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§U. Suppose the motion of n-dimensional vector z, in Euclidean space

Rn, is described by a linear vector differential equation

z = A(t) z - u +v, (i)

where A(t) is a quadratic matrix of order n, continually dependent on t (- <
< t < + -); the control parameters u and v belong to the convex compacts P(t),

Q(t) respectively, which are embedded in Rn and change continually over (- - <
< t < . a). Parameter u is controlled by the pursuer; parameter v -- by the

n
evader. Suppose a convex closed terminal set M is fixed in R . Pursuit be-
gins from point z0 KM at moment t0 and is considered completed when z(t) (see

(1)) first contacts M.

The goal of the pursuer is to bring point z(t) to M as rapidly as possible.
It is assumed that the pursuer knows z(t) and v(t) at each moment in time t,
i.e. pursuit with discrimination of the evader is studied. The evader acts
arbitrarily, using measurable control v(t), which follows the requirement
v(t) (Q(t).

We will say that game (1) can be completed from position (zo, t0 ) in a

finite time if there is a number t (zO, t0 ) such that with any measurable change

v(t) the pursuer, using his information, can construct a measurable change u(t)
(u(t) ( P(t)), such that point z(t) strikes M not later than momemnt t0 + t(zo,

t 0 ).

One of the most important problems arising in the tKeory' of pursuit is the
problem of separation of those points (zO, t0 ) from which the game can be com-

pleted in a finite time. Strong results have been produced in this direction
for stable games (see [1-7] and others). The most complete results have been
produced by L. S. Pontryagin in [4]. They were produced by a direct method with
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a wider area of application than that of the first direct method developed in
13].

The present article is dedicated to a generalization of the second direct
method of L. S. Pontryagin (see [4]) to the unstable case (see (1)).

§2. In this paragraph, we will introduce certain concepts which will be
useful for the future.

A. Let U(T) be a convex compact belonging to Rn, continually dependent
onT in sector [p, q], where p < q. Let us study all possible measurable
vector functions u(-) in [p, q], satisfying the condition u(T)EU(T). Let

us study the set of vector integrals j u(T)dr and represent it by J'U(T)Ir
p I,

It is not difficult to see that this set is a convex limited set. Using [8],
V

it is not difficult to prove that .'U(T)dr is a closed set. Thus, we have
P

the operation of integration of a closed set dependent on a parameter.

B. The geometric difference of two convex sets 91. t. belonging to Rn

refers (see 13]) to the set W,3,: which consists of all vectors a translating

into , i.e. a-1-IC9 1 . This operation is represented as: 91,:

It is not difficult to show that closure of N indicates closure of %,•.

C. Suppose Nj,. are arbitrary sets from Rn. The algebraic ,sum of

these sets refers to the set 91:, of all vectors a of the form a3 = a 1 + a 2 ,3
where U, v'. a.,- , and will be written as %,:1 - .

D. In [4], L. S. Pontryagin introduced the concept of the alternative

integral from U(T), V(T), belonging to Rn and changing continually over the
sector [p, q] (p < q) of convex compacts with the initial closed convex set

q

B. This integral is represented by the symbol J" IU(T)dILk V(T)drj
IP p

We require the altered interval

qI U (r) dr -2ý_ V (T) dT] (2)

fixing not the initial integration set, but rather the final integration set.
In constructing integral (2), we will base ourselves on rational subdivisions
w of sector 1p, q] by means of points p = To < T, < ... < Tk = q, where

*l' ... vk-1 are rational numbers. This rational subdivision w is compared
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with the convex set

Tk Tk

=((((B-'-T U~t . V (r) (k) + (3)

x/,--T4 --. I

4 U(v) d,) ._L .1' V(r)dT).).
"k . 2k 2

which we will call the integral sum.

By integral (2), we refer to the intersection of sets E with respect to

all rational divisions w:

I"~~~~ i(,t"V(T) dv]:=- n,-," (4)
PW

We note that the existence of integral (2) as a non-empty set requires non-
emptiness of all E . If () E is not empty, the altered integral (2) is a

W Wi Wi

closed convex set.

Suppose integral (2) is not empty and rational point tlE (p, q) is selected

on sector [p, q]. Let us study the rational divisions w' of the form p = T0 <

< T1I = t 1 < T 2 < . .. < T k = q.

Obviously,

n 2,., c n (s)

Let us study the rational subdivision wi" of sector It,, q], generated by sub-

division w'. It follows from formula (3) that

I, I

-' .- + J' (T)d r) .,_ V (T) d . (6)
P P

Rational subdivisions a," are always even numbers. They can be renumbered:
wi', w .... Let us represent by pi(i = 1, 2, ... ) the rational subdivision

produced by combining the points of the subdivisions w', ... , w". The inte-

gral sum (3) corresponding to rational subdivision ii wi:l be represented by

£
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Work [4] gives the following formulas-:

(11 -l 1) - V -1 - (U- ). (A -1- U) _- V::D(A.4 V) + U.

where A, U, V are convex sets in Rn. Using definition Z and these formulas, it

is not difficult to show that E u) .D ... and that

. lU (,) (IT _L V (1) -!r1 fl , (7)
t, i- A

Let us show that

Nfc.(N ,,,,.'- '(T) d)± .. V (,)d. (8)
S.C i I

Let us study the rational subdivision of sector 1p, q] w', generated by point
1j

t 1 (t 1 is a rational number) and subdivisions vi.. Obviously nlZC

C U

To prove inclusion (8), it is sufficient to prove inclusion

(T) -) p(9)
n ,.., -c U (n%'"• V (t) d r .

Let us study point E02 satisfying the condition Vu(fl1,., Due to equation

(6), this inclusion indicates the relationship

I/ (. ) (- .IT , - ' C ) ,

P p

which is correct with any i = 1, 2, .. It follows from this that for any
given measurable vector function v(T), p < r - tI (V(T) E V(T)), a measurable

vector function ui (T), p <T < t1 (ui(T)E U(T)), can be found such that

I, I

d ( I) d It. ('I J, , ,E • ,, (10)
p P
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On the strength of the assumed continuity of sets U(T), V(r) in sector [p, q],

the estimate In I < const is correct for ni" Therefore, it can be considered

that a certain subsequence of vectors ni, which we will represent by nik, con-

verges to a certain vector n*. The embeddedness of closed sets £ indicates

i !

We can consider that subsequence ui k(.) converges weakly in sector [p, t1]

to a certain function u0 (.) (u 0 (T)(U('r)). Then from equation (10) it follows

easily that

t, 6

,o V (T) (ILT -- 1.U (T) d fl "
P' P -I•

From this we get

~E~flŽ ý jU (T) dT). .VcTd
U=I po p

i.e. inclusion (9) is proven and, consequently, inclusion (8) is proven. Using
inclusion (5) and equations (4), (7), we produce an important formula:

UI (T) (I "L V (,) ,., C (: [U ) d(Qr 2L V (T) ,W +
P f, f. (11)

ý U (r)clr) ±. I/ (E) dc,
P p

where t1 is either any rational number in [p, q], or a number corresponding with

one of the ends of 1p, q].

The following will be useful in producing further properties of the altered
integral (2).

E. Let •js, .:_(s) be convex compacts from Rn, dependent on parameter s.

Suppose in a certain area of point so, set •[ 1(s)±2Is) is not empty, while

at point ".(t,() , it is upward semicontinuous relative to inclusions (see [8]);

"(s "is continuous. We then have the following
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Lemma. The set •1 (s):,. ( is upper semicontinuous relative to inclusions

at point so.

The proof of the lemma is simple, and we will not present it.

F. Let us represent integral (2) as a function of the lower limit of p
through B(p). Let us assume in formula (11) - p + tI = c. Then inclusion (11)

can be rewritten as:
p I.e: p '-

I3(0) C(1p~ U(T) dl) 2.V (T) LIT,(12

p p

where p + e is either any rational number from sector [p, q] or one of the ends
of sector [p, q].

Let us prove that inclusion (12) is correct with any p + c belonging to
sector rp, q].

Let us study the sequence of numbers pi -p such that pi + c C[p, q],

pi + c is a rational number and pi + c - p + £, where p + E is an arbitrary

fixed number from interval (p, q). From inclusion (12)

Pji-- Pf

B V) V (T) dT C B (pi -I e) -+- U U(r) dr. (13)

p p

Let us study a certain rational subdivision w of sector [p + c, q], gen-
erated by points p + c = T0 < T1 < T2 <' . . < T k = q, and rational subdivi-

sions 6. (i = 1, 2, ...) of sector [Pi + E, q], generated by points pi + £ =

= T0 < T1 < T < T = q. Thus, subdivisions u and w. differ only in
their left point.

Let us represent by E. and E (i = 1, 2, ... ) the integral sums (3),
1

corresponding to divisions w, w . with finite set B. It follows from inclusion
1

(13) that

B(P) S V (T)d, T ; -!C 11 (-()dT, i = 1, 2,
P I'

Let us take arbitrary vector bf B(p). It follows from the inclusion pro-
duced
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/

P1 +r +

1' + I/ V(T) (IT C + U T T (14)
p p

Using the definition of the operation _, formula (3), the even limited nature

of sets U(T), V(T) in sector [p, q] and inclusion (14), we can prove the in-
clusion

b J V(T), cf,,,,L?)I- , U(-r)dT,. £ 1,2 ... , (15)
I' p

where B1 is a convex compact belonging to B, while E . (B1) is an integral sum
1

constructed with respect to subdivision wi but with finite set B1. This state-

ment is trivial when B is limited and interesting when B is unlimited.

Using the lenma of point "E" and inclusion (15), it is not difficult to
produce the relationship

b, " V(t)d'rCŽ1,,,(b;,)-,- 1J (T)dT C ,. + S U(T)dT, (16)
1p P P

where Z (B 1) is an integral sum corresponding to rational subdivision w, with

finite set B1 .

Earlier in point "D" we showed that the altered integral (2) can be pro-
duced as the intersection of integral sums E (i = 1, 2, ... ), forming a se-

quence of sets embedded in each other ... Taking such a sequence

of subdivision ui(i = 1, 2, ... ) as the w in inclusion (16), we produce

pit P-4-9
b-+ .f V(T) drCZ,,+ S U(r) dT.

P p
P+8

Using the limited nature of closed set f U(T)d-r, , the embeddedness of the

closed sets EUi and the equation B(p-e)=f 1 , , it is not difficult to

prove that

b + . V () dT C B (p + e) + U (t) dr.
P P

Since b is an arbitrary element from B(p), inclusion (12) is proven for arbi-
trary point p * c f(p, q).
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13. Everything is now prepared for investigation. of game (1) using the
altered integral. Let us represent by C(t, T) (t > T) the matrixant of the
homogeneous system y - A(t)y (for a definition of a matrixant and its proper-
ties , see [9]). We recall only that if measurable controls u(#), v(-) (u(T)
( P(T), v(T) Q(T) are fixed in the sector [to, t], then according to the
Cauchy formula

t

(1) C (1, to) Zo + C (1, T) (- u (r) !- v ('r) dT.

Let us study the altered integral
AU.

W (t, I") . [C (t, T) P (Y) dt *-C (, r) Q (T)d td (17)

where t > to. We will assume that the set W(t, t0 ) is not empty with all t,

to (t > t 0 ). Let us study also vector C(t, t 0 )z 0 (t > t 0 ). Two cases are

possible: 1) with no t does vector C(t, t 0 )z 0 belong to W(t, t 0 ); 2) there

is at least one t with which the inclusion

c (t , 1.)Z .• ( W , (1 . 8

is true.

In the first case, we can say nothing concerning the possibility of com-
pletion of pursuit from point (z 0 , t 0 ).

Let us study the second case.

Lemma. There is a minimum 1 for which inclusion (18) is fulfilled.

Proof. There are two possibilities: a) there is a finite number of moments

at which inclusion (18) is fulfilled; b) there is an infinite number of moments

t, at which inclusion (18) is fulfilled. In case "a" everything is clear. In

case "b" we can take the decreasing sequence of numbers t-, which converges to

the lower bound of all numbers t satisfying condition (18). Let us assume that

the limit of t i is equal to t0 + T(z 0 , to).

For brevity we will write T in place of T(z 0 , t 0 ). Let us take a certain

rational subdivision of sector [t 0 , t0 + T]. It is generated by the points

T0 = to < T1 < ... < Tk = to 0 T. Let us study also the rational subdivisions

Wi of sectors [t 0 , ti], produced from subdivision w as folMws: To = t 0 <
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\/

<T 1  '"< Tk-1 < T= i (i = l, ... ). Thus, they differ from' subdivision

w only in the rightmost point.

Let us represent by E£ the integral sum (3) corresponding to subdivision

w with finite set M and

U(T)C(, 1 T )i 0 ()-:C(.-l ," 2(0 to <' r < to + T.

We represent by E the integrals sum (3), corresponding to the division wi
1

(i = 1, 2, ... ) with finite set M and

U,(T) CQt, ;-. T)f'(T), V, (T) C (t. 4-t', )Q(T), to<T <t,) + ti.

It follows from the definition of T. that C(ti, to)z0 (E .
i1 0 0 w. 1

Let us study the curve C(t, t 0 )z 0 as a function of parameter t in sector

[t 0 , t5]. Obviously, there is a sphere p with its center at the coordinatel

origin so large that this curve will be within it where t 0 ý t -< t-. For the

following, it is sufficient to study the set o'i nD' 1".nD"

Using formula (3) for E. and Z W , the even limitation of sets P(T), Q(T)

in [t 0 , T1] and the definition of the operation *, it is not difficult to prove

that Z and Z correspond in sphere D with the integral sums EW,(M1) and
1 1

EW (MI) respectively, constructed on the basis of the subdivisions wi and w and
the same sets Ui(T), Vi(T), U(T), V(T), as E ,,,. E , but with finite set Mi.

where M1 is a convex compact, independent of the number i and belonging to M.

This statement is trivial with limited M and interesting for unlimited M. It

follows from the above that CWt) ,,( l e note that (.A,(Mj)C .. ( C
I .

Let us now study set E (M1 ) as a function of t.. Using the upper semi-
1

continuity of operation * relative to inclusions (see paragraph 2, "E"), it

is easy to prove that the fixed e can be used to find a number N(c), such that

-(A (19)



where S is a sphere of radius c with its center at the coordinate origin.

From inclusion (19) it is not difficult to s~e that C(t 0 + T, t 0 )z 0 ( E + S .

Since was an arbitrary rational subdivision of sector [tO, t0 + T], while

c is an arbitrary positive number, it follows from this that

C(to T, to) z, E W (to -I- T, to), (20)

which was to be proven.

Theorem. Pursuit can be completed from point zO, to in time T(zO, to0 )"

if the pursuer knows control v(s) of the evader at each moment t on sector
t < s < t + e(c > 0 is arbitrary).

The basis of the reality of this hypothesis of information in the hands
of the pursuer is p_ sented in 14].

Proof. According to our assumption, the pursuer knows the control of the
evader in sector [to, to + c]; suppose this control is v(-) (vNC)EQ(T) where
to0 <T <_to0 + C).

Without limiting generality, we can consider e < T(z 0 , t 0 ). Subsequently

to simplify our inscription, let us write T in place of T(zO, t 0 ). Using in-

clusion (12) for the altered integral W(t, t0) (see (17)), we produce

W (to - T, t,)C (W (to-•- T, to - &) -

1- S C(!o0 T, )Pt()dI .T C(to T-- x) Q (T)dr,
go V.

from which, using the definition of the operation * (see paragraph 2, "B"),

we easily produce the inclusion

IV (to + T, 1t) C 11Y (to. I- T, to -!-+ ) -- C (to - T, T) P (T) dT--

t. I.

- ( C(I. -- T, T)t(r)dT.

from which and from formula (20) it follows that a measurable control u(.)
(to 0 < T< to + C, u(T)(P(T)) is found such that
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t/

se-t-i

C(I. -7. to) zo - jC (f + T), ru (T) dri +

g. (21)
I C (to + T, T)v(0r)d'E W( (-I- T, to +- .

I.

As we know (see [9]), matrixant C(t, t0 ) has the property C(t, to = C(t,

t 1 )C(t 1 , t 0 ), where t. < t 1 < t.

Using this property, we produce from formula (21)
t.+C

c(to - T, t.- )(C (to + C, to)z -Z . C (o -- E, T) u (T) dT +

;- . C(t,,-- E, T) V (T)dr .- C(to + T, to + )z(r)E W1(o + T, to+ ).
t.

From which it follows that for point (z(e), t0 + C), the inequa-lity T(z(e),

t + C) < T - c is correct. Thus, we have decreased time T(z 0 , t0) by at
least c in time c. Performing similar steps further, the pursuer will com-
plete pursuit in a time < T(z 0 , t0) (we note that W(t, t) = M).

I would like to thank N. Kh. Rozov and P. B. Gusyatnikov for their atten-
tion and advice, which helped to improve this article. This report was read
at a seminar on d" -erential games of the mechanical and mathematical depart-
ment.
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