 [

y . (11)
: "U(r)dr)_’t \‘ V (x)dr,
P P

where t1 is either any rational number in [p, q], or a number corresponding with
one of the ends of [p, q]. '

The following will be useful in producing further properties of the altered
integral (2).

E. Let (s, si.(s) be convex compacts from Rn, dependent on parameter s.
Suppose in a certain area of point Sy Set m,@);ﬁﬂgﬁ) is not empty, while
at point ¥ (; , it is upward semicontinuous relative to inclusions (see [8]);
%:()-is continuous. We then have the following

-5 -
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Lemma. The set éh(ﬂ:ﬁ?g(ﬁﬂ is upper semicontinuous relative to inclusions
at point Sy

The proof of the lemma is simple, and we will not present it.

F. Let us represent integral (2) as a function of the lower limit of p
through B(p). Let us assume in formula (11) - p + tl = ¢. Then inclusion (11)
can be rewritten as:

Pl pt
B(p)C(H(p--v) -+ _( U(r)a'\')i \ V@, _ a2
) P

P

where p + € is either any rational number from sector [p, q] or one of the ends
of sector [p, q].

Let us prove that inclusion (12) is correct with any p + ¢ belonging to
sector [p, q].
Let us study the sequence of numbers P; £P such that P; *+ € €ip, al,
p; * ¢ is a rational number and P; *+e€>Pp+e, where p + € is an arbitrary
fixed number from interval (p, q). From inclusion (12)
"r“"— Pl'i’t

Bipy+ [ vydiCB(p1-e)+ | U(ndr, (13)

. »

Let us study a certain rational subdivision w of sector [p + ¢, q], gen-

erated by points p + € = Tp ST STy < s ST =q, and rational subdivi-
w

sion5_§i i=1, 2, ...) of sector [pi + €, q], generated by points p; + €=

= 13 < Ty STy <. T = Qa- Thus, subdivisions w and wy differ only in

their left point.

Let us represent by Zw and Ew (i=1, 2, ...) the integral sums (3),
i
corresponding to divisions w, wy with finite set B. It follows from inclusion
(13) that

piole pyte '
B(p)-- 5V(r)dtc}_“.,‘,-!- g U (1) dr, i=12,..

p r

Let us take arbitrary vector b(fB(p). It follows from the inclusion pro-
duced

A




pitr p+e

v+ f V(n)deC X, -+ ( U (x) dr. (14)
» »

Using the definition of the operation *, formula (3), the even limited nature

of sets U(1), V(1) in sector [p, q] and inclusion (14), we can prove the in-
clusion

l',‘!-f pple .
b j l-'(T)dTC}_‘,.,‘_(B.).!- “ U (v) dr,. i=1,2 ..., " (15)
» »
where B1 is a convex compact belonging to B, while ):m (Bl) is an integral sum

i
constructed with respect to subdivision wy but with finite set Bl' This state-

ment is trivial when B is limited and interesting when B is unlimited.

Using the lemma of point "E" and inclusion (15), it is not difficult to
produce the relationship

pte L

Pl Pz o
b | V@t (0h) - | U@drC -+ jU(r)dr, (16)
” ¥ »

where zm(BI) is an integral sum corresponding to rational subdivision w, with

finite set Bl'

Earlier in point "D" we showed that the altered integral (2) can be pro-
duced as the intersection of integral sums Zu i=1, 2, ...), forming a se-
i
quence of sets embedded in each other X, DX, D ... Taking such a sequence

of subdivision ui(i =1, 2, ...) as the w in inclusion (16), we produce
e pi-e

P
b+ [ Vmdics, + j' U(v)dr.
» » o
pte
Using the limited nature of closed set j U(t)dr, , the embeddedness of the
p © ’
closed sets zu and the equation B(p-+t¢) = {]2,,‘, , it is not difficult to
i =t
prove that

" pte pie
b+ ‘ V(QdiCB(p+e)+ j U(t)dr.
P

14

Since b is an arbitrary element from B(p), inclusion (12) is proven for arbi-
trary point p + ¢€ (p, q).
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§3. Everything is now prepared for investigation. of game (1) using the
altered integral. Let us represent by C(t, t) (t > 1) the matrixant of the
homogeneous system y = A(t)y (for a definition of a matrixant and its proper-
ties , see [9]). We recall only that if measurable controls u(¢), v(<) (u(r) €
€P(r), v(t) Q(t) are fixed in the sector [to, t], then according to the
Cauchy formula

2(f) - C(il. fo) 2 -I- )‘lC(f. N (—u(v) -v(@)dr.

Let us study the altered integral
ALt

W, t,) - _( [CU.DYP(v)de X C(t, T)Q(7)dr] (17)

L

where t 2t We will assume that the set W(t, to) is not empty with all t,
to (t Z-to)' Let us study also vector C(t, to)zo(t 3_t0). Two cases are
possible: 1) with no t does vector C(t, to)z0 belong to W(t, to); 2) there

is at ieast one t with which the inclusion
CAf, )2, € W(I, 1,). (18)

is true.

In the first case, we can say nothing concerning the possibility of com-
pletion of pursuit from point (zo, to).

Let us study the second case.

Lemma. There is a minimum t for which inclusion (18) is fulfilled.

Proof. There are two possibilities: a) there is a finite number of moments
t at which inclusion (18) is fulfilled; b) there is an infinite number of moments
t, at which inclusion (18) is fulfilled. In case "a" everything is clear. In
case 'b" we can take the decreasing sequence of numbers E}, which converges to
the lower bound of all numbers t satisfying condition (18). Let us assume that

the limit of ti is equal to to + T(zo, to,.

For brevity we will write T in place of T(zo, to). Let us take a certain

rational subdivision of sector [to, t, + T}. It is generated by the points

0
Tg =ty < Ty < evn ST =ty t T. Let us study also the rational subdivisions

wy of sectors [to, ti], produced from subdivision w as folluws: o = t0 <

-8 -




1

i =

< ... = t.

< Lee ST ST =t
w only in the rightmost point.

(i =1, ...). Thus, they differ from subdivision

Let us represent by £, the integral sum (3) corresponding to subdivision

&
w with finite set M and

U) - C(f‘! AT, )P @), VE) Cl+4 T, 1)Q(1), Lty +T.

|
We represent by Zw the integrals sum (3), corresponding to the division wy
i \
i1=1,2, ...) with finite:set M and

\

U@ Clty +6,1P@E), V(1) =C e+ 1Q), fo\<r\<t;+t.--

It follows from the definition of E} that C(f}, to)zo€ E, -
‘ i
Let us study the curve C(t, to)z0 as a function of parameter t in sector
[to, E&]. Obviously, there is a sphere D with its center at the coordinate |
origin so large that this curve will be within it where ty <t g_fi. For the
following, it is sufficient to study the set X, NN, X.ND.

Using formula (3) for Xm and Ew, the even lihitation of sets P(1), Q(1)

in [to, fi] and the definition of the operation *, it is not diffiEult to prove
that £  and L, correspond in sphere D with the integral sums L (Ml) and

i ‘ i
Zw(Ml) respectively, constructed on the basis of the subdivisions wy and w and
the same sets Ui(r), Vi(r), U(t), V(1), as Zw s Zw, but with finite set Ml’

i

where M1 is a convex compact, independent of the number i and belonging to M.
This statement is trivial with limited M and interesting for unlimited M. It

follows from the above that C(/,. {) :"C' ’\:"'i(-’\l’)' We note that. :l-): (M.)C-‘J..»,-- ‘\-:.-) (Ml)cxc..-

\ . — ‘ .
Let us now study set Zw (Ml) as a function of t;. Using the upper semi-
i
continuity of operation * relative to inclusions (see paragraph 2, "E"), it

is easy to prove that the fixed € can be used to find a number N(e), such that
i> N(e) . '

i

i
}

C (’_iv ’u\ <y ( }:v’ (Mj) 4 Sr r’m -t S:- (19)

-9 -
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where Se is a sphere of radius € with its center at the coordinate origin.
‘FProm inclusion (19) it is not difficult to sze that C(to + T, to)zoé Zm + Ss'
Since was an arbitrary rational subdivision of sector [to, ty * T], while

€ is an arbitrary positive number, it follows from this that
C([u 2T, 1) 206“7 (10 4T, 10), (20)

which was to be proven.

Theorem. Pursuit can be completed from point Zg» to in time T(zo, to)-

if the pursuer knows control v(s) of the evader at each moment t on sector
t< s<t+e(e>0is arbitrary). :

\ The basis of i1he reality of this hypothesis of information in the hands
of the pursuer is p. asented in [4].

Proof. According to our assumption, the pursuer knows the control of the
evader in sector [to, to + €]; suppose this control is v(+) (v(t) € Q(t) where !

tp STty te).

Without limiting generality, we can consider ¢ §_T(zo, to). Subsequently

to simplify our inscription, let us write T in place of T(z Using in-

t.).
0’ 0
clusion (12) for the altered integral W(t, to) (see (17)), we produce

Wty + T )T Wl FT. 1y - ¢) -
fl-e tyte
ﬁ-SC%fT.ﬂNﬂMi.\q“+ﬂﬂQmm'

ty i.

from which, using the definition of the operation * (see paragraph 2, "B"),

we easily produce the inclusion
ty4-€ *
Wl -+ T, o)W (ty |- T, 1y - &) - f C(ty+ T, V)P (t)dr —
i
1y-+e ’
—_ ( C(ty-- T\ ) v () dr.
ly
from which and from formula (20) it follows that a measurable control u(-)
(tg < T2ty +e, u(t) € P(1)) is found such that

- 10 -
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by

l-e
Clty 1T, 1)z — J‘ ClUy+T,Yulx)de +
fe (21)
fo-L0

1 Clla+ T o@dre Wty -I- T, 1, -+ ¢).
t
As we know (see [9]), matrixant C(t, to) has the property C(t, t

tl)C(tl, to), where to <t

0= C(t,

< t.

1

Using this property, we produce from formula (21)

ote
Clto- Tity-1-6)(Cly+ ¢ to)2, -—' f C(to+ e, Tu(t)dr +

A

ty-iet ' '
B Clly- e, Do)t = Cty 4T, o+ ) 2(e)€ W (fy + T o +€).
L
From which it follows that for point (z(e), to + €), the inequality T(z(e),
to + €) <T - € is correct. Thus, we have decreased time T(zo, to) by at

least ¢ in time ¢. Performing similar steps further, the pursuer will com-
plete pursuit in a time §_T(z0, to) (we note that W(t, t) = M).

I would like to thank N. Kh. Rozov and P. B, Gusyatnikov for their atten-
tion and advice, which helped to improve this article. This report was read
at a seminar on d: “erential games of the mechanical and mathematical depart-
ment., '
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